
ETH Library

Accelerating logic-based Benders
decomposition for railway
rescheduling by exploiting
similarities in delays

Journal Article

Author(s):
Leutwiler, Florin; Bonet Filella, Guillem; Corman, Francesco

Publication date:
2023-02

Permanent link:
https://doi.org/10.3929/ethz-b-000580901

Rights / license:
Creative Commons Attribution 4.0 International

Originally published in:
Computers & Operations Research 150, https://doi.org/10.1016/j.cor.2022.106075

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-6036-5832
https://doi.org/10.3929/ethz-b-000580901
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.cor.2022.106075
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Computers & Operations Research 150 (2023) 106075

A
0

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

Accelerating logic-based Benders decomposition for railway rescheduling by
exploiting similarities in delays
Florin Leutwiler, Guillem Bonet Filella, Francesco Corman ∗

Institute for Transport Planning and Systems, ETH Zürich, 8092 Zürich, Switzerland

A R T I C L E I N F O

Keywords:
Rescheduling
Benders decomposition
Precomputation
Similarity

A B S T R A C T

The operation of a railway system is subject to unpredictable delays or disruptions. Operators control the
railway system to minimize losses in performance. Real-time rescheduling is the adaptation of a railway
schedule to any unforeseen delay or disturbance and recovers an optimal system state. In this work we propose
the extension of an existing Benders decomposition scheme used so far for timetabling, to the case of railway
rescheduling. We show how to increase its computational speed by a factor 2, by considering libraries of
Benders cuts computed for other instances, to be reused in the solution. We show how including extra cuts
has to balance a speedup potential, with a general slowdown due to optimization problems of increased sizes.
We show that, if delays in an instance of rescheduling are in fact unknown, but come from a known statistical
distribution, we can use a similarity measure to identify a-priori the most promising libraries of Benders cuts,
which lead to speedups up to 20%.
1. Introduction

In the operation of a railway, unpredictable events and delays are
unavoidable and continuously perturb the system. Railway systems are
operated based on a timetable, that is carefully designed by solving a
timetabling problem, and aims to maximize stability and performance
of the railway system during the operation. Railway operators continu-
ously monitor the railway system and identify deviations between plan
and reality. In fact, in case an unforeseen event or delay perturbs the
railway system, the initially designed timetable is often no longer a
suitable plan of operation; degradation of performance, such as delay
propagation, and, in worst cases, cancellations and short turning are
the result.

The adaptation of the offline planned timetable to an ever-changing
situation is termed rescheduling. Despite much rescheduling is still
done by hand, automated tools have been developed. Such tools require
the definition of a measure of system performance (related to delays),
and suitable mathematical modeling of the constraints of the rail-
way system. Typical actions to be considered in rescheduling include
retiming, reordering and rerouting of trains over the infrastructure.
The most advanced optimization algorithms can compute an optimal
or near-optimal adaptation of the original timetable, considering the
current perturbed state of the railway system. While these approaches
have proven their academic value in an increasing literature, real-life
applications of such sort are in general limited (Borndörfer et al., 2017).
The problems of timetabling and rescheduling (we refer to both of

∗ Corresponding author.
E-mail address: francesco.corman@ivt.baug.ethz.ch (F. Corman).

them as railway scheduling) are similar, and are in fact both NP-hard
problems (e.g., Mascis and Pacciarelli (2002)). At the same time the
problem of rescheduling is faced during the real-time operation of the
railway system, where the available time for computations is strongly
limited. As a consequence, the size of possible optimization problems
for rescheduling is bounded to local areas with rather limited size.

In this work, we propose a technique to find faster the solution to
a rescheduling problem, by exploiting similarities of delay in instances
of rescheduling, and precomputation.

We use a logic Benders decomposition for scheduling, that has been
introduced in Leutwiler and Corman (2022) and propose a way to
improve it for rescheduling. We exploit the fact that in a daily repeating
timetable, rescheduling problems for the same area and the same time
of the day are all variations derived from the same timetable, and vary
only by their input delays, i.e., the real-time delay of trains. More-
over, input delays are in general similar, i.e., they can be statistically
characterized and described by a sufficiently large amount of samples.
From the academic literature, we see that knowledge of the statistical
distribution of delay, and similarity has not been extensively used.

We propose to precompute features on a set of delay instances, and
use insight generated in this way during real-time use, to an unknown
delay. We specifically use logic Benders cuts, generated in the solution
process of Benders decomposition, as output of the precomputation,
which can be included (reused) in the solution process of another
vailable online 9 November 2022
305-0548/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.cor.2022.106075
Received 10 June 2022; Received in revised form 29 September 2022; Accepted 2
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

November 2022

http://www.elsevier.com/locate/cor
http://www.elsevier.com/locate/cor
mailto:francesco.corman@ivt.baug.ethz.ch
https://doi.org/10.1016/j.cor.2022.106075
https://doi.org/10.1016/j.cor.2022.106075
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2022.106075&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Computers and Operations Research 150 (2023) 106075F. Leutwiler et al.

l
w
s

i
w
t
t
d
s
e
c

2

2

p
a

t
s
r
(
g
l
e
m
b
s

t
i
t
m
a
s
a
3
n
i
(

p
a
e
(
(
a

instance. We assume that some logic Benders cuts that have been
generated while solving one instance of rescheduling with a particular
situation of input delay, are useful for the computation of a solution
to a different instance, where input delays are different but similar to
each other. The reused cuts decrease the amount of iterations and the
amount of constraints in the master problem of a Benders decompo-
sition; both reduce the total time spent solving the master problem,
which is a substantial part of the computational burden in a Benders
decomposition, resulting in an overall computational speedup. Logic
Benders cuts for the reuse can be precomputed ahead of time and saved
into libraries, such that we can reduce the amount of computation
necessary at the moment of operation, when time is crucial. Two
measures of similarity, applied to the situation of delay, are used to
identify which libraries and cuts are actually useful for the reuse. We
show that using precomputed cuts from the most similar instance leads
to a speedup up to ∼20%. In general, the potential of reuse is even
arger, up to a factor of 2.5, compared to a decomposition scheme
ith no reuse of cuts; and even larger, when compared to a centralized

olution by a commercial solver.
This paper is structured as following. We review related literature

n Section 2 to highlight the contributions of this work. In Section 3,
e introduce the railway rescheduling problem addressed. We ex-

end a disjunctive formulation for our rescheduling problem, similar
o Leutwiler and Corman (2022), and apply the logic-based Benders
ecomposition of Leutwiler and Corman (2022) in Section 4. We de-
cribe the details of the proposed approach in Section 5. Numerous
xperiments are provided on real-world examples in Section 7. We
onclude in Section 8.

. Related work

.1. Railway rescheduling

The literature on railway rescheduling shows a variety of scientific
ublications. Comprehensive overviews can be found in reviews such
s Cacchiani et al. (2014) or Corman and Meng (2014).

From a high-level perspective we can categorize the literature in
hree aspects. One is granularity. In coarse granular models, i.e., macro-
copic models, the network is abstracted into nodes and lines rep-
esenting stations and connections between the stations respectively
e.g. Veelenturf et al. (2016) and Dollevoet et al. (2017)). Instead, fine
ranular models, i.e., microscopic models, consider the network at the
evel of detail of a safety system (e.g., Corman et al. (2014), Pellegrini
t al. (2015) and Samà et al. (2017)). In those models, conflict free
ovements of trains over the network as well as routing of trains can

e explicitly modeled. We further focus for our work on this second
tream of works.

In the aspect of deviation from the planned operations, and informa-
ion available in real-time about it, we can differentiate the literature
n publications working on disturbances and those considering disrup-
ions. Disturbances are usually considered as delays of trains in the
agnitude of few minutes (e.g., Corman et al. (2012)). Disturbances

re common, and their empirical statistics can be collected and de-
cribed by probability distributions. Disruptions are usually considered
s events with more severe effects on the network, e.g., delays above
0 min (Corman et al., 2012) or the unavailability of parts of the
etwork for several hours (Cacchiani et al., 2012). Disruptions are typ-
cally rare and large; and often dealt with as single cases, as scenarios
where the probability of occurrence cannot be estimated well).

In the aspect of solution approaches, the literature shows a com-
rehensive variety of methods. The variety ranges from Branch&Bound
pproaches (e.g., D’Ariano et al. (2007)), over Integer (e.g., Caimi
t al. (2012)) and Mixed-Integer Programming (e.g., Pellegrini et al.
2015)) solved by commercial solvers, to a large variety of heuristics
e.g., Corman et al. (2014)) or collaborative solutions (e.g., D’Ariano
nd Hemelrijk (2006)), to name a few.
2

2.2. Decomposition in rescheduling

As we use a decomposed approach, we quickly review a vari-
ety of decomposition approaches that have been proposed for rail-
way scheduling (either timetabling or rescheduling). In general, we
can classify these decompositions into hierarchical and decentralized
structures.

In hierarchical decompositions (e.g., Lamorgese et al. (2016), Lam-
orgese and Mannino (2019), Keita et al. (2020), Corman et al. (2014),
Leutwiler and Corman (2022), Luan et al. (2020) and Cacchiani et al.
(2008)), the original scheduling problem is separated into multiple
partial optimization problems distributed over several hierarchical lay-
ers. In a hierarchical structure, solutions for the optimization on each
layer are passed downwards on the hierarchical structure by additional
constraints, penalties or by fixing some of the variables of the subordi-
nate optimization problems. This coordination over the different layers
happens top-down. Coordination in the opposite direction is usually
achieved by means of additional constraints, penalties or heuristics
(determining how to proceed, in case of conflicting partial solutions
from the subordinate layers).

In decentralized decompositions (e.g., Perrachon et al. (2020), Liu
et al. (2019) and Bretas et al. (2019)), the original scheduling problem
is separated into multiple partial and hierarchically equal optimization
problems. The partial optimization problems are solved independently,
and an iterative coordination steers them towards a global feasible
solution.

2.3. Precomputation and data-driven approaches

A few approaches proposed the precomputation in rescheduling,
i.e., conduct computations in advance, well before the day of operation,
save relevant result actions indexed in some feature space, and are very
quick to apply the action for a situation with the same features. In Caimi
et al. (2012), speed profiles for trains are precomputed, which are then,
during the real-time application, selected and assembled to a schedule
considering the current delays of the railway. In Van Thielen et al.
(2018), a dynamic impact zone is created for delay situations in which
rescheduling actions are necessary. The dynamic impact zone reduces
the size of the rescheduling problem, increasing the computational
speed of rescheduling. The dynamic impact zone is computed in real-
time, based on precomputed scenarios of possible delay propagation
and emerging resource conflicts. In Ghasempour and Heydecker (2020),
precomputation is done within a machine learning approach, where an
algorithm of approximate dynamic programming uses learned costs of
different decision. The approach is shown able to control traffic at a
single junction.

2.4. Contributions

We consider railway rescheduling on a microscopic model, to han-
dle small disturbances on a large and heavily utilized railway net-
work. We formulate the rescheduling problem as a disjunctive pro-
gram (Balas, 1998), similar to Leutwiler and Corman (2022), encom-
passing the decisions of retiming, reordering and also rerouting. We
extend the hierarchical logic-Benders decomposition of Leutwiler and
Corman (2022) to this case. The contributions of this work are:

(1) We show that the reuse of logic Benders cuts is valid, when
dealing with rescheduling instances that differ only by their input
delay. We propose a modification for precomputed logic Benders cuts,
which allows for a broader reuse of precomputed logic Benders cuts.
Benders cuts for the reuse can be precomputed offline and stored in a
library of cuts.

(2) We propose a lazy-constraint approach for dynamically reusing
logic Benders cuts, including cuts in the master problem only in case
they are violated by the incumbent master solution. In this way, we can
consider larger libraries of precomputed cuts, without an unnecessary

Computers and Operations Research 150 (2023) 106075F. Leutwiler et al.

i
(
o
i

p
t
C
s
b
o

b
f

a
r
s
𝜇
r

l
d

o
d
t
𝐴
s
c
a
s
f

𝑊

c
C
i
e
c

slow down of the solution process (which would happen if too many
cuts are directly included in the master problem). We show how the
perfect reuse leads to solving an instance twice as fast as no-reuse.

(3) We propose similarity measures to estimate a-priori, based on
the input delays, the worth of a logic Benders cut in terms of expected
computational speedup when reused. In this way we can reuse only the
cuts that are most promising, avoiding to extend a problem by too many
cuts. Overall, this achieves a significant speedup of the entire solution
process; if a sufficiently similar instance exists in the training set, a 20%
faster computation is achieved on average.

3. Microscopic railway rescheduling

We consider the problem of railway rescheduling on a microscopic
representation of the railway infrastructure. This computes an adap-
tation of an existing (offline) timetable, which considers the real-time
system state (i.e., actual delays of trains). The solution is a new sched-
ule, which obeys the safety regulations of the railway, kinematics of
trains and the railway infrastructure. A solution must be available
within seconds or few minutes to enable real-time control of the railway
system.

This problem has been addressed by many others, and our descrip-
tion of the problem is rather standard in this sense (e.g., D’Ariano
et al. (2007) and Pellegrini et al. (2015)). We optimize over times,
routes and orders, to minimize total delays of trains, when some
input delays arise in the network. We represent times by continuous
variables, and routing and ordering decisions as discrete decision. As
in Leutwiler and Corman (2022), we generalize decisions to non-binary
sets, and to larger sets, to properly model rerouting actions. Formally,
the discrete decision is to select one choice, out of a finite set of possible
choices, specific to the decision. Each choice results in a specific (set
of) constraints to be satisfied by the solution.

We model the railway network at the level of blocks, i.e., sections
of several hundred meters of tracks. A single operation is the passing of
a train over a block, which is associated to an entry (start) event, and
an exit (end) event. An instance is described by a list of trains, their
planned timetable, the infrastructure, and some input delays.

The planned timetable results in temporal specifications on events
in the problem that are identified as relevant by the operators of the
railway (like arrivals/departures at/from stations). Such specifications
prescribe a latest time for arrivals, an earliest time for departures, and
possibly a minimal/maximal duration between two relevant events for
passenger transfers. For an arrival of train after the latest time, there is
an arrival delay.

The description of the infrastructure defines the dedicated infras-
tructure for the operation of trains, individually for each train. Dy-
namics of trains are abstracted into minimal traveling times for each
individual block and train. The route of a train is the consecutive
sequence of blocks from the train origin to its destination. In between
origin and destination, the route may contain routing areas, where
different alternative sequences of blocks are available to travel over
the network. Each alternative sequence in a routing area provides
a connection between the same starting and ending block. For each
routing area of a train, a routing decision must be made to select one
alternative sequence, that is used by the train in the final schedule.
Routing decisions for all routing areas must be made to conclude with
a final schedule.

Shared infrastructure gives rise to resource conflicts, i.e., the poten-
tial concurrent use of the same block by two trains. For each resource
conflict amongst a pair of trains, caused by the respective temporal and
infrastructural limitations, an ordering decision has to be made. For a
final schedule, an order has to be decided for each resource conflict,
i.e., each pair of trains in conflict.

We consider the real-time delay of trains as input delay in our
problem. In the literature, delays are most commonly considered only
3

on the entrance of a train into the network (e.g., Pellegrini et al. (2015) 𝑑
and D’Ariano et al. (2007)). In our approach, we do not limit the
occurrence of input delay to the first event of the train, i.e., the entrance
into the network, but consider the possibility of an input delay at any
relevant event of the train, which corresponds to a departure from a
station. The input delay on a relevant event is a variation to the earliest
departure time given by a temporal specification.

The solution of rescheduling is a schedule which, by suitable update
of times, orders and routes for all running trains, minimizes the sum of
all arrival delays over all relevant arrival events of the problem, given
some statistically characterized input delays. We ignore early arrivals
in this work.

4. A decomposed disjunctive formulation of rescheduling

4.1. A disjunctive formulation of rescheduling

We formulate the microscopic railway rescheduling problem (MRR)
as a disjunctive optimization problem (Balas, 1998), likewise to the
disjunctive formulation of railway timetabling in Leutwiler and Corman
(2022). A train 𝑑 represents a sequence of operations (𝑑, 𝑏), where 𝑏
ndicates the related block. We represent the start time of operation
𝑑, 𝑏) by the continuous variable 𝑡𝑑𝑏 ∈ R+. Time variables for the end
f an operation are redundant as jobs cannot be paused or interrupted
n MRR.

We use precedence relations to model the constraints of MRR. A
recedence relation ((𝑑, 𝑏), (𝑞, 𝑝)) is a linear inequality, constraining 𝑡𝑞𝑝
o occur at least 𝑓𝑑𝑏,𝑞𝑝 time units after 𝑡𝑑𝑏. Similar to Leutwiler and
orman (2022) we can characterize precedence relations as fixed or
electable. The former are standard conjunctive constraints, which must
e satisfied in any case by a solution of MRR; the latter model choices
f reordering or rerouting.

We model minimal travel times and minimal/maximal durations
etween relevant events by precedence relations in a set 𝐴𝑓 , which are
ixed.

With a time origin 𝑡0 = 0 we model absolute timing constraints
s precedence relations. A set 𝐴ℎ contains (fixed) precedence relations
epresenting earliest departure times 𝜏𝑙𝑏,𝑖 at relevant events, with re-
pect to the origin of times 𝑡0, updated by (possibly null) input delay
𝑖. In the set 𝐴ℎ we consider exactly one precedence relation for each
elevant event that is a departure.

A set 𝐴𝛿 contains (fixed) precedence relations, which model the
atest arrival time 𝜏𝑢𝑏,𝑖 at relevant events. We use those constraints to
etermine the arrival delay 𝛿𝑑𝑏 of a relevant event (𝑑, 𝑏).

For the discrete decisions of MRR we use the modeling technique
f Leutwiler and Corman (2022). The set 𝐴𝑠 contains (selectable) prece-
ence relations that are constraints on events, which must hold upon
he choices for the discrete decisions. Selectable precedence relations
𝑠 are grouped into choice sets 𝑊𝑐 , where precedence relations of the

ame choice set can only be jointly selected. Choice sets represent the
hoices of a discrete decision. The choice sets again are grouped into
decision set 𝐷𝑙. The set 𝐷𝑙 is the set of all choice sets related to the

ame decision 𝑙. Given 𝐷𝑙 we can model a discrete decision 𝑙 by the
ollowing disjunctive constraint,
⋁

𝑐∈𝐷𝑙

⋀

((𝑑,𝑏),(𝑞,𝑝))∈𝑊𝑐

(

𝑡𝑞𝑝 − 𝑡𝑑𝑏 ⩾ 𝑓𝑑𝑏,𝑞𝑝
)

. (1)

To model the fact that ordering decisions may depend on routing de-
isions, we use the technique of auxiliary variables as in Leutwiler and
orman (2022). The auxiliary variables replace the original variables

n the precedence constraints of an ordering decision, which prescribe
ither order. Auxiliary variables are only constrained to be equal to the
orresponding original variables, if the associated routing is chosen.

For simplicity we reduce the notion of an operation (𝑑, 𝑏) of train

on block 𝑏, to 𝑖 in the remainder of this paper. With 𝐿 as the set of

Computers and Operations Research 150 (2023) 106075F. Leutwiler et al.
Fig. 1. Example of the generalized disjunctive graph.
all decisions in an instance of MRR, we can formulate the MRR as the
following disjunctive program,

min
∑

(𝑖,0)∈𝐴𝛿

𝛿𝑖

s.t. 𝑡𝑗 − 𝑡𝑖 ⩾ 𝑓𝑖𝑗 (𝑖, 𝑗) ∈ 𝐴𝑓

𝑡𝑖 − 𝑡0 ⩾ 𝜏𝑙𝑏,𝑖 + 𝜇𝑖 (0, 𝑖) ∈ 𝐴ℎ

𝑡0 − 𝑡𝑖 ⩾ −𝜏𝑢𝑏,𝑖 − 𝛿𝑖 (𝑖, 0) ∈ 𝐴𝛿
⋁

𝑊𝑐∈𝐷𝑙

⋀

(𝑖,𝑗) ∈𝑊𝑐

(

𝑡𝑗 − 𝑡𝑖 ⩾ 𝑓𝑖𝑗
)

𝑙 ∈ 𝐿

𝑡𝑖 ∈ R+ ∀ 𝑡𝑖, 𝛿𝑖 ∈ R+∀𝛿𝑖

(2)

where the objective is to minimize the sum of arrival delays 𝛿𝑖 at all
arrival events in the problem. We can further simplify the constraints
𝐴𝛿 to 𝛿𝑖 − 𝑡𝑖 ⩾ −𝜏𝑢𝑏,𝑖, using 𝑡0 = 0.

Constraints of Problem (2) can be represented in the generalized
disjunctive graph of Leutwiler and Corman (2022). We will later use
the generalized disjunctive graph in Section 5 to modify precomputed
logic Benders cuts for the reuse. The generalized disjunctive graph for
Problem (2) is defined by the tuple 𝐺 = (𝑉 ,𝐴𝑓 ∪ 𝐴ℎ ∪ 𝐴𝛿 , 𝐴𝑠). 𝑉 is the
set of nodes, where each node represents a variable 𝑡𝑖 or 𝛿𝑖 of Problem
(2). 𝐴𝑓 , 𝐴ℎ and 𝐴𝛿 are fixed arcs in the graph with length 𝑓𝑖𝑗 , 𝜏𝑙𝑏,𝑖 + 𝜇𝑖
and −𝜏𝑢𝑏,𝑖 respectively, representing the fixed precedence relations of
Problem (2). 𝐴𝑠 are selectable arcs with length 𝑓𝑖𝑗 representing the
selectable precedence relations. Selectable arcs are grouped into the
choice sets of Problem (2) and such choices sets are grouped into the
decision sets of Problem (2). A selection 𝜃 ⊆ 𝐴𝑠 on 𝐺 is a set of
selectable arcs such that 𝐺(𝜃) = (𝑉 ,𝐴𝑓∪𝐴ℎ∪𝐴𝛿∪𝜃) is a standard directed
graph. The selection 𝜃 is complete if it contains for each decision 𝑙 ∈ 𝐿 at
least one choice set, i.e., ∀𝑙 ∈ 𝐿,∃𝑊𝑐 ∈ 𝐷𝑙 s.t. 𝑊𝑐 ⊆ 𝜃; else the selection
is partial. For simplicity we further denote the generalized disjunctive
graph simply as the disjunctive graph.

In Fig. 1, we give an illustrative example of the generalized dis-
junctive graph (similar to example in Leutwiler and Corman (2022))
for a scenario of two trains 𝑑 and 𝑞, with train 𝑑 passing a routing
area with two routing alternatives; one of those alternatives leads to
a resource conflict with train 𝑞. Nodes (𝑑, 𝑏)𝑖𝑛 and (𝑑, 𝑐)𝑜𝑢𝑡 represent
auxiliary variables. We consider in the example (𝑞, 𝑏) an arrival event
with a latest arrival time 𝜏𝑢𝑏,𝑞𝑏 and (𝑞, 𝑟) a departure event with an
earliest departure 𝜏𝑙𝑏,𝑞𝑟 and an input delay of 𝜇𝑞𝑟

4.2. A decomposition of rescheduling

We apply to Problem (2) the Benders decomposition of Leutwiler
and Corman (2022) to decompose the centralized problem , i.e., Prob-
lem (2), into a master problem  and a subproblem . Benders
decomposition works iteratively, where at each iteration the master
problem is first solved, and its solution is imposed to the subproblem.
If the subproblem cannot find a feasible solution given the master
solution, a proof of infeasibility can be generated. In this case, Benders
feasibility cuts are generated from the proof of infeasibility and sent
back to be included in the successive iterations of the master. The pro-
cedure continues until a feasible solution for the subproblem is found.
4

The problem presented in this paper has some differences to Leutwiler
and Corman (2022) in the way it models delays. To be coherent with
the decomposition of Leutwiler and Corman (2022), the subproblem
must be a problem of feasibility only. We partition the precedence re-
lations of Problem (2) such that all 𝐴𝛿 and therefore all variables 𝛿𝑖 are
considered as constraints and variables of the master problem, and the
subproblem is a problem of feasibility only. According to Leutwiler and
Corman (2022), we decompose Problem (2) by partitioning 𝐴𝑓 , 𝐴ℎ, 𝐴𝛿
and 𝐿 into 𝐴,𝑓 , 𝐴,ℎ, 𝐴𝛿 and 𝐿 for the master; and 𝐴 ,𝑓 , 𝐴 ,ℎ and
𝐿 for the subproblem. In this separation, we restate that 𝛿 is only
present in the master. Consequentially, 𝐴 ∶= 𝐴,𝑓 ∪ 𝐴,ℎ,∪𝐴𝛿 ∪
(

⋃

𝐿

⋃

𝑊𝑐
(𝑖, 𝑗)

)

and 𝑀 ∶=
{

𝑡𝑖, 𝑡𝑗 ∣ (𝑖, 𝑗) ∈ 𝐴
}

∪
{

𝛿𝑖 ∣ (𝑖, 0) ∈ 𝐴𝛿
}

are

the precedence relations and variables of the master; and 𝐴 ∶= 𝐴 ,𝑓 ∪
𝐴 ,ℎ ∪

(

⋃

𝐿

⋃

𝑊𝑐
(𝑖, 𝑗)

)

and 𝑆 ∶=
{

𝑡𝑖, 𝑡𝑗 ∣ (𝑖, 𝑗) ∈ 𝐴
}

are the precedence
relations and variables of the subproblem. With a set of Benders cuts
𝐵𝑅, which we additionally consider (reuse) in the master problem, we
define the complete master problem of our Benders decomposition for
Problem (2) at the iteration 𝛼 of the Benders decomposition scheme,
i.e., 𝛼(𝐵𝑅), as the following disjunctive problem

min
∑

(𝑖,0)∈𝐴𝛿

𝛿𝑖

s.t. 𝑡𝑗 − 𝑡𝑖 ⩾ 𝑓𝑖𝑗 (𝑖, 𝑗) ∈ 𝐴,𝑓

𝑡𝑖 − 𝑡0 ⩾ 𝜏𝑙𝑏,𝑖 + 𝜇𝑖 (0, 𝑖) ∈ 𝐴,ℎ

𝛿𝑖 − 𝑡𝑖 ⩾ −𝜏𝑢𝑏,𝑖 (𝑖, 0) ∈ 𝐴𝛿
⋁

𝑊𝑐∈𝐷𝑙

⋀

(𝑖,𝑗) ∈𝑊𝑐

(

𝑡𝑗 − 𝑡𝑖 ⩾ 𝑓𝑖𝑗
)

𝑙 ∈ 𝐿

𝛽𝑟 𝑟 ∈ 𝐵𝛼 ∪ 𝐵𝑅

𝑡𝑖 ∈ R+ ∀ 𝑡𝑖 ∈ 𝑀, 𝛿𝑖 ∈ R+ ∀ 𝛿𝑖 ∈ 𝑀,

(3)

where 𝛽𝑟 has the form of the logic Benders cut as introduced in
Leutwiler and Corman (2022), 𝐵𝛼 is the set of all Benders cuts iter-
atively generated from analyzing the subproblem until iteration 𝛼. In
general, we will select 𝐵𝑅, by a suitable procedure, from a larger set
(a library) of Benders cuts . Once a Benders cut is included in the
problem, i.e., either in 𝐵𝛼 or 𝐵𝑅, it remains considered in the problem
until the end.

We define the subproblem 𝛼 at iteration 𝛼 of the decomposition
scheme, given 𝑡𝛼𝑖 of master solution 𝛼 ∶=

{

𝑡𝛼𝑖 , 𝑖 ∈ 𝑀
}

, to be,

min 0

s.t. 𝑡𝑖 = 𝑡𝛼𝑖 ∀𝑖 ∈ 𝑀

𝑡𝑗 − 𝑡𝑖 ⩾ 𝑓𝑖𝑗 (𝑖, 𝑗) ∈ 𝐴 ,𝑓

𝑡𝑖 − 𝑡0 ⩾ 𝜏𝑙𝑏,𝑖 + 𝜇𝑖 (0, 𝑖) ∈ 𝐴 ,ℎ
⋁

𝑊𝑐∈𝐷𝑙

⋀

(𝑖,𝑗) ∈𝑊𝑐

(

𝑡𝑗 − 𝑡𝑖 ⩾ 𝑓𝑖𝑗
)

𝑙 ∈ 𝐿

𝑡𝑖 ∈ R+ ∀ 𝑡𝑖 ∈ 𝑆

(4)

where 𝑀 ∶= 𝑀 ∩ 𝑆 are those variables appearing in 𝛼 and 𝛼 and
that are fixed in the subproblem to the solution of the master problem
𝛼 ; in accordance to Benders decomposition.

In Fig. 2, we illustrate a possible decomposition of the example
given in Fig. 1 by illustrating the disjunctive graphs of the master and

Computers and Operations Research 150 (2023) 106075F. Leutwiler et al.

s

V
a

5

5

a

i

i
r
v

d
e

r
s
i
t
e
a
(
c

c
s
t

t
b

5

o
c
i
i

(
L
w

Fig. 2. Example of a decomposition on the generalized disjunctive graph.
a
a
s
(
e

t
s
v
s
t
a
p
O
s
l

𝛽

I
r
t
r
a

𝐴
a
d
c


a
d
r

B

𝛽

w

a
t

ubproblem. We define for the example 𝐴,𝑓 = 𝐴𝑓 ⧵ {((𝑞, 𝑏), (𝑞, 𝑟))},
𝐴,ℎ = 𝐴ℎ, 𝐿 = {} and 𝐴 ,𝑓 = {((𝑞, 𝑏), (𝑞, 𝑟))} , 𝐴 ,ℎ = {}, 𝐿 = {1, 2}.

ariables appearing in both, master and subproblem, i.e., variables 𝑀 ,
re shaded in gray in Fig. 2.

. Reusing logic Benders cuts

.1. Preliminaries

We reuse logic Benders cuts to accelerate the solution process of
rescheduling problem as we extend the master problem  of an

instance ′ by some logic Benders cuts 𝐵𝑅 from a larger library 
of precomputed Benders cuts. The library of cuts has been computed
by solving another instance(s)  of MRR, which describes the same
nfrastructure, timetable and traffic as ′, but under different input

delays.
In case instances of MRR differ only by the input delay 𝜇𝑖 we show

n Section 5.2 that optimality remains in case logic Benders cuts are
eused among these instances, and the reuse of logic Benders cuts is a
alid process.

Formally we define an instance  of MRR by the tuple  ∶=
(𝐴𝑓 , 𝐴ℎ, 𝐴𝛿 , 𝐴𝑠, 𝐿). We denote as 𝜕() the class of all instances which
differ from an instance  of MRR only by input delay, and use the same
ecomposition. Those instances obviously contain the same number of
vents, precedence relations and decisions.

As discussed in Section 1, most railways are operated on a daily
epeating schedule. Every day during the same time of the day, the
ame trains can be found on the railway network, and in fact the
nstances of MRR solved throughout the days are always considering
he same trains, timetable and infrastructure. With our approach, we
xploit this basic property of rescheduling problems. We are moreover
ble to quantify a similarity of specific realizations of input delays
and therefore of instances), based on the fact that we can statistically
haracterize the input delays.

In Section 6.2, we will introduce a measure to identify, within this
lass of instances (and therefore class of cuts), instances which are more
imilar, and others which are less similar. The measure is based on
he feature space of the respective sets 𝐴ℎ and 𝐴′

ℎ, which describe the
input delays 𝜇𝑖 and 𝜇′

𝑖 . We will show that with a measure to quantify
he similarity between instances, we can estimate the computational
enefit of particular Benders cuts for their reuse.

.2. Modification of a logic Benders cut to preserve validity

We consider the reuse of a logic Benders cut as valid, in case
ptimality is preserved. We can show that with an appropriate modifi-
ation, the reuse of a cut between instances of MRR, which only differ
n input delay, is guaranteed not to cut off any feasible solution, which
mplicitly preserves the optimality.

In Section 4.2, we applied the logic Benders decomposition
Leutwiler and Corman, 2022) to the problem of rescheduling. In
eutwiler and Corman (2022), a logic Benders cut has been introduced,
5

hich can be used for our decomposition of Problem (2) in Section 4.2. c
In principle, the logic Benders cut summarizes the constraints of the
subproblem for the master problem, such that a solution of the master
problem is consistent with the constraints of the subproblem and allows
for a feasible solution in the subproblem.

Regarding the decomposition in Section 4.2, let us assume that 𝑝 is
path (of fixed arcs) on the disjunctive graph of the subproblem 𝛼

nd between two variables of 𝑀 (one of them possibly 𝑡0). Then, a
olution of the master problem must satisfy the sum of all constrains
arcs) along such path, to make sure that a solution to the subproblem
xists. In general, a path 𝑝 on the disjunctive graph of the subproblem
𝛼 contains selectable arcs and the existence of the path depends upon

he selection of particular arcs. In Leutwiler and Corman (2022) it was
hown that we can derive a set of paths (here denoted by ) between
ariables of 𝑀 , for which we are guaranteed that any solution of the
ubproblem satisfies the constraints along at least one path 𝑝 ∈  ;
he set is derived by a proof of infeasibility on the subproblem. As
ll paths in  are between variables of 𝑀 , a solution of the master
roblem must satisfy the constraints along at least one path in  as well.
therwise, the subproblem has no feasible solution for the considered

olution of the master problem. From the set of paths  , the following
ogic Benders cut has been introduced in (Leutwiler and Corman, 2022),

=
⋁

𝑝∈

(

𝑡𝑒(𝑝) − 𝑡𝑠(𝑝) ⩾ 𝑙𝑝
)

. (5)

n the cut (5), 𝑠(𝑝) and 𝑒(𝑝) are the start and end node of path 𝑝
espectively (both variables of 𝑀) and 𝑙𝑝 is the length of the path;
he constraint 𝑡𝑒(𝑝) − 𝑡𝑠(𝑝) ⩾ 𝑙𝑝 is the result of summing up all left and
ight hand-sides of constraints along 𝑝 and summarizes the constraints
long 𝑝 for variables of 𝑀 .

Between two instances of MRR  and ′ ∈ 𝜕() only constraints of
ℎ change; it holds that 𝐴 ,𝑠 = 𝐴′

 ,𝑠 and 𝐿 = 𝐿′
 , i.e., selectable arcs

nd decisions remain identical. Therefore, for any set of paths  on the
isjunctive graph of 𝛼 (of ), where any solution of 𝛼 satisfies the
onstraints along at least one path 𝑝 ∈  , the same holds for the set

considered on the disjunctive graph of  ′𝛼 (of ′) and solutions of
′𝛼 . Constraints 𝐴ℎ and 𝐴′

ℎ of  and ′ may differ because they show
different right hand-side 𝜇𝑖 (resp. 𝜇′

𝑖), such that a path 𝑝 may have
ifferent length considered on the disjunctive graph of 𝛼 or  ′𝛼 . To
euse a logic Benders cut (in the form of Eq. (5)) generated for  on
′, we adjust all right hand-sides in the linear constraints of the logic
enders cut (5) according to 𝜇′

𝑖 of  ′𝛼 to

′ =
⋁

𝑝∈

(

𝑡𝑒(𝑝) − 𝑡𝑠(𝑝) ⩾ 𝑙′𝑝
)

(6)

here 𝑙′𝑝 is the length of path 𝑝 considered on the disjunctive graph of
′𝛼 . With the modification of 𝛽 to 𝛽′ and the fact that selectable arcs
nd decisions remain identical between  and ′, we are guaranteed
hat 𝛽′ is a valid cut for ′ and optimality remains under the reuse of

uts.

Computers and Operations Research 150 (2023) 106075F. Leutwiler et al.

w
w
t
a
m
a
o
W
p
r

c
r
t
p
m
c
d
l
f

1
C

i
a
1

o
i
t
r

o
n
f

B

D

Algorithm 1: Lazy-Constraint Reuse of logic Benders Cuts
input : Master , Subproblem , Library 
output: 
init : 𝛼 = 0, 𝐵𝛼 = ∅,  = ∅, 𝐵𝑅 = ∅,

1 while  = ∅ do
2 do
3 𝛼

 ← solve (𝛼(𝐵𝑅))
4 𝐵𝑉 ← getViolatedCuts(𝛼

, )
5 𝐵𝑅 ← 𝐵𝑅 ∪ 𝐵𝑉
6 while 𝐵𝑉 ≠ ∅
7 𝛼

 , 
𝛼
 ← SMT𝐴𝑔𝑔(𝛼 (𝛼

))
8 if 𝛼

 = ∅ then
9 𝐵𝛼+1 ← 𝐵𝛼 ∪ 𝛼


10 else
11  ← 𝛼

 ∪ 𝛼


12 𝛼 ← 𝛼 + 1

6. Proposed approach

6.1. A lazy-constraint approach

In this section we propose an implementation for the reuse of
logic Benders cuts. We first propose a lazy-constraint approach for
the iterative extension of the master problem in our decomposition by
precomputed Benders cuts. The idea is to include only cuts, which are
violated by the incumbent solution of the master problem and ignore
the rest. This allows to keep the master problem smaller and with only
cuts which potentially provide progress.

Given a library  of precomputed and modified logic Benders,
hich can be potentially reused, it is difficult to estimate in advance,
hich of these cuts will bring a computational benefit if reused. In case

he master problem is extended by a precomputed cut, which does not
ffect any optimal solution or is dominated by those already in the
aster problem, the cut will add no computational benefit. Instead, the

dditional constraint will only decrease the computational performance
f solving the master problem, as the master will increase in size.
ith the design of a lazy-constraint approach we aim to prevent such

henomena and exclude cuts with no computational benefit from the
euse.

We reuse logic Benders cuts in a lazy manner, to avoid including
uts with no computational benefit. That is, given a library of cuts for
euse, we evaluate in an iterative manner, which cuts are violated by
he incumbent master solution and only add those cuts to the master
roblem. After every extension by violated cuts, we compute a new
aster solution and check again for further violated cuts. The lazy-

onstraint procedure is integrated in the entire process of the Benders
ecomposition as only after no further violated cuts are found in the
ibrary, the subproblem is queried for feasibility, to possibly generate
urther, new logic Benders cuts.

The complete lazy-constraint approach is illustrated in Algorithm
, where SMT𝐴𝑔𝑔 (see Appendix) is the algorithm of Leutwiler and
orman (2022) by which we address the subproblem. The expression
 denotes a solution to the centralized problem; as far as there is an

nfeasibility in the subproblem, a centralized solution cannot be found
nd the algorithm iteratively proceeds. In an iteration of Algorithm
, Lines 3–5 adds violated constraints 𝐵𝑉 from the library  in a

lazy manner. The master problem is solved again in Line 3 with an
iteratively growing set of cuts 𝐵𝑅 considered, for every non-empty set
f violated cuts 𝐵𝑉 in Line 4, until no further violated logic Benders cut
s found in the library . In Line 7 the subproblem is analyzed using
he SMT𝐴𝑔𝑔 algorithm of Leutwiler and Corman (2022), which either
eturns a set of new Benders cuts to be added to the master problem,
6

r a feasible solution for the subproblem. Lines 8–11 either add any
ew Benders cut to the master problem or generate a feasible solution
or the centralized problem, if the subproblem is feasible.

With the lazy-constraint approach we define two types of logic
enders cuts in reuse:

efinition 1 (Useless Logic Benders Cut). We denote a logic Benders cut
𝛽 as useless, if 𝛽 ∈  but 𝛽 ∉ 𝐵𝑅 after the termination of Algorithm 1.
In other terms, in no iteration the cut was found to be violated by the
incumbent master solution.

Definition 2 (Useful Logic Benders Cut). We denote a logic Benders cut
𝛽 as useful, if 𝛽 ∈  and 𝛽 ∈ 𝐵𝑅 after the termination of Algorithm
1. In other terms, in at least one iteration the cut was violated by the
incumbent master solution.

Useless logic Benders cuts are cuts that provide no computational
benefit when reused; if such cuts are not excluded from the reuse, these
cuts can significantly decrease the computational speed of solving the
master problem.

With the lazy-constraint approach we can further define a perfect
set of logic Benders cuts as:

Definition 3 (Perfect Set of Logic Benders Cuts). We denote a set of logic
Benders cuts  as perfect if 𝐵𝛼 = ∅ after the termination of Algorithm
1.

The perfect set of logic Benders cuts leads to a termination of
Algorithm 1 after the first full iteration between master problem and
subproblem. In case of a perfect set of cuts, no further cuts must be
generated from the subproblem to determine an optimal solution for
the centralized problem. All necessary cuts are within the perfect set.
From a computational point of view, this is the ideal situation.

6.2. Identifying the computational benefit of reusable logic Benders cuts

With the lazy-constraint approach (Algorithm 1) we are able to
exclude cuts with no computational benefit from inclusion in the
master. Unfortunately, we are not guaranteed that useful cuts will
actually lead to a computational speedup, in case they are reused.
An excessive amount of cuts, despite being useful, actually decreases
the performance of decomposition in case reused. In other terms, two
processes are contrasting each other: the master getting larger and
slower as more cuts are included, and the master getting faster (and the
entire scheme having less iterations) in case the best cuts are added. In
this case, a method is necessary to not only identify the useful cuts, but
actually prioritize those few, which add a computational benefit to the
entire solution process.

We assume that precomputed Benders cuts add the most computa-
tional benefit for reuse, in case the instance, which has been used to
precompute cuts, shows similar input delays of trains as the instance
for which cuts are being reused. As such we expect that for an instance
′ ∈ 𝜕(), cuts computed when solving  add the most computational
benefit, if for each (𝑖, 𝑗) ∈ 𝐴′

ℎ of ′ there exists a (𝑖, 𝑗) ∈ 𝐴ℎ of  where
𝜇𝑖 ≈ 𝜇′

𝑖 .
We propose in this section two different measures to quantify the

similarity in input delay 𝜇. To this purpose, we summarize the situation
of updated starting times of relevant events, including the input delays,
of an instance  as we write all right hand-side 𝜏𝑙𝑏,𝑖+𝜇𝑖, (0, 𝑖) ∈ 𝐴ℎ in a
vector 𝑣. By definition of 𝜕(), all vectors 𝑣 and 𝑣′ we consider
in reuse, have the same dimension. For a pair of instances  and
′ ∈ 𝜕(), we quantify similarity in input delay by the euclidean dis-
tance and the Sørensen–Dice coefficient (Dice, 1945) on the respective
vectors 𝑣 and 𝑣′ . The euclidean distance is defined as
𝑒𝑣 ,𝑣′ = ‖𝑣 − 𝑣′‖. (7)

Computers and Operations Research 150 (2023) 106075F. Leutwiler et al.

l
i

7

c
p
t
n
o
i

o
i
c
b
1
i
a
o
1
a
s
n
m
o

b
T
1

s
t
c
u
c
A
c
d

m
n

o
|

l
l
a

i
f
c
t
B

Table 1
Overview of original timetabling instance.

Time horizon Subproblems Trains Blocks Routing
alternatives

Resource
conflicts

08:00–09:00 40 80 626 790 3240

In case 𝑒𝑣 ,𝑣′ = 0, 𝑣 and 𝑣′ are identical. The Sørensen–Dice
coefficient is a measure to quantify the similarity of vectors and can
be computed as,

𝑠𝑣 ,𝑣′ =
2 |𝑣 ⋅ 𝑣′ |

|𝑣|
2 + |𝑣′ |

2
. (8)

In case 𝑠𝑣 ,𝑣′ = 1, the vectors 𝑣 and 𝑣′ are identical. Values of
𝑠𝑣 ,𝑣′ between 0 and 1 indicate a measure of similarity between 𝑣
and 𝑣′ .

7. Computational experiments

In this section we conduct comprehensive experiments to study
the reuse of logic Benders cuts. Compared to the theory above where
only one subproblem is considered, we conduct our experiments on
a decomposition with 40 different subproblems. The extension of the
theory to the case of multiple subproblems is straightforward. The
decomposition is chosen such that each subproblem can be treated
individually without dependencies to other subproblems. The decom-
position itself is a geographical decomposition, identical to the de-
composition in Leutwiler and Corman (2022). The commercial solver
Gurobi (Gurobi Optimization, 2021) is used to solve the master prob-
lem.

All experiments were run on the Euler cluster of ETH Zurich on a
Intel(R) Xeon(R) CPU E3-1585L v5 @ 3.00 GHz processor with 4 GB of
RAM.

7.1. Instances and delay scenarios

We consider for our computational experiments the railway traffic
within the triangle of the cities Zurich, Luzern and Chur in Switzerland
between 08:00 and 09:00 in the morning; Table 1 provides an overview
in numbers.

For our experiments we consider a typical Monte Carlo scheme,
where instances  = (𝐴𝑓 , 𝐴ℎ, 𝐴𝛿 ,
𝐴𝑠, 𝐿) differ only by the input delay 𝜇 considered in the constraints in
𝐴ℎ. The input delay is generated with the goal of having sufficiently
different patterns of input delay to understand the potential and limit
of the approach. The procedure goes as follows.

First, we randomly determine the trains which are experiencing
an input delay. Instead of using a probability for the likelihood of
a train being delayed, we first decide, based on an uniform random
distribution, how many out of all trains experience a delay (ranging
from none, to all). We then randomly select such number of trains
out of all trains. In this way, we achieve an equal probability for the
number of delayed trains over our generated MRR instances. Given
the trains experiencing a delay, we determine for each such train a
single relevant event that is a departure, where a delay should occur.
The event is randomly selected out of all departure events related
to the train. At last, we define the value of input delay 𝜇𝑖 for each
selected relevant event 𝑖. We sample the value of the input delay from a
Weibull distribution according to Corman et al. (2011) (see parameters
in Table 2). We do not consider negative input delays in this work, such
that we resample from the Weibull distribution as long as we receive a
negative delay value.

For the experiments, we randomly generate two sets of instances,
with the same procedure and same statistical properties. A first set of
100 instances is the test set and is used to evaluate the performance
7

of our algorithm, with/without reuse of cuts. A second set of 1000 T
Table 2
Weibull parameters (Corman et al., 2011).

Scale Shape Shift

395 2.5 −315

instances is the training set and is solved in advance by the normal
Benders decomposition (i.e. without considering any library of cuts for
reuse) to generate a large library ̄ of logic Benders cuts. From this
atter large library, we identify the actual library  available for reuse
n Algorithm 1.

.2. Computational benefit of Benders cuts

In a series of experiments we show the computational benefit of
uts by taking a perfect set of cuts and changing the proportion of
erfect cuts against non-perfect (random) cuts in such set. We designed
wo experiments, one with a library of fixed size (i.e., when adding a
on-perfect cut, we remove one perfect cut), and one with a library
f increasing size (i.e. the perfect cuts are always considered, but
ncreasingly many non-perfect cuts are included).

We create for each of our test instances a perfect set (library) ∗

f logic Benders cuts for the reuse. We create such sets by apply-
ng, for each test instance, Algorithm 1 multiple times and iteratively
ollecting and reapplying the generated cuts, until a perfect set has
een found. We have to reapply generated cuts because Algorithm
is rather sensitive to . Therefore, for different cuts considered in

nput , different cuts might be generated as 𝐵𝛼 from the subproblem
nalysis. To generate ∗, we start for each instance with an empty set
f generated cuts 𝑔𝑒𝑛 = ∅, which we use as library  for Algorithm
. After the first termination of Algorithm 1, we can retrieve from the
lgorithm the set 𝐵𝛼 , i.e., the set of all Benders cuts generated by the
ubproblems during this first run of the algorithm. Such set 𝐵𝛼 is not
ecessarily perfect yet. In case 𝐵𝛼 is reused, it can occur that other cuts
ight be needed as the master problem results in different intermediate

ptimal solutions, due to the reused cuts. To create a perfect set, we set
𝑔𝑒𝑛 = 𝑔𝑒𝑛∪𝐵𝛼 , i.e., we incrementally extend the set of generated cuts
y 𝐵𝛼 and consider this extended set 𝑔𝑒𝑛 as input  for Algorithm 1.
his will consider all previously generated cuts when we run Algorithm
again.

We repeat this process until no further cuts are generated from any
ubproblem during Algorithm 1, i.e., 𝐵𝛼 = ∅. Finally, when 𝐵𝛼 = ∅,
he set of cuts 𝑔𝑒𝑛 is a perfect set of cuts, but it might contain useless
uts. We avoid useless cuts in the perfect library ∗ by taking only the
seful cuts from 𝑔𝑒𝑛. We can get the useful cuts which are in 𝑔𝑒𝑛, by
onsidering the latest run of Algorithm 1 where 𝐵𝛼 = ∅. In this run of
lgorithm 1, after termination, the set 𝑅 corresponds exactly to those
uts of 𝑔𝑒𝑛 that are useful, i.e., that have been violated at some point
uring Algorithm 1.

A perfect sets of cuts generated by this procedure is not necessarily
inimal, but as we use 𝐵𝑅 at the end of the procedure, ∗ is guaranteed
ot contain any useless cuts.

We consider in this subsection a series of libraries for each instance
f the testing set, all of the size of the corresponding perfect library
∗

|, where an increasing amount of cuts from the original perfect
ibrary ∗ are substituted with other (random) cuts from other de-
ay cases, randomly chosen from ̄. We assume those latter have on
verage low computational benefits.

In Fig. 3 we illustrate the performance on average over all test
nstances for an increasing proportion of random cuts in a library  of
ixed size. The three figures report respectively from top to bottom: the
omputational time, normalized by the case with no reuse, i.e.,  = ∅;
he amount of iterations until the solution is found; and the amount of
enders cuts |𝐵𝑅| actually included in the master from the library .

he top two plots report the lazy-constraint approach (red), the direct

Computers and Operations Research 150 (2023) 106075F. Leutwiler et al.

r
i
a
i
d

a
p
p
A
d
d
F
c
t
T
c
I
a
u
c

t

s
i
l
t
d

o
b
t
r
T
p
o
t
a
c

7

p

Fig. 3. Time, iteration and cuts for direct reuse, lazy-constraint vs. no reuse.
r
l
u
c
i

t
(
d
l
a

i
s
t
f
i
c
y
o
t
c
t
h
r
t
i
o
(

s
o
p
c
d
c
c
s

c
(

euse (orange) and the case of no reuse (black). The bottom plot reports
n solid lines the total amount of cuts reused from the library, i.e., |𝐵𝑅|,
nd in dotted lines the total amount of cuts newly generated in the
terative process. In red is the lazy-constraint approach, in orange the
irect reuse.

In the top plot of Fig. 3, we can see that both, the lazy-constraint
pproach as well as the direct reuse, show a speedup around 2 for the
erfect cuts (the left end of the plot). With an increasing substitution of
erfect cuts by random cuts, the computational performance decreases.
bove 65% of random cuts, the reuse performs worse than the normal
ecomposition where no reuse is considered. An explanation for the
ecrease in performance is given in the middle and bottom plot of
ig. 3. We can see that with an increasing proportion of random
uts, the necessary iterations till convergence increase, almost up to
he number of the decomposition with no reuse, i.e., when  = ∅.
he increasing amount of iterations is caused by the lack of useful
uts in the library , due to the increasing number of random cuts.
n other words, the random cuts are not resulting in less iterations,
nd instead only increase the size of the master problem. The lack of
seful cuts is show in the bottom plot of Fig. 3, where for the lazy-
onstraint approach the number of cuts reused (𝐵𝑅) from the library
continuously decreases for higher proportions of random cuts, while

he number of newly generated cuts 𝐵𝛼 (dashed line) increases.
Furthermore, at 100% random cuts, lazy-constraint still finds that

ome of the random cuts are useful, see bottom plot, and includes these
n the master problem. The computational performance in such case
ies above 1, i.e., it is slower than no reuse. We thus empirically find
hat even cuts determined as useful can result in a slow down of the
ecomposition scheme.

A further interesting point in Fig. 3 is the fact that our perfect sets
f Benders cuts are perfect when using the lazy-constraint approach,
ut not perfect under the direct reuse. We see this empirically as in
he middle plot of Fig. 3, the average number of iterations for direct
euse is around 2.5 instead of 1, as in the lazy-constraint approach.
his is caused by the fact that Gurobi, which is used to solve the master
roblem in both cases, computes different optimal solutions depending
n whether cuts are added iteratively, i.e., in a lazy manner, or all
ogether. Therefore it is possible that in the direct reuse a minimal
mount of further iterations and logic Benders cuts are necessary to
onverge.

.3. Issues from excessive amount of Benders cuts reused

With a second series of experiments we aim to study the decreasing
erformance in experiments of Section 7.2, for large proportions of
8

p

andom cuts. We want to estimate whether this is caused by the
ack of computationally beneficial cuts or the presence of random but
seful cuts. Random cuts might distract the decomposition scheme from
onverging quickly. If the latter case applies, we clearly must take care
n generating the library  for actual reuse.

In this second series of experiments we consider libraries, where on
op of the complete perfect set of Benders cuts ∗ for our test instances
which are definitely useful), an increasing amount of additional ran-
om cuts is added. Compared to the experiments of Section 7.2, the
ibraries considered increase in size from |∗

| to ∼ 40|∗
|; and are

lways a superset of the perfect sets ∗ for the individual test instances.
Fig. 4 reports the computational results for variable library sizes,

n an analogous manner to Fig. 3. Starting from the top plot, we can
ee again the performance increase of a factor 2 for the reuse of just
he perfect set of cuts (i.e., the left end of the plot is at 0.5). We can
urther see, that with an increasing amount of additional random cuts
n the library, the computational performance of both, direct and lazy-
onstraint reuse, decreases. The bottom plot of Fig. 4 (with logarithmic
-axis), explains such decrease, due to a significant increase in the size
f the master problem. The plots in Fig. 4 further illustrate well, the
wo main effects of excluding useless cuts from reuse as in the lazy-
onstraint approach. On the one hand, the absence of useless cuts leads
o a smaller master as shown in the bottom plot of Fig. 4. On the other
and, as the middle plot shows, the absence of useless cuts leads to a
educed number of iterations in the decomposition scheme. Both lead
o a significant computational speedup, as shown in the top plot. Also,
ncluding useless cuts in the library does not have a systematic effect
n the amount of iterations required until convergence of the scheme
the lines in the middle plot are mostly horizontal).

Overall, we empirically conclude from Fig. 4 that reusing an exces-
ive amount of Benders cuts, even if useful, negates the overall benefits
f reusing computationally beneficial logic Benders cuts, such as the
erfect cuts ∗. Furthermore, we can see in Fig. 4 that also the lazy-
onstraint approach, which considers only useful cuts, shows a slow
own in computational performance. This is due to random, but useful
uts, which are included, and increase the size of the master without
ausing a desired decrease in iterations of the scheme. As a result, they
low down the computational performance of the solution process.

The above clearly confirms the importance of carefully selecting the
uts in the library for the reuse, beyond their usefulness, but based on
some measure of) their computational benefit to the entire solution

rocess, which is the topic of the next subsection.

Computers and Operations Research 150 (2023) 106075F. Leutwiler et al.

7

r
p
w
(
r
c
(
p
r
e

l
p
i

s
L
m
c
t
t
l
t
b
s
o
t
s
r
s
p

Fig. 4. Time, iteration and cuts for direct reuse, lazy-constraint vs. no reuse.
Table 3
Potential when reusing cuts from libraries of logic Benders cuts.

Approach Perfect library Best library Avg. library No library Gurobi

Time [s] 32.30 33.19 94.31 81.86 201.24
Normalized time 0.45 0.46 1.16 1 3.92
Iterations [–] 1 (5.85a) 4.04 (8.01a) 7.60 (12.96a) 9.07 –
Total Cuts [–] 345.21 307.64 359.01 382.40 –

aTotal Master Solves, including Lazy-Constraint.
.4. Reuse of cuts from libraries of similar instances

In this section we analyze the reuse of logic Benders cuts under
eal-world conditions. In this case, it is unlikely that a perfect set of
recomputed cuts is available. We thus create a series of experiments
here we pair the libraries computed each by a single training instance

out of the 1000 training instances), with our 100 test instances. This
esults in 100’000 pairs, matching a single training library (i.e., the
uts computed on a single training instance) and a single test instance
to apply the library). Which such ‘‘Training Library - Test Instance’’
airs, we want to understand under which conditions logic Benders cuts
esult in a computational benefit. The experiments in this section are
xclusively computed using our lazy-constraint approach.

In Table 3 we report computational results for all pairs of training
ibrary - test instance, as well as the ideal performance using the
erfect library; and two further benchmarks for a general comparison
n performance. The columns of the Table 3 are as follows.

The Perfect Library repeats the ideal performance from the previous
ections, in case the perfect set of Benders cuts is reused. The Best
ibrary considers, for each test instance, the computational perfor-
ance using the ‘‘best’’ library, i.e., the one, out of the 1000 libraries

omputed by the 1000 instances of the training set, which results in
he smallest computational time. The Average (Avg.) Library reports
he computational performance on average over all pairs of training
ibrary - test instance. This would correspond of taking a random
raining instance and reusing its cuts on a random test instance. As
enchmarks, we report in Table 3 also the computational results of
olving the test instances with the normal logic Benders decomposition
f Leutwiler and Corman (2022) as No Library, and the solution of
he centralized Problem (2), directly computed by the commercial
olver Gurobi (Gurobi Optimization, 2021). All approaches in Table 3
eport an optimal solution within a tolerated optimality gap of 1% (on
olutions of the master problem), which is considered sufficient for
9

ractical applications.
Overall, Table 3 clearly shows the advantage of decomposition over
the centralized benchmark of Gurobi. Further, we can see that with
the reuse, in case of the best library, we can achieve a speedup of a
factor similar to the perfect library, empirically proving the potential
of reusing logic Benders cuts also under real-world conditions.

Table 3 indicates that a speedup by the reuse of precomputed
logic Benders cuts is not guaranteed in case of an arbitrary reuse of
cuts, i.e., for the average library it is 16% slower. This restates the
importance of selecting carefully the cuts for reuse.

The performances in different cases of decomposition in Table 3
can be explained by the number of iterations, in particular solves of
the master problem, and total amount of Benders cuts in the master
problem. Due to the lazy-constraint approach, the number of times the
master problem is solved is higher than number of iterations done by
the decomposition scheme in cases of reuse. In Table 3, the perfect
library and the best library show significantly less iterations (and
slightly less master solves) than the no library case, which explains the
observed speedup in both cases. Also, in case of the lazy-constraint,
most of the master solves are generally performed in the first iteration
of the Benders scheme. In the first iteration, the master is usually
small in terms of additional Benders cuts and thus rather efficient to
be solved, compared to a master problem after several iterations. In
other terms, master solves in the No Library case are in general more
complex. The reason for the rather unsatisfying performance of the
average pairs in Table 3 has been already commented in Section 7.2.
Random cuts, which most of training cuts seem to be, are more harmful
than useful, and tend to slow down the solution procedure.

In Fig. 5 we report a histogram of the computational performance
(x-axis, normalized by no reuse), for all pairs of training library - test
instance. This describes the empirical probability for the performance
of pairs. The expected value of this histogram is the performance of
the average library, i.e., 1.16. In the histogram of Fig. 5 the total
probability for a pair to result in a computational benefit is 48.2%,
while the probability of a computational degradation is 51.2%. There-
fore, a random cut is slightly more likely to result in a slow down,

Computers and Operations Research 150 (2023) 106075F. Leutwiler et al.
Fig. 5. Histogram of computational times for pairs of training library - test instance.
than a speedup. In the histogram of Fig. 5, 26.2% of the pairs show
a computational time of 0.8 or less; we will consider a normalized
computation time of 0.8, which corresponds to 20% faster computation,
to be a significant enough speedup for practical considerations.

The variability in Fig. 5 illustrates the existence of cuts with high
and low computational benefit in the reuse. Clearly, the pairs of best
libraries reported in Table 3 relate to pairs that are on the left in Fig. 5,
i.e., with a normalized computational time < 1. These are the pairs,
i.e., the libraries, we wish to identify efficiently in a real-life application
to improve computational speed of the decomposition process.

7.5. A measure to estimate speedup resulting from a library

In the previous two sections, we analyzed the computational bene-
fits of libraries of logic Benders cuts, and the impact of the excessive
reuse of cuts. We concluded that for a real-world application, an
estimation of the computational benefit of (a library of) logic Benders
cuts is necessary, to limit the reuse of logic Benders cuts to those
with a high computational benefit only. In Section 6.2, we proposed
two measures to estimate such computational benefit, at the level of
libraries generated from a single instance. Those measures describe the
similarity of input delay between the instance determining the library,
and the target instance we want to solve. The ultimate goal is to identify
a-priori the libraries, which lead to a performance as good as the best
library, which is reported in Table 3; and in general, the libraries which
approximate a performance comparable to using the perfect set of logic
Benders cuts.

To estimate the accuracy of our similarity measures in indicating
the computational benefit of a library of logic Benders cuts, we analyze
the euclidean distance and the Sørensen–Dice coefficients on the pairs
of training library - test instance from Section 7.4. In particular, we
analyze the relation between the speedup (i.e., how smaller the com-
putational time is; normalized by the computational time when no cut
is reused) achieved by a particular training library - test instance, and
the similarity measures. We evaluate our measures for each pair using
the training instance, from which the library has been generated; and
the test instance, on which the library has been reused. We consider
libraries generated by only a single instance.

In Fig. 6 we report a histogram of values on the Sørensen–Dice and
euclidean measures, over the 100’000 pairs of Section 7.4. In Fig. 6,
we overlay in red the average normalized computational times, which
are computed as average over the pairs in the respective individual
bin. The top plot in Fig. 6 reports on the Sørensen–Dice measure. The
plot empirically confirms the ability of the measure to discriminate
between libraries which have different computational benefit. Specif-
ically, while the majority of pairs in Fig. 6 show no computational
benefits, above a Sørensen–Dice value of 0.9998 the libraries being
reused clearly bring a computational benefit. The red line decreases to
the right, below 0.8, for a maximum speedup of 0.5 (twice as fast) for
Sørensen–Dice values close to 1. Such an observed speedup matches
with the reported speedup in case of a set of perfect cuts (0.46) in
Section 6.1, i.e., cuts generated from an instance with a Sørensen–
Dice value of exactly 1. The bottom plot of Fig. 6 reports the case
10
of the euclidean distance, and in general confirms a similar ability to
discriminate libraries with high computational benefit from those of
no benefit. In this case, values of the euclidean distance below 700
are connected with a decrease in normalized computational time below
0.8. In both plots of Fig. 6, fluctuations in the computational times are
caused by sample approximations, and low numbers of samples for the
extreme cases.

The Sørensen–Dice measure shows a slightly better discriminating
power than euclidean. In case of Sørensen–Dice, 1.38% of all pairs are
categorized into bins with an average normalized computational time
below 0.8. In comparison, for the euclidean distance, only 1.17% of all
pairs were categorized into bins with a computational time below 0.8.
Note as a reference that up to 26.2% of the pairs have a speedup of 0.8
or better (see Fig. 5).

The histograms reported in Fig. 6 give further an estimate on the
statistics of the similarity measures over instances. From our experi-
ments, reported in Fig. 6, out of the 100 test instances, only 23 instances
have a matching library, inside the training set of 1000 instances, where
the training instances have a measure above 0.9998 in Sørensen–Dice
and below 700 in euclidean. This calls for a more diversified set of
training instances, either achieved by an even larger training set, or
by a different sampling of the domain of input delays. For instance,
one can target coverage of the delay domain, by Sobol sampling; and
not match the density of the probability, like the simple Monte Carlo
scheme we used. For an actual real-life application, thus, we would
expect to increase the set of instances for the precomputation of logic
Benders cuts. This would increase the probability of finding good cuts
for a wide range of instances, ahead of time, as it is required in reality.

Finally, we analyze the benefits of the similarity measure for com-
putational benefit of cuts under real-world conditions. For this analysis
we first focus on 23 testing instances, for which we have available
highly similar training instances (libraries), i.e., those with at least one
library showing a measure above 0.9998 in Sørensen–Dice or below
700 in the euclidean distance. We report in Fig. 7 a similar analysis
as in Fig. 4, with the top plot showing the normalized computational
time, the middle plot the iterations, and the bottom plot the amount
of cuts considered. Instead of reporting the performance of the best
library (in terms of speedup) over the entire training set, which in
reality would be a-priori unknown, we report the average performance
over the increasing set of the most similar libraries.

Specifically, we rank the instances by the similarity measure, and
we run the algorithms with each library from the best 𝑘 ranked ones.
We then take the average performance over this set. We consider an
increasing 𝑘, and analyze how the performance changes. The x-axes of
those three plots are the same, and describe a logarithmically increasing
set of training library - test instance pairs 𝑘 considered from 1 (i.e., only
the best ranked), up to 1000 (i.e. all libraries available).

We rank the libraries separately for Sørensen–Dice (decreasing),
reported in all plots as orange solid line; and euclidean (increasing),
reported in all plots as red, dashed line. There are actually very lit-
tle differences between the two measures. We also report a random
selection of libraries, i.e., without a similarity measure (reported in
black).

Computers and Operations Research 150 (2023) 106075F. Leutwiler et al.

o

l
p
w
n
i
a

m

Fig. 6. Histogram of similarity measures over pairs of training library - test instance, overlaid with computational time (red).
Fig. 7. Computational performance on an increasing selection of training library- test instance pairs considered. reported on test instances with pairs of high similarity measures
nly.
Table 4
Computational time (Normalized) over an increasing number of libraries.

Sørensen Number of libraries

1 10 100 500 1000

1 ⩾
⩾ 0.9998

0.8091 (3%) 0.7484 (23%) 0.7505 (23%) 0.7379 (23%) 0.7391 (23%)

0.9998 >
⩾ 0.9989

1.1265 (73%) 1.2364 (76%) 1.2102 (76%) 1.1942 (76%) 1.2310 (77%)

0.9989 >
⩾ 0.998

1.0995 (24%) 0.6583 (1%) 1.3006 (1%) 0.9582 (1%) –

(∗): Percentage share of test instances, with the best library in that category.
If our similarity measures are able to identify the most valuable
ibraries, we expect for a small set of training library - test instance
airs considered, the best performance. Increasing the amount of pairs,
e expect the performance benefits to decrease to a larger average
ormalized computational time. This is due to the fact that the increas-
ngly added instances have a smaller similarity and therefore result in
decreasing performance on average.

In Fig. 7 we can indeed see such effect, of sharp decrease (i.e. the
ost similar is actually good), and rebound (i.e. the less similar are
11
actually not good, going towards the right along the x-axis) for test-
ing instances with similar libraries. In the plots describing computa-
tional time and the iterations, this phenomenon is particularly visible:
the improvement in performance considering the most similar library
achieves a value well below 0.8, on average. We conclude that our
measures are able to indicate libraries with high computational value.

We extend the analysis of computational benefits for the reuse under
real-world conditions to all testing instances in Table 4. We exclusively
focus on the Sørensen–Dice measure as the euclidean has in general
shown identical results. In Table 4 we report the average normalized

Computers and Operations Research 150 (2023) 106075F. Leutwiler et al.

t
F

D

A

a
t

A
c

a
f
S
B
b

computational time over testing instances. We consider a reduced set
of libraries (with increasing size of 1, 10, 100, 500 and 1000) from
the training instances, which are randomly selected from the full set
of 1000 libraries available. The idea is to understand the benefit of a
larger set of libraries. We consider for each testing instance and each
reduced set of libraries the performance of the most similar library in
the reduced set of libraries, with respect to the Sørensen–Dice measure.
In other terms, we take the single most similar out of 1, 10, 100,
500 and 1000, and we use that as library of reference. We report
computational time (normalized by no reuse), further differentiated by
the Sørensen–Dice measure of the most similar library (to distinguish
cases where the most similar library is indeed highly similar, or less). In
brackets, we report the percentage of test instances and corresponding
most similar library into the three similarity classes. For the case of
library with a unitary size, we repeat the test 10 times and take the
average.

In Table 4 we can see that, if only one library is considered per test
instance, only few test instances show high similarity to that library
(i.e., ⩾ 0.9998); 73% of the instances show medium similarity and 24%
of instances show a low similarity. The medium and low similarity
of libraries reflects in the average computational times, which are for
medium similarity and low similarity clearly > 1. When considering
10 or more libraries per testing instance, we can find (as discussed
earlier) 23% of the instances with a highly similar library, and for
almost all remaining test instances a library with medium similarity.
The test instances with highly similar libraries show a computational
speedup of ∼ 25%, empirically showing the ability of Sørensen–Dice to
identify beneficial libraries.

Further, we can see in Table 4 that little computational improve-
ments are made by increasing the set of libraries considered from
10 to 1000. We explain such behavior by the fact that Sørensen–
Dice is an imperfect estimator; and seems not able to differentiate
the very best, when sufficiently many libraries of similar quality are
available. Moreover, the results in Table 4 can be explained by the
delay in the different test instances. The 23% of instances with a
highly similar library are instances with very common delays, which
drastically increases the probability of a highly similar library. The
remaining instances are instances with uncommon, and large, input
delay, drastically reducing the probability of highly similar libraries.
In that case, even 1000 training instances are insufficient to produce a
highly similar library.

8. Conclusion

In this paper, we introduce an approach to enable a faster solution
process for railway rescheduling, considering precomputation and sta-
tistical measures of similarity for the input instances. We start from
adapting the logic Benders decomposition for timetabling of Leutwiler
and Corman (2022) to the purpose of real-time rescheduling, where
computational time is strongly limited. We propose the reuse of pre-
computed logic Benders cuts to accelerate the iterative decomposition
process, exploring the similarity between rescheduling problems deal-
ing with the same railway network, traffic and timetable, and varying
input delay. With a modification on precomputed Benders cuts we are
able to reuse any precomputed cut, as far as the instance (i.e. trains,
infrastructure, planned timetable) is the same. For the reuse of cuts, we
propose a lazy-constraint approach, which only includes in the master
those Benders cuts, that provide progress in the iterative decomposition
process. We propose two measures that are able to identify the potential
computational benefit from a library of precomputed Benders cuts,
based on the similarity of the input delay of the training (which gen-
erated the library) and test instance. This allows to avoid an excessive
amount of logic Benders cuts considered for reuse, and prevents large
amounts of constraints being included in the master problem of the
12

Benders decomposition.
With the lazy-constraint approach we are able to exclude useless
precomputed cuts from the reuse and avoid to add those to the master
problem. This prevents an exponential growth of computational time
(twice as slow, when 95% additional cuts are considered) due an
increasing size of the master problem, when direct reuse would be
considered. The reuse of the best logic Benders cuts under a lazy-
constraint scheme can find a solution twice as fast as the normal
Benders decomposition without precomputation and reuse of cuts.
Compared to a benchmark with a commercial solver on a centralized
approach, we achieve an overall speedup up to a factor of 5.

With a further analysis, we are able to show that similarity in
input delay is a promising estimator for the computational benefit of
reusing cuts from a library. Both proposed similarity measures, for the
considered delay statistics, are able to identify the 1% of instances
which result in a speedup. The reuse of Benders cuts from libraries from
instances with similar input delay achieved a comparable acceleration
as in the ideal case of reuse with the perfect logic Benders cuts. This
underlines the value of reusing logic Benders cuts in a real-world
application.

The computational results underline the practical benefits of find-
ings in this paper. In reality, rescheduling actions from railway dis-
patchers are expected between within 3 (D’Ariano et al., 2007) up to
10 (Lamorgese and Mannino, 2015) minutes. With the novel method-
ology of this paper, we are able to solve instances previously only
solvable in over 3 min, in around 1 min of computational time; this
emphasizes the practical benefits of the proposed methodology.

Future research should clearly include additional studies on iden-
tifying the potential of precomputed cuts and larger libraries. In our
case, if libraries with a sufficiently high similarity exist, the speedup
is perceivable. Thus, a detailed sampling of the actual delay domain
(which depends on the instance and operations, in general) has to
cover the possible delays with a sufficiently fine-grained detail. It
is advisable for a real-world application, where more sophisticated
data structures and very large libraries are acceptable, to increase the
number of training instances, and to use more sophisticated sampling
schemes. While we were able to propose two valuable measures for
determining the similarity of instances, it remains an open question for
future research, whether other features can determine the similarity of
instances towards usability of Benders cuts, for a higher computational
speedup.

CRediT authorship contribution statement

Florin Leutwiler: Conceptualization, Methodology, Implementa-
ion, Writing. Guillem Bonet Filella: Methodology, Implementation.
rancesco Corman: Conceptualization, Methodology, Writing.

ata availability

The authors do not have permission to share data.

cknowledgments

The authors thank the colleagues from SBB for the useful discussions
nd support during the implementation. This project was supported by
he ETH Zürich Foundation.

ppendix. SMT𝑨𝒈𝒈 - generation and aggregation of logic Benders
uts

In this appendix we repeat details of Algorithm SMT𝐴𝑔𝑔 in Leutwiler
nd Corman (2022). We use SMT𝐴𝑔𝑔 in this paper to evaluate the
easibility of the subproblem 𝛼 (Problem (4)) in the decomposition of
ection 4.2. In case of infeasibility, Algorithm SMT𝐴𝑔𝑔 creates a logic
enders cut as in Leutwiler and Corman (2022). Algorithm SMT𝐴𝑔𝑔 is
ased on Satisfiability Modulo Theories (SMT), which is a combination

Computers and Operations Research 150 (2023) 106075F. Leutwiler et al.

i
s
n
I
(
d

m
f
b
c
u

a
o
(
S
a

s
(

d
m
A
w
A

t
t
t
c
a

Algorithm 2: SMT
input : 𝛼

output: 𝛼 , 𝛼 , 𝛽𝛼
init : 𝛷 ← 𝛼 , 𝐺𝛼 ← 𝛼 , 𝜃 = ∅

1 while true do
2 confl ← UnitPropagation(𝛷, 𝜃)
3 if !confl then
4 confl ← Evaluate(𝐺𝛼(𝜃))
5 if !confl then
6 if 𝜃 = complete then
7 𝛼 ← 𝐺𝛼(𝜃)
8 return (𝛼 , ∅, ∅)
9 𝜃 ← 𝜃

⋃ Decide()
10 else
11 if confl = Unsatisfiable then
12 𝛼 ← AnalyzeIP(confl)
13 𝛽𝛼 ← BendersCut(𝛼)
14 return (∅, 𝛼 , 𝛽𝛼)
15 else
16 Analyze(confl)
17 Backtrack(confl)

of Satisfiability (SAT) solving (Davis et al., 1962) and a first-order
logic (De Moura et al., 2007). Furthermore, concepts of Asín et al.
(2008) are used in SMT𝐴𝑔𝑔 for the discovery of infeasibility proofs.

Algorithm SMT𝐴𝑔𝑔 is an aggregation of logic Benders cuts, such that
f SMT𝐴𝑔𝑔 is invoked on a subproblem, the algorithm computes not a
ingle, but multiple logic Benders cuts. By the aggregation, the total
umber of iterations till convergence in the Benders scheme is reduced.
nside SMT𝐴𝑔𝑔 , Algorithm SMT (Algorithm 2) of Leutwiler and Corman
2022) is invoked multiple times, with different initial conditions to
iscover multiple logic Benders cuts.

In Algorithm SMT (Algorithm 2), 𝛷 are constraints of SAT used to
odel the decision and choice sets of 𝛼 . 𝛼 is an infeasibility proof

or 𝛼 used to derive the logic Benders cut 𝛽𝛼 . Algorithm 2 proceeds
y extending iteratively an initially empty selection 𝜃 through new
hoice sets 𝑊𝑐 (line 9), until the selection is complete (line 6) or an
nsatisfiable constraint has been found (line 11). Decide in line 9

selects, by some SAT heuristics, new choice sets 𝑊𝑐 to extend 𝜃. If 𝜃 is
complete selection (line 6), the algorithm returns a feasible solution

f the subproblem, derived by the disjunctive graph of the subproblem
line 7). After every extension of 𝜃 in line 9, unit propagation (Marques-
ilva and Sakallah, 1999) is performed (line 2) and 𝜃 is extended by
dditional choice sets, that are implied through the constraints in 𝛷.

If after such extension of 𝜃, a violated constraint (confl) is found
in 𝛷, such constraint is either generally unsatisfiable (line 11) and an
infeasibility proof, together with a logic Benders cut can be derived
(line 12 and 13); or the constraint can be satisfied by a different 𝜃 and
election must be adjusted by first analyzing the violated constraints
line 16) and then removing appropriate choice sets from 𝜃 (line 17).

SMT𝐴𝑔𝑔 (Algorithm 3) invokes Algorithm 2 multiple times with
ifferent master solutions imposed to the subproblem 𝛼 to generate
ultiple logic Benders cut in a single iteration of the Benders scheme.
lgorithm 3 start by applying Algorithm 2 on the subproblem 𝛼 ,
hich has imposed the latest master solution 𝛼

 (line 3). In case
lgorithm 2 discovers an infeasibility proof and a logic Benders cut,
𝛼 is modified; the master problem is extended by the cut. This means

hat the next iterations will result in a solution 𝛼
 which will satisfy

he latest discovered Benders cut 𝛽𝛼𝑖 (line 4). Algorithm 2 is reapplied to
he modified version of the subproblem  ′𝛼 to discover further Benders
uts. Eventually, Algorithm 2 in line 4 will return a feasible solution
nd Algorithm 3 terminates and returns all aggregated cuts.
13
Algorithm 3: SMT𝐴𝑔𝑔 , Benders cut aggregation scheme for a
subproblem.
input : 𝛼

output:
{

𝛽𝛼1 , 𝛽
𝛼
2 ,⋯

}

init : 𝑖 = 1,  ′𝛼 = 𝛼

1 while 𝛼 = ∅ do
2 𝛼 , 𝛼

𝑖 , 𝛽
𝛼
𝑖 ← SMT( ′𝛼)

3 if 𝛼
𝑖 ≠ ∅ then

4  ′𝛼 ← Modify( ′𝛼 , 𝛼
𝑖)

5 𝑖 ← 𝑖 + 1
6 return

{

𝛽𝛼1 , 𝛽
𝛼
2 ,⋯

}

References

Asín, R., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E., 2008. Efficient gener-
ation of unsatisfiability proofs and cores in SAT. In: Lect. Notes Comput. Sci.. In:
LNAI, vol. 5330, pp. 16–30.

Balas, E., 1998. Disjunctive programming: Properties of the convex hull of feasible
points. Discrete Appl. Math. 89 (1–3), 3–44. http://dx.doi.org/10.1016/S0166-
218X(98)00136-X.

Borndörfer, R., Klug, T., Lamorgese, L., Mannino, C., Reuther, M., Schlechte, T., 2017.
Recent success stories on integrated optimization of railway systems. Transp. Res.
C 74, 196–211.

Bretas, A., Mendes, A., Chalup, S., Jackson, M., Clement, R., Sanhueza, C., 2019. Mod-
elling railway traffic management through multi-agent systems and reinforcement
learning. In: 23rd Int. Congr. Model. Simul. - Support. Evidence-Based Decis. Mak.
Role Model. Simulation, MODSIM 2019 (December). pp. 291–297.

Cacchiani, V., Caprara, A., Galli, L., Kroon, L., Maróti, G., Toth, P., 2012. Railway
rolling stock planning: Robustness against large disruptions. Transp. Sci. 46 (2),
217–232.

Cacchiani, V., Caprara, A., Toth, P., 2008. A column generation approach to train
timetabling on a corridor. 4or 6 (2), 125–142.

Cacchiani, V., Huisman, D., Kidd, M., Kroon, L., Toth, P., Veelenturf, L., Wagenaar, J.,
2014. An overview of recovery models and algorithms for real-time railway
rescheduling. Transp. Res. B 63, 15–37.

Caimi, G., Fuchsberger, M., Laumanns, M., Lüthi, M., 2012. A model predictive control
approach for discrete-time rescheduling in complex central railway station areas.
Comput. Oper. Res. 39 (11), 2578–2593.

Corman, F., D’Ariano, A., Pacciarelli, D., Pranzo, M., 2012. Optimal inter-area
coordination of train rescheduling decisions. Transp. Res. E 48 (1), 71–88.

Corman, F., D’Ariano, A., Pacciarelli, D., Pranzo, M., 2014. Dispatching and co-
ordination in multi-area railway traffic management. Comput. Oper. Res. 44,
146–160.

Corman, F., D’Ariano, A., Pranzo, M., Hansen, I.A., 2011. Effectiveness of dynamic
reordering and rerouting of trains in a complicated and densely occupied station
area. Transp. Plan. Technol. 34 (4), 341–362.

Corman, F., Meng, L., 2014. A review of online dynamic models and algorithms for
railway traffic management. IEEE Trans. Intell. Transp. Syst. 9 (3), 1–11.

D’Ariano, A., Hemelrijk, R., 2006. Designing a multi-agent system for cooperative train
dispatching. IFAC Proc. Vol. 12 (PART 1).

D’Ariano, A., Pacciarelli, D., Pranzo, M., 2007. A branch and bound algorithm for
scheduling trains in a railway network. European J. Oper. Res. 183 (2), 643–657.

Davis, M., Logemann, G., Loveland, D., 1962. A machine program for theorem-proving.
Commun. ACM 5, 394–397.

De Moura, L., Dutertre, B., Shankar, N., 2007. A tutorial on satisfiability modulo
theories. In: Lect. Notes Comput. Sci.. In: LNCS, vol. 4590, pp. 20–36.

Dice, L.R., 1945. Measures of the amount of ecologic association between species.
Ecology 26 (3), 297–302.

Dollevoet, T., Huisman, D., Kroon, L.G., Veelenturf, L.P., Wagenaar, J.C., 2017.
Application of an iterative framework for real-time railway rescheduling. Comput.
Oper. Res. 78, 203–217.

Ghasempour, T., Heydecker, B., 2020. Adaptive railway traffic control using
approximate dynamic programming. Transp. Res. C 113, 91–107.

Gurobi Optimization, L., 2021. Gurobi optimizer reference manual.
Keita, K., Pellegrini, P., Rodriguez, J., 2020. A three-step benders decomposition for

the real-time Railway Traffic Management Problem. J. Rail Transp. Plan. Manag.
13 (July 2019), 100170.

Lamorgese, L., Mannino, C., 2015. An exact decomposition approach for the real-time
train dispatching problem. Oper. Res. 63 (1), 48–64.

Lamorgese, L., Mannino, C., 2019. A non-compact formulation for job-shop scheduling
problems in traffic management. Oper. Res. 67 (6), 1503–1782.

Lamorgese, L., Mannino, C., Piacentini, M., 2016. Optimal train dispatching by
Benders’-Like reformulation. Transp. Sci. 50 (3), 910–925.

Leutwiler, F., Corman, F., 2022. A logic-based benders decomposition for microscopic
railway timetable planning. European J. Oper. Res. 303 (2), 525–540.

http://refhub.elsevier.com/S0305-0548(22)00305-7/sb1
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb1
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb1
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb1
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb1
http://dx.doi.org/10.1016/S0166-218X(98)00136-X
http://dx.doi.org/10.1016/S0166-218X(98)00136-X
http://dx.doi.org/10.1016/S0166-218X(98)00136-X
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb3
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb3
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb3
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb3
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb3
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb4
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb4
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb4
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb4
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb4
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb4
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb4
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb5
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb5
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb5
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb5
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb5
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb6
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb6
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb6
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb7
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb7
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb7
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb7
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb7
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb8
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb8
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb8
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb8
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb8
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb9
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb9
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb9
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb10
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb10
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb10
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb10
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb10
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb11
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb11
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb11
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb11
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb11
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb12
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb12
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb12
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb13
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb13
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb13
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb14
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb14
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb14
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb15
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb15
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb15
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb16
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb16
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb16
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb17
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb17
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb17
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb18
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb18
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb18
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb18
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb18
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb19
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb19
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb19
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb20
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb21
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb21
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb21
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb21
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb21
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb22
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb22
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb22
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb23
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb23
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb23
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb24
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb24
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb24
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb25
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb25
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb25

Computers and Operations Research 150 (2023) 106075F. Leutwiler et al.
Liu, J., Chen, L., Roberts, C., Li, Z., Wen, T., 2019. A multi-agent based approach for
railway traffic management problems. In: 2018 Int. Conf. Intell. Rail Transp. ICIRT
2018. IEEE.

Luan, X., De Schutter, B., Meng, L., Corman, F., 2020. Decomposition and distributed
optimization of real-time traffic management for large-scale railway networks.
Transp. Res. B 141, 72–97.

Marques-Silva, J.P., Sakallah, K.A., 1999. GRASP: A search algorithm for propositional
satisfiability. IEEE Trans. Comput. 48 (5), 506–521.

Mascis, A., Pacciarelli, D., 2002. Job-shop scheduling with blocking and no-wait
constraints. European J. Oper. Res. 143 (3), 498–517.

Pellegrini, P., Marlière, G., Pesenti, R., Rodriguez, J., 2015. RECIFE-MILP: An effective
MILP-based heuristic for the real-time railway traffic management problem. IEEE
Trans. Intell. Transp. Syst. 16 (5), 2609–2619.
14
Perrachon, Q., Chevrier, R., Pellegrini, P., 2020. Experimental study on the viability of
decentralized railway traffic management. WIT Trans. Built Environ. 199, 337–344.

Samà, M., D’Ariano, A., Corman, F., Pacciarelli, D., 2017. A variable neighbourhood
search for fast train scheduling and routing during disturbed railway traffic
situations. Comput. Oper. Res. 78, 480–499.

Van Thielen, S., Corman, F., Vansteenwegen, P., 2018. Considering a dynamic impact
zone for real-time railway traffic management. Transp. Res. Part B Methodol. 111,
39–59.

Veelenturf, L.P., Kidd, M.P., Cacchiani, V., Kroon, L.G., Toth, P., 2016. A railway
timetable rescheduling approach for handling large-scale disruptions. Transp. Sci.
50 (3), 841–862.

http://refhub.elsevier.com/S0305-0548(22)00305-7/sb26
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb26
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb26
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb26
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb26
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb27
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb27
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb27
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb27
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb27
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb28
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb28
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb28
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb29
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb29
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb29
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb30
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb30
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb30
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb30
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb30
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb31
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb31
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb31
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb32
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb32
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb32
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb32
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb32
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb33
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb33
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb33
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb33
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb33
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb34
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb34
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb34
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb34
http://refhub.elsevier.com/S0305-0548(22)00305-7/sb34

