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A B S T R A C T

Data has always played an important role in the modeling and simulation
of turbulent flows. In the last decade, with the advancement and abundance
of measurement techniques, computational resources, and mathematical
algorithms, data has been systematically used to develop and improve tur-
bulence models. Experimental measurements, which are generally sparse
or of low resolution, can be incorporated into models using mathemati-
cal techniques such as variational data assimilation to enable data-driven
simulation of turbulent flows. In this project, we investigate different tech-
niques to incorporate sparse data into the turbulence models to obtain
the most accurate results possible. Such inverse problems are typically
severely ill-posed and the solutions are non-unique. Therefore, in addition
to sparse measurements, further information, expert knowledge, or physi-
cal constraints should be added to the problem to obtain a reconstructed
solution that is smooth, accurate, and physical. We, therefore, impose the
linear eddy viscosity (LEV) assumption to reduce the degrees of freedom
of the problem and the constraint of positivity of the eddy viscosity. The
optimization problem is defined as reducing the discrepancy between the
LEV RANS model’s solution and the sparse measurement data by tuning
a corrective parameter field that results in an optimal eddy viscosity field.
The discrete adjoint method is implemented in OpenFOAM to compute
the gradients. The case study of flow over periodic hills is chosen for the
investigation.

We see that the LEV assumption without including further information
would lead to irregular, jagged velocity profiles, due to the ill-conditioning
and non-uniqueness nature of the problem. Regularization is then intro-
duced to promote regularity and smoothness to the solution. The L2, total
variation, and Sobolev gradient regularization methods were employed. We
find that physical velocity profiles can be reconstructed using these meth-
ods. However, we observe that with each of these regularization methods
we cannot accurately reconstruct wall shear stresses, which are important
quantities of interest, even if sparse wall shear stress measurement data is
assimilated. Therefore, we propose a method called piecewise linear dimen-
sion reduction (PLDR). In this method, the parameter field is constrained
to be piecewise linear to avoid, in a controlled way, any noise and large
fluctuations in the gradients. The results suggest that the PLDR method
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can provide accurate and smooth velocity profiles as well as wall shear
stresses. Next, we investigate a scenario where only sparse wall shear stress
measurements are available. We observe that incomplete and not uniformly
distributed data cannot be assimilated properly resulting in deteriorated so-
lutions in the free shear flow region. Therefore, we augmented the available
data by using the solution of a high-fidelity but computationally efficient
model. A loosely coupled hybrid LES/RANS method is proposed, in which
an under-resolved LES is coupled with a steady-RANS model. We show that
such a method is easy to implement and that it provides an accurate velocity
field with less accurate wall shear stresses. The solution of the proposed
hybrid LES/RANS method in combination with the sparse wall shear stress
measurements was successfully assimilated into a RANS model providing
both accurate velocities and wall shear stresses. We can conclude that ac-
curate sparse data-driven simulation is possible if the inverse problem is
properly defined such that any available knowledge is incorporated, from
adding data from a higher fidelity simulation, constraining the Reynolds
stress tensor, and imposing a hard constraint on the positivity of the eddy
viscosity, to penalizing noise and non-smoothness, etc. The project thus
shows a promising path towards using sparse data-driven simulation for
practical applications.
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Z U S A M M E N FA S S U N G

Daten haben schon immer eine wichtige Rolle bei der Modellierung und
Simulation turbulenter Strömungen gespielt. In den letzten zehn Jahren
wurden mit dem Fortschritt und der zunehmenden Menge an Messver-
fahren, Rechenressourcen und mathematischen Algorithmen systematisch
Daten zur Entwicklung und Verbesserung von Turbulenzmodellen verwen-
det. Experimentelle Messungen, die im Allgemeinen spärlich sind oder eine
geringe Auflösung haben, können mit Hilfe mathematischer Techniken wie
der Datenassimilation durch das Variationsverfahren in Modelle integriert
werden, um eine datengesteuerte Simulation turbulenter Strömungen zu
ermöglichen. In diesem Projekt untersuchen wir verschiedene Techniken
zur Einbeziehung spärlicher Daten in die Turbulenzmodelle, um möglichst
genaue Ergebnisse zu erzielen. Solche inversen Probleme sind in der Regel
sehr schlecht gestellt und die Lösungen sind nicht eindeutig. Daher sollten
zusätzlich zu den spärlichen Messungen weitere Informationen, Experten-
wissen oder physikalische Randbedingungen in das Problem einfliessen,
um eine glatte, genaue und physikalische Lösung zu rekonstruieren. Wir
setzen daher die Annahme der linearen Wirbelviskosität (LEV) voraus, um
die Freiheitsgrade des Problems und die Einschränkung der Positivität der
Wirbelviskosität zu reduzieren. Das Optimierungsproblem besteht darin,
die Diskrepanz zwischen der Lösung des LEV-RANS-Modells und den
spärlichen Messdaten zu verringern, indem ein korrigierendes Parameter-
feld eingestellt wird, das zu einem optimalen Wirbelviskositätsfeld führt.
Die diskrete adjungierte Methode ist in OpenFOAM implementiert, um die
Gradienten zu berechnen. Für die Untersuchung wird als Fallbeispiel die
Strömung über periodische Hügel gewählt.

Es zeigt sich, dass die LEV-Annahme ohne Einbeziehung weiterer Infor-
mationen zu unregelmäßigen, gezackten Geschwindigkeitsprofilen führen
würde, was auf die schlechte Konditionierung und die Nicht-Eindeutigkeit
des Problems zurückzuführen ist. Die Regularisierung wird eingeführt, um
die Regelmäßigkeit und Glätte der Lösung zu fördern. Im Speziellen wur-
den die Methoden L2, Totalvariation und Sobolev-Gradient-Regularisierung
eingesetzt. Dabei hat sich gezeigt, dass die physikalischen Geschwindig-
keitsprofile mit diesen Methoden rekonstruiert werden können. Jedoch
werden mit jeder dieser Regularisierungsmethoden die Wandschubspan-
nungen, die von besonderem Interesse sind, nicht genau rekonstruiert,
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selbst wenn spärliche Wandschubspannungsmessdaten assimiliert werden.
Daher schlagen wir eine Methode namens Piecewise Linear Dimension Re-
duction (PLDR) vor. Bei dieser Methode muss das Parameterfeld stückweise
linear sein, um Rauschen und große Schwankungen in den Gradienten
kontrolliert zu vermeiden. Die Ergebnisse zeigen, dass die PLDR-Methode
genaue und glatte Geschwindigkeitsprofile sowie Wandschubspannungen
liefern kann. Als Nächstes untersuchen wir ein Szenario, bei dem nur
spärliche Wandschubspannungsmessungen verfügbar sind. Wir stellen fest,
dass unvollständige und nicht gleichmäßig verteilte Daten nicht richtig
assimiliert werden können, was zu schlechteren Lösungen im Bereich der
freien Scherströmung führt. Daher haben wir die verfügbaren Daten durch
die Lösung eines sehr realitätsnahen, aber rechnerisch effizienten Modells
ergänzt. Es wird eine hybride LES/RANS-Methode vorgeschlagen, bei der
eine unteraufgelöste LES mit einem stationären RANS-Modell lose gekop-
pelt wird. Wir zeigen, dass eine solche Methode einfach zu implementieren
ist und, dass sie ein genaues Geschwindigkeitsfeld mit weniger genauen
Wandschubspannungen liefert. Die Lösung der vorgeschlagenen hybriden
LES/RANS-Methode in Kombination mit den spärlichen Wandschubspan-
nungsmessungen wurde erfolgreich in ein RANS-Modell integriert, das
sowohl genaue Geschwindigkeiten als auch Wandschubspannungen liefert.
Wir können schlussfolgern, dass eine genaue datengetriebene Simulation
möglich ist, wenn das inverse Problem richtig definiert ist, so dass jedes
verfügbare Wissen einbezogen wird, angefangen von der Hinzufügung von
Daten aus einer Simulation mit höherer Genauigkeit, der Beschränkung des
Reynolds-Spannungstensors und der Auferlegung einer harten Beschrän-
kung für die Positivität der Wirbelviskosität bis hin zur Bestrafung von
Rauschen und Nicht-Glätte, usw. Das Projekt zeigt somit einen vielverspre-
chenden Weg zur Nutzung der datengesteuerten Simulation für praktische
Anwendungen auf.

x



A C K N O W L E D G E M E N T S

First of all, I would like to thank my supervisor Prof. Patrick Jenny. During
my four years on this project, I received excellent scientific support from
him. Many ideas originated from our brainstorming in meetings and Prof.
Jenny’s vision always helped me take appropriate steps. His patience and
understanding provided healthy working conditions for me to experiment
with ideas and make try-and-error tests. He is an excellent example of an
optimal supervisor who is kind and rational to deal with and scientifically
expert in his field.

Second, I want to thank my colleague Oliver Brenner. We worked to-
gether on this topic. His solid programming and mathematical skills greatly
improved our work. Most of the in-depth understandings came out of our
discussions. His kind support during my difficult days amid the Ph.D.
is greatly appreciated. His discipline was an inspiration for me and he
practically showed me what a Swiss quality performance means.

Third, I want to thank Mahshid, my wife, for all her love, support, and
patience. Without her, I could not carry on and finished this Ph.D. I am
very lucky to have her in my life.

I want to thank Prof. Togni who was the vice-rector of ETHZ. His kind
support enabled me to move to the IFD lab. He is one of the most amazing
people I have ever seen and without his support this Ph.D. would have
been nonexistent.

I thank Prof. Mishra for accepting to be my co-examiner and co-supervisor.
I enjoyed our scientific discussions and appreciate his time reading and
evaluating my thesis. I also thank Prof. Xiao, for being my co-examiner
and for his insightful comments on the thesis. I particularly thank him
for sharing his code on the hybrid method which greatly accelerated my
project.

I thank my family. I thank my mother and father for growing me up and
for their great care and sacrifice. I owe them for whatever I have achieved. I
thank Pourya, my brother, for being my first role model. His kindness and
support have always been with me. I thank Parya, my sister, for being a
source of love and care. Their support and encouragement made me believe
in myself and have the courage to study abroad.

xi



I thank my "second family", Mr. and Mrs. Motie for being so supportive
and kind toward me. I thank Mehrshad and Shiva for their kind support and
for being real friends. I am very lucky to have you as my family member.

I would like to thank our group members. I thank Robert for his mental
support, Justin for our fruitful discussions and the German translation
of the abstract, Daniel, for always being kind to me, Ranit and Sun, for
our cultural proximity, Michael and Giulia for our fun discussions, and
all other members: Hossein, Valentin, Kristof, Heinrich, Lukas, Nemanja,
Rajdeep, Franca, Stephan, Philip. I also thank my former group members
known as "Mud Crabs". We made it together. Which can happen! Thanks,
Jiggar, Christina, Lento, Laure, Hamed, Giorgia, Ishaan, Gianluca, Nilesh,
Giovanni.

I thank my students Francesca, Fabiano, Coleman, and Severin who have
done their projects with me. I learned a lot from them and hope that they
also learned something from their projects.

I thank Dr. Daniel Meyer for letting me assist him in the course computa-
tional methods, which significantly improved my CFD knowledge.

I thank all IFD members for being such nice colleagues to me. I thank
Bianca and Maria for their great and kind administrative support.

I thank ETH and Empa board for their great support, especially Prof.
Bona, Prof. Springman, and Dr. Richner. I thank Prof. Carmeliet and Dr.
Jonas Allegrini. I also thank the ETH foundation for their financial support.

Finally, I want to thank all my Iranian friends in Switzerland, Iran,
and all around the world whose friendship is the most joyful thing in
my life: Mahyar, Amirreza, Danial, Nima, Mohaddeseh, Shokoofeh, Sina,
Ehsan, Fereshteh, Abdi, Hossein, Mohammad and Rezvan, Erfan, Maryam,
Ahmad, Shima, Karim, Saeed, Ardalan, Sarah, Manouchehr, Elias, Parisa,
Mohammad and Fatemeh, Ehsan Akrami, Elian, Tania, Omid, Ali . . .

The picture of the cover of the thesis was designed by Vitaliiw001X -
Freepik.

xii

http://www.Freepik.com


C O N T E N T S

List of Figures xv
List of Tables xix
List of Symbols xx
1 introduction 1

1.1 Governing equations of fluid flow 1

1.2 Turbulence and Turbulent flows 3

1.3 Why study turbulent flows? 5

1.4 How study turbulent flows? 6

1.5 Turbulence Modeling 7

1.5.1 Reynolds-averaged Navier Stokes (RANS) 8

1.5.2 Conclusions on RANS models 15

1.5.3 Large eddy simulation (LES) 16

1.5.4 Conclusions on LES 17

1.5.5 Hybrid LES/RANS models and wall-modeled LES 18

1.5.6 Conclusions on turbulence modeling 21

1.6 Data and Turbulence Modeling 21

1.6.1 Data-driven turbulence modeling 23

1.6.2 Sparse data-driven simulation 25

1.7 Motivation 35

1.8 Outline 36

2 sparse data-driven rans simulation 39

2.1 Formulation of the forward problem 39

2.2 Formulation of the inverse problem 41

2.3 Sensitivity calculation: discrete adjoint method 41

2.4 Implementation 44

2.4.1 Implementation of the gradients computations in Open-
FOAM 45

2.4.2 Implementation of the optimization procedure in Python 46

2.5 Optimization 46

2.5.1 Computation of the learning rate 46

2.5.2 Positivity constraint of the eddy viscosity 48

2.6 Case setup 48

2.7 Verification of the gradient computations and data assimila-
tion 49

2.8 Assimilation of sparse data: results without regularization 54

xiii



xiv contents

3 regularization 59

3.1 Conventional Regularization Methods 59

3.1.1 L2 regularization 59

3.1.2 Total variation regularization 60

3.1.3 Sobolev gradient regularization 60

3.2 Piecewise Linear Dimension Reduction 61

3.2.1 Verification of contraction and expansion 63

3.3 Regularization Effect on a Single Optimization Step 65

3.4 Results and discussion 66

3.4.1 PLDR 66

3.4.2 Improved PLDR 67

3.4.3 Comparison with other regularization methods 68

3.5 Conclusions 71

4 sparse wall data-driven hybrid les/rans simulation 75

4.1 Summary 75

4.2 Introduction 75

4.2.1 Data-driven RANS simulation 76

4.2.2 Wall-modeled LES and hybrid LES/RANS models 77

4.3 Methods 79

4.3.1 Tightly coupled dual-mesh hybrid LES/RANS 79

4.3.2 Loosely coupled dual-mesh hybrid LES/RANS method 82

4.3.3 Data assimilation 83

4.3.4 Case setup 85

4.4 Results and Discussion 87

4.5 Conclusions and Outlook 93

5 summary and outlook 95

bibliography 99



L I S T O F F I G U R E S

Figure 1.1 The Barycentric triangle [17]. It defines all realizable
states of the Reynolds stress anisotropy. Any position
in the Barycentric triangle represents a realizable
anisotropy state of the Reynolds stress. The vertices
of the triangle correspond to the limiting one, two,
and three-component (isotropic) states 10

Figure 1.2 Turbulent boundary layer and the law of the wall.
The plot is in semi-log format. Adapted from [40] 19

Figure 2.1 Periodic hills geometry with boundary conditions.
All length scales are expressed with respect to the
hill height H. 49

Figure 2.2 The gradients computed by FD for αi in the cells
i are marked by black crosses (bottom), which are
compared with the gradients computed by the ap-
proximate adjoint method. Results are shown for the
case of the periodic hills with full synthetic reference
data for both velocity components with the initial
value of unity for α and without any regularization.
The figure is taken from reference [119]. 50

Figure 2.3 The gradients of all cells computed by FD compared
with the gradients computed by the approximate
adjoint method. Results are shown for the case of
the periodic hills with full synthetic reference data
for both velocity components with the initial value
of unity for α and without any regularization [119].
51

Figure 2.4 Process of using synthetic reference data to check
the inverse solver performance [119]. 52

Figure 2.5 Comparison of the prescribed, synthetic parame-
ter field αre f (top) and the reconstructed field α ob-
tained by the optimization process (bottom; data
range [0.21, 1.95]). The full Ux reference field was
used and no regularization was applied. Taken from
reference [119]. 53

xv



xvi list of figures

Figure 2.6 The synthetic reference Ux-profiles (black, dashed),
initial (green, dotted), and optimized (red, solid)
data. Length scales are normalized by the hill-
crest height H and the velocity by the bulk velocity
Ub above the hillcrest. Taken from reference [119].

54

Figure 2.7 Distributions of measurement data (black dots) and
testing data (gray crosses). Testing data are not used
for data assimilation, but to estimate the generaliza-
tion error. 55

Figure 2.8 Horizontal velocity component u1 (top) and wall
shear stress (friction coefficient C f ) profiles at the
lower wall (bottom plot). Results for the baseline k −
ε model (green), for the unregularized data-driven
method (red), and for the reference LES data (black)
are shown. 56

Figure 2.9 The evolution of the cost function during the opti-
mization at the reference points (red curve) and the
test points (blue curve) 57

Figure 3.1 The basis functions (blue, green, and red polyhe-
drons) span the solution inside the dashed yellow tri-
angle. The locations of measurement points are de-
picted by black dots, and a few elements are shown
by white triangles. 62

Figure 3.2 Flow chart of the data assimilation procedure using
the PLDR method. 63

Figure 3.3 Verification of the dimensionality reduction process.
64

Figure 3.4 Sensitivity d f
dα contours after an intermediate opti-

mization step without (a) and with (b-e) regular-
ization. For PLDR, the sensitivities are obtained by
projecting d f

dβ using the projection matrix. 65

Figure 3.5 Velocity profiles (top plot) and wall shear stress (fric-
tion coefficient) at the lower wall (bottom plot) using
the PLDR method. 67

Figure 3.6 Velocity profiles (top) and wall shear stress (friction
coefficient C f ) at the lower wall (bottom) obtained
with the improved PLDR method. 69



list of figures xvii

Figure 3.7 The cost function evolution of DA with TV regular-
ization during the optimization iterations. The red
curve corresponds to the cost function at reference
points and the blue curve is for the test points. 70

Figure 3.8 The comparison of stream-wise velocity profiles u1
(left) and the friction coefficients C f (right) for dif-
ferent regularization methods. 72

Figure 3.9 Optimal α fields without (a) and with (b-e) regular-
ization. The same color bar scaling is used for all
plots. 73

Figure 4.1 Periodic hills geometry and the predefined LES and
RANS regions. All length scales are expressed with
respect to the hill height H. 87

Figure 4.2 The location of sampling points is shown as crosses
(×) and the location of measurement points at the
walls is shown by black circles (•). 88

Figure 4.3 Horizontal velocity component u1 (top plot) and
wall shear stress (friction coefficient C f ) profiles at
the lower wall (bottom plot) for the standalone cases
of steady RANS (S-RANS) and underresolved LES
(UR-LES). 89

Figure 4.4 Horizontal velocity component u1 (top plot) and
wall shear stress (friction coefficient C f ) profiles at
the lower wall (bottom plot) for the tightly coupled
LES/RANS model. Note that the friction coefficient
of the tightly coupled model is derived from its U-
RANS solution. 90

Figure 4.5 Horizontal velocity component u1 (top plot) and
wall shear stress (friction coefficient C f ) profiles at
the lower wall (bottom plot) for the loosely coupled
LES/RANS model. Note that the friction coefficient
of the loosely coupled model is derived from its
S-RANS solution. 91

Figure 4.6 Horizontal velocity component u1 (top plot) and
wall shear stress (friction coefficient C f ) profiles at
the lower wall (bottom plot) for data assimilation of
sparse wall shear stress data on S-RANS. 92



xviii list of figures

Figure 4.7 Horizontal velocity component u1 (top plot) and
wall shear stress (friction coefficient C f ) profiles at
the lower wall (bottom plot) for data assimilation
of sparse wall shear stress and the solution of the
loosely coupled model on S-RANS. 94



L I S T O F TA B L E S

Table 3.1 Hyperparameter values for regularization and opti-
mization methods. 66

Table 3.2 Summary of the errors for different regularization
methods. Training error is the final cost function
value f normalized by the number of measurement
points. Generalization error is the final cost function
value at testing points ( ftest) normalized by the num-
ber of testing points. The C f training error is the
mean absolute error of C f at wall-adjacent measure-
ment points for the bottom wall. Drag error (Skin
friction drag error) is the relative error with respect
to the skin friction drag of LES data for the bottom
wall. 74

xix



L I S T O F S Y M B O L S

Abbreviations

Re Reynolds number

AD automatic differentiation

ARSM algebraic Reynolds stress model

CFD computational fluid dynamics

DA data assimilation

DNS direct numerical simulation

EKF extended Kalman Filter

EnKF Ensamble Kalman Filter

EWA exponentially weighted averaged

FD finite difference

KF Kalman Filter

LES large eddy simulation

LEV linear eddy viscosity

LHS the left-hand side of an equation

ML machine learning

NLEV non-linear eddy viscosity

PDE partial differential equation

PDF probability density functions

PINN physics-informed neural network

PIV particle image velocimetry

PLDR piecewise linear dimension reduction

xx



list of symbols xxi

RANS Reynolds-averaged Navier-Stokes

RHS the right-hand side of an equation

ROM reduced order modeling

RSM Reynolds stress model

RSTM Reynolds stress transport model

SIMPLE Semi-Implicit Method for Pressure Linked Equations

TKE turbulent kinetic energy

TV total variation

Greek letters

α corrective parameter

α′ intermediatory corrective parameter

β reduced dimension corrective parameter

Φ piecewise linear projection matrix

∆ learning rate or the optimization step size

δ very small number for DEMON Adam

δij Kronecker delta, second-order identity tensor

ϵ diagonal preconditioning matrix in DEMON Adam, perturbation
size

η the nominal step size in DEMON Adam

γ DEMON Adam variable

κ the bulk viscosity

κ weight of the decaying momentum in DEMON Adam

κ′ discount factor in DEMON Adam

κ0 the momentum initial value in DEMON Adam

λ Lamés coefficient



xxii list of symbols

λ adjoint variables

µ dynamic viscosity

ν kinematic viscosity

νt turbulent eddy viscosity

ωL2 the regularization hyperparameter of L2 method

ωTV,β the regularization hyperparameter of TV for β parameter

ωTV the regularization hyperparameter of TV method

ρ density

σ total stress tensor

σHYD hydrostatic stress tensor

τ shear stress tensor

τij Reynolds stress tensor

ε turbulent dissipation rate

Roman letters

V̂ the vector of grid cells’ volume

H Linear observation operator

A block system matrix of the residual equations

b the right hand side of the residual equations

cw weight factor for wall-adjacent measurement

J matrix of ones

R vector of flow residuals

Bm the set of neighboring cells of the grid cell m

Br the set of neighboring nodes of the measurement point m

I the identity matrix

Cµ RANS model coefficient



list of symbols xxiii

C f skin friction coefficient

f cost function

H1 Sobolev space

i, j, k, l, m, o, r, t indices

lsob the filtering lengthscale of the Sobolev gradient method

M number of the parameters

N the size of the computational grid

p pressure

p∗ turbulent pressure

R number of measurement points

t the iteration number of the optimization

Tmax the maximum number of the optimization iterations

U state variables

Ub bulk velocity

ui velocity

u′
i velocity fluctuation

xi spatial coordinates

y+ dimensionless wall distance

k turbulent kinetic energy

Sij the rate of strain tensor

K Kalman gain

Q drift force





1
I N T R O D U C T I O N

1.1 governing equations of fluid flow

The word fluid is attributed to any material that continuously deforms in
reaction to shear stresses or external forces. The act of continuous defor-
mation can be called flow [1]. Applying the principles of the conservation
of momentum and the conservation of mass to fluid flow, we can describe
the fluid dynamics in a mathematical framework. These governing equations
of fluid flow are called Navier–Stokes (NS) equations. The NS momentum
equation is derived from the Cauchy momentum equation, which reads

ρ
Du
Dt

= ∇ · σ + ρg, (1.1)

where u is the velocity vector, ρ is the density, σ is the stress tensor, and g
is the body acceleration acting on the continuum. The mass conservation or
continuity equation is

∂ρ

∂t
+∇ · (ρu) = 0. (1.2)

The simple interpretation of the Cauchy momentum equation is that the
rate of change of momentum of the fluid (the LHS term) is equal to the
surface forces (the first RHS term) and the body forces (the second RHS
term) experienced by the fluid. So it is simply a representation of Newton’s
second law in the Eulerian specification of the flow field1.

We can decompose the stress tensor σ into two components: the hydro-
static stress and the deviatoric stress. The hydrostatic stress is related to
volume change. It is equal to the average of the three normal stress com-
ponents σHYD = (σ11 + σ22 + σ33) /3 (for a Cartesian coordinate system).
Under any coordinate transformation, the hydrostatic stress remains the
same. The negative of the mean normal stress is the pressure p = −σHYD.
The deviatoric stress causes the shear stresses and is related to shape change.

1 The Eulerian specification of the flow field is a way of looking at fluid motion focusing
on specific locations in the space through which the fluid flows at each instant during the
motion [2].
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2 introduction

It is defined simply as the difference between the pressure and the total
stress tensor σ = −pI + τ where I is the identity tensor.

The deviatoric stress is non-zero only if there is a fluid motion. We
can derive a relation that links the deviatoric stress to the deformation of
the fluid. Here we narrow down the scope of this work by considering
only Newtonian Fluids. For a Newtonian fluid, there is a linear relationship
between the deviatoric stress and the strain rate [3]:

τ = 2µ
1
2
[∇u + (∇u)T ] + [(λ + κ)∇ · u]I, (1.3)

where µ is the dynamic viscosity, κ is the bulk viscosity, which is negli-
gible in practice, and λ is the Lamés coefficient. Using Stoke’s assumption
implicit in the definition of Newtonian fluids we can assume λ = − 2

3 µ.
The expression 1

2 [∇u + (∇u)T ] is called the pure deformation rate tensor S
and it is indeed the symmetric part of the velocity gradient while the skew-
symmetric part is called the rotation tensor [4]. The constitutive equation of
Newtonian fluids, which relates stress to strain, is defined as

σ = −
(

p +
2
3

µ∇ · u
)

I + 2µS. (1.4)

We can now insert equation (1.4) into the Cauchy momentum equation to
obtain the NS momentum equation. Before doing so, we further constrain
our problem. We assume the flow is incompressible, i. e., the density within a
parcel of fluid that moves with the flow velocity is always constant. This will
reduce the continuity equation to ∇ · u = 0 which simplifies the constitutive
equation (1.4) as well. In addition, the energy equation is decoupled from
the momentum equation and need not be solved to obtain the velocity field.
If we neglect the body acceleration due to the gravity (buoyancy force) and
other body forces, the final NS equation for incompressible and Newtonian
fluid with constant viscosity reads

Du
Dt

= −1
ρ
∇p + ν∇2u, (1.5)

where ν = µ/ρ is the kinematic viscosity. Here we have four state variables
and three equations. Since the pressure is decoupled from the energy equa-
tion and the equation of state, it cannot be calculated from these equations.
In fact, this pressure is not a thermodynamic variable anymore [5]. Instead,
the pressure is estimated such that the continuity equation ∇ · u = 0 is
satisfied.



1.2 turbulence and turbulent flows 3

The analytical solution of the NS system of equations is only feasible
for simple geometries and flow configurations. So instead, the PDEs are
solved using numerical methods. This branch of fluid mechanics is called
Computational Fluid Dynamics (CFD).

1.2 turbulence and turbulent flows

Assuming the characteristic length scale L and the velocity scale U we can
non-dimensionalize independent variables (time and space) and dependent
variables (velocity and pressure) to get a non-dimensional NS equation [6]

Du
Dt

= −∇p +
1

Re
∇2u, (1.6)

where Re = UL/ν is a dimensionless number called the Reynolds num-
ber and u and p here are scaled velocity and pressure. Re is the ratio of
the magnitude of the inertial forces to the viscous forces. The larger the
Reynolds number, the less power the dissipative viscous forces would have
compared to inertial forces. There are two implications. First, equation (1.6)
implies that if Re is the same for two configurations, the scaled velocity
and pressure would be the same. This property is called Reynolds-number
similarity [6]. Second, Re can be a quantitative measure of the regime of
the flow. It turns out that correlating with Re the flow can exhibit different
"behavior" namely laminar flows and turbulent flows. We call a flow laminar
if the fluid particles follow smooth paths in layers with no or little lateral
mixing. Such a flow is more ordered with dominant momentum diffusion
but low convective momentum transfer. Examples of laminar flows are
the smooth flow of a viscous liquid through a tube or pipe, blood flow
through capillaries, water flow from a slightly opened tap, fountains, etc. A
turbulent flow is characterized by high fluctuations of velocity and pressure.
The flow is unsteady, irregular, seemingly random, chaotic, and much more
apparently disordered [7]. Such chaotic motions arise additional transverse
motion of fluid particles that enhances the momentum and energy exchange
rate. Numerous examples of turbulent flows exist in nature, including blood
flow in arteries, atmospheric and ocean currents, smoke from a chimney,
waterfalls, etc. It is also ubiquitous in engineering applications, such as the
flow of liquid and gases in pumps, compressors, pipes, flow over vehicles,
mixing of fuel and air in engines, boilers, etc [6].

It should be mentioned that there is no sharp distinction between laminar
flows and turbulent flows in reality. A transition region can also be defined
in which the flow behavior is something between laminar and turbulent.
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Compared to other regimes, transient flows are less understood. However,
intermittent behavior is less pronounced with increasing Re. In this work,
we instead focus on high Reynolds numbers and fully turbulent flows.

Recognizing the particular behaviors of turbulent flows and considering
their numerous occurrences and applications, the next question would be
why turbulence occurs in the first place. Turbulence arises due to perturba-
tion in the fluid flow’s initial condition, boundary conditions, or material
properties. The perturbation itself is not responsible for turbulence, but
when Re is high, such variations cannot be damped by viscous forces. Due
to these nonlinear instabilities, turbulence happens. From another perspec-
tive, when Re is high, the flow’s kinetic energy is very high. The viscous
forces cannot act upon such large eddies to dissipate their energy to heat
and force the flow into equilibrium. Therefore, the flow starts to reduce
its energy by successively breaking each energetic eddy into smaller parts.
What is observed is then the interaction of larger eddies with smaller ones
and the chaotic behavior of the flow as a whole.

We can better explain the turbulence by referring to two themes of
energy cascade proposed by Richardson (1922) [8] and Kolmogorov hypothesis
(1941) [9]. First, energy cascade is the process of successively transferring
the energy to smaller and smaller eddies until the Reynolds number is so
small that the eddy motion is stable, and molecular viscosity is effective in
dissipating the kinetic energy [6]. This implies a one-way inviscid transfer
of energy from large energetic eddies to the smaller eddies and, more
importantly, places the dissipation of energy at the end of the process,
whose rate is defined by the beginning of the process of large eddies
breakup.

The Kolmogorov hypothesis states that at a sufficiently high Reynolds
number, the small-scale turbulent motions are statistically isotropic. In
addition, the statistics of the small-scale motions have a universal form that
is uniquely determined by molecular viscosity ν and the dissipation rate ε.
Furthermore, the statistics of the motions of the intermediate bandwidth
of small eddies (the inertial sub-range) have a universal form uniquely
determined by ε independent of ν.

Like any other theory, Kolmogorov’s theory provides a model, which is,
as any model, "wrong" but useful [10]. There exist many situations in which
the hypotheses are not strictly valid. For example, the theory is bound
to cases with very high Reynolds numbers; otherwise, the assumption of
statistically isotropic dissipative scales is not correct. The one-way direction
of energy transfer is also not always actual. However, for the purpose
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of this work, which is the simulation of turbulent flows for engineering
applications, such models provide a solid mathematical basis upon which
the turbulence models are built.

The multiscale nature of turbulent flows (both in time and space) indi-
cates an essential factor in terms of the computational aspect of simulations.
We need to consider small motions in the order of Kolmogorov microscales
up to the characteristic length scale of the problem. For example, for atmo-
spheric motions, long-lasting large eddies have length scales in the order of
kilometers, while short-living eddies are in the order of 0.1 to 10 millime-
ters. This multiscale nature of turbulent flows implies the difficulty of their
simulation in terms of accuracy and computational costs.

1.3 why study turbulent flows?

Now that we have some intuitive and mathematical understanding of
turbulent flows, we state why and how we study them. As mentioned,
turbulent flows are ubiquitous in nature and industry. In nature, they exist
on different scales, from interior biological cells to geophysical flows such
as oceans, atmospheres, subsurface flows, and to even super-galactic scales.
In industry, they have applications in wind flow in a city, aerodynamic
analyses, continuous casting, quenching process, cooling/heating systems,
etc. [11].

We can also categorize study motivations into discovery, modeling, and
control [6]. First, we want to know why phenomena such as vortex stretch-
ing occur. Regardless of the consequent applications, exploring and dis-
covering what happens in nature or finding the causality of phenomena is
one motivation. Such understanding can then lead to setting up models,
experimentally or numerically, in order to predict the behavior of the flow.
For example, what is the drag force of the flow on a structure, or how
can we optimize the topology of sold bodies to increase the lift or reduce
the energy consumption? Thousands of applications exist in modeling and
simulating turbulent flows. Lastly, we would like to control the behavior
of the flow to be beneficial for us, like how to increase the mixing in a
combustion chamber or actively postpone the separation over an airfoil to
avoid a stall, etc.
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1.4 how study turbulent flows?

In studying fluid mechanics in general and turbulent flow in particular, two
general approaches are numerical and experimental. Because of the com-
plexity of turbulent flows, an analytical approach cannot directly be used to
solve a real problem. However, in combination with some empiricism, they
can significantly contribute to developing accurate and robust turbulence
models.

The numerical approach is based on numerically solving the governing
equations and finding the flow variables’ true states. Note that knowing
the states of flow variables in the whole domain is necessary, even if we
only are interested in a general estimation or an integral quantity such as
the drag of a solid body. Due to the complex, non-local, and multiscale
nature of turbulent flows, we usually have to run a full CFD code for such
problems.

On the other hand, the experiments can directly be done on the problem
of interest, like field measurements of the surface layer of the atmospheric
boundary layer. Alternatively, one can make a physical model of the prob-
lem on a different scale, such as a wind tunnel setup, and aim to study the
problem using sensors or flow visualization techniques. One can then use
the similarity in fluid flows and generalize the findings to the real problem.

Both approaches have their pros and cons. The numerical approaches are
generally cheap because one does not need measurement devices or build
a physical model. However, its accuracy is subject to the modeling part of
the problem and the numerical techniques used. On the other hand, due
to the flexibility of the numerical models, one can quickly test and design
different configurations of a problem or study extreme conditions for which
experiments are not feasible. Moreover, highly linked to the mathematical
model, it provides a basis for concretely understanding the phenomenon.
However, the modeling part, which is an inevitable aspect of the simulation,
leads to errors and uncertainties in the results.

On the other hand, experiments can be very costly but sometimes nec-
essary. It can follow an exact scenario in the real world, and the obtained
measurements are easy to understand [12]. Any analytical or CFD model
needs validation, and experiments can be used for this purpose. In addi-
tion, the reliability of experiments is more than that of simulations. The
drawbacks are the limitation of scenarios to study, the error-prone nature
of experiments, difficulty with replication of the real problem, the lengthy
setup procedure, and, more importantly, the low resolution of the mea-
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surements. One must use multiple sensors or visualization techniques with
limited window view or resolution. Incorporating such low-resolution mea-
surement data into the model to benefit both is an essential aspect of this
project.

1.5 turbulence modeling

Having the equation (1.5) and the continuity equation, with some treat-
ments, we can discretize these equations over a computational grid to get
a linear algebraic system of equations and find the solution for the state
variables velocity and pressure. The process seems straightforward unless
the fact that, for an accurate solution, we need to resolve all the motions
(variations) that exist in the domain. Therefore, we need a fine grid and
small appropriate time integration. The former defines the number of equa-
tions in the system that has to be solved. The latter implies that the time step
must be small enough to resolve the small motions of eddies, and it must be
numerically robust to avoid divergence. Such a "direct" approach is called
Direct Numerical Simulation (DNS). It provides one realization of the turbu-
lent flow. The following concerns would arise: How much computational
resource and memory are needed to run the code for only one realization?
Does information of one realization is relevant for a particular application?
The answer depends on a particular question we want to answer with our
simulation. However, we can say that for most applications we are more
interested in the statistics of the flow of interest, which demands multiple
realizations, or following the assumption of ergodicity, it needs a large time
window to average. In fact, more than 99.98% of the computational effort
in DNS is dedicated to resolving the dissipation range of turbulence [6,
13]. Moreover, for a wall-bounded flow, which is of particular interest in
this work, The computational costs roughly scale as Re9/4 and mainly are
devoted to resolving the inner layer of the turbulent boundary layer [14].
According to Pope [6] four approaches to reduce the costs are low-wave
number forcing, large eddy simulation, hyperviscosity, and sparse-mode
models. However, all these methods are, in fact, not direct methods, deviate
from the exact NS equations, and involve some modeling.

Despite the computational barrier, DNS is a valuable tool for academic
purposes. Fundamental questions on understanding turbulence can be
answered with DNS. In addition, recently, DNS data has extensively been
used for data-driven turbulence modeling [15]. Nonetheless, considering the
limitations of DNS and the fact that for highly turbulent flows, one generally
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is not interested in instantaneous information of only one realization, but
rather in the flow statistics, one may model or parameterize the turbulence
at least partially. Two main approaches rely on decomposing the state
variables fields into mean and fluctuating parts (in RANS methods) or
filtered components and the residual components (in LES methods). We
first focus on RANS models in the following section and then introduce
LES.

1.5.1 Reynolds-averaged Navier Stokes (RANS)

If we merely look for statistical quantities, why not directly apply the
statistical operator to NS equations and derive the equations that govern
the mean velocity field? We can decompose the instantaneous velocity
field u(x, t) into mean ⟨u(x, t)⟩ and fluctuation u′(x, t), where u(x, t) =
⟨u(x, t)⟩+ u′(x, t), and then apply the decomposition to the continuity and
NS equation. Since the mean operator is a Reynolds averaging operator, it
has, by definition, some properties, e. g. the mean of the fluctuating quantity
is equal to zero (⟨u′(x, t)⟩ = 0). Using these properties, with some simple
mathematics, we can derive the Reynolds-averaged continuity and RANS
equations as follow2:

∂ ⟨ui⟩
∂xi

= 0, (1.7)

∂ ⟨ui⟩
∂t

+
∂(⟨ui⟩

〈
uj
〉
)

∂xj
= −1

ρ

∂ ⟨p⟩
∂xi

+ ν
∂2 ⟨ui⟩
∂xjxj

−
∂
〈

u′
iu

′
j

〉

∂xj
. (1.8)

The last RHS term in equation 1.8 is extra compared to the NS equations
and is called the unclosed term. It is the divergence of the covariance matrix
between velocity components and is derived from applying the Reynolds
averaging operator on the convective term. The covariance matrix is also
called the Reynolds stress tensor. There is no direct mean information to
characterize such a stress term so that it can be seen as a representation
of lost information through the averaging process. However, it cannot be
neglected as it dramatically impacts the flow qualitatively and quantitatively.
Thus one has to somehow model or parameterize this term. Such a problem
is called a closure problem and is still the subject of active research. There
are generally two approaches to model the Reynolds stresses: introducing

2 From now on we occasionally shift to index notation as it is sometimes more convenient for
our purposes
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the concept of eddy viscosity or directly modeling the Reynolds stress
components.

1.5.1.1 Linear eddy viscosity models (LEV)

The first approach, which is simpler, but not necessarily less "successful,"
is based on the eddy viscosity hypothesis. Recall the constitutive relation
between stress and the strain rate. One can generalize such an approach and
relate the turbulent stresses to the mean strain rate through the scalar eddy
viscosity. We can decompose the Reynolds stress tensor into the hydrostatic
and the deviatoric parts. The deviatoric part of the turbulent shear stress is
approximated as

τt = −2νt ⟨S⟩ = −2νt
1
2
[∇ ⟨u⟩+ (∇ ⟨u⟩)T ]. (1.9)

We define half of the trace of the Reynolds stress tensor as the turbulent

kinetic energy (TKE) k = 1
2

(〈
u′

1
〉2

+ ⟨u′
2⟩

2 +
〈
u′

3
〉2
)

. The remaining part of
the Reynolds stress tensor, the hydrostatic part, contains the trace of the
stress tensor and is 2

3 kI. Therefore, the Reynolds stress approximation reads

〈
u′

iu
′
j

〉
=

2
3

kI − νt[∇ ⟨u⟩+ (∇ ⟨u⟩)T ]. (1.10)

If we insert this relation into the RANS equation, for an incompressible
flow, it reads

D ⟨ui⟩
Dt

= −1
ρ

∂ ⟨p∗⟩
∂xi

+
∂

∂xj

[
2 (ν + νt)

〈
Sij
〉]

, (1.11)

where the turbulent pressure ⟨p∗⟩ also contains the hydrostatic part of the
Reynolds stress ⟨p∗⟩ = ⟨p⟩+ 2

3 k and
〈
Sij
〉

is the mean strain rate. The goal
of a linear eddy viscosity (LEV) turbulence model (or a turbulence model
based on the Boussinesq eddy viscosity assumption) is to calculate the eddy
viscosity accurately.

Before we introduce the common LEV turbulence models, it is valid to
doubt the credibility of the LEV assumption itself. It is, in fact, an inaccurate
assumption since it is a local model means that it only includes local
information about the anisotropy of the turbulence [16]. In LEV models,
eigenvectors of the Reynolds stress and strain rate tensors always are
aligned, which in reality not always is the case. Among various states of
turbulence, the fully aligned Reynolds stress tensor, plain-strain turbulence,
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Figure 1.1: The Barycentric triangle [17]. It defines all realizable states of the
Reynolds stress anisotropy. Any position in the Barycentric triangle
represents a realizable anisotropy state of the Reynolds stress. The
vertices of the triangle correspond to the limiting one, two, and three-
component (isotropic) states

is only a portion of different realizable turbulence states. This can be shown
in the barycentric triangle proposed by Banerjee et al. [17], which is depicted
in figure 1.1. LEV models only produce an anisotropy state of the Reynolds
stress that resides on the plain-strain line where at least one eigenvalue
is zero. Any other position within the triangle is a realizable state of the
Reynolds stress which is out of reach for LEV. For more information on the
mathematical aspects of the Barycentric triangle, the reader is referred to
Refs. [15, 17].

To have an idea about how to develop an LEV turbulence model, we
note that the eddy viscosity has the dimensions of [velocity] × [length],
suggesting that it can be modeled by νt = u0l0 where u0 reflects the
magnitude of velocity fluctuations and l0 the size of turbulent eddies [18].
For simple configurations, we can indeed find, to some extent, simple
universal relations to estimate both u0 and l0. For example, for wall-bounded
flows, the velocity fluctuations can be characterized by friction velocity. For
free shear flows, the velocity fluctuation can be related to the square root
of the turbulent kinetic energy k1/2. The length scale of the eddy for a
wall-bounded flow is proportional to the distance to the boundary, and for
free shear flow, l0 is proportional to the width of the shear layer.
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This approach is, more or less, the basis of algebraic (zero-equation)
LEV turbulence models. They are mostly based on the mixing length
hypothesis by Prandtl [19]. Mixing length (lm) is the distance over which
a hypothesized turbulent eddy retains its identity [20]. In such methods
l0 = lm. The inherent problem of these models is their incompleteness; the
mixing length scale has to be specified for each particular problem and
depends on the flow type. The Cebeci-Smith model and the Baldwin-Lomax
model are examples of such zero-equation models [21]. In addition to their
limited applications, they fail for out-of-equilibrium flows such as separated
flows. The Johnson-King model is more suited for the separated flows [22].
Since it solves an ordinary differential equation, it is sometimes called the
half-equation model. In addition to this additional complexity, it introduces
many empirical coefficients.

The one-equation models could circumvent some of the issues of the
algebraic models to some extent. One-equation models that only solve the
turbulent kinetic energy transport equation are still incomplete and need
to estimate the turbulence length scale. The turbulent kinetic energy is a
physical property, and its exact transport equation can be derived from the
second moment derivation of the NS equation and it reads

Dk
Dt

+∇ · T′ = P − ε, (1.12)

where P = −
〈

u′
iu

′
j

〉
∂⟨ui⟩
∂xj

is called the production of turbulent kinetic

energy, ∇ · T′ is the turbulent transport of TKE and ε = ν
∂u′

i
∂xj

∂u′
i

∂xj
is the

dissipation rate of TKE. In addition, T′
i = 1

2

〈
u′

iu
′
ju

′
j

〉
+
〈
u′

i p
′〉 /ρ − ν ∂k

∂xi
,

where the first term, the triple velocity correlation, describes turbulent con-
vection, the second pressure transport, another form of turbulent transport
resulting from the correlation of pressure and velocity fluctuations, and the
third describes molecular diffusion of TKE [21]. Multiple unclosed terms
need to be modeled to eventually close the unclosed Reynolds stress term.
Generally, the equation is simplified through the following relation:

∂k
∂t

+ uj
∂k
∂xj

= τij
∂ui
∂xj

− ε +
∂

∂xj

[(
ν +

νT
σk

)
∂k
∂xj

]
, (1.13)

where all the unclosed terms except ε are lumped into ∂
∂xj

(
νT
σk

∂k
∂xj

)
through

the gradient-diffusion hypothesis, where σk = 1 is a coefficient. Since the
length-scale needed for the eddy viscosity computation still is missing,
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Prandtl proposed a relation for ε that links it to the mixing length as

ε = CD
k

3
2
l , where CD = 0.08 and thus νt = k

1
2 l = CD

k2

ε . Such models,
though to some degree successful, still are incomplete and fail for out-of-
equilibrium flows like separated flows. Other one-equation models, such as
the Baldwin-Barth model [23] and the Spalart-Allmaras model [24], use a
transport equation for other than TKE. With the help of multiple empirical
relations, they lead to complete sets of equations from which the eddy
viscosity is estimated. Although debatable, one can argue that to reach
more universal models, especially for separated flows, we need to consider
the transport of both the velocity and length scales separately. Two-equation
models were developed for this purpose. These models propose transport
equations not only for the computation of k, but also for the turbulence
length scale or something equivalent.

The most popular two-equation LEV model is the standard k − ε [25].
The idea behind the k − ε model is to estimate the eddy viscosity by solving
a transport equation for TKE to estimate the velocity fluctuation Cµ

1/4 k1/2

and solving a transport equation for ε. The latter is suggested to close the

TKE equation and also to estimate the length-scale l = C3/4
µ

k
3
2
ε . The eddy

viscosity then can be estimated as

νt = Cµ
k2

ε
, (1.14)

where the default value for Cµ is 0.09. From the NS equations with some
algebra the exact equation for ε can be derived;s [26]

Dε

Dt
= P(1)

ε + P(2)
ε + P(3)

ε + P(4)
ε + Tε + Vε + πε − γε, (1.15)

where P(1)
ε = ν

〈
∂u′

i
∂xm

∂u′
k

∂xm

〉 (
∂ui
∂xk

+ ∂uk
∂xi

)
is the mixed production, P(2)

ε =

ν
〈

∂u′
i

∂xm

∂u′
i

∂xk

〉 (
∂uk
∂xm

+ ∂um
∂xk

)
is the production by mean velocity gradient, P(3)

ε =

ν
〈

u′
k

∂u′
i

∂xm

〉
∂2ui

∂xm∂xk
is the gradient production, P(4)

ε = 2ν
〈

∂u′
i

∂xm

∂u′
k

∂xm

∂u′
i

∂xk

〉
is the

turbulent production, Tε =
∂

∂xk

(
ν
〈

u′
k

∂u′
i

∂xm

∂u′
i

∂xm

〉)
is the turbulent diffusion,

Vε = ν ∂2

∂x2
k

(〈
ν

∂u′
i

∂xm

∂u′
i

∂xm

〉)
is the viscous diffusion, πε = − 2

ρ
∂

∂xk

(〈
∂u′

k
∂xm

∂p′
∂xm

〉)

is the pressure diffusion, and γε = 2
(〈

ν
∂2u′

i
∂xm∂xk

〉)2
is the dissipation. As we

see, this equation involves multiple unknown double and triple correlations
whose values are almost impossible to measure. Thus it seems impossible to
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derive a useful transport equation directly from equation 1.15. Therefore, an
entirely empirical approach has been chosen to derive a modeled transport
equation for ε; it reads

∂ε

∂t
+ uj

∂ε

∂xj
= Cε1

ε

k
τij

∂ui
∂xj

− Cε2
ε2

k
+

∂

∂xj

[(
ν +

νT
σε

)
∂ε

∂xj

]
, (1.16)

where Cε1, Cε2, and σε are the closure coefficients, whose values are tuned
with respect to simple flows. As we see, the structure of the model transport
equation of ε is very similar to the model TKE equation. Thus, there are
no rigorous physical reasons that the equation above should work, and the
success of the k − ε model was a kind of a successful "try-on," as stated by
Brian Spalding, the main developer of this model [27]. If such an amount of
empiricism "works," there is no reason one would not suggest other quanti-
ties than ε to close the eddy viscosity model. The k − ω model [28] and its
improved version, the k − ω SST model [29], are further successful models
widely used in the community. All these models contain branches of further
modifications, which have been successful for particular applications.

In general, the advantages of LEV models include [18]:

• They are simple to code.

• Since they increase the effective viscosity, they aid stability.

• They are, to some degree, theoretically supported for simple flows.

• More importantly, their accuracy is acceptable for many engineering
flows.

The disadvantage of such models is the constraint of the Boussinesq
eddy viscosity assumption on the Reynolds stress tensor. It dictates that the
principal axes of the Reynolds stress tensor are aligned with the mean strain
rate, which in general is not physical. A classical example is the logarithmic
region of a fully-developed boundary layer, where the ratio of the normal
stresses typically are

〈
u′

1
2
〉

:
〈

u′
2

2
〉

:
〈

u′
3

2
〉
= 1.0 : 0.4 : 0.6 [18]. However,

all eddy viscosity models predict that all of these normal stresses are 2
3 k.

The failure of LEV models occurs in flows with a sudden change in the
mean strain rate, flow over curved surfaces, three-dimensional flows, etc.
These major drawbacks motivate the development of two further classes
of RANS models: nonlinear eddy viscosity models and Reynolds stress
models.



14 introduction

1.5.1.2 Non-linear eddy viscosity models (NLEV)

We define the anisotropy tensor, the dimensionless and traceless form of the

Reynolds stress as aij =

〈
u′

iu
′
j

〉

k − 2
3 δij. For LEV models aij = −2Cµsij where

sij =
k
ε Sij is the dimensionless mean strain. This relation can be generalized

by considering the nonlinear effects that include higher orders of the mean
strain and rotation tensors as follows

aij = −2Cµsij + NL(sij, ωij), (1.17)

where ωij =
1
2

k
ε

(
∂ui
∂xj

− ∂uj
∂xi

)
is the dimensionless rotation tensor and NL

accounts for the nonlinear terms, which can contain quadratic, cubic, etc.
terms. Care should be taken in developing such models, e. g., respecting
the realizability of the tensor. In general, nonlinear eddy viscosity models
(NLEV) produce qualitatively-correct turbulent behavior in specific flows,
and they introduce a slight computational overhead to linear eddy viscosity
models. However, they do not accurately represent the actual production
and advection processes and have a little theoretical foundation in complex
flows [18]. They also introduce instability to solvers as they add nonlinear
terms to the RANS equations.

1.5.1.3 Reynolds stress models (RSM)

Reynolds stress transport models (RSTM) solve transport equations for
each stress component. The equations are derived by writing a momentum
equation for the fluctuating component u′

i and multiplying it with u′
j. With

some maths, one then obtains the equation for the Reynolds stress tensor.
The equation reads3

D
〈

u′
iu

′
j

〉

Dt
= Dij + Pij + Πij − εij, (1.18)

where the LHS is the rate of change of
〈

u′
iu

′
j

〉
plus its convective trans-

port, Dij =
∂

∂xk

[
ν ∂

∂xk

〈
u′

iu
′
j

〉
− 1

ρ

〈
p′
(

u′
iδjk + u′

jδik

)〉
−
〈

u′
iu

′
ju

′
k

〉]
is the ag-

gregate of molecular and turbulent diffusion of the stress tensor, Pij =

−
〈
u′

iu
′
k
〉 ∂uj

∂xk
−
〈

u′
ju

′
k

〉
∂ui
∂xk

is the mean strain production tensor, Πij =

3 effect of rotation and body forces are neglected
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〈
p′
ρ

(
∂u′

i
∂xj

+
∂u′

j
∂xi

)〉
is the pressure-rate-of-strain, and εij = −2ν

〈
∂u′

i
∂xk

∂u′
j

∂xk

〉
is

the dissipation rate. It seems that with fewer modeling constraints and more
physics one can get more accurate results using these models. However,
as we see, numerous unclosed terms need to be modeled. The production
term and the LHS are exact, but the turbulent transport, dissipation, and
pressure-rate-of-strain terms need modeling. Especially the pressure-rate-
of-strain is challenging, as the stress redistribution and tendency to isotropy
depend on this term. Turbulent transport can be simplified by the gradient-
diffusion hypothesis. The dissipation rate tensor can be reduced to a scalar,
i. e., εij =

2
3 εδij, following the Kolmogorov hypothesis.

Another branch of RSM models is the algebraic Reynolds stress model
(ARSM), in which the transport terms are approximated by an algebraic
expression so that the entire equation becomes algebraic. Thus the Reynolds
stresses can be computed as functions of k, ε, and the mean velocity gradi-
ents [6].

As Spallart asserted, modeling the higher moments is very empirical,
relying on dimensional analysis, invariance, intuition, and assumptions [16].
Therefore, it seems to add more physics to the model automatically is
accompanied by the necessity of empirical modeling, thus introducing
more uncertainties. The instability of RSM compared to LEV models and
the additional computational costs are other reasons why such models have
not been widely used in practice.

1.5.2 Conclusions on RANS models

We have seen that Reynolds averaging can significantly reduce the compu-
tational costs needed to simulate turbulent flows. However, the averaging
nature of RANS equations induces an unclosed term, the Reynolds stress
term, which needs modeling. From simple length-scale models to LEV
models and NLEV models to ARSM models and RSTM models, we saw
that no single RANS model universally works for all problems. Complexity,
empirical relations, uncertain coefficients, computational cost, generaliz-
ability, robustness, and convergence are the factors one needs to consider
when choosing a turbulence model. In fact, in recent years no new widely-
accepted general-purpose RANS turbulence model has been devised [30].
However, recently, data-driven approaches have made some progress in
turbulence modeling which will be discussed later.
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1.5.3 Large eddy simulation (LES)

A remarkably different approach to turbulence modeling is the Large Eddy
Simulation (LES). The idea is to decompose the instantaneous state variable
ϕ into filtered and residual quantities, ϕ and ϕ′, respectively, through a
filtering procedure. A general form of a spatial and temporal filtering
operator reads

ϕ(x, t) =
∫ ∞

−∞

∫ ∞

−∞
ϕ(r, τ)G(x − r, t − τ)dτdr, (1.19)

where G is the filter convolution kernel. In practice, a more specific spatial
filtering, e. g. a box or Gaussian filter is used. We can apply this filtering to
the state variables and derive filtered continuity and NS equations. There
are generally two important properties of filtering that differ from Reynolds

averaging, namely ϕ(x, t) ̸= ϕ(x, t) (a second filtering yields a different
result from the first filtering) and ϕ′(x, t) ̸= 0. Considering this, we derive
filtered governing equations as follow [21]:

∂ui
∂xi

= 0, (1.20)

∂ui
∂t

+
∂

∂xj

(
uiuj

)
= −1

ρ

∂p
∂xi

+ ν
∂2ui
∂xjxj

, (1.21)

where ui is the filtered velocity and p is the filtered pressure. The convective
flux is decomposed into the following components

uiuj = ui uj + Lij + Cij + Rij, (1.22)

where Lij = ui uj − ui uj is called the Leonard stress, Cij = uiu′
j + uju′

i is

the cross-term stress and Rij = u′
iu

′
j is the SGS Reynolds stress. Lij rep-

resents the interactions among large scales, Cij represents the cross-scale
interactions between small and large scales, and Rij represents interac-
tions among the sub-filter scales. In practice, the sum of these three stress
terms τij = Lij + Cij + Rij is modeled by a subgrid-scale (SGS) model.
This modeling is challenging because the subgrid stress tensor τij must
account for interactions of all scales, including interactions between filtered
scales and unfiltered scales. The SGS models can be based on a simple
gradient-diffusion model [31], a one-equation model [32], or analogous to a
second-order closure model [33]. Nonlinear stress-strain rate relationships
have also been proposed [34]. The analog of the two-equation model has
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not been postulated, because the filter width already serves as a readily-
available length scale [21].

The most basic model is the Smagorinsky model [31], in which the
residual stress τij is related to the filtered rate of strain τij = −2νtSij. The

eddy viscosity is then modeled as νt = ls2
√

SijSij = (CS∆)2
√

SijSij, where
CS is the Smagorinsky coefficient. This equation is very similar to the
mixing length formula with the mixing length as CS∆ and is based on the
assumption of an equilibrium of the energy production and dissipation
of the small scales. This model performs poorly for wall-bounded flows
because of the linear eddy viscosity assumption. In addition, in practice, it
has been shown that the Smagorinsky coefficient spatially and temporally
varies. It also does not produce "backscatter," in which a part of the turbulent
kinetic energy returns to the large scales without being dissipated [20].

The dynamic Smagorinsky model [35] is a modification to the basic
Smagorinsky model and allows the Smagorinsky coefficient to be a function
of space and time. A second filtering operation termed a test filter is
introduced and used to compute the unresolved stresses. The method was
quite successful for many applications. However, some of the Smagorinsky
model’s drawbacks, such as the alignment of residual stress with the filtered
strain rate, still exist. One can also consider the history and non-local effects
through transport equations for the residual stress tensor. Since the filter
width can always estimate the length scale, one may only solve the residual
kinetic energy [36] or a simple modeled equation for the residual stress [37].

1.5.4 Conclusions on LES

Since the energy-containing part of the flow is directly resolved by LES, it
is, in principle, more accurate than RANS, where all turbulent eddies are
modeled. However, the computational burden on LES is still an issue, even
with current computational resources. Due to their formulation, LES models
cannot be conducted in a two-dimensional mode, which adds further cost
for two-dimensional geometries. Furthermore, since most of the time we
are interested more in flow statistics than one realization, LES models have
to run for a considerable time to achieve statistics. Considering they should
always run in a transient mode with CFL < 1, varying pseudo-time steps
(like for steady RANS) are not possible. The computational cost of LES in
free-shear flows is only weakly dependent on the Reynolds number. On
the other hand, for wall-bounded flows, to resolve the near-wall region,
the cost roughly scales with Re1.8 [14].This computational barrier of LES
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was a motivation to explore other approaches such as wall-modeled LES
and hybrid LES/RANS methods. Since these two approaches sometimes
overlap, we review them together.

1.5.5 Hybrid LES/RANS models and wall-modeled LES

There is a spectrum of methods, from applying a simple law of the wall to
fully coupling LES with RANS models, all of which may introduce some
inaccuracies, but reduce the computational cost. Since all these supplemen-
tary models to LES focus on the boundary layer, we first introduce this
concept.

1.5.5.1 Turbulent boundary layer

Loosely speaking, the boundary layer is the region where the presence of the
wall directly affects the fluid flow. The thickness of the boundary layer δ is
often defined as the distance from the wall, where the stream-wise velocity
in the boundary layer is 0.99Ue (Ue is the local free-stream speed) [38]. As
depicted in figure 1.2, the turbulent boundary layer can be conceptually
divided into the outer layer (the outermost 80-90%) and the inner layer
(the innermost 10-20%). The inner layer can further be divided into three
regions. The region closest to the wall is the viscous sublayer dominated by
viscous effects, which exhibits a near linear velocity profile [39]. The next
layer is the buffer layer between the viscous sublayer and the log-law layer
and is the region where both dissipation and inertial effects are relevant.
The log-law layer is the region in which the shear stress is constant, while
the viscous effects are negligible; this results in a log profile for the mean
velocity. It is also called the law of the wall.

1.5.5.2 Wall-modeled LES

In common LES, the grid should resolve even the viscous sublayer (y+ ≈ 1
or y/δ < 10−3). In addition, the cells’ geometry must be close to isotropic;
therefore, multiple cells are needed to resolve the wall-normal and wall-
parallel directions of the inner layer. One may suggest that in the wall-
normal direction, we place one cell within the log-law region and use
the universal logarithmic relation to relate the local velocity to the wall
shear stress. However, the law of the wall is based on multiple simplifying
assumptions. If we start with the NS equation 1.5 and apply the equilibrium
assumption, we remove the rate of change term on the left-hand side,
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Figure 1.2: Turbulent boundary layer and the law of the wall. The plot is in
semi-log format. Adapted from [40]
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assuming the velocity vector is parallel to the wall, ignoring all spatial
derivatives except in vertical direction, ignoring the viscous stresses and
the pressure gradient, the only term remaining is dτ

dz = 0, which means the
stress is a constant vertical flux from which one can obtain a logarithmic
profile for the mean velocity [41]. Of course, e. g., if the geometry is complex
or the mean flow is not steady, most such assumptions are inaccurate.
Therefore, in real applications, the law of the wall would "kill" the accuracy
we seek from an LES simulation. It is important to grasp the fact that a
low-resolution simulation is undesirable, not only because it contains less
information (low resolution of information), but also because it leads to
lower accuracy in the low-resolution region, in addition to the accuracy of
the solution in the whole region. Some improvements to the logarithmic
profile have been suggested. For instance, Yang et al. [42] proposed an
algebraic profile that contains a viscous and a logarithmic layer with an
additional linear term that takes into account the inertial and pressure
gradient effects. Such non-equilibrium algebraic models are also common
in the context of wall functions for RANS models [43–45]. A bit more
complicated way is to solve an ODE in the wall-normal direction (solving
the momentum equation without wall-parallel grid-connectivity), mostly
needed when heat transfer is also involved [46]. Moreover, if one includes
the wall-parallel grid connectivity, then a full boundary layer PDE might be
solved, removing the necessity of a perfect balance between convection and
the pressure-gradient [47].

1.5.5.3 Hybrid LES/RANS models

We saw in wall-modeled LES that a wall model receives information from
LES at wall adjacent cells and solves algebraic or differential equations to
compute the wall shear stress. In hybrid models, however, such communica-
tion can be generalized. A RANS model can be solved, which communicates
with LES in different ways. In segregated methods, the domain is decomposed
into two regions. Near the wall, RANS is solved, and LES is solved in the
free shear flow region. Information is then exchanged at the boundaries of
the two regions as boundary conditions [48]. In unified methods, one single
mesh is chosen for the whole domain. The solver is switched between
RANS and LES at specific cells, which can be statically specified beforehand
or dynamically during the simulation. DES is one famous example of such
an approach [49]. The RANS and LES regions can be divided sharply by
interfaces, or softly as blended regions. Another approach is the dual-mesh
method in which RANS and LES are solved on two different meshes of the
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whole domain, and the information is exchanged in specific regions [14].
All these methods have their pros and cons. For example, the switching
or blending of the models in unified methods can induce inconsistencies
and errors. Coupling two models at interfaces of segregated methods needs
special treatments. The computational overhead of dual-mesh methods can
be larger.

1.5.6 Conclusions on turbulence modeling

The computational burden of direct numerical simulation of turbulent
flows is the primary motivation for turbulence modeling. Two approaches
of averaging and filtering can reduce the computational costs to some
extent though introducing some inaccuracies. In the author’s opinion,
RANS closures more complex than two-equation LEV models may not
be widely used in the near future, except for particular applications, due
to their limitations such as coding complexity and convergence issues. In
addition, considering the current computational power, wall-resolved LES
models would still be prohibitive for industrial applications, especially
if they involve iterative design or optimization. Thus hybrid LES/RANS
models would probably be one of the main focuses of turbulence modeling
developments [50]. However, there is a new research front on the topic of
turbulent flow simulations which needs further consideration: data-driven
modeling and data-driven simulation.

1.6 data and turbulence modeling

Data in our context is defined as the available measured physical quantities
by experimental setups or by DNS simulations. It is assumed that such data
is the ground truth for that specific configuration and, therefore, can be
used to inform turbulence models. Due to the advances in computational
resources and measurement techniques, both data sources have become
increasingly available in the last decade [51]. Specifically, in recent years,
with the abundance of available databases and advances in data science,
data-driven approaches have become very popular in fluid dynamics.

Before we proceed, however, one should note that data in the process
of turbulence modeling has always been used for the most basic mod-
els as well as for the most complex ones. As we have seen, introducing
Reynolds-averaging or filtering to the NS equations leads to exact equations,
but with unclosed Reynolds or residual stresses that contain the effect of
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unresolved quantities. The goal of turbulence models was to approximate
these stresses using the mean or filtered quantities. Turbulence modelers
introduce empirical knowledge based on dimensional analysis, invariance,
asymptotic theories, intuition, and assumptions to close the terms [15, 16].
For example, in the k − ε model introduction of the coefficient Cµ in the
eddy viscosity definition, and the whole ε equation with its coefficients are
examples of empiricism. Since empirical relations are not directly derived
from exact equations, and thus they inevitably include some parameters
whose values need to be defined a priori, using data is inevitable. Therefore,
data in turbulence modeling was historically used to develop and calibrate
the models. However, the development of turbulence models systematically
guided by data has not been done until recently.

Concerning a particular problem, we divide datasets into four categories

1. Datasets of simple (canonical) flows, including homogeneous isotropic
turbulence, homogeneous shear flow turbulence, different types of
free shear flows like jets, the zero pressure-gradient turbulent bound-
ary layer, turbulent channel, turbulent pipe flow, etc [52].

2. Datasets that include more complex phenomena such as separations
or 3D effects, e. g. backward-facing steps, flow over periodic hills,
3D Bump-in-channel, 2D NACA 4412 airfoil trailing edge separation,
etc. [53].

3. Data obtained from experimental measurements for a case with par-
tially similar geometry or flow conditions.

4. Data obtained from experimental measurements exclusively for the
problem of interest with identical geometry and flow conditions.

We note that, in general, the experimental measurements are incomplete
in that they are of low resolution or sparse. In contrast, DNS data is
complete. Roughly speaking, depending on the goal of a study, these
datasets can be utilized in the following scenarios

• In development phase: Historically, the first category has been used
for the development and calibration of turbulence models. Recently, at-
tempts have been made to use machine learning (ML) to systematically
guide the development of turbulence models (data-driven modeling) by
using the first and second categories of datasets.
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• In application phase: The second, third, and fourth categories of
datasets are used for validation of the models. The fourth category of
the dataset (which is incomplete by nature) is used to improve the
predictions of the models using data assimilation (DA) techniques.

The role of data in calibration and validation is clear. The term data-
driven modeling refers to an attempt to develop a turbulence model merely
or partially based on data, primarily using the DNS datasets (datasets of
categories one and two) but possibly also sparse experimental data (dataset
of category three). ML (sometimes combined with DA) is the essential
mathematical tool to obtain such models. The term data-driven simulation
refers to an attempt to incorporate the experimental data of the problem
of interest (fourth category of the dataset) to improve the accuracy of that
particular simulation. DA is the primary mathematical technique for this
aim. Since the experimental data is of low resolution or sparse, we also can
call this sparse data-driven simulation. Before we focus on the topic of this
thesis, "sparse data-driven simulation of turbulent flows," we briefly review
data-driven modeling in the context of ML.

1.6.1 Data-driven turbulence modeling

Generally, ML models are used when the underlying mechanism of a
process is not well understood. For example, one can assume the physics
of the Reynolds or subgrid stresses is not fully known, and thus one may
try to replace the whole or a part of these empirical-physical turbulence
models with a purely data-driven machine learning model. The machine
learning model is first trained by datasets of particular geometries and
flow conditions through supervised learning. The hope is that the ML
model, embedded in the governing equations, can predict correct solutions
in unseen geometries or flow configurations.

Historically, the first attempt to use ML was to re-calibrate the parameters
of existing turbulence models and quantify their uncertainties [54–58]. Then
some researchers suggested reconstructing the discrepancy of Reynolds
stresses through learning based on priori DNS data. The reconstructed
discrepancy tensor was a function of space, so it lacks the generalizability
feature, which was the main goal of data-driven models. Vollant et al. [59]
and Tracey et al. [60] proposed a transformation of the model discrepancies
from the physical space (spatial space) to mean flow feature space, such
that the trained ML model can predict correct Reynolds/subgrid stresses
for unseen cases solely from the information (state variables or secondary



24 introduction

variables) of the unseen case. However, it became apparent that these
approaches did not satisfy the expectations, since the ML models were
not informed enough of physical laws and constraints. In other words, the
ML models were too free in inferring correct Reynolds stresses. Another
issue with such models was the ill-conditioning nature of such explicitly
data-driven models [61]. In addition to difficulty in convergence, a tiny error
in the Reynolds-stress tensor estimation propagates through the equations
and results in significant errors in the solutions [61]. So several works were
focused on how to represent the ML model such that physical laws are better
respected. Three general approaches have been followed:

• Structural correction within an existing turbulence model: In these
approaches, the discrepancy is encoded in a part of the turbulence
model. One of the early works is by Dow and Wang [62] where
the optimal eddy viscosity field is inferred from DNS mean velocity
data using discrete adjoint method. Duraisamy and co-workers put
a multiplicative correction term in the Spalart-Allmaras model as
the machine learning output. The ML model had some success in
generalizability within a class of flows around airfoils [63].

• Data-driven development: A generic form of Reynolds stress is as-
sumed, and ML is used to define the model’s parameters. Ling et
al. [64] proposed using neural networks to learn the coefficients of a
tensor basis expansion of the Reynolds stress from flow features, as
proposed by Pope [65], as follows

τ = 2k

(
1
3

I +

[
10

∑
n=1

δ(n)(η̃; w)T(n)(S̃, Ω̃)

])
, (1.23)

where δ(n) is the coefficient computed from the output of a neural net-
work that has η̃ as flow features and w as the weight and biases of the
neural network. T(n)(S̃, Ω̃) are the tensorial basis. This approach can
be regarded as an approach between traditional turbulence modeling
and data-driven modeling.

• the eigendecomposition of the Reynolds stress anisotropy tensor:
to enforce some physical constraints such as Galilean invariance
and realizability, one would eigen-decompose the Reynolds stress
anisotropy tensor. The Reynolds stress tensor then reads [66]

τ = 2k
(

1
3

I + V Λ VT
)

(1.24)
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where V = [v1, v2, v3] and Λ = diag[λ1, λ2, λ3] are the orthonormal
eigenvectors and eigenvalues of the Reynolds stress anisotropy tensor,
respectively, indicating its shape and orientation. The structure grants
the perseverance of Galilean invariance. In addition, the Lumley
triangle [67] or the barycentric triangle [17] can be used to enforce the
realizability of eigenvalues.

Despite some success of these approaches, it still is too early for a clear
judgment on the future of data-driven models. There still are many short-
comings to overcome, such as [15]:

• The issue of inconsistency between the training of the model with the
DNS dataset and the RANS or LES environment in a priori training
techniques.

• The computational costs and issues with the ill-conditioning of inverse
problems in model-consistent training.

• Proper choice of feature space.

• Difficulty of applying constraints on the input and output of the ML
model.

• Generalizability of ML models to unseen geometries and flow condi-
tions and their interpretability.

1.6.2 Sparse data-driven simulation

Most of the data-driven modeling approaches were focused on utilizing the
full field of DNS data rather than sparse experimental data. A few have
also used sparse experimental data, such as references [63, 68], where the
extracted experimental information was used to correct a RANS model.
However, inferring knowledge from incomplete data requires solving an
under-determined inverse problem. Such a problem has a high degree
of ambiguity and can easily lead to many solutions, most of which are
unphysical. Therefore, extracting information to improve the predictions
of that specific configuration is difficult, let alone obtaining information
that has generalizability for other conditions. At least the data must first
go through the "filter" of a RANS/LES model to obtain full-field data and
then be used to train an ML data-driven model. Such a process sometimes
is called field inversion [68, 69].
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Nonetheless, the objective of a sparse data-driven simulation is not solely
a step in data-driven modeling. Instead, it can be used to obtain accurate
results by assimilating sparse data into the model, specific to that particular
problem [70–79]. The mathematical framework for such an approach is
data assimilation (DA). Below we briefly review DA before discussing its
application to our problem.

1.6.2.1 Inverse problems and data assimilation

We first define the inverse problem. Two problems are inverse with respect
to each other if the formulation of one involves the solution of the other [80].
The problem that is easy to solve and is generally well-posed is called
the forward problem. The one that is more difficult to solve and generally
ill-posed4 is called the inverse problem.

Regarding turbulence modeling, the forward problem is the case when
we solve RANS or LES equations based on initial and boundary conditions.
The inverse problem is the one that gets the sparse measurements as input
and infers the state variables in the whole domain as output.

Data assimilation is defined as the estimation of state variables of a system
by combining the observation and a model of that system through tuning
parameters. There are generally two approaches: variational DA and statis-
tical DA. Both approaches compare the model output and measurements
based on a form of optimization that looks for an optimal match between
the model’s output and the measurements.

The variational approach utilizes an optimization process based on a
classical form that minimizes a cost function that measures the discrepancy
between the model and the measurements. On the other hand, the statisti-
cal approach uses an optimization form that minimizes the variability or
uncertainty of the model error based on statistical estimation theory [80].

1.6.2.2 Statistical data assimilation

If we deal with inexact data based on e. g. noisy sensor measurements, and
if we want to include these variabilities in our solutions, a statistical DA
approach is a proper choice. To explain the basics of such an approach,
we start with a very simple system. Assume a system whose description
only needs one time-independent state variable. The simplest statistical DA

4 A problem is well-posed if there exists a solution, the solution is unique, and the solution
continuously depends on the input data. A problem that does not have these characteristics is
an ill-posed problem
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model for this system is called the best linear unbiased estimator (BLUE),
which reads

xa = xb +
1

1 + α

(
xo − xb

)
, (1.25)

where xa is the analysis value, xb is the model forecast (background value),
and xo is the measurement value. α = σ2

0 /σ2
b is the square of the ratio of

the observation variance and the model variance (that are uncorrelated).
We now can generalize such a statistical model to include temporal and

spatial complex systems like turbulent flows by more advanced approaches
such as Kalman Filter (KF) methods. The KF method is a sequential DA
scheme with two steps: a prediction/forecast step and a correction/analysis
step. A KF method iteratively computes an optimal a posteriori estimate
xa

k which is a linear combination of an a priori estimate x f
k and a weighted

difference between the measurement yk and the model prediction Hk[x
f
k ] at

measurement points [80]. Thus it reads

xa
k = x f

k + Kk

(
yk − Hkx f

k

)
, (1.26)

where Kk is the Kalman gain and
(

yk − Hkx f
k

)
is called innovation. The

Kalman gain matrix K is iteratively updated to minimize a posteriori error
covariance equation. With some maths, we can obtain the formulation of
optimal Kalman gain at each correction step as follows [80]

Kk = P f
k HT

(
HP f

k HT + R
)−1

, (1.27)

where P f
k is the forecast error covariance matrix and R is the covariance

matrix of measurement errors.
One should note that the propagation of an n × n covariance matrix at

each time step is very costly. One may use some sub-optimal analytical
schemes or follow ensemble approaches to remedy this. Another issue
with regular KF models is that they do not work for nonlinear processes
or measurement operators. Two solutions involve methods with some lin-
earizations called extended Kalman filter (EKF) [81] or using particle filter [82]
methods. Ensamble Kalman filter (EnKF) [83], though based on Gaussian
assumptions, can handle nonlinearities and non-Gaussian statistics where
an ensemble of time-dependent states describes the probability density
functions (PDF).
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The issue with EKF is that the estimator is not optimal. In addition, the
filter can easily diverge due to its linearization, if the process is not modeled
correctly. The particle filter method also is a Monte Carlo algorithm that
relaxes the assumption of linearity and Gaussian PDF and directly uses
the recursive formula of the sequential Bayesian framework. It is very well
suited for highly nonlinear problems such as turbulent flows. However, their
value in practice is limited, since, like many sampling-based algorithms,
their efficiency rapidly diminishes when the dimension of the state space
increase, which is called "the curse of dimensionality" [84].

For practical cases of data-driven simulation of turbulent flows (our topic
of interest), an explicit system covariance matrix is not available [85]. In
addition, the process is highly nonlinear. Therefore, standard KF methods
are not widely used. Instead, sample-based methods such as EnKF methods
are preferable. However, if one wants to tune a large set of parameters
to effectively improve the model prediction (having enough freedom to
deviate from the baseline model towards the ground truth, e. g., tuning the
eddy viscosity field, which has the same size as the computational grid),
such sample-based methods will be very time-consuming. Nonetheless,
KF methods have been used in the context of RANS models when the
number of parameters is limited [86–91]. Recently, the Ensamble Kalman
method was used to assimilate disparate data into an eddy viscosity model
to improve the predictions and also for the field inversion [92, 93].

If one is not particularly interested in the higher statistical moments of
the solution, such as PDFs or uncertainties and confidence intervals, and
if the problem is not time-dependent, the variational approach is a better
choice.

1.6.2.3 Variational data assimilation

Historically developed for numerical weather prediction models (NWP),
variational DA is based on optimal control theory and is derived from the
calculus of variations. Contrary to statistical methods, it minimizes a cost
function instead of maximizing a PDF. First, it needs a proper definition of
the cost function. Second, it involves numerical optimization techniques,
which rely on the gradient of the cost function. Third, the gradient usually
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is computed using adjoint methods. We define the following general form of
a cost function (4D-Var) [94]

f (xo) =
1
2

(
x0 − xb

)T
B−1

(
x0 − xb

)
+

1
2

N

∑
i=0

(Hixi − yi)
T R−1

i (Hixi − yi) ,

(1.28)

where xo, xb, and yi are the model state at time t0, the background state
at time t0, and measurements at time ti, respectively. Hi is the observation
matrix at time ti, and Ri and B are the observation error covariance matrix at
time ti and the background error covariance matrix, respectively. The goal is
then to minimize f (x0). For our purpose, sparse-data driven simulation of
turbulent flows, we simplify the cost function as following [95]: we assume
the problem is stationary (3D-Var), we neglect an explicit observation
noise model, i. e., we set Ri to be the identity matrix, and we neglect prior
modeling of the initial state resulting in the omission of the first term in
equation (1.28). The simplified cost function reads

f (x) =
1
2
(Hx − y)T (Hx − y) . (1.29)

The minimization of f is based on a combination of an adjoint method for
calculating the gradient ∇ f with a descent algorithm in the direction of the
gradient (gradient descent algorithms).

Derivative-free optimizations such as Genetic or PSO algorithms become
very inefficient for a large number of parameters, as is the case for our
problem. They may be useful if the cost function is not differentiable.
Therefore, they are not the choice for DA. Gradient descent algorithms are
essentially first-order iterative optimization algorithms for finding a local
minimum of a differentiable function. Of course, due to its first-order nature,
the convergence could be slow and easily trapped in local minima. Pure
Newton’s second-order methods can result in much faster convergence,
but evaluating the second-order derivatives, the Hessian matrix, is very
costly. Quasi-Newton methods such as BFGS are alternatives in which the
Jacobian is directly computed, but the Hessian matrix is approximated
using first-order derivative information, which can be an efficient trade-off
between performance and speed. There are a variety of other first-order
optimization algorithms that can provide a better convergence rate, mostly
developed in the context of supervised machine learning. We will discuss
these methods in more detail later. The general form of optimization is

αnew = αold − ∆ · d f
dα

, (1.30)
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where α is the parameter vector of the problem (parameters can be of
any kind such as physical properties, flow properties, initial or boundary
conditions, etc.), ∆ defines the step size (can be either a full matrix, a
diagonal matrix or a scalar value). The process described by equation 1.30

is repeated until a minimum is reached.

1.6.2.4 Gradient computations and adjoint method

The computation of the gradients is an important topic since it is by far the
most computationally expensive part of the whole variational DA process.
Before we explain adjoint methods, we briefly review the alternatives. The
first approach is the brute-force finite difference (FD) method. For example,
a first-order forward scheme can be used to evaluate the cost function
gradient w.r.t. parameter αi as follows

d f
dαi

∣∣∣∣
b

FD
=

f
(

α(i)
)
− f

(
αb
)

ϵ
, (1.31)

where αb is the baseline parameter vector (the current or initial parameter
values), and α(i) is the parameter vector obtained from αb by replacing

αb
i with αb

i + ϵ (note that ϵ is a perturbation). f
(

αb
)

is the cost function
computed by running the forward problem (e. g. RANS simulation) with the
baseline parameters and f

(
α(i)
)

is the one computed with the perturbed
parameter vector. As we see, for n parameters we need n + 1 forward
simulations, which would be prohibitive for RANS or LES simulations with
many parameters. In addition, the FD method’s accuracy is sensitive to the
perturbation size. The complex-step method [96] can solve this issue, but
the computational costs scale with the number of parameters similar to the
FD method.

Another important approach is the use of Automatic Differentiation (AD).
AD, similar to the FD method, can be used as a black-box approach, but
the computational cost can be independent of the number of parameters.
It is based on the systematic application of the differentiation chain rule
to computer programs [97]. One approach to implement AD is through
operator overloading, which involves a process known as "taping". Taping
records all the partial derivatives in intermediate steps in a new user-defined
type that is used instead of real numbers (including the value of the original
variable as well as its derivative) and then performs the reverse mode
calculations [98, 99]. Another approach is the source code transformation
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which gets the original program and generates a new program to perform
the calculations. Some applications of AD in CFD can be found in [100–102].

For our purpose, the forward problem involves an iterative solver, and
because we need to save all operations in memory for reverse AD, such
a naive use of AD would not be efficient. Instead, AD could be used for
the computation of terms used in the adjoint method, resulting in low
computational cost and memory efficiency at the same time [98]. Another
issue with AD is that it is not built-in in most CFD codes.

A computationally efficient way to compute gradients is the adjoint
method. It has been widely used in optimal control and design; both are
relevant for CFD problems such as aerodynamic shape optimizations and
data assimilation. There is a dichotomy between discrete adjoint method [99,
103] and continuous adjoint method [104, 105]. In the former, the governing
equations are discretized, and then the adjoint equations are constructed
and solved. In the latter, the adjoint equations are first analytically derived
from the governing equations and then discretized and solved. The early
works were mostly based on the continuous adjoint approach. The draw-
back of the continuous approach is low accuracy on coarser meshes and
implementation challenges, especially for the boundary conditions [106].
Most of the recent works are based on discrete adjoint methods. The main
advantage of discrete approaches is that the partial derivatives that appear
in the equations need not be differentiated by hand and can be computed
by other methods such as AD [103]. The boundary conditions also are auto-
matically considered consistent with the implementation of the discretized
form of the governing equations. Therefore, the discrete approach is more
"automatic" than the continuous approach and thus easier to implement.
drawbacks of the discrete approach are the computational and memory
costs.

The main idea in the discrete adjoint method is to use the discretized
PDE and the chain rule to set up a system of algebraic equations leading to
the computation of the gradients. The associated cost is independent of the
size of the parameters. The gradient can be expanded using the chain rule
as follows

d f
dα

=
∂ f
∂α

+
∂ f
∂U

∂U
∂α

, (1.32)

where U is the state variables (velocity and pressure). The first right-hand
side term is zero unless there is an additional term explicitly containing
parameters in the cost function, e. g. a regularization term. ∂ f

∂U can easily be
computed analytically. ∂U

∂α , however, does not exist explicitly. However, the
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state variables and parameters are implicitly related through the forward
problem equations R(U, α) = 0. Since R(U, α) is zero everywhere, its total
derivative with respect to α is also zero everywhere, from which we obtain
the following relation:

dR
dα

=
∂R
∂α

+
∂R
∂U

∂U
∂α

= 0 ⇒ ∂U
∂α

= −
(

∂R
∂U

)−1 ∂R
∂α

. (1.33)

Thus the gradient can be formulated as

d f
dα

=
∂ f
∂α

− λT ∂R
∂α

, (1.34)

where (
∂R
∂U

)T
λ =

(
∂ f
∂U

)T
. (1.35)

The components of the vector λ are called adjoint variables, and the equa-
tion (1.35) can be solved iteratively in the same way as the forward problem.
The term ∂R

∂U can be computed by solving the forward problem, and the

term ∂ f
∂U can be calculated analytically. The term ∂R

∂α , however, needs special
treatment since, usually, the parameter does not explicitly appear in the
governing equations. FD, AD, or other methods can be employed to com-
pute this term. In the next chapters, we will discuss this issue and other
aspects, such as the implementation of the code.

1.6.2.5 Regularization

Regularization is defined as incorporating any information or prior knowl-
edge into the inverse problem to overcome the ill-posedness, prevent over-
fitting, and iregular solutions. We can divide the procedure into two ways:
explicit and implicit regularization. The explicit procedures add priors,
penalties, or constraints to the optimization problem. The most common
way is to add penalties to the cost function. Implicit regularization consists
of other forms of attempts to add information to the problem, such as early
stopping. Regularization is extremely important in sparse data-driven simu-
lation of turbulent flows since such an inverse problem is under-determined
in that the number of parameters can be much larger than the number of
measurements.

The ill-posedness implies that we may not arrive at any solution; even if
so, there can be multiple solutions, all of them somewhat valid candidates.
This is particularly the case for sparse-driven simulation, as we will see,
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in that many combinations of parameter values would end up with the
same cost function value (flat cost function landscape). However, we can
refute many of these solutions with some expert knowledge. Specifically,
any solutions that are not to some degree smooth and contain peaks and
noises should be eliminated through regularization. Promoting local spatial
correlation thus would be one attempt to get physical results (e. g. total vari-
ation regularization). Low pass filtering could be another option (Sobolev
gradient method). Reduction of dimensionality of the parameters space is
another way of adding prior knowledge. Constraining the problem through
physical models, such as the Boussinesq eddy viscosity assumption, reduces
the degree of freedom of the problem and can be seen as regularization.
Introducing additional artificial or synthetic data can also be seen as a form
of regularization. The concept of overfitting and irregular solutions is also
somewhat relevant here since, as we will see, the optimizer mostly tends to
match the solution close to the measurements at the cost of significant devi-
ation in other regions. In that sense, regularization also avoids overfitting
and irregular solutions in those regions.

1.6.2.6 The dynamics between the availability of data and level of modeling and
regularization

One important aspect of data-driven simulations is that data availability
dictates the level of modeling and the necessity of regularization. When
only very sparse measurements are available, one needs further modeling
and further regularization. This is not obvious beforehand, and one needs
to decide based on trial and error or some expert experience. Of course, a
low amount of data needs more constraints, leading to a form of rigidity [77]
that does not allow the optimizer to thoroughly search the solution space
and eventually get close to the ground truth. On the other hand, giving too
much freedom to the optimizer without enough constraints increases the
chance of trapping in local minima corresponding to unphysical results. In
this sense, explicit regularization may help to avoid such an issue. More
dense data may overcome the need for too much regularization and let us
use a larger set of parameters, e. g., assuming the Reynolds stress tensor
field is the parameter field instead of eddy viscosity in an LEV model. This
aspect can be called flexibility [77]. As we see, this dynamic is not obvious
prior to the process and needs special treatment and experimentation. A
large part of this thesis is thus dedicated to these matters.
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1.6.2.7 Reduced order modeling (ROM) and Physics-informed neural network
(PINN)

For the sake of generality, we briefly mention two important approaches to
tackle turbulent flow problems, into which data can easily be embedded.
Reduced Order Modeling (ROM) is an approach that the original full-
order model is replaced with a reduced-order model, which significantly
reduces the dimensionality with a controlled loss of accuracy [107]. Proper
orthogonal decomposition is used for projecting PDE dynamics to low-rank
subspaces that can model the full spatio-temporal evolution of the governing
complex system [108]. The dimension reduction is somehow similar to the
goal of turbulence modeling, but here conducted in a different way, and
usually, the dimension reduction is much more severe. Data can then easily
be incorporated to construct such ROMs. Data-driven ROMs are extensively
used in flow modeling and control [109–111].

Physics-informed Neural Network (PINN) is a new paradigm for solving
forward and inverse problems that involve PDEs [112]. The idea is to train
an ML model as a global approximator that has space and time as input and
gives the state variables at that location and time as output. The training
data here would be samples from the initial and boundary conditions. The
cost function is defined as the error of the approximator at the samples of
the initial and boundary conditions. The gradient of the cost function with
respect to the weights and biases of the neural network is computed using
efficient algorithms such as error backpropagation. However, it is virtually
impossible to train a physically reasonable model merely based on initial
and boundary conditions through such an inverse problem. Therefore,
sampling should also be done within the domain and at different times.
Since the state variables of these samples usually are not known (data is
not available within the domain), instead, the residuals of the PDEs at
those sample points are assumed to be zero. Therefore, in the cost function,
a penalization term is added that estimates the sum of residuals at the
sampling. AD here is used to compute the residual of the PDEs. A trained
ML thus should satisfy the initial and boundary conditions as well as the
PDEs within the domain. Therefore, we can say that PINN solves a forward
problem in an inverse approach without a need for discretization schemes
and the generation of a mesh. In this paradigm incorporating data would
be very easy since any measurement information within the domain can be
added to the cost function exactly the same way as samples of boundary
and initial conditions. Parameters of a parametric PDE can also be tuned
with the help of AD in the same way the weights and biases are tuned.
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We see that data-driven simulation can be performed automatically in
PINN without a need for implementing tedious codes of DA. However,
there are challenges with PINN that need to be addressed. For example,
solving the forward problem with an inverse approach, where the cost is
minimized with first-order or quasi-Newton optimization methods, would
be very difficult. The training phase would be very costly, and sometimes a
satisfactory convergence may not be achieved. In addition, the sampling
would be tricky and needs treatments similar to the issues with generating
a proper mesh in a traditional CFD. The advantage of the discrete adjoint
method to PINN is that the RANS equations are solved in a forward way
more efficiently, and then the gradients are computed from the forward
solution.

1.6.2.8 Conclusions on data-driven approaches in turbulence modeling

We have mentioned two general approaches, data-driven modeling, and
data-driven simulation. Classical data assimilation and newer machine
learning methods have been used to incorporate data into models. The
main issues with ML-based data-driven models are generalizability and
interpretability. For the case of sparse data, we have observed that the
inverse problem is severely ill-posed and thus needs further modeling and
physical insights to obtain correct solutions. We can conclude that both
physics-informed and data-driven approaches are needed to obtain desired
results. In addition, the problem of non-uniqueness is an important task
that needs to be addressed.

1.7 motivation

The computational cost of DNS and LES for highly turbulent flows is still
a major obstacle to their usage for many applications. RANS or hybrid
LES/RANS methods will still be the only feasible options for practical appli-
cations in near future. We investigate the possibility of incorporating sparse
or low-resolution experimental measurement data into to model to com-
pensate for the inadequacies of these methods. If sparse data-augmented
RANS or hybrid LES/RANS methods can reproduce accurate solutions,
specifically velocity profiles and wall shear stresses, then such data-driven
models can be used instead of costly LES and DNS for any applications for
some measurement data are available.

However, we will see such an inverse problem is severely ill-posed and
we have to deal with the problem of non-uniqueness solutions. The first
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question to answer is how much prior modeling, e.g. linear eddy viscosity
assumption, needs to be enforced to effectively reduce the degrees of
freedom and thus the ill-conditioning of the problem. Then we need to
impose different regularization strategies to avoid non-physical solutions,
especially those jagged noisy over-fitted profiles. Therefore, we study how
much smoothness would be necessary and how to impose them. We also
investigate if dimensionality reduction can be used as a regularization
strategy to avoid noisy solutions.

If we are successful, we can show that if a data-driven model with a
specified physical constraint can reproduce correct solutions, in theory, that
level of physical modeling constraint has the potential of providing correct
solutions without the use of any data, if the physical model can correctly
compute the parameters.

We also investigate the case where only sparse wall shear stress measure-
ments are available. An example of such a condition would be a digital
twin of an airplane where only near-the-wall measurements are accessi-
ble. Can we reconstruct a correct solution only based on a few wall shear
stress data? if not, how can we overcome the problem? for example, does
data augmentation in the regions where data is not available, using higher
fidelity simulation, provide accurate solutions?

To summarize, we try to improve RANS models by assimilating sparse
data. We investigate and propose different regularization strategies to solve
the inverse problem and reach the most physical solution among many
possible solutions.

1.8 outline

In this chapter, we briefly reviewed all relevant subjects of turbulence mod-
eling and data-driven approaches. In the end, we shortly discussed the
discrete adjoint method’s role in variational data assimilation. In chapter 2,
we formulate the problem more rigorously. First, we formulate the for-
ward problem and then the inverse problem. Next, we provide background
reasons why the inverse problem is formulated this way. Afterward, the
computation of gradients is discussed in detail. The way the code is im-
plemented in OpenFOAM is explained in detail here. Verification of the
gradient computation and the whole procedure is done based on the full
field of synthetic data. In chapter 3 we provide a more realistic case of
sparse data and discuss the role of regularization techniques. We will see
that wall shear stress, which is an essential quantity of interest, cannot be
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physically reconstructed from sparse measurements if conventional reg-
ularization techniques are used. We, therefore, propose a dimensionality
reduction approach as a regularization method to provide both velocity
profiles and wall shear stresses at the same time. Finally, in chapter 4 we
examine a case where only wall shear stress data is given, while accurate
velocity profiles, as well as wall shear stresses, are sought. In this case, we
use an accurate, but computationally efficient hybrid LES/RANS method
to generate artificial data in regions where data is unavailable. We will
see that such an approach is an efficient way to simulate turbulent flows
with only a few wall shear stress measurements. Finally, conclusions are
made, limitations of the work are discussed, and possible future works are
proposed.





2
S PA R S E D ATA - D R I V E N R A N S S I M U L AT I O N

In this chapter, the mathematical framework for RANS simulation driven
by sparse measurements is explained. Specifically, we explain how we
compute the gradient of the cost function, based on the discrete adjoint
method. The implementation in OpenFOAM is discussed and the case setup
for DA is described. The verification process is shown later. Finally, the
results of the DA process without any regularization for synthetic and also
real data are shown. The necessity for regularization is explained, which
itself is then the topic of the next chapter. The discrete adjoint method in
OpenFOAM and the optimization method in Python were developed in
collaboration with Oliver Brenner. The post-processing scripts were devel-
oped by Oliver Brenner. Some results of this chapter have been published in:

Oliver Brenner, Pasha Piroozmand, and Patrick Jenny. Efficient assimi-
lation of sparse data into RANS-based turbulent flow simulations using a
discrete adjoint method. Journal of Computational Physics 471, 111667 (2022).

2.1 formulation of the forward problem

As explained in the introduction, we formulate the data assimilation task
as an optimization problem where the discrepancy between the RANS
solution and the sparsely distributed measurement data is minimized under
the constraint of the linear eddy viscosity RANS equations. We change
the RANS equations into a parametric PDE form and find the optimal
estimation of the parameters (here the eddy viscosity scalar field) in the
optimization process. Einstein notation is used throughout this chapter.
First, we introduce the steady-state RANS equations for an incompressible
Newtonian fluid

∂
(
⟨ui⟩

〈
uj
〉)

∂xj
+

∂τij

∂xj
= −∂ ⟨p⟩

∂xi
+

∂

∂xj

(
ν

∂ ⟨ui⟩
∂xj

)
, (2.1)

where ⟨ui⟩ are the mean velocity components, ⟨p⟩ is the mean kinematic
pressure assuming a constant density ρ, and ν the constant kinematic viscos-

ity. The Reynolds-stress tensor τij =
〈

u′
iu

′
j

〉
is responsible for momentum
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transfer by velocity fluctuations. This unclosed term needs modeling due to
the loss of information through the averaging process. The above equations
are solved together with the continuity equation

∂ ⟨ui⟩
∂xi

= 0 (2.2)

to obtain the mean velocity and pressure fields. Due to the reasons explained
in the introduction, we follow the Boussinesq hypothesis which constructs a
linear constitutive relationship between the deviatoric part of the Reynolds
stress and the mean flow strain rate, in particular

τij =
2
3
⟨k⟩ δij − 2νt

〈
Sij
〉

, (2.3)

where δij is the Kronecker delta,
〈
Sij
〉
= 1

2
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strain rate, and ⟨k⟩ = 1
2
〈
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i
〉

is the half-trace of the Reynolds stress tensor,
called turbulent kinetic energy. The first term of the right-hand side is the
hydrostatic part of the Reynolds stress and the second term is the deviatoric
part. In practice, the hydrostatic part is absorbed into the pressure gradient
term in equation (2.1) and the kinematic pressure ⟨p⟩ is replaced with the
modified kinematic pressure ⟨p∗⟩ = ⟨p⟩+ 2

3 ⟨k⟩. Therefore, ⟨k⟩ need not be
computed directly. The proportionality factor νt is the eddy viscosity that
has to be evaluated locally in each cell. In our data-driven approach, we
could compute νt directly from sparse measurement data. However, it is
better to first initialize the νt field with a conventional LEV model, such
as the k − ε model, and then correct the computed eddy viscosity with a
corrective field. This leads to better-conditioned inverse problems, where
the initial correction factor α is unity [63]. It can also help to incorporate
prior knowledge by using e. g. L2 regularization where the deviation from
the initial computation of the eddy viscosity is penalized leading to more
physical results. The resulting governing parametric PDE reads

∂
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uj
〉)

∂xj
= −∂ ⟨p∗⟩

∂xi
+

∂

∂xj

[
2
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ν + ανb
t

) 〈
Sij
〉]

, (2.4)

where νb
t is the baseline eddy viscosity computed by an eddy viscosity

RANS model. For simplicity of exposition, we will use a simplified notation
in the remainder of this manuscript. In particular, we will refer to the
modified kinematic pressure as pressure p, the mean velocity components
as {u1, u2, u3}, and the vector of state variables as U = {u1, u2, u3, p}.
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2.2 formulation of the inverse problem

An efficient way to estimate the optimal values of α is to follow a first-order
iterative optimization procedure. The cost function f of the optimization
problem is given by the discrepancy between the simulation results and the
reference data at the measurement locations. This difference is defined as
the squared Euclidean distance between the two as

f = V̂ ·
4

∑
k=1

(
HUk − Ûk

)◦2 , (2.5)

where Uk is the vector of k-th state variables computed in each cell, H the
linear observation operator [80] (a R × N matrix with R the number of
measurement locations), (·) · (·) is the inner product, (·)◦2 is the Hadamard
power of two (element-wise square of the vector), Ûk is the vector of k-th
measured state variables and V̂ is the vector of cell volumes at specified
reference locations. In practice, one may only measure a single component
of the state variables, e. g. the horizontal velocity component u1, resulting
in

f = V̂ · (Hu1 − û1)
◦2 , (2.6)

where the components of u1 and û1 are the calculated and measured
horizontal velocities, respectively.

Knowing the sensitivity of the cost function f with respect to the param-
eter vector α allows us to iteratively optimize the parameter values with a
gradient descent algorithm as

α(t+1) = α(t) − ∆(t)

(
d f
dα

(t)
)T

, (2.7)

where t = 0, . . . , Tmax denotes the iteration number of the optimization,
with Tmax being the maximum number of iterations and ∆ the learning rate
or optimization step size. Next, we discuss how to obtain the cost function
gradient d f

dα , while the choice of ∆, which can be either a scalar or a matrix,
is discussed later.

2.3 sensitivity calculation : discrete adjoint method

The most straightforward way to compute the sensitivity of the cost function
f with respect to the parameter vector α is the brute-force finite difference
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(FD) method, where each parameter is perturbed specifically while the
change in the cost function is measured [113]. However, this requires M
evaluations of the forward problem, where M is the number of parameters
(length of the vector α). Note that M is equal to the number of cells N if
each cell is allowed to attain an individual α value. In addition to the large
computational cost of the method, the obtained sensitivities very much
depend on the perturbation amplitude. The complex-step method [96] can
circumvent this issue but the computational cost still scales with the number
of parameters for both methods.

Another option is to apply automatic differentiation (AD) in a reverse
mode to the forward problem solver code [114]. This way, the number
of required forward problem evaluations is independent of the number
of parameters. However, this approach is associated with an enormous
memory requirement to store all intermediate steps of the iterative forward
solver.

Instead of these black-box approaches, one can use the discrete adjoint
method to calculate the sensitivity based on the chain rule at low computa-
tional cost and memory requirements. The product rule for the sensitivity
reads

d f
dα︸︷︷︸

1×M

=
∂ f
∂α︸︷︷︸

1×M

+
∂ f
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1×4N

∂U
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4N×M

, (2.8)

where U is the vector of all four state variables in all N cells. The term ∂U
∂α

is a 4N × M matrix that qualifies the sensitivities of the state variables in
each cell (rows) with respect to the parameters in each cell (columns). While
vectors ∂ f

∂α and ∂ f
∂U can be explicitly computed, there is no explicit relation

between the state variables and the parameters to obtain ∂U
∂α . However,

U and α are implicitly related through the forward problem equations
R (U, α) = 0. Since by definition R is identically zero, and so is its total
derivative with respect to α. Expanding the total derivative of R thus yields

dR
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4N×M

= 0 . (2.9)
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These terms are rearranged to obtain an expression for ∂U
∂α , which is then

substituted into equation (2.8) to give
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with the adjoint variables, or Lagrangian multipliers, λ. These are computed
by evaluating the so-called adjoint equations

(
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. (2.11)

This system of equations is solved iteratively, similar to the solution of the
forward problem. Note that the system matrix and the right-hand side are
both independent of α. Therefore, the computational cost of solving the
adjoint equations is independent of the number of parameters α and in
the order of a single linearized forward problem evaluation. This is a great
advantage compared to, e. g., the finite difference method which needs M
forward problem evaluations.

As stated, derivative vectors of ∂ f
∂α and ∂ f

∂U can be computed analytically,
but the matrices ∂R

∂U and ∂R
∂α need to be evaluated in a different way. The

reverse mode of AD can be used for this purpose. Naive use of AD, however,
leads to large memory usage. There are numerous approaches to circumvent
this issue [100, 106, 115]. Here, instead of using AD, we follow a simpler
approach with some approximating assumptions. We use the fact that the
discretized equations, e. g. by applying the finite volume method, have the
form

R (α, U)︸ ︷︷ ︸
4N×1

= A︸︷︷︸
4N×4N

U︸︷︷︸
4N×1

− b︸︷︷︸
4N×1

= 0︸︷︷︸
4N×1

, (2.12)

where A is the system matrix of the linearized and discretized residual.
Therefore, the Jacobian ∂R

∂U is simply equal to A.
Notice that A is a 4N × 4N matrix whose elements account for the

implicit influence of each state variable on the corresponding residual
equations. Such terms also arise from the velocity-pressure coupling in the
forward problem. Such a coupling is often treated by segregated methods
such as the SIMPLE algorithm. Segregated methods do not consider all
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off-diagonal components A. The coupling is accounted for in a successive
guess-and-correct fashion [116]. Here, we use a fully coupled solver for
both forward and inverse problems by which all off-diagonal elements
of A are computed [117]. A further advantage of coupled solvers is faster
convergence since the iterations are only needed for the nonlinear convective
terms; albeit at the cost of higher memory requirements.

The computation of the remaining term ∂R
∂α is tricky if one does not use

AD or FD approaches. To address this issue, having converged forward
solutions, we use implicit operators provided by OpenFOAM [118] to dis-
cretize and linearize the residual equations with respect to α. The resulting
system matrix corresponds to ∂R

∂α [119]. One should note that α only appears
explicitly in the momentum equations and not in the pressure equation.
Therefore, the effect of the term ∂R4

∂α on d f
dα is neglected. Brenner et al. [119]

showed that this approximation introduces inaccuracies in the magnitude
of the computed sensitivities, but in general the sign is correct, which is
crucial for successful gradient-based optimization. It should be noted that
such an approach cannot be used for other applications where the design
variables are not explicitly present in the governing equations such as shape
optimization problems.

2.4 implementation

The computation of the gradients, which is the key part of the DA ap-
proach, is implemented in OpenFOAM. OpenFOAM is an open-source
CFD package written in C++. The first reason for choosing OpenFOAM is
that the computation of gradients necessarily involves solving the forward
CFD problem thus CFD software is required. Second, there is no discrete
adjoint method for DA already implemented in any CFD packages. Due to
its open-source nature, OpenFOAM is one of the best-suited software to
add and develop codes for the adjoint method. Particularly object-oriented
programming paradigm of OpenFOAM makes developments much easier
than other coding structures.

Once the gradients are computed, they are written to a file and are read
by a Python script in which optimization methods were developed. The
interactions between OpenFOAM codes and Python scripts were handled
by PyFoam, which is a Python script acting as an interface between the two
and especially makes the processing of OpenFOAM-style files much easier.
The Python script reads the gradients and updates the parameters in the
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direction of reducing the cost function. This process is repeated until some
stopping criteria are satisfied.

2.4.1 Implementation of the gradients computations in OpenFOAM

It is common practice that one starts from an already existing OpenFOAM
solver for a similar problem and then extends the code for the problem of
interest. As our problem is limited to steady-state incompressible RANS
flows, we start with pUCoupledFoam in foam-extend-4.0. The main parts of
the forward problem code are briefly described below:

The flow and adjoint fields are defined in the file createFields.H. Then
the block system matrix for velocity and pressure variables is defined and
named UpEqn. The discretized form of momentum equations excluding the
coupled term, the pressure gradient, is defined in the file UEqn.H. Likewise,
the pressure equation excluding the coupled term, the divergence of velocity,
is defined in the file pEqn.H. In the file couplingTerms.H, the coupled terms
are then discretized and inserted into the block system matrix UpEqn. The
block system matrix is solved and then the corresponding field is retrieved
and the face flux field in the file phi is updated. This process is repeated
in a while loop in the main file pUCoupledFoam.C and continues until the
convergence is achieved.

We now can extend this code to compute also the gradients. The process
is as follows: We define adjoint variables Ua, pa, and the parameter field
alpha in the file createFields.H and a new file frozenTurbulence.H. A
new file named adjointSetup.H is generated, in which the system ma-
trix of the converged discrete residual equation of the forward problem
is reconstructed. Then, each 4 × 4 sub-matrix is transposed by calling the
function T(). In addition, each sub-matrix in the block system matrix is
transposed. This is done by switching the elements of the upper-diagonal
part (by calling the function upper()) with the lower-diagonal parts (by
calling the function lower()). Another important point here is that Open-
FOAM separates and stores the effect of boundary conditions in different
arrays called internalCoeffs and boundaryCoeffs. internalCoeffs are the
ones that affect the diagonal elements of the system matrix. In block sys-
tems, however, the internalCoeffs is already merged in diag() except for
coupled boundaries including periodic boundaries. Therefore, this has to
be transferred and transposed from the forward problem system matrix.
From constructing this UpaEqn we actually obtain ∂R

∂U , the crucial element

of the adjoint equations. The right-hand side of the adjoint equations, d f
dU ,
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is simply obtained from the existing fields and added to the right-hand
side of UpaEqn in its source(). The adjoint equation is then constructed
and can be solved likewise. Next, the matrix ∂R

∂α should be estimated and

then multiplied to the adjoint variables to compute the gradient d f
dα . As

explained, we ignore ∂Rp
∂α . The only term in Ru containing the parameter α

is [119]
∇ · (ανt∇U) , (2.13)

which leads to

∂RU
∂α

= − ∂

∂α
(∇ · (ανt∇U)) = − ∂

∂α
(∇ · ((νt∇U) α)) . (2.14)

Therefore, we need an implicit divergence operator acting on the scalar
field α with a tensor flux. The only existing implicit divergence opera-
tor in foam-extend-4.0 is acting on a vector field (volVectorField), usu-
ally the velocity, with a scalar field (surfaceScalarField), usually phi the
mass flow through the cell faces. It is called vectorGaussDivScheme and
takes the form fvm::div(phi, U). Here we extend this code to get a scalar
field (volScalarField) and a tensor face field (symmTensorSurfaceField)
in the form of fvm::div(tensorField, scalarField), where tensorField

is νt∇U interpolated to the faces and scalarField is α. Finally, the system
matrix ∂RU

∂α is multiplied with λ to obtain the gradients.

2.4.2 Implementation of the optimization procedure in Python

A Python script based on the SciPy Python library was developed where
the file containing the gradient dfdA is read and the updated α is computed
based on the optimization algorithm. The script has the flexibility to use
different optimization algorithms.

2.5 optimization

2.5.1 Computation of the learning rate

In equation (2.7), step size ∆ can either be a scalar or a R × R matrix,
depending on the optimization method. The simplest case is the vanilla
gradient descent method, where ∆ is a constant scalar, whose value should
be tuned by trial and error. If the optimization method uses second-order
derivatives (or a Hessian matrix), like Newton’s method, ∆ is a matrix.
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Such methods lead to fewer optimization iterations. However, due to high
computational costs, in general, Hessian matrices are not directly computed.
The next approach would be the family of quasi-Newton methods such
as BFGS, where the Hessian matrix is approximated using the gradient
information [120].

In this work we use an adaptive learning rate method, where ∆ is a diago-
nal matrix, i. e., for each element of the parameter vector, at each iteration, a
specific optimization step size is employed. No correlations between param-
eters are assumed (zero off-diagonals). Based on our empirical tests we use
the DEMON Adam [121] method. The default Adam method uses larger
learning rates for those parameter elements that were less frequently up-
dated with larger gradients. In addition, a decaying momentum (DEMON)
term is added to accelerate convergence [122]. In summary, equation (2.7)
is replaced by

α(t+1) = α(t) − ∆(t) γ(t) , (2.15)

where

γ(t) =

(
d f
dα

)T
+ κ(t) γ(t−1) . (2.16)

The variable κ(t) is the weight of the decaying exponential moving average
of past gradients (momentum) which is computed for each iteration as

κ(t) = κ0

(
1 − t

T
)

(1 − κ0) + κ0
(
1 − t

T
) , (2.17)

where κ0 is the initial momentum value and T is the maximum number of
iterations. The optimization step size of the r-th parameter of the vector of
α is computed as

∆
(t)
r,r =

η√
ϵ
(t+1)
r + δ

, (2.18)

where η is the nominal step size, δ > 0 is a small constant, and

ϵ(t+1) = κ′ϵ(t) +
(
1 − κ′

)
(

d f
dα

(t)
◦ d f

dα

(t)
)T

(2.19)

acts as a diagonal preconditioning matrix. Parameter κ′ is the discount factor
and ◦ stands for the Hadamard product (element-wise multiplication).
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2.5.2 Positivity constraint of the eddy viscosity

Since the computed eddy viscosity should by definition be positive, it makes
sense to incorporate this constraint into the optimization process. Brenner
et al. [119] showed that imposing a hard constraint, e. g., by overriding
negative α values, impairs the performance of the optimizer. Instead, they
suggested using a mapping function that acts as a soft constraint to avoid
negative values. The mapping reads

α
(
α′
)
=





α′ + 1, α′ > 0

exp (α′) , α′ ≤ 0 ,
(2.20)

where α′ is the intermediatory parameter and α is the physical parameter.
The former can reach any real value, while the latter always is positive.
Consequently, the sensitivities d f

dα are modified through the chain rule as

d f
dα′

=
d f
dα

dα

dα′
. (2.21)

The regularizations thus affect the intermediatory parameter α′ rather than
the physical parameter α.

2.6 case setup

The framework was developed in foam-extend-4.0, a version of OpenFOAM
with implemented coupled solvers [118]. The proposed method was tested
for flow over periodic hills, for which numerous numerical and experimen-
tal reference data are available at various Reynolds numbers. The problem,
although considers a rather simple two-dimensional geometry, features
separation and reattachment which are complex phenomena for eddy vis-
cosity models. We are specifically interested in an accurate wall shear stress
profile using data assimilation. The geometry of the problem is depicted in
Figure 2.1. The fluid periodically flows from the left boundary over the hill
and exits over the right boundary over the next hill. A mean bulk velocity
Ub is maintained by imposing a pressure drop from the left to the right
boundary; no-slip boundary conditions are applied at the top and bottom
walls.

We consider flow at Reynolds number Re = 10595, based on the hillcrest
height H and the bulk velocity Ub at the inflow boundary. Sparsely sam-
pled averaged LES data by Gloerfelt and Cinnella [123] is considered as a
reference.
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The computational grid consists of 180 × 130 cells in streamwise (x) and
spanwise (y) directions, respectively. A dimensionless wall distance of
y+ ≈ 1−5 was maintained for the wall-adjacent cell center locations. The
baseline eddy viscosity was computed using the standard k − ε model with
default coefficient values. The turbulent viscosity was fixed to zero at wall
boundaries (low Reynolds boundary condition). Second-order schemes
were used for the discretization of the convective and diffusive terms. A bi-
conjugate gradient stabilized linear solver with a Cholesky preconditioner
was used to solve the coupled system.

x

y

H

2.035H

9H

periodic periodic
wall

wall

Figure 2.1: Periodic hills geometry with boundary conditions. All length scales
are expressed with respect to the hill height H.

It should be noted that the large value for the maximum iteration number
T (cf. Table 3.1) did not result in high computational cost, since α only
slightly changed between optimization steps, and the solution fields were
initialized with the results from the previous step. In addition, we chose a
rather large value of 1e-4 for the forward problem convergence criterion
which accelerates the process with a minor effect on the quality.

2.7 verification of the gradient computations and data as-
similation

There are two important questions; whether the sensitivities are computed
accurately and second whether the whole DA results in a correct solution.
The first question can be answered, if the gradients are computed based on a
different method that we are sure is correct. We can use the finite difference
method in this regard. Note that the computational cost of FD is very high
but for verification of only one optimization step it is feasible. First, we



50 sparse data-driven rans simulation

0−4 · 10−13 −3 · 10−13 −2 · 10−13 −1 · 10−13 1 · 10−13

df
dα

∣∣∣
FD

0

−4 · 10−13

−3 · 10−13

−2 · 10−13

−1 · 10−13

1 · 10−13

d
f

d
α

∣ ∣ ∣ ad
j

∆α

1 · 10−3

1 · 10−2

1 · 10−1

Figure 2.2: The gradients computed by FD for αi in the cells i are marked by black
crosses (bottom), which are compared with the gradients computed
by the approximate adjoint method. Results are shown for the case of
the periodic hills with full synthetic reference data for both velocity
components with the initial value of unity for α and without any
regularization. The figure is taken from reference [119].

apply the method for different step sizes. A too large step size for such a
first-order scheme would result in inaccurate gradients and a too small step
size would end up with round-off errors. First, we find an optimal step
size of a finite difference approximation by performing the analysis with
perturbation sizes ϵ ∈

[
1 · 10−3, 5 · 10−3, 1 · 10−2, 5 · 10−2, 1 · 10−1] [119].

Brenner et al. [119] chose a subset of cells to reduce the computational costs.
The sensitivity study and the location of the cells are shown in figure. 2.2.
The gradients are evaluated in every second cell along the horizontal and
vertical center lines of cells. We see that the adjoint gradients are in the
same order as the FD gradients, however, the deviation can be seen for
many cells. Nonetheless, what is more important for DA is the sign of the
gradients since the optimization step size is a hyper-parameter and heavily
influences the optimization anyway. We will see that the accuracy here is
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Figure 2.3: The gradients of all cells computed by FD compared with the gradi-
ents computed by the approximate adjoint method. Results are shown
for the case of the periodic hills with full synthetic reference data for
both velocity components with the initial value of unity for α and
without any regularization [119].

enough for our DA process. To have a better view of the accuracy, the FD
gradient with the optimal step size is performed for the whole field. The
results are shown in figure 2.3. The points are compacted through a kernel
to better visualize the plot using a Gaussian kernel from Scipy [119]. The
same conclusions can be drawn. The order of magnitudes matches quite
well. Quantitatively the adjoint gradients are generally underestimated. The
sign of the gradients is mostly correct.

The next step is to verify that the optimization can recover the correct state
variables. However, we consider that due to the nature of such an inverse
problem multiple combinations of parameters can result in the same state
variables. Therefore, we set up a case in which the α field that generates the
reference velocity field is known. This way, the non-uniqueness issue is also
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better shown. The algorithm that generates this case is shown in figure 2.4.
First, we define an arbitrary α field as follows

αre f (x, y) =





1 + 2 sin2 ( π
2.035 (y − 1)

)
sin2 (π

9 x
)

, for 1 ≤ y

1, for y < 1.

Then we run the forward solver with the given α field to get the solution.
The obtained horizontal velocity field is assumed to be the reference for DA.
DA is then performed to retrieve the reference horizontal velocity field and
the optimal parameter field that is obtained is compared with the originally
given one. The retrieved velocity profiles are shown in figure 2.6. It can
be seen that the optimizer could perfectly match the horizontal velocity
profiles. However, according to figure 2.5 the retrieved parameter field
slightly deviates from the reference parameter field. This shows the degree
of the issue of non-uniqueness, even when complete data is given. The
deviation can also be due to inaccuracies in the adjoint gradients.

the k − ε SolverSetup νb
t

Forward Solverαre f Ure f

α(0) = 1 Optimizer αopt, Uopt

iterate

Figure 2.4: Process of using synthetic reference data to check the inverse solver
performance [119].
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Figure 2.5: Comparison of the prescribed, synthetic parameter field αre f (top)
and the reconstructed field α obtained by the optimization process
(bottom; data range [0.21, 1.95]). The full Ux reference field was used
and no regularization was applied. Taken from reference [119].
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Figure 2.6: The synthetic reference Ux-profiles (black, dashed), initial (green,
dotted), and optimized (red, solid) data. Length scales are normalized
by the hillcrest height H and the velocity by the bulk velocity Ub
above the hillcrest. Taken from reference [119].

2.8 assimilation of sparse data : results without regular-
ization

Now, we set up the main case. We follow a scenario where sparse data are
available and a correct solution through DA is sought. The sparse data is
actually a sampling of a time-averaged solution of a high-resolution LES
simulation. We define two categories of measurement points: training and
test data (unseen data). The training data is used in the DA process, while
the test data is only used to test the performance of DA. Note that generally
a smaller set of data is chosen for testing the generalization (e. g. 30%). The
locations of these points are shown in figure 2.7.

Figure 2.8 shows the corresponding horizontal velocity profiles and the
wall shear stresses at the bottom wall. Without regularization, the velocity
profiles and wall shear stresses are unphysical and unrealistic. The solution
is quite accurate at the measurement points (cf. Figure 2.7), but severely
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Figure 2.7: Distributions of measurement data (black dots) and testing data
(gray crosses). Testing data are not used for data assimilation, but to
estimate the generalization error.

deviates at other locations. This is also reflected in Table 3.2 (in the next
chapter), where for the unregularized results the training error is very low,
but the generalization error is high. We will shortly see that the jagged
velocity profiles are due to a very noisy parameter field. We can conclude
that without regularization the DA process will not result in realistic results.
Therefore, the optimizer needs more information to arrive at a good solution,
which can be done by introducing regularization schemes. The problem of
over-fitting and low generalizibility can also be seen in the evolution of the
cost function in Figure 2.9. The cost function at the reference points goes
to a very low value after a couple of iterations but the cost function at test
points is stuck to a rather large value.
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Figure 2.8: Horizontal velocity component u1 (top) and wall shear stress (friction
coefficient C f ) profiles at the lower wall (bottom plot). Results for
the baseline k − ε model (green), for the unregularized data-driven
method (red), and for the reference LES data (black) are shown.
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Figure 2.9: The evolution of the cost function during the optimization at the
reference points (red curve) and the test points (blue curve)





3
R E G U L A R I Z AT I O N

As discussed in the introduction, merely minimizing the distance function
without any constraints cannot result in meaningful results. That was the
reason for the choice of a linear eddy viscosity model as a constraint for
the inverse problem. However, it can be shown that for the case where
only sparse measurements are available, such a physical constraint still is
not enough to avoid overfitting at the measurement points and irregular
solutions. The process of adding more information or physical constraints
to overcome the ill-conditioning and to avoid unphysical solutions can be
called regularization. Here we first discuss three common regularization
methods and then propose the PLDR approach. The L2, TV, and Sobolev
gradient regularization methods were developed in OpenFOAM in collabo-
ration with Oliver Brenner. The post-processing scripts were developed by
Oliver Brenner. The analysis of the results was done in collaboration with
Oliver Brenner.

3.1 conventional regularization methods

3.1.1 L2 regularization

The first method is called L2 regularization and is in our case defined as
a term that penalizes the deviation of α from its base values αb, which is
unity here. This automatically enforces some smoothness in the optimized
parameter field since it limits the changes in α and avoids irregular solutions.
Alternatively, it can be interpreted as the level of trust put in the baseline
eddy viscosity model. To implement the method the squared L2 norm
penalty term is added to the cost function in equation (2.6) as

f = V̂ · (Hu1 − û1)
◦2 + ωL2

∥∥∥α − αb
∥∥∥

2
, (3.1)

where ωL2 is a regularization hyper-parameter. The first term penalizes
the misfit of the model’s output with respect to the measurement values
and the second term penalizes overfitting in order to reduce generalization
errors. Mostly overfitting occurs in cells that are close to the measurement

59
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points and the generalization errors tend to be larger in cells that are away
from the measurement points.

In practice, the effect of the regularization contributes to the cost function
gradient (cf. equation (2.12)) since

∂ f
∂α︸︷︷︸

1×M

= 2 ωL2

(
α − αb

)

︸ ︷︷ ︸
1×M

. (3.2)

3.1.2 Total variation regularization

The second method is called total variation (TV) regularization which is
defined in our case as a sort of penalization of the local spatial gradient of
α [124]. This type of regularization aims to remove strong local variations
or noise due to overfitting and irregular solutions; based on the intuition
that the optimized eddy viscosity field should be smooth. Equation (2.6) is
replaced by

f = V̂ · (Hu1 − û1)
◦2 + ωTV

M

∑
m=1

[
1

|Bm| ∑
o∈Bm

(αm − αo)
2

]
, (3.3)

where ωTV is the regularization hyperparameter, m the index looping over
all parameters, Bm is the set of adjacent parameters to the parameter with
index m, o the index looping over the set Bm, and |Bm| is the number of
adjacent parameters. Similar to the L2 method, the TV method effectively
influences the optimization by correcting the sensitivities by

∂ f
∂αm

= 2 ωTV ∑
o∈Bm

[(
1

|Bm|
+

1
|Bo|

)
(αm − αo)

]
. (3.4)

3.1.3 Sobolev gradient regularization

The third method is the Sobolev gradient regularization. The idea is to
project the sensitivity field d f

dα which is defined in L2 space onto the more
regular Sobolev space H1 [71]. The projection is done by solving the Poisson
equation

(
d f
dα

H1)T

︸ ︷︷ ︸
M×1

=

(
1

1 + lsob
2

(
I − l2

sob∇2
))−1

︸ ︷︷ ︸
M×M

(
d f
dα

)T

︸ ︷︷ ︸
M×1

, (3.5)
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where ∇2 is the Laplace operator, lsob a regularization parameter, and I

the M × M identity matrix. This equation can be solved by the same finite
volume method as used for the forward problem. The lsob parameter can be
considered as a low-pass filter width below which the fluctuations of the
sensitivity field are smoothed.

While ωL2 and ωTV are hyperparameters without physical meaning that
must be adjusted by trial and error, the Sobolev gradient parameter lsob has
a physical meaning and can therefore be defined more easily [71].

3.2 piecewise linear dimension reduction

We propose the piecewise linear dimension reduction (PLDR) method based
on the observation that the regularization methods discussed above, even
with optimal hyperparameter values, fail to provide physical and smooth
wall shear stresses. Noisy adjoint sensitivities and consequently noisy α
fields manifest themselves in unphysical and irregular wall shear stresses
and velocities, which are both important quantities of interest. The data
assimilation process should thus reproduce both quantities equally well.

The basic idea of the PLDR method is to reduce noise and high spatial
variability in the parameter field by decreasing its degrees of freedom. More
specifically, the α field is represented as a piecewise linear function with
linear Lagrange elements that are much coarser than the computational
grid. For now, we define the elements to be triangles (for two-dimensional
cases) whose vertices coincide with the measurement point locations, i. e.,
the α field is represented as

αm = ϕmr βr , (3.6)

with parameters β and the piecewise linear projection matrix Φ. Subscripts
m = 1, . . . , M and r = 1, . . . , R are the indices of the α and β vectors,
respectively. For now, we assume that R is equal to the number of mea-
surement points. The components of each row of Φ are all zero, except
for three components corresponding to the three vertices of the associated
triangular element. The sum of each row of Φ is unity and every αm is a
linear combination of three corresponding nonzero nodal values βr.

It should be noted that the triangular elements may not cover the whole
domain, e. g. a few cells close to the convex parts of the boundaries of the
periodic hills may reside outside of any triangular element. To solve this
issue we add dummy nodes far away from the boundary outside of the
domain. This acts as a Neumann boundary condition for the reconstructed
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α field. An example of piecewise linear basis functions is depicted in
figure 3.1.

Figure 3.1: The basis functions (blue, green, and red polyhedrons) span the solu-
tion inside the dashed yellow triangle. The locations of measurement
points are depicted by black dots, and a few elements are shown by
white triangles.

In practice, PLDR regularizes the inverse problem through the reduction
of the number of dimensions of the sensitivities from d f

dα with size M to d f
dβ

with size R, where R ≪ M. The chain rule yields

d f
dβ︸︷︷︸
1×R

=
d f
dα︸︷︷︸

1×M

dα

dβ︸︷︷︸
M×R

=
d f
dα︸︷︷︸

1×M

Φ

︸︷︷︸
M×R

. (3.7)

The values of d f
dβ are normalized by the sum over each corresponding

column of Φ to be consistent with d f
dα . Based on d f

dβ , the parameter vector β

is updated as

β(t+1) = β(t) − ∆

(
d f
dβ

(t)
)T

, (3.8)

and equation (3.6) subsequently is used to reconstruct the physical parame-
ter vector α. The optimization process continues by evaluating the forward
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and adjoint problems that yield the sensitivities, which, in turn, are used
to update β again. The flow chart of the data assimilation procedure is
presented in figure 3.2.

Observation

Stop criteria 
satisfied?

End

 

Optimization 
by DEMON 

ADAM

 

Compute

Compute 
sensitivities

Solve forward 
problem:

Update       field

Initialize 

Yes

No

Figure 3.2: Flow chart of the data assimilation procedure using the PLDR method.

3.2.1 Verification of contraction and expansion

To make sure that the process of mapping d f
dα to d f

dβ (contraction or restric-
tion) and then β to α (expansion or prolongation) is properly implemented,
we test the code for a synthetic d f

dα . If we assume ∆ = 1 and β = 0 multiply-
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ing the synthetic d f
dα with the projection matrix results in d f

dβ . Furthermore,

based on equation (3.8) the resulting α should be very similar to d f
dα , except

the sharp changes must be smoothed out because of the piecewise linear
projection. The synthetic d f

dα used here is a linearly varying field in both x
and y direction with a sharp change in the middle as depicted in figure 3.3a.
The resulting α field is shown in figure 3.3b. As we see, PLDR preserves
linearity, and values of d f

dα are the same everywhere, except near the abrupt
change. This is a desirable feature of PLDR as the goal is to avoid sharp
changes in the sensitivities while preserving the local linearity of the field.

(a) The synthetic d f
dα field

(b) The resulting α field from the synthetic d f
dα

Figure 3.3: Verification of the dimensionality reduction process.
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3.3 regularization effect on a single optimization step

Before we proceed with presenting the results of PLDR and the other meth-
ods, we discuss the effect of each regularization method on the sensitivities
d f
dα for a single initial optimization step. The L2, TV, and Sobolev gradient

methods directly act on d f
dα , while PLDR works indirectly. To compare the

PLDR sensitivity d f
dβ to the other methods, it is projected to d f

dα by multiply-
ing it with the linear projection matrix. Figure 3.4 shows the corresponding
results of each method. It can be seen that PLDR is the most successful
method in removing noise and the peaks at the measurement points (cf.
figure 2.7), especially near the walls.

-5e-13 0 5e-13-1e-12 1e-12

dfda

(a) No regularization.

(b) L2 regularization. (c) TV regularization.

(d) Sobolev gradient regularization. (e) PLDR regularization.

Figure 3.4: Sensitivity d f
dα contours after an intermediate optimization step with-

out (a) and with (b-e) regularization. For PLDR, the sensitivities are
obtained by projecting d f

dβ using the projection matrix.
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Hyperparameter values

Regularization Optimization

ωL2 1e-12 κ0 0.900

ωTV 5e-12 κ′ 0.999

lsob 5e-1 η 0.010

ωTV,β 1e-13 T 1000

Table 3.1: Hyperparameter values for regularization and optimization methods.

3.4 results and discussion

The optimal hyperparameter values used in this case study are summarized
in Table 3.1.

3.4.1 PLDR

we saw in the previous chapter in figure 2.8 that a data-driven model
without regularization results in severe irregular and unphysical solutions.
The solution is quite accurate at the measurement points (cf. figure 2.7) but
severely deviates at other locations which means the training error is very
low, but the generalization error is high.

When PLDR is used, however, the results are much smoother and closer
to the reference profiles. This is more pronounced for the wall shear stresses
(cf. figure 3.5, bottom). For example, the peak at the second hill is now
much lower and closer to the reference value. The reattachment length is
closer to the true value, and at the inflow, the wall shear stress is quite
accurate. However, there is an oscillation near the first hill that does not
match the reference profile. With regard to the velocity profiles, a substantial
improvement is observed in all regions. Over predictions are observed close
to the upper wall and slight deviations are seen close to the hillcrest. The
oscillations in the wall shear stress and the deviations in the velocity profiles
motivate further improvements to the PLDR method, which are discussed
below.
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Figure 3.5: Velocity profiles (top plot) and wall shear stress (friction coefficient)
at the lower wall (bottom plot) using the PLDR method.

3.4.2 Improved PLDR

Looking at the optimal α field obtained with the PLDR method (figure 3.5),
we can see deviations near the top wall which likely result from the high
gradients of α in those regions. One idea to reduce these discrepancies is
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to apply a concept similar to TV regularization to the β field. This leads to
improved predictions of the quantities of interest, as we will see below. The
adapted cost function reads

f = V̂ · (Hu1 − û1)
◦2 + ωTV,β

R

∑
r=1

[
1

|Br| ∑
l∈Br

(βr − βl)
2

]
, (3.9)

where ωTV,β is the weight factor of the β-TV regularization, Br the set of
neighborhood nodes, and l denotes the index of the adjacent nodes. The
sensitivity formulation ( d f

dβ ) will change accordingly.
Moreover, the wall shear stress estimation can be improved by adding

extra weight cw to the discrepancy function near the wall, i. e.,

f =
(
cw ◦ V̂

)
· (Hu1 − û1)

◦2 + ωTV,β

R

∑
r=1

[
1

|Br| ∑
l∈Br

(βr − βl)
2

]
. (3.10)

The weight factor vector cw, in our case, is set to 10 at wall adjacent reference
locations and 1 otherwise.

Figure 3.6 shows that the above improvements reduce the deviations of
both the optimized velocity profiles and the wall shear stresses. Tiny under-
shoots near the inlet remain in both quantities of interest. These might be
explained by the lack of reference points in that region, sub-optimally placed
sensors, or inaccuracies in the computation of the sensitivities. Another
explanation could be that the triangular elements cannot properly represent
the curved shape of the hill, which affects the optimized parameter field
and consequently the quantities of interest.

3.4.3 Comparison with other regularization methods

The significance of the PLDR method in producing physically sound and
smooth profiles is highlighted by comparison with conventional regulariza-
tion methods. Here, we compare PLDR with L2, Total Variation, and Sobolev
gradient regularization. Figure 3.8 shows the horizontal velocity profiles
and wall shear stresses resulting from applying different regularization
approaches.

Regarding the horizontal velocity profiles, qualitatively all regularization
methods were able to prevent overfitted and irregular profiles. The L2
method, however, shows more inaccuracies in the first hill regions while
the TV method is the most accurate almost everywhere. To further examine
the methods quantitatively, we compared their training (the error at the
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Figure 3.6: Velocity profiles (top) and wall shear stress (friction coefficient C f ) at
the lower wall (bottom) obtained with the improved PLDR method.

measurement points) and generalization errors (the error at testing points)
in Table 3.2. The training error is one to two orders of magnitude smaller
when data assimilation is applied. The lowest training error is observed
for data-driven LEV without regularization. This comes at the cost of a
very large generalization error. The lowest generalization error is observed
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for the TV method and the largest for DA without regularization. The
PLDR method works quite well in both aspects (cf. figure 3.6). It should be
noted that the optimal values for the regularization hyperparameters are
determined on a trial-and-error basis. While there is an optimal value for the
TV method, where the cost function and generalization errors are both low,
we could not find such an optimal value for the L2 and Sobolev gradient
methods. Small parameter values resulted in noise and overfitting, while
large values lead to overly smooth results. The excellent performance of the
TV method is reflected in the cost function evolution at reference points
and test points, as shown in Figure 3.7. This is especially clear when it is
compared to the cost function evolution of the DA without regularization
(Figure 2.9), highlighting the importance of regularization.

Figure 3.7: The cost function evolution of DA with TV regularization during
the optimization iterations. The red curve corresponds to the cost
function at reference points and the blue curve is for the test points.

With regards to the wall shear stresses, it is seen that except for the
PLDR method all methods fail to prevent overfitted and irregular solutions.
Referring to Table 3.2, the advantage of PLDR is pronounced in the case
of reconstructing wall shear stress and computation of the skin friction
drag. The C f training error is the lowest for PLDR and TV while the
generalization error is highest for no regularization and the L2 method.
The TV method, which performs best for the internal field, is poor in
the skin friction drag estimation with around 200% error. The Sobolev
gradient method only has an 8.74% error which is a great advantage mostly
due to the correct estimation of the peak at the second hill. The PLDR
method nonetheless introduces only a 1.38% error in the skin friction drag
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computation, which indeed is very accurate considering the limitations
of the linear eddy viscosity model. The advantage is more pronounced
when we consider that the Sobolev gradient method resulted in a bumpy
unphysical profile while PLDR leads to a physically reasonable smooth
profile.

Figure 3.9 shows the reconstructed optimized parameter fields α for the
different regularization methods and without regularization. It can be seen
that the mixing effect of the Sobolev gradient method is not able to diffuse
the α variations at the wall adjacent measurement points. The same is true
for the L2 method. The TV method leads to smooth α fields with a small
range of values, but the issues with boundary values persist. Finally, the
PLDR method succeeds in removing noise in the near-wall region simply
by constraining the variations to be piecewise linear.

It seems that the linearity of α for elements based on the measurement
points is sufficient to represent a physical eddy viscosity and finally the
velocities. This works specifically well for the problem of correcting the
eddy viscosity based on sparsely distributed reference data in the presented
case. However, it shows the general regularization effect of dimensionality
reduction to avoid overfitting and irregular solutions.

It should be noted that different scenarios with varying distributions and
numbers of measurement points were considered. For the PLDR method,
we examined whether to locate the nodes at positions other than the mea-
surement points (staggered) or to add more nodes than the measurement
points. In summary, the best results were obtained when the nodes of the
linear elements coincided with the reference data locations.

3.5 conclusions

A data-driven RANS model was developed to obtain solutions that are
consistent with sparsely distributed measurements within the simulation
domain. It was argued that for data assimilation the sparsity of the measure-
ment data forces the modeler to voluntarily constrain the inverse problem to
avoid unphysical solutions due to the ill-posed nature. The RANS equations
are closed by the linear eddy viscosity model and the eddy viscosity was
chosen as a parameter to be tuned in the data assimilation process. In partic-
ular, a baseline value for the eddy viscosity is computed by a physics-based
model like the k − ε model and then multiplied with the parameter field
that is tuned. We further emphasized the need for regularization to avoid
overfitting and irregular solutions and introduced a new regularization
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(b) Wall shear stresses, L2 Regularization.
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(d) Wall shear stresses, TV regularization.
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(f) Wall shear stresses, Sobolev gradient
regularization.

Figure 3.8: The comparison of stream-wise velocity profiles u1 (left) and the
friction coefficients C f (right) for different regularization methods.

method called piecewise linear dimensional reduction (PLDR). The goal
of PLDR was to further constrain the correction field to vary piecewise
linearly so that overfitting and unphysical results are avoided. This type of
regularization is suited particularly for reconstructing wall shear stresses
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(a) No regularization; data range [0.0, 85.6].

(b) L2 regularization; data range [0.003,
8.94].

(c) TV regularization; data range [0.001,
4.2].

(d) Sobolev gradient regularization; data
range [0.0, 11.2].

(e) PLDR regularization; data range [0.0,
5.1].

Figure 3.9: Optimal α fields without (a) and with (b-e) regularization. The same
color bar scaling is used for all plots.

where conventional regularization schemes like the TV or Sobolev gradient
methods fail. We tested the new method for the case of flow over periodic
hills and compared it to other regularization methods. The results show
that the PLDR method is able to reconstruct an accurate internal velocity
field. More importantly, PLDR is the only regularization method among the
other candidates that could provide smooth and accurate wall shear stress
profiles with only a 1.38% error in the estimation of the skin friction drag
force on the bottom wall. There are, however, limitations in employing the
PLDR method for general purposes that remain to be investigated.

Here, the PLDR method was only used for a sparse data-driven RANS
model for two-dimensional flow over periodic hills. The sparsity of the
measurement points is important in well representing the optimal corrective
field. It cannot be expected in general that the piecewise bilinear approach
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Method Errors

Training Generalization C f training Drag [%]

k − ε model 5.04e-08 4.45e-08 5.12e-06 454.87

Data-driven, no reg. 1.17e-10 1.47e-08 1.60e-07 404.65

Data-driven, L2 3.75e-09 8.12e-09 1.99e-06 356.87

Data-driven, TV 6.89e-10 2.60e-09 1.38e-06 200.06

Data-driven, Sobolev 3.68e-10 8.01e-09 1.98e-06 8.74

Data-driven, PLDR 3.06e-09 6.26e-09 1.39e-06 1.38

Table 3.2: Summary of the errors for different regularization methods. Training
error is the final cost function value f normalized by the number of
measurement points. Generalization error is the final cost function
value at testing points ( ftest) normalized by the number of testing
points. The C f training error is the mean absolute error of C f at wall-
adjacent measurement points for the bottom wall. Drag error (Skin
friction drag error) is the relative error with respect to the skin friction
drag of LES data for the bottom wall.

suffices to predict the optimal field reasonably well. For such cases, it could
be helpful to add some dummy points to increase the degrees of freedom
of the corrective field. It would also be beneficial to use quadratic or even
higher-order elements. It can be difficult to impose boundary conditions
with coarse triangular elements for complex geometries since the elements
must not overlap with the boundaries.

Another future work could extend and test the method for 3D cases,
where tetrahedral elements would be used instead of triangular ones. In
addition, it should be noted that while the piecewise linear method works
well for the eddy viscosity approach, it may not work for other data-driven
models where, e. g., Reynolds stresses are tuned directly. Nonetheless, it
can be argued that the piecewise linear dimension reduction, or any other
dimension reduction method, can be seen as an attractive tool to improve
ill-posed data assimilation of sparse measurements and to avoid overfitted
and irregular solutions.
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S PA R S E WA L L D ATA - D R I V E N H Y B R I D L E S / R A N S
S I M U L AT I O N

4.1 summary

We investigate a scenario where only sparse wall shear stress measurements
are available and accurate wall shear stress and velocity profiles are sought.
The work was motivated by the observation that by solely assimilating
near-wall measurements using a discrete adjoint-based approach while
leading to accurate wall shear stresses, a RANS model generally does not
produce accurate velocity fields in the free shear flow regions. Therefore,
we devise a method based on additional reference data away from walls
produced by a relatively cheap hybrid LES/RANS model and integrate
them into the assimilation process. To achieve this, we modified the dual-
mesh hybrid LES/RANS framework proposed by Xiao and Jenny [14] such
that the mean LES fields only get loosely coupled with corresponding
steady RANS solutions. The framework was developed in OpenFOAM and
tested for flow over a periodic hill with Re = 10595. Results show that the
framework outperforms the conventional dual-mesh hybrid LES/RANS
and standalone sparse wall-data assimilated RANS models in terms of
accuracy and computational cost. The development of the discrete adjoint
code, the optimizer, and analyzing the results were done in collaboration
with Oliver Brenner. The post-processing scripts were developed by Oliver
Brenner.

4.2 introduction

Accurate simulation of high Reynolds number turbulent flows is a com-
putationally demanding task since a wide range of eddy sizes has to be
resolved. This is one of the reasons why Direct Numerical Simulation (DNS)
is prohibitively expensive for most practical applications.

Large Eddy Simulation (LES) is computationally more efficient since only
the larger eddies are resolved, while the effect of the small ones is taken
into account via a statistical model. However, for turbulent wall-bounded
flows, the required grid resolution has to be fine enough to capture the

75
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inner layer, which is only 10-20% of the boundary layer but inhabits very
small energetic eddies. Therefore, the computational cost of such an LES
roughly scales with Re1.8 [14], and this gets too high for very large Reynolds
numbers

Three alternatives to LES would be to use Reynolds-averaged Navier-
Stokes models (RANS), to model the wall stress in LES (wall-modeled LES),
or to somehow combine LES with RANS (coupled or hybrid LES/RANS).
RANS models, often based on the Boussinesq eddy viscosity assumption,
are computationally cheap and numerically robust, but their accuracy is
limited for complex flows. Here we propose to combine experimental data
with a hybrid LES/RANS method, but first, we briefly review data-driven
RANS approaches.

4.2.1 Data-driven RANS simulation

There are two approaches to improving linear eddy viscosity (LEV) RANS
models. The first one is a physics-driven approach [125], in which either
the eddy viscosity is computed by solving more accurate transport equa-
tions [29], or to relax the eddy viscosity assumption resulting in non-linear
eddy viscosity models [126], or to directly model the Reynolds stress com-
ponents using algebraic or differential equations [127, 128]. It has been
observed that more complex models tend to be less general and robust and
they require tuning of more parameters

In data-driven approaches, on the other hand, the RANS models are
directly corrected based on available experimental data (typically from
sparse measurements). Depending on the availability of data, one needs to
add more physical constraints to the problem to avoid ill-conditioning and
non-uniqueness inherent in inverse problems [77]. In fact, even if one has
full DNS data and uses it for assimilation, retrieving correct Reynolds stress
tensors is a difficult task [61]. In the case of sparse data, which increases
the ill-conditioning and non-uniqueness, including a model describing the
Reynolds stresses is a necessity. For this reason, having sparse measurement
data, Brenner et al. [119] kept the Boussinesq assumption, and instead of
Reynolds stresses, they sought optimal eddy viscosity fields that lead to an
agreement with the experimental data. Such an approach is successful if
the sparse data is regularly distributed in the whole domain. Lack of data
in one part of the domain can easily lead to unphysical profiles in the rest,
which is the case when only sparse wall shear stress measurements are
available.
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To cope with such a lack of reference data, we devised a new method
that employs reference data in the free shear flow regions produced by a
computationally affordable high-fidelity model i. e. a loosely coupled dual-
mesh LES/RANS method. The generation of such data can be seen as a
form of regularization of data assimilation, which is defined as introducing
additional information to solve an ill-posed problem, to prevent overfitting
and irregular solutions. The rest of this section reviews a background on
wall-modeled LES and hybrid LES/RANS approaches.

4.2.2 Wall-modeled LES and hybrid LES/RANS models

To avoid the necessity of a dense and isotropic grid near walls, one can use
wall-modeled LES (WMLES) in which an algebraic relation or an ODE is
solved separately to provide wall shear stress estimations [129]. The wall
stress model gets information from the LES data in the logarithmic layer
and provides boundary conditions for LES at the wall surface.

Some algebraic wall models are based on a simple logarithmic law of the
wall, while some analytical wall models also account for non-equilibrium
effects such as pressure gradient, convection, etc. [43–45, 130]. More ad-
vanced wall models solve RANS-like ODE in the wall-normal direction,
where the wall-parallel velocity is obtained from LES, while a simplified
momentum equation is solved to provide wall shear stress estimations [46].

One also can solve 3D RANS PDFs on another grid that overlaps with
the LES grid in the inner-layer region (20% of the boundary layer thickness)
and exchange information with LES via the wall stress and the boundary
condition [131]. In another approach, instead of providing only the wall
shear stress, a forcing term can be added to nudge the LES solution to
the RANS solution [132]. Such a model may not be categorized strictly as
WMLES. From a computational point of view, WMLES can relax the grid
resolution requirements in the wall-normal direction but in the wall-parallel
direction, the usual LES grid requirement is needed [133].

In some hybrid LES/RANS methods, the computational domain is de-
composed into two subdomains, where RANS is solved only in the near
wall region and LES in the remaining domain, and information is trans-
ferred in both ways across the interface. Such hybrid models are called
segregated or zonal models [48].

Perhaps the most popular hybrid LES/RANS model is detached eddy
simulation (DES) [49], which can be categorized as a unified hybrid model.
In unified hybrid models, there is only one mesh and one solver, which
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switches or blends between LES and RANS in each grid cell (either prede-
fined or dynamic based on the local flow features [133]). Taking advantage
of the fact that the structure of unsteady RANS and LES equations is the
same, the main task of a hybrid model is to compute the Reynolds stresses
(or the eddy viscosity, if both models are based on the Boussinesq assump-
tion) by blending or switching the two. In such models, the wall-normal
direction should be resolved at least up to the buffer layer (for RANS to
resolve the inner layer), but in the wall-parallel direction the grid only
resolves the geometry and the mean flow (in contrast to WMLES) [133].

The choice between these methods is a trade-off between accuracy, com-
putational cost, and ease of implementation and use. The main drawback
of WMLES is the strong dependence of accuracy on the wall model, which
not always is accurate for complex flows and geometries. If the wall model
solves ODEs or PDEs, the implementation is challenging, which is also the
case for segregated models. The unified hybrid models suffer from inherent
inconsistencies between the filtered nature of LES and the ensemble or
time-averaged nature of the RANS equations [14]. They are also highly
dependent on the grid quality [134]. Grid ambiguity can result in erroneous
switching from LES to RANS near the wall, which reduces the modeled
turbulent stresses where LES has not created enough fluctuations. This
phenomenon is called modeled stress depletion (MSD), which is respon-
sible for different issues, such as grid-induced early separation, log-layer
mismatch in the gray zone, spurious buffer layer, artificial super-streaks,
etc. [48, 135–138]. Additional treatment, therefore, is needed to avoid MSD,
e. g by adding additional forcing near the interface to sustain the velocity
fluctuations, which may result in more inconsistencies [139, 140].

To avoid the above problems, Xiao and Jenny proposed an alternative
approach called dual-mesh dual-solver hybrid models [14, 141, 142]. In this
method, two different grids are generated for the entire domain. The RANS
grid resolves the near-wall region but is rather coarse in the free shear flow
region. The LES grid is coarse and under-resolved, but rather isotropic
everywhere without high resolution close to the wall. The two sets of
equations are solved separately but simultaneously. Through nudging, the
exponentially weighted time-averaged LES solution is relaxed towards the
RANS velocity field in the near wall region and the RANS solution is relaxed
towards the exponentially weighted time-averaged Reynolds averaged LES
velocity in the free shear flow region. This ensures consistency between
Reynolds averaged LES and RANS quantities and avoids problems such as
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MSD and additional forcing. It also is independent of the choice of RANS
closure models, in contrast to models such as DES.

This approach has been shown to be successful in various cases [143, 144],
but two solvers have to run simultaneously and exchange information every
couple of steps. The latter was especially difficult and time-consuming
when two different codes were used. In addition, the URANS time step has
to be reduced to be consistent with the LES simulation time step. Here we
simplify the procedure by solving steady RANS instead of URANS [145],
which results in a sequential, loose coupling of the two solvers, that is much
easier to implement. For example, due to the lower exchange frequency, it
is efficient enough to simply transfer the necessary information via files.
In addition, the RANS solver converges much faster than URANS using
under-relaxation techniques.

The drawback of both the tightly (previous) and loosely (proposed)
hybrid methods is the inability to predict accurate wall shear stresses if the
LES grid is not fine enough [141]. Such an issue can be solved with data
assimilation of sparse wall stress data, which is the second component of
the proposed framework.

The rest of the chapter is structured as follows. First, in section 4.3 the
original version of the dual-mesh hybrid model is explained followed by the
description of the new loosely coupled method. Then, the data assimilation
procedure is described. In section 4.4, results of the new hybrid method are
presented and it is explained how it can be combined with data assimilation
of sparse wall shear stress measurements. Finally, in section 4.5, conclusions
are provided.

4.3 methods

4.3.1 Tightly coupled dual-mesh hybrid LES/RANS

The initial version of the dual-mesh hybrid LES/RANS method developed
by Xiao and Jenny [14] is explained below. In this method, two sets of
governing equations are solved on different meshes. For the LES solver, the
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filtered momentum and pressure equations of an incompressible flow with
constant density read

∂ui
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+
∂(uiuj)

∂xj
= − ∂p

∂xi
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∂2ui
∂xjxj

−
∂τ

sgs
ij

∂xj
+ Qi

L (4.1)

and
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where xi, t, and ν are spatial coordinates, time, and kinematic viscosity,
respectively. ui, p, and τ

sgs
ij are filtered velocity, filtered kinematic pressure,

and residual stresses, respectively. Qi
L is the drift force applied to the

filtered equations, which ensures the statistical consistency between LES
and RANS. The definition of this term is presented later; see equation (4.6).

Consequently, the Reynolds-averaged momentum and pressure equations
are defined as
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where ⟨ui⟩, ⟨p⟩, and ⟨u′
iu

′
j⟩ are Reynolds-averaged velocity, kinematic pres-

sure, and Reynolds stresses, respectively. The drift force QR
i is applied to

the Reynolds-averaged equations; again to ensure the statistical consistency
between RANS and LES. Its definition is provided later; see equation (4.9).

4.3.1.1 Consistency

In the next step, to achieve consistency, we need to define the drift terms. Be-
fore that, however, we first introduce the exponentially weighted averaging
operator

⟨ϕ⟩EWA(t) =
1
T

∫ t

−∞
ϕi(t′)e−(t−t′)/T dt′, (4.5)

where t is the current time and T an averaging time scale.
It is a linear operator acting on instantaneous LES fields leading to the

corresponding exponentially weighted averaged quantity. Considering that
the physical interpretation of the filtered quantities in LES and the Reynolds-
averaged quantities in RANS is different, we assume that for large values of
T the exponentially weighted filtered- and the Reynolds-averaged quantities
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approximately represent the same, i. e., that ⟨ϕ⟩EWA ≈ ⟨ϕ⟩. Although this
assumption is only rigorous for T → ∞ and when filtering is applied to
homogeneous directions of the flow with constant grid spacing, it is more
consistent than comparing instantaneous filtered- with Reynolds-averaged
fields as done in most other hybrid methods. Regions, where the LES mesh
is adequately fine, are called LES regions (there the LES solution dominates);
the remaining regions are called RANS regions (there the RANS solution
is dominant). Consistency in these regions is achieved by applying drift
terms, that is, Qi

L to the filtered momentum equation in all RANS regions
and Qi

R to the Reynolds-averaged momentum equation in all LES regions.

4.3.1.2 Drift terms

Following the assumption of ⟨ϕ⟩EWA ≈ ⟨ϕ⟩, the drift term in the filtered
momentum equation is defined as

Qi
L =




(⟨ui⟩ − ⟨ui⟩EWA)/τl + Gij(⟨uj⟩EWA − uj)/τg, in RANS regions

0 in LES regions,
(4.6)

where

Gij =
⟨τij⟩EWA − ⟨uiuj⟩
⟨τkk⟩EWA + ⟨ukuk⟩

. (4.7)

The parameters τl and τg are the relaxation time scales for the EWA velocity
and EWA turbulent stresses, respectively. The first term in equation (4.6)
relaxes the averaged filtered velocity towards the RANS velocity, changing
only the averaged velocity, not the fluctuations (for large T). The second
term forces the turbulent stresses to relax towards the turbulent stresses, as
predicted by the RANS model, and therefore only changes the fluctuations,
but not the EWA velocity. According to our experience, since linear eddy
viscosity RANS models cannot provide reliable Reynolds stresses (e. g. the
k − ϵ model [146] does not properly describe the anisotropy of Reynolds
stress tensors near walls), it is better to enforce consistency of the total
turbulent kinetic energy in LES and RANS solutions (⟨τii/2⟩EWA ≈ kR,
where kR is the turbulent kinetic energy in RANS) rather than between
individual Reynolds stresses. Therefore, the term Gij (equation (4.7)) in
equation (4.6) is replaced by as

Gij =
⟨τkk/2⟩EWA − kR

⟨τkk/2⟩EWA + kR
δij, (4.8)
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which is an isotropic tensor. For the RANS equations, the drift term is
defined as

Qi
R =




(⟨ui⟩EWA − ⟨ui⟩)/τr, in LES regions

0 in RANS regions,
(4.9)

where τr is the relaxation time scale for the RANS velocity. Similar to the
momentum and pressure equations, drift terms are added to the k- and ε−
equations,i. e.,

Qk = (⟨τii/2⟩EWA − kR)/τr, (4.10)

and
Qϵ = (⟨ϵ⟩EWA − ϵR)/τr, (4.11)

where ⟨ϵ⟩EWA is the exponentially weighted averaged filtered total dissipa-
tion rate, i. e., th EWA of ϵ = 2νSijSij − τij

sgsSij, where Sij is the resolved
rate-of-strain tensor.

4.3.2 Loosely coupled dual-mesh hybrid LES/RANS method

The problem with the above approach is the difficulty in implementing the
method, in which information must be transferred between two solvers
frequently, since they should run simultaneously. In addition, small step
sizes are required for the URANS simulation, which can be computationally
expensive. To address these issues, we propose periodically steady forcing in
the RANS part. This allows to run LES and quasi-steady RANS sequentially,
and experience shows that within a few iterations accurate solutions are
achieved.

The first simplification would be to ignore time derivative terms in the
RANS equations. The second change is to redefine the drift term Qi

R such
that the RANS solution gets nudged to the LES velocity averaged over a
period, which is consistent with the steady RANS solution, rather than to
the EWA LES velocity. To further simplify the process, we ignore the source
terms in the k− and ε− transport equations, and in the LES equations, we
remove the turbulent stress relaxation term Gij. Thus the modified source
terms are:

Qi
R =




(⟨ui⟩MA − ⟨ui⟩)/τr, in LES regions,

0 in RANS regions,
(4.12)
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and

Qi
L =




(⟨ui⟩ − ⟨ui⟩EWA)/τl , in RANS regions,

0 in LES regions,
(4.13)

where ⟨ui⟩MA is the LES velocity averaged over a long time period.

4.3.3 Data assimilation

The main objective of the method is to obtain velocity profiles and wall
shear stresses at the same time by assimilating only sparse measurements
close to the wall. The data assimilation approach that we use to this end is
based on a discrete-adjoint method [119]. In this method, a cost function
is defined which measures the discrepancy between numerical results and
measurements at specified locations. The sensitivity of the cost function with
respect to the parameters, which shall be optimized to achieve agreement,
is computed by solving so-called adjoint equations. The computational
cost of the sensitivity computation is similar to that of solving the forward
problem, and it is independent of the number of parameters.

The choice of parameters depends on the availability of data. Bren-
ner et al. [119] showed that one needs to constrain the model to avoid
ill-conditioning and non-uniqueness when only sparse measurement data
is available. They corrected the eddy viscosity (instead of inferring the
Reynolds stress tensor field directly) with a gradient-based optimizer. Fur-
ther, the ambiguity of the problem was reduced by introducing a total
variation (TV) penalty to the cost function, which acts as a regularization.
However, Piroozmand et al. [147] showed that for cases where sparse data
are located near the wall and where the wall shear stresses are sought, TV
or Sobolev gradient regularization methods [71] fail to recover physical
and accurate wall shear stresses. Instead, they suggested a reduction of the
dimensionality of the parameter field, a method called Piecewise Linear
Dimension Reduction (PLDR), as a regularization strategy to further con-
strain the problem. The method successfully avoids jagged wall shear stress
and velocity profiles.

We follow this approach with the only difference that, in addition to the
sparse wall shear stress measurement data, the internal velocity field of the
loosely coupled hybrid model is used as synthetic data. This process can also
be seen as a regularization strategy called data augmentation by artificial
data, as it involves introducing additional information. Compared to the
loosely coupled hybrid LES-RANS method, we also obtain more accurate
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wall shear stresses as well as conservative solutions since the correction is
made without adding source terms to the momentum equation. The tuned
parameter α leads to a correction of the diffusive flux in the steady RANS
equation

∂(⟨ui⟩⟨uj⟩)
∂xj

= −∂⟨p⟩
∂xi

+
∂

∂xj

[
(ν + α⟨νt⟩)

⟨ui⟩
∂xj

]
, (4.14)

where ⟨νt⟩ is the eddy viscosity computed by the RANS part of the hybrid
model. DA corrects ⟨νt⟩ through α instead of inferring the eddy viscosity
directly, which helps the optimizer to narrow down the search space for an
optimal eddy viscosity. In practice, the corrective field α distills the effect of
the drift term in the hybrid equations into an optimal eddy viscosity and
it compensates for the shortcomings of the RANS model (here the k − ϵ
model) in incorporating near wall effects. Although complete internal data
are provided by the loosely coupled hybrid method, we opt to only use
sparse information in order to avoid irregular solutions at walls and to
simplify the implementation.

As mentioned earlier, we use the PLDR method in which the α field is
decomposed into piecewise linear elements whose nodes coincide with
the measurement points. This helps the optimizer to search in a subspace
instead and to reduce ill-conditioning and non-uniqueness. The nodal
values, called β, are optimized instead of the cell values of α. The relation
between β and α reads

αn = ϕnm βm , (4.15)

where the subscripts n = 1, . . . , N and m = 1, . . . , M address cells and
nodes, respectively, and ϕ is the piecewise linear projection matrix.

We then use a first-order gradient-based optimization to find the optimal
parameter values based on the iterative procedure

β(t+1) = β(t) − ∆(t) d f
dβ

(t)
, (4.16)

where t = 0, . . . , Tmax denotes the iteration number of the optimization
and Tmax is the maximum number of iterations. The learning rate, or
optimization step size, ∆ can either be a scalar, a diagonal matrix, or a full
matrix. The sensitivity d f

dβ of the cost function with respect to the parameters

can easily be computed from d f
dα using the chain rule, while d f

dα itself is
obtained from the discrete adjoint method. The cost function f is defined
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as the discrepancy between the RANS results and the reference data at the
measurement points. The readers are referred to our previous papers on
adjoint-based data assimilation for more explanations [147]. Two important
changes have been introduced compared to the previous method. The first
is the mapping function that enforces the positivity of the α field and thus
the eddy viscosity. The new mapping function reads

α
(
α′
)
=





arctan(α′) + 1, i f α′ > 0

exp (α′) , i f α′ ≤ 0 ,
(4.17)

which limits the maximum value of α to 2.57 in contrast to the previous
version, where α was unbounded. The reason for this modification was
the occurrence of large peaks that locally deteriorated the solution. The
second change is a modification to the total variation penalty that is applied
to the β values. The nodal distance was added to the denominator, since,
in general, the nodes are not as uniformly distributed as grid cells. This
implies that the total variation penalty is stronger where the nodes are
closer to each other. The new penalty term added to the cost function thus
reads

fβ = ωTV,β

M

∑
m=1

[
1

|Bm| ∑
o∈Bm

(βm − βo)
2

dmo

]
, (4.18)

where ωTV,β is the weight factor of the penalty, Bm the set of neighborhood
nodes, o denotes the adjacent nodes, and dmo is the distance between the
node m and its adjacent node o.

4.3.4 Case setup

The hybrid method and the data assimilation framework were developed
based on foam-extend-4.0, which is a fork of OpenFOAM with implemented
coupled solvers [118]. To demonstrate the proposed method, it was tested for
the case of flow over periodic hills, which has been studied numerically [148]
and experimentally [123] by various researchers. Although the geometry
is simple, the flow exhibits separation and reattachment, which renders
accurate predictions by CFD models difficult. We chose a rather high
Reynolds number of Re = 10595 based on the bulk velocity UB at the inflow
and the height H of the crest. The geometry of the test case is depicted
in Figure 2.1. At the walls no-slip and at in- and outflow as well in the
span-wise direction periodic boundary conditions were applied. The bulk
velocity is sustained by imposing a corresponding mean pressure gradient.
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The computational grid for the URANS simulation of the tightly coupled
hybrid method consists of 74 × 37 × 18 cells in x−, y−, and z− directions,
which are aligned with the streamwise, wall-normal, and spanwise direc-
tions, respectively. The grid for the steady RANS simulation in the loosely
coupled hybrid method and for data assimilation is two-dimensional and
has 180 × 130 × 1 cells in x−, y−, and z− directions. The LES grid used for
both the tightly and loosely coupled hybrid methods consists of 74× 37× 36
cells and is close to uniform in all directions without attempting to resolve
the boundary layer. The dimensionless wall distance of the wall-adjacent
cells is y+ ≈ 1 − 5 for RANS, but much larger for LES.

The RANS regions are composed of all cells which are within D = 0.2H
from the nearest wall; the remaining cells are assigned to LES regions. The
flow-through time is defined as Tthr = 9H/Ub, where Ub = 0.52975 and
the averaging period of URANS and LES is 12 × Tthr. The time window of
exponentially weighted averaging is T = 4.24H/Ub for the tightly coupled
approach and T = 42.4H/Ub for the loosely coupled approach. The relax-
ation times for drift terms are the same for both approaches, specifically
τl = 0.53H/Ub, τg = 0.13H/Ub, and τr = 0.53H/Ub. The time step size for
URANS and LES in the tightly coupled approach is ∆t = 2.65 × 10−3H/Ub,
while for the loosely coupled approach the LES time step is 0.0106H/Ub.

The turbulence model used for the RANS simulations is the standard
k − ϵ model with default coefficient values. A one-equation eddy viscosity
model (OEE) is used with an additional transport equation for the subgrid-
scale (SGS) turbulent kinetic energy [36]. The parameters used are provided
in [14].

A low Reynolds number boundary condition was assumed for the eddy
viscosity, which is based on a damping function that sets the eddy viscosity
to zero at wall boundaries. For the data assimilation process, 16 uniformly
distributed shear stress measurements at the lower and 16 at the upper
wall were used. The measurement data are samples from a high-resolution
LES simulation by Gloerfelt and Cinnella [123]. For the discretization of the
convective and diffusive terms, second-order schemes were used. To solve
the coupled system a bi-conjugate gradient stabilized linear solver with a
Cholesky preconditioner was employed, and the optimization was based on
the DEMON Adam method [121]. Further information on the configuration
of the setup is provided in Ref. [147].
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Figure 4.1: Periodic hills geometry and the predefined LES and RANS regions.
All length scales are expressed with respect to the hill height H.

4.4 results and discussion

In this section, we provide the results in the following order: First, the result
of standalone steady RANS (S-RANS) and standalone under-resolved LES
(UR-LES) are presented. Then, the results of the tightly coupled approach
(hybrid UR-LES/U-RANS) are shown. Results of the loosely coupled ap-
proach (hybrid UR-LES/S-RANS) follow. The results of the data assimilation
procedure are presented for the case where only sparse wall shear stresses
are assimilated into an S-RANS (W-DA on S-RANS) and are compared
to the case where the sampled velocity data from UR-LES of the loosely
coupled hybrid model is added and assimilated (W-H-DA on S-RANS). All
results are compared with a fully-resolved LES simulation (FR-LES) as a
reference. The location of measurement and sampling points are shown in
Figure 4.2. The streamwise velocity profiles and the wall shear stresses at
the lower wall for S-RANS and UR-LES are shown in Figure 4.3. It can be
observed that the velocity profiles of standalone UR-LES differ significantly
from the reference, which shows the importance of resolving small eddies
close to the wall. The standalone S-RANS shows better agreement with the
reference FR-LES, but it deviates in the core of the free shear flow region.
For the wall shear stress profiles, we can see that both approaches signifi-
cantly deviate from the reference, especially the overprediction of S-RANS
is evident. Note that wall shear stresses obtained from UR-LES may not be
valid, since the first grid points lie outside of the viscous sublayer (their y+

is in the range of 10).
Next, we look at the results of the tightly coupled approach. According

to Figure 4.4 the streamwise velocity profiles show excellent agreement
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y

x

Figure 4.2: The location of sampling points is shown as crosses (×) and the
location of measurement points at the walls is shown by black circles
(•).

with the reference; especially when compared to stand-alone UR-LES. This
emphasizes the importance of the U-RANS forcing applied to UR-LES and
of the reciprocal feedback between UR-LES and U-RANS. However, the wall
shear stress profiles of the tightly coupled approach do not show a substan-
tial improvement compared to standalone U-RANS, although standalone
U-RANS already provides more accurate results compared to S-RANS. The
superiority of U-RANS in comparison with S-RANS could be due to the dif-
ferent meshes which were used. The mesh for U-RANS was highly resolved
near the wall, but coarse in the free shear flow region. The S-RANS mesh
was less resolved near the wall but much more uniform in the free shear
flow region. Another explanation for the better performance of U-RANS
may be the fact that the unsteadiness of the mean flow is resolved. Over-
all, the tightly coupled approach provides very accurate internal velocity
profiles, but cannot improve wall shear stress computations.

We now take a look at the results of the loosely coupled approach. It
can be seen from Figure 4.5 that the velocity profiles have significantly
improved compared to the standalone UR-LES. However, the accuracy is a
bit lower in comparison with the tightly coupled approach, which can be
expected considering the assumption of steadiness. That is, the advantage
of lower computational cost and ease of implementation seems to come
with slightly lower accuracy. However, we can conclude that the loosely
coupled approach still provides good results, especially when considering
that it is the steady RANS that sequentially communicates with UR-LES.
The assumption of steadiness in the near-wall region is therefore valid at
least for the case of flow over periodic hills. The improvement in wall shear
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Figure 4.3: Horizontal velocity component u1 (top plot) and wall shear stress
(friction coefficient C f ) profiles at the lower wall (bottom plot) for the
standalone cases of steady RANS (S-RANS) and underresolved LES
(UR-LES).

stress estimations is limited, similar to the tightly coupling, which shows a
general drawback of the dual-mesh hybrid approach.

The issue of inaccurate wall shear stresses of the hybrid approach can
be circumvented by data assimilation if measurement data is available.
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Figure 4.4: Horizontal velocity component u1 (top plot) and wall shear stress
(friction coefficient C f ) profiles at the lower wall (bottom plot) for the
tightly coupled LES/RANS model. Note that the friction coefficient
of the tightly coupled model is derived from its U-RANS solution.

However, before we proceed, let’s look at the problem in another way.
Assume we only have sparse wall shear stress measurements and that
we want to assimilate this data set into an S-RANS model. The results in
Figure 4.6 show that if we only assimilate sparse wall shear stress data,
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Figure 4.5: Horizontal velocity component u1 (top plot) and wall shear stress
(friction coefficient C f ) profiles at the lower wall (bottom plot) for the
loosely coupled LES/RANS model. Note that the friction coefficient
of the loosely coupled model is derived from its S-RANS solution.

the inverse problem becomes very ill-conditioned, thus resulting in very
inaccurate velocity profiles, even though the wall shear stresses are rather
accurate at most parts. This shows that data assimilation of wall shear
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stresses aimed at finding the optimal eddy viscosity field is not able to infer
correct velocities in most of the regions.
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Figure 4.6: Horizontal velocity component u1 (top plot) and wall shear stress
(friction coefficient C f ) profiles at the lower wall (bottom plot) for
data assimilation of sparse wall shear stress data on S-RANS.

Finally, the results of assimilating the solution of the loosely coupled
hybrid approach augmented by sparse wall data are shown in Figure 4.7. It
can be seen that the streamwise velocity profiles have improved in most of
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the regions since the velocities in those regions were forced to match the
loosely coupled solution by optimizing the eddy viscosity. In addition, we
can see the wall shear stress is significantly more accurate than that obtained
with the standalone RANS solver without compromising the velocities in
the other regions. This shows that the idea of data augmentation of the DA
procedure works, or from another perspective, we can say that we could
improve the wall shear stress predictions of the loosely coupled approach
by assimilating sparse wall shear stress data.

4.5 conclusions and outlook

In this work we propose a modification of the basic dual-mesh hybrid
LES/RANS model in that the under-resolved LES model is coupled with a
steady instead of an unsteady RANS simulation resulting in less frequent
coupling and thus lower computational cost and simpler implementation.
We then showed that wall shear stresses do not substantially improve with
either approach and that if sparse wall shear stress measurements are
available these can be used to improve the performance of such models via
data assimilation. For example, one can consider a case where only sparse
wall shear stress measurements are available (e. g. on an airfoil), while
accurate velocities and wall shear stresses are sought. Here we propose
to augment the data with the results of rather cheap loosely coupled
hybrid LES/RANS simulations in order to reduce ill-conditioning and non-
uniqueness in solving this inverse problem. The framework was tested for
the case of flow over periodic hills for Re = 10595. The results confirm
both the capability of the loosely coupled approach and the importance of
augmenting the sparse wall data assimilation.

Future work should further verify the validity of the assumption of
steady RANS in the wall regions for other complex cases. In addition, the
loose coupling can further be improved by performing shorter LES after
each RANS simulation. Since the communication between the S-RANS and
UR-LES solvers occurs sequentially and infrequently (in contrast to the
tightly coupled hybrid method) it is efficient enough to use separate codes
and to simplify the information transfer via files.
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Figure 4.7: Horizontal velocity component u1 (top plot) and wall shear stress
(friction coefficient C f ) profiles at the lower wall (bottom plot) for
data assimilation of sparse wall shear stress and the solution of the
loosely coupled model on S-RANS.
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S U M M A RY A N D O U T L O O K

In this project, we investigated different approaches to efficiently incorpo-
rate sparse measurements into the turbulence models to obtain as accurate
and physical results as possible. We defined a data assimilation problem in
which the eddy viscosity of an LEV RANS model is optimized such that
the discrepancy between the sparse measurement data and the solution,
measured by a cost function, is minimized. We used the discrete adjoint
method to compute the gradients of this cost function with respect to the
parameter field. We observed that the assimilation of sparse data into the
model is severely under-determined and ill-posed resulting in nonphysical
jagged velocity profiles that are accurate at the measurement locations but
deviate largely in other regions. This motivated the use of different regular-
ization schemes. The L2, total variation, and Sobolev gradient regularization
methods were used, which, to some extent, could avoid unphysical solu-
tions. The quality of the DA approach and its generalizability was tested
not only based on the discrepancies at the measurement locations, but
also at other locations called testing points. Applying the regularization
methods, we could obtain accurate velocity profiles. However, we observed
that the reconstructed wall shear stresses were not satisfactory for all the
mentioned regularization methods, even if wall shear stress measurements
were available. To circumvent this issue, we proposed a novel approach
that reduces the dimension of the problem, such that the corrective field
is forced to behave piecewise linearly thus ensuring noise-free parameter
fields. The method is called piecewise linear dimension reduction (PLDR).
It was shown that PLDR can provide accurate and smooth velocity profiles
as well as wall shear stresses. Next, we investigated a scenario where only
sparse wall shear measurements are available but accurate wall shear stress
and velocity profiles are sought. We showed that with basic DA we get a
very inaccurate solution in all regions. Therefore, we attempted to generate
additional data by running a high-fidelity, but computationally efficient and
easy-to-implement simulation. An existing dual-mesh hybrid LES/RANS
method was modified such that the under-resolved LES is loosely coupled
with a steady RANS. We showed that the loose coupling approach provides
accurate results with ease of implementation. However, we observed that
the wall shear stress did not improve, compared to that obtained with the

95
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tightly coupled approach. It thus motivated us to incorporate sparse wall
shear stress measurements. Both the DA process and the hybrid model
benefited from their combination. Using the PLDR approach for DA, we
were able to provide accurate velocity profiles and wall shear stresses based
on a computationally efficient simulation and only a few wall shear stress
data.

The first conclusion is that the choice of linear eddy viscosity model was
an appropriate modeling level. It provided enough flexibility to search the
solution space and find the optimal one. On the other hand, with help of
regularization, it provided enough rigidity to reduce the degrees of freedom
avoiding many nonphysical solutions that we may have encountered if
we have chosen the Reynolds stress tensor or Reynolds forcing vector as
parameters. For the separated flow over periodic hills, the data-driven
LEV model was able to reproduce accurate velocity profiles and wall shear
stresses which is a significant result and shows that the inaccuracies of LEV
models for many problems may be due to the inaccurate calculation of
eddy viscosity itself rather than the LEV assumption.

The second conclusion is that regularization is a necessity for the sparse
data-driven LEV models. We showed that without any form of regular-
ization the reconstructed profiles are overfitted, noisy, and nonphysical.
Among the regularization schemes TV provided the best velocity profiles,
if the weighting factor is optimally chosen. Sobolev gradient, on the other
hand, had the advantage of having a hyperparameter, filtering length, that
has physical meaning whose optimal value is easy to guess. L2, TV, and
Sobolev gradient failed to reconstruct correct wall shear stresses. PLDR
method was motivated by this observation and we showed that is able
to reconstruct both velocity profiles and wall shear stresses. We, however,
showed that PLDR also needs some form of regularization on its parameters
to reach optimal results.

The third conclusion is that the proposed DA works only if data is
distributed in the whole domain. We, specifically, showed that if data is
only available near the wall the reconstructed profiles are very inaccurate
since the optimizer has little information in the free shear flow region to
infer correct parameters. We thus suggested the data augmentation using
a higher fidelity method namely the loosely coupled dual-mesh hybrid
LES/RANS method.

The fourth conclusion is that both tightly coupled and loosely coupled
dual-mesh hybrid methods are able to provide accurate velocity profiles but
are unable to improve wall shear stresses compared to standalone RANS
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simulations. The loose coupling has the advantage of easier implementation
and the RANS part, due to steady state assumption, is able to assimilate
measurement data.

And finally, we showed that our framework is able to provide accurate
velocity profiles and wall shear stresses using only a few near-wall mea-
surements. The computational cost of the approach is low compared to
conventional hybrid LES/RANS, LES, and DNS methods.

The following limitations of the project can be stated:

• The approximations in the calculation of gradients introduced inaccu-
racies, which could affect the efficiency of the optimization process.

• DA was performed only for LEV models. Therefore, the improvement
could be limited in some cases.

• Inaccuracies in the gradient computation at inflow and outflow bound-
aries can be attributed to the limitations in the OpenFOAM imple-
mentation.

• The initial eddy viscosity was computed based on the k − ε model.
The effect of the initialization with different LEV models was not
further studied.

• All the proposed methods were tested for one particular Re number,
geometry, and measurement configurations.

• Due to implementation issues, quasi-Newton optimization methods
such as the BFGS method were not tested. They may accelerate the
process.

• The performance of the loose coupling method was only tested for
the 2-dimensional case of flow over periodic hills.

The following suggestions and outlooks can be drawn for future works:

• DA can be incorporated to correct the LEV model by including
anisotropy effects (For example the parameters would be a vector
instead of a scalar field). This may increase the degrees of freedom of
the optimization problem and thus needs further regularization.

• The calculation of the gradients can be improved using Automatic
Differentiation.
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• A data-driven ML model can be developed based on the DA process
for different configurations such that the corrective field can automat-
ically be constructed based on local flow features without the need
for sparse measurements and DA.

• To further verify the capability of the proposed methods, they can
be tested for more complex geometries such as 3D geometries with
various flow conditions.

• Different LEV models can be tested to see the effect of the initialization
of the eddy viscosity in the optimization process.

• The PLDR method was only developed for two-dimensional cases.
The code can be extended for 3D cases.

• The implementation of the loose coupling can further be improved.
Since the forcing applied to the LES model, which depends on the
RANS simulation, changes slightly from one exchange iteration to the
next, averaging the LES solution may be done over a much shorter
period.
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