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ABSTRACT
Image registration that aligns multi-temporal or multi-source im-

ages is vital for tasks like change detection and image fusion.

Thanks to the advance and large-scale practice of modern survey-

ing methods, multi-temporal historical maps can be unlocked and

combined to trace object changes in the past, potentially supporting

research in environmental science, ecology and urban planning,

etc. Even when maps are geo-referenced, the contained geograph-

ical features can be misaligned due to surveying, painting, map

generalization, and production bias. In our work, we adapt an end-

to-end unsupervised deformation network that couples rigid and

non-rigid transformations to align scanned historical map sheets

at different time stamps. To the best of our knowledge, we are the

first to use unsupervised deep learning to register map images. We

address the sparsity of map features by introducing a loss based on

distance fields. When aligning the displaced landmark locations by

our proposed method, the results are promising both quantitatively

and qualitatively. The generated smooth deformation grid can be

applied to vector features directly to align them from the source

map sheet to the target map sheet.

CCS CONCEPTS
• Applied computing → Cartography; Graphics recognition
and interpretation; • Computing methodologies → Matching.

KEYWORDS
GIS, image registration, historical maps, deep learning, unsuper-
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1 INTRODUCTION
Image registration is the process of aligning different sources of

images that depict the same scene so that the related information

can be combined or compared. The images can have different time

stamps, modalities, viewing angles, sensors, coordinate systems,

location accuracy, and production processes. Image registration can

benefit fields like medical imaging in improving the diagnosis accu-

racy with multiple sources of information [5] or earth observation

to allow for change detection [21]. Before the wide use of modern

earth observation techniques, historical maps are almost the exclu-

sive resource to depict the Earth’s surface. The topographic maps

from one or two centuries ago can already be relied on thanks to

the advances and large-scale practices of surveying methods. They

were usually updated regularly so that maps are often available

for the same area at multiple time stamps. Unlocking spatial infor-

mation at different times enables us to monitor the trajectory of

spatio-temporal dynamics of features in the past, which can support

studies and analysis in various fields like urban planning, environ-

mental sciences, and ecology. Existing works about geo-referencing

historical maps focus on determining their locations by comparing

them with other geo-referenced data [14, 15, 1]. However, even

after being geo-referenced, features from maps at different time

stamps can be spatially misaligned, due to different surveying pro-

cesses, generalization procedures, production conditions, and map

distortions. Therefore, image registration is necessary for letting

map features be comparable or combinable.

Generally speaking, image registration can be classified into rigid

and deformable methods [26]. Rigid methods usually model trans-

formation with global affine parameters such as rotation and trans-

lation, and thus the geometry is transformed uniformly. By contrast,

deformable methods estimate non-rigid dense displacement fields,

which allows non-homogeneous local geometric transformation.

The core procedure of both methods is to find correspondences

between the paired images and then estimate the transformation

parameters. Common image registration approaches can be catego-

rized into intensity-based methods [10] and feature-based methods

that use hand-crafted features [12, 16]. For geospatial images, salient

objects like landmarks, triangulation points, road crossings, and

street corners are usually manually selected or automatically de-

tected [7, 13] and compared. With the prosperity in deep learning

methods, end-to-end neural networks have been used to learn the

correspondence between the paired images and to estimate the

https://doi.org/10.1145/3557918.3565871
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transformation parameters simultaneously in a supervised [9, 4] or

unsupervised manner [25, 19, 17]. The advantage of applying deep

learning methods is obvious: On the one hand, complex multi-level

features relevant for the task can be automatically learned without

being hand-crafted. On the other hand, the deep-learning-based

approach is able to register images in real time at inference, which

is computationally more efficient than traditional pairwise opti-

mization that estimates transformation parameters by searching

for and aligning pixels with similar intensity/features [8].

For historical maps, automatic image registration is a vital yet rarely

tapped research topic. The most related research is the registration

of satellite images [11, 24, 20, 23]. [20] adapts the method from

[17] to register satellite images with convolutional neural networks

(CNNs), where the transformation network is able to learn both

affine and deformable parameters separately. Similarly, the reg-

istration of multi-temporal historical maps can be regarded as a

mixture of rigid (e.g., systematic surveying or production bias) and

deformable transformation (e.g., non-uniform generalization or dis-

tortion). Following this line of research, we propose a modified

end-to-end deformation network. Different from natural images,

map features are sparse — the majority of a map is a plain back-

ground that cannot give a progressive signal to the network when

it searches for image correspondences and regresses for parameters.

To solve this problem, we make use of distance fields (DFs) [6],

commonly used in computer graphics and vision to map discrete

objects into continuous representations [18, 3].

Ourmain contributions are: 1) adapting an end-to-end unsupervised

deformation network for historical map registration, 2) entangling

affine and deformable transformations into a single transformation

network which outputs a smooth deformation grid that can be

directly applied to vector features 3) introducing DF-based loss to

project discrete and sparse objects typical for maps into continuous

representations. Supplementary materials (code and data samples)

can be found here: https://github.com/sian-wusidi/mapdeform/ .

2 METHODOLOGY
An overview of our method is illustrated in Figure 1. A pair of

images, together with their corresponding DF maps, which are

generated offline, are input to a deformation neural network. The

network entangles rigid and deformable parameters to predict the

warping grid for image registration. The source DF is then warped /

deformed to alignwith the target DF.More details will be introduced

in the following sections.

2.1 Distance Fields
A distance field (DF) is defined as a spatial field that represents the

minimum scalar distance of a point to a shape of surface geometry

or edges of features [6]. To represent the 2D geometry of objects in

maps, we extract edges using a Canny detector [2], which applies

Gaussian smoothing, calculates intensity gradients, thresholds gra-

dients for edge candidates, and suppresses weak edge candidates

that are not connected to strong ones. As historical maps inevitably

contain noise from the original drawing, aging, and scanning, a

Gaussian filter is necessary to smooth images and extract salient

edges. We calculate the distance of each pixel to the closest edge

and obtain a DF map. Figure 2 illustrates our derived edge map and

DF map.

2.2 Transformation Modelling
The goal of image registration is to estimate an optimal transforma-

tion that aligns the paired images the best under specific conditions:

M(𝑇, 𝑆 ◦𝑊 ) + R(𝑊 ) (1)

where 𝑆 denotes a source image and 𝑇 denotes the target image.

𝑊 is a dense warping grid that contains the deformed position

to be estimated for each pixel on the source image. ◦ indicates a

sampling operation to synthesize the deformed source image 𝑆 ′.
M quantifies the level of alignment between the deformed source

and target image. R is the regularization item of𝑊 . To obtain 𝑆 ′

from the warping grid𝑊 , we adopt bilinear interpolation as in [9]:

𝑆 ′(𝑝) = 𝑆 (𝑝) ◦𝑊 (𝑝) =
∑︁
𝑞

𝑆 (𝑞)
∏
𝑑

𝑚𝑎𝑥 (0, 1 − |[𝑊 (𝑝)]𝑑 − 𝑞𝑑 |)

(2)

where 𝑝 and 𝑞 are pixel locations and 𝑑 ∈ {𝑥,𝑦} denotes an axis.

This way pixels within one pixel’s distance to 𝑝 along both 𝑥− and

𝑦−axis are used for interpolation. As justified before, rather than

original RGB images, we deform their DFs.

Instead of predicting a warping grid directly, similar to [20], we

adapt the method proposed by [17] to estimate a spatial gradient

map ∇𝑊 of the warping grid between consecutive pixels along

each axis, which is proven to generate smoother deformation than

the direct displacement field / warping grid. The warping grid can

then be calculated as the integration of ∇𝑊 along 𝑥− and 𝑦−axis
starting from the top left corner. In discrete cases, the integration

can be simply approximated by the cumulative sum. By constraining

gradients to be positive, self-crossings can be avoided between the

displacements. The amplitude of gradients controls the degree of

squeezing and stretching the distance between consecutive pixels.

Concretely, two consecutive pixels will move closer, keep distance

and move away from each other when the gradient is smaller than

1, equal to 1, and larger than 1, respectively.

As mentioned before, registration between historical maps can be

regarded as a mixture of affine and deformable transformations.

Since the registered maps have the same scale and orientation

(i.e., north-up), we exclude rotation and scaling and only consider

translation for affine parameters. Actually, modelling translation

separately from deformation as [20] is not necessary: it can be

approximated by stretching or squeezing the distance between

pixels at the border (∇𝑊 ≠ 1) while keeping the original distance

between pixels in the middle (∇𝑊 = 1). Through the integration

process, the displacement from the border will propagate to and

shift other pixels globally while not changing their distance from

each other. In this way, huge distortions can occur at the border to

align middle features that have big displacements. This can increase

the alignment loss significantly. To handle this problem, we ease

the loss at sheet borders by cropping them out before calculating

the alignment loss.

2.3 Network Architecture
Wemake use of U-Net that integrates atrous spatial pyramid pooling

(ASPP) as [22], which achieves state-of-art accuracy for historical

https://github.com/sian-wusidi/mapdeform/
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Figure 1: An overview of the proposed methods. The input is the pair of images and their corresponding DF maps, generated
offline. A deformation neural network entangles rigid and deformable parameters to predict the warping grid for image
registration. The source DF is then warped / deformed to align with the target DF.

(a) (b) (c)

Figure 2: Illustration of an edgemap (b) derived from a image
(a) using Canny detector and the corresponding DF map (c).

map segmentation both efficiently and effectively. We generate DF

maps offline and concatenate the source image, source DF, target

image, and target DF together as input to the network. The features

extracted by the encoder are passed to an ASPP block to incorporate

multi-scale contexts before the decoder. The outputs of our decoder

are two spatial gradient maps for both x- and y-axis that have the

same spatial dimension as the original images. They are passed to a

ReLU layer to have only positive values. We subsequently apply an

clipping layer to clip the spatial gradients outside the range (0,4),

an integration layer which calculates the warping grid, a bilinear

interpolation layer to warp the source image, and a cropping layer

to obtain the final deformed image. Our proposed pipeline is in-

different to the network architectures and can be integrated into

other algorithms for different applications.

2.4 Loss Functions
The overall loss is defined as:

L =
(𝑇𝑑𝑓 − ¯𝑆 ′𝑑𝑓 ) ∗ (1 −𝑇𝑑𝑓 )

+∑𝑛 ∇𝑊
𝑛

− 1

+_ ∥∇𝑊 − 𝐼 ∥ (3)

Let 𝑇𝑑𝑓 , 𝑆
′
𝑑𝑓

denote the DF map of the target image and deformed

source image 𝑆 ′𝑑𝑓 = 𝑆𝑑𝑓 ◦𝑊 , respectively. 𝑋 denotes the 𝑋 af-

ter being cropped at borders. The first item is the alignment loss,

which is the L1 loss between cropped DFs weighted by the reverse

DFs (normalized to 0 – 1), giving more emphasis on feature edges.
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The second and third items are regularization terms. The second

item regularizes that the average deformation gradient of an image

should be close to 1 to prevent the whole image from being squeezed

or stretched where the spatial extent will change. The third item

penalizes extreme distortions between consecutive pixels. 𝐼 is the

identity grid and _ is the weighting term. This item is important to

avoid large deformations where features change.

3 EXPERIMENTS AND DISCUSSION
3.1 Dataset and Implementation Details
In our experiment, we use two pairs of Siegfried map sheets of

Switzerland around year 1880 at the scale of 1:25000
1
, each pair is

temporally adjacent for approximately 20 years depicting the same

area and geo-referenced in a unified coordinate system. Each map

sheet is 7000 × 4800 pixels with a spatial resolution of 1.25m. Small

patches of 256 × 256 pixels were created for training and testing.

After cropping the border, the output size of our network is 200 ×
200 pixels. In total, 971 patches were selected randomly for training

and 96 for testing. We trained our dataset for around 40K iterations

until convergence and we noticed that with image-level loss, the

model converged around 20K iterations. We used Adam optimizer

with a initial learning rate of 0.002 and a decay of 0.0002 using

Keras
2
. For all experiments we use GeForce GTX 2080Ti GPU. The

regularization weight _ in equation (3) was set to 10
−6
.

3.2 Results
We conducted experiments on both image-based loss and DF-based

loss. We compared the performance of our proposed method with

a state-of-art model for satellite image registration [20] that learns

affine and deformable parameters in separate networks simultane-

ously. As mentioned before, since only translation is relevant in our

approach, we only estimated two translation parameters using their

method instead of six affine parameters. In [20], they mention that

their proposed method is independent of the specific network archi-

tecture. To make experiments comparable, we ran their experiment

using the same architecture as ours (i.e., ASPP-integrated U-Net).

To evaluate the performance, we randomly selected 63 landmark lo-

cations that are unlikely to change within around two decades: road

intersections, road/stream – contour line intersections, centroids of

waterbodies, forest boundaries, inflection points of contour lines

and triangulation points. We group the landmarks according to

their original shifts and calculate the average misalignment (Ta-

ble 1). For qualitative results (Figure 3), only configurations with

DF-based loss are presented.

3.3 Discussion
In Table 1, we can see that using image-based loss only slightly

reduces displacements for small misalignment. This corresponds to

our reckoning that sparse historical maps per se can hardly give

a continuous and progressive signal for registration. By contrast,

DF-based loss can guide the network meaningfully, leading to a

1
https://www.swisstopo.admin.ch/en/geodata/maps/historical/siegfried25.html

2
https://keras.io/

Average Misalignment (m)

Method Small(<=10) Medium (10,20] Large (>20)

Unregistered 5.89 15.15 26.43

Deformation +

Translation [20]

(image-based loss)

5.21 15.15 26.43

Deformation +

Translation [20]

(DF-based loss)

13.45 10.93 21.51

Proposed

(image-based loss)

5.55 15.15 26.43

Proposed

(DF-based loss)

2.72 7.73 16.81

Table 1: Efficacy of different deformation configurations on
registering unaligned landmark locations.We group the land-
marks into three categories based on their initial displace-
ments.

remarkable improvement of accuracy. Interestingly, modelling de-

formation and translation explicitly [20] helps to refine the registra-

tion of medium and large misalignment but distorts small alignment

drastically on the other hand. This might be explained by a much

larger spatial variance of misalignment in historical maps than in

satellite images [20], where a global translation parameter is not

suitable. Our proposed method with DF-based loss has achieved

the best alignment accuracy, correcting misalignment for around

50%. For qualitative evaluation in Figure 3, we can see our proposed

method can align contour lines (a,b), roads (a,b,c), streams (c) and

forest boundaries (d) much more plausibly than [20]. For smaller

objects like buildings and texts in (c,d), both deformation methods

tend to distort them greatly when aligning elongated/linear objects.

One possible reason is that the network is apt to favor the registra-

tion of elongated objects which occupy a much larger proportion

than small structures. Since the spatial integration layer propagates

deformation between neighboring pixels, small structures close to

the deformed elongated features will be displaced even when they

should stay unchanged. A multi-layer deformation network can

be investigated in the future to separate objects into layers with

different deformations. In our experiment, we observe that putting

a small limitation on spatial gradients allows the network to align

largely-displaced features, but generates unreasonable deformation

in the regions of change on the other hand. An example could

be found in (c) — where contour lines deform into the shape of

buildings. To handle this dilemma, methods like automatic change

detection can be applied to distinguish between changed and un-

changed features. As the generated deformation grid is smooth in

our approach, we can directly apply it to vector features, if available,

from a source image to generate vectors that align with the target

image without additional training. To achieve this, we first convert

the feature vector into raster, warp / deform the raster with the

predicted deformation grid, and convert the raster prediction back

to the vector. Figure 4 shows an example of the result.
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Figure 3: Qualitative comparison for four different areas.Wedarken the deformed tiles and their original images for visualization.
Only configurations with DF-based loss are presented. Regions of interest are marked with red rectangles.

Figure 4: Applying a predicted deformation grid to the stream
vector. The red and green line represents the vector of a
source image and the deformed vector aligning with the tar-
get image (displayed as the base map), respectively.

4 CONCLUSIONS
In this work, we have proposed a novel image registration pipeline

for historical maps. It is a purely unsupervised deep learning ap-

proach that tangles rigid and non-rigid transformations. We have

introduced DF-based loss to tackle feature sparsity when image-

based loss fails. Since we are the first to investigate unsupervised

image registration for maps, we compare our model with a state-of-

art approach for satellite imagery — a closely related field. Unlike

their approach, our model does not need to decouple rigid and non-

rigid transformation parameters and has performed significantly

better. Smooth and continuous deformation grids generated by the

proposed method show a good potential when being directly ap-

plied to vector features. In the future, we are going to investigate

multi-layer deformation to separate features with different defor-

mations and change detection methods to determine features to

be/not be changed.
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