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Abstract

Optimizing noisy functions online, when evaluating the objective requires experiments
on a deployed system, is a crucial task arising in manufacturing, robotics, medical trials,
and other domains. Often, in such systems constraints on safe inputs are unknown ahead
of time, and we only obtain noisy information indicating how close we are to violating
the constraints. However, safety must be guaranteed at all times, not only for the final
output of the algorithm. Indeed, in many applications, one wants to perform learning at
least partially in the real world. For example, in robotics, after pre-training a policy on
simulations, one would like to employ it in the real world and keep improving it directly
using robot-environment interactions. Keeping the updates safe is crucial not to harm the
platform. In personalized medicine, one would like to apply a therapy based on clinical
trials to actual patients, without harming the patients. Initially, a doctor would prescribe
a particular patient very conservative dosages of new medicine. By monitoring the patient,
she can observe how the patient tolerates the medicine and try to make gentle iterative
changes to adjust the dosage for this patient safely. Our idea is similar – we propose
optimization methods that iteratively update the decision variables using interactions
with the environment in a safe way.

The main goal of this thesis is to demonstrate that we can address safe learning problems
using feasible constrained optimization techniques. Using such simple techniques allows
for addressing high dimensional problems, in contrast to more complicated approaches
such as Bayesian Optimization.

We propose two general approaches. The first approach addresses safe learning under
uncertain linear constraints. It is based on the Frank-Wolfe method combined with the
robust optimization technique, allowing us to guarantee safety under uncertainty. We
prove its convergence for convex problems and guarantee the safety of all the measurements
taken during the learning with high probability. The second approach is more general
and allows for addressing the optimization problems with non-linear constraints. Its
main idea is to use the logarithmic barriers to address safety. To minimize the log barrier
subproblem, it uses simple and powerful stochastic gradient descent (SGD) with a carefully
chosen adaptive step size. We provide the analysis of the convergence rate of this method
for non-convex, convex, and strongly-convex problems. Furthermore, we analyze the
sample complexity of our method separately, given the first-order stochastic oracle and
zeroth-order noisy oracle. Additionally to the analysis of smooth problems, we provide
the extension addressing the non-smooth problems and analyze its sample complexity.

We compare our methods on synthetic problems with existing baselines and show their
performance in applications such as manufacturing, control, and reinforcement learning.
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Kurzfassung

Die Online-Optimierung verrauschter Funktionen, deren Evaluierung Experimente an
einem eingesetzten System erfordert, ist eine wichtige Aufgabe in der Fertigung, der
Robotik, bei klinischen Versuchen und in anderen Bereichen. In solchen Systemen sind
die Bedingungen für sichere Inputs häufig a priori unbekannt, und man erhält lediglich
verrauschte Informationen, wie nahe man an einer Verletzung der Bedingungen ist. Die
Sicherheit muss jedoch zu jedem Zeitpunkt gewährleistet sein und nicht nur für den
finalen Output des Algorithmus. In der Tat ist es bei vielen Anwendungen wünschenswert,
das Lernen zumindest teilweise in der realen Welt durchzuführen. In der Robotik, zum
Beispiel, würde man gerne nach dem Pre-training einer Policy durch Simulationen, diese
in der realen Welt einsetzen und sie durch Interaktionen zwischen dem Roboter und der
Umgebung weiter verbessern. Dabei ist die Sicherheit jedes Updates essenziell, um die
Plattform nicht zu beschädigen. Ein weiteres Beispiel ist die personalisierte Medizin,
in der man basierend auf klinischen Studien mögliche Therapieformen an Patienten
testen möchte, ohne diese zu gefährden. Zu Beginn wird der behandelnde Arzt dem
Patienten eine sehr geringe Dosierung des neuen Medikaments verabreichen und wird
dann, anhand der beobachteten Reaktion des Patienten auf das Medikament, die Dosierung
schrittweise und sicher anpassen. Unsere Idee funktioniert analog, dabei schlagen wir
Optimierungsmethoden vor, welche die Wechselwirkungen mit der Umwelt nutzen, um
die Entscheidungsvariablen auf sichere Weise iterativ zu aktualisieren.

Das Ziel dieser Arbeit ist es, zu zeigen, dass wir sichere Lernprobleme mit Hilfe
zulässiger Optimierungstechniken für Optimierungsproblem mit Nebenbedingungen lösen
können. Im Gegensatz zu komplizierteren Ansätzen, wie z.B. der Bayes’schen Optimierung,
können mit solchen einfachen Techniken auch hochdimensionale Probleme gelöst werden.

Wir schlagen zwei allgemeine Ansätze vor. Der erste Ansatz befasst sich mit sicherem
Lernen unter unsicheren linearen Randbedingungen. Er basiert auf der Frank-Wolfe-
Methode, die zusammen mit robusten Optimierungstechniken, Sicherheit unter Ungewis-
sheit garantiert. Wir beweisen einerseits die Konvergenz unseres Ansatzes für konvexe
Probleme und zeigen andererseits, dass die Sicherheit der während des Lernens durchge-
führten Messungen mit hoher Wahrscheinlichkeit garantiert ist. Der zweite Ansatz ist
allgemeiner und ermöglicht die Lösung von Optimierungsproblemen mit nichtlinearen
Nebenbedingungen. Die Hauptidee besteht darin, logarithmische Barrieren zu verwenden,
um die Sicherheit zu gewährleisten. Um das logarithmische Barrieren-Subproblem zu
minimieren, verwendet man ein einfaches und doch leistungsfähiges stochastic gradient
descent Verfahren (SGD) mit einer sorgfältig gewählten, adaptiven Schrittgröße. Diese
Arbeit analysiert die Konvergenzrate dieser Methode für nicht-konvexe, konvexe und
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starkkonvexe Probleme. Des Weiteren wird in dieser Arbeit die Stichprobenkomplexität
(sample complexity) der vorgeschlagenen Methode separat für stochastische Orakel erster
Ordnung und das verrauschte Orakel nullter Ordnung untersucht. Zusätzlich zu der
Analyse glatter Probleme, bietet diese Arbeit eine Erweiterung für nicht-glatte Probleme
und analysiert auch deren Stichprobenkomplexität. Schlussendlich vergleichen wir un-
sere Methoden auf synthetischen Problemen mit existierenden Baselines und zeigen ihre
Stärken in verschieden Anwendungen wie der Fertigung, Steuerung und Reinforcement
Learning
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f(x) = Õ(g(x)) big O up to a multiplicative logarithmic factor
f(x) = Ω(g(x)) big Ω notation
O(·) oracle
P{A} probability of event A
Es[·] expectation calculated over the distribution of the random variable s
D data set
ξ a vector of random variables
ε accuracy
N (µ, σ2) Gaussian distribution with mean µ and variance σ2

N (µ,Σ) Gaussian distribution with mean vector µ and covariance matrix Σ

L(·, ·) Lagrangian function
λ Lagrange dual vector

xi



Acronyms / Abbreviations

FW Frank-Wolfe method
RO Robust optimization
IPM Interior point methods
SGD Stochastic gradient descent
LB-SGD Log barriers SGD
RL Reinforcement learning
RKHS Reproducing kernel Hilbert space
GP Gaussian process
LP Linear programming
NLP Non-linear programming
QP Quadratic programming
BO Bayesian optimization
MDP Markov decision process
CMDP Constrained Markov decision process
POMDP Partially observable Markov decision process
NN Neural network
LQR Linear quadratic regulator

xii



CHAPTER 1
Introduction

1.1 Motivation and goals

Many optimization tasks in robotics, health sciences, and finance require minimizing
a loss function under uncertainties. Most existing stochastic and online optimization
approaches propose to address these tasks assuming that the constraints of the corre-
sponding optimization problems are known. These approaches, however, are unacceptable
in cases in which the feasible set is itself unknown and is learned online. Optimizing a
loss function under such a partially revealed feasible set model is further challenged by
the fact that exploration can be made only inside the feasible set due to safety reasons.
Hence, one needs to carefully choose actions to ensure the feasibility of each iterate with
high probability while learning the optimal solution. In the machine learning community,
this problem is known as safe learning. Our goal is to include safety in existing learning
techniques.

Motivation Safe learning is receiving increasing attention due to the increasingly
widespread deployment of machine learning in safety-critical tasks. An example arises
in personalized medicine, where physicians may choose from a large set of therapies.
The effects of different therapies on the patient are initially unknown and can only be
determined through clinical trials. Free exploration, however, is not possible since some
therapies might cause discomfort or even physical harm [Sui+15a]. Similar challenges arise
in designing control algorithms for robots, which have to navigate unexplored terrains
or interact with humans [CKK+96; KS96]. In these scenarios, robots need to learn the
best tuning for their controllers or optimize their trajectories based on risky experimental
interactions with partially unknown environments. Indeed, to be able to perform safe
learning, one requires to start from a known safe initial point. This is a classical assumption
for the works addressing safe learning. Without this assumption, we cannot guarantee
safety even for the initial point. Although this is quite a strong assumption, such tasks
also appear in practice. We consider a couple of examples below.

Example: Autonomous Driving The first example is a control policy learning
problem for an autonomous driving car [INF18; Wen+20; Fai+19; SAR18; DR18; Kat+15].
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Typically, this policy has to be trained in a particular city where the learner has the
complete infrastructure for that, let us assume this city is Zürich. The car collects a huge
amount of data from this city and trains a reliable policy π1. The manufacturers make
the policy π1 conservative enough to be robust and preserve safety in all other cities in
the country. However, they make it maximally efficient for Zürich. Then, assume that
one wants to drive this car in Lausanne. The policy π1 is still safe by design. But it is
not optimal anymore since the conditions and environment have changed [Zha+21]. For
instance, due to the increased hilliness overtaking drivers in Lausanne may be harder for
π1; therefore, reaching the destination takes a longer time. Then, one wants to train a
new policy to be more efficient in Lausanne. There are two ways to do this. One way is
to repeat everything that was done in Zürich from scratch: build infrastructure, collect
a massive amount of data, and then train the policy. The second option would be to
start running the car in Lausanne, and update the policy online, iteratively adapting
it to the new environment. The second option is obviously much cheaper. However, it
requires very strict safety guarantees not only at the end of learning but also during the
adaptation process. Therefore, it becomes a pure safe learning problem. Starting from a
safe policy π1, one wants to fine-tune it to the new environment in order to improve its
performance. However, due to real-world interactions, it is crucial to keep the learning
safe. The same idea can be used for adapting a policy pre-trained on a simulator for the
real world, the so-called sim-to-real problem. See Akhauri, Zheng, and Lin [AZL20] for
an example of using transfer learning for autonomous driving cars, or Nowruzi, Kapoor,
Kolhatkar, Hassanat, Laganiere, and Rebut [Now+19] for an example of using video-games
simulations to train autonomous driving cars.

Consider a pre-trained policy  

for an autonomous driving car in Zurich.

π1 One wants to run the car in Lausanne. 
The policy  is not optimal any more.π1

Assume  is safe 
everywhere in Switzerland.

π1

Q. How to fine-tune the policy online in Lausanne safely?

Obstacles

π1

Obstacles

π2?

Figure 1.1: Illustration of an autonomous driving example
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Example: Manufacturing Another interesting example is the parameters tuning in
manufacturing. Rapid technological development allows for fine-tuning the parameters
of machines to improve their performance online by collecting data. Imagine one needs
to tune the parameters of an industrial machine, say, a cutting machine, such as the
turning speed, angle, etc., in order to minimize the costs of production. Typically, in the
industry, such parameters are tuned manually by experts. In fact, it happens by trial and
error. Moreover, the optimization must be done in such a way that the parameters do not
violate safety constraints such as upper and lower limits of energy consumption [NM10], or
power constraint [Rat+21], or product quality [Mai+18]. Therefore, during the production
process, one could improve the performance of the machine using feedback. Choosing
the parameters during the learning process that allow safety constraint violations can
lead to breaking the machine or producing products with unsatisfactory quality. We want
all the updates during the learning to guarantee a user-defined minimum performance.
Therefore, one should use safe online learning techniques that ensure feasible updates
during the learning.

Goals There are works addressing safe learning in the past. A significant part of these
works is based on the Bayesian optimization (BO) [Sui+15b; BKS16]. The authors
address the safe optimization under the assumption that the objective and constraints
have a bounded reproducing kernel Hilbert space (RKHS) norm. Based on the obtained
measurements, they build a model of the objective and constraints based on Gaussian
processes (GP) that allows one to determine the safe region for choosing the next query
point. The Bayesian approach has a significant disadvantage since it does not scale for
medium-to-high dimensions due to the curse of dimensionality. Some extensions try to
overcome this disadvantage [Kir+19]; however, they are not universal yet. This motivates
our work of developing efficient, safe learning algorithms applicable to higher dimensions.
For high-dimensional optimization, gradient-based optimization methods have shown a
good performance and are widely used in tasks such as neural network (NN) parameters
optimization. Stochastic first- and zeroth-order methods are already widely explored for
constrained non-convex, convex, and strongly convex problems. In this dissertation, we
want to use the power of simplicity and the cheapness of gradient-based optimization
methods to address the safe learning task.

• As a first step, our goal is to address the simpler problem of safe learning under
the assumption that the constraints are linear. In this case, one could use the local
measurements of the constraints for linear regression to estimate a model of the
constraint set and to use it for our learning.

• The second goal is to propose a more general gradient-based method applicable to
non-linear constraints. We also want to investigate the advantages and limitations
of such an approach.

• The final goal is to demonstrate that the proposed techniques can be applied to real
learning problems such as control or safe reinforcement learning.

3



1.2 Outline and contributions

In the following, we present a brief summary and outline of each chapter.

1.2.1 Chapter 2

In this chapter, we provide the necessary background related to our work. In particular,
in Section 2.1 we define the important notions related to the first- and zeroth-order
optimization that we use in the current dissertation. Then, in Section 2.2 we provide the
overview of existing methods addressing constrained optimization and safe learning.

1.2.2 Chapter 3

The chapter is based on our work by Usmanova, Krause, and Kamgarpour [UKK19]. In
this chapter, we address the safe learning problem with polytopic constraints. We propose
a safe robust algorithm based on the Frank-Wolfe method. In particular, in Section 3.1
we formulate the safe learning problem with polytopic constraints. Then, in Section 3.2
we define our Safe Frank-Wolfe (SFW) algorithm. In Section 3.3 we analyze the safety
of our method, and then, in Section 3.4 we provide the convergence analysis. Finally, in
Section 3.5 we empirically demonstrate the performance of our algorithm on simulations.
In Appendix A we provide all the necessary proofs.

Overview of contributions

• We propose a novel algorithm for safe active learning, given a smooth convex
objective and a set of unknown linear constraints with noisy oracle information.
The core idea of our algorithm is to combine a first-order feasible optimization
approach with a robust optimization technique. Specifically, our algorithm is based
on the Frank-Wolfe (FW) method [FW56]. At each iteration, it solves an uncertain
linear program based on estimates of the constraints and uses this solution to define
the step direction. The safety of the iterates is ensured with high probability by
iteratively refining the confidence set of the unknown parameters.

• Given a confidence level 1− δ and accuracy ε, we prove that after Õ
(
1
ε

)
iterations

(one objective gradient measurement per iteration) and Õ
(
d2 ln 1/δ

ε2

)
constraints

measurements in total, the final point is an ε-accurate solution with probability
1− δ (Theorem 2). By Õ(·) we denote O(·) up to a logarithmic multiplicative factor.

• Furthermore, we ensure feasibility for the trajectory of the iterates with probability
at least 1−δ (Theorem 1). While in this chapter we mainly focus on exact first-order
oracles for the objective function, we discuss extensions to stochastic oracles in
Section 3.4.
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• We evaluate the performance of the proposed algorithm numerically in Section 3.5
and compare its performance with a one-shot robust optimization approach.

1.2.3 Chapter 4

In Chapter 4 we address general smooth non-linear objective and constraints. This chapter
is mainly based on our paper by Usmanova, As, Kamgarpour, and Krause [Usm+22] and
additionally uses the results obtained in Usmanova, Krause, and Kamgarpour [UKK20].
We build a method based on the logarithmic barriers, and propose to apply Stochastic
Gradient Descent (SGD) to minimize it, by carefully choosing adaptive step size. We
discuss advantages and limitations of this approach, and analyze it convergence rate and
safety for various types of smooth problems such as non-convex, convex, and strongly-
convex. In particular, in Section 4.1 we define the problem and the oracle information.
In Section 4.2 we introduce our general approach to the safe learning using logarithmic
barriers. In this section, we specify how to choose the step size and direction used in
our method, formulate a basic algorithm for smooth problems with first-order oracle,
and prove its safety. In Section 4.3 we focus on various method variants and their
convergence rates for different types of smooth problems. In particular, we analyze the
non-convex, convex, and strongly-convex settings. In Section 4.4 we extend our results
to zeroth-order information setting, and finally, in Section 4.5 we extend our results to
the non-smooth optimization setting, which we address using the randomized sampling
technique. Section 4.5 is not the part of the paper [Usm+22] but uses some results of
[UKK20]. In Section 4.6 we empirically compare our work on simulations with other safe
learning approaches. In Appendix B we provide the necessary proofs.

Overview of contributions

• We propose a unified approach for safe learning given zeroth-order or first-order
stochastic oracle. We prove that our approach generates feasible iterations with high
probability and converges to a stationary point (or to the optimum in the convex
case). Each iteration of the proposed method is computationally cheap and does
not require solving any subproblems such as those required for Frank-Wolfe (LP
subproblems) or BO-based algorithms (NLP subproblems).

• We derive the convergence rate of our algorithm for the stochastic non-convex,
convex, and strongly-convex problems. We prove the convergence despite the non-
smoothness of the log barrier and the increasingly high variance of the log barrier
gradient estimator.

• We address the zeroth-order information case, when one can measure only the
noisy values, and has no access even to stochastic gradients of the objective and
constraint functions. We extend the above approaches to address this issue by using
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the randomized smoothing technique and finite differences to estimate the gradients.
This technique also allows us to address non-smooth problems.

• We empirically show on simulations that our method can scale to problems with
high dimensions in which previous methods fail.

1.2.4 Chapter 5

In Chapter 5 we discuss applications of our safe learning methods (in particular, of the log
barrier approach) to real-world problems. In particular, we apply the logarithmic barrier
approach to the parameters tuning problem in manufacturing, to the dynamics controller
optimization in linear-quadratic regulator problem (LQR), and to the safe model-based
reinforcement learning (RL). In Section 5.1 we apply our method for tuning parameters
in the cutting machine showcase. In Section 5.2 we demonstrate the performance of our
method in an application of controller learning in LQR problem. These sections use the
results of our past work Usmanova, Krause, and Kamgarpour [UKK20]. In Section 5.3 we
discuss the application of the log barrier approach to a high-dimensional problem of safe
model-based reinforcement learning (RL) problem. This section is based on Usmanova,
As, Kamgarpour, and Krause [Usm+22], which in turn also strongly uses the results of As,
Usmanova, Curi, and Krause [As+22]. The code in this subsection was implemented by
Yarden As, my contribution was in proposing the log barriers approach for this problem,
and in designing the experiment in such a way that it is suitable for the safe learning setup.
We provide the necessary background on model-based RL, describe our experiments using
log barriers approach, and demonstrate its performance. In Appendix C we provide some
additional materials for this chapter.

1.3 Publications

This thesis contains a selected collection of results derived during the author’s studies as a
Ph.D. candidate. The corresponding articles on which this thesis is based are listed below.

[UKK19] “Safe Convex Learning Under Uncertain Constraints”, I. Usmanova, A. Krause,
M. Kamgarpour, International Conference on Artificial Intelligence and Statistics
(AISTATS), 2019;

[UKK20] “Safe non-smooth black-box optimization with application to policy search”, I. Us-
manova, A. Krause, M. Kamgarpour, 2nd Annual Conference on Learning for
Dynamics and Control (L4DC), 2020 ;

[As+22] “Constrained Policy Optimization via Bayesian World Models”, Y. As, I. Usmanova,
S. Curi, A. Krause, International Conference on Learning Representations (ICLR),
2022;
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[Usm+22] “Log Barriers for Safe Black-box Optimization with Application to Reinforcement
Learning”, I. Usmanova, Y. As, M. Kamgarpour, A. Krause, Under review at
Journal of Machine Learning Research (JMLR), 2022;

1.3.1 Other publications

The following papers were published by the author during her doctoral studies, but are
not included in the thesis.

[Usm+21] “Fast Projection Onto Convex Smooth Constraints”, I. Usmanova, M. Kamgarpour,
A. Krause, K.Y.Levy, International Conference on Machine Learning (ICML), 2021;

[Mak+21] “Risk-averse Heteroscedastic Bayesian Optimization”, A. Makarova, I. Usmanova,
I. Bogunovich, A. Krause, Conference on Neural Information Processing Systems
(NeurIPS), 2021;

The first reference concerns the fast projection technique for solving high dimensional
projection problems onto the intersection of a few convex smooth constraints. The second
reference is on risk-averse Bayesian optimization in the heteroscedastic setting.
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CHAPTER 2
Background and Related Work

This dissertation uses various basic constrained optimization techniques. In this chapter
we provide the necessary mathematical background for our work, and the review of the
literature related to the safe learning task and to ideas that we use.

2.1 Preliminaries

Before moving to the main part of the thesis, we first define the important notions that
we use in our work. We use the notations and definitions in this chapter throughout the
thesis.

Optimization problem Throughout this thesis, we consider optimization problems in
the form

min
x∈Rd

f 0(x) (P)

s.t. f i(x) ≤ 0, i ∈ [m]

where s.t. stands for subject to, and f 0 is the objective function. The constraint set X
here is given by m constraint functions X := {x ∈ Rd : f i(x) ≤ 0, ∀i ∈ [m]}. Alternatively,
the problem can also be formulated as minx∈X f

0(x).

Duality The Lagrangian function of the constrained problem (P) is defined as follows

L(x, λ) := f 0(x) +
m∑
i=1

λif
i(x).

Hereby, λ ∈ Rm is the vector of dual variables. Then the problem (P) is equivalent to:

min
x∈Rd

max
λ∈Rm+

L(x, λ).
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The dual problem is then defined by changing the order of min and max:

max
λ∈Rm+

g(λ) = max
λ∈Rm+

min
x∈Rd

[f 0(x) +
m∑
i=1

λif
i(x)]. (D)

Convexity The function f(·) is called to be convex on X if for any x, y ∈ X we have
f(αx+ (1−α)y) ≤ αf(x) + (1−α)f(y) for any α ∈ [0, 1]. If the function is differentiable,
it is equivalent to

f(x) ≥ f(y) + ⟨∇f(y), x− y⟩.
The set X is called convex if for any x, y ∈ X we have

αx+ (1− α)y ∈ X .

The set X defined by the convex constraint functions is also convex. We call the problem
convex if both the objective f 0(x) and the constrained set X are convex.

For convex problems, the optimal values of the primal problem (P) and the dual
problem (D) coincide.

Smoothness, Lipschitz continuity, and strong convexity A function f(x) is called
L-Lipschitz continuous on X if

|f(x)− f(y)| ≤ L∥x− y∥, ∀x, y ∈ X . (2.1)

It is called M-smooth on X if the gradients ∇f(x) are M -Lipschitz continuous, i.e.,

∥∇f(x)−∇f(y)∥ ≤M∥x− y∥, ∀x, y ∈ X . (2.2)

or equivalently,

f(x) ≤ f(y) + ⟨∇f(y), x− y⟩+ M

2
∥x− y∥2.

The function is called µ-strongly-convex on X , if

f(x) ≥ f(y) + ⟨∇f(y), x− y⟩+ µ

2
∥x− y∥2, ∀x, y ∈ X .

Oracle model and uncertainty The information is usually provided by measurements
at the requested points. Exact zeroth-order oracle provides the value f(x) at the requested
point x. Exact first-order oracle for the differentiable function f provides the gradient
∇f(x) at the requested point x. But typically, in the applications we consider, the
information available to the learner is noisy. For example, one can only observe perturbed
gradients and values of f i, ∀i = 0, . . . ,m at the requested points xt. In particular, we
assume that the oracles are corrupted by an additive sub-Gaussian noise. A random
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variable ξ is called zero-mean σ2-sub-Gaussian if ∀λ ∈ R E
[
eλξ
]
≤ exp

(
λ2σ2

2

)
, which

implies that Var [ξ] ≤ σ2 (this can be shown using Tailor expansion). We formally define
the first-order stochastic oracle and the zeroth-order stochastic oracle below.

Zeroth-order stochastic oracle When we consider a zeroth-order oracle, we assume
we have access to a one-point stochastic zeroth-order oracle, defined as follows. For any
i ∈ {0, . . . ,m} this oracle provides noisy function evaluations at the requested point xj:

F i(xj, ξ
i
j) = f i(xj) + ξij, (2.3)

where ξij is a zero-mean σ2
i -sub-Gaussian noise. We assume that noise values ξij may

differ over iterations j and indices i even for the close points, i.e., we cannot access the
evaluations of f i with the same noise by two different queries: ξij ̸= ξij+1 for any F i(xj, ξ

i
j)

and F i(xj+1, ξ
i
j+1) even if xj = xj+1. This is in contrast to the two-point stochastic zeroth-

order oracle that allows to have evaluations with the same noise vector at two different
points, which is a significantly stronger assumption [Duc+15]. Also, we assume that the
measurements taken several times at the same point are i.i.d. random variables.

First-order stochastic oracle In this case, we consider access to the first-order
stochastic oracle for every f i(x), providing the pair of value and gradient stochastic
measurements:

O(f i, x, ξ) = (F i(x, ξ), Gi(x, ξ)). (2.4)

Note that the formulation allows (but does not require) that F i(x, ξ) and Gi(x, ξ) are cor-
related. In particular, this formulation allows to define the vector of ξ = {(ξi0, ξi1)}i=0,...,m

such that each F i(x, ξ) = F i(x, ξi0) and Gi(x, ξ) = F i(x, ξi1). In this formulation,
{(ξi0, ξi1)}i=0,...,m can be either correlated or independent of each-other. The parts of
the oracle are given as follows:

1) Stochastic value F i(x, ξ). We assume F i(x, ξ) is unbiased

E[F i(x, ξ)] = f i(x),

and sub-Gaussian with variance bounded by σ2
i , that is, for any δ ∈ (0, 1)

P

{
|F i(x, ξ)− f i(x)| ≤ σi

√
ln

1

δ

}
≥ 1− δ, i ∈ {0, . . . ,m}.

2) Stochastic gradient Gi(x, ξ). We assume that its bias is bounded by

∥EGi(x, ξ)−∇f i(x)∥ ≤ b̂i,

11



where b̂i ≥ 0, and it is sub-Gaussian with the variance such that E[∥Gi(x, ξ) −
EGi(x, ξ)∥2] ≤ σ̂2

i for some σ̂i ≥ 0.

Optimality criteria The goal of an optimization method is to solve problem (P) up to
some level of accuracy ε > 0, provided with an information oracle.

In convex case we search for an ε-approximate solution x̂ such that

|f 0(x̂)−min
x∈X

f 0(x)| ≤ ε. (2.5)

If the problem is non-convex, finding the global optimum might be an NP-hard task;
therefore, we seek for a stationary point. In particular, for differentiable problems, we
search for a stationary point defined by the Karush-Kuhn-Tucker (KKT) conditions [KT51]

λi,−f i(x) ≥ 0, ∀i ∈ [m] (KKT.1)

λi(−f i(x)) = 0, ∀i ∈ [m] (KKT.2)

∥∇xL(x, λ)∥ = 0. (KKT.3)

To measure the approximation in the non-convex differentiable case we define the ε-
approximate KKT point (ε-KKT). Specifically, for ε > 0 and a pair (x, λ), such point
satisfies the following conditions:

λi,−f i(x) ≥ 0, ∀i ∈ [m] (ε-KKT.1)

λi(−f i(x)) ≤ ε, ∀i ∈ [m] (ε-KKT.2)

∥∇xL(x, λ)∥ ≤ ε. (ε-KKT.3)

This definition is similar to an unscaled approximate KKT point in Hinder and Ye [HY19]
with the only difference that we require our point to be feasible. In some works, e.g.,
[BG18], another stationarity condition is used for constrained non-convex optimization
given that set X is convex and closed:

⟨∇f 0(x), x− u⟩ ≤ ε, ∀u ∈ X . (2.6)

In this dissertation, we do not make such an assumption of convexity of X for the non-
convex problems. However, note that when ε→ 0, for convex and closed set X one can
show that x is a KKT point if and only if x satisfies Eq. (2.6) with ε = 0 (see for example
Zhao and Gordon [ZG17] Theorem 1).

We say we solve the safe learning task if we require for all trajectory {xt}t∈[T ] generated
by the algorithm during the learning, to satisfy {xt}t∈[T ] ∈ X with high probability 1− δ
for some confidence level δ ∈ (0, 1).

Sample complexity To measure the efficiency of an optimization algorithm, we use the
notion of sample complexity, also known as oracle complexity introduced by Nemirovsky
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and Yudin [NY85]. That is, how many oracle calls N(ε) are needed for the algorithm to
reach accuracy ε. Another notion is computational complexity, which denotes the number
of arithmetical operations required by the method to achieve accuracy ε.

2.2 Literature review

Next, we provide an overview of the existing methods in the literature related to the safe
learning problem. Consider the following optimization problem

min
x∈Rd

f 0(x) (P)

s.t. f i(x) ≤ 0, i ∈ [m]

under the partial information provided by zeroth-order or first-order oracle of f i for all
i ∈ [m], for example, as defined in Eq. (2.4) or Eq. (2.3). Optimizing a loss function
under such partially revealed information is further challenged by the fact that exploration
can be made only inside the feasible set due to safety reasons. That is, one needs to
carefully choose actions to ensure the feasibility of each iterate with high probability while
learning the optimal solution. In particular, the key requirement is safe learning : during
the optimization procedure one has to keep all the iterates xt inside the feasibility set
X := {x ∈ Rd : f i(x) ≤ 0, ∀i ∈ [m]} with high probability 1 − δ for some δ ∈ (0, 1).
Note that depending on the information available, one can consider a safe first-order
optimization problem or a safe zeroth-order problem. For instance, when one has access
to a stochastic model describing the objective and constraints, one can think of the
first-order problem. Alternatively, when the learner only can measure the noisy values of
the objective and constraints using real-world interactions, we talk about the zeroth-order
optimization problem.

We first provide some background on the classical stochastic first-order constrained
optimization methods and then on the relevant zeroth-order optimization methods. Op-
timization methods can be categorized into two classes. The first class is the methods
assuming known constraints requiring exact global information of the constraint set X ,
allowing, for example, to project onto X , or to solve a linear sub-problem subject to X .
The second class is those assuming unknown constraints that require only local information
such as gradient or value measurements of f i(x). This information also can be either
stochastic or exact. Moreover, the methods can be feasible or infeasible. By feasible
optimization approaches, we mean any constrained optimization methods that generate
a feasible optimization trajectory xt ∈ X ∀t > 0. In contrast, infeasible methods only
care about the feasibility of the final output and do not guarantee feasibility during the
optimization. Feasible methods are especially interesting for us, even in the case of known
constraints, since they can be potentially extended to the harder setting of unknown
constraints.

In the following sections, we first bring the existing relevant methods in first-order
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stochastic optimization, assuming both known or unknown constraints. Next, we discuss
the existing methods addressing zeroth-order optimization. This includes methods assum-
ing known constraints and, finally, those feasible methods addressing unknown, uncertain
constraints, which corresponds exactly to the safe learning setting. We finally describe
the existing safe learning methods to address the zeroth-order problems together with our
approaches.

2.2.1 First-order constrained stochastic optimization

Known constraint set X There are many first-order optimization algorithms that
ensure the feasibility of the iterates, assuming that the constraint set is known. The
most basic ones are the projected gradient descent (PGD)[BV04] and Frank-Wolfe (FW)
[FW56] (also known as conditional gradient).

Projected gradient descent: Robbins and Monro, in their pioneering work [RM51] in
1951, proposed a stochastic approximation (SA) method that mimics the simplest gradient
descent approach: xt+1 ← xt − γt∇f(xt) by using noisy gradient measurements instead
of the gradient: xt+1 ← xt − γt∇F (xt, ξt). In the above, γt is some step size (sometimes,
in machine learning applications, it is called a learning rate). The basic version of this
method is called stochastic gradient descent (SGD). It achieves in general the optimal
convergence rate O( 1

ε2
). Since then, SA methods have become widely used in stochastic

optimization and were further developed in [Nem+09; Jud+13; Lan20; DSS21]. These
types of methods are also used for non-convex problems, e.g., see Ghadimi and Lan [GL13].
To address the constraints, this class of methods proposes to use projections:

xt+1 ← ΠX (xt − γt∇F (xt, ξt)).

This approach is feasible during learning; however, it requires a projection oracle on the
set X providing the result of operation ΠX (x). For some sets X projection operation
ΠX (x) is very simple, e.g., projection on to the unit ball is equivalent to the normalization:
ΠSd(x) =

x
∥x∥ . Whereas for general sets, it might not have an analytical form and can be

considered as a separate complicated subproblem.

Frank-Wolfe method: A projection-free way of solving constrained stochastic problems
is the Frank-Wolfe approach. The Frank-Wolfe method, also known as the conditional
gradient method, was proposed by Frank and Wolfe in 1956 [FW56]. The procedure is
very simple: at every iteration, t, one has to minimize the linear gradient subject to the
constraint set X .

st ← argmin
s∈X

⟨s,∇f i(xt)⟩

xt+1 ← (1− γt)xt + γtst, for γt =
2

t+ 2

Recently, this method has become popular again. The analysis of stochastic version of
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it was analyzed in [Jag13], [LJ13]. This approach is also feasible since all the updates,
by definition, lie within the set X , but again, it can only be employed given the LP oracle
subject to X .

These classical projected SGD and FW methods require exact knowledge of the
constraints or at least a projection oracle or an exact linear programming (LP) oracle with
respect to the constraints. That means, given a too general structure of the constraints,
they cannot be applied directly to the safe learning problem. However, by assuming
a particular class of constraints, such as linear constraints, we can estimate the whole
feasibility set using regression. This allows using ideas similar to Frank-Wolfe for safe
learning, which we demonstrate later in this thesis.

Unknown constraint set X Now we consider other classes of algorithms that address
constraints given in a general form X = {x ∈ Rd|f i(x) ≤ 0 ∀i ∈ [m]} by using only the
local information such as values and gradients.

Penalty methods: A recent line of work addresses uncertain constraints in online
stochastic optimization [YNW17; YN16]. The work is based on infeasible penalty methods
and thus does not provide guarantees on constraint violation at each iteration. The idea
is to replace the constraint optimization problem with the sequence of its unconstrained
approximation minx∈Rd f

0(x) + ηkg(x) with the penalty parameter ηk converging to ∞.
Examples of penalty functions are g(x) =

∑
i∈[m][f

i(x)]+, g(x) =
∑

i∈[m](f
i(x))2. (This

method is also very closely related to the dual approach, in particular, the Augmented
Lagrangian method [Pow69].) Rather, the methods ensure the convergence of the average
constraint violation over the iterates to zero. Similarly, risk-aware contextual bandits and
bandits with knapsack constraints [SDK17; MJY12; JHA15] consider unknown constraint
functions with a budget limit. Here, safety refers to ensuring that the total usage of a
commodity, e.g., budget for adverts, summed over the sequence of iterates, remains below
a threshold. Similar to [YNW17; YN16], the above approaches bound average constraint
violation rather than avoiding violation at each iteration. While such a formulation can be
well-suited in certain problems such as adverts, it may not be well-suited for safe learning
applications discussed above because, in this latter case, constraints need to be satisfied
at each step.

Interior-point methods: The Interior Point Method (IPM) is another approach of
dealing with constrained optimization, similarly to penalty methods replacing the con-
strained optimization problem with a sequence of unconstrained subproblems. In contrast
to penalty methods, IPM is a feasible optimization approach by definition. That is, we
replace the constrained problem (P) by an unconstrained barrier subproblem

Bη(x) := f 0(x) + ηg(x). (2.7)

The barrier function g(x) has to grow to infinity from the inside of X when any of
the constraint functions f i(x) converges to 0. Examples of the barrier functions are
g(x) =

∑
i∈[m]− log(−f i(x)), g(x) =∑i∈[m]

1
−f i(x) . By using self-concordance properties
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of specifically chosen barriers and second-order information, IPM is highly efficient in
solving Linear Programming (LP), Quadratic Programming (QP), and Conic optimization
problems [AHR12]. However, building the barrier with self-concordance properties is
not possible for the unknown constraints. Hinder and Ye [HY19] analyze the trust
region method in application to the logarithmic barrier independently of the problem
and additionally analyze the gradient descent based approach to solving the log barrier
optimization (in the deterministic case).

2.2.2 Zeroth-order stochastic optimization

Known constraint set X The first-order optimization approaches often can be extended
to the zeroth-order information case. Let us start with smooth zeroth-order optimization
with constraints. For convex problems, Flaxman, Kalai, and McMahan [FKM05] proposes
an algorithm achieving a sample complexity of O(d2

ε4
) using projections.

Since the projections might be computationally expensive, in the projection-free setting,
[CZK19] proposes an algorithm achieving a sample complexity of O(d5

ε5
) for stochastic

optimization. Garber and Kretzu [GK20] improve the bound for projection-free methods
to O(d4

ε4
) sample complexity. Instead of projections, both above works require solving

Linear Programming (LP) sub-problems at each iteration.

Bubeck, Lee, and Eldan [BLE17] proposes a kernel-based method for adversarial learn-
ing achieving O(d9.5T 1/2) regret, and conjecture that a modified version of their algorithm
can achieve O(d3

ε2
) sample complexity for stochastic black-box convex optimization. At

each iteration t > 0, this method requires sampling from a specific distribution pt, that
can be done in poly(d, log(T ))T -time. For the smooth and strongly-convex case, Hazan
and Luo [HL16] propose a method that achieves O(d3

ε2
). The general lower bound for the

convex black-box stochastic optimization O
(
d2

ε2

)
is proposed by Shamir [Sha13]. Up to

our knowledge, there is no proposed lower bound for the safe black-box optimization with
unknown constraints.

For non-convex optimization, Balasubramanian and Ghadimi [BG18] provide a compre-
hensive analysis of the performance of several zeroth-order algorithms allowing two-point
bandit feedback. However, they also require complete knowledge of the constraints.

There exist also other classical derivative-free optimization methods addressing non-
convex optimization based on various heuristics. One example is the Nelder-Mead approach,
also known as simplex downhill [NM65]. To handle constraints it uses penalty functions
[LLG04], or barrier functions [Pri19]. Another example are various evolutionary algorithms
[SP97; KE95; Rec89; HO01]. But all of these approaches are based on heuristics and,
thus, do not provide the theoretical convergence rate guarantees; at best, they provide
the asymptotic convergence.

Unknown constraint set X There are much fewer works on safe learning for problems
with unknown constraints.
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Bayesian optimization: The problem of safe learning using Gaussian processes (GP)
has been proposed in [Sui+15a]. The SafeOpt algorithm developed in the above work
considers minimizing an unknown loss function iteratively while ensuring that the loss of
each iterate is above a required threshold. Given actively taken measurements of the loss,
the initial estimate of the feasible set is incrementally enlarged through exploration and
considering certain regularities of GP kernels. This framework is extended to multiple
constraints and experimentally validated on robotic platforms by [BKS16]. Safe GP
learning is powerful as it can address general non-convex problems. Nevertheless, due to
this generality, current approaches do not scale well with the problem dimension.

A significant line of work covers objectives and constraints with bounded reproducing
kernel Hilbert space (RKHS) norm [Sui+15b; BKS16], based on Bayesian Optimization
(BO). Also, for linear bandits problem Amani, Alizadeh, and Thrampoulidis [AAT19],
design a Bayesian algorithm handling the safety constraints. These works build Bayesian
models of the constraints and the objective using Gaussian processes [RW05, GP] and
crucially require a suitable GP prior. In contrast, in our work, we do not use GP models
and do not require a prior model for the functions. Additionally, most of these approaches
do not scale to high-dimensional problems. Kirschner, Mutny, Hiller, Ischebeck, and
Krause [Kir+19] proposes an adaptation to higher dimensions using the line search called
LineBO, which demonstrates strong performance in safe and non-safe learning in practical
applications. However, they derive the convergence rate only for the unconstrained case,
whereas for the constrained case, they only prove safety without convergence. We compare
our approach with their method in high dimensions empirically and demonstrate that our
approach can solve the problems in cases where LineBO struggles.

Safe Frank-Wolfe method for safe learning (Chapter 3): From the optimization side,
in the case of unknown constraints, projection-based optimization techniques or Frank-
Wolfe-based are not valid without assuming a model of the constraint set. Indeed, such
approaches require solving subproblems with respect to the constraint set. Thus, the
learner has to know at least an approximate model of it. One can build such a model in
the special case of polytopic constraints. In Chapter 3, we propose a safe algorithm called
Safe Frank-Wolfe (SFW) for convex learning with smooth objective and linear constraints
based on the Frank-Wolfe algorithm, that uses the robust optimization technique to
address uncertainty. Given a confidence level 1− δ and accuracy ε, we prove that after
Õ
(
1
ε

)
iterations (one exact objective gradient measurement per iteration) and Õ

(
d2

ε2

)
zeroth-order constraints measurements in total, the final point is an ε-accurate solution
with high probability (Theorem 2). We also conjecture that in case if stochastic first-order
measurements are available for the objective, then we require Õ

(
d2

ε3

)
measurements in

total. Similarly, in the case when two-point zeroth-order noisy information is available for
the objective, we also require Õ(d2

ε3
) objective and constraints noisy value measurements

in total. Building on the above approach, [Fer+20] propose an algorithm for both convex
and non-convex objective and linear constraints. This method considers first-order noisy
objective oracle and zeroth-order noisy constraints oracle.
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Log barriers SGD for safe learning (Chapter 4): For the more general case of non-linear
programming, we propose to use safe optimization approaches based on the interior point
method (IPM). Note that primal IPM is a feasible optimization approach by definition.
Recall that we cannot construct barriers with self-concordance properties for unknown
constraints. Therefore, we focus on logarithmic barriers. Our approach is built on the idea
of Hinder and Ye [HY19] who proposes the analysis of the gradient-based approach to
solving the log barrier optimization (in the deterministic case). In the current dissertation,
we extend the above work to the smooth problems with both first-order and zeroth-order
stochastic information. For the zeroth-order setting our method achieves the sample
complexity of Õ(d2

ε7
) for non-convex problems, Õ(d2

ε6
) for convex problems, and Õ(d2

ε5
) for

strongly-convex problems. We additionally propose the extension to the non-smooth
setting using the randomized smoothing technique. We summarize the discussion of the
zeroth-order algorithms from the past work as well as the best known lower bounds in
Table 2.1.

Price of safety To finalize Table 2.1, in case of polytopic constraints, our method with
two-point zeroth-order feedback on the objective and one-point zeroth-order feedback
on the constraints requires O(d2ε−3) measurements compared to the similar zeroth-order
conditional gradient method in [BG18] O(dε−3) (without acceleration or variance reduction)
also given two-point zeroth-order queries for the objective and fully known constraints.
The required number of LP subproblems to be solved in both methods is the same O(ε−1).
That is, in this case, we pay only a price of O(d).

As for the non-linear constraints, compared to the state-of-the-art works with tractable
algorithms and known constraints [BP16], we pay a price of order Õ(ε−3) in zeroth-order
optimization just for the safety with respect to unknown constraints both in convex and
strongly-convex cases. In the non-convex case, we pay O(dε−3) both for safety and having
one-point feedback compared to Balasubramanian and Ghadimi [BG18] considering 2-point
feedback. As for the computational complexity, our log barrier method is projection-free
and does not require solving any subproblems compared to the above methods.
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Algorithm Sample complexity Computational complexity Constraints Convexity

Bach and Perchet [BP16] O
(
d2

ε3

)
projections known yes

Bach and Perchet [BP16] O
(
d2

µε2

)
projections known µ-str.-convex

Bubeck, Lee, and Eldan
[BLE17]

O
(
d3

ε2

)
samplings from pt distribution known yes

Balasubramanian and
Ghadimi [BG18]

O
(
d
ε4

)
O

(
1
ε2

)
LPs known no

Garber and Kretzu
[GK20]

O
(
d4

ε4

)
O

(
1
ε2

)
LPs known yes

This work [UKK19] O
(
d2

ε3

)
O

(
1
ε

)
LPs unknown, linear yes

Fereydounian, Shen,
Mokhtari, Karbasi, and
Hassani [Fer+20]

Õ
(
d2

ε4

)
O

(
1
ε2

)
LPs unknown, linear yes/no

Berkenkamp, Turchetta,
Schoellig, and Krause
[Ber+17]

Õ
(
γ(d)

ε2

)
O

(
γ(d)

ε2

)
NLPs unknown no

This work [Usm+22] O
(
d2

ε7

)
O

(
1
ε3

)
gradient steps unknown no

This work [Usm+22] Õ
(
d2

ε6

)
Õ

(
1
ε2

)
gradient steps unknown yes

This work [Usm+22] Õ
(
d2

µε5

)
Õ

(
1
ε2

)
gradient steps unknown µ-str.-convex

Lower bound [Sha13] O
(
d2

ε2

)
- known yes

Table 2.1: Zeroth-order safe smooth optimization algorithms. Here ε is the target accuracy,
and d is the dimension of the decision variable. Many of the cited works provide bounds in
terms of regret, which can be converted to stochastic optimization accuracy. In SafeOpt, γ(d)
depends on the kernel, and might be exponential in d. All the above works consider one-point
feedback, except for Balasubramanian and Ghadimi [BG18], which considers two-point feedback.
In [UKK19] we consider zeroth-order two-point feedback for the objective similarly to [BG18]. In
[Fer+20] the authors consider first-order feedback for the objective. In Bubeck, Lee, and Eldan
[BLE17], at each iteration the sampling from a a specifically updated distribution pt can be done
in poly(d, log(T ))T -time. Under Õ(·), we hide a multiplicative logarithmic factor.
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CHAPTER 3
Safe Convex Learning

with Polytopic Constraints

In this chapter, we address the problem of minimizing a convex smooth function f(x)

over a compact polyhedral set X given a stochastic zeroth-order constraint feedback
model. This problem arises in safety-critical machine learning applications, such as
personalized medicine and robotics. In such cases, one needs to ensure constraints are
satisfied while exploring the decision space to find optimum of the loss function. We
propose a new variant of the Frank-Wolfe algorithm, which applies to the case of uncertain
linear constraints. Using robust optimization, we provide the convergence rate of the
algorithm while guaranteeing feasibility of all iterates, with high probability. This chapter
is based on our paper Usmanova, Krause, and Kamgarpour [UKK19].

Our contributions We propose an algorithm for safe learning, given a smooth convex
objective and a set of unknown linear constraints with noisy oracle information. Given
a confidence level 1 − δ , we ensure feasibility of the iterates with probability at least
1− δ (Theorem 1). Furthermore, given accuracy ε, we prove that after Õ

(
1
ε

)
iterations

and Õ
(
d2 ln 1/δ

ε2

)
constraints measurements, the final point is an ε-accurate solution with

probability 1− δ (Theorem 2). By Õ(·) we denote O(·) up to a logarithmic multiplicative
factor. While in this chapter we mainly focus on the exact first-order oracle for the
objective function, we discuss extensions to a stochastic oracle in Section 3.4.

The core idea of our algorithm is to combine a first-order feasible optimization approach
with the robust optimization technique. Particularly, our algorithm is based on the Frank-
Wolfe (FW) method. In each iteration, it solves an uncertain linear program based on
estimates of the constraints. Then, it uses this solution to define the step direction. The
safety of the iterates is ensured with high probability by refining the confidence set of the
unknown parameters iteratively. We emphasize that while we use the theory of robust
optimization [BN98; BN99; BN00], our problem formulation is different than that of a
classical robust optimization. Specifically, we consider gathering information online about
the uncertainty, whereas the robust optimization works assume one-shot knowledge of
uncertainties. We numerically evaluate the performance of the proposed algorithm in
Section 3.5 and compare its performance with a one-shot robust optimization approach.
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3.1 Problem Formulation

The problem of safe learning in its most general form can be defined as a constrained
optimization problem

min
x∈Rd

f 0(x)

subject to f i(x) ≤ 0 ∀i ∈ [m],

where the objective function f 0 : Rd → R and the constraints f i : Rd → R are unknown,
and can only be accessed at feasible points x. The objective is to design an iterative
algorithm that chooses the query points to ensure feasibility at each round while progressing
towards the optimum. In this chapter we focus on the special case of polytopic constraints
in the form Ax− b ≤ 0. Throughout this chapter we denote the objective function by f
instead of f 0. We define all the assumptions below.

Assumptions In this chapter, we consider an instance of the safe learning problem in
which the objective f is convex and M -Lipschitz continuous, that is, |f(x)−f(y)| ≤M∥x−
y∥ ∀x, y ∈ X , where X is the feasible set. Furthermore, we assume f is L-smooth, that is,
f has L-Lipschitz continuous gradients in X , ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥, ∀x, y ∈ X .
We assume access to the gradients of the objective function, ∇f(x), at any feasible
query point x ∈ X . We furthermore assume that constraints are known to be linear,
fi(x) = [ai]Tx − bi for i ∈ [m]. Hence, letting A ∈ Rm×d denote the matrix with rows
defined by [ai]T , the problem is given by

min
x∈Rd

f(x) (3.1)

s.t. Ax− b ≤ 0.

We assume that the feasible set X = {x ∈ Rd : Ax − b ≤ 0} is a compact polytope
with non-empty interior. Denote by D the diameter of the set X , D = maxx,y∈X ∥x− y∥.
Furthermore, letD0 be the radius of the smallest ball centered at 0 such that X ∈ Bd(0, D0),
namely, D0 = maxx∈X ∥x∥.

If A and b are known, (P) can be solved efficiently by off-the-shelf first-order convex
optimization algorithms. We however, consider the case in which A and b are unknown
and can be accessed through an oracle. Specifically, we assume the constraints can be
evaluated at any point that lies within a ball of radius ν of the feasible set. These
evaluations are corrupted by Gaussian noise. Hence, we have access to y(x) = Ax− b+ ξ

for any x such that Bd(x, ν)∩X ≠ ∅, where ξ are sub-Gaussian. If in the problem setting
having all the measurements inside the feasible set is critical, we can artificially shrink
the set X by the value ν from the boundaries. This can be achieved by tightening the
constraints [ai]Tx ≤ bi with setting the measurements ŷi = yi − κ = [ai]Tx− bi + ξi − κi,
with κi ≥ LiAν, where LiA is an upper bound on ∥ai∥.
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The scope of the present chapter is to design an algorithm which, starting from a
feasible point x0 ∈ X , converges to an optimal solution x∗ with a required accuracy ε and
a required confidence 1− δ after T steps, that is,

P{f(xT )− f(x∗) ≤ ε} ≥ 1− δ. (3.2)

Since the constraint set X is unknown and revealed through a noisy oracle, we can at the
very best ensure to remain inside the feasible set with sufficiently high probability. Hence,
we require that the updates of the method are not violating the true constraints with the
same required confidence level of 1− δ, that is,

P{Axt − b ≤ 0, 0 ≤ t ≤ T} ≥ 1− δ. (3.3)

Some words on the choices of the optimization and oracle above are in order. First, the
setting of linear constraints can be restrictive for some real-world problems. Nevertheless,
understanding the linear setup is often the first step in addressing more challenging
formulations. Second, having a noisy first-order or a zeroth-order oracle for the objective
function is more realistic for several safe learning problems. Optimization under such oracle
models have been deeply explored for the case in which the constraint set is known. Hence,
the main novelty and challenge in safe learning is ensuring feasibility of the iterates despite
uncertain and incrementally revealed constraint values. We discuss how the proposed
algorithm can be generalized to stochastic oracle models for objective in Section 3.4.

3.2 The SFW algorithm

We propose a variant of the Frank-Wolfe algorithm where we explicitly take into account
the uncertainty about the feasible set X , referred to as Safe Frank-Wolfe (SFW). The
algorithm can be summarized as follows. Starting with a feasible point x0 ∈ X , at
each iteration t = 0, . . . , T we generate a number nt of query points and obtain noisy
measurements of the constraint functions at these points. Using linear regression, we
obtain an estimate X̂t of the feasible set based on the history of obtained measurements.
The algorithm then uses X̂t to obtain a direction ŝt by solving the estimated Direction
Finding Subproblem (DFS)

ŝt = argmin
s∈X̂t
⟨∇f(xt), s⟩. (3.4)

The next iterate is then given by xt+1 = xt + γt(ŝt − xt), according to a chosen step-size
γt. Below, we further describe each step of the proposed algorithm.

Taking Measurements. During each iteration t of the algorithm, we first make
measurements at nt number of points x(j) within distance ν of xt in d linearly indepen-
dent directions. The number nt needs to satisfy a lower bound as a function of the
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input data δ, T , to ensure safety. This bound is provided in Theorem 1. Denote by
Xt = [x(1), . . . , x(Nt)]

T ∈ RNt×d and by Nt =
∑t

k=0 nk, the total number of available
measurements at iteration t. Combining all measurements taken up to iteration t we
have the following information about the constraints yi = Xta

i − bi1 + ξi, i ∈ [m], where
yi ∈ RNt is the vector of Nt measurements of i-th constraint, ξi = [ξi1, . . . , ξ

i
Nt
]T ∈ RNt is

the vector of errors. The errors ξit are independent and σ-sub-Gaussian, which means

∀λ ∈ R ∀i E
[
eλξ

i
t

]
≤ exp

(
λ2σ2

2

)
.

The sub-Gaussian condition implies that E [ξit] = 0 and Var [ξit] ≤ σ2. An example of σ-sub-
Gaussian ξi are independent zero-mean Gaussian random variables with variance at most
σ2, or independent bounded zero-mean variables lying in an interval of length at most 2σ.
We also denote by 1 ∈ RNt the vector of 1’s. Let us denote by Yt = [y1, . . . , ym] ∈ RNt×m

the matrix of corresponding measurements of the constraints.

Estimating Constraints. Let βi =
[
[ai]T bi

]T ∈ Rd+1 denote the vector corresponding
to the i-th constraint. We refer to βi as the true parameter. Let X̄t = [Xt,−1] ∈ RNt×(d+1)

be the extended version of the matrix Xt. The Least Squares Estimation (LSE) of the
constraint parameters at step t is given by

β̂t = [Ât, b̂t]
T = [X̄T

t X̄t]
−1X̄T

t Yt. (3.5)

The covariance matrix of the β̂it is given by Σt = σ2[X̄T
t X̄t]

−1. Let âit, b̂it denote the
estimates of the corresponding rows of β̂it and X̂t = {x ∈ Rd : Âtx ≤ b̂t} denote the
estimated feasible set.

Stopping criteria. Recall that ŝt is the minimizer of the estimated DFS Eq. (3.4) and
let ĝt be its optimal value

ĝt = min
s∈X̂t
⟨s,∇f(xt)⟩. (3.6)

Similarly, let st denote the minimizer of the DFS under true constraints and gt the
corresponding optimal value

st = argmin
s∈X
⟨s,∇f(xt)⟩, gt = min

s∈X
⟨s,∇f(xt)⟩. (3.7)

From convexity of f , we have f(xt)− f(x∗) ≤ gt. Thus, as discussed in [Jag13], gt can
be taken as a surrogate duality gap and consequently a stopping criterion for the FW
algorithm. In our case, the duality gap cannot be computed exactly because the feasible
set X is unknown. Nevertheless, for the random variable Et := |ĝt − gt| describing an
error in the gap estimation we can derive a probabilistic upper bound Ēt(δ), such that
P{Et ≤ Ēt(δ)} ≥ 1− δ (see Proposition 1 Section 3.4). It follows that if ĝt + Ēt(δ) ≤ ε,
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then with probability greater than 1 − δ we have f(xt) − f(x∗) ≤ ε. Thus, we use
ĝt + Ēt(δ) ≤ ε as a stopping criterion.

Putting the above few steps together, we present the Safe Frank-Wolfe (SFW) in
Algorithm 1.

Algorithm 1 SFW (Safe Frank-Wolfe)
1: Input: x0 ∈ X , bound on iterations T , accuracy ε, confidence parameter δ, measure-

ment radius ν;
2: t← 0; Choose nt(δ, T );
3: while t ≤ T do
4: Pick 2d points around the current point xt

x(Nt−1+i) = xt + eiν,

x(Nt−1+2i) = xt − eiν, i ∈ [d],

and take [nt/2d] measurements at each point;
5: Obtain the gradient ∇f(xt) and the noisy constraint values yi(j) = xT(j)a

i − bi + ξi(j)
∀j = Nt + 1, . . . , Nt + nt, i ∈ [m];

6: Compute the LSE of the constraints Ât and b̂t based on Eq. (3.5);
7: Solve the estimated DFS (3.4) to obtain ŝt;
8: Estimate the duality gap ĝt (3.6);
9: if ĝt ≤ ε− Et(δ̄) then

10: break and return xt;
11: end if
12: Set γt = 1

t+2
;

13: xt+1 ← xt + γt(ŝt − xt);
14: t← t+ 1.
15: end while

3.3 Safety

In order to ensure safety of the trajectory as per Inequality (3.3) we ensure that each
xt+1 generated by the algorithm above remains within the feasible set X with probability
1− δ̄, where δ̄ = δ

T
. This is achieved using the analysis framework of robust optimization

by [BBC11], [BN98]. The safety of each iterate, combined with a union bound, enables us
to prove the safety of the sequence {xt}Tt=1 with probability 1− δ = 1−∑T

t=1 δ̄.

Since the LSE’s of the constraint parameters are given by β̂it = [[âit]
T , b̂it]

T ∈ Rd+1,
the confidence set for the vector of true parameters βi is given by the following ellipsoid:
E it (δ̄) =

{
z ∈ Rd+1 : (β̂it − z)TΣ−1

t (β̂it − z) ≤ ϕ−1(δ̄)2
}
, where,

ϕ−1(δ̄) = max

{√
128d logNt log

(
N2
t

δ̄

)
,
8

3
log

N2
t

δ̄

}
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for σ-sub-Gaussian noise ξi for Nte
−1/16 ≥ δ̄, [DHK08] 1. Thus, we have an ellipsoidal

uncertainty set centered at β̂it , such that P{βi ∈ E it (δ̄)} ≥ 1−δ̄.We define the confidence set
Et(δ̄) for all parameters β by Et(δ̄) = E1t (δ̄/m)× . . .×Emt (δ̄/m) ⊆ R(d+1)m. The confidence
set Et(δ̄) determines the uncertainty set for constraint parameters β with probability 1− δ̄.
Indeed, 1− P(∃i : βi /∈ E it (δ̄/m)) = 1− P{∪mi=1{βi /∈ E it (δ̄/m)}} ≥ 1−∑m

i=1 δ̄/m = 1− δ̄.
We define the safety set St(δ̄) ⊂ Rd at iteration t as the set of x ∈ Rd satisfying the

constraints with any true parameter β = [A, b] in the confidence set:

St(δ̄) = {x ∈ Rd : Ax ≤ b, ∀[A, b] ∈ Et(δ̄)}. (3.8)

Given that for each constraint βi our uncertainty set E it(δ̄) has an ellipsoidal form, the
safety set St(δ̄) is equivalent to the intersection of a set of second order cone constraints
[BEN09]

St(δ̄) =

{
x ∈Rd : ∀i ∈ [m]

[
[âit]

Tx− b̂it
]
+ ϕ−1(δ̄/m)

∥∥∥∥Σ1/2
t

[
x

−1

]∥∥∥∥ ≤ 0

}
. (3.9)

Fact 1. From the definition of the confidence and safety sets it readily follows that

P{x ∈ X |x ∈ St(δ̄), β ∈ Et(δ̄)} = 1.

Fact 2. The condition xt ∈ St(δ̄) is equivalent to

ϕδ̄

√
1

Nt

+ (xt − x̄t)TRt(xt − x̄t) ≤ min
i∈[m]

ϵit,

where ϕδ̄ = σϕ−1(δ̄/m), ϵit = b̂it − [âit]
Txt, x̄t =

XT
t 1

Nt
, and

Rt =
[ Nt∑
j=1

(x(j) − x̄t)(x(j) − x̄t)T
]−1

.

The proof of this fact is provided in Section A.1.

To state the main result on safety of each iteration, we need to introduce some notation.
For the polytope X ∈ Rd, by an active set B we denote a set of indices of d linearly
independent constraints active in a vertex V ∈ Rd of X , i.e., V = V B = [AB]−1bB.
Here, AB is a corresponding sub-matrix of A and bB is the corresponding right-hand-side
of the constraint. Let ρmin(A

B) denote the smallest singular value of AB. Let Act(X )
denote the set of all active sets corresponding to vertices of X , i.e., Act(X ) = {B :

V B is a vertex of X}. Furthermore, define ρmin(X ) := min{ρmin(A
B) : B ∈ Act(X )}.

Note that ρmin(X ) > 0 since by definition, B is a set of linearly independent active

1In the case when the noise is Gaussian and Xt is chosen deterministically, e.g. if all the samples are
taken around x0, ϕ−1(δ̄) is taken as the inverse of Chi-squared cumulative distribution function with
d+ 1 degrees of freedom [DS14].
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constraints. Let ϵ0 = mini{bi − [ai]Tx0}, and LA = maxi ∥ai∥. With the notation in place,
we can present the following lemma on the lower bound on the number of measurements
to ensure safety of each iterate.

Lemma 1. If β ∈ Ek(δ̄) for k ∈ [t] and nt = 4Cnt(ln t)
2, with the constant parameter Cn

satisfying

Cn ≥ C2
δ̄ max

{
4(ln lnT )2L2

A

[ϵ0]2
,

1

(D0 + 1)2

}
, (3.10)

where Cδ̄ =
2ϕδ̄d(D0 + 1)

ρmin(X )

√
D2

0 + 1

ν2
+ 1, (3.11)

then xt ∈ St(δ̄). Furthermore, the total number of measurements then satisfies Nt =

Cnt
2(ln t)2.

We provide the full proof in Section A.3.

Proof sketch. Let us give a brief intuition for the proof. First, from Fact 2 we see that in
order to have xt ∈ St(δ̄) we require mini ϵ

i
t ≥ Ω

(
1√
Nt

)
, where ϵit is equal to the distance to

the boundary corresponding to the estimated i-th constraint multiplied by ∥âit∥. Second,
if these estimates were fixed, then using step sizes γt = 1

t+2
we could ensure that the

convergence to any boundary i would not be faster than ϵit ≥
∏t

k=0(1− γk)ϵi0 =
ϵi0
t+2

(see

Figure 3.1). Hence, we require Nt ≥ Ω
(
t2

ϵ20

)
. However, since ϵit are random and boundaries

are fluctuating, we need Nt to be square logarithmic times larger than the above estimate
(as shown in the full proof). ■

Remark. Note that the dependence on ln lnT is very mild because this term grows
extremely slowly, i.e, ln ln 15 ≈ 1 and ln ln 2000 ≈ 2.

Having established Lemma 1, we can present the safety guarantee of the SFW algorithm.

Theorem 1. If nt = 4Cnt(ln t)
2, where the constant parameter Cn is defined in Eq. (3.10)

then, the sequence of iterates {xt}Tt=0 of SFW is feasible with probability at least 1 − δ,
that is, P{xt ∈ X for all 0 ≤ t ≤ T} ≥ 1− δ.

Proof. Let Ft denote the event that all the estimated confidence sets Ek(δ̄) up to step t
cover β, i.e., Ft = {β ∈ ∩tk=0Ek(δ̄)}. Furthermore, let Qt denote the event that all the
xk ∈ Sk(δ̄) up to iteration t, i.e, Qt = {xk ∈ Sk(δ̄) for all 0 ≤ k ≤ t}. By Lemma 1 if Ft
holds, then xt ∈ St(δ̄). Hence, it is easy to see that Ft implies Qt, i.e., P{Qt|Ft} = 1.

Thus, using Fact 1 we derive

P {xt ∈ X for all 0 ≤ t ≤ T} = P{QT ,FT} = P{FT}.
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ŝt

γt

xt+1

xt
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Figure 3.1: Illustration of one iteration of SFW xt+1 = xt + γt(ŝt − xt). Bold lines denote the
polytope X and dashed lines denote its estimate X̂t.

Using Boole’s inequality we can bound the probability of FT as follows

P{FT} = 1− P{∪Tt=0 ∪mi=1 {βi /∈ E it (δ̄/m)}} ≥ 1−
T∑
t=0

m∑
i=1

δ̄/m ≥ 1− T δ̄.

This concludes the proof. ■

3.4 Convergence

First, we show that the proposed algorithm achieves the optimal convergence rate for the
Frank-Wolfe algorithm (see [Lan13] , with sufficiently high probability. Second, we discuss
extensions to stochastic first-order and zeroth-order oracles of the objective function based
on the results of [HL16].

Convergence rate Let us define the curvature constant Cf of the function f(x) with
respect to the compact domain X by

Cf = sup
x,s∈X ,γ∈[0,1],
y=x+γ(s−x)

1

γ2
(f(y)− f(x)− ⟨y − x,∇f(x)⟩).

It can be verified that Cf ≤ LD2, where L is the Lipschitz constant of the gradient ∇f(x)
and D is the diameter of the set X (see Section 3.1). Our main result is as follows.
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Theorem 2. If nt = 4Cn(t+ 2)(ln(t+ 2))2 and Cn is chosen according to the bound in
Equation Eq. (3.10), then:
a) after T steps of the SFW algorithm, the final point xT satisfies

P

{
f(xT )− f(x∗) ≤

f(x0)− f(x∗)
T + 2

+
ln (T + 2)

Cf
2
+ ln ln(T + 2)C

′

2

T + 2

}
≥ 1− δ,

where C ′ =
MCδ̄√
Cn

, and Cδ̄ is defined in Eq. (3.11).
b) all the iterates {xt}Tt=1 are feasible with probability 1− δ, as required in Eq. (3.3).

Corollary 1. The SFW algorithm achieves an ε-accurate solution with probability greater
than 1− δ after making Õ(1

ε
) linear optimization oracle calls and Õ

(
d2 ln 1

δ̄

ε2

)
zeroth-order

inexact constraint oracle calls.

Below, we provide the proof sketch for Theorem 2. The full proofs of Theorem 2 and
Corollary 1 are provided in Section A.4 and Section A.5.

Proof sketch. Our proof is based on the extensive study of FW convergence provided by
[Jag13], [FG16]. Recall that Et is the accuracy with which an approximated DFS at
iteration t is solved. Similarly to ([FG16], Theorem 5.1) we can show that for γt = O

(
1
t

)
,

we have

f(xt)− f(x∗) ≤ O

(
ϵ0 + Cf ln t+

∑T
t=1Et

t

)
, (3.12)

where ϵ0 = f(x0)− f(x∗). Hence, to prove the convergence rate of the SFW algorithm we
need to show that the error in the DFS solution decreases with the rate O

(
1
t

)
. This fact

is shown in Proposition 1 below.

Proposition 1. If β ∈ Et(δ̄) and Nt ≥ C2
δ̄

(D0+1)2
, then Et ≤ MCδ̄√

Nt
. Since P{β ∈ Et(δ̄)} ≥ 1−δ̄,

we obtain P
{
Et ≤ MCδ̄√

Nt

}
≥ 1− δ̄.

We provide the proof in Section A.2. From the result above it directly follows that
Et = O

(
1

t ln t

)
, hence

∑t
k=0Ek = O (ln ln t). Using this result, and the classical FW proof

technique ([FG16]) we can conclude the result of Theorem 2. This concludes the proof
sketch. ■

We can see that under our choice of the number of measurements nt at each iteration,
the total number of measurements is O (d2t2 ln t2). It follows that the required number
of measurements at each step grows almost linearly with the iteration number and
quadratically with the dimension d. Note however that the number of iterations is
independent of the dimension d. In contrast, the safe learning approach in [Sui+15a] is
based on gridding the decision space and hence, the dependence in d is exponential. Hence,
compared to previous safe learning approaches [Sui+15a; BKS16], our method scales
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better with dimension. Naturally, this scalability is due to the assumption of convexity of
the cost function and the linearity of the constraints.

Finally, let us clarify some computational complexity aspects. After adding each new
data point to X, the matrix inversion (XTX)−1 in Step 6 can be performed using one-rank
updates (e.g., using formula (A+ vvT )−1 = A−1 − 1

(1+vTA−1v)
(A−1vvTA−1)). The cost of

each such operation is O(d2). This operation is to be made Nt = O(d2t2(ln t)2) times.
The total computational complexity is thus O(d2Nt) = O(d4t2(ln t)2) from Step 6 and
additionally t LP oracle calls in Step 7.

Extension to stochastic oracle for the objective function. Note that the SFW
algorithm requires t = Õ

(
1
ε

)
iterations and Nt = Õ

(
d2 ln 1

δ

ε2

)
measurements of constraints

to obtain a required accuracy of ε. General Stochastic Frank-Wolfe algorithm with
stochastic objective but known linear constraints require t = O(1

ε
) iterations and, in

contrast, t = O( 1
ε3
) stochastic gradient measurements of the objective ([HL16], Table 2).2

This difference in the number of measurements is due to the fact that in the absence of
linearity of the objective function, the gradients of the objective function are changing in
each iteration. Thus, O( 1

ε2
) measurements at each iteration are needed to guarantee correct

variance reduction rate of the Frank-Wolfe method (see Eq. (3.12)). (Note that we do not
consider the variance reduction or acceleration techniques for simplicity, however, using
them we could reduce the number of measurements above.) From the above observation,
we can extend the SFW analysis to the case in which we have access to a stochastic
first-order oracle of the objective function. In this case, a total of O( 1

ε3
) calls to the

objective function oracle, and O(d
2

ε2
) calls to the constraints oracle are sufficient to obtain

the desired rate of decrease of Et in Proposition 1 and hence, the convergence rate in
Theorem 2. That is, we require Õ

(
d2

ε2

)
constraints measurements and Õ

(
1
ε3

)
objective

gradient measurements for our method, that we can roughly bound by Õ
(
d2

ε3

)
.

For the case of two-point zeroth-order oracle, O(max{ d
ε2
, d2}) calls per iteration are

needed to estimate the gradient of the objective with accuracy ε without using any
variance reduction or acceleration techniques. 3 Therefore, we need Õ

(
d2

ε2

)
constraints

measurements and Õ( d
ε3
) objective value measurements, that we can roughly bound by

O(d
2

ε3
) value measurements in total. Note that stochastic FW approach without acceleration

with known constraints and two-point zeroth-order feedback on the objective requires
O( d

ε3
) as shown in [BG18]. The noisy objective gradient does not influence the safety of

the proposed algorithm. Thus, the safety results in Theorem 3 extend to the case with
stochastic first-order or zeroth-order oracle of the objective.

2The projection-free scheme called STORC in [HL16] can achieve better rates of O
(
1/ε1.5

)
stochastic

gradient oracle calls using the variance reduction technique, but we do not consider now such extensions
for our comparison of the direct safe and unsafe FW approach. Alternatively, we could also use the
variance reduction to improve the performance given the stochastic gradients.

3This can be shown using Lemma 10, where the last term in the variance expression for the estimated
gradient simply equals to 0 in the case of two-point feedback.
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3.5 Simulations

We evaluate the performance of the proposed approach experimentally. In the first
experiment, we consider the convergence rate of the algorithm as a function of the
dimension. In the second experiment, we compare the SFW algorithm with a robust
optimization based approach, which first learns the uncertain constraints and then finds
the optimum with respect to the estimated constraints. We consider the convex smooth
optimization problem:

min
x∈X

1

2
∥x− x′∥22 ,

where X =
{
x ∈ Rd| − 1 ≤ xi ≤ 1, i ∈ [d]

}
and x′ = [2, 0.5, . . . , 0.5] ∈ Rd for varying

dimension d. Then, the solution x∗ is a point on the boundary of the true constraint set
above. We set the variance of the noise to σ = 0.01 and use a constant exploration radius
ν = 0.01. Furthermore, we set the confidence parameter δ = 0.1 and the total number of
iterations to T = 15. The code corresponding to this experiment can be found under the
following link: https://github.com/Ilnura/Thesis_applications.

Empirical constraint violation and convergence rate. The first experiment evalu-
ates the empirical convergence rate and constraint violation as a function of the dimension
d. First, we evaluate the convergence rate assuming we can obtain the required lower
bound on Cn as per Theorem 2. We run the algorithm for dimensions d = 2, 10, 20. In
particular, the parameters of the problem required for obtaining the lower bound are
derived based on knowledge of the constraints and the objective function, as well as the
input parameters δ, T as follows: ϵ0 = 1, δ̄ = 0.0067, ϕδ̄ = 3.43, ∥b∥ = 2, ∥a∥ = 1. It
follows that a value of Cn = d2 · 24 achieves the required number of measurements. The
SFW proposed in Algorithm 1 is then run with the above choices of parameters δ̄ and nt.
For each dimension, we run the SFW algorithm 20 times, keeping all the parameters and
the initial conditions the same. The difference in each experiment is due to the stochastic
noise in the measurements. The average and standard deviation of the function values
f(xt)− f(x∗) scaled by the initial condition error are shown in Figure 3.2. It can be seen
that the dimension does not influence the convergence rate, rather, it influences only the
number of measurements.

We also run the experiment assuming we cannot compute the lower bound Cn precisely
due to lack of problem data. In this case, at each iteration we first take 2dt measurements
and further continuously take new measurements around xt until the safety set St+1(δ̄)

grows sufficiently to ensure xt+1 becomes safe (see Fact 2). This safety indeed verifies
the feasibility of iterates with high probability based on Fact 1. Let us refer to this
as the adaptive variant of SFW. This adaptive approach is not only more practical
due to lack of dependence on problem data, but also requires far fewer measurements
in total since the bound on nt from the Theorem 1 is quite conservative. This is due
to the fact that our theoretical bounds were derived using the worst-case estimate of
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∥Σ1/2
t ∥, when the measurements are taken always around the same point. However, ∥Σ1/2

t ∥
can reduce much faster in practice. The convergence will also hold since the bound on
Et ≤ Cδ̄M√

Nt
≤ Cδ̄M

t+2
= O

(
1
t

)
required for the convergence rate is still satisfied. In Figure 3.2

caption we reported the required total number of measurements up to step T of the
adaptive variant by Na

T . You can see that it has significantly reduced compared to the
non-adaptive variant.

(a)d = 2, NT = 8396, Na
T = 519 (b) d = 4, NT = 16792, Na

T = 1135 (c) d = 10, NT = 41980, Na
T = 4275

Figure 3.2: Convergence rate of SFW method for the dimensions d = 2, 4, 10 with T = 15.

(a) SFW (b) RO (c) Convergence rates of
SFW and RO

Figure 3.3: Trajectories and accuracy of the objective value by each iteration of optimization.
The left pair of plots shows the convergence of one realization of SFW method and of the robust
optimization approach (without safety set updates) with σ = 0.1, T = 15, NT = 5500. The
orange lines denote the boundaries of the safety sets St(δ̄). Red circle denotes the starting point
and star denotes the solution of the original problem. Magenta triangles denote the estimated
DFS solutions.

Comparison with an alternative robust optimization approach. We compare
the proposed SFW method with an alternative approach in which we first make enough
measurements in the a priori safe region to estimate the safety set (see definition in
Eq. (3.8)) with sufficiently high probability. Next, we run a first-order method, such
as FW with respect to the nonlinear set S(δ̄). Let us call this approach RO for robust
optimization. To compare these two methods we set an a priori number of measurements
for the alternative RO method equal to the total number of measurements Nt, of SFW
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algorithm corresponding to δ = 0.1 and T = 15. After estimation of the safety set, we make
T = 15 iterations of the FW method with the constraint set ST (δ̄). Thus, the total number
of measurement and the total number of optimization steps of the two methods are equal.
During the run of the SFW, as per discussion in the above example, we reduce the number
of measurements required to ensure safety at each iteration t, online. Figure 3.3(a),(b)
shows the optimization trajectories of each method. The green round points along the
trajectory correspond to the points where the constraints were measured. We also show
the comparison of their convergence rates in Figure 3.3(c). As we can see, SFW algorithm
performs better both in terms of estimates of the constraints and convergence rate. This
difference in performance can be explained based on two observations. First, SFW moves
measurements along the trajectory {xt}, and this can lead to smaller variance of the
estimates Σt = σ2

(
X̄T
t X̄t

)−1. Hence, the measurements are more informative and the
safety set ST (δ̄) is larger. Second, SFW algorithm is proven to converge to an ε-optimal
solution corresponding to the true constraints. The RO approach however, can at the very
best converge to an optimum with respect to a safety set estimated in advance. From the
computational perspective, at each iteration the proposed SFW method requires an LP
oracle, whereas the alternative RO approach requires solving a second-order cone program.
Hence, the SFW is more tractable.

3.6 Conclusion

In this chapter, we proposed a safe learning approach for convex costs and uncertain
linear constraints. This method uses information along the optimization trajectory to
decrease the objective value and to explore an unknown feasible set. Meanwhile, it
ensures feasibility for each iteration with high probability. We provided an analysis of the
convergence rate of our algorithm, as well as of feasibility guarantees for its iterations.
One open question is how to provide performance guarantees in terms of regret.

In the current work, we do not try to take into account experiment design for better
exploration. However, it would be interesting if future to extend the current setting to the
online optimization framework and the setting with fully bandit information with regret
minimization and to see how constraints exploration - objective exploitation trade-off
would play. In the next chapter, our next step is to obtain safe learning results subject to
nonlinear constraints.
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CHAPTER 4
Safe Non-linear Optimization

with Logarithmic Barriers

For safety-critical black-box optimization tasks, observations of the constraints and the
objective are often noisy and available only for the feasible points. We propose an
approach based on log barriers to find a local solution of a non-convex non-smooth black-
box optimization problem min f 0(x) subject to f i(x) ≤ 0, i = 1, . . . ,m, guaranteeing
constraint satisfaction while learning an optimal solution with high probability. Our
proposed algorithm exploits noisy observations to iteratively improve on an initial safe
point until convergence. We derive the convergence rate and prove safety of our algorithm.
We demonstrate its performance in an application to an iterative control design problem.

We introduce a general approach for seeking a stationary point in high dimensional non-
linear stochastic optimization problems in which maintaining safety during the learning is
crucial. Our approach called LB-SGD is based on applying stochastic gradient descent
(SGD) with a carefully chosen adaptive step size to a logarithmic barrier approximation
of the original problem. We provide a complete convergence analysis of non-convex,
convex, and strongly-convex smooth constrained problems, with first-order and zeroth-
order feedback. Our approach has efficient updates, scales better with dimensionality
compared to existing safe Bayesian optimization approaches.

We empirically compare the sample complexity and the computational cost of our
method with other existing safe learning approaches on synthetic benchmarks. As a key
case study, in the next Chapter 5 we demonstrate the effectiveness of our approach on
minimizing constraint violation in policy search tasks in safe reinforcement learning (RL).

This chapter is based on our paper Usmanova, As, Kamgarpour, and Krause [Usm+22]
and uses some parts of Usmanova, Krause, and Kamgarpour [UKK20].

Our contributions We summarize our contributions below:

• We propose Log Barriers SGD (LB-SGD), an algorithm that addresses the safe
learning task by minimizing the log barrier approximation of the problem. This
minimization is done by using Stochastic Gradient Descent (SGD) with a carefully
chosen adaptive step size.
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• This approach is unified for safe learning given first-order or zeroth-order stochastic
oracle. We prove that our approach generates feasible iterations with high probability.
Each iteration of the proposed method is computationally cheap and does not require
solving any subproblems such as those required for Frank-Wolfe (LP subproblems)
or BO-based algorithms (NLP subproblems).

• We derive the convergence rate of our algorithm for the stochastic non-convex,
convex, and strongly-convex problems. We prove the convergence despite the non-
smoothness of the log barrier and the increasingly high variance of the log barrier
gradient estimator. Furthermore, we propose the extension of our algorithm allowing
to address non-smooth problems using the smoothing by randomization technique.

• We demonstrate LB-SGD’s performance compared to other safe BO optimization
algorithms on a series of experiments with various scales.

4.1 Problem statement

We consider a general constrained optimization problem:

min f 0(x) (P)

s.t f i(x) ≤ 0, i ∈ [m],

where the objective function f 0 : Rd → R and the constraints f i : Rd → R are unknown,
possibly non-convex functions. We denote by X the feasible set X := {x ∈ Rd : f i(x) ≤
0, i ∈ [m]}.

Our goal is to solve the safe learning problem. That is, we need to find the solution of
the constraint problem (P) while keeping all the iterates xt of the optimization procedure
feasible xt ∈ X with high probability during the learning process. Throughout this chapter
we make the following assumptions:

Assumption 1. Set X has bounded diameter, that is ∃D > 0 such that for any x, y ∈ X
we have ∥x− y∥ ≤ D.

Assumption 2. The objective and the constraint functions f i(x) for i ∈ {0, . . . ,m} are
Mi-smooth and Li-Lipschitz continuous on X with constants Li,Mi > 0. We denote by
L := maxi=[m]{Li}.

The above two assumptions are standard in the optimization literature.

Assumption 3. There exists a starting point x0 ∈ X at which maxi∈[m] f
i(x0) ≤ −β, for

β > 0.

The third assumption ensures that we have a safe starting point, away from the
boundary. In the absence of such an assumption, even the first iterate might be unsafe.
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Assumption 4. There exists ρ ∈ (0, β
2
] such that for any point x ∈ X there exists a

direction sx ∈ Rd : ∥sx∥ = 1, such that ⟨sx,∇f i(x)⟩ > l with l > 0, for all i ∈ Iρ(x) which
are ρ-approximately active at x, i.e., Iρ(x) := {i ∈ [m]| − f i(x) ≤ ρ}.

The last assumption is the extended Mangasarian-Fromovitz Constraint Qualification
(MFCQ). The classic MFCQ [MF67] is the regularity assumption on the constraints,
guaranteeing that they have a uniform descent direction for all constraints at a local
optimum. The classic MFCQ is satisfied if there exists s ∈ Rd such that ⟨s,∇f i(x∗)⟩ < 0

for all i ∈ I(x∗), where x∗ is a local minimizer of constrained problem (P), and I(x∗) :=
{i ∈ [m] : f i(x∗) = 0} denotes the set of active constraints at x∗.

Our extended MFCQ guarantees this regularity condition at all points ρ-close to the
boundary. This assumption holds for example for convex problems with the constraint set
having a non-empty interior, that we show in Section 4.3.3.

∇f1(x)∇f2(x)

f 1(x) > 0
(Infeasible)

f 2(x) > 0
(Infeasible)

ρ

0.1

0.50.1

0.5

Figure 4.1: Illustration of extended MFCQ.

On Figure 4.1, for the point in the middle, both constraints are ρ-almost active. Note
that at this point, no descent direction exists for both constraints since their gradients
are pointing to the opposite directions. That is, this set does not satisfy the extended
MFCQ with the given ρ > 0.

Oracle Typically in the applications we consider, the information available to the
learner is noisy. For example, one can only observe the perturbed gradients and values
of f i,∀i = 0, . . . ,m at the requested points xt. Therefore, formally we consider access to
the first-order stochastic oracle for every f i(x), providing the pair of value and gradient
stochastic estimates:

O(f i, x, ξ) = (F i(x, ξ), Gi(x, ξ)). (4.1)
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Note that the variances of F i(x, ξ) and Gi(x, ξ) are fixed and given by the nature of the
problem. However, we can decrease these variances by taking several measurements per
iteration and replacing (F i(x, ξ), Gi(x, ξ)) with

F i
n(x, ξ) :=

∑n
j=1 F

i(x, ξj)

n
and Gi

n(x, ξ) :=

∑n
j=1G

i(x, ξj)

n
. (4.2)

In the above, we abuse the notation and replace the dependence F i
n(x, ξ1, . . . , ξn) by

F i
n(x, ξ) for simplicity. Then, their variances become respectively such that

E[∥F i
n(x, ξ)− EF i

n(x, ξ)∥2] ≤ σ2
i (n) :=

σ2
i

n
, (4.3)

E[∥Gi
n(x, ξ)− EGi

n(x, ξ)∥2] ≤ σ̂2
i (n) :=

σ̂2
i

n
. (4.4)

Our goal ism given the provided first-order stochastic information, to find an approxi-
mate solution of problem (P) while not making value and gradient queries outside the
feasibility set X with high probability. To do so, we introduce the log barrier optimization
approach.

4.2 General approach

4.2.1 Safe learning with log barriers

The main idea of the approach is to replace the original constrained problem (P) by it’s
unconstrained log barrier surrogate minx∈Rd Bη(x) with

Bη(x) = f 0(x) + η
m∑
i=1

− log(−f i(x)), (4.5)

∇Bη(x) = ∇f 0(x) + η

m∑
i=1

∇f i(x)
−f i(x) . (4.6)

This approximation Bη(x) grows to infinity as the argument converges to the boundary
of the set X , and is defined only in the interior of the set Int(X ). Therefore, under
Assumptions 1 to 4, a major advantage of this method for the problems we consider,
is that by carefully choosing the optimization step-size, the feasibility of all iterates is
maintained automatically. We run Stochastic Gradient Descent (SGD) with the specifically
chosen step size applied to the log barrier surrogate minx∈Rd Bη(x).

The main intuition is that the descent direction of the log barrier pushes the iterates
away from the boundary, at the same time converging to an approximate KKT point for
the non-convex case, and to an approximate solution for the convex case. To measure the
approximation in the non-convex case, we define the ε-approximate KKT point (ε-KKT).
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Specifically, for ε > 0 and a pair (x, λ), such point satisfies the following conditions:

λi,−f i(x) ≥ 0, ∀i ∈ [m] (ε-KKT.1)

λi(−f i(x)) ≤ ε, ∀i ∈ [m] (ε-KKT.2)

∥∇xL(x, λ)∥ ≤ ε. (ε-KKT.3)

Whereby, λ is the vector of dual variables and L(x, λ) := f 0(x) +
∑m

i=1 λif
i(x) is the

Lagrangian function of (P). Later, we show the that the SGD on the η-log barrier surrogate
converges to an ε-approximate KKT point with ε = η. We show it by demonstrating
that the small barrier gradient norm ∥∇Bη(x̂)∥ ≤ η corresponds to the gradient of
the Lagrangian ∥∇xL(x, λ)∥ with specifically chosen vector of dual variables λ ∈ Rm

[HY19; UKK20]. In the convex case, the approximate optimality in the value Bη(x̂)−
Bη(x

∗
η) ≤ η itself implies that x̂ is an ε-approximate solution of the original problem:

f 0(x̂)−minx∈X f
0(x) ≤ ε with ε > 0 linearly dependent on η up to a logarithmic factor.

4.2.2 Main results

We propose to apply SGD with an adaptive step-size to minimize the unconstrained log
barrier objective Bη. We name our approach LB-SGD. We show that LB-SGD (with
confidence parameter δ = δ̂/Tm) achieves the following convergence results for the target
probability 1− δ̂:

1. For the non-convex case, after at most T = O( 1
ε3
) iterations, and with σi(n) = O(ε2)

and σ̂i(n) = O(ε), LB-SGD outputs xt̂ which is an ε-KKT point with probability
1 − δ̂. For the constant σ̂i, σi > 0, we require N = Tn = O( 1

ε7
) oracle queries

O(f i, x, ξ) for all i ∈ {0, . . . ,m}. (Theorem 4)

2. For the convex case, after at most T = Õ(∥x0−x
∗∥2

ε2
) iterations of LB-SGD, and with

σi(n) = Õ(ε2) and σ̂i(n) = Õ(ε), we obtain output x̄T such that with probability 1−δ̂:
f 0(x̄T )−minx∈X f

0(x) ≤ ε. For the constant σ̂i, σi > 0, we require N = Tn = Õ( 1
η6
)

calls of the oracle O(f i, x, ξ) for all i ∈ {0, . . . ,m}. (Theorem 5)

3. For µ-strongly-convex case, after at most T = Õ( 1
µε

log 1
ε
) iterations of LB-SGD with

decreasing η, and with σi(n) = Õ(η2) and σ̂i(n) = Õ(η), for the output x̂K we have
with probability 1− δ̂: f 0(x̂K)−minx∈X f

0(x) ≤ ε. For the constant σ̂i, σi > 0, we
require N = Õ

(
1
ε5

)
calls of the oracle O(f i, x, ξ) for all i ∈ {0, . . . ,m}. (Theorem 6)

4. For the zeroth-order information case, estimating the function gradients using
finite difference, we obtain the following bounds on the number of measurements
(Corollary 2):

• N = O(d
2

ε7
) to get an ε-approximate KKT point in the non-convex case;

• N = Õ(d
2

ε6
) to get an ε-approximate minimizer in the convex case;

• N = Õ(d
2

ε5
) to get an ε-approximate minimizer in the strongly-convex case;
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5. We extend this result for the non-smooth case with zeroth-order information, we
obtain the following bounds on the number of measurements (Corollary 3) to find
an ε-approximate solution of the smoothed approximation of the problem (P):

• N = O(d
2.5

ε7
) to get an ε-approximate KKT point in the non-convex case;

• N = Õ(d
2.5

ε6
) to get an ε-approximate minimizer in the convex case;

• N = Õ(d
2.5

ε5
) to get an ε-approximate minimizer in the strongly-convex case;

6. In all of the above cases the safety is guaranteed with probability 1− δ for all the
measurements. (Theorem 3, Corollary 2, Corollary 3)

In the above, Õ(·) denotes O(·) dependence up to a multiplicative logarithmic factor. Note
that for zeroth-order information case we only pay the price of a multiplicative factor d2.

4.2.3 Our approach

To minimize the log barrier function, we employ SGD using the stochastic first-order
oracle providing (F i(x, ξ), Gi(x, ξ)) with an adaptive step size, and derive convergence
rate of our methods dependent on the noise level of this oracle. At iteration t we make
the step in the form:

xt+1 ← xt − γtgt, (4.7)

where γt is a safe adaptive step size, gt being the log barrier gradient estimator. In
Section 4.2.3, we show how to build the estimator gt of the log barrier gradient. Following
that, in Section 4.2.3, we explain how to choose γt.

As mentioned before, the log barrier function is not a smooth function due to the
fact that close to the boundaries of X it converges to infinity. To address non-smooth
stochastic problems, optimization schemes in the literature typically require bounded
sub-gradients. For the log barrier function even this condition does not hold in general.
Hence, we cannot expect the classical analysis with the classical predefined step size hold
for the SGD applied for the log barrier problem. Contrary to that, by making the step
size adaptive we can guarantee local-smoothness of the log barrier. Intuitively, this is done
by restricting the growth of the constraints. We leverage this property in our analysis. In
particular, let γt be such that f i(xt+1) ≤ f i(xt)

2
for every constraint. Then, the log barrier

is locally-smooth at point xt with constant M2(xt)

M2(xt) ≤M0 + 6η
m∑
i=1

Mi

αit
+ 20η

m∑
i=1

(θit)
2

(αit)
2
, (4.8)

where θit = ⟨∇f i(xt), gt
∥gt∥⟩, and αit = −f i(xt) for all i ∈ [m]. The growth on the constraints

can be bounded by any constant in (0, 1), we pick 1
2

for simplicity, similarly to Hinder and
Ye [HY18]. In more details, this adaptivity property and the M2(xt)-local smoothness
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are analyzed in Section 4.2.3. Importantly, our local smoothness M2(x) bound is more
accurate since is constructed by using the smoothness of the constraints and takes into
account the gradients measurements, in contrast to Hinder and Ye [HY19] whose bound
is built using the Lipschitz continuity without the gradient measurements.

The log barrier gradient estimator

The key ingredient of the log barrier method together with the safe step size is estimating
the log barrier gradient.

Estimating the gradient Recall that the log barrier gradient by definition is:

∇Bη(xt) = ∇f 0(xt) + η

m∑
i=1

∇f i(xt)
αit

.

Since we only have the stochastic information, we estimate the log barrier gradient as
follows:

Algorithm 2 Log Barrier Gradient estimator Oη(xt, n)
1: Input: Oracles F i(·, ξ), Gi(·, ξ), ∀i ∈ {0, . . . ,m}, xt ∈ X , number of measurements n

2: gt ← G0
n(xt, ξt) + η

∑m
i=1

Gin(xt,ξt)
−F in(xt,ξt)

;

3: Output: gt

In the above we allow to take a batch of measurements per call and average them as
defined in Eq. (4.2) in order to reduce the variances σ2

i (n) :=
σ2
i

n
, σ̂2

i (n) :=
σ̂2
i

n
.

Properties of the estimator The log barrier gradient estimator defined above is
biased and can be heavy tailed since a part of it is a ratio of two sub-Gaussian random
variables. Therefore, in the following lemma we provide a general high-confidence upper
bound on the deviation. We denote ᾱit := −F i

n(xt, ξt).

Lemma 2. The deviation of the log barrier gradient estimator ∆t := gt−∇Bη(xt) satisfies:

P

{
∥∆t∥ ≤ b̂0 + σ̂0(n)

√
ln

1

δ
+

m∑
i=1

η

ᾱit

(
b̂i + σ̂i(n)

√
ln

1

δ

)
+

m∑
i=1

Li
ησi(n)

αitᾱ
i
t

√
ln

1

δ

}
≥ 1− δ.

(4.9)

From the above bound we can see that the closer we are to the boundary, the smaller
is αit, and the smaller variance σi we require to keep the same level of disturbance of
the the log barrier gradient estimator. That is, the closer to the boundary, the more
measurements we require to stay safe despite the disturbance, which does actually make
sense. For the proof see Section B.1.
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The above deviation consists of the variance part and the bias part. Note that the
bias is non-zero even if the biases of the gradient estimators are zero. It can be bounded
as follows (see Section B.1):

∥E∆t∥ ≤
m∑
i=1

ηLiσi(n)

(αit)
2

+ b̂0 +
m∑
i=1

η

αit
b̂i. (4.10)

In the above, the expectation is taken given the xt is fixed. This bias comes from the
fact that we are estimating the ratio of two sub-Gaussian distributions, which is often
heavy-tailed and even for Gaussian variables might behave very badly if the mean of the
denominator is smaller than its variance [DR13]. This fact influences the SGD analysis,
and does not allow getting convergence guarantees with larger noise. Therefore, our
algorithm is very sensitive to the noise σi(n) and might require many samples per iteration
to reduce this noise.

Adaptive step-size γt

First of all, recall that the log barrier is non-smooth in general sense on X , since it
grows to infinity on the boundary. However, we can use the notion of the M2(xt)-local
smoothness, that guarantees smoothness in a bounded region around the current point xt:
{xt+1 ∈ X |f i(xt+1) ≤ f i(xt)

2
, xt ∈ X}. The local smoothness of the Log Barrier Bη(x) is

required for our convergence analysis of the SGD.

M2(xt)-local smoothness constant for the log barrier We derive our local smooth-
ness constant based on the Mi-smoothness of the objective and constraints f i for
i = 0, . . . ,m. Compared to the Lipschitz constant-based approach (used in Hinder
and Ye [HY19] and Usmanova, Krause, and Kamgarpour [UKK20]), our way to bound the
local smoothness constant M2(xt) allows to estimate it more tightly using the constraint
gradients measurements.

Lemma 3. On the bounded area around xt within the radius γt such that the next iterate
is restricted by f i(xt+1) ≤ f i(xt)

2
, along the step direction gt the log barrier Bη(xt) is

locally-smooth with

M2(xt) :=M0 + 6η
m∑
i=1

Mi

αit
+ 20η

m∑
i=1

(θit)
2

(αit)
2
, (4.11)

where θit = ⟨∇f i(xt), gt
∥gt∥⟩.

For the proof of Lemma 3 see Appendix B.3. In the case with inexact measurements, we
have to use lower bounds on αit and upper bounds on θit. We denote by αit := ᾱit−σi(n)

√
ln 1

δ

a lower bound on αit : P{αit ≥ αit} ≥ 1 − δ. We denote an upper bound on θit by
θ̂it := |⟨Gi

n(x, ξ),
gt

∥gt∥⟩|+ b̂i + σ̂i(n)
√
log 1

δ
, ∀i ∈ [m] such that P{θit ≤ θ̂it} ≥ 1− δ. Then,
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an upper bound on M2(xt) can be computed as follows

M̂2(xt) =M0 + 6η
m∑
i=1

Mi

αit
+ 20η

m∑
i=1

(θ̂it)
2

(αit)
2
. (4.12)

Adaptivity of the step-size In the above, to bound the local smoothness of the
log barrier at the next iterate xt+1 = xt − γtgt, we require to bound the step size γt by
the value, restricting the next iterate by the area

{
xt+1 ∈ X |f i(xt+1) ≤ f i(xt)

2
, xt ∈ X

}
.

Automatically, such condition guarantees the feasibility of xt+1 given the feasibility of xt.

One way to get the adaptive step size γt is to use the Lipschitz constants Li of f i to
bound γt (see Hinder and Ye [HY19] and Usmanova, Krause, and Kamgarpour [UKK20]):

γt ≤ min
i∈[m]

−f i(xt)
2Li

1

∥gt∥
.

In practice, Li are typically unknown or overestimated. For example, even in the quadratic
case f i(x) = ∥x∥2, Li depends on the diameter of the set X , and thus might be very
conservative in the middle of the set. Again, we propose to use the smoothness constants
Mi for safety instead.1 Of course, smoothness parameter also can be overestimated, and
as a future work we consider incorporating the problem-adaptive techniques [VDB21] or
efficient constants estimation [Faz+19].

Lemma 4. The adaptive safe step size γt bounded by

γt ≤ min
i∈[m]

{
αit

2|θit|+
√
αitMi

}
1

∥gt∥
,

guarantees f i(xt+1) ≤ f i(xt)
2
.

The proof is based on the smoothness bound on the constraint growth:

f i(xt+1) ≤ f i(xt)− γt⟨∇f i(xt), gt⟩+ γ2t
Mi

2
∥gt∥2.

For the full proof see Section B.2. We illustrate the principle of choosing this adaptive
bound on Figure 4.2. Then, finally, we set the step-size to:

γt = min

{
min
i∈[m]

{
αit

2|θ̂it|+
√
αitMi

}
1

∥gt∥
,

1

M̂2(xt)

}
. (4.13)

1Firstly, the Lipschitz constant, even if it is tight, provides the first-order linear upper bound on
the constraint growth, whereas using the smoothness constant we can exploit more reliable and tight
second order upper bound on the constraint growth. Secondly, Lipschitz constant is often much harder to
estimate since it might strongly depend on the size of the set. By the same reason, in practice, even for
the hard functions modeled by a neural network with smooth activation functions, we can estimate the
smoothness parameters, but it is much more unclear how to estimate the Lipschitz constants properly.
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Figure 4.2: Illustration of the adaptivity. Step size γt is chosen such that the quadratic
smoothness upper bound (blue) on the constraint guarantees f i(xt+1) ≤ f i(xt)/2. αit is the lower
bound on αit = −f i(xt), constructed based on the mean estimator ᾱit. By the orange interval we
denote the confidence interval for αit. By the green interval we denote the adaptive region for
xt+1 based on the requirement f i(xt+1) ≤ f i(xt)/2.

Basic algorithm

To sum up, below we propose our basic algorithm, but emphasize that it can be instantiated
differently for different types of problems. We showcase possible instantiations of LB-SGD
in following sections.

Algorithm 3 LB-SGD(x0, T )

1: Input:Mi > 0, i ∈ {0, . . . ,m}, D > 0, σi, σ̂i, b̂i, n, T > 0, δ > 0;
2: for t = 1, . . . , T do
3: Set gt ← Oη(xt, n) by taking a batch of measurements of size n at xt;

4: Compute lower bounds αit := ᾱit − σi(n)
√
ln 1

δ , ∀i ∈ [m];

5: Compute upper bounds θ̂it = |⟨Gi
n(x, ξ),

gt
∥gt∥⟩|+ b̂i + σ̂i(n)

√
log 1

δ , ∀i ∈ [m];

6: Compute M̂2(xt) using Eq. (4.11);

7: γt ← min

{
mini∈[m]

{
αit

2|θ̂it|+
√
αitMi

}
1

∥gt∥ ,
1

M̂2(xt)

}
;

8: xt+1 ← xt − γtgt;
9: end for

10: Output: {x1, . . . , xT }.

4.2.4 Safety

From the safety side, the adaptive step-size γt automatically guarantees the safety of all
the iterates due to construction, for any procedure generating the iterations in the form
xt+1 = xt − γtgt where γt is bounded by Eq. (4.13). The feasibility of the optimization
trajectory we guarantee with probability at least 1− δ̂ with δ̂ := mTδ.
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Theorem 3. Let T > 0 denote the total number of iterations of the form Eq. (4.7),
and δ̂ ∈ (0, 1) denote the target confidence level. Then, for LB-SGD with parameter
δ ≤ δ̂/mT , all the query points xt are feasible with probability greater than 1− δ.

Proof. Due to the adaptive step size γt, we have xt ∈ X implies xt+1 ∈ X (see Lemma 4)
since f i(xt+1) ≤ f i(xt)

2
with probability 1− δ. Then, using x0 ∈ X and Boole’s inequality,

we conclude that the whole optimization trajectory {xt}t∈[T ] is feasible with probability
at least 1−mTδ ≥ 1− δ̂. ■

4.3 Method options and convergence analysis

First of all, let us show the following general property of the log barrier method, important
for the further convergence analysis of any problem type that we discuss.

4.3.1 Keeping a distance away from the boundary

Imagine that αit becomes 0 for some iteration t during the learning. That would lead to
γt = 0, and the algorithm will stop without converging, since there is no safe non-zero
step-size. Moreover, the log barrier gradient at that point simply blows up. However,
we can lower bound the step sizes γt if we can provide a lower bound on αit for all t > 0

during the learning with high probability:

Lemma 5. If αit ≥ cη for c > 0, then we have P{γt ≥ Cη} ≥ 1− δ with C defined by

C :=
c

2L2(1 + m
c
)

1

max

{
10 + 3Mcη

L2 , 1 +
√

Mcη
4L2

} . (4.14)

The proof is shown in Appendix B.5.

Therefore, for convergence, we need to show that our algorithm’s iterates xt do not
only stay inside the feasible set, but moreover keep a distance away from the boundary.
Keeping distance is the key property, guaranteeing the regularity of the log barrier function
in the sense of a bounded gradient norm, bounded local smoothness and bounded variance.
For the exact information case without noise, the adaptive gradient descent on the log
barrier is shown to converge without stating this property explicitly [HY18]. However, in
the stochastic case, this property becomes crucial for establishing stable convergence. It
guarantees that the method pushes the iterates xt away from the boundary of the set X
as soon as they come too close to the boundary. We formulate it below.

Lemma 6. Let Assumptions 1 to 3 hold, Assumption 4 hold with ρ ≥ η, and let σ̂i(n) ≤
αitL

η
√

ln 1
δ

, b̂i ≤ αitL

2η
, and σi(n) ≤ (αit)

2

2η
√

ln 1
δ

. Then, we can show that for all xt for all iterations

t ∈ [T ] generated by the optimization process xt+1 = xt − γtgt the following holds: P{∀t ∈
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[T ] mini∈[m] α
i
t ≥ cη} ≥ 1− δ̂ with

c :=

(
l

4L(2m+ 1)

)m
,

where l > 0 is defined as in Assumption 4.

Proof. First, let us note the following fact demonstrating that the product of the smallest
absolute constraint values is not decreasing if xt is close enough to the boundary.

Fact 3. Let Assumptions 1 to 3 hold, Assumption 4 hold with ρ ≥ η, and let σ̂i(n) ≤ αitL

η
√

ln 1
δ

,

b̂i ≤ αitL

2η
, and σi(n) ≤ (αit)

2

2η
√

ln 1
δ

. If at iteration t we have mini∈[m] α
i
t ≤ c̄η with c̄ := l

L
1

2m+1
,

then, for the next iteration t + 1 we get
∏

i∈I α
i
t+1 ≥

∏
i∈I α

i
t for any I : It ⊆ I with

It := {i ∈ [m] : αit ≤ η} with probability 1− δ.

For the proof see Appendix B.4.

Note that if mini∈[m] α
i
t ≥ c̄η for all t ≥ 0, then the statement of the Lemma holds

automatically. Now, consider a consecutive set of steps t = {t0, . . . , tk} on whose
mini∈[m] α

i
t ≤ c̄η. By definition, and using the Fact 3, for any t ∈ {t0, . . . , tk} we

have with probability 1− δ

∏
i∈It+1

αit+1 =

∏
i∈It∪It+1

αit+1∏
i∈It\It+1

αit+1

≥
∏

i∈It∪It+1
αit∏

i∈It\It+1
αit+1

.

By induction, applying the above sequentially for all t ∈ {t0, . . . , tk} we can get

∏
i∈Itk

αitk ≥
∏

i∈Itk∪Itk−1
∪...∪It0

αit0∏
i∈Itk−1

\Itk
αitk
∏

i∈Itk−2
\(Itk∪Itk−1

) α
i
tk−1

. . .
∏

i∈It0\(Itk∪...∪It1 )
αit1

with probability 1− δ̂ (using Boole’s inequality).

Note that by definition of It: αit ≤ η for i ∈ It. At the same time, due to the step
size choice, we have αit+1 ≤ 2αit ≤ 2η. Also, note that the sum of the set cardinalities in
the denominator equals to the cardinality of the set |It0 ∪ . . . ∪ Itk \ Itk |. Hence, with
probability 1− δ̂

∏
i∈Itk

αitk ≥
∏

i∈Itk∪Itk−1
∪...∪It0

αit0

(2η)|It0∪...∪Itk\Itk |
.

Thus, for any j ∈ Itk we get the bound:

αjtk ≥
∏

i∈Itk∪Itk−1
∪...∪It0

αit0

(2ĉη)|It0∪...∪Itk\j|
≥ (c̄η/2)|It0∪...∪Itk |

2|I0∪...∪Itk |−1
≥
( c̄
4

)m
η.
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Using the definition c̄ := l
L

1
2m+1

, we obtain the statement of the lemma. ■

4.3.2 Stochastic non-convex problems

For the non-convex problem we analyse LB-SGD(x0, T ) with the fixed parameter η,
that uses the stopping criterion ∥gt∥ ≤ 3η/4 and outputs xt̂ with t̂ corresponding to
argmint∈T ∥gt∥.

Stationarity criterion in the non-convex case

Similarly to Usmanova, Krause, and Kamgarpour [UKK20], we can state that in general
case small gradient of the log barrier with parameter η leads to an η-approximate KKT
point of the constrained problem. Let us set the pair of primal and dual variables to

(x, λ) :=

(
x,
[

η
−f1(x) , . . . ,

η
−fm(x)

]T)
. Then, it satisfies:

1) ∥∇xL(x, λ)∥ = ∥∇Bη(x)∥;
2) λi(−f i(x)) = η

−f i(x)(−f
i(x)) = η;

3) λi ≥ 0,−f i(x) ≥ 0, i ∈ [m].

This insight immediately implies the following Lemma.

Lemma 7. Consider problem (P) under Assumptions 1 to 3. Let x̂ be an η-approximate
solution to minx∈Rd Bη(x), the η-log barrier approximation of (P), such that ∥∇Bη(x̂)∥ ≤ η.
Then, x̂ is an η-approximate KKT point to the original problem (P).

Thus, the stationarity criterion for the general case is the small log barrier gradient
norm.

Convergence for the non-convex problem

Then, we get the following convergence result:

Theorem 4. After at most T iterations of LB-SGD with T ≤ 4Bη(x0)−minxBη(x)

Cη3
, and with

σi(n) = O(η
2

D
), σ̂i(n) = O( η

D
), and b̂i = O( η

D
), for the output xt̂ with t̂ = argmint∈T ∥gt∥

we have

P {∥∇Bη(xt̂)∥ ≤ η} ≥ 1− δ̂ (4.15)

Therefore, given σi(n) = σi√
n

and σ̂i(n) = σ̂i√
n

Eq. (4.3), for constant σ̂i, σi, we require
n = O( 1

η4
) oracle calls per iteration, and N = O( 1

η7
) calls of the first-order stochastic

oracle in total. Using Lemma 7, we get that xt̂ is an ε-approximate KKT point to the
original problem (P) with ε = η.
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Remark Lower bound in the unconstrained non-safe case. In a well-known model where
algorithms access smooth, non-convex functions through queries to an unbiased stochastic
gradient oracle with bounded variance, Arjevani, Carmon, Duchi, Foster, Srebro, and
Woodworth [Arj+19] prove that in the worst case any algorithm requires at least ε−4

queries to find an ε stationary point. Although, they allow d to depend on ε. Therefore,
we "pay" extra ε−3 measurements for safety. From the methodology point of view, this
happens due to the non-smoothness of the log-barrier on the boundary and the fact that
the noise of the barrier gradient estimator is very sensitive to how close the iterates xt are
to the boundary.

Proof. First, let us denote γ̂t := γt∥gt∥. At each iteration of Algorithm 4 with the fixed η
the value of the logarithmic barrier decreases at least by the following value:

Bη(xt)−Bη(xt+1)
1○
≥ γt ⟨∇Bη(xt), gt⟩ −

1

2
M2(xt)γ

2
t ∥gt∥2

= γ̂t⟨∆t,
gt
∥gt∥
⟩+ γ̂t

(
1− M2(xt)γt

2

)
∥gt∥

2○
≥ 1

2
γ̂t∥gt∥ − γ̂t∥∆t∥. (4.16)

In the above, M2(x) is a local smoothness constant that we bound by Eq. (4.11). The
first inequality 1○ is due to the local smoothness of the barrier. 2○ is due to the fact that
P{γt ≤ 1

M2(xt)
} ≥ 1− δ, given xt ∈ Int(X ). Summing up the above inequalities Eq. (4.16)

for t ∈ [T ], we obtain:

∑
t∈[T ]

γ̂t

(
1

2
∥gt∥ − ∥∆t∥

)
≤ Bη(x0)−min

x∈X
Bη(x).

Recall that we stop the round as soon as we get ∥gt∥ ≤ 3η/4. Hence, for all T iterations
t ∈ [T ] with ∥gt∥ ≥ 3η/4 we have γ̂t ≥ 0.75ηγt. Therefore, we get:

Tk ≤
Bη(x0)−minxB

η(x)

0.75ηmaxt∈[T ]{γt (0.5∥gt∥ − ∥∆t∥)}
. (4.17)

We have obtain the lower bound on the denominator. Using the result of Lemma 13 and
Lemma 6, for all t ∈ [Tk] we have γt ≥ Cη. Next, we have to upper bound on ∥∆t∥ with
high probability. By Lemma 2 combined with Lemma 6, we have P{∥∆t∥ ≤ η

4
, ∀t} ≥ 1− δ

for

σ̂0(n) ≤ η

4(2m+ 1)
√

ln 1
δ

, σ̂i(n) ≤ αit

4(2m+ 1)
√

ln 1
δ

,

b̂0 ≤ η

4(2m+ 1)
, b̂i ≤ αit

4(2m+ 1)
,
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σi(n) ≤ (αit)
2

4(2m+ 1)L
√

ln 1
δ

,

(using the Boolean inequality). Combining it with inequality (4.17), the algorithm stops
after at most T iterations with

T ≤ 8
Bη(x0)−minxBη(x)

Cη3
.

Since P{∥∆t∥ ≤ η
4
∀t} ≥ 1− δ̂ and ∥gt∥ ≥ 3η/4, we obtain

P {∥∇Bη(xt̂)∥ ≤ η} ≥ 1− δ̂.

■

4.3.3 Stochastic convex problems

For the convex case, we propose to use LB-SGD(x0, T ) with the output: x̄T :=
∑T
t=1 γtxt∑T
t=1 γt

.
Next, we discuss the optimality criterion for convex problems.

Optimality criterion in the convex case

In the convex case, we can relate an approximate solution of the log barrier problem to
an ε-approximate solution of the original problem in terms of the objective value.

Assumption 5. The objective and the constraint functions f i(x) for all i ∈ {0, . . . ,m}
are convex.

Note that Assumption 3 implies non-emptiness on Int(X ) which is called Slater
Constraint Qualification. In the convex setting, it in turn implies the extended MFCQ:

Fact 4. Let Assumptions 1, 3 and 5 hold. Then, Assumption 4 holds with sx := x−x0
∥x−x0∥ ,

such that ⟨∇f i(x), sx⟩ ≥ β−ρ
D

for all i ∈ Iρ(x) for any 0 < ρ < β .

Proof. Indeed, for any point x ∈ X and for any convex constraint f i such that f i(x) ≥ −ρ,
due to convexity we have f i(x)− f i(x0) ≤ ⟨∇f i(x), x− x0⟩. Given the bounded diameter
of the set ∥x0 − x∥ ≤ D, we get ⟨∇f i(x), sx⟩ ≥ β−ρ

D
. ■

Then, we can relate an η-approximate solution by the log barrier value with an ε-
approximate solution for the original problem, where ε depends on η linearly up to a
logarithmic factor. We formulate that in the following lemma:

Lemma 8. Consider problem (P) under Assumptions 1 to 3, and the convexity Assump-
tion 5. Assume that x̂ is an η-approximate solution to the η-log barrier approximation,
that is,

Bη(x̂)−Bη(x
∗
η) ≤ η,
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where x∗η is a solution of the minBη minimization problem, with η ≤ β/2. Then, x̂ is an

ε-approximate solution to the original problem (P) with ε = η(m+ 1) + ηm log
(

2mLDβ̂
ηβ

)
,

that is, f 0(x̂)−minx∈X f
0(x) ≤ ε, where β̂ > 0 is such that ∀i ∈ [m]∀x ∈ X |f i(x)| ≤ β̂.

Since the constraints are smooth and the set X is bounded, such β̂ exists.

Proof sketch Let x̂ be an approximately optimal point for the log barrier: Bη(x̂) −
Bη(x

∗
η) ≤ η, and x∗η be an optimal point for the log barrier. Then, using the definition,

we can bound: f 0(x̂) − f 0(x∗η) ≤ η + η
∑m

i=1− log
−f i(x∗η)
−f i(x̂) . Combining Fact 4 with the

first order stationarity criterion, we can derive: mini∈[m]{−f i(x∗η)} ≥ ηβ
2mLD

. Hence,
combining the above two inequalities, we get the following relation of point x̂ and point
x∗η: f 0(x̂) − f 0(x∗η) ≤ η

(
1 +m log

(
2mLDβ̂
ηβ

))
using −f i(x̂) ≤ β̂. Using the Lagrangian

definition for stationarity of the optimal point of the initial problem x∗, we get the
following relation between x∗ and x∗η: f 0(x∗η)− f 0(x∗) ≤ mη. Combining it with the above,
we get the statement of the Lemma

f 0(x̂)−min
x∈X

f 0(x) ≤ η + ηm log

(
2mLDβ̂

ηβ

)
+mη.

For the full proof see Appendix B.6.

Convergence in the convex case

As already discussed in the optimality criterion Section 4.3.3, for the convex problem we
only require the convergence in terms of the value of the log barrier. Thus, we get the
following convergence result for this method.

Theorem 5. Let Bη(x) := f 0(x) − η
∑m

i=1 log(−f i(x)) be a log barrier function with
parameter η > 0, and x0 ∈ Rd be the starting point. Let x∗η be a minimizer of Bη(x).
Then, after T ≥ ∥x0−x∗∥2

Cη2
iterations of LB-SGD, and with σi(n) = O(η

2

D
), σ̂i(n) = O( η

D
),

and b̂i = O( η
D
), for the point x̄T :=

∑T
t=1 γtxt∑T
t=1 γt

we obtain:

P
{
Bη(x̄T )−Bη(x

∗
η) ≤ η

}
≥ 1− δ̂.

For the noise with constant variances σ̂i, σi, given σi(n) =
σi√
n

Eq. (4.3) and σ̂i(n) = σ̂i√
n

Eq. (4.4), we require n = O( 1
η4
) oracle calls per iteration, and O( 1

η6
) measurements of the

first-order oracle in total. Using Lemma 8 we get x̄T is an ε-approximate solution to the
original problem (P) with ε = η(m+1)+ηm log

(
2mLDβ̂
ηβ

)
, that is, f 0(x̂)−minx∈X f

0(x) ≤ ε.

Proof. Note the following

Bη(xt+1)−Bη(x
∗
η)

1○
≤ Bη(xt) + ⟨∇Bη(xt), xt+1 − xt⟩+

M2(xt)

2
∥xt − xt+1∥2 −Bη(x

∗
η)
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2○
≤ ⟨∇Bη(xt), xt+1 − xt⟩+

M2(xt)

2
∥xt − xt+1∥2 + ⟨∇Bη(xt), xt − x∗η⟩

=
M2(xt)

2
∥xt − xt+1∥2 + ⟨gt, xt+1 − x∗η⟩ − ⟨∆t, xt+1 − x∗η⟩

3○
≤ ∥xt − x

∗
η∥2

2γt
− ∥xt+1 − x∗η∥2

2γt
−
(

1

2γt
− M2(xt)

2

)
∥xt+1 − xt∥2 − ⟨∆t, xt+1 − x∗η⟩

4○
≤ ∥xt − x

∗
η∥2

2γt
− ∥xt+1 − x∗η∥2

2γt
− ⟨∆t, xt+1 − x∗η⟩.

The first inequality 1○ is due to the M2(xt)-local smoothness of the log barrier, the
second one 2○ is due to convexity. The third inequality 3○ uses the fact that: ∀u ∈
Rd : ⟨gt, xt+1 − u⟩ = ∥xt−u∥2

2γt
− ∥xt+1−u∥2

2γt
− ∥xt+1−xt∥2

2γt
. And the last one 4○ is due to

γt ≤ 1
M2(xt)

. By multiplying both sides by γt, we get:

2γt(Bη(xt+1)−Bη(x
∗
η)) ≤ ∥xt − x∗η∥2 − ∥xt+1 − x∗η∥2 − 2γt⟨∆t, xt+1 − x∗η⟩. (4.18)

Then, by summing up the above for all t ∈ [T ] we get, and using the Jensen’s inequality:

Bη

(∑T
t=1 γtxt∑
γt

)
−Bη(x

∗
η) ≤

1∑T
t=1 γt

T∑
t=1

γt(Bη(xt)−Bη(x
∗
η))

≤ 1

2
∑T

t=1 γt

T∑
t=1

(
∥xt − x∗η∥2 − ∥xt+1 − x∗η∥2 − 2γt⟨∆t, xt+1 − x∗η⟩

)
≤ ∥x0 − x

∗
η∥2

2
∑T

t=1 γt
−
∑T

t=1 γt⟨∆t, xt+1 − x∗η⟩
2
∑T

t=1 γt
. (4.19)

That is, we can bound the accuracy by

Bη (x̄T )−Bη(x
∗
η) ≤

D2

2
∑T

t=1 γt
+

maxt⟨∆t, xt+1 − x∗η⟩
2

. (4.20)

Using Lemma 13 we can prove for σ̂i(n) ≤ Lαit

3η
√

ln 1
δ

that γt ≥ Cη. Recall from Lemma 2

Eq. (4.9):

P

{
∥∆t∥ ≤ b0 + σ̂0(n)

√
ln

1

δ
+

m∑
i=1

η

ᾱit

(
b̂i + σ̂i(n)

√
ln

1

δ

)
+

m∑
i=1

Li
ησi(n)

αitᾱ
i
t

√
ln

1

δ

}
≥ 1− δ.

(4.21)

Hence, we can guarantee ∥∆t∥ ≤ η
2D

for all t ∈ [T ] with probability 1− δ̂ if for all i ∈ [m]

σ̂0(n) ≤
η

2(2m+ 1)D
, σ̂i(n) ≤

αit

2(2m+ 1)D
√
ln 1

δ

, (4.22)
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b̂i ≤
αit

2(2m+ 1)D
, σi(n) ≤

(αit)
2

2(2m+ 1)LD
√

ln 1
δ

. (4.23)

Therefore, we get for the x̄T the following bound on the accuracy:

Bη (x̄T )−Bη(x
∗
η) ≤

∥x0 − x∗η∥2
TCη

+max ∥∆t∥D ≤
∥x0 − x∗η∥2

TCη
+
η

2
. (4.24)

Thus, for T ≥ D2

2Cη2
we obtain P{B (x̄T )−B(x∗) ≤ η} ≥ 1− δ̂.

In order to satisfy conditions on the variance Eq. (4.22), we require at each iteration
n = O

(
1
η4

)
measurements, and therefore N = Tn = O( 1

η6
) measurements in total. ■

4.3.4 Strongly-convex problems

For the strongly convex case, we make use of restarts with iteratively decreasing parameter
η:

Algorithm 4 LB-SGD with decreasing η (η0, η > 0, x0 ∈ Rd, ω ∈ (0, 1), {Tk})
1: Input: Mi > 0, i ∈ {0, . . . ,m}, η0, x̂0 ← x0, K = log2

η0
η ;

2: for k = 0, . . . ,K − 1 do
3: x̂k+1 ← LB-SGD(x̂k, Tk);
4: ηk+1 ← ωηk, with ω ∈ (0, 1);
5: end for
6: Output: x̂K .

Convergence

Theorem 6. Let Bη(x) := f 0(x)− η∑m
i=1 log(−f i(x)) be a µ-strongly-convex log barrier

function with parameter η, x0 ∈ Rd be the starting point. Then, after at most T =
∥x0−x∗η∥2

Cη20
+
∑K

k=1O(
1

Cµηk
) = O

(
ln
η0
η

µη

)
iterations of LB-SGD with decreasing η, and with

σi(n) = O( η2

mLi
), b̂i = O(ηMi), and σ̂i(n) = O(ηMi), we obtain:

P
{
Bη(x̂K)−min

x∈X
Bη(x) ≤ η

}
≥ 1− δ̂

Hence, for the constant σ̂i, σi, we require n = O( 1
η4
) measurements per iteration, and N =

O( 1
η5
) measurements of the first-order oracle in total. Using Lemma 8, we obtain that x̂K is

an ε-approximate solution to the original problem (P) with ε = η(m+1)+ηm log
(

2mLDβ̂
ηβ

)
.

Proof. Let x∗ηk be the unique minimizer of Bηk(x). We do the restarts with decreasing
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ηk+1 = ωηk. From strong convexity, for k > 0 we have:

∥x̂k−1 − x∗ηk∥
2 ≤ D2

k :=
Bηk(x̂k−1)−Bηk(x

∗
ηk
)

µ
. (4.25)

Moreover, from Eq. (4.16) with high probability Bηk(xt) ≤ Bηk(xt−1) holds for any t ∈ [Tk]

if

σ̂0(nk) ≤
ηk

4(2m+ 1)
√
ln 1

δ

, σ̂i(nk) ≤
cηk

4(2m+ 1)
√

ln 1
δ

,

b̂i ≤ cηk
4(2m+ 1)

, σi(nk) ≤
c2η2k

4(2m+ 1)L
√

ln 1
δ

.

Hence, by induction, we can bound:

∥x̂t − x∗ηk∥
2 ≤ Bηk(xt)−Bηk(x

∗
ηk
)

µ
≤ Bηk(xt−1)−Bηk(x

∗
ηk
)

µ
≤ . . . ≤ D2

k. (4.26)

Note that for all x ∈ X we have Bηk(x) ≥ Bηk−1
(x) (without loss of generality assuming

−f i(x) ≤ β̂ ≤ 1). Consequently, −Bηk(x
∗
ηk
) ≤ −Bηk−1

(x∗ηk−1
). Therefore, using the

definition of the log barrier, we can get:

Bηk(x̂k−1)−Bηk(x
∗
ηk
) ≤ Bηk−1

(x̂k−1)−Bηk−1
(x∗ηk−1

) + (ηk−1 − ηk)
m∑
i=1

− log−f i(x̂k−1)

≤ Bηk−1
(x̂k−1)−Bηk−1

(x∗ηk−1
)−m(ηk−1 − ηk) log cηk. (4.27)

As a base of induction we assume that for k− 1, we have Bηk−1
(x̂k−1)−Bηk−1

(x∗ηk) ≤ ηk−1.
Combining the inequalities Eq. (A.11) and Eq. (4.27), we get:

D2
k ≤

ηk−1 +m(ηk−1 − ηk) log 1
cηk

µ
≤
ω−1ηk(1 + (1− ω)m log 1

cηk
)

µ
. (4.28)

From the previous Theorem 5, for k > 0 we have Bηk(x̂k)−Bηk(x
∗
ηk
) ≤ ηk, for Tk =

D2
k

Cη2k
,

σi(nk) ≤ η2k

Dk
√

ln 1
δ

, and σ̂i(nk) ≤ ηk
Dk

1√
ln 1/δ

. Inserting the result of Eq. (4.28) into these

bounds, we require for k > 0: Tk =
ω−1+(ω−1−1)m log 1

cηk

µCηk
, σi(nk) ≤ 1√

ln 1/δ
min{µη

1.5
k

2
,
√
Cηk,

c2η2k
mLi
},

and σ̂i(nk) ≤ 1√
ln 1/δ

min{µ
2
, M

√
Cηk
2

, cηk
mLi
}. That is, in total we need the following number

of iterations

T = T0 +
K∑
k=1

Tk =
R2

Cη20
+

K∑
k=1

ω−1 +m(ω−1 − 1) log 1
cηk

µCηk

≤ D2

Cη20
+
ω−1 +m(ω−1 − 1) log 1

cη

µCη
log

η0
η

= Õ

(
1

µη

)
.
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And the number of measurements in the case of the noise with constant variances in total
is:

T = T0n0 +
K∑
k=1

Tknk ≤
D2

Cη60
+

K∑
k=1

ω−1 +m(ω−1 − 1) log 1
cηk

µCηk

1

η4k

≤ D2

µCη60
+
ω−1 +m(ω−1 − 1) log 1

cη

µCη5
log

η0
η

= Õ

(
1

µη5

)
.

■

4.4 Zeroth-order optimization

A special case of stochastic optimization is zeroth-order optimization, in which one can
access only the value measurements of f i. In many applications, for example in physical
systems with measurements collected by noisy sensors, we only have access to noisy
evaluations of the functions. Formally we assume access to a one-point stochastic zeroth-
order oracle, as defined in Eq. (2.3). That is, for any i ∈ {0, . . . ,m} this oracle provides
noisy function evaluations at the requested point xj: F i(xj, ξ

i
j) = f i(xj) + ξij, where ξij is

a zero-mean σ2
i -sub-Gaussian noise.

Zeroth-order gradient estimator One way to tackle zeroth-order optimization is to
sample a random point xt + νst around xt at iteration t, and approximate the stochastic
gradient Gi(x, ξ) using finite differences. A classical choice of the sampling distribution is
the Gaussian distribution, referred to as Gaussian sampling. However, since the Gaussian
distribution has infinite support, one has an additional risk of sampling a point in the
unsafe region arbitrarily far from the point, which is inappropriate for safe learning.
Therefore, we propose to use the uniform distribution U(Sd) on the unit sphere for
sampling. In particular, in the case where we only have access to a noisy zeroth-order
oracle, we estimate the gradient in the following way.

We need to estimate the descent directions of f i using the zeroth-order information.
For any point x, we can estimate the gradient of the function ∇f i by sampling directions
sj uniformly at random on the unit sphere sj ∼ U(Sd), and using the finite difference as
follows:

Gi
ν,n(x, ξ) :=

d

n

n∑
j=1

F i(x+ νsj, ξ
i+
j )− F i(x, ξi−j )

ν
sj, (4.29)

where ξi±j are sampled from σi-sub-Gaussian distribution. Note that sj also satisfy the
sub-Gaussian condition. 2

2There is also an option of using the one-point estimator Gi
ν,n(x, ξ) :=

d
n

∑n
j=1

F i(x+νsj ,ξ
i+
j )

ν sj , but
the variance of this estimator might be much higher. Note that even with zero-noise its variance grows
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There are also several other ways to sample directions to estimate the gradient
from finite-differences. Berahas, Cao, Choromanski, and Scheinberg [Ber+21] compared
various zeroth-order gradient approximation methods and showed that their sample
complexity has a similar dependence on the dimensionality d required for a precise
gradient approximation. Deterministic coordinate sampling requires fewer samples due to
smaller constants. However, we stick with sampling on the sphere because deterministic
coordinate sampling requires the number of samples to be divisible by d. We want to keep
flexibility on how many samples we can take per iteration; this number might be provided
by the application. However, we note that any other sampling procedure can also be used.

Then, the estimator Gi
ν,n(x, ξ) defined above is a biased estimator of the gradient

∇f i(x) and an unbiased estimator of the smoothed function gradient ∇f iν(x). The
smoothed approximation f iν of each function f i is defined as follows:

Definition 1. The ν-smoothed approximation of the function f(x) is defined by fν(x) :=
Ebf(x+νb), where b is uniformly distributed in the unit ball Bd, and ν ≥ 0 is the sampling
radius.

Algorithm 5 Zeroth-order gradient-value estimator (F i
n(x, ξ), G

i
ν,n(x, ξ))

1: Input: F i(·, ξ), i ∈ {0, . . . ,m}, x ∈ X , ν > 0, n ∈ N;
2: Sample n directions sj ∼ U(Sd), sample F i(x+ νsj , ξ

i+
j ) and F i(x, ξi−j ), j ∈ [n];

3: Output:

F i
n(x, ξ) :=

∑n
j=1 F

i(x, ξi−j )

n

Gi
ν,n(x, ξ) :=

d

n

n∑
j=1

F i(x+ νsj , ξ
i+
j )− F i(x, ξi−j )

ν
sj

Lemma 9. Let f iν(x) be the ν-smoothed approximation of f i(x). Then EGi
ν,n(x, ξ) =

∇f iν(x), where the expectation is taken over both sj and ξi±j for all j ∈ [n].

Proof. First note that EGi
ν,n(x, ξ) = E

d

n

n∑
j=1

f i(x+ νsj)− f i(x)
ν

sj︸ ︷︷ ︸
(1)

+E
d

n

n∑
j=1

ξi+j − ξi−j
ν

sj︸ ︷︷ ︸
(2)

.

Recall that ξi±j are independent on sj and zero-mean, hence (2) = 0. The proof that
(1) = ∇f iν(x) is classical [FKM05] and is based on Stokes’ theorem. ■

The following lemma shows important properties of the above zeroth-order gradient-
value estimators.

to infinity while ν → 0. Its variance would depend on maxx∈X |fi(x)|
ν , while the two-point estimator’s

variance depends on the Lipschitz constant Li, which might be significantly smaller. Also, in the case
of differentiable f i with small noise ξ the two-point estimator becomes a finite difference directional
derivative estimator with the accuracy dependent on ν only, in contrast to the one-point estimator.
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Lemma 10. Let F i(x, ξ) have variance σi > 0 and let the estimator Gi
ν,n(x, ξ) be defined as

in (4.29) by sampling sj uniformly from the unit sphere U(Sd), then f iν(x), and Gi
ν,n(x, ξ)

are biased approximations of f i(x) and ∇f i(x) respectively, such that

|f i(x)− f iν(x)| ≤ ν2Mi,

the variance of F i
n(x, ξ) is σi(n) = σi√

n
and the bias of Gi

ν,n(x, ξ) is bounded by:

b̂i := ∥∇f i(x)−∇f iν(x)∥ ≤ νMi, ∀i ∈ {0, . . . ,m}. (4.30)

The variance of Gi
ν,n(x, ξ) is bounded as follows:

σ̂2
i (n) := E∥Gi

ν,n(x, ξ)−∇f iν(x)∥2 ≤
3

n

(
d∥∇f i(x)∥2 + d2M2

i ν
2

4

)
+ 4

d2

n

σ2
i

ν2
∀i ∈ {0, . . . ,m}.

(4.31)

Proof. These properties are corollaries from Berahas, Cao, Choromanski, and Scheinberg
[Ber+21]. For the bias (4.30) we use the result of Equation (2.35) [Ber+21], and for the
variance (4.31) the result of Lemma 2.10 of the same paper, in both cases by setting
the disturbance ϵf = 0 in [Ber+21]. The last term of the variance is coming from the
additive noise. We set the disturbance ϵf to zero for their formulation and analyze the
noise separately since they consider the disturbance without any assumptions on it. In
contrast, we consider the zero-mean and sub-Gaussian noise which we can use explicitly.
For further discussions and proof, see Section B.7. ■

Setting the sample radius ν and bounding the sample complexity The parame-
ters of the estimator defined in Algorithm 5 that we can control are ν and n. We want
to set them in such a way that the biases bi and variances σi, σ̂i satisfy requirements of
Theorems 4 to 6. Based on them, we can bound the sample complexity of our approach
for zeroth-order setting.

According to Theorems 4 to 6, we require the bias to be bounded by b̂i ≤ αit
2(2m+1)D

, b̂0 ≤
η

2(2m+1)D
. Therefore, since b̂i ≤ νMi, we need to set the sampling radius small enough

ν ≤ min
{

αit
2mMiD

, η
2mM0D

}
. Moreover, in order to guarantee safety of all the measurements

within the sample radius ν around the current point f i(xt+νst) ≤ 0 using the smoothness
of each constraint

f i(xt + νst) ≤ f i(xt)− ν⟨∇f i(xt), st⟩+ ν2
Mi

2
∥st∥2,

we require the sample radius to be ν ≤ αit

2∥∇f i(xt)∥+
√
αitMi

. This bound can be obtained
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using the same derivations as for the adaptive step size γt (Lemma 4). Hence, we set

ν = min

{
αit

2∥∇f i(xt)∥+
√
αitMi

,
αit

2mMiD
,

η

2mM0

}
= O(η) = Ω(η).

Thus, from the above Lemma 10 Eq. (4.31), the variance of the estimated gradient with
ν = O(ε) = Ω(ε) is

σ̂2
i (n) =

1

n
O

(
max

{
d2σ2

i

ε2
, L2

i , d
2M2

i ε
2

})
. (4.32)

Additionally, according to the previous Theorems 4 to 6, we require the variances to be
σ̂i(n) = O(ε) and σi(n) = O(ε2). From the above Eq. (4.32), in order to have σ̂i(n) = O(ε)

we require n = O
(
max{d2σ2

i

ε4
, L

2

ε2
, dM2}

)
. From the properties of the zero-mean noise, to

have σi(n) = O(ε2) we require n = O(
σ2
i

ε4
). Thus, we can prove the following corollary of

the previously proven Theorems 4 to 6 particularly for the zeroth-order information case:

Corollary 2. We get the following sample complexities for the zeroth-order information

case, using ν = min

{
αit

2∥∇f i(xt)∥+
√
αitMi

,
αit

2mMiD
, η
2mM0

}
:

• For the non-convex problem, LB-SGD returns xt such that is ε-approximate KKT
point after at most N = O(

d2σ2
i

ε7
) measurements with probability 1− δ̂.

• For the convex problem, LB-SGD returns xt such that P{f 0(xt)−minx∈X f
0(x) ≤

ε} ≥ 1− δ̂ after at most N = Õ(
d2σ2

i

ε6
) measurements.

• For the strongly-convex problem, LB-SGD returns xt such that P{f 0(xt)−minx∈X f
0(x) ≤

ε} ≥ 1− δ̂ after at most N = Õ(
d2σ2

i

ε5
) measurements.

• Moreover, all the query points of LB-SGD are feasible for (P) with probability at
least 1− δ̂.

4.5 Non-smooth optimization

In this section, we extend our results to the non-smooth optimization setting. If the
objective and constraint functions f i are assumed to be only Li-Lipschitz continuous and
not necessarily differentiable, then we cannot define the KKT point directly. However,
using the notion of the ν-smoothed function (see Definition 1), we define the ν-smoothed
approximation of the problem (P) as follows:

min
x∈Rd

f 0
ν (x) (S)

s.t. f iν(x) ≤ 0, i ∈ [m],
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in which we denote the smoothed set by Xν := {x ∈ Rd : f iν(x) ≤ 0 ∀ i ∈ [m]}. Then, we
can analyze the convergence to a stationary point of the ν-smoothed problem. We propose
to address the problem (S), in contrast to the initial problem (P) in the smooth case.

Smoothing properties We can show the following properties:

Fact 5. Let functions f i are Li-Lipschitz continuous for all i ∈ {0, . . . ,m}. Then

1) we can bound the deviation of the smoothed approximation as follows [HL16]:

|f i(x)− f iν(x)| ≤ νLi.

2) the gradient ∇f iν(x) is M i
ν-Lipschitz continuous with M i

ν ≤ 2
√
dLi
ν

, i.e., f iν(x) is
M i

ν-smooth;

3) the function f iν is Li-Lipschitz continuous.

For the proof of property 1) see [FKM05], of property 2) see Section B.8, and for the
proof of property 3) see Section B.9. For the convex case, the property 2) was proved by
Yousefian, Nedić, and Shanbhag [YNS10].

Gradient estimator In the non-smooth case, we can still estimate the gradients of the
smoothed functions f iν using the randomized sampling procedure. Here the functions f iν
are M i

ν-smooth with M i
ν > 0 which we specify later. If we assume the estimation procedure

defined in Algorithm 5, we have access to unbiased stochastic estimated gradients Gi
ν,n(xt)

and biased zeroth-order measurements f iν(xt), since F i(xt, ξ
i
t) are centered at f i(xt). But

we can slightly modify an estimator, in order to have an unbiased estimators of both
objective and constraints.

Algorithm 6 Zeroth-order gradient-value estimator F i
n(x, ξ), G

i
ν,n(x, ξ)

1: Input: F i(·, ξ), i ∈ {0, . . . ,m}, x ∈ D, ν > 0, n ∈ N;
2: Sample n directions bj ∼ U(Bd), sj ∼ U(Sd), sample F i(x+νbj , ξ

i−
j ), sample F i(x+νsj , ξ

i+
j ),

and F i(x, ξj) ;
3: Output:

F i
ν,n(x, ξ) :=

∑n
j=1 F

i(x+ νbj , ξj)

n
(4.33)

Gi
ν,n(x, ξ) :=

d

n

n∑
j=1

F i(x+ νsj , ξ
i+
j )− F i(x, ξi−j )

ν
sj , (4.34)

The above estimator requires 1.5 times more samples since it requires an additional
averaging over the measurements on the ball. These estimators defined in Algorithm 6
have the following properties:
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Lemma 11. Let f i : Rd → R be Li-Lipschitz continuous. Let f iν be its ν-smoothed
approximation. Let F i

ν,n(x, ξ) and Gi
ν,n(x, ξ) are defined according to the Algorithm 6, then

1) Both estimators are unbiased, i.e., EF i
ν,n(x, ξ) = f iν(x) and EGi

ν,n(x, ξ) = ∇f iν(x),
that is b̂i = 0;

2) The variance of F i
ν,n(x, ξ) is bounded with

σ2
i (n) =

4L2
i ν

2

n
+
σ2
i

n
. (4.35)

3) The variance of Gi
ν,n(x, ξ) is bounded as follows:

σ̂2(n) =
(d+ 1)2

n

(
L2
i +

2σ2
i

ν2

)
; (4.36)

For the proof see Appendix B.10.

Adaptive step-size In this case we can bound the smoothness of the log barrier as
follows:

M2(xt) :=M0
ν + η

m∑
i=1

M i
ν

αit
+ 4η

m∑
i=1

L2
i

(αit)
2
=

√
dL0

ν
+ η

m∑
i=1

√
dLi
ναit

+ 4η
m∑
i=1

L2
i

(αit)
2
, (4.37)

The estimator ᾱit(ν) = F i
n,ν(x), ᾱ

i
t(ν) = F i

n,ν(x). The lower bound on αit should work on
both smoothed and the original (for safety) constraint functions, therefore we can set
αit = min{ᾱit(ν)− σi+2Liν√

n

√
log 1

δ
, ᾱit − σi√

n

√
log 1

δ
}, for which we have

P{αit ≤ min{−f iν(xt),−f i(xt)}} ≥ 1− δ.

In the non-smooth case there is no much sense of bounding the adaptive γt using
smoothness, therefore bound adaptive γt directly using the Li-Lipschitz continuity of each
constraint i, as shown in Figure 4.3. In particular, we use the following statement:

Lemma 12. Given that the point xt is such that max{f i(xt), f iν(xt)} < 0, the next point
xt+1 generated by the LB-SGD algorithm with γt ≤ αit

2Li∥gt∥ with high probability satisfies:
P{f iν(xt+1) ≤ 1

2
f iν(xt)} ≥ 1− δ and P{f i(xt+1) ≤ 1

2
f i(xt)} ≥ 1− δ.

Proof. First, note that the condition on γt ensures that xt+1 ∈ Rd lies inside the ball
around xt with radius min{−f iν(xt),−f iν(xt)}

2Li
with probability 1− δ, i.e.,

P
{
∥xt+1 − xt∥ ≤

−f iν(xt)
2Li

}
≥ 1− δ. (4.38)

59



Figure 4.3: Illustration of the adaptivity. Step size γt is chosen such that the liner upper bound
based on Lipschitz continuity (blue) on the constraint guarantees f i(xt+1) ≤ f i(xt)/2. αit is
the lower bound on αit = −f i(xt), constructed based on the mean estimator ᾱit. By the orange
interval we denote the confidence interval for αit. By the green interval we denote the adaptive
region for xt+1 based on the requirement f i(xt+1) ≤ f i(xt)/2.

Then, we have ∀i ∈ [m] f iν(xt+1)
1○
≤ f iν(xt) + Li∥xt+1 − xt∥

2○
≤ f iν(xt) + Li

−f iν(xt)
2Li

= f iν(xt)
2
,

with probability 1− δ, where the first inequality 1○ is due to the Li-Lipschitz continuity
(see Fact 5), and the second one 2○ is due to Eq. (A.12). The same statement holds for
f i(xt). ■

Then, we define the step-size to be

γt = min

{
min
i∈[m]

{
αit
2Li

}
1

∥gt∥
,

1

M̂2(xt)

}
. (4.39)

Changing the step-size influences its lower bound (see Lemma 13), in particular, it changes
the constant C that enters all the bounds in Theorems 4 to 6. We can lower bound the
corresponding γt as follows:

Lemma 13. If αit ≥ cη for c > 0, then we have P{γt ≥ Cη} ≥ 1− δ with C defined by

C :=
c

L2
min

{
1

2(1 + m
c
)
,

1√
d(1 + m

c
) + 4

c

}
(4.40)

Proof. Indeed, using αit ≥ cη we get ∥gt∥ ≤ L(1 + m
c
) and M2(x) ≤

√
dL
ν
(1 + m

c
) + 4 L

2

c2η
.

Using ν = η
L
. Therefore,

γt = min

{
min
i∈[m]

{
αit
2Li

}
1

∥gt∥
,

1

M̂2(xt)

}
≥ min

{
cη

2L

1

L(1 + m
c
)
,

1
√
dL
ν

(1 + m
c
) + 4 L

2

c2η

}

Here, if we keep smoothing factor proportional to η, e.g., ν = min{η, αit
Li
} then we 1) satisfy
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safety requirements, 2) guarantee ν ≥ ηmin{1, c
L
} = Ω(η). Then

γt ≥ min

{
cη

2L2(1 + m
c
)
,

cη√
dL2(1 + m

c
) + 4L

2

c

}
=
cη

L2
min

{
1

2(1 + m
c
)
,

1√
d(1 + m

c
) + 4

c

}

■

Note that the constant C now depends on d as Ω( 1√
d
). The keeping distance property

showing αit ≥ cη is independent on smoothness, and one can check that its proof still
holds with the same constants. Therefore, only constant C changes, that influences only
on the constants in the convergence rates. The rest convergence results hold the same.

Setting the sampling radius ν and bounding the sample complexity In order to
have the deviation from the original problem of an order η, we again require ν = O(η), see
Fact 5. Moreover, in order to guarantee safety of all the measurements in the radius of ν
around the current point xt we require ν ≤ αit

L
= O(η). Hence, from the above Lemma 10,

the variance of the estimated gradient with ν = O(η) is σ̂2
i (n) =

1
n
O
(
max{d2σ2

i

η2
, L2

i }
)
.

In order to have σ̂i(n) = O(η) we require n = O
(
max{d2σ2

i

η4
, L

2

η2
}
)
. In order to have

σi(n) = O(η2) we require n = O(max{σ2
i

η4
,
L2
i ν

2

η4
}) = O(max{σ2

i

η4
, L

2

η2
}). Recall that for the

final round ε = O(η).

Thus, we can observe the following corollary of the previously proven Theorems 4 to 6
particularly for the zeroth-order information case:

Corollary 3. We get the following sample complexities for the zeroth-order information
case, using ν = min{η, αit

L
} and using the fact that the constant C = Ω( c2√

dL2 ) is dependent
on d now:

• For the non-convex problem, LB-SGD returns xt such that is ε-approximate KKT
point of (S) after at most T = O( 1

Cη3
) = O(

√
d

η3
), and N = O(

d2.5σ2
i

ε7
) measurements.

• For the convex problem, LB-SGD returns xt such that P{f 0
ν (xt)−minx∈Xν f

0
ν (x) ≤

ε} ≥ 1− δ after at most T = O(
√
d

η2
), and N = O(

d2.5σ2
i

ε6
) measurements.

• For the strongly-convex problem, similarly, LB-SGD returns xt such that P{f 0
ν (xt)−

minx∈Xν f
0
ν (x) ≤ ε} ≥ 1− δ after at most N = O(

d2.5σ2
i

ε5
) measurements.

• Moreover, all the query points of LB-SGD are feasible for (P) and (S) with probability
at least 1− δ.

4.6 Simulations

In this section, we demonstrate the empirical performance of our method when optimizing
smooth synthetic functions on simulations and compare it to other existing non-linear safe
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learning approaches. All the experiments in this subsection were carried out on a Mac
Book Pro 13 with 2.3 GHz Quad-Core Intel Core i5 CPU and with 8 GB RAM. The code
corresponding to the experiments in this subsection can be found under the following link:
https://github.com/Ilnura/LB_SGD.

Numerical stability. First, we note that to improve numerical stability, we slightly mod-
ify the steps of our method for practical applications. Recall that the log barrier gradient
estimator is gt ← G0

n(xt, ξt)+η
∑m

i=1
Gin(xt,ξt)
−F in(xt,ξt)

. Due to noise, the value of −F i
n(xt, ξt) might

become infinitely close to zero or negative, which leads to gt blowing up or being unreliable.
Therefore, we denote by ᾱit the truncated value measurements −F i

n(xt, ξt) with small trun-

cation parameter a > 0, that is ᾱit = [−F i
n(xt, ξt)]a :=

{
−F i

n(xt, ξt) , −F i
n(xt, ξt) > a

a , −F i
n(xt, ξt) ≤ a

.

Based on the above, we use the following estimator for the first-order stochastic optimiza-
tion at point xt: gt = G0

n(xt, ξt) + η
∑m

i=1
Gin(xt,ξt)

ᾱit
.

Convex objective and constraints

We first compare our safe method LB-SGD with SafeOpt [Sui+15b; BKS16] and LineBO
[Kir+19], on a simple synthetic example.

We consider the quadratic problem with linear constraints minx∈Rd ∥x−x0∥2/4d, s.t. Ax ≤
b, where x0 = [2, . . . , 2] and A =

[
Id
−Id

]
, b = 1/

√
d. The optimum of this problem is on the

boundary. We assume that the linearity of the constraints is unknown, hence for SafeOpt
we use the Gaussian kernel. For dimensions d = 2, 3, 4 we carry out the simulations with
standard deviation σ = 0.001 of an additive noise Figure 4.4 averaged over 10 different
experiments. For d = 2 we run SafeOpt, and for d = 3, 4 we run SafeOptSwarm, which is
a heuristic making SafeOpt updates more tractable for slightly higher dimensions [BKS16].
For SafeOpt and LineBO methods, instead of plotting the accuracy and constraints corre-
sponding to xt, we plot the smallest accuracy and biggest constraint seen up to the step t
(for sake of interpretability of the plots). Even for d = 4, LB-SGD is already notably more
sample efficient compared to both SafeOpt and LineBO. Moreover, LB-SGD significantly
outperforms SafeOpt over computational cost and memory usage. It is well known that
SafeOpt’s sample complexity and computational cost can exponentially depend on the
dimensionality. In contrast, the complexity of LB-SGD depends on d polynomially. The
runtimes of the above experiments, in seconds, are shown in Table 4.1 and Figure 4.6.

d 2 3 4
SafeOpt (SafeOptSwarm) 4.289 114.406 212.514

LineBO 8.180 17.837 40.8
LB-SGD 0.429 0.895 0.781

Table 4.1: Average runtime dependence on dimensionality d (in seconds). Importantly, the
wall-clock time of LB-SGD remains roughly constant as we increase d, noting that we only
increase the number of measurements per iteration, but not the number of iterations.
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Figure 4.4: Accuracy (upper plots) and constraints (lower plots) of LB-SGD and SafeOpt for
d = 2, 3, 4, averaged over 10 samples. t here is the amount of zeroth-order oracle calls. In these
experiments, for LB-SGD we decrease ηk+1 = 0.85ηk gradually every Tk = 3 steps with nk = [d2 ]
value measurements at each step. Already for d = 4 LB-SGD starts outperforming all BO-based
methods on this problem in terms of the sample complexity.

d 2 3 4
SafeOpt (SafeOptSwarm) 5.308 44.909 63.019

LineBO 7.584 10.593 13.293
LB-SGD 0.294 0.332 0.324

Table 4.2: Run-time (in seconds) as dependent on dimensionality d (Rosenbrock benchmark).

Non-convex objective and constraints

As a non-convex example, we consider the Rosenbrock function, a common benchmark
for black-box optimization, with quadratic constraints. In particular, we consider the
following problem

min
x∈Rd

d−1∑
i=1

100∥xi − xi+1∥2 − ∥1− xi∥2,

s.t. ∥x∥2 ≤ r21, ∥x− x̂∥2 ≤ r22.

We set r1 = 0.1, r2 = 0.2, x̂ = [−0.05, . . . ,−0.05]. The optimum of this problem is on
the boundary of the constraint set. We show the comparison of LB-SGD and SafeOpt
on Figure 4.5. Again, for d = 2 we run SafeOpt, and for d = 3, 4 we run SafeOptSwarm.
Here, on the constraints plot of SafeOpt and LineBO we again plot the highest value of
the constraints over all points explored so far.

The run-times of LineBO and SafeOpt are demonstrated in Table 4.2 and Figure 4.6.

Note that the second problem is easier for BO methods than the first one. It is related
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Figure 4.5: Accuracy and constraints of LB-SGD and SafeOpt for d = 2, 3, 4, averaged over 10
samples. t here is the amount of zeroth-order oracle calls. In these experiments, for LB-SGD we
decrease ηk+1 = 0.7ηk gradually every Tk = 5 steps with nk = d− 1 value measurements at each
step. On this problem, for d = 4 we observe that LB-SGD performs better that SafeOpt, and
comparable to LineBO.

to the fact that in the first problem, the number of constraints (and therefore, the number
of GPs) is higher and grows with dimensionality (m = 4, 6, 8). In contrast, there are
always only two constraints for the second problem. As one can see, our approach is
significantly cheaper in computational time than SafeOpt. This is, of course, at the price
of finding only a local minimum, not the global one.

Comparison with LineBO in higher dimensions

In higher dimensions, it is well known that SafeOpt is not tractable. Therefore, we
compare our method only with LineBO [Kir+19]. This method scales significantly better
with dimensionality than the classical BO approaches. The method was demonstrated to
be efficient in the unconstrained case and in cases where the solution lies in the interior of
the constraint set. The authors proved the theoretical convergence in the unconstrained
case and the safety of the iterations in the constrained case. However, in contrast to our
method, this approach has a drawback that we discuss below. At each iteration, LineBO
samples a direction (at random, an ascent direction of the objective, or a coordinate
direction). Then it solves a 1-dimensional constrained optimization along this direction,
using SafeOpt. After optimizing along this direction, it samples another direction starting
from the current point. The drawback of this approach is that when the solution is on
the boundary, LineBO might get stuck on the wrong point on the boundary. In such a
case, it might be difficult for it to find a safe direction of improvement too close to the
boundary. See Figure 4.7 for the illustration of this potential problem. Furthermore, the
higher dimension, the harder it is to sample a suitable direction. We demonstrate that
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Figure 4.6: Run-times of LB-SGD and SafeOpt for d = 2, 3, 4, averaged over 10 samples, in
seconds. t here is the amount of zeroth-order oracle calls. We can observe that LB-SGD is a
significantly cheaper approach in terms of the computational cost compared to both BO-based
methods with growing dimensions.

Figure 4.7: Illustration of the LineBO behavior. At point xt not every direction allows the
safe improvement (only the directions lying in the green sector). Therefore, the LineBO method
might get stuck sampling the wrong directions. On this example, the closer to the solution, the
narrower is the improvement sector.

empirically in application to the following problem:

min
x∈Rd
−exp−4∥x∥2 , (4.41)

s.t. ⟨x− x̂, A(x− x̂)⟩ ≤ r2, (4.42)

with r = 0.5 and A = diag(3, 1.2, . . . , 1.2). On Figure 4.8 we demonstrate the comparison
of LineBO and LB-SGD methods on the above problem for dimensionalities d = 2, 10, 20.
We report the run-times in Table 4.3.

To compare, in the case when the solution is in the interior of the constraint set
achieved by setting r = 10 (that is, if the constraints do not influence the solution), the
LineBO approach does not have this issue and can still be very efficient (see Figure 4.9).
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Figure 4.8: Accuracy and constraints of LB-SGD and SafeRandomLineBO for d = 2, 10, 20,
averaged over 10 samples. t here is the amount of zeroth-order oracle calls. In these experiments,
for LB-SGD we decrease ηk+1 = 0.85ηk gradually every Tk = 3 steps with nk = [d+1

2 ] value
measurements at each step.

d 2 10 20
LB-SGD 0.828 2.186 2.676
LineBO 12.883 298.097 1038.459

Table 4.3: Runtime (in seconds) dependence on dimensionality d on the negative Gaussian
minimization benchmark. We can observe that LineBO is significantly more expensive in
computational cost (for the same number of queried points).

4.7 Conclusion

In this chapter, we addressed the problem of sample and computationally efficient safe
learning. We proposed an approach based on logarithmic barriers, which we optimize
using SGD with adaptive step sizes. We analytically proved its safety during the learning
and analyzed the convergence rates for non-convex, convex, and strongly-convex problems.
We empirically demonstrated the performance of our method in comparison with other
existing methods. We showed that 1) its sample and computational complexity scale
efficiently to high dimensions, and; 2) it keeps optimization iterates within the feasible
set with high probability. Additionally, we demonstrated the efficiency of the log barrier
approach for high-dimensional constrained reinforcement learning problems.

While not requiring to explicitly specify a prior (in the Bayesian sense, as considered
in safe Bayesian optimization), our method does involve hyper-parameters such as η0,
η-decrease rate parameter ω, amount of steps per episode Tk, and exhibits sensitivity to
the noise. Also, in the non-convex case, it can converge only to a local minimum, as any
other descent optimization approach. However, it is easy to implement and has efficient
computational performance due to cheap updates. Therefore, LB-SGD is better suited to
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for LB-SGD we decrease ηk+1 = 0.85ηk gradually every Tk = 3 steps with nk = [d+1

2 ] value
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problems of high scale.

For future work, it would be exciting to take the best of both worlds and combine the
BO approaches that allow us to build and use a global model with our simple and cheap
safe descent approach based on log barriers.
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CHAPTER 5
Applications

In this chapter, we demonstrate the particular applications in robotics, manufacturing,
and reinforcement learning, where safety during the learning is required. The code
corresponding to the experiments described in the Section 5.1 and Section 5.2 can be
found under this link: https://github.com/Ilnura/Thesis_applications.

5.1 Turning process optimization

Let us start with the simple problem of parameters tuning of the cutting machine.

We consider the scenario of a cutting machine [Mai+18] which has to produce certain
tools and optimize the cost of production by tuning the turning process parameters such
as the feed rate f and the cutting speed νc. For the turning process we need to minimize
a non-convex cost function C(x), where the decision variable is x = (νc, f) ∈ R2. The
constraints include box constraints and a non-convex quality roughness constraint R(x).
We perform realistic simulations, by using the cost function and constraints estimated
from hardware experiments with artificially added normally distributed noise ξ ∼ N(0, σ2).
The obtained non-convex smooth optimization problem with concave objective and convex
constraints is:

min
x∈R2

C(x) = tc(x)

(
CM +

CI
T (x)

)
subject to R(x) ≤ 0.7, x1 = νc ∈ [100, 200],

x2 = f ∈ [0.08, 0.16].

Here the values are

tc(x) =
LDπ

νcf
,

T (x) = 127.5365− 0.84629νc − 144.21f + 0.001703ν2c + 0.3656νcf,

R(x) = 0.7844− 0.010035νc + 7.0877f + 0.000034ν2c − 0.018969νcf,

CI = 40, CM = 50.
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Note that we assume the box constraints to be known, i.e., not corrupted with noise.
However, the roughness constraint R(x) and the cost C(x) are assumed to be unknown
and we only can measure their noisy values. Hence, this problem is an instance of the safe
learning problem formulated in (P). In this case, we set f 0(x) = C(x), f 1(x) = R(x)− 0.7,
and f 2, . . . , f 5 are determined by the box constraints. More details are presented by
Maier, Rupenyan, Zwicker, Akbari, and Wegener [Mai+18], who proposed to use Bayesian
optimization with inequality constraints [Gar+14] to solve the problem. Although the
Bayesian optimization used there indeed requires a small number of measurements, it
is not safe and hence may require several measurements to be taken in the unsafe
region. The roughness constraints are not fulfilled for unsafe measurements, i.e., the tools
produced during unsafe experiments could not be realised in the market. That is why
safety is necessary for this problem. Although there exist safe Bayesian optimization
[Sui+15b; Ber+17] methods, they also require strong prior knowledge in terms of suitable
kernel function. For this problem, Assumptions 1 to 3 hold, and the satisfaction of
Assumption 4 (MFCQ) can be observed from the plot of the feasibility set on Figure 5.1
(denoted by the green colour) for such a small problem. We solve barrier sub-problem
iteratively using LB-SGD with decreasing ηk+1 = ωηk, where we fix ω = 0.7. We set
σ = 0.001, L = 2,M = 30, δ = 0.01 and re-scaled ν ′c = 0.001νc so that ν ′c ∈ [0.1, 0.2].

In Figure 5.1 we compare the performance of SafeOpt [BKS16] with RBF kernel and
the performance of of LB-SGD starting from the point x0 = (ν ′c, f) = (0.18, 0.11) with
decreasing ηk+1 = 7ηk every Tk = 7 iterations, and η0 = 0.1. We average the convergence
and constraints plots over 10 independent runs. We only made two measurements at
each iteration. If σ is bigger, we need to make nt = (σ/η)2 measurements per iteration,
otherwise the best accuracy it can achieve is proportional to σ. In all the runs the LB-
SGD method converges to an optimum and the constraints are not violated. The initial
feasible points we choose manually, in this small example it is not a hard task.
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Figure 5.1: Convergence of the cost (left), maximal constraint plot (middle) averaged over 10
runs of LB-SGD and SafeOpt, and optimization trajectory of LB-SGD (right). In the simulations
we considered noise ξ ∼ N (0, σ2) added to the measurements . By the red cross we denote the
optimal point of the problem. Blue points denote the optimization trajectory, red point denotes
the starting point, green set is the feasibility set.

In Figure 5.2 we demonstrate the convergence from another starting point x0 =
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[0.12, 0.09] and another η0 = 0.3, and observe that if the starting point is further away
from the optimum, and closer to the boundary, it takes longer for LB-SGD to converge as
expected from the theory, whereas for the SafeOpt approach it takes almost the same 20

iterations to converge in both cases, i.e., it does not depend on how close the initial point
is to the solution.
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Figure 5.2: Convergence of the cost (left), maximal constraint plot (middle) averaged over 10
runs of LB-SGD and SafeOpt, and optimization trajectory of LB-SGD (right). The starting
point x0 = [0.12, 0.09] is closer to the boundary and further form the solution. We have N = 100
measurements, and T = 50 iterations in total with n = 1 (two measurements per each iteration).

This showcase demonstrates that despite our method on such a small dimensional
problem is slower than Bayesian approaches, it does not require knowledge of the kernel,
has significantly faster updates, and still is comparable to Bayesian approaches in terms of
the sample complexity, especially if the starting point is comparably close to the solution.
As we have seen from the higher dimensional examples in the previous chapter, on higher
dimensions LB-SGD outperforms SafeOpt. That brings us to the idea that our method
could work the best in combination with global BO methods, to take the best from both
worlds. For example, one could run the safe Bayesian method on the first few iterations,
and next to fine tune the approximate solution using safe local descent method such as
LB-SGD. We consider to address this idea in future.

5.2 Learning the controller with log barriers

In this section we demonstrate performance of our approach in application to two control
problems formulated via linear controller regulation (LQR).

5.2.1 Convex LQR

Here we demonstrate the performance of our LB-SGD algorithm on the simple finite
horizon LQR example with linear dynamics. We select this example since it is a non-trivial
convex problem that requires safety. Consider the linear dynamical system: qτ+1 =

Aqτ +Buτ and the following LQR problem for reaching the target qtarget:
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min
u

1

H

H∑
τ=1

∥qτ − qtarget∥2 (5.1)

s.t. q0 = q(0), qτ+1 = Aqτ +Buτ , (5.2)

qτ ∈ Q, ∀τ = [H] (5.3)

The matrices A,B are unknown. The goal is to learn the open-loop controller u =

(u0, . . . , uH−1) minimizing the LQR objective while not violating the hard constraints (5.3)
during the learning. In our case study, we consider the time horizon H = 10, the dynamic

given by A =

[
1 0.5

0 1

]
, B =

[
0

1

]
, the safety set we define artificially in such a way that

it is convex, non-linear, and simple to illustrate:

Q = {q ∈ R2 : ∥q∥2 ≤ 3,
[
1 1

]
q ≤ 3,

[
−1 −1

]
q ≤ 3}.

We assume we have access to zeroth-order noisy oracle of each of these three constraints
definingQ for every state qt in the generated trajectory: 1 ) ∥qt∥2−3 ≤ 0; 2 )

[
1 1

]
qt−3 ≤

0; 3 )
[
−1 −1

]
qt − 3 ≤ 0, thus, in total we have 3H constraints. The target state we

set to be qtarget = [2.5, 0], and the initial state to be q0 = [−2, 0]. The input sequence is
initialized as uτ = 0, τ = 0, . . . , H. Note that for zero input, the trajectory is stationary
and therefore safe, since the initial point is an equilibrium of the system. We consider the
noise level of σ = 0.0001. The parameters of the algorithm are tuned manually to nk = 6

η0 = 0.25, Tk = 7, ν = 0.01, and δ = 0.01. This problem satisfies the Assumptions 1 to 3,
and convexity Assumption 5.

Figure 5.3 a) (left) shows the performance of 30 independent runs of each algorithm.
During the experiments the method never violated the constraints as can be seen from
Figure 5.3 a) (right). In Figure 5.3b) we show the trajectory corresponding to the solution
obtained using the scipy.optimize.minimize package with tolerance = 0.001 as if everything
was known (using an unsafe optimization method). The problem itself is non-convex, so
this solution is an approximate local optimum. In Figure 5.3c), we compare the solution
of the LQR problem obtained (left) at iterations 5, (middle) at iteration 20, and (right)
The trajectory corresponding to the input sequence learned by LB-SGD .

5.2.2 Non-convex LQR

In this section, we consider the application to safe iterative controller design. Consider
the basic unicycle dynamics ẋ = v cos θ, ẏ = v sin θ, θ̇ = ω. Here the states q = [x, y, θ]

describe the spatial coordinates x, y and the direction angle θ. The control inputs u = [v, ω]

describe the speed and the angular velocity. We use Euler-discretized model of the unicycle
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Figure 5.3: a) Illust. of (left) convergence and (right) maximal constraint value over 30 trials
of LB-SGD with N = 1500, n = 6, M = 1, σ = 0.0001, ν = 0.01, η0 = 0.1, with decreasing
ηk+1 = 0.7ηk every Tk = 7 iterations. b) Dynamic trajectory of the optimal u∗ (obtained using
scipy.optimize.minimize package, ’SLSQP’ method, assuming everything is known, infeasible
approach during the learning). c) Dynamic trajectory of mid points of LB-SGD at iterations t = 5
and t = 20 respectively, and the final output uT . Total number of measurements is N = 1500.

dynamics

qτ+1 =

xτ+1

yτ+1

θτ+1

 =

 xτ + dτvτ cos(θτ )

yτ + dτvτ sin(θτ )

θτ + dτωτ

 .
We choose a open-loop feedback u = [u0, . . . , uH ] ∈ RH×p as the optimizing parameter,

where H is the planning horizon. The let sequence determined by u be denoted by qτ (u),
τ ∈ [H]. The goal is to lead the vehicle from a starting point q0 to a goal destination
qtarget while avoiding collision with high-probability. The cost function is defined by
1
H

∑H
τ=1 ∥qτ (u)− qB∥2 + 1

10H

∑H
τ=1 ∥uτ∥2. The constraints are formulated such that the

trajectory does not collide with the the ball shaped obstacle placed at [0, 0]T with radius
1. The resulting constrained optimization problem is as follows:

min
u∈R3×2

1

H

H∑
τ=1

∥qτ (u)− qtarget∥2 +
1

10H

H∑
τ=1

∥uτ∥2

s.t. ∥(xτ (u), yτ (u))− (xC , yC)∥2 ≥ 1, ∀τ ∈ [H].
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Figure 5.4: a) The objective value (left) and maximum constraint value (right) for 5 experiments;
b) Optimal control trajectory scipy.optimize.minimize package, ’COBYLA’ unsafe method
assuming everything is known); c) Control trajectory obtained by LB-SGD with η0 = 0.05,
ω = 0.93, n = 10, Tk = 10, N = 5000 at iteration t = 20 (left), iteration t = 50 (middle), and
the final output at iteration T = 250 (right). Initial trajectory is the stationary trajectory.

This problem satisfies Assumptions 1 to 3. The bounded diameter is not stated explicitly,
but we can find such a ball with diameter D such that the solution with such an additional
constraint will not change. In the zeroth-order oracle approach, we assume no knowledge of
the dynamics, the constraints or the cost functions. We only assume noisy measurements
of the cost function and the constraints. Thus, we address this problem using the LB-SGD
algorithm. We set the parameters of the algorithm to νt = 0.01 for safety, M = 40 set by
trial, n = 10, Tk = 10, ω = 0.93, and initialize the algorithm with a safe stationary control
policy such that the agent simply is not moving. The algorithm iteratively improves the
controller while avoiding the constraints. The total number of measurements is NT = 5000.

In Figure 5.4 a) we demonstrate the achieved results of 20 trials of the stochastic LB-
SGD algorithm with the fixed initialization. In none of the trials the constraints were
violated. In Figure 5.4 b) we show the trajectory generated by a solution u∗ controller
obtained using scipy.optimize.minimize package (’COBYLA’ unsafe method assuming
everything is known). In Figure 5.4 c) we demonstrate an example of the trajectory
generated by the controller obtained at iteration 20 (left), iteration 50 (middle), and the
final output at iteration 250 (right) during one of the runs of LB-SGD algorithm.
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5.3 LB-SGD for safe reinforcement learning

We previously showed LB-SGD performance on a smaller scale, classical black box
benchmark problems. In this part, we showcase how LB-SGD scales to more complex,
high-dimensional domains arising in RL. This section is based on the experimental part of
our paper Usmanova, As, Kamgarpour, and Krause [Usm+22]. It was done in collaboration
with Yarden As, who implemented this experiment. The author’s contribution was in
proposing to use logarithmic barrier steps for the model-based RL and designing the
experiment in a suitable way for the safety setup. For our implementation, please see
https://github.com/lasgroup/lbsgd-rl.

The safe transfer learning task Recall our introduction example on an autonomous
driving car with a well-trained policy π1 for Zürich. For Lausanne, this policy is still safe
but not optimal anymore since Lausanne has different properties. One wants to update
this policy to improve its performance in Lausanne by collecting new data using online
agent-world interactions (another example is sim-to-real domain adaptation [ZQW20]).
At the same time, we would like to keep all the policy updates during the learning process
safe and not leading to dangerous situations, which is extremely important for such tasks
as autonomous driving in an actual city.

In this section, we demonstrate the performance of our algorithm for safe transfer
learning not on real cars, but using the Safety Gym simulator [RAA19]. In particular,
we take an algorithm (e.g., LAMBDA [As+22]) that is capable of solving CMDPs in a
scalable way but fails in the safe transfer learning task. This method uses the model-based
approach, which is a huge advantage for our problem since: (a) model-based approaches
are much more sample efficient than the model-free approaches, and (b) the learned model
allows to transfer the knowledge not only of the policy pre-trained on the past domain
but also the knowledge of the dynamics. Now we show that by changing the optimization
algorithm to our algorithm, we can safely transfer between tasks. The main advantage of
the log barrier algorithm is that given an initially safe (but sub-optimal) policy, it can
remain safe but improve its performance. To demonstrate this, we pre-train a policy on
an easy task at the first stage of the experiment. Following that, we switch to a harder
task in the second stage. However, we keep safety constraints complexity the same for
both stages so that we can transfer safety property from the first to the second stage.
Our goal is, given the pre-trained safe policy on a simpler task, to update the policy in a
safe way to improve its performance on the harder task. Our algorithm demonstrates the
minimum amount of constraint violations during the learning.

5.3.1 Reinforcement learning background

First, let us provide the background required to understand our experiments.
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Safety Gym environment We perform our experiment of the Safety Gym simulator
[RAA19], based on OpenAI MuJoCo. This is a benchmark suite that treats the safe RL
problem with constrained Markov decision processes (CMDP), the dynamics simulator.
An agent needs to solve the task while making a smallest amount of obstacles violations.

The benchmark provides several options for choosing the agent such as Point, Car,
Doggo, they all have different dynamics. The Safety Gym also provides several options
to choose the task, and the complexity of the environment. That is, in options Goal 1
and Goal 2, the task of the agent is to reach the green transparent cylinder target while
avoiding several amount of randomly placed obstacles, and Goal 1 has fewer obstacles
than Goal 2, Goal 2 is more complicated for safety. In Push 1 and Push 2, the goal is
to push the yellow object to a target, and in Button 1 and Button 2 the goal is to press
the green button, while avoiding the orange buttons. Safety Gym allows the agent to
observe LIDAR simulator, or the images. In our experiments in Safety Gym environment,
at each time t the agent gets observations ot ∈ R64×64×3 which are 64×64 pixels RGB
images, taken from the first-point view.

Constrained Markov decision processes The problem of safe reinforcement learning
can be viewed as finding a policy that solves a Constrained Markov decision process
[Alt99]. Briefly, we define a discrete-time episodic CMDP as a tuple (S,A, P, R, γ, C).
At each time step τ ∈ {0, . . . , T}, an agent observes a state sτ ∈ S. Given that state,
it decides what action aτ ∈ A to take next. Then, an unknown transition density
P : S × A × S → [0, 1], sτ+1 ∼ P (·|sτ , aτ ) generates a new state. R : S × A → R
is a reward function that generates an immediate reward signal observed by the agent.
The discount factor γ ∈ (0, 1] weighs the importance of immediate rewards compared to
future ones. Lastly, C =

{
ci : S ×A → R

∣∣ i ∈ [m]
}

is a set of cost signals that the agent
observes alongside the reward. In our experiments we focus on the case with a single
constraint c : S ×A → R which corresponds to hitting any of the obstacles. The goal is
to find a policy π : S ×A → [0, 1] that solves the constrained problem:

max
π

E

[∑
τ

γτR(sτ , aτ )

]
︸ ︷︷ ︸

J(π)

s.t. E

[∑
τ

γτc(sτ , aτ )

]
− di︸ ︷︷ ︸

Jc(π)

≤ 0.
(5.4)

Whereby d is a predefined threshold value for the cost. Note that we take the expectation
with respect to all stochasticity induced by the CMDP.

On-policy methods as black-box optimization problems A typical recipe to solve
CMDPs at scale is to parameterize the policy with parameters x and use on-policy methods.
On-policy methods use Monte-Carlo sampling to sample trajectories from the environ-
ment, evaluate the policy, and finally update it [Cho+15; Ach+17; RAA19]. By using
Monte-Carlo, these methods compute unbiased estimates of the constraints, objective and
their gradients, equivalently to the assumptions in Section 2.1. Importantly, the process of
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sampling trajectories from the CMDP and averaging them to estimate the objective and
constraints in Eq. (5.4) is equivalent to querying f 0(x) and f i(x), i ∈ [m] as we present
in this chapter. However, without deliberately enforcing xt ∈ X ∀t ∈ {0, . . . , T}, these
methods are exposed to use an unsafe policy during learning.

5.3.2 Solving CMDPs with LB-SGD

To demonstrate LB-SGD’s ability to keep the policy safe during learning we use LAMBDA
[As+22], a model-based algorithm for solving CMDPs. In summary, LAMBDA learns
the transition density P from image observations, and uses this learned model to find a
(hopefully) optimal policy. The policy is updated with model-generated, on-policy trajec-
tories. Clearly, model-generated trajectories are subject to model errors which in turn
make the estimation of the objective and constraints biased. As a result, the assumptions
in Section 2.1 do not necessarily hold. Nevertheless, this biasedness is subject only to
LAMBDA’s model inaccuracies, so LB-SGD can still produce safe policies with high utility,
as we empirically show in the following section. To employ LB-SGD within LAMBDA, we
replace their proposed Augmented Lagrangian [NW06] optimization scheme with LB-SGD.

Model based approach to partially observed states Internal dynamic model We
consider problems where the agent receives an observation ot ∼ Po(·|st) instead of st at each
time step, the true state space is hidden. That is, we consider a partially observed Markov
Decision Process (POMDP). (In our Safety Gym example the observation is given by the
first-person view camera observations.) Then we learn the internal model Pθ(aτ−1, oτ )

which provides the distribution of the latent state sτ , that is, sτ ∼ Pθ(aτ−1, oτ ). This
model is modeled as the neural network (NN) parametrized by θ (see Appendix C.1). To
train it, we use its own loss function LP (θ, ϕ) which we define in Appendix C.2 for the
interested reader, similarly to Hafner, Lillicrap, Fischer, Villegas, Ha, Lee, and Davidson
[Haf+19a].

Critics. Additionally, for the task and safety critics, we use the reward and the cost
value functions. We model the reward value function as vπψ(st) ≈ E [

∑∞
τ=t γ

τ−tr(sτ , aτ )|st]
which is given as a dense neural network with parameters ψ and discount factor γ. Similarly,
we model the cost value by vπψc(st) ≈ [

∑∞
τ=t γ

τ−tci(sτ , aτ )|st] with parameter vector ψc.
The policy and value models are trained cooperatively as typical in policy iteration: the
action model aims to maximize an estimate of the value, while the value model aims to
match an estimate of the value that changes as the policy model changes. We use TD(λ)

[SB18] to trade-off the bias and variance of the critics with bootstrapping and Monte-Carlo
value estimation. We denote Vλ(sτ ),Vλ,c(sτ ) as the TD(λ) value as in Hafner, Lillicrap,
Ba, and Norouzi [Haf+19b], that is defined recursively using vπψ(sτ ), vπψc(sτ ) respectively.
Then, the reward value function can be estimated by averaging over the time horizon
H as follows 1

H

∑τ+H
t=τ Vλ(st), and the cost value function by 1

H

∑τ+H
t=τ Vλ,c(st), and use

them for estimating the stochastic inexact models of J(πξ|P ), Jc(πξ|P ). Here Vλ(st) is
also dependent on Pθ, π, ψ, and Vλ,c(st) is also dependent on Pθ, π, ψc, we omit these
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dependencies in notation for simplicity.

Policy. We model the policy as a Gaussian distribution via a neural network with
parameters ξ such that πξ(aτ |sτ ) = N (aτ ;NNµ

ξ (sτ ),NNσ
ξ (sτ )). That is, given the state

sτ , the action aτ is sampled from the normal distribution with the mean returned by
NNµ

ξ (sτ ), and the standard deviation NNσ
ξ (sτ ).

The learning loop. In total we can write the loop of collecting the data, and the loop
of learning the models as shown at Figure 5.5. At each episode we first run T = 1000
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Figure 5.5: (a) Block diagram of collecting the data. (b) Block diagram of learning the models

agent-environment interactions to collect the data, then at the end of the episode, using
the collected data we make 100 gradient steps of the loss: 1) to update internal model
Pθ, 2) to update the value critics for reward and costs; and 3) using the updated models,
make a safe LB-SGD step to update the policy. The last learning step we describe in the
following paragraph.

Learning the policy We sample a sequence sτ :τ+H ∼ Pθ(sτ :τ+H), utilizing πξ to generate
actions on the fly. By sampling B starting states sτ and generating the sequences {st}τ+Ht=τ

with the fixed Pθ, and using the fixed vπψ, vπψc , for policy πξ we approximate the stochastic
inexact models of J(πξ|P ), Jc(πξ|P ) as follows

J̃(πξ|Pθ, vπψ) =
1

B

∑
τ∈{τB}

1

H

τ+H∑
t=τ

Vλ(st), (5.5)

J̃c(πξ|Pθ, vπψc) =
1

B

∑
τ∈{τB}

1

H

τ+H∑
t=τ

Vλ,c(st). (5.6)

We get the gradient of the above loss over ξ using the back-propagation. We back-propagate
through Pθ using path-wise gradient estimators [Moh+20].

In our past work LAMBDA, the constrained optimization for training the policy is
done by using the Augmented Lagrangian approach. One can find the detailed description
of this experiment and the approach in As, Usmanova, Curi, and Krause [As+22]. Here,
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would like to satisfy safety constraints not only by the end of the training, but also during
the learning process. To increase safety during the learning we propose to use LB-SGD.

In particular, we replace the constrained optimization problem with an unconstrained
approximation

Lπ(πξ) = E
[
−J̃(πξ|Pθ, vπψ)− η log(d− J̃c(πξ|Pθ, vπψc))

]
. (5.7)

Unfortunately, it is hard to verify that the noise in the objective and the value satisfy
our assumptions. That is why we construct a heuristic upper (optimistic) confidence
bound on J by sampling a batch of trajectories and taking maximum over them: Ĵ(ξ) =
maxθ∼PΘ

J̃(ξ|Pθ, vπψ), and the heuristic upper (pessimistic) confidence bound on Jc: Ĵc(ξ) =
maxθ∼PΘ

J̃c(ξ|Pθ, vπψ) over the sampled trajectories. The log barrier gradient update of
the policy parameter becomes

ξ ← ξ − γ(ξ)∇ξLπ(πξ). (5.8)

We use the step size γ(ξ) as defined in the previous chapter, where the smoothness
parameters are estimated empirically. Additionally, in case if the violation happens we
use a heuristic allowing to go back to the feasible set. To do so, we remove the first part
corresponding to the reward from the log barrier loss expression in Eq. (5.7) until we have
the feasible policy again.

5.3.3 Experiments

Addressing the assumptions Let us briefly discuss the assumptions in Section 4.1
and explicitly state which of them do not hold. Oracle. As mentioned before, we cannot
guarantee the assumptions in Section 2.1. LAMBDA uses neural networks to model the
transition density and to learn an approximation of the objective and constraints1. For
this reason, the assumptions on unbiased zeroth-order information and the variance of
the oracles do not necessarily hold. Smoothness. However, by choosing ELU activation
function [CUH15] we ensure the smoothness of our approximation of the objective and
constraints. MFCQ. In general, similarly to the assumptions on the oracle, this cannot
be guaranteed. However, in our experiments, the CMDP is defined to have only one
constraint (m = 1) so this assumption is satisfied by definition. Safe initial policy. This
assumption exists in a large body of previous work [Ber+17; Kol+18; WZ21]. Yet, it is
not always clear how design such a policy a-priori.

Experiment protocol To ensure LB-SGD starts from a safe policy, we warm-start
it with a policy that was trained on a similar, but easier task. Specifically, we follow a
similar experimental setup as As, Usmanova, Curi, and Krause [As+22] but first train the

1The approximation of the objective and constraint is done by learning their corresponding value
functions. Please see As, Usmanova, Curi, and Krause [As+22] for further details.
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Figure 5.6: Starting from an easier task and continuing to a harder one. The robot on the righ
picture should arrive to a smaller goal region, making navigation harder.
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Figure 5.7: Across all different robots, LAMBDA with LB-SGD and the Augmented Lagrangian
transfer well to the second stage in terms of safety. Since we do not update the policy, LAMBDA
fails to reach the same task performance on the second stage.

agent with LAMBDA on a task in which the goal area is larger, as shown in Figure 5.6.
We use the policy parameters of the trained agent as a starting point to LB-SGD on the
harder task. As we later show, this allows the agent to start the second stage with a
safe but sub-optimal policy. Beyond making sure that the assumption of an initially safe
policy is fulfilled, we motivate this setup with the problem of safe transfer learning. In
safe transfer learning, we want an agent to safely adapt to new tasks that share structure
with previously-seen tasks. We verify this setup with all three available robots of the
Safety-Gym benchmark suite [RAA19], each run with 5 different random seeds.

Results We first validate that LAMBDA’s policy is safe but sub-optimal on the second
stage of training. In Figure 5.7 we demonstrate how by using either LB-SGD or the
Augmented Lagrangian on the first stage, and not updating the policy on the second stage,
LAMBDA’s policy is safe but sub-optimal. Further, given a safe and sub-optimal initial
policy, we compare LB-SGD with the Augmented Lagrangian. Figure 5.8 demonstrates
LB-SGD’s ability to maintain the policy safe after transitioning to the new task. The
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Figure 5.8: LAMBDA with LB-SGD transfers safely to the second task. The main trade-off,
however, is the lower asymptotic performance of LB-SGD. Conversely, Lagrangian → Lagrangian
fails transfer safely as the constraints with all robots rapidly grow when the new task is revealed
(as shown by the vertical dashed black line).

Augmented Lagrangian needs to “re-learn” a new value for the Lagrange multiplier and
therefore fails to transfer safely to the harder task. It is important to note that this
safe transfer comes at the cost of limited exploration. As shown in Figures 5.7 and 5.8,
LB-SGD reaches to less performant policies compared to the Augmented Lagrangian.
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CHAPTER 6
Conclusion

In this thesis, we attempted to understand what complexity hides behind the safety
requirement of the learning process. The safe learning problem is getting more and more
important with the achievement of technologies allowing us to learn from real-world
interactions; however, this problem is not been fully explored yet. We tried to understand
what we could do about this problem from the optimization point of view. For the SFW
method for unknown polytopic constraints, it appears that there is almost no loss in the
convergence rate compared to the case with known constraints. For the LB-SGD method
we proposed for non-linear optimization, it appears that we have to pay an additional
order of O(ε−3) for safety compared to non-safe methods with known constraints. We
empirically compared the behavior of our approaches on synthetic problems with other
existing methods and demonstrated that our approaches are capable of solving the problems
in higher dimensions, including reinforcement learning (RL) problems. Empirically, we
can also clearly observe that our safe methods learn much slower than unsafe ones.

Limitations and future directions Although our method for general constraints has
a drawback of slow convergence compared to unsafe methods, our method updates are
very computationally cheap and can be potentially used even for real-time computations.
However, it would be very curious to explore for potential future work if these methods
can be improved in terms of sample complexity, perhaps under some stronger assumptions.
Additionally, in this thesis, we focused on finding the approximate solution only by the end
of optimization. It would be interesting to explore what could be the performance of our
method in terms of cumulative regret, assuming that we have to pay for every trial. And
finally, we focused on the static problems, when the objective function and constraints stay
the same during optimization, only assuming that we have noisy stochastic measurements.
It would be exciting to extend our work for dynamic problems when the constraints and
the objective can change over time, potentially restricting the speed of their change. This
direction could make our work even more applicable to real-world problems. As one can
see, there is plenty of potential future direction that we hope will be explored in the
nearest future.
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Outlook To summarize, we proposed two different optimization-based approaches for
addressing the safe learning problems with linear and non-linear constraints. For the
linear constraints setting, we proposed to estimate the model of the constraint polytope
given all the measurements collected during learning, iteratively update this model, and
use it within the Frank-Wolfe-based method with carefully chosen step-sizes. We provide
the convergence rate for convex objectives and then prove the safety of all iterates with
high probability. For non-linear constraints, we propose to approximate the problem
with the logarithmic barrier subproblems and iteratively solve them using stochastic
gradient descent (SGD) with a carefully chosen adaptive step size for safety. We analyze
its convergence rate for non-convex, convex and strongly-convex problems, with first-order
and zeroth-order noisy feedback, for smooth and non-smooth problems. We demonstrated
the performance of our safe learning approach in simulations and applications such as
control problems and reinforcement learning.
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APPENDIX A
Proofs of Chapter 3

A.1 Proof of Fact 2

Proof. Recall that the safety set St(δ̄) after iteration t is defined by the following inequal-
ities:

St(δ̄) =

{
x ∈ Rd : ∀i ∈ [m]

[
[âit]

Tx− b̂it
]
+ ϕ−1(δ̄/m)σ

∥∥∥∥(X̄T
t X̄t)

−1/2

[
x

−1

]∥∥∥∥ ≤ 0

}
.

(A.1)

Remember that x̄t = XT 1
N

is an average of the measured points. Using the inversion
formula for a block matrix, we obtain

(X̄T
t X̄t)

−1 =

[
XT
t Xt −XT

t 1

−1TXt Nt

]−1

=

[
Rt Rtx̄t
x̄Tt Rt

1
Nt

+ x̄Tt Rtx̄t

]
,

where

Rt =
[
XT
t Xt −Ntx̄tx̄

T
t

]−1
=

[
Nt∑
j=1

(x(j) − x̄t)(x(j) − x̄t)T
]−1

. (A.2)

Let us denote by ϕδ̄ = σϕ−1(δ̄/m) and by ϵit = b̂it − (âit)
Txt. Then, the i-th inequality

in Eq. (A.1)can be rewritten as follows:√
ϕ2
δ

Nt

+ ϕ2
δ(x− x̄t)TRt(x− x̄t) ≤ ϵit.

Substituting x = xt to the above and combining the inequalities together, we obtain that
the condition xt ∈ St(δ̄) is equivalent to

ϕδ̄

√
1

Nt

+ (xt − x̄t)TRt(xt − x̄t) ≤ min
i∈[m]

ϵit.
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A.2 Proof of Proposition 1

A.2.1 Important lemma for the proofs of Proposition 1 and
Lemma 1

Lemma 14 defined in this section shows that each vertex of the approximated set X̂t differs
from the corresponding vertex of the true set X by distance of order O

(
1√
Nt

)
. Let us

recall that for the polytope X ∈ Rd, by an active set B we denote a set of indices of d
linearly independent constraints active in a vertex V B ∈ Rd of X , i.e., V B = [AB]−1bB.
Here, AB is a corresponding sub-matrix of A and bB is the corresponding right-hand-side
of the constraint. The vertex estimate V̌ B

t of a polytope is described by the system of
linear equations ÂBt x = b̂Bt .

Lemma 14. If β ∈ Et(δ̄) and Nt ≥ C2
δ̄

(D0+1)2
, where Cδ̄ is defined in Eq. (3.11), then for

any vertex V B defined by the active set B and its estimate V̌ B
t we have that the estimation

error is bounded by

∥V̌ B
t − V B∥ ≤ Cδ̄√

Nt

,

where Cδ̄ =
2ϕδ̄d(D0+1)

ρmin[AB ]

√
D2

0+1

ν2
+ 1.

Proof. Since the LSE (Least Squares Estimation) is unbiased,

EÂBt = AB, Eb̂Bt = bB.

Let us denote by ζt = b̂Bt − bB the uncertainty in estimation of bB, and Gt = ÂBt −AB
the uncertainty in estimation of AB.

Our aim is to bound the error of the vertex estimation ∥V̌ B
t − V B∥. Recall that

V̌ B
t − V B = [ÂBt ]

−1b̂Bt − [AB]−1bB = [AB +Gt]
−1(bB + ζt)− [AB]−1bB.

Note that for any matrices A,B it holds that

(A+B)−1 = A−1 − (I + A−1B)−1A−1BA−1.

Therefore, we can modify the expression for the V̌ B
t − V B as follows

V̌ B
t − V B =

[
[AB]−1 − (I + [AB]−1Gt)

−1[AB]−1Gt[A
B]−1

]
(bB + ζt)− [AB]−1bB

= [AB]−1bB + [AB]−1ζt − (I + [AB]−1Gt)
−1[AB]−1Gt[A

B]−1(bB + ζt)− [AB]−1bB

= [AB]−1ζt − (I + [AB]−1Gt)
−1[AB]−1Gt[A

B]−1(bB + ζt).

88



The norm of the difference between the vertex V B of the set X and its estimation can
be bounded by

∥V̂ B
t − V B∥ ≤ ∥[AB]−1ζt∥︸ ︷︷ ︸

(a)

+ ∥[AB]−1Gt∥︸ ︷︷ ︸
(b)

∥V B + [AB]−1ζt∥︸ ︷︷ ︸
(c)

∥
(
I + [AB]−1Gt

)−1 ∥︸ ︷︷ ︸
(d)

. (A.3)

To obtain the bounds on the terms (a),(b),(c),(d), let us first obtain the bounds on ∥Gt∥
and ∥ζt∥.

Assume that for each i ∈ [m] βi ∈ E it (δ̄), where

E it (δ̄) =
{
z ∈ Rd+1 : (β̂it − z)TΣ−1

t (β̂it − z) ≤ ϕ−1(δ̄)2
}
,

i.e., that for any active set B describing the vertex V B we have βB ∈ EBt (δ̄). Consequently,
∥âit−ai∥2+ |b̂i− bi|2 ≤ ϕ−1(δ̄)∥Σ1/2

t ∥ ∀i ∈ B. Then, for each row of Gt we have ∥âit−ai∥ ≤
ϕ−1(δ̄)∥Σ1/2

t ∥, and for each element of ζt we have |b̂it− bi| ≤ ϕ−1(δ̄)∥Σ1/2
t ∥. Hence, for ∥Gt∥

we obtain

∥Gt∥ ≤ ∥G∥F =

√∑
i∈B

∥âit − ai∥22 ≤
√
dϕ−1(δ̄)∥Σ1/2

t ∥. (A.4)

Similarly, we obtain a bound on ∥ζt∥:

∥ζt∥ =
√∑

i∈B

(b̂it − bi)2 ≤
√
dϕ−1(δ̄)∥Σ1/2

t ∥. (A.5)

For the LSE covariance matrix norm ∥Σ1/2
t ∥ we have

∥Σ1/2
t ∥ = σ∥(X̄T

t X̄t)
−1∥1/2 = σ

∥∥∥∥[ Ix̄Tt
]
Rt

[
I x̄t

]
+

[
0 0

0 1/Nt

]∥∥∥∥1/2
≤ σ

√
∥Rt∥∥x̄t∥2 + ∥Rt∥+

1

Nt

,

where Rt was defined in Eq. (A.2).

Note that we make measurements as it is described in Step 4 of the SFW algorithm,
i.e., we make measurements at all coordinate directions within small step size ν from
points generated by the method. Then, each new 2d measurements result in addition of a
matrix

∑Nt+2d
j=Nt+1(x(j)− x̄)(x(j)− x̄)T ⪰ ν2I to the matrix R−1

t =
∑Nt

j=1(x(j)− x̄t)(x(j)− x̄t)T .
Hence, R−1

t ⪰ Ntν2

2d
I. Hence, the minimal eigenvalue of the covariance matrix R−1

t is
bounded from below by the value λmin(R

−1
t ) ≥ Ntν2

d
. Thus, we obtain the following bound

on the norm of Rt:

∥Rt∥ ≤
d

Ntν2
. (A.6)
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Note that x̄t ∈ X , hence ∥x̄t∥ ≤ D0. It follows that

∥Σ1/2
t ∥ ≤ σ

√
∥Rt∥∥x̄t∥2 + ∥Rt∥+

1

Nt

≤ σ

√
d

Ntν2
∥x̄t∥2 +

d

Ntν2
+

1

Nt

≤
σ
√
d

√
D2

0+1

ν2
+ 1

d√
Nt

≤
σ
√
d

√
D2

0+1

ν2
+ 1

√
Nt

. (A.7)

In order to bound terms (a),(b),(c),(d) in Eq. (A.3), let us also bound the norm of the
matrix [AB]−1:

∥[AB]−1∥ = ρmax([A
B]−1) =

1

ρmin[AB]
≤ 1

ρmin(X )
. (A.8)

Then, combining inequalities (A.4),(A.5),(A.7),(A.8), we bound terms (a) and (b) as
follows:

(a) :
∥∥[AB]−1ζt

∥∥ ≤ ∥[AB]−1∥∥ζt∥ ≤
U√
Nt

,

(b) :
∥∥[AB]−1Gt

∥∥ ≤ ∥[AB]−1∥∥Gt∥ ≤
U√
Nt

,

where U is defined by

U =
ϕδ̄d

ρmin(X )

√
D2

0 + 1

ν2
+ 1.

Further, let us bound term (d). For Nt ≥ 4U2 it holds that

∥∥[AB]−1Gt

∥∥ ≤ U√
Nt

≤ 1

2
,∥∥[AB]−1ζt

∥∥ ≤ U√
Nt

≤ 1

2
.

As such, for Nt ≥ 4U2 we have

∥
(
I + [AB]−1Gt

)−1 ∥ = ∥I−1 −
(
I + [AB]−1Gt

)−1
[AB]−1Gt∥

≤ ∥I∥+ ∥[AB]−1Gt∥∥
(
I + [AB]−1Gt

)−1 ∥

≤ 1 +
1

2
∥
(
I + [AB]−1Gt

)−1 ∥.

Hence ∥∥∥(I + [AB]−1Gt

)−1
∥∥∥ ≤ 2. (A.9)

Finally, term (c) can be bounded as follows:

∥∥V B + [AB]−1ζt
∥∥ ≤ D0 +

U√
Nt

. (A.10)
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Combining these all together, we obtain

∥V̂ B
t − V B∥ ≤ U√

Nt

+ 2
U√
Nt

(
D0 +

U√
Nt

)
≤ 2

U√
Nt

(D0 + 1) =
Cδ̄√
Nt

,

where

Cδ̄ = 2U(D0 + 1) =
2ϕδ̄d(D0 + 1)

ρmin(X )

√
D2

0 + 1

ν2
+ 1.

Since Nt = Cnt
2(ln t2) ≥ Cn, the above bound holds under the proper choice of the

constant

Cn ≥ 4U2 =
C2
δ̄

(D0 + 1)2
=

4d2ϕ2
δ̄

ρ2min(X )

(
D2

0 + 1

ν2
+ 1

)
.

■

A.2.2 Proof of Proposition 1

Proof. This proof uses the result of Lemma 14 defined and proved in Section A.2.1. Let
us bound the difference between the solution of the estimated DFS and the solution of
the true DFS. Estimated DFS is a linear program defined by

ŝt =arg min
Âtx≤b̂t

⟨ct, x⟩,

where ct = ∇f(xt). Any solution of such a linear program is a vertex (or convex hull
of vertices) of the polytope Âtx ≤ b̂t. Let V̂ 2

t be the estimated DFS solution vertex
V̂ 2
t = ŝt = argmins∈X̂t⟨ct, s⟩. And correspondingly, let V 1

t be the true DFS solution
V 1
t = st = argmins∈X ⟨ct, s⟩.

Let us define by ΠX̂tV
1
t the projection of V 1

t onto X̂t: V̄ 1
t = ΠX̂tV

1
t , and correspondingly

we define Ṽ 2
t as Ṽ 2

t = ΠX V̂
2
t . Recall that the estimate V̌ B of any vertex V B = [AB]−1bB

of the polytope X is described by the system of linear equations ÂBt x = b̂Bt . Since the
estimates V̌ B denote intersections of the hyper-planes ⟨âj, s⟩ = b̂j ∀j ∈ B for some
particular subset of indices B, the polytope X̂t lies inside the convex hull of the estimates
V̌ B
t . Hence, any point s ∈ X̂t cannot be further from X than the estimates of all the

vertices V̌ i from X . By Lemma 14, if Nt ≥ C2
δ̄

(D0+1)2
with Cδ̄ defined in Eq. (3.11) and

β ∈ Et(δ̄), then for any vertex V B of X we have ∥V B − V̌ B
t ∥ ≤ Cδ̄√

Nt
, thus we obtain that

the distance from any point s ∈ X̂t to X is less than Cδ̄√
Nt

. I.e., we have ∥V̄ 1
t − V 1

t ∥ ≤ Cδ̄√
Nt
.

Similarly, we show that the distance from any point s ∈ X to the set X̂t is upper
bounded by Cδ̄√

Nt
. Again, we can see that X is bounded by the convex hull of V B̂, where

each V B̂ = [AB̂]−1bB̂ corresponds to a vertex V̌ B̂
t = [ÂB̂t ]

−1b̂B̂t of X̂t. Hence , the distance
from any point s ∈ X to the set X̂t is upper bounded by maxB̂ ∥V B̂ − V̌ B̂

t ∥. Then, by
Lemma 14 we have ∥Ṽ 2

t − V̂ 2
t ∥ ≤ Cδ̄√

Nt
.
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Note that V̄ 1
t ∈ X̂t, Ṽ 2

t ∈ X . From the definitions of V̂ 2
t , V

1
t above it follows that

cTt V̂
2
t ≤ cTt V̄

1
t ,

cTt V
1
t ≤ cTt Ṽ

2
t .

Hence, we have

cTt V̂
2
t − ∥ct∥

Cδ̄√
Nt

≤ cTt Ṽ
1
t − ∥ct∥

Cδ̄√
Nt

≤ cTt V
1
t ≤ cTt Ṽ

2
t ≤ cT V̂ 2

t + ∥ct∥
Cδ̄√
Nt

.

Thus, we obtain that if β ∈ Et(δ̄), then

Et = |cTt (ŝt − st)| = |cTt V̂ 2
t − cTt V 1

t | ≤ ∥ct∥
Cδ̄√
Nt

.

Note that ∥ct∥ ≤ M , where M is the Lipschitz constant of the objective. Thus, if
β ∈ Et(δ̄), then Et ≤ Cδ̄M√

Nt
, i.e.,

P
{
Et ≤

Cδ̄M√
Nt

}
≥ 1− δ̄.

■

A.3 Proof of Lemma 1

A.3.1 Supporting lemmas for the proof of Lemma 1

First, we provide some preliminary lemmas for the proof of Lemma 1. The proof of
Lemma 1 also uses the result of Lemma 14 defined and proved in Section A.2.1. Let us
denote by x̆t = xt− x̄t, ∆k

t = ŝt− xk, and recall that ϵit = b̂it− [âit]
Txt. By V̂t−1 we call the

solution of the estimated DFS at the step t−1, by Ṽt−1 = ΠX V̂t−1, and by V̄t,t−1 = ΠX̂tVt−1.
By Bt we denote the active set corresponding to V̂t (see Lemma 1 for definition) and by
Bt−1 the active set corresponding to V̂t−1

Lemma 15. If β ∈ Et(δ̄) ∩ Et−1(δ̄) holds, then we have

min
i
⟨âit,∆t

t⟩ ≥(1− γt−1)min
i
⟨âit,∆t−1

t ⟩ −
2γt−1maxi ∥âit∥Cδ̄√

Nt−1

.

Proof.
∀ŝt : min

i
⟨âit,∆t

t⟩ = min
i
⟨âit, ŝt − xt⟩ = min

i∈Bt
⟨âit, ŝt − xt⟩ = min

i∈Bt
⟨âit, ŝt − xt−1 − γt−1(ŝt−1 − xt−1)⟩

= min
i∈Bt
⟨âit, (1− γt−1)(ŝt − xt−1) + γt−1(ŝt−1 − ŝt)⟩
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Denoting j = argmini∈Bt⟨âit,∆t−1
t ⟩), we get:

∀ŝt : min
i
⟨âit,∆t

t⟩ = (1− γt−1)⟨âjt , ŝt − xt−1⟩+ γt−1⟨âjt , ŝt−1 − ŝt⟩.

For the point st we have ⟨âjt , st⟩ = 0 and for any point s ∈ X̂t we have ⟨âjt , s⟩ ≥ 0. Note
that V̂t,t−1 ∈ X̂t and that ∥V̂t−1 − V̂t,t−1∥ ≤ ∥V̂t−1 − Vt−1∥+ ∥Vt−1 − Vt,t−1∥.

min
i
⟨âit,∆t

t⟩ ≥ (1− γt−1)⟨âjt , ŝt − xt−1⟩+ γt−1⟨âjt , V̂t−1⟩

≥ (1− γt−1)⟨âjt , ŝt − xt−1⟩+ γt−1⟨âjt , V̂t−1 − V̂t,t−1⟩
≥ (1− γt−1)min

i
⟨âit, ŝt − xt−1⟩ − γt−1max

i
∥âit∥∥V̂t − V̂t,t−1∥. (A.11)

Using the result of Lemma 14 we can obtain that if β ∈ Et(δ̄) ∩ Et+1(δ̄) and Nt ≥ C2
δ̄

(D0+1)2

with Cδ̄ defined in Eq. (3.11), and applying the same arguments as in the proof of
Proposition 1, we obtain

∥V̂t−1 − V̂t,t−1∥ ≤ ∥V̂t−1 − Vt−1∥+ ∥Vt−1 − V̂t,t−1∥ ≤
Cδ̄√
Nt

+
Cδ̄√
Nt+1

. (A.12)

Then, combining Eq. (A.12) with Eq. (A.11), we have

min
i
⟨âit,∆t

t⟩ ≥ (1− γt−1)min
i
⟨âit,∆t−1

t ⟩ −
2γt−1maxi ∥âit∥Cδ̄√

Nt−1

.

■

Lemma 15 above is an induction step in the proof of Lemma 16. Lemma 16 below
bounds the fastest rate of decreasing the distance to the boundaries of X for the SFW
algorithm. Recall that Ft = {β ∈ ∩tk=0Ek(δ̄)}.
Lemma 16. If Ft holds, then we have

min
i
⟨âit,∆t

t⟩ ≥
mini⟨âit,∆0

t ⟩
t+ 2

(
1− Cδ̄ ln ln tmaxi ∥âit∥√

Cnmini⟨âit, ∆̄0⟩

)
.

Proof. By induction, from Lemma 15 we have

min
i
⟨âit, ŝt − xt⟩ ≥

t−1∏
j=0

(1− γj)min
i
⟨âit, x0 − ŝt⟩ −

t−1∑
j=0

2Cδ̄γj√
Nj

max
i
∥âit∥

t−1∏
k=j

(1− γk).

Note that 1− γk = k+1
k+2

, and

t−1∏
k=j

(1− γk) =
(t)!/(j + 1)!

(t+ 1)!/(j + 2)!
=
j + 2

t+ 1
.
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Thus,

min
i
⟨âit, ŝt − xt⟩ ≥

1

t+ 1
min
i
⟨âit, x0 − ŝt⟩ −

t−1∑
j=0

j + 2

t+ 1

Cδ̄γj√
Nj

max
i
∥âit∥

=
1

t+ 1
min
i
⟨âit, x0 − ŝt⟩ −

1

t+ 1

t−1∑
j=0

Cδ̄√
Nj

max
i
∥âit∥.

Recall that Nt = Cnt
2(ln t)2, hence we have

ϵit ≥ min
j
⟨âjt , ŝt − xt⟩

≥ 1

t+ 2
min
j
⟨âjt , ŝt − x0⟩ −

1

t+ 2

t∑
j=0

√
2 ln(j + 1) + ln 1/δ̄Cδ̄√
Cn(j + 1) ln(j + 1)

max
j
∥âjt∥ =

=
1

t+ 2

(
min
j
⟨âjt ,∆0

t ⟩ −
Cδ̄ ln(ln t)√

Cn
max
j
∥âjt∥

)
,

where ∆0
t = ŝt − x0. ■

With Lemmas 15 and 16 in place, we are ready to prove Lemma 1.

A.3.2 Proof of Lemma 1

Proof. From Fact 2, the condition xt ∈ St(δ̄) is equal to

ϕ2
δ̄

Nt

+ ϕ2
δ̄(xt − x̄t)TRt(xt − x̄t) ≤ min

i
[ϵit]

2.

From the bound on ∥Rt∥ given in Eq. (A.6) and knowing that D is a diameter of the set
X , we have

ϕ2
δ̄

Nt

+ ϕ2
δ̄(xt − x̄t)TRt(xt − x̄t) ≤

ϕ2
δ̄

(
1 + dD2

ν2

)
Nt

.

From Lemma 16 and recalling that ϵit = mini⟨âit,∆t
t⟩, we have

[ϵit]
2 ≥ 1

(t+ 2)2

(
min
i
⟨âit,∆0

t ⟩ −
Cδ̄ ln(ln t)√

Cn
max
i
∥âit∥

)2

. (A.13)

Hence, we can guarantee that xt ∈ St(δ̄) if

Nt ≥
(t+ 2)2ϕ2

δ̄

(
1 + dD2

ν2

)
(
mini⟨âit,∆0

t ⟩ − Cδ̄ ln(ln t)√
Cn

maxi ∥âit∥
)2 . (A.14)

We denote by LA = maxi ∥ai∥. Let us derive how far are mini⟨âit,∆0
t ⟩ from ϵ0 and
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maxi ∥âit∥ from LA. These are needed for obtaining a bound on the denominator above.
Let us define by ∆0 = st−x0, where st is the true vertex of ŝt corresponding to mini⟨âit,∆0

t ⟩.
Also recall that then mini[ε0] ≤ ⟨ai,∆0⟩. If Cn ≥ C2

δ̄

(D0+1)2
, then with probability greater

than 1− δ̄ we have ∥∆0
t −∆0∥ ≤ Cδ̄√

Nt
(using Lemma 14). We also can bound the difference

∥âit−ai∥ by ∥âit−ai∥ ≤ ϕ−1(δ̄)∥Σ1/2∥ ≤ Cδ̄√
Nt

1√
dρmin(X )(D0+1)

. The second inequality follows
from Eq. (A.7) and definition of Cδ̄ in Eq. (3.11).

Combining above inequalities together with the bound Eq. (A.14) on Nt we can
conclude the following. If

Cn ≥
4C2

δ̄
(ln lnT )2L2

A

mini[ϵi0]
2

,

then we can guarantee that xt ∈ St(δ̄) by requiring

Nt ≥
(t+ 2)2ϕ2

δ̄

(
1 + dD2

ν2

)
mini[ϵi0]

2
.

Since nt = Cn(t+ 1)(ln(t+ 2))2 and Nt =
∑t

k=0 nk, we obtain that

Nt ≥ Cn(t+ 1)2(ln(t+ 2))2.

Hence, Cn ≥
ϕ2
δ̄

(
1+

dD2
0

ν2

)
(ln(t+2))2 mini[ϵi0]

2 is enough to ensure that xt ∈ St(δ̄). Note that Cδ̄ ≥
ϕ2
δ̄

(
1 + dD2

ν2

)
. Thus, under the proper choice of constant parameter Cn, namely,

Cn ≥ max

{
4C2

δ̄
(ln lnT )2L2

A

[ϵ0]2
,

C2
δ̄

(D0 + 1)2

}
we conclude that xt ∈ St(δ̄). ■

Remark Note that if we use a step size as in classical FW, γt = 2
t+2

, or in more general
form γt =

l
t+l

then we obtain that the distance to the boundaries mini[ϵ
i
t] will decrease

with the rate upper bounded by
∏t

k=0(1 − γk) = l!
t·...·(t+l) = O( 1

tl
) instead of Eq. (A.13)

and this bound can be achieved e.g. in the case if the algorithm always moves in the same
direction towards the boundary. This implies that in order to keep the convergence rate
as in the original FW while satisfying xt ∈ St(δ̄), due to Fact 2 we have to reduce the
uncertainty of the boundaries faster, i.e., we need to take more measurements at each
iteration.
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A.4 Proof of Theorem 2

Proof. Let µt(δ̄) denote a constant such that Ēt(δ̄) = 1
2
µt(δ̄)γtCf . Then with probability

1− δ̄ we have
⟨ŝ,∇f(xt)⟩ ≤ min

s∈X
⟨s,∇f(xt)⟩+

1

2
µt(δ̄)γtCf .

For the proof we refer to the following result from [Jag13]. This result holds in our setting
since we use the same notions as in [Jag13] of gt and st defined in Eq. (3.7).

Lemma 17. (Lemma 5 [Jag13]) For a step xt+1 = xt + γ(ŝ − xt) with an arbitrary
step-size γ ∈ [0, 1], it holds that

f(xt+1) ≤ f(xt)− γgt +
γ2

2
Cf (1 + µt),

if ŝ is an approximate linear minimizer, i.e.

⟨ŝ,∇f(xt)⟩ ≤ min
s̄∈X
⟨s̄,∇f(xt)⟩+

1

2
µtγCf .

The step-size of the SFW algorithm is equal to γt = 1
t+2

. Let us define ht as follows

ht = h(xt) = f(xt)− f(x∗).

Then we obtain that

ht+1 ≤ ht − γtgt + γ2t
Cf
2
(1 + µt(δ̄)) ≤ ht − γtht + γ2t

Cf
2
(1 + µt(δ̄))

= (1− γt)ht + γ2t
Cf
2
(1 + µt(δ̄)).

If we continue in the same manner, we obtain

ht+1 ≤
t∏
i=0

(1− γi)h0 +
t∑

k=0

γ2k
Cf
2
(1 + µk(δ̄))

t∏
i=k

(1− γi)

=
t∏
i=0

i+ 1

i+ 2
h0 +

t∑
k=0

1

(k + 2)2
Cf
2
(1 + µk(δ̄))

t∏
i=k

i

i+ 2

=
1

t+ 2
h0 +

t∑
k=0

1

(k + 2)2
Cf (1 + µk(δ̄))

2

(t+ 1)!(k + 2)!

(t+ 2)!(k + 1)!

=
1

t+ 2

(
h0 +

t∑
k=0

1

(k + 2)

Cf (1 + µk(δ̄))

2

)
.

Recall that Ēt(δ̄) denotes the upper bound on Et with the confidence level 1− δ̄. Due to
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Proposition 1, we have

Ek(δ̄) =
MCδ̄√
Nk

=
MCδ̄√

Cn(k + 2) ln(k + 2)
.

Hence, we obtain that

µk(δ̄) =
2Ek(δ̄)(k + 2)

Cf
=

2MCδ̄
Cf
√
Cn ln(k + 2)

.

Therefore, we finally obtain

ht+1 ≤
h0 + ln (t+ 2)

Cf
2
+
∑t

k=0
Cfµk(δ̄)

2

t+ 2
=
h0 + ln(t+ 2)

Cf
2
+ ln ln(t+ 2)C

′

2

t+ 2
,

where C ′ =
MCδ̄√
Cn
. ■

A.5 Proof of Corollary 1

Proof. Recall that

ϕ−1(δ̄) = max

{√
128d logNt log

(
N2
t

δ̄

)
,
8

3
log

N2
t

δ̄

}
.

Hence,

ϕδ̄ = O

(
σmax

{
√
d log t

√
log

1

δ̄
, log t+ log

1

δ̄

})
.

Recall that the total number of measurements Nt satisfies

Nt = 2C2
δ̄ max

{
4(ln lnT )2L2

A

[ϵ0]2
,

1

(D0 + 1)2

}
(t+ 2)2(ln(t+ 2))2,

where Cδ̄ =
2ϕδ̄d(D0+1)

ρmin(X )

√
D2

0+1

ν2
+ 1. Thus, we conclude

Nt = Õ

(
ϕ2
δ̄
d2

t2

)
= Õ

(
max

{
d3 ln 1

δ̄

ε2
,
d2 ln2 1

δ̄

ε2

})
.

■
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APPENDIX B
Proofs of Chapter 4

B.1 Proof of Lemma 2

Proof. Using the triangle inequality, we get

∥∆t∥ = ∥gt −∇Bη(xt)∥

=

∥∥∥∥∥G0
n(xt)−∇f 0(xt) +

m∑
i=1

[
ηGi

n(xt)

(
1

ᾱit
− 1

αit

)
+ η(Gi

n(xt)−∇f i(xt))
1

αit

]∥∥∥∥∥
≤
∥∥G0

n(xt)−∇f 0(xt)
∥∥+ m∑

i=1

[
η
∥∥Gi

n(xt)
∥∥( 1

ᾱit
− 1

αit

)
+

η

αit

∥∥Gi
n(xt)−∇f i(xt))

∥∥] .
With high probability, we know ∥Gi

n(xt)∥ ≤ Li, and from the sub-Gaussian property we
have:

P

{∥∥Gi
n(xt)−∇f i(xt)

∥∥ ≤ bi + σ̂i(n)

√
ln

1

δ

}
≥ 1− δ

P

{∣∣αit − ᾱit∣∣ ≤ σi(n)

√
ln

1

δ

}
≥ 1− δ,

from what we conclude:

P

{
∥∆t∥ ≤ b0 + σ̂0(n)

√
ln

1

δ
+

m∑
i=1

η

ᾱit

(
bi + σ̂i(n)

√
ln

1

δ

)
+

m∑
i=1

Li
η

αitᾱ
i
t

σi(n)

√
ln

1

δ

}
≥ 1− δ.

■

Bias

Proof. Using E[XY ] ≤
√

E[X2]E[Y 2], we get

∥E∆t∥ = ∥E[gt −∇Bη(xt)]∥

≤
∥∥∥∥∥E[G0(xt)−∇f 0(xt)] +

m∑
i=1

E
[
ηGi(xt)

(
1

ᾱt
− 1

αt

)
+ η(Gi(xt)−∇f i(xt))

1

αt

]∥∥∥∥∥
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=

∥∥∥∥∥
m∑
i=1

E
[
ηGi(xt)

(
1

ᾱt
− 1

αt

)]∥∥∥∥∥+ b0t +
m∑
i=1

η

αit
bit

≤
m∑
i=1

E
[∥∥∥∥ηGi(xt)

(
1

ᾱit
− 1

αit

)∥∥∥∥]+ b0t +
m∑
i=1

η

αit
bit

≤
m∑
i=1

√
E[η2∥Gi(xt)∥2]E

[
1

(ᾱit)
4
∥αit − ᾱit∥2

]
+ b0t +

m∑
i=1

η

αit
bit

≤
m∑
i=1

ηLiσt
(αit)

2
+ b̂0t +

m∑
i=1

η

αit
b̂it,

■

B.2 Proof of the adaptivity

Proof. For adaptivity, we require

f i(xt+1) ≤
f i(xt)

2
.

Using M i-smoothness, we can bound the i-th constraint growth:

f i(xt+1) ≤ f i(xt) + ⟨∇f i(xt), xt+1 − xt⟩+
M i

2
∥xt − xt+1∥22

= f i(xt)− γt⟨∇f i(xt), gt⟩+ γ2t
M i

2
∥gt∥22

That is, the condition on γt for adaptivity (and safety) we can formulate by

−γt⟨∇f i(xt), gt⟩+ γ2t
M i

2
∥gt∥22 ≤

−f i(xt)
2

=
αit
2
.

By carefully rewriting the above inequality without strengthening it, we get

γ2t
M i

2
∥gt∥22 − γt⟨∇f i(xt), gt⟩ ±

1

2M i

⟨∇f i(xt), gt⟩2
∥gt∥22

≤ αt
2(

γt∥gt∥2 −
⟨∇f i(xt), gt⟩
Mi∥gt∥2

)2

≤ αt
M i

+
⟨∇f i(xt), gt⟩2
M2

i ∥gt∥22
Using the quadratic inequality solution, we obtain the following sufficient bound on the
adaptive γt :

γt∥gt∥2 ≤
⟨∇f i(xt), gt⟩
Mi∥gt∥2

+

√
αt
M i

+
⟨∇f i(xt), gt⟩2
M2

i ∥gt∥22
= (∗)
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Then, we can rewrite this expression of the right part as follows:

(∗) =
√
⟨∇f i(xt), gt⟩2
M2

i ∥gt∥22
+

αit
M i

+
⟨∇f i(xt), gt⟩
Mi∥gt∥2

=

√
αit
M i

(√
⟨∇f i(xt), gt⟩2
Miαit∥gt∥22

+ 1 +
⟨∇f i(xt), gt⟩√
Miαit∥gt∥2

)

=

√
αit
M i

1√
⟨∇f i(xt),gt⟩2
Miαit∥gt∥22

+ 1− ⟨∇f i(xt),gt⟩√
Miαit∥gt∥2

=
αit√

⟨∇f i(xt),gt⟩2
∥gt∥22

+M iαit − ⟨∇f i(xt),gt⟩
∥gt∥2

=
αit√

(θit)
2 +M iαit − θit

Therefore, the condition γt ≤ mini∈[1,m]

{
αit√

(θit)
2+M iαit−θit

}
1

∥gt∥2 is sufficient for f i(xt+1) ≤
f i(xt)

2
. Using the Cauchy-Schwartz inequality, we can simplify this condition ( but making

it more conservative):

(∗) ≥ αit√
(θit)

2 + αtMi + |θit|
≥ αit

2|θit|+
√
αitM

i
.

■

B.3 Proof of the local smoothness

Proof. Let us define the hessian of the log-barrier Bη(x) by HB(y) at the region y ∈ U
around xt such that xt+1 ∈ U. Note that by definition of the log barrier, the hessian of it
at the point xt+1 is given by

∇2Bη(xt) = ∇2f 0(xt+1) +
m∑
i=1

η
∇2f i(xt+1)

−f i(xt+1)
+

m∑
i=1

η
∇f i(xt+1)∇f i(xt+1)

T

(−f i(xt+1))2
.

Based on that,

|gTt HB(xt+1)gt| ≤M0∥gt∥22 + η
m∑
i=1

M i

αit+1

∥gt∥22 + η

m∑
i=1

(∇f i(xt+1)
Tgt/∥gt∥2)2

(αit+1)
2

∥gt∥22

≤ ∥gt∥22

(
M0 + η

m∑
i=1

M i

αit+1

+ η
m∑
i=1

⟨∇f i(xt+1), gt⟩2/∥gt∥22
(αit+1)

2

)

≤ ∥gt∥22

(
M0 + 2η

m∑
i=1

M i

αit
+ 4η

m∑
i=1

⟨∇f i(xt+1), gt⟩2
(αit)

2∥gt∥22

)

Thus,

M2(xt) =M0 + 2η
m∑
i=1

M i

αit
+ 4η

m∑
i=1

⟨∇f i(xt+1), gt⟩2
α2
t∥gt∥22

M2(xt) ≤M0 + 2η
m∑
i=1

M i

αt
+ 4η

m∑
i=1

4(θit)
2 + (θit)

2 +M iαit + 2θit
√
M iαit

(αit)
2
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■

B.4 Proof of Fact 3

Proof. Using the local smoothness of the log barrier, we can see:

η
∑
i∈It

− logαit+1 ≤ η
∑
i∈It

− logαit − γt⟨η
∑
i∈It

∇f i(xt)
αit

, gt⟩+
M2(xt)

2
γ2t ∥gt∥2

≤ η
∑
i∈It

− logαit + γt

(
−⟨η

∑
i∈It

∇f i(xt)
αit

, gt⟩+
1

2
∥gt∥2

)

= η
∑
i∈It

− logαit +
γtη

2

2

(
2⟨A,A+B⟩+ ∥A+B∥2

)
= η

∑
i∈It

− logαit +
γtη

2

2

(
∥B∥2 − ∥A∥2

)
, (B.1)

where gt = A+B, with A :=
∑

i∈It
∇f i(xt)
αit

and B := gt
η
−∑i∈It

∇f i(xt)
αit

. Using Assumption 4
we obtain a lower bound on ∥A∥:

∥A∥ =
∥∥∥∥∥∑
i∈It

∇f i(xt)
αit

∥∥∥∥∥ ≥ ⟨∑
i∈It

∇f i(xt)
αit

, sx⟩ ≥
∑
i∈It

⟨∇f i(xt), sx⟩
αit

≥
∑
i∈It

l

αit
. (B.2)

The second part ∥B∥ we can upper bound with high probability 1− δ as follows:

∥B∥ =

∥∥∥∥∥∥G
0
n(xt, ξt)

η
+
∑
j /∈It

Gj
n(xt, ξt)

ᾱjt
+
∑
i∈It

Gi
n(xt, ξt)

ᾱit
−
∑
i∈It

∇f i(xt)
αit

∥∥∥∥∥∥ (B.3)

≤ L

η
(1 + 2(m− |It|)) + 2

∑
i∈It

σ̂i(n)
√

ln 1
δ

(αit)
2

≤ L

η
(2m+ 1) , (B.4)

for σ̂i(n) ≤ (αit)
2L

η
√

ln 1
δ

, and σi(n) ≤ αit

2
√

ln 1
δ

, implying ᾱit ≥ αit/2. Then, if minαit ≤ c̄η, we

have
∑

i∈It
1
αit
≥ 1

c̄η
= L

lη
(2m+ 1) , and therefore with high probability ∥B∥ ≤ ∥A∥. Then

we get Eq. (B.1), that implies ∏
i∈It

αit+1 ≥
∏
i∈It

αit. (B.5)

Moreover, using the same reasoning, we can prove that∏
i∈I

αit+1 ≥
∏
i∈I

αit. (B.6)
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for any subset of indices I ⊆ [m] such that It ⊆ I. ■

B.5 Lower bound on γt

Here we assume αit ≥ cη. Recall that

γt = min

{
min
i∈[m]

{
αit

2|θ̂it|+
√
αitM

i

}
1

∥gt∥2
,

1

M̂2(xt)

}
.

where

M̂2(xt) =M0 + 6η
m∑
i=1

M i

αit
+ 20η

m∑
i=1

(θ̂it)
2

(αit)
2
.

We get the lower bound by constructing a bound on both of the terms inside the minimum.
1) We have P

{
M̂2(xt) ≤

(
1 + 6m

c

)
M + 20mL

2

ηc2

}
≥ 1 − δ (Due to Lemma 6, and by

definition of M̂2(xt)), which implies

P

{
1

M̂2(xt)
≥ η

(
1

20m
c2
L2 + η(1 + 6m

c
)M

)}
≥ 1− δ.

2) Using Lemma 6 we get P
{
∥gt∥ ≤ L0 +

∑m
i=1

Li

c

}
≥ 1− δ. Hence, we can bound

P

{
min
i∈[m]

{
αit

2|θ̂it|+
√
αitM

i

}
1

∥gt∥2
≥ cη

(2L+
√
Mcη)L(1 + m

c
)

}
≥ 1− δ.

Therefore,

P

γt ≥ η

2
min

 1
10m
c2
L2 + η(1 + 3m

c
)M

,
1

L2(1
c
+ m

c2
) + 0.5

√
Mη
cL2L2(1 + m

c
)


 ≥ 1− δ,

P

γt ≥ η

2L2(1 + m
c
)
min

 1
10
c
+ 3Mη

L2

,
1

1
c
+
√

Mη
4cL2


 ≥ 1− δ.

P

γt ≥ cη

2L2(1 + m
c
)
min

 1

10 + 3Mcη
L2

,
1

1 +
√

Mcη
4L2


 ≥ 1− δ.

Finally, the bound is
P {γt ≥ ηC} ≥ 1− δ.
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with

C :=
cη

2L2(1 + m
c
)
min

 1

10 + 3Mcη
L2

,
1

1 +
√

Mcη
4L2

 .

B.6 Proof of Lemma 8

Proof. From Fact 4 it follows that

∀x ∈ X ∃sx =
x− x0
∥x− x0∥

∈ Rd : ⟨sx,∇f i(x)⟩ ≥
β

2D
∀i ∈ Iβ/2(x).

Let x̂ be an approximately optimal point for the log barrier: Bη(x̂)−Bη(x
∗
η) ≤ η, that is

equivalent to:

f 0(x̂) + η
m∑
i=1

− log(−f i(x̂))− f 0(x∗η)− η
m∑
i=1

− log(−f i(x∗η)) ≤ η.

Then, for the objective function we have the following bound:

f 0(x̂)− f 0(x∗η) ≤ η + η
m∑
i=1

− log
−f i(x∗η)
−f i(x̂) . (B.7)

The optimal point for the log barrier x∗η must satisfy the stationarity condition

∇Bη(x
∗
η) = ∇f 0(x∗η) + η

m∑
i=1

∇f i(x∗η)
−f i(x∗η)

= 0.

By carefully rearranging the above, we obtain

∑
i∈Iβ/2(x∗η)

∇f i(x∗η)
−f i(x∗η)

+
∑

i/∈Iβ/2(x∗η)

∇f i(x∗η)
−f i(x∗η)

=
−∇f 0(x∗η)

η
.

By taking a dot product of both sides of the above equation with sx =
x∗η−x0

∥x∗η−x0∥
, using the

Lipschitz continuity we get for x∗η:

1

mini{−f i(x∗η)}
∑

i∈Iβ/2(x∗η)

⟨∇f i(x∗η), sx⟩
mini{−f i(x∗η)}
−f i(x∗η)

(B.8)

=
⟨−∇f 0(x∗η), sx⟩

η
−

∑
i/∈Iβ/2(x∗η)

⟨∇f i(x∗η), sx⟩
−f i(x∗η)

≤ mL

η
. (B.9)
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From the above, using Fact 4, we get

min{−f i(x∗η)} ≥
ηβ

2mLD
.

Hence, combining the above with Eq. (B.7) we get the following relation of point x̂ and
point x∗η optimal for the log barrier:

f 0(x̂)− f 0(x∗η) ≤ η + η
m∑
i=1

log
−f i(x̂)
−f i(x∗η)

≤ η

(
1 +m log

(
2mLDβ̂

ηβ

))
. (B.10)

Next, note that the Lagrangian L(x, λ) is a convex function over x and concave over λ.

Hence, for (x∗η, λ
∗
η) :=

(
x∗η,
[

η
−f1(x∗η)

, . . . , η
−fm(x∗η)

]T)
we have

L(x∗η, λ∗η)− L(x∗, λ∗) ≤ L(x∗η, λ∗η)− L(x∗, λ∗η) ≤ ⟨∇xL(x∗η, λ∗η), λ∗η − x∗⟩ ≤ 0.

Expressing L(x∗η, λ∗η) and L(x∗, λ∗) and exploiting the fact that ∇Bη(x
∗
η) = ∇xL(x∗η, λ∗η) =

0, we obtain L(x∗η, λ∗η) − L(x∗, λ∗) = f 0(x∗η) − f 0(x∗) −mη ≤ 0. Consequently, we have
f 0(x∗η)− f 0(x∗) ≤ mη. Combining the above and Eq. (B.10), we get

f 0(x̂)−min
x∈X

f 0(x) ≤ η + ηm log

(
2mLDβ̂

ηβ

)
+mη.

■

B.7 Zeroth-order estimator properties proof

The deviation of the gradient estimators Gi(xt, ν)−∇f iν(xt), by definition can be expressed
as follows for i = 0, . . . ,m

Gi(xt, ν)−∇f iν(xt) =
1

nt

nt∑
j=1


(
d
f i(xk + νstj)− f i(xt)

ν
stj −∇f iν(xt)

)
︸ ︷︷ ︸

vij

+ d
ξi+tj − ξi−tj

ν
stj︸ ︷︷ ︸

uij

 ,
(B.11)

where the first term under the summation vij is dependent only on random stj, however
the second term is dependent on both random variables coming from the noise ξi±tj and
from the direction stj.

105



We use the result of Lemma 3.11 [Ber+21], we can bound vij

E

∥∥∥∥∥ 1n
n∑
j=1

vij

∥∥∥∥∥
2

≤ 3
d
d+2
∥∇f i(x)∥2 + dM2

i ν
2

n
. ∀i ∈ {0, . . . ,m}. (B.12)

The second part uij is zero-mean, hence does not influence the bias. Indeed, using the
independence of ξj±tj and stj we derive

E
nt∑
j=1

uij =
d

ν
E

(
nt∑
j=1

(ξi+tj − ξi−tj )stj
)

= 0. (B.13)

Its variance can be bounded as follows, using ∥stj∥ = 1:

E

∥∥∥∥∥ 1n
n∑
j=1

uij

∥∥∥∥∥
2

= E
d2

ν2

∥∥∥∥∥
n∑
j=1

(ξi+tj − ξi−tj )stj
∥∥∥∥∥
2

≤ d2σ2

ν2n
. (B.14)

From the above, and Lemma 3.11 the statement of the Lemma follows directly.

B.8 Proof of property 2 in Fact 5:

Proof. By definition and the property of the smoothed function∇fν(x) = Esdf(x+νs)−f(x)ν
s,

where s ∼ U(Sd). Hence

∇fν(x)−∇fν(y) = Es
[
d
f(x+ νs)− f(x)

ν
s− df(y + νs)− f(y)

ν
s

]
= dEs

f(x+ νs)− f(y + νs)

ν
s.

Let us denote by δf (s) the function:

δf (s) := f(x+ νs)− f(y + νs).

Then, we have:

∥∇fν(x)−∇fν(y)∥2 =
d

ν
∥Esδf (s)s∥2. (B.15)

First, note that the absolute value of δf(s) is bounded by

|δf (s)| = |f(x+ νs)− f(y + νs)| ≤ L∥x− y∥2.

Assume that r ∈ Rd : ∥r∥2 = 1 is the unit vector of the direction of Esδf(s)s. Then,

∥Esδf(s)s∥2 = ⟨Esδf (s)s, r⟩ = Esδf (s)⟨s, r⟩

=
1

2
Es[δf (s)⟨s, r⟩|⟨s, r⟩ ≥ 0] +

1

2
Es[δf (s)⟨s, r⟩|⟨s, r⟩ < 0]
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=
1

2
Es∈Sd,⟨s,r⟩≥0[δf (s)⟨s, r⟩] +

1

2
Es∈Sd,⟨s,r⟩≥0[δf (−s)⟨s, r⟩].

Note that in the above terms the multiplicands ⟨s, r⟩ are positive. Therefore, we can
bound the whole product δf (s)⟨s, r⟩ ≤ |δf (s)|⟨s, r⟩ ≤ L∥x−y∥2⟨s, r⟩. Then, this has to be
integrated over the half-sphere s ∈ Sd, ⟨s, r⟩ ≥ 0, which we denote by Sd+. Consequently,
using (B.15) we get

∥∇fν(x)−∇fν(y)∥2 =
d

ν
Esδf (s)⟨s, r⟩ ≤

d

ν
L∥x− y∥2Es∈Sd+⟨s, r⟩. (B.16)

Note that the expectation over the half sphere s ∼ U(Sd+) of projection of s onto the one
direction r is

Es∈Sd+⟨s, r⟩ =
2

V ol(Sd)

∫
θ∈[0,π/2]

V ol(Sd−1) sin θ(cos θ)d−1dθ =
V ol(Sd−1)

V ol(Sd)

∫ 1

0

td−1dt.

(B.17)

In the above V ol(Sd) denotes the surface area of Sd. Then, we can use the following well
known relations.
If d is even:

V ol(Sd) = (2π)d/2

(d− 2)!!
, V ol(Sd−1) =

2(2π)(d−2)/2

(d− 3)!!
.

If d is odd:

V ol(Sd) = 2(2π)(d−1)/2

(d− 2)!!
, V ol(Sd−1) =

(2π)(d−1)/2

(d− 3)!!
.

Therefore, if d is even: V ol(Sd−1)
V ol(Sd) = (d−2)!!

π(d−3)!!
≤
√
d. If d is odd: V ol(Sd−1)

V ol(Sd) = (d−2)!!
2(d−3)!!

≤
√
d.

Hence, from (B.17) we get

Es∈Sd+⟨s, r⟩ =
V ol(Sd−1)

V ol(Sd)
1

d
≤
√
d

d
≤ 1√

d
.

Finally, from (B.16) and we can conclude the statement of the property:

∥∇fν(x)−∇fν(y)∥2 ≤
d

ν
√
d
L∥x− y∥2 =

√
dL

ν
∥x− y∥2.

■

B.9 Proof of property 3 in Fact 5

By definition we have |fν(x) − fν(y)| =
∣∣Eb∼U(B)

(
f(x+ νb)− f(y + νb)

)∣∣ . Then, using
Jensen’s inequality for | · |, we can swap Eb and the absolute value | · | in the above, and
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obtain:

|fν(x)− fν(y)| ≤ Eb∼U(B)|f(x+ νb)− f(y + νb)| ≤ Eb∼U(B)L∥x− y∥ = L∥x− y∥.

From the above, any directional derivative is bounded by L:

⟨∇fν(x), u⟩
∥u∥ = lim

t→0

⟨∇fν(x), tu⟩
∥tu∥ = lim

t→0

|fν(x+ tu)− fν(x)|
∥tu∥ ≤ L ∀x, u ∈ Rd.

Consequently, the norm of the gradient ∇fν(x) is bounded by L:

∥∇fν(x)∥ ≤ L ∀x ∈ Rd.

B.10 Proof of Lemma 11

The first part follows from the definition of the smoothed approximation f iν , the fact that
the noise is zero-mean, and Lemma 9. The second part follows from the smoothness.

Proof. Note that

|f i(x+ νbj)− f i(x)| ≤ Liν∥bi∥ ≤ Liν.

Hence, also using the Fact 5, we have

|f i(x+ νbj)− f iν(x)| ≤ |f i(x+ νbj)− f i(x)|+ |f i(x)− f iν(x)| ≤ 2Liν.

Therefore, finally we can show the following bound on the variance of F i
ν,n(x, ξ):

E

(
n∑
j=1

F i(x+ νbj)

n
− f iν(x)

)2

= E
(
f i(x+ νbj) + ξj

n
− f iν(x)

)2

≤ E

(
n∑
j=1

(f i(x+ νbj)− f iν(x))
n

)2

+ E

(∑n
j=1 ξj

n

)2

≤ 4L2
i ν

2

n
+
σ2
i

n
.

■

Next, we prove the third part:
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Proof. The deviation of the gradient estimators

Gj(xk, ν)−∇f jν (xk) =
1

n

n∑
l=1


(
d
f i(xt + νstj)− f i(xt)

ν
stj −∇f jν (xt)

)
︸ ︷︷ ︸

vij

+ d
ξi+tj − ξi−tj

ν
stj︸ ︷︷ ︸

ujl

 .
(B.18)

Then,

E∥Gj(xt, ν)−∇f jν (xt)∥2 = E∥ 1
n

n∑
l=1

vjl ∥2 + E∥ 1
n

nk∑
l=1

ujl ∥2 + 2E⟨ 1
n

nk∑
l=1

vjl ,
1

n

nk∑
l=1

ujl ⟩

= E∥ 1
n

n∑
l=1

vjl ∥2 + E∥ 1
n

n∑
l=1

ujl ∥2, (B.19)

since the noise ξij is zero-mean, and independent on vij. Next, we are going to bound
each of the terms in the summand above. From Stokes’ theorem [FKM05] we know that
Evjl = 0. Using Li-Lipschitzness of f i(x) for i ∈ {0, . . . ,m} we can derive:

∥vjl ∥ =
∥∥∥∥df j(xk + νskl)− f j(xk)

ν
skl −∇f jν (xk)

∥∥∥∥ ≤ (d+ 1)L. (B.20)

Since {vjl }l=1,...,nk are i.i.d. zero-mean variables, we have

E

∥∥∥∥∥ 1n
nk∑
l=1

vjl

∥∥∥∥∥
2

=
1

n

n∑
l=1

E∥vjl ∥2 =
1

n
(d+ 1)2L2

i (B.21)

Also, we can bound: E∥ 1
n

∑nk
l=1 u

j
l ∥2 ≤ 1

n

2d2σ2
i

ν2
. Combining the above with Eq. (B.19), we

get:

E∥Gj(xt, ν)−∇f jν (xt)∥2 ≤
1

nk

(
(d+ 1)2L2 +

2d2σ2

ν2

)
≤ (d+ 1)2

n

(
L2
i +

2σ2
i

ν2

)
. (B.22)

■
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APPENDIX C
Additional materials for Chapter 5

C.1 Internal model

The graphical probabilistic model of POMDP is shown at Figure C.1, where the state
consists of two parts st = [dt, zt]. Here, dt denotes the deterministic part that is determined
only by dynamics and previous action and state pair dt ∼ Pd(·|at−1, dt−1, zt−1) where pd
is a Dirac distribution (denoted by green arrows). Whereas zt determines the stochastic
part, which is a random variable dependent on dt only, i.e., zt ∼ Pz(·|dt) (denoted by
blue arrow). And finally, ot is the random variable corresponding to observation whose
distribution depends on the state [dt, zt], that is, ot ∼ Po(·|dt, zt) (denoted by orange
arrows).

Figure C.1: (a) Probabilistic graphical model of the POMDP; (b) Probabilistic graphical
model of the posterior inference.

We infer the transition density from observations using the Recurrent State Space
Model (RSSM) introduced in Hafner, Lillicrap, Fischer, Villegas, Ha, Lee, and Davidson
[Haf+19a]. Our RSSM network consists of two parts, one is responsible for modelling
the POMDP: RSSMθ, and the second one is responsible for inferring the posterior
distribution after getting the observations RSSMϕ, and is used for training the network.
The probabilistic distributions Pz and Po it models using Gaussian distributions with mean
and variance predicted by NNs: Po(·|dt, zt) = Pθ1(·|dt, zt) = N (µθ1 ,Σθ1) and Pz(·|dt) =
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Pθ2(·|dt) = N (µθ2 ,Σθ2). The deterministic part of the dynamics is modeled by NN directly:
Pd(dt−1, zt−1, at−1) = δ(fθ3(dt−1, zt−1, at−1)). The parameter θ consists of θ = {θ1, θ2, θ3}.
The second part of RSSMϕ learns the posterior distribution zt ∼ P̂ϕ(·|ot, dt) = N (µϕ,Σϕ).

C.2 Training the internal model

In more details, our network, parametrized by parameters θ = {θ1, θ2, θ3}, and ϕ, allows
to model the generative process of POMDP which is defined by the joint probability:

Pθ(o1:T , z1:T , d1:T |a0:T−1, z0, d0) =
T∏
t=1

Pθ1(ot|zt, dt)Pθ2(zt|dt)Pθ3(dt|zt−1, dt−1, at−1).

We train the network such that the last term in the above equation Pθ3(dt|zt−1, dt−1, at−1) =

δ(dt−fθ3(zt−1, dt−1, at−1)), where fθ3(zt−1, dt−1, at−1) is the deterministic recurrent function
of the network, and δ(·) is the Dirac-function. That is, dt = fθ3(zt−1, dt−1, at−1). The
density Pθ2(zt|dt) is a Gaussian distribution whose mean and variance are the outputs of
a neural network. Finally, Pθ3(ot|zt, dt) expresses the observation reconstruction from the
latent state st. The second part of the network is responsible for modelling the posterior:

Pϕ(z1:T , d1:T |o1:T , a0:T−1, z0, d0) =
T∏
t=1

P̂ϕ(zt|ot, dt)Pθ3(dt|zt−1, dt−1, at−1).

For training the above network parameters θ = {θ1, θ2, θ3}, ϕ, we use the gradient steps
on the following loss function:

L(θ, ϕ, o1:T ) =
T∑
t=1

EP̂ϕ(z1:T |o1:T ,a0:T−1,z0,d0)

[
KL(P̂ϕ(zt|ot, dt)||Pθ2(zt|dt))− logPθ1(ot|zt, dt)

]
,

where KL denotes the Kullback-Leibler Divergence.

C.3 Learning critics

For the task and safety critics, we use the reward and the cost value functions. E [
∑∞

τ=t γ
τ−trτ |st]

which is given as a dense neural network with parameters ψ and discount factor γ. Simi-
larly, we model the cost value by vπψc(sτ ) ≈ E [

∑∞
τ=t γ

τ−tcτ |st] with parameter vector ψc.
The policy and value models are trained cooperatively as typical in policy iteration: the
action model aims to maximize an estimate of the value, while the value model aims to
match an estimate of the value that changes as the policy model changes. As in Hafner,
Lillicrap, Ba, and Norouzi [Haf+19b], we use TD(λ) [SB18] to trade-off the bias and
variance of the critics with bootstrapping and Monte-Carlo value estimation. We denote
Vλ(sτ ) as the TD(λ) value as presented in Hafner, Lillicrap, Ba, and Norouzi [Haf+19b],
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that is defined recursively using vπψ(sτ ). In the same way, we define Vλ,c(sτ ) as the TD(λ)
value of the constraint. The models vπψ, vπψc at a turn are updated via minimizing the
regression loss over ϕ, ψc, for the fixed policy π and dynamics pθ:

Lvπψ(ψ) = Eat∼π,sτ :τ+H∼pθ

[
1

2

τ+H∑
t=τ

(
vπψ(st)−Vλ(st)

)2]
. (C.1)

Lvπψc (ψc) = Eat∼π,sτ :τ+H∼pθ

[
1

2

τ+H∑
t=τ

(
vπψc(st)−Vλ,c(st)

)2]
. (C.2)

We denote Vλ(sτ ) as the TD(λ) value as presented in Hafner, Lillicrap, Ba, and Norouzi
[Haf+19b].

VR(sτ ) := Eπξ,pθ

(
τ+H∑
n=τ

rn

)
(C.3)

Vk
N(sτ ) := Eπξ,pθ

(
H−1∑
n=1

γn−τrn + γh−τvπψ(sτ )

)
, with h = min(τ + k, t+H) (C.4)

Vλ(sτ ) := (1− λ)
H−1∑
n=1

λn−1Vn
N(sτ ) + λH−1VH

N(sτ ), (C.5)

where the expectations are estimated under the imagined trajectories.
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