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Abstract

Modern robots are slowly but surely finding their way from research laborato-

ries to the real world. Legged robots, in particular, due to their bio-inspired

morphology, hold the promise of walking around in complex environments,

where they can assist humans in dangerous or repetitive tasks. This thesis

focuses on the motion planning and control of complex robotic systems to give

them the autonomy and versatility necessary for their broad adoption.

When designing motion optimization and control algorithms for legged sys-

tems, a key challenge lies in the fact that the underactuated dynamics of the

system and the local terrain simultaneously impose constraints on contact

timing, location, and force. Therefore, classical approaches to the locomotion

problem have decomposed the control system into modules that separately

deal with only footstep planning or with only contact force optimization. Co-

ordination between such modules requires intricate engineering effort, and the

exact setup is often specifically tuned for a particular scenario.

In this dissertation, we depart from such manual decomposition and take a

holistic view of the locomotion problem to exploit the robot’s full capabilities

over challenging terrain. Throughout this work, optimal control plays a central

role in formulating and solving locomotion as an optimization problem. We

explore how reality can be transcribed into optimization-based controllers that

remain real-time capable and have the desired closed-loop properties.

In particular, we propose using frequency-dependent cost functions to obtain

solutions that are robust to unmodelled dynamics in the high-frequency spec-

trum. With this method, we demonstrate locomotion on highly compliant

terrain and obtain a controller compatible with bandwidth limitations.

The computational challenge of executing the resulting high-dimensional

Model Predictive Control (MPC) is addressed by using the feedback policy

from a Differential Dynamic Programming (DDP)-based MPC algorithm, re-

sulting in the first MPC-based controller that reasons about all degrees of

freedom of the robot simultaneously and is executed on onboard hardware.
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Abstract

Additionally, we incorporate perceptive information into the formulation by

extracting a sequence of convex inequality constraints as local approximations

of foothold feasibility. We empirically demonstrate that such a strategy is

an excellent trade-off between giving freedom to the optimization to discover

complex motions and the reliability with which we can solve the formulated

problem. We experimentally validate the proposed method in scenarios with

gaps, slopes, and stepping stones with the ANYmal quadruped platform, re-

sulting in state-of-the-art dynamic climbing motions across rough terrain.

Besides these contributions that target practical challenges in locomotion, we

have studied the unification of MPC with nonlinear control theory to get the-

oretical guarantees for the closed-loop system and simplify the overall design

process. First, we propose the embed Control Lyapunov Function (CLF) sta-

bility constraints inside nonlinear MPC to ensure closed-loop stability by de-

sign rather than through cost function or parameter tuning. The addition of

a prediction horizon provides a performance advantage over CLF based con-

trollers, which operate optimally point-wise in time. Second, safety guarantees

can be obtained through the inclusion of Control Barrier Functions (CBFs).

We propose a multi-layered locomotion framework that unifies CBFs with

MPC to achieve both safe foot placement and dynamic balance along a pre-

diction horizon. Our approach incorporates CBF based safety constraints both

in a low-frequency kino-dynamic MPC formulation and a high-frequency in-

verse dynamics tracking controller. This ensures that safety-critical execution

is considered across all hierarchies of the controller.

Keywords: Robotics, Legged Locomotion, Optimal-Control, Model Predic-

tive Control, Terrain Perception, Whole-Body Control.
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Zusammenfassung

Moderne Roboter finden langsam aber sicher ihren Weg aus den Forschungsla-

bors in die reale Welt. Insbesondere Roboter mit Beinen versprechen aufgrund

ihrer bioinspirierten Morphologie die Möglichkeit, sich in komplexen Umgebun-

gen zu bewegen, wo sie den Menschen bei gefährlichen oder sich wiederholenden

Aufgaben unterstützen können. Diese Arbeit befasst sich mit der Bewegungs-

planung und Steuerung komplexer Robotersysteme, um ihnen die Autonomie

und Vielseitigkeit zu verleihen, die für ihren breiten Einsatz erforderlich sind.

Beim Entwurf von Bewegungsoptimierungs- und Steuerungsalgorithmen für

beingebundene Systeme besteht eine der größten Herausforderungen darin,

dass die unteraktuierte Dynamik des Systems auf der einen Seite und das

Gelände auf der anderen Seite gleichzeitig Einschränkungen in Bezug auf Kon-

taktzeitpunkt, -ort und -kraft mit sich bringen. Daher haben klassische Ansätze

zur Lösung des Fortbewegungsproblems das Kontrollsystem in Module zerlegt,

die sich separat nur mit der Schrittplanung oder nur mit der Optimierung der

Kontaktkraft befassen. Die Koordination zwischen solchen Modulen erfordert

einen hohen technischen Aufwand, und der genaue Aufbau ist oft speziell auf

ein bestimmtes Szenario abgestimmt.

In dieser Dissertation wenden wir uns von einer solchen manuellen Zerlegung

ab und betrachten das Fortbewegungsproblem aus ganzheitlicher Sicht, um die

Fähigkeiten des Roboters in schwierigem Gelände voll auszuschöpfen. In allen

Kapiteln dieser Arbeit spielt das Prinzip der optimale Regelung eine zentrale

Rolle bei der Formulierung und Lösung des Fortbewegungsproblems als Opti-

mierungsproblem. Wir untersuchen, wie die Realität in optimierungsbasierte

Regler übertragen werden kann, die echtzeitfähig bleiben und die gewünschten

Eigenschaften des geschlossenen Regelkreises aufweisen.

Insbesondere schlagen wir vor, frequenzabhängige Kostenfunktionen zu ver-

wenden, um Lösungen zu erhalten, die robust gegenüber nicht modellierter

Dynamik im Hochfrequenzbereich sind. Mit dieser Methode demonstrieren wir
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Zusammenfassung

die Fortbewegung auf stark nachgiebigem Terrain und erhalten einen Regler,

der mit den Bandbreitenbeschränkungen der Antriebssysteme kompatibel ist.

Die rechnerische Herausforderung bei der Ausführung des resultierenden hoch-

dimensionalen MPC wird durch die Verwendung des Feedbacks eines DDP-

basierten MPC-Algorithmus angegangen, was zum ersten MPC-basierten Con-

troller führt, der alle Freiheitsgrade des Roboters gleichzeitig berücksichtigt

und auf Onboard-Hardware ausgeführt wird.

Zusätzlich beziehen wir Wahrnehmungsinformationen in die Formulierung ein,

indem wir eine Reihe von konvexen Ungleichheitsbedingungen als lokale Ap-

proximationen des Geländes extrahieren. Wir zeigen empirisch, dass eine solche

Strategie einen hervorragenden Kompromiss zwischen der Freiheit der Opti-

mierung, komplexe Bewegungen zu entdecken, und der Zuverlässigkeit, mit der

wir das formulierte Problem lösen können, darstellt. Wir validieren die vor-

geschlagene Methode experimentell in Szenarien mit Lücken, Abhängen und

Trittsteinen mit der vierbeinigen Plattform ANYmal, was zu hochmodernen

dynamischen Kletterbewegungen in unwegsamem Gelände führt.

Neben diesen Beiträgen, die auf praktische Herausforderungen in der Fort-

bewegung abzielen, haben wir die Vereinheitlichung von MPC mit nichtli-

nearer Steuerungstheorie untersucht, um theoretische Garantien für das ge-

schlossene System zu erhalten und den gesamten Entwurfsprozess zu vereinfa-

chen. Zunächst schlagen wir vor, CLF-Stabilitätsbeschränkungen in nichtlinea-

re MPC einzubetten, um die Stabilität des geschlossenen Regelkreises durch

die Theorie und nicht durch Kostenfunktionen oder Parameterabstimmung zu

gewährleisten. Die Hinzufügung eines Vorhersagehorizonts bietet einen Lei-

stungsvorteil gegenüber CLF-basierten Reglern. Zweitens können Sicherheits-

garantien durch die Einbeziehung von CBFs erreicht werden. Wir schlagen

ein mehrschichtiges Fortbewegungskonzept vor, das CBFs mit MPC vereint,

um sowohl eine sichere Fußplatzierung als auch ein dynamisches Gleichge-

wicht entlang eines Vorhersagehorizonts zu erreichen. Unser Ansatz beinhaltet

CBF-basierte Sicherheitsbedingungen sowohl in einer niederfrequenten kino-

dynamischen MPC-Formulierung als auch in einem hochfrequenten inversen

Dynamik-Tracking-Controller. Dadurch wird sichergestellt, dass die sicher-

heitskritische Ausführung in allen Hierarchien des Controllers berücksichtigt

wird.

Stichworte: Robotik, Lauffortbewegung, Optimale Reglung, Modell-

prädiktive Regelung, Geländewahrnehmung, Ganzkörperreglung.
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Notation

Unless otherwise stated, we use the following convention for mathematical

symbols: Scalars are denoted in light (s), vectors in bold (v), and matrices

in uppercase bold (M). For functions we use a similar notation refering to

the output of the function: Light for scalar functions (f(·)), and bold for

vector-valued functions (f(·)).
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1
Introduction

In order to effectively deploy robots in the real world, their capabilities have

to be adjusted to the environments in which we wish to use them. In the

context of the fabrication processes, heavy and rigid robotics arms or wheeled

platforms have been successfully integrated into many production lines and dis-

tribution halls. However, when looking at applications beyond such controlled

environments, e.g., search-and-rescue, outdoor exploration, or inspecting of

complex industrial sites, robots are less capable and thus rarely used. Practi-

cally speaking, if we strive to automate dangerous or tedious tasks currently

performed by humans, we need robots that can go where humans go.

About half a decade ago, the DARPA Robotics Challenge (DRC) sparked in-

terest in legged machines with the vision to develop “robots capable of execut-

ing complex tasks in dangerous, degraded, human-engineered environments”

(DARPA, 2015b; Krotkov et al., 2017). While great technical strides were

made, the public perception was dominated by slow-moving robots and robots

falling over (DARPA, 2015a). While many factors were at play, part of this

result can be attributed to the common strategy of using a hierarchy of highly

simplified planning models followed by a one-step-ahead optimization that uses

full kinematics and dynamics. (Atkeson et al., 2018). Such a strategy prevents

whole-body coordination on the planning level and leads to controllers that

try to shoehorn the full dynamics into following the motion dictated by sim-

ple models. Additionally, the process of scanning for possible footholds in

the terrain, fixing the footstep locations, and then moving the base through

the support polygons, limited these systems to slow, quasi-static motions. In

contrast, incorporating the full multi-domain system dynamics into gait opti-

mization leads to more natural-looking and more efficient bipedal locomotion,

as demonstrated by the humanoid robot DURUS on a treadmill at the side-

line of that same DRC competition. There, Hereid et al. (2016) and Reher et

1
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al. (2016) showed how large-scale nonlinear optimization in combination with

the Hybrid Zero Dynamics (HZD) framework (Grizzle et al., 2014; Wester-

velt et al., 2007) can be leveraged to automatically discover stable whole-body

locomotion controllers.

Meanwhile, the field of quadrupedal robots saw rapid development on the

hardware side by embracing electric motors. This technology change signif-

icantly reduced complexity over the hydraulicly driven predecessors (Hutter

et al., 2016; Kenneally, De, and Koditschek, 2016; Seok et al., 2013). Today,

in the year 2022, quadrupedal robots are widely available and are finding their

way into industrial applications (Gehring et al., 2021). ANYmal (ANYbotics,

2022), Spot (Boston Dynamics, 2022), Vision 60 (Ghost Robotics, 2022), and

Unitree B1 (Unitree Robotics, 2022) are commercially available platforms and

are primarily used for (semi-)autonomous inspection tasks.

Nevertheless, on the control side, the dominant strategy is still to use a slow,

static gait in complex environment where visual terrain perception is required.

Dynamic running motions are typically performed by a separate, dedicated

controller limited to relatively flat terrain where good footholds are abundant.

Here, there is a big contrast between the complex dynamic motions we see

in nature and those that we are able to replicate with our legged machines.

Tightly integrating perception into underactuated dynamic motions and rea-

soning about closed-loop stability and safety in that context is still an active

area of research. To make legged robots useful beyond their current industrial

inspection tasks and to allow them to explore any terrain like humans and

animals would, there is a need for a control approach that scales to a broader

range of scenarios and can unlock the potential of the full dynamics of the

system on complex terrain.

A fundamental difficulty in scaling classical locomotion controllers to a broad

range of scenarios lies in the chosen decomposition of the problem, as illus-

trated in Fig. 1.1a. Footstep planning and optimization of the torso motion

are solved independently and require hand-crafted heuristics to coordinate the

two. These heuristics and the design choices within each module are special-

ized to either slow and perceptive gaits or fast but blind locomotion. In this

thesis, we propose to move away from this classic decomposition and pursue

an approach where the full motion of the robot is treated as a single unit,

Fig. 1.1b. Moreover, when both the planning and execution layer are reason-

ing about the complete system, we can start to blur the boundaries also in

the hierarchical dimension and move towards an approach where planning and

control are unified, Fig. 1.1.
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Footstep planning Torso planning

High level inputs

Torque controlled robot

Whole-body control

(a)

Motion planning

High level inputs

Torque controlled robot

Whole-body control

Torque controlled robot

(b)

High level inputs

Motion Control

Torque controlled robotTorque controlled robot

(c)

Figure 1.1: Schematic overview of possible approaches to robotic locomotion (a) a
decomposed motion planning approach, (b) a single-task motion planning approach,
and (c) integrated motion planning and execution.

1.1 Related Work

Successful deployment of a robot requires complex software frameworks gov-

erning perception, state estimation, goal extraction, footstep planning, motion

planning, and motion stabilization. The complexity of these systems can be

appreciated in papers that describe what it takes to deploy a robot in the

real world, e.g., for ANYmal (Bellicoso et al., 2018b), Atlas (Kuindersma et

al., 2016), or HRP-2 (Nishiwaki, Chestnutt, and Kagami, 2012). This section

aims to provide a broad overview of the field of model-based control for legged

robots and the many works related to this thesis. A more detailed technical

discussion and the relation to individual contributions can be found in the

dedicated chapters. The first section reviews the choices one can make to de-

compose the locomotion problem into subproblems. Afterward, modeling of

the system dynamics and modeling of the terrain are discussed. These first

three sections define the locomotion problem. In the subsequent section, we re-

view the optimization methods available to solve the posed problems. Finally,

we introduce recent work in nonlinear control theory that has been applied to

robotics systems. Because many works span several aspects, the same work

might be discussed from different viewpoints in the individual sections.

1.1.1 Decomposing Locomotion

The considered decompositions of the locomotion problem are visualized in

Fig. 1.2. The fully decomposed, gait and motion decomposition, and no de-

composition formulations are each discussed in a separate section. We define a
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gait as the sequence of contact configurations and the timing of the transitions

between them.

High level task description

Contact sequence

Timings

Feet motion

Body motion

Whole body tracking controller

Gait selection

Simultaneous gait
and motion
optimization

Feet, body, (and timings) 
optimization

Figure 1.2: Three categories of methods to convert high-level task descriptions into
motion plans. Left: Decompose the problem into smaller modules and solve each one
sequentially. Middle: Fix the gait before jointly optimizing feet and body motions.
Depending on the approach, contact timings can be added to the optimization. Right:
Solve the entire locomotion problem in one go.

Full Decomposition

In the fully decomposed approach, one splits the locomotion problem into many

different submodules that contain heuristics, closed-form solutions, or small

optimization problems. The exact decomposition or the method used within

a submodule often depends on the application, robot morphology, and the

considered terrain. Since we can draw inspiration from nature on what good

locomotion would look like, many heuristics are available from biomechanical

work or intuition.

The locomotion problem can be simplified into individual contact transitions

when assuming a quasi-static gait with a predetermined stepping sequence.

Such methods were demonstrated in the early work on LittleDog (Kalakrishnan

et al., 2010; Kolter, Rodgers, and Ng, 2008). In a one-step-ahead fashion, these

methods check the next foothold for kinematic feasibility, feasibility w.r.t. the

terrain, and the existence of a statically stable transition (Tonneau et al.,

2018). Belter, Labecki, and Skrzypczynski (2016), Fankhauser et al. (2018),

and Griffin et al. (2019) achieved onboard perception and control with such
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an approach. Sampling over templated foothold transitions achieves similar

motions (Mastalli et al., 2020b). Swing leg motions are often optimized one

at a time, given the motion of the base and the target foothold.

In methods for dynamic locomotion, foothold locations are commonly selected

through a Raibert heuristic, Linear Inverted Pendulum Model (LIPM), or vari-

ants thereof (Gehring et al., 2015; Pratt et al., 2006; Raibert, 1986; Wensing

and Orin, 2013). Given a sequence of contact locations, the base motion is de-

signed afterward with simplified stability criteria such as Zero Moment Point

(ZMP) (Bellicoso et al., 2018a; Kajita et al., 2003; Vukobratović and Borovac,

2004), a Contact Wrench Cone (CWC) (Caron, Pham, and Nakamura, 2015;

Carpentier and Mansard, 2018), or more generally, with an MPC approach

that considers contact forces and a single rigid body (Di Carlo et al., 2018).

These methods, initially designed for flat terrain, have been adapted to tra-

verse rough terrain (Bajracharya et al., 2013; Bazeille et al., 2014), or spe-

cialized to jump over 2D obstacles (Park, Wensing, and Kim, 2015). When

perceptive information is available, the foot placement is often adapted based

on a foothold score (Magana et al., 2019; Wermelinger et al., 2016). After

that, the same torso optimization module used for blind locomotion can be

applied, as demonstrated in the works of Jenelten et al. (2020), Kim et al.

(2020), and Villarreal et al. (2020). Recently, Belter et al. (2019), Gangapur-

wala et al. (2022), and Yu et al. (2021) replaced heuristic foothold selection

with a learning-based policy. Still, the hierarchical decomposition of foothold

selection and torso motion remains.

Decoupled Gait and Motion Planning

When the contact sequence and timings are given a priori, standard motion

optimization can be applied with explicit transitions dynamics at the prede-

fined times. In contrast to the previous section, the torso and leg motions of

the robot are now optimized in a single task. One challenge of this line of

work is the computational complexity when using high-dimensional models.

The methods in his thesis fall in this category, and a key consideration when

formulating the optimization problems has thus been to keep computation

within real-time constraints.

One of the first demonstrations of simultaneous optimization of foot place-

ment and a ZMP trajectory was achieved by adding 2D foot locations as

decision variables to an MPC algorithm (Herdt et al., 2010). Afterward, Kin-

odynamic (Farshidian et al., 2017a), Centroidal (Orin, Goswami, and Lee,
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2013; Sleiman et al., 2021), or even full dynamics models (Budhiraja et al.,

2018; Herzog, Schaal, and Righetti, 2016; Koenemann et al., 2015; Pardo

et al., 2017) have been used to optimize 3D foot locations and body motion

simultaneously.

A few real-time capable realizations have been proposed and experimentally

demonstrated on hardware (Bledt, Wensing, and Kim, 2017; Farshidian et al.,

2017b; Neunert et al., 2018). To aid the convergence of the optimization, a li-

brary of offline motions can be generated to warm-start the online optimization

process (Dantec et al., 2021).

As an extension, the duration of each contact phase can be included as a

decision variable (Hereid et al., 2016; Ponton et al., 2018) or found through

bi-level optimization (Farshidian et al., 2017c; Li and Wensing, 2020; Seyde

et al., 2019). This allows the robot to shorten or extend its steps in case of

a large disturbance. Furthermore, it can be helpful in rough terrain where

different distances between footholds or the presence of obstacles might re-

quire a nonstandard swing duration. The phase-based parametrization used

in the HZD framework similarly results in online adaptation of stride dura-

tion (Grizzle et al., 2014; Westervelt et al., 2007). Interestingly, in this case,

the adaptation naturally arises from the nonlinear feedback controller and is

not explicitly optimized for during execution. Note, however, that none of

these approaches are enable to alter the order of the discrete contact modes.

No Decomposition

Several methods exist that also optimize the contact sequence together with

the whole-body motion. In the following paragraphs, we will review such

methods based on complementarity constraints, mixed-integer programming,

or explicitly integrating contact models into the optimization. While impres-

sive results have been shown in simulation, the optimization landscape of these

problems contains many local minima and necessitates case-specific initializa-

tion or hyperparameter tuning. Furthermore, demonstrations on hardware are

generally lacking.

The fact that contact forces can only be created while in contact with the envi-

ronment can be translated into complementarity constraints (Dai, Valenzuela,

and Tedrake, 2014; Posa, Cantu, and Tedrake, 2014; Sleiman et al., 2019). The

constraint encodes that the distance to the environment must be zero before

non-zero contact forces are allowed. The method was extended to higher-order

integration schemes (Manchester and Kuindersma, 2017; Patel et al., 2019),
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and to (partially) elastic problems in (Shield, Johnson, and Patel, 2022). With

similar intuition, Mordatch, Todorov, and Popović (2012) augment the search

space with indicator variables for contact activation and penalize a mismatch

between contact activation, environment distance, and active contact forces.

Using discrete decision variables in a mixed-integer approach naturally encodes

the complete hybrid optimization problem (Aceituno-Cabezas et al., 2018;

Pajarinen et al., 2017). Marcucci et al. (2017) decompose the hybrid-MPC

problem into two stages for increased computational efficiency: A first module

proposes a feasible mode sequence given the current state. The second module

can then solve a conventional MPC problem with the mode sequence given.

Alternatively, a differentiable contact model can be embedded as part of the

system dynamics (Tassa, Erez, and Todorov, 2012). Here, the trajectory op-

timization does not have to reason about contact activation and forces explic-

itly, and the physics are enforced during forward simulation. Neunert et al.

(2018) use a smooth contact model together with the full rigid body dynamics.

However, additional cost function shaping with periodic foot lifting costs was

necessary to achieve a satisfying motion. Furthermore, the approach is sen-

sitive to the contact model parameters. A penalty-based contact model was

proposed in (Marcucci, Gabiccini, and Artoni, 2017) with similar properties as

a soft contact model. Finally, truncated differentiable iterations of a hard con-

tact model are used in (Carius et al., 2018; Carius et al., 2019). The authors

showed that also in this case, the optimization landscape contains many local

minima. Follow-up work showed that sampling-based methods are more suited

for contact discovery than gradient-based methods (Carius et al., 2022). Novel

combinations of gradient and sampling-based methods could be a promising

direction for these type of problems (Layeghi, Tonneau, and Mistry, 2021).

Finally, Winkler et al. (2018) parameterized the duration of stance and swing

phases with independent variables per leg. Different gaits can emerge when

contact transitions pass each other along the time horizon.

1.1.2 Robot Dynamics

The dynamics of legged robots can be approximated at different levels of com-

plexity. The approaches found in the literature can be roughly categorized

into the following three levels of approximation: inverted pendulum and other

template models, kinodynamic and centroidal models, and full rigid body dy-

namics. These models have already been briefly touched upon in the previous

sections since the choice of the model often goes hand in hand with the chosen

control decomposition.
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Inverted Pendulum Models

The interaction between stance legs and the floating base can be abstracted

as an inverted pendulum. With a single contact point and horizontal moving

point mass, this model captures the fundamental underactuation of bipedal

walking and dynamic gaits for quadrupeds. The simplicity of the model per-

mits closed-form solutions (Englsberger, Ott, and Albu-Schäffer, 2015) and

detailed characterization of stability (Xiong and Ames, 2022). When extend-

ing to a finite support area, the dynamic feasibility of the motion can be

approximated by the ZMP (Vukobratović and Borovac, 2004), which needs to

lie inside the support polygon. This method does not reason about contact

forces explicitly but ensures that there exists a contact force distribution that

satisfies the unilateral constraints.

The Spring Loaded Inverted Pendulum (SLIP) model has been widely studied

as well and shown to better capture the periodic vertical torso motion during

dynamic human walking and running (Blickhan, 1989; Geyer, Seyfarth, and

Blickhan, 2006). This correspondence sparked a trend of designing compliant

robots to specifically fit this model (Grimes and Hurst, 2012; Hubicki et al.,

2016a; Hutter et al., 2012; Rezazadeh et al., 2015).

Other extensions have included additional terms that account for the absence

of angular momentum, step height variation, etc. Still, the reduced number of

state variables specifically chosen to fit periodic walking makes reasoning over

general aperiodic whole-body motions challenging with this class of models.

Kinodynamic and Centroidal Models

A kinodynamic model considers the full kinematics of the robot and a reduced

representation of the dynamics. This can, for example, be achieved by con-

sidering mass-less legs together with a free-floating base with constant inertia

(Farshidian et al., 2017a). We used this formulation in Chapters 2, 3, and 5

and recently relaxed the fixed torso inertia assumption in Chapter 6. Instead

of parameterizing the legs through the joint coordinates, some works choose to

parameterize only the Cartesian foot position and constrain leg length (Bledt,

Wensing, and Kim, 2017; Winkler et al., 2018). An extension was proposed in

(Arreguit, Faraji, and Ijspeert, 2018), where an additional rigid body is used

to represent each limb.

These kinodynamic models should not be confused with the centroidal dy-

namics (Orin, Goswami, and Lee, 2013), which compresses the full rigid body

dynamics into six momentum equations subject to external forces. The catch is
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that these six equations by themselves cannot be forward integrated to obtain

a meaningful body pose. Wieber (2006) demonstrated that any body orien-

tation can be achieved with an articulated system while keeping the angular

moment zero along the trajectory (e.g., a cat reorienting itself during a fall).

Still, in a collocation approach, this model can be effectively used to reduce the

number of equality constraints that represent the dynamics (Dai, Valenzuela,

and Tedrake, 2014). When joint velocities are added as control variables, the

model can be forward integrated under the assumption of sufficient torque and

instantaneous velocity control (Sleiman et al., 2021).

Full Rigid Body Dynamics

The full rigid body dynamics describe the dynamics of a set of rigid bodies in

3D space connected through (actuated) joints and under the influence of exter-

nal forces. When the kinematic structure of the robot forms a directed graph,

i.e., there are no kinematic loops, efficient recursive algorithms exist (Car-

pentier et al., 2019; Featherstone, 2014). This model has been extensively

used for instantaneous torque control in the Whole-Body Controller (WBC)

framework (Mistry, Buchli, and Schaal, 2010; Nakanishi, Mistry, and Schaal,

2007; Sentis and Khatib, 2006), where it allows direct incorporation of friction

cone constraints and torque limits. A projected formulation eliminates con-

tact forces and allows planning in the constraint consistent subspace (Pardo

et al., 2017). This type of model was long thought to be too complex for online

motion optimization for full-size humanoids or quadrupeds. However, recent

work shows promising results (Mastalli et al., 2020a, 2022), and deployment

on onboard hardware does not seem to be too far away anymore.

Contact Dynamics

The vast majority of approaches consider the environment to be rigid together

with a Coulomb friction model and unilateral constraints. These constraints

are typically modeled with a friction cone or a polytopic approximation when

linear constraints are preferred. By constraining the solution space to remain

below the friction limit, one prevents the need to describe sliding contacts,

which are significantly harder to model and optimize over (Carius et al., 2019).

In the context of contact invariant optimization, as discussed in Section 1.1.1,

soft contact models (Neunert et al., 2018) or contact smoothing (Mordatch,

Todorov, and Popović, 2012) are used inside trajectory optimization. However,

these models are selected and tuned for their numerical properties rather than

physical accuracy. The models need to be smooth since the highly coupled
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interaction between stiff contact dynamics and slow dynamics of the robot

leads to poor convergence of the algorithms. In the worst case, this numeric

model tuning can lead to highly undesired effects when the optimizer starts

exploiting dynamic properties of the terrain that are entirely wrong.

Some work has been done to try to learn a contact model from data, especially

for granular media (Hubicki et al., 2016b). A combination of learning a terrain

model and trajectory optimization has been proposed by Chang et al. (2017).

We have explored this direction in the beginning of this thesis as an alternative

to the method proposed in Chapter 2. However, similar to what was discussed

in the previous paragraph, we often found that the optimizer starts exploiting

artifacts of the contact model. More work is needed to ensure that these

learned contact models are well behaved across the entire optimization domain.

Actuator Dynamics

Most model-based approaches for torque-controlled robots consider the actu-

ators a perfect torque source. However, in the case of series elastic actuators,

or when operating the motors close to their limits, the low-level dynamics

can significantly affect the system dynamics. Moreover, results in success-

ful sim-to-real transfer in Reinforcement Learning (RL) methods underline

the importance of considering imperfect actuator dynamics (Hwangbo et al.,

2019). Several proposals have been made to incorporate bandwidth, torque,

and joint limits within model-based control (Braun et al., 2013; Nakanishi and

Vijayakumar, 2012; Schlossman et al., 2018). Unfortunately, since parts of

the underlying actuator dynamics have very different time constants than the

robot itself, much smaller time steps are required to simulate the coupled dy-

namics accurately. This leads to slower update rates, preventing such models

from being used in MPC for high-dimensional systems. Additionally, numer-

ical instability can arise when a limb with stiffly modeled actuators impacts

the environment (Koenemann et al., 2015). In Chapter 2, we avoid such is-

sues by promoting the optimal solution to lie within the space for which the

perfect torque-source assumption is still valid, instead of explicitly modeling

the actuators.

1.1.3 Terrain Representation

The geometry of the terrain affects both foothold selection and collision avoid-

ance during the swing phase. For surprisingly many scenarios, irregularities

in the terrain can be accepted as disturbances and adapted to by an appro-

priate feedback controller (Dario Bellicoso et al., 2016; Di Carlo et al., 2018;

10



1.1. Related Work

Lee et al., 2020). However, for more complex terrain, especially those with

negative obstacles, this strategy is not sufficient, and visual information needs

to be incorporated.

The use of a 2.5D elevation map as a local, high-resolution representation of the

terrain has a long-standing history in the field of legged robotics (Herbert et

al., 1989). Till today, this representation, together with an elevation mapping

framework (Fankhauser, Bloesch, and Hutter, 2018), is the central intermedi-

ate representation of visual information for perceptive locomotion controllers.

Approaches where footholds are selected based on a search or a sampling-based

algorithm can directly operate on such a structure. When incorporating this

information into gradient-based optimization, however, more work is needed

to ensure good convergence in the face of discontinuities and non-linearities of

the terrain. This aspect will be discussed in detail in Chapter 6.

In the long term, the fact that only a single surface can be represented per

location in an elevation map leads to practical limitations when navigating

confined spaces or walking underneath obstacles. As a first step, Buchanan

et al. (2021) propose to use an elevation layer for both the floor and the

ceiling. Gaertner et al. (2021) propose to use a Euclidean Signed Distance

Field for torso collision avoidance. However, the practical resolution of these

methods is only suitable for collision avoidance and not for precise foot place-

ment. Alternatively, Bertrand et al. (2020) use an octree representation to

fuse 3D pointcloud data over time, and extract a convex plane decomposi-

tion as representation for control. It remains an open question what the right

representation is for legged locomotion to fuse visual information over time.

1.1.4 Motion Optimization

For trajectory optimization, large-scale optimization software like

SNOPT (Gill, Murray, and Saunders, 2005) and IPOPT (Wächter and

Biegler, 2006) are popular and form the basis of many works in offline

trajectory optimization (Mordatch, Todorov, and Popović, 2012; Nguyen

et al., 2016; Posa, Cantu, and Tedrake, 2014; Winkler et al., 2018). These

mature software packages contain years of development and are therefore

extremely robust. However, they are general-purpose, and despite the use

of sparse linear algebra routines, optimization times remain in the order of

seconds at best for realistic locomotion problems.

In the field of nonlinear MPC, specialized solvers were developed that explic-

itly exploit the structure of optimal control problems to enable iterations at a
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much higher rate. See (Kouzoupis et al., 2018) for a comparison of state-of-

the-art Quadratic Program (QP) solvers that form the core of second-order

optimization approaches to nonlinear problems. In the context of robotic

motion optimization, several variants of Differential Dynamic Programming

(DDP) (Jacobson and Mayne, 1970), e.g., iLQR (Howell, Jackson, and Manch-

ester, 2019; Tassa, Erez, and Todorov, 2012), SLQ (Farshidian et al., 2017a),

and FDDP (Mastalli et al., 2020a). These approaches also exploit sparsity

through the recursive Riccati backward pass. Throughout this thesis, we have

used and contributed to these structure-exploiting algorithms to realize real-

time capable implementations.

1.1.5 Nonlinear Control

The field of nonlinear control theory studies the closed-loop control of systems

governed by nonlinear differential equations. Rigorous mathematical tools

establish properties of the controlled system without resorting to lineariza-

tion or numerical discretizations (Khalil, 2002). From this class of methods,

Lyapunov-based analysis is a powerful tool for certifying stability properties.

The existence of a CLF for the controlled system implies the existence of a

continuous state-feedback controller that renders the origin globally asymptot-

ically stable (Artstein, 1983; Sontag, 1989b). In extension, the CLF definition

implies the existence of a point-wise set of stabilizing control inputs.

Due to this, the CLF itself may then be used to synthesize an optimization-

based controller with more desirable properties using quadratic programming

(Ames et al., 2014; Ames and Powell, 2013). The use of CLFs to synthesize

stabilizing controllers for robotic platforms has become increasingly popular

(Galloway et al., 2015; Ma et al., 2017; Nguyen and Sreenath, 2015). Hybrid

Zero Dynamics (HZD) is a framework to synthesize the necessary Lyapunov

function around virtual constraints and ensure hybrid invariance for the peri-

odic motion, including discrete jumps (Westervelt et al., 2007).

Geometric constraints like collision avoidance or stepping on a predefined sur-

face can be formulated as safety constraints on the configuration of the robot.

Control barrier functions are a formal framework to design such a constraint

with closed-loop guarantees for the full nonlinear system. This approach was

used to achieve walking on stepping stones (Nguyen et al., 2016) and generalize

collision avoidance (Singletary et al., 2021). Moreover, they can be embedded

into optimization problems in the same way as CLFs. In Chapters 4 and 5,

we embed these safety and stability constraints inside an MPC formulation to

achieve long-term optimality with closed-loop guarantees.
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1.2 Approach and Contributions

The goal of this research can be summarized as follows:

Automatically adapt locomotion behavior to the environment to increase the

autonomy and robustness of legged robots.

We first close the gaps between the current state-of-the-art in dynamic mo-

tions and the conservative approaches used to traverse rough terrain. This

is achieved by jointly considering all degrees of freedom of the robot instead

of decoupling base and foot motion in a hierarchical approach. Second, we

exploit the unified capabilities by demonstrating dynamic locomotion in chal-

lenging terrain where the robot is pushed to its limits, and nontrivial motions

are required. By doing so, we increase the range of environments where the

robot can autonomously locomote, thus extending the applicability of legged

robots.

One difficulty in designing controllers for such complex systems is the need to

meet a large set of design requirements simultaneously. Achieving stable and

safe behavior is often in conflict with performance objectives, and finding the

right balance between these requirements can be challenging. The central idea

of this thesis is to coordinate these tasks not through laborious engineering

but instead to synthesize a solution through an online optimization process.

The focus is on online algorithms such that the robot can react to changes in

the environment, disturbances, and use the latest information coming from its

sensors.

Nonlinear optimal control provides a rich framework to formulate the envi-

sioned tasks. Control objectives are set through the cost function together

with a specification of the system model and other imposed constraints, i.e.,

minimize Control objectives, (1.1a)

subject to: System dynamics, (1.1b)

Stability constraints, (1.1c)

Safety constraints, (1.1d)

. . . (1.1e)

In this way, the burden of trading off multiple objectives under the constraints

set by physics is transferred from the engineer to the optimization algorithm.

Continuously solving such an open-loop optimal control problem in a receding

horizon fashion results in feedback control. This process is often referred to

13



1. Introduction

as MPC (Mayne et al., 2000; Rawlings, Mayne, and Diehl, 2017). The result-

ing requirement that each optimal control problem must be solved within a

reasonable time compared to the dynamics of the problem raises interesting

problems and underlies many discussions in this thesis.

Given the abstract optimal control problem in (1.1), several research questions

naturally arise:

Q1 (formulation): How can we transcribe the locomotion problem and the

robot’s environment into a tractable optimization problem?

Q2 (execution): How do we execute the optimized solution? Specifically,

how do we bridge the frequency difference between motion optimization and

execution?

Q3 (guarantees): What guarantees can we give on the resulting closed-loop

feedback control?

Each publication within this thesis speaks to one or more of these fundamen-

tal questions. The following paragraphs state for each paper the scientific

contributions made in this context and summarize the lessons learned.

Paper I

Grandia, R., Farshidian, F., Dosovitskiy, A., Ranftl, R., and Hutter, M. (2019a). “Frequency-
aware model predictive control”. IEEE Robotics and Automation Letters 4.2, pp. 1517–
1524

The presence of unmodeled dynamics can make an optimized motion infeasible

for the real system. In particular, compliant contacts and actuator dynamics

lead to bandwidth limitations and are the source of many failed sim-to-real

transfers. In classical locomotion controllers, these problems are often mit-

igated by adding ad-hoc low-pass filters or rate limiters between individual

control modules. In the context of Q1 (formulation), we investigate how these

bandwidth limitations can be encoded into the optimization problem in a more

principled way. We introduce frequency-dependent cost functions, which al-

low us to impose additional costs on solutions that excite these unmodelled

dynamics. With this method, we improved the robustness of ANYmal while

locomoting on unmodeled soft ground. This technique proved to be funda-

mental for successful sim-to-real deployment, and we have used this technique

in every locomotion paper following this work.
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1.2. Approach and Contributions

Paper II

Grandia, R., Farshidian, F., Ranftl, R., and Hutter, M. (2019b). “Feedback MPC for Torque-
Controlled Legged Robots”. In: 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE/RSJ, pp. 4730–4737

In this work, we focussed on Q2 (execution) and proposed a method to bridge

the gap between a low update-rate MPC and the high rate execution of torque

commands. So far, related work has introduced additional feedback gains

within a whole-body control framework to track the feedforward component

of the MPC solution. Instead of these manually tuned gains, we proposed to

use the feedback policy derived from a DDP-based algorithm at the rate of

the tracking controller to provide a fast, linear approximation to the optimal

policy. Furthermore, we show that our feedback MPC algorithm directly de-

signs constraint-satisfactory gains without additional computational cost. To

the best of our knowledge, this was the first time that an MPC algorithm that

considers all degrees of freedom of the robot was deployed using only onboard

computation.

Second, the Sequential Linear Quadratic (SLQ) algorithm was extended to

include inequality constraints through a barrier function method, which allows

us to formulate friction cone constraints. This contributed to a more complete

description of the locomotion problem in view of Q1 (formulation).

Paper III

Grandia, R., Taylor, A. J., Singletary, A., Hutter, M., and Ames, A. D. (2020). “Nonlinear
Model Predictive Control of Robotic Systems with Control Lyapunov Functions”. In: Pro-
ceedings of Robotics: Science and Systems. Corvalis, Oregon, USA

In discrete-time nonlinear MPC, stability is guaranteed by an appropriately

designed terminal cost and terminal constraint (Grüne and Pannek, 2017; H.

Chen and F. Allgöwer, 1998; Mayne et al., 2000). However, these terminal

components are challenging to design in general and can conflict with perfor-

mance objectives. This work provides an alternative answer to Q3 (guarantees)

and presents a novel set of approaches for unifying CLFs and nonlinear MPC

on robotic platforms. The unified methods all guarantee stability by design,

whereas the baseline nonlinear MPC methods were sensitive to cost function

parameters. We thus find that the pairing of these control methodologies sig-

nificantly reduced the tuning of prediction horizon length and terminal con-

15
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ditions. Moreover, compared to baseline CLF methods, the addition of the

prediction horizon improves the performance of the system.

Limited computational resources and fast system dynamics challenge the de-

ployment of these unified methods on modern robotic systems. While existing

work has analyzed the stability and optimality properties obtained through

the unification of CLFs and nonlinear MPC, there has been little attention to

the practical and computational aspects of the resulting nonlinear optimiza-

tion problem. Indeed, to the best of our knowledge, such a control scheme was

not yet experimentally realized on robotic hardware before this work.

Paper IV

Grandia, R., Taylor, A. J., Ames, A. D., and Hutter, M. (2021). “Multi-layered safety for
legged robots via control barrier functions and model predictive control”. In: 2021 IEEE
International Conference on Robotics and Automation (ICRA). IEEE, pp. 8352–8358

In continuation of the work in Paper IV towards Q3 (guarantees), we simi-

larly addressed safety constraints by combining methods from nonlinear con-

trol theory and MPC. Second, we study how such guarantees can be provided

throughout the hierarchy of motion planning and execution, thus address-

ing Q2 (execution) in the context of formal guarantees. We build upon the

controller proposed in Paper II and add CBF safety constraints both in the

low-frequency MPC layer as well as the higher rate WBC tracking controller.

Compared to standard CBF approaches, this adds a horizon when determin-

ing safe control inputs. Compared to MPC approaches, the safety-critical

constraint is enforced at a higher rate and incorporates the full rigid body

dynamics model.

Paper V

Grandia, R., Jenelten, F., Yang, S., Farshidian, F., and Hutter, M. (2022). “Perceptive Loco-
motion through Nonlinear Model Predictive Control”. (submitted to) IEEE Transactions on
Robotics

In the last paper of this dissertation, we turn our focus back to Q1 (formula-

tion) and include perceptive terrain information in the optimal control prob-

lem. To keep the optimization problem tractable, we propose to use a sequence

of geometric primitives, in this case, convex polygons, to encode local foothold

constraints. Compared to existing approaches that include the full map in the

16



1.3. Robotic Systems

optimization, this approach mitigates the numerical challenges posed by the

nonlinearity and discontinuity of the terrain. Additionally, we add collision

avoidance constraints between the knees and the terrain based on a Signed

Distance Field (SDF). Because the approach jointly optimizes all degrees of

freedom of the robot, we find that the robot coordinates both the main body

and the leg to satisfy this collision avoidance constraint in complex terrain.

Such emerging coordination was hard to achieve in the classical decomposed

locomotion controllers.

Besides the contributions to advancing state-of-the-art in perceptive locomo-

tion, this work resulted in several software contributions. We implemented a

multiple-shooting algorithm to provide fast and reliable online solutions to the

nonlinear optimal control problem. This algorithm proved to be significantly

more robust than the SLQ method used in the preceding work. The imple-

mentation is publicly available1 as part of the MPC toolbox OCS2 (OCS2: An

open source library for Optimal Control of Switched Systems). The segmen-

tation of the terrain into steppable planes and convex local approximations

is publicly available as well2. Finally, the implemented algorithm to convert

an elevation map into an SDF was contributed to the open-source gridmap

library3.

1.3 Robotic Systems

The methods developed during this thesis are formulated and implemented in

a general way, such that systems in related domains can benefit. The collage

in Fig. 1.3 gives an overview of all the robots that the methods described in

this thesis have been applied to, either directly as part of this thesis or during

a collaboration.

The quadrupedal robot ANYmal B was used in Chapters 2 and 3, and its

successor, ANYmal C, was used in Chapters 5 and 6. The cat-like robot

Dyana was developed during the 2021 ETH Focus project (Dyana, 2022). In

that project, the MPC formulation was modified to incorporate the closed-

chain kinematics that couple knee and ankle joints in the hind legs. For the

wheeled version of ANYmal C, the MPC was adapted by simply removing

the contact constraint in the driving direction of the end-effector (Bjelonic

et al., 2021). Other than that, the basic formulation and even cost function

1https://github.com/leggedrobotics/ocs2/tree/main/ocs2 sqp
2https://github.com/leggedrobotics/elevation mapping cupy
3https://github.com/ANYbotics/grid map
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1. Introduction

Figure 1.3: Robots that the methods described in this thesis have been applied to:
a) ANYmal B, b) ANYmal C, c) Dyana, d) AMBER-3M, e) Ballbot, f) ANYmal on
wheels, g) Ninebot E+ Segway.

parameters for the point-foot robot could be reused, proving the generality of

the approach.

Besides quadrupedal robots, applications to different morphologies have been

studied as well. In Galliker et al. (2022), we deployed our multiple-shooting

MPC described in Chapter 6 on the bipedal robot AMBER (Ambrose et al.,

2017). The ball balancing robot with an arm was used during two collabora-

tions (Minniti et al., 2019, 2021). For this robot, the underactuation of the

base and the contact interaction of the arm share many similarities with legged

robots. Finally, the Segway is the only robot that does not change its contact

configuration during deployment. The simpler, single-domain dynamics made

it an excellent test case for the more theory focussed work in Chapter 4.
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Frequency-Aware Model

Predictive Control

Grandia, R., Farshidian, F., Dosovitskiy, A., Ranftl, R., and Hutter, M. (2019a). “Frequency-
aware model predictive control”. IEEE Robotics and Automation Letters 4.2, pp. 1517–
1524

DOI: 10.1109/LRA.2018.2806566

Video: https://youtu.be/RSJgqkk2VRI

Transferring solutions found by trajectory optimization to robotic hardware

remains a challenging task. When the optimization fully exploits the provided

model to perform dynamic tasks, the presence of unmodeled dynamics renders

the motion infeasible on the real system. Model errors can be a result of model

simplifications, but also naturally arise when deploying the robot in unstruc-

tured and nondeterministic environments. Predominantly, compliant contacts

and actuator dynamics lead to bandwidth limitations. While classical control

methods provide tools to synthesize controllers that are robust to a class of

model errors, such a notion is missing in modern trajectory optimization, which

is solved in the time domain. We propose frequency-shaped cost functions to

achieve robust solutions in the context of optimal control for legged robots.

Through simulation and hardware experiments we show that motion plans

can be made compatible with bandwidth limits set by actuators and contact

dynamics. The smoothness of the Model Predictive Control (MPC) solutions

can be continuously tuned without compromising the feasibility of the prob-

lem. Experiments with the quadrupedal robot ANYmal, which is driven by

highly-compliant series elastic actuators, showed significantly improved track-
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2. Frequency-Aware Model Predictive Control

ing performance of the planned motion, torque, and force trajectories and

enabled the machine to walk robustly on terrain with unmodeled compliance.

2.1 Introduction

Trajectory optimization based on the full dynamics of a robotic system pro-

vides a flexible tool to generate complex motion plans. It enables the system to

exploit the dynamic capabilities of the robot to achieve a task. State-of-the-art

approaches are able to rapidly find solutions while incorporating increasingly

complex model descriptions, which allows using trajectory optimization in a

MPC fashion. However, relying on the specific structure of the model makes

implementation of the synthesized motion plans prone to modeling errors. Ex-

ecuting motion plans on hardware has therefore proven to be nontrivial and

often requires manual, task-dependent tuning of cost functions and constraints

to achieve feasible motions.

A major source of modeling error is the treatment of actuators as perfect

torque sources. Any real system is subject to bandwidth limits and as such

is not an ideal torque source. A similar modeling error occurs when assuming

a rigid contact with the ground. The rigid contact essentially provides the

optimizer with infinite bandwidth control over the contact forces. This as-

sumption generally does not hold during locomotion in outdoor environments

or on compliant surfaces as shown in Fig. 2.1. As a result, motion plans gen-

erated assuming idealized contact and actuator dynamics cannot be tracked

by the hardware, leading to poor tracking performance or failure of the loco-

motion controller.

In this paper, we extend MPC methods for legged locomotion to situations

where the assumptions of rigid ground and perfect actuators are invalid. The

selected baseline model describes the 6 degrees of freedom Center of Mass

(CoM) dynamics and motion of each leg. Simultaneous optimization of foot-

step location and contact interaction is achieved by having both contact forces

and joint velocities as control inputs. We address the issues of inherent band-

width limits in real robots by adapting the cost function to be frequency-

dependent, making it possible to penalize high frequencies in the motion plans.

The solver, therefore, does not have to reason about the exact details of ter-

rain and actuator dynamics but will produce solutions that are achievable

under the bandwidth limits. We show that motion plans generated with our

frequency-aware trajectory optimization can be followed by the hardware more
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2.1. Introduction

Figure 2.1: The quadruped robot ANYmal (Hutter et al., 2016) trotting in place on
non-rigid terrain. This experimental setup is used to test the controller’s robustness
against unmodeled contact dynamics.

accurately than those generated with a standard baseline and enables locomo-

tion on compliant terrain.

2.1.1 Related Work

Local feedback stabilization around a planned motion is a well-known tech-

nique to mitigate modeling errors (Englsberger and Ott, 2012; Sygulla et al.,

2017; Takenaka et al., 2009; Zhou et al., 2016) and has led to successful soft

ground walking for a bipedal robot (Hashimoto et al., 2012). However, es-

pecially for dynamic motions, performance can be increased by providing a

high-quality feedforward term. The effort in this work to improve the feasibil-

ity of the feedforward term and state reference can be seen as complementary

to local stabilization strategies. Moreover, disturbances can be rejected by

adjusting the motion plan through fast replanning, reducing the burden on

the feedback controller.

In the case of a series elastic actuator, the dynamics can be approximated and

added to the model. The optimization algorithm is in those cases able to ex-

ploit the properties of the specific actuator and adding spring-damper elements

to the joints is even known to result in motions that resemble those found in

nature (Schultz and Mombaur, 2010). For series elastic actuators, methods

have been proposed to incorporate bandwidth, torque, and joint limits in a

computationally efficient way (Braun et al., 2013; Nakanishi and Vijayaku-

mar, 2012; Schlossman et al., 2018). However, very often we do not have
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exact details of actuators and modeling them would lead to high engineer-

ing effort. Moreover, since parts of the underlying actuator dynamics have

very different time constants, smaller timesteps are required. This leads to

slower update rates, preventing such models from use in MPC with complex

systems. Additionally, stability problems can arise when a limb with stiffly

modeled actuators makes contact with the environment (Koenemann et al.,

2015). We avoid such issues by not explicitly modeling the actuators, but

by incorporating well-known bandwidth limitations up to which the perfect

tracking assumption is valid.

While model parameters for actuators can be obtained from first principles

or through repeated experiments, contact dynamics are considerably harder

to model or predict. A combination of learning a terrain model and trajec-

tory optimization has been proposed in (Chang et al., 2017). However, such

methods have not yet reached real-time capabilities.

In the context of contact invariant optimization, soft contact models (Neunert

et al., 2017) or contact smoothing (Mordatch, Todorov, and Popović, 2012) are

used inside trajectory optimization. These models are selected and tuned for

their numerical properties rather than physical accuracy. The models need to

be smooth since the highly coupled interaction between stiff contact dynamics

and slow dynamics of the robot lead to poor convergence of the algorithms. In

the worst case, this numeric model tuning can lead to highly undesired effects

when the optimizer starts exploiting dynamic properties of the terrain which

are entirely wrong.

Reasoning over higher order terms results in solutions with a higher degree of

continuity, which improves performance on hardware considerably. This can

be achieved by selecting a smooth parameterization of the solution space as

done in spline based optimization (Bellicoso et al., 2018a; Kalakrishnan et al.,

2010; Werner, Turlej, and Ott, 2017), collocation methods (Hereid et al., 2016;

Pardo et al., 2017), or when using dynamic motion primitives (Werner et al.,

2017). This, however, limits the motions that can be expressed and can often

require a problem-specific, manual tuning procedure. Alternatively, higher

derivatives can be selected as the control inputs in MPC (Kajita et al., 2003).

In Sect. 2.2.4 we show that this formulation can be interpreted as a special

case of the presented frequency weighting method.

As an alternative to higher order formulations or explicitly modeling actuator

dynamics, we propose to encode bandwidth limits through the cost function.

A trivial way to do so is to put extra costs on input signals, but this results
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2.2. Method

in slower response overall and goes against the desire to perform highly dy-

namic motions at the limits of the system. Instead, we intend to explore a

different approach and propose to use a frequency-dependent cost function

(Gupta, 1980). We penalize control actions only in the high frequency range

and combine this idea with a modern optimal control framework (Farshidian

et al., 2017a; Farshidian et al., 2017b).

Frequency-based approaches have been proposed with several applications in

both the MPC and legged robotic communities. In (Hours et al., 2015) con-

straints on the output spectrum are formed in the frequency domain. How-

ever, the proposed window-based constraints approach requires previous and

future decision variables, which negatively affects the Riccati-sparsity pattern

exploited in optimal control methods. In (Hashimoto et al., 2015), a Fourier

transform has been used to find a closed form solution for momentum compen-

sation of the lower body with the upper body. In contrast to our setting where

the unmodeled dynamics are unknown, the forces that are to be compensated

for are assumed to be known based on a full rigid body dynamics model.

2.1.2 Contributions

We introduce frequency-dependent cost functions integrated into modern MPC

strategies for legged locomotion. Through simulation experiments, we study

the effect of such a cost function on the resulting solutions. The proposed

method provides the user with an intuitive way to achieve robustness against

unmodeled phenomena like actuator bandwidth limits and non-rigid contact

dynamics. These findings were successfully validated in hardware experiments

on different grounds. Using frequency-shaped cost functions, we could im-

prove the robustness of ANYmal while locomoting under substantial external

disturbances coming from external pushes or unmodeled soft ground.

2.2 Method

First, we discuss uncertainty in the dynamics from a robustness point of view

and motivate the particular choice of cost functions. Afterward, the integra-

tion with a Sequential Linear Quadratic Model Predictive Control (SLQ-MPC)

method (Farshidian et al., 2017b) is presented. This method, based on Differ-

ential Dynamic Programming, relies on a linear approximation of the dynamics

and a quadratic approximation of the cost function around the latest trajec-

tory.
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For brevity of notation in the current section, and without loss of generality,

we consider the following quadratic cost function without linear and mixed

state-input costs,

J =
1

2

∫ ∞
0

(
x(t)>Qx(t) + u(t)>Ru(t)

)
dt, (2.1)

where Q is the positive semi-definite state cost Hessian and R is the positive

definite input cost Hessian.

2.2.1 High Frequency Robustness

Consider a linear plant G(jω) with unstructured multiplicative uncertainty

model L(jω),

G̃(jω) = [I + L(jω)]G(jω), (2.2)

σ̄[L(jω)] < lm(ω), ∀ω ≥ 0, (2.3)

where σ̄ is the maximum singular value of the disturbance model and lm(ω) is

a frequency-dependent upper bound. The closed loop stability condition for

these models is (Doyle and Stein, 1981),

lm(ω) <
¯
σ[I +GK(jω)−1], (2.4)

where
¯
σ is the minimum singular value, and GK(jω) is the transfer function

of plant and controller together.

To be robust against large uncertainties at high frequencies, according to (2.4),

the loop gain, GK(jω), should be kept low. Intuitively, penalizing inputs at

the high frequencies reduces the feedback gain at those frequencies, which

allows for larger uncertainty magnitude, lm(ω). We therefore propose to use

the following frequency-dependent input weighting

R̃(ω) =

∣∣∣∣1 + βjω

1 + αjω

∣∣∣∣2R, with β > α, (2.5)

where R is the original input cost, and −β−1 and −α−1 are the zero and pole

of the loopshaping transfer function. A visualization of such cost function is

provided in Fig. 2.2.

Indeed, for Single-Input Single-Output (SISO) systems Anderson et al. (An-

derson and Mingori, 1985) established that the open loop gain at high

frequency under the frequency-shaped cost function (2.5) is reduced, i.e.,
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Figure 2.2: Example of the frequency-shaped cost function for α = 0.01, β = 0.1,
and the standard input costs in the frequency domain. Costs are normalized by R.

|GKR̃(jω)| < |GKR(jω)| for large ω, where KR̃ and KR are the Linear

Quadratic Regulator gains obtained under the frequency-shaped cost and

baseline cost respectively. According to (2.4), the resulting increase in

¯
σ[I +GK(jω)−1] permits a higher model uncertainty in the stopband.

Unfortunately, to the best of our knowledge, a robustness proof for Multiple-

Input Multiple-Output (MIMO) systems is not available. Despite that, the

intuition that penalizing high frequency input increases compatibility with ac-

tuator bandwidth limits remains. In this paper, we aim to empirically validate

the effect of using such a cost function.

2.2.2 Frequency-shaped Cost Functions

MPC plans over a receding horizon. The cost function in (2.5) therefore needs

to be expressed in the time domain as well. This can be achieved by a state

augmentation as described in (Gupta, 1980).

The standard quadratic cost function for the time domain (2.1) can be con-

verted to the frequency domain (2.6) according to Parseval’s theorem:

J =
1

2π

∫ ∞
−∞

(
x̂(ω)HQ x̂(ω) + û(ω)HR û(ω)

)
dω, (2.6)

where x̂(ω), and û(ω) are the Fourier transform of x(t) and u(t), and (·)H
is the Hermitian transpose of the vector. Here, it becomes apparent that

the standard costs over states and inputs are constant for all frequencies. To
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leave the possibility of having different loopshaping per input dimension, the

frequency-dependent weight matrix in (2.5) is generalized to

R̃(ω) =

r
∗
1(ω)

. . .

r∗m(ω)

R

r1(ω)
. . .

rm(ω)

 ,

ri(ω) =
1 + βijω

1 + αijω
, βi > αi, (2.7)

where r∗i (ω) is the complex conjugate of ri(ω). Every input direction can now

have its own shaping function ri. In order to transfer this new cost function

back into the time domain, a change of variables is required. The filtered

inputs, ν̂(ω), are defined elementwise as

ν̂i(ω) = ri(ω)ûi(ω). (2.8)

After substitution, we arrive back at a frequency-independent cost function

over the filtered variables in (2.10). This cost is then converted back to the

time domain in (2.11),

J =
1

2π

∫ ∞
−∞

(
x̂(ω)HQ x̂(ω) + û(ω)HR̃(ω) û(ω)

)
dω (2.9)

=
1

2π

∫ ∞
−∞

(
x̂(ω)HQ x̂(ω) + ν̂(ω)HR ν̂(ω)

)
dω (2.10)

=
1

2

∫ ∞
0

(
x(t)>Q x(t) + ν(t)>Rν(t)

)
dt. (2.11)

2.2.3 Implementation

The presence of the filtered inputs ν(t) in the cost function (2.11) requires

the augmentation of the original problem. Considering the original system

dynamics, ẋ = f(x,u), and state input constraint, g(x,u) ≤ 0, this can be

achieved in several ways. If r(ω) consists of proper rationals, its state space

realization1, (Ar, Br, Cr, Dr), can be used to substitute for ν in the cost

function. The filter’s internal dynamics are appended to the system.

J =
1

2

∫ ∞
0

(
x>Q x + (Crxr + Dru)>R (Crxr + Dru)

)
dt (2.12)
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2.2. Method[
ẋ

ẋr

]
=

[
f(x,u)

Arxr + Bru

]
, g(x,u) ≤ 0, (2.13)

If r(ω) consists of improper rationals, the transfer function s(ω) = r−1(ω) is

defined such that ûi(ω) = si(ω)ν̂i(ω). The state space realization1 of s(ω),

(As, Bs, Cs, Ds), is used to substitute for u in both system dynamics and

constraints. Again, the filter’s internal dynamics are added to the system.

J =
1

2

∫ ∞
0

(
x>Q x + ν>Rν

)
dt, (2.14)

[
ẋ

ẋs

]
=

[
f(x,Csxs+Dsν)

Asxs + Bsν

]
, g(x,Csxs+Dsν) ≤ 0, (2.15)

The system inputs, u = Csxs + Dsν, are then retrieved after optimization.

Because the selected class of shaping functions are of relative degree zero,

choosing between these equivalent options is a numerical consideration. Since

the poles of each ri(ω) are in our case higher than its zeros, the dynamics of

Ar are faster than those of the realization of its inverse, As, we therefore use

the latter formulation.

2.2.4 Related Methods

The relation with higher order formulations can be understood by considering

a shaping function of ri(ω) = jω for each input in (2.7) instead of 1+βijω
1+αijω

. The

resulting state space realization is

ẋs = ν, u = xs, (2.16)

which is equivalent to u̇ = ν, i.e., the auxiliary input is the derivative of the

original input. By selecting ri(ω) = (jω)n, general n-th order formulations

can be retrieved. Higher order methods can thus be seen as a special case

of frequency shaping. The proposed method considers more general transfer

functions, allowing the user with more flexibility to target a specific frequency

range.

There is, however, a numerical consideration when using frequency shaping

functions that go to infinity as ω goes to infinity. For such an transfer function

s(ω) will be strictly proper and have a realization with Ds = 0. As can be seen

1State space realizations are computed according to the balanced realization described
in (Moore, 1981)
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Figure 2.3: Block diagrams for actuator modeling (a) and frequency shaping (b).
RBD denotes the rigid body dynamics. u∗ and x∗ are the optimized system input
and state references to be tracked by the robot.

from the constraints in (2.15), this results in pure-state constraints. This is not

a problem in theory, but such constraints are computationally more expensive

to handle than state-inputs constraints, so we avoid them in practice to achieve

fast replanning.

When using a higher order formulation, inequality constraints can be used to

put hard limits on the smoothness of the trajectories. Similar constraints can

be placed in the frequency based method as done in (Hours et al., 2015). Such

a discussion is thus rather a preference for designing behavior through costs

or constraints.

The difference between the proposed method and embedding an actuator

model can be understood from Fig. 2.3. When embedding an actuator model

in the system dynamics, one would interpret the input to that model as the

command to be sent to the robot. However, in the proposed method, the

command sent to the robot is the original input, leaving the assumed relation

between x and u unchanged. In the former, the optimized state input tra-

jectories, {x∗,u∗} relies on the accuracy of the actuator model, while in the

latter, the filter is used to restrict input frequency content to a feasible range.
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2.3 Experimental Setup

2.3.1 Problem Formulation

The proposed method is applied to the kinodynamic model of a quadruped

robot, which describes the dynamics of a single free-floating body along with

the kinematics for each leg. Equations of Motion (EoM) are given by

θ̇ = T(θ)ω,

ṗ =W RB(θ) v,

ω̇ = I−1
(
−ω × Iω +

∑4
i=1 rEEi(q)× λEEi

)
,

v̇ = g(θ) + 1
m

∑4
i=1 λEEi,

q̇ = uJ ,

where WRB and T are the rotation matrix of the base with respect the global

frame and the transformation matrix from angular velocities in the base frame

to the Euler angles derivatives in the global frame. g is the gravitational

acceleration in body frame, I and m are the moment of inertia about the CoM

and the total mass respectively. The inertia is assumed to be constant and

taken at the default configuration of the robot. rEEi is the position of the foot

i with respect to CoM. θ is the orientation of the base in Euler angles, p is the

position of the CoM in world frame, ω is the angular rate, and v is the linear

velocity of the CoM. q is the vector of twelve joint positions. The inputs of

the model are the joint velocity commands uJ and end effector contact forces

λEEi.

The constraints depending on the mode of a leg at that point in time are

formulated as{
vEEi = 0, λEEi ∈ C(n̂, µ), if i is a stance leg

vEEi · n̂ = c(t), λEEi = 0, if i is a swing leg

where vEEi is the end effector velocity in world frame, which constrains a

stance leg to remain on the ground and a swing leg to follow the predefined

curve c(t) in the direction of the local surface normal, n̂, to avoid foot scuffing

with zero contact force inputs λEEi. This curve ends with a negative velocity

of 0.75 m/s, which is maintained until contact is detected. The friction cone,

C(n̂, µ), is defined by the surface normal and friction coefficient, µ = 0.7. This

constraint is enforced by projecting the inputs onto the feasible set in the

forward rollout of the SLQ-MPC algorithm. Limitations of such a clamping

strategy are discussed in (Tassa, Mansard, and Todorov, 2014). In practice, we
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2. Frequency-Aware Model Predictive Control

find that these constraints are rarely active and that the projection is sufficient

for the motions in this work.

The baseline cost is formulated as a quadratic function

J = Φ(x(T )) +

∫ T

0

L(x(t),u(t)) dt,

L =
1

2
(x− xd)

>
Q (x− xd) +

1

2
(u− u0)>R(u− u0),

Φ =
1

2
(x− xd)

>
QT (x− xd) , (2.17)

where xd = [θ>des,p
>
des,ω

>
des,v

>
des,q

>
0 ]> is a desired state consisting of com-

manded base pose and twist by the user and a default configuration for the

joints. Inputs are defined as u = [λEE
>
1 , . . . ,λEE

>
4 ,u

>
j ]>, and u0 is the equi-

librium input for standing in the default configuration. Φ(·) is the final state

cost, which is a heuristic to approximate the truncated infinite horizon, and is

implemented as a diagonal cost on the base pose and velocities. L(·, ·) is the

intermediate cost where we use a simple diagonal cost on all state variables

and contact force inputs. For the costs on the joint velocities, a diagonal ma-

trix is pre- and post-multiplied by the end-effector Jacobians to define costs

over the task space.

2.3.2 System Integration

In the model described in the previous section, the control inputs are end-

effector forces and joint velocities. To translate the solution to torque com-

mands, we extract a full position, velocity, and acceleration plan for CoM and

end-effector trajectories, in addition to the planned contact forces. This plan

is tracked by the hierarchical Whole-Body Controller (WBC) architecture de-

scribed in (Dario Bellicoso et al., 2016). The tasks in decreasing priority are

(1) satisfying the equation of motions and zero acceleration for contact feet

(2) tracking CoM and swing leg trajectories, and (3) tracking the planned con-

tact forces. The desired contact forces from the MPC are thus communicated

in two ways: The CoM trajectory dictates the net acting forces, and force

tracking task regulates the internal forces. Without the latter, contact forces

would be redistributed among the contacts, which would override the planned

smoothness of the trajectories. Additionally, on all priorities, torque limits

and friction cone constraints are imposed as inequality constraints.
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2.4. Results

Figure 2.4: MPC and whole-body control structure overview. The SLQ-MPC
algorithm running on a separate desktop PC sends CoM and End-Effector (EE)
reference to the onboard whole-body control structure. This hierarchical controller
computes torque commands based on the listed priorities.

The optimal control problem in (2.17) is solved for a user-defined gait with the

continuous time SLQ-MPC algorithm described in (Farshidian et al., 2017a).

We use a receding horizon length of 1.0 s, which results in an MPC update rate

of 70 Hz for the baseline method and around 40 Hz for the frequency-shaped

method.

The MPC runs on a desktop PC with an Intel Core i7-8700K CPU@3.70 GHz

hexacore processor and continuously computes a motion plan from the latest

known state through a real-time-iteration scheme. The WBC runs on the

dedicated onboard PC and tracks the most recent plan. Here, the augmented

filter state is propagated as well with the currently available augmented input

plan ν(t). Both nodes communicate over a local network. An overview of the

experimental setup is provided in Fig. 2.4.

2.4 Results

We study the effects of adopting the cost function in (2.11) for the previously

described setup under various locomotion tasks. To see the results at different

levels of model errors, we conduct perfect model simulations, rigid-body sim-

ulations, and hardware experiments. When selecting different values for β, α

is selected such that the frequencies in the stopband incur a cost of 100 times

the steady state cost, i.e., α = 0.1β.
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Figure 2.5: Ground reaction forces in z-direction for a trotting gait at 0.5 m/s with
a period of 0.7 s. The first half of the gait cycle corresponds to the left front foot and
the second half to the left hind foot. As the frequency limit decreases from infinity
(i.e., baseline) to 5, the smoothness of the planned contact forces increases.

2.4.1 Perfect Model

First, we investigate the effect of the loopshaping on the contact forces in a

simulation that uses the same model as the MPC. This shows how the result-

ing trajectories are different already in the case of no modeling errors. The

analyzed gait is a trot with a duty factor of 0.5, i.e., with no overlap in stance

phases of the diagonal feet, while a forward velocity of 0.5 m/s is commanded.

Fig. 2.5 shows the ground reaction forces when selecting different values for

β. As seen from the plot, the baseline method instantaneously applies contact

forces once a foot is in contact. As expected, lowering the frequency at which

costs start to increase, i.e., lowering β−1, results in increasingly smooth tra-

jectories. The frequency-shaped method approaches the baseline as β−1 goes

to infinity. The corresponding base height trajectories are plotted in Fig. 2.6.

Smoother contact force trajectories require more vertical displacement of the

base, while the baseline produces the exact amount of force to keep the base

level.

2.4.2 Physics Simulation

The combination of tracking controller and MPC is evaluated in the Open

Dynamics Engine (ODE) (Smith et al., 2005) rigid-body simulation, where we

can vary ground properties in a controlled way. The model errors, in this case,

come from the difference between rigid-body dynamics and the kinodynamic

model, as well as the assumption of a rigid ground contact when the terrain
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Figure 2.6: Base height for a trotting gait at 0.5 m/s with a period of 0.7 s under
different smoothing parameters. In general, the vertical displacement of the base
increases as the controller becomes smoother since it cannot abruptly increase or
decrease the ground reaction forces at the stance feet.

is made compliant. ODE allows for simulation of soft contacts by modeling2

the ground contact forces as a spring-damper system. Three different sets

of spring-damper parameters kp and kd are selected to simulate hard, inter-

mediate, and soft ground, respectively. For each terrain, three different cost

functions are evaluated: the baseline without frequency shaping as well as

frequency-dependent cost functions with β−1 = 50 and β−1 = 10. These val-

ues were selected based on Fig. 2.5 to represent three levels of smoothness in

the continuum of available cost functions. The resulting contact force profiles

for all combinations are shown for a single stance phase in Fig. 2.7. Desired and

measured contact forces are shown for a single leg during an in-place trotting

motion with a stance duration of 0.35 seconds.

As the compliance of the terrain increases, the difference between desired forces

generated from the WBC and resulting forces grows. The WBC uses rigid-

body dynamics with a hard contact assumption to compute desired contact

forces. The difference between desired and measured forces is therefore a

measure of disturbances inserted by additional unmodeled dynamics, which in

general includes the bandwidth limits of actuators and contact dynamics that

we aim to avoid. Table 2.1 shows the force tracking performance averaged

2ODE relaxes the rigid-contact solver such that it implicitly resembles a spring-damper
interaction.
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Figure 2.7: Measured and desired contact forces in z-direction during a trot in-
place for various ground properties and cost functions. The columns from left to
right correspond to the baseline, β−1 = 50, and β−1 = 10 cost functions. The rows,
from top to bottom corresponds to ground properties with kp and kd of {1e6, 100},
{1e5, 50}, and {1e4, 30}. As the compliance of the terrain increases, the difference
between desired forces generated from the whole-body controller and resulting forces
grows.

over six gait cycles in Mean Absolute Error (MAE) and Mean Squared Error

(MSE) defined as

MAE =
1

T

∫ T

0

|λ− λdes|dt, MSE =
1

T

∫ T

0

(λ− λdes)
2 dt.

For all cost functions, tracking performance degrades as the model error in-

creases. Qualitatively, the baseline controller suffers from a larger error at the

beginning and end of the contact phase, due to its step-like change in the de-

sired forces. Even on hard terrain, there is an apparent benefit of loopshaping.

The smoother transition between contact phases mitigates the disturbance

generated by contact timing mismatch. Differences become most apparent

for the soft terrain, where the smoother trajectory has better performance

especially in MSE.
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2.4. Results

Table 2.1: Force tracking performance MAE (MSE) [N (N2)] for different terrain
and cost functions in simulation.

Cost function

Terrain {kp, kd} Baseline β−1 = 50 β−1 = 10

Hard {1e6, 100} 4.8 (303.5) 3.6 (58.5) 5.0 (104.2)
Medium {1e5, 50} 5.5 (316.2) 4.6 (110.1) 5.0 (100.4)
Soft {1e4, 30} 13.5 (525.5) 11.6 (286.9) 7.4 (146.5)

Furthermore, we examine the locomotion strategy under two extrema of cost

functions. The commanded forward velocity during a trotting motion is gradu-

ally increased until failure occurs. The foot placement strategies are visualized

in Fig. 2.8. The plots show footstep locations from a top-view with the robot

starting at the origin. As the velocity increases towards the right side of the

plot, the footstep locations start to differ. Interestingly, with the smoother cost

function of β−1 = 10, the foot placement strategy is significantly altered and

becomes velocity dependent. Where under the baseline costs the controller

chooses a fixed width foot placement, the frequency-shaped solution places

the feet increasingly inwards for higher velocities. This can be explained by

realizing that horizontal forces, like the normal forces in Fig. 2.5, smoothly

start from and end at zero. During a switch from one contact pair to the next,

a lateral force is required to make the CoM velocity change in the direction

of the next support line. Under the frequency-dependent cost function, high

lateral forces around the contact switch are expensive, and a solution where

the supports are more aligned is thus preferred. As the forward velocity in-

creases, so does the required change in lateral velocity for a given width. The

alignment of support lines therefore gradually becomes more pronounced.

Remarkably, this results in a significantly higher maximum velocity of 0.9 m/s

versus 0.6 m/s.

2.4.3 Hardware

On hardware, we aim to validate the simulation results for contact force track-

ing performance on different terrains; The floor of the lab, a 3.5 cm foam block,

and a mattress are selected to test a rigid, an intermediate and a very compli-

ant terrain respectively. A force-torque sensor is mounted on the right front

leg to obtain direct measurements of the ground reaction forces. The resulting

measured and desired forces for different cost function and terrain combina-
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Figure 2.8: Foot placement strategy for the baseline (top) and the β−1 = 10
(bottom) cost functions during a trot with increasing velocity commands in the
positive x-direction. Commands start at v = 0 m/s and accelerate with 0.05 m/s2.
Failure occurs at 0.6 m/s and 0.9 m/s respectively. The footstep strategy of the
baseline method is different from the frequency-aware solution. While the former
minimizes the lateral motion of the Center of Pressure (CoP) by aligning the support
polygons (lines), the baseline method does not adapt its footstep planning based on
the velocity.

tions are shown in Fig. 2.9. The plots show the difference between measured

and desired contact forces of the right-front leg during the first three steps.

The MAE and MSE averaged over those first three gait cycles are given in

Table 2.2. On hard terrain, all methods perform well, and slight differences

in tracking performance occur at the beginning and end of the contact phase.

In this area the β−1 = 10 controller provides the smoothest transition, re-

sulting in the best MAE and MSE on all terrains. Where in the simulation

experiments we see that a medium amount of smoothing is best for hard and

medium stiff terrain, we do not see this in the hardware experiments. The

difference could be caused by the series elastic actuators of ANYmal, causing

model errors and bandwidth limits even on hard terrain. For a step input to

the torque level reached during trot, a 90% rise-time up to 35 ms, equivalent

to a bandwidth of around 60 rad/s can be expected (Hutter et al., 2016).

When further reducing the compliance by trotting on the mattress, the baseline

and β−1 = 50 controllers suffer a substantial decrease in performance. The

base height during the first part of the experiment is shown in Fig. 2.10. Due
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Figure 2.9: Measured and desired contact forces for the right front foot during the
first three trotting gait cycles on the lab floor (top row), foam (middle row) and a
mattress (bottom row) with the baseline (left column), β−1 = 50 (middle column),
and β−1 = 10 (right column) cost functions. A smoother transition between swing
and stance phase results in better tracking performance.

Table 2.2: Force tracking performance MAE (MSE) [N (N2)] for different terrain
and cost functions on hardware.

Cost function

Terrain Baseline β−1 = 50 β−1 = 10

Hard 27.1 (1465.7) 14.7 (785.5) 12.7 (641.4)
Medium 21.4 (1040.1) 19.7 (741.3) 16.0 (555.4)
Soft 30.9 (2308.1) 26.0 (1237.5) 22.0 (824.3)

to the significant mismatch between the planned and resulting contact force

with each footstep, the baseline controller loses base height in a few steps,

causing it to fail. The β−1 = 50 cost function does achieve a trot, as shown

in the video3, but strong oscillations are present between the terrain and the

feet. The β−1 = 10 cost function, finally, results in both a stable trot and a

smooth contact interaction.

In the accompanying video, we additionally show the behavior under distur-

bances. The robot trots in place and has costs on base deviation from the initial

position. We disturb the robot in the horizontal plane. Qualitatively, the re-

active stepping and push-back behavior differ. Under the baseline method, the

3https://youtu.be/RSJgqkk2VRI
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Figure 2.10: Measured base height during the first seconds of trotting motion on
the mattress with the baseline (left), β−1 = 50 (middle), and β−1 = 10 (right) cost
functions. Where the baseline method fails to maintain its height, the frequency-
aware controllers remain stable.

robot reacts to a push by generating lateral forces and the user experiences in-

stant resistance. The frequency-aware implementation with β−1 = 10 instead

accepts deviation of the base trajectory and adapts future step location and

force profile to smoothly return to the origin.

2.5 Discussion

We have shown that a single parameter of a frequency-dependent cost func-

tion provides a handle on a rich variety of solutions. While the smoothness

at the beginning of the stance phase is not surprising due to the filter, the

anticipatory decrease in force before lifting the foot, as seen in Fig. 2.5, shows

that the filter and planning are tightly working together. The additional filter

states allow the Riccati-type algorithm to reason about future state-input con-

straints, in this case, zero contact forces during the swing phase, and adapts

the strategy to approach them smoothly. This is remarkable because the back-

ward pass is projected on those constraints only at the point in time that they

are active. Interestingly we also find that the foot placement strategy changes

significantly. These observations highlight the fact that embedding frequency

awareness of the MPC is richer than simply filtering the obtained inputs. As

a future work, we will explore ways to change to cost function online and in

this way adapt the locomotion strategy to the terrain.

For the legs in swing phase, optimizing over joint torque, which is effectively

one derivative higher than optimizing over joint velocities, can also induce a

smoother swing trajectory. However, obtaining real time performance with
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the extra nonlinear effects is challenging. We believe that keeping the model

as simple as possible helps to get a robust solution working on hardware.

2.6 Conclusion

We introduced frequency-aware MPC by combining frequency-dependent cost

functions with modern MPC methods. With simulation experiments, we show

that the resulting smoother force profiles improve tracking performance when

the rigid terrain assumption is relaxed, without the need to explicitly model it.

We validated these results on hardware and see a similar trend when comparing

performance on various terrains. The method is shown to provide robustness

against unmodeled dynamics of series elastic actuators and compliant terrains.

We demonstrated that with this approach ANYmal is now able to execute

dynamic motions even on highly compliant terrains.
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Video: https://youtu.be/KrTrLGDA6FQ

The computational power of mobile robots is currently insufficient to achieve

torque level whole-body Model Predictive Control (MPC) at the update rates

required for complex dynamic systems such as legged robots. This problem is

commonly circumvented by using a fast tracking controller to compensate for

model errors between updates. In this work, we show that the feedback policy

from a Differential Dynamic Programming (DDP) based MPC algorithm is a

viable alternative to bridge the gap between the low MPC update rate and

the actuation command rate. We propose to augment the DDP approach

with a relaxed barrier function to address inequality constraints arising from

the friction cone. A frequency-dependent cost function is used to reduce the

sensitivity to high-frequency model errors and actuator bandwidth limits. We

demonstrate that our approach can find stable locomotion policies for the

torque-controlled quadruped, ANYmal, both in simulation and on hardware.
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3. Feedback MPC for Torque-Controlled Legged Robots

3.1 Introduction

MPC has gained broad interest in the robotics community as a tool for motion

control of complex and dynamic systems. The ability to deal with nonlinear-

ities and constraints has popularized the technique for many robotic appli-

cations, such as quadrotor control (Alexis et al., 2011), autonomous racing

(Liniger, Domahidi, and Morari, 2015), and legged locomotion (Farshidian et

al., 2017b; Koenemann et al., 2015; Tassa, Erez, and Todorov, 2012).

MPC strategies typically optimize an open-loop control sequence for a given

cost function over a fixed time horizon. The control sequence is then executed

until a new control update is calculated based on the current state estimate.

While this strategy assumes that the model is exact and that there are no

external disturbances, the repeated optimization provides a feedback mecha-

nism that can correct for modeling errors provided that the control loop can

be executed at a sufficiently high rate. However, for high dimensional systems

such as legged robots and due to the computational restrictions of mobile plat-

forms, the achievable update rate of the MPC loop is insufficient to effectively

deal with model uncertainty and external disturbances.

As a remedy, a separately designed, light-weight motion tracker is often used

in practice (Murray et al., 2009). The motion tracker runs at a higher rate

than the MPC loop and provides feedback correction to the control sequence

that was designed by the MPC. For complex systems such as legged robots it

is a challenging task to design a controller that tracks arbitrary motions while

satisfying the many constraints arising from the locomotion task. The funda-

mental problem is that such motion trackers do not look ahead in the horizon

and therefore cannot anticipate changes in contact configuration. As an alter-

native, projected (time-varying) Linear Quadratic Regulator (LQR) have been

proposed as a framework to automatically design feedback controllers around a

given reference trajectory (Mason et al., 2016; Posa, Kuindersma, and Tedrake,

2016). However, the stabilizing feedback policy is always designed in a sec-

ondary stage and often with a different objective function than the one used

for computing the optimal trajectories, which leads to inconsistency between

the feedback policy and the MPC trajectories.

In this work, we propose a feedback MPC approach for motion control of

a legged system and show that the optimized feedback policy can directly

be deployed on hardware. We achieve stable locomotion under a very low

update rate (15 Hz), and the optimized feedback policy removes the need

for a separate motion controller. Furthermore, the modification of the control
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Figure 3.1: ANYmal, the torque controlled-legged robot used in this work.

inputs is consistent with the MPC and thus produces a continuous signal across

update instances.

To be able to directly apply the feedback strategy on a legged system, the

optimized policy needs to respect all the constraints of the locomotion task

such as friction and unilateral constraints of contact forces. To achieve this, we

propose to extend the Sequential Linear Quadratic (SLQ) (Sequential Linear

Quadratic) algorithm (Farshidian et al., 2017a). We use SLQ in a real-time

iteration MPC scheme (Diehl, Bock, and Schlöder, 2005) where the algorithm

optimizes a constrained feedback policy, π(x, t) : X× R+→U,

π(x, t) = u∗(t) + K(t) (x− x∗(t)) , (3.1)

where u∗(t) ∈ U and x∗(t) ∈ X are locally optimal input and state trajecto-

ries. K(t) is a time-varying LQR gain matrix which maps the state deviation

from x∗ to an admissible control correction. We extend the algorithm to

problems with inequality constraints using a barrier function method to accu-

rately handle the constraints arising from the friction cone. We further use the

frequency-aware MPC approach introduced in (Grandia et al., 2019a) to ren-

der the resulting feedback policy robust to the bandwidth limitations imposed

by real actuators.

We perform experiments in simulation and on a real legged system (Fig. 3.1)

and demonstrate that our approach is able to find robust and stable locomo-

tion polices at MPC update rates as low as 15 Hz, which facilitates onboard

execution on mobile platforms with limited computational power.
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3.1.1 Related Work

Methods to incorporate robustness explicitly into the MPC methodology have

been previously studied in the literature (Mayne et al., 2000). Min-max MPC

(Bemporad and Morari, 1999), for example, optimizes an open-loop control

sequence for the worst-case disturbance inside a predefined set. While this

formulation appears attractive, it can be overly conservative due to its inability

to include the notion of feedback that is inherently present in the receding-

horizon implementation of the control (Lee and Yu, 1997).

Min-max Feedback MPC was proposed to address this shortcoming by plan-

ning over a state-dependent control policy instead of an open-loop feedforward

sequence (Scokaert and Mayne, 1998). Unfortunately optimizing the feedback

policy for all possible disturbance realizations does not yet scale to the problem

dimensions encountered in legged robotics. However, even without considering

disturbances, optimizing over the feedback policy has an additional advantage.

When the update rate of the MPC loop is low, the feedback policy can provide

local correction to the deviation of the real platform from the optimal trajec-

tories. Exploiting this additional aspect of feedback MPC has not yet been

fully explored in robotic applications that are subject to path constraints.

The feedback policy that minimizes a cost function for a given dynamical sys-

tem and path constraints can be computed using the Hamilton-Jacobi-Bellman

(HJB) equation (Bertsekas, 1995). While directly solving this equation for high

dimensional systems is prohibitively complex, a variant of the dynamic pro-

gramming approach known as DDP (Mayne, 1966) has proven to be a powerful

tool in many practical applications. The SLQ method that we use in this work

is a DDP-based approach which uses a Gauss-Newton approximation. Con-

sequently, it only considers the linearized dynamics instead of a second-order

approximation.

Although using the LQR gains derived from a DDP-based approach directly

for motion tracking generates promising results in simulation, it dramatically

fails on real hardware. This phenomenon has been reported before in other

real-world applications of LQR on torque-controlled robots (Mason, Righetti,

and Schaal, 2014; Mason et al., 2016). Focchi et al. (Focchi et al., 2016) have

shown that instability can occur if the limitations of the low-level torque con-

troller are neglected in the high-level control design. They have argued that

the bandwidth of the low-level controller inversely relates to the achievable

impedance of the high-level controller. To this end, to apply the SLQ feed-

back policy on hardware, we need to encode these bandwidth limitations in
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our optimization problem. In this work, we use the frequency-aware MPC ap-

proach introduced in (Grandia et al., 2019a). This MPC formulation penalizes

control actions in the frequency domain and automatically finds a trade-off be-

tween the bandwidth limitation of actuators and the stiffness of the high-level

feedback policy.

3.1.2 Contributions

We propose a whole-body MPC approach for legged robots, where the actu-

ation commands are computed directly based on the MPC feedback policy.

Specifically we present the following contributions which we empirically vali-

date on the ANYmal platform (Fig. 3.1) in simulation and on real hardware:

• We propose to apply feedback MPC for whole-body control of a legged

system. To the best of our knowledge, this is the first time that such

a control scheme is applied on hardware for motion control of legged

robots.

• The SLQ algorithm is extended to include inequality constraints through

a barrier function method, which allows us to formulate friction cone

constraints.

• We show that our feedback MPC algorithm directly designs constraint-

satisfactory LQR gains without additional computational cost.

• A frequency domain design approach is used to incorporate actuation

bandwidth limits in the MPC formulation to avoid rendering stiff gains.

Thus, the feedback gains can be directly applied to the robot.

• We show that the feedback MPC algorithm is capable of bridging the gap

between low update-rate MPC and high rate execution of torque com-

mands using only an onboard computer with moderate computational

power.

3.2 Method

3.2.1 Problem Definition

Consider the following nonlinear optimal control problem with cost functional

min
u(·)

Φ(x(T )) +

∫ T

0

L(x(t),u(t), t) dt, (3.2)
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where x(t) is the state and u(t) is the input at time t. L(·) is a time-varying

running cost, and Φ(·) is the cost at the terminal state x(T ). Our goal is

to find an input trajectory u(·) that minimizes this cost subject to the fol-

lowing system dynamics, initial condition, and general equality and inequality

constraints:

ẋ = f(x,u, t) (3.3)

x(0) = x0 (3.4)

g1(x,u, t) = 0 (3.5)

g2(x, t) = 0 (3.6)

h(x,u, t) ≥ 0. (3.7)

The feedback policy which minimizes this problem can be calculated using a

DDP-based method. A variant of this method for continuous-time systems

known as SLQ is introduced in (Farshidian et al., 2017a), where it solves

the above optimization problem in the absence of the inequality constraints

in equation (3.7). This method computes a time-varying, state-affine control

policy based on a quadratic approximation of the optimal value function in an

iterative process. The SLQ approach uses a Lagrangian method to enforce the

state-input equality constraints in (3.5). The pure state constraints in (3.6)

are handled by a penalty method.

In SLQ, the simulation (forward pass) and the optimization (backward pass)

iterations alternate. Once the backward pass is completed, a forward pass

computes a new trajectory based on the improved feedback policy. The lo-

cal, Linear Quadratic (LQ), approximation of the nonlinear optimal control

problem is constructed after each forward pass. The LQ model permits an ef-

ficient solution of the approximate problem by solving the Riccati differential

equation. The feedback policy is then updated with an appropriate linesearch

procedure in the direction of the LQ problem’s solution.

We follow the same SLQ approach and extend the method with inequality

constraints through a relaxed barrier function approach.
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3.2.2 Relaxed Barrier Functions

Using a barrier function is a well know technique to absorb inequality con-

straint into the cost function. For each constraint in a given set of Nin in-

equality constraints, a barrier term B(h) is added to the cost

L̂(x,u, t) = L(x,u, t) + µ

Nin∑
i=1

B(hi(x,u, t)). (3.8)

A widely used barrier function is the logarithmic barrier used in interior-point

methods. The optimal solution is approached by letting µ→ 0 over successive

iterations. However, a downside of the log-barrier is that it is only defined

over the feasible space, and evaluates to infinity outside. Due to the rollout

mechanism in the SLQ approach, one cannot ensure that successive iterations

remain inside the feasible region at all time. Furthermore, the Hessian of the

log-barrier goes to infinity as one approaches the constraint boundary, which

results in an ill-conditioned LQ approximation.

The relaxed barrier functions previously proposed for MPC problems addresses

both these issues (Feller and Ebenbauer, 2017) and is therefore particularly

suitable for the SLQ approach. This barrier function is defined as a log-

barrier function on the interior of the feasible space, and switched to a different

function at a distance δ from the constraint boundary.

B(h) =

{
− ln(h), h ≥ δ,
β(h; δ), h < δ.

(3.9)

We use the quadratic extension proposed in (Hauser and Saccon, 2006):

β(h; δ) =
1

2

((
h− 2δ

δ

)2

− 1

)
− ln(δ). (3.10)

The relaxed barrier function, which is continuous and twice differentiable,

is plotted as a function of the constraint value in Fig. 3.2. The quadratic

extension puts an upper bound to the curvature of the barrier function, which

prevents ill-conditioning of the LQ approximation. Note that by letting δ → 0,

the standard logarithmic barrier is retrieved. Furthermore, it has been shown

that the optimal solution can be obtained for a nonzero value of δ (Aguiar et

al., 2017), when the gradient of the penalty term is larger than the Lagrange
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3. Feedback MPC for Torque-Controlled Legged Robots

Figure 3.2: Comparison of the log-barrier function Blog = − ln(h) and relaxed
barrier function Brel as defined in (3.9) with δ = 5.

multiplier of the associated constraint. Optimization with the relaxed barrier

function can thus be interpreted as an augmented Lagrangian approach when

h < δ and as a log-barrier method for h ≥ δ.

3.2.3 LQ Approximation

With the inequality constraints embedded in the cost function, we obtain

the following linearization of the system dynamics in (3.3) and state-inputs

constraints in (3.5) for a given state trajectory xk−1(t) and input trajectory

uk−1(t):

δẋ = Aδx + Bδu, (3.11)

Cδx + Dδu + e = 0, (3.12)

where δx = x(t) − xk−1(t), and δu = u(t) − uk−1(t) are deviations from the

previous iteration, around which the LQ approximation is made. Note that

the time-dependency of the matrices was dropped to shorten the notation.

The quadratic approximation of the cost in (3.8) is given by

Φ(x(T )) ≈ qf + q>f δx +
1

2
δx>Q>f δx, (3.13)

L̂(x,u, t) ≈ qL(t) + q>Lδx + r>δu+

1

2
δx>QLδx +

1

2
δu>Rδu + δu>Pδx, (3.14)

which requires access to the second-order approximation of the barrier term

and inequality constraints.
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3.2. Method

With the optimal control problem reduced to an equality constrained LQ

approximation, the constrained Riccati backward pass in (Farshidian et al.,

2017a) yields the quadratic value function V (x, t) = 1
2x>S(t)x+s(t)>x+s(t).

This value function induces the optimal feedback policy in equation (3.1) with

feedback gains computed as

K(t) =
(
I−D†D

)
R−1

(
P> + B>S

)
+ D†C, (3.15)

where I is the identity matrix and D† is the right pseudo-inverse of the full

row rank matrix D. Notice how the feedback gains ensure that the equality

constraints are satisfied by projecting the first term to the nullspace of the

constraints, and by adding the term D†C to satisfy the constraint when the

state deviates from the plan.

3.2.4 Frequency Shaping

As discussed in Section 3.1.1, it has been proven difficult to use feedback gains

from an LQR design on a torque-controlled robot. We propose to use the

frequency-dependent cost function introduced in our previous work (Grandia

et al., 2019a), which was used to render the feedforward solution robust to

high frequency disturbances. In this work, we show that it has a similar effect

on the feedback structure. We briefly summarize how the problem is adapted

and refer to (Grandia et al., 2019a) for further details.

A frequency-dependent cost on the inputs can be introduced by evaluating

the cost function on auxiliary inputs ν. The auxiliary inputs ν are defined

by frequency-dependent shaping functions ri(ω) applied to the system inputs

such that

ν̂i(ω) = ri(ω)ûi(ω), (3.16)

where i denotes elements associated to individual inputs, ω is the signal fre-

quency in rad/s, and ν̂i(ω) and ûi(ω) are the Fourier transform of the auxiliary

input and system input respectively. Following our previous work, we use high

pass filters to achieve increased costs at higher input frequencies:

ri(ω) =
1 + βijω

1 + αijω
, βi > αi. (3.17)

The transfer function s(ω) = r−1(ω), with state space realization

(As,Bs,Cs,Ds), is constructed such that ûi(ω) = si(ω)ν̂i(ω). The origi-

nal system is augmented with an additional filter state, xs, such that x̃ =
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[x>,x>s ]>, and optimization is performed w.r.t. the auxiliary inputs ν. The

augmented system dynamics and state-input constraints are defined as[
f(x,Csxs + Dsν)

Asxs + Bsν

]
,

g1(x,Csxs + Dsν, t) = 0,

h(x,Csxs + Dsν, t) ≥ 0.
(3.18)

The feedback policy obtained from this augmented system is of the form

ν(x, t) = ν∗(t) +
[
Kν,x(t) Kν,xs

(t)
] [ x− x∗(t)

xs − x∗s(t)

]
.

After optimization, the original input is retrieved by substituting this policy

into the output function of the filter, u = Csxs+Dsν, resulting in the complete

feedback policy[
u(x̃, t)

ν(x̃, t)

]
=

[
Csx

∗
s(t) + Dsν

∗(t)

ν∗(t)

]
+[

DsKν,x(t) DsKν,xs
(t) + Cs

Kν,x(t) Kν,xs
(t)

] [
x− x∗(t)

xs − x∗s(t)

]
. (3.19)

3.3 Implementation

We apply our approach to the kinodynamic model of a quadruped robot, which

describes the dynamics of a single free-floating body along with the kinematics

for each leg. The Equations of Motion (EoM) are given by

θ̇ = T(θ)ω,

ṗ =W RB(θ) v,

ω̇ = I−1
(
−ω × Iω +

∑4
i=1 rEEj(q)× λEEj

)
,

v̇ = g(θ) + 1
m

∑4
i=1 λEEj ,

q̇ = uJ ,

where WRB and T are the rotation matrix of the base with respect the global

frame and the transformation matrix from angular velocities in the base frame

to the Euler angles derivatives in the global frame. The term g is the gravita-

tional acceleration in body frame, I and m are the moment of inertia about the

Center of Mass (CoM) and the total mass respectively. The inertia is assumed

to be constant and taken at the default configuration of the robot. rEEj is the

position of the foot j with respect to CoM. θ is the orientation of the base in
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Euler angles, p is the position of the CoM in world frame, ω is the angular

rate, and v is the linear velocity of the CoM. q is the vector of twelve joint

positions. The inputs of the model are the joint velocity commands uJ and

end-effector contact forces λEEj in the body frame.

3.3.1 Equality Constraints

The equality constraints depend on the mode of each leg at a certain point

in time. We assume that the mode sequence is a predefined function of time.

The resulting mode-depended constraints are{
vEEj = 0, if i is a stance leg,

vEEj · n̂ = c(t), λEEj = 0, if i is a swing leg,

where vEEj is the end-effector velocity in world frame. These constraints

ensure that a stance leg remains on the ground and a swing leg follows the

predefined curve c(t) in the direction of the local surface normal n̂ to avoid

foot scuffing. Furthermore, the constraints enforce zero contact force at swing

legs.

3.3.2 Inequality Constraints

Our proposed relaxed barrier method allows to model the friction cone without

the commonly used polytope approximation. The cone constraint for each end-

effector,

λEEj ∈ C(n̂, µc), (3.20)

is defined by the surface normal and friction coefficient µc = 0.7. After project-

ing the contact forces to the local frame of the surface, a canonical second-order

cone constraint is found in terms of local contact forces F = [Fx, Fy, Fz]. An

effective cone constraint used in conjunction with barrier methods (Lobo et al.,

1998) is given by

hcone = µcFz −
√
F 2
x + F 2

y ≥ 0. (3.21)

However, the gradient of this constraint is not defined at F = 0, which causes

numerical issues close to the origin. While for interior point methods this

problem can be solved by using the squared constraint, µ2
cF

2
z − F 2

x + F 2
y ≥ 0,

this strategy does not work well together with the relaxed barrier function

due to the saddle point it introduces at the origin. Since the relaxed barrier

function allows infeasible iterates, the solutions can cross the origin and end up
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3. Feedback MPC for Torque-Controlled Legged Robots

Figure 3.3: Comparison of the friction cone constraint hcone and the perturbed
cone hcone,ε for ε = 5, µc = 0.7. The contour of hcone,ε is shown together with the
zero crossing of hcone.

in the negative reflection of the cone, which became a feasible region through

the squaring operation. We, therefore, use the perturbed cone

hcone,ε = µcFz −
√
F 2
x + F 2

y + ε2 ≥ 0, (3.22)

which is differentiable at the origin, remains infeasible for any negative Fz,

and is a conservative lower bound for the original cone (3.21). It therefore

holds that

hcone,ε ≥ 0 =⇒ hcone ≥ 0. (3.23)

In Fig. 3.3 the level sets of this constraint are compared to the original cone.

It can be seen that the constraint is convex and the zero crossing of hcone,ε is

strictly inside the feasible region.

3.3.3 Torque Computation

The control inputs u consist of contact forces and joint velocities. These com-

mands have to be translated to torques. When using only the feedforward tra-

jectories, desired accelerations and contact forces are extracted and tracked by

a hierarchical inverse dynamics controller (Dario Bellicoso et al., 2016). When

using the feedback policy, we forward simulate the system under the feedback

policy for a short time and extract desired accelerations from this rollout. The

inverse dynamics is then only used to convert the desired accelerations into

torques, without adding additional feedback. This inverse dynamics controller

is evaluated at 400 Hz, while the Sequential Linear Quadratic Model Predic-
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tive Control (SLQ-MPC) algorithm runs asynchronously on a second onboard

Intel i7-4600U@2.1 GHz dual core processor.

Finally, each individual motor has a local, embedded, control loop. For the

stance legs a torque controller is used, and for the swing legs the motors take

the commanded torque as a feedforward term and close the loop over the

desired position and joint velocities.

3.4 Results

We first show the qualitative differences between a feedback policy and a feed-

forward policy when operating under low update rates and disturbances. Then,

the influence of the relaxed barrier function cone constraint on the planned

feedback gains is shown. We also examine the structure in the obtained feed-

back matrices and compare the difference between those obtained with fre-

quency shaping and those without. Finally, we show that the proposed ele-

ments, when taken together, lead to a method that can be successfully executed

on the onboard hardware of a torque-controlled robot.

We use a diagonal cost on the state and control inputs for all experiments.

When frequency shaping is used, we set αi = 0.01, βi = 0.2 for the contact

force inputs and αi = 0.01, βi = 0.1 for the joint velocity inputs in (3.17).

3.4.1 Feedback MPC

We first investigate the effect of low update frequencies and the use of feedback

policies from the SLQ-MPC in simulation. We introduce model errors to show

the performance of the different strategies. The mass of the control model is

increased by 10 % with respect to the simulation model. Each MPC controller

is brought to a stable trot gait and commanded to move 1 m forward.

First, feedforward MPC is used with an update rate equal to the control fre-

quency of 400 Hz. Every control loop thus has access to the optimal solution

from the current state. The resulting desired linear accelerations are shown

in the top of Fig. 3.4. Discontinuities only arise around a contact switch; the

desired accelerations are continuous otherwise. In the middle plot, the de-

sired accelerations are shown when the update rate is restricted to an update

frequency of 20 Hz. The updates are clearly visible because every time the

feedforward trajectory is updated, the accumulated deviation from the feed-

forward plan is reset and a new open loop trajectory is tracked. In the bottom

plot, we show the performance when the SLQ feedback policy is used. The
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3. Feedback MPC for Torque-Controlled Legged Robots

Figure 3.4: Desired linear acceleration for the center of mass, as commanded by
the MPC. In the top two plots a feedforward MPC strategy is used with update rates
of 400 Hz and 20 Hz respectively. In the bottom plot, feedback MPC is used with
an update rate of 20 Hz. The trajectories are for a trotting gait with a command to
move 1 m ahead send at 0.3 s

discontinuities at updates are significantly reduced and smooth trajectories

comparable to MPC with high update rate are retrieved.

These experiments show that using the feedback from the MPC can recover

some of the performance lost due to lower update rates. By using a policy that

is consistent with future MPC updates, the discontinuities at the updates are

reduced up to the validity of the linear quadratic approximation.

3.4.2 Feedback Gains Near Inequality Constraints

In the following experiment we prescribe a task where we require to lift the

left front leg and simultaneously set the desired body location towards the

front left, outside of the support polygon. This task requires the algorithm to

coordinate the step with the body movement. The experiment is performed

without the frequency shaped cost to allow us to focus on the effect of using the

inequality constraints. In the left side of Fig. 3.5 we show the optimized solu-

tion without inequality constraints. Without the cone constraint, the optimal

strategy is to produce negative contact forces in the right hind leg, such that

the desired body position can be reached as early as possible. Furthermore,
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we plot the maximum gain in the row associated with each vertical contact

force, which shows that the zero force feedback terms for the swing leg are

compliant with the corresponding equality constraint.

The resulting solution when adding inequality constraints is shown on the right

of Fig. 3.5. Here, we used fixed barrier parameters µ = 0.5, δ = 0.1, under

which all constraints are strictly satisfied. With the inequality constraints, the

contact forces remain positive on the right hind leg. Additionally, where before

the feedback gains are about equal for the three remaining stance legs, now,

the feedback gains for the right hind leg are significantly reduced. When the

contact force approaches zero, the feedback gains go to zero as well, which en-

sures that the inequality constraint is not violated after applying the feedback

policy at a disturbed state. This interaction between the inequality constraints

and the feedback gains is a result of the barrier function. As the constraint

boundary is approached, the Hessian of the barrier function w.r.t. the contact

forces increases. This increases the input costs R in (3.15), and thus reduces

the feedback gains.

This gradual decrease in feedback gains cannot be obtained with a clamping

strategy, where the gains are unaffected, or with an active set method, where

the gains instantaneously decrease to zero when the constraint becomes active

(Tassa, Mansard, and Todorov, 2014).

As a secondary effect, we see that the feedback gains on the left front leg

increase before lifting the leg. Because the right hind leg is forced to have low

feedback gains in the upcoming phase, the body position before lifting the foot

is of high importance, which is reflected in the gains.

In addition, we note that the distance to the constraint boundary can be

regulated by choosing a different barrier scaling µ. This means that using a

finite µ, in contrast to decreasing it to zero as done in an interior point method,

can be used to trade some optimality for a larger stability margin.

3.4.3 Feedback Structure

We visualize the feedback matrix for ANYmal in a full stance configuration.

The gains obtained without using the frequency-dependent cost function are

shown in Fig. 3.6a. The state acting on each column of the matrix is shown

above the figure, and the control input affected by each row is shown on the

left. The color intensity shows the magnitude of each entry in the feedback

matrix, with zero shown as white and the highest gain shown in black.

55



3. Feedback MPC for Torque-Controlled Legged Robots

Figure 3.5: Optimal vertical contact force trajectory and maximum feedback gain
associated with that contact force when planning a simultaneous step and reach task
without (left), and with (right) inequality constraints. The time where the left front
(LF) is in the air is marked in gray.

In the joint velocity part of the feedback matrix, one can see how the equality

constraints that require zero velocity at the end-effectors are reflected: The

joint velocity commands are highly dependent on the linear and angular veloc-

ity of the base to achieve this constraint. This empirically verifies that (3.15)

indeed produces feedback matrices that are consistent with the constraints.

The feedback matrix in Fig 3.6a can be compared to the feedback matrix

obtained when using the frequency shaped cost function, shown in Fig 3.6b.

We split the feedback matrix in Fig 3.6b into four parts, with the vertical

split between system and filter state, and horizontal split between system and

auxiliary input, corresponding to the partitioning in (3.19). First, the left side

is inspected. Here we recognize a feedback pattern similar to that in Fig 3.6a,

obtained without the frequency-dependent cost function. Indeed since the

shaping functions in (3.17) have unit DC-gain, the feedback matrix Kν,x is

expected to be approximately equal to the matrix obtained without frequency
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Figure 3.6: The feedback matrix in stance configuration without (a) and with (b)
frequency shaped cost. The color of each state-input entry represents the magnitude
of the feedback. In (b), the matrix is split into four parts with input and states
associated with each block marked at the left and bottom. The top left for example
shows the gains between system states, x, and system inputs.

shaping. Furthermore, we can recognize that the direct gains from state to

contact forces are an order of magnitude smaller than before.

For the frequency shaped feedback policy, the main feedback flows from system

state to auxiliary inputs. The auxiliary inputs then drive the filter states, xs,

which in turn provide the adaptation of the system contact force inputs.

57



3. Feedback MPC for Torque-Controlled Legged Robots

Figure 3.7: Desired and measured torque signals in the left front knee under a con-
stant disturbance of 5.7 kg. The desired torque is the result of both feedforward and
feedback signals. Where in the top plot the feedback is provided by the conventional
tracking controller, in the bottom plot the feedback from the frequency shaped SLQ
algorithm is used.

For the joint velocities, however, the feedback from filter states to joint veloc-

ities is zero, as expected. The fact that end-effector velocities are constrained

to be zero is still reflected in the feedback matrix in exactly the same way

as before. Feedback terms therefore appear in the bottom right partition of

Fig 3.6b, to satisfy the equality constraint, u = Csxs + Dsν, for the rows

associated with joint velocities.

This analysis shows that using the frequency-dependent cost function intro-

duces smoothness and reduced direct gains where possible, but at the same

time still respects hard equality constraints on the original system inputs.

3.4.4 Hardware Experiments: Disturbance Rejection

As seen in the accompanying video1, when LQR gains obtained from the SLQ-

MPC are used on hardware, the system becomes unstable even in full stance

phase. As demonstrated in Section 3.4.3, the frequency shaped formulation

reduces the direct gains between state and input, which enables successful

deployment on hardware. All hardware experiments are therefore performed

with both frequency shaping and inequality constraints active.

We first perform a simple experiment to verify the qualitative difference ob-

served in simulation between using only a feedforward policy with a conven-

1A video of the experiments is available at https://youtu.be/KrTrLGDA6FQ
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tional tracking controller or when using a feedback policy. The robot is put

in a standing configuration with the desired position set to the initial position

with zero velocity. Afterward, we place a 5.7 kg mass (≈ 15 % of the total

mass) on top of the robot to induce a constant disturbance. Fig. 3.7 shows the

resulting desired and measured torque trajectories in the left front knee after

the system reaches an equilibrium.

In the top plot, the points at which the feedforward policy is updated are

clearly visible. At each update, the state reference is reset to the measured ref-

erence, which effectively nullifies the feedback of the tracking controller. Since

the feedforward control signal does not account for the additional disturbance,

the system deviates from the desired trajectory and builds up feedback in the

tracking controller until the next update arrives. In the bottom plot, where

the feedback policy updates arrive at the same rate as the feedforward case,

there are no discontinuous jumps in desired torque. This verifies our earlier

observation in simulation.

3.4.5 Hardware Experiments: Dynamic Walking

Finally, we demonstrate that the proposed method achieves stable walking

with all computations running on the onboard computers. We use a gait

known as dynamic walk. The gait pattern is shown in Fig. 3.8. It consists

of a mixture of underactuated and overactuated contact configurations when

two and three feet are on the ground, respectively. The proposed friction cone

constraint ensures that the trajectory does not require negative contact forces

and thus successfully navigates the intriguing pattern of support polygons.

A receding horizon of 1.0 s was used, for which the MPC reaches an update

frequency of approximately 15 Hz. The resulting desired and measured torque

and joint velocity trajectories are shown in Fig. 3.9 for the left front leg. The

desired and measured signals are close to each other at all time, showing that

the applied feedback policy respects the bandwidth limits of the actuators.

More dynamic gaits such as pace and trot motions are feasible as well. In

the linked video a continuous transition between the two gaits is shown. The

feedback MPC is able to skilfully coordinate leg and body motions in these

unstable and underactuated situations.

3.5 Conclusion

In this work, we proposed to use feedback MPC as an effective way to handle

the slow update rate associated with the computational restrictions of mobile
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Figure 3.8: Gait pattern for the dynamic walk used in the hardware experiments.
Colored areas represent that a leg is in contact.

Figure 3.9: Torque and joint velocity trajectories during three cycles of a dynamic
walk with ANYmal. The desired (dashed line) and measured (full line) are shown
for the HAA (Hip Abduction Adduction), HFE (Hip Flexion Extension), and KFE
(Knee Flexion Extension).

platforms. The sensitivity of CoM control to uncertainties and sampling period

has been recently analyzed in (Villa, Englsberger, and Wieber, 2019), which

provides a theoretical basis for our observation that stable walking is possible

with low update rates.

We proposed a relaxed barrier function method to extend the SLQ algorithm to

optimization problems with inequality constraints. In particular, the friction

cone is implemented through a perturbed second-order cone constraint. This

formulation adds a convex penalty to the cost function and avoids numerical

ill-conditioning at the origin of the cone.
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A frequency-aware MPC approach was used to systematically include the

bandwidth limit of the actuators in the feedback policy design. This was

a key factor to achieve closed-loop stability on hardware without any detun-

ing of the low-level actuator controllers as suggested in (Mason et al., 2016).

The frequency-aware approach effectively allows to set high gains in the low-

frequency spectrum and to attenuate gains in high frequency. It thus increases

the robustness of the feedback policy in the presence of high-frequency distur-

bances. We showed that the feedback policy is consistent with the constraints

of the locomotion task. We empirically confirmed that the MPC policy re-

duces the feedback gains near the boundaries of the friction cone to respect

the inequality constraints. We also demonstrated that the optimized policy

sets zero gains on the contact force of the swing legs and encodes the zero

end-effector velocity constraint for stance legs to satisfy state-input equality

constraints.
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Video: https://youtu.be/weNv-FlRKiE

The theoretical unification of Nonlinear Model Predictive Control (NMPC)

with Control Lyapunov Functions (CLFs) provides a framework for achieving

optimal control performance while ensuring stability guarantees. In this paper

we present the first real-time realization of a unified NMPC and CLF controller

on a robotic system with limited computational resources. These limitations

motivate a set of approaches for efficiently incorporating CLF stability con-

straints into a general NMPC formulation. We evaluate the performance of

the proposed methods compared to baseline CLF and NMPC controllers with

a robotic Segway platform both in simulation and on hardware. The addition

of a prediction horizon provides a performance advantage over CLF based con-

trollers, which operate optimally point-wise in time. Moreover, the explicitly

imposed stability constraints remove the need for difficult cost function and pa-

rameter tuning required by NMPC. Therefore the unified controller improves

the performance of each isolated controller and simplifies the overall design

process.
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Figure 4.1: Left: Segway model for simulation and control design. Right: Physical
Segway system in outdoor experiment environment.

4.1 Introduction

Deploying autonomous and versatile robots into the real world comes with the

challenge of ever increasing complexity in sensing, decision making, and actu-

ation. One difficulty in designing controllers for such complex systems lies in

the need to simultaneously meet a large set of design requirements. Achieving

stable and safe behavior is often in conflict with performance objectives, and

finding the right balance between these requirements can be a challenging task.

A disjoint, hierarchical approach is typically taken in this context. High-level

trajectories are planned to satisfy performance objectives via computationally

intensive nonlinear optimization, and local feedback controllers are separately

designed to ensure stability. The goal of this paper is to directly integrate

these two components by constructing controllers that simultaneously opti-

mize performance along a horizon and satisfy local stability constraints in a

computationally efficient manner. In particular, we seek to unify guarantee-

based methods of nonlinear control with the optimization-based view in model

predictive control. To this end, we combine the guarantees endowed by CLFs

(Artstein, 1983; Sontag, 1989a) with the optimal performance of NMPC (Bock

and Plitt, 1984; Mayne et al., 2000; Rawlings, Mayne, and Diehl, 2017).

Lyapunov methods are a powerful tool for certifying stability properties of

nonlinear systems (Khalil, 2002). The use of CLFs to synthesize stabilizing

controllers for robotic platforms has become increasingly popular (Galloway

et al., 2015; Ma et al., 2017; Nguyen and Sreenath, 2015), often via Quadratic
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Programs (QPs) (Ames et al., 2014; Ames and Powell, 2013). Despite the

optimization-based formulation of these controllers, they often fail to achieve

long-term optimal behavior. This deficiency arises due to the fact that the

cost of these optimization problems fails to incorporate the future behavior of

the system, but is instead point-wise optimal (Freeman and Kokotović, 1996).

In contrast, NMPC emphasizes performance by solving a finite horizon optimal

control problem online and applying the first element of the computed open-

loop input trajectory to the system (Rawlings, Mayne, and Diehl, 2017). This

optimization is repeatedly solved with each newly measured state to obtain

the next control input trajectory. While this class of control laws can achieve

strong performance in practice (Garcia, Prett, and Morari, 1989; Grüne and

Pannek, 2017; Qin and Badgwell, 2003), and allows intuitive specification of

the desired behaviour, additional assumptions must be met to certify closed-

loop stability. In classical discrete-time NMPC, stability is guaranteed by an

appropriately designed terminal penalty and terminal constraint (Grüne and

Pannek, 2017; H. Chen and F. Allgöwer, 1998; Mayne et al., 2000).

The integration of Lyapunov methods with NMPC is not a new idea. Lya-

punov methods have been used to construct stabilizing terminal conditions

(Jadbabaie, Yu, and Hauser, 2001), or to analyze stability in the absence

thereof (Jadbabaie and Hauser, 2005). Another approach incorporates the

stability condition required by a CLF along the prediction horizon found with

NMPC (Primbs, Nevistic, and Doyle, 2000; Yu et al., 2001). As noted in

(Primbs, Nevistic, and Doyle, 2000), this approach has several desirable prop-

erties such as the absence of a terminal cost, stability for any horizon length,

and recovery of the CLF-QP (Ames et al., 2014) or infinite horizon optimal

controllers when considering the limiting behavior of the finite horizon. The

idea of imposing stability constraints along the horizon has appeared in other

forms such as contractive state constraints (de Oliveira Kothare and Morari,

2000), and has been applied within the context of chemical process control

(Mahmood and Mhaskar, 2014; Wu et al., 2018), economic cost functions

(Heidarinejad, Liu, and Christofides, 2012), and switched nonlinear systems

(Mhaskar, El-Farra, and Christofides, 2005).

While this existing work has analyzed the stability and optimality properties

obtained through the unification of CLFs and NMPC, there has been little

attention to the practical and computational aspects of the resulting nonlin-

ear optimization problem. Limited computational resources and fast system

dynamics present a challenge to the deployment of these unified methods to
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modern robotic systems. Indeed, to the best of our knowledge, such a control

scheme has not yet been applied to robotic systems experimentally.

To achieve the goal of experimental realizability, we develop a new method-

ology for combining CLFs with NMPC. We describe practical methods to

efficiently solve the resulting nonlinear optimization problems and ultimately

realize the proposed controllers in simulation and, for the first time, experi-

mentally on a robotic platform; in this case, a Segway hardware platform seen

in Fig. 4.1. While each proposed method provides theoretical stability guar-

antees, significant differences in computational efficiency and performance are

observed. Furthermore, we find that the pairing of these control methodologies

leads to improved performance over CLF methods and significantly reduced

tuning of prediction horizon length and terminal conditions for NMPC meth-

ods.

Our paper is organized as follows. Section 4.2 provides a review of CLFs

and the stability guarantees they yield, and reviews the NMPC problem and

how it is solved in practice. In Section 4.3 we propose a set of methods for

incorporating CLF stability constraints into the NMPC problem, and provide

additional details on implementation. Lastly, in Section 4.4 we provide results

from both simulation and hardware that demonstrate the ability of this unified

control approach to achieve stability and improve performance.

4.2 Background

In this section we provide background information on CLFs and NMPC. This

information supports the specific framework unifying CLFs and NMPC in

Section 4.3.

4.2.1 Control Lyapunov Functions

Consider a state space X ⊂ Rn and a control input space U ⊂ Rm, where it is

assumed X is path-connected and 0 ∈ X . Consider the control-affine dynamic

system given by:

ẋ = f(x) + g(x)u. (4.1)

where x ∈ X , u ∈ U , and f : X → Rn and g : X → Rn×m are Lipschitz

continuous on X . Further assume that f(0) = 0, or that the origin is an

equilibrium point of the system. As in (Khalil, 2002), we define a class K
function as a continuous function α : [0, a) → R+, with a > 0, α(0) = 0

and α strictly monotonically increasing (denoted α ∈ K). If a = ∞ and
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limr→∞ α(r) = ∞, then α is said to be a class K∞ function (α ∈ K∞). This

type of function can be interpreted as a type of nonlinear gain function, noting

the linear gain function α(r) = kr with k > 0 satisfies this definition. Given

this definition, we define CLFs as in (Artstein, 1983; Lin and Sontag, 1991).

Definition 1 (Control Lyapunov Functions). A continuously differentiable

function V : X → R+ is a Control Lyapunov Function (CLF) for (4.1) on X if

there exists α1, α2, α3 ∈ K∞ such that for all x ∈ X :

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖) (4.2)

inf
u∈U

V̇ (x,u) ≤ −α3(‖x‖), (4.3)

This definition can be restated with α1, α2, α3 ∈ K with resulting stability

guarantees holding locally. The existence of a CLF for (4.1) implies the ex-

istence of a continuous (except possibly at x = 0) state-feedback controller

k : X → U that renders the origin globally asymptotically stable (Artstein,

1983; Sontag, 1989b). It is possible to make k continuous at x = 0 if V sat-

isfies the small-control property (Sontag, 1989a). If the functions α1, α2, α3

take the form αi(r) = cir
2, i = 1, 2, 3, the resulting stability is global expo-

nential stability, with the magnitude of the state upper bounded by a function

exponentially decaying in time:

‖x(t)‖ ≤M‖x(0)‖e−γt (4.4)

with M,γ > 0. Similarly, the CLF can be upper bounded:

V (x(t)) ≤ V (x(0))e−γt (4.5)

This preceding bound will be useful for enforcing Lyapunov stability guaran-

tees within the discrete time NMPC problem.

The CLF definition implies the existence of a point-wise set of stabilizing

control inputs:

Uclf(x) = {u ∈ U | V̇ (x,u) ≤ −α3(‖x‖)}. (4.6)

Thus a CLF characterizes a stabilizing feedback controller as a controller k :

X → U such that k(x) ∈ Uclf(x) for all x ∈ X . Furthermore, upon selection

of such a controller, the CLF is a certificate of stability for the closed loop

system:

ẋ = f(x) + g(x)k(x). (4.7)
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Establishing that a given function V serves as a CLF for (4.1) is often done

for robotic systems constructively by specifying a controller taking values in

Uclf(x) for all x ∈ X (Kolathaya and Veer, 2019; Taylor et al., 2019). Note

that for any x ∈ X the set Uclf(x) is described by an affine inequality in u due

to the affine nature of the dynamics:

V̇ (x,u) =
∂V

∂x
(x) (f(x) + g(x)u) . (4.8)

Due to this, the CLF itself may then be used to synthesize a optimization-based

controller with more desirable properties using quadratic programs (Ames et

al., 2014; Ames and Powell, 2013; Galloway et al., 2015). Specifically, we

obtain a feedback control law k(x) that satisfies the inequality (4.3):

k(x) = argmin
u∈U

1

2
u>Ru + q>u (4.9)

s.t.
∂V

∂x
(x) (f(x) + g(x)u) ≤ −α3(‖x‖))

where R is positive definite and U assumed to be a polytope. Feasibility of

this optimization problem is guaranteed by the satisfaction of the constraint

(4.3) and Lipschitz continuity of this controller has been studied in (Jankovic,

2018; Morris, Powell, and Ames, 2015).

This controller is point-wise optimal (Freeman and Kokotović, 1996), and takes

a greedy approach to specifying control inputs. This often leads to poor per-

formance compared to even non-optimization based controllers as there is no

consideration of the future behavior of the system when the input is chosen.

In addition to challenges in achieving longer horizon optimality, these con-

trollers face difficulty in implementation on robotic platforms. The stability

guarantees endowed by these controllers assume a continuous-time implemen-

tation, which is not possible on many modern digital control systems. Instead,

control inputs are chosen and held for a small interval of time in a zero-order-

hold manner. Lyapunov stability of zero-order-hold systems has been studied

utilizing an approximate discretization of the nonlinear dynamics (Nešić and

Teel, 2004; Nešić, Teel, and Sontag, 1999), or in the context of model predic-

tive control (Grüne, Nešić, and Pannek, 2007; Gyurkovics and Elaiw, 2004;

Mhaskr, El-Farra, and Christofides, 2006; Nešić and Grüne, 2006).
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4.2.2 Nonlinear Model Predictive Control

NMPC offers an alternative to CLF-based methods for controlling nonlinear

systems, and is inherently designed to resolve the challenges of longer horizon

optimality at the expensive of higher online computational cost.

We consider a direct NMPC approach to transform the continuous optimal

control problem into a finite dimensional Nonlinear Program (NLP) (Bock

and Plitt, 1984). The continuous control signal u(t) is parameterized over

subintervals of the prediction horizon [0, T ] to obtain a finite dimensional de-

cision problem. This creates a fixed grid of nodes k ∈ {0, ... , N} defining

control times tk separated by intervals of duration δt = T/(N − 1). In this

work, we consider a piecewise constant, or zero-order-hold, parameterization

of the input. Denoting xk = x(tk) and integrating the continuous dynamics in

(4.1) over an interval leads to a discrete time representation of the dynamics:

xk+1 = fd(xk,uk) = xk +

∫ tk+δt

tk

f(x(τ)) + g(x(τ))uk dτ. (4.10)

The integral in (4.10) is numerically approximated with an integration method

of choice to achieve a desired approximation accuracy of the evolution of the

continuous time system under the zero-order-hold commands.

The general NMPC problem presented below can be formulated by defining

and evaluating a cost function and constraints on the grid of nodes. Here,

we write the problem in parametric form, depending on the current measured

state x̂ and additional parameters contained in p, and with a subset of the

constraints implemented as soft-constraints with slack terms:

min
X,U,S

lN (xN ,p) + φ(sN ) +

N−1∑
k=0

lk(xk,uk,p) + φ(sk) (4.11a)

s.t. x0 − x̂ = 0, (4.11b)

xk+1 − fdk (xk,uk) = 0, k = 0, ... , N−1, (4.11c)

hk(xk,uk,p) ≤ sk, k = 0, ... , N−1, (4.11d)

hN (xN ,p) ≤ sN , (4.11e)

sk ≥ 0, k = 0, ... , N, (4.11f)

where X = [x>0 , . . .x
>
N ]>, U = [u>0 , . . .u

>
N−1]>, and S = [s>0 , . . . s

>
N ]> are the

sequences of state, input, and slack variables respectively. The nonlinear cost

and constraint functions lk, hk, lN , and hN , are allowed to vary depending
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on the node index k and are dependent on problem specific parameters p

and the current measured state x̂. The slack variables are penalized with

φ(s) = z>s + 1
2s>Zs, an exact `1 − `2 penalty (Scokaert and Rawlings, 1999).

Collecting all decision variables into a vector, w = [X>,U>,S>]>, problem

(4.11) can be framed as a general NLP:

min
w

F (w,p) s.t.

{
G(w,p) = 0,

H(w,p) ≤ 0.
(4.12)

4.2.3 Sequential Quadratic Programming (SQP)

Interior-Point (IP) methods and Sequential Quadratic Programming (SQP)

are two popular families of algorithms for solving general NLPs (Nocedal and

Wright, 2006). Additionally, the sparsity of (4.12) induced by the underlying

structure of (4.11) can be exploited to obtain solutions in real-time and at a

high sampling rate, which is necessary in many dynamic robotic applications.

An overview of recent advances in sparsity exploiting algorithms and software

tools is provided in (Kouzoupis et al., 2018).

SQP approaches offer a distinct advantage in that successive problem instances

may be warm-started with solutions from preceding instances. This serves to

further decrease computation time as it is often only feasible to take a single

SQP step per control iteration (Li and Biegler, 1989). As NMPC computes

optimal control inputs over a horizon, successive instances of (4.11) are similar

and portions of the preceding optimal control sequence can be use to warm-

start the following iteration, enabling convergence across multiple iterations

of the problem, rather than iterating until convergence on one instance of the

problem (M. Diehl and H.G. Bock and J. P. Schlöder and R. Findeisen and

Z. Nagy and F. Allgöwer, 2002).

SQP based methods apply Newton-type iterations to Karush-Kuhn-Tucker

(KKT) optimality conditions for (4.12), assuming some regularity conditions

on the constraints (Mangasarian and Fromovitz, 1967). The Lagrangian of the

NLP in (4.12) is defined as:

L(w,λ,µ,p) = F (w,p) + λ>G(w,p) + µ>H(w,p), (4.13)

with Lagrange multipliers λ, and µ ≥ 0 corresponding to equality and in-

equality constraints, respectively. The Newton iterations can be equivalently

70



4.3. Unifying CLFs with NMPC

Algorithm 1 Sequential Quadratic Programming (SQP)

Given p,w0,λ0,µ0, F,G,H
Initialize (i,wi,λi,µi)← (0,w0,λ0,µ0)
while NotConverged(wi,λi,µi) do

compute∇wF (wi,p),Bi,H(wi,p),∇wH(wi,p),G(wi,p),∇wG(wi,p).

(δwi,λ
QP
i ,µQP

i )← Solve (4.14)
wi+1 ← wi + δwi

λi+1 ← λQP
i

µi+1 ← µQP
i

i← i+ 1
end while

computed by solving the following potentially non-convex QP (Nocedal and

Wright, 2006):

min
δw

∇wF (wi,p)>δw +
1

2
δw>Biδw (4.14a)

s.t G(wi,p) +∇wG(wi,p)>δw = 0, (4.14b)

H(wi,p) +∇wH(wi,p)>δw ≤ 0, (4.14c)

where the decision variables, δw = w −wi, define the update step relative to

the current iteration wi, and the Hessian Bi = ∇2
wL(wi,λi,µi,p). Computing

the solution to (4.14) provides a decision variable update, δwi, and updated

Lagrange multipliers λQP
i and µQP

i . These iterations are ran until the variables

wi, λi, and µi converge. This iterative approach is summarized in Algorithm

3.

Convergence of the SQP algorithm leads to a state and input sequence, X?

and U?, respectively. The first element of U?, denoted as u0, can be applied

to the system, after which the SQP algorithm is run again to determine a

new control input sequence. The application of SQP as a subroutine within a

NMPC feedback controller is provided in Algorithm 2.

4.3 Unifying CLFs with NMPC

In this section we explore different ways of integrating the stability based CLF-

QP and performance driven NMPC controllers discussed in Section 4.2. These

different methods will be evaluated experimentally in Section 4.4.
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Algorithm 2 SQP - NMPC

Given w0,λ0,µ0

Initialize (j,wj ,λj ,µj)← (0,w0,λ0,µ0)
while ControllerIsRunning() do

x̂← StateEstimation()
yref ← Commands()
p← (x̂,yref)
(wj+1,λj+1,µj+1)← Solve SQP(p,wj ,λj ,µj)
U? ← ExtractInputSequence(wj+1)
u0 ← ExtractFirstInput(U?)
f(x) + g(x)u← ApplyInput(u0)
j ← j + 1

end while

The NMPC framework presented in Algorithm 2 can be interpreted as a closed-

loop feedback controller, kNMPC : X → U . As described in Section 4.2.1, for

each state x ∈ X , a CLF defines a point-wise set of stabilizing control inputs

Uclf(x) given in (4.6). To inherit the stability guarantees provided by the CLF,

we need to restrict the NMPC controller to these stabilizing inputs, such that

kNMPC(x) ∈ Uclf(x) for all x ∈ X .

As noted in (Primbs, Nevistic, and Doyle, 2000), if only the first input in

the input sequence is applied before the input sequence is recomputed, the

restriction of the NMPC controller to stabilizing inputs can be achieved by

directly imposing the CLF condition only on the first input, subject to the

current measured state x̂:

hCLF (x̂,u0) =
∂V

∂x
(x̂) (f(x̂) + g(x̂)u0) ≤ −α3(‖x̂‖). (4.15)

As in the case of the controller (4.9), for a given state, this constraint is affine

in the decision variable u0. Due to this, the SQP subroutine (4.14) contains

the CLF constraint without approximation, and will therefore, in the same way

as the CLF-QP, compute a stabilizing control input after solving just one QP.

In the context of dynamic robotic platforms, this provides an advantage over

general NMPC in that it does not require the computational cost of multiple

Newton iterations to converge to a potentially stabilizing control input.

Beyond the constraint on the first input, any further modifications to the

NMPC problem are done explicitly to increase performance or accommodate

the discrete time implementation of control inputs. In the following, we will
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discuss additional constraints that serve to increase performance beyond that

of the controller given by (4.9) while achieving stability.

4.3.1 Extended Horizon Constraints

While the preceding CLF constraint (4.15) enforces the selection of a stabi-

lizing control input, the resulting theoretical stability properties rely on the

controller being applied continuously in time, as noted in Section 4.2.1. As

this is not possible in practice, it desirable to incorporate additional stabil-

ity constraints that enforce stable behavior when control is implemented in a

zero-order-hold fashion. NMPC is an advantageous framework for these types

of constraints as future states to reflect desired stability properties.

In particular, consider the bound in time on the Lyapunov function established

with exponential stability in (4.5). While this bound is continuous in time,

comparison principles (Khalil, 2002) may be used to formulate an analogous

discrete time bound at the kth node:

hLLS(xk, x̂) = V (xk)− V (x̂)e−γk·δt ≤ 0. (4.16)

The constraints given by hCLF and hLLS can be combined in varying ways

along the length of the prediction horizon. The basic approach, denoted CLF-

0 and presented in (4.17a) to (4.17f), implements the hCLF constraint only

at the initial node. This is extended in the CLF-All approach, where the

hCLF constraint is enforced at each node in the horizon in (4.17g). These

constraints are no longer affine since at nodes k ≥ 1 both state xk and input

uk are decision variables, and are non-linearly coupled in (4.15).

In the approach denoted LLS-N, we enforce the hCLF constraint at the first

node and enforce the hLLS constraint at only the final node in the prediction

horizon in (4.17h). A similar bound, which relies on evaluating V at the final

node after the system has been simulated under a control law given by Sontag’s

universal formula (Sontag, 1989b), is enforced in (Primbs, Nevistic, and Doyle,

2000). Our bound differs in that it is controller independent and only relies on

the bound from exponential stability. Lastly, in the approach denoted LLS-

All, the level set constraint hLLS is applied at each node in (4.17h), forming
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an exponentially contracting funnel along the horizon. Additionally, for all

formulations, the inputs are bounded
¯
u ≤ uk ≤ ū, enforcing uk ∈ U .

CLF-NMPC:

min
X,U,S

φ(sN ) +

N−1∑
k=0

1

2
u>k uk + φ(sk) (4.17a)

s.t x0 − x̂ = 0, (4.17b)

xk+1 − fdk (xk,uk) = 0, k = 0, ... , N−1, (4.17c)

¯
u ≤ uk ≤ ū, k = 0, ... , N−1, (4.17d)

sk ≥ 0, k = 0, ... , N, (4.17e)

CLF-0 : hCLF (x̂,u0) ≤ s0, (4.17f)

Additionally, for

CLF-ALL : hCLF (xk,uk) ≤ sk, k = 1, ... , N−1, (4.17g)

LLS-N : hLLS(xN , x̂) ≤ sN , (4.17h)

LLS-All : hLLS(xk, x̂) ≤ sk, k = 1, ... , N. (4.17i)

4.3.2 Quadratic Approximation Strategy

When applying the SQP algorithm presented in Section 4.2.2 to the nonlinear

formulations presented in (4.17), the quadratic subproblem (4.14) is repeatedly

solved. As we seek to deploy NMPC on dynamic robotic platforms, it is critical

that these optimization problems are well conditioned and do not provide

difficulty to numerical solvers. In particular, when Bi in (4.14a) is positive

semi-definite (p.s.d.), the resulting QP is convex and can be efficiently solved

(Kouzoupis et al., 2018; Stellato et al., 2018).

To ensure this, an approximate p.s.d. Hessian can be used instead of the

full Hessian of the Lagrangian. For (4.17), the objective function has a least-

squares form, i.e., F (w,p) = 1
2‖R(w,p)‖2, in which case the Gauss-Newton

approximation,

Bi ≈ ∇wR(wi,p)>∇wR(wi,p), (4.18)

proves effective in practice (Bock, 1983; Houska, Ferreau, and Diehl, 2011).

This neglects the curvature of R(w,p), as well as the contribution by the

curvature of the constraints. We use this strategy for the CLF-0 and CLF-All

formulations.
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For the LLS-N and LLS-All formulations, we retain the contribution of the

LLS constraints in the Hessian approximation. The second term in (4.16) is

independent of the decision variables, and the properties of this constraint

are thus directly determined by the structure of the CLF V . In particular, if

the CLF used is convex (as is the case for many constructive techniques for

producing CLFs (Kolathaya and Veer, 2019; Taylor et al., 2019)), then the

approximation

Bi ≈ ∇wR(wi,p)>∇wR(wi,p) +
∑
k

µk,LLS∇2
whk,LLS , (4.19)

remains positive definite, and, as we will show in Section 4.4.3, improves con-

vergence compared to a Gauss-Newton approximation.

4.3.3 Baseline Comparisons

To understand how unifying these two control methodologies impacts perfor-

mance and stability, it is necessary to compare against baseline controllers

given by both (4.9) and (4.11). In particular, elements should be shared be-

tween controllers to limit the impact of tuning on performance. To this end, we

begin by synthesizing a CLF using feedback-linearization based constructive

techniques discussed in (Taylor et al., 2019), which enables the consideration

of underactuated systems.

Consider an output y : X → Rk with relative degree 2 (Sastry, 1999) and

k ≤ m, a time-varying reference trajectory y : R+ → Rk, and define the

tracking error e : X × R+ → Rk:

e(x, t) = y(x)− yd(t). (4.20)

A feedback-linearizing controller exists, kfbl : X → U that yields linear closed-

loop error dynamics given by:

η̇(x, t) = Aη(x, t), η =

[
e(x, t)

ė(x, t)

]
(4.21)

where the eigenvalues of A ∈ R2k×2k have negative real part. For any positive

definite Q ∈ R2k×2k, the Continuous Time Lyapunov Equation (CTLE):

A>P + PA = −Q (4.22)
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has a positive definite solution P ∈ R2k×2k. This enables the synthesis of

a quadratic (and convex) Lyapunov function V : X × R+ → R given by

V (x, t) = η(x, t)>Pη(x, t) with time derivative V̇ (x, t) = −η(x, t)>Qη(x, t),

which is negative definite. Furthermore, the existence of the feedback lineariz-

ing controller kfbl implies that V is a CLF, as:

inf
u∈U

V̇ (x, t,u) ≤ −λmin(Q)‖η(x, t)‖22. (4.23)

This CLF can be used in the following CLF-QP controller that achieves ex-

ponential stability with γ = λmin(Q)
λmax(P) . The constraint is slacked for numerical

conditioning with z, Z ≥ 0.

CLF-QP:

min
u∈U,s∈R+

1

2
u>u + zs+

1

2
Zs2 (4.24)

s.t. V̇ (x, t,u) ≤ −λmin(Q)‖η(x, t)‖22 + s

To synthesize a baseline NMPC-β controller, elements from the construction

of the CLF can be utilized. In particular, Q can be used as a running cost on

the state, and the terminal value of the CLF can penalized as in (Jadbabaie,

Yu, and Hauser, 2001):

NMPC-β:

min
X,U

βV (xN , tN )+

N−1∑
k=0

η(xk, tk)>Qη(xk, tk)+
1

2
u>k uk (4.25a)

s.t x0 − x̂ = 0, (4.25b)

xk+1 − fdk (xk,uk) = 0, k = 0, ... , N−1, (4.25c)

¯
u ≤ uk ≤ ū, k = 0, ... , N−1, (4.25d)

That is, the CLF is used as a terminal cost and scaled up with the parame-

ter β. As noted in (Rawlings, Mayne, and Diehl, 2017) if β is selected large

enough, stability can be achieved without the need to specify a terminal state

constraint. The baseline NMPC problem has constraints on the initial condi-

tion and dynamic evolution given by (4.11b) and (4.11c), but does not include

any CLF-based constraints. The inputs are also constrained such that u ∈ U .
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4.4 Simulation & Experimental Results

In this section we provide details on the implementation of the methods es-

tablished in Section 4.3 on a Segway platform, and discuss simulation and

experimental results.

4.4.1 Segway System & Implementation

Dynamics simulations provide an environment for assessing attainable levels of

performance of the various approaches. The simulated dynamics model reflects

a modified Ninebot E+ Segway platform, seen in Fig. 4.1. We consider a planar

representation of the Segway, with state x =
[
r θ ṙ θ̇

]> ∈ R4 where r is

the horizontal position and θ is the pitch angle. The input to the Segway,

u =
[
i
]
∈ [−20, 20], is current to the Segway motors. The equations of motion

are derived via the Newton-Euler equations for an asymmetric, two-wheeled

inverted pendulum with torque input. The asymmetry of the system leads to

an unforced equilibrium at xe =
[
0, θe, 0, 0

]
with θe = 0.138. In the NMPC

controllers, a forward Euler time discretization is used with δt = 0.01 s.

State estimation on the physical Segway is done with wheel encoders and

Inertial Measurement Unit (IMU) data from a VectorNav VN-100. All com-

putations are performed on board on an ARM Cortex-A57 (quad-core) @

2 GHz CPU running the ERIKA3 RTOS. For each NMPC formulation, all

functions, gradients, and Hessians in (4.14) are found using the CasADi auto-

differentiation framework (Andersson et al., 2019). This leads to a QP with

a fixed sparsity pattern, which we solve with the sparsity-exploiting solver

OSQP (Stellato et al., 2018). We solve a single QP per control iteration,

unless otherwise stated.

4.4.2 Simulation Results

To compare the behavior of the different control approaches, we considered a

stabilization task. In particular, we simulated the system under each controller

with a fixed initial condition and an objective of stabilizing to the unforced

equilibrium point xe. The performance of each controller was quantified by the

average input norm over a 2 second time horizon, which provides an assessment

of the total input used. These averages appear in Table 4.1.

We see that the CLF-QP and CLF-0 controllers select identical inputs over

the entire trajectory and have the largest average input of any CLF-based

controllers. This indicates that the addition of a prediction horizon to the
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Table 4.1: Average input norm along the simulation horizon against prediction hori-
zon length (N) for different controller formulations defined in Section 4.3. Absences
indicate failure to stabilize the system.

N 1 10 20 30 40 50
CLF-QP 1.085 1.085 1.085 1.085 1.085 1.085
CLF-0 1.085 1.085 1.085 1.085 1.085 1.085

CLF-All 1.085 1.072 0.952 0.849 0.794 0.769
LLS-N 1.083 0.957 0.889 0.842 0.808 0.784
LLS-All 1.083 0.956 0.887 0.839 0.805 0.782

NMPC-0.1 - - 3.232 2.435 2.036 1.783
NMPC-1 - 3.026 2.019 1.732 1.574 1.471
NMPC-10 0.828 0.607 0.704 0.823 0.926 1.006

baseline CLF-QP controller only improves its performance if the stability hCLF
constraint is applied further along the horizon. We also see that with no

horizon (N =1), all of the CLF-based controllers recover similar performance

to the baseline CLF-QP. If we consider the controllers that impose constraints

further along the horizon we see that their average input consistently decreases

with horizon length, with the CLF-All controller marginally outperforming the

LLS controllers at the longest horizon lengths.

The performance of the baseline NMPC -β controllers heavily depended on the

weighting of the terminal cost. At shorter horizons the NMPC-0.1 and NMPC-

1 controllers failed to stabilize the system, and saw improved performance as

the horizon grew longer. In contrast, the NMPC-10 controller demonstrated

the best performance of all controllers at shorter horizons, but saw worsening

performance as the horizon grew longer. This illustrates the issues that arise

when both stability and performance are achieved through the cost, rather

than decoupled through constraints as in the CLF-based formulations.

To more clearly understand the possible behaviors of the various CLF-NMPC

controllers, we visualize the solutions to each controller obtained at the initial

condition, i.e., x̂ = x(0) in Fig. 4.2. As the CLF-0 controller is only required

to satisfy the stability constraint at the initial node, its input quickly drops to

zero and the hCLF constraint is violated in the next step in the horizon. In

contrast, the CLF-All controller meets the hCLF constraint along the entirety

of the horizon as required. Despite meeting this constraint on V̇ at each node,

the CLF-All controller slightly fails to meet the implied level-set bounds along

the horizon. This is due to the fact that the constraint is checked only at the
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Figure 4.2: Initial CLF-NMPC solutions stabilizing to xe for N = 20 and x̂ =
[0, π

8
, 0, 0]>. Top: The optimal input sequence determined by each controller, with

the CLF-0 controller dropping to zero beyond the first node. Middle: Evaluation of
the bound on V̇ in (4.15). The controllers with the hCLF constraint meet this bound
at all required points, while the two LLS controllers violated it at various points
along the trajectory. Bottom: Evaluation of the the level set bound in (4.16). This
bound is satisfied at all necessary points by the LSS controllers, but is violated by
the CLF-All controller due to the zero-order-hold implementation.

beginning of each interval and is not required to hold over the interval which

the control input is held over.

The LLS controllers both satisfy the level constraints at the required points,

with the LLS-N controller violating the level set bounds earlier in the horizon.

Despite meeting these level set bounds and the required points, both controllers

violate the associated bound on V̇ , with the LLS-All controller satisfying the

hLLS constraint loosely early in the trajectory before satisfying it tightly at

the end of the trajectory.

The evolution of the system under these controllers with a horizon length N =

30 is captured in Fig. 4.3. We see that all CLF-based controllers satisfy the

stability constraint (4.15) during the entire simulation. The most significant

difference in the behavior of these controllers arises in the magnitude of the

input taken early in the trajectory. The best performing controllers applying
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Figure 4.3: Simulation results stabilizing to xe for x(0) = [0, π
8
, 0, 0]>. The eval-

uation of the CLF constraint (4.15) along the simulation horizon is shown in the
bottom-left plot. The system input, pitch angle, and pitch rate are shown in the
top-left, top-right, and bottom-right respectively. The lower weighted NMPC -β
controllers take significantly more time to converge to the equilibrium point.

higher inputs earlier in the trajectory to stabilize the system quickly and avoid

accruing input over more of the trajectory.

We additionally perform a simulation in the opposite direction, driving the Seg-

way from its unforced equilibrium xe to a desired state, xd = [0.0, π8 , 0.0, 0.0]>.

The resulting trajectories are seen in Fig. 4.4. In this scenario we see that

the CLF-QP controller demonstrates significantly different behavior from the

CLF-NMPC controllers. In particular, the CLF-QP controller takes an initial

input to drive the system towards the desired state, and then allows gravity

to carry it to this point. This results in a large overshoot past the desired

state, where as the CLF-NMPC controllers approach the equilibrium point

more slowly.

The NMPC-β controllers fail to converge to the desired state. This arises due

to the fact that the cost on the input is not centered about the input that

makes the desired state an equilibrium point, i.e., ‖u − uref‖22. Because both

the input and the state error appear in the cost, larger error is accepted in

the state to minimize the input. This highlights the flexibility in choosing the

cost function in the CLF-NMPC formulations. General cost functions that do
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Figure 4.4: Simulation results stabilizing to xd = [0, π
8
, 0, 0]> from x?. The eval-

uation of the CLF constraint (4.15) along the simulation horizon is shown in the
bottom-left plot. The system input, pitch angle, and pitch rate are shown in the top-
left, top-right, and bottom-right respectively. The CLF-QP controller overshoots the
desired state, while the CLF-NMPC controllers slowly approach it. The NMPC -β
controllers do not converge due to the trade-off between input and state error in the
cost function.

not necessarily obtain their minimum at the goal can be used, which opens

up the possibility of using economic cost functions (Heidarinejad, Liu, and

Christofides, 2012).

4.4.3 Numerical Results

To understand the feasibility of deploying these control approaches on the com-

putationally limited Segway platform, we investigated the convergence rate of

each formulation on a single instance of the NMPC problem. We also consid-

ered variants of the LLS formulations using the Gauss-Newton approximation

in (4.18) (denoted LLS-NGN and LLS-AllGN ) and compare them to using the

modified Hessian in (4.19).

We execute Algorithm 3 for each formulation until the constraints are suffi-

ciently satisfied, ‖c(w)‖1 ≤ 10−6, and no further progress is made in cost,

|F (wi) − F (wi−1)| ≤ 10−6. The optimization is fully cold-started such that
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Figure 4.5: Convergence of Algorithm 3 applied to a cold-started NMPC problem
with x̂ = xd = [0, π

8
, 0, 0]>. Top: Step size, ‖δw‖2, Middle: Constraint violation,

‖c(w)‖1, Bottom: First order optimality condition, ‖∇wL‖1. The CLF-0 and
NMPC -β methods converge quickly, while the CLF-NMPC methods take longer.
The LLS formulations without the modified Hessian in (4.19) stop progressing be-
yond a certain point.

all decision variables and Lagrange multipliers are initialized to zero. The

problem is set up with x̂ = xd = [0, π8 , 0, 0]> and a horizon length of N = 30.

The step size, constraint satisfaction, and first order optimality are plotted in

Fig. 4.5.

The CLF-0 and NMPC-β formulations converge rapidly as they have a

quadratic cost function and affine constraints. The only nonlinearity in these

problems therefore arises from the system dynamics, making the QP subprob-

lem a good model for the full problem. The CLF-All, LLS-N, and LLS-All

have nonlinear constraints along the horizon, and therefore take significantly

longer to converge. Nonetheless, the convergence rate accelerates over the last

few iterations, indicating that these formulations can still perform well when

starting close to the solution. Finally, the LLS-NGN , and LLS-AllGN for-

mulations initially decrease the constraint violation, but fail to make further

progress after a certain point.
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Figure 4.6: Experimental results from trajectory tracking. Top: Desired velocity
profile, Middle: Input profile, Bottom: Pitch angle profile. The CLF-QP controller
displays more aggressive behavior due to no prediction horizon, while the NMPC-1
controller fails to stabilize the system.

4.4.4 Experimental Results

In addition to simulation, we also demonstrate the ability of this unified control

approach on the physical Segway in Fig. 4.1. In particular, we define a desired

angular trajectory in time:

θd(x, t) = θe −Kv(ṙ − ṙd(t)), (4.26)

where ṙd(t) is a commanded velocity and Kv = 0.3 is a velocity feedback

gain, leading to error dynamics given by e(x, t) = [θ − θd(x, t)]. These dy-

namics are used to synthesize a quadratic CLF as per Section 4.3. This CLF

was used to formulate a CLF-QP controller given by (4.24), a NMPC-1 and

NMPC-10 controller with cost given by (4.25a), and CLF-All, LLS-N, and

LLS-All controllers. Each controller was used to track the desired trajectory

and then stabilize the system. The results of these experiments can be seen

in Fig. 4.6 and the accompanying video1. We see that all controllers except

the NMPC-1 controller are able to stabilize the system. The CLF-QP dis-

plays aggressive behavior compared to the NMPC controllers as it does not

incorporate a prediction horizon. The average input and control frequency

1https://youtu.be/weNv-FlRKiE
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along the experimental horizon is seen in Table 4.2. We see that at a hori-

zon of N = 30 the NMPC-10 controller has the best performance, with the

NMPC-1 controller omitted due to failure to stabilize. Of the CLF-NMPC

controllers the CLF-All controller has the best performance. We note that al-

though the baseline NMPC-10 controller outperforms the proposed methods,

this required tuning of the cost function and matches the behavior seen in

simulation at this horizon length. We see that the CLF-NMPC methods have

a higher computational cost than the NMPC-10 controller. This follows as the

NLP has additional constraints related to stability that must be met. In that

sense, LLS-N is an appealing approach among the CLF-NMPC methods, as

it imposes only two stability constraints.

Table 4.2: Average input norm (‖u‖avg) and computation time (tCPU ) in ms along
the experiment horizon with prediction horizon N = 30 for the different controller
formulations defined in Section 4.3.

CLF-QP CLF-All LLS-N LLS-All NMPC-10
‖u‖avg 2.081 1.594 1.666 1.898 1.152
tCPU 1.25 5.56 4.17 6.13 3.11

4.5 Conclusion

In conclusion, we have presented a novel set of approaches for unifying CLFs

and NMPC on robotic platforms with limited computational resources. The

use of a SQP algorithm with modified Hessian was proposed to efficiently solve

the resulting nonlinear optimization problem. The different unified formula-

tions were analyzed in simulation, for the first time demonstrated on hardware,

and were shown to improve performance beyond baseline CLF and NMPC

methods. In particular for forced equilibria, the CLF-NMPC method con-

verges without modifications while the cost-driven baseline NMPC does not.

Furthermore, the unified methods all achieved stability where as the stability

baseline NMPC methods was sensitive to cost function parameters. As sys-

tem complexity increases, such manual tuning becomes increasingly difficult.

In this space, we see an opportunity for the presented CLF-NMPC methods,

where stability is explicitly embedded and requires no further tuning.

84



5
Multi-layered safety for legged

robots via control barrier

functions and model predictive

control

Grandia, R., Taylor, A. J., Ames, A. D., and Hutter, M. (2021). “Multi-layered safety for
legged robots via control barrier functions and model predictive control”. In: 2021 IEEE
International Conference on Robotics and Automation (ICRA). IEEE, pp. 8352–8358

DOI: 10.1109/ICRA48506.2021.9561510

Video: https://youtu.be/TCDIirXfByE

The problem of dynamic locomotion over rough terrain requires both accu-

rate foot placement together with an emphasis on dynamic stability. Ex-

isting approaches to this problem prioritize immediate safe foot placement

over longer term dynamic stability considerations, or relegate the coordina-

tion of foot placement and dynamic stability to heuristic methods. We pro-

pose a multi-layered locomotion framework that unifies Control Barrier Func-

tions (CBFs) with Model Predictive Control (MPC) to simultaneously achieve

safe foot placement and dynamic stability. Our approach incorporates CBF

based safety constraints both in a low frequency kino-dynamic MPC formula-

tion and a high frequency inverse dynamics tracking controller. This ensures

that safety-critical execution is considered when optimizing locomotion over a

longer horizon. We validate the proposed method in a 3D stepping-stone sce-

nario in simulation and experimentally on the ANYmal quadruped platform.
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5.1 Introduction

A key motivation behind the development of legged robots is their ability to

overcome complex terrain. Because legged locomotion only requires discrete

footholds, obstacle such as steps, gaps, and stairs can be traversed, making

legged robots a compelling alternative to wheeled systems. When a stati-

cally stable motion pattern is considered, several mature strategies for rough

terrain locomotion have been proposed and successfully demonstrated on hard-

ware for bipedal (Griffin et al., 2019), quadrupedal (Fankhauser et al., 2018;

Mastalli et al., 2020b), and hexapedal (Belter, Labecki, and Skrzypczynski,

2016) robots. However, inspired by the fast and dynamic motions seen in

nature, the use of dynamic gaits—a gait where individual contact phases are

statically unstable—is still an active area of research.

The challenge in dynamic locomotion lies in the fact that foothold locations

are not only constrained by the terrain, but also affect the dynamic stability of

the resulting contact configuration. Additionally, as the speed of the motions

increases, the inertial and nonlinear effects described by the full rigid body

dynamics of the system become more relevant. There is therefore a need for

methods that can guarantee a safe foot placement while simultaneously con-

sidering the future impact on the dynamic stability of the system. A classical

locomotion challenge that demands safe foot placement and dynamic stabi-

lization is the “stepping-stones” scenario, see Fig. 5.1, where viable foothold

locations are discontinuous and sparsely available. We propose to combine

the safety guarantees endowed by CBFs with the longer horizon considered in

MPC to guarantee safe foot placement while achieving dynamic locomotion

and high tracking performance.

5.1.1 Related Work

Control Barrier Functions (Ames, Grizzle, and Tabuada, 2014) are a tool for

synthesizing controllers that ensure safety of nonlinear systems (Ames et al.,

2019; Jankovic, 2018). Moreover, CBFs have been used in the stepping-stones

problem via a Quadratic Programming (QP) based tracking controller (Nguyen

et al., 2016; Nguyen and Sreenath, 2015). An offline optimized walking trajec-

tory, or a library thereof (Nguyen et al., 2020), is tracked and locally modified

to satisfy CBF safety constraints. While promising in simulation, we are not

aware of the successful transfer of a CBF based stepping controller to hard-

ware, despite extensions that add robustness (Nguyen and Sreenath, 2016a), or

a learning based model error correction (Choi et al., 2020). Indeed, in (Nguyen
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Figure 5.1: ANYmal (Hutter et al., 2016) performing a trotting gait on stepping-
stones.

et al., 2018), the stepping-stones problem is demonstrated experimentally by

increasing the look-ahead horizon of the gait library and through subsequent

gait interpolation rather than a CBF based method. We hypothesize that it is

exactly this reasoning over a longer horizon that is missing with the CBF-QP

control formulation.

In contrast, Model Predictive Control has become a central method for the

online synthesis and control of dynamic systems over a given time horizon

(Rawlings, Mayne, and Diehl, 2017). In the context of the stepping-stones

problem, a distinction can be made between MPC based approaches where

the footholds locations are determined separately from the torso motion op-

timization (Jenelten et al., 2020; Kim et al., 2020; Villarreal et al., 2020),

and MPC based approaches where the foothold location and torso motions are

jointly optimized. The benefit of jointly optimizing torso and leg motions has

been demonstrated in the field of trajectory optimization (Dai, Valenzuela,

and Tedrake, 2014; Winkler et al., 2018). Following this idea, real-time capa-

ble methods have been proposed with the specification of leg motions made

at the position (Bledt, Wensing, and Kim, 2017), velocity (Farshidian et al.,

2017b), or acceleration level (Neunert et al., 2018). One challenge of this

approach is its computational costs, which can be resolved by coupling a low-

frequency MPC controller with a high-frequency tracking controller (Grandia

et al., 2019b).
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MPC (~30Hz)

WBC (400Hz)

Segmented terrain

Gait pattern Base reference

Terrain constraints

User commands

1st order CBF

2nd order CBF

Figure 5.2: Overview of the proposed multi-layed control setup showing both the
MPC and Whole-Body Controller (WBC) layer receiving terrain CBF constraints.

5.1.2 Contribution

In this work, we build upon a kino-dynamic MPC formulation (Farshidian

et al., 2017b) where joint velocities and contact forces are decision variables

in a low frequency MPC controller. This allows direct integration of CBF

safety constraints into the MPC formulation similar to (Grandia et al., 2020).

By jointly optimizing torso and leg motions our method avoids the heuris-

tic coordination that is needed when foot placement and torso motion are

delegated to separate controllers. A higher rate tracking controller is imple-

mented that fuses inverse dynamics with the CBF safety constraints to of-

fer guarantees of safety with the whole-body dynamics in consideration. In

the context of collision avoidance, CBFs can be thought of (and have shown

to be) a generalization of artificial potential fields used in inverse dynamics

methods (Khatib, 1985)(Singletary et al., 2021). Finally, we note that the

combination of discrete time CBFs with MPC has been considered in (Zeng,

Zhang, and Sreenath, 2021), but it did not consider a multi-layered approach

nor provided experimental results.
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The main contributions of this work are two-fold. First, we propose a multi-

layered control approach that combines CBFs with MPC (see Fig. 5.2). This

framework allows CBF safety constraints on the position coordinates of robotic

systems to be incorporated in a low frequency MPC controller determining

desired velocities as well as in a high frequency tracking controller that incor-

porates the dynamics of the system. Compared to standard CBF approaches,

this adds a horizon when determining safe control inputs. Compared to MPC

approaches, the safety critical constraint is enforced at a higher rate, and in-

corporates a higher fidelity whole-body dynamics model. The second contribu-

tion is, to the best of the author’s knowledge, the first successful experimental

demonstration of CBFs, not only as an approach to the stepping-stones prob-

lem, but on a legged robot.

5.2 Background

This section provides a review of CBFs and nonlinear MPC. Consider the

nonlinear control affine system given by:

ẋ = f(x) + g(x)u, (5.1)

where x ∈ Rn, u ∈ Rm. f : Rn → Rn and g : Rn → Rn×m are locally Lipschitz

continuous on Rn. Given a Lipschitz continuous state-feedback controller k :

Rn × R+ → Rm, the closed-loop system dynamics are:

ẋ = fcl(x, t) , f(x) + g(x)k(x, t). (5.2)

The assumption on local Lipschitz continuity of f , g and k implies that fcl is

locally Lipschitz continuous. Thus for any initial condition x0 := x(0) ∈ Rn
there exists a maximum time interval I(x0) = [0, tmax) such that x(t) is the

unique solution to (5.2) on I(x0) (Perko, 2013).

5.2.1 Control Barrier Functions

The notion of safety that we consider in this paper is formalized by specifying

a safe set in the state space that the system must remain in. In particu-

lar, consider a time-varying set Ct ⊂ Rn defined as the 0-superlevel set of a

continuously differentiable function h : Rn × R+ → R, yielding:

Ct , {x ∈ Rn : h(x, t) ≥ 0} , (5.3)
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We refer to Ct as the safe set. This construction motivates the following

definitions of forward invariant and safety:

Definition 2 (Forward Invariant & Safety). A time-varying set Ct ⊂ Rn
is forward invariant if for every x0 ∈ C0, the solution x(t) to (5.2) satisfies

x(t) ∈ Ct for all t ∈ I(x0). The system (5.2) is safe on the set Ct if the set Ct
is forward invariant.

Certifying the safety of the closed-loop system (5.2) with respect to a set Ct
may be impossible if the controller k was not chosen to enforce the safety of

Ct. Control Barrier Functions can serve as a synthesis tool for attaining the

forward invariance, and thus the safety of a set. Before defining CBFs, we

note a continuous function α : (−∞,∞) → R, is said to belong to extended

class K∞ (α ∈ K∞,e) if α is strictly monotonically increasing, α(0) = 0, and

if lim
r→∞ α(r) =∞, and lim

r→−∞ α(r) = −∞.

Definition 3 (Control Barrier Function (CBF), (Ames et al., 2017)). Let

Ct ⊂ Rn be the time-varying 0-superlevel set of a continuously differentiable

function h : Rn × R+ → R with 0 a regular value. The function h is a

time-varying Control Barrier Function (CBF) for (5.1) on Ct if there exists

α ∈ K∞,e such that for all x ∈ Rn and t ∈ R+:

sup
u∈Rm

ḣ(x, t,u) ,
∂h

∂x
(x, t) (f(x) + g(x)u) +

∂h

∂t
(x, t) ≥ −α(h(x, t)). (5.4)

Controllers that take inputs satisfying (5.4) ensure the safety of the closed-loop

system (5.2) (Ames, Grizzle, and Tabuada, 2014).

Given a nominal (but not necessarily safe) locally Lipschitz continuous con-

troller kd : Rn×R+ → Rm, a possible controller taking values satisfying (5.4)

is the safety-critical CBF-QP:

k(x, t) = argmin
u∈Rm

1

2
‖u− kd(x, t)‖22 (CBF-QP)

s.t. ḣ(x, t,u) ≥ −α(h(x, t)).
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5.2.2 Nonlinear Model Predictive Control

We consider the following nonlinear optimal control problem with cost func-

tional

min
u(·)

Φ(x(T )) +

∫ T

0

L(x(t),u(t), t) dt, (5.5)

where x(t) is the state, u(t) is the input at time t, L(·) is an intermediate

cost, and Φ(·) is the cost at the terminal state x(T ). The goal is to find a

continuous control signal u : I(x0) → Rm that minimizes this cost subject to

the system dynamics, initial condition, and general constraints:

ẋ = f(x,u, t), (5.6)

x(0) = x0, (5.7)

g(x,u, t) = 0, (5.8)

h(x,u, t) ≥ 0. (5.9)

Various methods exist to solve this problem (Rawlings, Mayne, and Diehl,

2017), and a detailed discussion is beyond the scope of this paper. In this

work we use the Sequential Linear Quadratic (SLQ) method, which is a Dif-

ferential Dynamic Programming (DDP) based algorithm for continuous-time

systems. In particular, the method in (Grandia et al., 2019b) is being used

which extends the SLQ formulation of (Farshidian et al., 2017a) for use with

inequality constraints.

5.3 Multi-Layered Control Formulation

In this section we present a multi-layered control formulation that unifies CBFs

with MPC to achieve safety and longer horizon optimality for a general robotic

system. Consider a robotic system with generalized coordinates q ∈ Rd and

coordinate rates q̇ ∈ Rd with dynamics given by:

D(q)q̈ + C(q, q̇)q̇ + g(q) = B(q)τ , (5.10)

with inertia matrix D, centrifugal and Coriolis terms C, gravitational forces

g, actuation matrix B, and torques τ ∈ Rm. Consider a continuously differ-

entiable function h : Rd×R+ → R that determines a time-varying safe set for

the position coordinates of the robot, with a time derivative given by:
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ḣ(q, q̇, t) =
∂h

∂q
(q, t)q̇ +

∂h

∂t
(q, t). (5.11)

The torques τ do not appear in this time derivative, making it impossible to

choose inputs that ensure the barrier constraint:

ḣ(q, q̇, t) ≥ −α1(h(q, t)), (5.12)

is met for some α1 ∈ K∞,e. This challenge is often resolved through the notion

of exponential CBFs (Nguyen and Sreenath, 2016b), in which an auxiliary

function he : Rd × Rd × R+ → R is defined as:

he(q, q̇, t) = ḣ(q, q̇, t) + α1(h(q, t)), (5.13)

ḣe(q, q̇, t, τ ) =
∂he
∂q

(q, q̇, t)q̇ +
∂he
∂q̇

(q, q̇, t)q̈ +
∂he
∂t

(q, q̇, t). (5.14)

As q̈ appears in affine relation to τ in (5.10), he can serve as a CBF for the

set Ct,e ,
{

(q, q̇) ∈ R2d : he(q, q̇, t) ≥ 0
}

by enforcing:

ḣe(q, q̇, t, τ ) ≥ −α2(he(q, q̇, t)), (5.15)

for some α2 ∈ K∞,e. Enforcing the forward invariance of this set implies the

desired safety constraint (5.12) is met, implying the forward invariance of the

set Ct ∩ Ct,e. Thus the constraint on the position coordinates of the robot are

met.

Typical approaches using exponential CBFs only enforce the final constraint

(5.15), often in a CBF-QP controller (Rosolia and Ames, 2021). In practice,

when the desired controller kd is synthesized without considering safety, this

can lead to aggressive behavior when the system approaches the boundary of

the safe set. Using MPC in a multi-layered setup allows the safety constraint to

be incorporated into the specification of kd. When the MPC directly operates

on the full state and input of (5.10), the safety constraint in (5.15) is readily

incorporated, as was done in (Zeng, Zhang, and Sreenath, 2021). In contrast,

we consider a MPC controller that operates on a reduced order model in which

case the barrier constraint in (5.12) is added to the MPC problem instead.

For simplicity of exposition, we present here an MPC layer that operates on a

purely kinematic model of the system.
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Given a current estimate of the state (q̂, ˙̂q) at time t̂, a kinematic MPC solves

the following optimization problem:

Low-Frequency Safe Kinematic MPC:

min
qd(t),q̇d(t)

Φ(qd(T )) +

∫ T

0

L(qd(t), q̇d(t), t) dt,

s.t qd(0) = q̂,

∂qd

∂t
= q̇d,

ḣ(qd, q̇d, t) + α1(h(qd, t)) ≥ 0,

where qd(t) and q̇d(t) are trajectories of generalized coordinates and velocities,

forming the safe desired trajectory for the tracking controller. A desired ac-

celeration is obtained through a combination of tracking terms and a forward

difference of the desired velocities:

q̈d =
q̇d(t̂+ δt)− q̇d(t̂)

δt
+ D(q̇d(t̂)− ˙̂q) + P(qd(t̂)− q̂). (5.16)

Drawing inspiration from the inverse dynamics approach in (Reher, Kann, and

Ames, 2020), the high-frequency controller is given by:

High-Frequency ID-CBF-QP:

k(q, q̇, t) = argmin
τ , q̈

1

2
‖q̈− q̈d‖22

s.t. D(q)q̈ + C(q, q̇)q̇ + g(q) = B(q)τ ,

ḣe(q, q̇, t, τ ) ≥ −α2(he(q, q̇, t)).

This controller seeks to track the desired acceleration determined by the low-

frequency MPC controller while ensuring that the full dynamics are incorpo-

rated into the determination of safe inputs according to (5.15).

5.4 ANYmal Implementation

In this Section we provide an overview of how the multi-layer control formu-

lation discussed in Section 5.3 is applied to the ANYmal quadrupedal robotic

platform. An overview of the control structure is provided in Fig. 5.2.
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5.4.1 MPC System Model

We apply our approach to the kino-dynamic model of a quadruped robot,

which describes the dynamics of a single free-floating body along with the

kinematics for each leg. The state x ∈ R24 and input u ∈ R24 are defined as:

x =
[
θ>, p>, ω>, v>, q>

]>
, u =

[
λ>B , q̇d

>
]>

, (5.17)

where θ ∈ R3 is the orientation of the base in Euler angles, p ∈ R3 is the

position of the center of mass in the world frame FW , ω ∈ R3 is the angular

rate of the base, v ∈ R3 is the linear velocity of the center of mass in the

body frame FB , and q ∈ R12 is the joint positions. The joint positions for

leg i are given by qi ∈ R3. The inputs of the model are end-effector contact

forces λB ∈ R12 in the body frame and desired joint velocities q̇d ∈ R12 with

equations of motion:

θ̇ = T(θ)ω,

ṗ =W RB(θ) v,

ω̇ = I−1
(
−ω × Iω +

∑4
i=1 rBi(qi)× λBi

)
,

v̇ = g(θ) + 1
m

∑4
i=1 λBi ,

q̇ = q̇d,

where WRB : R3 → SO(3) is the rotation matrix from FB to FW and T : R3 →
R3×3 transforms angular velocities to the Euler angles derivatives. Model

parameters include the gravitational acceleration in the body frame g : R3 →
R3, the total mass m ∈ R+, and the moment of inertia I ∈ R3×3. The moment

of inertia is assumed constant and taken at the upright state of the robot. We

denote rBi
: R3 → R3 as the position of foot i relative to the center of the

mass in the body frame.

5.4.2 MPC Constraints

In this subsection we list the constraints that are included in the low-frequency

kino-dynamic MPC controller.
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Figure 5.3: ANYmal traversing stepping-stones in simulation using the multi-layer
CBF-MPC controller. The target foothold regions as well as the contracting barrier
constraints are shown at snapshots in the motion. See the video in the supplementary
material for the full motion.

5.4.2.1 Mode Constraints

The mode constraints capture the different modes of each leg at any given

point in time. We assume that the mode sequence is a predefined function of

time. The resulting mode-dependent constraints are{
vWi(x,u) = 0, if i is a stance leg,

n>vWi(x,u) = c(t), λBi = 0, if i is a swing leg,

where vW i is the end-effector velocity in world frame. These constraints ensure

that stance legs remain on the ground and a swing legs follow a predefined

curve c : R+ → R in the direction of the local surface normal n ∈ R3 to avoid

foot scuffing.

5.4.2.2 Friction Cone Constraints

The end-effector forces are constrained to lie in the friction cone, λWi ∈
Q(n, µc), defined by the surface normal n and friction coefficient µc = 0.7.

After resolving the contact forces in the local frame of the surface, given by

F = [Fx, Fy, Fz], a second-order cone constraint is specified,

hcone = µcFz −
√
F 2
x + F 2

y ≥ 0. (5.18)

5.4.2.3 State-Only Foot Placement Constraints

When foot-placement is formulated as a state-only constraint (rather than

encoded in a CBF), it is specified as the following inequality constraint on

stance feet:

hti(x) = Ai · pWi
(x) + bi ≥ 0, (5.19)
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where Ai ∈ Rpi×3, Bi ∈ Rpi , and pWi
: R24 → R3 is the position of foot i in

the world frame. The matrix Ai and Bi project the position of foot i on to

the target terrain and form a set of half-space constraints to ensure the foot

lands within a desired target region. Instead of constraining the stance feet, a

similar constraint can be placed on the swing feet with a constraint set that

shrinks in time and converges to the desired foot placement region:

hwi (x, t) = Ai · pWi
(x) + bi + s(t) · 1 ≥ 0, (5.20)

where s : R+ → R+ converges to 0 as the t approaches the duration of the

swing phase.

5.4.2.4 Barrier Foot Placement Constraints

When posed as a CBF constraint as in the proposed low-frequency Safe Kine-

matic MPC controller, the foot placement constraints are specified with con-

stant γ ∈ R++ as:

hwe,i(x, q̇, t) = ḣwi (x, t,u) + γhwi (x, t) ≥ 0. (5.21)

5.4.3 Whole-Body Tracking Control

The control signal u determined by the low-frequency MPC layer consists of

contact forces and desired joint velocities. A high-frequency hierarchical in-

verse dynamics controller is used to convert the optimized MPC trajectory into

torque commands (Dario Bellicoso et al., 2016). This WBC approach consid-

ers the full nonlinear rigid body dynamics of the system. At each priority, a

Quadratic Program (QP) is solved in the null space of all higher priority tasks.

Each task is a equality or inequality constraint that is affine in the generalized

accelerations, torques, and contact forces. The CBF constraints, which are by

design affine in the control torques, are therefore readily integrated into this

framework. The full list of tasks is given in Table 5.1.

As described in Section 5.3, the following CBF constraint incorporating the

dynamics can be included in the whole-body controller:

ḣwe,i(x, q̇, t, τ ) + ξhwe,i(x, q̇, t) ≥ 0 (5.22)

with ξ ∈ R++. Finally, the torque derived from the whole body controller,

τwbc ∈ R12, is computed. To compensate for model uncertainty for swing legs
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Table 5.1: WHOLE-BODY CONTROL TASK HIERARCHY.

Priority Type Task
0 = Floating base equations of motion.

≥ Torque limits.
≥ Friction cone constraint.
= No motion at the contact points.
≥ Control barrier constraints.

1 = Torso linear and angular acceleration.
= Swing leg motion tracking.

2 = Contact force tracking.

(on hardware, not in simulation), the integral of joint acceleration error with

gain K ∈ R++ is added to the torque applied to the system:

τ = τwbc −K
∫ t

tsw0

(q̈− q̈wbc) dt (5.23)

While this modification implies τ may not satisfy the CBF condition in (5.22),

we note that τwbc may not satisfy (5.22) in the presence of model uncertainty.

To achieve safe behavior in practice, it is necessary to balance the choice of

safe inputs with model uncertainty.

5.4.4 User Commands & Terrain Selection

User commanded twists and a desired gait pattern are provided to the robot

via joystick and extrapolated to a state reference signal xref(t). The reference

input uref(t) is constructed by equally distributing the weight over all contact

feet. The MPC cost function is a frequency dependent quadratic cost around

the reference trajectories to promote smooth optimal inputs (Grandia et al.,

2019a).

We assume that a segmented terrain model with each segment described by

a planar boundary and a surface normal is available. For each contact phase

within the MPC horizon, the terrain segment is selected that is closest to the

reference end-effector position determined by xref(t), evaluated at the middle

of the stance phase. A convex polygon is fit to the selected terrain, starting

from the reference end-effector position projected onto the segment boundary.

This polygon, together with the surface normal, define the half spaces for the

constraints in (5.19) and (5.20).
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5.5 Results

We evaluate the controller proposed in Section 5.4 in simulation on a classical

stepping-stones scenario as shown in Fig. 5.3. The stones are configured

with a pattern of 0.5 m width and 0.35 m longitudinal spacing, with random

displacements up to 10, 15, and 5 cm, in longitudinal, lateral, and vertical

direction respectively. The controller is commanded to perform a trotting gait

with a forward velocity of 0.25 m/s, and commanded to stop on the final stone.

We compare our proposed controller, numbered V, against four alternative

formulations and report results in Table 5.2.

Table 5.2: SIMULATION RESULTS

I II III IV V
MPC constr. None CBF State State CBF
WBC constr. CBF None None CBF CBF
num. steps 28 140 140 140 140
num. missteps 5 6 5 0 0
avg. misstep [mm] 1.4 2.5 4.3 - -
total swing time
[s]

11.0 49.0 48.6 48.4 48.6

hwi < 0 time [s] 2.4 2.3 15.3 2.6 0.4
hwe,i < 0 time [s] 3.3 5.4 15.6 3.7 0.8

As seen in the supplementary video 1, the controller with no foot placement

constraints in the MPC controller and a CBF constraint in the high-frequency

controller (denoted CBF-QP, and the closest to the related work (Nguyen et al.,

2016)) is able to enforce safety for a number of steps, but quickly destabilizes.

The absence of information on the safety constraint in the MPC layer results

in an abrupt and strong correction for safety by the high-frequency CBF.

This approach work well only when the stepping-stones are placed close to the

nominal gait of the robot, but it fails in this more challenging scenario.

The second and third controllers include foot placement constraints in the

MPC controller, but not in the high-frequency controller. In the second con-

troller the constraints are implemented as CBFs through (5.21) and in the

third controller they are implemented as state constraints through (5.19).

Both of these controllers are able to successfully traverse the length of the

stepping-stones scenario. We see that the controllers exhibit similar numbers

of missteps, but the MPC controller with CBFs has smaller average misstep

size.

1https://youtu.be/TCDIirXfByE
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Figure 5.4: The minimum values of hwi and hwe,i per leg during the stepping-stones
simulation with the CBF only at MPC level.

The fourth and fifth controller enforce the high frequency CBFs (5.22) and

contain either state constraints (5.19) or CBFs (5.21) in the MPC formula-

tion. Both controllers complete the scenario without missteps. However, the

proposed controller shows the least amount of time violating the barrier condi-

tions. The difference can be explained through the results in Fig. 5.6. Because

the MPC with state constraints (top) is not aware of the CBF condition, it

plans for a trajectory that violates these constraints during the swing phase.

During execution, the high-frequency tracking controller strictly enforces the

CBF, resulting in a deviation from the MPC plan. Such abrupt deviations

can cause problems, for example when operating close to kinematic limits.

Consistently enforcing the CBF condition removes this mismatch (bottom).

The simulation experiments indicate that including CBF constraints in the

high-frequency controller leads to safer behavior, and that including terrain

constraints in the MPC controller prevents the high-frequency CBF from desta-

bilizing the gait. Finally, enforcing CBF constraints in both layers of the

hierarchy prevents an inconsistency that results in large deviations from the

optimal solution determined by the MPC layer. The values of hwi and hwe,i
for the controller with CBFs only in the MPC and for with the CBFs in both

WBC & MPC can be seen in Fig. 5.4 and 5.5. The controller with CBFs at

both levels has smaller violations of constraints (5.20) and (5.21).

We evaluate the efficacy of this method experimentally on the ANYmal robotic

platform. All computation runs on a single onboard PC (Intel i7-8850H,

2.6 GHz, hexa-core 64-bit) with the MPC solver running asynchronously at

30 Hz and the whole-body QP tracking controller running at 400 Hz.
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Figure 5.5: The minimum values of hwi and hwe,i per leg during the stepping-stones
simulation with the CBF in both WBC & MPC.

The robot is initialized on pre-mapped terrain and receives external base twist

and gait commands. The size of the segmented regions are decreased by 5 cm

with respect to the real boundary to provide a margin for state estimation

errors. In the supplementary video we visualize the internal state of the

controller. For legs that are in swing, a projection of the barrier constraint

in (5.20) onto the terrain is plotted. This barrier constraint shrinks over time

and converges to the selected target foothold region at foot contact. Further-

more, it can be seen how the foothold target is large when stepping onto the

wooden pallet. This shows that the proposed method can seamlessly transition

between rough and flat terrain, restricting the motion only when necessary for

safe foot placement. The values of hwi and hwe,i for several steps can be seen in

Fig. 5.7. Both constraints are rarely violated, which confirms that the safety

constraints are successfully transferred to hardware.

5.6 Conclusion

We proposed a multi-layered control framework that combines CBFs with

MPC. Simulation experiments show that enforcing CBF constraints on both

the MPC and QP tracking layer outperforms variants where they are enforced

at only one of the layers. Additionally, we validated the viability of the ap-

proach on hardware by demonstrating dynamic locomotion on stepping-stones

with safety constraints. Future work includes developing a perception pipeline

to automatically perform terrain-based segmentation from sensor data and

studying the theoretical properties of the proposed controller.
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Figure 5.6: Visualization of the planned MPC trajectories for different constraint
formulations. Top: MPC with state constraints on the touchdown location (con-
troller IV). Bottom: MPC with CBF constraints (controller V). The plots on the
right show the planned and measured values of hwe,i for the right front foot, with
deviations from the MPC optimal trajectory occurring when CBF constraints are
absent from the MPC formulation.

Figure 5.7: The minimum values of hwi and hwe,i per leg during the stepping-stones
hardware experiment for the proposed controller with CBF constraints in WBC &
MPC.
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6
Perceptive Locomotion through

Nonlinear Model Predictive

Control

Grandia, R., Jenelten, F., Yang, S., Farshidian, F., and Hutter, M. (2022). “Perceptive Loco-
motion through Nonlinear Model Predictive Control”. (submitted to) IEEE Transactions on
Robotics

DOI: 10.48550/ARXIV.2208.08373

Video: https://youtu.be/v6MhPl2ICsc

Dynamic locomotion in rough terrain requires accurate foot placement, col-

lision avoidance, and planning of the underactuated dynamics of the system.

Reliably optimizing for such motions and interactions in the presence of imper-

fect and often incomplete perceptive information is challenging. We propose to

mitigate the numerical challenges posed by the terrain by extracting a sequence

of convex inequality constraints as local approximations of foothold feasibility

and embedding them directly into an online model predictive controller. Based

on this idea, we present a complete perception, planning, and control pipeline,

that can optimize motions for all degrees of freedom of the robot in real-time.

Steppability classification, plane segmentation, and a signed distance field are

precomputed per elevation map to minimize the computational effort during

the model predictive control optimization. We validate the proposed method

in scenarios with gaps, slopes, and stepping stones in simulation and exper-

imentally on the ANYmal quadruped platform, resulting in state-of-the-art

dynamic climbing.
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6. Perceptive Locomotion through Nonlinear Model Predictive
Control

6.1 Introduction

Inspired by nature, the field of legged robotics aims to enable the deployment of

autonomous systems in rough and complex environments. Indeed, during the

recent DARPA subterranean challenge, legged robots were widely adopted,

and highly successful (Bouman et al., 2020; Tranzatto et al., 2021). Still,

complex terrains that require precise foot placements, e.g., negative obstacles

and stepping stones as shown in Fig. 6.1, remain difficult.

A key challenge lies in the fact that both the terrain and the system dynamics

impose constraints on contact location, force, and timing. When taking a

model-based approach, mature methods exist for perceptive locomotion with

a slow, static gait (Belter, Labecki, and Skrzypczynski, 2016; Fankhauser et

al., 2018; Griffin et al., 2019; Kalakrishnan et al., 2010; Mastalli et al., 2020b)

and for blind, dynamic locomotion that assumes flat terrain (Bellicoso et al.,

2018a; Bledt, Wensing, and Kim, 2017; Di Carlo et al., 2018). Learning-based

controllers have recently shown the ability to generalize blind locomotion to

challenging terrain with incredible robustness (Lee et al., 2020; Miki et al.,

2022a; Siekmann et al., 2021). Still, tightly integrating perception to achieve

coordinated and precise foot placement remains an active research problem.

In an effort to extend dynamic locomotion to uneven terrain, several methods

have been proposed to augment foothold selection algorithms with perceptive

information (Jenelten et al., 2020; Kim et al., 2020; Villarreal et al., 2020).

These approaches build on a strict hierarchy of first selecting footholds and

optimizing torso motion afterward. This decomposition reduces the compu-

tational complexity but relies on hand-crafted coordination between the two

modules. Additionally, separating the legs from the torso optimization makes

it difficult to consider kinematic limits and collision avoidance between limbs

and terrain.

Trajectory optimization with full robot dynamics has shown impressive results

in simulation (Dai, Valenzuela, and Tedrake, 2014; Mordatch, Todorov, and

Popović, 2012; Winkler et al., 2018) and removes the need for engineered torso-

foot coordination. Complex motions can be automatically discovered by in-

cluding the entire terrain in the optimization. However, computation times are

often too long for online deployment. Additionally, due to the non-convexity,

non-linearity, and discontinuity introduced by optimizing over arbitrary ter-

rain, these methods can get stuck in poor local minima. Dedicated work on

providing an initial guess is needed to find feasible motions reliably (Melon

et al., 2020).
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Figure 6.1: ANYmal walking on uneven stepping stones. In the shown configura-
tion, the top foothold is 60 cm above the lowest foothold. The top right visualizes
the internal terrain representation used by the controller.

This work presents a planning and control framework that optimizes over all

degrees of freedom of the robot, considers collision avoidance with the terrain,

and enables complex dynamic maneuvers in rough terrain. The method is

centered around nonlinear Model Predictive Control (MPC) with a multiple-

shooting discretization (Bock and Plitt, 1984; Rawlings, Mayne, and Diehl,

2017). However, in contrast to the aforementioned work, where the full terrain

is integrated into the optimization, we get a handle on the numerical difficulty

introduced by the terrain by exposing the terrain as a series of geometric prim-

itives that approximate the local terrain. In this case, we use convex polygons

as foot placement constraints, but different shapes can be used as long as they

lead to well-posed constraints in the optimization. Additionally, a signed dis-

tance field (SDF) is used for collision avoidance. We empirically demonstrate

that such a strategy is an excellent trade-off between giving freedom to the

optimization to discover complex motions and the reliability with which we

can solve the formulated problem.

6.1.1 Contributions

We present a novel approach to locomotion in challenging terrain where percep-

tive information needs to be considered, and nontrivial motions are required.

This is achieved by jointly optimizing over all degrees of freedom of the robot

instead of decoupling base and feet motions in a hierarchical approach. The
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complete perception, planning, and control pipeline contains the following con-

tributions:

• Tractable integration of perceptive information into motion optimization

through a sequence of geometric primitives. In this case, convex polygons

are used to describe local foothold constraints.

• A model formulation that allows collision avoidance of limbs with the

terrain and considers configuration-dependent inertia and center of mass

location.

• Online segmentation of the elevation map into steppable regions, and

efficient precomputation of a signed distance field.

• A detailed description of numerical techniques that enable fast and re-

liable online solutions to the nonlinear problem. The implementation is

publicly available1 as part of the MPC toolbox OCS2 (OCS2: An open

source library for Optimal Control of Switched Systems).

6.1.2 Outline

An overview of the proposed method is given in Fig. 6.2. The perception

pipeline at the top of the diagram runs at 20 Hz and is based on an elevation

map constructed from pointcloud information. For each map update, classifi-

cation, segmentation, and other precomputation are performed to prepare for

the high number of perceptive queries during motion optimization. At the core

of the framework, we use nonlinear MPC at 100 Hz to plan a motion for all

degrees of freedom and bring together user input, perceptive information, and

the measured state of the robot. Finally, state estimation, whole-body torque

control, and reactive behaviors are executed at a rate of 400 Hz.

After a review of related work in section 6.2, this paper is structured similarly

to Fig. 6.2. First, we present the perception pipeline in section 6.3. After-

ward, the formulated optimal control problem and corresponding numerical

optimization strategy are discussed in sections 6.4 & 6.5. We introduce the

motion execution layer in section 6.6. The resulting method is evaluated on the

quadrupedal robot ANYmal (Hutter et al., 2016) (see Fig. 6.1) in section 6.7,

and concluded with section 6.8.

1https://github.com/leggedrobotics/ocs2/tree/main/ocs2 sqp

106



6.2. Related Work

User input

Elevation mapping

State estimation &

Disturbance observer

Whole-body &

reactive controlNonlinear MPC

Classification,
Segmentation, &

Precomputation

AN
Ym

al

20 Hz

100 Hz 400 Hz

Figure 6.2: Schematic overview of the proposed method together with the update
rate of each component.

6.2 Related Work

6.2.1 Decomposing Locomotion

When assuming a quasi-static gait with a predetermined stepping sequence,

the planning problem on rough terrain can be simplified and decomposed into

individual contact transitions, as demonstrated in the early work on LittleDog

(Kalakrishnan et al., 2010; Kolter, Rodgers, and Ng, 2008). In a one-step-

ahead fashion, one can check the next foothold for kinematic feasibility, fea-

sibility w.r.t. the terrain, and the existence of a statically stable transition.

This problem can be efficiently solved by sampling and checking candidate

footholds (Tonneau et al., 2018). Afterward, a collision-free swing leg trajec-

tory to the desired foothold can be generated with CHOMP (Zucker et al.,

2013) based on an SDF. Fully onboard perception and control with such an

approach were achieved by Fankhauser et al. (Fankhauser et al., 2018). In-

stead of one-step-ahead planning, an RRT graph can be built to plan further

ahead (Belter, Labecki, and Skrzypczynski, 2016). Sampling over templated

foothold transitions achieves similar results (Mastalli et al., 2015; Mastalli et

al., 2020b).

In this work, we turn our attention to dynamic gaits, where statically stable

transitions between contact configurations are not available. In model-based
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approaches to dynamic, perceptive locomotion, a distinction can be made be-

tween methods where the footholds locations are determined separately from

the torso and those where the foothold locations and torso motions are jointly

optimized.

Several methods in which footholds are selected before optimizing the torso

motions, initially designed for flat terrain, have been adapted to traverse rough

terrain (Bajracharya et al., 2013; Bazeille et al., 2014). These methods typi-

cally employ some form of Raibert heuristic (Raibert, 1986) to select the next

foothold and adapt it based on perceptive information such as a traversability

estimate (Wermelinger et al., 2016). The work of Bellicoso et al. (Bellicoso

et al., 2018a) was extended by including a batch search for feasible footholds

based on a given terrain map and foothold scoring (Jenelten et al., 2020).

Similarly, in (Kim et al., 2020), the foot placement is adapted based on visual

information resulting in dynamic trotting and jumping motions. In (Magana et

al., 2019), the authors proposed to train a convolutional neural network (CNN)

to speed up the online evaluation of such a foothold adaptation pipeline. This

CNN was combined with the MPC strategy in (Di Carlo et al., 2018) to achieve

perceptive locomotion in simulation (Villarreal et al., 2020). In (Gangapur-

wala et al., 2022) and (Yu et al., 2021), a Reinforcement Learning (RL) policy

has replaced the heuristic foothold selection.

However, since foothold locations are chosen before optimizing the torso mo-

tion, their effect on dynamic stability and kinematic feasibility is not directly

considered, requiring additional heuristics to coordinate feet and torso motions

to satisfy whole-body kinematics and dynamics. Moreover, it becomes hard to

consider collisions of the leg with the terrain because the foothold is already

fixed. In our approach, we use the same heuristics to find a suitable nominal

foothold in the terrain. However, instead of fixing the foothold to that partic-

ular location, a region is extracted around the heuristic in which the foothold

is allowed to be optimized.

The benefit of jointly optimizing torso and leg motions has been demonstrated

in the field of trajectory optimization. One of the first demonstrations of si-

multaneous optimization of foot placement and a zero-moment point (ZMP)

(Vukobratović and Borovac, 2004) trajectory was achieved by adding 2D foot

locations as decision variables to an MPC algorithm (Herdt et al., 2010). More

recently, Kinodynamic (Farshidian et al., 2017a), Centroidal (Orin, Goswami,

and Lee, 2013; Sleiman et al., 2021), and full dynamics models (Herzog, Schaal,

and Righetti, 2016; Pardo et al., 2017) have been used for simultaneous opti-

mization of 3D foot locations and body motion. Alternatively, a single rigid
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body dynamics (SRBD) model can be extended with decision variables for

Cartesian foothold locations (Winkler et al., 2018). Real-time capable meth-

ods have been proposed with the specification of leg motions on position (Bledt,

Wensing, and Kim, 2017), velocity (Farshidian et al., 2017b), or acceleration

level (Neunert et al., 2018). One challenge of this line of work is the compu-

tational complexity arising from the high dimensional models, already in the

case of locomotion on flat terrain. Our method also uses a high-dimensional

model and falls in this category. A key consideration when extending the

formulations with perceptive information has thus been to keep computation

within real-time constraints.

Finally, several methods exist that additionally optimize gait timings or even

the contact sequence together with the whole-body motion. This can be

achieved through complementarity constraints (Dai, Valenzuela, and Tedrake,

2014; Mordatch, Todorov, and Popović, 2012; Posa, Cantu, and Tedrake,

2014), mixed-integer programming(Aceituno-Cabezas et al., 2018; Marcucci

et al., 2017), or by explicitly integrating contact models into the optimiza-

tion (Carius et al., 2018; Neunert et al., 2018). Alternatively, the duration of

each contact phase can be included as a decision variable (Ponton et al., 2018;

Winkler et al., 2018) or found through bilevel optimization (Farshidian et al.,

2017c; Seyde et al., 2019).

6.2.2 Terrain Representation

The use of an elevation map has a long-standing history in the field of legged

robotics (Herbert et al., 1989), and it is still an integral part of many perceptive

locomotion controllers today. Approaches where footholds are selected based

on a local search or sampling-based algorithm can directly operate on such a

structure. However, more work is needed when integrating the terrain into a

gradient-based optimization.

Winkler et al. (Winkler et al., 2018) uses an elevation map for both foot

placement and collision avoidance. The splines representing the foot motion

are constrained to start and end on the terrain with equality constraints. An

inequality constraint is used to avoid the terrain in the middle of the swing

phase. Ignoring the discontinuity and non-convexity from the terrain makes

this approach prone to poor local minima, motivating specialized initialization

schemes (Melon et al., 2020) for this framework.

In (Jenelten et al., 2021), a graduated optimization scheme is used, where a

first optimization is carried out over a smoothened version of the terrain. The

109



6. Perceptive Locomotion through Nonlinear Model Predictive
Control

solution of this first optimization is then used to initialize an optimization over

the actual elevation map. In a similar spirit, Mordatch (Mordatch, Todorov,

and Popović, 2012) considers a general 3D environment and uses a soft-min

operator to smoothen the closest point computation. A continuation scheme

is used to gradually increase the difficulty of the problem over consecutive

optimizations.

Deits et al. (Deits and Tedrake, 2014) describe a planning approach over rough

terrain based on mixed-integer quadratic programming (MIQP). Similar to

(Griffin et al., 2019), convex safe regions are extracted from the terrain, and

footstep assignment to a region is formulated as a discrete decision. The

foothold optimization is simplified because only convex, safe regions are con-

sidered during planning. We follow the same philosophy of presenting the

terrain as a convex region to the optimization. However, we remove the mixed-

integer aspect by pre-selecting the convex region. The benefits are two-fold:

First, we do not require a global convex decomposition of the terrain, which is

a hard problem in general (Bertrand et al., 2020), and instead, only produce

a local convex region centered around a nominal foothold. Second, the MIQP

approach does not allow for nonlinear costs and dynamics, which limits the

range of motions that can be expressed. We first explored the proposed terrain

representation as part of our previous work (Grandia et al., 2021), but relied

on offline mapping, manual terrain segmentation, and did not yet consider

terrain collisions.

6.2.3 Motion Optimization

For trajectory optimization, large-scale optimization software like

SNOPT (Gill, Murray, and Saunders, 2005) and IPOPT (Wächter and

Biegler, 2006) are popular. They are the workhorse for offline trajectory opti-

mization in the work of Winkler (Winkler et al., 2018), Dai (Dai, Valenzuela,

and Tedrake, 2014), Mordatch (Mordatch, Todorov, and Popović, 2012), Posa

(Posa, Cantu, and Tedrake, 2014), and Pardo (Pardo et al., 2017). These

works show a great range of motions in simulation, but it typically takes

minutes to hours to find a solution.

A different line of work uses specialized solvers that exploit the sparsity

that arises from a sequential decision making process. Several variants

of Differential Dynamic Programming (DDP) (Jacobson and Mayne, 1970)

have been proposed in the context of robotic motion optimization, e.g.,

iLQR (Howell, Jackson, and Manchester, 2019; Tassa, Erez, and Todorov,

2012), SLQ (Farshidian et al., 2017a), and FDDP (Mastalli et al., 2020a).

110



6.2. Related Work

Torso referencePlane Segmentation

Collision Avoidance

Constraints

Reference 

Generation

A B

C

Filtering & Classification

Elevation Map

Optimal Control Problem

Convex Foothold Constraints

Plane boundary

Convex constraint

Query

Projection

Signed Distance Field

(dense 3D grid)

Figure 6.3: Perception pipeline overview. (A) The elevation map is filtered and
classified into steppable and non-steppable cells. All steppable areas are segmented
into planes. After segmentation, the steppablity classification is refined. (B) A signed
distance field and torso reference layer are precomputed to reduce the required com-
putation time during optimization. (C) Convex foothold constraints are obtained
from the plane segmentation. The signed distance field enables collision avoidance,
and the torso reference is used to generate height and orientation references.

With a slightly different view on the problem, the field of (nonlinear) model

predictive control (Mayne, 2014; Rawlings, Mayne, and Diehl, 2017) has spe-

cialized in solving successive optimal control problems under real-time con-

straints. See (Kouzoupis et al., 2018) for a comparison of state-of-the-art

quadratic programming (QP) solvers that form the core of second-order opti-

mization approaches to the nonlinear problem. For time-critical applications,

the real-time iteration scheme can be used to trade optimality for lower compu-

tational demands (Diehl, Bock, and Schlöder, 2005): In a Sequential Quadratic

Programming (SQP) approach to the nonlinear problem, at each control in-

stance, only a single QP optimization step is performed.

The current work was initially built on top of a solver in the first cate-

gory (Farshidian et al., 2017a). However, a significant risk in classical DDP-

based approaches is the need to perform a nonlinear system rollout along the

entire horizon. Despite the use of a feedback policy, these forward rollouts

can diverge, especially in the presence of underactuated dynamics. This same

observation motivated Mastalli et al. to design FDDP to maintain gaps be-

tween shorter rollouts, resulting in a formulation that is equivalent to direct

multiple-shooting formulations with only equality constraints (Bock and Plitt,

1984; Mastalli et al., 2020a).
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We directly follow the multiple-shooting approach with a real-time iteration

scheme and leverage the efficient structure exploiting QP solver HPIPM (Fri-

son and Diehl, 2020). However, as also mentioned in (Mastalli et al., 2020a),

one difficulty is posed in deciding a stepsize for nonlinear problems, where

one now has to monitor both the violation of the system dynamics and min-

imization of the cost function. To prevent an arbitrary trade-off through a

merit function, we suggest using a filter-based line-search instead (Fletcher

and Leyffer, 2002), which allows a step to be accepted if it reduces either the

objective function or the constraint violation.

6.3 Terrain Perception and Segmentation

An overview of the perception pipeline and its relation to the MPC controller

is provided in Fig. 6.3. The pipeline can be divided into three parts: (A)

steppability classification and segmentation, (B) precomputation of the SDF

and torso reference, and (C) integration into the optimal control problem.

The elevation map, represented as a 2.5D grid (Fankhauser and Hutter, 2016)

with a 4 cm resolution is provided by the GPU based implementation intro-

duced in (Miki et al., 2022b). The subsequent map processing presented in this

work runs on the CPU and is made available as part of that same open-source

library. Both (A) and (B) are computed once per map and run asynchronously

to the motion optimization in (C).

6.3.1 Filtering & Classification

The provided elevation map contains empty cells in occluded areas. As a first

step, we perform inpainting by filling each cell with the minimum value found

along the occlusion border. Afterwards, a median filter is used to reduce noise

and outliers in the map.

Steppablity classification is performed by thresholding the local surface inclina-

tion and the local roughness estimated through the standard deviation (Chilian

and Hirschmüller, 2009). Both quantities can be computed with a single pass

through the considered neighbourhood of size N :

µ =
1

N

∑
i

ci, S =
1

N

∑
i

cic
>
i , Σ = S− µµ>, (6.1)

where µ and S are the first and second moment, and Σ ∈ R3×3 is the posi-

tive semi-definite covariance matrix of the cell positions ci. The variance in
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normal direction, σ2
n, is then the smallest eigenvalue of Σ, and the surface

normal, n, is the corresponding eigenvector. For steppability classification we

use a neighbourhood of N = 9, and set a threshold of 2 cm on the standard

deviation in normal direction and a maximum inclination of 35◦, resulting in

the following classification:

steppability =

{
1 if σn ≤ 0.02, and nz ≥ 0.82,

0 otherwise,
(6.2)

where nz denotes the z-coordinate of the surface normal.

6.3.2 Plane Segmentation

After the initial classification, the plane segmentation starts by identifying

continuous regions with the help of a connected component labelling (Wu,

Otoo, and Suzuki, 2009). For each connected region of cells, we compute

again the covariance as in (6.1), where N is now the number of cells in the

connected region, and accept the region as a plane based on the following

criteria:

planarity =

{
1 if σn ≤ 0.025, nz ≥ 0.87, and N ≥ 4

0 otherwise.
(6.3)

Notice that here we loosen the bound on the standard deviation to 2.5 cm,

tighten the bound on the inclination to 30◦, and add the constraint that at

least 4 cells form a region. If the planarity condition is met, the surface normal

and mean of the points define the plane.

If a region fails the planarity condition, we trigger RANSAC (Schnabel, Wahl,

and Klein, 2007) on that subset of the data. The same criteria in (6.3) are used

to find smaller planes within the connected region. After the algorithm termi-

nates, all cells that have not been included in any plane have their steppability

updated and set to 0.

At this point, we have a set of plane parameters with connected regions of

the map assigned to them. For each of these regions, we now extract a 2D

contour from the elevation map (Suzuki and be, 1985), and project it along

the z-axis to the plane to define the boundary in the frame of the plane. It is

important to consider that regions can have holes, so the boundary is defined

as an outer polygon together with a set of polygons that trace the enclosed

holes. Finally, if the particular region allows, we shrink the boundary inwards
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(and holes outwards) to provide a safety margin. If the inscribed area is not

large enough, the plane boundary is accepted without margin. In this way

we obtain a margin where there is enough space to do so, but at the same

time we do not reject small stepping stones, which might be crucial in certain

scenarios.

6.3.3 Signed Distance Field

Before computing the SDF, we take advantage of the classification between

terrain that will be potentially stepped on and terrain that will not be stepped

on. To all cells that are non-steppable, we add a vertical margin of 2 cm, and

dilate the elevation by one cell. The latter effectively horizontally inflates all

non-steppable areas by the map resolution. This procedure corrects for the

problem that edges tend to be underestimated in the provided elevation map.

We use a dense 3D voxel grid, where each voxel contains the value and 3D

gradient. The previous motion plan is used to determine the 3D volume where

distance information is needed. This volume is a bounding box that contains

all collision bodies of the last available plan with a margin of 25 cm. This way,

the size and shape of the SDF grid dynamically scales with the motion that

is executed. Storing both value and derivative as proposed in (Pankert and

Hutter, 2020) allows for efficient interpolation during optimization. However,

in contrast to (Pankert and Hutter, 2020), where values and gradients are

cached after the first call, we opt to precompute the full voxel grid to reduce

the computation time during optimization as much as possible.

This is possible by taking advantage of the extra structure that the 2.5D rep-

resentation provides. A detailed description of how the SDF can be efficiently

computed from an elevation map is given in Appendix A, section 6.9.

6.3.4 Torso Reference Map

With user input defined as horizontal velocity and an angular rate along the

z-direction, it is the responsibility of the controller to decide on the height and

orientation of the torso. We would like the torso pose to be positioned in such a

way that suitable footholds are in reach for all of the feet. We therefore create

a layer that is a smooth interpolation of all steppable regions as described in

(Jenelten et al., 2021). The use of this layer to generate a torso height and

orientation reference is presented in section 6.4.5.
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6.4 Motion Planning

In this section, we describe the nonlinear MPC formulation. In particular,

we set out to define all components in the following nonlinear optimal control

problem:

minimize
u(·)

Φ(x(T )) +

∫ T

0

L(x(t),u(t), t) dt, (6.4a)

subject to: x(0) = x0, (6.4b)

ẋ = f c(x,u, t), (6.4c)

g(x,u, t) = 0, (6.4d)

where x(t) is the state and u(t) is the input at time t. The term L(·) is a

time-varying running cost, and Φ(·) is the cost at the terminal state x(T ).

The goal is to find a control signal that minimizes this cost subject to the

initial condition, x0, system dynamics, f c(·), and equality constraints, g(·).
Inequality constraints are all handled through penalty functions and will be

defined as part of the cost function in section 6.4.6.

6.4.1 Robot Definition

We define the generalized coordinates and velocities as:

q =
[
θ>B ,p

>
B ,q

>
j

]>
, q̇ =

[
ω>B ,v

>
B , q̇

>
j

]>
, (6.5)

where θB ∈ R3 is the orientation of the base frame, FB , in Euler angles,

pB ∈ R3 is the position of the base in the world frame, FW . ωB ∈ R3 and

vB ∈ R3 are the angular rate and linear velocity of the base in the body

frame FB . Joint positions and velocities are given by qj ∈ R12 and q̇j ∈ R12.

The collection of all contact forces is denoted by λ ∈ R12. When referring to

these quantities per leg, we will use a subscript i, e.g. qi ∈ R3 or λi ∈ R3. All

subscripts for legs in contact are contained in the set C. A graphical illustration

of the robot together with the defined coordinate frames is provided in Fig. 6.4.
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Figure 6.4: Overview of the coordinates frames and constraints used in the defini-
tion of the MPC problem. On the front left foot, a friction cone is shown, defined
in the terrain frame FT . On the right front foot, a swing reference trajectory is
drawn between the liftoff frame FT− and touchdown frame FT+ . Foot placement
constraints are defined as a set of half-spaces in the touchdown frame. Stance legs
have collision bodies at the knee, as illustrated on the right hind leg, while swing
legs have collision bodies on both the foot and the knee, as shown on the left hind
leg.

6.4.2 Torso Dynamics

To derive the torso dynamics used in this work, consider the full rigid body

dynamics of the robot,

M(q)q̈ + n(q, q̇) = S>τ + τ dist +
∑
i∈C

J>i (q)λi, (6.6)

with inertia matrix M : R18 → R18×18, generalized accelerations q̈ ∈ R18, and

nonlinear terms n : R18 × R18 → R18 on the left hand side. The right hand

contains the selection matrix S = [012×6, I12×12] ∈ R12×18, actuation torques

τ ∈ R12, disturbance forces τ dist ∈ R18, contact Jacobians Ji : R18 → R3×18,

and contact forces λi ∈ R3.

For these equations of motion, it is well known that for an articulated system,

the underactuated, top 6 rows are of main interest for motion planning (Ponton
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et al., 2018). These so-called centroidal dynamics govern the range of motion

that can be achieved (Orin, Goswami, and Lee, 2013; Wieber, 2006). Solving

the centroidal dynamics for base acceleration gives:[
ω̇B
v̇B

]
= M−1

B

(
τ dist
B −MBjq̈j − nB +

∑
i∈C

J>B,iλi

)
, (6.7)

= fB(q, q̇, q̈j ,λ, τ
dist
B ), (6.8)

where MB ∈ R6×6 is the compound inertia tensor at the top left of M(q), and

MBj ∈ R6×12 is the top right block that encodes inertial coupling between the

legs and base. The other terms with subscript B correspond to the top 6 rows

of the same terms in (6.6).

To simplify the torso dynamics, we evaluate this function with zero inertial

coupling forces from the joints, i.e. MBjq̈j = 0. This simplification allows us to

consider the legs only on velocity level and removes joint accelerations from the

formulation. From here, further simplifications would be possible. Evaluating

the function at a nominal joint configuration and zero joint velocity creates

a constant inertia matrix and gives rise to the commonly used single rigid

body assumption. While this assumption is appropriate on flat terrain, the

joints move far away from their nominal configuration in this work, creating a

significant shift in mass distribution and center of mass location.

6.4.3 Input Loopshaping

The bandwidth limitations of the series elastic actuators used in ANYmal

pose an additional constraint on the set of motions that are feasible on hard-

ware. Instead of trying to accurately model these actuator dynamics, we use

a frequency-dependent cost function to penalize high-frequency content in the

contact forces and joint velocity signals (Grandia et al., 2019a). For complete-

ness, we present here the resulting system augmentation in the time domain:

ṡλ = Aλsλ + Bλνλ, ṡj = Ajsj + Bjνj , (6.9)

λ = Cλsλ + Dλνλ, q̇j = Cjsj + Djνj ,

where sλ and sj are additional states, and νλ and νj are auxiliary inputs,

associated with contact forces and joint velocities respectively. When the

filters (νλ → λ and νj → q̇j) are low-pass filters, penalizing the auxiliary

input is equivalent to penalizing high frequency content in λ and q̇j .
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An extreme case is obtained when choosing Aλ = Dλ = 0, Bλ = Cλ = I,

in which case the auxiliary input becomes the derivative, λ̇. This reduces to

the common system augmentation technique that allows penalization of input

rates (Rawlings, Mayne, and Diehl, 2017).

In our case we allow some direct control (D 6= 0) and select Aλ = Aj = 0,

Bλ = Bj = I, Cλ = 100
4 I, Cj = 50

3 I, Dλ = 1
4I, Dj = 1

3I. This corresponds

to a progressive increase in cost up to a frequency of 100 rad/s for λ and up

to 50 rad/s for q̇j , where high frequency components have their cost increased

by a factor of 4 and 3 respectively.

6.4.4 System Dynamics

We are now ready to define the state vector x ∈ R48 and input vector u ∈ R24

used during motion optimization:

x =
[
θ>B ,p

>
B ,ω

>
B ,v

>
B ,q

>
j , s
>
λ , s
>
j

]>
, u =

[
ν>λ ,ν

>
j

]>
. (6.10)

Putting together the robot dynamics from section 6.4.2 and system augmen-

tation described in 6.4.3 gives the continuous time MPC model ẋ = f c(x,u, t):

d

dt



θB
pB
ωB
vB
qj
sλ
sj


=



T(θB)ωB
RB(θB) vB

fB(q, q̇,0,Cλsλ + Dλνλ, τ
dist
B )

Cjsj + Djνj
Aλsλ + Bλνλ
Ajsj + Bjνj


, (6.11)

where T(θB) : R3 → R3×3 provides the conversion between angular body rates

and Euler angle derivatives, and RB(θB) : R3 → R3×3 provides the body to

world rotation matrix. The disturbance wrench τ dist
B is considered a parameter

and is assumed constant over the MPC horizon.

6.4.5 Reference Generation

The user commands 2D linear velocities and an angular rate in the horizontal

plane, as well as a desired gait pattern. A full motion and contact force

reference is generated to encode these user commands and additional motion
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preferences into the cost function defined in section 6.4.6. This process is

carried out before every MPC iteration.

As a first step, assuming a constant input along the horizon, a 2D base refer-

ence position and heading direction are extrapolated in the world frame. At

each point in time, the 2D pose is converted to a 2D position for each hip. The

smoothened elevation map, i.e. the torso reference layer shown in Fig 6.3, is

interpolated at the 2D hip location. The interpolated elevation in addition to

a desired nominal height, hnom, gives a 3D reference position for each hip. A

least-squares fit through the four hip positions gives the 6DoF base reference.

The extracted base reference and the desired gait pattern are used to de-

rive nominal foothold locations. Here we use the common heuristic that the

nominal foothold is located below the hip at the middle of the contact phase

(Raibert, 1986). Additionally, for the first upcoming foothold, a feedback on

the measured velocity is added:

pi,nom = pi,hip,nom +

√
hnom
g

(vB,meas − vB,com), (6.12)

where pi,nom ∈ R3 is the nominal foothold, pi,hip,nom ∈ R3 is the nominal

foothold location directly below the hip, and g is the gravitational constant.

vB,meas and vB,com are measured and commanded base velocity respectively.

With the nominal foothold locations known, the plane segmentation defined in

section 6.3.2 is used to adapt the nominal foothold locations to the perceived

terrain. Each foothold is projected onto the plane that is closest and within

kinematic limits. Concretely, we find the closest point on each of the available

planes and pick the reference foothold, pi,ref , according to:

argmin
pi,ref∈Π(pi,nom)

‖pi,nom − pi,ref‖22 + wkinfkin(pi,ref ), (6.13)

where Π(pi,nom) is the set of projected candidate points, one per segmented

plane, and fkin is a kinematic penalty with weight wkin that penalizes the

point if the leg extension at liftoff or touchdown is beyond a threshold and if

the foothold crosses over to the opposite side of the body. Essentially, this is a

simplified version of the foothold batch search algorithm presented in (Jenelten

et al., 2020), which searches over cells of the map instead of pre-segmented

planes.
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After computing all projected footholds, heuristic swing trajectories are com-

puted with two quintic splines; from liftoff to apex and apex to touchdown.

The spline is constrained by a desired liftoff and touchdown velocity, and an

apex location is selected in such a way that the trajectory clears the highest

terrain point between the footholds. Inverse kinematics is used to derive joint

positions reference corresponding to the base and feet references.

Finally, contact forces references are computed by dividing the total weight of

the robot equally among all feet that are in contact. Joint velocity references

are set to zero.

6.4.6 Cost & Soft Inequality Constraints

The cost function (6.4a) is built out of several components. The running cost

L(x,u, t) can be split into tracking costs Lε, loopshaping costs Lν , and penalty

costs LB:

L = Lε + Lν + LB. (6.14)

The motion tracking cost are used to follow the reference trajectory defined

in section 6.4.5. Tracking error are defined for the base, εB , and for each foot

,εi,

εB =


log(RBR>B,ref )∨

pB − pB,ref
ωB − ωB,ref
vB − vB,ref

 , εi =


qi − qi,ref
q̇i − q̇i,ref
pi − pi,ref
vi − vi,ref
λi − λi,ref

 , (6.15)

where log(RBR>B,ref )∨ is the logarithmic map of the orientation error, repre-

sented as a 3D rotation vector, and pi and vi are the foot position and velocity

in world frame. Together with diagonal, positive definite, weight matrices WB

and Wi, these errors form the following nonlinear least-squares cost:

Lε =
1

2
‖εB‖2WB

+

4∑
i=1

1

2
‖εi‖2Wi

. (6.16)

As discussed in section 6.4.3, high-frequency content in joint velocities and

contact forces are penalized through a cost on the corresponding auxiliary

input. This cost is a simple quadratic cost:

Lν =
1

2
ν>λ Rλνλ +

1

2
ν>j Rjνj , (6.17)
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where Rλ and Rj are constant, positive semi-definite, weight matrices. To ob-

tain an appropriate scaling and avoid further manual tuning, these matrices are

obtained from the quadratic approximation of the motion tracking cost (6.16),

with respect to λ and q̇j respectively, at the nominal stance configuration of

the robot.

All inequality constraints are handled through the penalty cost. In this work,

we use relaxed barrier functions (Feller and Ebenbauer, 2017; Hauser and

Saccon, 2006). This penalty function is defined as a log-barrier on the interior

of the feasible space and switches to a quadratic function at a distance δ from

the constraint boundary.

B(h) =

{
−µ ln(h), h ≥ δ,
µ
2

((
h−2δ
δ

)2 − 1
)
− µ ln(δ), h < δ.

(6.18)

The penalty is taken element-wise for vector-valued inequality constraints.

The sum of all penalties is given as follows:

LB =

4∑
i=1

Bj
(
hji

)
+
∑
i∈C
Bt
(
hti
)

+ Bλ
(
hλi
)

+
∑
c∈D
Bd
(
hdc
)
, (6.19)

with joint limit constraints hji for all legs, foot placement and friction cones

constraints, hti and hλi , for legs in contact, and collision avoidance constraints

hdc for all bodies in a set D.

The joint limits constraints contain upper {qj , q̇j , τ} and lower bounds {q
j
,

q̇
j
, τ} for positions, velocities, and torques:

hji =



qj − qj
qj − q

j

q̇j − q̇j
q̇j − q̇

j

τ − τ
τ − τ


≥ 0, (6.20)

where we approximate the joint torques by considering a static equilibrium in

each leg, i.e. τ i = J>j,iλi.
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The foot placement constraint is a set of linear inequality constraints in task

space:

hti = At
i · pi + bti ≥ 0, (6.21)

where At
i ∈ Rm×3, and bti ∈ Rm define m half-space constraints in 3D. Each

half-space is defined as the plane spanned by an edge of the 2D polygon and

the surface normal of the touchdown terrain FT+. The polygon is obtained

by initializing all m vertices at the reference foothold derived in section 6.4.5

and iteratively displacing them outwards. Each vertex is displaced in a round-

robin fashion until it reaches the border of the segmented region or until further

movement would cause the polygon to become non-convex. Similar to (Deits

and Tedrake, 2015), we have favoured the low computational complexity of an

iterative scheme over an exact approach of obtaining a convex inner approxi-

mation. The extracted constraints remain unaltered for a foot that is in the

second half of an ongoing swing phase to prevent large, last-minute jumps in

constraints.

The friction cone constraint is implemented as:

hλi = µcFz −
√
F 2
x + F 2

y + ε2 ≥ 0, (6.22)

with [Fx, Fy, Fz]
> = R>TRBλi, defining the forces in the local terrain frame.

µc is the friction coefficient, and ε > 0 is a parameter that ensures a continuous

derivative at λi = 0, and at the same time creates a safety margin (Grandia

et al., 2019b).

The collision avoidance constraint is given by evaluation of the SDF at the

center of a collision sphere, pc, together with the required distance given by

the radius, rc, and a shaping function dmin(t).

hdc = dSDF (pc)− rc − dmin(t) ≥ 0. (6.23)

The primary use of the shaping function is to relax the constraint if a foot starts

a swing phase from below the map. To avoid the robot using maximum velocity

to escape the collision, we provide smooth guidance back to free space with

a cubic spline trajectory. This happens when the perceived terrain is higher

than the actual terrain, for example in case of a soft terrain like vegetation

and snow, or simply because of drift and errors in the estimated map. The

collision set D contains collision bodies for all knees and for all feet that are

in swing phase, as visualized on the hind legs in Fig. 6.4.
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Algorithm 3 Real-time iteration Multiple-shooting MPC

1: Given: previous solution wi
2: Discretize the continous problem to the form of (6.27)
3: Compute the linear quadratic approximation (6.30)
4: Compute the equality constraint projection (6.34)
5: δw̃← Solve the projected QP subproblem (6.35)
6: δw← Pδw̃ + p, back substitution using (6.33)
7: wi+1 ← Line-Search(wi, δw), (Algorithm 4)

Finally, we use a quadratic cost as the terminal cost in (6.4a). To approximate

the infinite horizon cost incurred after the finite horizon length, we solve a

Linear Quadratic Regulator (LQR) problem for the linear approximation of

the MPC model and quadratic approximation of the intermediate costs around

the nominal stance configuration of the robot. The Riccati matrix SLQR of

the cost-to-go is used to define the quadratic cost around the reference state:

Φ(x) =
1

2
(x− xref (T ))

>
SLQR (x− xref (T )) . (6.24)

6.4.7 Equality Constraints

For each foot in swing phase, the contact forces are required to be zero:

λi = 0, ∀i /∈ C. (6.25)

Additionally, for each foot in contact, the end-effector velocity is constrained

to be zero. For swing phases, the reference trajectory is enforced only in the

normal direction. This ensures that the foot lifts off and touches down with

a specified velocity while leaving complete freedom of foot placement in the

tangential direction.{
vi = 0, if i ∈ C,
n>(t) (vi − vi,ref + kp(pi − pi,ref )) = 0, if i /∈ C,

The surface normal, n(t), is interpolated over time since liftoff and touchdown

terrain can have a different orientation.

6.5 Numerical Optimization

We consider a direct multiple-shooting approach to transforming the continu-

ous optimal control problem into a finite-dimensional nonlinear program (NLP)
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(Bock and Plitt, 1984). Since MPC computes control inputs over a receding

horizon, successive instances of (6.27) are similar and can be efficiently warm-

started when taking an SQP approach. Additionally, we follow the real-time

iteration scheme where only one SQP step is performed per MPC update (M.

Diehl and H.G. Bock and J. P. Schlöder and R. Findeisen and Z. Nagy

and F. Allgöwer, 2002). In this way, the solution is improved across consecu-

tive instances of the problem, rather than iterating until convergence for each

problem.

As an overview of the approach described in the following sections, a pseudo-

code is provided in Algorithm 3, referring to the relevant equations used at

each step. Except for the solution of the QP in line 5, all steps of the algo-

rithm are parallelized across the shooting intervals. The QP is solved using

HPIPM (Frison and Diehl, 2020).

6.5.1 Discretization

The continuous control signal u(t) is parameterized over subintervals of the

prediction horizon [t, t + T ] to obtain a finite-dimensional decision problem.

This creates a grid of nodes k ∈ {0, ... , N} defining control times tk separated

by intervals of duration δt ≈ T/(N −1). Around gait transitions, δt is slightly

shortened or extended such that a node is exactly at the gait transition.

In this work, we consider a piecewise constant, or zero-order-hold, parame-

terization of the input. Denoting xk = x(tk) and integrating the continuous

dynamics in (6.11) over an interval leads to a discrete time representation of

the dynamics:

fdk (xk,uk) = xk +

∫ tk+δt

tk

f c(x(τ),uk, t) dτ. (6.26)

The integral in (6.26) is numerically approximated with an integration method

of choice to achieve the desired approximation accuracy of the evolution of

the continuous time system under the zero-order-hold commands. We use an

explicit second-order Runge-Kutta scheme.
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The general nonlinear MPC problem presented below can be formulated by

defining and evaluating a cost function and constraints on the grid of nodes.

min
X,U

Φ(xN ) +

N−1∑
k=0

lk(xk,uk), (6.27a)

s.t. x0 − x̂ = 0, (6.27b)

xk+1 − fdk (xk,uk) = 0, k = 0, ... , N−1, (6.27c)

gk(xk,uk) = 0, k = 0, ... , N−1, (6.27d)

where X = [x>0 , . . .x
>
N ]>, and U = [u>0 , . . .u

>
N−1]>, are the sequences of state

and input variables respectively. The nonlinear cost and constraint functions

lk, and gk, are discrete sample of the continuous counterpart. Collecting all

decision variables into a vector, w = [X>,U>]>, problem (6.27) can be written

as a general NLP:

min
w

φ(w), s.t.

[
F(w)

G(w)

]
= 0, (6.28)

where φ(w) is the cost function, F(w) is the collection of initial state and

dynamics constraints, and G(w) is the collection of all general equality con-

straints.

6.5.2 Sequential Quadratic Programming (SQP)

SQP based methods apply Newton-type iterations to Karush-Kuhn-Tucker

(KKT) optimality conditions, assuming some regularity conditions on the con-

straints (Mangasarian and Fromovitz, 1967). The Lagrangian of the NLP in

(6.28) is defined as:

L(w,λG,λH) = φ(w) + λ>FF(w) + λ>GG(w), (6.29)

with Lagrange multipliers λF and λG, corresponding to the dynamics and

equality constraints. The Newton iterations can be equivalently computed by

125



6. Perceptive Locomotion through Nonlinear Model Predictive
Control

solving the following potentially non-convex QP (Nocedal and Wright, 2006):

min
δw

∇wφ(wi)
>δw +

1

2
δw>Biδw, (6.30a)

s.t F(wi) +∇wF(wi)
>δw = 0, (6.30b)

G(wi) +∇wG(wi)
>δw = 0, (6.30c)

where the decision variables, δw = w −wi, define the update step relative to

the current iteration wi, and the Hessian Bi = ∇2
wL(wi,λF,λG). Computing

the solution to (6.30) provides a candidate decision variable update, δwi, and

updated Lagrange multipliers.

6.5.3 Quadratic Approximation Strategy

As we seek to deploy MPC on dynamic robotic platforms, it is critical that

the optimization problem in (6.30) is well conditioned and does not provide

difficulty to numerical solvers. In particular, when Bi in (6.30a) is positive

semi-definite (p.s.d), the resulting QP is convex and can be efficiently solved

(Kouzoupis et al., 2018).

To ensure this, an approximate, p.s.d Hessian is used instead of the full Hes-

sian of the Lagrangian. For the tracking costs (6.16), the objective function

has a least-squares form in which case the Generalized Gauss-Newton approx-

imation,

∇2
w

(
1

2
‖εi(w)‖2Wi

)
≈ ∇wεi(w)>Wi∇wεi(w), (6.31)

proves effective in practice (Houska, Ferreau, and Diehl, 2011). Similarly, for

the soft constraints, we exploit to convexity of the penalty function applied to

the nonlinear constraint (Verschueren et al., 2016):

∇2
w (B(h(w))) ≈ ∇wh(w)>∇2

hB(h(w))∇wh(w), (6.32)

where the diagonal matrix ∇2
hB(h(w)) maintains the curvature information

of the convex penalty functions. The contribution of the constraints to the

Lagrangian in (6.29) is ignored in the approximate Hessian since we do not

have additional structure that allows a convex approximation.
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6.5.4 Constraint Projection

The equality constraints in 6.4.7 were carefully chosen to have full row rank

w.r.t. the control inputs, such that, after linearization, ∇wG(wi)
> has full row

rank in (6.30c). This means that the equality constraints can be eliminated

before solving the QP through a change of variables (Nocedal and Wright,

2006):

δw = Pδw̃ + p, (6.33)

where the linear transformation satisfies

∇wG(wi)
>P = 0, ∇wG(wi)

>p = −G(wi). (6.34)

After substituting (6.33) into (6.30), the following QP is solved w.r.t. δw̃.

min
δw̃

∇w̃φ̃(wi)
>δw̃ +

1

2
δw̃>B̃iδw̃, (6.35a)

s.t F̃(wi) +∇w̃F̃(wi)
>δw̃ = 0. (6.35b)

Because each constraint applies only to the variables at one node k, the co-

ordinate transformation maintains the sparsity pattern of an optimal control

problem and can be computed in parallel. Since this projected problem now

only contains costs and system dynamics, solving the QP only requires one

Ricatti-based iteration(Frison and Diehl, 2020). The full update δw is then

obtained through back substitution into (6.33).

6.5.5 Line-Search

To select an appropriate stepsize, we employ a line-search based on the filter

line-search used in IPOPT (Wächter and Biegler, 2006). In contrast to a line-

search based on a merit function, where cost and constraints are combined

to one metric, the main idea is to ensure that each update either improves

the constraint satisfaction or the cost function. The constraint satisfaction

θ(w) is measured by taking the norm of all constraints scaled by the time

discretization:

θ(w) = δt
∣∣∣∣∣∣[F(w)>,G(w)>

]>∣∣∣∣∣∣
2
. (6.36)

In case of high or low constraint satisfaction, the behavior is adapted: When

the constraint is violated beyond a set threshold, θmax, the focus changes purely

to decreasing the constraints; when constraint violation is below a minimum

threshold, θmin, the focus changes to minimizing costs.
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Compared to the algorithm presented in (Wächter and Biegler, 2006), we

remove recovery strategies and second-order correction steps, for which there

is no time in the online setting. Furthermore, the history of iterates plays no

role since we perform only one iteration per problem.

The simplified line-search as used in this work is given in Algorithm 4 and

contains three distinct branches in which a step can be accepted. The behavior

at high constraint violation is given by line 9, where a step is rejected if the

new constraint violation is above the threshold and worse than the current

violation. The switch to the low constraint behavior is made in line 13: if both

new and old constraint violations are low and the current step is in a descent

direction, we require that the cost decrease satisfies the Armijo condition in

line 14. Finally, the primary acceptance condition is given in line 18, where

either a cost or constraint decrease is requested. The small constants γφ, and

γθ are used to fine-tune this condition with a required non-zero decrease in

either quantity.

6.6 Motion Execution

The optimized motion planned by the MPC layer consists of contact forces and

desired joint velocities. We linearly interpolate the MPC motion plan at the

400 Hz execution rate and apply the feedback gains derived from the Riccati

backward pass to the measured state (Grandia et al., 2019b). The correspond-

ing torso acceleration is obtained through (6.8). The numerical derivative of

the planned joint velocities is used to determine a feedforward joint accelera-

tion. A high-frequency whole-body controller (WBC) is used to convert the

desired acceleration tasks into torque commands (Dario Bellicoso et al., 2016;

Saab et al., 2013; Sentis and Khatib, 2006). A generalized momentum ob-

server is used to estimate the contact state (Bledt et al., 2018). Additionally,

the estimated external torques are filtered and added to the MPC and WBC

dynamics as described in (Jenelten et al., 2021).

6.6.1 Event Based Execution

Inevitably, the measured contact state will be different from the planned con-

tact state used during the MPC optimization. In this case, the designed con-

tact forces cannot be provided by the whole-body controller. We have im-

plemented simple reactive behaviors to respond to this situation and provide

feedback to the MPC layer.
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Algorithm 4 Backtracking Line-Search

1: Hyperparameters: αmin = 10−4, θmax = 10−2, θmin = 10−6, η = 10−4, γφ =
10−6, γθ = 10−6, γα = 0.5

2: α← 1.0
3: θk ← θ(wi)
4: φk ← φ(wi)
5: Accepted ← False
6: while Not Accepted and α ≥ αmin do
7: θi+1 ← θ(wi + αδw)
8: φi+1 ← φ(wi + αδw)
9: if θi+1 > θmax then
10: if θi+1 < (1− γc)θi then
11: Accepted ← True
12: end if
13: else if max(θi+1, θi) < θmin and ∇φ(wi)>δw < 0 then
14: if φi+1 < φi + ηα∇φ(wi)>δw then
15: Accepted ← True
16: end if
17: else
18: if φi+1 < φi − γφθi or θi+1 < (1− γc)θi then
19: Accepted ← True
20: end if
21: end if
22: if Not Accepted then
23: α← γαα
24: end if
25: end while
26: if Accepted then
27: wi+1 ← wi + αδw
28: else
29: wi+1 ← wi
30: end if

In case there is a planned contact, but no contact is measured, we follow a

downward regaining motion for that foot. Under the assumption that the

contact mismatch will be short, the MPC will start a new plan again from

a closed contact state. Additionally, we propagate the augmented system

in (6.9) with the information that no contact force was generated, i.e. 0
!
=

Cλsλ + Dλνλ. In this way, the MPC layer will generate contact forces that

maintain the requested smoothness w.r.t. the executed contact forces.

When contact is measured, but no contact was planned, the behavior depends

on the planned time till contact. If contact was planned to happen soon, the

measured contact is sent to the MPC to generate the next plan from that early

contact state. If no upcoming contact was planned, the measured contact is

ignored.
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6.6.2 Whole-body Control

The whole-body control (WBC) approach considers the full nonlinear rigid

body dynamics of the system in (6.6), including the estimate of disturbance

forces. Each task is formulated as an equality constraint, inequality constraint,

or least-squares objective affine in the generalized accelerations, torques, and

contact forces. While we have used a hierarchical resolution of tasks in the

past (Dario Bellicoso et al., 2016), in this work, we instead use a single QP and

trade off the tracking tasks with weights. We found that a strict hierarchy re-

sults in a dramatic loss of performance in lower priority tasks when inequalities

constraints are active. Additionally, the complexity of solving multiple QPs

and null-space projections in the hierarchical approach is no longer justified

with the high quality motion reference coming from the MPC.

The complete list of tasks is given in Table 6.1. The first two blocks of tasks

enforce physical consistency and inequality constraints on torques, forces, and

joint configurations. The joint limit constraint is derived from an exponential

Control Barrier Function (CBF) (Nguyen and Sreenath, 2016b) on the joint

limits, q
j
≤ qj ≤ qj , resulting in the following joint acceleration constraints:

q̈j + (γ1 + γ2)q̇j + γ1γ2(qj − q
j
) ≥ 0, (6.37)

−q̈j − (γ1 + γ2)q̇j + γ1γ2(qj − qj) ≥ 0, (6.38)

with scalar parameters γ1 > 0, γ2 > 0. These CBF constraints guarantee that

the state constraints are satisfied for all time and under the full nonlinear

dynamics of the system (Ames, Grizzle, and Tabuada, 2014).

For the least-square tasks, we track swing leg motion with higher weight than

the torso reference. This prevents that the robot exploits the leg inertia to

track torso references in underactuated directions, and it ensures that the

foot motion is prioritized over torso tracking when close to kinematics limits.

Tracking the contact forces references with a low weight regulates the force

distribution in case the contact configuration allows for internal forces.

Finally, the torque derived from the whole-body controller, τwbc ∈ R12, is

computed. To compensate for model uncertainty for swing legs, the integral

of joint acceleration error with gain K > 0 is added to the torque applied to

the system:

τ i = τ i,wbc −K
∫ t

tsw0

(q̈i − q̈i,wbc) dt, (6.39)
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Table 6.1: WHOLE-BODY CONTROL TASKS.

Type Task

=
Floating base equations of motion.
No motion at the contact points.

≥
Torque limits.
Friction cone constraint.
Joint limit barrier constraint.

w2
i ‖ · ‖2

Swing leg motion tracking (wi = 100.0).
Torso linear and angular acceleration (wi = 1.0).
Contact force tracking. (wi = 0.01).

where tsw0 is the start time of the swing phase. For stance legs, a PD term

is added around the planned joint configuration and contact consistent joint

velocity.

6.7 Results

ANYmal is equipped with either two dome shaped Robo-Sense bpearl LiDARs,

mounted in the front and back of the torso, or with four Intel RealSense D435

depth cameras mounted on each side of the robot. Elevation mapping runs at

20 Hz on an onboard GPU (Jetson AGX Xavier). Control and state estimation

are executed on the main onboard CPU (Intel i7-8850H,2.6 GHz, Hexa-core) at

400 Hz, asynchronously to the MPC optimization which is triggered at 100 Hz.

Four cores are used for parallel computation in the MPC optimization. A

time horizon of T = 1.0 s is used with a nominal time discretization of δt ≈
0.015 s, with a slight variation due to the adaptive discretization around gait

transitions. Each multiple shooting MPC problem therefore contains around

5000 decision variables. Part (A) and (B) of perception pipeline in Fig. 6.3

are executed on a second onboard CPU of the same kind and provides the

precomputed layers over Ethernet.

To study the performance of the proposed controller, we report results in dif-

ferent scenarios and varying levels of detail. First, results for the perception

pipeline in isolation are presented in section 6.7.1. Second, we validate the

major design choices in simulation in section 6.7.2. Afterward, the proposed

controller is put to the test in challenging simulation, as well as hardware

experiments in section 6.7.3. Finally, known limitations are discussed in sec-

tion 6.7.4.
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Figure 6.5: Evaluation of the plane segmentation on a demo terrain (Fankhauser
and Hutter, 2016). The shown map has a true size of 20×20×1 m with a resolution
of 4 cm. Top left shows the elevation map with additive uniform noise of ±2 cm plus
Gaussian noise with a standard deviation of 2 cm. Top right shows the map after
inpainting, filtering, steppability classification, and plane segmentation. Below, four
areas of interest are shown. Their original location in the map is marked in the top
right image.

6.7.1 Perception Pipeline

The output of the steppability classification and plane segmentation (part A in

Fig. 6.3) for a demo terrain is shown in Fig. 6.5. This terrain is available as part

of the gridmap library and contains a collection of slopes, steps, curvatures,

rough terrain, and missing data. The left middle image shows that slopes and

steps are, in general, well segmented. In the bottom right image, one sees

the effect of the plane segmentation on a curved surface. In those cases, the

terrain will be segmented into a collection of smaller planes. Finally, the rough
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Figure 6.6: Computation time for constructing and querying the signed distance
field. Submaps of the terrain in Fig. 6.5 are used. SDF size on the horizontal axis
denotes the total amount of data points in the SDF (width×length×height). The
query time is reported for the total of 103 random queries for the interpolated value
and derivative.

terrain sections shown in the right middle and bottom left image show that

the method is able to recognize such terrain as one big planar section as long

as the roughness is within the specified tolerance. These cases also show the

importance of allowing holes in the segmented regions, making it possible to

exclude just those small regions where the local slope or roughness is outside

the tolerance. A global convex decomposition of the map would result in a

much larger amount of regions in these scenarios.

The computation time for the construction and querying of the signed distance

field is benchmarked on sub-maps of varying sizes extracted from the demo

map, see Fig. 6.6. As expected, the construction time scales linearly with

the SDF size, and the query time is constant with a slight increase when the

memory size exceeds a cache level. During runtime, the local SDF size is

typically below 105 voxels, resulting in a computation time well below 10 ms.

Together with the map update rate of 20 Hz, the proposed method provides

the SDF at an order of magnitude faster than methods that maintain a general

3D voxel grid, with update rated reported around 1 Hz(Pankert and Hutter,

2020). Per MPC iteration, around 103 SDF queries are made, making the SDF

query time negligible compared to the total duration of one MPC iteration.

6.7.2 Simulation

6.7.2.1 Collision Avoidance

To highlight the importance of considering knee collisions with the terrain, the

robot is commanded to traverse a box of 35 cm with a trotting gait at 0.25 m/s.
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Figure 6.7: ANYmal stepping up a box of 35 cm. Left: Without considering knee
collisions. Right: Knee collision included in the optimization.

Fig. 6.7 compares the simulation result of this scenario with and without the

knee collisions considered. The inclusion of knee collision avoidance is required

to successfully step up the box with the hind legs. As shown in the figure, the

swing trajectories are altered. Furthermore, the base pose and last stepping

location before stepping up are adjusted to prepare for the future, showing the

benefit of considering all degrees of freedom in one optimization.

Fig. 6.8 provides insight into the solver during the motion performed with the

knee collisions included. The four peaks in the cost function show the effect of

the collision avoidance penalty when the legs are close to the obstacle during

the step up and step down. Most of the time, the step obtained from the

QP subproblem is accepted by the line-search with the full stepsize of 1.0.

However, between 7 and 8 s the stepsize is decreased to prevent the constraint

violation from further rising. This happens when the front legs step down the

box and are close to collision. In those cases, the collision avoidance penalty is

highly nonlinear, and the line-search is required to maintain the right balance

between cost decrease and constraint satisfaction. We note that the line-search

condition for low constraint violation is typically not achieved when using only

one iteration per MPC problem.

6.7.2.2 Model Selection

In the same scenario, we compare the performance of the proposed dynamics

for the base with those of the commonly used single rigid body dynamics

(SRBD). To be precise, the torso dynamics in (6.8) are evaluated at a constant

nominal joint configuration and with zero joint velocities, while the rest of

the controller remains identical. When using the SRBD, the model does not

describe the backward shift in the center of mass location caused by the leg
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Figure 6.8: Solver status during the box traversal motion (including knee collision
avoidance). The first and second plots show the total cost, and constraint violation
according to (6.36), after each iteration. The bottom plot shows the stepsize and
the line-search branch that led to the step acceptance. ‘Constraint‘ refers to a step
accepted in the high constraint violation branch in line 9 of Algorithm 4, ‘Dual‘ refers
to the branch where either cost or constraint decrease is accepted in line 18.

configuration. The result is that the controller with the SRBD model has a

persisting bias that makes the robot almost tip over during the step up. The

proposed model fully describes the change in inertia and center of mass location

and therefore does not have any issue in predicting the state trajectory during

the step up motion.

6.7.2.3 Contact Feedback

The reactive behavior under a mismatch in planned and sensed contact infor-

mation is shown in the accompanying video. First, the sensed terrain is set to

be 10 cm above the actual terrain, causing a late touchdown. Afterward, the

sensed terrain is set 5 cm below the actual terrain, causing an early touchdown.

The resulting vertical foot velocity for both cases is overlayed and plotted in

Fig. 6.9. For the case of a late touchdown, the reactive downward accelerat-

ing trajectory is triggered as soon as it is sensed that contact is absent. For

the early touchdown case, there is a short delay in detecting that contact has
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Expected touchdown

Figure 6.9: Desired and measured vertical foot velocity for the early and late
touchdown scenarios shown in the accompanying video. The vertical line at 0.5 s
indicated the planned touchdown time.

Figure 6.10: ANYmal traversing an obstacle course in simulation. Snapshots are
shown for a the traversal with a trotting gait at 0.8 m/s. The MPC predictions
are shown for each foot and for the torso center. For all contact phases within the
horizon, the convex foot placements contraints are visualized.

happened, but once contact is detected, the measured contact is included in

the MPC and the new trajectory is immediately replanned from the sensed

contact location.

6.7.2.4 Stairs

The generality of the approach with respect to the gait pattern is demonstrated

in the accompanying video by executing a trot at 0.25 m/s, a pace at 0.3 m/s,

a dynamic walk at 0.25 m/s, and a static walk at 0.2 m/s on a stairs with

18.5 cm rise and 24 cm run. Depending on the particular gait pattern and

commanded velocity the method autonomously decides to progress, repeat, or

skip a step. Note that there are no parameters or control modes specific to

the gait or the stair climbing scenario. All motions emerge automatically from

the optimization of the formulated costs and constraints.
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6.7.2.5 Obstacle Course

The controller is given a constant forward velocity command on a series of

slopes, gaps, stepping stones, and other rough terrains. We traverse the terrain

with a pace at 0.4 m/s, and a fast trotting gait with flight phase at 0.8 m/s.

Fig. 6.10 shows the obstacle course and snapshots of the traversal with the

fast trot. The supplemental video shows the planned trajectories for the feet

together with the convex foothold constraints. In the right side of the screen,

a front view is shown together with the elevation map and plane segmentation

below. The slower gaits used in the previous section are able to complete the

scenario as well, but their video is excluded as they take long to reach the end.

Finally, a transverse gallop gait is demonstrated on a series of gaps. Due to

the torque limitations of the system and friction limits up the slope, this gait

is not feasible on the more complex obstacle course.

6.7.2.6 Comparison against RL

We compare our method against a perceptive RL-based controller (Miki et al.,

2022a) in the same obstacle course. We adapt the gait pattern of our controller

to match the nominal gait used by the learned controller. The video shows

that the learning-based controller can cross the unstructured terrain at the be-

ginning and end of the obstacle course. However, it fails to use the perceptive

information fully and falls between the stepping stones when starting from the

left and off the narrow passage when starting from the right. This experiment

highlights that current RL-based locomotion results in primarily reactive poli-

cies and struggles with precise coordination and planning over longer horizons.

In contrast, using a model and online optimization along a horizon makes our

proposed method generalize naturally to these more challenging terrains.

6.7.3 Hardware

6.7.3.1 Obstacle Course

The obstacle course simulation experiment is recreated on hardware in two

separate experiments. First, we tested a sequence of a ramp, gap, and high

step as shown in Fig. 6.11. During the middle section of this experiment, the

robot faces all challenges simultaneously: While the front legs are stepping up

to the final platform, the hind legs are still dealing with the ramp and gap. In

a second scenario, the robot is walking on a set of uneven stepping stones, as

shown in Fig. 6.12. The main challenge here is that the planes on the stepping
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Figure 6.11: Hardware experiment where ANYmal traverses a ramp, gap, and large
step (from right to left). The bottom row shows the filtered elevation map, the foot
trajectories over the MPC horizon, and the convex foothold constraints.

Figure 6.12: Hardware experiment where ANYmal walks on top of uneven stepping
stones. Each wooden block has an area of 20x20 cm and each level of stepping stones
is 20 cm higher than the previous one. The right image shows the filtered elevation
map, the foot trajectories over the MPC horizon, and the convex foothold constraints.

stones are small and do not leave much room for the MPC to optimize the

footholds. We found that in this scenario, the inclusion of the kinematics and

reactive foothold offset during the plane selection as described in section 6.4.5

are important. A remaining challenge here is that our plane segmentation does

not consider consistency over time. In some cases, the small foothold regions

on top of stepping stones might appear and disappear as feasible candidates.

The supplemental video shows how in this case the planned foot trajectory

can fail, and the reactive contact regaining is required to save the robot.

Computation times are reported in Table 6.2. Per map update, most time

is spent on terrain classification and plane segmentation. More specifically,

the RANSAC refinement takes the most time and can cause a high worst-case

computation due to its sampling-based nature. On average, the perception

pipeline is able to keep up with the 20 Hz map updates.
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Table 6.2: COMPUTATION TIMES PER MAP UPDATE AND MPC ITERA-
TION

Mean [ms] Max [ms]
Classification & Segmentation 38.8 76.6

Signed distance field 1.3 7.6
LQ approximation 3.6 6.2

QP solve 2.7 4.4
Line-search 0.3 0.9

MPC iteration 6.6 9.8

Figure 6.13: Hardware experiment where ANYmal walks up and down outdoor
stairs with a 16 cm rise and 29.5 cm run. The right image shows the filtered elevation
map, the foot trajectories over the MPC horizon, and the convex foothold constraints.

For the MPC computation time, the ‘LQ approximation‘ contains the parallel

computation of the linear-quadratic model and equality constraint projection

(Algorithm 3, line 2 till 4). ‘QP solve‘ contains the solution of the QP and

the back substitution of the solution (Algorithm 3, line 5 and 6). Despite the

parallelization across four cores, evaluating the model takes the majority of

the time, with the single core solving of the QP in second place. On average,

the total computation time is sufficient for the desired update rate of 100 Hz.

The worst-case computation times are rare, and we hypothesize that they are

mainly caused by variance in the scheduling of the numerous parallel processes

on the robot. For the line-search, the relatively high maximum computation

time is attained when several steps are rejected, and the costs and constraints

need to be recomputed.
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6.7.3.2 Stairs

We validate the stair climbing capabilities on 2-step indoor stairs and on out-

door stairs. Fig. 6.13 shows the robot on its way down the outdoor stairs. For

these experiments, we obtain the elevation map from (Hoeller et al., 2022).

With its learning-based approach, it provides a high quality estimate of the

structure underneath the robot.

6.7.4 Limitations

A fundamental limitation in the proposed controller is that the gait pattern

is externally given and only adapted during early and late touchdown. Strong

adverse disturbances, for example, in the direction of a foot that will soon

lift, can make the controller fail. A change in the stepping pattern could be

a much better response in such cases. Together with the reactive behaviors

during contact mismatch, which are currently hardcoded, we see the potential

for reinforcement learning-based methods as a tracking controller to add to

the robustness during execution.

Closely related to that, the current selection of the segmented plane and,

therefore, the resulting foothold constraints happens independently for each

leg. In some cases, this can lead to problems that could have been avoided if all

legs were considered simultaneously. For example, while walking up the stairs

sideways, all feet can end up on the same tread, leading to fragile support and

potential self-collisions.

As with all gradient-based methods for nonlinear optimization, local optima

and infeasibility can be an issue. With the simplification of the terrain to con-

vex foothold constraints and by using a heuristic reference motion in the cost

function, we have aimed to minimize such problems. Still, we find that in the

case of very thin and tall obstacles, the optimization can get stuck. Fig. 6.14

shows an example where the foothold constraints lie behind the obstacle and

the reference trajectory correctly clears the obstacle. Unfortunately, one of

the feet in the MPC trajectory goes right through the obstacle. Because all

SDF gradients are horizontal at that part of the obstacle, there is no strong

local hint that the obstacle can be avoided. For future work, we can imagine

detecting such a case and triggering a sampling-based recovery strategy to

provide a new, collision-free initial guess. Alternatively, recent learning-based

initialization could be employed (Lembono et al., 2020; Melon et al., 2021).
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Figure 6.14: Example of the MPC optimization being stuck inside a tall and thin
structure of 5 cm width and 20 cm height. The feet reference trajectories used as
part of the cost function are visualized as a sequence of arrows.

6.8 Conclusion

In this work, we proposed a controller capable of perceptive and dynamic lo-

comotion in challenging terrain. By formulating perceptive foot placement

constraints through a convex inner approximation of steppable terrain, we ob-

tain a nonlinear MPC problem that can be solved reliably and efficiently with

the presented numerical strategy. Steppability classification, plane segmenta-

tion, and an SDF are all precomputed and updated at 20 Hz. Asynchronously

precomputing this information minimizes the time required for each MPC it-

eration and makes the approach real-time capable. Furthermore, by including

the complete joint configuration in the system model, the method can simulta-

neously optimize foot placement, knee collision avoidance, and underactuated

system dynamics. With this rich set of information encoded in the optimiza-

tion, the approach discovers complex motions autonomously and generalizes

across various gaits and terrains that require precise foot placement and whole-

body coordination.
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6.9 Appendix A: Signed Distance Field Com-

putation

This section details how a signed distance field can be computed for a 2.5D

elevation map. Consider the following general definition for the squared Eu-

clidean distance between a point in space and the closest obstacle:

D(x, y, z) = min
x′,y′,z′

[
(x− x′)2

+ (y − y′)2
+ (z − z′)2

+ I(x′, y′, z′)
]

(6.40)

where I(x′, y′, z′) is an indicator function returning 0 for an obstacle and ∞
for empty cells.

As described in (Felzenszwalb and Huttenlocher, 2012), a full 3D distance

transform can be computed by consecutive distance transforms in each dimen-

sion of the grid, in arbitrary order. For the elevation map, the distance along

the z-direction is trivial. Therefore, starting the algorithm with the z-direction

simplifies the computation. First, (6.40) can be rewritten as follow,

D(x, y, z) = min
x′,y′

[
(x− x′)2

+ (y − y′)2
+ min

z′

[
(z − z′)2

+ I(x′, y′, z′)
]]
,

= min
x′,y′

[
(x− x′)2

+ (y − y′)2
+ fz(x

′, y′, z)
]
, (6.41)

where fz(x
′, y′, z) is a function that returns for each horizontal position, the

one-dimensional distance transform in z-direction. For an elevation map, this

function has the following closed form solution at a given height z.

fz(x
′, y′, z) =

{
(z − h(x′, y′))2 if z ≥ h(x′, y′),

0 otherwise,
(6.42)

where h(x′, y′) denotes the evaluation of the elevation map.

The same idea can be used to compute the distance to obstacle free space and

obtain the negative valued part of the SDF. Adding both distances together

provides the full SDF and gradients are computed by finite differences between

layers, columns, and rows. However, naively taking the Euclidean distance

between cell centers as the minimization of (6.41) leads to incorrect values

around obstacle borders, as illustrated in Fig. 6.15. We need to account for the

fact that the obstacle border is located between cells, not at the cell locations

142



6.9. Appendix A: Signed Distance Field Computation
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Figure 6.15: 1D example illustrating the effect of distance metric on the SDF.
When taking the Euclidean distance between cell centers in (a), the SDF will have a
discontinuous gradient across the obstacle border. Taking the distance between cell
center and the border of an occupied / free cell as in (b), avoids this issue.

themselves. This can be resolved by adapting (6.41) to account for the discrete

nature of the problem.

D(x, y, z) = min
{x′,y′}∈M

[d (x, x′) + d (y, y′) + fz(x
′, y′, z)] , (6.43)

where {x′, y′} ∈ M now explicitly shows that we only minimize over the

discrete cells contained in the map, and d(·, ·) is a function that returns the

squared distance between the center of one cell and the border of another:

d(x, x′) =

{
(|x− x′| − 0.5r)

2
if x 6= x′,

0 otherwise,
(6.44)

where r is the resolution of the map. The distance transforms can now be

computed based on (6.43), for each height in parallel, with the 2D version of

the algorithm described in (Felzenszwalb and Huttenlocher, 2012).
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7
Conclusion and Outlook

Throughout this dissertation, we have studied and developed optimization-

based motion control approaches to generate dynamic and complex maneu-

vers for legged robots in rough terrain. In contrast to existing work, we have

formulated the locomotion problem as a single optimization problem. This

approach removed the need for heuristic coordination of legs and torso and

has opened the door to more complex, whole-body motions operating at the

robot’s limits. The contributions of each individual chapter have increased our

understanding of how such a complex optimization problem can be formulated

to achieve the desired closed-loop performance, stability, safety, and compu-

tational complexity. While most demonstrations have been made on legged

robots, the underlying theory, algorithms, and software tools are general and

can be applied to other dynamical systems.

7.1 Achievements

In Chapter 2, we introduced frequency-dependent cost functions into the Model

Predictive Control (MPC) formulation. Using this method to penalize control

inputs in the high-frequency spectrum was shown to provide robustness against

unmodeled dynamics of series elastic actuators and compliant terrain. The re-

sulting smooth contact force profiles improved tracking performance on various

terrains where the rigid contact assumption is violated, without the need to

explicitly model it. Moreover, this was the first time we were able to deploy

an MPC formulation that reasons about all degrees of freedom of the robot

simultaneously. The computations, however, were still performed offline on a

desktop machine, motivating us to focus on bridging the gap in computational

efficiency.

In Chapter 3, we therefore proposed feedback MPC as an effective way to

handle the low update rate associated with the computational restrictions of
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mobile platforms. In this formulation, the feedback policy obtained from the

Riccati backward pass of the Sequential Linear Quadratic (SLQ) algorithm was

used to provide a first-order approximation to the true MPC problem at the

frequency required for whole-body control. We experimentally showed that

a combination with the frequency-aware approach of Chapter 2 was critical

to achieving closed-loop stability on hardware. Additionally, we proposed a

relaxed barrier function method to extend the SLQ algorithm to optimization

problems with inequality constraints. While this was a practical consideration

at that time, it turned out to be highly effective and is still used in many

projects today.

From there, we turned our attention to a more theoretical side of the problem

during the collaboration with the AMBER lab, resulting in the two publica-

tions in Chapters 4 and 5. In Chapter 4, we presented a novel set of approaches

for unifying Control Lyapunov Functions (CLFs) and Nonlinear Model Pre-

dictive Control (NMPC) for continuous, control-affine systems. The presented

CLF-NMPC methods explicitly embed stability as a constraint in the optimiza-

tion problem and therefore required no further tuning of the cost function and

prediction horizon to achieve closed-loop stability. At the same time, com-

pared to purely CLF-based approaches, which are point-wise optimal in time,

the addition of the prediction horizon significantly improves the long-term

performance. The approach also proved excellent performance in practice and

resulted in the first demonstration of a CLF-based MPC controller on robotic

hardware.

Extending on this idea, we combined Control Barrier Functions (CBFs) with

MPC in Chapter 5 to provide closed-loop safety guarantees. Additionally,

this work proposed to embed CBFs both in the MPC formulation and the

whole-body tracking controller to provide consistent safety constraints across

the different execution frequencies and model complexities. We validated the

viability of the approach on hardware by demonstrating dynamic locomotion

on stepping-stones with safety constraints.

Finally, in Chapter 6, we propose an MPC formulation that incorporates on-

board perceptive terrain information and enables dynamic locomotion across

challenging terrain. An elevation map representation with steppability classifi-

cation, plane segmentation, and a corresponding Signed Distance Field (SDF)

are all updated online. By formulating perceptive foot placement constraints

through a convex inner approximation of steppable terrain, we obtained a

nonlinear MPC problem that can be solved reliably and efficiently with the

presented numerical strategy. In contrast to the other works in Chapters 2, 3,
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and 5 in this thesis, which relied on the single shooting algorithm SLQ, we

use a multiple-shooting technique instead. This alternative solving strategy

proved to be more robust for the more demanding optimization problems for-

mulated in Chapter 6. The ultimate hardware demonstrations showed precise

foot placement and whole-body coordination across gaps, slopes, and stepping

stones, resulting in state-of-the-art dynamic climbing. At the time of writing,

these results have not been achieved by any other real-time capable method.

7.2 Future Work

Since the start of this thesis, the field of legged robots has come a long way,

and the technology is now mature enough to be deployed in commercial appli-

cations. Still, we see three specific areas in which further research can progress

and build on the findings and contributions made in this thesis.

7.2.1 Autonomy

There is a need to bridge the gap between navigation and exploration mod-

ules and the dynamic locomotion controllers developed in this thesis. The

controllers in this work have used a prediction horizon of typically between

one and two seconds. While this has proven sufficient for most gaits and ma-

neuvers, some scenarios might require reasoning over longer timescales. Ad-

ditionally, high-level direction and velocity commands were given by a human

operator, often with a good intuition of what the underlying controllers can

and cannot do. When moving towards a full-stack autonomous solution in

the future, the limitations of the closed-loop system need to be incorporated

in a more principled way. We have started the theoretical investigation into

this multi-rate view on the problem in Chapter 5, and we see an excellent

opportunity for more fundamental research in this direction that has become

increasingly relevant (Csomay-Shanklin et al., 2022; Rosolia and Ames, 2021).

7.2.2 Connection with Data-driven Approaches

During the time this Ph.D. research was conducted, there has been tremendous

progress in applying Reinforcement Learning (RL) to legged robots. Interest-

ingly, similar to our work on frequency-aware MPC, one of the key elements

that enabled successful hardware deployment was the consideration of the im-

perfect actuator dynamics (Hwangbo et al., 2019). Ultimately, RL and MPC

start from a similar optimization-based view on the control problem, and it
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should therefore not come as a surprise that they share a number of similar-

ities. However, the most recent work in this direction (Miki et al., 2022b)

showed the incredible robustness that can be achieved with the right random-

ization and curriculum of terrain in simulation. This robustness with respect

to inaccurate contact estimation and noise in the perceptive information is

something that is still missing in the MPC controllers proposed in this work.

In future work, RL could play a role in providing individual elements within the

MPC problem, for example, the cost function or system dynamics, and provide

a smart filter between the noisy world and the deterministic optimization.

The other way around, the methods proposed in this thesis could serve as

a demonstrator during the offline training process. Currently, the training

process can take a long time and often converges to a purely reactive strategy,

which struggles in more complex scenarios like stepping stones. MPC could

help in discovering coordinated long horizon behaviors in a more principled

way.

7.2.3 Aperiodic Locomotion with Stability Guarantees

In Chapter 4, we studied the combination of CLF-based stability constraints

and MPC for continuous, control-affine systems. Additional work is needed to

extend the formulations in that chapter to the hybrid domain of legged robots.

Here, the Hybrid Zero Dynamics (HZD) framework provides a principled way

to derive CLFs for periodic gaits (Nguyen et al., 2016). In recently submit-

ted work, we have investigated how these periodic, offline solutions can be

leveraged inside an MPC formulation (Galliker et al., 2022). The theoretical

properties of using HZD trajectories in the terminal components of the opti-

mization problem will need to be studied in future work. This is a promising

direction to potentially extend the stability guarantees currently available for

offline, periodic motions to general, aperiodic motions optimized online.
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H. Chen and F. Allgöwer (1998). “A Quasi-Infinite Horizon Nonlinear Model

Predictive Control Scheme with Guaranteed Stability.” Automatica 34.10,

pp. 1205 –1217.

Hashimoto, K., Kang, H., Nakamura, M., Falotico, E., Lim, H., Takanishi, A.,

Laschi, C., Dario, P., and Berthoz, A. (2012). “Realization of biped walk-

ing on soft ground with stabilization control based on gait analysis”. In:

2012 IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems, pp. 2064–2069.

Hashimoto, K., Kondo, H., Lim, H.-O., and Takanishi, A. (2015). “Online

Walking Pattern Generation Using FFT for Humanoid Robots”. In: Motion

and Operation Planning of Robotic Systems: Background and Practical Ap-

proaches. Ed. by G. Carbone and F. Gomez-Bravo. Springer International

Publishing, pp. 417–438.

Hauser, J. and Saccon, A. (2006). “A Barrier Function Method for the Opti-

mization of Trajectory Functionals with Constraints”. In: Proceedings of the

45th IEEE Conference on Decision and Control, pp. 864–869.

Heidarinejad, M., Liu, J., and Christofides, P. D. (2012). “Economic model

predictive control of nonlinear process systems using Lyapunov techniques”.

AIChE Journal 58.3, pp. 855–870.

Herbert, M., Caillas, C., Krotkov, E., Kweon, I., and Kanade, T. (1989). “Ter-

rain mapping for a roving planetary explorer”. In: Proceedings, 1989 Inter-

national Conference on Robotics and Automation, 997–1002 vol.2.

Herdt, A., Diedam, H., Wieber, P.-B., Dimitrov, D., Mombaur, K., and Diehl,

M. (2010). “Online walking motion generation with automatic footstep

placement”. Advanced Robotics 24.5-6, pp. 719–737.

Hereid, A., Cousineau, E. A., Hubicki, C. M., and Ames, A. D. (2016). “3D

dynamic walking with underactuated humanoid robots: A direct collocation

framework for optimizing hybrid zero dynamics”. In: 2016 IEEE Interna-

tional Conference on Robotics and Automation (ICRA), pp. 1447–1454.

158



BIBLIOGRAPHY

Herzog, A., Schaal, S., and Righetti, L. (2016). “Structured contact force opti-

mization for kino-dynamic motion generation”. In: International Conference

on Intelligent Robots and Systems (IROS). IEEE/RSJ, pp. 2703–2710.

Hoeller, D., Rudin, N., Choy, C., Anandkumar, A., and Hutter, M. (2022).

“Neural Scene Representation for Locomotion on Structured Terrain”. (sub-

mitted to) IEEE Robotics and Automation Letters.

Hours, J.-H., Zeilinger, M. N., Gondhalekar, R., and Jones, C. N. (2015). “Con-

strained spectrum control”. IEEE Transactions on Automatic Control 60.7,

pp. 1969–1974.

Houska, B., Ferreau, H. J., and Diehl, M. (2011). “An auto-generated real-time

iteration algorithm for nonlinear MPC in the microsecond range”. Automat-

ica 47.10, pp. 2279–2285.

Howell, T. A., Jackson, B. E., and Manchester, Z. (2019). “ALTRO: A Fast

Solver for Constrained Trajectory Optimization”. In: 2019 IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems (IROS), pp. 7674–

7679.

Hubicki, C., Grimes, J., Jones, M., Renjewski, D., Spröwitz, A., Abate, A., and
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