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ABSTRACT 

Carbon Capture and permanent geologic Storage (CCS) 

can be utilized (U) to generate electrical power from 

low- to medium-enthalpy geothermal systems in so-

called CO2-Plume Geothermal (CPG) power plants. 

The process of electrical power generation entails a 

closed circulation of the captured CO2 between the deep 

underground geological formation (where the CO2 is 

naturally geothermally heated) and the surface power 

plant (where the CO2 is expanded in a turbine to 

generate electricity, cooled, compressed, and then 

combined with the CO2 stream, from a CO2 emitter, 

before it is reinjected into the subsurface reservoir).  

In this research, initially a comprehensive techno-

economic method (Adams et al., 2021), which coupled 

the surface power plant and the subsurface reservoirs, 

supplies the curves for CO2-based geothermal power 

potential and its Levelized Cost of Electricity (LCOE) 

as a function of the mass flowrate. This way, the 

optimal mass flowrate can be determined, which 

depends on the wellbore configuration and reservoir 

properties. However, the method does not account for 

the possibility of unwanted water accumulation in the 

production wells (liquid loading). In order to account 

for this in the optimization process, a wellbore-

reservoir coupling is necessary. 

In this research, flow of fluids from the geological 

formation into the production wellbores has been 

analysed by optimizing the reservoir modelling. The 

optimization method has been extended to a set of 

representative geological realizations (500+). The 

optimal CO2 mass flowrate provided using genGEO, 

which maximizes net-electrical power output while 

minimizing LCOE, can now be related to the risk of 

liquid loading occurring. Additionally, the resultant 

reservoir model can forecast the CO2-plume migration, 

the reservoir pressure streamlines among the wellbores, 

and the CO2 saturation around the production 

wellbore(s). 

1. INTRODUCTION 

Stabilizing the Earth's temperature over the next 

millennia will need not just a near-total decarbonization 

of the global energy supply, but also capturing currently 

existent CO2 from the atmosphere and storing it 

permanently underground, a process known as Carbon 

Capture and Storage (CCS). Instead of merely storing 

CO2 in geologic reservoirs at depths greater than 0.8 km 

during CCS, the CO2-Plume Geothermal (CPG) system 

circulates CO2 that has been injected into deep (>2 km) 

reservoirs, and thereby geothermally heated, back to the 

surface, where it is expanded in a turbine to enable 

more efficient geothermal power generation with less 

need for auxiliary power (e.g., Randolph and Saar, 

2011; Adams et al., 2015; Fleming et al., 2020; Hefny 

et al., 2020; Ezekiel et al., 2022; and references 

therein). Thereafter, the CO2 is cooled, water is 

removed, and the dry CO2 is reinjected into the 

geological reservoir, together with the CO2 stream 

coming from the capture facility (Figure 1), so that 

100% of the initially injected CO2 is ultimately 

permanently stored underground. 

It has been shown that the power output of a CPG 

system is controlled by the heat extraction rate from the 

reservoir, which is determined by the CO2 mass 

flowrate (e.g., Randolph and Saar, 2011; Adams et al., 

2015). However, as the CO2 mass flowrate from the 

well head to a direct CPG turbomachinery increase, the 

system pressure losses increase as well, resulting in the 

production of CO2 below the ambient temperature, 

making power generation unfeasible (Adams et al., 

2015). This work presents the development of a robust 

optimization approach and a quantification of the role 

of various subsurface parameters (including the CO2 

mass flowrate) on the rated of electrical power 

generation using CPG systems. In our paper, we (1) 
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simulate fluid circulating through the surface facility 

and underground through the reservoir for two inverted 

5-spot well pattern-based reservoir models, (2) 

optimize the fluid circulation (for the same well-

pattern-based models), and (3) conduct uncertainty 

analyses.  

 
Figure 1: A CPG system illustration, showing a cross-

section of the reservoir, wellbores, and the surface power 

plant (After Randolph and Saar, 2011). 

 

2. METHODOLOGY 

Two multi-objective optimization algorithms, 

including subsurface reservoir and surface power plant, 

were used to obtain the optimal solutions for the 

economical CPG operation schemes with the associated 

uncertainty analysis. Two objectives were considered: 

maximizing the electrical power generation and 

minimizing Levelized Cost of Electricity (LCOE).  

2.1 Surface power plant optimization 

A simplified techno-economics assessment of the 

surface power plant, using an in-house developed 

algorithm, genGEO (Adams et al., 2021), is employed 

to investigate the scenarios. The levelized cost of the 

electricity (LCOE) and the electrical power generation 

from a CPG system were estimated for optimal values 

of CO2 mass flowrates at the wellhead. For this 

estimation, we used the optimization to maximize the 

electrical power generated, per unit of produced 

geofluid (CO2), because such optimization does not 

require any knowledge or assumption of the cost 

analysis. Realization of the maximum power is 

achieved by reducing all heat exchanger temperature 

differences to the smallest value possible to extract the 

maximum heat from the produced CO2 (Adams et al., 

2021). The Appendix contains all simulated 

parameters.  

2.2 Subsurface reservoir optimization 

In the subsurface optimization, the reservoir simulation 

covers the 11-years of the CPG operation (for example 

from January 1st, 2020, to December 1st, 2030). The 

optimization workflow is explained as follows: 

reservoir modelling/simulation ➔ optimization ➔ 

uncertainty analysis. We employed an initial (base) 

reservoir model, which is a conceptual model of an 

inverted 5-spot well pattern, to reduce the computing 

time and cost of each optimization run. An inverted 5-

spot well pattern, where four production wells are 

located at the corners of a square and the injector well 

sits in the centre, and its parameterizations are listed in 

the Appendix.  

The Nubian sandstone reservoir, as depicted in Figure 

1 Hefny et al., (2021), is a highly compartmentalized 

clastic reservoir with around 72 identified faults. Some 

fault blocks have hydraulically isolated lateral borders, 

where pressure can build up quickly during CO2 

injection, posing a substantial risk of reactivation of the 

bounding faults. Other fault blocks have open lateral 

boundaries (i.e., are fluid-supported from the far-field). 

As a result, we create two inverted 5-spot well pattern 

models: (1) a closed-boundaries pattern model (10 

layers with 1 km2 footprint), representing the 

hydraulically disconnecting fault blocks, and (2) an 

open-boundaries-pattern model to represent the other 

fault blocks. The reservoir model is a sandstone that is 

100% saturated with only pore water present at initial 

condition. 

Both models are only simplifications of a real system. 

The purpose of these numerical models is to learn about 

the behaviour of actual systems. We use the thermal 

simulator (STARS, CMG©) to build the base reservoir 

model and to simulate the CO2 injection/production 

strategies. Utilizing artificial intelligence (AI) and 

machine learning techniques, included in CMG 

CMOST, we define a Design of Experiments (DoE) 

workflow to perform optimizations, sensitivity 

analyses, and uncertainty assessments to identify the 

most uncertain parameters, impacting the subsurface 

CO2 plume migration and associated mass flowrate 

behaviour.  

In the reservoir optimization, we used the Particle 

Swarm Optimization (PSO) method, which was 

proposed by Eberhart and Kennedy (1995) and 

Kennedy and Eberhart (1995) and inspired by social 

behaviour of bird flocking and fish schooling. PSO is a 

population-based stochastic computing approach for 

optimizing random (particle) solutions to a problem. It 

seeks optima by iteratively seeking to evaluate particle 

solutions in terms of a particular quality measure and 

remembering the position of their best success, making 

this information available to their neighbours. 

Movements in the search space are controlled by the 

best-known position of each particle (Equation 1), 

which is additionally updated by better positions found 

by other particles in each iteration (Equation 2). The 

iteration is stopped once the pre-set stop criteria are 

met. Once all the particles’ locations are updated, the 

objective function values are evaluated by conducting 

reservoir simulations. For a detailed explanation of the 

PSO optimizer, see Raquel and Naval's (2005) paper. 
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Because the CO2 mass flowrate can have a significant 

impact on a CPG project's economic viability, the 

subsurface optimization tries to determine the ideal 

subsurface conditions that replicate the forecasted CO2 

mass flowrate at the wellhead by the genGEO's 

optimizer, while minimizing liquid co-production. In 

this study, we considered, therefore, many non-lineally 

correlated subsurface parameters to make the optimal 

solution typical for a heterogeneous reservoir. In the 

reservoir optimization, the surface mass flowrate (or 

slug size of injection), the size of wellbore inner tubing 

(as a function of the inner and outer tubing case and 

radius insulation), the maximum bottomhole pressure 

(BHP), the perforation length of the production wells, 

and surface temperature and pressure are selected as the 

optimization parameters. 

For the uncertainty analysis, we employ Monte Carlo 

(MC) simulations to capture the uncertainty 

propagation from variables we can measure to the 

output variable(s) of interest, which must be estimated. 

We used the Latin Hypercube Sampling (LHS) method 

(McKay and Conover, 1979) for the best sampling of 

the probability distribution for all input variables. 

Based on LHS, we performed a total of 625 numerical 

simulations.   

3.  RESULTS AND DISCUSSIONS 

3.1 Base model simulation 

In the base model simulation, we set a limit of 500 

meters between injector and producer for the well 

interval. The injection well is perforated throughout the 

reservoir thickness, whereas production wells are 

simply perforated in the top half (i.e., 1-5 layers of the 

model). The injector borehole's fluid composition is 

100% pure CO2, and the injection process starts in 2020 

and is planned to end in the year 2030.  

Fluid injection into (and migrating through) the storage 

reservoir can potentially trigger shallow micro-seismic 

events that can be monitored from the ground surface. 

Therefore, the maximum CO2 injection rate is fixed at 

1106 m3/day, while the permitted injection pressure is 

maintained at a safe level of avoiding caprock integrity. 

Considering that the initial reservoir pressure is 25 MPa 

at a depth of 2 km, we set the maximum BHP of the 

injector to 29 MPa. Consequently, the maximum BHP 

control of the injector borehole was given an additional 

constraint to prevent the reservoir pressure from 

exceeding the threshold pressure when the seal integrity 

is lost, or fault reactivation occurs. Additionally, co-

production of the resident formation brine is controlled 

to keep the reservoir pressure at 26 3 MPa. The CO2 

injection and production rates, water production rate, 

and BHP of the injector and producer boreholes of each 

model are presented in Figure 2. A substantial 

proportion of brine production occurs during the first 

two years of injections, after which it begins to stabilize 

when the subsurface CO2-plume is well-established and 

CO2 production begins. 

 
Figure 2: CO2 injection simulation using the Base model. 

The solid lines depict the closed-pattern model, whereas 

the dashed lines depict the open-pattern model. BHP for 

the closed-pattern model is set to 24 MPa during the 

whole simulation period. The CO2 injection rate was 

fixed to 1106 m3/day for both cases.  

3.2 Optimization 

3.2.1 Techno-Economic analysis 

By employing the generalizable GEOthermal techno-

economic simulator (genGEO) for the base-case model, 

we solve for the optimal solution of the mass flowrate 

that maximizes the net electrical power, while 

maintaining LCOE to a minimum. As shown in Figure 

3, a CO2 mass flowrate of 839 kg/s (a volumetric 

[m3/day] equivalent will depend on wellhead 

temperature and pressure using the simulation 

conditions) is an optimal mass flowrate to generate 

0.730.06 MWe of net electrical power at an LCOE 

[$/MWh] of 400100 for one well-doublet. A quick 

summary of the simulated parameters is provided in 

Section 2 and in the Appendix. 

 
Figure 3: The electricity generated and Levelized Cost of 

Electricity (LCOE) as a function of production well mass 

flowrate for a well doublet of a CPG system using 

genGEO. For the simulation parameters, one can refer 

to section 2. 

𝒗𝒊
𝒕+𝟏 = 𝒘𝒗𝒊

𝒕 + 𝒄𝟏𝒓𝟏(𝒑𝒊
𝒕 − 𝒙𝒊

𝒕) + 𝒄𝟐𝒓𝟐(𝒈𝒕 − 𝒙𝒊
𝒕)          [1]   

𝒙𝒊
𝒕+𝟏 = 𝒙𝒊

𝒕 + 𝒗𝒊
𝒕+𝟏                                                            [2] 

where, 𝜈 is particle velocity,  𝑥 particle position, 𝑝 

stands for personal best solution of particle,  𝑔 Global 

best solution of swarm, 𝜔 is the inertial weight, 𝑐1 is the 

cognitive weight, 𝑐2 the social weight, 𝑟1 is a random 

number between 0 and 1,  𝑟2 is a random number 

between 0 and 1, 𝑖 is the patricle, and finally 𝑡 is the 

time step.  
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3.2.2 Minimization of brine production optimization 

Using the PSO method, our primary goal is to find the 

optimal combination of the subsurface parameters that 

replicate the quantity of CO2 mass flowrate predicted 

by genGEO at the wellheads while minimizing the 

amount and timing of the liquid produced. The PSO 

algorithm's termination condition, when employing the 

employed the base-case reservoir model (see Section 

2), is set to a maximum of 1,814 runs. Minimizing brine 

co-production (i.e., end of liquid production) is 

achieved at an experiment ID optimization case of 

1,696 (Figure 4) following an exponential reduction 

production rate (Figure 5). The optimization findings 

suggest that the following variables are critical to 

achieve the goal of minimizing brine co-production: 

• Injection rate/slug size 

• Perforation Length: 60% 

• Tubing Size 

 

 
Figure 4: top: Experimental run progress of end brine 

production optimization with PSO algorithm. Bottom: 

Polynomial proxy verification for CO2 production. 

The optimization findings, as illustrated in Figure 5 are 

listed in the Appendix, indicate that: 

- For a closed-pattern reservoir model:  

CO2 can be injected at a constant rate of 28103 m3/day 

for the full duration of the simulation. The production 

wells established an extensive rise in CO2 production 

rate of around 21103 m3/day until the end of the first 

year. The production rate was continued with a little 

increase while attaining a comparable rate with the CO2 

injection (Figure 5). 

- For an open-pattern reservoir model: 

CO2 can be injected at a maximum rate of 260103 

m3/day for the first month from the injection start. 

Thereafter, the rate decreases to about 121103 m3/day, 

keeping the rate with a slight increase (127103 m3/day) 

until the year 2030.  

 

It is apparent from Figure 5 that both models experience 

a high-water co-production rate in the first six months 

following the start of CO2 injection. This is followed by 

a sharp fall in the water production rate (m3/day) of 

1000 and 130, near the end of the simulation period for 

the open-pattern model and the closed-pattern model, 

respectively. In these optimal cases, the production 

wells are effectively controlling the reservoir pressure. 

However, one of the CPG system's concepts is that less 

water production is preferable.  

 

As a result, depending on a variety of characteristics 

such as salinity, reservoir depth, public acceptance, and 

governmental regulations, one alternate option to 

dealing with co-produced water (or brine) is re-

injection into a shallower and/or deeper reservoirs. To 

analyse the techno-economic viability of subsurface 

brine disposal, it is necessary to estimate the Net 

 

 
Figure 5: PSO optimization for minimizing the water 

co-production using the closed-pattern model (solid 

lines) and open-patten model (dash lines). The top 

figure depicts the whole simulation period, while the 

bottom figure illustrates a zoom-in plot for the first 

five months of the simulation. 

 

Figure 6: Two-dimensional slice shows the spatial 

distribution of the CO2 saturation at the end of 

simulation (December 30, 2030) in a reservoir of an 

open-pattern model. The injection wellbore is located in 

the center. 
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Present Value (NPV). As shown in Equation 3, NPV is 

the difference between the present value of cash 

inflows and the present value of cash outflows over a 

period of time. 

 

Given the cost assumptions of water treatment = 

1.82$/m3, CO2 profit1 = 0.028 $/m3, and an average 

well cost = $1.2 million, the CCS net present value 

(NPV) was estimated to be $2.06106 for the brine 

disposal wellbore (Figure 7). The characteristics of the 

wellbore configuration in a real heterogeneous 

geological system, such as depth, location, deviation, 

completion, and radius, can all contribute to 

maximizing the NPV (Equation 3). Therefore, a new 

PSO optimization approach must be developed that 

include the maximization of NPV using the above-

mentioned PSO as a single optimization system. 

 

Figure 7: Figure 7: NPV profile for a brine disposal 

wellbore during CO2 injection. At a discount rate of 10% 

(where the internal rate of return is) or less, the brine 

disposal is likely to turn a profit (the blue area). Given all 

other parameters being identical, the profitability of brine 

disposal at a discount rate above 11% is unlikely (red 

area).  

Figure 8 demonstrate that using the PSO’s optimization 

outputs, particularly the volumetric CO2 production 

rate of the geothermally heated CO2 as a heat extraction 

fluid can potentially produce an electrical output of 

1.96 to 1.6 MWe at a corresponding cost of 194 to 224 

$/MWh, using a well doublet. The economics estimate 

is calculated for the year 2019. Other optimization 

outputs include the estimation of the wellhead pressure 

and temperature, so that the mass flowrate can be 

 

1 The profit from CO2 injection is calculated by subtracting the capture and storage costs of 35 $/tonCO2 from the benefit from avoiding CO2 tax of 

50 $/tonCO2.                  
 

quantified. Additionally, Figure 8 shows a slight 

increase in the LCOE over the simulated period. 

 
Figure 8: Brownfield CPG systems' potential net electrical 

power generation and techno-economic assessment for a 

10-year timeframe.  

 

3.3 Uncertainty analysis 

In the uncertainty analysis, a polynomial proxy model 

was built using 600 training experiments and verified 

using 14 blind test cases. The proxies generated were 

accurate enough to be used in Monte Carlo (MC) 

simulations (Figure 4 bottom), with all R2 values above 

0.85. Each MC simulation uses 65,000 samples to 

minimize the number of gaps in the sampling space.  As 

shown in Figure 9, the most likely value for the CO2 

production rate at the end of the simulation periods (i.e., 

11 years) is 3.45107 m3/day (i.e., P50) with a possible 

range running from 1.62107 m3/day (i.e., P10) to 

4.58107 m3/day (i.e., P90).  

 
Figure 9: Results from MC simulations, showing the CO2 

gas production rates.  Shown is a cumulative probability 

distribution (blue line) and the probability distribution 

function (bars). 

4.  CONCLUSIONS AND OUTLOOK 

Rather than considering CO2 as a waste to be disposed 

of, new technologies, such as CO2 Plume Geothermal 

(CPG), use the geothermally heated CO2 to be 

circulated to the land surface to generate geothermal 

power. At the end of its life cycle, CPG is expected to 

permanently sequester 100 percent of the injected CO2 

in the geological reservoir. Some parameters of the 

CPG concept can be optimized, in contrast to the mostly 

unchangeable intrinsic properties of the reservoirs, in 

an effort to maximize CO2 circulation, while keeping 

𝑵𝑷𝑽 = −𝑪𝒘𝒆𝒍𝒍 + ∑
𝑷𝑪𝑶𝟐 × 𝜿𝑪𝑶𝟐

𝒊𝒏𝒋 (𝒕) −𝑪𝒘𝒂𝒕𝒆𝒓𝑻×𝜿𝒘𝒂𝒕𝒆𝒓𝑻
𝒑𝒓𝒐𝒅 (𝒕) 

(𝟏+𝑫𝑹)𝒕
𝒏
𝒕=𝟏           [3]   

where, 𝑃𝐶𝑂2 is the profit from CO2 injected,  𝜅𝐶𝑂2
𝑖𝑛𝑗

(𝑡) is CO2 

injection rate per year t, 𝜅𝐶𝑂2
𝑖𝑛𝑗

(𝑡) is water production rate per 

year, 𝐶𝑤𝑒𝑙𝑙 stands cost of drilling/completion of a well, 

𝐶𝑤𝑎𝑡𝑒𝑟𝑇 stands water treatment cost, and 𝐷𝑅 is the discount 

rate (assumed to be a constant value of 0.04/year, See 

appendix). 
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the liquid co-production rate to a minimum. An 

optimization method has been employed to understand 

the most impactful variables for our study and to find 

the optimal CO2 production rate and the minimum brine 

production rate. The main conclusions are as follows: 

- The Particle Swarm Optimization (PSO) 

algorithm was found to be particularly useful 

to find the optimal solutions in a homogeneous 

reservoir, and it can be extended to account for 

highly heterogeneous reservoirs, resulting in 

various implications that are rarely considered 

when working with a complicated geological 

system. 

- During the first operation phase (i.e., the first 

6-12 months), the CPG system exhibits strong 

dynamic behaviours regarding fluid flow rates 

and reservoir pressures. As a result, it will be 

critical to conduct in-depth monitoring of the 

reservoir until the subsurface CO2 plume is 

well-established. 

- Water/brine disposal into shallower/deeper 

aquifers can be an efficient way for treating 

co-produced fluids. This strategy, however, 

appears to be highly expensive. As a result, 

considering the maximizing NPV 

optimization as part of the entire CPG PSO 

optimization algorithm will be a future study 

to incorporate the unpredictability of 

economic factors on the overall CPG system. 

- From the Monte Carlo simulations performed, 

the most likely value for CO2 production rate 

at the end of the simulation periods is 

generally high, with P50 values above 80%  

The proposed optimization technique will next be 

applied to an up-scaled and full-field model of the 

Nubian Sandstone reservoir (Gulf of Suez, Egypt), 

where the static reservoir model was built using 

accessible subsurface data (Hefny et al., 2021). 

Production data, such as subsurface fluid model, real-

time production rates, dynamic reservoir pressure and 

temperature, etc., must be used to constrain and validate 

the developed model as soon as it becomes available. 
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APPENDIX 

The reservoir geometry is an inverted 5-spot well 

pattern with the reservoir properties listed in the table 

below. We assume that the reservoir is initially 100% 

brine-saturated at first.  

Parameters Value Units 

1. Subsurface properties 

Depth 2500 m 

Porosity 0.25 - 

Permeability 3.010-13 m2 

Pressure gradient 11.2 MPa/km 

Temperature gradient 0.038 °C/m 

Rock density, 

Compressibility, 
Thermal conductivity, 

Volumetric heat capacity 

2650, 

4.5×10-7, 
2.1, 

2.347×106, 

kg/m3, 

1/Pa, 
W/m C, 

J/(m3 C) 

Transmissivity 300.0×10-13 m3 

Well radius 0.08 m 

Well spacing 707 m 

Friction factor 55 m 

   

2. genGEO simulation parameters * 

Optimization Mode Minimize LCOE 
Brownfield 

- 

Lifetime 11 year 

ORC Fluid R245fa - 

Cooling Tower 
Technology 

Wet - 

Well-Field Type Doublet - 

Discount Rate 0.04 - 

Capacity Factor 0.95 - 

Cost Year 2019 - 

Success Rate well 0.95 - 

CPG Turbine efficiency 0.78 - 

CPG Pumping efficiency 0.9 - 

ORC Heat Exchanger 

Overall Heat Transfer 

Coefficient 

500 W/m2-C 

Cooling Tower 

Approach Temperature  
7 °C 

ORC Heat Exchanger 
Pinch Minimum 

Temperature 

5 °C 

ORC Cycle Type  Subcritical,  
single pressure 

- 

ORC turbine efficiency 0.8 - 

ORC pump efficiency 0.9 - 

Pump Depth  500  m 

Max. Pump dP   10 MPa 

Water Downhole Pump 
efficiency 

 0.75  - 

Fraction of 

Operation/maintenance 

0.045 - 

*  genGEO simulations  
       - do account for reservoir temperature depletion, wellbore 

heat loss, and surface gathering system, 

       - do not account for reservoir pressure transient, and silica 

precipitation 

 

 

 

 

 

 

 

 

 

 

 

Below is the list of parameterizations for the PSO 

optimization 

Parameter Base Lower 

Limit 

Upper 

Limit 

Prior 

probability 

function 

PSO optimization: 

Injection rate 
[m3/day] 

- 107  108 Uniform 

Perforation 

Length [%] 

- 50 100 Uniform 

Production 
tubing Size [m] 

- 0.0603 0.1143 - 

     

Uncertainty analysis: 

Reservoir 
thickness [m] 

50 10 100 Uniform 

Porosity [-] 0.25 0.1 0.33 Normal 

Horizonal 

Permeability 
[m2] 

3.0 

×10-13 

1.0 

×10-13 

10.0 

×10-13 

Normal 

Vertical 

Permeability 

[m2] 

1.0 

×10-13 

1.0 

×10-15 

1.0 

×10-13 

Normal 

Injection 

pressure [MPa] 

20.684 20.0 100.0 Uniform 

Reservoir top 

depth [m] 

2000 1500 6000 Uniform 

Maximum 

Bottom-hole 

pressure [MPa] 

48.579 As a function of 

formula a 

 

Production 
tubing Size [m] 

0.15 0.0603 0.1143 Uniform 

Geothermal 

gradient 
[°C/kg] 

35 25 35 Uniform 

a Bottom-Hole Pressure = 0.7 × reservoir depth × 3.334× 6.8948 

 

Sobol sensitivity analysis of the influence of 10 

parameters on the CO2 production rate. 

 

 

 

 

 


