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Chair of Risk, Safety and Uncertainty quantification

The Chair carries out research projects in the field of uncertainty quantification for
engineering problems with applications in structural reliability, sensitivity analysis, model

calibration and reliability-based design optimization

Research topics
• Uncertainty modelling for engineering systems

• Structural reliability analysis

• Surrogate models (polynomial chaos expansions, Kriging, support vector
machines)

• Bayesian model calibration and stochastic inverse problems

• Global sensitivity analysis

• Reliability-based design optimization http://www.rsuq.ethz.ch
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Computational models in engineering

Complex engineering systems are designed and assessed using computational models, a.k.a simulators

A computational model combines:

• A mathematical description of the physical phenomena (governing
equations), e.g. mechanics, electromagnetism, fluid dynamics, etc.

div σ + f = 0

σ = D · ε

ε =
1
2

(
∇u +T∇u

)
• Discretization techniques which transform continuous equations into

linear algebra problems

• Algorithms to solve the discretized equations

Surrogate models for UQ CILAMCE’2022 - November 22, 2022 B. Sudret 3 / 58



Computational models in engineering

Computational models are used:

• To explore the design space (“virtual prototypes”)

• To optimize the system (e.g. minimize the mass) under performance constraints

• To assess its robustness w.r.t uncertainty and its reliability

• Together with experimental data for calibration purposes
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Computational models: the abstract viewpoint

A computational model may be seen as a black box program that computes quantities of interest (QoI)
(a.k.a. model responses) as a function of input parameters

Computational

model M

Vector of input

parameters

x ∈ RM

Model response

y = M(x) ∈ RQ

• Geometry

• Material properties

• Loading

• Analytical formula

• Finite element model

• Comput. workflow

• Displacements

• Strains, stresses

• Temperature, etc.
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Real world is uncertain

• Differences between the designed and the real system:
– Dimensions (tolerances in manufacturing)

– Material properties (e.g. variability of the stiffness or resistance)

• Unforecast exposures: exceptional service loads, natural hazards (earthquakes, floods, landslides),
climate loads (hurricanes, snow storms, etc.), accidental human actions (explosions, fire, etc.)
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Global framework for uncertainty quantification

Step A

Model(s) of the system

Assessment criteria

Step B

Quantification of

sources of uncertainty

Step C

Uncertainty propagation

Random variables Computational model
Moments

Probability of failure

Response PDF

Step C’

Sensitivity analysis

Step C’

Sensitivity analysis

B. Sudret, Uncertainty propagation and sensitivity analysis in mechanical models – contributions to structural reliability and stochastic spectral methods (2007)
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Uncertainty propagation using Monte Carlo simulation

Principle: Generate virtual prototypes of the system using random numbers

• A sample set X = {x1, . . . ,xn} is drawn according to the input distribution fX

• For each sample the quantity of interest (resp. performance criterion) is evaluated, say
Y = {M(x1), . . . ,M(xn)}

• The set of model outputs is used for moments-, distribution- or reliability analysis
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Uncertainty propagation using Monte Carlo simulation

• •• •••• •• • X1

• ••• ••• ••• X2

• ••• •• •• •• X3

Computational model

Y• ••• ••• •• •

e.g., max. deflection
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Advantages/Drawbacks of Monte Carlo simulation

Advantages

• Universal method: only rely upon sampling
random numbers and running repeatedly the
computational model

• Sound statistical foundations: convergence
when n → ∞

• Suited to High Performance Computing:
“embarrassingly parallel”

Drawbacks

• Statistical uncertainty: results are not exactly
reproducible when a new analysis is carried
out (handled by computing confidence
intervals)

• Low efficiency: convergence rate ∝ n−1/2
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Surrogate models for uncertainty quantification

A surrogate model M̃ is an approximation of the original computational model M with the following
features:

• It assumes some regularity of the model M and some general functional shape

• It is built from a limited set of runs of the original model M called the experimental design
X =

{
x(i), i = 1, . . . , n

}
Simulated data

• It is fast to evaluate!
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Surrogate models for uncertainty quantification

Name Shape Parameters

Polynomial chaos expansions M̃(x) =
∑
α∈A

aα Ψα(x) aα

Low-rank tensor approximations M̃(x) =
R∑

l=1

bl

(
M∏

i=1

v
(i)
l (xi)

)
bl, z

(i)
k,l

Kriging (a.k.a Gaussian processes) M̃(x) = βT · f(x) + Z(x, ω) β , σ2
Z , θ

Support vector machines M̃(x) =
m∑

i=1

ai K(xi,x) + b a , b

(Deep) Neural networks M̃(x) = fn (· · · f2 (b2 + f1 (b1 + w1 · x) · w2)) w, b
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Ingredients for building a surrogate model

• Select an experimental design X that covers at best the domain of
input parameters:

– (Monte Carlo simulation)

– Latin hypercube sampling (LHS)

– Low-discrepancy sequences

• Run the computational model M onto X exactly as in Monte Carlo simulation
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Ingredients for building a surrogate model

• Smartly post-process the data {X , M(X )} through a learning algorithm

Name Learning method

Polynomial chaos expansions sparse grid integration, least-squares,

compressive sensing

Low-rank tensor approximations alternate least squares

Kriging maximum likelihood, Bayesian inference

Support vector machines quadratic programming

• Validate the surrogate model, e.g. estimate a global error ε = E
[(

M(X) − M̃(X)
)2
]
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Advantages of surrogate models

Usage
M(x) ≈ M̃(x)

hours per run seconds for 106 runs

Advantages

• Non-intrusive methods: based on runs of the
computational model, exactly as in Monte
Carlo simulation

• Suited to high performance computing:
“embarrassingly parallel”

Challenges

• Need for rigorous validation

• Communication: advanced mathematical
background

Efficiency

• 6-8 orders of magnitude (!) less CPU for a single run

• 2-3 orders of magnitude less runs compared to a full Monte Carlo simulation
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Polynomial chaos expansions in a nutshell

Ghanem & Spanos (1991; 2003); Xiu & Karniadakis (2002); Soize & Ghanem (2004)

• We assume here for simplicity that the input parameters are independent with
Xi ∼ fXi

, i = 1, . . . , M

• PCE is also applicable in the general case using an isoprobabilistic transform X 7→ Ξ

The polynomial chaos expansion of the (random) model response reads:

Y =
∑

α∈NM

yα Ψα(X)

where:

• Ψα(X) are basis functions (multivariate orthonormal polynomials)

• yα are coefficients to be computed (coordinates)
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Sampling (MCS) vs. spectral expansion (PCE)

Whereas MCS explores the output space /distribution point-by-point, the polynomial chaos expansion
assumes a generic structure (polynomial function), which better exploits the available information (runs of
the original model)

Example: load bearing capacity Pcr of a shallow foundation

Defined as a function of the soil cohesion c and friction angle φ

Thousands (resp. millions) of
points are needed to grasp the
structure of the response (resp.
capture the rare events)
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Visualization of the PCE construction

= “Sum of coefficients × basic surfaces”
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Visualization of the PCE construction

=y0,0× +y0,1×

+y1,0× +y1,1× +y2,0×

+· · · +y0,2× +y3,3× +y4,2×
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Polynomial chaos expansion: procedure

Y PCE =
∑
α∈A

yα Ψα(X)

Four steps

• How to construct the polynomial basis Ψα(X) for given Xi ∼ fXi ?

• How to compute the coefficients yα?

• How to check the accuracy of the expansion ?
• How to answer the engineering questions:

– Mean, standard deviation

– PDF, quantiles

– Sensitivity indices
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Multivariate polynomial basis

Univariate polynomials

• For each input variable Xi, univariate orthogonal polynomials {P (i)
k , k ∈ N} are built:〈

P
(i)
j , P

(i)
k

〉
=
∫
P

(i)
j (u) P (i)

k (u) fXi (u) du = γ
(i)
j δjk

e.g. , Legendre polynomials if Xi ∼ U(−1, 1), Hermite polynomials if Xi ∼ N (0, 1)

• Normalization: Ψ(i)
j = P

(i)
j /

√
γ

(i)
j i = 1, . . . ,M, j ∈ N

Tensor product construction

Ψα(x) def=
M∏

i=1

Ψ(i)
αi

(xi) E [Ψα(X)Ψβ(X)] = δαβ

where α = (α1, . . . , αM ) are multi-indices (partial degree in each dimension)
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Computing the coefficients by least-square minimization

Isukapalli (1999); Berveiller, Sudret & Lemaire (2006)

Principle

The exact (infinite) series expansion is considered as the sum of a truncated series and a residual:

Y = M(X) =
∑
α∈A

yαΨα(X) + εP ≡ YTΨ(X) + εP (X)

where : Y = {yα, α ∈ A} ≡ {y0, . . . , yP −1} (P unknown coefficients)

Ψ(x) = {Ψ0(x), . . . ,ΨP −1(x)}

Least-square minimization

The unknown coefficients are estimated by minimizing the mean square residual error:

Ŷ = arg min E
[(

YTΨ(X) − M(X)
)2
]
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Discrete (ordinary) least-square minimization

An estimate of the mean square error (sample average) is minimized:

Ŷ = arg min
Y∈RP

1
n

n∑
i=1

(
YTΨ(x(i)) − M(x(i))

)2

Procedure

• Select a truncation scheme, e.g. AM,p =
{

α ∈ NM : |α|1 ≤ p
}

• Select an experimental design and evaluate the model response

M =
{

M(x(1)), . . . ,M(x(n))
}T

• Compute the experimental matrix

Aij = Ψj

(
x(i)) i = 1, . . . , n ; j = 0, . . . , P − 1

• Solve the resulting linear system

Ŷ = (ATA)−1ATM
Simple is beautiful !
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Error estimators
• In least-squares analysis, the generalization error is defined as:

Egen = E
[(

M(X) − MPC(X)
)2
]

MPC(X) =
∑
α∈A

yα Ψα(X)

• The empirical error based on the experimental design X is a poor estimator in case of overfitting

Eemp = 1
n

n∑
i=1

(
M(x(i)) − MPC(x(i))

)2

Leave-one-out cross validation

• From statistical learning theory, model validation shall be carried out using independent data

ELOO = 1
n

n∑
i=1

(
M(x(i)) − MP C(x(i))

1 − hi

)2

where hi is the i-th diagonal term of matrix A(ATA)−1AT
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Curse of dimensionality

• The cardinality of the truncation scheme AM,p is P = (M + p)!
M ! p!

• Typical computational requirements: n = OSR · P where the oversampling rate is OSR = 2 − 3

However ... most coefficients are close to zero !

Example

• Elastic truss structure with M = 10 independent input
variables

• PCE of degree p = 5 (P = 3, 003 coefficients)
0 500 1000 1500 2000 2500 3000

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

α

|a
α
/a

0
|

 

 

Mean
p = 1
p = 2
p = 3
p > 3
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Compressive sensing approaches

Blatman & Sudret (2011); Doostan & Owhadi (2011); Sargsyan et al. (2014); Jakeman et al. (2015)

• Sparsity in the solution can be induced by ℓ1-regularization:

yα = arg min 1
n

n∑
i=1

(
YTΨ(x(i)) − M(x(i))

)2
+ λ ∥ yα ∥1

• Different algorithms: LASSO, orthogonal matching pursuit, LARS, Bayesian compressive sensing,
subspace pursuit, etc.

• State-of-the-art-review and comparisons available in:
Lüthen, N., Marelli, S. & Sudret, B. Sparse polynomial chaos expansions: Literature survey and benchmark,

SIAM/ASA J. Unc. Quant., 2021, 9, 593-649 https://doi.org/10.1137/20M1315774

–, Automatic selection of basis-adaptive sparse polynomial chaos expansions for engineering applications, Int.

J. Uncertainty Quantification, 2022, 12, 49-74

https://doi.org/10.1615/Int.J.UncertaintyQuantification.2021036153
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Post-processing sparse PC expansions

Statistical moments
• Due to the orthogonality of the basis functions (E [Ψα(X)Ψβ(X)] = δαβ) and using E [Ψα ̸=0] = 0

the statistical moments read:

Mean: µ̂Y = y0

Variance: σ̂2
Y =

∑
α∈A\0

y2
α

Distribution of the QoI

• The PCE can be used as a response surface for sampling:

yj =
∑
α∈A

yα Ψα(xj) j = 1, . . . , nbig

• The PDF of the response is estimated by histograms or kernel
smoothing

0 1 2 3 4 5 6

x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

P
D

F

Data

Kernel density
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Sensitivity analysis

Goal Sobol’ (1993); Saltelli et al. (2008)

Global sensitivity analysis aims at quantifying which input parameter(s) (or combinations thereof)
influence the most the response variability (variance decomposition)

Hoeffding-Sobol’ decomposition (X ∼ U([0, 1]M ))

M(x) = M0 +
M∑

i=1

Mi(xi) +
∑

1≤i<j≤M

Mij(xi, xj) + · · · + M12...M (x)

= M0 +
∑

u⊂{1, ... ,M}

Mu(xu) (xu
def= {xi1 , . . . , xis })

• The summands satisfy the orthogonality condition:∫
[0,1]M

Mu(xu) Mv(xv) dx = 0 ∀ u ̸= v
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Sobol’ indices

Total variance: D ≡ Var [M(X)] =
∑

u⊂{1, ... ,M}

Var [Mu(Xu)]

• Sobol’ indices:

Su
def= Var [Mu(Xu)]

D
• First-order Sobol’ indices:

Si = Di

D
= Var [Mi(Xi)]

D

Quantify the additive effect of each input parameter separately

• Total Sobol’ indices:
ST

i
def=
∑
u⊃i

Su

Quantify the total effect of Xi, including interactions with the other variables.
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Link with PC expansions

Sobol decomposition of a PC expansion Sudret, CSM (2006); RESS (2008)

Obtained by reordering the terms of the (truncated) PC expansion MPC(X) def=
∑

α∈A yα Ψα(X)

Interaction sets

For a given u def= {i1, . . . , is} : Au = {α ∈ A : k ∈ u ⇔ αk ̸= 0}

MPC(x) = M0 +
∑

u⊂{1, ... ,M}

Mu(xu) where Mu(xu) def=
∑

α∈Au

yα Ψα(x)

PC-based Sobol’ indices
Su = Du/D =

∑
α∈Au

y2
α/

∑
α∈A\0

y2
α

The Sobol’ indices are obtained analytically, at any order from the coefficients of the PC
expansion
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Models with time-dependent outputs

Problem statement

• Consider a computational model of a dynamical system:

DΞ × [0, T ] : (ξ, t) 7→ M(ξ, t)

where Ξ is a random vector of uncertain parameters with given
PDF fΞ

• Uncertainties may be in:
- The excitation, denoted by x(ξx, t)

- And/or in the system’s characteristics (ξs):

i.e.:

M(ξ, t) ≡ M(x(ξx, t), ξs)

Time-frozen PCE does not work!

Time-dependent output PDF
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Stochastic time warping

Problem Mai & Sudret, SIAM J. Unc. Quant. (2017)

The various trajectories are “similar” yet not in phase, thus the
complex time-frozen response

Principles of the method

• A specific warped time scale τ is introduced for each trajectory so
that they become “in phase”

• Time-frozen PCE is carried out in the warped time scale using
reduced-order modelling (principal component analysis)

• Predictions are carried out in the warped time scale and
back-transformed in the real time line

Kraichnan Orszag model

Original trajectories

Trajectories after time warping
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Example: Oregonator model

The Oregonator model represents a well-stirred, homogeneous chemi-
cal system governed by a three species coupled mechanism

Governing equations

ẋ(t) = k1 y(t) − k2 x(t) y(t) + k3 x(t) − k4 x(t)2

ẏ(t) = −k1 y(t) − k2 x(t) y(t) + k5 z(t)
ż(t) = k3 x(t) − k5 z(t)

Input reaction parameters

Parameter Distribution Values

k1 Uniform U[1.8, 2.2]
k2 Uniform U[0.095, 0.1005]
k3 Gaussian N (104, 1.04)
k4 Uniform U[0.0076, 0.0084]
k5 Uniform U[23.4, 28.6]

Le Maître et al. (2010)

Original trajectories

Trajectories after time warping
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Oregonator model: prediction

Surrogate model
• Experimental design of size n = 50
• Validation set of size nval = 10, 000
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Oregonator model: mean and std trajectories
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Dynamics in the frequency domain

Premise Vaghoubi, Marelli & Sudret, Prob. Eng. Mech. (2017)

• Frequency response functions (FRF) allow one to compute the
response to harmonic excitation

• In case of uncertain system properties (masses, stiffness
coefficients) the resonance frequencies are shifted
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Nonlinear transient models: PC-NARX

Goal Mai, Spiridonakos, Chatzi & Sudret, Int. J. Uncer. Quant. (2016)

Address uncertainty quantification problems for earthquake
engineering, which involves transient, strongly non-linear
mechanical models

PC-NARX
• Use of non linear autoregressive with exogenous input models

(NARX) to capture the dynamics:

y(t) = F (x(t), . . . , x(t − nx), y(t − 1), . . . , y(t − ny)) + ϵt ≡ F (z(t)) + ϵt

• Expand the NARX coefficients of different random trajectories
onto a PCE basis

y(t, ξ) =
ng∑
i=1

∑
α∈Ai

ϑi,α ψα(ξ) gi(z(t)) + ϵ(t, ξ)
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Wind turbine simulations: mNARX surrogate
Movie-to-time series surrogate

Blade flapwise bending moment

Generated power

Surrogate models for UQ CILAMCE’2022 - November 22, 2022 B. Sudret 36 / 58



Wind turbine simulations: mNARX surrogate
Movie-to-time series surrogate

Blade flapwise bending moment

Blade pitch
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Bayesian inversion: framework

Consider a computational model M with input parameters X ∼ π(x)

Bayesian inverse problem

π(x|Y) = L(x; Y)π(x)
Z

where Z =
∫

DX

L(x; Y)π(x)dx

with:
• L : DX → R+: likelihood function (measure of how well the model fits the data)
• π(x|Y): posterior density function
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Bayesian inversion for model calibration

PCE as a surrogate of the forward model

• Used in conjunction with Markov Chain Monte Carlo (MCMC)
simulation

Application to sewer networks Nagel, Rieckermann & Sudret, Reliab. Eng. Sys. Safety (2020)

Application to fire insulation panels Wagner, Fahrni, Klippel, Frangi & Sudret, Eng.Struc. (2020)

Spectral likelihood expansions

• The likelihood function is expanded with a PCE, which leads to
analytical solutions for posterior distributions and moments

Nagel & Sudret, J. Comp. Phys. (2016)

• Stochastic spectral embedding for localized posteriors and
adaptive designs Marelli, Wagner, Lataniotis & Sudret, Int. J. Unc. Quant. (2021)

Marelli, Wagner, & Sudret, J. Comput. Phys. (2021)

Predicted outflow

Predicted temperature
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Reliability analysis: problem statement

• For the assessment of the system’s performance, a failure criterion
is defined, e.g. :

Failure ⇔ QoI = M(x) ≥ qadm

Examples:

+ Admissible stress / displacements in civil engineering

+ Max. temperature in heat transfer problems

Probability

of

failure
Pf

Limit state function
• Cast as a limit state function (performance function)

g : x ∈ DX 7→ R such that:

g (x, M(x)) ≤ 0 Failure domain Df

g (x, M(x)) > 0 Safety domain Ds

g (x, M(x)) = 0 Limit state surface

e.g. g(x) = qadm − M(x)

Failure domain
Df = {x: g(x) ≤ 0}

Safe domain Ds

x1

x2
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Probability of failure

Definition
Pf = P

({
X ∈ Df

})
= P (g (X, M(X)) ≤ 0)

Pf =
∫

Df ={x∈DX : g(x,M(x))≤0}
fX(x) dx

Features
• Multidimensional integral, whose dimension is equal to the number of basic input variables M = dim X

• Implicit domain of integration defined by a condition related to the sign of the limit state function:

Df = {x ∈ DX : g(x, M(x)) ≤ 0}

• Failures are (usually) rare events: sought probability in the range 10−2 to 10−8
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Active learning reliability framework Bichon et al. (2008, 2011), Echard et al. (2011)

Principle
A surrogate model is built by iteratively enriching the experimental design E = {X , g (X )} (using a
learning function) so as to be accurate in the vicinity of the limit-state surface

Build an initial experimental design E(0)

i = 0

Build a surrogate model ĝ(i) using E(i)

Estimate the failure probability P̂f using ĝ(i)

Estimate the accuracy of P̂f

Converged?

Enrich the experimental design
E(i+1) = E(i) ∪ {X enr, g(X enr)}

End

i = i+ 1

no

yes
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Surrogate: Gaussian process (Kriging) model Rasmussen & Williams (2006)

• Kriging assumes that g(x) is a trajectory of an underlying Gaussian process

g (x) = βT f (x) + σ2Z (x; θ)

βT f (x): trend - Z (x): zero-mean, Gaussian process with covariance function σ2 R(x, x′; θ)

• The experimental design response Y and the response ĝ(x) for a new point x are jointly Gaussian{
ĝ(x)

Y

}
∼ NN+1

({
f(x)T β

Fβ

}
, σ2

{
1 rT (x)

r(x) R

})
• The prediction is given by the conditional mean µĝ(x) and variance σ2

ĝ(x)

µĝ(x) =fT (x)β̂ + rT (x)R−1
(

Y − Fβ̂
)

σ2
ĝ(x) =σ̂2

(
1 − rT (x)R−1r(x) + uT (x)(FT R−1F)−1u(x)

)
Rij = R

(
x(i), x(j); γ̂

)
- r (x) = R

(
x, x(i); γ̂

)
- F = Fij = fj

(
x(i)
)

•
{
β̂, σ̂2, θ̂

}
are estimated by maximum likelihood
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Polynomial-Chaos Kriging Schöebi et al. (2015,2016)

• Universal Kriging with a sparse PCE model as trend

M (x) =
∑
α∈A

yαΨα(X) + σ2Z (x)

• Combines advantages of both PCE and Kriging:
– PCE approximates the global behaviour of the model
– Kriging captures local variations and provides the built-in local error estimation throught the Kriging variance

• Both the coefficients of the expansion {yα, α ∈ A} and the auto-correlation parameters θ̂ are
calibrated
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Active Kriging - Monte Carlo simulation (AK-MCS) Echard et al. (2011)

• Gaussian process model to emulate the
limit-state

• ED locally enriched using the deviation number

U(x) =
|µĝ(x)|
σĝ(x)

• Probability of failure estimated using Monte
Carlo simulation

• Convergence assumed when U is sufficiently
large
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Active learning reliability methods Teixeira et al. (2021), Moustapha et al. (2022)

Numerous papers on active learning called AK-XXX-YYY in the last few
years!

• AK-MCS is a cornerstone for the development of
active learning reliability strategies

• Most methods in the literature are built by
modifying:

– the surrogate model

– the algorithm for reliability estimation

– the learning function

– the stopping criterion
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A module-oriented survey Moustapha et al. (2022)

Monte Carlo simulation Subset simulation Importance sampling Other

Kriging
Bichon et. al (2008) Echard et. al (2011)
Hu & Mahadevan (2016) Wen et al. (2016
) Fauriat & Gayton (2017) Jian et. al
(2017) Peijuan et al. (2017) Sun et al.
(2017) Lelievre et al. (2018) Xiao et
al. (2018) Jiang et al. (2019) Tong et
al. (2019) Wang & Shafieezadeh (2019)
Wang & Shafieezadeh (SAMO, 2019)
Zhang, Wang et al. (2019)

Huang et al. (2016) Tong et al. (2015)
Ling et al. (2019) Zhang et al. (2019)

Dubourg et al. (2012) Balesdent et al.
(2013) Echard et al. (2013) Cadini et
al. (2014) Liu et al. (2015) Zhao et al.
(2015) Gaspar et al. (2017) Razaaly et
al. (2018) Yang et al. (2018) Zhang &
Taflanidis (2018) Pan et al. (2020) Zhang
et al. (2020)

Lv et al. (2015) Bo &
HuiFeng (2018) Guo et al.
(2020)

PCE
Chang & Lu (2020) Marelli & Sudret
(2018) Pan et al. (2020)

SVM
Basudhar & Missoum (2013) Lacaze &
Missoum (2014) Pan et al. (2017)

Bourinet et al. (2011) Bourinet (2017)

RSM/RBF
Li et al. (2018) Shi et al. (2019)

Rajakeshir (1993) Rous-
souly et al. (2013)

Neural networks Chojazyck et al. (2015) Gomes et al.
(2019) Li & Wang (2020) [Deep NN] Sundar & Shields (2016)

Chojazyck et al. (2015)

Other
Schoebi & Sudret (2016) Sadoughi et al.
(2017) Wagner et al. (2021)

− U − EFF − Other variance-based − Distance-based − Bootstrap-based − Sensitivity-based − Cross-validation/Ensemble-based − ad-hoc/other
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General framework
Moustapha, M., Marelli, S., Sudret, B. (2022). Active learning for structural reliability: Survey, general framework and benchmark. Structural Safety 96.

Modular framework which consists of independent blocks that can be assembled in a
black-box fashion

Surrogate model

Kriging

PCE

SVR

PC-Kriging

Neural networks
...

Reliability estimation

Monte Carlo

Subset simulation

Importance sampling

Line sampling

Directional sampling
...

Learning function

U

EFF

FBR

CMM

SUR
...

Stopping criterion

LF-based

Stability of β

Stability of Pf

Bounds on β

Bounds on Pf

...

Surrogate models for UQ CILAMCE’2022 - November 22, 2022 B. Sudret 48 / 58



Extensive benchmark: selected problems

• 20 problems selected from the literature

• 11 come from the TNO benchmark
(https://rprepo.readthedocs.io/en/latest/)

• Wide spectrum of problems in terms of

– Dimensionality
– Reliability index β = −Φ−1(Pf )

~
~

Problem M Pf,ref Reference

01 (TNO RP14) 5 7.69 · 10−4 Rozsas & Slobbe 2019

02 (TNO RP24) 2 2.90 · 10−3 Rozsas & Slobbe 2019

03 (TNO RP28) 2 1.31 · 10−7 Rozsas & Slobbe 2019

04 (TNO RP31) 2 3.20 · 10−3 Rozsas & Slobbe 2019

05 (TNO RP38) 7 8.20 · 10−3 Rozsas & Slobbe 2019

06 (TNO RP53) 2 3.14 · 10−2 Rozsas & Slobbe 2019

07 (TNO RP54) 20 9.79 · 10−4 Rozsas & Slobbe 2019

08 (TNO RP63) 100 3.77 · 10−4 Rozsas & Slobbe 2019

09 (TNO RP7) 2 9.80 · 10−3 Rozsas & Slobbe 2019

10 (TNO RP107) 10 2.85 · 10−7 Rozsas & Slobbe 2019

11 (TNO RP111) 2 7.83 · 10−7 Rozsas & Slobbe 2019

12 (4-branch series) 2 3.85 · 10−4 Echard et al. (2011)

13 (Hat function) 2 4.40 · 10−3 Schoebi et al. (2016)

14 (Damped oscillator) 8 4.80 · 10−3 Der Kiureghian (1990)

15 (Non-linear oscillator) 6 3.47 · 10−7 Echard et al. (2011,2013)

16 (Frame) 21 2.25 · 10−4 Echard et al. (2013)

17 (HD function) 40 2.00 · 10−3 Sadoughi et al. (2017)

18 (VNL function) 40 1.40 · 10−3 Bichon et al. (2008)

19 (Transmission tower 1) 11 5.76 · 10−4 FEM (172 bars, 51 nodes)

20 (Transmission tower 2) 9 6.27 · 10−4 FEM (172 bars, 51 nodes)
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Ranking of the strategies: efficiency

Percentage of runs

How many times a method ranks best according to
efficiency ∆ (resp. within 5, 10, 20 times the best)?

∆ = εβ
Neval

Neval

where Neval is the median number of model evaluations for a particular

problem (over all methods and replications)

• Best approach: PC-Kriging + SuS + U +
Combined stopping criterion

• Worst approaches: Direct SuS and Direct IS
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TNO Benchmark: performance of UQLab “ALR” module Rozsas & Slobbe (2019)

• Truly black-box benchmark with 27 problems

• Limit state functions not known to the participants and only accessible through an anonymous server

• Our solution: the “best approach” previously highlighted (PCK + SuS + U + Co)

Summary plot (TNO)

• Reference solution: black line

• Zero, one or more points per participant

• X: number of runs (log scale)

• Y: obtained β index

best approach: “on the line / to the left”
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TNO Benchmark: performance of UQLab “ALR” module Rozsas & Slobbe (2019)

Component reliability System reliability
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Conclusions

• Surrogate models are unavoidable for solving uncertainty quantification problems involving costly
computational models (e.g. finite element models)

• Depending on the analysis, specific surrogates are most suitable: polynomial chaos expansions for
distribution- and sensitivity analysis, Kriging (and active learning) for reliability analysis

• Sparse PCE and its extensions (time warping, PC-NARX, PC-Kriging, DRSM, etc.) allow us to address
a wide range of engineering problems, including Bayesian inverse problems (without the need for
MCMC simulations)

• Techniques for constructing surrogates are versatile, general-purpose and field-independent

• All the presented algorithms are available in the general-purpose uncertainty quantification software
UQLab

Surrogate models for UQ CILAMCE’2022 - November 22, 2022 B. Sudret 53 / 58



www.uqlab.com
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UQLab: The Uncertainty Quantification Software

• BSD 3-Clause license:

Free access to academic, industrial,
governmental and non-governmental users

• 5,200+ registered users from 94 countries since
2015

http://www.uqlab.com

• The cloud version of UQLab, accessible via an
API (SaaS)

• Available with python bindings for beta testing

https://uqpylab.uq-cloud.io/

Country # Users

China 849

United States 789

France 451

Switzerland 370

Germany 401

United Kingdom 214

India 206

Brazil 201

Italy 191

Canada 109

As of November 15, 2022
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UQWorld: the community of UQ https://uqworld.org/
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Questions ?

Chair of Risk, Safety & Uncertainty Quantification
www.rsuq.ethz.ch

Thank you very much for your attention !

The Uncertainty Quantification
Software

www.uqlab.com

www.uqpylab.uq-cloud.io

The Uncertainty Quantification
Community

www.uqworld.org
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