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The Hayabusa2 spacecraft has returned samples from the Cb-type asteroid (162173)
Ryugu to Earth. Previous petrological and chemical analyses support a close link
between Ryugu and CI chondrites that are presumed to be chemically the most
primitive meteorites with a solar-like composition. However, Ryugu samples are
highly enriched in Ca compared to typical CI chondrites. To identify the cause of this
discrepancy, here we report stable Ca isotopic data (expressed as δ44/40CaSRM915a) for
returned Ryugu samples collected from two sites. We found that samples from both
sites have similar δ44/40CaSRM915a (0.58 ± 0.03 ‰ and 0.55 ± 0.08 ‰, 2 s.d.) that fall
within the range defined by CIs. This isotopic similarity suggests that the Ca budget
of CIs and Ryugu samples is dominated by carbonates, and the variably higher Ca

contents in Ryugu samples are due to the abundant carbonates. Precipitation of carbonates on Ryugu likely coincided with a
major episode of aqueous activity dated to have occurred ∼5 Myr after Solar System formation. Based on the pristine Ryugu
samples, the average δ44/40CaSRM915a of the Solar System is defined to be 0.57 ± 0.04 ‰ (2 s.d.).
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Introduction

In December 2020, the JAXA Hayabusa2 spacecraft returned to
Earth with the first samples collected from a Cb-type asteroid,
(162173) Ryugu (Tachibana et al., 2022; Yada et al., 2022).
Chemical, mineralogical, petrological, and isotopic analyses of
these samples suggest that they are closely related to CI

chondrites. In particular, their bulk Cr and Ti isotopic signatures
and the chemical abundances of most elements are within the
range of CI chondrites (Nakamura E. et al., 2022; Yokoyama et al.,
2022). Among meteorites, CI chondrites have chemical compo-
sitions thatmost closely resemble the Sun; therefore, they are the
most representative samples of the solar nebula composition
with the exception of volatile elements (Palme et al., 2014).
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Given that the Ryugu samples did not experience any terrestrial
alteration, they are likely the chemically most pristine Solar
System samples available estimating the original isotopic com-
positions of most elements in the Solar System (Yokoyama et al.,
2022).

Despite many aspects of similarities with the CIs, the
Ryugu samples display an apparent excess of Ca by over 50 %,
which may be related to a heterogeneous distribution of car-
bonates (dolomite and calcite) (Nakamura T. et al., 2022;
Yokoyama et al., 2022) between Ryugu, Orgueil and other
CIs. Calcium is a major constituent of carbonates and can be
isotopically fractionated during aqueous alteration and carbon-
ate precipitation, leading to more than 1 ‰ variations in the
44Ca/40Ca ratio in terrestrial carbonates (e.g., Fantle and
Tipper, 2014; Blättler and Higgins, 2017). In addition, Ca exhib-
its large isotopic variations among bulk carbonaceous chon-
drites (CC), with the 44Ca/40Ca ratio spanning a range of
1‰. This range is likely related to a combination of the variable
modal abundances of refractory inclusions among CC (Hezel
et al., 2008) that can be enriched in the lighter Ca isotopes by
several per mille (Niederer and Papanastassiou, 1984; Huang
et al., 2012) and the heterogeneous distribution of carbonates
(Simon and DePaolo, 2010; Valdes et al., 2014; Dauphas and
Pourmand, 2015). Therefore, stable Ca isotopes could be useful
for investigating the origin of Ca excess in Ryugu samples com-
pared to CIs.

Here we have analysed the stable Ca isotopic composi-
tions of Ryugu samples collected from the first and second
touchdown sites, using the collision cell equipped multicollec-
tion inductively-coupled plasma mass spectrometer (CC-MC-
ICP-MS), Nu Sapphire.

Samples and Methods

The samples returned by the Hayabusa2 spacecraft consist of
∼5 g of materials from the Ryugu asteroid recovered during
two touchdowns (Tachibana et al., 2022; Yada et al., 2022).
Approximately 3 g of samples representing the surface materials
of Ryuguwere collected during the first touchdown and stored in
Chamber A. Approximately 2 g of samples likely representing a
mixture of materials from the surface and subsurface were col-
lected into Chamber C at a site thatwas close to the crater formed
by the Small Carry-on Impactor, a kinetic impact experiment of
the Hayabusa2 mission (Saiki et al., 2017; Arakawa et al., 2020).
Two Ryugu samples, A0106-A0107 (Chamber A) and C0108
(Chamber C), were analysed in this study (for information
on the mineralogy see https://jaxa.repo.nii.ac.jp/?action=
repository_uri&item_id=48255&file_id=31&file_no=1).

Sample A0106-A0107 was prepared from a mixed aggre-
gate of A0106 (1.6 mg) and A0107 (27.3 mg). In addition to the
Ryugu samples, fusion-crust free bulk samples of six CC,Orgueil
(CI1), Alais (CI1), Tarda (C2-ungrouped), Tagish Lake (C2-
ungrouped), Murchison (CM2), and Allende (CV3), were ana-
lysed in the same way for comparison. See Table S-1 for the
weights and providers of the meteorite samples. All samples
were dissolved in PFA vials with a mixture of concentrated HF
andHNO3 at the Tokyo Institute of Technology (Yokoyama et al.,
2022).

After dissolution, aliquots of∼0.15% of the solutions con-
taining∼5 μg of Ca were transferred and dedicated for our study.
All the sample aliquots were dried and redissolved in 0.4 ml of
4 mol/L HNO3 in preparation for Ca chemical purification and
isotopic measurements at the Institut de Physique du Globe,
following Dai et al. (2022) (see Supplementary Information).
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We report both the mass dependent deviation and the
radiogenic ingrowth on 40Ca from the decay of 40K. For mass de-
pendent deviation, the data are reported as δx/yCa:

δx=yCa =

 
ðxCa=yCaÞsample

ðxCa=yCaÞSRM915b
− 1

!
× 103;

with x and y= 40, 42, 43 or 44. Since most of the published Ca
isotope data are measured against the SRM 915a standard, the
δ44/40Ca values reported here are re-normalised to SRM915a to
facilitate comparison.

The radiogenic ingrowth on 40Ca is reported using the
epsilon notation,

ε40Ca =

 
ð40Ca=44CaÞn sample

ð40Ca=44CaÞn SRM915b
− 1

!
× 104;

with (40Ca/44Ca)n representing the 40Ca/44Ca ratio corrected
from the mass dependent isotopic fractionation after being nor-
malised to the 42Ca/44Ca ratio using the exponential law and
42Ca/44Ca= 0.31221 (Russell et al., 1978).

The effect of concentration mismatch on the Sapphire is
more significant than on traditional MC-ICP-MS (Moynier et al.,
2021), and all the samples were analysed with Ca concentrations
within 1 % of the standard.

Results and Discussion

The Ca isotopic compositions of the two Ryugu samples and the
six CC are reported in Table 1, along with literature values for the
chondrites where available. The radiogenic ingrowth on 40Ca from
40K decay was corrected using the K and Ca abundances of the
samples (from Yokoyama et al., 2022) and δ44/40Ca (age corrected)
ratios are also presented in Table 1. The following discussion
focuses on these corrected mass dependent isotopic variations.
The δ44/40Ca difference between SRM915b and SRM915a is
0.72‰ (Heuser and Eisenhauer, 2008). Neither the Ryugu sam-
ples nor the meteorites analysed here show any 40Ca anomalies
(after age corrections), which is consistent with the literature
(e.g., Simon and DePaolo, 2010; Huang and Jacobsen, 2017).

In a plot of δ44/42Ca vs. δ44/40Ca (age corrected), the data fall
along a mass dependent line, regardless of whether the slope for
equilibrium fractionation (1/2.1 as shown in Fig. 1) or kinetic frac-
tionation is used. Likewise, variations between δ44/42Ca and
δ44/43Ca are mass dependent within error (Fig. S-2). Therefore,
the Ca isotopic variations observed among the samples analysed
primarily reflect mass dependent isotopic fractionation.

The meteorite data reported here are consistent with lit-
erature values (Fig. 2 and Table 1), but it should be noted that
literature Ca isotopic values are variable, especially for Orgueil
and Allende. The variability may reflect interlaboratory bias,
but more likely it reflects isotopic heterogeneity at the sample
scale analysed. This is particularly the case for Allende, which
contains abundant calcium-aluminum-rich inclusions (CAIs).
Since our Allende sample was obtained from the Smithsonian
Museum’s large batch of homogenised powder, and our mea-
sured Ca isotopic composition falls in the middle of the range
previously reported, it is likely representative of the bulk
(Fig. 2). For Orgueil, part of the interlaboratory variability may
be controlled by the variable distribution of secondary phases
produced by aqueous alteration since Ca may be isotopically
fractionated during alteration and carbonate precipitation
(Blättler and Higgins, 2017). However, none of the studies that
report Ca isotopic data include the Ca contents of their Orgueil
analyses. We report here the first δ44/40Ca values for Tarda and

Tagish Lake, which are within error of one another and overlap
with Orgueil.

The two Ryugu samples have Ca isotopic compositions
within error of one another (δ44/40Ca= 0.58 ± 0.03 ‰ for
C0108 and 0.55 ± 0.08 ‰ for A0106-A0107; uncertainties re-
present 2 s.e. for n= 5 and 6, respectively). They are also within
the range of published δ44/40Ca values for CIs (Fig. 2). Notably,
Ryugu sample A0106-A0107 (Ca/Al∼ 1.9) has almost twice the
amount of Ca compared to the average CI (Ca/Al∼ 1.06) (Fig. 3),
and∼20%more than Ryugu sample C0108 (Ca/Al∼ 1.55). If the
excess Ca in A0106-A0107 is mainly stored in secondary carbon-
ates (Yokoyama et al., 2022 and our discussion below), then
these carbonates must contribute significantly to the bulk Ca
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Figure 1 The δ44/42Ca values plotted against δ44/40Ca values for the
various samples analysed in this study, including the Ryugu sam-
ples. All the samples fall on a mass dependent line within error.
Error bars represent 2 sigma standard deviation.

Figure 2 A comparison of age corrected δ44/40Ca values for the
samples analysed here (in colour, see Fig. 1) and from the literature
(grey). Ryugu samples from Chambers A and C are similar within
error and fall within the range defined by the CI chondrites. The
literature data are from Table 1, BSE estimate from Kang et al.
(2017) and chondrules data from Amsellem et al. (2017). Error bars
are 2 x standard deviation.
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isotopic composition. Therefore, our results imply that the Ca
isotopic composition of the Ryugu samples and CIs are not sig-
nificantly modified by the dissolution of primary Ca-bearing
phases and precipitation as carbonates during aqueous altera-
tion. One reason for the similar Ca isotopic compositions in
Ryugu samples and CIs is that their Ca isotopic compositions
are mostly dominated by the high abundance and the composi-
tion of the carbonates.

Several studies have quantified the modal abundances of
minerals in CIs, but there is no systematic study and consensus

on the Ca carriers. Calcium sulfates are usually not detected in
CIs but can be present at up to ∼1 vol. % (e.g., Endress and
Bischoff, 1996; Morlok, et al., 2006). Even when present, they
were suggested to have formed during terrestrial alteration
(Gounelle and Zolensky, 2001). Ca-rich phosphates exist in CI
chondrites (Morlok et al., 2006), but they appear to be quite rare
(0–0.05 vol. %; King et al., 2015; Alfing et al., 2019) and therefore
are unlikely to have a strong control on the total Ca budget. Thus,
carbonates are the most likely major carriers of Ca in CIs
(Endress and Bischoff, 1996; Morlok et al., 2006, Alfing et al.,
2019). Scanning electron microscopic (SEM) analyses of 18 sec-
tions of CIs (including Orgueil) point to an average carbonate
abundance of ∼5 vol. % and the carbonates are dominated by
dolomite (Endress and Bischoff, 1996). However, analyses of
CO2 released by phosphoric acid dissolution of ∼100 mg of
Orgueil only returned∼0.1wt.%of carbonateC (Alexander et al.,
2015), which is equivalent to ∼0.8 wt. % carbonate (although
carbonate abundance in Ivuna estimated by a similar method
is three times higher). X-ray diffraction (detection limit ∼1 vol.
%) did not reveal carbonates in three Orgueil samples (from
50 to 200 mg), but 2 vol. % in Alais (200 mg) and 3 vol. % in
Ivuna (50 mg) (King et al., 2015), while Bland et al. (2004)
detected no carbonates in Orgueil (200–300 mg samples).
Given the variability in the modal mineralogy in the literature,
Alfing et al. (2009) focused on phases >5 μm (which only re-
present ∼6 vol. % of CIs) and found ∼0.5 wt. % of carbonates
in CIs. A variability in the abundance of carbonates in CIs is con-
sistent with variable Ca concentrations (from 0.77 to 0.96 wt. %)
measured even in large (0.5–1 g) Orgueil bulk samples (Barrat
et al., 2012). Considering that the most abundant carbonates
in Orgueil are dolomites with ∼20 wt. % Ca (Endress and
Bishoff, 1996), the presence of ∼4 wt. % carbonates in CIs would
be sufficient to dominate their Ca budget, less if calcites or ara-
gonites are involved. Despite the variability in carbonate abun-
dances of CIs reported in the literature, we suggest that themajor
fraction of Ca in CIs is stored in carbonates.

Table 1 Calcium isotopic data from this study and literature (Simon andDePaolo, 2010; Valdes et al., 2014; Amsellem et al., 2017; Huang and
Jacobsen, 2017). 2 s.d.= 2 x standard deviation and 2 s.e.= 2 x standard error (2sd/

p
n). n is number of measurements.

Sample names δ40/44CaSRM915b 2 s.d. δ42/44CaSRM915b 2 s.d. δ43/44CaSRM915b 2 s.d. ε40Ca 2 s.e n δ44/40CaSRM915a
δ44/40CaSRM915a

(age corrected)

Ryugu C0108 0.22 0.03 0.12 0.03 0.04 0.07 −0.17 0.25 5 0.50 0.58

Ryugu A0106-A0107 0.23 0.08 0.11 0.05 0.06 0.07 0.09 0.22 6 0.49 0.55

Murchison 0.12 0.07 0.02 0.07 0.01 0.10 0.85 0.46 5 0.60 0.67

Murchison (Valdesþ) 0.84

Murchison (Huangþ.) 0.72

Allende 0.36 0.05 0.10 0.08 0.06 0.13 1.47 0.79 4 0.36 0.39

Allende (Simonþ) 0.52 0.58 2 0.49 0.54

Allende (Valdesþ) 0.55

Allende (Amsellemþ) 0.26

Allende (Amsellemþ) 0.10

Allende (Amsellemþ) 0.44

Allende (Huangþ) 0.28

Alais 0.41 0.06 0.17 0.06 0.10 0.08 0.56 0.34 6 0.31 0.42

Tarda 0.34 0.06 0.15 0.07 0.05 0.07 0.25 0.37 6 0.38 0.45

Tagish Lake 0.30 0.03 0.13 0.03 0.06 0.07 0.33 0.26 6 0.42 0.48

Orgueil 0.30 0.04 0.13 0.02 0.06 0.08 0.44 0.40 4 0.42 0.48

Orgueil (Amsellemþ) 0.45

Orgueil (Valdesþ) 0.65

Orgueil (Huangþ) 0.75

Figure 3 δ44/40Ca plotted against the Ca/Al ratio of the samples.
The Ca/Al ratios of bulk Chamber A and Chamber C samples from
Yokoyamaet al. (2022) are used for Ryugu samples in thiswork and
are taken from the average value in Barrat et al. (2012) for Orgueil,
as it was not available for specific samples used here.
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Nakamura, T. et al. (2022) estimated themineral abundan-
ces and compositions of the main phases of the Ryugu samples
by SEM observations of two ∼10 mm2 sections from a sample
from the second touchdown site (sample C0002) (see their
Tables S6 and S7). No Ca sulfates were found in these sections,
and a simple mass balance using their data shows that carbon-
ates account for 75–80%of the Ca budget, with apatite and phyl-
losilicates accommodating the remaining Camore or less equally.
This calculation may underestimate the Ca fraction in carbonates
because the samples also contain small Ca carbonate grains (e.g.,
Table S7 of Nakamura T. et al., 2022), the abundances of which
could not be quantified here. C0002 is the third largest sample
among all returned grains containing the major lithology
(Nakamura T. et al., 2022), suggesting that the Ca budget in the
Ryugu samples is dominated by carbonates. It should be noted
that another study also found several vol. % of carbonateminerals
in samples from both touchdown sites, with a large variability in
Ca content between∼1mggrains (Nakamura E. et al., 2022) and a
correlation between Ca content and the dolomite abundances of
the grains (Fig. S-1). The two heaviest Ca isotopic compositions
for Orgueil samples from Valdes et al. (2014) (0.65 ± 0.17 ‰,
2 s.d.) and Huang and Jacobsen (2017) (0.75 ± 0.11 ‰, 2 s.d.)
may reflect different proportions of carbonates. Unfortunately,
these two studies did not report the Ca contents of their
Orgueil fractions, so it is not possible to test this hypothesis.

The similar Ca isotopic compositions between the two
Ryugu samples and CIs are most simply explained if the Ca
excesses observed in the bulk Ryugu samples are due to the
heterogeneous distribution of carbonates, and if these carbon-
ates have similar Ca isotopic compositions to the bulk samples.
This explanation is consistent with an episode of fluid circulation
and carbonate precipitation in the Ryugu samples that occurred
2.5 to 5 Myr after CAIs formation, as dated using 53Mn-53Cr
chronometry in carbonate phases (Nakamura E. et al., 2022;
Yokoyama et al., 2022). Hence, at present the average of the
two Ryugu samples (0.57 ± 0.04 ‰, 2 s.d.) represents the best
estimate of Ryugu’s and Solar System Ca isotopic composition.
Future work should test whether this value is representative of
the whole body by analysing other Ryugu fragments containing
fewer carbonate phases and less total Ca, such as the Ryugu
material in section 5 from C0002 (Nakamura T. et al., 2022),
which only contains ∼75 % of its Ca in carbonates.
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