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ABSTRACT 

Granular systems are ubiquitous in both industry and nature, yet we still know 
comparatively little of the physics governing their dynamics. Owing to this 
lack of insight, there is still no continuum description of granular systems that 
can describe accurately phenomena that are commonly encountered such as 
segregation. Hence, this doctoral thesis is concerned with obtaining a better 
understanding of phenomena that occur in bi-disperse granular systems, i.e. 
the dynamics and segregation of intruders and the formation of Rayleigh-
Taylor-like fingering structures.  
    First, the doctoral thesis investigates the motion of a single intruder in 
dynamic granular systems, i.e., a dense shear flow and a vibro-fluidized bed. 
To this end, we develop a granular buoyancy model using a generalization of 
the Archimedean formulation of the buoyancy force inspired by previous 
work on buoyancy in chute flows. The first model system that was studied is 
a convection-free vibrated system, allowing us to calculate the buoyancy force 
through three different approaches, i.e., a generalization of the Archimedean 
formulation, the spring force of a virtual spring and through the granular 
pressure field. The buoyancy forces obtained through these three approaches 
agree very well, providing strong evidence for the validity of the generalization 
of the Archimedean formulation of the buoyancy force which only requires 
information about the solid fraction of the intruder (defined as ratio of its 
volume to its Voronoi volume), hence allowing for a calculation of the 
buoyancy force that is computationally efficient as coarse-graining is avoided. 
In a second step to increase the complexity of the granular system, convection 
is introduced. In such a system, the lift force acting on the intruder is 
composed of granular buoyancy and a drag force. Using a drag model for the 
slow velocity regime, the lift force, directly measured through a virtual spring, 
is predicted accurately via the proposed generalization of the Archimedean 
formulation of granular buoyancy. The lift force model developed here 
allowed us in turn to rationalize the dependence of the lift force on the density 
of the bed particles and the intruder diameter, and the independence of the 



lift force on the intruder density and the vibration strength (once a critical 
value is exceeded). 
     Next, we develop a new lift force model to describe the motion of intruders 
in dense, granular shear flows. Our derivation is based on the thermal 
buoyancy model of Trujillo and Hermann (2003) but takes into account both 
granular temperature and pressure differences in the derivation of the net 
buoyancy force acting on the intruder. We further extend the model to take 
into account also density differences between the intruder and the bed 
particles. The model predicts very well the rising and sinking of intruders, the 
lift force acting on intruders as determined by discrete element model (DEM) 
simulations and the neutral-buoyancy limit of intruders in shear flows. 
Phenomenologically, we observe that the presence of an intruder leads to a 
cooling effect and a local flattening of the shear velocity profile (lower shear 
rate).  The cooling effect increases with intruder size and explains the sinking 
of large intruders. On the other hand, the introduction of small to mid-sized 
intruders, i.e., up to 4 times the bed particle size, leads to a reduction in the 
granular pressure compared to the hydrostatic pressure, which in turn explains 
the rising of small to mid-sized intruders.  
 
    Lastly, we turn to a newly discovered Rayleigh-Taylor (RT)-like fingering 
instability in binary granular media. Fingering instabilities akin to the Rayleigh-
Taylor (RT) instability in fluids have been observed in a binary granular system 
in which dense and small particles are layered on top of lighter and larger 
particles, when the system is subjected to vertical vibration and fluidizing gas 
flow. Using observations from experiments and numerical modelling we 
explore whether the theory developed to describe the Rayleigh-Taylor (RT) 
instability in fluids is also applicable to binary granular systems. Our results 
confirm multiple key properties of the RT instability theory for binary granular 
systems: (i) The characteristic wavenumber is constant with time, (ii) the 
amplitude of the characteristic wavenumber initially grows exponentially and 
(iii) the dispersion relation between the wavenumbers k of the interface 
instability and the growth rates n(k) of their amplitudes holds also for binary 
granular systems. Our results show that inter-particle friction is essential for 
the RT instability to occur in granular media. For zero particle friction the 
interface instability bears a greater resemblance to the Richtmyer-Meshkov 
instability. We further define a yield criterion Y by treating the granular 
medium as a viscoplastic material; only for Y > 15 fingering occurs. 



Interestingly, previous works has shown that instabilities in the Earth’s lower 
mantle, another viscoplastic material, also occur for similar values of Y.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



ZUSAMMENFASSUNG 

Granulare Systeme sind sowohl in der Industrie als auch in der Natur 
allgegenwärtig, jedoch wissen wir immer noch vergleichsweise wenig über die 
physikalischen Grundlagen ihrer Dynamik. Aufgrund dieser mangelnden 
Kentniss gibt es immer noch keine Kontinuumsbeschreibung granularer 
Systeme, welche häufig auftretende Phänomene wie Entmischung genau 
beschreiben könnte. Diese Dissertation strebt daher nach einem besseren 
Verständnis von Phänomenen, die in bi-dispersen granularen Systemen 
auftreten, d.h. die Dynamik und Entmischung von Fremdkörpern und die 
Bildung von Rayleigh-Taylor-ähnlichen Fingerstrukturen.  
    In dieser Dissertation wird zunächst die Bewegung eines einzelnen 
Fremdkörpers in dynamischen granularen Systemen, d.h. einer dichten 
Scherströmung und einem vibro-fluidisierten Bett, untersucht. Zu diesem 
Zweck wird ein granulares Auftriebsmodell entwickelt, das eine 
Verallgemeinerung der archimedischen Formulierung der Auftriebskraft 
verwendet, die von früheren Arbeiten über den Auftrieb in 
Rutschenströmungen inspiriert wurde. Das erste untersuchte Modellsystem 
ist ein konvektionsfreies, vibrierendes System, das es uns ermöglicht, die 
Auftriebskraft durch drei verschiedene Ansätze zu berechnen, nämlich durch 
eine Verallgemeinerung der archimedischen Formulierung, durch die 
Federkraft einer virtuellen Feder und durch das granulare Druckfeld. Die mit 
diesen drei Ansätzen erhaltenen Auftriebskräfte stimmen sehr gut überein, 
was ein starker Beweis für die Gültigkeit der Verallgemeinerung der 
archimedischen Formulierung der Auftriebskraft ist, welche nur 
Informationen über den Feststoffanteil des Fremdkörpers (definiert als 
Verhältnis seines Volumens zu seinem Voronoi-Volumen) erfordert und 
somit eine Berechnung der Auftriebskraft ermöglicht, die rechnerisch effizient 
ist, da sogenanntes coarse-graining vermieden wird. In einem zweiten Schritt, 
der die Komplexität des granularen Systems erhöht, wird Konvektion 
eingeführt. In einem solchen System setzt sich die auf den Fremdkörper 
wirkende Auftriebskraft aus dem granularen Auftrieb und einer 
Widerstandskraft zusammen. Unter Verwendung eines Widerstandsmodells 
für langsame granulare Strömungen wird die Auftriebskraft, die direkt über 
eine virtuelle Feder gemessen wird, durch die vorgeschlagene 
Verallgemeinerung der archimedischen Formulierung des granularen 



Auftriebs genau vorhergesagt. Das hier entwickelte Auftriebskraftmodell 
ermöglichte es uns wiederum, die Abhängigkeit der Auftriebskraft von der 
Dichte der Bettpartikel und dem Durchmesser des Fremdkörpers sowie die 
Unabhängigkeit der Auftriebskraft von der Dichte des Fremdkörpers und der 
Vibrationsstärke (sobald ein kritischer Wert überschritten wird) zu erklären. 
     Anschließend entwickeln wir ein neues Auftriebskraftmodell zur 
Beschreibung der Bewegung von Fremdkörpern in dichten, granularen 
Scherströmungen. Unsere Herleitung basiert auf dem thermischen 
Auftriebsmodell von Trujillo und Hermann (2003), berücksichtigt aber 
sowohl die Temperatur- als auch die Druckunterschiede im Granulat bei der 
Herleitung der Nettoauftriebskraft, die auf den Fremdkörper wirkt. Wir 
erweitern das Modell weiter, um auch Dichteunterschiede zwischen dem 
Fremdkörper und den Bettpartikeln zu berücksichtigen. Das Modell 
prognostiziert sehr gut das Aufsteigen und Absinken von Fremdkörpern, die 
auf Fremdkörper wirkende Auftriebskraft, bestimmt durch Simulationen mit 
der Diskrete-Elemente-Methode (DEM) und den Grenzwert bei welchem der 
Auftrieb auf Fremdkörper in Scherströmungen verschwindet. 
Phänomenologisch beobachten wir, dass die Anwesenheit eines 
Fremdkörpers zu einem Kühleffekt und einer lokalen Abflachung des 
Schergeschwindigkeitsprofils (geringere Scherrate) führt.  Der Kühleffekt 
nimmt mit der Größe des Fremdkörpers zu und erklärt das Absinken großer 
Fremdkörper. Andererseits führt die Einführung von kleinen bis mittelgroßen 
Fremdkörpern, d. h. bis zum Vierfachen der Bettpartikelgröße, zu einer 
Verringerung des Granulatdrucks im Vergleich zum hydrostatischen Druck, 
was wiederum das Aufsteigen von kleinen bis mittelgroßen Fremdkörpern 
erklärt.  
Schließlich befassen wir uns mit einer neu entdeckten Rayleigh-Taylor (RT) 
ähnlichen Fingerinstabilität in binären granularen Medien. 
Fingerinstabilitäten, die der RT-Instabilität in Flüssigkeiten ähneln, wurden in 
einem binären granularen System beobachtet, in dem dichte und kleine 
Partikel auf leichteren und größeren Partikeln geschichtet sind, wenn das 
System vertikalen Vibrationen und einem fluidisierenden Gasstrom ausgesetzt 
ist. Anhand von Beobachtungen aus Experimenten und numerischen 
Modellen untersuchen wir, ob die Theorie, die zur Beschreibung der RT-
Instabilität in Flüssigkeiten entwickelt wurde, auch auf binäre granulare 
Systeme anwendbar ist. Unsere Ergebnisse bestätigen mehrere 
Schlüsseleigenschaften der RT-Instabilitätstheorie für binäre granulare 



Systeme: (i) Die charakteristische Wellenzahl ist zeitlich konstant, (ii) die 
Amplitude der charakteristischen Wellenzahl wächst zunächst exponentiell 
und (iii) die Dispersionsbeziehung zwischen den Wellenzahlen k der 
Grenzflächeninstabilität und den Wachstumsraten n(k) ihrer Amplituden gilt 
auch für binäre granulare Systeme. Unsere Ergebnisse zeigen, dass Reibung 
zwischen den Teilchen eine wesentliche Voraussetzung für das Auftreten der 
RT-Instabilität in granularen Medien ist. In Abwesenheit von Teilchenreibung 
ähnelt die Grenzflächeninstabilität mehr der Richtmyer-Meshkov-Instabilität. 
Wir definieren außerdem ein Fließkriterium Y, indem wir das granulare 
Medium als viskoplastisches Material behandeln; nur für Y > 15 treten 
Fingerinstabilitäten auf. Interessanterweise haben frühere Arbeiten gezeigt, 
dass Instabilitäten im unteren Erdmantel, ebenfalls ein viskoplastisches 
Material, auch bei ähnlichen Werten von Y auftreten.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



ACKNOWLEDGEMENTS 

I would like to express my deepest gratitude to my supervisor, Prof. Christoph 
Müller, for guiding me through the challenging but interesting research topics 
in granular systems. His interest in the modelling of segregation in granular 
materials readily fascinated me. I greatly appreciate his support, guidance, and 
patience to allow me to learn and stumble ahead during my academic training, 
not to mention his tireless mentoring to refine my scientific writings. The 
accomplishments of this thesis were simply not possible without his help. 

I am also thankful to LESElab members and other researchers I have met 
at ETH Zürich creating such a diverse and dynamic academic environment: 
Qasim, Sena, Andac, Davood, Sung Min, Sergey, Aga, Alex, Alexey, Hui, 
Manouchehr, Athanasia, Petro, Nora, Yi-Hsuan, Margarita, Giancarlo, 
Guillaume, Annelies, Maximilian, Evegenia, Marcel, Zixuan, Angelo, David, 
Matthias, Fei, Elena, Denis, Felix, Alexander, Paula, Alexey, Jian, Mo, 
Yongqing, Boyuan. Particularly, special thanks must go to my colleagues Ali, 
Laure and Chris for introducing me to the efficient simulation techniques and 
preventing me from reinventing the wheel, Nicki, Jens for discussing scientific 
problems regularly and reading manuscripts, Alexander for introducing me to 
the MRI setup; Chris for sharing his experimental data and results about the 
granular Rayleigh-Taylor instability, Guang and Yong for helping me to adapt 
to the new environment and extensive discussions on a variety topics; 
Mehrdad, Louis, Fabian and Yannik for bringing some new thoughts, Cristina 
for managing the administrative tasks.   I would also like to thank the good 
friends I have made, i.e., Ally, Junyi, Jingting Shuqin, Shaopu, Shengqiang, Rui, 
Meijun, Gang, Yanyan, Bing, Yuanhao, Pu, Yatao, Yafu, Yukai, Chi, Daxin, 
Lan, Shuo, Ze, Xi, Caifa, Junxiao, Teng, Yafei, Tianyuan, Shiyu, Gengyun, 
Xiaorong, Qiao. Thank you for the wonderful time we have spent together. 

I thank Prof. Dr. Alexander Penn and Prof. Dr. Fernando Hernández 
Jiménez for accepting to review my dissertation. 

I also want to thank Prof. Dawei Tang, Prof. Shi Liu, Prof. Xiaoze Du, Prof. 
Xinghua Zheng, for their recommendations, as well as the funding of the 
Chinese Scholarship Council and the Swiss National Science Foundation, 
allowing me to take the challenge to conduct doctoral research abroad.  



Finally, there are no words to stress enough my sincere gratitude to my 
family for their unconditional support during the past years. I thank my wife 
Noemy, who always supported me and cared for me in good and bad times. 
Thank you for giving me such an amazing family and for making my ordinary 
days extraordinary. 

  
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



CONTENT   

Abstract ....................................................................................................................... iii 
Zusammenfassung ................................................................................................... vii 
Acknowledgements ................................................................................................... xi 
Content ...................................................................................................................... xiii 
Introduction................................................................................................................. 1 
Discrete element method .......................................................................................... 9 

2.2 CFD-DEM coupling .................................................................................. 14 
Coarse graining ......................................................................................................... 17 
Accurate buoyancy and drag force models to  predict particle segregation in 
 vibrofluidized ........................................................................................................... 27 

4.1 Abstract ......................................................................................................... 27 
4.2 Introduction ................................................................................................. 28 
4.3 Method .......................................................................................................... 35 
4.4 Results ........................................................................................................... 40 
4.4 Conclusion ................................................................................................... 52 

Lift force acting on an intruder in dense, granular shear flows ....................... 55 
5.1 Abstract ......................................................................................................... 55 
5.2 Introduction ................................................................................................. 55 
5.3 Method .......................................................................................................... 62 
5.4 Model Description ...................................................................................... 68 
5.5 Results and Discussion .............................................................................. 77 
5.6 Conclusions .................................................................................................. 90 

Fingering instabilities in binary granular systems ............................................... 91 
6.1 Abstract ......................................................................................................... 91 
6.2 Introduction ................................................................................................. 92 
6.3 Methods ........................................................................................................ 95 
6.4 Results and discussion ............................................................................. 102 
6.5 Conclusion ................................................................................................. 115 
Appendix 6A: Derivation of the dispersion relation ................................ 116 
Appendix 6B: Coarse-graining method ....................................................... 120 

Appendix 6C: Void fraction for p0.1 ...................................................... 121 
Appendix 6D: Granular pressure profile .................................................... 122 

Conclusions and outlook ...................................................................................... 123 
7.1 Conclusions ................................................................................................ 123 



7.2 Outlook ...................................................................................................... 126 
Bibliography ............................................................................................................ 129 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 





 
 

 





1 
 

INTRODUCTION 

Granular media are widely encountered in both nature and industry. Indeed, 
today granular materials are the second-most used material in industrial 
processes (de Gennes 1999). Typical processing reactors include fluidized or 
packed beds, rotating cylinders or hoppers. Besides their industrial relevance 
rich and complex granular phenomena are observed in nature, such as the 
motion of sand dunes, rockslides, snow avalanches or galaxy formation. 
Hence, due to their importance in industry and in the prevention of natural 
disasters, granular media have attracted significant interest by mathematicians, 
physicists and engineers aiming to obtain a better understanding of their 
physics allowing in turn for a more accurate prediction of their behavior.   

Although there is some practical understanding of the behavior of granular 
materials, largely through empiricism, the detailed, underlying physics are still 
elusive. For example, it is already difficult to classify the state of granular media 
as it can possess both solid, liquid or gas like properties. An example, where 
granular material can possess both solid, liquid and gas-like properties, is the 
pouring of beads onto a pile as shown in Figure 1.1 (Forterre and Pouliquen 
2008).  Currently, we have no unified theoretical framework to describe a 
system such as the one shown in Figure 1.1 with a continuum description 
(Seife 2005).  Nevertheless, there has been progress in developing physical 
models for specific granular systems such as Heckel’s law (Heckel 1961), the 
Jannssen model (Sperl 2006; Janssen 1895),  the kinetic theory for granular 
gases (Haff 1983; Kumaran 2008; Goldhirsch 1999; Ogawa 1978; Savage and 
Jeffrey 1981; Lun et al. 1984) or local and non-local rheology models (MiDi 
2004; Forterre and Pouliquen 2008; da Cruz et al. 2005; Jop, Forterre, and 
Pouliquen 2006) (Aranson and Tsimring 2001; Bouzid et al. 2013; Derec, 
Ajdari, and Lequeux 2001; Kamrin and Koval 2012; Pouliquen and Forterre 
2009) that capture successfully phenomena such as creeping flow below the 
yield criterion (Komatsu et al. 2001). 

 1 
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FIG. 1.1 Co-existence of different states in a granular system when pouring 
beads onto a pile (Forterre and Pouliquen 2008). 

The theoretical complexity of granular materials arises from the fact that some 
“pre-conditions” of classical gases and fluids are not met, such that molecules 
are very small and elastic as contacts between two granules are dissipative and 
friction occurs.  Furthermore, granular systems are far away from equilibrium 
and also thermal considerations are often not appropriate as the term kBT at 
room temperature is by a factor of 1012 lower than the potential energy of a 
typical sand particle (Jaeger, Nagel, and Behringer 1996).  The negligible effect 
of kBT also implies that traditional entropy considerations may not be 
applicable in dynamic granular systems.  

Edwards aimed to resolve the limitations of traditional entropy considerations 
to describe static granular systems (Edwards and Oakeshott 1989; Mehta and 
Edwards 1990). Instead of internal energy, the volume V is used as the key 
variable to characterize the macrostate of a static granular assembly. A 
temperature-like quantity called ‘compactivity’ is then defined as X = ∂V/∂S, 
where S is the entropy of the granular system, given by S(V) = kE lnΩ(V), 
where kE  is a ‘Boltzmann-like’ constant (kE = 1) and Ω(V) is the number of 
possible particle configurations in a given volume V. Edwards’s theory relies 
on two key conjectures analogous to classic thermodynamics, i.e. ergodicity 
and equi-probability of the microstates, i.e. “We assume that when N grains occupy 
a volume V they do so in such a way that all configurations are equally weighted.” 
(Edwards 1994). Although it is challenging to justify these conjectures from 



3 
 

first principles, there is evidence that the configurations of a packing are 
equally probable at the point of unjamming (Martiniani et al. 2017; Baule et al. 
2018; Martiniani 2017; Asenjo, Paillusson, and Frenkel 2014; Xu, Frenkel, and 
Liu 2011). There have been some successful applications of Edward’s theory 
such as quantifying ensemble averaged quantities e.g. the solid fraction at the 

jamming point ( =0.64) of a random close packing (RCP) (Song et al. 2010), 
the phase diagram of jammed granular matter (relation between coordinate 
number and solid fraction) (Song, Wang, and Makse 2008) and the description 
of a granular system at rest with an equation of state (Ciamarra, Coniglio, and 
Nicodemi 2006). However, it is worth noting that Edward’s theory has been 
mostly used to predict structural properties (such as solid fraction and 
coordinate number) and it remains largely unexplored whether it is also 
capable to describe well the dynamics of granular media. In this regard, there 
have been efforts by Herrmann to formulate a thermodynamic framework for 
granular flow (Herrmann 1993). Here, a local steady state that maintained by 
an energy flux is used as the analog for a local “equilibrium”. This framework 
has been applied to the Brazil nut phenomenon (BNP)  (Trujillo and 
Herrmann 2003). The BNP describes the observation that large intruders rise 
in a vibrated granular system. Very recently, the theory of Herrmann (Trujillo 
and Herrmann 2003) was extended to a dense granular shear flow (Liu and 
Müller 2021). It was found that in such a system an intruder in the size ratio 1 
< dI/dp < 4 rises due to variations in the local pressure (i.e. the intruder reduces 
the local granular pressure). For intruders with dI/dp > 4, the local pressure 
disturbance is very small as the system approaches a continuum limit, in which 
the pressure acting on the intruder equals to the hydrostatic pressure. At the 
same time the presence of an intruder leads to a cooling effect, i.e. the intruder 
flattens the local shear rate thus reducing the local granular temperature. This 
cooling effect increases with intruder size, leading ultimately to the sinking of 
large intruders. Although, the idea of a thermodynamic model for granular 
flow has been around for more than three decades we still lack key 
relationships such as the  link between granular pressure and granular 
temperature, although some progress has been made recently  (Kim and 
Kamrin 2020; Taylor and Brodsky 2017). 

Another challenge that is encountered when aiming to formulate a continuum 
description for granular materials is the absence of scale separation between 
the particle and system size. As a consequence, properties arising from 
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ensemble averaging become resolution dependent, i.e., variables such as 
granular pressure or temperature cannot be assigned directly to a single point 
in the system. For example, the granular temperature, which is an analogue to 
the thermodynamic temperature and which is defined as the mean square of 
the random velocity fluctuation about the mean velocity in a granular flow 
grows quadratically with the size of the coarse graining volume in dense 
granular shear flows (Glasser and Goldhirsch 2001; Liu and Müller 2021). This 
resolution-dependent behaviour is because the changes in velocity over the 

mean free path γ̇l are relatively large compared to the thermal speed √T (here 

γ̇ is the shear rate, l is the mean-free path and T is the granular temperature). 

For example, assuming air at 300 K, 1 atm with a constant shear rate of γ̇ =10 

1/s, a free mean path of l ~O(10-8
 m), and T ~O(104 m2/s2), we obtain  γ̇l/√T 

~ O(10-9), i.e., the thermal motion is relative large making the properties of air 
only weakly resolution dependent.  However, for granular media using the 

equation of state T=Cγ̇2l 2/(1−e2) (Tan and Goldhirsch 1998), where e  is the 

coefficient of restitution,  γ̇l/√T ~ √(1-e 2)~O(1), suggesting that there is no 

clear scale separation between the macroscopic velocity ( γ̇ l) and the 

microscopic thermal speed √T   of the particles unless the particles are 
approaching perfect elasticity e→1(Glasser and Goldhirsch 2001). Besides the 
granular temperature, also the granular pressure/stress have been reported to 
be resolution-dependent (Weinhart et al. 2013), yet there is evidence that  the 
granular stress/pressure reaches a plateau for a coarse graining radius of w > 
dp, where dp is the average particle diameter.  Hence, in granular materials the 
resolution needs to be specified when measuring the value of a variable 
computationally or experimentally.  

Owing to their complexity granular systems can feature many intriguing 
phenomena,  such as radial and axial segregation (Shinbrot and Muzzio 2000), 
clustering (Olafsen and Urbach 1998), Taylor vortices (Conway, Shinbrot, and 
Glasser 2004) or fingering (McLaren et al. 2019).  Such phenomena can serve 
as a test-ground for the theoretical modelling of granular materials (Ottino 
2006), allowing to identify both the merits and drawbacks of specific models.  
It is worth noting, that the task to describe granular materials becomes even 
more complex when dealing with non-spherical particles. Particle shape can 
have a remarkable influence on e.g. the morphology of a packing (Lu et al. 
2016; Conzelmann et al. 2020) or flow dynamics (Müller et al. 2015; Langston 
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et al. 2004; Sinnott and Cleary 2009; Pereira et al. 2011; Hilton and Cleary 
2011). For more details concerning the modelling and application of non-
spherical particles the interested reader is referred to specific reviews, e.g. by 
Lu, Third, and Muller (2015). 
 
While we have focused above largely on modelling aspects of granular 
materials it is worth noting a few words on experimental techniques to probe 
the physics of granular matter. As granular materials are visually opaque, 
traditional optical techniques are often of little use unless the interrogation is 
limited to the surface of the walls or 2D granular systems. However, over the 
years,  several non-intrusive measurement techniques have been introduced 
including magnetic resonance imaging (MRI) (Müller et al. 2006; Nakagawa et 
al. 1993; Penn et al. 2017), X-ray tomography (Seidler et al. 2000) or  positron 
emission particle tracking (PEPT) (Parker et al. 2008). More details about the 
specific experimental techniques, their advantages and disadvantages can be 
found in excellent reviews, e.g.  (Amon et al. 2017; Stannarius 2017). Generally, 
and independent of the specific experimental technique it is difficult to obtain 
experimentally microscopic information (in particular temporally resolved). In 
this regard, (validated) numerical modelling approaches such as the discrete 
element method (DEM) (Tsuji, Kawaguchi, and Tanaka 1993; Cundall and 
Strack 1979) are very attractive and have been used to reproduce a series of 
granular phenomena such as BNP (Metzger, Remy, and Glasser 2011) or 
bubbling in fluidized beds (Müller et al. 2008) . 

 

1.2 Outline of thesis 

In this doctoral thesis we explore different phenomena in granular media 
including segregation in both vibrating beds and dense shear flows and a 
Rayleigh-Taylor-like instability in binary granular materials. The phenomena 
are studied by numerical modelling approaches such as the discrete element 
method (DEM) and DEM coupled with computational fluid dynamics (CFD). 
The structure of the thesis is as follows: 
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Chapter 2 introduces the discrete element method (DEM) which is used to 
simulate the granular systems studied here, i.e., inclined granular shear flow, 
vibrated and fluidized beds.  

Chapter 3 introduces the coarse graining (CG) method to map information 
from the discrete to the continuum level.  

Chapter 4 critically assesses the validity of a granular buoyancy model based 
on a generalized Archimedean formulation of buoyancy. By simulating a 
convection-free vibrated system (by turning off wall-particle friction), the 
generalized Archimedean formulation is compared to the buoyancy force 
measured via a virtual spring or from its hydrostatic definition (pressure 
gradient). We demonstrate that the buoyancy force obtained though the three 
different approaches agrees very well, validating the generalization of its 
Archimedean formulation. Next, convection is introduced to the system. 
Hence, the lift force is composed of the granular buoyancy force and a drag 
force. It was shown that using a drag model for the slow velocity regime, the 
lift force could be predicted accurately though the proposed generalized 
Archimedean formulation of the buoyancy force. We rationalize the 
dependence of the lift force on the density of the bed particles and the intruder 
diameter, and the independence of the lift force on the intruder density and 
the vibration strength (once exceeding a critical value). 

Chapter 5 develops a new lift force model to describe the motion of intruders 
in dense, granular shear flow.  The derivation is an extension of a thermal 
buoyancy model of Trujillo and Hermann (2003) but takes into account both 
granular pressure and temperature differences. The model is further extended 
by considering the density differences between the intruder and the bed 
particles. The model predicts very well the lift force acting on the intruder and 
the neutral buoyancy limit of intruders in shear flows.  It is shown that the 
presence of an intruder leads to a cooling effect and a local flattening of the 
shear velocity profile (lower shear rate). The cooling effect increases with 
intruder size and explains the sinking of large intruders. On the other hand, 
the introduction of small to mid-sized intruders, i.e., up to 4 times the bed 
particle size, leads to a reduction in the granular pressure compared to the 
hydrostatic pressure, which in turn explains the rising of small to mid-sized 
intruders. 
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Chapter 6 explores a newly discovered Rayleigh-Taylor (RT)-like fingering 
instability in binary granular media. Fingering instabilities akin to the RT 
instability in fluids have been observed in a binary granular system in which 
dense and small particles are layered on top of lighter and larger particles, 
when the system is subjected to vertical vibration and fluidizing gas flow. 
Using observations from experiments and numerical modelling we explore 
whether the theory developed to describe the RT instability in fluids is also 
applicable to binary granular systems. Our results confirm the applicability of 
multiple key properties of the RT instability theory for binary granular systems. 
Furthermore, we demonstrate that inter-particle friction is essential for the RT 
instability to occur in granular media. For zero particle friction the interface 
instability bears a greater resemblance to the Richtmyer-Meshkov instability. 
We further define a yield criterion Y for the interface; only for Y > 15 fingering 
occurs.  

 
Finally, Chapter 7 summarizes the conclusion of the thesis, while Chapter 7 
proposed some future work.   

 

 

 

 

 

 

 

 



8 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



9 
 

DISCRETE ELEMENT METHOD 

The discrete element method for the modelling of granular material was 
originally proposed by Cundall and Strack (1979) and treats each particle as a 
single entity. The dynamics of each particle are governed by Newton’s law of 
motion:    

pi

i ti fpi i

d
m = + + m

dt

u
f f g ,                             (2.1) 

     
i

i i

d
I =

dt

w
T ,                    (2.2) 

where mi, upi, wi, Ii are the mass, velocity, angular velocity and momentum of 
inertia of particle i, respectively, and fti,  ffpi Ti and g are the particle-particle 
contact force, the fluid-particle force, the torque and the acceleration due to 
gravity, respectively.  

In our work, the contact forces acting between particles, fti , are modelled by a 
soft sphere approach.  

2.1 Contact model 

Contacting particles lead to small deformations at the area of contact. 
Numerically, the deformation is simplified by an overlap between contacting 
particles. The overlap is denoted by δ. The resulting contact force is expressed 
as a function of the deformation, typically through a spring-dash model.  The 
most widely applied contact model is the linear spring –dashpot (LSD) model. 

The LSD model is given by the following equation, 

                                           2

0 0+ 2γ + =    ,                                    (2.3) 

2 
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where δ is the overlap, given by δ = max(0, ri+rjd) with ri and rj being the radii 
of particle i and j and d is the distance between their centers of gravity, m is 
the effective mass given by m = mimj/(mi+mj), γ is the damping coefficient and 
k is the spring constant, defined as k = ω0

2m, where ω0 is the frequency of the 
undamped harmonic oscillator.  

In the LSD model, the damping coefficient γ is determined by 

                                           /
ln

ln2 2

e
γ =

e + π


k m ,                                 (2.4) 

where e is the coefficient of restitution. In Eq. 2.4 the coefficient of restitution 
is considered to be independent of the impact velocity, which is a reasonable 
simplification for low impact velocities. 

An alternative to the LSD is the Hertzian spring-dashpot (HSD) model, which 
is given by, 

                                      1 4 2 3 2

0 0( ) 0+ e + =       ,                 (2.5) 

where 0 = (K/m)1/2.  

The contact force arising from the collision of two particles in the HSD is: 

                                     Hertz

3/2 3/2
4

3

eff effE r
F = Kδ δ ,                (2.6) 

where Eeff  is the effective Young’s modulus, i.e. Eeff = 1/((1-i
2)/Ei+(1-j

2)/Ej) 

with Ei, Ej and i , j being the Young’s moduli and Poisson’s ratios of particle 
i and particle j, respectively and reff is the effective radius, defined as reff = 
rirj/(ri+rj).  
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Since δ̈ = u(du/dδ) and usingδ(t) = Axn,  Eq. (2.5) can be converted into a 
similar form as Eq. (2.3) by setting A = (5/4)5/2 and n = 4/5 (Antypov and 
Elliott 2011), viz. 

0 0

2

5

d 2( ) 0
d

u
u + α e Ω v + Ω =

x
x .                           (2.7) 

Considering that k = 8/3Eeff reff and K = 4/3Eeffreff
.1/2  and ensuring that the 

dissipation term of the HSD model (Eq. 2.7) is equal to that in the LSD model 

(Eq. 2.3), i.e.,  2γ =  (2/51/2)α(e)Ω0,  Kn and (e) are required to be (Antypov 
and Elliott 2011):  

0.5(4 )n n effK k r ,                                        (2.8) 

          
5

( )
ln

α
ln2 2

e
e =

e + π


.                                           (2.9) 

 
The normal contact force Fn in the LSD and HSD model are then given by:  

                               1/2

, nLSD :    F = k δ + 2γ m δL n n n eff n ,                           (2.10) 

                       3/2 1/2 1/45

5
2 ( )

4

n
H.n

δ
HSD : F δ γ m δ

r
     n n n eff n

eff

K .       (2.11) 

while the contact forces in the tangential direction Ft  are given by:  

              1/2

,LSD :    F = k δ + 2γ m δL t t t t eff t ,                                 (2.12)

  

1/2 1/2 1/45

5
2 ( )

4
H.t

δ
HSD : F δ δ γ m δ

r
     t

t n t t eff t

eff

K .           (2.13) 
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Here, kt  and Kt are the spring stiffness in the tangential direction, γt   is the 
damping coefficient in the tangential direction and δt is the overlap in the 
tangential direction.  For a Hertzian contact, the relationship between the 
contact stiffness in the normal and tangential direction is given by Mindlin’s 
theory, i.e. Kt/Kn  is ~ 2/3 for most materials.  The tangential contact force is 
limited by Coulomb’s law, 

          t nF μF ,                (2.14) 

where  is the coefficient of friction. To ensure numerical stability, the time 
step is typically smaller than 2π(m/kn)

0.5/10. 

In the following we model a dense shear flow system (Figure 2.2) using both 
the LSD and HSD models and compare the results with literature data (Silbert 
et al. 2001; Weinhart et al. 2013) The complete list of the model parameters is 
given in Table 2.1.  

 

FIG. 2.2 Setup for the inclined shear flow modelled. The yellow colour 
denotes bed particles and the blue particles denote glued wall particles. 
Periodic boundary conditions are applied in the x and z directions. 

 

 



13 
 

Table 2.1 Parameters used in the simulations 

LSD 

 

 kn (N/m) kt (N/m) γn (kg1/2/s) γt (kg1/2/s)  e 

6.41104 2/7kn 62.74 0 0.50 0.88 

HSD 
  Kn (N/m3/2) Kt (N/m3/2) γn (kg1/2/s) γt (kg1/2/s)  e 

1.83107 2/7Kn 20.59 0 0.50 0.88 

 

The simulation setup is identical to the system modelled by Silbert et al. 2001. 
Here, monodispersed particles of diameter d and mass m are placed on an 
inclined plane (xy) with a tilt angle θ.  The bottom of the inclined plane is 
composed of fixed particles to ensure a rough bottom wall which is critical to 
stabilize the shear flow.  Periodic boundary conditions are applied in the x 
(flow) and y directions to develop a steady flow down an infinitely long and 
wide chute. The dimensions of the system are Lx = 20d, Ly = 20d and H = 40d. 
The size of the glued particles at the bottom wall is dw = 2d. We focus on 
comparing the velocity profile as a function of the contact model, as further 
macroscopic quantities such as the solid fraction and stress are not varying 
substantially with variation in the contact model (Silbert et al. 2001). We used 
the open source code LIGGGHTS (Kloss et al. 2012).  

 

FIG. 2.3 Velocity profile in a dense shear flow along an inclined plane ( = 

26) using different contact models: (+) LSD data from (Silbert et al. 2001) 
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() LSD data from our work; ()  HSD model from  (Silbert et al. 2001).  () 
HSD data from our work; () HSD data from di Renzo et al. 2004.  

Figure 2.3 plots the velocity profiles of a dense shear flow obtained from 
numerical simulations using different contact models. There is a good 
agreement between the LSD model in our simulation and the LSD results of 
Silbert et al. (2001). However, there are significant differences in the 
predictions when using a LSD model compared to a HSD model.  However, 
further macroscopic quantities such as the solid fraction or the stress profile 
do no vary appreciably when using different contact models, which is in 
agreement with previous reports (Silbert et al. 2001; Weinhart et al. 2013).   

2 . 2  C F D - D E M  c o u p l i n g  

To model gas-solid systems we couple DEM to computational fluid dynamics 
(CFD). Assuming an incompressible fluid phase, the following simplified 
governing equations hold  

( ) ( ) 0f f fε ε


 


u
t

,                      (2.15) 

               
( ) ( ) ( )f f f f f

f f f p

ε ρ p ε τ

                                                  ε ρ

f f f f
t

 


    




u u u

g F

, (2.16) 

where f, f, uf, f is the void fraction, fluid density, fluid velocity and the fluid 
viscous stress, respectively. The interaction between the particles and the fluid 
phase is given via:  

   
1

1
F

ci
m

fp fpi

i mcV

 f ,           (2.17) 
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where mc is the index of the mesh cell; mci is the index of particle i in the mesh 
cell of index mc and Vmc is the volume of mesh cell. The force between the 

fluid and particle i in the mesh cell is given by ffpi = Vpip+Vpi f+f fdi, 

where f fdi is the fluid drag acting on particle i. 

Assuming incompressible fluids, the conservation of mass is simplified to:  

( ) 0f f s sε ε  u u ,                         (2.18) 

where us is the velocity of the particle phase and  s is the volume fraction of 

the particle phase (with s +f = 1). Substituting Eq. (2.17), (2.18) into the 
momentum conservation equation, Eq. (2.16), we obtain:  

              

2

1

( ) ( )f f f f f f f f f f f

f di c f f

ε ρ ε ρ ε p ε μ
t

                                                ε f /V ε ρ
cn

i


     



 

u u u u

g

.       

(2.19) 

In this work the drag correlation of Koch-Hill (Koch and Hill 2001) is used. 
Generally, the drag force term, fdi, can be expressed as:   

( )
pi

di i

s

V
β

ε
 f u upi fi ,                      (2.20) 

where Vpi  is the particle volume, upi is the particle velocity and ufi is the fluid 
velocity at the location of particle i; The correlation coefficient βi is given by 
(Koch and Hill 2001) as: 

   
0 3

18 1
( ( ) ( ) )

2

2

f f s

i s s2

p

μ ε ε
β F ε F ε Re

d
  p

,                         (2.21) 
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where Rep is the particle-based Reynolds number, defined as: 

pid






f f pi fi

p

ε ρ u u
Re .                             (2.22) 

The functions F0(s) and F3(s) in Eq. (2.21) are given by:   

               

2 3

3

135
1 3 ( ) 16.14

2 64

1 0.681 8.48 8.16
( ) 0.4

10
0.4

  

  
 



s
s s s

s s s

0 s s

s

s

f

ε
ε ε ε

ε ε ε
F ε if ε

            

ε
                           if   ε

ε

ln

, (2.23) 

3 2

0.232
F ( ) 0.0673 0.212s s

f

ε ε
ε

    .                     (2.24) 

The locally-average Navier-Stokes equations, Eq. (2.18) and Eq. (2.19), are 
solved using the open source solver OpenFOAM (Rusche 2003) while the 
governing equations for the particle motion, Eq. (2.1) and Eq. (2.2) are solved 
by LIGGGHTS (LAMMPS improved for general granular and granular heat 
transfer simulations). The coupling between the fluid and particle phases is 
performed via the CFDEM®Coupling solver (Goniva et al. 2012).  
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COARSE GRAINING 

The raw data obtained from DEM simulations provide information on the 
particle level, such as particle position, velocity and acceleration. For several 
applications it is necessary to map information from the discrete to the 
continuum level. This is achieved through coarse graining (CG) and several 
CG techniques have been developed to obtain continuum data from discrete 
data (Luding and Alonso-Marroquín 2011; Babic 1997). In this thesis, we use 
the CG method that has been developed by Goldhirsch 2010.  

 

FIG. 3.1. Illustration of a CG volume located at r.  

 

In the following the CG method applied here is described in more detail. Let 
us consider a coarse graining (CG) volume located at r with a radius w (Figure 
3.1). The CG density at point r at time t is given as: 

                                        
1

( ) ( ( ))
N

i

i

ρ ,t m G t


 r r ri ,                              (3.1) 

where G(rri(t)) is the CG function, e.g., the Heaviside or Gaussian function.  

3 
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Similarly, the momentum density is defined as: 

                               
1

( ) ( ) ( ( )) ( )
N

i

i

ρ ,t ,t = m G t ,t


 r u r r r u ri i
    (3.2) 

where u(r,t) is the CG velocity that is obtained by averaging the velocities of 
all particles that are located within the CG volume. Combing Eq. (3.2) and 
(3.1), the CG velocity is obtained as: 

                      
1 1

( ) ( ( )) ( ) / ( ( ))
N N

i i

i i

,t m G t ,t m G t
 

    u r r r u r r ri i i
. (3.3) 

To obtain the CG stresses, we start with the momentum conservation 
equation, viz:    

                              
( , ) ( , )( , ) σρu t u tρu t

ρg
t

 


 


  

  

r rr

A
B

x x
. (3.4) 

where  and β denote the Cartesian coordinates x, y, z, σβ is the stress and g 

is the component of the gravity vector along . Substituting Eq. (3.2) into the 

term A in Eq. (3.4) we obtain:  
  

              
1 1

( ) ( ( ))
( ( )) ( ) ( )

iN N
i i i

i i i

i i

C D

du t G r r t
A m G r r t m u t u t

dt x


 

 

 
  


  . (3.5) 

allowing us to write the stress containing term as: 

( )
σ

x
C B D








   


g .                     (3.6) 
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Newton’s law of motion gives us 

                                     ( )
  g

i
ij

i

j

du
m m f t

dt
,                                (3.7) 

and substituting Eq. (3.7) into the first term of Eq. (3.6) yields: 

  

, ( ) ( ( ))i j

i

j

C f t G t   g r r .                             (3.8) 

Furthermore, the force acting from particle i to particle j is equal (but acting 
in the opposite direction) to the force acting from particle j to particle i, i.e.   

                        , ,( ) ( ( )) ( ) ( ( ))     r r r ri j j i

i j

j j

f t G t f t G t . (3.9) 

Therefore, Eq. (3.8) can be modified yielding:  

            

 

 

,

,

1

,

, 0

1
( ) ( ( )) ( ( ))

2

1
( ) ( ( ) ( )

2
               =

 







     


  





 

g r r r r

r r r

i j

i j

i j

i j

j ij

i j s

C f t G t G t

f t ds G t s t
s

, (3.10) 

where rij is a vector pointing from ri to rj, as illustrated in Figure 3.1. Applying 
the chain rule we obtain 

                ,( ) ( ) ( ) ( )



 
    

 
r r r r r ri j

j ij j ijG t s t r G t s t
s x

, (3.11) 

and substituting Eq. (3.11) into Eq. (3.10), we obtain 

             
1

, ,

, 0

1
( ) ( ( ) ( )

2
  






    


 g r r ri j i j

j ij

i j

C f t r ds G t s t
x

. (3.12) 
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Further, the summation of terms B and D in Eq. (3.6) gives:  

 

( , ) ( , ) ( ( ))
( ) ( )

( , ) ( , ) ( ( ))

( ) ( ) ( ( ))

ρu t u t

u t u t

          =

i i i
i

i

i i

i

i i

i i

i

G r r t
B D m u t u t

x x

m G t

x
m u t u t G t

 

 

 

 


 

  
  

 

 
  


 

  
 

 







r r

r r r r

r r

. 

                                                                                                      (3.13) 

Substituting the fluctuation of the velocity of particle i with respect to the CG 

velocity, i.e. uα
i '(t)=uα

i (t)u(r,t) into Eq. (3.13) allows to simply Eq. (3.13) 
yielding:  

                          ' '( ) ( ) ( ( )) 



  
    

  
 r ri i

i i

i

B D m u t u t G t
x

. (3.14) 

If we now substitute Eq. (3.14) and Eq. (3.12) into Eq. (3.6) we obtain: 

 
1

, ,

, 0

' '

1
( ) ( ( ) ( )

2

( ) ( ) ( ( ))

σ

x

i j i j

j ij

i j

i i

i i

i

f t r ds G t s t

x
mu t u t G t



 

 

 

 
       
  

 
 

 



r r r

r r

. 

                                                                                                      (3.15) 

Hence, the CG stress is given, 
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 

1

, ,

, 0

' '

1
( , ) ( ) ( ( ) ( )

2

( ) ( ) ( ( ))

σ

        









 

 



   

 

 



r r r r

r r

c

k

i j i j

j ij

i j

i i

i i

i

t f t r ds G t s t

m u t u t G t

. (3.16) 

The first term of the right-hand side (RHS) of Eq. (3.16) is called the contact 

stress, σ αβ
c  , which accounts for contributions due to inter-particle contact 

forces. The second term of the RHS is called the kinetic stress, σαβ
k , which 

originates from fluctuation in the particle velocities. 

Using now a given CG function G(rri(t)), the CG stress can be calculated via 
Eq. (3.16). Several types of CG functions are routinely used, such as the 
Heaviside function or the Gaussian function, i.e.: 


  

c

c

c

V
G H w

V

1/   ,if w  1
Heaviside function:  ( ) ( )

0    ,if >w

r
r r

r
 (3.17) 




cw

c

e
w

2( / )1
Gaussian function: G(r)=

( )

r
 (3.18) 

The integral of the CG function G(rri(t)) has to fulfil ∫
R3G(r)dr = 1. This 

condition holds for the Heaviside function by setting V equal to the CG 
volume in Eq. (3.17). For the Gaussian function, a cut-off Gaussian function 

is typically used, i.e., Θ(w) = 4πw3 


s sS e ds

1
2 *

0

 to ensure ∫
R3G(r)dr = 1 

To effectively calculate the contact stress in Eq. (3.16) we use the algorithm 
3.1.  
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Algorithm 3.1 : Coarse graining algorithm to determine the CG stress 

Input parameters: CG radius wc and system size. 
Output parameters: CG stress tensor of the system 
Input data: The position of contacting particles and the inter-particle 
forces. 
1. Read the position of particles i, ri, and determine the CG volume index 

c1 and the CG volume position rc1. Similarly, determine the CG volume 
index c2 for particle j and the CG volume position rc2 

2. 2.1 If  ‖rc1-ri‖  wc, calculate the contact stress (Eq. (3.16)) arising from 

particles i and j and add it to  σ αβ
c (rc1) 

2.2  If  rc1≠ rc2 and ‖rc2-rj‖  wc,  calculate the contact stress   

       arising from particle i and j and add to σαβ
 c (rc2) 

3. else if ‖rc1-ri‖ > wc and ‖rc2 - rj‖  wc, calculate the contact stress and 

add it to σαβ
 c (rc2) 

        

To assess how the CG function impacts the calculated CG stress, we use the 
model shear flow system illustrated in Figure. 2.2. The simulation parameters 
are identical to the ones listed in Table 2.1. Figure 3.3 confirms that the 
specific CG function has a very small effect on the determined CG stress (the 
hydrostatic pressure profile is plotted in Figure 3.3 for comparison). To reduce 
the computational complexity, the Heaviside was used as the CG function in 
this thesis.       

Further, when plotting the normal contact stress in the x, y and z directions, 
Figure. 3.4, we observe that the common assumption of an isotropic stress 

distribution is a good approximation although σyy  σxx  σzz, which is in 
agreement with previous  reports (Weinhart et al. 2013).  
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FIG. 3.3.  The normal component of the CG stress tensor for a dense granular 

shear flow using either the Gaussian () or the Heaviside function () as the 
CG function (t = 19 s). The CG radius is wc = 0.005 m. The dash-dotted line 

gives the hydrostatic pressure profile: σyy  P = pgy(hcy) where p = 2.510-6 

g/mm3,  = 0.55, gy = gcos(26) and hc = 200 mm. The simulation setup and 
the simulation parameters are shown in Figure 2.2 and listed in Table 2.1, 
respectively. 

Concerning the kinetic stress σαβ
 k  in the modeled dense shear flow system we 

observe a linear dependence between the kinetic stress and the depth (Figure 
4.5). However, its magnitude (~10-6 Pa) is much smaller compared to the 
contact stress (~103 Pa).  The negligible contribution of the kinetic stress to 
the stress tensor originates from the dense nature of the granular system 
studied, limiting large velocity fluctuations. In contrast, the contribution of the 
kinetic stress term becomes important in granular gases (Glasser and 
Goldhirsch 2001). 
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FIG. 3.4. Normal stress components σ  as a function of the position along 
the y direction using a CG radius of wc = 5 mm. The normal stress in the y-
direction can be approximated very well by the hydrodynamic pressure, i.e., 

σyy  P = pgy(hcy). Deviations from the hydrodynamic pressure near the 
bottom layer are due to wall effects.   

 

FIG. 3.5. Normal kinetic stress σαα
 k  in the model dense shear flow studied here 

using a CG radius of wc = 5 mm. The normal kinetic stress shows largely a 
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linear relationship in the y-direction. The kinetic stress in the flow direction (x 
direction) is larger than that in the y and z directions. The magnitude of the 
kinetic stresses is significantly smaller compared to the contact stresses in the 
dense granular shear flow system modelled here. 
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Accurate buoyancy and drag force models to predict particle 

segregation in vibrofluidized 

Adapted from: Oshtorjani, M. K., Meng, L., & Müller, C. R. (2021). Accurate 
buoyancy and drag force models to predict particle segregation in 
vibrofluidized beds. Physical Review E, 103(6), 062903. 

4 . 1  A b s t r a c t  

The segregation of large intruders in an agitated granular system is of high 
practical relevance, yet the accurate modeling of the segregation (lift) force is 
challenging as a general formulation of a granular equivalent of a buoyancy 
force remains elusive. Here, we critically assess the validity of a granular 
buoyancy model using a generalization of the Archimedean formulation that 
has been proposed very recently for chute flows. The first model system 
studied is a convection-free vibrated system, allowing us to calculate the 
buoyancy force through three different approaches, i.e., a generalization of the 
Archimedean formulation, the spring force of a virtual spring, and through 
the granular pressure field. The buoyancy forces obtained through these three 
approaches agree very well, providing strong evidence for the validity of the 
generalization of the Archimedean formulation of the buoyancy force which 
only requires an expression for the solid fraction of the intruder, hence 
allowing for a computationally less demanding calculation of the buoyancy 
force as coarse graining is avoided. In a second step, convection is introduced 
as a further complication to the granular system. In such a system, the lift force 
is composed of granular buoyancy and a drag force. Using a drag model for 
the slow-velocity regime, the lift force, directly measured through a virtual 
spring, can be predicted accurately by adding a granular drag force to the 
generalization of the Archimedean formulation of the granular buoyancy. The 
developed lift force model allows us to rationalize the dependence of the lift 
force on the density of the bed particles and the intruder diameter, and the 
independence of the lift force on the intruder density and the vibration 
strength (once a critical value is exceeded). 

4  
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4 . 2  I n t r o d u c t i o n  

Segregation is commonly observed in granular materials that contain a mixture 
of particles that differ in size (Duran, Rajchenbach, and Clement 1993; Hill 
and Fan 2008; Pouliquen, Delour, and Savage 1997; van der Vaart et al. 2015), 
density (Hong, Quinn, and Luding 2001; Huerta and Ruiz-Suarez 2004),  
shape (Lu and Muller 2020) or mechanical properties (friction, elasticity) 
(Gillemot, Somfai, and Borzsonyi 2017; Windows-Yule et al. 2014). A 
fundamental understanding of the physics behind segregation in granular 
materials is not only a scientific curiosity (Seife 2005; Lu, Third, and Muller 
2015; McLaren et al. 2019), but also of high relevance for practice. In practical 
applications such as the mixing of pharmaceutical ingredients (Vanarase et al. 
2010), the filling (and discharge) of hoppers (Ketterhagen et al. 2007)or the 
transport of granular media through agitation (e.g. vibration) from one 
processing unit to the other (Simsek et al. 2008; Hamzeloo, Massinaei, and 
Mehrshad 2014) size- and density-induced segregation is unavoidable and has 
to be controlled or at least minimized when designing unit operations or 
granular conveyer systems. In most industrial applications such as the food or 
pharmaceutical industries a well-mixed state is desired and indeed critical to 
ensure the desired product specification, hence an in depth understand of the 
parameters controlling segregation is critical. Besides the industrial relevance 
of segregation, it also prevails in dynamic natural phenomena such as debris 
flow (Ferdowsi et al. 2017). A well-studied segregation phenomenon is the so 
called “Brazil nut phenomenon” (BNP)(Rosato et al. 1987), which describes 
the upward motion of an intruder in a vibrating granular bed, where the 
intruder diameter is larger than the diameter of the bed particles. 

Qualitative models 
 

Depending on the vibration strength, the BNP can be rationalized by one of 
the following two models. The first model is valid for low vibration strengths 
(typically low or even irregular vibration frequency), the upward migration of 
the intruder is explained by the arch (or vault) effect, whereby upon an upward 
movement of the intruder, voids are formed at the bottom part of the intruder. 
A new, higher, intruder position in the bed is stable if the large intruder is 
support by at least two particle contacts below its center of gravity (2D case). 



29 
 

Small bed particles are able to easily fill the voids below the intruder leading 
to a continuous upward motion of the intruder through a series of stable 
intruder “jumps”. This explanation has been termed also percolation model 
(Duran et al. 1994; Duran, Rajchenbach, and Clement 1993; Jullien, Meakin, 
and Pavlovitch 1992, 1993; Rosato et al. 1987). In such a segregation regime, 
a critical minimal size of an intruder compared to the bed particle size, is 
required to trigger segregation (Jullien, Meakin, and Pavlovitch 1993, 1992; 
Duran et al. 1994) and the rise velocity of the intruder increases with increasing 
intruder size (Duran et al. 1994). According to the second model, which is 
valid under conditions of high vibration strength (typically a high vibration 
frequency), a convection cell establishes in the vibrating bed. This convection 
cell carries the intruder upwards in the center of the bed, leading to a rise 
velocity of the intruder that is independent of the ratio of the intruder size to 
bed particle size (Andreotti, Forterre, and Pouliquen 2013). The region of 
downward particle motion at the walls is thin, making it impossible for the 
large intruder to be convected downwards once it has reached the top surface 
of the bed (Duran et al. 1994; Knight, Jaeger, and Nagel 1993a). Depending 
on the type and strength of agitation of a granular bed, the intruder size 
(Cooke et al. 1996; Duran et al. 1994; Duran, Rajchenbach, and Clement 1993) 
and/or density (Huerta and Ruiz-Suarez 2004; Shinbrot and Muzzio 1998; 
Shishodia and Wassgren 2001) are known to affect the tendency for 
segregation. In general, bigger and lighter intruders segregate more favorably.  

Quantitative models 
 

In recent years, attempts have been made to develop not only qualitative, but 
also quantitative segregation models, which requires a hydrodynamic 
description of a segregating granular bed. So far, no model has been found 
which describes a segregation force on an intruder that is generally applicable. 
Instead, separate models have been developed which are only applicable to 
either dilute(Jenkins and Yoon 2002; Garzo 2008)or dense granular 
systems(Lu and Muller 2020; Guillard, Forterre, and Pouliquen 2016; van der 
Vaart et al. 2015). Additionally, among the models for dense systems one finds 
different models for either sheared systems, i.e. systems with convective 
particle motion, or vibrated systems with no inherent convective motion. 
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Buoyancy force in dilute vibrated systems 

In this context, Shishodia and Wassgren (2001) modelled the segregation of 
intruders in a two-dimensional (2D) vibro-fluidized bed using the discrete 
element method (DEM), i.e. a Lagrangian modelling approach that is related 
to molecular dynamics simulations. They considered a shallow bed, i.e. the 
ratio of the bed height to width was < 1, that contained frictionless particles. 
A consequence of this dilute vibrated bed was that the vertical granular 
pressure gradient was constant only over a very small height, with increasing 
and decreasing pressure gradients with vertical position below and above the 
center of the bed, respectively. Shishodia and Wassgren (2001) observed that 
upon vibration the intruder reached an equilibrium position within the bed. 
At the equilibrium position, the downward directed gravitational force is 
balanced by a net lift force due to particle-intruder contacts. The vertical 
position of the equilibrium position of the intruder was found to increase with 
increasing vibration strength, decreasing density ratio of the intruder to the 
bed particles and increasing coefficient of restitution. Subsequently, Shishodia 
and Wassgren (2001) developed a hydrodynamic model of the granular system 
to predict the equilibrium position of the intruder, whereby a buoyancy force 
Fb, which balances the intruder weight, arises from the net pressure in the 
system:                                     

 bF p dn s . (4.1) 

In a 2D granular system, the (granular) pressure is P = 1/2(τs,xx+τs,yy+τc,xx+τc,yy), 
where τs,xx and τs,yy are the streaming normal stresses and τc, xx and τc, yy are the 
collisional normal stresses (Campbell and Gong 1986; Shishodia and 
Wassgren 2001) . In 2D, the streaming normal stresses are given by τs,xx= 

ρp<u’2> and τs,yy = ρpϕ<v’2>, where ρp is the particle density,   is the mean 
solid fraction and u’ and v’ are the velocity fluctuations in the horizontal and 
vertical directions, respectively. Here, < > denotes a temporal average. The 

collisional normal stresses are given by τc,xx = 
∑rpJ⸳ex

W∆ybin∆t  and τc,yy = 
∑rpJ⸳ey

W∆ybin∆t   

(Shishodia and Wassgren 2001) , where rp is the radius of the bed particles, J 
is the momentum exchange during a collision, W and ∆ybin are the width and 
height of the sampling bin, respectively, and ex and ey are the unit vectors 
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along the x and y directions. The summation is performed over all collisions 
occurring within time Δt in a given bin. Shishodia and Wassgren (2001) 
postulated that at equilibrium, the pressure force acting on the intruder (i.e., 
buoyancy) balances the particle weight, yielding (in a 2D system): 





  I

I

I

d

d

p m

dy 2

g
g ,                  (4.2) 

i.e., an intruder that is larger than the bulk particles will rise up to the position 
where the pressure gradient equals –mIg/ πdI

2, where mI and dI are the mass and 
diameter of the intruder, respectively. This model relies on the assumption 
that the presence of an intruder does not affect the pressure field of the system 
that is established without the presence of an intruder. Using Eq. (4.2) in 
combination with a given pressure profile in the granular bed, the equilibrium 
position of an intruder can be calculated. When the mass of the intruder 
becomes too large (to be supported by the pressure gradient), the intruder 
sinks to the base plate and oscillates synchronously with the base plate. 
However, Shishodia and Wassgren (2001) noted that the findings of their 
model might not be readily extrapolated to deep granular beds due to a large 
number of non-binary contacts, the possible occurrence of convective 
patterns and the effects of an interstitial fluid. 

Lift force in dense sheared systems 

More recently, also the hydrodynamic modeling of segregation in dense shear 
flows has attracted appreciable interest (Guillard, Forterre, and Pouliquen 
2016; Hill and Tan 2014; Tripathi and Khakhar 2013; van der Vaart et al. 2018). 
For example, Guillard et al. (Guillard, Forterre, and Pouliquen 2016) proposed 
scaling laws for the segregation force acting on single intruder in 2D, dense 
shear flows. In their shear flow simulations, the particles were modelled by 
DEM with the gravitational vector varying from vertical to horizontal 
directions. The segregation (or lift) force was measured via a virtual spring and 
was found to be proportional to the pressure gradient and shear stress gradient 
(i.e., buoyancy-like forces), viz. 
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F
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2

4
,                               (4.3) 

where   and   are empirically derived functions of the friction coefficient, μ 

=|τ|/p and size ratio dI /dp. Interestingly the segregation force was found to 
have a maximum at dI/dp ~ 2 and switching off gravity resulted in a zero-
segregation force owing to a uniform pressure distribution in the bed. 

van der Vaart et al. (2018) followed up on the work of Guillard, Forterre, and 
Pouliquen (2016) aiming to shed more light on the origin of the segregation 
(lift) force in 3D monodisperse, dense shear flows. Unlike Guillard, Forterre, 
and Pouliquen (2016), van der Vaart et al. (2018) modelled the segregation 
force acting on the intruder, Flift,  as the sum of a Saffman like lift force and a 
generalized buoyancy force that depends on the ratio of the diameter of the 
intruder to the diameter of the bed particles, i.e. Flift = Fsaff +Fb, where Flift is the 
total lift (segregation) force, Fb is the buoyancy and Fsaff  is the Saffman force. 
van der Vaart et al. (2018) argued that the granular buoyancy force arises from 
the hydrostatic pressure acting on the Voronoi surface of the intruder, yielding 
a more generalized expression of the buoyancy force (van der Vaart et al. 
2018), viz:  




 



  

 
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b I p
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F p d g dV

gV gV

S

   

n

,                               (4.4) 

Where SĨ is the surface of the Voronoi volume of the intruder,  VĨ  is the 
Voronoi volume of the intruder, P is the hydrostatic pressure, n is the 

outward-directed normal vector to SĨ The Voronoi volume of a particle in a 
granular system is the volume of a cell that contains all of the space that is 
closer to the particle considered than any other particle. Eq. (4.4) differs from 
the classic Archimedian formulation of a buoyancy force in a granular media, 

i.e., Fb = ρpgVI, as it is a function of dI/dp (with Fb = mIg = Fg for dI/dp = 1). 

Using DEM simulations, the following empirical equation I  = 

(−1)(dI/dp)
c+1 (c = −1.2 and  = 0.577) was obtained. Subtracting the 
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granular buoyancy force from the contact force Fc a granular Saffman-type lift 

(segregation) force was obtained and expressed as Fsaff = −λxηbIθμ
-0.5dI

2dp
-1sng(γ̇), 

where λx = <vIx(t)vx(zI,t)> is the velocity lag of the intruder with respect to 

the bulk downstream flow, η = |τ|/γ̇ is the granular viscosity, Iθ = γ̇d/(P/ρ)0.5 

is the inertial number , μ =|τ|/P   is the bulk friction coefficient μ,  γ̇ is the 
local shear rate and  a is the fitting parameter. 

Buoyancy in dense convection-free systems 

In the systems described above (section 4.2) a shear flow has been present. 
Hence, granular drag and/or forces arising from velocity gradients might 
affect segregation making in turn the elucidation of the contribution of the 
buoyancy force on segregation challenging if not even impossible. An ideal 
system to study segregation would be free of a convective flow pattern. To 
avoid convection in a vibrated bed,  Huerta et al. (2005) proposed an 
experimental setup to vibrate the lateral walls of the bed such that adjacent 
walls move out of phase (φ2−φ1 = π), ensuring an almost constant bed volume. 
Indeed,  Huerta et al. (2005) could not observe any convective patterns ,which 
was probed by placing tracer particles. Subsequently, Huerta et al. (2005) 
measured the lift force (which equals to the buoyancy force in a 
convection/velocity-free system) acting on the intruder using a dynamometer 
that was connected with a wire to the intruder. Key observations of the 
experimental work of Huerta et al. (2005) were (i) the buoyancy force becomes 

independent of   for  > cr = 5, and (ii) the buoyancy force follows 
Archimedes’ principle, i.e., buoyancy is proportional to the volume displaced. 
However, fitting the experimentally determined buoyancy force as a function 
of the intruder volume VI gives a positive intercept for VI = 0, which might 
suggest that a classic Archimedian formulation of the buoyancy force 
underestimates the buoyancy force as VI approaches small values. This 
observation was explained by Huerta et al. (2005) by the argument that when 
the intruder size approaches the size of the bed particle, the intruder becomes 
indistinguishable from the bed material and they suggested that buoyancy only 
occurs for intruders that are “considerably large than the volume of the beads”. 
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Drag force in convective systems 

However, in most of the naturally and industrially prevalent granular systems, 
convection is inherent. Hence, when studying the segregation dynamics of 
intruders in such systems, the drag force acting in the opposite direction to 
the (relative) intruder motion has to be considered. Generally, two different 
drag regimes have been considered, viz. a slow and rapid-velocity regime 
(Albert et al. 1999; Wieghardt 1975). The motion of an intruder in dense 
vibrating beds, i.e. the system considered in our work, will typically fall into 
the slow velocity regime in which the drag force is independent of the relative 
intruder velocity. Albert et al. give a commonly used drag force correlation for 
a discrete object with a circular cross sectional area in the slow flow regime 
(Albert et al. 2001; Albert et al. 1999)as: 

                                              d p h IF g y y d 2( )  ,                             (4.5) 

where ρp is the density of the bed particles; dI  is the diameter of the intruder; 
yh is the filling height of the bed; y is the intruder position along the bed  height 

and  η = B√32π2/27e2, where e is the coefficient of restitution; B is a constant 
depending on the surface properties, morphology, and packing of the grains. 
The independence of the drag force on the intruder velocity in the slow 
velocity regime has been confirmed by Reddy et al. (Reddy, Forterre, and 
Pouliquen 2011). 

A general segregation force 

Here we propose a segregation model, which is generally applicable to dense 
systems, with and without convective motion. To this end, a model system is 
created where convection can be turned on/off by switching friction between 
particles and walls on/off. Switching wall friction on introduces an upwards 
convection in the center of the bed which in turn leads to a drag force on the 
intruder. By subtracting the buoyancy, which is determined by the generalized 
buoyancy model, from the lift force, we could obtain the drag force, i.e. Fd  =  
Flift−Fb, which suggests that the value of Fd depends on the chosen buoyancy 
model.  By confirming whether the drag force agrees with the granular drag 
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model Eq. (4.5), we could further verify and extend the applicability of the 
generalized Archimedean principle in the system under consideration.  

The first objective of our work is to probe numerically the validity of a 
generalized Archimedean formulation, Eq. (4.4), to describe a granular 
buoyancy force.  Eq. (4.4) has been proposed for chute flows and takes into 
account the solid fraction around an intruder. To this end we use a model 
system, i.e., a vibrating bed that is free from convection (zero wall friction). 
The vibrating bed is vibrated horizontally and the validity of Eq. (4.4) is 
assessed by measuring the magnitude of the buoyance force through a virtual 
spring force Fs via Fb = Fs+mg and through its definition by integration of the 
stress tensor on the intruder surface (Eq.  (4.1)).  

We subsequently expand our study to a system that contains convection (by 
imposing friction to the side walls) which inevitably introduces also a drag 
force that acts onto the intruder. The drag force is determined by subtracting 
the buoyancy force (Eq. (4.4)), from the total lift force i.e. Fd  = Flift−Fb and 
through a granular drag force formulation.  

Using a granular drag force formulation, we are able to correctly predict the 
segregation (lift) acting on an intruder in a granular system and to correctly 
predict the dependence of the lift force on a variety of system parameters, 
hence providing a general modelling framework to predict the segregation and 
buoyancy forces on granular intruders in dense granular systems with and 
without convection, i.e., sheared and vibrated 

4 . 3  M e t h o d  

In this work, the system under investigation is a rectangular bed containing 
27’000 particles (Fig. (4.1)). To allow a comparisons with the experimental 
work of Huerta et al. (2005) the following particle mixture is used: 50:50, bi-
dispersed mixture of glass beads of radii 1.5 and 2.0 mm (density of 2240 
kg/m3). The length, width and filling height of the container are x = 107 mm, 
z = 107 mm and y = 95 mm, respectively. The lateral walls of the container 
are excited sinusoidally in the xz plane. Two walls opposite of each other 

vibrate by imposing the displacement x(t) = A0sin(t+1) with A0 being the 
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amplitude and f = 0/(2) the frequency of the excitation. The vibration of 

the other two side walls is given by z(t) = A0sin(t+2), hence adjacent walls 

move out of phase by 2−1 = . Such a vibration leads to an almost constant 
square area (+/-0.07%) with time, avoiding arguably the formation of 
convection patterns. Inside the bed, an intruder is placed at the coordinates (0 
mm, 50 mm, 0 mm) and the vibration is initiated at t = 0 s. The intruder 

diameter was varied from 1.67 d̅p to 12 d̅p  in the simulations, where d̅p is 3.5 
mm, which is the average bed particle diameter of the system. 

 

FIG. 4.1. Illustration of the simulated granular system. An intruder is 
immersed inside the granular bed and connected to a virtual spring. The lift 
force is determined via the measured spring force, i.e. Flift = −(Fs+Fg), where 
the spring force is calculated using Hooke’s law, Fs = k∆yey , where k is the 
spring stiffness of the virtual spring and  ∆y is the vertical displacement of the 
intruder compared to its initial positon. The sidewalls are vibrated such that 
the two walls (red wall) opposite of each other follow the displacement x(t) = 

A0sin(t+1) with A0 being the amplitude and f = 0/(2) the frequency of 
the excitation.  The vibration of the other two side walls (blue wall) is given 

by z(t) = A0sin(t+2),, hence adjacent walls move out of phase by2−1 = 

.  
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The vibration strength, Γ = A00
2/g applied in this work ranged from Γ = 

2.51 ~ 60 (varied through changes in the frequency while keeping the 
amplitude fixed at A0 = 1 mm).  The interactions between the particles were 
modelled via a discrete element method (DEM) (Cundall and Strack 1979) 
using the open source LIGGGHTS package (Kloss et al. 2012). A spring-
dashpot model describes the collisional forces (normal Fnij and tangential 
contact force Ftij):   

                                     R knijnij n nij n n nij
* ( )F n v ,                       (4.6)  

                                     R k utijtij t ij t tij
* ( )F n v

t
,                     (4.7) 

where kn and kt are the spring constants in the normal and tangential direction 

(given by kn = 4/3E* and kt = 8G*, with E* = ([1−vi
2]/Ei+[1−vj

2]/Ej)
1 and 

G*=([2−vi
2]/Gi+[2−vj

2]/Gj)
1  where Ei,j, vij and Gij are the particle’s Young’s 

modulus, the Poisson ratio and the shear modulus, respectively). Further, ηn 
and ηt are the damping coefficients in the normal nn and tangential nt directions, 

respectively. The overlap between two particles in the normal direction is nij 

= |ui−uj|∆t, where ui and uj are the velocities of the ith and jth particle at t0 
and ∆t is the time interval. The tangential displacement of a contact is 

calculated as,tij =  (uik − ujk)nn∆t − (j(k+1)nk+2 − j(k+2)nk+1)ri∆t − (i(k+1)nk+2 − 

i(k+2)nk+1) rj∆t, where k rotates from x to z,   ri and rj are the radius of the 

particle i and particle j. respectively, and  is the angular velocity. The 

tangential contact force is limited by Coulomb’s law, i.e. |Ftij| ≤ μ|Fni,j| A 

summary of the values of the modelling parameters used in this work is given 
in Table 4.1. 

To determine the segregation force acting on the intruder, a virtual spring is 
used (Guillard, Forterre, and Pouliquen 2016). The virtual spring connects the 
center of the intruder to its initial position (0 mm, 50 mm, 0 mm) (Fig. 4.1). 
In the system modeled (convection free), three forces act on the intruder: (i)  
gravitation, Fg, (ii) the force exerted by the virtual spring Fs and (iii) the lift 
force  arising from the contacts between the bed particles and the intruder 
(the lift force is commonly also referred to as the segregation force) (van der 
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Vaart et al. 2018; Guillard, Forterre, and Pouliquen 2016).  Hence, at 
equilibrium the lift force acting on the intruder is balanced by 

                                             lift c g s( )F F F F ,                               (4.8) 

where Fc is (the sum of) the contact forces acting between the intruder and 

the surrounding bed particles, Fs = k (y−y0)ey with k being the stiffness of 
the virtual spring, y is the average vertical position of the intruder for a given 
setting and  y0 is the initial position of the intruder that is fixed to y0 = 50 mm. 
As an example, Fig. 4.2 plots the instantaneous vertical position of an intruder 
as a function of time over 200 s.  

From Fig. 4.2 we can observe that the intruder rises quickly and reaches an 
equilibrium position, around which it oscillates after ~ 20 s.  The values of the 
intruder position reported in the following are the values obtained in this 
equilibrium state (with simulations typically being performed over 200 s).  To 
assess whether the magnitude of the spring stiffness of the virtual spring 
affects that numerical results, simulations were repeated for varying values of  
k As shown in Fig. 4.3 the lift force is independent of the spring stiffness k 
for 5 N/m < k < 200 N/m, in agreement with a previous report (Guillard, 
Forterre, and Pouliquen 2016). The inset in Fig. 4.2 plots ∆y = y−y0 of the 
intruder, normalized by the intruder diameter, as a function of the normalized 
spring stiffness of the virtual spring.  The slope of this line, multiplied by the 
diameter of the intruder dI and the normal stiffness of the inter-particle 
collisions kn is equal to the spring force. Owing to the very high linearity, the 
lift force acting on the intruder can be determined via Eq. (4. 8). In this work 
a constant spring stiffness of k = 80 N/m was used for the virtual spring. 
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FIG 4.2. Vertical position of an intruder tracked over 200 s. The dashed 
horizontal line corresponds to the equilibrium position around which the 
intruder oscillates.  

4.  

FIG 4.3. Normalized segregation (lift) force as a function of the spring 
stiffness k normalized by the stiffness of the inter-particle force, i.e., kn = 
4.18×106 N/m. Inset: ∆y = y−y0 of the intruder as a function of the normal 
spring stiffness of the virtual spring. 
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We further assessed the sensitivity of the determined segregation force to 

the amplitude A and the angular frequency  of the vibration.  Fig. 4.4 
confirms that the lift force is not sensitive to the amplitude and angular 
frequency of the vibration for a given vibrational strength Γ.  

 

FIG 4.4.  Lift force versus vibrational amplitude A, × : Γ = 8.0, dI / dp  = 5 

and ∎:  : Γ = 20.0, dI / dp  = 7. 

 
4 . 4  R e s u l t s  

     Prior to assessing the validity of the different granular buoyancy models, 
we performed a sensitivity analysis of the dependence of the lift force on the 
dimensionless vibration strength Γ, as a minimal value of  Γ is required to 
fluidize the system (Huerta et al. 2005; Huerta and Ruiz-Suarez 2004). Figure 
5 plots the lift force (Eq. (8)) as a function of Γ. Similar to the experimental 
observation of Huerta et al. (2005), we also observe that the lift force reaches 
asymptotic values for Γ  > 6  (inset Fig. 4. 5). The reason for a decreasing lift 
force for Γ < Γcr is that under these conditions only the regions close to the 
walls are fluidized whereas the center of the bed is only poorly fluidized, 
leading in turn to reduced segregation dynamics. Indeed, when Huerta et al. 
(2005) inserted two small intruders into a bed that was kept at Γ <  Γcr (one 
intruder was placed close to the walls and the other one in the center of the 
bed) the intruder closer to the wall segregated faster to the top surface. 
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Overall, the value of Γcr ~ 6 as determined in our simulations, is close to the 
experimental value of Γcr = 5 of Huerta et al. (2005). Once the bed is 
completely fluidized, a further increase in Γ does not have any appreciable 
effect on the lift force. Indeed, Fig. 4.5 confirms that the magnitude of the lift 
force does not vary with Γ for 8 < Γ < 60.  In addition to the lift force, also 

the solid fraction in the bed ( = 0.62) is largely unaffected by Γ when Γ > Γcr 
(Figure. 4.6). Overall, the solid fraction is very homogenous along the height 
of the bed, except at the bottom, i.e. y < 0.02 m and close to the surface, i.e. y 

> 0.075 m, of the bed where smaller values of  are observed.  

 

FIG 4.5. Lift force as a function of the volume of the intruder for five different 
vibration strengths grouped as Γ = 2.51< Γcr and Γ = 8.0,20.0,40.0,60.0 > Γcr 
where Γcr = 6 is the critical vibration strength. Inset: Lift force as a function 
of vibration strength (dI/dp) to determine Γcr. 
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FIG 4.6. Profile of the solid volume fraction  in the bed as a function of the 

y direction for 8 < < 60. 

 

FIG 4.7. Temporal evolution of position r = (x2+y2+z2)0.5 of randomly selected 
particles in the bed, when the friction coefficient for wall-particle collisions is 
set to zero (Γ = 8.0).   

   To probe the validity of the generalized Archimedean formulation of the 
granular buoyancy force, Eq. (4.4), a system free of convective patterns is 
critical to exclude the presence of any additional forces, e.g. Saffman-type or 
drag forces. By setting the friction coefficient for particle-wall contacts to zero, 
we were able to establish an agitated (fluidized) system without any convection 
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pattern being present. Tracing some randomly selected particles in the bed for 
100 s, we could confirm the absence of any coherent motion in the bed (Fig. 
4.7). In the absence of a convective pattern, the lift force Flift is equal to the 
buoyancy force Fb and can be calculated by subtracting the gravitational force 
of the intruder from the measured spring force (Eq. (4.8)). The buoyancy force 
calculated through Eq. (4.8) can then be compared to the prediction of Fb via 
a generalized Archimedean formulation (Eq. (4.4)) using the Voronoi volume 

of the intruder VĨ. The Voronoi volume of the intruder is illustrated in Fig. 

4.8. The solid fraction of the intruder I is determined as the ratio of its 

(particle-based) volume (VI  = 1/6dI
3) and its Voronoi volume. Figure 4.8 

shows that when the intruder size approaches the size of the bed particles, 
I

approaches the bulk solid fraction of the bed, i.e. I = 0.62. On the other hand 

for very large intruder sizes, I approaches asymptotically to 1. The 

numerically-derived values of I can be fitted well by the following functional 

form I = (−1)(dI/dp)
c+1 with c = −1.2. Our value of c is slightly different to 

the value reported by van der Vaart et al. (2018)  (c =−1.35) who studied, 
however, sheared systems containing monodispersed particles.  

 

 

FIG 4.8. Solid volume fraction of the intruder I as a function of  dI /dp for Γ 
=  8, k = 80 N/m. The closed area around the intruder which is bounded by 

a bold solid line gives the Voronoi volume 𝑉𝐼̃ of the intruder. 
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FIG 4.9. Comparison of the generalized Archimedean formulation of the 
granular buoyancy force (Eq. 4.4) with the buoyancy force determined by the 
virtual spring force Flift = −(Fs+mIg) in a vibrated bed with Γ = 8.0.  
     Figure 4.9 plots a comparison of the buoyancy force determined through 
the virtual spring (Eq. (4.8)) with the generalized Archimedean formulation of 
a granular buoyancy force (Eq. (4.4)). The prediction obtained through the 
generalized Archimedean principle (Eq. (4.4)) and the buoyancy force 
obtained directly from the DEM simulations through the virtual spring force 
(Eq. (4.8)) agree very well, while some deviations are observed for high ratios 
of the intruder diameter to the diameter of the bed particles (dI /dp = 7). This 
deviation is most likely due to the fact that for such high aspect ratios the 

upper part of the intruder (yI   76 mm) is very close to the bed surface, i.e. an 
area where the solid fraction of the bed is reduced appreciably (see Fig. 4.6). 
The lower solid fraction near the bed surface reduces the magnitude of the 
total contact forces on the upper part of the intruder (downwards directed) 
hence increasing artificially the buoyancy of the intruder. 

Besides Eqs. (4.4) and (4.8) the buoyancy force can be determined also 
through its formal definition i.e. by integrating the pressure field over the 
(Voronoi) surface of the intruder (Guillard, Forterre, and Pouliquen 2016; 
Shishodia and Wassgren 2001; van der Vaart et al. 2018), i.e. 

b yF pn e dS  . , (4.9) 

where 𝑆𝐼̃   is the Vornoi surface of the intruder. The coarse-graining (CG) 
method is used to calculate the (granular) pressure in the vibrated bed 
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(Goldenberg et al. 2006; Goldhirsch 2010). Here, we consider N  particles in 
a control volume (also termed coarse graining volume) whereby the center of 

mass of particle i is at r (particle i moves with speed ui). In a granular media 

the stress tensor  (r,t) is composed of the so-called kinetic stress 𝜎𝛼𝛽
 𝑘  (r,t) 

and the collisional stress 𝜎𝛼𝛽
 𝑐  (r,t), viz.: (r,t) = 𝜎𝛼𝛽

 𝑘 (r,t)+  𝜎𝛼𝛽
 𝑐 (r,t). The 

kinetic and collisional stresses are given by, respectively (Andreotti, Forterre, 
and Pouliquen 2013),  

k
N

i it m u u t t
i

      


r r r r( , ) ' ' ( , ) [ ( )]
1

,                    (4.10) 
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, (4.11) 

where u’i is the velocity fluctuation of  particle i with respected to the average 

velocity U̅(r,t) of the particles in the coarse graining volume. The vector rij = 

ri−rj points from the center of particle i to the center of particle j,  f
α

  ij is the 

contact force acting between particles i and j  and Θ is the coarse-graining 
(CG) function. In this work, we use the Heaviside function Θ(r) = 

H(w−|r|)/V where V = 4/3r3  is the coarse graining volume and w is the 
coarse graining radius. The (granular) pressure P is obtained by  P = 

Tr()/3(Andreotti, Forterre, and Pouliquen 2013). 

The obtained pressure profiles (identical system but without an intruder) along 
the vertical (y) and horizontal (x) directions are plotted in Fig. 4.10 (a) and (b) 
respectively. While the pressure is almost constant along the horizontal 
direction, Fig. 4.10(b), an almost constant pressure gradient, similar to a classic 
hydrostatic pressure in a fluid is established in the vertical direction Fig. 
4.10(a). However, at the bottom and the surface of the vibrated bed there are 
some appreciable deviations from a constant pressure gradient, similar to what 
has been observed in Weinhart et al. (2012). Since the intruder was placed at 
the center of the bed, these boundary effects did not affect the segregation 
behavior of the intruder. Using the determined pressure gradient, the 
buoyancy force can be calculated via: 

                     b

p p p p
F p d dV V

x y z y

   
     

    n S ( ) . (4.12) 
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FIG 4.10. (a) Granular pressure profiles in the vibrated bed along the vertical 
y direction. (b) Granular pressure profiles in the vibrated bed along the 
horizontal x direction at y = 50 mm. 
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FIG 4.11. Buoyancy force calculated through its hydrostatic definition, Eq. 
(12), and the generalized Archimedean formulation Eq. (4). 

 
    Figure 4.11 plots a comparison between the buoyancy forces computed 
through the generalized Archimedean formulation, Eq. (4.4) and its 
hydrostatic definition, Eq. (4.12). The calculated values are very similar, 
suggesting that using the Voronoi volume as the effective occupied space of 
the intruder, the hydrostatic definition of the buoyancy force can be applied 
also to granular systems (using a coarse-graining derived granular pressure). 
However, the calculation of the buoyancy force though its hydrodynamic 
definition (Eq. 4.12) is rather cumbersome as it requires coarse graining, while 
the generalized Archimedean formulation requires only one fitting parameter 
(for a given system) to calculate accurately the buoyancy force acting on an 
intruder allowing for an effective computation for practical problems. 
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FIG 4.12. Particle trajectories in the xy plane starting at t = 150 s for Γ = 8.0. 
The time interval between two successive trajectory points is equal to 2.5 s. 
The arrow indicates the moving direction along the time. 

   So far we have shown that the generalized Archimedean formulation of the 
buoyancy force is in very good agreement with the calculation through its 
hydrostatic definition, Eq. (4.12), or its direct numerical measurement via a 
virtual spring in a convection-free vibrated bed. Now we turn to a more 
general system in which a convective pattern is present. To formulate a force 
balance on the intruder an upwards-directed drag force Fd due to an upwards-
directed convection (at the center of the bed) has to be considered, i.e. 

lift b d g s    F F F F F( ) .                              (4.13) 

    The drag force is obtained by subtracting the buoyancy force from the 
segregation (lift) force (which is obtained through the virtual spring force Eq. 
(4.8)). If the generalized Archimedean formulation is also applicable for such 
convective systems, the granular drag obtained through Eq. (4.13) should 
match the values obtained through the granular drag model given by Eq. (4.5).  

    By setting the wall friction coefficient to a non-zero value, a convection 
pattern is established in the vibrated bed, as the cross sectional area of the bed 
is not exactly constant over a vibration cycle.  To confirm the establishment 
of a convective patter, randomly selected particles are tracked in the bed. The 
trajectories are shown in Fig. 4.12 and confirm an upward motion in the center 
of the bed and a downward motion close to the walls. The lift force in such a 
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convective system, as determined by Eq. (4.8), far exceeds the buoyancy force 
calculated through the generalized Archimedean formulation Eq. (4.4) as 
shown in Figure 4.13. In addition, when normalized by the weight of the 
intruder the lift force becomes dependent on the intruder size, which 
distinguishes it from the weight-normalized buoyancy force in a fluid (Fb/mIg) 
which is size independent. As the size ratio of the intruder to the bed particles 
increases, the weight-normalized, buoyancy force calculated by the generalized 
Archimedean formulation Eq. (4.4) approaches Fb /mIg = 0.62 whereby 0.62 

is the bulk solid fraction  of the bed, as expected, and Fb /mIg = 1 for dI / dp 
=1.   

 

FIG 4.13. (□) Numerically determined (via a virtual spring using Eq. (8)), 
weight-normalized lift force.  The solid line is the weight-normalized 
buoyancy force Fb /mIg determined by the generalized Archimedean 

formulation, i.e. Fb = (/I)ρpgVI, where ϕI = (ϕ−1)Sc+1,  with c = −1.35and 

 = 0.62 for Γ = 8.0. The dash line is a reference line which denotes F/mIg = 
1. 

   We attribute the difference between the virtual-spring derived lift force and 
the buoyancy force calculated via the generalized Archimedean formulation 
Eq. (4.4), to the presence of a convective pattern and hence the presence of a 
drag force that also acts in the vertical direction.  When probing the magnitude 
of the relative velocity between the intruder and the bed particles, an average 
relative velocity of ~ 0.2 mm/s is determined in the center of the bed, i.e. 
within the limits of the slow velocity drag regime (v << 28 mm/s). In the slow-
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velocity regime the drag force is independent of the relative velocity and given 
by Eq. (4.5) where   is a constant that depends on the  restitution coefficient 

and the shape of the bed particles (Albert et al. 1999). Using the force balance 
Eq. (4.13), the drag force Fd can be obtained by subtracting the buoyancy force 
from the lift force. Subsequently, the granular drag force obtained through 
Eq. (4.5) can be compared to the drag force determined through Eq. (4.13) 
and in the case of a good agreement, the lift force acting on an intruder in a 
convective system can be expressed by: 

                                     

lift b d

p I p h I

I

F F F

gV g y y d

 



 

   2     ( )
.                (4.14) 

   Indeed, we observe a very good agreement between the drag forces obtained 

and using a least square fitting method,   was determined as 0.59 (see Figure 
4.14).  

    A conclusion from Eq. (4.14) is that the lift force acting on the intruder is 
independent of the intruder density, but it depends on the density of the bed 
particles and the intruder size. To assess the validity of these key observations, 
we performed additional simulations with a varying intruder density. Figure 
4.15 confirms a good agreement between the lift force measured through the 

virtual spring, i.e.  Flift = Fspring+mIg and Eq. (4.14) using   = 0.59 (  depends 
on the surface properties of the particles and the shape of the intruder).  
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FIG 4.14. (■) Drag force determined by subtracting the buoyancy force from 
the lift force. The lift force was measured using a virtual spring and is given 
by Eq. (4.13). The buoyancy force was calculated using the generalized 
Archimedean formulation, i.e., Eq. (4.4). The solid line gives the granular drag 

forces determined through Fd = ρpgdI
2(y−yh) with  = 0.59. 

  A further consequence of the formulation of the total lift force following Eq. 
(4.14) is that in a given system that falls into the slow velocity regime, the lift 
force is independent of the vibration strength injected by the side wall (Γ 
increasing from 8 to 60 as shown in Fig. 4.5). This can be rationalized by the 
fact that for a given intruder size and position within the bed, the buoyancy 
force is constant as the bulk solid fraction does not vary with increasing 

vibration strength (Fig. 4.6) and the drag force depends on  which, however, 
is only a function of the coefficient of restitution and the intruder shape.    
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FIG 4.15. Comparison of the lift force predicted by Eq. (4.14) and the lift 
force obtained numerically by a virtual spring (Eq. 4.8) as a function of the 
intruder size for different intruder densities ρI. 

4 . 4  C o n c l u s i o n  

In this study, we have verified the validity of a generalization of the 
Archimedean formulation of a granular buoyancy force that has been 
proposed originally for shear flows for vibro-fluidized systems. To exclude the 
influence of drag forces, a convection-free system was considered, established 
through vibrating sidewalls and a friction coefficient of zero for particle-wall 
contacts. The buoyancy force calculated through the generalized Archimedean 
formulation, i.e. considering the Voronoi volume of the intruder, agreed very 
well with the values obtained from its hydrostatic definition (pressure 
gradient) and its direct measurement through a virtual spring.  Subsequently, 
we have introduced an additional complexity to the system by considering also 
convection (through a non-zero particle-wall friction coefficient). The 
segregating (lift) force acting on an intruder in such a system is affected by 
buoyancy and drag and increases with increasing intruder size, but is 
independent of the vibration strength Γ (once Γ exceeds 6) and the intruder 
density. We demonstrate that a lift force model that combines the buoyancy 
force (expressed through the generalized Archimedean formulation) and a 
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drag force (velocity-independent in the considered slow-velocity regime) 
predicts very accurately the value of the lift force obtained through a virtual 
spring. This model allowed to rationalize the independence of the segregation 
(lift) force on the intruder density and the vibration strength (once a critical 
value of Γcr = 6 is exceeded). We hope that our work can pave the way to the 
development of segregation models that allow to quantitatively describe more 
complex systems, containing e.g., multiple intruders and/or more complex 
drag force regimes.  
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LIFT FORCE ACTING ON AN INTRUDER IN 
DENSE, GRANULAR SHEAR FLOWS 

Adapted from Liu, M., & Müller, C. R. (2021). Lift force acting on an intruder 
in dense, granular shear flows. Physical Review E, 104(6), 064903. 

5 . 1  A b s t r a c t  

We report a new lift force model for intruders in dense, granular shear flows. 
Our derivation is based on the thermal buoyancy model of  Trujillo and 
Herrmann (2003) , but takes into account both granular temperature and 
pressure differences in the derivation of the net buoyancy force acting on the 
intruder. In a second step, the model is extended to take into account also 
density differences between the intruder and the bed particles. The model 
predicts very well the rising and sinking of intruders, the lift force acting on 
intruders as determined by discrete element model (DEM) simulations and 
the neutral-buoyancy limit of intruders in shear flows. Phenomenologically, 
we observe a cooling upon the introduction of an intruder into the system. 
This cooling effect increases with intruder size and explains the sinking of 
large intruders. On the other hand, the introduction of small to mid-sized 
intruders, i.e. up to 4 times the bed particle size, leads to a reduction in the 
granular pressure compared to the hydrostatic pressure, which in turn causes 
the rising of small to mid-sized intruders.  
 

5 . 2  I n t r o d u c t i o n  

Since the first report by Brown (1939), segregation effects in granular systems 
have received widespread interest among both physicists and engineers owing 
to their high practical relevance.  Particles of different sizes (Rosato et al. 1987), 
densities (Burtally, King, and Swift 2002) and possibly also shapes (Lu and 
Muller 2020) segregate when excited e.g. via vibration, rotation or gas injection. 
Segregation is readily encountered in many processing apparatuses such as 

5  
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rotating cylinders (Hill, Caprihan, and Kakalios 1997), hoppers (Janda et al. 
2009) or vibrated beds (Rosato et al. 1987). In industrial applications 
segregation is typically an undesirable effect as it counteracts mixing. In 
addition, segregation in granular media is also commonly observed in nature, 
e.g. rock avalanches and debris flow (Bartelt and McArdell 2009; Crosta, Chen, 
and Lee 2004). Arguably, model systems in which one or multiple intruders 
are immersed in a granular bed have been studied most frequently and, in such 
systems, the so-called “Brazil nut phenomenon” (BNP) has been reported. In 
the BNP, which is not limited to single intruders, a larger particle rises through 
a bed of smaller particles under external excitation, typically vibration. 
Depending on the regularity of the vibrational excitation, the BNP has been 
explained by percolation (Rosato et al. 1987; Duran, Rajchenbach, and 
Clément 1993) or convection (Knight, Jaeger, and Nagel 1993b). The 
percolation model explains the rising of a larger intruder through a bed of 
smaller particles via a void filling mechanism. During a vibration cycle first a 
void is formed underneath the intruder. This void is subsequently filled by the 
small, surrounding bed particles. At the end of a vibration cycle the intruder 
falls back to a higher rest position. Through a geometric description of the 
percolation model, Duran, Rajchenbach, and Clément (1993) predicted that 
the rise velocity of the intruder depends on the size ratio of the intruder to the 
bed particles. For very regular vibrations a convective flow field is established 
that carries the intruder upwards until it reaches the surface of the bed. The 
intruder is trapped at the surface as the region close to the walls where 
downwards motion occurs is typically smaller than the intruder. In this model, 
the rise velocity of the intruder is independent of the ratio of the size of the 
intruder to the bed particles. Although, the two models described above 
provide some conceptual understanding of segregation in granular media, 
there is still considerable debate on how to model segregation from a 
continuum perspective. Such continuum models require formulations of the 
granular counterparts of drag, buoyancy, and in specific cases the Saffman 
forces. 

Using discrete element method (DEM) simulations, Shishodia and Wassgren 
(2001) were among the first to establish an expression for the buoyancy force 
in a granular system. In their 2D vibro-fluidized bed simulations, periodic 
boundary conditions were employed to eliminate the contribution of 
convection. In the absence of a convective pattern the intruder was found to 
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rise to an equilibrium position within the bed (bed position y), instead of rising 
to the top. Making an analogy to the fluid mechanic description of the 
buoyancy force, i.e. the product of a pressure gradient and the intruder volume 
they proposed the following expression for the buoyancy force, Fb: 

                                     b I IP y V m  F g( ) ,                              (5.1) 

where mIg is the weight of intruder, ∇P(y) is the pressure gradient and VI is 
the intruder volume. 

It is worth noting that the 2D granular system investigated by Shishodia and 
Wassgren (2001) was in the granular gas regime in which binary particle 
collisions dominate. When considering practically more relevant dense 
granular systems in which multi-particle collisions and long-lasting contacts 
dominate, the buoyancy force predicted through Eq. (5.1) underestimates the 
measured buoyancy force acting on the intruder when the intruder size 
approaches the size of the bed particles (Huerta et al. 2005). 

On the other hand, Trujillo and Herrmann (2003) developed a granular 
buoyancy model using the kinetic theory of granular gases. The system 
considered contained a single intruder in a vibrated bed. The driving force 
acting on the rising intruder was modelled as a thermal-induced buoyancy 
force, i.e., a density difference arising from differences in the granular 
temperature of the system with and without the intruder. In their model, a 
reference state “0” was defined that is characterized by a granular pressure 
P0(r) and temperature T0(r), where r is the position of the intruder. The 
reference state assumes a bed without the intruder. Upon introduction of the 
intruder, the bed transitions to a new state “1” which is characterized by P1(r) 
and T1(r). The temperature difference between the “perturbed” and reference 
states is given as ΔT(r) = T1(r) − T0(r), yielding the following expression for a 
granular, thermally-induced buoyancy force (Trujillo and Herrmann 2003):  

b IF T V g   ,                     (5.2) 

with ρ being the bulk density of the reference state (i.e.  ρ = ρp  with ρp being 

the density of the bed particles and  being the solid fraction of the bed), g is 
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the acceleration due to gravity and α is the coefficient of thermal expansion, 

defined as α = 
1

n
(

∂n

∂T
)

P
, where n is the number density  of the bed particles. 

Assuming α to be constant, Trujillo & Herrmann showed that α = 
1

T0
C(ϕ), 

where C() depends on the solid fraction with C() →1 for  →0. The system 
considered by Trujillo and Herrmann (2003) was a vibro-fluidized bed and a 
uniform system pressure i.e. dP ~ 0 was assumed. However, such a 
simplification would not be valid in dense, shear systems (vide infra).  

To summarize, the buoyancy models described in Eq. (5.1) and Eq. (5.2) are 
been developed for systems that operate in the granular gas regime. However, 
when considering more “liquid-like”, dense granular systems additional effects 
have to be considered in the buoyancy model. For example, in an experimental 
study of a dense, vertically vibrated bed (amplitude A = 9.76 mm and 
frequency f = 9.7 Hz) Shinbrot and Muzzio (1998) observed that intruders (dI 

= 152 mm) with a density < 0.5ρp sink, whereas heavy intruders (dI =152 mm) 
with a density in the range 1.2-1.7ρp rise. This unexpected behaviour has been 
termed reverse Brazil nut phenomenon (RBNP).  As the intruder size was 
fixed in these two experiments, the buoyancy model described in Eq. (5.1) 
cannot explain why the heavier intruder rises to the top while the lighter 
intruder sinks. It has been argued that the interstitial air in beds of small 
particles (< 800 µm) might contribute to the RBNP (Shinbrot and Muzzio 
1998) . To weaken the influence of the interstitial gas in a vibrated bed, Huerta 
et al. (2005) investigated the BNP in a dense bed containing larger particles 
(i.e. a mixture of glass beads of 3 and 4 mm in diameter). Huerta et al. (2005) 
observed that a light intruder rises faster than a heavier intruder of equal size. 
Unlike in the setup of  Shinbrot and Muzzio (1998), the bed of Huerta et al. 
(2005) was vibrated horizontally with neighbouring sidewalls vibrating with 
the same amplitude but out of phase (phase shift π), ensuring the cross 
sectional area of the bed to remain almost constant over a vibration cycle and 
avoiding in turn the establishment of a convection pattern. Huerta et al. (2005) 
measured the  lift force acting on the intruder by connecting the intruder, 
placed in the centre of the bed, with a force sensor. The measured lift force 
Flift = −(Fs+Fg), where Fg is the gravitational force of intruder and Fs is the 
time averaged value obtained from the force sensor, that can be interpreted as 
the buoyancy force acting on the intruder. The measured lift force was fitted 
to a generalized Archimedean formulation of the buoyancy force, viz:  
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b s g p IF V g   F F ,                             (5.3) 

where the “fitting constant”   was very close to the average solid fraction of 
the bed, i.e. the intruder rises as in a fluid with a density that is equal to the 

bulk density of the granular media (ρp). However, the experimental data 
acquired by Huerta et al. (2005) showed only good agreement with the 
buoyancy model given by Eq. (5.3) for large (dI/dp > 4) and very light intruders 
(ρI/ρp = 0.0169). As the intruder size approached the size of the bed particles, 
the measured buoyancy force exceeded the predictions of the generalized 
Archimedean principle given in Eq. (5.3). In a convection-free, vibrated bed 
in which the intruder is fixed in an equilibrium position and only buoyancy 
and gravity forces are acting on the intruder, the buoyancy force will become 

smaller than the bed particle weight for VI →Vp, i.e. Fb = ρpVpg < mpg as the 

solid fraction of the bed  < 1. Thus, the generalized Archimedean principle 
expressed in Eq. (5.3), underestimates the buoyancy force acting on a bed 
particle. This limitation of the buoyancy model given in Eq. (5.3) has also been 
remarked by van der Vaart et al. (2018). 

     Although the buoyancy concept was investigated initially in vibrated 
systems, its applicability to shear flow systems of practical relevance has also 
been studied. Qualitatively, Savage and Lun (1988) proposed that in dense 
shear flows segregation is driven by both kinetic sieving and squeeze expulsion.  
Overall, there is a higher probability of finding a void into which a small 
particle can fall compared to a void into which a large particle can fall. This 
size-dependent, gravity induced segregation mechanism has been termed 
“random fluctuating sieving” or “kinetic sieving”. In addition, a force 
imbalance on a particle leads to the particle being squeezed out of its layer. 
This mechanism was termed “squeeze expulsion”, but it is neither necessarily 
size dependent nor does it has a preferred direction. However, there is 
currently no continuum model that describes accurately the motion of 
segregating intruder(s) in dense, granular shear flows. To gain some insight 
into these systems, Guillard, Forterre, and Pouliquen (2016) performed 2D, 
steady-state, shear flow simulation using DEM to quantify the lift force acting 
on an intruder as a function of the prevailing pressure (and stress) gradient. 
The size of the intruder was varied from dp to 10dp while fixing the intruder 
density to the density of the bed particles. In their simulations, the intruder 



60 
 

was kept at a position of half the height of the bed (hc/2) by connecting it to 
a virtual spring. The virtual spring imposed an additional (spring) force onto 
the intruder, i.e. Fs =− ks (y1 − y0)ey, where ks is the spring constant, y1 is the 
vertical position of the intruder at a given time and y0 = hc/2 is the initial 
position of the intruder, ey is the unit vector in the y direction. The virtual 
spring ensures the intruder to remain at its equilibrium position while allowing 
its free movement along the direction of the flow. The buoyancy force acting 
on the intruder was calculated in analogy to Eq. (5.1) and expressed as a 
function of the spatial gradients of the granular pressure and shear, viz: 

                 I
lift I p I p

d p
F d d d d

y y


 

 
   

  

2

, / , /
4

, (5.4) 

where τ is the granular shear stress, P is the granular pressure, and μ = τ/P is 
the bulk friction coefficient. Guillard, Forterre, and Pouliquen (2016) 

proposed the factors   and   to be exponential functions of μ and dI/dp.  

In a subsequent study, van der Vaart et al. (2018) aimed to elucidate whether 
the  lift force acting on an intruder in a shear flow can be expressed as the sum 
of a granular buoyancy force and a Saffman-type lift force, i.e.   

lift b saffF F F  ,                       (5.5) 

where Fsaff = −a0b0Iθμ
-0.5(dp/dI −1)dI

2dp
-1sgn(γ̇) (a0 and b0 are fitting constants, 

I  = γ̇dp/(P/ρp)
0.5, γ̇ is the shear rate and μ is the bulk friction coefficient). van 

der Vaart et al. (2018) considered a full 3D, dense shear flow along an inclined 
plane with an inclination angle θ with respect to the horizontal direction. Van 
der Vaart et al. (2015) modified Eq (5.3)  to correct for the underestimation 
of the buoyancy force for VI → Vp by replacing the solid fraction of the bed, 

, by /I where I is the solid fraction of the intruder, yielding, 

b p I

I

F V g





 .          (5.6) 
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The solid fraction of the intruder is defined as the ratio of its Voronoi volume, 

ṼI to its physical volume VI. The modified buoyancy model Eq. (5.6) has 
been also recently assessed and validated in a vibro-fluized system (Kiani 
Oshtorjani, Meng, and Müller 2021). The derivation of the Saffman lift force 
is limited to conditions where inertia is not dominating the local flow around 

the intruder, i.e. when the shear rate-based Reynolds number Re ≪ 1. 
Furthermore, it is currently unclear whether the Saffman lift force model also 
holds for very large intruders which have been found to sink (Thomas 2000).  

In the most recent work, Jing et al. (2020) reported a simple buoyancy based 
model to describe the lift force acting on a single spherical intruder in a dense, 
granular shear flow. By varying the size and density ratio of the intruder to 
bed particles, it was found that the lift force Flift, as determined via a virtual 
spring, i.e., Flift = −(Fs+Fg), collapses onto an Archimedean-type model, viz:  

                                           b p IF f D V g  ( ) ,                                    (5.7) 

where f(D) = (1−c1exp(−D/a1))(1+c2exp(−D/a2)) is a fitting function with 
fitting constants c1 = 1.43, c2 = 3.55, a1 = 0.92, a2 = 2.94 and D = dI/dp. As for 
D >> 1,  f(D) → 1, the observation that with increasing D the lift force 
approaches the generalized Archimedean principle (Eq. (5.3)) is captured by 
Eq. (5.7). This trend of the buoyancy force for D >> 1 which can be 
considered as the continuum limit, can be explained as follow. As the surface 
area of the intruder increased with D2 the number of contacts between the 
intruder and the surrounding bed particles increases rapidly with increasing D, 
yielding a uniform stress transmission to the intruder for D >> 1 and hence a 
similar behaviour as an intruder immersed into a fluid. On the other hand, for 
D → 1, the stress distribution on the intruder is highly anisotropic leading to 
a deviation from Eq. (5.3). However, the effect of stress anisotropy on the lift 
force acting on an intruder remains largely unclear. Nonetheless, despite the 
empirical derivation of f(D), Eq. (5.7) can be of practical importance allowing 
to make an a priori prediction whether an intruder of a given size and density 
ratio will sink or rise.  

   To summarize, recent works have improved significantly our understanding 
of size-driven segregation of intruders in dense shear flows and its continuum 
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modelling. However, although several works observe a distortion of the 
hydrostatic pressure field, in addition to the granular temperature field, upon 
the addition of the intruder, the model of Trujillo and Herrmann (2003) is 
limited to disturbances in the temperature field, which is most likely 
insufficient to describe dense granular systems. Furthermore, while the 
theoretical models have been shown to predict well the forces acting on 
intruders for lower ratios of dI/dp (e.g. dI/dp < 4  for van der Vaart et al. (2018)),  
theoretical models that can also predict accurately the sinking of very large 
intruders would be advantageous. Hence, in this work we aim to extend the 
original work of Trujillo and Herrmann (2003) to dense shear flow systems by 
describing local perturbations in both the pressure and temperature field upon 
the introduction of an intruder. Compared to existing models for the lift force 
acting on an intruder, the model proposed here is based on a physical 
description of the granular system. The proposed model does not only predict 
quantitatively the lift force acting on the intruder, but also provides insight 
into the mechanisms at play. 

5 . 3  M e t h o d  

A. Simulation Method 
 
DEM simulations of the shear flow system considered here were performed 
using the LIGGGHTS software (Kloss et al. 2012). In DEM, each particle is 
modelled as a single entity (Lagrangian approach) and the normal, Fn,ij , and 
tangential contact forces, Ft,ij, acting between the contacting particles i and j are 
modelled by a Hertzian contact model (Tsuji, Tanaka, and Ishida 1992; 
Antypov and Elliott 2011): 
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where kn and kt are the spring constants in the normal and tangential direction, 
respectively. Here, δn and δt are the particle overlaps in, respectively, the normal 
and tangential direction, γn and γt are the damping coefficients in, respectively, 
the normal and tangential direction, R* is the effective radius given as R* = 
RiRj/(Ri+Rj), m

* = mimj /(mi+mj) and un,ij and ut,ij are the tangential and normal 
relative velocities between particles i and j, respectively. The tangential contact 

force, Ft,ij, is limited by Coulomb’s law, i.e. Ft,ij ≤ μFn,ij  with µ being the 

coefficient of friction. 

 

FIG 5.1. Sketch of the granular shear flow system under investigation. An 
intruder (dark grey) is immersed in the bed at an initial location y0 = hc/2. The 
inclination angle is given by θ and hc is the distance (in the y-direction) from 
the bottom of the bed to its surface. For simplicity we introduce a local 
coordinate system. A virtual spring (blue spring) is attached to the intruder. 
The intruder is able to move freely in the xz plane, while it reaches a (dynamic) 
equilibrium position y1. The size of the simulation domain is lx × lz × hc = 
20dp × 20dp × 40dp.  

We have chosen to study inclined plane flow as it is one of the classical setups, 
having well established flow dynamics (Silbert et al. 2001). Figure 5.1 illustrates 
the set-up of the simulation domain. The bed of dimensions lx × lz × hc = 
20dp × 20dp × 40dp consists of 16’000 bed particles of diameter dp. We have 
confirmed that the computational domain is adequately sized since doubling 
its size had no effect on the numerical results.  The bed particles flow along 
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an inclined plane due to gravity. The gravitational vector |g| = 9.81 m/s2 can 
be decomposed into gx = gsinθ and gy = gcosθ. Particles with a diameter 
dw = 10 mm are glued onto the bottom plate to increase the roughness of the 
bottom wall. In the x and z direction, periodic boundaries were applied to 
establish a steady-state shear flow. The velocity profiles in the shear flow were 
varied by adjusting the inclination angle θ. However, as only a narrow range 
of θ ensures steady-state conditions, the chute angle θ was only varied in the 

range 24 ≤ θ ≤ 28°in this work. The incline chute flow is chosen as its well 

established dynamics.  A spherical intruder of diameter dI was placed inside 
the bed at a vertical position yc = hc/2 = 20dp. The motion of the intruder in 
the y-direction was constrained by a virtual spring (spring constant 80 N/m). 
The spring constant has been varied by a factor of four and we have observed 
a negligible effect on the lift force. The intruder can move freely in the xz 
plane. The spring force acting on the intruder is determined through its 
displacement in the y direction, i.e. Fs =−ks(y−y0)ey. The vertical displacement 
of the intruder is very small, at most 0.5dp for dI/dp = 8. The lift force acting 
on the intruder is then given by Flift = −(Fs+Fg). The parameters used in the 
DEM simulation are given in Table 5.1. The reported parameters correspond 
to the material properties of glass, except for the particle spring constant for 
which a lower value was chosen to accommodate DEM simulation constraints. 

Table 5.1: Parameters used in the DEM simulations 

Parameters Value 

kn (N/m) 6.41×104 
kt (N/m) 2/7 kn (Silbert et al. 2001) 
dp (mm) 5 
dI (mm) dp up to ~ 8dp 
dw (mm) 10 
ρp (kg/m3) 2500 
γn ((N/m)1/2)   23.01 (Silbert et al. 2001) 
γt  ((N/m)1/2) 1/2 γn 
µ 0.5 
e 0.88 
Time step (s) 10-5 
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B. Coarse Graining 
 

To obtain the granular pressure, stress and temperature,  coarse graining (CG) 
of the DEM data was employed(Goldenberg et al. 2006). The granular stress 
tensor in the coarse graining volume is given by (Andreotti, Forterre, and 
Pouliquen 2013):  
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where Φ is the coarse graining function, i, j denotes the Cartesian components, 
fα,ij

  is the α th component  of the contact force vector between particles i  and 

j (see illustration in Figure 5.2) and r,ij
 is the branch vector connecting the 

centers of gravity of particles i and j. We use the Heaviside function as the 
coarse graining function, i.e. Φ(R) = 1/(4/3πw3)H(w−|R|), where w is the 
radius of the spherical coarse graining volume,  R = r−ri is the vector pointing 
from a sampling particle inside the coarse graining volume to the center (×) 

of the coarse graining volume and ui,α
′  is the velocity fluctuation of particle i, 

viz. ui,α
′ = ui,α − uα̅ where ui,αis the instantaneous velocity of particle i in the α 

th direction and u̅̅ ̅ is the average velocity in the α th direction of the particles 
in the coarse graining volume.  

The average pressure in the coarse graining volume is given by P = 1/3(σ+ 

σββ+ σ). The value of σ,β mainly depends on the coarse graining radius w. For 
example, Figure 5.3(a) shows the dependence of σyy on the coarse graining 
radius w. For w/dp < 1, σyy increases with increasing w/dp, but reaches an 
asymptotic value for w/dp ≥ 1, in agreement with previous works (Weinhart et 
al. 2013; Goldenberg et al. 2006). To avoid an over-smoothing of the local 

stresses we chose w = d̅  = 1/2(dI +dp), in agreement with previous works 
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(Weinhart et al. 2016; Tunuguntla, Weinhart, and Thornton 2017; van der 
Vaart et al. 2018) 

 

 

FIG 5.2. Illustration of the coarse graining method. The coarse graining 
volume is bounded by a spherical space centred at r with the coarse graining 
radius w. The branch vector rij = ri − rj  is shown as a red arrow that points 
from particle j to particle i.  
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FIG 5.3. Dependence of σyy and the granular temperature on the normalized 
coarse graining radius w/dp: (a) σyy increases with increasing w/dp for w/dp < 1. 

For w≥dp, σyy reaches an asymptotic value that is in excellent agreement with 

its hydrostatic value, i.e.  Nmpg/(lx∙lz), where N is the particle number, mp is 
the particle mass and lx∙lz is the cross-sectional area of the system.  (b) The 
granular temperature increases continuously with increasing coarse graining 
radius w/dp. 

Turning now to the granular temperature, viz. (Haff 1983; Trujillo and 
Herrmann 2003) 
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where , βand  denotes the Cartesian components,  ui,α
′ ,  ui,β

′ ,  ui, χ
′  are, 

respectively, the velocity fluctuations of particle i with regards to the respective 
average velocity in the coarse graining volume. The magnitude of the granular 

temperature depends on the coarse graining volume. For example, in the 
dense granular shear flow system studied here, the granular temperature 
increases monotonically with increasing coarse graining volume (FIG 5.3. (b)).  
Recently, a method has been proposed to eliminate the influence of the coarse 
graining volume on the granular temperature, however, the approach is only 
suitable for very specific systems such as monodisperse shear flows (Weinhart 
et al. 2013). However, as this work concentrates on the effect of a differently 
sized granular intruder on the granular temperature of the system when 
compared to the intruder-free reference case, this method is not applicable to 
the system studied here. Generally, there is very little consensus on the 
“correct” coarse graining radius for the granular temperature and Glasser and 
Goldhirsch (2001) emphasize to clearly state the coarse graining radius that 
has been chosen to calculate the granular temperature for a given problem. In 
the work of Trujillo and Herrmann (2003) a coarse graining radius of w = L/3 
(L is the width of the vibrating bed) was chosen for the granular temperature 
calculation to achieve a good agreement between their thermal buoyancy 
model and the experimental measurements. Here, we have decided to use the 
coarse graining radius w = rI+dp for the granular temperature, as it is physically 
reasonable to include the first layer of particles around an intruder into the 
coarse graining radius.  

5 . 4  M o d e l  D e s c r i p t i o n  

Herrmann (1993) proposed a thermodynamic formulation for moving 
granular media that was subsequently adopted to investigate the BNP problem 
(Trujillo and Herrmann 2003). First, they defined a reference state of a vibro-
fluidized bed that is described by a given granular pressure P0(r) and granular 
temperature T0(r). When introducing an intruder into the system, the state at 
r changes and is referred to as a perturbed state “1” described by the granular 
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pressure P1(r) and granular temperature T1(r). Trujillo and Herrmann (2003) 
argued that the perturbed granular system tends to re-establish its reference 
state, leading to a displacement of the intruder from its initial position r. 
Neglecting changes in the granular pressure due to the presence of the 
intruder, Trujillo and Herrmann (2003) proposed a thermal-driven buoyancy 
force model (Eq. (5.2)) to describe the motion of an intruder in a vibro-
fluidized bed. 

In the following we derive a granular buoyancy model that takes into account 
also intruder-induced variations in the pressure field to allow the description 
of the motion of an intruder in a dense, granular shear flow system. 

To quantify the impact of an intruder on the local granular temperature and 
pressure in a shear flow, we consider the two systems (i.e., the reference and 
perturbed states) illustrated in Figure 5.4 (b) except that the intruder is 
replaced by bed particles. In the reference case, the granular temperature and 
pressure at r (i.e., the center of the imaginary control volume) are referred to 
as T0(r) and P0(r), respectively. Similarly, in the intruder case the granular 
temperature and pressure at r, i.e., the position where the intruder is located, 
are denoted as T1(r) and P1(r), respectively.  P0(r), T0(r), P1(r) and T1(r) are 
determined through coarse graining. The change in the system due to the 
presence of an intruder (compared to the reference state) is described by 

∆T(r) = T1(r) T0(r) and ∆P(r) = P1(r) P0(r). We follow now the 
argumentation of Trujillo and Herrmann (2003) that the thermodynamic 
driving force for an intruder to sink or rise (i.e. the lift force acting on the 
intruder) is related to ∆T(r) and ∆P(r). As in our shear flow system periodic 
boundary conditions are applied in the x and z directions, P(r) and T(r) are 
independent of x and z for a given y, allowing us to simplify our notation to 
P(y) and T(y). 
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FIG 5.4. Illustration of the reference case and the perturbed state, i.e. the shear 
flow system with the presence of an intruder. (a) Reference case: Shear flow 
system without the intruder. The intruder is replaced by an imaginary control 
volume of size Vc=VI, that is filled with bed particles. The boundary of the 
imaginary control volume is given by a dashed circle. Here, P0(r) and T0(r) 
denote the reference state at r. (b) Perturbed state: Intruder of volume VI and 
density ρI is placed at r into the shear flow system. P1(r) and T1(r) are the 
granular pressure and temperature at r in the perturbed state. Fnb is the net 
buoyancy force acting on the control volume which arises from the 
temperature and pressure difference between the reference and intruder states.  
Fnet-lift is the force acting on the intruder, which is measured by the (virtual) 

spring force, Fnet-lift = Fs and that keeps the intruder in its equilibrium position. 
Here, “net” implies that the gravitational force has been subtracted. 

 

For an inelastic, hard-sphere system (Figure. 5.4(a)) the granular pressure can 
be expressed as(Bocquet et al. 2001; Garzó and Dufty 1999): 

pP nT e nd C


   3(1 (1 ) ( ))
3

,                             (5.12) 

where n is the particle number density, T is the granular temperature, e is the 

coefficient of restitution, dp is the diameter of the particles,  is the solid 

fraction, C() is the pair correlation function at a contact, i.e., the probability 
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density to find another particle at a distance dp from a particle center. For a 
dilute or moderately dense system (i.e. ndp

3 ~ 1), the expression of Carnahan-

Starling holds, i.e. C() =(2−)/2(1−)3 (Andreotti, Forterre, and Pouliquen 
2013) where Carnahan-Starling assumes that binary collisions dominate. This 
assumption might become inaccurate for denser systems, in which empirical 
pair correlation functions C(n) that consider multiple particle contacts (as 
opposed to binary contacts in a granular gas) are required(Jenkins and Berzi 
2010; Kumaran 2015). However, for our model the exact form of Eq. (5.12) 
is not relevant as we only utilize the finding that there is a relationship P = 
P(n,T) and P = P(n,T) can be re-formulated as: 

  n n P T ( , ) . (5.13) 

Taking the total differential yields 
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where α is the thermal expansion coefficient and kp is the compressibility 
coefficient, given by 
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 Placing an intruder in the reference shear flow system changes the granular 
pressure and temperature at position r from (T0, P0) to (T1, P1). Assuming α 
and kp to be constant and integrating Eq. (5.14) we obtain 

pT k P
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where n0 =N0 /Vc is the number density in the reference case (N0 is the 
number of particles in the imaginary control volume Vc). The density of the 
control volume can be expressed as ρ0 = (N0mp)/Vc = n0mp, where mp is the 
mass of a bed particle. Using the equivalent expression for ρ1, i.e., ρ1= n1mp, we 
can rewrite Eq. (5.17) yielding: 

pT k P
e


 
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

( )

1 0 .              (5.18) 

Hence, transitioning from state “0” to “1” leads not only to a change in the 
granular temperature and pressure (ΔT and ΔP) at position r, but also to a 
change in density i.e., ∆ρ = (ρ0−ρ1). We now make the further assumption that 
the bulk density outside the control volume region (Figure 5.4 (a)) is 
unaffected by the pressure/temperature perturbation (i.e., it is ρ0). Following 
Archimedean’s principle, we define the net buoyancy force acting on the 
imaginary control volume in Figure 5.4(a) as:  

nb I yF V g  0 1( ) .                  (5.19) 

As our derivation starts from Eq. (5.12), which only holds for monodisperse 
particle systems, the net buoyancy force given in Eq. (5.19) that is acting on 
the imaginary control volume in Figure 5.4(a) is not expected to be the exact 
equivalent of the lift force acting on the intruder, but it is expected that there 
exists a strong correlation between Fnb and Fnet-lift which will be demonstrated 
in the following. 

Substituting Eq. (5.18) in Eq. (5.19), and replacing ρ0 with ρp we obtain the 
following expression for the net buoyancy force: 

                                    pT k P
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FIG 5.5 (a)Granular pressure along the y direction: () granular pressure as 

determined by coarse graining (CG), (−−) hydrostatic pressure i.e. 

Py = ρpgy(hc− y) (Eq. (5. 21)) with = 0.55; (b) Solid fraction along the y 

direction. The solid fraction is nearly constant across the bed ( = 0.55) except 
in the regions close to the surface and bottom (distances of approximately 5dp);  

(c) () granular temperature (Eq. (5. 11)) as determined by CG, (−  −) linear 
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fit of the CG data, suggesting a linearity between T and y (Eq. (5. 23)) in the 
core region of the dense granular shear flow. (d) Velocity in the x direction as 
a function of y/dp. (+) DEM data and (---) Bagnold velocity profile (Bagnold 

1954), i.e. u(y) = 2/3 I √P/(ρ
p
dp)hc(1−(1−(y/hc))

1.5), where  I  = γ̇dp/(P/ρp)
0.5 (e.g. 

in this work I  = 0.17 for  = 25), P is the pressure at the bottom of the 
system and hc is the height of the shear flow system. All data are extracted 

from a shear flow system with an inclination angle  = 25. 

Further, in a steady-state, dense, granular shear flow, the granular pressure at 
a given height y is given by (Louge 2003; Jenkins and Yoon 2002) 

c p y c
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where hc is the height of the flowing layer. The linear relationship between P 

and y is confirmed in  (a). Substituting now  = nVp  in Eq (5.21) and 
combining it with Eq. (5.16), we obtain the compressibility coefficient: 
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In a steady-state, dense, shear flow system, the solid fraction (and hence also 
the number density) is constant in the core region (Weinhart et al. 2016; Louge 
2003; Jenkins 2006) as demonstrated in Figure 5.5(b). Following Eq. (5.12), 

i.e. P = nTf(e,ϕ), the granular temperature is also expected to vary linearly with 

y in regions where n and  are constant. This behavior is confirmed in  Figure 
5.5(c).  It is worth noting that both the granular pressure and temperature, 
Figures 5.5(a) and (c), as determined by coarse graining deviate from their 
linear dependencies with y close to the bottom wall (i.e., at y < 5dp).  

This wall-induced deviation is in agreement with previous reports, e.g. 
Weinhart et al. (2012). However, in our work the intruder is placed well away 
from the bottom plate and hence, the linear relationship of both the granular 
pressure and temperature with y is assumed to hold. Thus, combining Eq. 
(5.12) and (5.21) yields:  
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As n, e, ϕ are constant along y (and away from the boundaries) we obtain:  
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Rearranging Eq. (5.24) and combining it with Eq. (5.23) yields: 

P P T
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In addition from Trujillo and Herrmann (2003) we have:  

 
n

p

P
Tk

 


.                       (5.26) 

Combining Eqs. (5.22), (5.23) and (5.26) gives:  

                               p
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Pk nf e
T P T
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( , ) .                      (5.27) 

Here, following Trujillo and Herrmann (2003), we have assumed that kp and 
α are constant when integrating Eq. (5.14). Hence, setting kp = 1/P0 and 
α = 1/T0, we obtain the following expression for the net buoyancy force 
acting on the control volume Vc in the reference case (Figure 5.4(a)): 

T P

T P

nb P y IF e g V 

 
  

  
 
 

0 01 .                             (5.28) 
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5 . 5  R e s u l t s  a n d  D i s c u s s i o n  

A. The lift force model 
 
In the following, we first establish the correlation between the net lift force 

Fnet-lift = Fs acting on the intruder (i.e., Fs is the spring force that prevents the 
intruder in the DEM simulations from migrating to the top of the shear flow 
system) and the derived net buoyancy force acting on the imaginary control 
volume in Figure 5.4(a), i.e., Eq. (5.28). FIG  plots the normalized net lift force 
on intruder, Fnet-lift/mIgy, over the normalized net buoyancy force, Fnb/mIgy, for 
a series of DEM simulations in which the inclination angle and the size ratio 
dI/dp was varied. From Figure. 5.6 we obtain a linear correlation between Fnet-

lift and Fbn, i.e.   

net lift s nbF F F
a

  
1

,           (5.29) 

with a = 0.55±0.035. The bulk solid fraction of our shear flow system is 

 = 0.55, hence /a ≅1. Substituting Eq. (5.28) into Eq. (5.29): 

T P

T P
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
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 
 

0 01 .                          (5.30) 
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FIG 5.6.  Linear relationship between the net buoyancy force, Fnb, as given by 
Eq. (5. 28) and the net lift force Fnet-lift. Each data point represents a DEM 
simulation of a different dI/dp ratio (denoted by the marker symbol) and 
inclination angle (θ = 24°,25°,26°,27°,28° denoted by the colour scheme). The 
density ratio ρI/ρp = 1 was used in the simulations. 

Figure 5.6 shows that the inclination angle has only a very minor influence on 
the magnitude of the spring force, in agreement with previous reports 
(Guillard, Forterre, and Pouliquen 2016; van der Vaart et al. 2018; Jing et al. 
2020). On the other hand, the size ratio dI/dp affects the buoyancy force and 
hence also the spring force, appreciably, i.e. with increasing dI/dp the 
normalized buoyancy force (and the spring force) decrease. To compare our 
buoyancy model to previously proposed models, we calculate a lift force Flift 

= −(Fnet-lift+Fg) = −(Fbn/a+Fg), The lift force is the sum of all forces that act in 
the opposite direction of gravity on the intruder (e.g. Saffman and buoyancy 
forces). For our buoyancy model, the lift force in the specific shear system 
studied here, is given by: 
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Normalizing the lift force by the gravitational force of the intruder (p = I) 
yields: 

T P
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  0 02 .                             (5.32) 

In the following we performed a series of DEM simulations with varying 
ratios of dI /dp and determined the lift force acting on the intruder through Flift 
= −(Fs +Fg). The differences in the granular pressure and temperature 
between the reference and the intruder cases, as required for our buoyancy 
model Eq. (5.32), were obtained from the Lagrangian DEM data through 
coarse graining.  
 

Figure 5.7 plots the lift force determined by the virtual spring, the newly 
proposed buoyancy model (Eq. (5.32)), the Saffman-based lift force model 
(Eq. (5.5)) and the Archimedean-type buoyancy model given by Eq. (5.7). 
Concerning the general trend of the lift force, starting from dI/dp = 1 where 
Flift/(ρIVIgy) = 1, the normalized lift force reaches a maximum at dI/dp~1.5. 
The existence of a maximum in the (normalized) lift force with dI /dp has been 
observed previously. For example, Guillard, Forterre, and Pouliquen (2016) 
observed a maximum in the lift force at dI/dp ~ 2 in a 2D  plane driven shear 
flow. Similarly van der Vaart et al. (2018) and Jing et al. (2020) observed a 
maximum in the lift force at  dI /dp = 1.5 in a 3D shear chute flow. The reason 
for the maximum in the lift force is currently unclear, but further below we 
provide a tentative explanation. For intruder sizes dI /dp > 4, Flift /(ρIVIgy) < 1, 
i.e. the intruder sinks. In several experimental works the sinking of large 
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intruders (dI /dp > 5 for ρI/ρp  = 1) has been observed e.g. in rotating cylinders 
(Felix and Thomas 2004; Thomas 2000). 

Our lift force model, Eq. (5.32), predicts the lift force determined by a virtual 
spring very accurately, while the Archimedean-type buoyancy model (Eq. (5.7) 
of Jing et al. (2020) captures the overall trend well but tends to over-predict 
the DEM data for dI/dp < 6. The difference between our modeling results and 
the buoyancy model of Jing et al. 2020 is likely because the empirical buoyancy 
model of Jing et al. 2020 is based on a perfect linear shear system (different to 
the Bagnold velocity profile obtained in this work). In addition, Fig. 5.7 
includes the lift force data of inclined plane shear flow simulations (Hertzian 
contact model) (Jing et al. 2021) which show overall a good agreement with 
our simulation data. Also the van der Vaart et al. (van der Vaart et al. 2018) 
model, Eq. (5.5), captures very well the overall shape of the lift-force 
dependency on dI/dp, but also tends to over-predicts the DEM data. We 
speculate that the difference between the simulation results of van der Vaart 
et al. 2018  (Hertzian contact model) and our simulation data (linear spring 
model) are due to the different contact models applied. Indeed, differences in 
predicted velocity profiles, solid fraction, etc. due to differences in contact 
models haven been reported (Silbert et al. 2001). When adjusting the fitting 
parameters of the model of van der Vaart et al. (2018) to a0 = 0.24 and b0 = 93, 
a very good agreement with our DEM data is obtained, as illustrated by the 
dashed line in Figure. 5.7. 
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FIG 5.7. Normalized lift force as a function of the size ratio dI /dp with ρI 

/ρp = 1: (×) Lift force acting on the intruder as determined directly from the 
DEM simulations via a virtual spring. The error bars give the standard 
deviation obtained from five simulations (each 50 s simulation time in the 
steady state), () lift force as determined by the proposed buoyancy model 

i.e. Eq. (5.32), () predictions of the buoyancy model of Jing et al. (2020), i.e. 

Eq. (5.7), () inclined shear flow simulation results (Hertzian contact model) 

of Jing et al. (2021), () Saffman force-based lift force model 

Flift = Fsaff+Fb = −a0b0Iθμ
-0.5(dp/dI−1)dI

2dp
−1s(γ̇)+(ϕ/ϕI)ρpgyVI using a0 = 0.24 

and b0 = 130.0 as the fitting parameter as given by van der Vaart et al. (2018), 

() inclined plane flow simulation results (linear spring-dash contact model) 
of van der Vaart et al. (2018). The black dash line is a prediction of Eq. (5.5) 
that uses a0=0.24 and b0=93 as obtained from our simulation data. The solid, 
horizontal black line is a guiding reference for Flift /(ρIVIgy) = 1, i.e. below this 
reference line an intruder sinks, while values above the reference line indicate 
a rising intruder. (----) Normalized lift force in the continuum limit (dI /dp >>1), 

i.e. Flift /(ρIVIgy) →  ~0.55. In the DEM simulations the inclination angle was 

varied in the range θ = [24°, 28°], with  I/p = 1. 
 
To assess also the dependence of the lift force acting on the intruder on the 
vertical position of the intruder, the position of the intruder was varied from 
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ymin = 7dp to ymax = 34dp。According to the velocity profile in the shear flow 

system under investigation, Figure 5.5(d), the shear rates vary between 186.0 
s-1 (at y = 7dp) and 55.5 s-1 (at y = 34dp). Figure 5.8 shows that the lift force 
acting on the intruder is not sensitive to the vertical position at which the 
intruder is placed, suggesting that the lift force acting on the intruder is not 
sensitive to the shear rate, in agreement with previous observations (Jing et al. 
2020; van der Vaart et al. 2018; Guillard, Forterre, and Pouliquen 2016).   

 

FIG 5.8.  Lift force acting on the intruder determined directly from the virtual 
spring as a function of intruder position in the y direction (varied from ymin = 
7dp to ymax = 34dp). From the velocity profile given in  (d) the shear rates vary 
from 186.0 s-1 (at y = 7dp) to 55.5 s-1 (at y = 34dp). 

 

B. Cooling Effect of the Intruder 
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To elucidate the contributions of the variations of the pressure and 
temperature field upon addition of intruder on the lift force, Figure 5.9 plots 
∆T/T0 and ∆P/P0 as a function of dI/dp. We observe that ∆T/T0 is negative, 
i.e. the introduction of an intruder leads to a local cooling of the granular 
temperature. As the ratio dI /dp increases the cooling effect becomes stronger. 
In the following we provide a tentative explanation for the cooling effect of 
the intruder in dense, shear flows. Concerning the granular system at hand, 
the major contribution to the granular temperature arises from velocity 
fluctuations along the shear direction x, i.e. Tx ~ 10-5 J, Ty,Tz ~ 10-6 J for dI/dp 

= 8. Hence in the following we focus on the velocity along the x direction. In 

the reference case, Figure 5.10(a), assuming a constant shear rate γ̇
0
in a coarse 

graining (CG) volume, the granular temperature can be written as, T0 ≈ ∑ 
y0+w  
y=y0−w 

(1/(3N))mp[(γ̇0
(yy0)+u0)−u0]

2, where u0 is the average particle velocity in the 

CG volume (dashed circle in Figure 5.10(a)), N is the number of particles in 
the coarse graining volume, mp is the mass of the bed particles and y0 is vertical 

position of the centre of the CG volume. As ∑ 
y0+w  
y=y0−w (1/N) [γ̇

0
2 (yy0)

2] = 

γ̇
0
2(y−y0)

2, T0 can be re-written as, T0 ≈ (1/3) γ̇
0
2mp (y−y0)

2, where    denotes 

the average operation in the CG volume (located at y0 with radius w). From 
Figure 5.3(b) we observe that the granular temperature indeed grows 

quadratically with w, i.e., T0~ γ̇
0
2 w2. Hence, two main factors affect the 

magnitude of granular temperature: (i) the size of the CG volume i.e., w (Figure 
5.3(b)) and (ii) the magnitude of the shear rate.   

Introducing an intruder into the shear system (Figure 5.10(b)) affects the 
average velocity in the coarse graining volume (new average velocity u1). 
Similarly, to the reference case (assuming again a constant shear rate in the 
coarse graining volume) we can write the granular temperature in the intruder 

case as T1 = (1/3) γ̇
1
2mp (y−y0)

2. Figure 5.10 plots the velocity of particles (in 

the shear direction x) for the reference and the intruder case, including fits for 
the shear rate assuming a constant shear rate in the coarse graining volume. 

For the reference and the intruder case, shear rates of γ̇
0

= 59.5 s-1 and 

γ̇
1
= 37.1 s-1 (at y = 100 mm) are obtained, respectively. The shear rate in the 

intruder case is significantly lower than in the reference case, resulting in a 
lower granular temperature (cooling) in the intruder case. Overall, it appears 
that the presence of an intruder leads to a reduced particle velocity at its top 
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and a higher particle velocity at its bottom when compared to the reference 
case.  

As a consequence, we observe that the intruder flattens the velocity profile in 
the CG volume which results in an overall cooling effect and hence a negative 
value of ∆T/T0 in particular for large intruders. The cooling effect of large 
intruders as observed in our dense, shear flow system is to some extend in 
contradiction to the work of Trujillo and Herrmann (2003) in which the 
intruder behaves like a heating source in a granular gas. Yet, the system studied 
in Trujillo and Herrmann (2003) is very different to our system, as it considers 
a dilute granular gas system under strong vibrations. In the system of Trujillo 
and Herrmann (2003) binary collision dominate (with a long free path length), 
whereas in our system multiple and enduring contacts prevail.  

 

 

FIG 5.9.  Variation of ∆P/P0 (∆P = P1−P0) and ∆T/T0 (∆T = T1−T0) as a 
function of dI/dp.  Both the granular pressure and temperature are determined 
through coarse graining of the DEM data (simulation performed with an 

inclination angle   = 25 and ρI/ρp = 1). P0 is the hydrostatic pressure, could 

be determined by coarse graining or analytically (P0 = pgy(hcy0) with y0 = 100 
mm). 
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FIG 5.10. Velocity (in the shear direction x) of individual particles at t = 399 
s that are located in the coarse graining volume centered at y0 = 100 mm. The 
black dashed circle denotes the CG volume of radius w = rI +dp where rI = 8dp. 

() Particle velocities in the reference case (insert Figure (a)) with (----) being 

the fitting assuming a constant shear rate in the CG volume, i.e. γ̇
0
= 59.5 s-1 

(+) Particle velocities in the intruder case (insert Figure (b)) with () being 

the constant shear rate fitting, i.e. γ̇
1
= 37.1 s-1 in the CG volume. System 

parameters are dI /dp = 8, I/p = 1 and   = 28°
.  Inset (a): Coarse graining (CG) 

volume of the reference case. The CG volume is a spherical space of radius w. 
Here, u0 denotes the average velocity of the particles that are in the CG volume 

and γ̇
0
is the shear rate in the CG volume. Inset (b): CG volume of the intruder 

case, the dark grey area denotes the intruder, γ̇
1
is the shear rate in the CG 

volume and u1 is the average velocity of the particles in the CG volume. The 
blue particles at the top of the intruder indicate a reduced velocity compared 
to the reference case while the red particles at the bottom of the intruder 
denote faster particles compared to the reference case.  

 C. The Continuum Limit  
 

From Figure 5.9 we observe that for dI/dp > 4, ∆P/P0  0.  This asymptotic 

behaviour of ∆P/P0 is an indication that for dI/dp ≫ 1 the system approaches 
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a continuum limit, i.e. the lift force acting on the intruder approaches the value 
given by an Archimedean type description of the buoyancy force, i.e. 

Fb = ϕρpgyVI, or Fb/ρpgyVI ϕ (Figure 5.7). This trend has also been reported 
by Jing et al. (2020) and van der Vaart et al. (2018). In the continuum limit, i.e. 

dI/dp ≫1 the intruder behaves as if being immersed in a fluid with density ρpϕ. 

(Jing et al. 2020) argued that for dI/dp ≫1 a large number of bed particles are 
surrounding (and hence in contact) with the intruder, leading to a high number 
of particle collisions and in turn a uniform stress transmission (similar to a 

continuum fluid). Therefore, for large values of dI/dp, P = P1−P0 approaches 
zero (as confirmed in Figure 5.9).  

To explore in more depth, the change in P when an intruder in the size range 
1.5 < dI/dp < 4 is introduced into the system, we calculated the pressure at the 
location of the intruder over 100 s and plot its distribution as a function of 
dI/dp in Figure 5.11.  For dI/dp = 1.5, the modal value of the pressure is 800 Pa 
(mean value 987 Pa) is significantly smaller than the hydrostatic pressure of 
1153 Pa. The difference between the mean value of the pressure distribution 
and the hydrostatic pressure is reflected in the positive pressure contribution 
to the upward-directed lift force acting on intruders with dI/dp < 4. In addition, 
the large deviation between the modal and hydrostatic pressure is likely the 
reason for the large fluctuations in the DEM-determined values of the lift 
force for smaller sizes ratios of dI/dp (Figure 5.7). Such fluctuations in DEM-
determined lift forces have been reported previously (Jing et al. 2020; van der 
Vaart et al. 2018; Guillard, Forterre, and Pouliquen 2016). For dI/dp = 4, the 
pressure distribution becomes more symmetric with the modal (Pmodal = 1210 
Pa), mean (Pmean = 1230 Pa) and hydrostatic (P0 = 1153 Pa) pressures being 
very close to each other (Figure 5.11(d), explaining both the small lift force 
and the small fluctuations in the DEM-determined lift force for dI/dp ≥ 4 
(Figures 5.7 and 5.9). The smaller fluctuations in the DEM-determined lift 
force for larger values of dI/dp are in agreement with previous works (Jing et 
al. 2020; van der Vaart et al. 2018; Guillard, Forterre, and Pouliquen 2016). 
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FIG 5.11. The distribution of the pressure at the location of the intruder, P(r(t), 
t), as a function of the size ratio: (a) dI/dp = 1, (b) dI/dp = 1.5, (c) dI/dp = 2, and 

(d) dI/dp = 4. The set-up used an inclination angle of  = 24 with I/p = 1. 
Pressure data were sampled over 100 s in steps of 0.1 s. The hydrostatic 
pressure P0 = 1153 Pa is denoted by the black, solid vertical line, given by 

P0 = pgy(hcy0) with hc = 0.192 m and y0 = 0.1 m. The mean pressure value is 
denoted by the red, dashed vertical line. The modal pressure value is denoted 
by the blue, dashed vertical line: (a) Pmodal = 500 Pa, Pmean = 944 Pa (b) 
Pmodal = 800 Pa, Pmean = 987 Pa (c) Pmodal = 900 Pa, Pmean = 1097 Pa (d) 
Pmodal = 1210 Pa, Pmean = 1230 Pa 

D. The Effect of Density Differences on segregation 
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So far we have only considered cases in which the density of the intruder and 
the bed particles are equal. From Eq. (5.31), when scaling the lift force with 

the intruder weight (ρIgyVI) the following relationship is obtained for ρp  ρI, 
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0 02 ,                     (5.33) 

When Flift /(ρIVIgy) <1 the intruder sinks and for >1 the intruder rises. Similar 
to the model of Jing et al. (2020), also Eq. (5.33) shows a decoupling of the 
effects of the intruder size and density ratios. Figure 5.12 plots Flift/(mIgy) as a 
function of ρp/ρI  for dI/dp = 2 and 4. Similar results to those in Fig. 5.12 also 
occur for dI /dp = 1, further confirming the model. The linear trend predicted 
by the lift force model, Eq. (5.33), agrees very well with the DEM data and 
with experimental observations that show that light intruders migrate upward 
while heavier intruders sink (Thomas 2000; Felix and Thomas 2004), which 
have been further presented in Figure 5.13. 

 

FIG 5.12. The normalized lift force as a function of the density ratio ρp/ρI for 
different intruder sizes (×) dI/dp = 4. () dI/dp = 2. The blue and red straight 
lines are Eq. (5.33). 
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FIG 5.13. Neutral buoyancy limit of a single intruder in a dense, granular shear 
flow as function of dI/dp and ρI/ρp. The black solid curve denotes the neutral 

buoyancy limit given by (2 − e
−

ΔT

T0
+

ΔP

P0 )  
p

 I
  = 1. DEM data using an 

inclination angle of  = 25.  intruder sinks,  intruder rises. The solid 

black symbol are neutral buoyancy limits obtained in () plane shear driven 

flow (Jing et al. 2020), () heap flow, () chute flow and () rotating drums 
(Felix and Thomas 2004). 

From Eq. (5.33) it is also possible to extract the neutral buoyancy limit, which 

is given by   (2 − e
− 

ΔT

T0
+

ΔP

P0 )
p

 I
  =1 and plotted in Figure 5.13. It is worth noting 

that the experimental data (solid black symbol) are extracted from multiple 
intruder systems. For some systems, the neutral buoyancy limit deviates from 
that of the single intruder simulation results, particularly for size ratios 
between 1 to 3. It is not surprising, however, that the intruder concentration 
effects the segregation process, e.g. (Duan et al. 2021).    
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5 . 6  C o n c l u s i o n s  

In this work, we propose a new lift force model for intruders in dense, granular 
shear flows by extending the work of Trujillo and Herrmann (2003). The lift 
force is interpreted as a buoyancy force whereby the density difference arises 
both from granular temperature and granular pressure contributions. We 
observe that the presence of an intruder leads to a cooling effect and a local 
flattening of the shear velocity profile (lower shear rate).  For large intruders, 
i.e., dI/dp > 4, the local pressure disturbance (and hence contribution to the lift 
force) is very small as the system approaches a continuum limit, in which the 
pressure acting on the intruder equals to the hydrostatic pressure of the system. 
On the other hand, for 1< dI/dp < 4 the local granular pressure at the location 
of the intruder is lower than the hydrostatic pressure leading in turn to a 
positive lift force. The cooling effect due to the presence of an intruder 
increases with intruder size, leading ultimately to the sinking of large intruders. 
The modified model predicts DEM-determined lift forces very well and 
allows the description of a neutral buoyancy limit.  
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FINGERING INSTABILITIES IN BINARY 
GRANULAR SYSTEMS 

Adapted from Liu. M., Conzelmann. N, Girardin. L, Dickhardt. F, McLaren. 
C, Metzger. J., Müller. C.(2022). Fingering instabilities in binary granular 
systems. (submitted) 

6 . 1  A b s t r a c t  

Fingering instabilities akin to the Rayleigh-Taylor (RT) instability in fluids have 
been observed in a binary granular system consisting of dense and small 
particles layered on top of lighter and larger particles, when the system is 
subjected to vertical vibration and fluidizing gas flow. Using observations 
from experiments and numerical modelling we explore whether the theory 
developed to describe the Rayleigh-Taylor (RT) instability in fluids is also 
applicable to binary granular systems. Our results confirm the applicability of 
the classic RT instability theory for binary granular systems demonstrating that 
several key features are observed in both types of systems, viz: (i) The 
characteristic wavenumber of the instability is constant with time, (ii) the 
amplitude of the characteristic wavenumber initially grows exponentially and 
(iii) the dispersion relation between the wavenumbers k of the interface 
instability and the growth rates n(k) of their amplitudes holds in both fluid-
fluid and binary granular systems. Our results also demonstrate that inter-
particle friction is essential for the RT instability to occur in granular media. 
For zero particle friction the interface instability bears a greater resembles to 
the Richtmyer-Meshkov instability. We further define a yield criterion Y for 
the interface by treating the granular medium as a viscoplastic material; only 
for Y > 15 fingering occurs. Interestingly, previous work has shown that 
instabilities in the Earth’s lower mantle, another viscoplastic material, also 
occur for similar values of Y.  

6  
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6 . 2  I n t r o d u c t i o n  

Rayleigh-Taylor (RT) instabilities arise at the interface between two fluids of 
different densities; for example, when a fluid with a higher density is layered 
on top of a fluid of a lower density in a gravitational field. Any perturbation 
of the (flat) interface induces a local pressure gradient (acting in the normal 
direction to the interface) leading to a growth of the perturbation, which 
manifests itself as fingers intruding upwards and downwards into the fluid 
layers (Taylor 1950). While the RT instability is a classical phenomenon in fluid 
mechanics, more recently it has been reported also in granular systems such 
as granular suspensions (Chevalier et al. 2006; Voltz, Pesch, and Rehberg 
2002), gas-particle mixtures (Johnsen et al. 2006; Vinningland et al. 2007), or 
particle-particle mixtures (McLaren et al. 2019). Beyond these laboratory 
systems, RT instabilities are also observed in geological settings, such as 
plumes rising upwards in the Earth’s mantle (Davaille, Carrez, and Cordier 
2018), river bed erosion (Julien 2018) or the formation of salt domes 
(Nettleton 1934) 

For fluid-particle systems in which the forces acting on the particles are 
dominated by fluid-particle interactions (e.g. drag) while particle inertia is 
negligible, a hydrodynamic description of the formation of RT-like instabilities 
has been proposed (Noetinger 1989; Lange et al. 1998) and experimentally 
verified (Voltz, Pesch, and Rehberg 2002; Wysocki et al. 2009). Typically, in 
these models the particle-fluid mixture is treated as an immiscible fluid phase 
with a uniform solid fraction (placed on top of a layer of a pure fluid). Linear 
stability analysis has shown that the initial growth of the interface in fluid-
particle systems can indeed be described by the dispersion relation which was 
developed originally for the RT instability in fluid-fluid systems 
(Chandrasekhar 2013). The dispersion relation provides a relationship 
between the interface perturbations, characterized by a series of wavenumbers 
k, and their respective growth rates n(k). According to Taylor’s instability 
theory, perturbations of the interface grow exponentially with time (Taylor 
1950). A good quantitative agreement between such a linear stability analysis 
and experimental measurements has been observed for a glycerin-particle 
system in a Hele-Shaw-like cell where a glycerin-particle suspension was at the 
bottom while a glycerin layer was placed on top (Voltz, Pesch, and Rehberg 
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2002). By inverting the Hele-Shaw cell, the suspension sinks under gravity 
while glycerin rises up, exhibiting classic fingering structures. 

Finger-instabilities have also been observed in a radial Hele-Shaw-like cell in 
which a fluid penetrates into a single-phase granular medium (Sandnes et al. 
2007; Cheng et al. 2008; Huang et al. 2012). However, in such a configuration 
the fluid fingers side-branch rather than split at the tip as it is commonly 
observed for fingering in Newtonian fluids (Bensimon et al. 1986). This side-
branching of the viscous fingers is considered as a granular equivalent of the 
classic Saffman-Taylor instability in the zero-surface-tension limit. The 
Saffman-Taylor instability occurs when injecting a viscous fluid into a more 
viscous one. A quantitative analysis of experiments has shown however that 
the scaling of the growth of fingers in a granular medium is distinct from the 
scaling in fluid-fluid systems; in granular systems the finger width Wfinger follows 

the scaling Wfinger ~ Ui
1/2

 (Cheng et al. 2008), while in conventional Newtonian 

fluids Wfinger ~ U i
−1/2

 is observed, where Ui is the local interfacial growth 
velocity, i.e. the velocity with which fingers grow radially (identified by tracing 
the outermost boundary of the fingers). This very distinct scaling behaviour is 
believed to be a consequence of the different dissipation mechanism in 
granular materials, viz. friction-induced dissipation, as opposed to viscous 
damping in fluids. (Aranson and Tsimring 2006; Conway, Shinbrot, and 
Glasser 2004; Jaeger, Nagel, and Behringer 1996) 

In granular media interface instabilities have also been observed when a layer 
of a dense granular material (instead of a liquid) is placed above a layer of air 
(Vinningland et al. 2007). Here, fingering patterns emerge as the granular 
material falls under gravity. This has been reported, e.g. by Vinningland et al. 
(2007) who tracked polystyrene particles falling in a Hele-Shaw cell. 
Vinningland et al. (2007) determined the interface wavenumbers k and the 
corresponding growth rates. Their findings show that the amplitude of the 
dominant wavenumber does not grow exponentially over time, suggesting the 
instability is not in the linear regime predicted by the classical Taylor theory 
(Taylor 1950). This difference in growth rate might be explained by the large 

density difference between the particles and air (particle  1000air) making 
particle inertia the dominating effect. Hence, it is conceivable that the RT 
instability theories developed for fluid-fluid systems maybe have limitations in 
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describing RT-like instabilities in granular systems in which particle inertia 
dominates over the forces due to fluid-particle interactions. 

Very recently, an additional RT-like instability was reported in particle-particle 
systems that are agitated by both vibration and a fluidizing gas (McLaren et al. 
2019). Using two sets of particles with matching minimum fluidizing velocity 
Umf (but different diameters and densities) McLaren et al. (2019) could ensure 
that both particle sets experience equal fluid-particle interaction forces. As Umf 

scales with Umf  di
1/2i, where di is the diameter of the particle and i is the 

particle density, the lighter particles (subscript i = L) had a diameter of dL = 

1.70 mm and a density of L = 2500 kg/m3, while the heavier particles 

(subscript i = H) had a diameter of dH = 1.105 mm and a density of H = 6000 
kg/m3. The system was initialized by placing the heavy particles on top of a 
layer of light particles. Upon agitation by combined vibration and gas 
fluidization, the light particles penetrated upwards through the layer of denser 
particles exhibiting finger-like structures. Although the fingering-structures in 
the granular material mimic the structures that are commonly observed in 
conventional fluids, it was argued that the physics controlling the granular RT-
like instability must be different involving a locally preferred gas channelling 
through the fingers of light particles and particle-particle contact forces 
pushing downwards the heavier particles. However, as McLaren et al. (2019) 
have finely tuned the fluidization properties of the particle sets such that the 
fluid drag forces balance the weight of the particles and hence particle inertia 
is very likely to play a minor role, classic hydrodynamic RT instability theory 
might be applicable to such binary granular systems. 

Therefore, the objective of this work is to conduct a quantitative analysis of 
the growth of fingers in a binary granular system allowing us to investigate its 
scaling behaviour and to assess whether it can be described by the classical RT 
theory developed for fluids. By complementing experiments with 
computational fluid dynamics coupled with the discrete element modelling 
(CFD-DEM) simulations we are able to probe the parameters that control the 
formation and growth of fingers in granular media and provide further insight 
into the underlying mechanism controlling this particular RT-like instability. 
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6 . 3  M e t h o d s  

A. Numerical Methodology 

In the present work, CFD-DEM simulations were performed using the 
CFDEM®Coupling framework (Goniva et al. 2012). In the DEM part, 
particles are modelled as individual, freely moving entities with each particle i 
having a certain mass mi, velocity upi and angular velocity wi. Forces acting on 
the particles lead to changes in their trajectories as described by Newton’s 
second law of motion: 

pi

i ti fpi i

d
m = + +m

dt

u
f f g ,              (6.1) 

and 

i
i i

d
I =

dt

w
T ,       (6.2) 

where fti and ffpi are the particle-particle contact force and the fluid-particle 
force, respectively, g is the gravitational acceleration, Ii is the moment of 
inertia of particle i and Ti is the torque acting on particle i. The contact force 
between two contacting particles, fti, is modelled via a Hertzian contact model 
using the following material properties: Youngs’s modulus E = 5 MPa, 
Poisson ratio v = 0.2, coefficient of restitution e = 0.30, and inter-particle 

friction coefficient p = 0.3.  

For the CFD part, the fluid phase is modelled by the locally averaged Navier-
Stokes equations using a finite volume scheme: 

( ) ( ) 0f f f f fε ρ ε ρ
t


 


u ,                    (6.3) 

and 
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         ( ) ( ) ( )f f f f f f f f f f f fpε ρ ε ρ p ε ε ρ
t


     


u u u τ g F , (6.4) 

where f, f, uf, and f are the void fraction, the fluid density, the fluid velocity 
and the viscous stress of the fluid, respectively. The term Ffp describes the 
momentum exchange between the particle and fluid phases and is given by: 

1imc

fp fpi

i=1 mcV
F f ,                 (6.5) 

where mc is the index of a given fluid cell, mci is the index of each particle in a 
given fluid cell mc and Vmc is the volume of the cell. The fluid force acting on 
each particle in the fluid cell is given as, 

fp pi pi f f diV p V ε     F τ f ,                             (6.6) 

where f fdi is the fluid drag acting on particle i. To model fdi, the Koch-Hill 
correlation is used (Hill, Koch, and Ladd 2001). 

B.  Simulation setup 

The simulation setup illustrated in Figure 6.1 mirrors the experimental setup 
reported by McLaren et al. (2019), i.e., using the same particle densities and 
sizes. The numerical simulations are initialized by placing a layer of heavier 

(H = 6000 kg/m3) particles of smaller diameter (dH = 1.16 mm) on top of 

lighter (L = 2500 kg/m3), but larger (dL = 1.70 mm) particles. For both types 
of particles some degree of polydispersity (±0.1dH/L) is introduced to avoid 
crystallization. The width of the system lx = 200 mm is identical to the 
experimental setup of McLaren et al. (2019), while the filling height is reduced 
to lz = 200 mm for computational efficiency. The transverse thickness of the 
bed (y direction) is 10 mm. The particle bed is agitated by a combination of an 
upward-directed gas flow (air) with an uniform inlet velocity U = 1.13 m/s 

(density air = 1.2 kg/m3 and viscosity air = 1.810-5 Pas) and a vertical 

vibration with z(t) = Asin(2f t), where A = 1 mm and f = 10 Hz. 



97 
 

The particle-wall interaction is modelled similarly to the particle-particle 
contacts (Hertzian contact model) whereby the wall is treated as a particle with 

an infinite radius. The pressure at the outlet (top) is fixed to 1.2105 Pa and the 

size of a fluid cells is 5  5  5 mm3). The DEM time step size is 10-5 s, the 

CFD time step size is 510-4 s and the CFD-DEM coupling interval is 510-4 s. 

 

FIG 6.1. Illustration of the the simulated system. The gray colour represents 

the heavy particles (diameter dH = 1.16 mm and density H = 6000 kg/m3) 

while the black colour denotes the light particles with dL = 1.70 mm and L = 

2500 kg/m3. The container is vibrated vertically with z(t) = Asin(2f t), where 
A = 1 mm and f = 10 Hz. A uniform upwards-directed gas flow (air) is 
injected at the bottom of the container with a velocity U = 1.13 m/s (density 

air = 1.2 kg/m3 and viscosity air = 1.810-5 Pas). 

C.  Experimental setup 

The numerical simulations are complemented by experiments that are 
acquired in a setup identical to the one reported by McLaren et al. (2019). The 
particle bed is contained in a container made of acrylic glass with a width of 
200 mm, height 500 mm and transverse thickness 10 mm (pseudo-2D bed). 
The experiment is initialized by filling the container first with a layer of light 

(L = 2500 kg/m3), large diameter particles (dL = 1.73±0.06 mm) followed by 

a layer of heavy (H = 6000 kg/m3), but smaller particles (dH = 
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1.17±0.06 mm). The thickness of each layer is 200 mm. The two types of 
particles are purchased from Sigmund Lindner GmbH and have the same 
properties as the particles used in the numerical simulations, i.e., a coefficient 
of restitution of 0.66 and a coefficient of friction of 0.4. During an experiment, 
humidified air is injected through a distributor placed at the bottom of the 
container (20 holes of diameter 1.1 mm) to fluidize the particles. The 
superficial air velocity was U = 1.55 m/s (controlled via a Bronkhorst mass 
flow controller F-203AV). In addition, a vertical vibration is introduced via an 
electrodynamic shaker (Labworks Inc., ET-139) using a vibration strength of 
Γ = Aω2/g = 0.45 with ω = 188 rad/s.  

D. Data analysis 

In the experiments the interface between the two types of particles is recorded 
by high-speed camera imaging. Similarly, the predictions of the numerical 
simulations are visualized using the software ParaView to produce grey-scale 
images of the interface between the two types of particles. From these images 
the interface (red line in Figure 6.2) is identified by converting first the grey-
scale image into a binary image by thresholding. The interface identification is 
insensitive to varying the thresholding value as doing so would only change 
individual pixels which in turn only affects high wavenumbers that are outside 
of the relevant range for granular fingering. At a given location in x, the 
interface position z(x) is determined as the position in the z-direction at which 
the pixel value change from 1 (white) to 0 (black) (Voltz, Pesch, and Rehberg 
2002). 
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FIG 6.2: Snapshot of a numerical simulation at Δt = 6.4 s. For this simulation 

a layer of heavy (H = 6000 kg/m3) particles with a small diameter (dH = 

1.16 mm) is placed on top of lighter (L = 2500 kg/m3) but larger (dL = 
1.70 mm) particles. The initial filling height for both layers is 100 mm. The 
system width is 200 mm and the transverse depth is 10 mm. The red curve 
denotes the interface between the heavy (gray) and light (black) particles 
identified through the algorithm proposed by Voltz, Pesch, and Rehberg 
(2002) 

 

 The function z(x) is subsequently Fourier transformed 

( ) ( )
N-1

i2πnk/N

n

n=0

Z k z x e ,                       (6.7) 

 
where z(xn) is the vertical position of the interface at the horizontal position 
xn. The magnitude of the Fourier coefficient Z(k) gives the amplitude of the 
k-th mode (wavenumber k). Typically, the 10 pixels next to the side walls are 
disregarded for the analysis.  
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FIG 6.3 (Continue to the next page) 
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FIG 6.4. (a) The geometry of the interface between the light and heavy 
particles as a function of time as obtained from numerical simulations. (b) 

FIG 6.3. Snapshots of the formation of granular fingers as observed in 
numerical simulations (a) and experiments (b) at various time steps ∆t. In 
the numerical simulations the container is of width lx = 200 mm with an 
initial filling height of lz = 200 mm. The dimensions of the experimental 
setup are lx = 200 mm and lz = 400 mm. The transverse thickness in both 
the experiment and simulation is ly = 10 mm. The heavier and smaller 

particles (dH = 1.16 mm,  H = 6000 kg/m3) appear as grey (simulations) or 

white (experiments), while the lighter and larger particles (dL = 1.7 mm,  L 
= 2500 kg/m3) are black.  
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Fourier transform of the interface plotted in (a), where k is the wavenumber, 
and A is the corresponding amplitude. The wavenumber with the fastest 
growing amplitude, i.e., the dominant wavenumber is marked by solid circles. 
The dominant wavenumber (kc = 0.015 mm-1) is the characteristic 
wavenumber of the fingering instability. 
 

6 . 4  R e s u l t s  a n d  d i s c u s s i o n  

Figure 6.3 plots snapshots of the shape of the interface between the light and 
heavy particles in both the experiments and numerical simulations for certain 
times. Qualitatively the experimental observations and the numerical results 
agree well, however, a quantitative comparison between the experimental and 
numerical results from simple image analysis is not possible. Hence, for a 
quantitative comparison, we extract the function of the interface z(x) 
(Figure 6.4(a)) and perform a Fourier transform. Figure 6.4(b) shows the 
amplitudes of the wavenumbers k = 0.01–0.1 mm-1 at selected time steps. By 
tracking the amplitude over time, we obtain a growth rate n(k) that can be 
approximated by an exponential expression (vide infra). The characteristic (i.e. 
dominant) wavenumber kc of the fingering instability is the wavenumber with 
the fastest growing amplitude A. For the setup shown in Figure 6.4 with kc = 

0.015 mm-1 (characteristic wavelength c = 1/kc = 66.7 mm), the characteristic 
wavenumber is coincidentally also the wavenumber with the highest 
amplitude A. In the binary granular system studied here, one wavenumber 
remains characteristic with time. Such a behaviour has been reported also for 
the classical fluid-fluid and liquid-particle systems (Voltz, Pesch, and Rehberg 
2002), while for gas-particle systems the characteristic wavenumber is not 
necessarily constant with time, but instead was observed to generally increase 
with time (attributed to the branching of the fingers) (Vinningland et al. 2007). 

Next, we study the growth rate of the fingering instability by plotting the 
amplitude of the characteristic wavenumber (kc = 0.015 mm-1) as a function of 
time. Figure 6.5 plots both the results of the numerical simulations and the 
experiments (inset). Figure 6.5 shows that a sufficiently long time (~3 s) is 
required until an appreciable growth in amplitude occurs. Once sufficiently 
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large perturbations have been formed, fingers emerge and grow with an 
exponential growth rate. Fitting an exponential function to this initial growth 
period, i.e. A(k) = A0e

(n(k)t), yields growth rates of nE(kc) = 1.75±0.04 s-1 from 
the experimental data and nS(kc) = 1.67±0.05 s-1 from the numerical 
simulations, showing very good agreement between experiments and 
simulations. According to Taylor’s theory (Taylor 1950), exponential growth 

only occurs for very small perturbations (A < 0.4). Therefore, only the 

growth period in which A < 0.4c was considered for the fitting, i.e., ∆t = 3–
6 s. 

 

FIG 6.5. Growth of the amplitude A of the characteristic wavenumber kc = 
0.015 mm-1 as a function of time as obtained from numerical modelling and 
experiments (inset). The green lines are exponential fits during the initial 
growth period. 

A. Rayleigh-Taylor instability theory 

Our experimental and numerical modelling data have shown that there are 
some striking similarities with regards to the finger morphology and growth 
rate between the fingering instability in binary granular systems and their 
classic fluid counterpart. In the following we investigate if the dispersion 
relation between the wavenumber k and its respective growth rate n(k) as 
derived for conventional fluid-fluid systems is equally applicable to binary 
granular systems. The dispersion relation is a result of the linear RT instability 
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theory which was first reported by Harrison (1908) and subsequently 
developed further by Chandrasekhar (2013), and Bellman and Pennington 
(1954). The linear RT instability theory models the growing perturbations of 
an initially cosine shaped, unstable interface between a denser fluid on top of 
a less dense fluid using hydrodynamic arguments. To derive the dispersion 
relation for a binary granular system, it is assumed that both granular media 
are viscous and incompressible and surface tension is neglected. The full 
derivation of the implicit dispersion relation for a binary granular system, 
which is based on the work by Bellman and Pennington (1954), is given in 
Appendix 6A. Here only the final form of the dispersion relation is given as: 

               2( ) ( ) ( ) 4 ( ) 0H L L Hgf ρ ρ K ρ ρ n K M n K K        , (6.8) 

where M is given by 
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 

.                   (6.9) 

Here K is the angular wavenumber, K=2πk, and  is the bulk solid fraction. ηL 

and ηH are the viscosity of the light and heavy granular medium, respectively. 
However, the viscosity of granular materials is not a constant, but dependents 
on the local state of the system (i.e., it is controlled by the local pressure, solid 
fraction and shear rate (Chen et al. 2021; Colafigli et al. 2009)). Since the 

characteristic wavelength of the granular system at hand is known, i.e., c = 
66.7 mm, we can derive an explicit equation for the granular viscosity from 
the dispersion relation when assuming that both granular media have the same 
viscosity, i.e., ηL = ηH. To derive an equation for the viscosity, Bellman and 
Pennington (1954) propose to simplify Eq. (6.8) by assuming that the growth 
rates of high wavenumbers are limited by viscosity and the growth rate 

decreases with increasing wavenumber, i.e. n(k) ≪ k2. This simplification 
yields:  

                    
2 2( ) 2 ( ) 0H L H L

H L H L

η η ρ ρ
n K K n K gK

ρ ρ ρ ρ

 

   

 
  

 
. (6.10) 
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Since the amplitude of the characteristic wavenumber has the highest growth 
rate, the characteristic wavenumber can be found by differentiating Eq. (10) 
with respect to K and setting dn(K)/dK = 0: 

 
4 ( )( )

H L

c H L

ρ ρ g
K

n K η η
c

 



.                            (6.11) 

Substituting Eq. (6.11) into Eq. (6.10), the characteristic wavelength λc = 2π/Kc 
is given as (Pan, Joseph, and Glowinski 2001): 
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 
                                  (6.12) 

To calculate the granular viscosity from Eq. (6.12), the bulk solid fraction  is 
required. The bulk solid fraction can be obtained from the numerical 
simulations via coarse graining (described in detail in Appendix 6B). Coarse-

graining yields  = 0.6±0.03. Using  = 0.6 in Eq. (6.12), we obtain a granular 

viscosity of  = 1.95 Pas. This value is close to the value of 1.25 Pas, that is 
predicted by a viscosity model for sheared and fluidized granular systems 

(Colafigli et al. 2009), i.e. using the correlation eff = airexp(k0 + k1̇ +k2), 

where k0 = 2, k1 = 1.78, k2 = 20.20, air = 1.810-5 Pas and approximating 
the shear rate by the growth rate of the characteristic wavenumber, i.e. n(k) = 
1.67 s-1. Having estimated now the granular viscosity we can plot the 
dispersion relationship between n(k) and k for the binary granular system 
studied here by numerically solving Eq. (6.8). The results are given in 
Figure 6.6, and we observe that classical RT theory predicts generally very well 
the growth rate of the interface amplitude A(k) as a function of the 
wavenumber k (using both experimental and numerical data), although there 
is some over prediction of the numerical and experimental data, for higher 
wavenumbers (possibly due to the fact that the shear rate was approximated 
by the growth rate of the characteristic wavenumber).  
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FIG 6.6. The dispersion relation, i.e., the growth rate n(k) as a function of the 
wavenumber k as predicted by RT theory [Eq. (6.8)] (solid line) and the 

respective data obtained from numerical simulations () and experiments 
(). 

 
FIG 6.7. The characteristic wavelength (() and its growth rate () as a 
function of system width lx. 

B. Role of system size 

Figure 6.3 shows that fingers appear typically at both side walls, probably 
due to relatively large perturbations of the granular packing near the side walls 
(i.e., large gradients in solid fraction in the vicinity of the side walls). This 
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observation triggers the question of the effect of system size on the dynamics 
of granular fingering. To address this question, we have simulated systems of 
increasing widths, i.e., with l0 = 200, 400 and 600 mm, while keeping the filling 
height constant at lz = 200 mm. The characteristic wavelengths and 
corresponding growth rates obtained in these three systems are plotted in 
Figure 6.7. For the smallest system, i.e. lx = 200 mm, the characteristic 

wavelength is lower, viz. c = 66.7 mm than for the two wider systems. 

However, the characteristic wavelength reaches an asymptotic value of . c ~ 

100 mm for lx  400 mm. Inversely, the growth rate of the characteristic 
wavelength is higher for the smallest system size, i.e., n(kc) = 1.67 s-1 for lx = 

200 mm, but again reaches an asymptotic value of n(kc) = 1.45 s-1 for lx  

400 mm. These results suggest that for systems with a width lx   400 mm the 
characteristic wavelength and growth rates become independent of system 
size.  

C. Role of inter-particle friction 

Previous research has suggested that particle friction, through its influence on 
the effective viscosity of the granular medium, affects the formation and 
dynamics of granular fingering (Pan, Joseph, and Glowinski 2001; McLaren et 
al. 2019; Jop, Forterre, and Pouliquen 2006). To probe its influence in more 
detail, we performed additional simulations with varying coefficients of 

particle friction p and coefficients of restitution e. In these simulations the 
system width was set to lx = 400 mm to eliminate any effect of the system size, 
while maintaining the computational efficiency of relatively small systems. 

Figure 6.8(a) plots the initial growth rate of the characteristic wavenumber as 

a function of p. For p  0.1 the growth rate of the characteristic wavenumber 
reaches an asymptotic value of n(kc) = 1.45 s-1, while for lower coefficients of 
friction the growth rate of the characteristic wavenumber increases strongly, 

reaching n(kc) = 5.3 s-1 for p = 0. An increase of the growth rate of the 

characteristic wavenumber with decreasing p is predicted also by classic RT 
theory (effective viscosity of dense granular media decrease with decreasing 

p (Jop, Forterre, and Pouliquen 2006)). However, as plotted in Figure 6.8(b) 

the magnitude of the growth rate of the characteristic wavenumber for p → 

0 (n(kc) = 5.3 s-1) is very high; indeed, for k ≤ 0.02 mm-1 (kc = 0.005 mm-1) the 
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growth rates in a frictionless granular medium as determined from numerical 
simulations ( in Figured 6.8(b)), exceed the upper bound of the dispersion 
relation using classic, non-viscous RT theory (dashed line). On the other hand, 

the prediction of the classic RT theory (dash-dotted line) for a system with p 

= 0.3 (eff = 1.95 Pas) agrees very well with the results of the numerical 
simulations ( in Figured 6.8(b)). Based on our results of granular systems 

with varying coefficients of friction it appears that granular systems with p ≤ 
0.1 are not predicted well by classic RT theory. The different behaviour of 
such systems is visualized in more detail in Figure 6.9(a–d). In Figure 6.9(a), 

i.e., p = 0, we observe spikes at the fingers, while such spikes are absent in 

both classic RT fingers and in granular fingers for p  0.1 (Figure 6.9(d)). 

Such spike features, as observed for p = 0, resemble structures that have been 
observed in the hydrodynamic Richtmyer-Meshkov (RM) instability 
(Richtmyer 1960). The RM instability occurs when a light fluid is accelerated 
into a heavy fluid by a shockwave or impulsive flow, which amplifies any 
perturbation of the interface due to the reflection of the shock wave at the 
interface. 

 Although the granular system that is studied here is not driven by impulsive 

flow, for the case  = 0 we observe the upwards motion of void bands 
through the interface that could generate shock-like effects (Figure 6.9(e)). 

Importantly, the formation of such void bands is largely suppressed for p  
0.1 (see Appendix 6C), since the injected vibrational energy is dissipated 

quickly through inter-particle friction. For p < 0.1 void bands form at the 
bottom of the system and move upwards. Somewhat surprisingly, at the 
location of a finger, the void band is interrupted, while the void band exists at 
the left- and right-hand side of the finger (∆t = 1.0 s in Figure 6.9(e)). It 
appears that the spike-like features at the fingers arise due to particles being 
lifted up by the passing void band. Owing to the absence of friction, the finger 
is also growing faster in the lateral dimension compared to the dynamics of 
the fingers in the frictional cases (Figure 6.9(b–d)). Although there is some 
geometric similarity between the frictionless case and structures observed in 
RM instabilities, fingers still show an exponential growth rate in the 
frictionless case, while a linear growth rate would be expected for the RM 
instability. Interestingly, also for a gas-particle RM instability in which an 
explosive gas penetrates into a radial, granular Hele-Shaw cell, an exponential 
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finger growth has been reported (Xue et al. 2020) and it was also argued that 
high voidage due to dilation plays a key role in the observed RM instability. 

 

 

FIG 6.8. (a) Growth rate n(kc) of the characteristic wavenumber as a function 

of the coefficient of friction p. (b) Dispersion relation between the growth 
rate, n(k) and the wavenumber k. The markers plot data obtained from 

numerical simulations for p = 0.0 and p = 0.3. The corresponding granular 

viscosity for p = 0.3 is  = 1.95 Pas (using Eq. (6.12)). (  ) Prediction of 

the classic RT theory for eff = 1.95 Pas. For p = 0.0 the system does not 
exhibit any RT-like instability, therefore Eq. (6.12) cannot be used to estimate 
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the granular viscosity. However, classic RT theory for non-viscous fluids (eff 

= 0 Pas) gives a theoretical upper bound for n(k) which is given by (- - -). 

               FIG 6.9(Continue to the 
next page) 
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Figure 6.9: (a), (b), (c), (d) Shape of the interface for varying coefficients of 

friction μp. (e)    Time series visualizing the void fraction (1) in a layered 

granular system using  μp = 0. The size of the numerical domain was lx  ly  

lz = 400  10  200 mm3. The blue line denotes the interface between the 
heavy and light particle layers. 

 

 

FIG 6.10. Influence of the coefficient of restitution ep on the growth rate of 
the characteristic wavenumber. The solid line plots a (fitted) growth rate of 
1.48 s-1. 
 

Unlike the coefficient of friction, the coefficient of restitution ep is found to 
have a negligible effect on the dynamics of granular fingering. Simulating three 
granular systems with varying ep, i.e., ep = 0.06, 0.3, 0.98, we observe very 
similar initial growth dynamics as shown in Figure 6.10. 

D. Yield criterion for granular RT instability 

In the previous section it was discussed how the growth of perturbations at 
the interface of two layers of granular materials of different densities depend 
on inter-particle friction. However, Figures 6.3–6.5 also show that there is a 
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considerable time lag between the start of the agitation of the system and 
finger formation and growth to occur, suggesting that an initial resistance, i.e., 
a yield criterion, has to be overcome for fingers to form. The granular system 
considered here falls into the category of a dense granular system/flow owing 
to its high solid fraction of ~0.6. Similar to toothpaste, foam, etc., dense 
granular flows exhibit a viscoplastic-like behaviour, i.e., there exists a critical 
shear stress below which flow is not maintained and the rheology depends on 
the shear rate. A model that aims to describe the complex rheology of dense 

granular systems is the (I) model (Jop, Forterre, and Pouliquen 2006), 
whereby the inertial number I is a function of the particle size d, the particle 

density p, the shear rate γ̇ and pressure P, viz. (da Cruz et al. 2005): 

/ p

γd
I

P ρ
 .              (6.13) 

The shear stress  is expressed as a function of I as 

( )τ μ I P ,             (6.14) 

where (I) is bulk friction (different from the inter-particle friction) and given 
through an empirical friction law as (Jop, Forterre, and Pouliquen 2006, 2005): 

                                 0( ) ( ) / ( / 1)s 2 sμ I μ μ μ I I    .                          (6.15) 

Here, s is a critical friction coefficient at zero shear rate which depends on 
the particle properties such as the coefficient of inter-particle friction and 

particle shape. The critical friction is s  0.38 for spherical particle systems, 
based simulation and experimental results (Andreotti, Forterre, and Pouliquen 

2013). In the following, s = 0.38 will be used for simplicity. The (I)-rheology 
model is illustrated in Figure 6.11 and compared to a typical viscoplastic 
rheology model for fluids (see insert in Figure 6.11) which is described by: 
 

( / )n n

y s sτ τ τ γ γ γ                          (6.16) 
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where y is the yield stress and n is the flow index. Similar to the yield stress in 
a viscoplastic fluid (dashed line in the insert in Figure 6.11), the yield stress for 
a dense granular system is given by: 

y sτ μ P .          (6.17) 

 
Hence, the yield stress originates from the granular pressure P and is not an 
intrinsic property of a granular material (Trulsson et al. 2015). Furthermore, 
the yield criterion, Eq. (6.17), describes a yield transition from a static system. 
However, the present system is not static as the individual particles are agitated 
by vertical vibration and a fluidizing gas flow, yet the relative motion between 
heavy and light particles before fingering occurs is small, allowing to assume 
of a pseudo-static system. Furthermore, the following discussion is limited to 

p  0.1 such that void bands are absent. 

 
 
 

 

FIG 6.11. (I) local rheology model for a dense granular system given by Eq. 
(6.15); Insert: Herschel-Bulkley rheology model for an oil-based drilling fluid, 
i.e., a typical viscoplastic fluid (Saasen and Ytrehus 2018). 
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As buoyancy is the driving force for the granular RT instability, a yield 
parameter Y can be established as: 

( )H L c

y

ρ ρ gλ
Y

τ


 ,                  (6.18) 

where c is the characteristic wavelength of the granular RT instability,  is the 

solid fraction of the bulk and H and L are densities of the heavy and light 

particle, respectively. The yield stress y is given by Eq. (6.17), which requires 
information on the granular pressure P at the interface. The granular pressure 
at the interface can be determined from the inter-particle contact forces using 
coarse-graining (described in Appendix 6B). The pressure profile as a function 
of the vertical position z is initially hydrostatic, but very rapidly a pressure 
profile develops that leads to an instability at the interface, i.e., the higher 
granular pressure in the heavier particle layer pushes down onto a lower 
granular pressure in the layer containing the lighter particles (see Appendix 
6D). Taking the granular pressure at the interface, i.e. P(z = 100 mm), we can 
calculate the yield parameter Y as given in Eq. (6.18). Figure 6.12 plots Y over 
time for systems of varying lx and ep, while the coefficient of inter-particle 

friction was fixed to p = 0.3. To determine the onset of exponential finger 
growth we calculate the intersection of a horizontal line fitted to the initial 
period where the amplitude of the characteristic wavenumber does not change 
(see Figure 6.5) and the exponential fit to the growth period (green line in 
Figure 6.5). In Figure 6.12 black symbols denote points in time in which no 
exponential finger growth was observed, while red symbols denote 
exponential finger growth. The results plotted in Figure 6.12 suggest a critical 
yield parameter of YC = 15.7 for RT-like finger instabilities to occur. 
Interestingly, this critical value of YC = 15.7 obtained here is very close to the 
value of YC = 15±3.6 that has been established for thermal plumes in the 
Earth’s lower mantle to occur (which can also be classified as a visco-plastic 
material) (Davaille, Carrez, and Cordier 2018; Massmeyer et al. 2013). Similar 
to Eq. (6.18), also the yield parameter for a thermal plume is defined as the 
ratio of the buoyancy driven shear stress to the yield stress. Although the 
apparent similarities between the finger instabilities in granular materials as 
observed in this work and the rise of thermal plumes in the Earth’s lower 
mantle suggest that the critical yield parameter value of YC = 15 might be a 
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more general scaling constant for the occurrence of fingering phenomena in 
viscoplastic fluids, further research is necessary to validate this hypothesis. 

 

FIG 6.12. The yield parameter Y as a function of time. The onset of 
exponential finger growth is calculated as the intersection of a horizontal line 
fitted to the initial period when the amplitude of the characteristic 
wavenumber does not vary with time with an exponential fit to the growth 
period (see Figure 6.5). Black colour symbols indicate ∆t for which no finger 
grow is observed, while red symbols denote ∆t in which RT-like, exponential 
finger growth proceeds. The red dash-dotted line gives the critical yield 
parameter YC = 15.7±1.98. The data plotted are obtained from a series of 
systems with varying widths, lx, and varying coefficients of restitution, ep: () 

lx = 200 mm, ep = 0.30; () lx = 400 mm, ep = 0.30; () lx = 400 mm, ep = 

0.98; () lx = 400 mm, ep = 0.06; () lx = 400 mm, ep = 0.30. The coefficient 

of friction was fixed to p = 0.3 in all simulations. 

 

6 . 5  C o n c l u s i o n  

The present work investigates binary granular systems in which a granular 
medium of dense and small particles is layered on top of a granular medium 
of light and large particles. Finger instabilities akin to the hydrodynamic 
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Rayleigh-Taylor (RT) instability, emerge at the interface between the two 
granular media when agitated by a combination of vertical vibration and a 
fluidizing gas flow (McLaren et al. 2019). The results presented here confirm 
that classic RT instability theory can be used to describe the behaviour of 
fingering in dissipative binary granular systems (i.e., inter-particle friction 

coefficient p ≥ 0.1) as:  

 The characteristic wavenumber is constant over time. 

 The initial growth rate of the characteristic wavenumber is exponential. 

 The dispersion relation for the growth rate n(k) as a function of the 
wavenumber k follows a very similar behaviour in the fluid and 
granular systems.  

For p < 0.1 the system behaviour changes leading to the formation of spike-
like features in the fingers which do not resemble a typical RT behaviour, but 
instead show some similarity to a Richtmyer-Meshkov-type instability. Our 

results also suggest that by treating the binary granular material (p ≥ 0.1) as a 
viscoplastic material, we can define a yield criterion Y to predict the onset of 
fingering. If the yield criterion is below a critical value of Yc ≈ 15 fingering is 
not observed, while for Y > 15 fingers emerge and grow exponentially. A 
critical value of Yc ≈ 15 has also been found for other viscoplastic materials, 
such as the Earth’s lower mantle in which thermal plumes rise for Y > 15 
(Davaille, Carrez, and Cordier 2018; Massmeyer et al. 2013). This suggests that 
Yc = 15 might be a general scaling constant for the emergence of instabilities 
in viscoplastic materials. However, further research is required to confirm this 
hypothesis. 

A p p e n d i x  6 A :  D e r i v a t i o n  o f  t h e  d i s p e r s i o n  
r e l a t i o n  

To derive an equation for the dispersion relation in binary granular systems 
we follow the approach of Bellman and Pennington (1954). As the transverse 
thickness (y direction) is very small compared to the other two dimensions, 
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the system can be considered 2D with a heavy granular medium on top of a 
light granular medium. The initial unperturbed interface is located at z = 0. In 
addition, surface tension can be neglected in granular systems. The goal is to 
find an equation 

u v

x z

 
 

 
0 ,                (6A1) 

 
21u p η
u

t ρ x ρ

 
   

 
,                              (6A2) 

v p η
g v

t z ρ

 
    

 

21
,                                 (6A3) 

where η is the dynamic viscosity,  is the density, and u and v are the velocity 
in the horizontal and vertical direction, respectively. By introducing the 
potential functions Θ and Ψ, the solutions for Eq. (6A1–6A3) can be obtained 
as: 

Θ
u

x z

 
  

 
,                        (6A4) 

and 

Θ
v

x z

 
 
 

.                       (6A5) 

The pressure is given by the Bernoulli equation, 

( , )
Θ

p=p gz x t
t


 


0

.                               (6A6) 
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where p0 is the mean pressure at the (unperturbed) interface. Substituting Eq. 
(6A4) and (6A5) into Eq. (6A1–6A3) yields: 

Δ =Θ 0 ,             (6A7) 

Ψ η
Ψ

t ρ


 


.               (6A8) 

Solutions for the potential functions Θ and Ψ which satisfy (6A7) and (6A8) 
are given by Lamb (1924); the solutions for the heavy and light granular 
medium are denoted by subscript H and L, viz.: 

( )

( )

Kz nt
H

Kz nt
L

Θ Ae Kx

Θ Ce Kx

 



  
   

   
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,                                (6A9) 

( )

( )

H

L

m z nt
H
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L
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De Kx
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
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sin
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,                              (6A10) 

where mH
2 = K2 +

nρ
H

η
H

, mL
2 = K2 +

nρ
L

η
L

 and n is the growth rate of a given 

wavenumber k (K = 2πk). The pressure in both granular media is: 

                           
0

0

( , )

( , )

H
H H

H

L L
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Θ
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p t

p Θ
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 
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   .         (6A11) 

The boundary conditions at the interface between the two media are: 

H L H Lu u  v v , ,                     (6A12) 

      
H L

H H L L

v v
p η p η

z z

 
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2 2 ,                              (6A13) 



119 
 

                                   ( ) ( )H H L L
H L

v u v u
η η

x z x z

   
  
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.                    (6A14) 

The vertical velocity of the interface v is obtained by taking the partial 
differential of z(x,t) with respect to t yielding: 

     
z z

v u
x t

 
  
 

0 .                      (6A15) 

Assuming that the initial perturbation has a small amplitude compared to its 
wavelength, the nonlinear term (∂z/∂x)u in Eq. (6A15) can be neglected: 

                                                      
z

v
t





.                                     (6A16) 

Since v = vH = vL, see Eq. (6A12), we can calculate v by substituting Eq. (6A9) 
and Eq. (6A10) into Eq. (6A5) and integrate over t to obtain z(x, t) as: 

 ( ) ntz K A B n e Kx  1 cos .                             (6A17) 

In this equation the constants A and B are still unknown. The constants A 
and B (and C, D) are determined by substituting Eq. (6A9) and (A10) into Eq. 
(6A4) and (6A5) and the resulting equation into the boundary conditions given 
by Eq. (6A12–6A14). This yields a system of four equations that are linear in 
A, B, C and D (curious readers find the system in Bellman and Pennington 
(1954) as equation (2.20)). A non-trivial solution for the system of equations 
exists if the determinant of the coefficient matrix of the four linear equations 
is zero, which yields the implicit dispersion relation: 

                  
 

  

( ) ( ) ( )H L H L L L H H

H L L L H H

β ρ ρ n η K η m η K η m
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  

2

4 0
. (6A18) 
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If β is positive, there will be at least one root of n that has a positive real part, 
i.e., the interface is unstable, and any perturbation of the interface grows in 
amplitude. As expected, this is the case if ρH > ρL. 

In a final step we rewrite the implicit dispersion relation given by Eq. (6A18) 
using the definitions for mH and mL to obtain: 
 

                 2( ) ( ) ( ) 4 ( ) 0H L L Hgf ρ ρ K ρ ρ n K M n K K        , (6A19) 

Where M is 
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1

1
.      (6A20) 

A p p e n d i x  6 B :  C o a r s e - g r a i n i n g  m e t h o d  

Here we use coarse-graining (CG) as described in Goldhirsch (2010) to obtain 
the granular pressure. To this end, we define a CG volume, which is bounded 
by a sphere located at r with radius w. The CG density at r is defined as, 

( , ) ( ( ))
N

i i

i

ρ t m G t


 r r r
1

,                 (6B1) 

where the sum is taken over the particles located in the CG volume and 
G(r−ri(t)) is the CG function. Here, we have chosen the Heaviside function 

G(r)=H(w−‖r‖)/V as the CG function, where V is the volume of the CG 
sphere. The solid fraction is calculated as, 

         ( , ) / pρ t ρ  r ,                    (6B2) 
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where ρp is the particle density. The CG moment density is given as, 

                           ( , ) ( , ) ( ( )) ( , )
N

i

i

ρ t t m G t ti i



  r u r r r u r
1

,    (6B3) 

and the CG velocity is calculated via 
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The CG stress tensor is derived based on the momentum conservation 
equation as:  
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where α, β denote the Cartesian coordinates x, y, z, fα
 i,j is the α-th component 

of the inter-particle contact force of the contacting particles i and j, rβ
 i,j

 is the 

vector that points from the position of particle i to particle j and uα
i' is the 

fluctuation of the velocity of particle i with respect to the CG velocity u(r,t). 
The granular pressure is given by the trace of the stress tensor, i.e., P = 
1/3(σxx+ σyy+ σzz). 

A p p e n d i x  6 C :  V o i d  f r a c t i o n  f o r   p  0 . 1  

In Figure 6.10(d) we observe the rise of void bands through a binary granular 

system when using a low inter-particle friction coefficient, i.e., p < 0.1. 

Formation of these void bands is largely supressed for p ≥ 0.1 which is 
visualized in Figure 6C1. 
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FIG 6C1. Time series of the void fraction (1) in a numerical system using 
an inter-particle friction coefficient of μp= 0.3. The blue line denotes the 
interface between the heavy and light granular medium. 

A p p e n d i x  6 D :  G r a n u l a r  p r e s s u r e  p r o f i l e  

Figure 6D1 plots the granular pressure (averaged along the x and y directions) 
in the system as a function of height (z direction) for different times ∆t. The 
pressure profile is initially hydrostatic (∆t = 0.2 s), very rapidly a pressure 
profile develops that leads to an instability at the interface (z ~ 100 mm), i.e. 
a higher granular pressure in the heavier particle layer (z > 100 mm) pushes 
down onto a lower granular pressure in the lighter particle layer (z < 100 mm). 

 

FIG 6D1. Granular pressure P as a function of the height (z) for different 
instants in time ∆t. 
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CONCLUSIONS AND OUTLOOK 

 

7 . 1  C o n c l u s i o n s  

This thesis has explored two important phenomena in granular materials, i.e., 
segregation and stability of granular interfaces. Using a series of different 
modelling approaches, the lift force acting on intruders, granular buoyancy 
and a fingering instability has been described successfully. The following 
conclusions were drawn from this work.  

We were able to verify the validity of a generalization of the Archimedean 
formulation of the granular buoyancy force that has been proposed originally 
for shear flows for vibro-fluidized systems. To exclude the influence of drag 
forces, a convection-free system was considered. Such as system was 
established through vibrating sidewalls and a friction coefficient of zero for 
particle-wall contacts. The buoyancy force calculated through the generalized 
Archimedean formulation, i.e., considering the Voronoi volume of the 
intruder, agreed very well with the values obtained from its hydrostatic 
definition (pressure gradient) and its direct measurement through a virtual 
spring. The complexity of the model system explored was subsequently 
increased by including also convection (through a non-zero particle-wall 
friction coefficient). The segregating (lift) force acting on an intruder in such 
a system is affected by buoyancy and drag and increases with increasing 
intruder size, but it is independent of the vibration strength Γ (for Γ > 6) and 
the intruder density. We demonstrate that a lift force model that combines 
buoyancy (expressed through the generalized Archimedean formulation) and 
a drag force (velocity-independent in the considered slow-velocity regime) 
predicts very accurately the magnitude of the lift force obtained through a 
virtual spring. This model allowed us to rationalize the independence of the 
segregation (lift) force on the intruder density and the vibration strength (once 
a critical value of Γcr= 6 is exceeded).  

7  
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In addition we have proposed a new lift force model for intruders in dense, 
granular shear flows by extending the work of Trujillo and Herrmann (2003). 
We interpret the lift force as a buoyancy force whereby the density difference 
arises both from granular temperature and granular pressure disturbances 
induced by intruder. We observe that the presence of an intruder leads to a 
cooling effect and a local flattening of the shear velocity profile (lower shear 
rate).  For large intruders, i.e., dI/dp > 4, the local pressure disturbance (and 
hence contribution to the lift force) is very small as the system approaches a 
continuum limit, in which the pressure acting on the intruder equals to the 
hydrostatic pressure of the system. On the other hand, for 1 < dI/dp < 4 the 
local granular pressure at the location of the intruder is lower than the 
hydrostatic pressure leading in turn to a positive lift force. The cooling effect 
due to the presence of an intruder increases with intruder size, leading 
ultimately to the sinking of large intruders. The modified model predicts the 
DEM-determined lift forces very well and allows the description of a neutral 
buoyancy limit.  
 

Finally, we investigated binary granular systems in which a granular medium 
of dense and small particles is layered on top of a granular medium of light 
and large particles. Finger instabilities akin to the hydrodynamic Rayleigh-
Taylor (RT) instability emerge at the interface between the two granular media 
when agitated by a combination of vertical vibration and a fluidizing gas flow. 
The results presented here confirm that classic RT instability theory can be 
used to describe the behavior of fingering in dissipative binary granular 

systems (i.e. inter-particle friction coefficient p ≥ 0.1) in that: (i) The 
characteristic wavenumber is constant over time; (ii) the initial growth rate of 
the characteristic wavenumber is exponential and (iii) the dispersion relation 
for the growth rate n(k) as a function of wavenumber k follows a very similar 

behavior.  For p < 0.1 the system behavior changes leading to the formation 
of spike-like features in the fingers which do not resemble a typical RT 
behavior, but instead show some similarity to a Richtmyer-Meshkov-type 
instability. Our results also suggest that by treating the binary granular material 

(p ≥ 0.1) as a viscoplastic material, we can define a yield criterion Y to predict 
the onset of fingering. If the yield criterion is below a critical value of Yc ≈ 15 
fingering is not observed, while for Y > 15 fingers emerge and grow 
exponentially. A critical value of Yc ≈ 15 has also been found for other 
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viscoplastic materials, such as the Earth’s lower mantle in which thermal 
plumes rise for Y > 15 (Davaille, Carrez, and Cordier 2018; Massmeyer et al. 
2013). This suggests that Yc = 15 might be a general scaling constant for the 
emergence of instabilities in viscoplastic materials. However, further research 
is required to confirm this hypothesis. 
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7 . 2  O u t l o o k  

Our work has shed some light on segregation and the stability of interfaces in 
granular materials. Based on the results obtained here, the following future 
works are proposed. 

Segregation    

In chapter 4 a continuum perspective to model segregation is introduced. In 
general, granular systems also contain convective patterns, which require the 
segregating force to also include a drag force component. Several works have 
revealed that in granular media the drag force acting on an intruder is 
independent of the velocity of the intruder for slowly moving intruders (quasi-
static regime in which friction and gravity dominate) (Albert et al. 2001). For 
rapidly moving intruders (inertial regime) the drag force was found to scale 
with the velocity of the intruder squared (Faug 2015). While there has been 
extensive research on the drag force acting on intruders in static granular 
systems, the drag force is under-explored in flowing granular systems and it 
has to be assessed how the relative velocity of the intruder and granular media 
can be described most accurately (van der Vaart et al. 2018; Tripathi and 
Khakhar 2011).  Eventually, the predictive nature of a drag force model for 
intruders moving in a dynamic granular system has to be assessed in a system 
containing a freely moving intruder, i.e. without it being connected to a virtual 
spring (Staron 2018) 

This work has focus on the segregation of a single intruder, which is a well 
describable, model system. However, an important question is whether the 
models obtained here are also valid for systems that contain multiple intruders 
and whether there is an intruder concentration at which certain assumptions 
break down. It is expected that a high concentration of intruders will affect 
the segregation flux. Indeed, it has been reported that intruders segregate 
faster in systems of a higher intruder concentration compared to systems with 
a lower intruder concentration (Gajjar and Gray 2014; Jones et al. 2018). While 
previous studies have assumed that there is a linear dependence between the 
lift force and the intruder concentration (Gray and Thornton 2005), recent 
works have indicated that this assumption might not be correct. For example, 
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for intruder (dI/dp = 3) concentrations < 50 %, the lift force acting on an 
intruder was found to be nearly independent of the intruder concentration, 
while the lift force decreased with intruder concentrations, for concentrations 
> 50 %.  Hence, the cooperative dynamics of multiple intrudes require further 
studies.  

In Chapter 5 we derive an expression for the lift force acting on an intruder 
from a thermodynamic description of granular materials. While the model 
shows good agreement with (numerical) measurements, several key questions 
require further work. For example, the equation of state of granular materials, 
i.e. the correlation between granular pressure, temperature and solid fraction 
is not well developed, in particular for dense granular systems which are 
particularly interesting for engineering applications (Kim and Kamrin 2020; 
Taylor and Brodsky 2017). We feel that size differences between the intruder 
and bed particles need to be considered in such a correlation, i.e., correlations 
for bi- or multi-disperse granular systems are required. Recent work suggests 
that an equation of state for a binary mixture of hard spheres allows to 
calculate the buoyancy force acting on intruders for systems of different 
intruder concentrations (Kumar, Khakhar, and Tripathi 2019). Hence, further 
work on the establishment of such correlations is crucial to further refine lift 
force models, i.e., to develop models that link the granular 
temperature/pressure disturbance (induced by the intruder) to flow 
parameters such as shear rate, shear rate gradient, etc. In addition, the lift force 
model proposed here was developed and validated for a steady-state dense 
shear flow system, it would be interesting to investigate whether the model 
can be applied also to dynamic granular systems, e.g., wall-driven flow, silo 
flow or vibrofluidzed beds.  

Chapter 6 studies granular interface instabilities, i.e., a granular Rayleigh-
Taylor-type instability and a Richtmyer-Meshkov-type instability. As a next 
step we propose to extent the experimental work to determine if the instability 
can be triggered by vibration alone which would be of practical importance. 
Furthermore, we established a critical yield parameter for the granular RT 
instability, which coincides with the critical yield value for plumes rising in the 
lower Earth mantle. It would be interesting to assess whether this yield 
criterion is also valid in further granular systems such as shear driven granular 
systems (D'Ortona and Thomas 2020). For the granular instability to occur a 
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reasonably large system is often required. Such large systems are challenging 
for computer simulations making it difficult to probe numerically for example 
the granular Taylor-vortex. Hence more efficient modelling approaches are 
required.  Recently, a method called material point method (Bardenhagen, 
Brackbill, and Sulsky 2000) has shown some promising results to simulate 
large particle systems (Hu et al. 2019; Li et al. 2021). However, it is unclear 
whether this method is able to reproduce well instability phenomena in 
granular systems, hence requiring further validation and potentially further 
development.   
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