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A B S T R A C T

Reinforcement Learning (RL) has advanced the state-of-the-art in many
applications in the last decade. The root of its success stems from having
access to high-quality simulators, controlled environments, and massive
compute power. Nonetheless, when the goal is to apply RL algorithms
to real-world problems, many challenges remain unanswered. This dis-
sertation focuses on three of them: data efficiency, robustness, and safety.
On the one hand, practical algorithms that address these issues lack theo-
retical guarantees. On the other hand, theoretically-sound algorithms are
impractical. This thesis aims to develop algorithms that achieve the best
of both worlds. Namely, we propose theoretically-sound algorithms that can
be scaled using state-of-the-art neural networks and are easy to implement.
We take a model-based approach and learn models distinguishing between
aleatoric and epistemic uncertainty. The former is uncertainty inherent to the
system, such as sensor noise. In contrast, the latter stems from data scarcity,
decreasing as we collect more data and expand our knowledge about the
environment.

It is well-known that one needs to plan using epistemic uncertainty to
achieve data-efficient exploration, robustness, and safety. Unfortunately, the
algorithms that do so are impractical as they require optimizing over the
set of plausible models. We reparameterize the set of plausible models to
overcome this limitation. In particular, we add a hallucinating control policy
that directly acts on the model’s outputs and has as much authority as the
epistemic uncertainty that the model affords. The reparameterization in-
creases the action dimensions but reduces the intractable planning problem
to one that standard RL algorithms can handle.

We first consider the problem of data-efficient exploration. In this setting,
the objective is to find an optimal policy with few interactions with the envi-
ronment. A theoretical approach to solve this problem is through optimism:
an agent plans a policy using the most optimistic dynamics over the set
of plausible models. Unfortunately, this requires jointly optimizing policies
and dynamics, which is intractable. We propose the Hallucinated Upper
Confidence RL (H-UCRL) algorithm. By augmenting the input space with
the hallucinated inputs, we solve H-UCRL using standard planners. Hence,
H-UCRL is practical while retaining its theoretical guarantees. In particular,
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we show that H-UCRL attains near-optimal sample complexity guarantees,
and we apply it to large-scale environments.

RL agents frequently encounter situations not present during training
time in real-world tasks. The RL agents must exhibit robustness against worst-
case situations to ensure reliable performance. The robust RL framework
addresses this challenge via a worst-case optimization between an agent and
an adversary. Previous robust RL algorithms are either sample inefficient,
lack robustness guarantees, or do not scale to larger problems. We propose
the Robust Hallucinated Upper-Confidence RL (RH-UCRL) algorithm to
solve this problem provably. RH-UCRL combines optimism with pessimism
when planning with the model to output a robust policy. Experimentally, we
demonstrate that RH-UCRL outperforms other robust deep RL algorithms
in various adversarial environments.

Finally, we address the problem of constraint satisfaction in RL. This
challenge is crucial for the safe deployment of RL agents in real-world en-
vironments. We develop confidence-based safety filters, a control-theoretic
approach for certifying state safety constraints for nominal policies learned
via standard RL techniques. We reformulate state constraints in terms of cost
functions to reduce safety verification to a standard RL task. The central idea
of the safety filter is to filter the actions of the policy to ensure constraint
satisfaction. The safety filter executes a backup policy when we cannot verify
that the constraints are satisfied. This backup policy is assumed in most
works, but we leverage the hallucinating inputs and learn the backup policy by
solving a robust RL problem. We provide formal safety guarantees for the
safety filter and empirically demonstrate the effectiveness of our approach.
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Z U S A M M E N FA S S U N G

Das Verstärkungslernen (VL) hat in den letzten zehn Jahren in vielen An-
wendungen den Stand der Technik vorangebracht. Die Grundlage seines
Erfolgs liegt im Zugang zu sehr guten Simulatoren, kontrollierten Umge-
bungen und massiver Rechenleistung. Wenn es jedoch darum geht, VL-
Algorithmen auf reale Probleme anzuwenden, bleiben viele Herausforde-
rungen unbeantwortet. Diese Dissertation konzentriert sich auf drei davon:
Dateneffizienz, Robustheit und Sicherheit. Einerseits fehlt es praktischen
Algorithmen, die sich mit diesen Problemen befassen, an theoretischen Ga-
rantien. Andererseits sind theoretisch fundierte Algorithmen unpraktisch.
Ziel dieser Arbeit ist es, Algorithmen zu entwickeln, die das Beste von
beidem erreichen. Wir schlagen nämlich theoretisch fundierte Algorithmen
vor, die mit modernsten neuronalen Netzen skaliert werden können und
einfach zu implementieren sind. Wir gehen modellbasiert vor und lernen
Modelle kennen, die zwischen aleatorischer und epistemischer Unsicherheit
unterscheiden. Ersteres ist dem System innewohnende Unsicherheit, wie z.
B. Sensorrauschen. Letzteres ist hingegen auf Datenknappheit zurückzu-
führen und nimmt ab, wenn wir mehr Daten sammeln und unser Wissen
über die Umwelt erweitern.

Es ist bekannt, dass man epistemischer Unsicherheit modellieren muss,
um eine dateneffiziente Exploration, Robustheit und Sicherheit zu erreichen.
Leider sind die Algorithmen, die dies tun, unpraktisch, da sie eine Opti-
mierung über alle plausibler Modelle erfordern. Wir schlagen daher eine
Reparameterisierung aller plausiblen Modelle vor, um diese Einschränkung
zu überwinden. Insbesondere nutzen wir eine “halluzinierende” Kontroll-
regel, die direkt auf die Ergebnisse des Modells wirkt und so viel Gewicht
hat wie die epistemische Unsicherheit des Modells vorsieht. Insbesondere
fügen wir eine halluzinierende Kontrollpolitik hinzu, die direkt auf die
Ergebnisse des Modells wirkt und so viel Autorität hat wie die epistemische
Unsicherheit, die das Modell bietet.

Wir betrachten zuerst das Problem der dateneffizienten Exploration. In
diesem Umfeld ist das Ziel, eine optimale Regel mit wenigen Wechselwir-
kungen mit der Umwelt zu finden. Ein theoretischer Ansatz zur Lösung
dieses Problems ist Optimismus: Ein Agent plant eine Richtlinie unter Ver-
wendung der optimistischsten Dynamik gegenüber aller plausibler Modelle.
Leider erfordert dies die gemeinsame Optimierung von Regeln und Dy-
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namiken, was unlösbar ist. Deshalb schlagen wir den Hallucinated Upper
Confidence RL (H-UCRL)-Algorithmus vor. Wir erweitern den Eingabe-
raum mit den halluzinierten Eingaben, und ermöglichen so, die Lösung von
H-UCRL unter Verwendung von Standardplanern. Das macht ist H-UCRL
praktisch, während es seine theoretischen Garantien behält. Insbesondere
zeigen wir, dass H-UCRL nahezu optimale Stichprobenkomplexitätsga-
rantien erreicht, und wir wenden es auf groß angelegten Umgebungen
an.

VL-Agenten begegnen häufig neuen Situationen, solchen die während der
Trainingszeit in realen Aufgaben nicht vorhanden waren. Die VL-Agenten
müssen Robustheit gegenüber ungünstigster Situationen aufweisen, um
eine zuverlässige Leistung sicherzustellen. Das robuste VL-Framework be-
gegnet dieser Herausforderung durch eine ungünstigster-Optimierung zwi-
schen einem Agenten und einem Gegner. Frühere robuste VL-Algorithmen
sind entweder probenineffizient, haben keine Robustheitsgarantien oder
lassen sich nicht auf größere Probleme skalieren. Wir schlagen den Ro-
bust Hallucinated Upper-Confidence RL (RH-UCRL) Algorithmus vor, um
dieses Problem nachweislich zu lösen. RH-UCRL kombiniert Optimismus
mit Pessimismus bei der Planung mit dem Modell, um eine robuste Re-
gel auszugeben. Experimentell zeigen wir, dass RH-UCRL andere robuste
Deep-RL-Algorithmen in verschiedenen gegnerischen Umgebungen über-
trifft.

Abschließend sprechen wir das Problem der Constraint-Erfüllung in VL
an. Diese Herausforderung ist entscheidend für den sicheren Einsatz von
VL-Agenten in realen Umgebungen. Wir entwickeln vertrauensbasierte
Sicherheitsfilter, einen kontrolltheoretischen Ansatz zur Überprüfung von
Sicherheitsbeschränkungen für nominale Regeln, die über Standard-VL-
Techniken gelernt wurden. Wir formulieren Zustandsbeschränkungen in
Bezug auf Kostenfunktionen um, um die Sicherheitsüberprüfung auf eine
Standard-VL-Aufgabe zu reduzieren. Die zentrale Idee des Sicherheitsfil-
ters besteht darin, die Aktionen der Regel zu filtern, um die Erfüllung von
Einschränkungen sicherzustellen. Der Sicherheitsfilter führt eine Sicherungs-
regel aus, wenn wir nicht überprüfen können, ob die Einschränkungen
erfüllt sind. Diese Sicherungsregel wird in den meisten Arbeiten ange-
nommen, aber wir nutzen die halluzinierenden Eingaben und lernen die
Sicherungsregel, indem wir ein robustes VL-Problem lösen. Wir stellen
formelle Sicherheitsgarantien für den Sicherheitsfilter vor und weisen die
Wirksamkeit unseres Ansatzes empirisch nach.
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1
I N T R O D U C T I O N

Information is the resolution of uncertainty.
— Claude Shannon

Reinforcement Learning (RL) has become the state-of-the-art method
for learning optimal control strategies by directly interacting with the
environment. For example, RL algorithms surpassed human performance
in Atari videogames (Mnih et al., 2015), go and chess (Schrittwieser et al.,
2020), navigating stratospheric balloons (Bellemare et al., 2020), and even
controlling Fusion reactors (Degrave et al., 2022). These success stories rely
on a simulator to train the agents, as data collection is usually complex or
expensive in real-world environments (Dulac-Arnold et al., 2019).

Simulators are a way of doing Model-Based Reinforcement Learning
(MBRL). MBRL can solve many challenging high-dimensional tasks with
impressive sample efficiency (Chua et al., 2018). These algorithms alternate
between two phases: first, they collect data with a policy and fit a model to
the data; then, they simulate transitions with the model and optimize the
policy accordingly. A vital feature of the recent success of MBRL algorithms
is the use of models that explicitly distinguish between epistemic and aleatoric
uncertainty when learning a model (Gal, 2016). Aleatoric uncertainty is
inherent to the system (noise), whereas epistemic uncertainty arises from
data scarcity (Der Kiureghian & Ditlevsen, 2009). However, to optimize the
policy, practical algorithms marginalize both the aleatoric and epistemic
uncertainty to optimize the expected performance under the current model,
as in PILCO (M. Deisenroth & Rasmussen, 2011).

This dissertation focuses on three central challenges outlined by Dulac-
Arnold et al. (2019) when deploying Reinforcement Learning (RL) agents in
real environments: data efficiency, robustness, and safety. Consider designing a
braking system on an autonomous car as a motivating example. As the task
of breaking is highly complex, we want to learn a policy that performs this
maneuver. Testing an autonomous car is expensive; thereby, data efficiency
is critical to reducing costs. Furthermore, the car is required to break in
many weather conditions and with different laden weights; hence robustness
to these changes is required to certify the proper behavior of the braking
system. Finally, the car also needs to brake to avoid collisions, making safety
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2 introduction

constraints essential to the deployment of the car in real-life. The central
thesis of this dissertation is that an agent must plan using the models’
epistemic uncertainty when tackling the three challenges mentioned earlier.
Oppositely, marginalizing over both aleatoric and epistemic uncertainty
fails in many scenarios.

Coming back to the braking system, learning a policy requires many ex-
ploratory trials, and one arrives at the well-known exploration-exploitation
dilemma: the learning agent wants to execute a policy that has high perfor-
mance, but to achieve this goal, it has to learn about the dynamics. Trading
off these two objectives led to much research in recent years (Lattimore &
Szepesvári, 2018). While optimistic exploration is a well-known solution for
this dilemma, there is a lack of efficient, principled means of incorporating
optimism in deep MBRL. On the other hand, there are many practical
solvers for greedy exploitation of the current model. However, this algo-
rithm can cause the optimization to get stuck in local minima, e.g., the
agent might learn to brake aggressively and never explore other behaviors.
Designing an algorithm that explores different behaviors efficiently and is
compatible with deep RL is a central objective of this dissertation.

Even if various real-world conditions can be simulated during the training
time, it is infeasible to consider all possible ones, such as road conditions,
brightness, tire pressure, laden weight, or actuator wear, as these can all
vary over time in potentially unpredictable ways. The main goal is to
learn a policy that brakes to perform even if faced with new conditions
reliably. While theoretical approaches for robust RL offer sample complexity
guarantees, the existing algorithms are highly impractical. On the other
hand, empirically motivated heuristic approaches lack provable robustness.
The second objective is to develop an algorithm that outputs a provably
robust policy, and it is not limited to linear dynamics.

Unlike in simulation, safety is a critical requirement in real environments.
On the one hand, control theoretic methods consider safety through con-
straints on the system states but often severely restrict the allowed policy and
dynamical system classes; thus, control methods might fail to model the
complex behavior of the braking dynamics. On the other hand, RL methods
enjoy better performance and may be applied to non-linear systems and
policies. However, constraint violation during training cannot be excluded
in general, which often prevents the usage in real-world applications, i.e.,
RL methods need to crash the car to learn about this behavior. The third
objective is to develop an algorithm that achieves the best of both worlds by
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using a safety filter. The idea is that we can learn a policy using RL methods
and then filter the actions that the the policy suggests to ensure safety.

model-based reinforcement learning MBRL is a promising av-
enue toward applying RL methods to complex real-life decision problems
due to its sample efficiency (M. P. Deisenroth et al., 2013). For instance,
Kaiser et al. (2019) use MBRL to solve the Atari suite, whereas Kamthe &
M. Deisenroth (2018a) solve low-dimensional continuous-control problems
using GP models and Chua et al. (2018) solve high-dimensional continuous-
control problems using ensembles of probabilistic Neural Networks (NN).
All these approaches perform greedy exploitation under the current model us-
ing a variant of PILCO (M. Deisenroth & Rasmussen, 2011). Unfortunately,
greedy exploitation is provably optimal only in very limited cases such as
linear quadratic regulators (LQR) (Mania et al., 2019).

thompson sampling for efficient exploration Thompson (poste-
rior) sampling and its variants are a common approach for provable explo-
ration in reinforcement learning (Dearden et al., 1999). In particular, Osband
et al. (2013) propose Thompson sampling for tabular MDPs. Chowdhury
& Gopalan (2019) prove a Õ(

√
N) regret bound for continuous states and

actions for this theoretical algorithm, where N is the number of episodes.
However, Thompson sampling can be applied only when it is tractable to
sample from the posterior distribution over dynamical models. For example,
this is intractable for GP models with continuous domains. Moreover, Z.
Wang et al. (2018) suggest that approximate inference methods may suffer
from variance starvation and limited exploration.

optimism for efficient exploration The Optimism-in-the-Face-
of-Uncertainty (OFU) principle is a classical approach towards provable
exploration in the theory of RL. Notably, Brafman & Tennenholtz (2003)
present the R-Max algorithm for tabular MDPs, where a learner is optimistic
about the reward function and uses the expected dynamics to find a policy. R-
Max has a sample complexity of O(1/ϵ3), which translates to a sub-optimal
regret of Õ(N2/3). Jaksch et al. (2010) propose the UCRL algorithm that
is optimistic on the transition dynamics and achieves an optimal Õ(

√
N)

regret rate for tabular MDPs. Recently, Zanette & Brunskill (2019), Efroni et
al. (2019), and Domingues et al. (2020) provide refined UCRL algorithms for
tabular MDPs. When the number of states and actions increase, these tabular
algorithms are inefficient and practical algorithms must exploit the structure
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of the problem. However, the use of optimism in continuous state/action
MDPs is much less explored. Jin et al. (2019) present an optimistic algorithm
for linear MDPs and Abbasi-Yadkori & Szepesvári (2011) for linear quadratic
regulators (LQR), both achieving Õ(

√
N) regret. Finally, Luo et al. (2018)

propose a trust-region UCRL meta-algorithm that asymptotically finds an
optimal policy, but it is intractable to implement.

Perhaps most closely related to the optimistic algorithm proposed in
Chapter 3, Chowdhury & Gopalan (2019) present GP-UCRL for continuous
state and action spaces. They use optimistic exploration for the policy op-
timization step with dynamical models that lie in a Reproducing Kernel
Hilbert Space (RKHS). However, as mentioned by Chowdhury & Gopalan
(2019), their algorithm is intractable to implement and cannot be used in
practice. Instead, we build on an implementable but expensive strategy
that was heuristically suggested by Moldovan et al. (2015) for planning on
deterministic systems and develop a principled and highly efficient opti-
mistic exploration approach for deep MBRL. Kakade et al. (2020) build tight
confidence intervals based on information theoretical quantities. However,
they assume an optimization oracle and do not provide a practical imple-
mentation (their experiments use Thompson sampling). Furthermore, in
their experiments, Thompson Sampling fails unless strong priors are placed
on the model classes. Ayoub et al. (2020) use value-targeted regression to
learn a linear combination of tabular models and propose an efficient UCRL
algorithm. Abeille & Lazaric (2020) propose an algorithm in the context of
LQR and prove that the planning problem can be solved efficiently. In the
same spirit, Neu & Pike-Burke (2020) reduce intractable optimistic explo-
ration to greedy planning using well-selected reward bonuses under strong
modeling assumptions. In particular, they prove an equivalence between
optimistic reinforcement learning and exploration bonus (Azar et al., 2017)
for tabular and linear MDPs. How to generalize these exploration bonuses
with neural network models is left for future work.

robust reinforcement learning Robust RL (Iyengar, 2005; Nilim
& El Ghaoui, 2005; Wiesemann et al., 2013) typically uses the Zero-Sum
Markov Games formalism introduced by Littman (1994) and Littman &
Szepesvári (1996). From a control engineering perspective, this is known
as H∞ control (Başar & Bernhard, 2008), and Bemporad et al. (2003) solve
this problem for known linear systems where the optimal robust policy is
an affine function of the state. For Markov Games with unknown systems,
Lagoudakis & Parr (2002) introduce approximate value iteration whereas
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Tamar et al. (2014) and Perolat et al. (2015) present an approximate policy
iteration scheme. Although these works present error propagation schemes
restricted to the linear setting, they do not address the problem of explo-
ration explicitly and instead assume access to a sampling distribution that
has sufficient state coverage. Zhang et al. (2020) propose a model-based algo-
rithm for finding robust policies assuming access to a simulator that is able
to sample at arbitrary state-action pairs. Finally, Bai & Jin (2020) recently in-
troduce an algorithm that provably and efficiently outputs a policy, but it is
limited to the tabular setting. In Chapter 4, we introduce RH-UCRL for this
setting. Our approach does not require a generative model and considers
the full exploration problem in a finite horizon scenario. Furthermore, our
algorithm does not require tabular nor linear function approximation, and
it is compatible with deep neural network dynamical models. In the bandit
literature, Bogunovic et al. (2018) introduce Stable-OPT, that generalizes
the famous GP-UCB algorithm (Srinivas et al., 2010) to the robust setting by
combining pessimism with optimism. RH-UCRL uses similar ideas but in
the RL setting.

minimax optimization algorithms To solve robust RL problems,
one needs to solve a minimax optimization algorithm. Pinto et al. (2017)
propose to solve the minimax optimization via a stochastic gradient descent
approach for both players for adversarial-robust RL algorithms. Tessler et al.
(2019) introduce action-robust RL and policy and value iteration algorithms
to solve these problems. Rajeswaran et al. (2017) introduce the EPOpt to
solve parameter-robust problems. Finally, Kamalaruban et al. (2020) propose
to use a Stochastic-Gradient Langevin Dynamics algorithm to solve such
problems via sampling instead of optimization. These algorithms are gener-
ally sample-inefficient as they do not explicitly explore, but, given a model,
they could be used to optimize a policy.

constrained markov decision processes Due to this high rele-
vance of safety in reinforcement learning, it has been the focus of a variety
of recent approaches (see (García & Fernández, 2015; Brunke et al., 2021)
for surveys). A common framework for safe reinforcement learning is con-
strained Markov decision processes (CMDP) (Altman, 1999). In the CMDP
setting, constraints are posed on the expected cumulative cost along roll-
outs of a policy. This allows treating the cumulative cost analogously to
rewards. Using this method, Achiam et al. (2017) adapt trust region policy
optimization to maintain constraint satisfaction when initialized with a
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safe policy. When no initially safe policy is known, Paternain et al. (2019)
show that a Lagrangian relaxation asymptotically finds safe policies. Ding
et al., 2021 prove that this representation of the constrained optimization
problem can also be combined with techniques such as UCRL to guarantee
sublinear learning rates for linear CMDPs. However, constraint violation
during training cannot be excluded in general, which often prevents its
usage in real-world applications. Control theoretic methods consider safety
through constraints on the system states but often severely restrict the
allowed policy and system classes. For example, Dean et al. (2019) prove
that linear quadratic regulators can be learned efficiently under polytopic
constraints on the system states. The limitation to linear dynamics can be
relaxed in the case of deterministic systems by employing model predictive
control (MPC) techniques, such that the performance can be iteratively
increased as shown by Rosolia & Borrelli (2018). Berkenkamp et al. (2017)
learn Lyapunov stability regions using GP dynamics but assume access to a
simulator. Koller et al. (2018) extends such work and combine MPC with
reinforcement learning to allow active safe exploration.

safety filters To achieve the beneficial properties of both control
theory and reinforcement learning approaches, Fisac et al. (2019) propose to
employ reinforcement learning for finding the optimal policy, while in a
second step a control method is used to certify the safety and, if necessary,
adapt the applied action. We refer this two-step process as a safety filter.
For example, Taylor et al. (2019) use control barrier functions to adapt the
actions and (Bastani, 2021) use a "backup" policy, which is locally safe in
some region of the state space While designing control barrier functions
is challenging in general, determining locally safe policies often requires
solving computationally expensive optimization problems on-line Bastani,
2021 or can only be applied to linearized systems Wabersich et al., 2021.
Therefore, the practical applicability of such safety filters in combination
with highly flexible RL techniques is currently limited. In Chapter 5, we
introduce H-UCSF, a safety filter algorithm that can be applied with non-
linear dynamics and only requires a 1-step online optimization procedure.

1.1 contributions

In this dissertation, we focus on three central challenges when deploying
Reinforcement Learning (RL) agents in real environments: data efficiency,
robustness, and safety (Dulac-Arnold et al., 2019). In particular, we show
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that using the epistemic uncertainty that the agent has about the dynamics
when optimizing a policy is crucial for the success of these agents.

Chapter 2 presents the main definitions of Model-Based Reinforcement
Learning (MBRL). We present the model-learning aspects that we use in this
dissertation and the policy optimization algorithms. The key contribution in
this chapter is the concept of a hallucinating policy. The hallucinating policy
is a method that reparameterizes the set of plausible models, similar to the
famous reparameterization trick but over functions. Using this reparameter-
ization trick, we reduce the problem of optimizing over the dynamics in a
set of models to optimizing over a policy, where standard RL algorithms
can be used. In particular, this trick enables the practical implementation of
all the subsequent algorithms presented in this thesis.

In Chapter 3, we introduce Hallucinated-UCRL (H-UCRL), a novel opti-
mistic MBRL algorithm, which can be applied together with state-of-the-art
RL algorithms. In particular, we augment the control space of the agent
with hallucinated control actions that directly control the agent’s epistemic un-
certainty about the 1-step ahead transition dynamics. We provide a general
theoretical analysis for H-UCRL and prove sublinear regret bounds for the
particular case of Gaussian Process (GP) dynamics models. Our key idea
is to reduce optimistic exploration to greedy exploitation by reparameterizing
the model space using the reparameterization trick introduced in the previ-
ous chapter. Finally, we evaluate H-UCRL in high-dimensional continuous
control tasks that shed light on when optimistic exploration outperforms
greedy exploitation and Thompson sampling. To the best of our knowledge,
this is the first approach that successfully implements optimistic exploration
with deep-MBRL.

In Chapter 4, we design Robust Hallucinated-UCRL (RH-UCRL), the first
practical provably robust RL algorithm that is: (i) sample-efficient, (ii) compat-
ible with deep models, and (iii) simulator-free as it addresses exploration on
a real system. We establish rigorous general sample-complexity and regret
guarantees for our algorithm, and we specialize them to Gaussian Process
models, hence obtaining sublinear robust regret guarantees. A key algo-
rithmic principle behind RH-UCRL is hallucination: In particular, the agent
hallucinates an additional control input to maximize an optimistic estimate
of the robust performance whereas the adversary hallucinates an additional
control input to minimize a pessimistic estimate of the robust performance.
The amount of “hallucination” is limited by the epistemic uncertainty of the
model and it decreases as the learning algorithm collects more data. While
previous robust RL works have focused on different individual settings,
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we gather and summarize them all for the first time, and show particular
instantiations of our algorithm in each of them: Adversarial-robust RL,
Action-robust RL, and Parameter-robust RL. Finally, we provide experi-
ments that include different environments and settings, and we empirically
demonstrate that RH-UCRL outperforms or successfully competes with the
state-of-the-art deep robust RL algorithms and other baselines.

In Chapter 5, we propose Hallucinating Upper Confidence Safety Filters
(H-UCSF) for ensuring the safety of arbitrary policies applied to stochastic,
nonlinear systems for which merely a model with high probability error
bounds is known. To this end, we first establish a relationship between state
constraints and level sets of value functions. Next, we show that these value
functions can be efficiently estimated with standard reinforcement learning
methods by optimizing the hallucinating policy. Our approach can be
naturally extended to finding safe policies, by formulating it as a robust
reinforcement learning problem. These safe policies can then be used for
computationally efficient online safety adaptation of arbitrary reinforcement
learning policies. We demonstrate the effectiveness of the proposed method
on deep RL benchmark tasks.

1.1.1 Publications and Collaborators

This dissertation is, to large parts, based on the following publications and
technical reports:

• Curi, S., Berkenkamp, F., & Krause, A. Efficient model-based reinforce-
ment learning through optimistic policy search and planning in Advances in
Neural Information Processing Systems (NeurIPS) (2020).

• Curi, S., Bogunovic, I., & Krause, A. Combining Pessimism with Opti-
mism for Robust and Efficient Model-Based Deep Reinforcement Learning
in International Conference on Machine Learning (ICML) (2021).

• Curi, S., Lederer, A., Hirche, S., & Krause, A. Safe Reinforcement Learn-
ing via Confidence-based Filters in IEEE 61th Annual Conference on Deci-
sion and Control (CDC) (2022).

further publications The following publications of the author and
collaborators are more broadly relevant to the topic of this thesis but have
not been directly included. The first set of papers investigates practical ques-
tions in model learning aspects that we present in Chapter 2. In particular,
we develop in these papers algorithms for learning well-calibrated models
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in partially observable systems with non-linear dynamics, and learning in
unstable linear dynamical systems from a single trajectory, respectively:

• Curi, S., Melchior, S., Berkenkamp, F, & Krause, A. Structured Vari-
ational Inference in Partially Observable Unstable Gaussian Process State
Space Models in Learning for Dynamics and Control (L4DC) (2020).

• Treven, L., Curi, S., Mutnỳ, M, & Krause, A. Learning stabilizing con-
trollers for unstable linear quadratic regulators from a single trajectory in
Learning for Dynamics and Control (L4DC) (2021).

In the second set of publications, we focused on practical aspects re-
lated to this thesis, including risk-averse decision making, learning-from-
observations, learning from logged data, safe-exploration, provably effi-
cient policy-optimization methods, and practical algorithms for constrained
markov decission processes.

• Curi, S., Levy, K. Y., & Krause, A. Adaptive Input Estimation in Linear
Dynamical Systems with Applications to Learning-from-Observations in
IEEE 58th Conference on Decision and Control (CDC)) (2019).

• Fiducioso, M., Curi, S., Schumacher, B., Gwerder, M, & Krause, A.
Safe contextual Bayesian optimization for sustainable room temperature PID
control tuning in International Joint Conference on Artificial Intelligence
(AAAI) (2019).

• Curi, S., Levy, K. Y., Jegelka, S., & Krause, A. Adaptive sampling for
stochastic risk-averse learning in Advances in Neural Information Processing
Systems (NeurIPS) (2020).

• Urpí, N., Curi, S., & Krause, A. Risk-Averse Offline Reinforcement Learn-
ing in International Conference on Learning Representations (ICLR) (2021).

• Bas-Serrano, J., Curi, S. Krause, A., & Neu, G. Logistic Q-learning in
International Conference on Artificial Intelligence and Statistics (AISTATS)
(2021).

• As, Y., Usmanova, I., Curi, S., & Krause, A. Constrained Policy Optimiza-
tion via Bayesian World Models in International Conference on Learning
Representations (ICLR) (2022).
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1.1.2 Code Release

Throughout this dissertation, we developed code associated with all publica-
tions. The main library developed is RL-Lib, hosted in https://github.com/

sebascuri/rllib. RL-Lib is a pytorch-based (Paszke et al., 2017) library with
over 40 model-based and model-free algorithms implemented. Compared
with other libraries, the main advantage is its ease of use and speed for pro-
totyping new agents. Furthermore, it is one of the only open-source libraries
with model-based implementations. For Chapter 3, we released https:

//github.com/sebascuri/hucrl, that is based on RL-Lib. Building upon
these works, we released https://github.com/sebascuri/rhucrl with the
algorithms and experiments in Chapter 4. Finally, the experiments and algo-
rithms of Chapter 5 are hosted in https://github.com/sebascuri/saferl.

https://github.com/sebascuri/rllib
https://github.com/sebascuri/rllib
https://github.com/sebascuri/hucrl
https://github.com/sebascuri/hucrl
https://github.com/sebascuri/rhucrl
https://github.com/sebascuri/saferl


2
B A C K G R O U N D

All models are wrong, but some are useful.
— George Box

In this chapter, we introduce the necessary background for this thesis. In
Section 2.1, we present the basic notions and definitions used in the thesis,
particularly the notion of Model-Based Reinforcement Learning (MBRL). In
Section 2.2, we introduce the modelling techniques used in the thesis and
prove basic properties of such models. Finally, in Section 2.3, we describe the
model-based policy learning algorithms used in the thesis. All the papers
in this dissertation use the notions developed in this chapter. In particular,
many of the proofs in this chapter already appear in Berkenkamp (2019),
Curi et al. (2020a), and Curi et al. (2021).

2.1 model-based reinforcement learning

dynamics We consider a stochastic environment with states s ∈ S ⊆
Rds , actions a ∈ A ⊂ Rda within a compact set A, and i.i.d., additive
transition noise ωh ∈ Rds . The resulting transition dynamics are

sh+1 = f (sh, ah) + ωh (2.1)

with f : S ×A → S .
We make the following assumptions throughout the dissertation.

Assumption 1 (System Lipschitz Continuity). The dynamics f in Equa-
tion (2.1) are L f -Lipschitz continuous.

Assumption 2 (Noise is σ-sub-Gaussian.). For all h ∈ {0, . . . , H − 1}, the
individual entries of the noise vector ωh are i.i.d. σ-sub-Gaussian and zero-
mean, i.e., Eω[ω] = 0.

Assumption 3 (State Observation). The state s is measured directly without
observation noise.

For the sake of notational simplicity, we refer to z := (s, a) as the concate-
nated state-action vector and Z := S ×A as the state-action space.

11
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policy In this thesis, we use Markovian stationary policies, that are
mappings from states to distributions over actions π : S → ∆(A). For
deterministic policies, the distribution is simply the δ-dirac distirbution at
the policy output.

Assumption 4 (Lipschitz continuity of policy). Any policy π ∈ Π is Lπ-
Lipschitz continuous.

This assumption is satisfied as we are able to choose the policy class Π
that we want to optimize. In particular, we choose the class of Lπ-Lipschitz
continuous functions.

performance At every timestep, the agent receives a reward that
depends on the current state and action. In the reinforcement learning
literature there are many ways of formalizing the agent objective (Puterman,
2014). In this thesis, we consider the undiscounted finite-horizon objective
and the discounted infinite-horizon discounted objective.

For any dynamical model f̃ : S ×A → S (e.g., the true dynamics f in
eq. (2.1)), the undiscounted finite-horizon performance of a policy π is the
total reward collected during an episode in expectation,

J( f̃ , π) = Eτ f̃ ,π

[
H

∑
h=0

r(s̃h, π(s̃h))

]
, (2.2a)

s.t. s̃h+1 = f̃ (s̃h, π(s̃h)) + ω̃h, (2.2b)

s̃0 ∼ ν0, (2.2c)

where τ f̃ ,π = {(sh−1, ah−1), sh}H
h=0 is a random trajectory induced by the

stochastic noise ω̃, the dynamics f̃ , the policy π, and the initial state
distribution ν0.

Likewise, the discounted infinite-horizon performance is

J( f̃ , π) = Eτ f̃ ,π

[
∞

∑
h=0

γhr(s̃h, π(s̃h))

]
, (2.3a)

s.t. s̃h+1 = f̃ (s̃h, π(s̃h)) + ω̃h, (2.3b)

s̃0 ∼ ν0. (2.3c)

In this dissertation, we focus on finding a policy that maximizes the
undiscounted finite-horizon performance measure (2.2) on the true unknown
dynamics f from Equation (2.1). However standard RL algorithms are
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designed to solve the discounted infinite-horizon performance measure
(2.3). This is solved by selecting the discount factor as γ = 1− 1

H (Kocsis &
Szepesvári, 2006; Browne et al., 2012; Jiang et al., 2015).

Assumption 5 (Lipschitz continuity of rewards). The reward function
r : S ×A → R is Lr-Lipschitz continuous.

Although discontinuous reward functions are natural in some goal-
reaching setting, optimizing policies for such functions is hard and a
continuous relaxation is usually used (Tassa et al., 2018).

When the reward function is unknown, the techniques developed in this
dissertation still hold. Namely, one can also learn the reward function with
the same model-learning techniques use for learning dynamical system. A
simple way of doing so is increasing the dimension of the regression target
by one, such that the model f̃ must output f̃ (s̃h, ãh) = [s̃h+1, rh].

2.1.1 Approximate Dynamic Programming

The main technique to estimate the performance (2.3) of a policy is through
(approximate) dynamic programming (Bertsekas et al., 1995; Sutton & Barto,
2018; Szepesvári, 2010; Puterman, 2014).

policy evaluation The key first quantity that we consider is the value
function of a policy π, which is defined as the expected discounted sum of
rewards starting from state s following the policy π, i.e.:

Vπ(s) = Eτf ,π

[
∞

∑
h=0

γhr(sh, ah) | s0 = s

]
(2.4a)

= Eπ [r(s0, a0)] + Eτf ,π

[
∞

∑
h=1

γhr(sh, ah) | s1 = s′
]

, (2.4b)

= Eπ [r(s0, a0)] + γEτf ,π

[
∞

∑
h=0

γhr(sh, ah) | s0 = s′
]

, (2.4c)

= Eπ [r(s, π(a))] + γEτf ,π

[
Vπ(s′)

]
. (2.4d)

Equation (2.4d) is the so called Bellman equation for policy evaluation.
The main idea in approximate dynamic programming is to learn the

function Vπ . When the dynamics f is known, this problem reduces to value
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evaluation (Sutton & Barto, 2018; Bertsekas et al., 1995). When the dynamics
f is unknown, commonly a parametric approximation of Vπ(·; ϑ) is used.

To learn the parameters ϑ, the empirical loss function loss function

L(ϑ) = Es∼P[s][d(V
π(s; ϑ), ŷ)], (2.5)

is minimized, where d is a distance metric such as the l2 distance, P[s] is
a probability distribution over states, and ŷ is a regression target that is
computed from data. For example, ŷ could be a a Monte-Carlo estimation
of the value in Equation (2.4a). However, it is more common to use the
TD-learning algorithm (Tesauro, 1994), which uses the Bellman equation
as the regression target and bootstraps the value of the next state, i.e.
ŷ = r + Vπ(s′; ϑ′), where ϑ′ is a copy of the current parameters. Munos &
Szepesvári (2008) analyze the sample complexity rates of this algorithm. The
missing component is to specify the state distribution P[s] in the learning
loss (2.5). When the states are sampled from the dynamics using the policy
π, then the expectation is replaced by a sum and the targets are called
on-policy. When the states are sampled from another distribution these are
called off-policy and many techniques exist to correct for biases in the target
estimation (Munos et al., 2016).

The second quantity of interest is the Q-function of a policy π, which is
defined as the expected discounted sum of rewards starting from state s
and action a, and following the policy π thereafter, i.e.:

Qπ(s, a) = Eτf ,π

[
∞

∑
h=0

γhr(sh, ah) | s0 = s, a0 = a

]
(2.6a)

= r(s0, a0) + Eτf ,π

[
∞

∑
h=1

γhr(s, a) | s1 = s′
]

, (2.6b)

= r(s0, a0) + γEτf ,π

[
∞

∑
h=0

γhr(sh, ah) | s0 = s′
]

, (2.6c)

= r(s0, a0) + γEτf ,π

[
Vπ(s′)

]
. (2.6d)

The Q-function has similar properties to the value function, in particular the
Bellman property (2.6d). Thus, the techniques for for learning parametric
Q-functions Qπ(·; ϑ) are similar to value function learning.



2.1 model-based reinforcement learning 15

policy improvement The optimal policy π∗, the optimal value func-
tion V∗ = Vπ∗ , and the optimal Q-function Q∗ = Qπ∗ satisfy the Bellman
optimality principle (Sutton & Barto, 2018):

Q∗(s, a) = r(s, a) + max
a′

Q∗(s′, a′) (2.7a)

V∗(s) = max
a

Q∗(s, a). (2.7b)

SARSA (Rummery & Niranjan, 1994) and Q-Learning (Watkins & Dayan,
1992) are algorithms that directly aim to learn Q∗(·; ϑ) using on-policy or
off-policy samples, respectively. The main idea is that they use the loss
function (2.5) with target ŷ = r(s, a) + maxa′ Q∗(s′, a′; ϑ′). However, these
algorithms require to solve maxa′ Q∗(s′, a′) when computing the td-targets.
When the action space is large, this optimization is intractable. Furthermore,
as the Q-function is learned, the value of Q(s′, a′) can be arbitrarily wrong
for state-action pairs with no visitation, leading to maximization biases
(Van Hasselt et al., 2016)

Instead, one could hope to improve a parametric policy π(·; θ) in an
incremental fashion leveraging the policy evaluation step. In particular,
Q-functions satisfy Eπ [Q]π(s, a) = Vπ(s). Hence, if there are actions in
which Qπ(s, a) > Vπ(s), then executing the action a at state s has higher
expected returns than executing the action predicted by the policy π. The
vanilla policy improvement equation is:

max
θ

Es∼P[s],a∼π [Q
π(s, a)]. (2.8)

Where the goal is to optimize the policy parameters θ to maximize the
estimate of the value function. REINFORCE (R. J. Williams, 1992) is an
on-policy algorithm that estimates Qπ(s, a) with an on-policy Monte Carlo
estimate and uses score-function gradient estimation (Mohamed et al., 2019)
to improve θ. The Policy Gradient algorithm by Sutton et al. (1999) also
use the same score-function gradient estimation, but uses a Qπ function
that is learned with td-learning. To reduce variance in the gradients, the
advantage Aπ(s, a) = Qπ(s, a)−Vπ(a) is used and the reader is referred to
Schulman et al. (2015c) for advanced techniques on learning the advantage.
CPI (Kakade & Langford, 2002) and TRPO (Schulman et al., 2015a) use
the same ideas but introduce a regularization term that limits the policy
improvement step to increase stability in the optimization algorithm.

Another common technique is to use pathwise gradients instead of score-
function gradients (Mohamed et al., 2019) to maximize (2.8). DPG (Silver
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Algorithm 1 Learning Protocol
Inputs: True dynamics f , horizon H, initial state distribution ν0, number

of episodes N.
1: Initialize dataset D0 = ∅.
2: Initialize statistical dynamical model.
3: for Episode n = 1, 2, . . . , N do
4: Select policy πn.
5: Reset the system to s0,n ∼ ν0.
6: Rollout dynamics:
7: for Timestep h = 1, . . . , H do
8: ah−1,n = πn(sh−1,n)
9: sh,n = f (sh−1,n, ah−1,n) + ωh−1,n

10: Collect transition Dn = Dn ∪ {(sh−1,n, ah−1,n), sh,n}
11: Update statistical dynamical model with the H transitions in Dn.

et al., 2014), DDPG (Lillicrap et al., 2015), TD3 (Fujimoto et al., 2018) directly
compute the gradient through of the policy parameters through the learned
Q-function, omitting the second order term that arises from the change in
the Q-function (Degris et al., 2012). SAC (Haarnoja et al., 2018) also use such
gradient estimation and adds an entropy regularization term for increased
stability.

2.1.2 Episodic Learning Protocol

In this thesis, we consider an episodic learning protocol following Algo-
rithm 1. At the beginning of each episode n, the agent selects a policy
πn. Then, it executes such policy and collects transitions into a dataset
Dn = {(sh−1,n, ah−1,n), sh,n}H

h=1. Before the beginning of the next episode,
the agent updates the model using the data.

The main contribution of this dissertation is how to select the policy πn
in line 4 of Algorithm 1 to achieve the different objectives described in the
introduction, namely data-efficiency, robustness, and safety.

2.2 model learning

The main idea of MBRL is to use a model to simulate state trajectories
and use the simulated data to learn a policy via planning. Thus, a crucial
part of any good MBRL algorithm is the model learning component. In all
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chapters in this thesis, we use the model learning techniques described in
this section. In particular, we present Gaussian Process (GP) and Neural
Network (NN) models. GP models are better understood and we can prove
properties such as calibration, concentration, and learning complexity rates.
NN models are less understood but have better performance in large-scale
settings.

The rest of the section reads as follows. In Section 2.2.1, we describe how
we parameterize the models for the dynamics (2.1) using mean and variance
functions. In Section 2.2.2, we introduce the notion of model complexity that
we use throughout the dissertation. In Section 2.2.3, we instantiate these
functions using GP models and prove various properties of these kinds of
models. Next, we also instantiate these functions using NN models and
describe the training and calibration procedures. Finally, in Section 2.2.5, we
reparameterize the set of plausible models and introduce the key concept
of hallucination.

2.2.1 Model Parameterization

Throughout this disseration, we use statistical estimation to probabilistically
reason about dynamical models f̃ that are compatible with the observed

data D1:n =
{

τf ,πn′

}n

n′=1
. This can be done, e.g., by frequentist estimation

of mean µn(z) and confidence Σn(z) estimators, or by taking a Bayesian
perspective and considering the posterior distribution F over dynamical
models that leads to µn(z) = E f̃∼F

[
f̃ (z)

]
and Σn(z) = Var f̃∼F

[
f̃ (z)

]
.

aleatoric vs . epistemic uncertainty Either using a frequentist
or a Bayesian perspective, we learn a model parameterized with a mean
prediction µ, epistemic uncertainty Σ, and aleatoric uncertainty υ. We show
an illustration of our model in Figure 2.1. We distinguish aleatoric and
epistemic uncertainty following Der Kiureghian & Ditlevsen (2009). On
one hand, aleatoric uncertainty is inherent to the system (noise) and is
used to model, for instance, sensor or actuator noise ω in the transition
dynamics (2.1). This is captured in the model by υ. Following Assumption 2

we parameterize the aleatoric uncertainty using a normal distribution
N (0, υ2), but we use υ to refer to this distribution. This uncertainty is
irreducible: if we were to repeat the experiment any number of times, we
will get different results and we are not able to decrease the uncertainty
about the next state. On the other hand, epistemic uncertainty arises from
data scarcity and models the uncertainty that the agent has about the
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Figure 2.1: Illustration of the model used in this dissertation. We show the true
dynamics that generates data in a solid light blue line and the noisy
data points collected by the agent with light blue stars. In dashed red,
we plot the mean predictions µ of our model. We shade in orange
the epistemic uncertainty σ and in gray the aleatoric uncertainty υ.
Where there is more data the epistemic uncertainty contracts. The
aleatoric uncertainty is constant throughout the domain as we con-
sider homoscedastic noise. Under Assumption 7, the true dynamics f
is contained within the orange shaded region.

transition dynamics f . This is captured by σ = diag(Σ1/2) and it represent
the uncertainty of not knowing the dynamics f a priori. This uncertainty
instead is reducible: if we were to repeat the experiment, the uncertainty
about the dynamics f reduces as we explore and collect additional data.

plausible models Given such a learned model, we define the set of
plausible models as

Mβ :=
{

f̃ s.t.
∣∣ f̃ (z)− µ(z)

∣∣ ≤ βσ(z)
}

, (2.9)

where σ = diag(Σ1/2), and β is a calibration parameter. This set of models
Mβ describe the possible dynamics f̃ that is compatible with the data
in a probabilistic sense. As β → 0, only the mean function is a plausible
model, whereas as β → ∞ the set of plausible models increases. When
the calibration parameter β, the model mean µ, and the model variance Σ

depend on the episode n, then we use the subscript n instead of β to denote
the set of plausible modelsMβn ≡Mn.
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We can use any f̃ ∈ Mβ to simulate a trajectory. In particular, given
a starting state s̃0, a policy π, and a dynamical model f̃ , the states are
propagated according to:

s̃h+1 = f̃ (z̃h) + ω̃h, (2.10)

where ãh ∼ π(s̃h) and ω̃h ∼ N (0, υ2).
As the dynamics is Lipschitz continuous due to Assumption 1, we only

consider Lipschitz continuous models, which we formalize with the follow-
ing assumption.

Assumption 6 (Continuity of model predictions). The functions µ and σ
are Lµ and Lσ Lipschitz continuous.

Common models such as GP models and NN models with Lipschitz
continuous non-linearities are Lipschitz continuous.

Finally, we make the assumption that the model predictive uncertainty
Σ is large enough in the sense that the confidence intervals that the model
induces are calibrated.

Assumption 7 (Calibrated model). The statistical model is calibrated w.r.t. f
in Equation (2.1), so that with σn(·) = diag(Σn(·)) and a non-decreasing
sequence of parameters {βn}n≥1 ∈ R>0, each depending on δ ∈ (0, 1), it
holds jointly for all n ≥ 1 and z ∈ Z that | f (z)− µn−1(z)| ≤ βnσn−1(z)
element-wise, with probability at least 1− δ.

This assumption implies that the true dynamics f ∈ Mβn for all n and
it is crucial to reason about the uncertainty: if the model is not calibrated,
then using the epistemic uncertainty of such a model will not provably guide
exploration nor ensure safety nor robustness.

In upcoming sections, we introduce two sets of model families: GP and
NN models. For dynamics with finite norm in a known RKHS space or that
are sampled from a GP prior, we can use GP models, where Assumptions 6

and 7 are satisfied under technical conditions. For NN models, we do not
have such guarantees for Assumption 7, but we can recalibrate one-step
ahead predictions (Malik et al., 2019). For NN models, Assumption 6 is
satisfied by selecting Lipschitz continuous non-linearities.

2.2.2 Model Complexity

The sample complexity rates that we analyze in this dissertation depend
on the difficulty of learning the underlying statistical model. Models that
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are easy to learn typically require fewer samples and allow algorithms to
make better decisions sooner. To express the difficulty of learning the im-
posed calibrated model class, we use the following model-based complexity
measure:

ΓN := max
D̃1:N

N

∑
n=1

∑
(z)∈D̃n

∥σn−1(z)∥2
2 (2.11)

where each D̃n ⊂ {Z}H . This quantity has a worst-case flavor as it con-
siders the data (collected during N episodes by any algorithm) that lead
to maximal total predictive uncertainty of the model. For the special case
of RKHS/GP dynamics models, we show below that this quantity can be
effectively bounded, and the bound is sublinear (in the number of episodes
N) for most commonly used kernel functions.

2.2.3 Gaussian Process Models

In this section, we formalize the setting in which the true dynamics f
in Equation (2.1) has bounded norm in a Reproducing Kernel Hilbert
Space (RKHS) induced by a continuous, symmetric positive definite kernel
function k : Z ×Z → R. We denote by K the corresponding RKHS. Having
a norm ∥ f ∥K ≤ B f for some finite B f > 0 means that the RKHS is well-
suited for capturing f (Durand et al., 2018). The same results hold in a
Bayesian setting where f is sampled from a GP f ∼ GP(·, k).

We first bound the model complexity. Next, we show that as the number
of data points increases, the set of plausible models that the GP models
induce contracts towards the true dynamics. Furthermore, we show that
the set of plausible models satisfies Assumption 7, i.e., the model is well-
calibrated. Finally, we show that the model posterior mean and covariance
functions are Lipschitz continuous.

2.2.3.1 Bounding the Model Complexity

Most of the bounds on model complexity for sequential learning of GP
models are based on regression to single dimensional targets (Srinivas et al.,
2010). However, due to the episodic nature of the problem, we follow the
batch analysis from Desautels et al. (2014) and we need to generalize it
to the RL setting, where multiple outputs are required. In particular, we
observe H transitions per episode and at the beginning of each episode we
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use the model to make decisions for other H steps. To extend to multiple
outputs a possibility is to use multi-output GP kernels (Alvarez et al.,
2012). However, we simply build ds copies of the dataset such that D1:h,i ={(

zn′ ,h, sn′ ,h+1,i
)}H−1,n

h=0,n′=1, each with nH transitions. I.e., the i-th dataset
has as covariates the state-action and as target the i-th coordinate of the
next-state. We denote the covariates zn,h ≡ (sn,h, an,h) and the targets as
yn,h,i ≡ sn′ ,h+1,i.

Finally, we build ds models as

µn(z, i) = kn(z)⊤(Kn + λI)−1y1:Hn,i, (2.12a)

kn(z, z′, i) = k(z, z′)− kn(z)⊤(Kn + λI)−1kn(z′), (2.12b)

Σn(z, i) = kn(z, z), (2.12c)

where s′1:Hn,i is the column vector of the i-th coordinate of all the next-states
in the dataset, Kn is the kernel matrix, I is the identity matrix of appropriate
dimension and we use λ = dsH. This is stronger than the λ = H from
Desautels et al. (2014), and we need this as the same data is used in all the
ds models.

Stacking together the posterior mean and variance into column vectors
we get:

µn(z) = [µn(z, 1), . . . , µn(z, ds)]
⊤ , (2.12d)

Σn(z) = [Σn(z, 1), . . . , Σn(z, ds)]
⊤ . (2.12e)

Definition 1 (Information Gain (Cover & Thomas, 1991; Srinivas et al.,
2012; Durand et al., 2018)). The information gain is the mutual informa-
tion between the true function f and a set of observations at locations
Z = {z1, . . . , zn}. Hence, it is the difference between the entropy of such
observations and the conditional entropy of the observations given function
values i.e.,

I( fZ; yZ) = H(yZ)− H(yZ| fZ), (2.13a)
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where fZ is the noise-free evaluation of f at locations Z and yZ is the noisy
observation. In the case of GP models as in Equation (2.12), the information
gain is:

I( fZ; yZ) =
1
2

n

∑
k=1

ln(1 + λ−1σ2
k−1(zk)). (2.13b)

Next, we introduce the maximum information gain, which is a parameter
that quantifies how hard the learning problem is and tightly upper bounds
the effective-dimensionality of the problem (Valko et al., 2013).

Definition 2 (Maximum Information Gain (Srinivas et al., 2012)). The maxi-
mum information gain is the maximum of the information gain, taken over
all datasets with a fixed size n, i.e.,

γn(k; Z) := max
Z⊂Z ,|Z|=n

I( fz; yz). (2.14a)

In the particular case of GP models, this reduces to:

γn( f ; Z) = max
{z1,...,zn}⊂Z

1
2

n

∑
k=1

ln(1 + λ−1σ2
k−1(zk)). (2.14b)

Srinivas et al. (2012) show that the Maximum Information Gain (MIG) is
sub-linear in the number of observations for commonly used kernels.

The main idea now is to bound the complexity measure ΓN defined in
Equation (2.11) in terms of the MIG and, for commonly used kernels, we
achieve no-regret algorithms. Towards this end, we recall two results related
to GP-models.

Lemma 1. Posterior variance bound (Chowdhury & Gopalan, 2019) Let k :
Z ×Z → R be a symmetric positive semi-definite kernel with bounded variance,
i.e., k(z, z) ≤ 1, ∀z ∈ Z and f ∼ GPZ (0, k) be a sample from the associated GP,
then for all n ≥ 1 and z ∈ Z :

σ2
n−1(z) ≤ (1 + λ−1)σ2

n(z), (2.15a)
n

∑
k=1

σ2
k−1(zk) ≤ (1 + 2λ)

n

∑
k=1

1
2

ln
[
1 + λ−1σk−1(zk)

]
= (1 + 2λ)I( fZ; yZ). (2.15b)

Proof. See Chowdhury & Gopalan (2019, Lemma 2)
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Although the left-hand-side in eq. (2.15b) has the flavor of the complexity
measure ΓN defined in Equation (2.11) it is not exactly the same as we only
update the posterior once every Hds observations. This is related to the
batch setting analyzed in Desautels et al. (2014). The next lemma bounds
the sum of posterior variances in terms of the information gain.

Lemma 2 (Complexity measure ΓN is upper bounded by MIG). Let k :
Z ×Z → R be a symmetric positive semi-definite kernel with bounded variance,
i.e., k(z, z) ≤ 1, ∀z ∈ Z and f ∼ GPZ (0, k) be a sample from the associated GP,
then for all n ≥ 1 and z ∈ Z for the GP model given in Equation (2.12) with
λ = Hds we have that:

Γn ≤ 2edsHγds Hn(k,Z) (2.16)

Proof. The proof is based on Chowdhury & Gopalan (2019, Lemma 11) and
adapted to our setting.

N

∑
n=1

∑
(s,a)∈D̃n

∥Σn−1(s, a)∥2
2 (2.17a)

=
n

∑
n′=1

H−1

∑
h=0

ds

∑
i=1

σ2
(n′−1)Hds

(zn′ ,h,i) (2.17b)

≤
n

∑
n′=1

H−1

∑
h=0

ds

∑
i=1

(1 + λ−1)dsh+i−1σ2
(n′−1)Hds+hds+i(zn′ ,h,i) (2.17c)

≤ (1 + λ−1)ds(H−1)+ds−1
n

∑
n′=1

H−1

∑
h=0

ds

∑
i=1

σ2
(n′−1)Hds+hds+i(zn′ ,h,i) (2.17d)

≤ (1 + λ−1)ds H−1(2λ + 1)I( fZ; yZ) (2.17e)

≤ 2edsHI( fZ; yZ) (2.17f)

Here, equality (2.17b) is the definition of the 2-norm; inequality (2.17c)
is due to eq. (2.15a) in Lemma 1; inequality (2.17d) is due to 1 + λ−1 ≥ 1;
inequality (2.17e) is due to eq. (2.15b) in Lemma 1; finally the last inequal-
ity (2.17f) is due to (1 + λ−1)λ ≤ e and (1 + λ−1)−1(2λ + 1) ≤ 2λ. The
statement follows by taking the maximum over data sets.

Next, we will show that, under some technical conditions, GP models are
calibrated and satisfy Assumption 7.
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2.2.3.2 Concentration of GP Models

Lemma 3. Concentration of an RKHS member (Durand et al., 2018, Theorem 1)
Given Assumption 1, ∥ f ∥K ≤ B f , and k(·, ·) ≤ 1, then for all δ ∈ [0, 1], with

probability at least 1− δ, it holds simultaneously over all z ∈ Z and n ≥ 0,

| f (z)− µn(z)| ≤
(

B f +
σ

λ

√
2 ln(1/δ) + 2γn

)
σn(z), (2.18)

where µn(z) and σn(z) are given by Equation (2.12d) and Equation (2.12e).

Thus we know that, using βn =
(

B f +
σ
λ

√
2 ln(1/δ) + 2γn

)
, Assump-

tion 7 holds for a single dimension. The extension to multiple dimen-
sions is straightforward and has been done by (Chowdhury & Gopalan,
2019, Lemma 10) and (Curi et al., 2020a, Lemma 11), using λ ← Hds and
t← nHds.

Putting together results of the previous sections, we know by Lemma 3

that, under Assumption 1 and bounded norm ∥ f ∥K, GP models satisfy
Assumption 7.

unbounded domains Most bounds on ΓH assume that the domain Z
is compact (Chowdhury & Gopalan, 2019). However, it is incompatible with
Assumption 2, which allows for potentially unbounded noise ω. While this
is a technical detail, Berkenkamp (2019, Appendix D.1) prove that, with
high-probability, the domain can be bounded within a norm-ball of radius
bn = O(LH

f Hds log(Hn2)). Thus, the model complexity ΓN only increases
by a polylog factor on N for common kernels (e.g., the squared-exponential
kernel).

2.2.3.3 Lipschitz Continuity of GP Predictions

Since the mean function is a linear combination of kernel evaluations
(features), it is easy to show that it is Lipschitz continuous if the kernel
function is Lipschitz continuous (Lederer et al., 2019). However, existing
bounds for the Lipschitz constant for the posterior standard deviation σ(·)
depend on the number of data points. As our sample complexity bounds
depend on LN

σ , this would render our regret bound superlinear and thus
meaningless.

In the following, we show that the GP standard deviation is Lipschitz-
continuous with respect to the kernel metric.
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Definition 3 (Kernel metric). dk(z, z′) =
√

k(z, z) + k(z′, z′)− 2k(z, z′).

We start with the standard deviation.

Lemma 4. For all z and z′ in Z , we have∣∣σ(z)− σ(z′)
∣∣ ≤ dk(z, z′) (2.19)

Proof. This is an adaptation from proof in Berkenkamp (2019, Lemma
50). From Mercer’s theorem we know that each kernel can be equiva-
lently written in terms of an infinite-dimensional inner product, so that
k(z, z′) = ⟨k(z, ·), k(z′, ·)⟩k, where < ·, · >k is the inner product in the
RKHS corresponding to the kernel k. We can think of GP regression as
linear regression based on these infinite-dimensional feature vectors. In
particular, it follows from (Kirschner & Krause, 2018, Appendix D) that we
can write the GP posterior standard deviation σ(z) as the weighted norm
of the infinite-dimensional feature vectors k(z, ·),

σ(z) = ∥k(z, ·)∥V−1 , (2.20)

where V = σ2M∗M + I and M is a linear operator that corresponds to the
infinite-dimensional feature vectors k(zi, ·) of the data points zi in Z so that
[MM∗](i,j) = k(zi, zj), where zi and zj are the ith and jth data point in Z .
Now we have that the minimum eigenvalue of V is larger or equal to one,
which implies that the maximum eigenvalue of V−1 is less or equal to one.
Thus,

|σ(z)− σ(z′)| =
∣∣∥k(z, ·)∥V−1 − ∥k(z′, ·)∥V−1

∣∣ (2.21a)

≤ ∥k(z, ·)− k(z′, ·)∥V−1 , (2.21b)

≤ ∥k(z, ·)− k(z′, ·)∥k, (2.21c)

=
√
⟨k(z, ·)− k(z′, ·), k(z, ·)− k(z′, ·)⟩k, (2.21d)

=
√

k(z, z)− k(z, z′)− k(z′, z) + k(z′, z′), (2.21e)

=
√

k(z, z) + k(z′, z′)− 2k(z, z′), (2.21f)

= dk(z, z′), (2.21g)

where Equation (2.21a)→ Equation (2.21b) follows from the reverse triangle
inequality.
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To show that Lemma 4 implies Lipschitz continuity of the variance, the
key observation is that standard deviation σ(z) is bounded. In particular,

σ(z) ≤ σ0(z) =
√

k(z, z) ≤ max
z,z′∈Rd

√
k(z, z′) :=

√
|k|∞ (2.22)

Based on this, we have the following result.

Lemma 5. For all z and z′ in Z , we have

|σ2(z)− σ2(z′)| ≤ 2
√
|k|∞ dk(z, z′) (2.23)

Proof. Since 0 ≤ σ(z) ≤
√
|k|∞, we have

|σ2(z)− σ2(z′)| = |
(
σ(z) + σ(z′)

) (
σ(z)− σ(z′)

)
| (2.24a)

≤ 2
√
|k|∞

∣∣σ(z)− σ(z′)
∣∣ (2.24b)

≤ 2
√
|k|∞ dk(z, z′) (2.24c)

2.2.4 Neural Network Models

Neural network models have the advantage that they scale to higher di-
mensions and larger datasets better than GP models. To represent the set
of plausible modelsM in (2.9) we use ensembles of I independent neural
networks (Lakshminarayanan et al., 2017a; Chua et al., 2018). As the dataset
increases with each episode, bootstrapping is impractical and instead we fol-
low Osband et al. (2016) and simulate bootstrapping by sampling a weight
from a Poison distribution wi,j ∼ Poi(1), for each ensemble member i and
each datapoint j. This weight wi,j modules the losses as seen below. We
either use deterministic ensembles (DE) or probabilistic ensembles (PE),
which we develop next. The main difference between these two model
families is the underlying dynamics they represent. As DE models ignore
aleatoric uncertainty, they represent deterministic environments better. In-
stead, PE models are better suited for stochastic environments. We train
each ensemble member using type-II maximum likelihood estimation, and
after training we recalibrate them using temperature scaling. We describe
training and recalibration below.
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deterministic ensembles Each member i of the ensemble outputs
only a mean prediction µi(·; θi). The training loss in the setting is:

Li(θ) =
1
N

N

∑
j=1

wi,j
(
µi(zj; θi)− yj

)2 . (2.25)

Given I trained ensemble members that output µi(·; θ), we combine the
predictions as a mixture of dirac distributions.

µ(·; θ) =
1
I

I

∑
i=1

µi(·; θ), (2.26a)

Σ(·; θ) =
1

N − 1

N

∑
i=1

(µi(·; θ)− µ(·; θ))(µi(·; θ)− µ(·; θ))⊤, (2.26b)

υ = 0. (2.26c)

probabilistic ensembles Each member i of the ensemble outputs
a normal distribution parameterized as N (µi(·; θi), υ2

i (·; θi)). Hence, the
log-likelihood loss in the setting is:

Li(θ) =
1

2Nυ2
i (zj; θ)

N

∑
j=1

wi,j
(
µi(zj; θ)− yj

)2
+ log

(
2πυ2

i (zj; θ)
)

. (2.27)

Given I trained ensemble members that output N (µi(·; θi), υ2
i (·; θi)), we

combine the predictions as a mixture of Gaussian distributions.

µ(·; θ) =
1
I

I

∑
i=1

µi(·; θ), (2.28a)

Σ(·; θ) =
1

N − 1

N

∑
i=1

(µi(·; θ)− µ(·; θ))(µi(·; θ)− µ(·; θ))⊤, (2.28b)

υ =
1
I

I

∑
i=1

υi(·; θ) (2.28c)

2.2.4.1 Neural Network Calibration

After training, we recalibrate on the validation set using temperature scaling
with parameter a α per output coordinate. This is equivalent to selecting β
in the set of plausible models (2.9). We follow Malik et al. (2019) and choose
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m thresholds, such that 0 ≤ p1 · · · ≤ pm = 1 and compute the empirical
frequency of the prediction continuous distribution function, i.e.

p̂j =
1
|D|

∣∣∣∣si,h+1 − µh(zi,h)

ασi,h
∀i ∈ D ≤ pj

∣∣∣∣ , (2.29)

elementwise. Then, we chose a temperature parameter that minimizes the
expected calibration error:

L(α) =
m

∑
j=1

(
p̂j − pj

)2 , (2.30)

and find α that minimize such loss. Finally, the epistemic variance of the
recalibrated model is α2Σ(·).

2.2.5 Model Reparameterization and Hallucination

In the subsequent chapters, we will use the set of plausible models M
to reason about the uncertainty. To achieve the goals of data-efficiency,
robustness, and safety, we will need to optimize over f̃ ∈ M. Unfortunately,
this optimization is usually intractable as the M is not convex, even in
bandit settings (Dani et al., 2008). Instead, we leverage the structure inM
and reparameterize it introducing functions η ∈ U : Rds ×Rda → [−1, 1]ds ,
which we call hallucination policies. We use this name because η exerts
a hallucinated control authority on the outputs of the model to select the
dynamics f̃ ∈ M. The key idea is that optimizing over η ∈ U is simpler
than optimizing over f̃ ∈ M. We reparameterize the dynamics as:

f̃ (·) = µ(·) + βσ(·)η(·). (2.31)

Given a η ∈ U function, an initial starting state s̃0, a policy π, the states
are propagated according to:

s̃h+1 = µ(z̃h) + βσ(z̃h)η(z̃h) + ω̃h, (2.32)

(2.33)

where ãh ∼ π(s̃h) and ω̃h ∼ N (0, υ2). In Figure 2.2, we show an illustration
of the true and hallucinated state trajectories, which we denote s0:3 and
s̃0:3, respectively. In red, we show how the policy acts on the true state
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trajectory, and the state realization is contained within the state distribution,
which grows with time. In blue, we show how the true and hallucinated
policies act on the hallucinated trajectory. First, the true policy controls the
inputs to the dynamics and selects the next-state distribution. Then, the
hallucination policy acts on the output of the 1-step ahead distribution and
exherts a hallucinated control authority to select any outcome from within the
1-step confidence intervals. By changing the hallucination policy η, the set
of plausible modelsM is covered.

An important observation is that both s0:3 and s̃0:3 are contained within
the state distribution, but computing this distribution is usually hard for
non-linear models and thus we do not have access to it. Furthermore,
although the hallucinated state s̃h is contained within the confidence interval
centered at µ(s̃h−1) with width βσ(s̃h−1), the true state sh is not inside such
set. On one hand, this makes the analysis more complicated. On the other
hand, this makes the algorithms practical because we know how to compute
the 1-step ahead predictive distribution of the model.

s0 = s̃0

s̃1
s̃2 s̃3

s1 s2 s3

π(s̃0 = s0)

η(s̃0) π(s̃1)

π(s1)

η( f̃1) π(s̃2)

π(s2)

η(s̃2)

State distribution
1-step uncertainty βnσn(s̃h, π(s̃h))

Figure 2.2: Illustration of the true state trajectory s0:3 generated by the true
dynamics f and the policy π, and the hallucinated state trajectory
s̃0:3 generated by the true dynamics f̃ and the same policy π. In blue,
we show the true and hallucinated policies along the hallucinated
trajectory. In red, we show the true policies along the true trajectory.
For the first time step, both s1 and s̃1 are contained within the models
1-step ahead confidence interval. Afterwards, both sh and s̃h are
contained within the state predictive distribution, but sh is outside the
1-step ahead confidence interval evaluated at sh−1.

a note on unknown rewards When the reward function is un-
known, the agent must learn the it together with the dynamics. This implies
that the agent has epistemic uncertainty about it. The reparameterization
trick can also be used in this setting, however the dimensionality increases
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by one, i.e., the hallucination polices are η ∈ U : Rds ×Rda → [−1, 1]ds+1.
The reward and state dynamics are propagated simulated as:

s̃h+1, r̃h = µ(z̃h) + βσ(z̃h)η(z̃h) + ω̃h, (2.34)

. (2.35)

We now prove that the hallucination policies η exist.

Lemma 6 (Existence of η policies.). Under Assumption 7, for any sequence sh,n
generated by the true system (2.1), there exists a function η ∈ U : Rds ×Rda →
[−1, 1]ds such that sh,n = s̃h,n if ω = ω̃.

Proof. By Assumption 7 we have | f (z)− µ(z)| ≤ βσ(z), elementwise. Thus
for each z there exists a vector u with values in [−1, 1]ds such that f (z) =
µ(z) + σ(z)u. Let the function η(·) return this vector for each state and
action, then the result follows.

So far, we have considered general functions η ∈ U : Rds × Rda →
[−1, 1]ds , which can potentially be discontinuous. However, as long as
Lemma 6 holds, we can use a more restrictive function class.

It is clear that it is sufficient to consider functions η such that σ(·)η(·) is
Lipschitz continuous, since it aims to approximate a Lipschitz continuous
function f :

Lemma 7. With Assumptions 1, 6 and 7 let η(·) be a function such that f (·)−
µ(·) = βσ(·)η(·) as in Lemma 6. Then σ(·)η(·) is Lipschitz continuous.

Proof.

∥σ(z)η(z)− σ(z′)η(z′)∥ = 1
β
∥ f (z)− µ(z)− ( f (z′)− µ(z′))∥ (2.36)

≤
L f + Lµ

β
∥z− z′∥ (2.37)

Unfortunately, the same is not true for η on its own in general. However,
if the predictive standard deviation σ does not decay to zero, this holds.

Lemma 8. Under the assumptions of Lemma 7 let 0 < σmin ≤ σ(z) ≤ σmax
elementwise for all z ∈ Z . Then, with probability at least (1− δ), there exists a
Lipschitz-continuous function η(·) with ∥η(·)∥∞ = 1 such that f (z)− µ(z) =
βσ(z)η(z) for all z ∈ Rds .
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Proof. By contradiction. By Assumption 7, we know that, with probability
(1− δ), f ∈ Mβ. Let η(·) be a function that is not Lipschitz continuous such
that f (z)− µ(z) = βσ(z)η(z). By assumption we know that σ(z) is strictly
larger than zero and bounded element-wise from above by some constant.
As a consequence, σ−1(z) exists and is Lσ/σ2

min-Lipschitz continuous w.r.t.
the Frobenius norm. Thus, we have

∥η(z)− η(z′)∥2

= ∥ 1
β

σ−1(z)( f (z)− µ(z))− 1
β

σ−1(z′)( f (z′)− µ(z′))∥2

≤ | 1
β
|∥σ−1(z)(( f (z)− µ(z))− ( f (z′)− µ(z′)))∥2

+ | 1
β
|∥
(

σ−1(z)− σ−1(z′)
)
( f (z′)− µ(z′))∥2

≤ | 1
β
|∥σ−1(z)∥F∥( f (z)− µ(z))− ( f (z′)− µ(z′))∥2

+ | 1
β
|∥ f (z′)− µ(z′)∥2∥σ−1(z)− σ−1(z′)∥F

≤ | 1
β
|∥σ−1(z)∥F(L f + Lµ)

√
1 + Lπ∥z− z′∥2

+ | 1
β
|∥βσ(z′)∥2∥σ−1(z)− σ−1(z′)∥F

≤
√

ds

βσmin
(L f + Lµ)

√
1 + Lπ∥z− z′∥2 +

√
dsσmax

σ2
min

Lσ

√
1 + Lπ∥z− z′∥2

Since β > 0 we have that η(z) is Lipschitz continuous, which is a contradic-
tion.

Thus, it is generally sufficient to optimize over Lipschitz continuous
functions η ∈ U instead of over dynamics f̃ ∈ M. However, it is important
to note that the complexity of the function (i.e., its Lipschitz constant) will
generally increase as the predictive variance decreases. It is easy to construct
cases where σ(·) = 0 implies that η has to be discontinuous. However, at
least in theory σ(·) = 0 is impossible with finite data when the system is
noisy (ω > 0). Also note that as σ decreases, the effect of η on the dynamics
also decreases.
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2.3 model-based policy optimization techniques

After learning a model, the next task is to select a policy in Algorithm 1.
This is usually done either by using the model to simulate transitions and
learn a parametric policy in a pure offline fashion or by using the model to
plan online. In this section, we augment common MBRL algorithms using
the Hallucinated models in Section 2.2.5. In Section 2.3.1, we see offline
policy search algorithms by considering parametric hallucinated policies.
Instead, in Section 2.3.2, we consider online planning where η is defined
implicitly as the solution of an online optimization problem. Finally, in
Section 2.3.3, we combine offline policy search with online planning and
introduce Dyna-MPC.

2.3.1 Offline Policy Search

Off-line policy search usually parameterize the control policy π(·; θπ) and
the hallucination policy η(·; θη) using a function approximation method
(e.g., neural networks). The main idea is to use the control policy only
π(·; θπ) to interact with the environment, and the both the control policy
π(·; θπ) and the hallucination policy η(·; θη)] to interact with the model in
an offline fashion. Next, we describe how to hallucinate common policy-
search algorithms. We leave unspecified how to update the hallucination
policies as this depends on the particular problem that we are tackling.

Hallucinated Data Augmentation consists of using the model to simulate
data and then use these data to learn a policy using a model-free RL method.
For example, the celebrated Dyna algorithm from Sutton (1990), DAD from
Venkatraman et al. (2016), IB from Kalweit & Boedecker (2017), and I2A
Racanière et al. (2017) generate data by sampling from expected models. In
Algorithm 2, we show Hallucinated Data Augmentation (HDA). In HDA,
we generate data using the dynamics in (2.2) and then call any model-free
RL algorithm such as SAC (Haarnoja et al., 2018), MPO (Abdolmaleki et
al., 2018), TD3 (Fujimoto et al., 2018), TRPO (Schulman et al., 2015b), or
PPO (Schulman et al., 2017). As there is no need to propagate gradients
through the data-generation process, there is no need to re-parameterize
the sampling procedure in Line 10 of Algorithm 2. Furthermore, the initial
state distribution can be made arbitrary to make the planning problem
easier to solve, i.e., trajectories might start from any exploratory distribution.
This greatly simplifies the task of the ModelFree algorithm. Usually these
strategies combine simulated with real data buffers. This strategy usually
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suffers from model-bias as model errors compound throughout a trajectory,
yielding highly biased estimates that hinder the policy optimization (van
Hasselt et al., 2019).

Algorithm 2 Hallucinated Data Augmentation
Inputs: Calibrated dynamical model (µ, Σ), reward function r(·), initial

state distribution d(s0), number of iterations Niter, simulation horizon
H̃ initial parameters θ0,π , theta0,η , ϑ0, model-free algorithm ModelFree,
Real data set D

1: for i = 1, . . . , Niter do
2: /* Simulate Data */
3: Initialize data buffer D̃ = {∅}
4: for i′ = 1, . . . , Ndata do
5: Start from initial state distribution s̃0 ∼ d(s0)
6: for h = 0, . . . , H̃ − 1 do
7: Sample action ãh ∼ π(s̃h; θi,π)
8: Sample hallucinated action ũh ∼ η(s̃h; θi,η)
9: Concatenate z̃h = [s̃h, ãh]

10: Sample next state s̃h+1 ∼ N (µ(z̃h) + βσ(z̃h)ũh; ω2
h)

11: Query Reward rh = r(z̃h)
12: Append transition to buffer D̃ ← D̃ ∪ {(s̃h, s̃h+1, ãh, rh)}.
13: /* Optimize Policy */
14: θi+1,π , θi+1,ηϑi+1 ← ModelFree(D̃ ∪ D, θi,π , θi,η , ϑi)

Outputs: Final policy θπ = θNiter,π .

Hallucinated Back-Propagation Through Time is an algorithm that
updates the policy parameters by computing the derivatives of the perfor-
mance w.r.t. the parameters directly. In Algorithm 3, we show Hallucinated
Back-Propagation Through Time (H-BPTT). For instance, PILCO from M.
Deisenroth & Rasmussen (2011) and MBAC from Clavera et al. (2020) are dif-
ferent examples of practical algorithms that BPTT using GPs and ensembles
of neural networks, respectively. Like in BPTT, it samples the trajectories
in a differentiable way, i.e., using the reparameterization trick (Kingma &
Welling, 2013). Under some assumptions (such as moment matching), the
sampling step in Line 10 of Algorithm 3 can be replaced by exact integration
as in PILCO (M. Deisenroth & Rasmussen, 2011). While performing the
rollout, it computes the performance and at the end it bootstrapped with
a critic. This critic is learned using a policy evaluation PolEval algorithm
such as Fitted Value Iteration (Antos et al., 2008). This strategy usually
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suffers from high variance due to the stochasticity of the sampled trajecto-
ries and the compounding of gradients (McHutchon, 2014). Interestingly,
Parmas et al. (2018) propose a method to combine the model-free gradients
given by any HDA strategy together with the model-based gradients given
by HBPTT, but we leave this for future work. We found that limiting the
KL-divergence between the policies in different episodes, as suggested by
Schulman et al. (2015a), helps to regularize the optimization problem.

Algorithm 3 Hallucinated Back-Propagation Through Time
Inputs: Calibrated dynamical model (µ, Σ), reward function r(·), initial

state distribution d(s0), number of iterations Niter, simulation horizon
H̃ initial parameters θ0,π , θ0,η , ϑ0, learning rate ηlr, policy evaluation
algorithm PolEval, regularization λ, Real data set D.

1: for i = 1, . . . , Niter do
2: Initialize data buffer D̃ = {∅}
3: /* Simulate Data */
4: Start from initial state distribution s̃0 ∼ d(s0).
5: Restart J ← 0
6: for h = 0, . . . , H̃ − 1 do
7: Sample action ãh ∼ π(s̃h; θi,π)
8: Sample hallucinated action ũh ∼ η(s̃h; θi,η)
9: Concatenate z̃h = [s̃h, ãh]

10: Sample next state s̃h+1 ∼ N (µ(z̃h) + βσ(z̃h)ũh; ω2
h)

11: Query Reward rh = r(z̃)
12: Accumulate J ← J + γhrh − λ KL (π(s̃h; θi,π) || π(s̃h; θ0,π))
13: Append transition to buffer D̃ ← D̃ ∪ {(s̃h, s̃h+1, ãh, rh}
14: Bootstrap J ← J + γH̃Q(s̃H̃ , π(s̃H̃ ; θi,π), η(s̃H̃ ; θi,η); ϑi)
15: /* Optimize Policy */
16: Compute gradient ∂J/∂θπ with BPTT
17: Compute gradient ∂J/∂θη with BPTT
18: Do gradient step θi+1,π ← θi,π + ηlr∂J/∂θi,π
19: Do gradient step θi+1,η ← θi,η ± ηlr∂J/∂θi,η

20: Update Critic ϑi+1 ← PolEval(D̃, ϑi)

Outputs: Final policy θπ = θNiter,π .

Hallucinated Model-Based Value Expansion is an Actor-Critic approach
that uses the model to compute the next-states for the Bellman target
when learning the action-value function. It then uses pathwise derivatives
(Mohamed et al., 2019) through the learned action-value function. For
example MVE from (Feinberg et al., 2018) and STEVE from Buckman et al.
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(2018) use such strategy. In Algorithm 4, we show H-MVE (Hallucinated-
Model Based Value Expansion). Here we use hallucinated trajectories only
to learn the Bellman target. This strategy is usually less data efficient than
BPTT or IDA as it uses the model only to compute targets, but suffers less
from model bias. To address data efficiency, one can combine HMVE and
HDA to compute optimistic value functions as well as simulating optimistic
data.

Algorithm 4 Hallucinated-Model Value Expansion
Inputs: Calibrated dynamical model (µ, Σ), reward function r(·), number

of iterations Niter, simulation horizon H̃ initial parameters θ0,π , θ0,η , ϑ0,
learning rate ηlr, Real data set D.

1: Initialize target parameters ϑ̄0 ← ϑ0.
2: for i = 1, . . . , Niter do
3: /* Simulate Data */
4: Start from buffer s̃0 ∼ D
5: Initialize target Qtarget ← 0
6: Compute prediction Qpred = Q(s̃0; ϑi)

7: for h = 0, . . . , H̃ − 1 do
8: Sample action ãh ∼ π(s̃h; θi,π)
9: Sample hallucinated action ũh ∼ η(s̃h; θi,η)

10: Concatenate z̃h = [s̃h, ãh]
11: Sample next state s̃h+1 ∼ N (µ(z̃h) + βσ(z̃h)ũh; ω2

h)
12: Query Reward rh = r(z̃)
13: Accumulate target Qtarget ← γhrh.

14: Bootstrap Qtarget ← Qtarget + γH̃Q(s̃H̃ , π(s̃H̃ ; θi,π), η(s̃H̃ ; θi,η); ϑi)
15: /* Optimize Critic */
16: ϑi+1 ← ϑi − ηlr∇ϑ(Qpred −Qtarget)2

17: Update target parameters ϑ̄i+1 ← τϑ̄i + (1− τ)ϑi+1
18: /* Optimize Policy */
19: θi+1,π ← θi,π + ηlr∇θi,π Q(s̃0; ϑi)

20: θi+1,η ← θi,η ± ηlr∇θi,η Q(s̃0; ϑi)

Outputs: Final policy θπ = θNiter,π .

2.3.2 Online Planning

An alternative approach is to consider non-parametric policies and directly
optimize the true actions as ah,n ∈ [−1, 1]da , and the hallucinated action
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uh,n ∈ [−1, 1]ds . This is usually called Model-Predictive Control (MPC)
and it is implemented in a receding horizon fashion (Morari & H. Lee,
1999; Zeilinger et al., 2011). That means that for each new state encounter
online, the planning problem (2.2) is solved using the actions as decission
variables. Due to the receding horizon application, the effect of model
errors compounding is lower as the starting states are evaluated through
the real trajectories. However, the receding horizon comes at high online
computational costs, which limits the applicability of such algorithms to
simulations.

GP-MPC Kamthe & M. Deisenroth (2018a) and PETS Chua et al. (2018)
are MPC-based methods that use GP and neural networks ensembles,
respectively. Other MPC solvers such as POPLIN T. Wang & Ba (2019)
or POLO (Lowrey et al., 2019) are also compatible with such dynamical
models. In H-MPC (Hallucinated-MPC), we directly optimize both the
control and hallucinated inputs jointly and any of the previous methods
can be used as the MPC solver. Moldovan et al. (2015) also use MPC to solve
an optimistic exploration scheme but only on linear models and, like other
on-line planning methods, are extremely slow for real-time deployment.

To solve the optimization problem, approximate local solvers are usually
used that rely either on sampling or on linearization.

hallucinated sampling method An approximate way of solving
MPC problems is to exhaustively sample the decision variables. Shooting
methods sample the actions and then propagate the trajectory through
the model whereas collocation methods sample both the states and the
actions (Hargraves & Paris, 1987). For simplicity, we only consider shooting
methods. This method initializes particles at the current state. For each
particle, it samples a sequence of actions from a proposal distribution
and rollouts each particle independently, computing the returns of such
sequence. This process is repeated updating the proposal distribution.
Random Shooting (Richards & How, 2006), the Cross-Entropy Method
(Botev et al., 2013a), and Model-Predictive Path Integral Control (G. Williams
et al., 2016) differ in the ways to update the action sampling distributions.
POPLIN from T. Wang & Ba (2019) instead maintains a distribution over
the weights of a policy network and samples different policies. The main
advantage of POPLIN method is that it correlates the random samples along
a trajectory (as they come from the same policy), possibly scalling to higher
dimensions. We show in Algorithm 5 the pseudo-code for Hallucinated
Shooting (HS) shooting.
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Algorithm 5 Hallucinated Shooting
Inputs: Calibrated dynamical model (µ, Σ), reward function r(·), termi-

nal reward V, current state sh, simulation horizon H̃ number of par-
ticles Nparticles, number of iterations Niter, number of elite particles
Nelite, initial sampling distribution d(·), algorithm to evaluate actions
EliteActions, algorithm to update distribution UpdateDistribution.

1: for i = 1, . . . , Niter do
2: /* Simulate Data */
3: Initialize Nparticles at the current state s̃p,0 = sh
4: Initialize Jp ← 0
5: for h = 0, . . . , H̃ − 1 do
6: Sample action ãp,h, ũp,h ∼ d(·)
7: Concatenate z̃p,h = [s̃p,h, ãp,h]

8: Sample next state s̃p,h+1 ∼ N (µ(z̃p,h) + βσ(z̃p,h)ũp,h; ω2
p,h)

9: Query Reward rp,h = r(z̃p,h)

10: Accumulate Jp ← Jp + γhrp,h

11: Bootstrap Jp ← Jp + γH̃V(s̃p,H̃).
12: âi ← EliteActions(Jp, ãp,0:H̃−1, Nelite)

13: ûi ← EliteActions(±Jp, ũp,0:H̃−1, Nelite)

14: /* Optimize Policy */
15: Update distribution d(·)← UpdateDistribution(d(·), âi, ûi)

Outputs: Return best action a← EliteActions(Jp, ãp,0:H̃−1).

hallucinated differential dynamic programming (ddp) DDP
can be interpreted as a second-order shooting method Jacobson (1968) for
dynamical systems. For linear dynamical models with quadratic costs,
problems Equations (2.2) and (2.3) is a quadratic program (QP) that enjoys a
closed form solution (Morari & H. Lee, 1999). To address non-linear systems
and other cost functions, a common strategy is to use a variant of iLQR
W. Li & Todorov (2004), Todorov & W. Li (2005), and Tassa et al. (2012)
which linearizes the system and uses a second order approximation to the
cost function to solve sequential QPs (SQP) that approximate the original
problem. When the rewards and dynamical model are differentiable, DDP
method is faster to sampling methods as it uses the problem structure to
update the sampling distribution. We show an example of Hallucinated
Gradient-Based MPC in Algorithm 6.
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Algorithm 6 Hallucinated Gradient Based MPC
Inputs: Calibrated dynamical model (µ, Σ), reward function r(·), terminal

reward V, current state sh, simulation horizon H̃ number of iterations
Niter, initial action sequence ã0:H̃−1, initial action sequence ũ0:H̃−1,

1: Initialize ã0,0:H̃−1 ← ã0:H̃−1
2: Initialize ũ0,0:H̃−1 ← ũ0:H̃−1
3: for i = 1, . . . , Niter do
4: /* Simulate Data */
5: Initialize J ← 0
6: for h = 0, . . . , H̃ − 1 do
7: Concatenate z̃i,h = [s̃h, ãi,h]

8: Sample next state s̃h+1 ∼ N (µ(z̃i,h) + βσ(z̃i,h)ũi,h; ω2
h

9: Query Reward rh = r(z̃i,h)

10: Accumulate J ← J + γhrh

11: Bootstrap J ← J + γH̃V(s̃H̃).
12: /* Optimize actions */
13: Compute gradient ∂J/∂ã0:H̃−1 with BPTT.
14: Do gradient step ãi+1,0:H̃−1 ← ãi,0:H̃−1 + ηlr∂J/∂ã0:H̃−1
15: Compute gradient ∂J/∂ũ0:H̃−1 with BPTT.
16: Do gradient step ũi+1,0:H̃−1 ← ũi,0:H̃−1 ± ηlr∂J/∂ũ0:H̃−1

Outputs: Return best action a← ãNiter,0:H̃−1.

2.3.3 Combining Offline Policy Search with Online Planning

MPC methods suffer less from model bias, but typically require substantial
computation. Furthermore, they are limited to the planning horizon unless
a learned terminal reward is used to approximate the reward-to-go (Lowrey
et al., 2019). On the other hand, off-policy search approaches yield policies
and value function estimates (critics) that are fast to evaluate, but suffer
from bias (van Hasselt et al., 2019). We propose to combine these methods
to get the best of both worlds: First, we learn a parametric control policy π
and hallucination policy η using an offline policy search algorithm. Then,
we use such policies as a warm-start for the sampling distributions of the
planning algorithm. We name this planning algorithm Dyna-MPC, as it
resembles the Dyna architecture proposed by Sutton (1990) and we show
the pseudo-code in Algorithm 7.

Closely related to Dyna-MPC is POPLIN (T. Wang & Ba, 2019). We also
use a policy to initialize actions and and then refine them with a shooting
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method. Nevertheless, we use a policy search algorithm to optimize the
policy parameters instead of the cross-entropy method. Hong et al. (2019)
also uses MPC to refine an off-line learned policy. However, they use a
model-free algorithm directly from real data instead of model-based policy
search.

Algorithm 7 Dyna-MPC
Inputs: Calibrated dynamical model (µ, Σ), reward function r(·), learned

control policy π(·; θπ), learned hallucination policy η(·; θη), learned
critic Q(·; ϑ), current state sh, simulation horizon H̃ number of itera-
tions Niter, number of particles Nparticles, number of elite particles Nelite,
algorithm to evaluate actions EliteActions, algorithm to update distri-
bution UpdateDistribution.

1: for i = 1, . . . , Niter do
2: /* Simulate Data */
3: Initialize Nparticles at the current state s̃p,0 = sh
4: Initialize Jp ← 0
5: for h = 0, . . . , H̃ − 1 do
6: Compute action ãp,h ∼ π(s̃p,h; θi)
7: Compute hallucinated action ũp,h ∼ π(s̃p,h; θi)
8: Concatenate z̃p,h = [s̃p,h, ãp,h]

9: Sample next state s̃p,h+1 ∼ N (µ(z̃p,h) + βσ(z̃p,h)ũp,h; ω2
p,h

10: Query Reward rp,h = r(z̃p,h)

11: Accumulate Jp ← Jp + γhrp,h

12: Bootstrap Jp ← Jp + γH̃Q(s̃p,H̃ , π(s̃p,H̃ ; θi); ϑi)

13: âi ← EliteActions(Jp, ãp,0:H̃−1, Nelite)

14: /* Optimize Policy */
Outputs: Return best action a← EliteActions(Jp, ãp,0:H̃−1).
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E P I S T E M I C U N C E RTA I N T Y F O R P R O VA B L E D ATA
E F F I C I E N C Y

A hallucination is a fact, not an error – what is
erroneous is a judgment based upon it.

— Bertrand Russell

In this chapter, we use the epistemic uncertainty to efficiently explore
in a dynamical system with continuous states and actions. Data-efficient
exploration aims to reduce the number of interactions with the environment
needed to learn an optimal policy for a given task. In Section 3.1, we
formalize the problem setup and the objective we are trying to solve. In
Section 3.2, we describe commonly used exploration strategies, and their
shortcomings in practical large-scale settings. In Section 3.3, we present the
main contribution of the chapter: the H-UCRL algorithm, and, in Section 3.4,
we provide the theoretical analysis of H-UCRL. Finally, in Section 3.5, we
demonstrate the practical aspects of the algorithm in experiments. We defer
the technical proofs to Appendix A.
The results in this chapter have been previously published in:

• Curi, S., Berkenkamp, F., & Krause, A. Efficient model-based reinforce-
ment learning through optimistic policy search and planning in Advances in
Neural Information Processing Systems (NeurIPS) (2020).

3.1 problem setup

In this chapter, we use the epistemic uncertainty in our model to promote
exploration so that the agent trades-off good performance with learning
about the dynamics. Consider executing policy πn at episode n. On the one
hand, we hope for πn to achieve good performance. On the other hand, we
hope to learn about the dynamics f to contract its epistemic uncertainty. We

41
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formalize this by aiming to find the optimal policy for the true dynamics f
in a finite horizon setting,

π∗ = argmax
π∈Π

J( f , π) = Eτf ,π

[
H

∑
h=0

r(sh, π(sh))

]
,

s.t. sh+1 = f (sh, π(sh)) + ωh

s0 ∼ ν0,

(3.1)

where τf ,π = {(sh−1, ah−1), sh}H
h=0 is a random trajectory induced by the

stochastic noise ω, the dynamics f , the policy π, and the initial state
distribution ν0.

We cannot solve Equation (3.1) as the system dynamics f is unknown,.
However, as the agent collects more data and the set of plausible modelsM
contracts towards the true dynamics, the estimate of the performance (2.2)
contracts towards the true performance (3.1). As we do not have enough
knowledge to solve this optimization problem, we focus on regret, defined
as:

RN =
N

∑
n=0

J( f , π⋆)− J( f , πn). (3.2)

Regret quantifies the performance difference between the unknown optimal
policy π⋆ and the policy applied in each episode πn on the true system f .
An algorithm that chooses the policy πn has no-regret if RN = o(N). If such
algorithm has no-regret, then the sequence of policies {πn}N

n=0 performs
asymptotically as the optimal policy π⋆. The goal is to design a practical
algorithm with no-regret.

Looking at the regret (3.2), it is clear that the policy πn should try to
maximize the performance on the true dynamics J( f , πn), and at the same
time it should try to maximize the knowledge about f , or contract the set
M, to bound the performance difference between such policy πn and the
optimal policy π⋆.

3.2 exploration strategies in reinforcement learning

Ultimately the performance of any algorithm depends on the choice of
πn. We now provide an overview of existing exploration schemes and
summarize the MBRL procedure in Algorithm 1.
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greedy exploitation One of the most commonly used algorithms is
to select the policy πn that greedily maximizes the expected performance
over the aleatoric uncertainty and epistemic uncertainty induced by the
dynamical model. Other exploration strategies, such as dithering (e.g.,
epsilon-greedy, Boltzmann exploration) (Sutton & Barto, 1998) or certainty
equivalent control (Bertsekas et al., 1995, Chapter 6.1), can be grouped into
this class. The greedy policy is

π
Greedy
n = argmax

π∈Π
E f̃∼Fn

[
J( f̃ , π)

]
. (3.3)

For example, PILCO (M. Deisenroth & Rasmussen, 2011) and GP-MPC
(Kamthe & M. Deisenroth, 2018a) use moment matching to approximate
F and use greedy exploitation to optimize the policy. Likewise, PETS-1
and PETS-∞ from Chua et al. (2018) also lie in this category, in which F
is represented via ensembles. The main difference between PETS-∞ and
other algorithms is that PETS-∞ ensures that the same function is used
throughout the rollout, whereas PETS-1, PILCO, and GP-MPC sample a
new function at each time step for computational reasons. In the tabular
RL setting, dithering takes an exponential number of episodes to find an
optimal policy (Osband et al., 2014). As such, it is not an efficient exploration
scheme for reinforcement learning. Nevertheless, for some specific reward
and dynamics structure, such as linear-quadratic control, greedy exploita-
tion indeed achieves no-regret (Mania et al., 2019). In addition, it is the most
common exploration strategy and there exist many practical algorithms to
efficiently solve optimization problem eq. (3.3) (cf. Section 3.3.1).

thompson sampling A theoretically grounded exploration strategy is
Thompson sampling, which optimizes the policy w.r.t. a single model that
is sampled from Fn at every episode n. Formally,

f̃n ∼ Fn, πTS
n = argmax

π∈Π
J( f̃n, π). (3.4)

This is different to PETS-∞, as the former algorithm optimizes w.r.t. the
average of the (consistent) model trajectories instead of a single model. In
general, it is intractable to sample from F . Nevertheless, after the sampling
step, the optimization problem is equivalent to greedy exploitation of the
sampled model. Thus, the same optimization algorithms can be used to
solve Equation (3.3) and Equation (3.4).
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Name Objective
Function

Efficient
Exploration

Practical
Optimization

NN
Implementation

Greedy (3.3) ✗ ✓ ✓

TS (3.4) ✓ ✓ ✗

UCRL (3.5) ✓ ✗ ✗

H-UCRL (3.6) ✓ ✓ ✓

Table 3.1: Comparison of different exploration strategies in reinforcement learn-
ing problems. H-UCRL is the only algorithm that is simultaneously
provable efficient, has a practical optimization problem, and can be
used with large scale models such as Neural Networks.

upper-confidence reinforcement learning (ucrl) The final
exploration strategy we address is UCRL exploration (Jaksch et al., 2010),
which optimizes jointly over policies and models inside the set Mn =
{ f̃ s.t. | f̃ (s, a) − µn(s, a)| ≤ βnσn(s, a) ∀s, a ∈ S × A} that contains all
statistically-plausible models compatible with Assumption 7. The UCRL
algorithm is

πUCRL
n = argmax

π∈Π
max
f̃∈Mn

J( f̃ , π). (3.5)

Instead of greedy exploitation, these algorithms optimize an optimistic pol-
icy that maximizes performance over all plausible models. Unfortunately,
this joint optimization is in general intractable and algorithms designed for
greedy exploitation (3.3) do not generally solve the UCRL objective (3.5).

3.3 hallucinated upper confidence reinformcent learning

(h-ucrl)

We propose a practical variant of the UCRL exploration (3.5) algorithm.
Namely, we reparameterize the functions f̃ ∈ Mn as f̃ = µn−1(·) +
βn−1σn−1(·)η(·), for some function η ∈ U : Rds × Rda → [−1, 1]ds . This
transformation is similar in spirit to the re-parameterization trick from
Kingma & Welling (2013), except that η(·) is a function. The key insight
is that instead of optimizing over dynamics in f̃ ∈ Mn as in UCRL, it
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suffices to optimize over the functions η(·). We call this algorithm H-UCRL,
formally:

πH-UCRL
n = argmax

π∈Π
max

η(·)∈U
J( f̃ , π),

s.t. f̃ (·) = µn−1(·) + βn−1σn−1(·)η(·).
(3.6)

At a high level, the policy π acts on the inputs (actions) of the dynamics
and chooses the next-state distribution. In turn, the optimization variables
η act in the outputs of the dynamics to select the most-optimistic outcome
from within the confidence intervals. We call the optimization variables the
hallucinated controls as the agent hallucinates control authority to find the
most-optimistic model.

The H-UCRL algorithm does not explicitly propagate uncertainty over the
horizon. Instead, it does so implicitly by using the pointwise uncertainty
estimates from the model to recursively plan an optimistic trajectory, as il-
lustrated in fig. 3.1. This has the practical advantage that the model only has
to be well-calibrated for 1-step predictions and not H-step predictions. In
practice, the parameter βn trades off between exploration and exploitation.

s0 = s̃0

s̃1
s̃2 s̃3

π(s̃0)

η(s̃0) π(s̃1)
η( f̃1) π(s̃2) η(s̃2)

Sparse reward

State distribution
1-step uncertainty
βnσn(s̃h, π(s̃h))

Figure 3.1: Illustration of the optimistic trajectory f̃h from H-UCRL. The policy
π is used to choose the next-state distribution, and the hallucination
inputs η to choose the next state optimistically inside the one-step con-
fidence interval (dark grey bars). Greedy exploitation strategies fail
because they marginalize the reward over the epistemic uncertainty
(red cross compared to light grey bar). Instead, H-UCRL efficiently
finds the high-reward (red cross) region by optimizing w.r.t η.

3.3.1 Solving the Optimization Problem

Problem (3.6) is still intractable as it requires to optimize over general func-
tions. The crucial insight is that we can make the H-UCRL (3.6) practical by
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optimizing over a smaller class of functions η. In Section 2.2.5, we prove
that it suffices to optimize over Lipschitz-continuous bounded functions
instead of general bounded functions. Therefore, we can optimize jointly
over policies and Lipschitz-continuous, bounded functions η(·). As we con-
sider deterministic policies, we re-write η(sh, ah) = η(sh, π(sh)) = η(sh).
This allows to reduce the intractable optimistic problem (3.6) to greedy
exploitation (3.3): We simply treat η(·) ∈ U as an additional hallucinated
control input that has no associated control penalties. Furthermore, the
hallucination policy η can exert as much control as the current epistemic
uncertainty that the model affords. With this observation in mind, H-UCRL
greedily exploits a hallucinated system with the extended dynamics f̃ in
Equation (3.6) and a corresponding augmented control policy (π, η). This
means that we can now use the same efficient MBRL approaches for opti-
mistic exploration that were previously restricted to greedy exploitation and
Thompson sampling (albeit on a larger action space, since the dimension
of the action space increases from da to da + ds).

In practice, if we have access to a greedy oracle π = GreedyOracle( f̃ ), we
simply access it using π, η = GreedyOracle(µn−1 + βn−1σn−1η). Broadly
speaking, greedy oracles are implemented using offline-policy search or
online planning algorithms. Next, we discuss how to use these strategies
independently to solve the H-UCRL planning problem (3.6).

Offline Policy Search is any algorithm that optimizes a parametric policy
to maximize performance of the current dynamical model. As inputs, it
takes the dynamical model and a parametric family for the policy and
the critic (the value function). It outputs the optimized policy and the
corresponding critic of the optimized policy. These algorithms have fast
inference time and scale to large dimensions but can suffer from model
bias and inductive bias from the parametric policies and critics (van Hasselt
et al., 2019).

Online Planning or Model Predictive Control (Morari & H. Lee, 1999)
is a local planning algorithm that outputs the best action for the current
state. This method solves the H-UCRL planning problem (3.6) in a receding-
horizon fashion. The planning horizon is usually shorter than H and the
reward-to-go is bootstrapped using a terminal reward. In most cases, how-
ever, this terminal reward is unknown and must be learned (Lowrey et al.,
2019). As the planner observes the true transitions during deployment, it
suffers less from model errors. However, its running time is too slow for
real-time implementation.
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Algorithm 8 H-UCRL combining Optimistic Policy Search and Planning

Inputs: Mean µ(·, ·) and variance σ2(·, ·), policies πθ(·) and ηθ(·), critic
Qϑ(·), horizon H, policy search algorithm PolicySearch, planning al-
gorithm Plan .

1: for n = 1, 2, . . . do
2: (πθ,n, ηθ,n), Qϑ,n ← PolicySearch(µn−1; σ2

n−1; (πθ,n−1, ηθ,n−1))
3: for h = 1, . . . , H do
4: (ah−1,n, uh−1,n) = Plan(sh−1,n; µn−1; σ2

n−1; (πθ,n, ηθ,n), Qϑ)
5: sh,n = f (sh−1,n, ah−1,n) + ωh−1,n

6: Update statistical model with the H observed transitions in Dn.

combining offline policy search with online planning In
Algorithm 8, we propose to combine the best of both worlds to solve the
H-UCRL planning problem (3.6). In particular, Algorithm 8 takes as inputs
a policy search algorithm and a planning algorithm. After each episode,
it optimizes parametric (e.g. neural networks) control and hallucination
policies (πθ , ηθ) using the policy search algorithm. As a by-product of the
policy search algorithm we have the learned critic Qϑ. At deployment, the
planning algorithm returns the true and hallucinated actions (a, a′), and
we only execute the true action a to the true system. We initialize the
planning algorithm using the learned policies (πθ , ηθ) and use the learned
critic to bootstrap at the end of the prediction horizon as the reward-to-go.
In this way, we achieve the best of both worlds. The policy search algorithm
accelerates the planning algorithm by shortening the planning horizon
with the learned critic and by using the learned policies to warm-start the
optimization. The planning algorithm reduces the model-bias that a pure
policy search algorithm has.

3.4 theoretical analysis

In this section, we analyze the H-UCRL algorithm (3.6). A natural quality
criterion to evaluate exploration schemes is the cumulative regret (3.2). If we
can show that RN is sublinear in N, then we know that the performance
J( f , πn) of our chosen policies πn converges to the performance of the
optimal policy π∗.

model complexity In general, we expect that the regret RN depends
on the complexity of the statistical model in Assumption 7. If we can quickly
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estimate the true model using a few data-points, then the regret would be
lower than if the model is slower to learn. To account for these differences,
we use the following complexity measure introduced in Equation (2.11),

ΓN = max
D̃1:N

N

∑
n=1

∑
s,a∈D̃n

∥σn−1(s, a)∥2
2. (3.7)

While in general impossible to compute, this complexity measure considers
the “worst-case” datasets D1 to DN , with |Dn| = H elements each, that
we could collect at each iteration of Algorithm 1 in order to maximize the
predictive uncertainty of our statistical model. Intuitively, if σ(s, a) shrinks
sufficiently quickly after observing a transition and if the model generalizes
well over S ×A, then the model complexity Γ in Equation (2.11) will be
small. In contrast, if our model does not learn or generalize at all, then ΓN
will be O(NHds) and we cannot hope to succeed in finding the optimal
policy. For the special case of Gaussian process (GP) models, we use the
results in Section 2.2.2 to show that ΓN is indeed sublinear in N.

general regret bound The true sequence of states sh,n at which we
obtain data during our rollout in Algorithm 1 lies somewhere withing the
light-gray shaded state distribution with epistemic uncertainty in Figure 3.1.

While this is generally difficult to compute, we can bound it in terms
of the predictive variance σn−1(sh,n, πn(sh,n)), which is directly related to
ΓH . However, the optimistically planned trajectory instead depends on
σn−1(s̃h,n, π(s̃h,n)) in Equation (3.6), which enables policy optimization
without explicitly constructing the state distribution. How the predictive
uncertainties of these two trajectories relate depends on the generalization
properties of our statistical model; specifically on Lσ in Assumption 6. We
can use this observation to obtain the following bound on RN :

Theorem 1. Under Assumptions 1 to 7, let C = (1 + L f + 2Lσ)(1 + L2
π +

L2
π̂)

1/2 and sh,n ∈ S and ah,n ∈ A for all h, n > 0. Then, for all N ≥ 1, with
probability at least (1− δ), the regret of H-UCRL in eq. (3.6) is at most

RN ≤ O
(

LrCH βH
N H3/2

√
NΓN

)
. (3.8)

We provide a proof of theorem 1 in appendix A. The theorem ensures
that, if we evaluate optimistic policies according to Equation (3.6), we
eventually achieve performance J( f , πn) arbitrarily close to the optimal
performance of J( f , π∗) if ΓN(S ,A) grows at a rate smaller than N. As
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one would expect, the regret bound in Theorem 1 depends on constant
factors like the prediction horizon H, the relevant Lipschitz constants of the
dynamics, policy, reward, and the predictive uncertainty. The dependence
on the dimensionality of the state space ds is hidden inside ΓN , while βN is
a function of δ.

gaussian process models For the bound in Theorem 1 to be useful,
we must show that ΓN is sublinear in N. Proving this is impossible for
general models, but can be proven for GP models. In particular, we show in
Section 2.2.2 that ΓN is bounded by the worst-case mutual information (in-
formation capacity) of the GP model. Srinivas et al. (2012) and Krause & Ong
(2011) derive upper-bounds for the information capacity for commonly-used
kernels. For example, when we use their results for independent GP models
with squared exponential kernels for each component [ f (s, a)]i, we obtain a
regret of O

(
(1 + B f )

N LN
σ H3/2(d2

s (ds + da) log(dsNH))(H+1)/2
)

, where B f

is a bound on the functional complexity of the function f . Specifically, B f is
the norm of f in the RKHS that corresponds to the kernel.

A similar optimistic exploration scheme was analyzed by Chowdhury
& Gopalan (2019), but for an algorithm that is not implementable as we
discussed at the beginning of section 3.3. Their exploration scheme depends
on the (generally unknown) Lipschitz constant of the value function, which
corresponds to knowing L f a priori in our setting. While this is a restrictive
and impractical requirement, we show in Curi et al. (2020a, Appendix H.3)
that under this assumption we can improve the dependence on LH

σ βH
N in

the regret bound in theorem 1 to (L f βN)
1/2. This matches the bounds

derived by Chowdhury & Gopalan (2019) up to constant factors. Thus we
can consider the regret term LH

σ βH
N to be the additional cost that we have to

pay for a practical algorithm.

3.5 experiments

We now evaluate H-UCRL in a set of different environments. Through-
out the experiments, we consider reward functions of the form r(s, a) =
rstate(s) − ρcaction(a), where rstate(s) is the reward for being in a “good”
state, and ρ ∈ [0, ∞) is a parameter that scales the action costs caction(a).
We specify rstate(s) and caction(a) for each environment later. We evalu-
ate how H-UCRL, greedy exploitation, and Thompson sampling perform
for different values of ρ in different environments. We expect greedy ex-
ploitation to struggle for larger ρ and find the local optima with a = 0,
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whereas H-UCRL and Thompson sampling should perform well. We pro-
vide an open-source implementation of our method, which is available
at http://github.com/sebascuri/hucrl. In Section 3.5.1, we evaluate H-
UCRL in a small scale setting to provide insight about the algorithm and, in
Section 3.5.2, we evaluate RH-UCRL in a large scale setting to demonstrate
its scalability. Finally, in Section 3.5.3, we provide experimental ablations
to understand why Thompson Sampling underperforms compared to H-
UCRL.

In both small and large-scale experiments, we use 5-head probabilistic
ensembles (PE) of NN as in Chua et al. (2018). For greedy exploitation,
we sample the next-state from the ensemble mean and covariance (PE-DS
algorithm in Chua et al. (2018)). We use ensemble sampling (Lu & Van
Roy, 2017) to approximate Thompson sampling. For H-UCRL, we follow
Lakshminarayanan et al. (2017b) and use the ensemble mean and covariance
as the next-state predictive distribution. In small scale experiments, we also
evaluate deterministic ensembles (DE) and GP models with RBF kernels.

3.5.1 Small-Scale: Sparse Inverted Pendulum

We first investigate a swing-up pendulum with sparse rewards. In this task,
the policy must perform a complex maneuver to swing the pendulum to
the upwards position. A policy that does not act obtains zero state rewards
but suffers zero action costs. Slightly moving the pendulum still has zero
state reward but the actions are penalized. Hence, a zero-action policy is
locally optimal, but it fails to complete the task.

The pendulum has ds = 2 and da = 1, with actions bounded in [−1, 1] and
each episode lasts 400 time steps. We transform the angles to a quaternion
representation via [sin(θ), cos(θ)]. The pendulum starts at θ0 = π, ω0 =
0 and the objective is to swing it up to θ0 = 0, ω0 = 0. The reward
function is r(θ, ω, a) = rθ · rω − ρca, where rθ = tolerance(cos(θ), b =
(0.95, 1.), m = 0.1), rω = tolerance(ω, b = (−0.5, 0.5), m = 0.5), and ca =
−tolerance(a, b = (−0.1, 0.1), m = 0.1)− 1. The tolerance is defined in
Tassa et al. (2018).

We show the final results in Figure 3.2 for different models and the
learning curves for PE models in Figure 3.3. With no action penalty, all
exploration methods perform equally well – the randomness is enough to
explore and find a quasi-optimal sequence. For ρ = 0.1, greedy exploitation
struggles: sometimes it finds the swing-up sequence, which explains the

http://github.com/sebascuri/hucrl
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large error bars. Finally, for ρ = 0.2 only H-UCRL is able to successfully
swing up the pendulum.
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Figure 3.2: Final returns in an inverted pendulum swing-up task with sparse
rewards. As the action penalty increases, exploration through noise is
penalized and algorithms get stuck in a local minimum, where the
pendulum is kept at the bottom position. Instead, H-UCRL is able
to solve the swing-up task reliably. This holds for for all considered
dynamical models: Deterministic- (DE) and Probabilistic Ensembles
(PE) of neural networks as well as Gaussian Processes (GP) models.
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Figure 3.3: Learning curves of the inverted pendulum with Probabilistic Ensem-
ble dynamical models. H-UCRL outperforms other algorithms during
learning.

In Figure 3.4, we plot the real and simulated trajectories of the H-UCRL
algorithm. In the first episode, data is collected only around the bottom
position and the agent learns a model, as shown in the first subplot, left
figure. Next, it plans an optimistic trajectory that reaches the top-up position,
as shown in the first subplot, right figure. In the second episode, the agent
intends to execute the planned trajectory but it fails – the planned trajectory
was too optimistic and it did not manage to swing up the pendulum. In
the fourth episode, the agent succesfully swings-up the pendulum, but it is
not able to break as no data was collected in the top-up position. Finally,
after six episodes, the planned and the simulated trajectories almost match
perfectly.
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Figure 3.4: Real and simulated trajectories for the first 6 episodes with H-UCRL
(0.2 action penalty). We plot the trajectory in phase space, and use
color coding to denote the action magnitude.

3.5.2 Large-Scale: Mujoco Tasks

Next, we evaluate how H-UCRL performs in higher-dimensional problems,
namely, the Reacher and Pusher environments proposed by Chua et al.
(2018), and the standard Mujoco Half-Cheetah (Todorov et al., 2012). We
plot the results in Figure 3.5.

7-dof pr2 robot The PR2 robot is a 7DOF robot with ds = 14 and
da = 7, with actions bounded in [−20, 20]da and each episode lasts 150

time steps for 50 episodes. We consider three tasks: pusher, reacher and
sparse reacher. To learn the model, we transform the angles to a quaternion
representation via [sin(θ), cos(θ)]. We plot the final results in Figure 3.5
and the learning curves in Figure 3.6.

In the reacher task, the goal is to move the robot’s end-effector to a goal
sampled at the beggining of each episode at location (x, y, z) = (0, 0.25, 0) +
ω, where ω is a zero-mean normal noise with 0.1 standard deviation. The
reward signal is r = −∑i=x,y,z(ee − goal)2

i − ρ ∑7
i=1 a2

i , where ee − goal
is the vector that measures the distance between the end-effector and
the goal. For the sparse reacher, we use a reward signal given by r =

e−∑i=x,y,z(ee−goal)2
i /0.452

+ ρ(e−∑7
i=1 a2

i − 1).
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Figure 3.5: Mean final episodic returns on Mujoco tasks averaged over five dif-
ferent random seeds. For Reacher and Pusher (50 episodes), all explo-
ration strategies perform equally. For Sparse-Reacher (50 episodes)
and Half-Cheetah (250 episodes), H-UCRL outperforms other explo-
ration algorithms.

In the pusher task, the goal is to move a puckle to the (0, 0) location. As
the object is free to move, this introduces 3 more states to the environment.
The robot starts with zero angles, an angular velocity sampled uniformly
at random from [−0.005, 0.005], and the puckle is sampled from (x, y) =
(−0.25, 0.15)+ω, where ω is a zero-mean normal noise with 0.025 standard
deviation. The reward signal is given by r = −0.5 ∑i=x,y,z(ee − obj)2

i −
1.25 ∑i=x,y,z(obj− goal)2

i − ρ ∑7
i=1 a2

i , where ee− obj is the distance between
the end-effector and the object and obj− goal is the distance between the
object and the goal.

All exploration strategies achieve state-of-the-art performance in the
pusher and reacher environment, which seems to indicate that greedy
exploitation is indeed sufficient for these tasks. Presumably, this is due to
the over-actuated dynamics and the reward structure. This is in line with
the theoretical results for linear-quadratic control by Mania et al. (2019).
However, on the sparse reacher task, H-UCRL outperforms alternative
methods, particularly for larger action penalties, showing that exploration
is beneficial in the sparse-reward setting.

half-cheetah Our final experiment demonstrates H-UCRL on a com-
mon deep-RL benchmark, the Half-Cheetah. The Half-Cheetah is a mobile
robot with ds = 17 and da = 6, with actions bounded in [−2, 2]da and each
episode lasts 1000 time steps for 250 episodes. The objective is to make
the cheetah run as fast as possible forwards up to a maximum of 10m/s.
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Figure 3.6: Learning curves in 7-DOF PR2 Robot using PE models for pusher,
reacher, and sparse-reacher tasks. In the pusher and reacher tasks
Greedy, Thompson sampling, and H-UCRL perform equally well.
H-UCRL outperforms greedy and Thompson sampling, particularly
when the action penalty increases in the sparse-reacher task.

The reward function is given by r = max(v, 10) and the actuation costs are
ca = −a2. The actuators have to interact in a complex manner to achieve
running. In Figure 3.7, we can see a clear advantage of using H-UCRL at
different action penalties, even at zero. This indicates that H-UCRL not only
addresses action penalties, but also explores through complex dynamics.

3.5.3 Further Experiments on Thompson Sampling

Surprisingly, Thompson Sampling under-performs compared to optimistic
exploration. To understand better why this happens, we perform different
experiments in this section.
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Figure 3.7: Learning curves in Half-Cheetah environment. For all action penalties,
H-UCRL learns faster than greedy and Thompson sampling strategies.
For larger action penalties, greedy and Thompson lead to insufficient
exploration and get stuck in local optima with poor performance.

3.5.3.1 Can the sampled models solve the task?

One possibility is that, when doing posterior sampling, the agent learns
a policy for the sampled model which might be biased. If this was the
case, we would expect to see large simulated returns, i.e., the returns of the
optimal policy in the sampled system f̃i.

In Figure 3.8, we show the returns of the last simulated trajectory starting
from the bottom position of each episode. This figure indicates that there is
no model bias, i.e., the simulated returns for Thompson sampling are also
low. We conclude that it is not over-fitting to the sampled model, but rather,
the algorithm cannot solve the task with the sampled model.
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Figure 3.8: Total return from last simulated trajectory with the same initial state
as the environment initial state. H-UCRL has higher simulated returns
than Greedy and Thompson as the action penalty increases.
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3.5.3.2 Is it variance starvation?

Another possibility is Thompson Sampling suffers variance starvation,
i.e., all ensemble members’ predictions are identical. Variance starvation
means that the approximate posterior variance is smaller than the true
posterior variance. When this happens, (approximate) Thompson Sampling
fails because of a lack of exploration (Z. Wang et al., 2018). In contrast to
UCRL-stye algorithms where the optimism is implemented deterministically,
Thompson sampling implements optimism stochastically. Thus, it is crucial
that the variance is not underestimated.

If there was variance starvation, we would expect to see the epistemic
variance along simulated trajectories shrink. In Figure 3.9 we show the
average simulated uncertainty during training, considered as the predictive
variance of the ensemble. To summarize the predictive uncertainty into a
scalar, we consider the trace of the Cholesky factorization of the covariance
matrix. From the figure, we see that H-UCRL starts with the same predictive
uncertainty as greedy and Thompson sampling. Furthermore, the variance
of Thompson sampling does not shrink. We conclude that there is no
variance starvation in the one-step ahead predictions.
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Figure 3.9: Epistemic model uncertainty along simulated trajectories. Thompson
and Greedy have the same or more uncertainty than H-UCRL.

3.5.3.3 Is the number of ensemble members enough?

In order to verify this hypothesis, we ran the same experiments with 5, 10,
20, 50, and 100 ensemble members. All models swing-up the pendulum with
0 action penalty. With 0.1 action penalty, the 20, 50, and 100 ensembles find a
swing up in only one run out of five. With 0.2 action penalty, no model finds



3.5 experiments 57

a swing-up strategy. This suggests that having larger ensembles could help,
but it is not convincing. Furthermore, the model training computational
complexity increases linearly with the number of ensemble members, which
limits the practicality of larger ensembles.
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Figure 3.10: Episodic returns using Thompson Sampling for different number of
ensemble members

3.5.3.4 Is it the bootstrapping procedure during Training?

Yet another possibility is that the bootstrap procedure yields inconsistent
models for Thompson sampling. To simulate bootstrapping, for each transi-
tion and ensemble member, we sample a mask from a Poisson distribution
(Osband et al., 2016). Then, we train using the loss of each transition multi-
plied by this mask. This yields correct one-step ahead confidence intervals.
However, the model is used for multi-step ahead predictions. To test if this
is the reason of the failure we repeat the experiment without simulated
bootstrapping the transitions. The only source of discrepancy between the
models comes from the initialization of the model. This is how Chua et al.
(2018) train their probabilistic models and the models learn from consistent
trajectories.

In Figure 3.11 we show the results when training without simulated
bootstrapping. The learning curves closely follow those with bootstrapping
in Figure 3.3. We conclude that the bootstrapping procedure is likely not
the cause of the failure of Thompson Sampling.
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Figure 3.11: Episodic Returns in inverted pendulum without bootstrapping data
while learning the model.

3.5.3.5 Are probabilistic ensembles not a good approximation to the posterior in
Thompson sampling?

We next investigate the possibility that Probabilistic Ensembles are not a
good approximation for F . To this end, we consider the Random Fourier
Features (RFF) proposed by Rahimi & Recht (2008) for GP Models. To
sample a posterior, we sample a set of random features and use the same
features throughout the episodes as required by theoretical results for
Thompson sampling and suggested by Hewing et al. (2019) to simulate
trajectories. RFFs, however, are known to suffer from variance starvation.
We also consider Quadrature Fourier Features (QFF) proposed by Mutny
& Krause (2018). QFFs have provable no-regret guarantees in the Bandit
setting as well as a uniform approximation bound.

In Figure 3.12, we show the results for both RFF (1296 features), and
QFFs (625 features). Neither QFFs nor RFFs find a swing-up maneuver for
action penalties larger than zero, whereas optimistic exploration with both
QFFs and RFFs do. For no action penalty, optimistic exploration with RFFs
underperforms compared to greedy exploitation and Thompson sampling.
This might be due to variance starvation of RFFs because we do not see the
same effect on QFFs. We conclude that PEs are as good as other approximate
posterior methods such as random feature models.

3.5.3.6 Is it the optimization procedure?

We run optimistic exploration with five ensemble heads and save snapshots
of the models after the first, fifth and tenth episode. Then, we optimize a
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Figure 3.12: Episodic Returns in inverted pendulum using Random Fourier Fea-
tures (RFF) and Quadrature Fourier Features (QFF).

different policy for each of the models separately. In Figure 3.13 we compare
the simulated returns using optimistic exploration on the ensemble at each
episode against the maximum return obtained by the best head.

After the first episode, the simulated returns using optimistic exploration
always find an optimistic swing-up trajectory, whereas the optimizing all
the heads and getting the best-performing one always returns zero. This
indicates that, when the uncertainty is large, optimistic exploration finds
a better policy than approximate Thompson sampling. Without the action
penalty, the best head return quickly catches up to the simulated ones
with optimistic exploration. For an action penalty of 0.1, after five episodes
the best head is not able to find a swing-up trajectory. However, after ten
episodes it does. This shows that the H-UCRL optimization algorithm (3.6)
is able to find the policy that swings-up a single model. However, when
Thompson sampling is used to collect data, the optimization does not find
such a policy. This indicates that the models learned using H-UCRL better
reduce the uncertainty around the high-reward region and each member of
the ensemble has sharper predictions. For 0.2 action penalty, the best head
never finds a swing-up policy in ten episodes.

3.5.3.7 Conclusions

We believe that the poor performance of Thompson sampling relative to H-
UCRL suggests that a probabilistic ensemble with five members is sufficient
to construct reasonable confidence intervals (hence H-UCRL finds good
policies), but does not comprise a rich enough posterior distribution for
Thompson Sampling. Phan et al. (2019) in the Bandit Setting and Kakade et
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Figure 3.13: Simulated Returns using H-UCRL vs. Maximum simulated return
over all ensemble members using the same model as H-UCRL.

al. (2020) in the RL setting also report that approximate Thompson sampling
fails unless strong modelling priors are used.

We suspect that this effect is inherent to the multi-step RL setting. It
seems to be the case that an approximate posterior model whose variance
is rich enough for one-step predictions does not sufficiently cover the
diversity of plausible trajectories in the multi-step setting. As an example,
in H-UCRL we use the five members of the ensemble to construct the
1-step ahead confidence interval at every time-step. On the other hand,
in Thompson sampling we sample a single model from the approximate
posterior for the full horizon. It is possible that in some regions of the
state-space one member is more optimistic than others, and in a different
region the situation reverses. This is not only a property of ensembles,
but also other approximate models such as random-feature GP models
(c.f. Section 3.5.3.5) that exhibit the same behaviour. Thompson sampling
implements optimism stochastically: for it to work, we must be able to sample
a model that solves the task using multi-step predictions. Designing tractable
approximate posteriors with sufficient variance for multi-step prediction
is still a challenging problem. For instance, an ensemble model with I
members that has sufficient variance for 1-step predictions, requires IN

members for N-step predictions, this quickly becomes intractable.
Compared to Thompson sampling, UCRL algorithms in general, and

H-UCRL in particular, only require one-step ahead calibrated predictive
uncertainties in order to successfully implement optimism. This is because
the optimism is implemented deterministically and it can be used recursively
in a computationally efficient way. Furthermore, we know how to train and
calibrate models (c.f. Malik et al. (2019)) to capture the uncertainty. Due
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to the multi-step nature of the problem, constructing scalable approximate
posteriors that have enough variance to sufficiently explore is still an open
problem. This hints that optimism might be better suited than approximate
Thompson sampling in MBRL.





4
E P I S T E M I C U N C E RTA I N T Y F O R P R O VA B L E
R O B U S T N E S S

All the adversity I’ve had in my life, all my troubles
and obstacles, have strengthened me. You may not
realize it when it happens, but a kick in the teeth may
be the best thing in the world for you.

— Walt Disney

In this chapter, we use the epistemic uncertainty to output a provably
robust policy in a dynamical system with continuous states and actions. To
model robustness, we consider an adversary that acts on the environment
together with the agent, albeit with possibly different action spaces. The
high-level objective is to output a policy π̂ that performs well even in the
presence of such adversary. In Section 4.1, we formalize the problem setup
and the objective that we are trying to solve. In Section 4.2, we present the
main contribution of the section: the RH-UCRL algorithm and, in Section 4.3,
we provide the theoretical analysis of RH-UCRL. Finally, in Section 4.4, we
show the practical aspects of the algorithm in experiments. We defer the
technical proofs to Appendix B.
The results in this chapter have been previously published in:

• Curi, S., Bogunovic, I., & Krause, A. Combining Pessimism with Opti-
mism for Robust and Efficient Model-Based Deep Reinforcement Learning
in International Conference on Machine Learning (ICML) (2021).

4.1 problem setup

We consider a stochastic environment with states s ∈ S ⊆ Rds , agent actions
a ∈ A ⊂ Rda , adversary actions â ∈ Â ⊂ Rdâ , and i.i.d. additive transition
noise vector ωh ∈ Rds . Both action sets are assumed to be compact, and the
dynamics are given by:

sh+1 = f (sh, ah, âh) + ωh (4.1)

with f : S × A × Â → S . We assume the true dynamics f are unknown
and consider the episodic setting over a finite time horizon H. After every
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episode (i.e., every H time steps), the system is reset to a known state
s0. In this work, we assume that the dynamics is Lipschitz continuous
using Assumption 1. Furthermore, we assume that the adversarial policy is
Lipschitz continuous with constant Lπ̂ .

Before stating our main theoretical results, we add an additional assump-
tion on the adversarial policy:

Assumption 8 (Lipschitz continuity of Adversary policy). The adversary
policy π̂n ∈ Π̂ is Lipschitz continuous with constant Lπ̂ .

The previous assumption is mild and complements Assumption 4. The
policy class Π̂ is typically known and designed in a way that is compatible
with the previous assumption.

At every time-step, the system returns a deterministic reward r(sh, ah, âh),
where r : S × A × Â → R is assumed to be known to the agent. As
discussed in Chapter 2, when the rewards are not known, then these
could also be learned. The algorithms in this chapter still work using the
simulation dynamics in Equation (2.35) instead of the one in Equation (2.33).

We consider time-homogeneous agent policies π ∈ Π, π : s → a, that
select actions according to ah = π(sh). Similarly, we consider adversary poli-
cies π̂ ∈ Π̂ on the common state space, i.e., π̂ : S → Â, that select actions as
âh = π̂(sh). Our method also supports time-indexed policies by considering
H different agent polices πh ∈ Π and adversarial policies π̂h ∈ Π̂. We omit
this for the sake of notational simplicity. For now, we leave both Π and Π̂
unspecified, but in Section 4.4, we parameterize them via neural networks.

The performance of a pair of policies (π, π̂) on a given dynamical system
f̃ is the episodic expected sum of returns:

J( f̃ , π, π̂) := Eτ f̃ ,π,π̂

[
H

∑
h=0

r(sh, ah, âh)

]
,

s.t. sh+1 = f̃ (sh, ah, âh) + ω̃h,

s̃0 ∼ ν0,

(4.2)

where τ f̃ ,π,π̂ = {(sh−1, ah−1, âh−1), sh}H
h=0 is a random trajectory induced

by the stochastic noise ω̃, the dynamics f̃ , the policies π and π̂, and the
initial state distribution ν0.

We use π⋆ to denote the optimal deterministic robust policy from set Π
in case of true dynamics f , i.e.,

π⋆ ∈ arg max
π∈Π

min
π̂∈Π̂

J( f , π, π̂). (4.3)
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Even when the true system dynamics are known, finding a robust policy is
generally a challenging task for arbitrary policy sets, reward and transition
functions. In the rest, we make an assumption that Equation (4.3) can be
solved for a given dynamics, and in Section 4.2.3, we propose a concrete
problem instantiation and algorithmic solution.

learning protocol We consider the episodic setting in which, at
every episode n, the learning algorithm selects both the agent’s πn and
a fictitious adversary’s π̂n policies. The pair of policies (πn, π̂n) is then
deployed on the true system f , and a single realization of the trajectory
τf ,πn ,π̂n is observed and used to update the underlying statistical model.
We summarize the general learning protocol in Algorithm 9. In the braking
system example, this learning protocol implies that during training we
are allowed to execute braking maneuvers as well as possible adversarial
policies, e.g., changing the braking surface. The execution of both policies
during training is crucial to guarantee robust performance: The learner can
actively look for the worst-case adversarial policies that it might encounter
during deployment and learn what to do when faced upon them. The
main contribution of this chapter is an algorithm that selects agent and
adversary policies (πn, π̂n), in such a way that the output policy is provably
robust.

Algorithm 9 Robust Model-based Reinforcement Learning
Inputs: True dynamics f , horizon H, initial state s0, number of episodes N.

1: Initialize dataset D0 = {∅}.
2: Initialize statistical dynamical model (µ, Σ).
3: for Episode n = 1, 2, . . . , N do
4: Select agent and adversary policies (πn, π̂n).
5: Reset the system to s0,n ∼ ν0.
6: for Timestep h = 1, . . . , H do
7: ah−1,n, âh−1,n = πn(sh−1,n), π̂n(sh−1,n)
8: sh,n = f (sh−1,n, ah−1,n, âh−1,n) + ωh−1,n
9: Collect transition Dn = Dn ∪ {(sh−1,n, ah−1,n, âh−1,n), sh,n}

10: Update statistical dynamical model with the H transitions in Dn.
Outputs: Final policy π̂

model learning The model learning techniques are identical to the
ones in Section 2.2, but the covariates are z ≡ (s, a, â). All the results and
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training protocol from the aformentioned section hold with this slight
modification.

performance metric For a small fixed ϵ > 0, the goal is to output a
robust policy π̂ after N episodes such that:

min
π̂∈Π̂

J( f , π̂, π̂) ≥ min
π̂∈Π̂

J( f , π⋆, π̂)− ϵ, (4.4)

where π⋆ is defined as in Equation (4.3). Hence, we consider the task of near-
optimal robust policy identification, but we note that one can also measure
the performance in terms of the robust cumulative regret as discussed in
section 4.3. Thus, the goal is to output the agent’s policy with near-optimal
robust performance when facing its own worst-case adversary, and the
adversary selects π̂ after the agent selects π̂. Note that this is a stronger
robustness notion than just considering the worst-case adversary of the
optimal policy, since, by letting π̂∗ ∈ argminπ̂∈Π̂ J( f , π⋆, π̂), we have J( f ,
π̂, π̂∗) ≥ minπ̂∈Π̂ J( f , π̂, π̂).

4.2 robust hallucinated upper confidence reinformcent

learning (rh-ucrl)

We now develop our RH-UCRL algorithm that can be used in Algorithm 9,
for selecting policies πn and π̂n. RH-UCRL takes the sequence of confidence
parameters {βn}n≥1 from Assumption 7 as input. The main idea is to use
our probabilistic model of f to optimistically select πn and pessimistically
select π̂n w.r.t. all plausible dynamics.

4.2.1 Optimistic and Pessimistic Policy Evaluation

For any two policies π and π̂, we provide the (o)ptimistic and (p)essimistic
estimate of J( f , π, π̂) at episode n, and we denote them with J(o)n (π, π̂)

and J(p)
n (π, π̂), respectively. Such estimates are constructed considering

the epistemic uncertainty in the dynamical model. For instance, the opti-
mistic estimate is the maximum performance of a given policy, where the
maximum is taken over the dynamical models in Mn. In general, such
optimization problem is intractable. However, we introduce an auxiliary
function η : S ×A× Â → [−1, 1]ds and reparameterize the set of plausible
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models as f̃ = µn−1(·) + βn−1σn−1(·)η(·). Using this reparameterization,
the optimistic estimate is given by:

J(o)n (π, π̂) := max
η(o)

J( f (o), π, π̂), (4.5a)

s.t. f (o)(s, a, â) = µn−1
(
s, a, â)

+ βn−1η(o)(s, a, â)σn−1(s, a, â). (4.5b)

Similarly, the pessimistic estimate is given by:

J(p)
n (π, π̂) := min

η(p)
J( f (p), π, π̂) (4.6a)

s.t. f (p)(s, a, â) = µn−1
(
s, a, â)

+ βn−1η(p)(s, a, â)σn−1(s, a, â). (4.6b)

We note that J(o)n and J(p)
n represent upper and lower bounds on the perfor-

mance of the policies π, π̂ in case of the true dynamics f . These estimates are
computed by finding the most optimistic (pessimistic) dynamics compatible
with the data. Note that the optimistic/pessimistic outcome is selected via
decision variables η(o)/η(p) : S ×A× Â → [−1, 1]ds , which are functions of
the state as well as actions of both players. These select among all plausible
outcomes of the dynamics bounded within the epistemic uncertainty over f .
When the policies are fixed and clear from context, with slight abuse of no-
tation we write η(s, a, â) = η(s, π(s), π̂(s)) = η(s). A crucial observation is
that both eqs. (4.5) and (4.6) can be viewed as two optimal control problems,
where the decision variables η(o)/η(p) are hallucinated control policies,
whose effect is bounded by the model epistemic uncertainty. We can use
optimal control algorithms (Camacho & Alba, 2013) to maximize/minimize
the sum of rewards following the reparameterized dynamics f (o)/ f (p).
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4.2.2 The RH-UCRL Algorithm

Given both the pessimistic and optimistic performance estimates from the
previous section, we are now ready to state our algorithm. At each episode
n, RH-UCRL selects the agent and adversary policies as follows:

πn ∈ argmax
π∈Π

min
π̂∈Π̂

J(o)n (π, π̂), (4.7a)

π̂n ∈ argmin
π̂∈Π̂

J(p)
n (πn, π̂). (4.7b)

Thus, RH-UCRL selects the most optimistic robust policy for the agent
player in eq. (4.7a). The adversary player picks the most pessimistic policy
given the selected agent policy in eq. (4.7b). When the adversarial policy
space Π̂ is a singleton, RH-UCRL reduces to the H-UCRL algorithm.

Finally, after a total of N episodes, the algorithm outputs an agent policy
π̂ given by:

π̂ = πn⋆ s.t. n⋆ ∈ argmax
n∈{1,...,N}

J(p)
n (πn, π̂n). (4.8)

There is no extra computational cost in identifying the output policy as
J(p)
n (πn, π̂n) is already computed by the learner in eq. (4.7b) in every episode

n. Thus, the algorithm simply returns the encountered agent policy with
maximum pessimistic robust performance.

4.2.3 Practical Implementation

Policy Learning. To implement RH-UCRL, we parameterize π, π̂, and η
using neural network policies. We remark that π̂ in the agent optimization
(4.7a) and π̂ in the adversary optimization (4.7b) are different so, for the
sake of clarity, we call π̂′ the policy in the agent optimization (4.7a). We
approximate the finite-horizon RL problem with a discounted infinite-
horizon problem using γ = 1/(1− H) as discount factor. We use an actor-
critic approach where we learn two separate critics, one for the optimistic
performance in (4.7a) and the other one for the pessimistic performance in
(4.7b) via fitted Q-iteration (Perolat et al., 2015; Antos et al., 2008). Finally,
we do stochastic gradient ascent/descent using pathwise gradients through
such learned critics (Mohamed et al., 2019; Silver et al., 2014). Namely, we
compute the gradients of π, η(o), and π̂′ through the learned optimistic
critic, then we update π and η(o) via gradient ascent, whereas π̂′ via
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gradient descent. Likewise, we compute the gradients of π̂ and η(p) through
the learned pessimistic critic for the fixed π and update both π̂ and η(p)

via gradient descent.

4.3 theoretical analysis

In this section, we theoretically analyze the performance of the RH-UCRL
algorithm. First, we use the notion of robust cumulative regret1

R̄N =
N

∑
n=1

min
π̂∈Π̂

J( f π⋆, π̂)−min
π̂∈Π̂

J( f πn, π̂), (4.9)

which measures the difference in performance between the optimal robust
policy and the sequence of agent’s policies {π1, . . . , πN} selected at every
episode in eq. (4.7a). Below (see Theorem 2) we establish that RH-UCRL
achieves sublinear regret, i.e., R̄N/N → 0 for N → ∞. In addition to the
robust regret notion, we also analyze the recommendation rule of RH-
UCRL via eq. (4.8), and the number of episodes N required to output a
near-optimal robust policy (see Corollary 1). We start by analyzing a general
robust model-based RL framework, and later on, we demonstrate the utility
of the obtained results by specializing them to the important special case
of Gaussian Process dynamics models. We defer all the proofs from this
section to Appendix B.

Both the robust regret and sample complexity rates that we analyze de-
pend on the difficulty of learning the underlying statistical model. Models
that are easy to learn typically require fewer samples and allow algorithms
to make better decisions sooner. To express the difficulty of learning the im-
posed calibrated model class, we use the following model-based complexity
measure introduced in Equation (2.11):

ΓN := max
D̃1:N

N

∑
n=1

∑
(s,a,â)∈D̃n

∥σn−1(s, a, â)∥2
2 (4.10)

where each D̃n ⊂ {S ×A× Â}H . This quantity has a worst-case flavor as it
considers the data (collected during N episodes by any algorithm) that lead
to maximal total predictive uncertainty of the model. For the special case
of RKHS/GP dynamics models, we show below that this quantity can be

1 Similar notions of robust cumulative regret have been analyzed before in bandit optimization
(see, e.g., Kirschner et al., 2020).
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effectively bounded, and the bound is sublinear (in the number of episodes
N) for most commonly used kernel functions.

general results Now, we can state the main result of this section. In
the following theorem, we bound the robust cumulative regret incurred by
the policies from eq. (4.7a).

Theorem 2. Under Assumptions 1 to 8, let C = (1 + L f + 2Lσ)(1 + L2
π +

L2
π̂)

1/2 and let sn,h ∈ S , an,h ∈ A, ân,h ∈ Â for all n, h > 0. Then, for any fixed
H ≥ 1, with probability at least 1− δ, the robust cumulative regret of RH-UCRL
is upper bounded by:

R̄N = O
(

LrCH βH
N H3/2

√
N ΓN

)
.

This regret bound shows that RH-UCRL achieves sublinear robust regret
when βH

N
√

ΓN = o(
√

N). Below, we show a concrete example of GP models
where this is indeed the case. The obtained bound also depends on the
Lipschitz constants from Assumption 8, as well as the episode length H that
we assume is constant. The dependency of the regret bound on the problem
dimension is hidden in ΓN , while βN depends also on δ (see Assumption 7).

Next, we characterize the number of episodes (samples) required by
RH-UCRL to output ϵ-optimal robust policy. Our analysis upper bounds
the optimal robust performance according to the confidence bounds from
Assumption 7, but also addresses the challenge of characterizing the impact
of exploring different adversary policies in eq. (4.7b).

Corollary 1. Consider the assumptions and setup of Theorem 2, and suppose that

N
β2H

N ΓN
≥ 16L2

r H3C2H

ϵ2 , (4.11)

for some fixed ϵ > 0 and H ≥ 1. Then, with probability at least 1− δ after N
episodes, RH-UCRL achieves:

min
π̂∈Π̂

J( f , π̂N , π̂) ≥ min
π̂∈Π̂

J( f , π⋆, π̂)− ϵ, (4.12)

where π̂ is the output of RH-UCRL, reported according to eq. (4.8), and π⋆ is the
optimal robust policy given in eq. (4.3).

gaussian process models We specialize the regret bound obtained
in theorem 2 to the case of Gaussian Process (GP) models. GPs are popular
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statistical models that are frequently used to model unknown dynamics (M.
Deisenroth & Rasmussen, 2011; Kamthe & M. Deisenroth, 2018b; Curi et al.,
2020b). These models are very expressive due to a versatility of possible
kernel functions, and can naturally differentiate between aleatoric noise
and epistemic uncertainty. Moreover, GPs are known to be provably well-
calibrated when the unknown dynamics f are B f -smooth as measured by
the GP kernel.

In Section 2.2.3, we recall the GP maximum information gain (MIG) which
is a kernel-dependent quantity (first introduced by Srinivas et al. (2010)),
that is frequently used in various GP optimization works to characterize
complexity of learning a GP model. Sublinear upper bounds for MIG are
known (c.f. Srinivas et al. (2010)) for most popularly used kernels (e.g.,
linear, squared-exponential, etc.), as well as for their compositions, e.g.,
additive kernels Krause & Ong, 2011. We recall the known results and
use MIG to express βN and upper bound ΓN in theorem 2. For example,
when we use independent GP models with either (i) linear or (ii) squared-
exponential kernels, for every component, we obtain the following sublinear
(in N) regret bounds O(H3/2ds [(ds + da + dâ) ln(dsNH)](H+1)/2√N) and
O(H3/2ds [ln(dsNH)](ds+da+dâ)(H+1)/2√N), respectively.

Finally, we note that the previously used MIG bounds require S to
be compact, which does not hold under the considered noise model in
Assumption 2. By bounding the domain w.h.p., Curi et al. (2020a) show that
this only increases the MIG bounds (e.g., in case of the squared-exponential
kernel) by at most a polylog(N) factor.

4.4 experiments

We now discuss concrete instantiations of RH-UCRL for three important
robust RL scenarios: (i) adversarial-robustness, (ii) action-robustness, and (iii)
parameter-robustness. In all of the above scenarios, we experimentally demon-
strate that RH-UCRL outperforms or successfully competes with the state-
of-the-art variants designed specifically for these settings. In Section 4.4.1,
we evaluate RH-UCRL in a small scale setting to provide insight about the
algorithm and, in Section 4.4.2, we evaluate RH-UCRL in a large scale setting
to demonstrate its scalability. We provide an open-source implementation of
our method, which is available at http://github.com/sebascuri/rhucrl.

http://github.com/sebascuri/rhucrl
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4.4.1 Small-Scale: Inverted Pendulum Swing-Up Task

The pendulum swing up task has a reward function given by r(s, a) =
−(θ2 + 0.1 ∗ θ̇2), where θ is the angle and θ̇ is the angular velocity. The
Pendulum always starts from θ = π in the bottom down position and the
goal is to swing the pendulum to the top-up position at θ = 0. Crucially,
the initial distribution is a dirac-distribution located at θ = π, i.e., it does
not have enough coverage for algorithms to explore with it.

adversarial-robust. In this setting, the adversary can change the
relative gravity and the relative mass of the environment at every timestep
of each episode between [1− α, 1+ α], for varying α. We train RH-UCRL for
200 episodes, H-UCRL with the nominal gravity and mass for 200 episodes,
and the baseline in this setting is RARL (Pinto et al., 2017), which we train
for 1000 episodes. To evaluate the robust performance, we train SAC for
200 episodes, fixing the agent policy of the algorithms.

action-robust. In this setting, the action is a mixture sampled with
probability α of the learner and the adversary, i.e., the adversary only affects
the input torque to the pendulum. The training and evaluation procedure
is the same as in the adversarial robust setting. The baseline in this setting
is AR-DDPG, which we train for 200 episodes.

parameter-robust. In this setting, we consider robustness to mass
change. Compared to the adversarial-robust setting, here the adversary is
only allowed to change the mass once per episode. In this setting, H-UCRL
is trained for 200 episodes with the nominal mass, and then it is evaluated
for varying masses. RH-UCRL and the baseline, EP-OPT are allowed to
change the mass also during training. In this setting, there is no worst-case
adversary during evaluation.

We show the experimental results in Figure 4.1. The baselines never
learns a successful swing-up strategy as dithering is not enough to explore
in this environment. On the other hand, RH-UCRL and H-UCRL both learn
a swing-up strategy. However, RH-UCRL outperforms H-UCRL as the level
of adversarial perturbation increases.
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Figure 4.1: Performance of RH-UCRL (this work), H-UCRL, and a baseline with
no exploration in adversarial-, action-, and parameter-robust settings
on a pendulum swing-up task. The baseline never learns a successful
swing-up strategy due to insufficient exploration. RH-UCRL and H-
UCRL learn a swing-up strategy but RH-UCRL outperforms H-UCRL
as the perturbation increases.

4.4.2 Large-Scale: Mujoco Environments

experimental environments We use the Mujoco suite (Todorov
et al., 2012) to demonstrate the effectiveness of our algorithms in all the
considered robust-RL settings. In particular, we use the Half Cheetah,
Hopper, Inverted Pendulum, Reacher, Swimmer, and Walker robots.

training and evaluation Unless stated otherwise, we train all algo-
rithms with an adversarial environment for 200 episodes. To evaluate the
robust performance (4.4) of each algorithm, we freeze the output policy of
the training step and train an adversary using SAC for 200 episodes. We
perform five independent runs and report the mean and standard deviation
over the runs.

algorithm hyper-parameters . For RH-UCRL and its variants, we
fix β = 1.0, we train every time step and do two gradient steps with Adam
(Kingma & Ba, 2014) with learning rate = 3× 10−4. To compute a policy
gradient, we take pathwise derivatives of a learned critic using the learned
model for 3 time steps and weight each estimates using td-λ, with λ = 0.1
(Sutton & Barto, 2018). We also add entropy regularization with parameter
0.2. We did not do a hyper parameter search, but rather use the software
default values.

baselines Besides the specific algorithms designed for each setting,
we use H-UCRL (Curi et al., 2020a) as a non-robust baseline and three
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ablations derived from RH-UCRL, namely MiniMax-MB, MiniMax-MF
and BestResponse. The MiniMax-MB algorithm is:

(πn, π̂n) ∈ argmax
π∈Π

min
π̂∈Π̂

J(e)n (π, π̂), (4.13)

where J(e)n (π, π̂) corresponds to the expected performance, where the expec-
tation is taken with respect to the aleatoric and epistemic uncertainty, i.e.,
none of the players actively explore. Next, the MiniMax-MF algorithm is
a model-free implementation of Equation (4.13) that uses SAC (Haarnoja
et al., 2018) as the optimizer for each player. The BestResponse algorithm
is:

πn ∈ argmax
π∈Π

min
π̂∈Π̂

J(o)n (π, π̂), (4.14a)

π̂n ∈ argmin
π̂∈Π̂

J(e)n (πn, π̂). (4.14b)

Thus, the agent is the same as in RH-UCRL, whereas the adversary sim-
ply plays the best-response to the agent’s policy and does not perform
exploration with pessimism. The goal of BestResponse is to analyze if
exploration of the adversary through pessimism is empirically important,
of MiniMax-MB is to analyze if any exploration is empirically important,
and of MiniMax-MF is to analyze if using a model of the dynamics is
beneficial.

4.4.2.1 Adversarial-Robust Reinforcement Learning

This setting is the most general one that we also consider in Section 4.2.
The agent and the adversary can have distinct action spaces, which can
also be seen as a particular instance of multi-agent RL with two competing
agents. In the braking system motivating example, this can be used to
model an adversarial state-dependent friction coefficient, e.g., icy roads.
Having good robust performance in this setting implies braking robustly
even with changing conditions.

The deep robust RL algorithms that we compare with are RARL (Pinto
et al., 2017) and RAP (Vinitsky et al., 2020), and we use the adversarial
action space proposed by Pinto et al. (2017). We train all algorithms for 200

episodes except for RARL and RAP that we train for 1000 episodes since
they are on-policy algorithms and thus less sample-efficient. For RARL
and RAP, we use the PPO algorithm from Schulman et al. (2017) as this
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performed better than TRPO from Schulman et al. (2015b). We train PPO
after collecting a batch of 4 episodes, for 80 gradient steps, using early
stopping once the KL divergence between the initial and the current policy
is more than 0.0075. To evaluate robust performance (recall Equation (4.4)),
we freeze the output policy and train only its adversary by using SAC for
200 episodes.

environments For the Half-Cheetah environment, the adversary acts
on the torso, the front foot and the back foot. For the Hopper environment,
the adversary acts on the torso. For the Inverted Pendulum, the adversary
acts on the pole. The Inverted Pendulum task is different here as it starts
from a perturbation of the top-up position and the task is to stabilize the
pendulum. For the Reacher2d environment, the adversary acts on the body0

link. For the Swimmer, the adversary acts on the torso. For the Walker, the
adversary acts on the torso. For all environments, we use the adversarial
input magnitude Â = [−10, 10]dâ , where dâ is environment dependent.

In Figure 4.2, we show the worst-case and average returns on the different
environments. In terms of average performance, there is no algorithm that
performs better than others in all of the environments. On the other hand,
comparing worst-case performance, RH-UCRL clearly outperforms the ro-
bust ablations, deep robust RL and non-robust baselines. For example, in
the Inverted Pendulum stabilization task, RH-UCRL is the only algorithm
that discovers a robust policy while all other algorithms severely fail. Be-
stResponse and RAP manage to learn a policy that stabilizes the pendulum
even when they learn with an adversary. However, when facing a worst-case
adversary, they fail to complete the task.

Comparing RH-UCRL with non-robust H-UCRL, we see that in most en-
vironments it has comparable or better worst-case and average performance.
This indicates that RH-UCRL is not only robust, but using an adversary
during training practically helps with exploration. Pinto et al. (2017) also
report similar findings regarding robust training. Comparing RH-UCRL
with the ablations, we see that RH-UCRL achieves higher robust perfor-
mance. From here, we conclude that exploring with both the agent and the
adversary during training is crucial to achieve high robust performance
in this setting. Finally, we see that both RARL and RAP have poor robust
performance when trained for 1000 episodes, which demonstrates their
sample inefficiency.
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Figure 4.2: Worst-case and average return of different algorithms in the
Adversarial-Robust Setting in Mujoco tasks. RH-UCRL outperforms
the other algorithms in terms of worst-case return. The non-robust
baseline, H-UCRL, has good average performance but poor worst-
case performance (e.g., Inverted Pendulum). The deep robust RL
baselines have worse sample complexity and often underperform.
Our ablations are also non-robust, since exploration of both agent and
adversary is crucial here to achieve robust performance.

4.4.2.2 Action-Robust Reinforcement Learning

Tessler et al. (2019) introduce the action-robust setting, where both the
agent and the adversary share the action space A and jointly execute a
single action in the environment. This is useful, e.g., to model robustness
to changes in the actuator dynamics, e.g., due to tire wear or incorrect
pressure in a braking system. The action is sampled from a mixture policy
amix ∼ πmix = Υα(π, π̂), where α ∈ [0, 1] is a known parameter that
controls the mixture proportion. One example of the mixture policy is
the noisy-robust setting, in which Υα(π, π̂) = (1 − α)π + απ̂. Another
example is the noisy-robust setting, in which Υα = π with probability
(1− α) and Υα = π̂ with probability α. The system evolves according to
sh+1 = f ′(sh, amix

h ) + ωh.
Besides the previous baselines, we compare to AR-DDPG Tessler et al.,

2019, and show the results of the experiment in Figure 4.3. Here, RH-
UCRL is also comparable or better than the baselines in terms of average
and worst-case returns. However, the ablations perform better than in the
adversarial-robust setting. This is possibly due to the agent and adver-
sary sharing the action space: The agent injects “enough” exploration to
successfully learn both policies.
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Figure 4.3: Average and worst-case return of different algorithms in the Noisy
Action-Robust Setting in Mujoco tasks. RH-UCRL mostly outper-
forms other algorithms in terms of worst-case return. The non-robust
baseline, H-UCRL, has good average performance but has an extreme
drop in worst-case performance. Overall, the ablations perform better
here than in the Adversarial-Robust setting.

4.4.2.3 Parameter-Robust Reinforcement Learning

The goal in this setting is to be robust to changes in parameters, such as
mass or friction, that can occur between training and test time. Being robust
to a fixed parameter is equivalent to considering a stateless adversary policy
in the RH-UCRL algorithm (4.7), i.e., Π̂ : ∅→ A. Common benchmarks in
this setting are DomainRandomization (Peng et al., 2018; Tobin et al., 2017)
and EP-OPT Rajeswaran et al., 2017. The former randomizes the parameters
in the simulation and uses the average over these parameters as a surrogate
of the maximum. The latter also randomizes the parameters but considers
the CVaR as a surrogate of the maximum. As they are on-policy procedures,
we train them using data for 1000 episodes. Finally, we evaluate the policies
in different environments by varying the corresponding mass parameters.

We show the results of this setting in Figure 4.4. Although RH-UCRL
optimizes for the worst-case parameter, it performs well over different mass
parameter values, and, except in the Walker environment, its performance
remains robust and nearly constant for different values of the mass param-
eter. H-UCRL is trained with nominal mass only (relative mass = 1), and it
suffers in performance when varying the mass. This is most notable in the
Half Cheetah environment (see Figure 4.4). The robust variants, instead, can
alter the mass during training and often perform better than H-UCRL. A par-
ticular case happens with the BestResponse algorithm in the Inverted Pen-
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Figure 4.4: Returns of different algorithms in the Parameter-Robust Setting
in Mujoco tasks for different masses during evaluation. Although
RH-UCRL optimizes for the worst-case relative mass in this setting,
it also performs well over different value of mass parameters.

dulum, where the adversary is greedy and so it swiftly chooses a small mass
and never changes it during training. The agent learns only for this small
mass and, when evaluated with different ones, it performs poorly. We also
observe that in the Hopper, the MiniMax-MF outperforms the MiniMax-
MB. The reason for this might be due to early stopping of the environment,
as it is possible that the transitions collected in 200 episodes are not sufficient
for learning the model, but allow for learning a policy in a model-free way.



5
E P I S T E M I C U N C E RTA I N T Y F O R P R O VA B L E S A F E T Y

An Ounce of Prevention Is Worth A Pound of Cure.
— Benjamin Franklin

In this chapter, we use the models’ epistemic uncertainty to provide
provable safety guarantees in a dynamical system with continuous states and
actions. We define safety as constraints that must be met at every time
step of the execution. In Section 5.1, we formalize the problem setup and
the objective we are trying to solve. In Section 5.2, we prove that we can
express the safety constraints as a sum of discounted costs and transform
the problem into a constrained MDP by inner approximating the safe set
of states. In Section 5.3, we show how to incorporate epistemic uncertainty
through confidence-based safety filters and introduce the H-UCSF algo-
rithm, together with the theoretical analysis. Finally, in Section 5.4, we show
the practical aspects of the algorithm in experiments. We defer the technical
proofs to Appendix C.
The results in this chapter have been previously published in:

• Curi, S., Lederer, A., Hirche, S., & Krause, A. Safe Reinforcement Learn-
ing via Confidence-based Filters in IEEE 61th Annual Conference on Deci-
sion and Control (CDC) (2022).

5.1 problem setup

We consider a discrete-time dynamical system as in Equation (5.1),

sh+1 = f (sh, ah) + ωh, (5.1)

where s ∈ S ⊂ Rds are states, a ∈ A ⊂ Rda control actions, ω is
process noise sampled from a zero-mean probability distribution, and
f : S ×A → S denotes the unknown deterministic transition function. The

79
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control actions ah are determined using a policy π : S → A, with the goal
to maximize an expected cumulative return

J( f , π; s) =Eτ

[
∞

∑
h=0

γhr(sh, π(sh))

]
, (5.2a)

s.t. sh+1 = f (sh, π(sh)) + ωh (5.2b)

s0 = s, (5.2c)

where r : S ×A → R is a known immediate reward function, γ ∈ (0, 1) is
a discount factor, and τ f̃ ,π = {(sh−1, ah−1), sh}H

h=0 is a random trajectory

induced by the stochastic noise ω̃, the dynamics f̃ , and the policy π. Notice
that in this chapter we consider fixed starting states instead of distributions,
thus we index the returns with J( f , π; s).

In practice, the policy π must additionally ensure safety of the closed-loop
dynamical system, e.g., because damage to the system described by f must
be avoided. In the RL literature, this is typically addressed through Con-
strained Markov Decision Processes (CMDPs), which additionally consider
a constraint on a cumulative cost function

C( f , π; s) = Eτ

[
∞

∑
h=0

γhc(sh)

]
< ξ, (5.3)

where c : S → R is an immediate cost, ξ ∈ R is a constant specifying the
constraint, and sh is defined iteratively through the dynamics (5.1) with
actions ah = π(sh) and initial state s0 = s. Therefore, an optimization
problem of the form

π∗ = argmax
π

Es∼ν0 [J( f , π; s)] (5.4a)

s.t. Es∼ν0 [C( f , π; s)] < ξ (5.4b)

is usually solved to determine safe policies.
While this problem can be directly solved by adapting standard RL algo-

rithms with techniques akin to Lagrangian relaxation Paternain et al., 2019,
this approach generally cannot ensure safety during training. Moreover,
it does not reflect the fact that the safety of many systems is defined in
terms of safe and unsafe states classified into a set of safe states Ssafe ⊂ S
and its complement Sunsafe = S \ Ssafe. For example, an autonomously
driving car should not leave the road, which directly defines the road as
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Ssafe. When using the natural indicator 1x∈Sunsafe
as cost function, satisfying

Equation (5.4b) bounds the discounted probability of violating the con-
straints by ξ. Nonetheless, this does not guarantee that constraints will not
be violated when deploying π∗.

Therefore, we consider safety in terms of state constraints sh ∈ Ssafe,
which we require to hold with high probability, since the process noise ω
generally prevents deterministic guarantees. This leads to the following
definition of safety.

Definition 4 (K-step δ-safety). A policy π is K-step δ-safe for a state s ∈ S
if it holds that P[sh ∈ Ssafe ∀k = 0, . . . , K | s0 = s] ≥ 1− δ, where states sh
are defined in the dynamics (5.1).

The concept of K-step δ-safety is commonly found in stochastic model
predictive control, where it is typically referred to as joint chance constraint
(Mesbah, 2016). We consider finite values of K because ensuring δ-safety
over an infinite horizon, i.e., K = ∞, is not possible for unbounded process
noise ω in general. This can be easily seen for a system with f = 0 and i.i.d.
zero mean Gaussian noise ω, which almost surely leaves any compact safe
set Ssafe eventually.

In order to obtain the optimal policy π∗safe ensuring δ-safety, we generally
need to consider the optimization problem

π∗safe = argmax
π

J( f , π) (5.5a)

s.t. P[sh ∈ Ssafe∀h = 0, . . . , K|s0 = s] ≥ 1− δ. (5.5b)

Solving this optimization problem is challenging since there usually exists
no closed-form expression for the probability constraint (5.5b), such that
computationally expensive uncertainty propagation methods have to be
employed, e.g., generalized polynomial chaos expansions (Kim & Braatz,
2013).

To find approximate solutions for the safety problem (5.5), we follow the
idea of Wabersich et al. (2021) and split it into two phases: an initial phase
in which arbitrary methods can be used to determine a nominal policy
π∗, followed by an on-line phase, in which a safety filter is employed to
adapt the policy π∗ to ensure K-step δ-safety. Since we cannot ensure safety
on-line without any knowledge about f , we assume to have access to a set
of plausible models Mβ from Equation (2.9), and assume that such set is
well-calibrated using Assumption 7.
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We assume that this set of models is well-calibrated, i.e., f ∈ M with
high probability, as formalized in the following. Since the statistical model
is often obtained by applying supervised machine learning, e.g., deep
ensembles, to the data obtained from policy roll-outs Curi et al., 2020a,
the uncertainty usually decreases with the number of roll-outs. Thereby,
this assumption typically enables less conservative and higher performant
policies over time.

Using calibrated models from Assumption 7, we investigate the following
sub-problems for the derivation of the safety filter.

state constraints as cumulative cost In order to enable the
application of reinforcement learning methods, we consider the problem
of converting the K-step δ-safety constraint (5.5b) for known dynamics f
into a constraint on an expected cumulative cost function. We show that
this can be achieved by deriving a condition of the form

Eω[C( f , π; f (s, a) + ω)] < ξ. (5.6)

for suitably chosen immediate costs c, cf. Section 5.2. This conditions means
that after we compute C, we should evaluate C at the next state to verify
the safety of the policy π.

safety filter Using this condition, we derive a novel approach for
computing safe policies πsafe for systems with unknown dynamics f . This
allows us to address the problem of ensuring the safety of a possibly unsafe
nominal policy π∗ on-line using a confidence-based filter

π̂(s) = argmin
a∈A

∥π∗(s)− a∥, (5.7a)

s.t. max
f̃∈M

Eω
[
C( f̃ , πsafe; s′)

]
< ξ, (5.7b)

s′ = f̃ (s, a) + ω, (5.7c)

which outputs the closest action π̂(s) to π∗. We derive tractable formula-
tions for these optimization problems in Section 5.3.

5.2 expressing state constraints through cost functions

To reformulate the δ-safety constraint into a constraint on cumulative costs,
we first show in Section 5.2.1 that sub-level sets of C contained in Ssafe
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Sunsafe

c(s) = ĉ

c(s) = ĉ− 1

C( f , π, s) = ĉ

C( f , π, s) = ξ̄

Cπ
ξ̄

Figure 5.1: The expected cumulative cost can be 0 even if the immediate cost c at
the first state is greater than 0, as this positive cost can be compensated
by negative costs afterwards (red trajectory). Therefore, Cπ

ĉ ̸⊂ Ssafe,
such that we have to consider the tightened threshold ξ̄, which ensures
that states s ∈ Cπ

ξ̄
start with immediate cost c(s) ≤ ĉ (blue trajectory).

can be easily defined. Based on this result, we derive sufficient conditions
on the cost function, which allow to conclude safety from cumulative cost
constraints in Section 5.2.2, providing useful design freedom.

5.2.1 Safe Sub-Level Sets of the Cumulative Cost

For deriving the sub-level set Cπ
ξ̄
= {s ∈ S : C( f , π; s) < ξ̄}, ξ̄ ∈ R, which

is contained in the set of safe states Ssafe, we consider an immediate cost
function c : S → R satisfying

c ≤ c(s) ≤ c̄ ∀s ∈ Ssafe, c(s) ≥ ĉ if s ∈ Sunsafe (5.8)

for constants c, c̄, ĉ ∈ R. For example, using the indicator function 1s∈Sunsafe
as cost, which equals 1 for s ∈ Sunsafe and 0 otherwise, implies c = 0 and
c̄ = ĉ = 1. Using this definition, we can define an inner-approximation of
the safe set of states Ssafe through the ĉ sub-level set of the immediate cost
c, which becomes exact if c(s)< ĉ for all s ∈ Ssafe. Moreover, we can define
the expected cumulative cost using Equation (5.3).

While one might think that the definition of the immediate cost c in
Equation (5.8) ensures that the ĉ sub-level set Cπ

ĉ of C is also contained in
the safe set of states Ssafe, this is not true in general. As illustrated by the
red trajectory in Figure 5.1, the cumulative cost C can equal ĉ even if the
immediate cost c in the initial state is greater than ĉ, since negative costs
of following states along the trajectory can compensate it. Therefore, the
sub-level set Cπ

ĉ is generally not completely contained in the set of safe
states Ssafe, such that we must consider a tightened threshold ξ̄. Due to the
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lower bound c of the cost c, this constant ξ̄ can be determined using the
following lemma.

Lemma 9. Consider an immediate cost function c : S → R satisfying the condi-
tions (5.8). Then, it holds that Cπ

ξ̄
⊂ Ssafe, where ξ̄ = ĉ + γ mins∈S C( f , π; s).

This lemma relies on the idea that the cumulative cost can be lower
bounded by mins∈S C( f , π; s), such that any state with immediate cost c
greater than ĉ also must have an expected cumulative cost greater than ξ̄. For
the example of the indicator cost, ξ̄ can be straightforwardly computed as
ξ̄ = 1 since C is trivially lower bounded by 0. It is straightforward to see that
this choice of cost function generally allows to accurately approximate Ssafe
using Cπ

ξ̄
, and indeed Ssafe = Cπ

ξ̄
is possible for deterministic dynamics with

ω = 0. However, Lemma 9 is not limited to indicator type cost functions,
but applies to arbitrary costs c satisfying the conditions (5.8). For example,
when a safety set is defined as a polytope e.g., s > 0, either the indicator
c(s) = s > or even the argument c(s) = s are valid cost functions. This
is particularly beneficial for computing optimal policies using C, where
informative gradients may aid the convergence of common RL techniques.
Thus, Lemma 9 allows a flexible approximation of the safe set Ssafe suitable
for the optimization-based approaches employed in the following sections.

5.2.2 Cumulative Cost Safety Conditions

To express K-step δ-safety through expected cumulative costs C, it remains
to derive conditions which ensure that the system state sh stays inside the
sub-level set Cπ

ξ̄
for all h = 1, . . . , K with probability δ. For this purpose,

we employ techniques from stochastic stability analysis (Y. Li et al., 2013),
which are exploited in the following result.

Proposition 1. Consider an immediate cost function c : S → R, which satisfies
the conditions (5.8). Define Cπ(s) ≡ C( f , π; s). Assume there exists a class K
function 1 α : R→ R0,+, such that

Eω[Cπ( f (s, π(s)) + ω)] ≤ Cπ(s)− α(Cπ(s)− Cmin)

holds for all s ∈ Ssafe. Then,

Eω[Cπ( f (s, π(s)) + ω)] ≤ ξ < ξ̄ (5.9)

1 A function α : R0,+ → R0,+ is a class K function, if it is monotonically increasing and α(0) = 0.
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guarantees that the policy π is K-step δ(ξ)-safe.

Condition (5.9) effectively resembles a Foster-Lyapunov drift condition,
which is satisfied if stochastic stability can be shown with Cπ as a Lya-
punov function (Meyn & Tweedie, 1993). Since stability is a well-studied
problem, it has been shown that this condition can be satisfied for many
dynamics f , e.g., systems which are asymptotically controllable with re-
spect to the immediate cost c (Gaitsgory et al., 2018). In contrast to stability
theory, Proposition 1 does require Cπ to be positive definite or the exis-
tence of a class K function lower bounding Cπ . Therefore, the conditions of
Proposition 1 are slightly weaker than for stability.

Due to the close relationship to stability, it is straightforward to see that
the increase rate of α determines the convergence rate of the system. If
α is only slowly growing, a relatively small noise realization can cause
an increase in the expected cumulative cost, and thereby, increases the
probability δ of leaving the safe set. This can be compensated by choosing a
smaller value of ξ, such that there essentially is a larger margin between
the safe initial states s0 and the unsafe set Sunsafe. Note that the noise
distribution also affects the probability δ through Equation (5.9), since flat
distributions with heavy tails generally cause higher values of Eω[C( f , π)]
leading to smaller increase rates of α.

5.3 hallucinating upper confidence safety filters (h-ucsf)

In the previous section, we derived conditions on the cumulative cost
function C that ensured K-step δ-safety with known dynamics f . In this
section, we extend the problem to unknown dynamics, but where we know
a well-calibrated set of plausible models M that satisfy Assumption 7.
We first tackle the question of how to verify that a policy is safe with
unknown dynamics, i.e., how to lift Proposition 1 to the unknown dynamics
setting. When we cannot verify that a policy is safe, we would like to have
a safe backup policy that might not be available. The second question
that we address is how to find a safe backup policy given M. While the
backup policy is safe, the performance could be arbitrarily poor. In the
last subsection, we develop H-UCSF, a confidence based safety filter that
ensures constraint satisfaction of any arbitrary policy π. The hope is that
when the policy π has high performance, the safety filter will minimally
adjust the actions of π to ensure safety yet achieve high performance.
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5.3.1 Safety Certification with Unknown Dynamics

Since we assume only the availability of a set of plausible modelsM, but
not the true dynamics f , we cannot determine C and consequently cannot
directly exploit Proposition 1 for determining a safe policy.

To overcome this issue, it is straightforward to see that

max
f̃∈M

C( f̃ , π; s) ≤ θ ⇒ C( f , π; s) ≤ θ (5.10)

for every θ ∈ R due to Assumption 7. To solve the optimization problem
on the left hand side of the safety condition (5.10), we use the hallucination
reparameterization (2.31) and reformulate the left side of (5.10) as a policy
optimization problem:

max
f̃∈M

C( f̃ , π; s) = max
η∈U

C( f̃ , π; s), s.t. f̃ (·) = µ(·) + βσ(·)η(·) (5.11)

Using this formulation as an optimization of the hallucinating policy η, it
is straightforward to extend Proposition 1 to unknown dynamics f . Namely,
let’s define the pessimistic cumulative cost as

C(p)
π (s) ≡ max

η∈U
C( f̃ , π; s), s.t. f̃ (·) = µ(·) + βσ(·)η(·). (5.12)

Then the following proposition can be used to certify that a policy is
K-step δ-safe.

Proposition 2. Consider a set of plausible modelsM satisfying Assumption 7
and an immediate cost c, which satisfies (5.8). If

max
η∈U

Eω

[
C(p)

π (s′)
]
≤ ξ, (5.13)

with s′ is the next-state defined through the reparameterized dynamics (2.33) and
ξ ≤ ξ̄, and C(p)

π (s) satisfies (5.9), then, the π is K-step δ-safe.

Proposition 2 is a generalization of Proposition 1 for unknown dynamics
using the pessimistic estimate C(p)

π (·) of the cumulative costs instead of
the true Cπ(·). When the model is known accurately, i.e., σ(s, a) = 0 for
all s, a ∈ S ×A, the conditions of Proposition 2 intuitively reduce to the
conditions of Proposition 1.
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Solving the verification condition (5.13) for a fixed policy π reduces to
solving a standard RL problem for the hallucination η. To see this, we define

Ĉ(µ, σ, π, η) =Eω

[
∞

∑
h=0

γhc(sh, π(sh))

]
, (5.14)

s.t. sh+1 = f̃ (sh, π(sh)) + ωh (5.15)

f̃ (·) = µ(·) + βσ(·)η(·) (5.16)

s0 = s. (5.17)

Thus, for a fixed policy π, Ĉ is a standard cumulative reward function,
such that actor-critic methods as those described in Section 2.3 can be used
to learn Ĉ.

5.3.2 Learning Safe Policies with Robust Reinforcement Learning

Based on the formulation of the K-step δ-safety as an optimization problem
in Proposition 2, it is natural to augment the optimization problem to
directly find δ-safe policies.

πsafe = argmin
π∈Π

max
η∈U

Ĉ(µ, σ, π, η) (5.18)

ηadv = argmax
η∈U

Ĉ(µ, σ, πsafe, η), (5.19)

where the solution for the hallucinating policy ηadv acts adversarially on the
system. Therefore, we refer to ηadv as the hallucinating adversarial policy
in the sequel. In contrast to the safety certification using Proposition 2,
determining safe policies πsafe using Equation (5.18) cannot be formulated
as a standard reinforcement learning problem due to the minimization over
policies π and the maximization over hallucination policies η. However, it
can be straightforwardly addressed using robust reinforcement learning
techniques (Pinto et al., 2017; Curi et al., 2021), which perform gradient
descent for π and gradient ascent for η. Therefore, we refer to πsafe as the
learned safe policy.

Moreover, if the cost c and the discount γ allow to establish the safety
of this system for some policy π, it is straightforward to show that the
maximally safe problem (5.18) yields a δ-safe policy.
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Proposition 3. If there exists a policy π and a class K function α such that C(p)
π

satisfies condition (5.9), then, the learned safe policy πsafe is K-step δ-safe for all
s ∈ Ssafe if C(p)

πsafe ≤ ξ < ξ̄.

Since there exist combinations of dynamics f and safe sets Ssafe for
which safety cannot be ensured, Proposition 3 obviously cannot guarantee
the existence of a learned safe policy πsafe to be always K-step δ-safe.
However, as discussed in Section 5.2.2, there exist system classes for which
condition (5.9) is satisfied.

5.3.3 Ensuring Constraint Satisfaction with Safety Filters

While the learned safe policy πsafe is safe, the performance can be arbitrarily
poor since it does not consider the reward function r when optimizing
πsafe. Given any policy π with high performance, the goal of this section
is to design a filter for the policy to ensure constraint satisfaction while
preserving as much as possible its performance. The core idea for achieving
this relies on a continuous monitoring of every nominal action π(s), such
that they can be adapted to ensure a safe roll-out of πsafe afterwards. Using
the the hallucination reparameterization (2.31) of the set of plausible models
f̃ , it yields our confidence-based safety filter

π̂(s) = argmin
a∈A

∥π(s)− a∥, (5.20a)

s.t. max
u∈[−1,1]dx

Eω

[
C(p)

πsafe(s
′)
]
≤ ξ, (5.20b)

s′ = µ(s, a) + βσ(s, a)u + ω. (5.20c)

The safety filter executes an action a that is as closed as possible to the
policy action π(s), such that the next state is safe if the policy πsafe is
executed thereafter. This is then executed in a receding-horizon fashion.
Finally, we can see that when s ∈ Cπ

ξ and πsafe satisfies Proposition 3,
the constraint (5.20b) is satisfied by setting a = πsafe(s). The expected
cumulative cost function C(p)

πsafe is computed when solving for (πsafe, ηadv)
in Section 5.3.2 and it can be thought of as a terminal constraint that
must be satisfied. Furthermore, one could extend the safety filter to k
actions by including the constraints (5.8) in the safety filter (5.20) for all the
intermediate hallucinated states and evaluating (5.20b) only at the final
state. We do not include this as it increases the real-time computational cost
of solving the safety filter (5.20).
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We still need to address the cases in which s /∈ Cπ
ξ̄

but s ∈ Ssafe. In such
cases, the safety filter just deploys the safe policy which is safe if it satisfies
the conditions of Proposition 3. The final H-UCSF policy is.

πH-UCSF(s) =

π̂(s) if C(p)
πsafe(s) ≤ ξ,

πsafe(s) if C(p)
πsafe(s) ≥ ξ.

(5.21)

Due to its strong foundation on the learned safe policy πsafe, the roll-out
policy πH-UCSF inherits its theoretical safety guarantees as shown in the
following theorem.

Theorem 3. Consider a set of plausible modelsM satisfying Assumption 7 and
assume that the learned safe policy πsafe satisfies the conditions of Proposition 3.
Then, the confidence-based safety filtered policy (5.21) is K-step δ-safe for all states
s ∈ Ssafe.

While the safety filter problem (5.20) is not compatible with standard
reinforcement learning methods, it can easily be solved online using model
predictive control. Hence, (5.20) requires optimization merely for one time
step and consequently only for a single actual and hallucinating adversarial
action in contrast to similar predictive safety filter approaches Bastani, 2021;
Wabersich et al., 2021, which require optimization over a sequence of actions.
Therefore, the safety filter (5.20) can be solved with comparatively low
computational complexity using numerical optimization schemes, which
allows a straightforward online application as safety filter.

Practically, ξ in the safety filter (5.20) can be considered a tuning param-
eter. The smaller its value, the higher the probability of safety. However, a
small ξ will lead to more conservatism of the safety filter, such that it must
be carefully chosen to trade-off safety and performance.

5.4 experiments

In this section, we evaluate the safety filter and compare it with three com-
peting algorithms: the constraint-free model-free algorithm SAC Haarnoja
et al., 2018, a Lagrangian primal-dual approach with SAC as the base al-
gorithm, which we call CMDP Paternain et al., 2019, and the model-based
alternative Safe-CEM Liu et al., 2020. We consider two widely used en-
vironments to test our approach. First, we test it on an airplane pitch
control Hafner & Riedmiller, 2011, where the pitch angle θ starts at −0.2
radians and the constraint function is simply ct = θt such that the angle
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should never exceed 0. The reward is given by rt = −2θ2 + 0.02u2, where u
is the control input. Second, we use the Mujoco Half-Cheetah environment
with the default reward function Todorov et al., 2012. The constraint is that
the forward speed is less than 2. Due to the Cheetah’s trot, the penalty is
on the average forward speed, calculated as v̄t = 0.1vt + 0.9v̄t−1, v̄0 = 0,
where vt is the instantaneous speed and v̄t is the average speed. Thus we
use ct = v̄t − 2. We run each environment for 100 episodes, each episode
for 1000 time steps, using γ = 0.99 as a discount factor.

To learn the model, we use deterministic ensembles of five members
following Curi et al., 2020a. Each member is a neural network with 3 fully
connected layers of width 200 and Swish non-linearities. For the first ten
episodes, data is collected using a random policy. Such random policy was
safe in these environments but only at the given initial conditions, i.e.,
it is not the learned safe policy used by the safety filter. After the initial
exploration phase, the model is pre-trained for 100 iterations using Adam
with learning rate 0.0005 and weight decay 0.0001. Then, after each subse-
quent episode, the model is updated using the additional data collected
during the episode. We store the data using an experience replay buffer of
at most 100000 transitions. Finally, to solve the safety filter problem (5.20)
we use the cross-entropy method Botev et al., 2013b with 1000 particles and
5 iterations per time-step.

In Figure 5.2, we show the results in the pitch control environment. In
this setting, only the Safety Filter algorithm avoids any constraint violation
while achieving comparable performance in terms of returns and costs. In
Figure 5.3, we show the results for the Half-Cheetah. Here, both Safe-CEM
and the safety filter avoid any constraint violations. However, the safety
filter achieves higher returns than Safe-CEM. The main difference between
these two environments relies on the backup policy. While in the Cheetah it
is enough to do nothing in order to stop it, in the Pitch Control environment
this is not the case and the learned safe backup policy is crucial to ensure
safety. Thus, with these two environments we demonstrate the scalability
of our method in the Half Cheetah environment as well as the ability to
satisfy constraints in the Pitch Control environment.
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Figure 5.2: Total returns, costs, and constraint violation in the Pitch Control
environment. Only the safety filter attains no constraint violations
and achieves comparable performance to the benchmarks.
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Figure 5.3: Total returns, costs, and constraint violation in the Half-Cheetah
environment. The safety filter and Safe-CEM achieve no constraint
violation. These two algorithms perform slightly worse than the
benchmarks in terms of returns, but the safety filter performs better
than Safe-CEM.





6
C O N C L U S I O N

El éxito no es la victoria, sino todo lo que has peleado
por ganar.

— Rafa Nadal

In this dissertation, we used MBRL to derive algorithms for efficient ex-
ploration, robustness, and safety. These goals were achieved while reasoning
about the models’ epistemic uncertainty.

The main technical contribution that enables a practical implementation
of all the algorithms is the concept of hallucinating policies, which we
introduce in Chapter 2. Instead of optimizing over the set of plausible
models which is intractable, we reparameterize such set introducing an
additional hallucinated control input that has no associated control penalties
and can exert as much control as the current epistemic uncertainty that the
model affords.

Using the hallucinated controls, we derive in Chapter 3 the H-UCRL
algorithm for data-efficient exploration. H-UCRL is provably efficient for
GP models and lends itself to a gradient-based implementation with NN
models, scaling to larger problems. The critical insight is that with the
reparameterization policies, we reduce the intractable theoretical optimistic
problem to a standard planning problem where many practical algorithms
exist.

Next, we tackle the problem of outputting a robust policy in Chapter 4

and introduce the RH-UCRL algorithm. By carefully training with a ficti-
tious adversary, we can certify the performance of the policy even RH-UCRL
uses optimistic and pessimistic estimates of the robust performance to ef-
ficiently explore both the agent and fictitious adversary decision spaces
during policy learning. To compute the optimistic and pessimistic estimates
of the performance, RH-UCRL relies on the hallucinating inputs reducing
the optimistic/pessimistic problem to traditional robust planning problems.
We show that RH-UCRL is provably robust, and we established sample
complexity and regret guarantees. We instantiated our algorithm in impor-
tant robust-RL settings such as adversarial-robust RL, parameter-robust RL,
and action-robust RL.

93
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Finally, in Chapter 5 we address the problem of filtering a policy to ensure
safety with the H-UCSF algorithm. Here, the models’ epistemic uncertainty
plays two roles. First, we use it to find a maximally safe learned policy by
solving a robust RL problem: the control inputs minimize the constraint vio-
lations, whereas the hallucinating inputs maximize the constraint violations.
Under some conditions, we can guarantee that the learned backup policy is
safe. Second, we use the model to filter the actions of any policy, solving a
1-step horizon MPC algorithm online with the safe learned backup policy.

6.1 future work

We finish the main body of this dissertation with open questions and
exciting directions for future work.

In Chapter 3, we focus on using epistemic uncertainty to explore in a
data-efficient fashion. However, in many settings, we already have logged
data collected with an offline policy. This is called the offline RL setting.
Instead of being optimistic, in this setting, one hopes to use pessimism to
learn a policy to certify the behavior w.r.t. the worst case model compatible
with data. This opens the possibility of using data from different sources,
meta-learn model priors, and transfer learning between different tasks.

When we consider robustness in Chapter 4, we focus on a notion of
robustness that compares against a worst-case adversary. Although this is
a strong notion, it could also be an unlikely adversary. To tackle this, one
could frame the problem using distributional robustness, where the goal
is to be robust with respect to a worst-case distribution. The distributional
robust setting suits sim-to-real applications, in which the worst-case simu-
lation might be too unreal to be true, whereas a worst-case distribution of
simulated environments could better capture reality.

In the safety filter setting in Chapter 5, we consider that we were given a
model set, and we use such set to guarantee safety. However, it is unclear
how we got that set in the first place. An interesting direction is to use
transfer learning or offline RL to learn these sets. Another important aspect
is that we were pessimistic w.r.t. the epistemic uncertainty to find the safe
backup policy. However, when the model set is too large this could be
overly-pessimistic, and we will not be able to guarantee safety. An important
open question is how to find tight model sets.

Finally, our results in this thesis are statistical and rely on the performance
of model learning and policy learning algorithms. Perhaps the most exciting
question in model learning is designing neural network representations
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that correctly capture epistemic uncertainty while allowing for efficient
sampling. Such models would enable Thompson sampling implementations
of our algorithms that would yield straightforward optimization problems.
There are still theoretical and practical questions in the policy learning
scope to be addressed. From a theoretical point of view, it is unclear if
any algorithm can find the best policies from within a policy class. From
a practical perspective, successful RL algorithms require large amounts
of hyper-parameter tuning, restricting their applicability. Designing out-
of-the-box RL algorithms with theoretical guarantees is a task of utmost
importance.





A
P R O O F S O F C H A P T E R 3

We start by bounding the simple regret rn at episode n as the difference
between the value of the policy on the optimistic dynamics and the value
of policy on the true dynamics

Lemma 10 (Simple regret bound). Under Assumptions 1 to 7, with probability
at least (1− δ) we have for all n ≥ 0 that the simple regret rn is bounded by

rn = J( f , π∗)− J( f , πn) ≤ J( f̃n, πn)− J( f , πn) (A.1)

Proof. By Assumption 7, we know that the true dynamics are contained
within set of plausible models, i.e., f ∈ Mn. Furthermore, from Lemma 6,
we know that there exists an η̂ ∈ U : Rds ×Rda → [−1, 1]ds such that with
f̂n(·) = µn−1(·)+ βn−1σn−1(·)η̂(·) we have J( f , π∗) = J( f̂n, π∗). As a conse-
quence, we have from the joint maximization in the H-UCRL algorithm (3.6)
that J( f , π∗) ≤ J( f̃n, πn) and the result follows.

Thus, to bound the instantaneous regret rn, we must bound the difference
between the optimistic value estimate J( f̃n, πn) and the true value of the
policy J( fn, πn). The following step is to bound this difference in term of
the models’ predictive variance. The main idea is to bound the difference
in performance by the difference in state trajectories, and the difference in
state trajectories by the predictive variance. For many models, the predictive
variance decreases with the number of data points and this technique yields
sublinear regret bounds.

We can use the Lipschitz continuity properties to obtain the following
bound

Lemma 11 (Lipschitz continuity of closed loop dynamics). Let the open-loop
dynamics f in Equation (2.1) be L f -Lipschitz continuous by Assumption 1 and the
policy π ∈ Π be Lπ-Lipschitz continuous w.r.t. to the 2-norm. Then the closed-loop
system is L f ,π-Lipschitz continuous with L f ,π = L f

√
1 + Lπ .

97
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Proof.

∥ f (s, π(s))− f (s′, π(s′))∥2 ≤ L f ∥(s− s′, π(s)− π(s′))∥2 (A.2)

= L f

√
∥(s− s′∥2

2 + ∥π(s)− π(s′))∥2
2 (A.3)

≤ L f

√
∥(s− s′∥2

2 + Lπ∥s− s′))∥2
2 (A.4)

= L f
√

1 + Lπ︸ ︷︷ ︸
:=L f ,π

∥s− s′∥2 (A.5)

Lemma 12 (Performance difference as difference in state trajectory). Based
on Assumptions 1 to 7 we have

∣∣J( f̃n, πn)− J( f , πn)
∣∣ ≤ Lr

√
1 + Lπ

H

∑
h=0

Eω=ω̃[∥sh,n − s̃h,n∥2] (A.6)

Proof.

∣∣J( f̃n, πn)− J( f , πn)
∣∣ = ∣∣∣∣∣Eω̃

[
H

∑
h=0

r(s̃h, πn(s̃h))

]
−Eω

[
H

∑
h=0

r(sh, πn(sh))

]∣∣∣∣∣
(A.7a)

=

∣∣∣∣∣Eω=ω̃

[
H

∑
h=0

r(s̃h,n, πn(s̃h,n))− r(sh,n, πn(sh,n))

]∣∣∣∣∣
(A.7b)

≤ Lr
√

1 + Lπ

H

∑
h=0

Eω=ω̃[∥s̃h,n − sh,n∥2], (A.7c)

where Eω=ω̃[·] means in expectation over ω and with ω̃ = ω; that is, ω̃
and ω are the same random variable.

What remains is to bound the deviation of the optimistic and the true
trajectory. We exploit the Lipschitz continuity of σ from Assumption 6 in
order to bound the deviation in terms of σn−1 at states of the true state
trajectory sh,n.
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Lemma 13 (Difference in state trajectory as sum of predictive variance
along true trajectory). Under Assumptions 1 to 7, for all episodes n ≥ 1,
h ∈ {1, . . . , H}, and π ∈ Π it holds:

∥sh,n − s̃h,n∥2 ≤ 2βn−1κh−1
n−1

h−1

∑
h′=0
∥σπn

n−1(sh,n)∥2, (A.8)

where κn−1 :=
(

1 + (L f + 2βn−1Lσ)
√

1 + L2
π

)
, the closed-loop epistemic uncer-

tainty as σπn
n−1(sh,n) := σn−1(sh,n, πn(sh,n)), the simulated state s̃h,n is generated

by any system f̃ ∈ Mn (cf., Section 2.2.1), and the true state sh,n is generated by
the true dynamics f , with ωh,n = ω̃h,n.

Proof. To avoid notational clutter, we denote the closed-loop dynamics as
f π(s) = f (s, π(s)). Likewise, we use the following Lipschitz constants
shorthands L f ,π ≡ L f

√
1 + L2

π and Lσ,π ≡ Lσ

√
1 + L2

π .
We first prove by induction that

∥sh,n − s̃h,n∥2

≤ 2βn−1

h−1

∑
h′=0

(
L f ,π + 2βn−1Lσ,π

)h−1−h′
∥σπn

n−1(sh′ ,n)∥ (A.9a)
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For h = 0, clearly s0,n = s̃0,n, while the right-hand-side of inequality (A.9a)
is always non-negative. We assume that for h the inductive hypothesis
(A.9a) holds. For h + 1 we have:

∥sh+1,n − s̃h+1,n∥2

= ∥ f πn(sh,n)− f̃ πn(s̃h,n)∥2 (A.9b)

= ∥ f πn(sh,n)− f̃ πn(s̃h,n) + f πn(s̃h,n)− f πn(s̃h,n)∥2 (A.9c)

≤ ∥ f πn(sh,n)− f πn(s̃h,n)∥2 + ∥ f πn(s̃h,n)− f̃ πn(s̃h,n)∥2 (A.9d)

≤ L f ,π∥sh,n − s̃h,n∥2 + ∥ f πn(s̃h,n)− f̃ πn(s̃h,n)∥2 (A.9e)

≤ L f ,π∥sh,n − s̃h,n∥2 + 2βn−1∥σπn
n−1(s̃h,n)∥2 (A.9f)

= L f ,π∥sh,n − s̃h,n∥2

+ 2βn−1∥σπn
n−1(s̃h,n) + σπn

n−1(sh,n)− σπn
n−1(sh,n)∥2 (A.9g)

≤ L f ,π∥sh,n − s̃h,n∥2

+ 2βn−1
(
∥σπn

n−1(s̃h,n)− σπn
n−1(sh,n)∥2 + ∥σπn

n−1(sh,n)∥2
)

(A.9h)

≤
(

L f ,π + 2βn−1Lσ,π

)
∥sh,n − s̃h,n∥2 + 2βn−1∥σπn

n−1(sh,n)∥2 (A.9i)

≤ 2βn−1

(h+1)−1

∑
h′=0

(
L f ,π + 2βn−1Lσ,π

)(h+1)−1−h′
∥σπn

n−1(sh′ ,n)∥2 (A.9j)

Here, Equation (A.9b) holds by applying the transition dynamics f πn

and f̃ πn with the same noise realization ωh = ω̃h; Equation (A.9c) holds
by adding and subtracting f πn(s̃h,n); inequality (A.9d) follows from the
triangular inequality; inequality (A.9e) comes from Lemma 11; inequal-
ity (A.9f) holds due to both f and f̃ belonging to the set of plausible
modelsMn; Equation (A.9g) holds by adding and substracting σπn(sh,n);
inequality eq. (A.9h) holds by applying the triangular inequality once
more; inequality eq. (A.9i) is due to the Lipschitz continuity of σ as per
Assumption 6; and inequality (A.9j) holds by replacing the inductive hy-
pothesis (A.9a).

Finally, with simple algebraic manipulation we can see that,

(
L f ,π + 2βn−1Lσ,π

)h−1−h′
<
(

1 + L f ,π + 2βn−1Lσ,π

)h−1−h′

≤
(

1 + L f ,π + 2βn−1Lσ,π

)h−1
,
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and the main result follows by combining this with Equation (A.9j).

As a direct consequence of these lemmas, we can bound the simple regret
in terms of the predictive uncertainty of our statistical model in expectation
over the states visited under the true dynamics.

Lemma 14 (Difference between optimistic and pessimistic performance as
sum of predictive variance along true trajectory). Under Assumptions 1 to 7,
let πn be the policies selected by H-UCRL at episode n. Then, the following holds
for the difference between its optimistic and pessimistic performance:

J( f̃n, πn)− J( f , πn) ≤ 2LrβH
NCH

H

∑
h=0

E

[
h−1

∑
h′=0
∥σπn

n−1(sh′ ,n)∥2

]
, (A.10)

where σπ(s) = σ(s, π(s)) and C := (1 + L f + Lσ)(1 + L2
π)

1/2.

Proof. From Lemma 12 we know that:

J( f̃n, πn)− J( f , πn) ≤ Lr

√
1 + L2

π

H

∑
h=0

E[∥s̃h,n − sh,n∥2]. (A.11a)

We recall the upper bound on ∥s̃h,n − sh,n∥2 from Lemma 13:

∥sh,n − s(o)h,n∥2 ≤ 2βn−1κh−1
n−1

h−1

∑
h′=0
∥σπn

n−1(sh′ ,n)∥2.

As f̃ ∈ Mn, and by denoting C := (1 + L f + 2Lσ)(1 + L2
π)

1/2, we arrive at:

J( f̃n, πn)− J( f , πn) ≤ 2LrβH
NCH

H

∑
h=0

E

[
h−1

∑
h′=0
∥σπn

n−1(sh′ ,n)∥2

]
,

where we used n ≤ N and 1 ≤ βn is non-decreasing in n.

Now we are finally ready to prove our main result.

Theorem 1. Under Assumptions 1 to 7, let C = (1 + L f + 2Lσ)(1 + L2
π +

L2
π̂)

1/2 and sh,n ∈ S and ah,n ∈ A for all h, n > 0. Then, for all N ≥ 1, with
probability at least (1− δ), the regret of H-UCRL in eq. (3.6) is at most

RN ≤ O
(

LrCH βH
N H3/2

√
NΓN

)
. (3.8)
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Proof of Theorem 1. We bound the cumulative regret as follows:

RN =
N

∑
n=1

J( f , π⋆)− J( f , πn)︸ ︷︷ ︸
:=rn

(A.12a)

≤

√√√√N
N

∑
n=1

r2
n (A.12b)

≤

√√√√N
N

∑
n=1

(2LrβH
NCH)2

(
H

∑
h=0

E

[
h−1

∑
h′=0
∥σπn

n−1(sh′ ,n)∥2

])2

(A.12c)

= 2LrβH
NCH

√
N

√√√√ N

∑
n=1

(
H

∑
h=0

E

[
h−1

∑
h′=0
∥σπn

n−1(sh′ ,n)∥2

])2

(A.12d)

≤ 2LrβH
NCH H

√
N

√√√√ N

∑
n=1

(
E

[
H

∑
h′=0
∥σπn

n−1(sh′ ,n)∥2

])2

(A.12e)

≤ 2LrβH
NCH H

√
N

√√√√√ N

∑
n=1

E

( H

∑
h′=0
∥σπn

n−1(sh′ ,n)∥2

)2
 (A.12f)

≤ 2LrβH
NCH H3/2

√
N

√√√√ N

∑
n=1

E

[
H

∑
h′=0
∥σπn

n−1(sh′ ,n)∥2
2

]
(A.12g)

≤ 2LrβH
NCH H3/2

√
NΓN , (A.12h)

where eq. (A.12b) is due to the Cauchy-Schwarz’s inequality; eq. (A.12c)
is due to Lemma 14. Finally, eq. (A.12f) follows from Jensen’s inequality,
eq. (A.12g) follows from Cauchy-Schwarz’s inequality, and eq. (A.12h)
follows from the definition of ΓN in Equation (2.11).
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To prove Theorem 2 and Corollary 1, we follow a similar structure to the
proof of Theorem 1. We start by bounding its simple robust-regret by the
difference between optimistic and pessimistic performance estimates.

Lemma 15 (Simple robust-regret bound). Let π⋆ be the benchmark policy from
eq. (4.3), and let πn and π̂n be the policies selected by RH-UCRL at episode n.
Under the callibrated model Assumption 7, the following holds with probability at
least 1− δ:

r̄n := min
π̂∈Π̂

J( f , π⋆, π̂)−min
π̂∈Π̂

J( f , πn, π̂) ≤ J(o)n (πn, π̂n)− J(p)(πn, π̂n). (B.1)

Proof. We refer to the considered quantity r̄n as the simple robust-regret of
the selected policy πn, and we proceed by providing its upper bound:

r̄n := min
π̂∈Π̂

J( f , π⋆, π̂)−min
π̂∈Π̂

J( f , πn, π̂) (B.2a)

≤ min
π̂∈Π̂

J(o)n (π⋆, π̂)−min
π̂∈Π̂

J( f , πn, π̂) (B.2b)

≤ min
π̂∈Π̂

J(o)n (πn, π̂)−min
π̂∈Π̂

J( f , πn, π̂) (B.2c)

≤ J(o)n (πn, π̂n)−min
π̂∈Π̂

J( f , πn, π̂) (B.2d)

≤ J(o)n (πn, π̂n)−min
π̂∈Π̂

J(p)(πn, π̂) (B.2e)

= J(o)n (πn, π̂n)− J(p)(πn, π̂n). (B.2f)

Here, inequality (B.2b) holds by definition of the optimistic estimate in
eq. (4.5a); inequality (B.2c) holds by definition of protagonist policy in the
RH-UCRL algorithm (4.7a); and inequality (B.2e) holds by definition of the
pessimistic estimate in eq. (4.6a); finally, equality (B.2f) holds by definition
of the antagonist policy in the RH-UCRL algorithm (4.7b).

The following step is to bound this difference in term of the models’
predictive variance. The main idea is to bound the difference in performance
by the difference in state trajectories, and the difference in state trajectories
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by the predictive variance. For this we use only Lipschitz continuity of the
dynamics, rewards, and policies.

We will first show that the performance difference of a pair of policies
(π, π̂) on the true dynamics f and any dynamics f̃ is bounded by a constant
times the sum of the difference between the true and the simulated state
trajectories.

Lemma 16 (Lipschitz continuity of closed loop dynamics). Under Assump-
tions 1, 4 and 8, for every s, s′ ∈ S , it holds:

∥ f (s, π(s), π̂(s))− f (s′, π(s′), π̂(s′))∥2 ≤ L f

√
1 + L2

π + L2
π̂∥s− s′∥2. (B.3)

Proof.

∥ f (s, π(s), π̂(s))− f (s′, π(s′), π̂(s′))∥2

≤ L f

√
∥s− s′∥2

2 + ∥π(s)− π(s′)∥2
2 + ∥π̂(s′)− π̂(s)∥2

2 (B.4a)

≤
√
∥s− s′∥2

2 + L2
π∥s− s′∥2

2 + L2
π̂∥s− s′∥2

2 (B.4b)

= L f

√
1 + L2

π + L2
π̂∥s− s′∥2. (B.4c)

Equation (B.4a) holds due to Lipschitz continuity of f and Equation (B.4b) is
due to Lipschitz continuity of π and π̂, which we assume in Assumptions 1,
4 and 8.

Lemma 17 (Performance difference as difference in state trajectory). Under
Assumptions 1, 4, 5 and 8, it holds:

∣∣J( f , π, π̂)− J( f̃ , π, π̂)
∣∣ ≤ Lr

√
1 + L2

π + L2
π̂

H

∑
h=0

E[∥sh − s̃h∥2], (B.5)

where s̃h for h = 0, . . . , H is the trajectory generated by the dynamics f̃ , starting
from s̃0 = s0 with ωh = ω̃h.
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Proof.

∣∣J( f , π, π̂)− J( f̃ , π, π̂)
∣∣ = ∣∣∣∣∣E

[
H

∑
h=0

r(s, a, â)−
H

∑
h=0

r(s̃, ã, ˆ̃a)

]∣∣∣∣∣ (B.6a)

=

∣∣∣∣∣ H

∑
h=0

E
[
r(s, a, â)− r(s̃, ã, ˆ̃a)

]∣∣∣∣∣ (B.6b)

≤ Lr

√
1 + L2

π + L2
π̂

H

∑
h=0

E[∥sh − s̃h∥2]. (B.6c)

Equation (B.6a) follows by definition of J, Equation (B.6b) from linearity of
expectation, and eq. (B.6c) from Lipschitzness of the closed loop dynamics
which we prove in Lemma 16 and Lipschitzness of the reward function,
which we assume in Assumption 5.

The following lemma bounds the deviation between any trajectory gener-
ated by f̃ ∈ Mn and the true trajectory in terms of the predictive variance.

Lemma 18 (Difference in state trajectory as sum of predictive variance
along true trajectory). Under Assumptions 1 to 8, for all episodes n ≥ 1,
h ∈ {1, . . . , H}, π ∈ Π and π̂ ∈ Π̂ it holds:

∥sh,n − s̃h,n∥2 ≤ 2βn−1κh−1
n−1

h−1

∑
h′=0
∥σπn ,π̂n

n−1 (sh,n)∥2, (B.7)

where κn−1 :=
(

1 + (L f + 2βn−1Lσ)
√

1 + L2
π + L2

π̂

)
, the closed-loop epistemic

uncertainty as σπn ,π̂n
n−1 (sh,n) := σn−1(sh,n, πn(sh,n), π̂n(sh,n)), the simulated state

s̃h,n is generated by any system f̃ ∈ Mn (cf., Section 2.2.1), and the true state sh,n
is generated by the true dynamics f , with ωh,n = ω̃h,n.

Proof. To avoid notational clutter, we denote the closed-loop dynamics as
f π,π̂(s) = f (s, π(s), π̂(s)). Likewise, we use the following Lipschitz con-

stants shorthands L f ,π ≡ L f

√
1 + L2

π + L2
π̂ and Lσ,π ≡ Lσ

√
1 + L2

π + L2
π̂ .
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We first prove by induction that

∥sh,n − s̃h,n∥2

≤ 2βn−1

h−1

∑
h′=0

(
L f ,π + 2βn−1Lσ,π

)h−1−h′
∥σπn ,π̂n

n−1 (sh′ ,n)∥ (B.8a)

For h = 0, clearly s0,n = s̃0,n, while the right-hand-side of inequality (B.8a)
is always non-negative. We assume that for h the inductive hypothesis (B.8a)
holds. For h + 1 we have:

∥sh+1,n − s̃h+1,n∥2

= ∥ f πn ,π̂n(sh,n)− f̃ πn ,π̂n(s̃h,n)∥2 (B.8b)

= ∥ f πn ,π̂n(sh,n)− f̃ πn ,π̂n(s̃h,n) + f πn ,π̂n(s̃h,n)− f πn ,π̂n(s̃h,n)∥2 (B.8c)

≤ ∥ f πn ,π̂n(sh,n)− f πn ,π̂n(s̃h,n)∥2 + ∥ f πn ,π̂n(s̃h,n)− f̃ πn ,π̂n(s̃h,n)∥2 (B.8d)

≤ L f ,π∥sh,n − s̃h,n∥2 + ∥ f πn ,π̂n(s̃h,n)− f̃ πn ,π̂n(s̃h,n)∥2 (B.8e)

≤ L f ,π∥sh,n − s̃h,n∥2 + 2βn−1∥σπn ,π̂n
n−1 (s̃h,n)∥2 (B.8f)

= L f ,π∥sh,n − s̃h,n∥2

+ 2βn−1∥σπn ,π̂n
n−1 (s̃h,n) + σπn ,π̂n

n−1 (sh,n)− σπn ,π̂n
n−1 (sh,n)∥2 (B.8g)

≤ L f ,π∥sh,n − s̃h,n∥2

+ 2βn−1

(
∥σπn ,π̂n

n−1 (s̃h,n)− σπn ,π̂n
n−1 (sh,n)∥2 + ∥σπn ,π̂n

n−1 (sh,n)∥2

)
(B.8h)

≤
(

L f ,π + 2βn−1Lσ,π

)
∥sh,n − s̃h,n∥2 + 2βn−1∥σπn ,π̂n

n−1 (sh,n)∥2 (B.8i)

≤ 2βn−1

(h+1)−1

∑
h′=0

(
L f ,π + 2βn−1Lσ,π

)(h+1)−1−h′
∥σπn ,π̂n

n−1 (sh′ ,n)∥2 (B.8j)

Here, Equation (B.8b) holds by applying the transition dynamics f πn ,π̂n

and f̃ πn ,π̂n with the same noise realization ωh = ω̃h; Equation (B.8c) holds
by adding and subtracting f πn ,π̂n(s̃h,n); inequality (B.8d) follows from the
triangular inequality; inequality (B.8e) comes from Lemma 16; inequal-
ity (B.8f) holds due to both f and f̃ belonging to the set of plausible models
Mn; Equation (B.8g) holds by adding and substracting σπn ,π̂n(sh,n); inequal-
ity eq. (B.8h) holds by applying the triangular inequality once more; inequal-
ity eq. (B.8i) is due to the Lipschitz continuity of σ as per Assumption 6;
and inequality (B.8j) holds by replacing the inductive hypothesis (B.8a).

Finally, with simple algebraic manipulation we can see that,
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(
L f ,π + 2βn−1Lσ,π

)h−1−h′
<
(

1 + L f ,π + 2βn−1Lσ,π

)h−1−h′

≤
(

1 + L f ,π + 2βn−1Lσ,π

)h−1
,

and the main result follows by combining this with Equation (B.8j).

Lemma 19 (Difference between optimistic and pessimistic performance
as sum of predictive variance along true trajectory). Under Assumptions 1
to 8, let πn and π̂n be the policies selected by RH-UCRL at episode n. Then, the
following holds for the difference between its optimistic and pessimistic performance:

J(o)n (πn, π̂n)− J(p)(πn, π̂n) ≤ 4LrβH
NCH

H

∑
h=0

E

[
h−1

∑
h′=0
∥σπn ,π̂n

n−1 (sh′ ,n)∥2

]
, (B.9)

where σπ,π̂(s) = σ(s, π(s), π̂(s)) and C := (1 + L f + Lσ)(1 + L2
π + L2

π̂)
1/2.

Proof.

J(o)n (πn, π̂n)− J(p)(πn, π̂n)

≤
∣∣∣J(o)n (πn, π̂n)− J( f , πn, π̂n)

∣∣∣+ ∣∣∣J(p)
n (πn, π̂n)− J( f , πn, π̂n)

∣∣∣ (B.10a)

≤ Lr

√
1 + L2

π + L2
π̂

H

∑
h=0

(
E
[
∥sh,n − s(o)h,n∥2

]
+ E

[
∥sh,n − s(p)

h,n∥2

])
(B.10b)

Here, inequality (B.10a) holds by the triangle inequality and inequality
(B.10b) follows from Lemma 17.

We proceed to upper bound terms ∥sh,n − s(o)h,n∥2 and ∥sh,n − s(p)
h,n∥2. From

Lemma 18, it follows that both terms can be bounded in the same way as
follows:

∥sh,n − s(o)h,n∥2 ≤ 2βn−1κh−1
n−1

h−1

∑
h′=0
∥σπn ,π̂n

n−1 (sh′ ,n)∥2

as f (o) and f (p) belong to the set of plausible modelsMn. By applying the
previous bound twice in Equation (B.10b), and by denoting C := (1 + L f +

2Lσ)(1 + L2
π + L2

π̂)
1/2, we arrive at:

J(o)n (πn, π̂n)− J(p)(πn, π̂n) ≤ 4LrβH
NCH

H

∑
h=0

E

[
h−1

∑
h′=0
∥σπn ,π̂n

n−1 (sh′ ,n)∥2

]
,
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where we used n ≤ N and 1 ≤ βn is non-decreasing in n.

Theorem 2. Under Assumptions 1 to 8, let C = (1 + L f + 2Lσ)(1 + L2
π +

L2
π̂)

1/2 and let sn,h ∈ S , an,h ∈ A, ân,h ∈ Â for all n, h > 0. Then, for any fixed
H ≥ 1, with probability at least 1− δ, the robust cumulative regret of RH-UCRL
is upper bounded by:

R̄N = O
(

LrCH βH
N H3/2

√
N ΓN

)
.

Proof of Theorem 2. We bound the cumulative robust-regret as follows:

R̄N =
N

∑
n=1

min
π̂∈Π̂

J( f , π⋆, π̂)−min
π̂∈Π̂

J( f , πn, π̂n)︸ ︷︷ ︸
:=r̄n

(B.11a)

≤

√√√√N
N

∑
n=1

r2
n (B.11b)

≤

√√√√N
N

∑
n=1

(4LrβH
NCH)2

(
H

∑
h=0

E

[
h−1

∑
h′=0
∥σπn ,π̂n

n−1 (sh′ ,n)∥2

])2

(B.11c)

= 4LrβH
NCH

√
N

√√√√ N

∑
n=1

(
H

∑
h=0

E

[
h−1

∑
h′=0
∥σπn ,π̂n

n−1 (sh′ ,n)∥2

])2

(B.11d)

≤ 4LrβH
NCH H

√
N

√√√√ N

∑
n=1

(
E

[
H

∑
h′=0
∥σπn ,π̂n

n−1 (sh′ ,n)∥2

])2

(B.11e)

≤ 4LrβH
NCH H

√
N

√√√√√ N

∑
n=1

E

( H

∑
h′=0
∥σπn ,π̂n

n−1 (sh′ ,n)∥2

)2
 (B.11f)

≤ 4LrβH
NCH H3/2

√
N

√√√√ N

∑
n=1

E

[
H

∑
h′=0
∥σπn ,π̂n

n−1 (sh′ ,n)∥2
2

]
(B.11g)

≤ 4LrβH
NCH H3/2

√
NΓN , (B.11h)

where eq. (B.11b) is due to the Cauchy-Schwarz’s inequality; eq. (B.11c) is
due to Lemmas 15 and 19. Finally, eq. (B.11f) follows from Jensen’s inequal-
ity, eq. (B.11g) follows from Cauchy-Schwarz’s inequality, and eq. (B.11h)
follows from the definition of ΓN in Equation (2.11).
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Corollary 1. Consider the assumptions and setup of Theorem 2, and suppose that

N
β2H

N ΓN
≥ 16L2

r H3C2H

ϵ2 , (4.11)

for some fixed ϵ > 0 and H ≥ 1. Then, with probability at least 1− δ after N
episodes, RH-UCRL achieves:

min
π̂∈Π̂

J( f , π̂N , π̂) ≥ min
π̂∈Π̂

J( f , π⋆, π̂)− ϵ, (4.12)

where π̂ is the output of RH-UCRL, reported according to eq. (4.8), and π⋆ is the
optimal robust policy given in eq. (4.3).

Proof of Corollary 1. We start the proof by recalling some of the previously
obtained results. The simple robust-regret r̄n(πn) of a policy πn selected at
episode n by the RH-UCRL learner algorithm (4.7a) is given by:

r̄(πn) = min
π̂∈Π̂

J( f , π⋆, π̂)−min
π̂∈Π̂

J( f , πn, π̂). (B.12)

From Lemmas 15 and 19, it follows that

r̄(πn) ≤ 4LrβH
NCH

H

∑
h=0

E

[
h−1

∑
h′=0
∥σπn ,π̂n

n−1 (sh′ ,n)∥2

]
. (B.13)

We also define the pessimistic regret of a policy πn selected at episode n

r̄(p)(πn) := min
π̂∈Π̂

J( f , π⋆, π̂)−min
π̂∈Π̂

J(p)(πn, π̂), (B.14)

and note that r̄(πn) ≤ r̄(p)(πn) for every πn, since J(p)(πn, π̂) ≤ J( f , πn, π̂)
for any π ∈ Π and π̂ ∈ Π̂. Another useful observation is that the same
bound obtained in Equation (B.13) also holds in case of r̄(p)

n , i.e.,

r̄(πn) ≤ r̄(p)(πn) ≤ 4LrβH
NCH

H

∑
h=0

E

[
h−1

∑
h′=0
∥σπn ,π̂n

n−1 (sh′ ,n)∥2

]
. (B.15)

Recall that the reported policy π̂N from eq. (4.8) is chosen among the
previously selected episodic policies {π1, . . . , πN}, such that

π̂N = argmin
n∈{1,...,N}

r̄(p)(πn). (B.16)
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It follows that:

r̄(π̂N) ≤ r̄(p)(π̂N) (B.17a)

≤ 1
N

N

∑
n=1

r̄(πn) (B.17b)

≤ 1
N

N

∑
n=1

4LrβH
NCH

H

∑
h=0

E

[
h−1

∑
h′=0
∥σπn ,π̂n

n−1 (sh′ ,n)∥2

]
(B.17c)

≤ 1
N

4LrβH
NCH H

N

∑
n=1

E

[
H

∑
h′=0
∥σπn ,π̂n

n−1 (sh′ ,n)∥2

]
(B.17d)

≤ 1
N

4LrβH
NCH H

√
N

√√√√√ N

∑
n=1

E

( H

∑
h′=0
∥σπn ,π̂n

n−1 (sh′ ,n)∥2

)2
 (B.17e)

≤ 1
N

4LrβH
NCH H

√
N

√√√√ N

∑
n=1

E

[
H

∑
h′=0
∥σπn ,π̂n

n−1 (sh′ ,n)∥2
2

]
(B.17f)

≤ 4LrβH
NCH H3/2√NΓN

N
(B.17g)

where inequality (B.17a) follows from inequality eq. (B.15); inequality
(B.17b) follows from the policy reporting rule in Equation (B.16) and by
upper bounding minimum with average. Finally, inequality (B.17c) is due to
inequality (B.15), and Equations (B.17d) to (B.17g) follow the same argument
as in the proof of theorem 2.

To achieve r(π̂N) ≤ ϵ for some given ϵ > 0, we require that

4LrβH
NCH H3/2√NΓN

N
≤ ϵ.

By simple inversion it follows that we require the following number of
episodes N:

N
β2H

N ΓN
≥ 16L2

r H3C2H

ϵ2

to achieve r̄(π̂N) ≤ ϵ.
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We start by proving that the sub-level sets at value ξ̄ of the cumulative cost
function C are completely contained within the safe set Ssafe.

Lemma 9. Consider an immediate cost function c : S → R satisfying the condi-
tions (5.8). Then, it holds that Cπ

ξ̄
⊂ Ssafe, where ξ̄ = ĉ + γ mins∈S C( f , π; s).

Proof. Due to the lower bound for c, C is lower bounded by Cmin =
mins∈S C( f , π; s) ≥ c

1−γ . Moreover, due to condition (5.8) we have c(s) > ĉ
for Sunsafe, which yields C( f , π, s) > ĉ + γCmin for all s ∈ Sunsafe. Using
Bellman equation, we know that C( f , π; s) = c(s) + γC( f , π; s′), where s′

is the next state following policy π. Thus, for any unsafe state s we know
that

C( f , π; s) = c(s) + γC( f , π; s′)

≥ ĉ + γCmin

Therefore, the level set Cπ
ξ̄

, with ξ̄ := ĉ + γCmin is completely contained in
Ssafe, i.e., Cπ

ξ̄
⊂ Ssafe, which concludes the proof.

While we now that the sub-level set ξ̄ of the cumulative cost function
C is safe, we still need to prove that the stochastic dynamical system (5.1)
will remain in such set with some probability. For this we need the two
following technical lemmas.

Lemma 20. If there exists a function V : S → R such that

Eω[V( f (s, π(s)) + ω)] ≤ θ1 (C.1)

for θ1 ∈ R, then, it holds that

θ2 − θ1

θ2 −V
≤ P

[
sh+1 ∈ Vθ2 |sh = s

]
≤ θ2 − θ1

V̄ − θ2
(C.2)

for every V ≤ θ1 < θ2 < V̄, where V = mins∈S V(s) and V̄ = maxs∈S V(s).
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Proof. In order to prove this lemma, we follow the ideas of Y. Li et al., 2013.
It is straightforward to see that

(θ2 −V)P
[
sh+1 /∈ Vθ2 | sh = s

]
≤ (C.3)

Eωh

[
Ish+1 /∈Vθ2

(V(sh+1)−V)| sh = s
]
,

where Vθ2 = {s ∈ S : V(s) < θ2}, and Ish+1 /∈Vθ2
= 1 if sh+1 /∈ Vθ2 and 0

otherwise, since Ish+1 /∈Vθ2
V(sh+1) ≥ Ish+1 /∈Vθ2

θ2. Moreover, we trivially have

Eωk

[
Ish+1 /∈Vθ2

(V(sh+1)−V)| sh = s
]
≤ (C.4)

Eωk [(V(sh+1)−V)| sh = s].

By combining (C.1), (C.3) and (C.4), we therefore obtain

(θ2 −V)P
[
sh+1 /∈ Vθ2 | sh = s

]
≤ −V + θ1,

which results in

P
[
sh+1 /∈ Vθ2 | sh = s

]
≤ θ1 −V

θ2 −V
. (C.5)

The proof for the upper bound is analogous.

Lemma 21. Assume there exists a function V : S → R and a class K function
α : R→ R0,+, such that

Eω[V( f (s, π(s)) + ω)]−V(s) ≤ −α(V(s)) (C.6)

holds for all s ∈ Vξ̄ for ξ̄ ∈ R. Then, Eω[V( f (s, π(s)) + ω)] ≤ ξ with ξ < ξ̄
ensures

P
[
V(sh) ≤ ξ̄ ∀k = 1, . . . , K|s0 = s

]
≥ 1− δFL(ξ) (C.7)

with

δFL(ξ) =
[
1 · · · 0

] [1 1T(I − [P]+)

0 [P]+

]K
0...

1

 , (C.8)
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where the elements of P are defined as

pi,j =


θi−θ j+α(θ j+1+V)

θi−V − θi+1−θ j+α(θ j+1+V)

V̄−θ j+α(θ j+1+V)
if i ≤ j

(1−ϑ)α(θ j+1+V)

θ j−α(θ j+1+V)−V
if i = j + 1.

0 if i > j + 1

(C.9)

and M is the largest integer such that θ1 ≤ ξ̄ for θi recursively defined by θi−1 =
θi + ϑα(θi + V) with θM+1 implicitly defined via θM+1 + (ϑ − 1)α(θM+1 +
V) = ξ and sufficiently small ϑ ∈ (0, 1).

Proof. For proving this proposition, we construct a sequence of sub-level
sets Vθ j as illustrated in Figure C.1 and bound the transition probabilities
between them using Lemma 20. Given a sub-level set Vθ j , the probabil-
ity of transitioning into sub-level set Vθ j+1 can be lower bounded using
θ2 = θ j − ϑα(θ j+1 −V), θ1 = θ j − α(θ j+1 −V), which yields

pj+1,j =
(1− ϑ)α(θ j+1 + V)

θ j − α(θ j+1 + V)− Cmin
.

For transitioning from the sub-level set Vθ j to a sub-level set Vθi , i ≤ j, we
have

P
[
sh+1 ∈ Vθi \ Vθi+1 |sh ∈ Vθ j

]
=

P
[
sh+1 ∈ Vθi |sh ∈ Vθ j

]
−P

[
sh+1 ∈ Vθi+1 |sh ∈ Vθ j

]
,

such that applying Lemma 20 to both summands with θ2 = θi, θ1 =
θ j − α(θ j+1 −V) and θ2 = θi+1, θ1 = θ j − α(θ j+1 −V), respectively, yields

pi,j =
θi − θ j + α(θ j+1 + V)

θi −V
− θi+1 − θ j + α(θ j+1 + V)

V̄ − θ j + α(θ j+1 + V)
.

Note that for i = M we have θ1 = ξ. Since we cannot guarantee to directly
transition from sub-level sets Vθ j to sub-level sets Vθi with i ≥ j + 2, we
obtain the trivial bound pi,j = 0 in this case, which results in (C.9). Based
on the bounds pi,j, we can construct a left stochastic matrix similar to the
transition matrix of a Markov chain, whose first row corresponds to an
absorbing state as shown in (C.8). Since the first state is absorbing and the
transition probabilities to all other states are lower bounds, multiplying this
matrix K times with itself and multiplying the initial probability distribu-
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Cπ
ξ̄

Cπ
θ1

Cπ
θ2

Cπ
ξ

1−
3
∑

i=1
pi,2

p3,2
p1,2

p2,2

Figure C.1: In order to certify the K-step δ-safety of a policy π, we define a
sequence of sub-level sets Cπ

θi with decreasing thresholds θi. We can
bound the probabilities for transitioning to other sub-level sets in
each time step using Lemma 20 as example illustrated for Cπ

θ2 , such
that the probability of leaving the Cπ

ξ̄
can be bounded using methods

for Markov chains.

tion from the right yields the upper bound δ for leaving the sub-level set
Vξ̄ within K time steps.

We use the previous lemma to prove Proposition 1

Proposition 1. Consider an immediate cost function c : S → R, which satisfies
the conditions (5.8). Define Cπ(s) ≡ C( f , π; s). Assume there exists a class K
function 1 α : R→ R0,+, such that

Eω[Cπ( f (s, π(s)) + ω)] ≤ Cπ(s)− α(Cπ(s)− Cmin)

holds for all s ∈ Ssafe. Then,

Eω[Cπ( f (s, π(s)) + ω)] ≤ ξ < ξ̄ (5.9)

guarantees that the policy π is K-step δ(ξ)-safe.

Proof of Proposition 1. The result directly follows from Lemma 9 and Lemma 21,
which ensure δ-safety with δ = δFL(ξ).

Proposition 2. Consider a set of plausible modelsM satisfying Assumption 7
and an immediate cost c, which satisfies (5.8). If

max
η∈U

Eω

[
C(p)

π (s′)
]
≤ ξ, (5.13)

1 A function α : R0,+ → R0,+ is a class K function, if it is monotonically increasing and α(0) = 0.
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with s′ is the next-state defined through the reparameterized dynamics (2.33) and
ξ ≤ ξ̄, and C(p)

π (s) satisfies (5.9), then, the π is K-step δ-safe.

Proof of Proposition 2. Due to Assumption 7, maxη∈U C( f̃ , π; s) ≤ ξ̄ implies
C( f , π; s0) ≤ ξ̄ with probability at least 1− δ f . Thus, maxη∈U C( f̃ , π, ; s) ≤ ξ̄
implies that s ∈ Ssafe due to Lemma 9. Moreover,

max
η∈U

Eω
[
C( f̃ , π; f (s, π(s)) + ω)

]
≤ max

η∈U
Eω
[
C( f̃ , π; f̃ (s, π(s)) + ω)

]
with probability at least (1− δ f ) due to Assumption 7.

Since maxη∈U C( f̃ , π; s) satisfying (5.9) ensures

max
η∈U

Eω
[
C( f̃ , π; f̃ , π; f̃ (s, π(s)) + ω)

]
≤ C( f̃ , π; s)− α(C( f̃ , π; s)− Cmin),

we can apply Lemma 21, such that safety follows with δ = δFL(ξ) + δ f −
δFL(ξ)δ f .

Proposition 3. If there exists a policy π and a class K function α such that C(p)
π

satisfies condition (5.9), then, the learned safe policy πsafe is K-step δ-safe for all
s ∈ Ssafe if C(p)

πsafe ≤ ξ < ξ̄.

Proof of Proposition 3. Due to the definition of the learned safe policy πsafe
in the maximally safe problem (5.18), it directly follows that

Ĉ(µ, σ, πsafe, η) ≤ max
η∈U

Ĉ(µ, σ, πsafe, η). (C.10)

Therefore, Ĉ(µ, σ, πsafe, ηadv) satisfies the requirements of Proposition 2

Theorem 3. Consider a set of plausible modelsM satisfying Assumption 7 and
assume that the learned safe policy πsafe satisfies the conditions of Proposition 3.
Then, the confidence-based safety filtered policy (5.21) is K-step δ-safe for all states
s ∈ Ssafe.

Proof. Since πsafe satisfies the conditions of Proposition 2, the trivial solution
a = πsafe(s) is guaranteed to ensure condition (5.20b). Therefore, the safety
filter (5.20) is feasible for all states s ∈ S with Ĉ(µ, σ, πsafe, ηadv; s) ≤ ξ,
such that the K-step δ-safety of π̃ follows directly from Proposition 2.
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