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Abstract 

Rocking structures with negative lateral stiffness are a promising solution for enabling the use 

of precast elements in the substructure of bridges constructed in seismically active regions. 

Such structural systems are resilient, presenting minimal or no residual displacements and 

damages after an earthquake; and they potentially reduce the forces transmitted to the 

foundation, and consequently reduce its size. Nevertheless, despite its advantages, such design 

concept has not found widespread implementation, mainly because of the limited number of 

experimental studies on their seismic performance, and because of the absence of established 

simplified design methods. This dissertation is an effort to bring such systems closer to 

practice. It provides both a simplified design method for systems with negative lateral stiffness, 

as well as experimental evidence of their seismic resilience.  

The simplified design method presented herein was developed based on the observation that, 

when the rocking motion is described in terms of horizontal displacements (not rotations), the 

response of the system depends mainly on its uplift force and not on its displacement capacity. 

Thus, by disregarding the displacement capacity term, a unique spectrum for systems with same 

uplift force, but different displacement capacity can be constructed. Two approaches were 

explored for estimating the displacement demand of a given system using the proposed 

spectrum: the equal displacement rule and the equal energy rule. Case studies comparing the 

results given by the proposed method and time history analyses reveal that equal energy rule is 

more conservative than the equal displacement rule. In all studied cases, the proposed design 

method returned displacement demands with a maximum of 40% deviation from the 

displacement demand predicted by the time history analysis, which suggests its adequacy for 

preliminary design calculations.  

A uniform risk spectrum (URS), which introduces the uncertainties of seismic actions into the 

previously proposed spectrum, was also presented in this dissertation. After discussing the 

methodology for its construction, site-specific uniform risk spectra constructed using the 

geomean of the peak ground acceleration (PGA) and peak ground velocity (PGV) as intensity 

measures are presented for six different locations in Europe. Bootstrapping analysis were 

employed to indirectly investigate the efficiency of each intensity measure. It was concluded 

that PGV is the optimal intensity measure for predicting the peak rocking response, while PGA 

is optimal for predicting rocking initiation. Finally, analytical approximations of the PGV-

based spectra, which facilitate their implementation in practice, were also offered. 
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In addition, an experimental campaign comprising quasi-static cyclic tests and shaking table 

tests on restrained rocking systems with negative lateral stiffness was performed. The 

specimens consisted of rocking columns simply standing on the ground and only connected to 

a cap-beam or slab through unbonded tendons in series with springs. At the quasi-static tests, 

the rocking piers were subjected to drift ratios of up to 16%, presenting almost no damage and 

no residual displacements, an indication of the resilience of the system. Furthermore, the 

system response agreed reasonably well with the response of a rigid body model.  

The seismic resilience of the system was also confirmed by shaking table tests. The specimen 

was subjected to 181 excitations, scaled to two different levels of the peak ground velocity, and 

the only observed damage was the abrasion of the edges of the column ends. The slab 

experienced torsion, which was caused by small imperfections in the system. The system 

collapsed during the last excitation due to premature failure of the tendons. This highlights that 

the tendons should be designed with a large safety factor. 

The dissertation concludes with the statistical validation of a 3D rigid body model against the 

experimental data from the shaking table tests. Despite the simplicity of the model, which 

disregards a number of physical mechanisms observed in the tests, the numerical empirical 

cumulative distribution functions (CDF) were within the 95% confidence interval of the 

experimental empirical CDF, giving a first indication that the numerical model can be 

considered a good descriptor for the tested system.



Zusammenfassung 

iii 

 

Zusammenfassung 

Schaukelnde Strukturen mit negativer lateraler Steifigkeit sind eine vielversprechende Lösung 

für die Verwendung vorfabrizierter Elemente im Unterbau von Brücken in seismisch aktiven 

Regionen. Solche Tragwerkssysteme sind elastisch und weisen nach einem Erdbeben nur 

minimale oder gar keine bleibenden Verformungen und Schäden auf; außerdem können sie die 

auf das Fundament übertragenen Kräfte und damit dessen Abmessungen verringern. Trotz 

dieser Vorteile konnte sich dieses Entwurfskonzept bisher nicht durchsetzen, vor allem weil es 

nur wenige experimentelle Studien über das seismische Verhalten und keine etablierten 

vereinfachten Bemessungsmethoden gibt. Diese Dissertation versucht solche Systeme der 

Praxis näher zu bringen. Sie liefert sowohl eine vereinfachte Bemessungsmethode für Systeme 

mit negativer lateraler Steifigkeit als auch experimentelle Nachweise für ihre seismische 

Widerstandsfähigkeit.  

Die vereinfachte Bemessungsmethode basiert auf der Beobachtung, dass wenn die 

Schaukelbewegung mittels horizontaler Verschiebung beschrieben wird, das Verhalten des 

Systems hauptsächlich von seiner anhebenden Kraft und nicht von seiner 

Verschiebungskapazität abhängt. Durch Vernachlässigung der Verschiebungskapazität kann 

daher ein eindeutiges Spektrum für Systeme mit gleicher anhebender Kraft aber 

unterschiedlicher Verschiebungskapazität erstellt werden. Dabei wurden zwei Ansätze zur 

Abschätzung des Verschiebungsbedarfs eines bestimmten Systems unter Verwendung des 

vorgeschlagenen Spektrums untersucht: die Regel der gleichen Verschiebung und die Regel 

der gleichen Energie. Fallstudien, welche die vorgeschlagenen Bemessungsmethode mit 

Zeitverlaufsanalysen vergleichen, zeigen, dass die Regel der gleichen Energie konservativer 

ist als die Regel der gleichen Verschiebung. In allen untersuchten Fällen ergab die 

vorgeschlagene Bemessungsmethode Verschiebungsanforderungen mit einer maximalen 

Abweichung von 40% von der durch die Zeitverlaufsanalyse vorhergesagten 

Verschiebungsanforderung, was auf ihre Eignung für vorläufige Bemessungsberechnungen 

schließen lässt.  

Ein einheitliches Risikospektrum (URS), dass die Unsicherheiten seismischer Einwirkungen 

in das zuvor vorgeschlagene Spektrum einbezieht, wurden ebenfalls in dieser Dissertation 

vorgestellt. Nach der Erörterung der Methodik für die Erstellung dieses Spektrums werden für 

sechs verschiedene Standorte in Europa standortspezifische einheitliche Risikospektren 

vorgestellt, die unter Verwendung des geometrischen Mittels der maximalen horizontalen 
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Bodenbeschleunigung (PGA) und der maximalen horizontalen Bodengeschwindigkeit (PGV) 

als Intensitätsmasse erstellt wurden. Bootstrapping-Analysen wurden eingesetzt, um die 

Effizienz der einzelnen Intensitätsmasse indirekt zu untersuchen. Es wurde festgestellt, dass 

PGV das optimale Intensitätsmass für die Vorhersage der maximalen Schaukelverschiebung 

und PGA optimal für die Vorhersage der Initiierung der Schaukelbewegung ist. Schließlich 

wurden auch analytische Näherungen für die PGV-basierten Spektren angeboten, die ihre 

Umsetzung in der Praxis erleichtern. 

Darüber hinaus wurde eine Versuchskampagne mit quasistatischen zyklischen Versuchen und 

Rütteltischversuchen an eingespannten schaukelnden Systemen mit negativer lateraler 

Steifigkeit durchgeführt. Die Probekörper bestanden aus schaukelnden Stützen, die einfach auf 

dem Boden standen und nur über unverankerte Spannglieder in Reihe mit Federn mit einem 

Kopfbalken oder einer Platte verbunden waren. Bei den quasistatischen Tests wurden die 

Schaukelstützen Driftverhältnissen von bis zu 16 % ausgesetzt, wobei sie fast keine Schäden 

und keine Restverschiebungen aufwiesen, was auf die Widerstandsfähigkeit des Systems 

hinweist. Außerdem stimmte die Reaktion des Systems recht gut mit der Reaktion eines 

Starrkörpermodells überein.  

Die seismische Widerstandsfähigkeit des Systems wurde auch durch Rütteltischversuche 

bestätigt. Der Probekörper wurde 181 Rütteltischversuchen ausgesetzt, die auf zwei 

verschiedene Niveaus der maximalen Bodengeschwindigkeit skaliert waren, und die einzige 

beobachtete Beschädigung war der Abrasion der Kanten an den Stützenenden. Die Platte erfuhr 

eine Torsion, die durch kleine Imperfektionen im System verursacht wurde. Beim letzten 

Versuch kollabierte das System aufgrund eines vorzeitigen Versagens der Spannglieder. Dies 

zeigt, dass die Spannglieder mit einem großen Sicherheitsfaktor entworfen werden sollten. 

Die Dissertation endet mit der statistischen Validierung eines 3D-Starrkörpermodells anhand 

der experimentellen Daten aus den Rütteltischversuchen. Trotz der Einfachheit des Modells, 

das eine Reihe von beobachteten physikalischen Mechanismen vernachlässigt, lagen die 

numerischen empirischen kumulativen Verteilungsfunktionen (CDF) innerhalb des 95%-

Konfidenzintervalls der experimentellen empirischen CDF, was als ersten Hinweis angesehen 

werden kann, dass das numerische Modell ein guter Deskriptor des getesteten Systems ist. 
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1. Introduction 

 

 Abstract 

This chapter offers a brief introduction to the work presented in this dissertation, which is 

related to the seismic behavior of rocking bridges exhibiting negative lateral stiffness. Firstly, 

the motivation of the work is presented, followed by a literature review with the most relevant 

past studies. At the end of the literature review, the research gaps and objectives of this work 

are identified. The chapter ends with an outline of the structure of the dissertation and its key 

contributions. 
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1.1. Motivation and problem statement 

Capacity-design is currently one of the main concepts used for designing seismic-resistant 

structures. It emerged during the 70-80’s (Fardis, 2018), revolutionizing the design philosophy 

in seismically active regions, and dramatically improving the seismic performance of 

structures. According to this design philosophy, plastic deformation and damage is 

concentrated at predefined points of the structure, which are designed to be ductile enough. 

The concept was perceived as a great advance in earthquake engineering because it 

guarantees that structures fulfill both “life safety” and “collapse prevention” performance 

levels, as defined in (FEMA 356, 2000). Although effective in achieving the above goals, 

recent earthquakes have brought up the main drawback of the capacity-design concept: after a 

strong seismic event, the structures are designed to exhibit significant damage, which requires 

large repairs, if not demolition of the structure.  

For the society, such by-products of the earthquake are translated in economic and 

environmental losses. For instance, the total economic losses due to the 2010-2011 Canterbury 

earthquakes are estimated at $NZ 40 billion (Insurance Council of New Zealand, 2019). A 

preliminary study has also presented the environmental impact of the demolition of buildings 

in Christchurch due to the 2010-2011 Canterbury earthquakes (Gonzalez et al., 2021). The total 

embodied CO2 was estimated at 3.08 × 108 kg, which corresponds to approximately the annual 

CO2 emissions generated by the electricity consumption of 400,000 average homes in New 

Zealand. In Switzerland, a country with moderate seismicity, the expected economic losses due 

to an earthquake of magnitude 6.6 with epicenter in Basel are estimated between CHF 50 and 

100 billion (Swiss Seismological Service, 2012). According to the same agency (Swiss 

Seismological Service, 2022), the return period of an earthquake with magnitude 6.0 or 7.0 

occurring in Switzerland is 100 and 1000 years, respectively. 

A class of structures of utmost importance during and after earthquakes are bridges. The 

closure of bridges, apart from hindering the access to rescue, also significantly impacts the 

region in the following months, causing several traffic disruptions and economic losses for the 

businesses in the surroundings. One example is the overpass bridge on Moorhouse Avenue, 

Christchurch, New Zealand. One of its piers failed during the 2011 Christchurch earthquake, 

causing its closure and traffic disruptions in the region for more than a month (Mashal, 2015; 

Palermo et al., 2012). The 2010 Chilean earthquake is another example of such disruptions in 

the aftermath of earthquakes. It has been reported that 30 bridges had to be closed, while 

another 70 bridges had their traffic restricted (Schanack et al., 2012). Similarly, in 2008, an 
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earthquake stronger than the design-level earthquake hit Wenchuan, China. The damage to 

several bridges isolated the area, preventing the access to emergency services (Han et al., 

2009). 

Besides being resilient, bridges also have to be quickly built in order to minimize the 

disturbances during construction. In non-seismic areas, bridge construction has been efficiently 

expedited by the use of precast elements both in the substructure and superstructure (Culmo, 

2011). In high-seismicity areas, however, some challenges still exist for using prefabricated 

elements in the substructure. 

Therefore, the work summarized in this dissertation is motivated by the societal need for 

quickly built, resilient, and sustainable structures, with a focus on bridge structures. The call 

for a resilient structure has been clearly presented through estimated economic losses and 

disruptions caused by previous earthquakes. Meanwhile, the need for more sustainable 

structures has been only preliminarily shown herein by the estimated greenhouse gases emitted 

due to the demolition of buildings. However, its importance can be clearly demonstrated by the 

United Nations 9th Sustainable Development Goal, which has as a mission statement “build 

resilient infrastructure, promote inclusive and sustainable industrialization, and foster 

innovation” (United Nations, 2015). 

 

1.2. Background and state-of-art 

As mentioned in the previous section, bridges need to be resilient and quickly constructed. 

With the goal of accelerating construction, precast elements have been widely adopted for the 

superstructure of the bridge. The use of precast elements in the substructure of the bridge, 

however, is less widespread.  

In order to enable the use of precast elements in the substructure of seismic-resistant 

bridges, “emulative” and “non-emulative” connection solutions have been proposed. 

Emulative connections, as the name discloses, intend to mimic the seismic behavior of the 

connections of cast in-situ concrete structures. They can be categorized based on the force 

transfer mechanism (Marsh et al., 2011):  

(a) Bar Coupler Connection (Figure 1.1a): the longitudinal reinforcement of the column is 

mechanically coupled to the foundation or cap-beam reinforcement. The load is 

transferred from the rebar of one element to the co-aligned rebar of the other element.  

(b) Pocket Connection (Figure 1.1b): the foundation or cap-beam is precast with a void 
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(“pocket”), in which the extended longitudinal reinforcement of the column is fitted 

into. After assembling the elements, the void is cast in-situ, connecting both elements.     

(c) Grouted Duct Connection (Figure 1.1c): the longitudinal reinforcement of the column 

is connected to the foundation or cap-beam through individual ducts, which are later 

filled with grout. The force in the connecting rebars is transferred to the surrounding 

concrete. 

(d) Socket Connection (Figure 1.1d): the column is precast with an extra length to embed 

it in the foundation or cap-beam. If the other element is also precast, the connecting 

element (i.e. the foundation and/or cap-beam) is cast with a void, and, after assemblage, 

the gap between them is filled with grout. The column is anchored by the bond between 

the interface surfaces and the grout. 

 

Figure 1.1. Emulative connections. 

Although emulative connections reduce the construction time, they still lead to the same 

level of damage observed in capacity-designed structures.  Non-emulative connections, on the 

other hand, reduce the system’s residual displacements and damages, and, hence, are also 

resilient. The non-emulative connection consists of a dry connection, in which the precast 

column is only connected to the foundation and/or cap-beam through unbonded tendons. As 

the columns are allowed to rock, the joints can sustain large displacement demands with 
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reduced or no damage. The unbonded tendons provide a recentering mechanism, which reduces 

the system’s residual displacements. In some cases, energy dissipating devices are employed 

for controlling displacement demands.  

The concept was early explored as connections for precast frame elements (Nakaki et al., 

1999; Priestley et al., 1999; Priestley & Tao, 1993; Stone et al., 1995), where the rocking 

section was located at the end of the beams, allowing the precast posttensioned beams to rock. 

Mild-steel reinforcing bars were also provided for energy dissipation. Their test results have 

shown that, in terms of residual displacement and accumulated damage, the proposed system 

presents similar or better seismic performance than cast in-situ structures. 

Mander & Cheng (1997) introduced the concept of non-emulative connections to bridge 

structures. They performed cyclic tests on a precast rocking bridge system, in which 

posttensioning was provided to the piers, and the pier ends were protected by a steel disc. The 

system presented good recentering capabilities and almost no damage, but low energy 

dissipation. In an attempt to increase energy dissipation and control the displacement demands, 

it has been proposed to introduce bonded mild-steel reinforcing bars (Davis et al., 2012; 

Finnsson, 2013; Thonstad et al., 2016, 2017) or external energy dissipating devices (Guerrini 

et al., 2015; Marriott et al., 2009; Mashal & Palermo, 2019; White & Palermo, 2016) to the 

connection. Both solutions are effective, but the external energy dissipaters are more practical 

for repair after an earthquake event.  

Apart from the energy dissipation mechanism, the design and detailing of the column 

ends have also been a subject of study. Due to the column rotation, there is stress concentration 

on the rocking toe and, therefore, it needs to be appropriately designed to avoid damage. The 

simplest proposed solution, which does not require the use of unconventional construction 

material or complex construction methods, is the confinement of the concrete in these regions 

with a steel jacket (Mashal & Palermo, 2019; Thonstad et al., 2016, 2017; White & Palermo, 

2016). The use of ductile and high-strength materials has also been suggested. Finnsson (2013) 

tested a rocking column cast with a fiber-reinforced concrete shell, while Guerrini et al. (2015) 

assessed the seismic behavior of a composite steel-concrete hollow-core column. The column 

was constructed with an inner and outer steel shell cast with high-performance concrete. Others 

(Nguyen et al., 2017; Panagiotou et al., 2015; Trono et al., 2015) adopted hybrid fiber-

reinforced concrete (HyFRC) on the column ends, improving the concrete’s ductility in the 

rocking toes, and consequently, reducing the observed damage. 
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Within the effort of applying precast elements in seismic active regions, precast 

segmental columns have also been explored. It follows a similar philosophy as the non-

segmental columns; the segments are connected through unbonded tendons and extra energy 

dissipating devices can be adopted. Some researchers (Chou & Chen, 2006; Ou et al., 2010; 

Wang et al., 2008, 2018; Yamashita & Sanders, 2009) have explored the concept aiming to 

provide enough prestress and/or shear keys so that the segments do not slide. Sideris et al. 

(2014a, 2014b) tested hybrid sliding-rocking (HSR) segmental columns, which have a rocking-

dominant bottom joint and sliding-dominant intermediate joints. The sliding joints provide a 

source of energy dissipation, avoiding the need for extra energy-dissipating devices. Although 

the joints behaved as expected in the cyclic tests (Sideris et al., 2014b) (i.e. sliding or rocking 

in the predefined joints), only the first intermediate joint slid during the shaking table tests 

(Sideris et al., 2014a). Salehi et al. (2021) improved the design of the HSR columns by reducing 

the number of sliding joints and refining of the design of the sliding interface. The specimens 

were tested under several loading protocols, including bilateral and torsional loading. The 

specimens performed satisfactorily with limited damage. 

Most of the studies on the seismic behavior of bridges designed with non-emulative 

connections (including the ones discussed above) focused on systems with positive lateral 

stiffness. Meanwhile, the seismic behavior of systems exhibiting negative lateral stiffness has 

received less attention, at least in terms of experimental work. Cheng (2008) conducted shaking 

table tests on precast columns with and without the restraining tendon. The specimen without 

a tendon (“R30PNK250”) presented negative lateral stiffness, and all specimens (restrained or 

not) experienced similar drift ratios and no damage or residual displacements. Zhou et al. 

(2019) also conducted shaking table tests on a system with negative lateral stiffness. The 

system was composed of four posttensioned rocking columns, a foundation and a slab. No 

damages were observed and negligible residual displacements were reported. 

Tests on small-scale specimens representing systems with negative lateral stiffness have 

also been performed. Interested in comparing the experimental response with the analytical 

equations presented by Housner (1963), some researchers (Lipscombe & Pellegrino, 1993; 

Peña et al., 2008; Priestley et al., 1978; Wittich & Hutchinson, 2015) have performed shaking 

table or free-vibration tests on free-standing blocks (without any tendon). ElGawady et al. 

(2011) evaluated the effects of the interface material on the dynamic response of free-standing 

blocks. Three different interface materials were explored: concrete, timber and rubber. When 

a rigid interface material (i.e. timber or concrete) was adopted, the measured coefficient of 
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restitution of the free-standing block agreed well with the analytical restitution coefficient 

adopted by Housner (1963), which is calculated assuming conservation of angular momentum. 

When a soft interface material was adopted, however, the analytical coefficient of restitution 

overestimated the measured values. Moreover, in order to validate an analytical model for a 

deformable rocking column, Truniger et al. (2015) conducted shaking table tests on a small-

scale cantilever column allowed to rock. The comparison of the experimental and analytical 

responses showed that the response of the analytical model is satisfactory for predicting the 

maximum rotation of the system. 

In contrast to the limited amount of experimental work, the response of systems 

exhibiting negative lateral stiffness has been, analytically and numerically, extensively studied. 

Housner (1963) was one of the pioneer authors to discuss the seismic stability of free-standing 

rigid blocks. He has shown that the seismic stability of blocks is dependent on their size and 

the frequency of the excitation; the larger the block or the excitation frequency, the more stable 

is the system. Makris (2014) has shown that the enhanced seismic stability of the blocks with 

larger size sources from the increased rotational inertia of the larger blocks. Meanwhile, Makris 

& Kampas (2016) investigated the influence of two competing parameters to the rocking 

response: the block’s size and slenderness, which are proportionally and inversely related to 

the seismic stability of the system, respectively. They concluded that, depending on the 

characteristics of the ground motion and if it has a dominant frequency, one of the parameters 

has larger influence on the seismic response of the system than the other.   

Using dimensional and orientational analysis, Dimitrakopoulos & DeJong (2012b) have 

explored self-similarities in the response of rigid rocking blocks. Recently, Charalampakis et 

al. (2022) revisited the dynamics of the rigid rocking block. Using energy conservation, the 

authors claim to have derived “exact” criteria for the overturning of the block in the free-

vibration regime. 

Makris & Vassiliou (2013, 2014) have studied the seismic response of rigid cap-beam 

freely supported by rigid rocking columns. They show that the seismic response of the rocking 

frame is equivalent to the seismic response of a larger rigid rocking block. Therefore, similarly 

to the single block, the heavier the frame’s cap-beam, the more stable is the system. 

Dimitrakopoulos & Giouvanidis (2015) studied the response of rocking frames with 

asymmetric columns. The authors compared the response of asymmetric and symmetric 

frames, and concluded that the asymmetry has a marginal influence on the response of rocking 

frames. DeJong & Dimitrakopoulos (2014) proposed a methodology to obtain equivalence 
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between different rocking systems and the solitary rigid rocking block.  Using the proposed 

methodology, the response of different systems can be predicted using only the formulations 

for the solitary rocking block. Dar et al. (2018) investigated the influence of top eccentricities 

on the stability of rocking frames and concluded that the closer the contact point between the 

beam and pier, to the pier center, the less seismically stable is the rocking frame. 

Taking into consideration the deformations of the analysed system, Acikgoz & DeJong 

(2012) presented the distinct characteristics of the response of a deformable rocking structure. 

Their work concluded that flexible rocking structures are more stable than rigid rocking 

structures. Vassiliou et al. (2017b) developed a finite-element model for flexible rocking 

frames. Similarly to Acikgoz & DeJong (2012), they concluded that the system’s flexibility is 

not detrimental for the system’s stability. Bachmann et al. (2017) assessed the seismic response 

of an elastic structure placed on top of a rocking frame, which can be interpreted as a building 

designed with a “soft-story”. They explored the stability of the system when subjected to 

ground-motion excitations.  

Using a nonsmooth dynamic analysis approach, Giouvanidis & Dimitrakopoulos (2017a) 

studied the impact and uplifting phenomena of both flexible and rigid rocking blocks. Their 

analyses show that the proposed formulations capture well the post-impact behavior of both 

types of structures, without requiring any assumptions on the post-impact state of the system 

(i.e. rocking, bouncing, detachment, or full contact). Vlachakis et al. (2021) proposed a novel 

viscous damping model for rocking systems, which, based on the conducted analyses, capture 

well the energy dissipation of the system at impact. 

Vassiliou & Makris (2015) and Makris & Vassiliou (2015) derived the equations of 

motion for rigid rocking blocks and frames, respectively, restrained by elastic restrainers. The 

authors showed that the lateral post-uplift stiffness of the system depends on the axial stiffness 

of the elastic restrainers and, thus, the system can present negative or positive lateral stiffness. 

They also conclude that the restrainer contribution to the system’s stability becomes 

insignificant for systems with larger columns. In such cases, the system’s seismic resistance 

comes mainly from the rotational inertia.  

Alternatively to elastic restrainers, it has also been proposed to use energy dissipating 

devices to control the displacements of a rocking system. Dimitrakopoulos & DeJong (2012a) 

explored the response of rocking columns equipped with viscous dampers. Their analyses 

included unilateral and bilateral linear and nonlinear viscous dampers. They concluded that 
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linear dampers are more effective in reducing the displacement demand of the system. Thiers-

Moggia & Málaga-Chuquitaype (2019) studied the response of rocking blocks equipped with 

inerters, which is a mechanical device that develops resisting forces proportional to the 

acceleration of its terminals. Makris & Aghagholizadeh (2019) also investigated the seismic 

response of the rocking blocks equipped with energy dissipating devices. The authors observed 

that, in most cases, the viscous or hysteretic dampers reduce the displacement demand of the 

block. Nevertheless, the opposite was also observed. Aghagholizadeh (2020) compared the 

response of a solitary rocking block equipped with viscous or hysteretic dampers and proposed 

a finite element model for such systems. He concluded that viscous dampers should be 

preferred to hysteretic dampers. Giouvanidis & Dimitrakopoulos (2017b) investigated the 

seismic behavior of a rocking frame equipped with both elastic restrainers and energy 

dissipators. They concluded that the system can outperform or underperform free-standing 

blocks. 

The three-dimensional (3D) behavior of rocking systems has also been explored. Koh & 

Mustafa (1990) derived the equations of motion for a rigid cylindrical block on top of a rigid 

foundation. The block was allowed to rock, roll, but not to slide. Later on, this work was 

extended by Koh & Hsiung (1991), modeling the deformability of the underlying foundation 

through springs and dashpots (Winkler foundation). Vassiliou et al. (2017a) also proposed 

equations of motion for a rigid cylindrical block. However, differently from Koh & Mustafa 

(1990), in their derivations, the block is not allowed to roll, but only to wobble. Using the same 

constraints, Vassiliou (2018) extended the derivations for a 3D rocking frame. Similarly to the 

two-dimensional (2D) formulations, it was concluded that the introduction of the slab increases 

the seismic stability of the system. The equations of motion for the 3D response of blocks with 

rectangular cross-section has also been derived (Chatzis & Smyth, 2012; Zulli et al., 2012). 

Whenever the 3D response was compared to the 2D response, the authors (Vassiliou, 2018; 

Vassiliou et al., 2017a; Zulli et al., 2012) concluded that the 2D response is unconservative, 

predicting smaller displacement demands than the ones observed in the 3D model. 

As presented above, there is a large number of analytical and numerical models for 

predicting the response of systems with negative lateral stiffness. However, such models have 

not been trusted by the engineering community because they fail to reproduce the system’s 

seismic response observed in experiments to a particular ground motion (Lipscombe & 

Pellegrino, 1993; Peña et al., 2008; Priestley et al., 1978; Yim et al., 1980; Wittich & 

Hutchinson, 2015). Recently, Bachmann et al. (2018) proposed that analytical and numerical 
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models do not need to accurately predict the response of a system to a single ground motion, 

as the conventional validation test in seismic engineering is, but that it is sufficient that the 

model predicts the statistics of the system response. They showed that the model proposed by 

Housner (1963) can be used to predict the probability distribution of the maximum tilt angle of 

a rigid rocking oscillator. Using the same approach, Vassiliou et al. (2021) conducted shaking 

table tests on a rocking podium, and compared the statistics of the maximum observed 

displacement of the system to the statistics of the maximum displacement predicted by several 

numerical models. The statistics of the observed and predicted maximum displacement were 

in reasonably good agreement. 

 

1.3. Research gap and objectives 

Despite the push for resilient and rapidly constructed bridges, as well as the vast number of 

analytical and numerical studies showing that systems exhibiting negative lateral stiffness are 

seismically stable and can outperform capacity-designed structures (Agalianos et al., 2017), 

negative stiffness systems have drawn less attention. This “lack of interest” is because the 

response of systems with negative lateral stiffness has been thought to be less predictable (Peña 

et al., 2008; Yim et al., 1980) (at least in a deterministic approach) and it cannot be related to 

the response of systems with positive lateral stiffness (Makris & Konstantinidis, 2003), which 

hinders the use of code-provided spectra for their design.  

However, systems with negative lateral stiffness have a potential advantage. When the 

rocking column is simply supported on a foundation (i.e. no sort of connection between the 

foundation and the column exists), the rocking uplift acts as a fuse, limiting the forces 

transmitted to the foundation and consequently, the foundation’s design forces and moments. 

Hence, such a system can be perceived as an alternative seismic isolation technology for precast 

structures. It has the potential to reduce the size of pile foundations compared to conventional 

bridges, and consequently, the amount of material used for their construction. This is an 

appealing advantage, which can make bridges not only resilient and quickly built, but also more 

sustainable than their counterparts with positive lateral stiffness.  

In order for bridges designed with negative lateral stiffness to find their way to practice, 

it is imperative that the following research gaps are filled: (1) a simple analysis and design 

method for such structures is established, and (2) shake table tests are performed so that their 

performance is evaluated and data for the validation of numerical models is generated. 
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This dissertation presents analytical and experimental studies addressing both the above 

research gaps. The analytical part addresses the need for a simple design method for systems 

with negative lateral stiffness. It explores how to construct spectra for such systems and 

culminates in the development of a uniform risk spectra for systems with negative lateral 

stiffness. Meanwhile, the experimental campaign offers further experimental data on large-

scale testing of bridge systems with negative lateral stiffness, providing further evidence on 

their satisfactory seismic behavior. The experimental campaign consisted of quasi-static cyclic 

tests and shaking table tests on reinforced-concrete rocking columns. The results of the tests 

were used to validate rigid body analytical models. 

 

1.4. Structure of the dissertation 

This dissertation comprises seven chapters. Chapter 1 presents a short introduction to the 

seismic behavior of rocking structures exhibiting negative stiffness, which is the central topic 

of the dissertation. Chapter 2 presents an analytical study on the dynamic response of rigid 

rocking blocks. The chapter proposes an alternative formulation for the equations of motion 

that govern the rocking motion, which reveals that, provided the block is not close to overturn, 

its displacement demand only depends on the block’s slenderness, and not on its size. The 

independence of the displacement demand is proved for both analytical pulses and recorded 

ground motions. Such property of the system allows for the construction of rocking spectra that 

can be applied to blocks of different sizes. The chapter concludes with a design method that 

adopts the proposed rocking spectra.  

Chapter 3 extends the work described in the previous chapter for other systems that 

present negative lateral stiffness (e.g. restrained rocking blocks, or rocking block with an 

extended curved base). Studying the dynamic response of such systems, the chapter shows that, 

similarly to the rigid rocking block explored in Chapter 2, their displacement demand can also 

be estimated through a simplified system. This simplified system, called therein Zero Stiffness 

Bilinear Elastic (ZSBE) system, is a system with a lateral bilinear elastic response, which 

consists of an initial positive stiffness branch, and a second zero stiffness branch. The zero 

stiffness branch is a simpler system that needs one less parameter to be defined. Using the 

ZSBE system, the displacement demand of systems with negative lateral stiffness is estimated 

through two approaches: the equal displacement rule (previously discussed in Chapter 2 for the 

rigid rocking block), and the equal energy rule. The displacement demands predicted by both 

approaches are explored using recorded ground motions. The analyses reveal that, although 
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both approaches lead to good predictions of the displacement demand, the equal energy rule is 

usually more conservative than the equal displacement rule. 

After generalizing the spectra for different rocking structures, Chapter 4 casts the rocking 

response within the framework of performance-based engineering. Using the ZSBE system 

proposed in the previous chapter, this chapter presents a methodology for constructing uniform 

risk spectra for rocking structures. It offers the spectra for six different locations in Europe 

constructed with two different intensity measures: the peak ground velocity (PGV) and the 

peak ground acceleration (PGA). The chapter follows with a discussion on the efficiency of 

the intensity measures in different ranges of displacement demand. It shows that the PGA is 

more efficient for predicting rocking initiation, while the PGV is a better intensity measure for 

predicting the maximum displacements. Finally, an analytical approximation of the PGV-based 

spectra is proposed.  

Chapters 5 and 6 address the need for more experimental tests on large-scale precast 

rocking systems. Chapter 5 presents quasi-static cyclic experimental tests conducted on two 

variations of a 1:5 scale restrained rocking column and a cap-beam, in which the only difference 

between the two specimens was the protection of their ends. One of the columns had its ends 

protected by steel jackets, while the other one was protected only by steel discs. The columns 

were subjected to drift ratios of up to 16%, showing only minor damage. The chapter shows 

that the observed lateral behavior compared reasonably well with the rigid body model 

presented in Chapter 3, performing poorly only in terms of predicting the pre-uplift stiffness. 

Chapter 6 follows with the results of the shaking table tests of a rocking system. The 

specimen comprised a slab on top of four rocking columns, designed and constructed similarly 

to the columns tested in Chapter 5. The specimen was subjected to 181 ground motions. 

Although the last ground motion caused the unexpected collapse of the specimen due to 

premature failure of the unbonded tendons, negligible damage was observed in the previous 

180 tests. The main observed damage was the abrasion at the perimeter of the columns ends. 

Additionally to the experimental observations, the chapter also discusses the statistical 

validation of a 3D rigid body model for rocking frames. 

The dissertation closes with Chapter 7, which summarizes the key findings and important 

contributions, as well as suggestions for future research. 
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2. Displacement-based analysis and design of rocking structures 

 

This chapter consists of the post-print version of the following published article, differing from 

the original only in terms of layout and formatting: 

Reggiani Manzo, N., Vassiliou, M. F. (2019) Displacement-based analysis and design of 

rocking structures. Earthquake Engineering & Structural Dynamics, 48(14), 1613-1629. 

Available at https://onlinelibrary.wiley.com/doi/full/10.1002/eqe.3217 

 

 Abstract 

The response of a rigid rocking block is traditionally described by its tilt angle. This is a correct 

description, but this paper suggests that describing rocking via displacements is more 

meaningful, because it uncovers that two geometrically similar blocks of different size will 

experience the same top displacement, provided that they are not close to overturn. The above 

is illustrated for both analytical pulse excitations and for recorded ground motions. Thus, the 

displacement demand of a ground motion on a rocking block is only a function of its 

slenderness, not of its size. This reduces the dimensionality of the problem and allows for the 

construction of size-independent rocking demand spectra. 

 

2.1. Introduction 

The systematic study of the rocking oscillator started with Housner's seminal paper in 1963 

(Housner, 1963). Motivated by the surprising stability that tall slender “golf-ball-on-a-tee” 

structures presented in the 1960 Chilean earthquake, he showed that (a) out of two 

geometrically similar planar rigid objects, the larger one is harder to overturn dynamically, and 

(b) the overturning potential of a ground motion increases with its dominant period. 

The interest on the rocking oscillator (Acikgoz & DeJong, 2012; Chopra & Yim, 1985; 

Ma, 2010; Oliveto et al., 2003; Psycharis, 1991) sources from its ability to describe systems 

that cannot be described adequately by the classical elastic oscillator (Makris & Konstantinidis, 

2003). Indeed, the rocking oscillator can be used to understand the behavior of masonry 

structures (Casapulla et al., 2017; DeJong, 2012; Kalliontzis & Schultz, 2017; Mehrotra & 

DeJong, 2018; Stefanou et al., 2011; Tondelli et al., 2016), the seismic behavior of unanchored 

equipment (Dar et al., 2016, 2018; Di Egidio et al., 2015; Di Sarno et al., 2019; Konstantinidis 

& Makris, 2010; Mouzakis et al., 2002; Sextos et al., 2017; Voyagaki et al., 2018; Wittich & 

Hutchinson, 2015), and to explain the stability of ancient Greco-Roman and Chinese temples 

https://onlinelibrary.wiley.com/doi/full/10.1002/eqe.3217
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that have been standing for more than 2500 years in earthquake prone regions (Mouzakis et al., 

2002; Nikolić et al., 2019; Papaloizou & Komodromos, 2009; Papantonopoulos et al., 2002; 

Vassiliou & Makris, 2012). Rocking motion has also inspired researchers to use inerters as 

seismic protection devices (Makris & Kampas, 2016; Thiers-Moggia & Málaga-Chuquitaype, 

2019). What is not widely known in the western world is that rocking has been used since more 

than 40 years as a seismic isolation method in the USSR (and now in former USSR countries) 

(Bachmann et al., 2017). The Soviet system comprises an intentionally designed soft rocking 

story. The uplift of the rocking columns works as a mechanical fuse and limits the forces 

transmitted to the superstructure. Rocking has also been suggested as a seismic design method 

for bridges, either without (Agalianos et al., 2017; Anastasopoulos et al., 2010; 

Dimitrakopoulos & Giouvanidis, 2015; Makris & Vassiliou, 2013, 2014; Vassiliou, 2018; 

Vassiliou et al., 2017a; 2017b; Xie et al., 2019) or with (Giouvanidis & Dimitrakopoulos, 

2017b; Mander & Cheng, 1997; Thonstad et al., 2016) a restraining system. In New Zealand, 

a 60-m-tall bridge designed to rock has already been built across the Rangitikei River in 1981 

(Beck & Skinner, 1973; Ma & Khan, 2008), and very recently, the Wigram-Magdala restrained 

rocking bridge has been constructed (Sharpe & Skinner, 1983). Moreover, a 33-m-tall chimney 

at the Christchurch airport has been designed to uplift (Routledge et al., 2016), and three 30- 

to 38-m-tall chimneys in Piraeus, Greece, have been retrofitted by allowing them to uplift in 

case of an earthquake. 

Makris & Vassiliou (2015) and Vassiliou & Makris (2015) have suggested that as the 

size of the rocking system increases, the restraining system can become obsolete and merely 

increases the design forces of both the superstructure and the foundation. In buildings, rocking 

walls have been suggested as a resilient design approach (Aghagholizadeh & Makris, 2018; 

Makris & Aghagholizadeh, 2017, and references therein). 

One of the main challenges for the wider adoption of rocking systems stems from their 

response being absolutely uncorrelated to any elastic system. Therefore, the elastic-based 

research results are not applicable: e.g., intensity measures, response spectra, motion-to-motion 

variability, and design ground motions need to be redetermined. To this end, the rocking 

oscillator should be described with the minimum parameters needed. 

This paper suggests that the current state of the art of using the tilt angle θ as the DOF of 

a rocking system is, of course, correct, but it is not the optimal. Using the top displacement of 

the oscillator, u, reduces the dimensionality of the problem. Then, the displacement demand on 

a rocking block becomes only slightly dependent on its size and is a function only of its 
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slenderness. 

 

2.2. Rotation-based dimensional analysis of the rocking oscillator 

The equation of in-plane motion for a rigid rectangular rocking column (Figure 2.1) with 

slenderness α and a semi-diagonal of length R (Figure 2.1) is: 

 ( ) ( )
2

sin cos
gu

p
g

    
 

= −  + −  − 
 

 (2.1) 

where 

 ( ) ( )/3 4p g R=  (2.2) 

is the frequency parameter of the rocking column. The upper sign in front of α corresponds to 

a positive, and the lower to a negative rocking angle θ with respect to the defined coordinate 

system (Figure 2.1). 

 

Figure 2.1. Geometric characteristics of the rigid rocking block. 

It is assumed that energy is only dissipated during impact. Housner (1963) assumed that 

(a) the impact is instantaneous and (b) that the impact forces are concentrated on the impacting 

corner. Under these assumptions, the ratio of postimpact to preimpact rotational velocities is: 

 23
1 sin

2

after

before

r





= = −  (2.3) 

Researchers (including the senior author of this paper) have critically evaluated the 
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Housner model—especially its damping assumptions (Chatzis et al., 2017; Giouvanidis & 

Dimitrakopoulos, 2017a; Kalliontzis & Sritharan, 2018; Truniger et al., 2015; Vassiliou et al., 

2015). Indeed, while assuming the impact to be instantaneous seems a reasonable assumption, 

there is no evident reason to assume that the impact forces act on the impacting corner. Given 

the large sensitivity of the time history response of the rocking oscillator to all the parameters 

that define it, Housner's model might seem simplistic. However, experimental testing shows 

that even though it cannot predict the response to an individual ground motion, it can predict 

the statistics of the response to a set of ground motions (Bachmann et al., 2018). Therefore, we 

consider it adequate within the scope of earthquake engineering. 

By inspecting Equations (2.1) and (2.2), one can conclude that the rotational response of 

a rocking block to a ground motion is a function of: 

 ( )max 1
, , , ( )gR g u tf  =  (2.4) 

As the gravity acceleration, g, is constant, the rotational response to a given ground 

motion is a function of two parameters α and R, similarly to the elastic oscillator, in which the 

response is a function of the eigenperiod, T, and damping ratio ζ. Therefore, by keeping one 

parameter constant (R or α), one can construct rotational spectra for rocking structures. 

However, unlike the elastic oscillator, where, for usual structures, one parameter (T) is more 

influential than the other (ζ), in the case of rocking structures, both R and α strongly influence 

the rotational response. 

Since ground motions containing distinguishable acceleration and/or velocity pulses are 

particularly destructive (Vassiliou & Makris, 2011, and references therein), Zhang & Makris 

(2001) have studied the response of a planar rocking block to acceleration pulses given by 

analytical expressions. A pulse of a given waveform can be described by two parameters. 

Zhang & Makris (2001) chose the acceleration amplitude ap and the dominant cyclic frequency 

ωp. Then, the response will be a function of: 

 ( )max 2
, , , ,p pR g af   =  (2.5) 

Equation (2.5) involves six quantities with two reference dimensions (Time and Length). 

Therefore, according to the Vaschy-Buckingham Π-Theorem of Dimensional Analysis 

(Buckingham, 1914; Vaschy, 1892), the number of dimensionless parameters describing the 

problem is 6–2 = 4. There is not a unique solution for choosing these four parameters. Zhang 

& Makris (2001) suggested describing the problem as: 
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 max 1 , ,
tan

p pa

p g


  



 
=  

 
 (2.6) 

p

p


is often called size-frequency parameter and depends on the frequency of the 

excitation and on the size of the block. 
tan

pa

g 
 is usually called nondimensional acceleration, 

but it can also be perceived as a nondimensional strength parameter, since mgRsinα is the 

moment that withstands uplift (“strength”) and mapRcosα is the overturning moment. 

Therefore, dimensional analysis reduces the dimensionality of the problem from six to 

four. Hence, by keeping the slenderness parameter α constant, one can produce contour plots 

of the maximum tilt angle θ as a function of 
p

p


 and 

tan

pa

g 
, the so-called rocking spectra. It 

is worth mentioning that Dimitrakopoulos & DeJong (2012) have shown that for small values 

of α one can drop it as an independent parameter from Equation (2.6) as long as the coefficient 

of restitution, r, is treated as an extra independent parameter—however, in this section, r is not 

treated independently. 

Figure 2.2 shows the rocking spectra of symmetric and antisymmetric Ricker wavelets. 

Ricker wavelets are defined as the second and third derivative of the Gaussian: 
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where 

 
2

p

p

T



=  (2.9) 

and βr = 1.3801 to enforce that the function maximum is equal to ap. 

The spectra confirm the remarkable observation that larger structures are harder to 

overturn dynamically and that higher frequency pulses have a lower overturning potential. 

Interestingly, they show a heavy dependence of the response on both 
p

p


 and 

tan

pa

g 
. 
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Figure 2.2. Nondimensional rocking spectra based on rotations (α = 0.1). 

 

2.3. Displacement-based dimensional analysis of a rocking oscillator excited 

by analytical pulses 

2.3.1. Analysis based on the frequency parameter of the block (p) 

The dimensional analysis of the previous section is one of the many correct solutions to 

describe the problem. It is based on rotations. This section, however, suggests that there is 

another, displacement-based basis of describing the problem, which is also mathematically 

correct and more convenient. The convenience does not lie only on the fact that earthquake 

engineers are more used to displacements than rotations: A displacement-based analysis further 

reduces the dimensionality of the problem allowing the construction of 2D rocking spectra. 

Indeed, the rotation-based analysis of the problem is based on the “recipe for similarity 

analysis” described in Chapter 5 of the well-known Dimensional Analysis textbook of 

Barenblatt (1996): “If the problem has an explicit mathematical formulation, the independent 

variables in the problem and the constant parameters that appear in the equations, boundary 

conditions and initial conditions, etc., are adopted as the governing parameters”. As this section 

shows, choosing the parameters that appear in the analytical equation might not be the most 

convenient way of describing this particular problem. 

The top displacement of the rocking block can be obtained by a one-to-one mapping on 

the rotations: 

 ( ) ( )2 sin 2 sinu R R  = −  −  (2.10) 
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The upper sign in front of α corresponds to a positive and the lower sign to a negative tilt 

angle θ with respect to the defined coordinate system. If we use the top displacement as the 

single DOF of the problem, then the maximum response can be described as: 

 ( )max 3
, , , ,p pR g au f  =  (2.11) 

To numerically compute the response of the block, we will resort to Equation (2.1), which 

is given in terms of rotation θ. Then, using Equation (2.10), we compute the displacement 

response. 

Applying Buckingham's Π-theorem on Equation (2.11), one possible 

nondimensionalization is: 

 

2

max

2 , ,
tan

p p p

p

u a

a p g

 
 



 
=  

 
 (2.12) 

Figure 2.3 shows the contour plots of 

2

max p

p

u

a


 as a function of 

p

p


 and 

tan

pa

g 
 for a 

given α = 0.1. The remarkable observation is that within the nonoverturning region, the 

nondimensional displacement depends heavily (and strongly nonlinear) on the nondimensional 

strength parameter 
tan

pa

g 
 but only loosely on the size-frequency parameter 

p

p


. When the 

block is not close to overturning, the influence of 
p

p


 is practically negligible. 

 

Figure 2.3. Nondimensional rocking spectra based on displacements. 
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Figure 2.4 plots 

2

max p

p

u

a


 as a function of 

tan

pa

g 
 for different values of 

p

p


 (and a 

constant slenderness α = 0.1). For reasons of figure clarity, only nonoverturning values of 

2

max p

p

u

a


 are plot, i.e., not plotting 

2

max p

p

u

a


 means that the block has overturned. Figure 2.5 

plots 

2

max p

p

u

a


 as a function of 

p

p


 for different values of

tan

pa

g 
 (and α = 0.1). Again, it is 

observed that, as long as the system is away from overturning, the dominant factor that 

influences 

2

max p

p

u

a


 is 

tan

pa

g 
, not 

p

p


. In fact for small values of nondimensional 

acceleration 
tan

pa

g 
, the response for all values of size-frequency parameter 

p

p


 is practically 

the same. The response starts to deviate only when the system is close to overturning—or has 

overturned. 

 

Figure 2.4. 

2

max p

p

u

a


 vs 

tan

pa

g 
 plots for constant 

p

p


 (α = 0.1). 

 

In other words, a small and a large block, geometrically similar to each other and excited 

by analytical pulses, will have roughly equal top displacement, provided that the displacement 
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is not enough to bring them close to overturn. A given pulse will induce the same displacement 

demand. The larger block is more stable simply because its displacement capacity (i.e., the 

displacement needed to cause overturn, i.e., its width) is larger. 

 

Figure 2.5. 

2

max p

p

u

a


 vs 

p

p


 plots for constant 

tan

pa

g 
 (α = 0.1). 

 

Therefore, using a displacement basis to describe the problem further decreases the 

number of parameters needed to define it. Practically, the displacement demand on a rocking 

oscillator excited by a pulse is only a function of its nondimensional strength parameter 
tan

pa

g 

, not of its size. 

The strongly nonlinear nature of rocking motion is also evident in Figure 2.4 and Figure 

2.5. 

2

max p

p

u

a


, which expresses the relation of the rocking displacement to the ground motion 

displacement, does not depend monotonically on the strength parameter 
tan

pa

g 
. In fact, the 

discontinuities of the 2
p

p


=  line of Figure 2.4 convey that a block can survive a stronger pulse 

and overturn in a weaker one. 
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Going back to dimensional quantities, Figure 2.6 plots the displacement response to a 

symmetric Ricker pulse with ap = 1 g and Tp = 0.5 seconds and to an antisymmetric Ricker 

pulse with ap = 1 g and Tp = 1 seconds. The plots confirm that the displacement demand only 

loosely depends on the size, if the block is not close to overturning. The dominant factor is the 

slenderness. Therefore, we can define the displacement demand rocking spectrum of a ground 

motion as a unary function: 

 ( )   if 2demand demandu f u b=  (2.13) 

which is computed via Equations (2.1) and (2.10) for a large enough block size. To check the 

stability of a block, one has to compute the maximum displacement demand via Equation (2.13) 

and compare it with the displacement capacity (i.e., the block width). 

Therefore, the reduction of the dimension of the problem follows two steps: (a) applying 

Buckingham's theorem and (b) observing that the displacement demand is roughly independent 

of the size. The first step is exact and follows from dimensional analysis. The second step is 

approximate and in this section is illustrated for analytical pulses. Blochlinger (2016) gave a 

first indication that the approximation also works for recorded ground motions. Further 

evidence supporting this approximation and highlighting its limitations are given in a next 

section of this paper. 

 

Figure 2.6. Maximum block displacement as a function of block size for symmetric and anti-

symmetric Ricker excitation. 
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2.3.2. Analysis based on the base width of the block (b) 

The previous section chooses the frequency parameter p and the slenderness of the block, α, as 

the two parameters to define it. However, p has a physical meaning that is totally unrelated to 

rocking. It is the natural frequency that the block would have had if it was hanging from its 

corner (DeJong & Dimitrakopoulos, 2014). But this is merely a coincidence, rocking blocks 

have no natural frequency (Housner, 1963), and the use of p often creates misunderstandings. 

In this section, we propose to describe the block with two physical parameters that have a clear 

physical meaning, directly related to the rocking problem. The slenderness α is retained, as it 

controls the uplift of the structure (and could be parallelized with the strength of a system), but 

p is replaced by b, which is the halfwidth of the base and exactly equal to one half of its 

displacement capacity. Then the displacement response will be: 

 ( )max 4
, , , ,p pb g au f  =  (2.14) 

Using Buckingham's Π theorem, we get: 

 
2 2

max

3 , ,
tan

p p p

p p

u a b

a g a

 
 



 
=  

 
 

 (2.15) 

The term 
tan

pa

g 
 would be the reciprocal of the nondimensional strength, 

2

p

p

b

a


 would 

be the nondimensional displacement capacity, and α (taken as an independent parameter) 

controls damping, because it controls the coefficient of restitution. 

Figure 2.7 plots displacement spectra according to the suggested nondimensionalization. 

One can observe that for both pulses, a base (i.e., a displacement capacity = 2b) of roughly nine 

times the length scale of the pulse 
2

p

e

p

a
L


=  is enough to keep the block stable, no matter what 

the nondimensional strength parameter is. 

 

2.4. Displacement-based analysis of a rocking oscillator excited by recorded 

ground motions 

Analytical pulses can be used to qualitatively study the rocking oscillator. However, as the 

rocking problem is very sensitive to all of its parameters, pulses would not suffice to prove that 

the displacement demand on a rocking structure depends only on its slenderness and not on its 

size. Therefore, this section examines the displacement response of a rocking block excited by 
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recorded ground motions. 

 

Figure 2.7. Displacement-based nondimensional rocking spectra using the width of the block 

to characterize its size.  

 

2.4.1. FEMA P695 ground motions 

There is no consensus in the engineering community on what ground motions should be used 

in time history analysis. Several approaches exist including using recorded (scaled or 

unscaled), artificial, or synthetic ground motions. In this paper, we choose to use the three sets 

of ground motions proposed by FEMA P695 (FEMA, 2009) (far-field, near-field pulse-like, 

and near-field non–pulse-like) only as a means to illustrate our rocking-related argument, 

without taking stance on the debate around ground motions. It is evident that any ground 

motion selection method based on the response of an elastic system is in principle not 

applicable in the case of the rocking oscillator, as the elastic and rocking oscillator are 

uncorrelated. More information on the FEMA P695 ground motions can be found in FEMA 

(FEMA, 2009). 

 

2.4.2. Equal displacement rule for rocking structures and displacement demand spectra 

Vassiliou et al. (2014) have proven that rigid rocking oscillators of equal height attached to 

massless foundations of the same size behave identically, no matter what their actual column 

width is (Figure 2.8). Therefore, the design question of a rocking structure would be: Find the 

size, 2B′, of the foundation for a given oscillator height 2H. Hence, it is more meaningful to 
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use H as a size parameter instead of R, even if the former does not explicitly appear in the 

equation of motion. 

 

Figure 2.8. Rocking oscillators of equal height. 

 

Figure 2.9 offers the displacement of a rocking oscillator as function of its slenderness α, 

and for 2H = 2, 4, 10, 20, 80, and 1000 m, for a selection of the FEMA P695 ground motions. 

The 2H = 1000 m is offered only for reasons of mathematical completeness, to study the limit 

case of H → ∞. For reasons of plot clarity, each line is plotted only for α > αcrit, where αcrit is 

the minimum slenderness angle for which the block overturns. We observe that all blocks of 

the same slenderness angle present roughly the same displacement, as long as they are not close 

to overturning. The same observation holds for all the ground motions tested. 

As analysis and design of a rocking structure would not involve a single ground motion, 

but a set of design motions, it makes sense to study the problem by applying sets of multiple 

excitations and comparing the statistics of the results (e.g., the median displacement among all 

the ground motions of the excitation set). Figure 2.10 plots displacement spectra of the median 

of the displacement for seven variations of the near-field pulse-like FEMA P695 set: (a) 

unscaled ground motions, (b) scaled so that their PGA is equal to 0.5PGA , or PGA , or 2PGA , 

(c) scaled so that their PGV is equal to 0.5PGV , or PGV , or 2PGV , where PGA  and PGV  

are defined as: 

 ( )
1

median
x yi i

i N

PGA PGAPGA
=

=  (2.16) 

 ( )
1

median
x yi i

i N

PGV PGVPGV
=

=  (2.17) 

where N is the number of the ground motions and x and y are the two components of each 

ground motion. Note that each horizontal component of each ground motion is treated as an 
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independent motion. Figure 2.11 and Figure 2.12 plot the same spectra for the far-field and 

near-field non–pulse-like ground motions. 

 

Figure 2.9. Displacement of a rocking oscillator as function of its slenderness α. 
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The following observations can be made: 

(a) The median spectra are smoother, likewise design elastic spectra that were derived by 

statistical processing of elastic spectra of single ground motions are smoother than 

single ground motion spectra. 

(b) As long as the system is not close to overturning, the displacement does not depend on 

the size of the block. For this part of the spectrum, instead of computing a different 

spectrum for each block size, one can compute the design spectrum for 2H → ∞ (2H = 

1000 m seems an adequate value) and use it to calculate the displacement demand on 

any rocking structure (i.e., umax = f(α)). We name the above finding “equal displacement 

rule” for rocking structures. 

(c) As the system gets closer to overturning, the equal displacement rule does not apply: 

Smaller systems present larger displacements than larger ones. Moreover, as the system 

approaches overturning, the slope of the spectrum increases dramatically, i.e., a small 

decrease in tanα leads to very large increase in displacement. This trend dictates that a 

rational design of a rocking structure would require that this steep part of the spectrum 

be avoided, because an earthquake slightly stronger than the design one would cause a 

tremendous increase in displacement. Therefore, the equal displacement rule applies to 

the rational design region. 

(d) The form of the spectrum for all three sets of ground motions presents some repetitive 

pattern: 

i. As α tends to zero, umax tends to a finite value. For spectra of individual ground 

motions, this value is 
3

2
PGD . An explanation for this is offered in the next 

section. 

ii. As α increases from zero, the displacement demand amplifies 2–2.5 times and 

reaches a plateau. 

iii. Further increase of α leads to a monotonic decrease of the displacement demand. 

iv. Naturally, when tanα reaches PGA/g, the displacement demand becomes zero, 

as there is no uplift. 
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Figure 2.10. Median displacement spectra for near-field pulse-like record set. 
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Figure 2.11. Median displacement spectra for near-field non-pulse-like record set. 



Displacement-based analysis and design of rocking structures 

35 

 

 

Figure 2.12. Median displacement spectra for near-field non-pulse-like record set. 

 

2.4.3. Preliminary design based on the equal displacement rule 

If not for a final design, the equal displacement rule can be used for preliminary calculations. 

Indeed it is not an exact method, but a preliminary design method that does not aim at being 
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exact, but at providing a tool for initial calculations, that for certain cases and required degree 

of accuracy can be enough. The same holds for yielding structures, where the “equal 

displacement rule” is used for many structural systems, while for more complicated systems, 

it is used only for preliminary design and then more refined methods are applied. It could be 

stated that the findings of this paper constitute the generalization of equal displacement rule 

from yielding to rocking systems. This section proposes a methodology to design a rocking 

structure based on the equal displacement rule: 

(a) On the umax − tanα curve, we plot the capacity line uc = 2Htanα. 

(b) We determine the intersection of the capacity line and the 2H = ∞ line. We define the 

abscissa of this point as tanαk. 

(c) We use a multiplier of 2.5 to determine the design slenderness: tanαD = 2.5tanαk. The 

multiplier serves as a safety factor to move the design point away from the steep part 

of the spectrum. 

Figure 2.13 outlines the design procedure applied for a rocking bridge with columns of 

6.7 m height (2H = 6.7 m). Based on Makris & Vassiliou (2013), the response of the frame is 

equal to the response of a solitary block of 2H = 10 m. For this bridge, 21 design scenarios are 

explored, corresponding to the 21 spectra of Figure 2.10 to Figure 2.12. Table 2.1, Table 2.2, 

and Table 2.3 and Figure 2.14 summarize the findings for the 21 design scenarios and compare 

the displacement predicted by the demand spectrum (2H = 1000 m) to the displacement 

predicted by the 2H = 10 m spectrum. We observe that in all but two cases (near-fault pulse-

like scaled to 0.5PGA  and near-fault non–pulse-like scaled to 2PGA ), the error in predicting the 

median displacement is less than 20%. In all cases, the error is smaller than 40%, and no system 

overturned. 

 

Figure 2.13. Design procedure. 
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Table 2.1. Near-field pulse-like FS = 2.5. 

 Unscaled 0.5PGA  PGA  2PGA  0.5PGV  PGV  2PGV  

( )tan D  0.2839 0.1378 0.2671 0.4618 0.0596 0.1094 0.1909 

2H = 1000 m 0.05 0.11 0.08 0.12 0.10 0.07 0.08 

2H = 10 m 0.06 0.15 0.07 0.13 0.10 0.10 0.08 

 

Table 2.2. Near-field non-pulse-like FS = 2.5. 

 Unscaled 0.5PGA  PGA  2PGA  0.5PGV  PGV  2PGV  

( )tan D  0.1524 0.0708 0.1356 0.2446 0.0916 0.1892 0.3405 

2H = 1000 m 0.34 0.22 0.44 0.44 0.19 0.27 0.36 

2H = 10 m 0.41 0.26 0.41 0.69 0.21 0.30 0.38 

 

Table 2.3. Far-field FS = 2.5. 

 Unscaled 0.5PGA  PGA  2PGA  0.5PGV  PGV  2PGV  

( )tan D  0.1228 0.0620 0.1215 0.2411 0.0675 0.1320 0.2249 

2H = 1000 m 0.30 0.21 0.38 0.52 0.17 0.28 0.52 

2H = 10 m 0.33 0.20 0.37 0.50 0.19 0.29 0.49 

 

2.5. Interpretation of the equal displacement rule based on the equation of 

motion 

The equal displacement rule can be interpreted by properly manipulating the equation of 

motion. Assuming small rotation angles (sinx = x and cosx = 1), Equation (2.1) gives: 

 
3

4

gug

H g
  

 
= −   − + 

 
 (2.18) 

For small angles, u = 2Hθ. Then: 

 
3

1
2 2

gug u
u

b g





 
= −   − + 

 
 (2.19) 

When u/2b is small (i.e., the block is not close to overturning), the other terms dominate 

the response and u becomes a function only of α. Furthermore, when 1
gu

g
, then 

3

2

gu
u = − . 

Therefore, as α → 0 (which can only happen for blocks with H → ∞), umax → 3/2 PGD. 
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Figure 2.14. Comparison of the displacement response at the design point. Predictions based 

on the 2H = 1000 m and on the 2H = 10 m spectra. 

 

2.6. Conclusions 

The widely used description of the rocking block via its rotation is correct, but not optimal. It 

reveals that larger blocks are more stable and that higher frequency pulses present less 

overturning potential. However, it does not reveal the “equal displacement rule of rocking 

structures”, namely, that a large and a small block of the same aspect ratio will present the same 

top displacement, if they both are not close to overturning. Not being close to overturning is a 

design necessity anyway; therefore, for the scope of design, we can claim that the displacement 

demand is the same, and it only depends on the slenderness, not on the size of the block. The 

above is illustrated for both analytical pulse excitations and for sets of recorded ground 

motions. Based on the above, a design method that uses a size-independent rocking spectrum 

is suggested. This should be taken into account when intensity measures for rocking structures 

(Dimitrakopoulos & Paraskeva, 2015; Giouvanidis & Dimitrakopoulos, 2018; Kavvadias et al., 

2017; Pappas et al., 2017) designed not to get close to overturning are explored. 
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 Abstract 

This work studies the dynamics of the Negative Stiffness Bilinear Elastic (NSBE) oscillator. 

Such a mathematical idealization can be used to describe deformable rocking systems equipped 

with restraining tendons or with curved extensions of their bases. First, this paper establishes 

the characteristic quantities of the bilinear system to make it equivalent to the actual rocking 

structures. Then, it proceeds by proposing a simpler “equivalent” system that can be used to 

study the behavior of the NSBE. The equivalent system is not some linear elastic oscillator but 

a bilinear elastic system with zero stiffness of the second branch: the Zero Stiffness Bilinear 

Elastic (ZSBE) system. ZSBE is useful because it needs one parameter less than NSBE to be 

defined. Next, “Equal Displacement” and “Equal Energy” rules that provide estimates of the 

maximum displacement of the NSBE based on the response of the ZSBE are defined. The 

concept is similar to the RμΤ relations that provide estimates of the response of bilinear yielding 

systems based on the response of an equivalent linear elastic system, with one major difference: 

it does not resort to a linear elastic system but to the ZSBE. The proposed methodology is 

applied on the FEMA P695 ground motions scaled at three different levels. The results show 

that ZSBE is a good proxy of NSBE and, hence, indicate that an exhaustive study of the ZSBE 

is useful for the design of rocking structures. 

 

3.1. Introduction 

Rocking has been proposed as a seismic isolation method for both bridges (Agalianos et al., 

2017; Bachmann et al., 2018; Dar et al., 2018; Dimitrakopoulos & Giouvanidis, 2015; 

Giouvanidis & Dimitrakopoulos, 2017b; Kashani et al., 2018; Makris & Vassiliou, 2013, 2014, 

2015; Thiers-Moggia & Málaga-Chuquitaype, 2019; Thomaidis et al., 2020; Vassiliou, 2018; 

https://onlinelibrary.wiley.com/doi/10.1002/eqe.3347
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Vassiliou et al., 2017a; Vassiliou et al., 2017b; Vassiliou & Makris, 2015; Xie et al., 2019) and 

buildings (Aghagholizadeh & Makris, 2018; Bachmann et al., 2017, 2019; Giouvanidis & 

Dong, 2020; Ríos-García & Benavent-Climent, 2020), because uplift works as a mechanical 

fuse and limits the design forces of both the superstructure and the foundation. Unlike 

structures designed to yield, the free rocking rigid block (Housner, 1963) of Figure 3.1a,b 

exhibits negative post-uplift stiffness (Figure 3.1c). Several researchers have used a stiff tendon 

to keep the post-uplift stiffness positive (Kam et al., 2010; Mahin et al., 2006; Mashal & 

Palermo, 2019; Palermo et al., 2005; Priestley & Tao, 1993; Routledge et al., 2016; Sakai et 

al., 2006; Sideris et al., 2014a, 2014b; Thonstad et al., 2016). However, in an attempt to further 

decrease the design moments, this paper focuses on negative stiffness systems that are designed 

to sustain rocking motion without sliding (Bao & Konstantinidis, 2020; Dar et al., 2016; Di 

Sarno et al., 2019; Giouvanidis & Dimitrakopoulos, 2017a; Sextos et al., 2017; Voyagaki et 

al., 2018). In particular, this paper focuses on negative stiffness systems that do not exhibit 

hysteretic damping, thus, load and unload on the same branch. These systems do not 

accumulate displacements as negative stiffness hysteretic systems would. To avoid confusion, 

note that this paper uses the term “elastic” to describe not only linear elastic systems but also 

all systems that unload on the same branch, linear or nonlinear. Therefore, an unrestrained 

rocking system is a negative stiffness elastic system. 

 

Figure 3.1. (a,b) Geometric characteristics of rigid rocking body, and (c) lateral stiffness of a 

rigid rocking block. 

 

Plastic design has found its way to practice, partially because a simplified design 

methodology that is based on the linear elastic response spectrum has been developed. For most 

structures designed to yield, a time history analysis is not required and an approach based on 

linear elastic spectra is allowed. This is why in design codes, the hazard is defined through 

linear elastic response spectra. Even when a nonlinear time history analysis is performed, the 
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design ground motions are scaled to match the linear elastic response spectrum, implying that 

there is good correlation between the linear elastic and the elastoplastic oscillator. This 

convenient design approach was originally developed for elastoplastic systems, including the 

ones exhibiting post-yield hardening. It has been extended to include recentering (rocking) 

systems exhibiting positive post-uplift stiffness (Christopoulos et al., 2002). However, it is not 

applicable to negative stiffness rocking systems, because there is no “equivalent linear elastic 

system” for them (Makris & Konstantinidis, 2003). Therefore, time-consuming time history 

analysis is required and the linear elastic response spectra that are defined by codes become 

useless for such structures. 

This paper suggests that there can be a simplified design method for Negative Stiffness 

Bilinear Elastic (NSBE) systems (Figure 3.2, right), based not on an equivalent linear elastic 

system, but on an equivalent bilinear elastic system of constant restoring force (i.e., zero post-

uplift stiffness)—a Zero Stiffness Bilinear Elastic (ZSBE) system (Figure 3.3). Even though 

the equivalent ZSBE system does not present the convenience of a linear elastic system where 

the response scales proportionally to the excitation, it is useful because it reduces the 

dimensionality of the problem and it allows for the development of design spectra (not linear 

elastic) for negative stiffness systems. Note that this paper uses the term “spectrum” to refer 

not only to Biot's linear elastic spectrum (Biot, 1932) but also to the collective representation 

of the maxima of the responses of other nonlinear systems. So “spectrum” does not necessarily 

mean “elastic spectrum”. 

 

Figure 3.2. Characteristic pushover curve of the Negative Stiffness Bilinear Elastic (NSBE) 

system. Unloading happens on the same branch. 

 

It should be noted that the results of this study are not directly applicable to design 

procedures. However, they suggest approaches that might be used to develop a rational design 

procedure for earthquake resistance of rocking structures. 



Simplified analysis of bilinear elastic systems exhibiting negative stiffness behavior 

46 

 

 

Figure 3.3. Proposed bilinear elastic system of constant restoring force (Zero Stiffness 

Bilinear Elastic [ZSBE]) system. Unloading happens on the same branch. 

 

3.2. Equivalent description of rocking systems with NSBE systems 

One of the challenges in designing a rocking structure is that for a given height of a flat-based 

unrestrained rocking structure, usually defined by architectural considerations, its displacement 

capacity (i.e., the displacement that would cause overturn) is coupled to its uplifting force, 

because they both depend on its slenderness α (or, equivalently, on its base width 2b) (Figure 

3.4). Therefore, extending the base to increase the displacement capacity of the structure causes 

an increase in the design forces of both the superstructure and the foundation. In an effort to 

isolate buildings via a rocking story, Soviet engineers (Polyakov, 1974) were the first to suggest 

a way to decouple the displacement capacity from the uplift acceleration: They extended the 

base of the block by a curved part (Figure 3.5a). This increases the displacement capacity while 

keeping the uplifting acceleration constant (Bachmann et al., 2019) (Figure 3.5c). The size and 

curvature of the extensions control the shape of the post-uplift part of the pushover curve, 

essentially creating a bilinear or trilinear force-deformation loop, as discussed in detail in 

Bachmann et al. (2019). The post-uplift stiffness can be positive or negative depending on the 

curvature of the extension. A similar behavior can be obtained by using a flexible restraining 

system (Makris & Vassiliou, 2015; Vassiliou & Makris, 2015) (Figure 3.6). For realistic values 

of column slenderness, steel tendons would have to be used in series with Belleville springs, 

so that they do not yield. Therefore, EA in Figure 3.6 expresses the equivalent stiffness of the 

restraining system (tendon and springs in series). The softening branches of the force-

deformation curves in Figure 3.1 and Figure 3.4-Figure 3.6 are not perfectly linear, but they 

can be assumed as such by considering tan(α−θ) ≈ α − θ. 

The idealized systems discussed above assume that the structure is rigid—a questionable 

assumption as the size of the blocks increases. Figure 3.7 shows the force-deformation curve 

of a rocking structure, when its deformability (or when the deformability of the underlying soil) 
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is taken into account (Acikgoz & DeJong, 2012; Anastasopoulos et al., 2010, 2012; Avgenakis 

& Psycharis, 2017, 2019, 2020a, 2020b; Chopra & Yim, 1985; Oliveto et al., 2003; Psycharis, 

1991; Sieber et al., 2020; Truniger et al., 2015; Vassiliou et al., 2014, 2015). In this case, the 

pre-uplift displacement is not zero but takes a finite value uup. Therefore, all systems of Figure 

3.1 and Figure 3.4-Figure 3.7 can be described by an elastic bilinear system, up to a linear 

approximation. 

 

Figure 3.4. (a,b) Geometric characteristics of a flat-based rigid rocking body, and (c) lateral 

stiffness of a flat-based rigid rocking body. 

 

 

Figure 3.5. (a,b) Geometric characteristics of a curved-based rigid rocking body, and (c) 

lateral stiffness of a curved-based rigid rocking body. 

 

The SDOF (Diamantopoulos & Fragiadakis, 2019) NSBE studied herein is shown in 

Figure 3.2 (left). It has a mass m and a restoring force described by Figure 3.2 (right). The 

initial positive stiffness (kpos) branch represents any pre-uplift deformability. The second 

branch has negative stiffness (kneg), and it starts at the uplift displacement (uup). The system 

displacement capacity (ucap) is defined as the displacement that results to zero restoring force, 

even though there are rare cases where a system can dynamically exceed this displacement 



Simplified analysis of bilinear elastic systems exhibiting negative stiffness behavior 

48 

 

without collapsing. 

 

Figure 3.6. (a,b) Restrained rigid rocking body, and (c) lateral stiffness of a restrained rigid 

rocking body. 

 

 

Figure 3.7. (a,b) Deformable rocking body, and (c) lateral stiffness of a deformable rocking 

body. 

 

Based on its characteristic pushover curve, the oscillator's equation of motion is: 

 
( )

( ) ( ),    ( )up g up

up

u t
m u t f m u t uu t

u
 +  = −    (3.1) 

 
( )

( ) ( ),    ( )
cap

up g up

cap up

u u t
m u t f m u t uu t

u u

− 
   = −    − 

 (3.2) 

The upper sign in Equation (3.2) corresponds to a positive displacement and the lower to 

a negative displacement. 

The main source of energy dissipation in rocking structures with protected ends is impact 

damping—unless extra damping is provided. For this reason, this paper assumes that the 

proposed NSBE model dissipates energy instantaneously. When the displacement is equal to 

the uplift displacement (i.e., when there is impact in the case of rocking structures), the 
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integration is halted, and the post impact velocity is computed by a coefficient of restitution: 

 
postimpact

c

preimpact

u
r

u
=  (3.3) 

Herein, the ratio of the preimpact to postimpact velocities will be assumed equal to 0.95. 

The value can be considered representative of slender structures (Kalliontzis et al., 2016), 

which are the target systems in this paper. It is well known that energy dissipation due to impact 

is mainly dependent on the slenderness of the column and hence on its uplift force, fup. Thus, 

assuming a constant rc while varying fup is a simplification of the problem. However, fup, can 

also be varied by applying a prestress to the restraining tendon of the block. Then, at least 

according to Housner (1963), rc would not change. 

Notably, the system unloads on the same branch and does not dissipate energy while 

unloading (apart from the instantaneous energy loss when it reaches the yielding displacement). 

This makes it fundamentally different from the systems studied in previous studies (Pasala et 

al., 2013; Sarlis et al., 2013; Shu et al., 2017).  

For the case of rigid systems, the parameters of the system of Figure 3.2 that make it 

mathematically equivalent to a variety of rocking systems are given in Table 3.1 and named 

m , upf , and capu . Note that in order for the system of Figure 3.2 to be equivalent to these 

rocking systems, the excitation used for the equivalent bilinear system needs to be multiplied 

by a factor Γ, also given in Table 3.1. Then, the equation for the equivalent bilinear system 

becomes: 

 1( ) ( )up g
cap

u
m u t f m u t

u

 
− +  = −  

 
 (3.4) 

The derivation of m , upf , capu , and Γ follows from deriving the equation of motion of 

each rocking system, linearizing it, and matching the appropriate terms with Equations (3.1) 

and (3.2). The derivations are not provided herein due to space limitations, but an example is 

given for clarity. The equation of motion of the rectangular rocking block of Figure 3.1 for 

positive rotation θ is: 

 ( ) ( )24
sin cos

3
gmR mgR mu R    + = −− −  (3.5) 

Linearizing Equation (3.5) and expressing it in terms of the top displacement (Row 4 of 

the Table 3.1) gives: 
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Table 3.1. Parameters of the bilinear elastic system for different rocking systems. 
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Matching the terms of Equations (3.6) and (3.2) for uup = 0 requires that / 3m m= , 

/ 2upf mg= , 2 sincapu R = , and Γ = 3/2. 

If a deformable system is studied, assuming large displacements but small deformations, 

the parameters m  and Γ can be picked from the same Table 3.1, but upf , capu , and upu  should 

be determined from a nonlinear static analysis. 
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3.3. Equal displacement and equal energy rules: positive versus negative 

stiffness systems 

3.3.1. Positive stiffness systems 

Time history analysis is widely believed to be the most accurate method for the analysis and 

design of structures. However, despite the increase of the available computational power, it has 

not replaced simplified approaches based on linear elastic spectra, at least for the vast majority 

of civil engineering structures. The reason is that linear elastic-spectrum-based methods (a) are 

often faster and adequately accurate, (b) are needed for preliminary design, and (c) can serve 

to quickly validate the results of time history analysis. 

For positive stiffness inelastic structures, the most widely used simplified method is the 

one based on the so called RμΤ relations, first appearing in the early work of Veletsos & 

Newmark (1960). The displacement of the nonlinear system uinelastic is computed based on the 

displacement of a system with the same initial period but infinite strength, that is, a linear 

elastic system, uelastic. There have been numerous papers (Miranda, 2001; Tsiavos et al., 2017, 

and references therein) attempting to determine the ratio of interest (γPS): 

 inelastic

PS

elastic

u

u
 =  (3.7) 

Some of the most widespread equations to predict γPS are the “Equal Displacement rule” 

(i.e., the elastic and the inelastic system exhibit the same maximum displacement, γPS = 1, 

applicable to relatively soft systems, Figure 3.8, left) and the “Equal Energy rule” (i.e., the 

monotonic loading curves of the elastic and inelastic system produce the same work, 

/ 2 1PS  = − , applicable to stiffer systems, Figure 3.8, right). 

This correlation between elastic and positive stiffness inelastic systems proved useful for 

the design of positive stiffness systems, not only because elastic analysis is easier but also 

because the elastic system is a two parameter system with its response depending solely on its 

period (T) and damping ratio (ζ). In fact, for structures without supplemental damping, the 

dominant parameter that defines the seismic response of elastic systems is their period. This 

has allowed for a convenient computation of the response of yielding structures through the 

nicely visualizable linear elastic spectrum. 
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Figure 3.8. Equal Displacement and Equal Energy rules for positive stiffness hysteretic 

systems. 

 

3.3.2. Negative stiffness systems 

Using the elastic spectrum for the analysis of negative stiffness structures would have been 

very convenient as engineers are used to it and as elastic spectra for design already exist and 

are included in codes. However, this is not feasible for NSBE systems, because their response 

has been proven to be uncorrelated to any “equivalent” elastic system (Makris & 

Konstantinidis, 2003).  

This section defines Equal Displacement and Equal Energy rules that are applied not on 

an equivalent elastic system but on an equivalent ZSBE system (Figure 3.3). We refer to it as 

“equivalent,” but this does not imply that it is linear elastic. It is a bilinear elastic system with 

finite pre-uplift displacement and zero post-uplift stiffness system. 

To correlate the responses of the NSBE and of the ZSBE, the quantity of interest is the 

ratio: 

 
,

,

dem NS

dem ZS

u

u
 =  (3.8) 

where udem,NS and udem,ZS are the maximum displacements of the NSBE and ZSBE systems, 

respectively. 

The Equal Displacement rule assumes that the NSBE and the equivalent ZSBE system 

will experience the same maximum displacement (Figure 3.9, left): 

 
, ,dem NS dem ZSu u=  (3.9) 

and 
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 1ED =  (3.10) 

 

Figure 3.9. Equal Displacement and Equal Energy rules for Negative Stiffness Bilinear 

Elastic (NSBE) systems. 

 

The Equal Energy rule assumes that the monotonic loading curves of the NSBE and the 

ZSBE system will produce the same work, that is, the two shaded areas in Figure 3.9 (right) 

are equal. Based on Figure 3.9, one can compute that the Equal Energy rule gives: 

 
( ) ( ),,

, , , ,

2cap up cap dem ZS upcapdem NS

EE

dem ZS dem ZS dem ZS dem ZS

u u u u uuu

u u u u


− −  +
= = −   (3.11) 

Note that 

,

lim 1
cap

dem ZS

EEu

u


→

= , meaning that the Equal Displacement rule is an approximation 

of the Equal Energy rule for small values of 
,dem NS

cap

u

u
, that is, when the system is away from 

collapse. Therefore, the Equal Displacement rule approximates the Equal Energy rule. This is 

in contrast to the yielding systems, where each rule applies for different period ranges. 

 

3.4. Response of rigid-negative stiffness systems to recorded ground motions 

This section explores the accuracy of the rules defined in Section 3.3, when applied to NSBE 

systems that present minimal pre-uplift displacement, that is, systems with small uup. The 

influence of pre-uplift displacement will be studied in Section 3.5. 

 

3.4.1. FEMA P695 ground motions 

There is no consensus in the engineering community on what ground motions should be used 
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in time history analysis. Several approaches exist including using recorded (scaled or 

unscaled), artificial, or synthetic excitations. In this paper, we choose to use the three sets of 

ground motions proposed by FEMA P695 (FEMA, 2009) (far-field, near-field pulse-like, and 

near-field no pulse-like) only as a means of illustrating our argument, without taking stance on 

the debate around ground motion selection. The three sets contain 14, 14, and 21 ground 

motions, respectively. According to FEMA P695, the far-field set contains 22 ground motions 

(including #18, Cape Mendocino, Rio Dell Overpass record). However, this was not available 

in the PEER ground motion database and, thus, was not included in this study. Because this 

paper examines a planar model, it uses each horizontal component of each ground motion as 

an independent excitation. Therefore, in total, there are 98 ground motions. It is evident that 

any ground motion selection method based on the response of an elastic system is in principle 

not applicable in the case of the NSBE oscillator, as they are uncorrelated (Makris & 

Konstantinidis, 2003). More information on the FEMA P695 ground motions can be found in 

FEMA (2009). 

  

3.4.2. Median and 90th percentile displacement spectra 

The design of structural systems does not involve a single excitation but a set of excitations 

that characterize the seismic hazard at a given site. Thus, this paper compares NSBE and ZSBE 

not by comparing their responses to individual ground motions but by comparing the statistics 

of the responses to ensembles of ground motions. This statistical rather than motion-by-motion 

comparison of an approximate and a refined method leads to smoothened results. It is an easier 

to pass validation test for any seismic design method. A statistical comparison was also 

followed, for example, by Riddell & Newmark (1979) to produce inelastic spectra for yielding 

structures, or by Chopra (2012) (section 20.8.3) to evaluate the accuracy of modal pushover 

analysis. This paper assesses the Equal Displacement and Equal Energy rules by focusing on 

the median and the 90th percentile displacement spectra for six variations of the near-field 

pulse-like, near-field no pulse-like, and far-field FEMA P695 sets: (a) scaled so that their PGA 

is equal to 0.5PGA , 1.0PGA , or 2.0PGA  and (b) scaled so that their PGV is equal to 0.5PGV

, 1.0PGV , or 2.0PGV . PGA  and PGV  are defined as: 

 ( )
1

PGA PGAPGA median
x yi i

i N=
=  (3.12) 

 ( )
1
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x yi i

i N=
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where N is the number of ground motions and x and y are their two components. 

The number of ground motions included in each set of excitations would be considered 

rather low to get an accurate estimate of the 90th percentile of the response. Therefore, the 90th 

percentile results are reported herein only to provide insight into the dispersion of the results—

something that the median response cannot provide on its own. The motion-to-motion 

variability of the response of rocking oscillator is a subject of future work, and it is required to 

properly define safety factors for design. 

 

3.4.3. Equal Displacement rule for NSBE systems 

Figure 3.10-Figure 3.12 plot the median and 90th percentile of the maximum displacement of 

the NSBE stiffness system as a function of its strength normalized by the system's self-weight 

(fup/mg) for several values of the displacement capacity. The uplift displacement is set to uup = 

5 × 10−4 m to study quasi-rigid systems. Figure 3.10 plots results for the near-field pulse-like 

FEMA P695 set, whereas Figure 3.11 and Figure 3.12 for the near-field no pulse-like and far-

field sets, respectively. For reasons of plot clarity, each line is plotted only for fup/mg > 

(fup/mg)crit, where (fup/mg)crit is the maximum uplift strength for which there is failure. 

In terms of median response, Figure 3.10–Figure 3.12 show that: 

(a) As long as the system is not close to failure, the displacement only loosely depends on 

the displacement capacity. So, when the system is not close to failure, instead of 

computing a different spectrum for each displacement capacity, one can compute the 

spectrum for the ZSBE system (i.e., for an NSBE with ucap → ∞) and use it to calculate 

the displacement demand on any NSBE of the same strength. This forms a 

generalization of the Equal Displacement rule for rocking structures described in 

Reggiani Manzo & Vassiliou (2019).  

(b) As the system gets closer to collapse, the “Equal Displacement rule” does not apply and 

is unconservative: Systems with smaller displacement capacity exhibit larger 

displacements than the ones with larger displacement capacity. Moreover, close to 

failure, the slope of the spectrum increases dramatically, that is, a small decrease of the 

system strength would lead to a tremendous increase of the maximum displacement. As 

in the case of free rocking structures (Reggiani Manzo & Vassiliou, 2019), this trend 

dictates that a rational design of a negative stiffness system would require that this steep 

part of the spectrum be avoided, because an earthquake slightly stronger than the design 
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one would cause a tremendous increase in displacement. Therefore, the Equal 

Displacement rule is more accurate where it is actually needed: in the rational design 

region. 

 

Figure 3.10. Median displacement spectra for near-field pulse-like record set. 
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Figure 3.11. Median displacement spectra for near-field no pulse-like record set. 

 

(c) The form of the spectrum for all three sets of ground motion presents a repetitive 

pattern: 

i. For zero strength (fup = 0), the maximum displacement (umax) reaches a finite 

value. For spectra of individual ground motions, this value is PGD. 

ii. As the strength increases, the maximum displacement initially increases and 

reaches a maximum of 1.5 to 2.5 times the PGD. Therefore, the maximum 
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displacement that a ground motion can induce to any negative stiffness elastic 

bilinear system is 1.5–2.5 times the PGD. 

iii. Further increase of the strength leads to a decrease of the maximum 

displacement. 

 

 

Figure 3.12. Median displacement spectra for far-field record set. 
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The 90th percentile spectra are often much larger than the median ones, especially for 

the design scenario where the ground motions are scaled to have the same PGA. This implies 

that the motion-to-motion variability is relatively large, especially when PGA is used as an 

intensity measure. This is consistent with the work presented in previous studies 

(Dimitrakopoulos & Paraskeva, 2015; Giouvanidis & Dimitrakopoulos, 2018; Kavvadias et al., 

2017; Pappas et al., 2017; Psycharis et al., 2013) on ground motion intensity measures for 

rocking structures. The exact quantification of this variability would require more ground 

motions and lies beyond the scope of this work. 

Figure 3.13 offers the displacement of a NSBE oscillator as function of its strength fup 

for a selection of individual FEMA P695 ground motions. One can observe that the maximum 

displacement seems independent of the displacement capacity, even if one does not focus on 

smoothened statistical spectra, but on individual ground motions as well. 

The above observations also hold for uup = 0.005 and 0.05 m, but the plots are not shown 

herein due to space limitations. 

 

3.4.4. Equal energy rule for NSBE systems 

Figure 3.10–Figure 3.13 show that the Equal Displacement rule is on the unconservative side, 

especially as the displacement demand approaches the capacity. To examine the performance 

of the Equal Energy rule, Figure 3.14–Figure 3.16 present the median and 90th percentile of 

the maximum displacement umax divided by the factor γEE (Equation (3.11)) as a function of the 

system normalized strength fup/mg. The plots are constructed for several values of displacement 

capacity ucap and for uplift displacement uup = 5 × 10−4 m. Figure 3.14 is plotted for the near-

field pulse-like set, whereas Figure 3.15 and Figure 3.16 for the near-field no pulse-like and 

far-field sets, respectively. According to Equation (3.11), the factor γEE can only be calculated 

for systems that satisfy: 

 
,

2 2

cap up cap

dem ZS

u u u
u

+
   (3.14) 

A larger value of udem,ZS would lead to failure of the negative stiffness system. 

The curves for the three sets of recorded ground motions almost collapse to a unique 

curve, the one that represents the ZSBE system. Notably, this happens for all six different 

scaling of the ground motions. Hence, the Equal Energy rule gives a good estimate of the 

maximum displacement of NSBE systems with a finite displacement capacity. Comparing the 
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Equal Displacement to the Equal Energy rule, the former is simpler, but the latter is overall 

more conservative, especially for larger displacements. Therefore, unless there is a reason to 

opt for simplicity, the use of the Equal Energy rule is proposed. 

 

 

Figure 3.13. Displacement of a Negative Stiffness Bilinear Elastic (NSBE) oscillator as 

function of its strength fup. 
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Figure 3.14. Median displacement spectra normalized by γEE for near-field pulse-like record 

set. 

 

3.4.5. Design Example 

This subsection uses a case study to illustrate a design method based on the Equal Energy and 

Equal Displacement rules. The method is applied for the design of a rocking bridge equipped 

with a restraining system that increases the displacement capacity, while keeping the post-uplift 

stiffness negative (Table 3.1, Row 5 and Makris & Vassiliou (2015)). The geometry of the 
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bridge is typical of overpass bridges: The columns have a height of 9.6 m and a diameter of 1.6 

m, whereas the deck is much heavier than the columns (γm → ∞). Planar rocking (i.e., one 

directional excitation) is assumed as a first approximation (even though this has been proven 

unconservative (Vassiliou, 2018; Vassiliou et al., 2017)). Before the results presented herein 

find their way to practice, 3D models should be experimentally validated and studied under 

bidirectional excitation (the vertical excitation has been shown to be insignificant in rocking 

 

Figure 3.15. Median displacement spectra normalized by γEE for near-field no pulse-like 

record set. 
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motion (Linde et al., 2020; Makris & Kampas, 2016)). Alternatively, the model can be assumed 

to describe bridges that are only allowed to rock in one dimension. The design quantity of 

interest is the displacement capacity of the bridge, so that the restraining system is designed 

accordingly. 

 

Figure 3.16. Median displacement spectra normalized by γEE for far-field record set. 

 

Based on Row 5 of Table 3.1 and for γm → ∞, the properties of the equivalent negative stiffness 
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system are /upf mg = , Γ = 1, 
2

1
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1
cap
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m


=


−

, where N is the number of columns, EA is 

the axial stiffness of the restraining system, mb is the mass of the deck, and α and 2b are the 

slenderness and the width of the columns. Then, the design steps are: 

(a) Calculate the normalized yielding strength of the system (fup/(mg)). If the restraining 

tendon is not prestressed, this depends solely on the column geometry and is equal to 

α. 

(b) Obtain the displacement demand for the infinite capacity curve (udem,ZS) using the ZSBE 

curves of Figure 3.10–Figure 3.12 or Figure 3.14–Figure 3.16. 

(c) Calculate the design displacement capacity of the system, as: 

 , ,cap dem NS dem ZSu FS u FS u=  =    (3.15) 

in which FS is a safety factor and γ is defined by Equation (3.8). This section evaluates 

two alternative approaches: One based on the Equal Displacement (γ = 1) and one on 

the Equal Energy (γ = γEE, Equation (3.11)) rule. In both cases, the median response is 

used. 

Table 3.2–Table 3.7 offer the design values when the two rules are applied on the three 

sets of ground motions under the six different scaling, described in previous sections. ucap is 

the capacity required for a FS = 2.5 (Equation (3.15)). For a system with a displacement 

capacity ucap, udem,TH is the median displacement demand of each set computed with time 

history analysis. udem,EE and udem,ED are equal to γED⋅udem,ZS and γEE⋅udem,ZS, respectively. udem,ZS 

is the median response of the ZSBE system. The error is defined as error = (udem,ED/EE − 

udem,TH)/udem,TH. 

Table 3.2. Near-field pulse-like: Equal Displacement rule (γ = 1). 

 0.5PGA  1.0PGA  2.0PGA  0.5PGV  1.0PGV  2.0PGV  

ucap (m) 1.60 1.60 3.46 1.60 1.60 3.65 

udem,TH (m) 0.030 0.512 1.580 0.056 0.603 1.621 

udem,ED (m) 0.034 0.472 1.382 0.051 0.592 1.459 

Error (%) 14.78 -7.67 -12.49 -10.08 -1.80 -10.01 

 

The Equal Displacement rule in general underpredicts the result, with a maximum 

underprediction error of 18%. The Equal Energy rule is conservative in 14/18 cases. It is 
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generally more conservative for sets of stronger excitations. Its maximum underprediction error 

is 9%. None of the rules led to collapse, because of the safety factor FS = 2.5. 

Table 3.3. Near-field no pulse-like: Equal Displacement rule (γ = 1). 

 0.5PGA  1.0PGA  2.0PGA  0.5PGV  1.0PGV  2.0PGV  

ucap (m) 1.60 1.60 1.60 1.60 1.60 1.83 

udem,TH (m) 0.082 0.201 0.435 0.065 0.264 0.754 

udem,ED (m) 0.080 0.237 0.423 0.068 0.237 0.731 

Error (%) -2.22 17.81 -2.79 3.79 -10.33 -3.08 

 

Table 3.4. Far-field: Equal Displacement rule (γ = 1). 

 0.5PGA  1.0PGA  2.0PGA  0.5PGV  1.0PGV  2.0PGV  

ucap (m) 1.60 1.60 1.60 1.60 1.60 1.60 

udem,TH (m) 0.037 0.162 0.536 0.031 0.169 0.447 

udem,ED (m) 0.039 0.165 0.462 0.030 0.152 0.449 

Error (%) 5.79 1.63 -13.84 -2.65 -10.56 0.41 

 

Table 3.5. Near-field pulse-like: Equal Energy rule (γ = γEE). 

 0.5PGA  1.0PGA  2.0PGA  0.5PGV  1.0PGV  2.0PGV  

ucap (m) 1.60 1.60 4.32 1.60 1.85 4.56 

udem,TH (m) 0.030 0.512 1.514 0.056 0.575 1.669 

udem,ED (m) 0.034 0.576 1.728 0.051 0.740 1.823 

Error (%) 16.03 12.59 14.14 -8.61 28.60 9.27 

 

Table 3.6. Near-field no pulse-like: Equal Energy rule (γ = γEE). 

 0.5PGA  1.0PGA  2.0PGA  0.5PGV  1.0PGV  2.0PGV  

ucap (m) 1.60 1.60 1.60 1.60 1.60 2.28 

udem,TH (m) 0.082 0.201 0.435 0.065 0.264 0.716 

udem,ED (m) 0.082 0.258 0.501 0.069 0.258 0.914 

Error (%) 0.36 28.13 15.25 6.09 -2.47 27.68 

 

Table 3.7. Far-field: Equal Energy rule (γ = γEE). 

 0.5PGA  1.0PGA  2.0PGA  0.5PGV  1.0PGV  2.0PGV  

ucap (m) 1.60 1.60 1.60 1.60 1.60 1.60 

udem,TH (m) 0.037 0.162 0.536 0.031 0.169 0.447 

udem,ED (m) 0.039 0.174 0.559 0.030 0.159 0.540 

Error (%) 7.11 7.48 4.41 -1.73 -5.87 20.78 
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3.5. Evaluation of the influence of the pre-uplift deformability uup 

Sections 3.4.3–3.4.4 (Figure 3.10–Figure 3.16) focused on the response of a system with an 

initial quasi-rigid behavior (uup = 5 × 10−4 m). Assuming that the bridge that was studied as a 

case study in Section 3.4.5 has a fundamental period of 0.3 s, the uplift displacement would be 

4 × 10−3 m, which is one order of magnitude larger—and bridges of this or larger size could be 

even more flexible and have a larger uup. To study the influence of pre-yield deformability, 

Figure 3.17 plots the displacement of infinite displacement capacity systems for different 

values of uup = 5 × 10−4 m, 5 × 10−3 m and 5 × 10−2 m. One can observe that: 

(a) For small values of uplift strength (fup), uup does not influence the maximum 

displacement. A limit cannot be clearly established, as it depends on the ground motion 

set, on its scaling, and on uup itself. Stronger ground motions tend to increase the region 

in which uup becomes insignificant. 

(b) For all ground motion sets and all scaling considered in this study, the response of the 

uup = 5 × 10−4 m and the uup = 5 × 10−3 m curves are essentially the same, when fup/mg 

< 0.2. Therefore, the results presented in the case study of Section 3.4.5 are valid (fup/mg 

= tan(1.6/9.6)), even though a uup one order of magnitude smaller was used. 

Another and, maybe, easier to use criterion that defines the region in which uup can be 

dropped from the analysis is based solely on the displacement predicted by the quasi-rigid 

analysis: For all the cases considered in this study, whenever the displacement prediction of 

the quasi-rigid analysis is larger than 0.5 m, all lines practically collapse to one. Therefore, a 

rigid base analysis predicting umax > 0.5 m can be trusted, at least for structures that have uup < 

5 cm. 

 

3.6. Conclusions 

Rocking systems (free, restrained, or with curved extensions) that exhibit negative post-uplift 

stiffness can be described as elastic bilinear oscillators with a negative stiffness second branch, 

herein denoted as NSBE. This description can also take into account their pre-uplift 

deformability. This paper focused on the seismic behavior of such bilinear systems by using 

sets of recorded ground motions. 

It was found that the strength of the bilinear oscillator is the governing parameter for its 

response. The slope of the second branch of the bilinear system that controls the displacement 
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capacity does not influence the response, if the oscillator is not close to collapse. The uplift 

displacement does not influence the response either, at least for relatively large maximum 

displacements (larger than 50 cm). 

 

Figure 3.17. Median displacement spectra of systems with infinity capacity and different 

yielding displacement for multiple record sets. 
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 Abstract 

This paper presents uniform risk spectra for Zero Stiffness Bilinear Elastic (ZSBE) systems. 

The ZSBE oscillator is a bilinear elastic system with zero post-“yield” stiffness that 

satisfactorily predicts the response of different systems with negative lateral stiffness (e.g. free-

standing or restrained rocking blocks). It can be described by a single parameter; thus, it is 

simpler to produce its spectrum. Using the ZSBE proxy, this paper provides the uniform risk 

spectra for sites in six locations in Europe. The spectra are constructed using two distinct 

intensity measures (IMs): Peak Ground Velocity and Peak Ground Acceleration. The efficiency 

of both IMs at different ranges of displacement demands is discussed and analytical 

approximations of the spectra are proposed. 

 

4.1. Introduction 

In the last half century, rocking has been extensively studied and it was proposed as an 

alternative seismic design method (Agalianos et al., 2017; Aghagholizadeh & Makris, 2018; 

Dar et al., 2018; Dimitrakopoulos & Giouvanidis, 2015; Giouvanidis & Dimitrakopoulos, 

2017; Makris & Vassiliou, 2013, 2014; Ríos-García & Benavent-Climent, 2020; Sieber et al., 

2020; Thomaidis et al., 2020; Vassiliou, 2018; Vassiliou et al., 2017a, 2017b; Zhang et al., 

2019). Rocking isolation is a resilient design alternative that has the potential of reducing the 

cost of conventionally designed bridges: it reduces the forces transmitted to the foundation and 

it can present low-damage even after being subjected to design level events, provided that 

adequate detailing of the columns ends is employed (Mashal & Palermo, 2019; Reggiani 

Manzo & Vassiliou, 2022; Thonstad et al., 2016).  

A free-standing rocking block subjected to a lateral excitation has infinite lateral stiffness 

until uplifting. After uplift, the block has a negative stiffness defined solely by its geometric 

https://onlinelibrary.wiley.com/doi/full/10.1002/eqe.3691
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properties and it becomes statically unstable at a maximum top horizontal displacement equal 

to its base size (Figure 4.1a). The stability of the rocking block can be improved without 

changing its uplifting force by the introduction of axially flexible non-prestressed restrainers. 

Prestressing the restrainers would also change the uplifting force (Figure 4.1b) (Cohagen et al., 

2008; Kashani et al., 2018; Liu & Palermo, 2017; Makris & Vassiliou, 2015; Mander & Cheng, 

1997; Marriott et al., 2009; Mashal & Palermo, 2019; Motaref et al., 2014; Reggiani Manzo & 

Vassiliou, 2022; Sakai et al., 2006; Sideris et al., 2014a, 2014b, 2015; Thomaidis et al., 2020, 

2022; Thonstad et al., 2016; Vassiliou & Makris, 2015; Zhou et al., 2019). A more stable 

system can also be achieved without changing the uplifting force by extending the block ends 

in a curved shape (Figure 4.1c) (Bachmann et al., 2017, 2019) or by adding damping or inerter 

devices (Aghagholizadeh, 2020; Makris & Aghagholizadeh, 2019; Thiers-Moggia & Málaga-

Chuquitaype, 2019, 2020, 2021). 

Among other reasons, rocking isolation has not been widely adopted in practice because 

of its high nonlinearity (Makris & Konstantinidis, 2003). Small changes in the excitation or 

any imperfection in the system can lead to a completely different response. Since ground 

excitations cannot be predicted in advance, available analytical and numerical models have 

been considered insufficient for designing rocking structures. 

 

Figure 4.1. (a) Free-standing rigid rocking block; (b) restrained rigid rocking block; and (c) 

curved-base rigid rocking block. 

 

To overcome the limitations of the deterministic approaches (i.e. of trying to predict the 



Uniform Risk Spectra for Rocking Structures 

74 

 

response of a system to an individual ground motion), Bachmann et al. (2018) compared the 

statistics of the experimental and numerical response of a rocking structure subjected to several 

ground excitations. Although they could not match individual experimental and numerical time 

histories, the authors have shown that the experimental and numerical cumulative distribution 

function (CDF) of the normalized maximum tilt angle experienced by the specimen are in good 

agreement. 

Although the use of probabilistic tools to seismically assess the behaviour of structures 

has become increasingly popular with the advent of performance-based earthquake engineering 

(Cornell & Krawinkler, 2000), addressing the rocking problem in a probabilistic manner is not 

something new. In 1980, Yim et al. (1980) have already treated the problem statistically and 

presented probability curves for the overturning of rigid rocking blocks. In recent years, several 

authors have proposed fragility curves for rocking structures (Acikgoz & DeJong, 2014; 

Dimitrakopoulos & Paraskeva, 2015; Ebad Sichani et al., 2018; Giouvanidis & 

Dimitrakopoulos, 2018; Giouvanidis & Dong, 2020; Kafle et al., 2011; Kavvadias et al., 2017; 

Kazantzi et al., 2021; Petrone et al., 2017; Psycharis et al., 2013; Roh & Cimellaro, 2011; Xie 

et al., 2019). However, the optimal intensity measure (IM) to construct such curves is still an 

open discussion. Giouvanidis & Dimitrakopoulos (2018) have extensively studied the most 

“efficient”, “sufficient” and “hazard computable” IMs for rocking. They observed that the best 

IM for predicting rocking response and overturning are not the same. Rocking response can be 

better predicted using the dimensionless duration-based IMs, while overturning is well 

predicted using dimensionless IMs based on the Peak Ground Velocity (PGV), as firstly 

suggested by Dimitrakopoulos & Paraskeva (2015). Kavvadias et al. (2017) also studied the 

efficiency of several IMs and proposed two spectral IMs based on rocking structures. Although 

the proposed spectral IMs are reported to outperform other IMs, they require extra 

computational effort and would also need the development of new ground motion prediction 

equations (GMPEs), which is a non-trivial undertaking. Among the other IMs, their study 

shows that the PGV has also a good performance. 

Currently, there is no established simplified method to design rocking structures; an 

equivalent elastic system does not exist (Makris & Konstantinidis, 2003). To address this issue, 

Kazantzi et al. (2021) have offered normalized response prediction and fragility assessment 

expressions that can be employed within a probabilistic framework to assess or design simple 

rocking systems (Vamvatsikos & Aschheim, 2016). Following another approach, Reggiani 

Manzo & Vassiliou (2019, 2021) have observed that rocking systems having the same uplift 
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force and being far from their failure point, exhibit roughly the same displacement demand, 

independently of their post uplift stiffness. Therefore, the displacement of rocking structures 

of uplift force fup can be computed using as a proxy the displacement of a bilinear oscillator of 

uplift force fup and infinite displacement capacity (Zero Stiffness Bilinear Elastic (ZSBE) 

oscillators). This simplification reduces the number of variables in the rocking problem and 

allows the construction of a single spectrum for a range of negative stiffness systems: free-

standing rocking frames, restrained rocking frames, or rocking frames with curved ends.  

This paper further develops this simplified spectrum by considering the uncertainties 

inherent to seismic actions. It presents uniform risk spectra for six locations with different 

seismicity in Europe (Vamvatsikos et al., 2020), constructed using the ZSBE proxy, as well as 

the step-by-step methodology for constructing them. The spectra for each location were 

constructed using two distinct IMs: namely the Peak Ground Acceleration (PGA) and PGV. 

Thus, using bootstrapping technique (Efron & Tibshirani, 1993), the paper follows on 

indirectly assessing the efficiency (as firstly defined in Luco & Cornell (2007)) of each IM. 

Finally, it provides analytical functions that can estimate the displacement demand of rocking 

structures.  

 

4.2. The Zero Stiffness Bilinear Elastic System (ZSBE) as a proxy for 

Negative Stiffness Biliner Elastic Systems (NSBE) 

4.2.1. The Negative Stiffness Bilinear Elastic System 

The Negative Stiffness Bilinear Elastic (NSBE) system can describe the dynamics of free-

standing (Figure 4.1a), restrained (Figure 4.1b), and curved-based (Figure 4.1c) rocking 

structures, or any other deformable system that presents negative post-uplift stiffness and does 

not exhibit hysteretic damping. Figure 4.2 presents the NSBE oscillator, and its displacement-

restoring force relationship. Up until uplift, the system behaves as a linear single degree-of-

freedom (SDOF) system, representing any deformability the system might present before 

uplifting. After uplifting, the tangent stiffness becomes negative (kneg). The displacement 

capacity (ucap) is defined not by material failure, but by the displacement that causes a zero 

restoring force. Therefore, the displacement capacity of an unrestrained column measured at 

its top is equal to its width. 

Based on its displacement-force relationship (Figure 4.2c), the oscillator’s equation of 

motion is: 
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Figure 4.2. (a, b) NSBE system representation; and (c) its displacement-restoring force 

relationship. 

 

The only source of energy dissipation in the system is impact damping, which is assumed 

to happen instantaneously. This assumption is valid for rocking structures with protected ends 

and no extra damping mechanism but might deviate from reality when the column ends are not 

protected (Kalliontzis et al., 2016; Kalliontzis & Sritharan, 2020). When the system is returning 

to its original position and its displacement equals to the uplift displacement (uup) (i.e. when 

the system is “downcrossing” uup), the integration is halted, and its post-impact velocity is 

calculated by a coefficient of restitution (rc): 

 
post impact

c

pre impact

u
r

u

−

−

=  (4.3) 

A coefficient of restitution equal to 0.95 is assumed, corresponding to relatively slender 

structures. It is known that the coefficient of restitution, as defined in Equation (4.3) and by 

Housner (1963), depends mainly on the slenderness of the column and consequently on the 

column’s uplifting force. However, the uplifting force can also be changed without varying the 

coefficient of restitution by prestressing the rocking column (Makris & Vassiliou, 2015; 

Vassiliou & Makris, 2015). 

 

4.2.2. The Zero Stiffness Bilinear Elastic System 

Figure 4.3a presents the displacement-force relationship of the Zero Stiffness Bilinear Elastic 
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(ZSBE) system (loading and unloading in the same curve). The system follows the same 

equation of motion and assumptions of the NSBE system when its displacement capacity tends 

to infinity, resulting in a system with zero post-uplift stiffness (kneg = 0). 

 

Figure 4.3. (a) Displacement-restoring force relationship of the ZSBE system; and (b) 

spectrum obtained using the ZSBE proxy. 

 

The ZSBE oscillator can be used as a proxy for the prediction of the response of the 

NSBE oscillator (Reggiani Manzo & Vassiliou, 2019, 2021). Hence, studying the response of 

a ZSBE system of a given fup and uup suffices for the description of the response of all NSBE 

of the same fup and uup, independently of their ucap. Therefore, spectra providing the maximum 

horizontal displacement (udem) of the ZSBE system as a function of fup for a given uup can be 

used for the design of NSBE systems. Figure 4.3b presents such a spectrum, extracted from 

Reggiani Manzo & Vassiliou (2021). It refers to uup = 0.0005 m and it gives the median 

response for a set of ground motions selected and scaled as discussed in Reggiani Manzo & 

Vassiliou (2021). Herein, a uup = 0.0005m was also used to denote a quasi-rigid ZSBE system.  

 

4.3. Methodology for constructing the uniform risk spectra for rocking 

structures  

Uniform hazard spectra (UHS) are widely adopted in seismic codes for the design of 

conventional structures. The UHS provides values of the (pseudo)spectral acceleration with an 

equal mean annual frequency (MAF) of exceedance. SDOF structures of a given period 

designed to reach “failure” (e.g. significant damage or life safety) at precisely the spectral 

acceleration value denoted by the UHS for this period would do so with the MAF (or 

equivalently the return period) that characterizes the UHS, assuming their response could be 
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calculated without any uncertainty (Luco et al., 2007); typically, however, this is only the case 

for elastic oscillators. Any deviation from this strict norm results in increased MAFs, i.e., 

unconservative designs. Given the significant uncertainties inherent in nonlinear response, 

record-to-record variability, higher modes, geometry, and materials, this has become a well-

known problem of intensity-based approaches. It is traditionally tackled by conventional design 

codes through ad hoc safety factors and overdesign, leading to the advent of performance-based 

seismic design (PSBD, (Krawinkler et al., 2006; Vamvatsikos & Aschheim, 2016)).  

Given the computational complexity of early PSBD approaches, Luco et al. (2007) tried 

to strike a middle ground by proposing the Risk-Targeted or Uniform Risk Spectrum (URS). 

The URS provides seismic actions that at least results in elastoplastic single-degree-of-freedom 

systems with uniform risk of damage or collapse, partially mitigating some of the inaccuracies 

of the UHS when applied to realistic systems (Spillatura, 2017). Therefore, given the 

practicality of the URS for seismic design, this paper demonstrates how to produce them for 

ZSBE systems. 

Using the ZSBE proxy, the proposed URS is a plot of the displacement demand of the 

system as a function of its normalized strength, in which all ordinates of the plot present the 

same MAF of exceedance (Figure 4.4b). The URS can also be interpreted as an iso-MAF 

contour plot of the seismic risk surface, which is a 3D plot of the annual probability of 

exceeding a displacement demand for a range of systems with different normalized uplifting 

forces (Figure 4.4a). 

 

Figure 4.4. (a) Seismic risk surface with an iso-MAF contour plot highlighted; and (b) 

Uniform Risk Spectrum. 

 

The calculation of the probability of exceedance is performed using the risk integral 

(Cornell et al., 2002): 
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 ( ) ( ) ( )| IM IMLS C CEDP EDP P EDP EDP d  =  =    (4.4) 

in which λLS is the MAF of exceeding (i.e., violating) a limit state (LS), P(EDP > EDPC | IM) 

is the fragility function, which represents the probability that the engineering demand 

parameter (EDP) exceeds the capacity threshold of EDPC associated with LS for any given 

level of the ground motion intensity measure (IM) and λ(IM) is the MAF of exceeding a given 

value of IM, which can be retrieved from the site-specific seismic hazard curve. Note that 

Equation (4.4) gives a single-point of the seismic risk surface. To construct the complete 

surface, the equation has to be evaluated for several limit states and a range of systems with 

different normalized uplifting force, fup / (mg). 

 

4.3.1. Intensity measures 

Given that all outputs of the risk assessment are conditioned on the chosen IM, it is extremely 

important to choose it wisely (Kazantzi & Vamvatsikos, 2015). The performance of an IM is 

commonly defined by its efficiency, sufficiency and hazard computability (Giouvanidis & 

Dimitrakopoulos, 2018; Kazantzi & Vamvatsikos, 2015; Luco & Cornell, 2007). Efficiency is 

related to the record-to-record variability; the more efficient an IM is, the lower is the 

dispersion of the predicted EDP along the full range of the evaluated IM. Sufficiency requires 

that the IM offers an unbiased prediction of the EDP that is not influenced by other 

seismological or ground motion characteristics (e.g. magnitude, distance from the rupture, etc.). 

Lastly, an IM is defined as hazard computable if there are reliable GMPEs for this IM. Without 

GMPEs, an IM is essentially useless for risk calculations. 

To guarantee hazard computability, two commonly used IMs in vulnerability studies are 

employed herein, namely the PGA and PGV. Both are employed in their geomean form, 

denoted henceforth as PGA  and PGV , and calculated as the geometric mean of the PGA and 

PGV, respectively, from the two horizontal components (x, y) of the ground motions:  

 
x yPGA PGA PGA=   (4.5) 

 
x yPGV PGV PGV=   (4.6) 

The use of the geomean instead of the arbitrary component spectral ordinates (i.e., 

randomly taking one of the two, usually the one applied in the 2D system) is preferable as most 

modern GMPEs refer to the former rather than the latter. Hence, convolving fragility functions 
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via Equation (4.4) based on arbitrary-component IMs with hazard curves defined on the 

respective geomean components would yield biased risk estimates due to the obvious 

incompatibility (Baker & Cornell, 2006). To this end, the geomean IM values are used also for 

the analysis, by employing IDA in discrete steps of PGA  and PGV , even if for the planar 

model at hand only one arbitrary component is assigned to the model per run. In a later section, 

the efficiency of both IMs is briefly discussed. Their sufficiency, however, is not evaluated 

herein, as the goal of the paper is not to evaluate the performance of the IMs, but to propose 

and discuss the construction of the URS, using the ZSBE proxy. 

 

4.3.2. Site-specific seismic hazard curves 

The risk assessment was conducted for six locations in Europe: Aachen (Germany), Athens 

(Greece), Baden bei Wien (Austria), Focşani (Romania), Montreux (Switzerland), and Perugia 

(Italy) (Vamvatsikos et al., 2020). The seismic hazard curves for both IMs were assessed via 

Probabilistic Seismic Hazard Analysis (PSHA (Cornell, 1968)). For the hazard calculations, 

the open-source platform OpenQuake was used (Global Earthquake Model (GEM), 2016) with 

the 2013 European seismic hazard model (ESHM13 (Woessner et al., 2015)). From the 

available logic tree branches of ESHM13 only the area source model and the Boore Atkinson 

2008 GMPE (Boore & Atkinson, 2008) were employed. Since no site-specific data for the soil 

condition were available, a uniform “rock” soil type was assumed (VS30 = 800 m/s) in all sites 

under investigation. 

Figure 4.5a points out the location of the six sites in Europe, while Figure 4.5b,c presents 

the seismic hazard curves obtained using PGV  and PGA  as IM, respectively. From Figure 

4.5b,c, it can be noted that Athens, Focşani, and Perugia have a higher seismicity than Aachen, 

Baden bei Wien, and Montreux.  

 

4.3.3. Fragility curves 

Incremental dynamic analyses (IDA) (Vamvatsikos & Cornell, 2002) were carried out to obtain 

the fragility functions for each predefined limit state and system. A set of 105 firm-soil ordinary 

(no-pulse, no-long-duration) ground motions were selected from the PEER database (Chiou et 

al., 2008; Pacific Earthquake Engineering Research Center). They all come from events with 

moment magnitude (Mw) higher than 6.2 and PGA  higher than 0.14g. When adopting PGV  

as IM, the ground motions were gradually scaled in PGV  levels of: 
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( ) ( ) ,1: 0.5 : 20 25 : 5 : 200PGV =  cm/s. For the PGA , scaling was employed in specific 

levels of: ( ) ( ) ( ) 0.001, , ,0.0025 : 0.0025 : 0.0225 0.025 : 0.005 : 0.195 0.20 : 0.05 : 2PGA =  g. 

 

Figure 4.5. (a) Europe map indicating the six locations for which the risk assessment was 

carried out; and seismic hazard curves for (b) PGV  and (c) PGA . 

 

The ZSBE system model considers only planar response. Therefore, the nonlinear 

dynamic analysis was carried out using one of the two components of the ground motion. After 

carrying out the analyses for all different scales and ground motions, the fragility function per 

limit state and system can be easily obtained either on an EDP or on an IM-basis approach 

(Kazantzi & Vamvatsikos, 2015). In this paper, the former was employed. For each IM-step 

value (horizontal stripe), the probability of exceeding the deterministic EDP capacity threshold 

was calculated as: 

 ( )
number of records with 

|
total number of records

C

C

EDP EDP
P EDP EDP IM


 =  (4.7) 

Note that for smaller values of PGV  and PGA , a finer discretization was adopted 

because low PGV or PGA ground motions might lead to smaller EDP values, but they also 

have large probability of occurrence, hence resulting in significant contribution to the 

convolution of the risk integral (Equation (4.4)). Moreover, alike rigid rocking systems 

(Psycharis et al., 2000), the typical ZSBE IDA curve (not shown here for reasons of 

conciseness) shows highly weaving behaviour. However, for the fragility definition herein and 

the horizontal statistics approach at hand (Equation (4.7)), no inversion of the curves is needed 

and the raw analysis is used (Lachanas & Vamvatsikos, 2022).  

The maximum horizontal displacement of the system (udem) was adopted as the EDP. To 
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construct the seismic risk surface (Figure 4.4a), fragility curves were constructed for several 

limit states and a range of systems with different normalized uplifting force. Herein, 3002 

thresholds were evaluated, ranging from 0 to 3 m, in steps of 0.001 m. To be able to depict 

uplift, the threshold 0.0005 m was also included (see Section 4.2.2). The nonlinear analyses 

were carried out for systems with normalized uplifting force varying from 0.1 to 1.0, in steps 

of 0.05. 

 

4.3.4. Risk Integral 

The last step for obtaining the MAF of exceedance (λLS, Equation (4.4)) was to combine the 

structural response (i.e. fragility curves) with the seismic hazard at each location. Evaluating 

the risk integral for all 3002 thresholds and 301 systems with distinct normalized uplifting 

force, resulted in the seismic risk surface. Herein, the URS with 2%, 10% and 50% probability 

of exceedance in 50 years are presented for the six locations. These probabilities correspond to 

a MAF of 0.0004, 0.0021 and 0.0139 per year, as given by Equation (4.8), in which MAF can 

be converted to probability of exceedance (PT) in a specific period of time (T), and vice versa, 

via the cumulative distribution function of the exponential distribution: 

 
( )ln 1

MAF
TP

T

− −
=  (4.8) 

 

4.4. Uniform Risk Spectra 

Figure 4.6 and Figure 4.7 present the URS with P50 = 2%, 10% and 50% probability of 

exceedance in 50 years, constructed using PGV and PGA  as IM, respectively. As expected, 

for all locations and IMs, the displacement demands are increased when moving from the less 

frequent hazard levels (i.e., P50 = 2%) to the most (i.e., P50 = 50%). Moreover, the differences 

in the seismicity between the six locations at hand are also captured in the risk spectrum, 

whereas for the places of higher seismicity (i.e., Athens) notably higher demand values are 

calculated in comparison with lower seismicity places (i.e., Aachen). 

Observing the spectra constructed for the same location and probability of exceedance, 

but different IMs, one can infer that the spectra constructed using PGA  as IM predict larger 

displacement demands than the spectra that adopt PGV  as IM. The larger displacement 

demands could be a consequence of the higher variance that GMPEs for PGA  present in 
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comparison to GMPEs for PGV . From Equation (4.4) it follows that distributions with fatter 

tails, once convolved with the fragility curves, lead to larger risk values.  

 

Figure 4.6. Uniform risk spectra for ZSBE systems with 2%, 10% and 50% probability of 

exceedance in 50 years, constructed using PGV  as IM. 

 

However, it is important to note that the fragility curves used to construct the spectra with 

different IMs were computed by performing two distinct incremental dynamic analyses. For 

the risk assessment using PGV  as IM, the ground motions are scaled to levels of PGV , while 

for the assessment that uses PGA  as IM, the ground motions are scaled to levels of PGA . 

While in theory the result of Equation (4.4) should be the same (within statistical significance) 

regardless of the IM used, this only holds if the IMs are sufficient. Thus, one should be careful 

in comparing the spectra with different IMs. In any case, the spectra developed using PGV  

are considered to be more reliable than the ones developed using PGA  because the fragility 

curves when PGA  was used (not shown here for reason of conciseness) had larger dispersion, 

which is indicative of lower sufficiency in practical terms (Kazantzi & Vamvatsikos, 2015). 

 

4.5. IM-based uncertainty in uniform risk spectra 

Given the discrepancy between the displacement demand predicted by the risk assessment 

conducted with both IMs (Figure 4.6 and Figure 4.7), bootstrapping (Efron & Tibshirani, 1993) 
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was employed to evaluate the dispersion of the spectra and indirectly check the efficiency of 

the intensity measures through the following steps: 

(a) Choosing a (re)sampling size. Herein, sample sizes of 20, 40, 60, 80, and 105 ground 

motions were adopted. 

(b) Randomly sampling with substitution per selected size from the total of 105 ground 

motions and reconstructing the uniform risk spectra with the desired probability of 

exceedance.  

(c) Repeat step (a) N times, each time with a new random sample. In this paper, N=1000 

repetitions were performed leading to N =1000 samples for each sample size. 

(d) Estimate the statistical parameters of interest (i.e. median, 5%-quantile, 95%-quantile) 

over the N samples of the same size.  

The above described bootstrapping technique was performed for the spectra with 

probabilities of exceedance of P50 = 2%, 10% and 50% in 50 years. However, for the sake of 

brevity, only the results for the spectra with 2% in 50 years probability of exceedance are 

presented and discussed. 

 

Figure 4.7. Uniform risk spectra for rocking structures with 2%, 10% and 50% probability of 

exceedance in 50 years, constructed using PGA  as IM. 
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4.5.1. Peak rocking response 

Figure 4.8 presents the obtained median spectra (solid lines) and their 90% bootstrap percentile 

confidence interval (CI, shown as a shaded area) for all sample sizes. The spectra presented in 

Section 4.4 (black dashed line) are also plotted for reference. Table 4.1 quantitatively compares 

the curves of Figure 4.8 presenting the error (emedian) of the median spectra and the maximum 

range of the 90% confidence interval (r90CI). The quantities are defined as: 
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in which, u5, umedian and u95 are 5%-, 50%- and 95% quantiles of the displacement demand 

given by the bootstrapping analysis, respectively; u105GM is the displacement demand given by 

the spectra obtained in Section 4.4; and fup,umax,1 and fup,umax,2 are the values of fup that maximize 

the numerators of Equation (4.9) and (4.10), respectively. 

Figure 4.8 and Table 4.1 show that, when using PGV  as IM, the median spectra provide 

a good estimation of the original spectra for all locations, independently of the sample size. 

The maximum emedian for all locations and sample sizes are smaller or equal to 10%, even when 

the smallest sample size of the bootstrapping analysis (i.e. 20 ground motions) is adopted. 

These low differences that are captured for PGV  stem from its efficiency, and are also 

indicative of high sufficiency by virtue of reducing the magnitude of any bias that can be 

attributed to non-captured seismological characteristics (Kazantzi & Vamvatsikos, 2015). 

Although the sample size does not have a significant influence on the median of the N = 

1000 estimated spectra, increasing the sample size leads to overall tighter estimates, and thus 

narrower confidence intervals on the estimated spectra. As shown in Equation (4.10), the 

maximum r90CI range describes how wide the confidence interval is. For most locations, the 

spectra obtained with a sample size of 20 ground motions have a wide variability, in which 

r90CI can be as high as 74%. Once the sample size is increased to 80 or more ground motions, 

the maximum r90CI among all locations drops to 40%.  
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Figure 4.8. Median and 90% confidence interval for the spectra with 2% in 50 years 

probability of exceedance. 
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Table 4.1. Maximum error of the median spectra (emedian) and maximum range of the 90% 

confidence interval (r90CI). 

Place 
Sample 

Size 

PGV  PGA  

emedian (%) r90CI (%) emedian (%) r90CI (%) 

Aachen 

20 3.9 63 10.3 127 

40 2.5 46 6.0 98 

60 1.2 40 4.3 91 

80 1.6 36 4.4 69 

105 1.5 32 3.0 63 

Athens 

20 10.2 70 20.0 155 

40 5.5 47 11.7 123 

60 5.0 40 9.4 91 

80 4.9 35 5.0 89 

105 1.5 31 5.7 71 

Baden bei 

Wien 

20 2.8 69 11.1 126 

40 2.2 43 5.9 95 

60 1.5 36 6.1 80 

80 1.9 34 4.7 77 

105 0.5 27 2.5 59 

Focşani 

20 4.5 74 22.4 159 

40 3.6 56 17.5 149 

60 2.4 40 10.6 98 

80 2.1 36 8.4 88 

105 1.7 33 6.4 72 

Montreux 

20 7.2 72 13.7 181 

40 2.6 47 8.5 125 

60 1.4 45 5.0 88 

80 1.7 39 3.6 74 

105 1.7 35 3.4 60 

Perugia 

20 3.8 71 19.4 160 

40 5.4 51 12.5 112 

60 1.8 42 5.1 82 

80 1.8 33 4.5 74 

105 2.0 29 2.6 62 

 

On the other hand, for the less efficient and sufficient PGA , the median of the N = 1000 

spectra obtained from the bootstrapping analysis still remains close to the original spectra, 

presented in Section 4.4. The emedian for different locations and sample sizes may appear to be 

uniformly higher for PGA  than those calculated for PGV , yet this difference should be viewed 

in light of the significantly higher dispersion of the results in the former case. Even so, emedian 

is again considerably reduced with the increase of the sample size. Lachanas & Vamvatsikos 

(2022) have suggested that for the case of PGA a sample size of 40 records is a robust lower 

limit for applying IDA to simple rocking systems, which also seems to hold for ZSBE systems, 
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especially if PGV  is employed as the IM. 

Additionally, the high levels of record-to-record variability that is captured in the IDA 

when employing PGA  as IM and moving away from the deterministic rocking initiation 

threshold, lead to large values of r90CI. Even when samples of 105 ground motions are used, 

r90CI is still in the range of 60-70%, an r90CI value that was only observed for the PGV -based 

spectra with the smallest sample size adopted herein (i.e. 20 ground motions). 

Figure 4.9 reproduces again the median PGA -based spectra and its 90% CI, as well as 

the median PGV -based spectra, both calculated with the largest sample size. Note that, for all 

locations, the median spectra obtained for PGV  are not even contained in the confidence 

interval of the PGA -based spectra, indicating that there is little statistical evidence to support 

the hypothesis that the two results are equivalent. Given that in both cases, the hazard was 

estimated on the basis of the same family of GMPEs (Boore & Atkinson, 2008), the same 

source model and software platform, this glaring difference is another indication that PGA  

should not be trusted as IM for predicting the peak rocking response, even if structural codes 

implicitly provide it as the Spectral Acceleration for T=0. Therefore, based on the above and 

the large record-to-record variability of the PGA -based spectra, it can be concluded that PGV

is a more efficient intensity measure than PGA , as also observed by (Acikgoz & DeJong, 

2014; Dimitrakopoulos & Paraskeva, 2015; Giouvanidis & Dimitrakopoulos, 2018; Kavvadias 

et al., 2017; Kazantzi et al., 2021; Petrone et al., 2017; Xie et al., 2019). 

 

4.5.2. Rocking initiation 

Although PGV  is considered as a uniformly efficient rocking IM, showing relative low record-

to-record variability in the full range of the response, PGA  is reported to present a better 

performance in predicting rocking initiation of free-standing blocks (Kazantzi et al., 2021; 

Petrone et al., 2017). This follows directly from the uplift condition for rocking, that is 

completely controlled by PGA (i.e. there is uplift when PGA > fup/m). Figure 4.8 gives a first 

evidence that this is reflected in the simplified spectra constructed herein. One can observe that 

the confidence interval of the spectra constructed using PGA  narrows when approaching 

systems with large uplifting force and smaller displacement demands, in which rocking is 

minimal, while narrowing of the confidence interval of the spectra constructed using PGV  

cannot be observed. 
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Figure 4.9. Median and 90% confidence interval for the spectra with 2% in 50 years 

probability of exceedance and sample size of 105 ground motions. 

 

Figure 4.10 presents the median and 90% confidence interval of the spectra with 50% in 

50 years probability of exceedance for sites in Baden and Montreux, which predict 

displacement demands smaller than the adopted uplift displacement (i.e. uup = 0.0005m). The 

plots only show the curves for the range of displacement demands close to rocking initiation. 

The spectra with 2% in 50 years probability of exceedance are not shown because they predict 

displacement demands larger than the uplift displacement, and therefore cannot be used for 

assessing the dispersion of the spectra at the verge of rocking initiation. 

In contrast to what was observed in Figure 4.8, one can note that after zooming in on 

small displacement demands, the spectra constructed using PGA  present smaller dispersion 

than the spectra constructed using PGV . Therefore, it can be suggested that, contrary to what 

was observed for the peak rocking response, PGA  is a more efficient IM than PGV  in 

predicting uplift. This also follows directly from the uplifting condition for rocking systems: 

In the general case, this would be PGA > fup/m, while in the case without a restrainer this would 

be PGA > gtanα (α defined in Figure 4.1 and Figure 4.2). This means that out of all the 

characteristics of a ground motion, PGA is the one that completely controls uplift. 
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Figure 4.10. Median and 90% confidence interval for the spectra with 50% in 50 years 

probability of exceedance for sites in Baden and Montreux. 

 

4.6. Regression analysis on the PGV -based spectra 

Similarly to analytical approximations of conventional UHS, this section derives analytical 

approximations of URS for ZSBE structures that were developed in the previous sections. 

Nonlinear regression analysis was conducted to fit a function to the PGV -based spectra, and 

estimate the displacement demand of the rocking systems. Because of the low efficiency of the 

PGA in predicting the peak rocking response, no attempt was made to find a function that fit 

well to the PGA -based spectra. Herein, an exponential function with the general format shown 

below was adopted.  

 ( )( ) ( )( )10 2expup updem
f c fmg mgu c c=  +  (4.11) 

The function has three constant parameters that were fitted to the individual spectra 

corresponding to distinct probabilities of exceedance and location. Table 4.2 presents the fitted 

parameters, as well as the Root Mean Squared Error (RMSE) returned by the fitting algorithm.  
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Table 4.2. Fitted parameters to predict the displacement demand using Equation (4.11). 

Place 
Prob. of 

Exceedance 
c0 c1 c2 RMSE 

Aachen 

2% in 50 years 0.1557 -14.3419 0.0007 0.0017 

10% in 50 years 0.0635 -26.8763 0.0006 0.0006 

50% in 50 years 0.0147 -43.0825 0.0002 0.0001 

Athens 

2% in 50 years 0.5651 -5.2976 0 0.0089 

10% in 50 years 0.2643 -9.9605 0.0006 0.0033 

50% in 50 years 0.0939 -19.2313 0.0005 0.0007 

Baden 

2% in 50 years 0.1759 -13.0488 0.0007 0.0019 

10% in 50 years 0.0718 -24.9015 0.0006 0.0006 

50% in 50 years 0.0191 -46.1140 0.0003 0.0001 

Focşani 

2% in 50 years 0.5452 -5.9908 0 0.0087 

10% in 50 years 0.2834 -9.5306 0.0007 0.0037 

50% in 50 years 0.1116 -16.4333 0.0005 0.0009 

Montreux 

2% in 50 years 0.2022 -12.5980 0.0009 0.0024 

10% in 50 years 0.0889 -21.0858 0.0006 0.0007 

50% in 50 years 0.0311 -40.2362 0.0004 0.0003 

Perugia 

2% in 50 years 0.4356 -6.4190 0 0.0059 

10% in 50 years 0.1967 -12.1549 0.0006 0.0021 

50% in 50 years 0.0708 -26.5297 0.0006 0.0007 

 

The RMSE values and Figure 4.11 show that the chosen exponential function fits well 

the spectra for all locations and probabilities of exceedance. However, in the range of systems 

with fup/(mg) < 0.05, the displacement demand is overestimated. As it can be depicted on the 

original spectra (Figure 4.6, and reproduced in Figure 4.11), moving from fup/(mg) = 0 to larger 

values the spectra present the following pattern: 

(a) At fup/(mg) = 0, the spectra start from a finite value, which for individual ground 

motions would be equivalent to the Peak Ground Displacement (PGD). This is 

consistent with the physics of the problem, as fup/(mg) = 0 means that the mass is not 

connected to the ground and it stays still. 

(b) Then, the spectra rapidly increase and reach a plateau.  

(c) After the plateau, the displacement demand seems to decrease exponentially, being in 

good agreement with the proposed analytical exponential function. 

This paper did not try to capture the rapid increase and the plateau observed in the original 

spectra because it would require a three-fold equation to better represent a region that it is not 

even meaningful for practical applications. In the case of the free-standing block, fup/(mg) = 

0.05 would lead to a block 1m-wide and 20m-high. Therefore, to keep the analytical function 

as simple as possible, the exponential function was fitted in the fup/(mg) > 0.05 and extrapolated 
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in the range of fup/(mg) < 0.05. This leads to overestimating the displacement demand for 

fup/(mg) < 0.05. 

 

Figure 4.11. Proposed analytical functions and the original spectra. 

 

4.7. Conclusions 

This paper constructed uniform risk displacement demand spectra for rocking structures, which 

could be used for their design. To this end, it used the Zero Stiffness Bilinear Elastic system as 

a proxy of rocking systems. The methodology for constructing the spectra was firstly explained 

in detail. Then, spectra for six locations in Europe, using two distinct IMs ( PGA  and PGV ), 

were presented and discussed. 

The two explored intensity measures perform differently depending on the objective they are 

used for. PGA  is excellent in predicting uplift – as was expected based on the physics of the 

problem. However, for systems that displace into the “rocking region” (i.e. more than the 

displacement needed to uplift) PGA  shows high response dispersion, while PGV  manages to 

reduce this record-to-record variability, hence becoming more efficient. 

The paper also approximated the PGV -based spectra with exponential analytical curves. The 

proposed functions overestimate the displacement demand of systems with low uplift force (i.e. 
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fup/(mg) < 0.05), this being a choice of simplicity over accuracy on a range of systems that do 

not have a real practical application. For all remaining systems (i.e. fup/(mg) > 0.05), the 

displacement demands are well predicted. 
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5. Cyclic tests of a precast restrained rocking system for 

sustainable and resilient seismic design of bridges 

 

This chapter consists of the post-print version of the following published article, differing from 

the original only in terms of layout and formatting: 

Reggiani Manzo, N., Vassiliou, M. F. (2022) Cyclic tests of a precast restrained rocking system 

for sustainable and resilient seismic design of bridges. Engineering Structures, 252, 113620. 

Available at https://www.sciencedirect.com/science/article/pii/S0141029621017119 

 

 Abstract 

Letting a column uplift and sustain rocking motion has been suggested as a seismic design 

method for bridges. In an effort to increase the redundancy of a rocking bridge, most 

researchers use ungrouted restraining tendons passing through the columns. However, it has 

been argued that these tendons unnecessarily increase the design forces of the superstructure 

and of the foundation, and that rocking systems should be designed to be unrestrained. 

In an effort to combine the benefits of both approaches this paper suggests the use of 

flexible restraining systems comprising a tendon in series with disc springs, essentially forming 

a seismic isolation method for precast structures. It presents cyclic tests of two 1:5 scale RC 

columns with ends protected either with steel jackets or with steel discs. The columns are able 

to sustain drifts of more than 15% (and in some cases 30%) without any significant damage – 

hence they are resilient. The behavior of the disc springs is well predicted by analytical models. 

The strength (i.e. uplift force) and post uplift stiffness of the system can be predicted with a 

reasonable accuracy using a rigid body model. However, the rigid body model does not predict 

well the pre-uplift behavior. As the tendon is anchored within the column, the design moment 

of the foundation drastically decreases, therefore costly and material intensive pile foundations 

could be avoided – hence the design concept contributes to sustainability. 

 

5.1. Introduction 

Modern seismic design of bridges is based on the dogma that the columns should be firmly 

connected to the ground. The survival of ancient Greco-Roman temples that are supported by 

columns that are allowed to uplift indicates that this dogma might be unnecessary. Moreover, 

not only it is unnecessary but fixing the columns to the ground results in large design moments 

https://www.sciencedirect.com/science/article/pii/S0141029621017119
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for both the columns and the foundation. As designing for elastic behavior under these design 

moments seemed an expensive approach, plastic design of bridges has been the state of the 

practice for the last decades. This implies that bridges are designed to sustain non-repairable 

damage under the design earthquake. Moreover, this approach often results in huge pile 

foundations that can comprise up to 50% of the Reinforced Concrete of the total structure. As 

an example, the bents of a bridge in Egnatia Highway in Northern Greece are less than 12.5 m 

tall, while the piles of the foundation are 36 m long and governed by the seismic loading. 

To avoid plastic design and the expected damage that it implies, a very efficient way of 

using the reinforcement has been proposed: an unbonded tendon passes along the length of the 

column and is anchored at the cap beam and the foundation. Hence, its strain equals to its 

deformation divided by its whole length and a much larger column drift is required to yield the 

tendon. To provide energy dissipation, yielding reinforcement is used either grouted within the 

column, or connected to it in the side. Proper dimensioning of the unbonded tendon and 

yielding reinforcement results in the so-called “flag shaped” (Christopoulos, 2004; Giouvanidis 

& Dimitrakopoulos, 2017) hysteresis loops and recentering performance. The concept is based 

on the early work of Priestley & Tao (1993), Stanton et al. (1997), and the PREcast Seismic 

Structural Systems project (Nakaki et al., 1999; Priestley et al., 1999). Different names have 

been used for similar concepts: Damage Avoidance Design (Mander & Cheng, 1997), 

Controlled Rocking (Calvi et al., 2004; Liu & Palermo, 2017, 2020; Marriott et al., 2009; 

Mashal & Palermo, 2019; Palermo et al., 2005, 2007; White & Palermo, 2016), Self-Centering 

System (Cheng, 2008; Christopoulos et al., 2008; Cohagen et al., 2008; ElGawady & Sha’lan, 

2011; Guerrini et al., 2015; Kashani et al., 2018; Li et al., 2019; Restrepo & Rahman, 2007; 

Sakai et al., 2006; Trono et al., 2015; Wang et al., 2018), Precast Hybrid Systems (Billington 

& Yoon, 2004; Bu et al., 2016; Motaref et al., 2014; Ou et al., 2010; Panagiotou et al., 2015), 

Restrained Rocking (Makris & Vassiliou, 2015; Vassiliou & Makris, 2015), Hybrid Sliding-

Rocking System (Sideris et al., 2014a, 2014b, 2015), Pretensioned Rocking (Thonstad et al., 

2016, 2017; Yamashita & Sanders, 2009, among others), Unbonded Post-Tensioned Systems 

(Chou et al., 2013; Chou & Chen, 2006; Chou & Hsu, 2008), and it has recently found its way 

to practice in New Zealand (Routledge et al., 2016) and China (Qu et al., 2018). This concept 

is a breakthrough, because it addresses the societal call for not only avoiding collapse, but for 

reducing damage and increasing post disaster functionality as well. 

However, the current state of the art in restrained rocking bridges still results in large 
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design moments for the foundation. Hence, large pile foundations only to take the overturning 

moment are often needed. The foundation often comprises up to 50% of the total Reinforced 

Concrete (RC) used in the project. To address this waste of material, Agalianos et al. (2017), 

Chen & Li (2021), Dimitrakopoulos & Giouvanidis (2015), Giouvanidis & Dimitrakopoulos 

(2018), Giouvanidis & Dong (2020), Makris & Vassiliou (2013), Thomaidis et al. (2020), 

Vassiliou et al. (2017a,b), Vassiliou (2018), Xie et al. (2019) have proposed that a rocking 

system without a tendon (a “free rocking” system – Figure 5.1) is stable enough and leads to 

much smaller design moments for the foundation. The analysis of such a system is 

fundamentally different to elastic and positive stiffness elastoplastic or flag-shaped systems, 

because it exhibits a negative post uplift stiffness – that is, after uplift the restoring force 

decreases as displacement increases. Therefore, any analysis based on the elastic spectrum is 

not applicable (Makris & Konstantinidis, 2003) and a different simplified design method has 

been proposed (Reggiani Manzo & Vassiliou, 2019, 2021). The main counter argument against 

free rocking systems is that they have no redundancy, especially redundant parallel 

mechanisms that engage in a beyond design event. Psychological aspects regarding building a 

freestanding structure should not be disregarded. 

 

Figure 5.1. Free-standing rocking frame. 

 

In an effort to combine the low foundation design moment of a free rocking system with 

the redundancy provided by restrainers, this paper suggests the use of a spring in series with 

the restraining tendon (Figure 5.2). Then, the post uplift stiffness of the system is negative, the 

design moment remains small, the overturning displacement is increased, while the redundancy 

of the system can be enhanced by adding a spring stopper that can engage when the spring 

reaches a critical displacement. This paper discusses cyclic tests that have been performed on 

2 RC precast columns equipped with a tendon-spring restraining system (Figure 5.3). As the 

springs are used to make the system more flexible and, consequently, to decrease the design 

forces, the idea could be perceived as a seismic isolation method for the controlled rocking 

systems. 
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Figure 5.2. Restrained rocking frame. 

 

 

Figure 5.3. Specimen with: (a) circular end plate (Column D), and (b) steel jacket (column 

J). 

 

5.2. Mechanics of the restrained rocking column 

Assume the rocking column presented in Figure 5.4a. The column has a mass mc and carries a 

vertical constant load F1 + F2 + mb·g = P. It is restrained via an unbonded restraining system 

having overall stiffness kres and zero prestress. Assuming no sliding and rigid behavior of the 

column, and following an approach similar to Makris & Vassiliou (2015) and Vassiliou & 

Makris (2015), the horizontal force–displacement relation is: 

 ( )
( )

21 sin
tan sin

2 cos2

c
res

m g
F k RP


 

 

 
= ++ − 
  −

 (5.1) 

where R is the semidiagonal of the column and θ its tilt angle. 
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Figure 5.4. (a) Rocking Column; (b) Restoring force versus displacement diagram of the 

rocking column. 

 

For small α and θ, it becomes: 
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Figure 5.4b shows a plot of 
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 as a function of u for different values of kres. For 

kres = 0 (i.e. no restraining system), the system presents a negative post uplift stiffness. The 

restoring force becomes negative at the point of unstable equilibrium, i.e. θ = α, or, in terms of 

displacement, u = 2b. This point defines collapse under static loading. In traditional RC 

columns, collapse is defined as a deformation that has damaged the column enough to lose its 

vertical bearing capacity. On the contrary, in rocking columns with protected ends collapse 

occurs because of a geometric instability, not because of material damage. 

The presence of the non-prestressed tendon (i.e. kres > 0), increases the post uplift 

stiffness, without affecting the uplift force. When 
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stiffness remains negative. The displacement of unstable equilibrium now increases to: 
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When 
2

2
2

c

res

m g
P

k
R

 
+ 

 
 , Equation (5.2) gives positive post uplift stiffness, hence there 

exists no point of unstable equilibrium and a rigid column restrained by an elastic system does 

not fail. 

Designing a precast rocking column would require the determination of the section 

moment and shear forces, so that the column is appropriately reinforced. To this end, the tendon 

force, T, is computed as: 
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The critical cross section is the top most. There, for small θ, the axial load, moment and 

shear applied on this cross section is: 
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The above analysis is highly idealized because: 

a) Usually a restraining system comprises solely a tendon that has a finite yield strain. For 

a tendon strength of 1800 MPa, the yield strain is 9 × 10-3. Assuming a bridge column 

of 9.6 × 1.6 m, rigid body analysis shows that the tendon will yield at a drift ratio of 

11%. 

b) The column is not rigid, but will sustain flexural deformation along its length and local 

deformation at the column-foundation and column-cap beam contact zones. 

c) There might be sliding at the interfaces between the column and the cap beam or 

foundation. 

However, the experimental results presented in this paper show that the rigid body model 

provides a good approximation for large displacements, at least in the case where a) the 

restraining system is made relatively flexible by adding a spring and b) the column ends are 

protected with steel jackets or steel plates. 

Concerning the dynamic response of negative stiffness restrained rocking systems, 
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Vassiliou (2010) and Reggiani Manzo & Vassiliou (2019, 2021) have shown that the presence 

of a non-prestressed tendon increases the post uplift stiffness and the displacement capacity 

without affecting the displacement demand – as long as the post uplift stiffness remains 

negative. 

 

5.3. Design of the test specimens 

Two column specimens of the same geometry were tested: One had its ends protected with 

steel jackets (column J) and one with steel annular (top) or disc (bottom) plates (column D). 

The geometry of the specimens was not chosen to represent a specific bridge, but rather fall in 

the range of typical columns used in bridge design in seismic prone areas. The scale of the 

specimen was 1:5 and was controlled by the stroke of the available actuator. Scale effects on 

the compressive strength of concrete are not quantified in this paper. Column elevations and 

critical cross sections are shown in Figure 5.5. 

The ungrouted tendon passed through the centerline of the column. One end was 

anchored in the bottom plate of the column via a threaded socket, providing no connection 

between the foundation and the column. The other end was anchored above the beam, in series 

with the disc springs (Figure 5.2). A minimal prestress loading of 2 kN was applied to the 

restraining system to remove the slack of the restraining system. 

Steel plates were also fixed to the floor and to the cap beam to avoid damage due to stress 

concentrations (Figure 5.3). The plates were equipped with sliding restrainers, which limited 

the sliding motion of the column. A restrainer was also provided to avoid twisting of the 

columns. 

 

5.3.1. Casting of the columns and concrete mix 

The columns were cast in-house using a commercial dry mixture of self-compacting concrete 

of strength class C30/37 (fck = 30 MPa). Although the water/cement ratio suggested in the pack 

of the dry mixture was initially respected, the concrete workability was not the one expected, 

and more water had to be added to the mixture. Three standard cylindrical specimens of 150 

mm-diameter and 300 mm-height were cast to define the strength and Young’s modulus of the 

concrete. The measured mean (standard deviation) 28-day strength and Young’s modulus of 

the specimen were 45.4 (12.5) MPa and 29.9 (4.2) GPa, respectively. Therefore, assuming a 

lognormal distribution, the characteristic compressive strength of the concrete (5%-quantile) is 
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fck = 28.9 MPa. 

 

Figure 5.5. Column elevation and critical cross-sections (dimensions in mm). 

 

The concrete was cast from the top, and compacted from the side with a mallet. Because 

the workability of the concrete remained relatively low, after removing the formwork it was 

observed that there were voids at the ends of the column D, especially at the top end, which is 

also the most critical cross-section (Figure 5.6). The voids were repaired with mortar. One 
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could not see whether there were voids within the jackets of column J, but it is reasonable to 

assume so. However, after the tests, column J had sustained only minimal damage (see section 

5.5.2), so even if there were voids, it seems that the jackets were strong enough to protect the 

column. This did not hold for column D. 

 

Figure 5.6. Voids created while casting at the top end of column D. 

 

After the first test, the repair mortar that was used had failed and the steel plates were 

clearly bent. The column’s voids were filled using a “Sika Monotop − 412 NFG” fiber-

reinforced, low shrinkage repair mortar with 48 MPa compressive strength at 28 days (Sika). 

This time 30 mm and 10 mm thickness plates were welded on the top and bottom of the bent 

plates. The column was retested as column DR (R for “repaired”). Based on the above, the 

columns should either be cast from the side as in Thonstad et al. (2016, 2017), or a more 

workable mix should be used. 

 

5.3.2. Steel jackets and end plates 

S355 steel was used for the protection of the ends of both columns. The ends of column J were 

protected with a tube having 3.4 mm thickness, 245 mm height, and 257.8 mm external 

diameter (see Figure 5.5, Figure 5.7a). The steel tube was welded at its base to a steel plate of 

5 mm thickness. The detailing of the steel plate is different in the bottom and top part of the 

column to allow for casting from the top. A threaded steel tube was welded at the bottom steel 

plate to allow for anchoring the tendon. In the top part, a circular annular plate with internal 

diameter of 120 mm was used. 

The ends of column D were protected solely with a 5 mm thick disc plate (bottom) and 

an annular plate (top). The top and bottom repair plates (DR) had a thickness of 30 and 10 mm 

resulting in a total thickness of 35 and 15 mm respectively (Figure 5.5, Figure 5.7b). The 

addition of the repair plates increased the total height of column DR to 1490 mm. 
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Figure 5.7. Column end protection. (a) Steel Jacket of column J; (b) Repaired discs of 

column DR. 

 

To limit sliding, the steel plates fixed to the ground and to the cap-beam were equipped 

with restrainers that limited sliding to 5 mm in each direction (Figure 5.8). Column J was also 

equipped with a twist restrainer (Figure 5.8). 

 

Figure 5.8. Schematic illustration (left) and photo (right) of the motion restrainers. 

 

5.3.3. Restraining system 

The tests were performed under a vertical load V = 52.2 kN that would correspond to a 

normalized axial load (v = N/(Ac × fcd)) of 5% in the columns, which is on the low side but 

typical for bridge columns (Mashal & Palermo, 2019). The target stiffness of the restraining 

system was obtained by setting ucap = 4b = 515 mm. In the prototype scale this corresponds to 

an enormous displacement capacity of 2.58 m, but seismic joints of this capacity can be 

manufactured. Based on these properties, Equation (5.3) gives a target stiffness of the 

restraining system of kres = 2302 kN/m. 
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The restraining system comprised a tendon in series with a spring system. 

The unbonded tendon had a nominal cross-section area of 150 mm2, a Young's modulus 

of 190 GPa, and total length of 2352 mm. Thus, its axial stiffness is 12,117 kN/m. Its yield and 

ultimate characteristic strength are 1590 MPa and 1770 MPa. It had threaded sockets at its ends 

and it was anchored in the bottom end of the column, as Detail 1 of Figure 5.5 shows. The other 

end was anchored at the top of the springs with a nut. 

The spring system comprised disc springs, also known as “Belleville washers”, i.e. 

conical shells that are loaded along their axis (Figure 5.9a). Multiple disc springs may be 

stacked to modify the total stiffness of the spring assembly. Stacking in the same direction 

results in a system with stiffness equal to the sum of the component springs (like adding helical 

springs in parallel). Stacking in an alternating direction is the same as adding helical springs in 

series, resulting in a system with total flexibility equal to the sum of the component springs 

(like adding helical springs in series). Mixing and matching directions allow a specific spring 

constant and deflection capacity to be designed. This can be proven useful in designing systems 

with adaptable stiffness, like e.g. the double and triple concave spherical isolation bearings 

(Becker & Mahin, 2012; Fenz & Constantinou, 2006, 2008). The force–deformation relation 

of each spring is given in closed form by Almen & Laszlo (1936). Each spring can present 

hardening, softening or linear behavior, depending on each geometry. 

In this work, 11 disc springs having dimensions 200/92/10 mm (external diameter / 

internal diameter / thickness) were used, all stacked in alternate direction (Figure 5.9a). The 

displacement capacity of each spring was 5.6 mm, resulting in a displacement capacity of the 

stack equal to 61.6 mm. 

The force–deformation diagram of the stack of the springs, as predicted by the Almen & 

Laszlo (1936) equations, presents a mild softening behaviour and is shown in Figure 5.9b. The 

same plot shows the force–deformation curves of the assembly of the springs (as measured 

during the tests) and of the spring-tendon system, as predicted by Almen & Laszlo (1936) and 

assuming linear behavior of the tendon. The secant stiffness of the system at 45 mm (which is 

roughly equal to the restraining system deformation when the column tilts to the target 

displacement of 515 mm) is 2,500kN/m, which is 9% larger than the 2,300kN/m target value. 



Cyclic tests of a precast restrained rocking system for sustainable and resilient seismic 

design of bridges 

109 

 

 

Figure 5.9. Left: Disc Springs used in the test; Right: Force-deformation diagrams for the 

assembly of all 11 springs. 

 

5.3.4. Steel reinforcement 

Columns J and D had identical reinforcement that was designed to resist the internal moment 

and shear generated when the column rotates to a displacement equal to 4b = 515.6 mm. The 

internal moment and shear generated at this rotation were computed using Equations (5.5)-

(5.7) to determine the acting internal forces and moments and the Eurocode 2 (EC2), EN-1992–

1–1 Design of Concrete Structures (CEN, 2004) to determine the resistance. This resulted in a 

longitudinal reinforcement composed of 6 B500B rebars of 8 mm-diameter (As = 3.02 cm2) 

distributed uniformly along the circular perimeter of the column. The longitudinal 

reinforcement was welded on the steel plate at the column ends. 

The transverse reinforcement comprised an 8 mm-diameter B500B spiral, only to satisfy 

the minimum transverse reinforcement ratio required by the Eurocode 2 (Asw/s = 0.022 

cm2/cm). 

The contribution of the jacket on both the moment and the shear strength was neglected. 

 

5.4. Test setup and instrumentation 

Figure 5.10a schematically shows the test setup. It consisted of two vertical and a horizontal 

actuator. The three actuators can apply forces or displacements to a steel beam, which was 

connected to the cap-beam with short wide flange steel beams. The steel beam is constrained, 

and its out-of-plane displacement is not allowed. 
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Figure 5.10. (a) Test setup and (b) position of the optical markers and rosettes installed on 

columns J and DR. 

 

The setup kept the vertical force applied to the column constant and equal to 52.20 kN, 

simulating the gravitational loads of the super-structure. The axial load that was applied during 

testing was chosen so that the normalized axial load ν = N/(fcd × Ac) falls within the range of 

tests performed on rocking bridge columns. Mashal & Palermo (2019) tested under ν = 2% 

which they consider representative of a typical highway bridge in New Zealand, while 

Thonstad et al. (2017) tested under ν = 7.5%. The axial load of the tests presented in this paper 

gives ν = 5%. 

Using an Inova EU 3000 RTC control system, the difference of the stroke of the vertical 

actuators was kept constant and equal to zero. This constraint guaranteed that the cap and steel 

beam could move up and down without rotating. 

For the cyclic test, the horizontal actuator applied the displacements defined in the 

loading protocol shown in Figure 5.11. The loading protocol consisted of two consecutive 

cycles of the same drift ratio, followed by a subsequent cycle of 1.25 times the previous drift 

ratio. In total, the columns were subjected to 18 sets of two cycles each. The loading protocol 

was based on the American Concrete Institute recommendations. Since the most recent report 

(ACI, 2013) specifies that the drift ratio must be increased based on the yield strain (not 

applicable in this case), the increase of the drift ratios was based on an older report (ACI, 2001) 
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and the first cycle had a drift of 0.36%. The maximum drift ratio for the cyclic tests was 15%, 

as this reached the stroke of the horizontal actuator. The drift was applied at 1.38 × 10-4/s rate. 

 

Figure 5.11. Cyclic Loading Protocol. 

 

To explore the behaviour to even larger drift ratios, column J was subjected to a 

monotonic test up to 30% drift, applied at a 1.38 × 10-4/s rate. 

The displacements of the column and cap-beam were measured by an optical 

measurement device that tracks the positions of markers fixed in the specimen. Column J was 

tested first and it was observed that flexural deformation was minimal. Therefore, less markers 

along the height of the column were used when testing column DR. The forces and strokes of 

all actuators were recorded by load cells and integrated displacement sensors installed on them. 

A load cell and a Linear Variable Differential Transformer (LVDT) were also installed in series 

with the springs and tendon, recording the forces in the restraining system and the springs 

deformation, respectively. Rosettes measured the strain in the steel jacket. 

 

5.5. Results 

5.5.1. Force-drift loops 

This paper only reports the results of columns J and DR. The results of column D (i.e. the one 

that was damaged because of problematic casting) are not discussed. 

Figure 5.12-Figure 5.13 present the force-drift response for low drift ratios (up to 1.1%), 

medium drift ratios (up to 4.2%), and high drift ratios (up to 15%). The drift ratio is defined 

herein as the ratio between the horizontal displacement of the beam and the height of the 
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column (1450 mm and 1490 mm for the J and DR columns, respectively). Positive drifts are 

towards the South (Figure 5.10). 

 

Figure 5.12. Force-drift relation for: (a) low drift ratio, (b) medium drift ratio, and (c) high 

drift ratio. 

 

 

Figure 5.13. Force-drift relation for: (a) low drift ratio, (b) medium drift ratio, and (c) high 

drift ratio. 

 

Both columns present almost no strength reduction even when tested up to 15%. 

Apparently, there is some energy dissipation as the loops do encompass some area. However, 

as a) there is no damage to the columns and b) energy dissipation is present even in small 

amplitude cycles where there was no sliding, there seems to be no physically plausible energy 

dissipation mechanism apart of setup internal friction, mainly at the actuator clevises. 

In future tests, a 3DOF load cell should be used underneath the column to measure the 

horizontal force that is actually applied to the column (without the setup friction), as typically 

done when testing seismic isolation devices (e.g. Cilsalar & Constantinou (2019)). 

Sliding did occur (as can be seen in Figure 5.12a,b and Figure 5.13b) but it was smaller 
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than 5 mm and the sliding restrainers did not engage. Due to setup imperfections, some out-of-

plane motion (on the order of 10% of the in-plane) occurred when the specimen moved towards 

the negative displacement. This caused some minor twisting and this is the reason for the slight 

asymmetry of the force deformation loops (Figure 5.12-Figure 5.13). 

Figure 5.14 compares the force-drift response predicted by rigid-body calculations, and 

the obtained response at the largest drift ratio (15%). Two curves are presented for the force-

drift response of the rigid-body: assuming that the restraining system (1) exhibits the force 

deformation curve given by the analytical curve of Figure 5.9 (“Analyt. Restr.”); (2) exhibits 

the force deformation curve obtained experimentally (“Exp. Restr.”). In both curves the gap 

between the tendon and the duct is neglected, as it is less than 9 mm while the halfwidth of the 

column is 129 mm. The column is assumed rigid with dimensions equal to the dimensions of 

the tested columns (257.8 mm-diameter and 1450 mm-height, and 257.8 mm-diameter and 

1490 mm-height for columns J and DR, respectively), and constant vertical load of 52.20 kN. 

 

Figure 5.14. Force-drift envelopes for: (a) Column J, and (b) Column DR. 

 

Figure 5.14 shows that there exists some deviation between the predicted behavior of the 

restraining system, and the one observed experimentally, apparently contradicting the good 

approximation stated in Figure 5.9. However, Figure 5.9 compares only the behavior of the 

springs with its analytical equation, and not of the complete restraining system. Therefore, the 

deviation observed in the response could be related to the tendon, which might be more flexible 

than predicted by its specifications. 

Table 5.1 offers a comparison between tests and the different variations of the analytical 

model in terms of peak load, drift at peak load, and post uplift stiffness. For the experimental 
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tests, the post uplift stiffness is defined as the slope of the loading branch between 3% and 15% 

drift ratio. 

Table 5.1. Comparison between tests and the different variations of the analytical model in 

terms of peak load, drift at peak load, and post uplift stiffness. 

  
Tests (+drift/ - 

drift) 
Analyt. Restr. Exp. Restr. 

Colum J 

Peak load (kN) 8.57/-8.62 9.45 9.45 

Drift at peak load (%) 1.81/-1.95 0 0 

Post uplift stiffness (kN/m) -17.54/-15.87 -15.49 -18.42 

Column 

DR 

Peak load (kN) 8.46/-8.43 9.45 9.45 

Drift at peak load (%) 1.90/-1.83 0 0 

Post uplift stiffness (kN/m) -17.19/-16.23 -15.49 -18.42 

 

Overall, the flexibility of the tested system only causes a slight deviation from the rigid 

body model, that is non-negligible only for drift ratios smaller than 2–3%, essentially before 

the column uplifts. For design level earthquakes the displacement is expected to be more than 

the threshold of 2–3% that corresponds to 15–20 cm of displacement in the prototype scale. 

This shows that a) The displacement of the column sourcing from flexural deformation is 

minimal compared to the one sourcing from rigid body rotation and b) That the compression 

zone at the column protected ends is essentially a compression point, as visible during the tests. 

The above is confirmed by the deflection shapes that are offered in Figure 5.15 in increments 

of 3% drift ratio. 

 

5.5.2. Observed damage 

At the end of the test, a very slight dent caused by local buckling could be noticed at the top 

jacket of column J (Figure 5.16b). The dent resulted in minor gap between the column end and 

the steel plate of the beam (Figure 5.16a). Judging by the voids caused by trapped air pockets 

in column D, it is reasonable to assume that the dent is due to non visible air pockets trapped 

inside the jackets. The dent first appeared at a drift of 12.7%. The influence of the dent in the 

overall behavior of the column is negligible, as the force–deformation loops show no 

deterioration. No cracks or concrete spalling of the column was observed. The bottom steel 

jacket did not present any damage visually observed, as a smaller moment is acting on it. 

Peeling of the concrete paint was observed at the end of the steel jacket (Figure 5.17a). Column 

DR, presented no observable damage. 
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Figure 5.15. Deflection shapes of the columns for several drift amplitudes. 

 

 

Figure 5.16. Dent observed at the top end of column J. a) A 1 mm thickness card can fit in 

between the column and the cap beam in the at-rest position b) Close view of the dent c) Side 

view of the jacket that shows that there is no other damage apart from the dent. 

 

5.5.3. Strain in the steel jackets 

Rosettes were placed in both steel jackets at their north side and at 8 cm from the column ends 

(Figure 5.17a). Figure 5.17b presents the envelope of the normalized longitudinal and hoop 

strain in both steel jackets. The strains were normalized to the unidirectional yield strain of the 

steel. 
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Figure 5.17. (a) Rosettes used to measure strain (b) Envelopes of normalized stress at the 

steel jackets of column J. 

 

There was zero longitudinal and hoop strain in both steel jackets when their north edge 

was not in contact with the steel plates fixed to ground or cap-beam. Once the north edge was 

in contact with the plates, the steel jackets presented compressive strains in the longitudinal 

direction, and tensile strains in the hoop direction. 

Until the system went into the negative stiffness region, the strain magnitude in the top 

and bottom steel jacket is the same and increases with drift. Once the column enters the 

negative stiffness region (i.e. when there is a clear uplift), the strain magnitude in the top steel 

jacket continues to increase, although at a smaller rate. This increase is due to the extra 

compressive force acting at the edge of the column, applied by the beam to equilibrate the 

tendon force. On the contrary, the strain at the bottom does not significantly change, as the 

tendon is anchored within the column and at the center of the cross section. 

The strain magnitudes reached 4% and 15% of the steel unidirectional yield strain in the 

hoop and longitudinal direction, respectively. 

 

5.5.4. Load in the restraining system 

Figure 5.18 presents the envelope of the load in the restraining system (tendon plus springs) as 

measured in the tests and as predicted using Almen & Laszlo (1936) equations. The measured 

load increased linearly with the drift ratio, and it is in good agreement with the one calculated. 

It can be noted that the restraining system is more flexible than predicted analytically. This is 
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in agreement with the steeper force–deformation curve observed in Figure 5.14, when the drift-

force response is calculated using the experimental force deformation curve of the restraining 

system. 

 

Figure 5.18. Measured and calculated load in the restraining system. 

 

Since the yielding load of the tendon is 238 kN, it did not exceed its linear range during 

the cyclic tests. The springs also did not reach their load capacity of 171.2 kN. 

 

5.5.5. One direction monotonic loading 

In order to test for larger drift rates, the test setup was reconfigured so that the stroke of the 

actuator is −240 mm when the column is vertical. With this configuration, the system was 

subjected to a drift ratio of 31.8% (Figure 5.19). Similarly to the cyclic test, the vertical force 

was constant and equal to 52.2 kN during the entire test. 

Figure 5.20a presents the measured force–deformation curve. The measured system’s 

strength was 8.77 kN, which is almost equal to the strength observed in the cyclic test (8.90 

kN). In the pushover test, the system was pulled to the south direction, which led the contact 

region at the interface between the column and the cap-beam to be the north-edge, the same 

that presented the dent at the end of the cyclic test (Figure 5.16b). Hence, it can be concluded 

that the minor dent did not affect the strength of the system. 

Figure 5.20b shows the column after the test to 31.8% drift ratio. No further damage, 

other than the one observed at the end of the cyclic test, could be noticed. No spalling of the 

concrete was observed. 
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Figure 5.19. Column J subjected to a drift ratio of 31.8%. 

 

 

Figure 5.20. (a) Pushover curve of Column J; (b) Column J at 31.8% drift ratio. 

 

The restraining system reached a maximum force of 86.3 kN, a value that it is still in the 

elastic range of the tendon. Only the rosette at the top of the steel jacket measured non-zero 

strain. The strains followed the same pattern observed in the cyclic tests, reaching 6% and 20% 

of the unidirectional yield strain of the steel in the hoop and longitudinal direction, respectively. 
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5.6. Conclusions 

A subassembly comprising a restrained (or “controlled”) rocking column and a beam was 

tested. The column was equipped with an unbonded tendon in series with disc springs. The 

bottom end of the tendon was anchored at the bottom of the column, while the top end was 

anchored at the top of the cap beam, in series with the springs. The restraining system was 

designed to be flexible enough, so that the overall post uplift stiffness of the system remains 

negative. This approach reduces the design forces and moments of bridge foundations and can 

lead to the reduction of their size, which can lead to a significant save of material – hence 

contribute to sustainable design of bridges. It could be perceived as a seismic isolation method 

for restrained rocking structures, in the sense that it uses a device (i.e. the springs) to make the 

system more flexible and reduce the design forces at the expense of larger displacements. 

Two variations of the columns were tested: One had steel jackets at its ends, while the 

other annular steel plates. 

The steel jacketed column was tested to a 30% drift, while the column with steel plates 

to 15% drift without any damage. The only observable damage was a slight dent in the column 

with the steel jackets. The dent was likely due to improper casting that left voids within the 

jackets. Hence, the system is resilient. 

The strain at the steel jacket was smaller than 20% of the yield strain (where it was 

measured), even though it is expected that it was larger closer to the column end. 

The behavior of the restraining system is simple and predictable by an analytical model 

used for disc springs. 

Sliding was smaller than 5 mm, hence the sliding restrainers did not engage in these tests. 

However, sliding could be larger in 3D shake table testing, because the objects slide more 

easily during 3D rocking motion. 

A Housner-like (Housner, 1963) rigid body model that assumes a contact point rather 

than a contact region between the column and the base or the foundation was able to capture 

the behavior of the system with reasonable accuracy for drifts larger than 2–3%. In prototype 

scale this corresponds to 15–20 cm, which is smaller than the displacement expected for the 

design level earthquake for such a system. The influence of the deviation of the analytical and 

experimental curves during the first 2–3% of drift on the dynamic response of such a system 

needs to be furtherly studied. 
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tests of a resilient bridge system with precast reinforced concrete columns equipped with 

springs. Earthquake Engineering & Structural Dynamics, 51(1), 213-239. 

Available at https://onlinelibrary.wiley.com/doi/full/10.1002/eqe.3563 

 

 Abstract 

This paper presents the shake table test results of a novel system for the design of precast 

reinforced concrete bridges. The specimen comprises a slab and four precast columns. The 

connections are dry and the columns are connected to the slab by an ungrouted tendon. One of 

the tendon ends is anchored above the slab, in series with a stack of washer springs, while the 

other end is anchored at the bottom of the column. The addition of such a flexible restraining 

system increases the stability of the system, while keeping it relatively flexible allowing it to 

experience negative post-uplift stiffness. It is a form of seismic isolation. Anchoring the tendon 

within the column, caps the design moment of the foundation, and reduces its size. One hundred 

and eighty-one shake table tests were performed. The first 180 caused negligible damage to the 

specimen, mainly abrasion at the perimeter of the column top ends. Hence, the system proved 

resilient. The 181st excitation caused collapse, because the tendons unexpectedly failed at a 

load less than 50% of their capacity (provided by the manufacturer), due to the failure of their 

end socket. This highlights the importance of properly designing the tendons. The tests were 

used to statistically validate a rigid body model. The model performed reasonably well never 

underestimating the median displacement response of the center of mass of the slab by more 

than 30%. However, the model cannot predict the torsion rotation of the slab that was observed 

in the tests and is due to imperfections. 

 

6.1. Introduction 

Modern bridge design should fulfill a number of requirements. Modern bridges should often 

(a) be constructed quickly; (b) be resilient, that is, not only avoid collapse, but also suffer 

minimal or no damage under the design (or even a larger) earthquake. 

https://onlinelibrary.wiley.com/doi/full/10.1002/eqe.3563
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Prefabrication can conform to the above requirements and offers a number of advantages, 

namely (a) reduced overall construction time, (b) reduced on-site construction time, and (c) 

better quality control and improved safety for the workers. In places where labor cost is high, 

prefabrication can be more competitive than on-site construction, as it requires less labor. On 

the other hand, prefabrication requires well-qualified labor, and the transport of large elements 

might require special vehicles. 

Prefabrication has not been widely used in seismic regions because the state of the 

practice has been to try to emulate cast-in-place structures by connecting prefabricated 

elements with cast in situ concrete, in an effort to create monolithic connections—and this is 

neither always cost-effective nor presents optimal behavior. However, research and, recently, 

practice has proven that there are alternative design and construction methods that, apart from 

preventing collapse, they also provide re-centering. Engineers in New Zealand, the United 

States, and China have suggested connecting precast elements via ungrouted post-tensioned 

tendons, forming dry connections. Mild reinforcement can be added to provide extra energy 

dissipation. The seismic behavior of such systems is superior not only to precast elements with 

emulated connections, but also to cast-in-place systems. The reason is that the elongation of 

the reinforcement is distributed along all its length and therefore it does not yield. Hence the 

tendon offers a recentering mechanism and the structure does not exhibit damage. In fact, the 

widespread belief that the Achilles’ heel of precast structures is their seismic behavior is wrong: 

precast structures can be designed to be more resilient than cast in place. 

The above concept is based on the early work of Priestley & Tao (1993), Stanton et al., 

(1997), and the PREcast Seismic Structural Systems (PRESSS) project (Nakaki et al., 1999; 

Priestley et al., 1999). Different names have been used for similar concepts: damage avoidance 

design (Mander & Cheng, 1997), controlled rocking (Calvi et al., 2004; Liu & Palermo, 2017, 

2020; Marriott et al., 2009; Mashal & Palermo, 2019; Palermo et al., 2005, 2007; White & 

Palermo, 2016), self-centering system (Cheng, 2008; Christopoulos et al., 2008; Cohagen et 

al., 2008; ElGawady & Sha’lan, 2011; Guerrini et al., 2015; Kashani et al., 2018; Li et al., 

2019; Restrepo & Rahman, 2007; Sakai et al., 2006; Trono et al., 2015; Wang et al., 2018), 

precast hybrid systems (Billington & Yoon, 2004; Bu et al., 2016; Motaref et al., 2014; Ou et 

al., 2010; Panagiotou et al., 2015), hybrid sliding–rocking system (Salehi et al., 2021; Sideris 

et al., 2014a, 2014b, 2015), pre- or post-tensioned rocking (Thonstad et al., 2016, 2017; 

Yamashita & Sanders, 2009), and it has recently found its way to practice in New Zealand 

(Routledge et al., 2016) and China (Qu et al., 2018). 

Soviet engineers have been using prefabricated elements dried connected as a seismic 
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isolation method for buildings as referred elsewhere (Bachmann et al., 2017; Bantilas et al., 

2021a, 2021b; Cherepinskiy, 2004; Uzdin et al., 2009). The concept has a seismic behavior 

similar to the one of ancient Greco-Roman temples (Konstantinidis & Makris, 2005; Makris & 

Vassiliou, 2013, 2014; Mouzakis et al., 2002; Papaloizou & Komodromos, 2009; 

Papantonopoulos et al., 2002). 

All the above references focus on the superstructure. However, in seismic-prone regions, 

the foundation of conventional bridges can comprise up to 50% of the reinforced concrete used 

for the project. The design dogma that the superstructure should not be allowed to uplift often 

results in large design moments for the foundation that governs its size. This paper claims that 

this dogma is not necessary, hence it results in unnecessarily large pile foundations. It presents 

shake table tests of a slab supported on four precast columns. Ungrouted restraining tendons in 

series with washer springs (also known as Belleville washers or Belleville springs) connect the 

columns with the slab. The columns are freely supported on the shake table, that is, the tendon 

is anchored within the column, so that the design moment of the foundation is minimized 

(Figure 6.1a,b). The flexibility of the restraining system is governed by the flexibility of the 

springs, which make the system more deformable and reduce the design forces, at the expense 

of increasing displacements. To clarify the concept, Figure 6.2a,b shows such a column that 

was previously tested cyclically in the ETH Zurich (Reggiani Manzo & Vassiliou, 2021a). 

 

Figure 6.1. Schematic drawing of specimen in (a) 3D View, and (b) Front View. 

 

To the authors’ knowledge, this is the first paper that discusses shake table tests of a 

system that uses such a spring system for isolation. The proposed concept can be perceived as 

seismic isolation (Buckle et al., 2006; Konstantinidis et al., 2008; Tsopelas et al., 1996) for 

precast structures. However, a detailed cost/performance comparison of conventional seismic 
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isolation (i.e., spherical sliding or rubber bearings, which also reduce the design shear and 

moment of bridge piers) and the suggested approach lies beyond the scope of this paper. 

 

Figure 6.2. (a) Schematic illustration of the tested specimen; (b) Specimen tested at ETH 

Zürich. 

 

6.2. Mechanics of the rocking frame 

6.2.1. Static planar behavior 

Figure 6.3 presents two variations of a rocking frame comprising N rigid columns of total mass 

N × mc and a rigid beam of mass mb. The columns are able to uplift but not slide at any end. 

They are restrained with a perfectly elastic restraining system. In both variations, the top end 

of the tendon is anchored above the beam, in series with a spring. The total stiffness of the 

restraining system (i.e., spring + tendon) is kres. In Figure 6.3a, the bottom end of the tendon is 

anchored at the foundation, while in Figure 6.3b, it is anchored at the bottom end of the column. 

Assuming a horizontal force F applied at the beam, the linearized lateral force–

deformation relation (“pushover curve”) when the frame is anchored at the foundation is 

(Makris & Vassiliou, 2015; Vassiliou & Makris, 2015): 

 
1 1

sgn( ) 2
2 2 2

c res c

tendon

gravity at initial position P

u
F Nm g u Nk b Nm g

h

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−

 
    

= + + − +    
    

 

  (6.1) 

where γ is defined in Figure 6.3. 

When the tendon is anchored within the column (Figure 6.3b) the linearized pushover 

curve becomes: 
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Figure 6.3. Rocking frame with vertical restrainers. Tendon anchored (a) in the foundation; 

(b) within the column. 

 

The stiffness originating from the restraining system is four times larger if the tendon is 

anchored in the foundation, rather than within the column. Figure 6.4a plots Equations (6.1) 

and (6.2) for different values of kres. For all values of kres, the system presents a bilinear elastic 

behavior. There is no hysteresis, and unloading follows the same branch. 

 

Figure 6.4. (a) F–u relationship for the cases of Figure 6.3a,b; (b) Mbase–u relationships for 

the case of Figure 6.3a; (c) Mbase–u relationship for the case of Figure 6.3b. 

 

When kres = 0 (i.e., no tendon), the post-uplift stiffness of the system is negative. Collapse 

is reached not because of material failure, but when the restoring force becomes zero, that is, 

when the columns reach the point of neutral equilibrium. This defines the displacement 

capacity. 

Adding a non-prestressed tendon algebraically increases the post-uplift stiffness. When 

the stiffness remains below kcrit, where 
( )1 2

4

c

crit

m g
k

b





+
=  or 

( )1 2 c

crit

m g
k

b





+
=  depending 

on whether the tendon is anchored within the foundation or at the column, the post-uplift 
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stiffness of the system remains negative, the slope of the second branch is milder and the 

displacement capacity increases (Makris & Vassiliou, 2015; Vassiliou & Makris, 2015). 

When the stiffness of the tendon becomes larger than kcrit, the post-uplift stiffness 

becomes positive and the system never becomes instable, given the assumption of no sliding. 

By choosing appropriate restraining systems, the pushover curves of the two variations 

of the rocking frame can be made identical. This is not the case for the base moment—top 

displacement curve: when the tendon is anchored in the foundation, the base moment increases 

with displacement (Figure 6.4b). However, if the tendon is anchored within the column, the 

base moment is capped and equal to the load carried by the column times its halfwidth (Figure 

6.4c). As the goal is to reduce the base moment, this paper will focus only on the latter case. 

The above analysis is highly idealized because: 

(a) Usually, a restraining system comprises solely a tendon that has a finite yield strain, 

and no spring is used. For a tendon strength of 1800 MPa, the yield strain is 9 × 10−3. 

Assuming a bridge column of 9.6 × 1.6 m, rigid body analysis shows that the tendon 

will yield at a drift ratio of 11%, if the tendon is anchored in the bottom of the column 

and 5.5%, if it is anchored in the foundation. 

(b) The column is not rigid, but will sustain flexural deformation along its length and local 

deformation at the column–foundation and column–cap beam contact zones. If a 

relatively stiff tendon is used and the column ends are not protected, the deformation 

will cause concrete spalling. 

(c) There might be sliding at the interfaces between the column and the cap beam or 

foundation. 

To test the validity of the static analysis presented above, cyclic tests on a 1:5 scaled 

precast RC column (not of the same dimensions as the one used for the shake table tests) were 

performed in the laboratory of the Institute of Structural Engineering (IBK) of the ETH Zurich 

(Reggiani Manzo & Vassiliou, 2021a). To avoid damage to the column, its ends were protected 

with steel jackets. The restraining system comprised unbonded tendons in series with disc 

springs (Figure 6.2a,b). The column was subjected to a normalized axial load of 52.2 kN that 

would correspond to a normalized axial load (v = N/(Ac × fcd)) of 5% and then laterally loaded 

in cycles up to 15% drift. No damage was observed and the force–deformation loops (Figure 

6.2c) showed no deterioration. The energy dissipation implied from the loops is due to friction 

of the setup, not damage to the column. Note, that the columns were not identical to the ones 
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tested on the shake table due to lab constraints. 

 

6.2.2. Dynamics of the planar rocking frame 

Based on Makris & Vassiliou (2015), and assuming that the columns are always in contact with 

the ground (i.e. they never fly), the equation of motion of the restrained rocking frame of Figure 

6.3b is: 
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where 
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=  and θ is the tilt angle shown in Figure 6.3. 

Linearizing Equation (6.3) gives: 
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 (6.4) 

Unless extra yielding reinforcement is provided internally or externally, energy is only 

dissipated during impact, and it is usually taken into account via a coefficient of restitution 

(Housner, 1963) defined as: 

 
after

before

r



=  (6.5) 

When the stiffness of the restraining system is positive, extra damping can be provided 

to the system in the form of extra yielding bars, and the force deformation loop takes a 

characteristic flag shape (Christopoulos, 2004; Giouvanidis & Dimitrakopoulos, 2017). Then 

the dynamic response of the system can be approximated by an equivalent elastic oscillator, 

and the design follows the standard elastic spectrum-based approach. 

However, when the stiffness of the bilinear oscillator is negative, there is no equivalent 

elastic system and the elastic spectrum cannot be used (Makris & Konstantinidis, 2003). To 

avoid time history analysis, Reggiani Manzo & Vassiliou (2019, 2021b) proposed simplified 

design methods. 
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6.2.3. Extension in three dimensions 

Figure 6.5 shows a 3D extension of the rocking frame model (Vassiliou et al., 2017; Vassiliou, 

2018). The assumptions made for the planar frame (rigid bodies, no sliding or “flying” allowed, 

pointwise contact) are extended to include the following: 

(a) The columns are constrained not to roll-out of its initial position. 

(b) The columns are always in contact with the support and the slab (i.e., they never fly). 

Therefore, the contact force is always compressive. 

(c) No damping mechanism is included. 

(d) The tendon is anchored above the spring and within the column. 

 

Figure 6.5. Three-dimensional wobbling frame. The columns are allowed to uplift. Twist and 

roll out of the columns are constrained. 

 

Then the equations of motion become: 
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θ is the tilt angle. φ is the angle defining the contact point, T, between the column and the 

support (Figure 6.5). 

 

6.3. Shake table testing 

A series of tests was performed at the Laboratory for Earthquake Engineering (LEE) of the 

National Technical University of Athens (NTUA). The objectives of the tests were two: (a) to 

evaluate the seismic performance of a precast system based on the concept of Section 6.2 and 

(b) to validate the numerical model presented in Section 6.2.3. The tested specimen consisted 

of four reinforced concrete columns supporting a reinforced concrete slab (Figure 6.1). The 

columns were connected to the slab via unbonded non-prestressed restraining tendons in series 

with washer springs, but were freely standing on the shake table. The end of each tendon was 

anchored to the bottom of its corresponding column using a threaded socket at the base. 

 

6.3.1. Column design and casting 

The model was designed around the limitations of the shake table of the LEE and was not 

designed to represent a specific prototype bridge, as this was impossible at a scale larger than 

or equal to 1:5. However, at a 1:5 scale, the tested specimen will have a height of 7.25 m in the 

prototype scale that falls within the range of typical heights of columns of highway bridges, 

although on the lower end. The column aspect ratio (height to width) was slightly larger than 

typical highway bridges. The aspect ratio and the height chosen were controlled by the 

limitations of the shaking table. Moreover, the slab had a mass that leads to a normalized load 
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in the columns of ν = N/(Ac·fcd) = 3.3%, where N is the axial load and Ac and fcd are the column 

cross-sectional area and the design compressive strength of the concrete, respectively. This 

value is larger than the value used by Mashal & Palermo (2019) and Mashal (2015) who tested 

a bridge bent of a typical highway bridge in New Zealand. It lies within the typical design range 

of overpass bridges, but still is relatively low. Such a low value was dictated by the capacity of 

the shake table. So, more tests with larger loads are needed. 

Figure 6.6 shows an elevation of the columns and their critical sections. The columns 

were 1450-mm high and 197 mm in diameter. The ends of the columns were protected with 

steel jackets. 

 

Figure 6.6. Column elevation and critical cross sections (dimensions in mm). 

 

Longitudinal reinforcement was provided by 6ϕ8 B500 rebars that were welded to the 

top and bottom jacket plates. This resulted in a reinforcement ratio of ρl = 1.00%. Transverse 

reinforcement was provided by a spiral wire of 2.4-mm diameter and 400-MPa yield strength. 

This creates a distortion in the physical model as the steel is annealed and smooth, unlike 

standard rebars used in construction. However, the shear behavior is not expected to be critical 

and confinement to the critical sections is anyways provided by the steel jackets. The pitch of 

the spires was 52 mm providing a transverse reinforcement ratio of ρs = 0.23%. S355 steel was 

used for the protection of both ends of the columns. 
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The columns were cast in the Laboratory of Reinforced Concrete of NTUA. The concrete 

was sampled in cubes of 100-mm edge, and the average compressive strength at the age of 28 

days was measured at 44.5 ± 0.74 MPa. Therefore, the characteristic value of concrete's 

compressive strength was estimated at fck = 41.2 MPa, classifying the concrete at the C30/37 

strength class. The Young's modulus of the specimen is considered to be 33 GPa, according to 

EC2 (CEN, 2004a). The column was cast from the top and compacted with a vibrator that 

barely passed through the opening between the top steel jacket and the tendon duct. To avoid 

forming voids right below the end steel plate, the mixture was manually pushed towards the 

perimeter. Therefore, it is recommended that either the columns be cast from the lateral side 

(Thonstad et al., 2016), or that the initial high workability of the mixtures be retained during 

the casting time, using the appropriate dosage of retarder. 

The ends of columns were protected with a tube having 5-mm thickness, 140-mm height, 

and 197-mm external diameter (Figure 6.6). The steel tube was welded at its base to a steel 

plate of 10-mm thickness. No particular methodology was used for the design of the tube, as 

existing methodologies are based on the beam theory, which is not applicable in this case, 

because of the strong discontinuity caused by uplifting. To dimension the steel jacket, the jacket 

tested by Thonstad et al. (2017) was approximately scaled down from 1:2 to 1:5 scale. The 

detailing of the steel plate is different in the bottom and top part of the column to allow for 

casting from the top. A threaded steel tube (Figure 6.6) was welded at the bottom steel plate to 

allow for anchoring the tendon (see Section 6.3.3). In the top part, a circular annular plate with 

an internal diameter of 110 mm was used. 

 

6.3.2. End plates 

In order to avoid damage to the slab or the column ends due to stress concentrations, S355 steel 

plates were placed at the interfaces of the column with the slab and the shake table. The steel 

plates were equipped with restrainers that limited sliding to 5 mm in each direction (Figure 

6.7). 

 

6.3.3. Restraining system 

The model was designed to keep the post-uplift stiffness negative while providing a 

displacement capacity (i.e., displacement to reach the point of neutral equilibrium) of ucap = 4b 

= 394 mm, which corresponds to doubling the displacement capacity of the equivalent 



Shaking table tests of a resilient bridge system with precast reinforced concrete columns 

equipped with springs 

135 

 

unrestrained system. Using this value and Equation (6.2), the target stiffness calculated for the 

restraining system was kres = 1,808 kN/m. 

 

Figure 6.7. (a) Schematic illustration (left) and picture (right) of the end plates; (b) end plates 

with the column. 

 

To obtain the target stiffness, the restraining system was composed of an unbonded 

tendon in series with washer springs. The tendon cross section was dictated by the market 

availability of materials. Tendons with threaded connections at their ends (Figure 6.8a) were 

only available as seven-wire strands with nominal cross-sectional area of 150 mm2 and Young's 

Modulus of 190 GPa. The tendons were 2134-mm long, resulting in an axial stiffness of 13,318 

kN/m. One end was anchored at the bottom of the column using a threaded tube welded to the 

steel jacket and the other one was anchored at the top of the springs with a nut. 

The spring system consisted of washer springs, also known as disc springs or “Belleville 

springs”. Washer springs are conical shells loaded along their axis. Similar to helical springs, 

they can be combined to achieve a desired total stiffness. However, unlike helical springs, the 

stacking direction of the springs affects the total stiffness. Stacking the washer springs in the 

same direction results in a stiffer system, while stacking them in alternate directions makes the 

system more flexible. An analytical expression describing the force–deformation relationship 

of a single spring was derived by Almen & Laszlo (1936). The springs can exhibit hardening, 

softening, or linear behavior, depending on their geometry. 

The washers of the spring system were not custom-made, because they are available in 

the market at specific dimensions and their manufacturer provides the force–deformation curve 

of each washer based on Almen & Laszlo (1936). So, the design of the stack of the springs 

involved determining the target stiffness and displacement capacity and choosing the 

appropriate size and number of washers from the manufacturer's catalog: ten washer springs of 

125 × 61 × 6 mm (external diameter/internal diameter/thickness) were stacked in alternate 
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directions (Figure 6.8b). Each washer could deform to a maximum of 3.6 mm, corresponding 

to a load of 64 kN. Figure 6.8c plots the force–deformation relation of the spring stack, as 

predicted by Almen & Laszlo (1936). At the target displacement capacity of the specimen, the 

spring stack deforms by 21.5 mm and its secant stiffness is 1975 kN/m. Figure 6.8c also 

presents the force–deformation curve of the restraining system, assuming linear behavior of the 

tendon. At the displacement capacity of the specimen, the secant stiffness of the restraining 

system was 1720 kN/m, 5% smaller than the target stiffness of 1808 kN/m. 

 

Figure 6.8. (a) Threaded sockets fixed to the tendon (sample tendon of smaller length than 

the one used in the tests); (b) stack of springs; and (c) force-deformation relation for the stack 

of springs. 

 

As shown in Figure 6.6, there was a gap of 8.7 mm between the tendon and tendon duct. 

The large internal diameter of the tendon duct (33 mm) was necessary for passing the 30-mm 

diameter threaded sockets through the duct. Although unavoidable, this detailing resulted in a 

different lateral force–displacement relation for the specimen than what Equation (6.2) 

predicts. Figure 6.9 presents the two curves: the one predicted by Equation (6.2), assuming that 

the tendon does not move from the centerline of the duct and one that considers that the tendon 

will move away from the duct's centerline until it touches the duct's wall (for the derivation, 

please refer to Appendix 2 - Derivation of the planar lateral load-deformation response of the 

system with shifted tendon). The adjusted curve presents a displacement capacity of 333 mm, 

11% smaller than the predicted displacement capacity of 374 mm. In the future, it is 

recommended that a spacer be fixed in the top of the end of the duct to guarantee that the tendon 

will stay in the duct's centerline. 
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Figure 6.9. Lateral force–displacement relation for the tendon fixed to the centerline of the 

duct and for shifted tendon. 

 

6.3.4. Redundant mechanism 

The specimen was designed with a redundant mechanism to prevent the toppling of the 

columns while protecting the tendons from exceeding their capacity. The redundant 

mechanism, “stoppers”, consisted of two M12 threaded rods of Grade 4.8 placed in parallel 

with each stack of springs (Figure 6.8b and Figure 6.10a,b). The stoppers engage only if the 

slab experiences large displacements. In this case, the load in the restraining system increases. 

To protect the tendons, which could not be easily replaced without disassembling the specimen, 

the stoppers were designed as sacrificial elements, yielding at a load of 54.0 kN. In this 

experimental campaign, the stoppers engage after a 15-mm deformation of the stack of springs. 

Using the model that takes into account the gap between the tendon and the duct, this 

deformation of the spring system corresponds to a displacement of the slab of 280 mm. The 

force at the tendon when the stoppers engage is computed to be 31.2 kN. Therefore, when they 

yield, the tendon force is 85.2 kN, which is smaller than the yielding load of the tendons (237 

kN). 

 

Figure 6.10. Detailing of the redundant mechanism. (a) 3D view; (b) front view. 
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6.4. Test setup and excitations 

6.4.1. Shaking table specifications 

The tests were performed in the 4 × 4-m six degree-of-freedom shaking table of NTUA. The 

maximum stroke and velocity of the simulator in the three axes are ±100 mm and 1000 mm/s, 

respectively. Under 10 tons of payload, the maximum acceleration of the horizontal axes is 2g, 

while a 4g acceleration is permitted in the vertical direction. 

 

6.4.2. Construction 

Figure 6.11a-d shows key stages of the construction process. The steel jackets were fabricated 

in a workshop and the reinforcement was welded to them. The spiral was placed by hand, the 

tendon was screwed to the bottom threaded tube, and a steel duct was welded around the 

threaded tube. The columns were cast in the LRC of NTUA using carton formwork and 48 

days after casting, when the concrete had developed an average compressive strength of 47.6 

± 2.4 MPa, the columns were placed on the shake table, and the slab was placed on top with a 

crane. Then, the spring stack was placed and the top nut was screwed at the top end of the 

tendon. Safety steel columns (in red in Figure 6.11c,d) were installed on the shake table to 

prevent crashing of the slab onto the shake table, in case of specimen collapse. A minimal 

prestress of 2 kN was applied to the columns to ensure that they are not loose. 

 

6.4.3. Excitation selection and scaling 

Usually, shake table tests are performed under a handful of ground motions of increasing 

intensity because the tests are expected to cause damage to the specimen. However, the 

structure discussed in this paper is designed not to suffer from any major damage. Therefore, 

it can be tested under multiple ground motions, thus allowing for a better understanding of its 

behavior and for the evaluation of its resilience. Moreover, testing under sets of multiple 

ground motions allows for numerical models to be evaluated in the statistical sense, that is, be 

evaluated according to their ability to predict the cumulative distribution function (CDF) of the 

time maxima of the responses to sets of ground motions that characterize the seismic hazard 

(Bachmann et al., 2018; Del Giudice et al., 2020; Vassiliou et al., 2021a, 2021b, 2021c).  

Therefore, the specimen was subjected to all three sets of ground motions proposed by 

FEMA P695 (FEMA, 2009) (near-field pulse-like (NFP), near-field no pulse-like (NF), and 

far-field (FF)). The sets are composed of 14 NFP, 14 NF, and 22 FF ground motions. In addition 
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to the ground motions proposed by FEMA, an extra 12 NFP, 12 NF, and 21 FF ground motions 

were included. According to FEMA, the original FF set of ground motions includes Cape 

Mendocino, Rio Dell Overpass record. However, this was not available in the PEER ground 

motion database and, thus, was not included in this study. 

 

Figure 6.11. (a) Column cage partially assembled; (b) cast columns; (c) slab placed on top of 

the safety columns for the later assemblage of the reinforced concrete columns; (d) columns 

and slab assembled on top of the shaking table platform. 

 

In total, this experimental campaign consisted of 26 NFP, 26 NF, and 42 FF ground 

motions. The specific records, along with the adopted numbering scheme, are provided in Table 

A1.1 of the appendix for reference. 

All sets of ground motions were scaled to have the same PGV  defined as: 

 ( ) ( )
22

PGVPGV PGV yx= +  (6.9) 

where PGVx and PGVy are the peak ground velocities along the x and y directions. According 

to the capacity of the shake table, two different PGV  levels were selected (in the model scale): 

(a) low PGV = 16.75 cm/s and (b) a high PGV  = 33.5 cm/s. Overall, there were three different 

ground motion sets (NFP, NF, and FF) scaled at two different PGVs  resulting in 188 ground 

motions. The ground motions are provided in the Appendix 1, together with their PGA , after 

they were scaled to the high PGV . The longitudinal, lateral, and vertical components of each 
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ground motion were simulated by the shake table. 

The specimen was constructed assuming a 1:5 scale for the column height. Therefore, to 

preserve similitude of time, the excitations were scaled in time to T LS S= , in which SL is the 

length scale equal to 1/5. Therefore, the PGV  of the high- and low-intensity sets in the 

prototype scale is 75 and 37.5 cm/s, respectively. Figure 6.12a-l plots the linear 5% damped 

spectra for the excitations, as they were recorded on the shake table. It also includes the design 

spectrum for a site in Athens, Greece (in model scale), assuming soil type C and importance 

factor 1, according to EC8 (CEN, 2004b).  

The order of the tests was defined based on the system's response predicted using the 

analytical model proposed by Vassiliou (2018), sorting them from low to high expected 

response. Some ground motions could not be simulated either because the structure failed 

before its execution or because the shake table could not reproduce them sufficiently 

accurately. The loading protocol is also given in the Appendix 1. 

 

6.4.4. Instrumentation 

Figure 6.13 presents the location of all instruments installed on the specimen. The horizontal 

displacements of the slab were measured using draw-wire sensors, the vertical displacements 

using cable-extension position transducers, and the accelerations using accelerometers. Load 

cells were also installed in series with the tendons of each column (Figure 6.8b). The 

deformation of the spring system of column C2 was recorded using a string potentiometer. 

Furthermore, the sensors integrated into the actuators of the shaking table recorded the 

displacement and acceleration of the table platform. 

 

6.5. Response Quantities 

The horizontal displacement of the slab and the base shear of the system were the two quantities 

of interest in this experimental campaign. 

 

6.5.1. Horizontal displacement of the deck 

Assuming that the slab is a rigid body and neglecting vertical displacements, the displacement  
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Figure 6.12. Linear spectra (ζ = 5%), as recorded on the shake table. 
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Figure 6.13. Instrumentation location. 

 

and torsion at the center of mass of the slab were calculated using the elongation/shortening 

measured by the four-string potentiometers fixed to it. The horizontal projection of the 

displacement of the center of mass of the slab is defined as U. The specimen was symmetric 

and the slab was not supposed to sustain torsion. However, due to small imperfections, torsion 

could be observed during the tests. U is not affected by the torsion of the slab. This slab torsion 

needs further experimental study, as a real bridge would most likely have eccentricity by 

design, so more tests need to be performed with an eccentric mass placed on top. 

 

6.5.2. Base shear of the system 

The base shear of the system was estimated based on the inertial resistance of the slab: 

 ( ) ( ) ( )( )2 2

, ,base slab x slab y slab
V t m u t u t=  +  (6.10) 

in which mslab is the mass of the slab, ,x slabu  and ,y slabu  are the total longitudinal and lateral 

acceleration of the slab at its center of mass. 

The mass of slab was measured during assembling of the system and it weighed 9435 kg 

(including the concrete, the steel plates, the springs, and the mounting screws). 

 

6.6. Insight on the behavior 

To gain insight in the response, this section presents the results of two tests that caused 

significant displacements: the 1940 El Centro Array #6 record (Exc. ID 1) and the 1999 Duzce, 

Turkey record (Exc. ID 14), both belonging to the high-intensity NFP set of ground motions 
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(Figure 6.12). The former did not engage the stoppers, while the latter did. 

Figure 6.14a shows the recorded base shear–drift ratio response. The drift ratio was 

defined herein as the ratio between the U displacement of the slab and the height of the columns 

(1450 mm). The system has an initial branch with positive stiffness, which is followed by a 

second branch with negative stiffness. The finite stiffness of the initial branch sources from the 

system's pre-uplift flexibility that is ignored by rigid body models. The system's uplifting force 

can be estimated around 10 kN, which is 22% lower than the value predicted by the rigid body 

approximation (12.9 kN). Apparently, the pre-uplift flexibility influences the strength of the 

system. Figure 6.14a (right) shows that the base shear reaches a plateau at a drift ratio of 20%, 

which indicates that the stoppers of at least one of the columns engaged. Their engagement was 

visually confirmed after the test, even though the stoppers did not yield (in all but the 181st test, 

which cause collapse). 

Figure 6.14b shows the time history of the loads recorded in the restraining system of 

each column. The tendons of the columns clearly exhibit different loads. The main reason for 

this is the torsion of slab that causes each column to displace differently. This is shown in 

Figure 6.14c that plots the time histories of the displacements of the vertical projections of the 

center of the column cross sections at the top surface of the slab. Figure 6.14d plots the twist 

rotation (torsion) time history. Figure 6.15 shows some snapshots of the horizontal position of 

the slab, during the 1940 El Centro Array #6 ground motion. Evidently, columns exhibit a 

different displacement because of the torsion of the slab. 

Figure 6.14e presents the time history of the horizontal displacement of the center of the 

slab (U) for both tests. It also presents a numerical prediction of the time history, discussed in 

Section 6.8. It shows that because of torsion, U can be much larger than the maximum 

displacement of the columns. However, torsion on its own cannot justify such large differences 

in the tendon forces, because the load differences (Figure 6.14b) seem to be larger than the 

displacement differences (Figure 6.14c). Part of the discrepancy can be attributed to some 

tendons having slack after the top nut becoming loose and to the tolerances of the restraining 

system being larger than necessary. Therefore, in future tests, the tendon should be checked for 

becoming loose, and smaller construction tolerances should be applied. 

Moreover, Figure 6.14b (right) shows that when the system was subjected to the 1999 

Duzce, Turkey record, at around 5–6 s the forces in the restraining systems of columns C2 and 

C3 started becoming significantly larger than the forces of the tendons of the other columns,  
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Figure 6.14. (a) Base shear–drift response (U/column height); (b) time history of the loads 

recorded in the restraining system of each column; (c) time history of the slab displacement 

right above each column; (d) time history of twist rotation (torsion) of the slab; (e) the time 
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history of the absolute horizontal displacement of the slab; (f) force–deformation relation of 

the stack of springs composing the restraining system of column C2. 

 

 

Figure 6.15. Snapshots of the slab for the High-Intensity 1940 El Centro Array #1 excitation. 

 

indicating that the stoppers of these two columns engaged. Not all columns engaged 

simultaneously, because of the torsion of the slab. 

Figure 6.14f plots the force–deformation relation of the tendon of column C2 as recorded 

and as predicted by Almen & Laszlo (1936) equations. The plot in the right presents further 

evidence that the stoppers of column C2 engaged: at a deformation of around 15 mm, the 

system becomes much stiffer. As mentioned in Section 6.3.4, the stoppers were designed to 

provide redundancy to the system, to prevent collapse under extreme events, even at the cost 

of permanent deformation. In this particular test, they were successful, as they prevented 

collapse, even though there was a permanent displacement, not in the form of damage but in 

the form of the columns ending up tilted and being held by the stoppers. The specimen was 

recentered using the lab crane. The tendon was not damaged. In the other tests where the 

stoppers engaged, the system was still able to recenter—with the exception of the case where 

there was collapse (see Section 6.7.2). 

The recorded force–deformation curves in both tests show that the stack of springs 

dissipates some minimal energy. Possible sources of energy dissipation are friction of the 

springs with the external guiders and friction of the spring with the end plates. A comparison 

of the experiment and analytical curve shows that the analytical curve predicts the behavior of 

the spring reasonably well, despite its inability to model the minimal damping that was 

experimentally observed. 
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6.7. Experimental results 

This section collectively presents the results to all 181 excitations. 

 

6.7.1. Measured displacements 

Figure 6.16 presents the maximum drift ratio of the slab (U/1450 mm) for each excitation in 

ascending order. This was not the order by which the tests were performed. Different curves 

are shown for low and high-intensity sets of excitations. Some of the planned excitations were 

not run and the results for these excitations are not shown in the plots. 

The system experienced drift ratios smaller than 5% when subjected to most of the low-

intensity excitations. The stoppers engaged for the motions 14 and 16 of the high-intensity NFP 

set and for the motions 72 and 88 of the high-intensity FF set. 

The maximum twisting (torsion) angle observed during the tests was 0.115 rad (6.59°) 

for the motion 72 of the high-intensity FF set. 

 

6.7.2. Eventual collapse 

The system eventually collapsed when it was excited by ground motion 1987, Superstition 

Hills-02 (Exc. ID 88) scaled to the high-intensity set. The collapse was caused by the 

unexpected failure of the tendon of column C1 that was followed by the failure of tendon of 

column C2. The collapse was unexpected because the tendons failed prematurely: C1 broke at 

98.8 kN and C2 at 105.4 kN. Both tendons failed at their sockets, indicating some unexpected 

stress concentration during the manufacturing process. This highlights the importance of the 

tendon design, as the stability of the whole system relies on them. Therefore, not only the 

tendons of this system need to be designed with large safety factors, but they should be able to 

hold the structure even if some of them fail. 

 

6.7.3. Observed damage and performance of the slider restrainers 

The specimen was visually inspected after each excitation and after an eventual collapse. No 

cracks and concrete spalling could be observed in the columns and steel jacket. The only 

observed damage was abrasion of the edges of the top (Figure 6.17a) and bottom (Figure 6.17b) 

steel jacket. Figure 6.17 shows that the abrasion of the top steel jacket is more pronounced than 

the abrasion of the bottom one—something expected as the top end of the column develops a 
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larger bending moment. What looks like damage in the top steel jacket of C4 was made with 

the cutting wheel while cutting the duct that was sticking out of the column after casting. 

Interestingly, the abrasion was not caused by any impacts, but by the forces that were developed 

at large displacements, when the stoppers engage. Therefore, the steel jacket was enough to 

protect the specimens from the impacts, and what governs damage and design is the maximum 

moment applied at the top cross section, which occurs under maximum displacement. 

 

Figure 6.16. Maximum drift ratio for: (a) the near-field pulse-like (NFP) set, (b) the near-

field (NF) set, and (c) the far-field (FF) set. 

 

The sliding restrainers managed to restrain sliding in all cases (but the one that the system 

collapsed). In several cases, the columns impacted on the restrainers, in some cases, they 

climbed up their inclined surface, but eventually, they slid back to the bottom steel plate. 
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Figure 6.17. Observed damage at the (a) top surface and (b) bottom surface of the columns. 

 

6.8. Statistical validation of a rigid body model 

Seismic response is inherently stochastic. Therefore, Bachmann and colleagues (Bachmann et 

al., 2018; Del Giudice et al., 2020; Vassiliou et al., 2021a, 2021b, 2021c) have claimed that, in 

earthquake engineering, structural model validation should follow a stochastic procedure. More 

specifically, the validation test of predicting the response to an individual ground motion is 

sufficient for a structural model, but it is not necessary. Models need to be able to predict the 

CDF of the time maxima of the responses to a set of ground motions that characterize the 

seismic hazard. This is a weaker but sufficient validation procedure. It is often the only possible 

one, as shake table tests are often not repeatable—especially for rocking structures (Bachmann 

et al., 2016; Vassiliou et al., 2021b). In such cases, trying to predict the response to an 

individual ground motion is meaningless. 

This section attempts to statistically validate the model presented in Section 6.2.3 

(without taking into account the nonlinearity of the spring or the presence of the duct) by 

comparing its predictions to the shake table tests results. The analytical model assumes that the 

columns do not slide or twist. In addition, the model also does not account for torsion of the 

slab, which was observed in this experimental campaign and is generated by any small 

imperfections in the specimen. Thus, it is a very simple model—to the point of being simplistic, 

as it grossly overestimated the response of a rocking system in the PEER 2019 blind prediction 

contest (Malomo et al., 2021; Vassiliou et al., 2021a; Zhong & Christopoulos, 2021). With 
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reference to Equations (6.7) and (6.8) and Figure 6.5, the model parameters that were used are: 

2R = 1.463 m, α = 0.1359, mcg = 1.22 kN, msg = 94.35 kN, and kres = 1720 kN/m. Indicatively, 

Figure 6.14e (left) shows that the model underpredicts the response to this individual ground 

motion by roughly 35%. 

Figure 6.18 presents the experimental and numerical CDFs of the displacement of the 

center of mass U. Figure 6.18a presents the data clustered in bins of low and high intensity, 

while Figure 6.18b-d presents bins of different excitation types (NFP, NF, FF). Figure 6.18 

also plots 95% confidence intervals of the experimentally obtained U. The model performs 

reasonably well, as it generally lies within the 95% CI. To statistically validate the analytical 

model, a two-sample Kolmogorov–Smirnov test was conducted using the built-in Matlab 

routine “kstest2” (MATLAB, 2019). This test rejects or accepts the null hypothesis (Ho) that 

both data are from the same distribution. The null hypothesis Ho is rejected when the p-value 

is lower than a given statistical significance value αs. The p-value is a measure of the evidence 

against Ho and it does not represent the probability that Ho is true (Wasserman, 2013). In this 

work, a fairly large value of statistical significance of 0.1 is used to allow for a nuanced 

qualification of null hypothesis validity using an evidence classification scale shown in Table 

6.1. A detailed explanation of the hypothesis testing procedure can be found in Wasserman 

(2013). Table 6.2 provides the p-values for all eight sets shown in Figure 6.18. The numerical 

CDF is compared to the experimental CDF of U. In 7/8 cases there is small to none evidence 

against both data coming from the same distribution, while in 1/8 there is medium–weak. 

Hence, this statistical test shows that the analytical model is a good predictor of the response 

of the center of mass of the slab. 

As p-values are not often used in earthquake engineering practice, Table 6.2 also presents 

the error of the median of U. In 7/8 cases, the error lies below 30%. In the high-intensity FF, 

the error is 47%—but the model is conservative. In no case did the model underestimate the 

median response by more than 30%. However, as the model disregards a number of physical 

mechanisms (e.g., energy dissipation, flexibility of the columns, geometric imperfections that 

lead to torsion), one cannot generalize, and more tests under more complicated and realistic 

geometries should be performed for its validation. Moreover, the model cannot predict the 

torsion of the slab and therefore it can only be used for the prediction of the center of the mass 

of the slab; not for the column drift ratios. 
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Figure 6.18. CDF plots obtained from the experimental data and CDF obtained using the 

analytical model with data clustered in (a) low- and high-intensity sets; (b) low- and high-

intensity NFP sets; (c) low- and high-intensity NF sets; and (d) low- and high-intensity FF 

sets. 
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Table 6.1. Evidence classification p-value scale (Wasserman, 2013). 

p-value Evidence 

<0.01 Very strong against Ho 

0.01-0.05 Strong against Ho 

0.05-0.10 Medium – weak against Ho 

>0.10 Small or none against Ho 

 

Table 6.2. Statistical comparison of the analytical model and the experimental data. 

Set p-value 
50, 50,exp

50

50,exp

anau u
e

u

−
=  

Low-intensity (All) 0.75 0.04 

High-intensity (All) 0.14 0.24 

Low-intensity (NFP) 0.06 0.29 

High-intensity (NFP) 0.86 0.02 

Low-intensity (NF) 0.65 0.09 

High-intensity (NF) 0.59 0.20 

Low-intensity (FF) 0.26 0.09 

High-intensity (FF) 0.15 0.47 
Abbreviations: FF, far field; NF, near field; NFP, near-field pulse-like. 

 

Figure 6.19 presents a scatter plot that gives a motion-by-motion comparison of the 

maximum U of the columns obtained experimentally and by the analytical model. The 

correlation coefficients between the experimental and numerical U are also shown in the same 

figure. The calculated correlation coefficients range from ρ = 0.65 to 0.04 indicating that the 

model cannot predict the response to individual ground motions. However, as a designer would 

design for sets of ground motion (not for individual excitations), this paper claims that the 

statistical validation approach is the appropriate one. 

 

Figure 6.19. Motion-by-motion comparison of the experimental response and the response 

predicted by the analytical model for the (b) low-intensity and (b) high-intensity set. 
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6.9. Conclusions 

A system for the seismic protection of precast bridges was suggested and tested on a shake 

table. Precast elements are connected with ungrouted tendons in series with washer springs. 

The bottom end of the tendon is anchored within the column, and the whole system is freely 

standing on its foundation. This kind of support minimizes the design moment of the 

foundation, thus reducing the need for piles, which can comprise up to 50% of the RC of the 

project. 

The spring increases both the flexibility and the displacement capacity of the system. In 

that sense, it can be perceived as a form of seismic isolation using only steel and concrete. In 

the performed tests, the spring was designed to keep the post-uplift stiffness of the system 

negative. However, a negative stiffness is not a necessity—a stiffer spring can be used that 

would increase the post-uplift stiffness to positive values. 

After 180 excitations, the system proved resilient: it presented minimal damage only at 

the steel jackets that were protecting the ends of the columns. It reached more than 20% drift 

without any concrete damage. The residual deformations were negligible and controlled by the 

sliding restrainers. Eventually, the system collapsed because of the unexpected failure of a 

tendon. This shows that the stability of the whole system depends on the tendons, which should 

be designed with large safety factors and they should be able to hold the structure, even if one 

of them fails. 

The sliding restrainers that were used proved sufficient to restrain the structure from 

excessive sliding, even under strong vertical acceleration, while they allowed it to rock freely. 

The compressive force–deformation curve of the spring device (Figure 6.14f) was well-

predicted by the Almen and Laszlo analytical model (Almen & Laszlo, 1936). 

The test results served as a model validation dataset for a simple model that is based on 

rigid body dynamics. It was proven that despite the general belief that 3D rocking motion is 

unpredictable, a simple model was able to predict the statistics of the displacement of the center 

of mass of the slab to sets of ground motions that characterize the seismic hazard, namely the 

CDFs of the time maxima to individual excitations. 

More work is needed to characterize such systems: their behavior under larger column 

axial load should be explored, stiffer springs that could lead to positive post-uplift stiffness 

should be studied, solutions employing prestressing should be tested, a method to design the 

protective steel jackets should be developed, torsion should be better understood by testing 
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specimens with eccentric masses, and more realistic geometries should be studied. 
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 Appendix 1 

Table A1.1. Excitations. 

Exc. 

ID 

Earthquake 

Recording Station 
PEER 

RSN 

PGA  when PGV

= 33.5 cm/s (in 

the model scale) 
M Year Name 

Pulse Like Records 

1 6.5 1979 Imperial Valley-06 El Centro Array #6 181 0.38g 

2 6.5 1979 Imperial Valley-06 El Centro Array #7 182 0.36g 

3 6.9 1980 Irpinia, Italy-01 Sturno 292 0.36g 

4(b) 6.5 1987 Superstition Hills-02 Parachute Test Site 723 0.31g 

5 6.9 1989 Loma Prieta Saratoga – Aloha 802 0.56g 

6 6.7 1992 Erzincan, Turkey Erzincan 821 0.36g 

7 7.0 1992 Cape Mendocino Petrolia 828 0.63g 

8 7.3 1992 Landers Lucerne 879 0.53g 

9 6.7 1994 Northridge-01 Rinaldi Receiving Sta 1063 0.44g 

10 6.7 1994 Northridge-01 Sylmar – Olive View 1086 0.53g 

11 7.5 1999 Kocaeli, Turkey Izmit 1165 0.47g 

12 7.6 1999 Chi-Chi, Taiwan TCU065 1503 0.42g 

13(b) 7.6 1999 Chi-Chi, Taiwan TCU102 1529 0.22g 

14 7.1 1999 Duzce, Turkey Duzce 1605 0.45g 

15 6.61 1971 San Fernando 
Pacoima Dam (upper left 

abut) 
77 1.03g 

16 7.35 1978 Tabas_ Iran Tabas 143 0.56g 

17 6.93 1989 Loma Prieta Saratoga - W Valley Coll. 803 0.38g 

18 6.9 1995 Kobe_ Japan Takarazuka 1119 0.63g 

19 6.9 1995 Kobe_ Japan Takatori 1120 0.38g 

20 6.93 1989 Loma Prieta Los Gatos - Lexington Dam 3548 0.32g 

21 7.01 1992 Cape Mendocino Bunker Hill FAA 3744 0.26g 

22 6.6 2003 Bam_ Iran Bam 4040 0.64g 

23 6.63 2004 Niigata_ Japan NIGH11 4228 0.81g 

24 7.1 1979 
Montenegro_ 

Yugoslavia 
Bar-Skupstina Opstine 4451 0.53g 

25 7 2010 Darfield_ New Zealand GDLC 6906 0.44g 

26 7.2 2010 
El Mayor-Cucapah_ 

Mexico 
El Centro Array #12 8161 0.37g 

No Pulse Like Records 

27 6.8  Gazli, USSR Karakyr 126 0.86g 

28 6.5 1979 Imperial Valley-06 Bonds Corner 160 1.17g 

29 6.5 1979 Imperial Valley-06 Chihuahua 165 0.73g 

30 6.8 1985 Nahanni, Canada Site 1 495 1.88g 

31 6.8 1985 Nahanni, Canada Site 2 496 1.09g 

32 6.9 1989 Loma Prieta BRAN 741 0.87g 

33 6.9 1989 Loma Prieta Corralitos 753 0.88g 

34 7.0 1992 Cape Mendocino Cape Mendocino 825 1.20g 

35 6.7 1994 Northridge-01 LA – Sepulveda VA 1004 0.83g 

36 6.7 1994 Northridge-01 Northridge – Saticoy 1048 0.61g 

37 7.5 1999 Kocaeli, Turkey Yarimca 1176 0.27g 

38 7.6 1999 Chi-Chi, Taiwan TCU067 1504 0.42g 

39 7.6 1999 Chi-Chi, Taiwan TCU084 1517 0.50g 

40(b) 7.9 2002 Denali, Alaska TAPS Pump Sta. #10 2114 0.24g 

41(b) 6.95 1940 Imperial Valley-02 El Centro Array #9 6 0.54g 

42 7.35 1978 Tabas_ Iran Dayhook 139 0.83g 

43 6.54 1987 Superstition Hills-02 Superstition Mtn Camera 727 1.59g 

44 6.9 1995 Kobe_ Japan Kobe University 1108 0.52g 

45 7.14 1999 Duzce_ Turkey Lamont 375 1617 1.84g 

46 6.61 2000 Tottori_ Japan SMNH01 3947 1.43g 
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47 6.52 2003 San Simeon_ CA 
Cambria - Hwy 1 Caltrans 

Bridge 
3979 0.79g 

48 6.52 2003 San Simeon_ CA Templeton - 1-story Hospital 4031 1.07g 

49(b) 6.63 2004 Niigata_ Japan NIG017 4207 0.85g 

50(a) 6.63 2004 Niigata_ Japan NIG019 4209 0.88g 

51 7.1 1979 
Montenegro_ 

Yugoslavia 
Ulcinj - Hotel Albatros 4457 0.65g 

52 6.8 2007 Chuetsu-oki_ Japan 
Kashiwazaki NPP_ Unit 1: 

ground surface 
4894 0.53g 

Far Field Records 

53 6.7 1994 Northridge Beverly Hills – Mulhol 953 0.55g 

54 6.7 1994 Northridge Canyon Country-WLC 960 0.76g 

55 7.1 1999 Duzce, Turkey Bolu 1602 0.95g 

56 7.1 1999 Hector Mine Hector 1787 0.59g 

57 6.5 1979 Imperial Valley Delta 169 0.71g 

58 6.5 1979 Imperial Valley El Centro Array #11 174 0.68g 

59 6.9 1995 Kobe, Japan Nishi-Akashi 1111 0.92g 

60 6.9 1995 Kobe, Japan Shin-Osaka 1116 0.61g 

61 7.5 1999 Kocaeli, Turkey Duzce 1158 0.43g 

62 7.5 1999 Kocaeli, Turkey Arcelik 1148 0.41g 

63 7.3 1992 Landers Yermo Fire Station 900 0.40g 

64 7.3 1992 Landers Collwater 848 0.74g 

65 6.9 1989 Loma Prieta Capitola 752 0.83g 

66 6.9 1989 Loma Prieta Gilroy Array #3 767 0.84g 

67 7.4 1990 Manjil, Iran Abbar 1633 0.83g 

68 6.5 1987 Superstition Hills El Centro Imp. Co. 721 0.51g 

69 6.5 1987 Superstition Hills Poe Road (temp) 725 0.79g 

70 7.6 1999 Chi-Chi, Taiwan CHY101 1244 0.33g 

71 7.6 1999 Chi-Chi, Taiwan TCU045 1485 0.78g 

72 6.6 1971 San Fernando LA – Hollywood Stor 68 0.80g 

73 6.5 1976 Friuli, Italy Tolmezzo 125 1.07g 

74 6.19 1966 Parkfield Temblor pre-1969 33 1.27g 

75 6.61 1971 San Fernando Lake Hughes #12 71 1.48g 

76 6.53 1979 Imperial Valley-06 Calexico Fire Station 162 0.83g 

77 6.06 1980 Mammoth Lakes-01 
Long Valley Dam (Upr L 

Abut) 
231 1.51g 

78 6.6 1981 Corinth_ Greece Corinth 313 0.74g 

79 6.36 1983 Coalinga-01 Cantua Creek School 322 0.78g 

80 6.36 1983 Coalinga-01 Parkfield - Fault Zone 14 338 0.62g 

81 6.19 1984 Morgan Hill Gilroy Array #4 458 1.22g 

82(b) 6.6 1987 New Zealand-02 Matahina Dam 587 0.66g 

83 5.99 1987 Whittier Narrows-01 Downey - Birchdale 614 0.82g 

84 5.99 1987 Whittier Narrows-01 Inglewood - Union Oil 625 1.24g 

85 5.99 1987 Whittier Narrows-01 LA - 116th St School 626 1.24g 

86 5.99 1987 Whittier Narrows-01 LB - Orange Ave 645 0.69g 

87 5.99 1987 Whittier Narrows-01 Santa Fe Springs - E.Joslin 692 1.06g 

88(b) 6.54 1987 Superstition Hills-02 Westmorland Fire Sta 728 0.51g 

89 6.93 1989 Loma Prieta UCSC Lick Observatory 810 1.62g 

90 7.28 1992 Landers Joshua Tree 864 0.61g 

91 6.69 1994 Northridge-01 Santa Monica City Hall 1077 1.45g 

92 6.9 1995 Kobe_ Japan Amagasaki 1101 0.58g 

93 7.62 1999 Chi-Chi_ Taiwan TCU095 1524 0.94g 

94 7.37 1990 Manjil_ Iran Qazvin 1636 0.87g 
(a) The test was not performed at the low intensity. 
(b) The test was not performed at the high intensity.   

Test order (“L” for low intensity, “H” for high intensity): 
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L01, L04, L06, L13, L20, L21, L37, L40, L70, L02, L25, L26, L12, L62, L17, L22, L34, H62, 

L03, L87, L78, L71, L46, L83, L93, L31, L67, L61, H87, L82, L43, H34, L85, L89, L07, L86, 

L75, L58, L30, L19, L23, L73, L84, L32, L11, L14, H83, L74, L47, L66, L05, L18, L24, H77, 

L09, L53, H2, H84, L45, L15, L59, L16, L41, L52, H43, L42, H75, H85, H8, L65, L33, L81, 

H45, H86, L68, H64, L54, H73, L80, L35, L64, L69, L56, H74, L49, L10, H65, L76, H7, L92, 

L77, H18, L44, H32, H9, H33, H36, H92, L63, L51, H47, H31, H48, L91, L28, L48, H28, 

H21, H21, L79, H71, L36, L29, L60, H53, L55, H20, H15, H17, L39, H55, H23, H50, H22, 

H35, H56, H19, H5, L38, H54, H60, L90, L72, H11, H24, H44, H6, H10, H67, H59, H80, 

H12, L94, H78, H90, H69, H39, H51, H66, H25, H37, H94, H3, H76, L88, H93, H52, H91, 

H29, H42, H70, H63, H16, L27, H30, H89, H46, H1, H81, H27, L57, H14, H26, H57, H58, 

H61, H38, H68, H72, H79, H88 

 

 Appendix 2 - Derivation of the planar lateral load-deformation response of 

the system with shifted tendon 

The equations presented in Section 6.2 present two simplifications: (a) the restraining system 

is assumed to be linear and (b) the tendon always stays in the centerline of the column. The 

actual system tested (a) uses a slightly nonlinear restraining system and (b) includes a duct in 

the column for constructional reasons, which allows the tendon to slightly deviate from the 

centerline. To this end, the pushover curve of Figure 6.9 was computed based on a model that 

can take into account both the nonlinearity of the restraining system, and the existence of the 

gap between the tendon and the duct. 

The planar lateral load–deformation response of the system composed of N rigid columns 

of total mass N × mc, a rigid beam of mass mb and restrained by a perfectly elastic restraining 

system with stiffness kres, when subjected to a lateral force F applied at the beam can be derived 

via the principle of virtual work: 

 
2

b c
S

m g Nm
F u v V

N
  

 
 −  =+ 

 
  (A2.1) 

where Vs is the potential energy of the restraining system. Assuming that the columns are able 

to uplift, but not to slide, the virtual horizontal (δu) and vertical (δv) displacements are: 

 ( )2 cos
du

u R
d

   


=  =  −  (A2.2) 

 ( )2 sin
dv

v R
d

   


=  =  −  (A2.3) 

In which, R is the semi-diagonal length of the column; α is the slenderness of the column, 

given by the angle between the semi-diagonal of the column and the vertical direction; and θ is 
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the tilt angle of the column. 

Substituting Equations (A2.2) and (A2.3) into Equation (A2.1) yields: 

 ( ) ( )
1

2 cos 2 sin
2

b S

c

c

m dV d
F R Nm g R N

Nm d d
   



  
+ =   +  − − 

 
 (A2.4) 

where   is the elongation of the restraining system. The force of the restraining system is 

S

res

dV
F

d
=


, and Equation (A2.4) becomes: 

 ( )
( )

1
tan

2 2 cos

b res

c

c

m N F d
F Nm g

Nm R d
 

 

  
+=  + − 

− 
 (A2.5) 

When the gap between the tendon and tendon duct is taken into account, assuming that 

the tendon passes from (a) the center of the duct at the bottom end of the column and (b) the 

center of the duct at the top of the beam, the deformation of the restraining system is (Figure 

A2.1, left): 

( ) ( ) ( ) ( ) 
2 2

2 cos 2 sin 2 sin 1 cos tentenR h b R b     = + −  + − −    − − − + 
 (A2.6) 

in which, b and h are the half-width and half-height of the column, respectively; and ten  is 

the initial length of the tendon. When the tendon has touched the duct, the deformation of the 

restraining system is given by: 

 ( )( ) ( )( )( ) ( )
2 2 2 2 2sin 21 cos c hc hb c b c  = + + + −+− − −  (A2.7) 

where 
( )

2

duct ten
c

 −
= . 

To produce Figure 6.9, the above equations were numerically solved in Matlab. 
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Figure A2.1. Geometry of a rocking system where the tendon shifts from the centerline.

 

  

 



 

 

7. Conclusions and Future Research 

 

 Abstract 

This chapter summarizes the key findings and contributions of this dissertation. It also presents 

the individual conclusions of each chapter. Moreover, the main limitations of this study are 

clearly stated and suggestions for future research are offered. 
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7.1. Synopsis and key conclusions 

This dissertation consists of seven chapters that summarize the work conducted on the seismic 

behavior of rocking bridge piers that present negative lateral stiffness. Although there is a vast 

number of analytical and numerical studies on the topic, rocking bridge piers with negative 

lateral stiffness have not been widely applied. With an overall goal of bringing such systems 

to practice, this dissertation proposed a simplified design method for systems with negative 

lateral stiffness and provided further experimental evidence on their seismic resilience. The 

individual conclusions of each chapter are presented below. 

 

Displacement-based analysis and design of rocking structures 

Chapter 2 studied the dynamic response of rigid rocking blocks by expressing the equations of 

motion in terms of the top horizontal displacement of the block. The problem was first assessed 

using analytical pulses and dimensionless terms. Later, the problem was assessed using 

recorded ground motions. The main conclusions are: 

• Expressing the dimensionless displacement demand (umax·ωp
2/ap) as a function of the 

dimensionless strength parameter (ap/gtanα) and the dimensionless size-frequency 

parameter (ωp/p or b·ωp
2/ap) showed that, far from the overturning region, the 

displacement demand mainly depends on the strength parameter, and the size-

frequency parameter can be neglected. 

• Returning to dimensional terms, but still adopting analytical pulses as excitations, it 

was shown, once again, that the displacement demand of the block mainly depends on 

its slenderness, not on its size – as long as it is away from the overturning region. 

• Using recorded ground motions, median spectra (i.e. displacement demand versus 

slenderness) for blocks of different sizes were constructed using the FEMA P695 set of 

ground motions. A median spectrum for a large block (2H = 1000 m), which would not 

overturn in practice, was also constructed. As long as overturning is avoided, the spectra 

of blocks of different sizes, including the large block (2H = 1000 m), match well. 

• A preliminary design methodology was presented, in which the spectrum of the block 

that does not overturn (i.e. 2H = 1000 m) was used. Applying this design methodology 

to a case study, it was shown that the simplified method can predict the median 

displacement demand of the block reasonably well. In most cases, it predicted the 
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median displacement demand with an error smaller than 20%, and in all cases the error 

was smaller than 40%. 

 

Simplified analysis of bilinear elastic systems exhibiting negative stiffness 

Chapter 3 generalized the work presented in Chapter 2 for other systems with negative lateral 

stiffness. It first presented a general equation of motion that can describe the dynamics of 

different systems that present an initial pre-uplift deformability, a negative post-uplift stiffness, 

and do not dissipate energy while unloading. Then, a simplified system (ZSBE system) with 

zero post-uplift stiffness was proposed for predicting the displacement demand of the different 

systems. Two approaches were suggested for predicting the displacement demand of the 

systems: the equal displacement rule (also shown in Chapter 2), and the equal energy rule. The 

validity of both approaches was assessed using the set of recorded ground motions proposed 

by FEMA P695. The main conclusions are: 

• In order to assess the validity of the equal displacement rule, median and 90th percentile 

spectra (i.e. displacement demand versus normalized uplift force) were constructed for 

quasi-rigid systems with different displacement capacity (ucap), and for the ZSBE 

system. Once the systems with finite displacement capacity were far from overturning, 

their median spectra compared reasonably well with the median spectra of the ZSBE 

system.  

•  The ZSBE spectra underpredicted the displacement demand of the systems with finite 

displacement capacity, suggesting that the equal displacement rule is unconservative. 

• Similarly, the equal energy rule was assessed by constructing median and 90th 

percentile spectra. Once more, the median spectra for systems with finite displacement 

capacity agreed well with the spectra of the ZSBE system, showing that the equal 

energy rule also offers a good prediction of the displacement demand.  

• Differently from the equal displacement rule, the equal energy rule overpredicted the 

displacement demand of the systems with finite displacement capacity. Therefore, it is 

a conservative approach. 

• However, there were not enough ground motions to accurately predict 90th percentile 

spectra. Therefore, the curves should only be perceived as an indication of the motion-

to-motion variability of the set of ground motions.  
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• The equal displacement rule and equal energy rule were also evaluated for a case study 

of a bridge-like structure of specific geometry. The case study confirmed the previous 

observations. The equal displacement rule underestimated the displacement demand of 

the structure, while the equal energy rule overpredicted it in most cases. In any case, 

none of the rules led the system to collapse, probably because of the adopted safety 

factor (FS=2.5). 

• The pre-uplift deformability has an important influence on the displacement demand 

predicted by the ZSBE system. However, for all cases and ground motions considered 

in this study, two possible criteria could be proposed for considering the pre-uplift 

deformability negligible: (1) if the predicted displacement demand is larger than 50 cm; 

or (2) if the system has a normalized uplift force smaller than 0.2.  

 

Uniform risk spectra for rocking structures 

Chapter 4 presented a methodology for constructing Uniform Risk Spectra (URS) for systems 

with negative lateral stiffness, using ZSBE spectra (Chapter 3) within the framework of 

performance-based engineering. Spectra with 2%, 10%, and 50% probability of exceedance in 

50 years, constructed with the geomean of the PGA or PGV as intensity measure, were 

presented for six locations in Europe. Then, the efficiency of the intensity measures was 

indirectly assessed through bootstrapping. At the end of the chapter, an analytical 

approximation of the spectra is proposed. The main conclusions are: 

• The PGA-based URS predicted larger displacement demands than the PGV-based URS 

with the same probability of exceedance and for the same location. This could possibly 

be attributed to the higher variance of the Ground Motion Prediction Equations (GMPE) 

for PGA. However, it is also important to note that the fragility curves used for 

constructing each one of the spectra were obtained from different incremental dynamic 

analyses. Thus, one should be careful when comparing the spectra constructed with 

different intensity measures. 

• The bootstrapping analysis revealed that, for predicting the peak rocking response, the 

geomean of the PGV is a more efficient intensity measure than the geomean of PGA. 

This could be observed by the narrower 90% confidence interval of the PGV-based 

spectra. Therefore, PGV-based URS better represent the overturning risk. 
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• The geomean of the PGA proved to be more efficient than the geomean of the PGV for 

predicting the rocking initiation. This agrees with previous studies and follows from 

the uplifting condition for rocking systems (PGA > fup/m).  

• An exponential function was fitted to the PGV-based spectra. The function overpredicts 

the displacement demand of structures with fup/(mg) < 0.05. A three-fold function could 

have been used to better predict this region of the spectra. However, as this corresponds 

to very slender systems not used in practice, simplicity was preferred. 

 

Cyclic tests of a precast restrained rocking system for sustainable and resilient seismic design 

of bridges 

Chapter 5 presented the results of the quasi-static cyclic tests performed on two specimens at 

1:5 scale. The specimens comprised a restrained rocking column connected to a reinforced 

concrete cap-beam through an unbonded tendon in series with disc springs. The disc springs 

increased the flexibility of the restraining system, leading to a structural system with negative 

lateral stiffness. In both specimens, the columns were not connected to the floor. The specimens 

differed in terms of the column ends protection. In one of the specimens the column ends were 

protected by a steel jacket, while the ends of the other column were only protected by steel 

discs. During the cyclic tests, the specimens were subjected to a maximum drift ratio of 16%. 

The specimen with the column protected by steel jackets was also subjected to a pushover test, 

reaching a maximum drift ratio of approximately 32%. The main observations and conclusions 

of the quasi-static tests are: 

• The lateral force-drift ratio curves showed that both specimens presented no strength 

reduction during the cyclic tests.  

• The loops, however, enclosed an area, indicating that there was some energy 

dissipation. As no damage could be observed in the specimens, it was concluded that 

the energy dissipation probably comes from the friction in the setup, and/or the friction 

between the tendon and tendon duct.  

• It can also be depicted from the lateral force-drift ratio curves that the columns slid. 

However, for none of the amplitudes, the columns touched the sliding restrainer.  

• The columns and restraining systems were designed based on a 2D rigid body analytical 

model. Comparing the experimental and analytical lateral force-drift ratio curves, one 

could conclude that the analytical model predicts reasonably well the uplift force and 
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post-uplift lateral stiffness of the system. Furthermore, the specimen presented an initial 

positive stiffness that inherently cannot be captured by a rigid body model. 

• The force and deformation measured for the stack of springs agreed well with the 

analytical equations proposed by Almen and Laszlo (1936). The recorded forces in the 

restraining system revealed, however, that the complete restraining system (i.e. tendon 

+ stack of springs) was slightly more flexible than it was predicted by the analytical 

equations.  

• Visual observations and the deflection shapes presented in Chapter 5 suggested that the 

compression zone at the interfaces between the column and the cap-beam, as well as 

between the column and the floor essentially collapses to a compression point.  

• No concrete spalling or cracks could be identified. The only observed damage was a 

dent in the top steel jacket, caused by local buckling. The minor damage was probably 

a consequence of improper casting, which resulted in air pockets inside the steel jacket. 

• The lateral force-drift ratio curve of the pushover test showed that the specimen 

protected by the steel jackets presented almost no strength reduction, even after being 

subjected to a drift ratio of 31.8%. 

• No further damages, other than the existing dent in the steel jacket, were observed after 

the pushover test. 

 

Shaking table tests of a resilient bridge system with precast reinforced concrete columns 

equipped with springs 

Chapter 6 reported the results of the shaking table tests and presented a statistical validation of 

a 3D rigid body model. The tested specimen was composed of a reinforced concrete slab 

supported by four rocking columns. Similarly to the columns tested in the first part of this 

experimental campaign (Chapter 5), the columns were not connected to the ground and they 

were only connected to the slab through an unbonded tendon in series with disc springs. 

Differently from the quasi-static tests, the rocking bridge system was equipped with stoppers, 

which were designed to engage only after large displacements. The specimen was designed 

with negative lateral stiffness, and the same specimen was subjected to 181 excitations, scaled 

to two different levels of PGV. The main conclusions of this chapter are: 
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• The measured lateral force-drift ratio curves revealed that the analytical model (also 

adopted for the design of the specimen of Chapter 5) overpredicts the uplift force of the 

system, and, once again, cannot predict the pre-uplift positive stiffness.  

• The slab experienced significant torsion.  

• During the tests, it was observed that the columns slid and, in some cases, climbed the 

sliding restrainer. However, in none of the tests (except for the one that the system 

failed), the columns overpassed the sliding restrainer.  

• The columns were visually inspected after each excitation. No concrete spalling or 

cracks were observed. During the first 180 excitations, the only observed damage was 

some abrasion of the edges of the steel protection. Due to the large forces in the top end 

of the column, the abrasion in the top steel jacket was more pronounced.  

• The stoppers engaged in few tests (5 out of 181). With the exception of the excitation 

that caused collapse of the specimen, the redundant mechanism was effective in 

preventing the overturning of the specimen. 

• The collapse of the specimen was caused by the premature failure of the tendons of two 

of the columns. The failure occurred in the threaded sockets at a load smaller than the 

yielding load provided by the manufacturer. Such a failure highlights the importance of 

the design of the restraining system. 

• Lastly, the chapter presented a statistical validation of a simple 3D rigid body model. 

Despite the simplicity of the model, the empirical cumulative distribution function 

(CDF) of the numerical model agreed reasonably well with the empirical CDF obtained 

from the experiments. In most cases, the numerical CDF was contained inside the 95% 

confidence interval of the experimental CDF. 

• Using the two-sample Kolmogorov-Smirnov test, for almost all cases, none or small 

evidence was found for rejecting the hypothesis that the empirical CDFs belong to the 

same distribution.  

• The median responses obtained from the experiments and the numerical model were 

also compared. In 7 out of 8 cases, the numerical model predicted the median response 

with a deviation of less than 30% to the median experimental response. 

• However, the model disregards several physical mechanisms observed in the tests and 

more tests under different conditions and geometries should be conducted for its 

validation. 
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7.2. Limitations and Future Research 

The main limitations of the work summarized in this dissertation and suggestions for future 

research are: 

• The simplified design method developed in Chapter 2 to 4 was mainly assessed for 

quasi-rigid systems, while the influence of the pre-uplift deformability was only briefly 

discussed. In future work, it is recommended that the spectra are further explored for 

systems with different pre-uplift deformability. 

• Furthermore, the spectra were developed for planar motion. Their validity for three-

dimensional motion should be further explored in future research. 

• The set of ground motions proposed by FEMA P695 was widely used in this 

dissertation, both for the development of the simplified design method and for the 

shaking table tests. As the response of systems with negative lateral stiffness is highly 

nonlinear, the conclusions of this dissertation should be validated for other sets of 

ground motions. 

• Due to the limitations of both setups, the experimental campaign presented in this 

dissertation consisted of tests on 1:5 scale specimens subjected to a normalized axial 

load of 3.3% or 5%. Even though the adopted normalized axial load can be encountered 

in practice, it is rather on the low side of the range of typical bridges. Since a larger 

axial load could lead to a shift of the neutral axis of the cross-section of the column 

ends, as well as more significant damages, the influence of the axial load on the seismic 

behavior of the rocking bridge pier should be further investigated. 

• The source of energy dissipation in the quasi-static cyclic tests could not be asserted. 

However, two possible sources were pointed out: (1) friction in the setup, or (2) friction 

between the tendon and the tendon’s duct. In future work, it is recommended the use of 

a 3D load cell underneath the column, which can measure only the horizontal force 

applied to the specimen. If one is interested in quantifying the friction between the 

tendon and the tendon’s duct, load cells at the top and bottom end of the tendon should 

be used (Salehi, 2020).  

• Due to the scale of the specimens and the reduced space within the cross-section of the 

columns, the tendons were anchored through threaded sockets screwed to the bottom 

end of the columns and top of the slab. However, during the shaking table tests, two 

drawbacks of this anchorage system were observed: (1) the series of excitations loosens 

the nut that anchors the tendon at the top of the slab, creating a slack in the tendons, 
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and (2) the tendon’s failure occurred at the threaded sockets. Therefore, in future work, 

the anchorage system should be improved. 

• During the shaking table tests, it was observed that the specimen experiences torsion. 

Although the specimen was symmetric, the torsion originated from small and 

unavoidable imperfections of the specimen. Therefore, the influence of the torsion on 

the seismic behavior of the system should be further investigated through more shaking 

table tests of a rocking system with eccentric mass. Moreover, the influence of torsion 

on systems with negative torsional stiffness should be analytically explored. 

• The statistical validation of the numerical model presented in Chapter 6 cannot be 

considered definitive. As mentioned in Chapter 6, the model does not capture a number 

of mechanisms observed in the tests, such as torsion of the slab and columns, or the 

sliding of the columns. Therefore, it is important that the numerical model is statistically 

validated against data from other experimental campaigns, in which a different set of 

ground motions and a different specimen geometry is adopted. 

• The steel jackets and steel discs that were protecting the column ends were designed 

empirically and conservatively. A more precise design method should be developed. 

• In this study, a combination of disc springs that resulted in negative post-uplift stiffness 

was used. Alternatively, disc springs that would result in positive post-uplift stiffness 

can be used. This would lead to a behavior closer to conventional seismic isolation. 
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Appendix 1 – Equivalence between the unrestrained rocking 

system (Ch. 2) and the Negative Stiffness Bilinear Elastic Oscillator 

(Ch.3, 4) 

The mathematical equivalence between the response of the unrestrained rectangular rocking 

block (Figure A1.1, left) and the Negative Stiffness Bilinear Elastic (NSBE) oscillator (Figure 

A1.1, right) is obtained by matching the terms of their equations of motion. From Chapter 2, 

Equation (2.1), the equation of motion of the unrestrained rectangular rocking block is: 

 ( ) ( )24
sin cos

3
gmR mgR mu R    + = −− −   (A1.8) 

 

Figure A1.1. Equivalence between the rectangular rocking block (left) and the NSBE 

oscillator (right). 

And, from Chapter 3, Equation (3.2), the equation of motion of the NSBE oscillator, 

when uup = 0, is: 
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 (A1.9) 

Note that for the two systems to be equivalent, the excitation applied to the NSBE oscillator 

must be scaled by a factor Γ. 

In order to match the terms, Equation (A1.8) is first linearized (Equation (A1.3)) and 

expressed in terms of the top horizontal displacement (Equation (A1.4)): 
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Then, matching the terms of Equation (A1.9) and (A1.11), we obtain the equivalence 

between the systems. 

 
3

                  2 2 sin            =
3 2 2

up cap

mgm
m f u R R


 = = = =   (A1.12) 

Figure 2.10, Figure 2.11, and Figure 2.12 cannot be directly deduced from Figure 3.10, 

Figure 3.11, and Figure 3.12 because, in Chapter 2, the coefficient of restitution r depends on 

the slenderness α of the block (Equation (2.3)), while, in Chapter 3, the coefficient of restitution 

is constant and equal to r = 0.95. Moreover, as derived above, the spectra for the NSBE 

oscillator (Chapter 3) would also have to be constructed using ground motions scaled to an 

intensity 3/2 times larger (i.e., Γ = 3/2) than the intensity of the ground motions used to 

construct the spectra for the rocking block (Chapter 2). 



 

 

Appendix 2 – Complementary data 

This appendix presents complementary data to Chapters 3 and 4, which could not be presented 

in the original papers due to the space limitation specified by the publishing journal. 

A2.1. Complementary data to Chapter 3 

A2.1.1. Median and 90th percentile spectra for systems with uup = 0.005 m  

• Equal Displacement Rule 

 

Figure A2.1. Median displacement spectra for near-field pulse-like record set, uup = 0.005 m. 
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Figure A2.2. Median displacement spectra for near-field no pulse-like record set, uup = 0.005 

m. 
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Figure A2.3. Median displacement spectra for far-field record set, uup = 0.005 m. 
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• Equal Energy Rule 

 

Figure A2.4. Median displacement spectra normalized by γEE for near-field pulse-like record 

set, uup = 0.005 m. 
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Figure A2.5. Median displacement spectra normalized by γEE for near-field no pulse-like 

record set, uup = 0.005 m. 
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Figure A2.6. Median displacement spectra normalized by γEE for far-field record set, uup = 

0.005 m. 
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A2.1.2. Median and 90th percentile spectra for systems with uup = 0.05 m  

• Equal Displacement Rule 

 

Figure A2.7. Median displacement spectra for near-field pulse-like record set, uup = 0.05 m. 
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Figure A2.8. Median displacement spectra for near-field no pulse-like record set, uup = 0.05 

m. 
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Figure A2.9. Median displacement spectra for far-field record set, uup = 0.05 m. 
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• Equal Energy Rule 

 

Figure A2.10. Median displacement spectra normalized by γEE for near-field pulse-like 

record set, uup = 0.05 m. 
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Figure A2.11. Median displacement spectra normalized by γEE for near-field no pulse-like 

record set, uup = 0.05 m. 
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Figure A2.12. Median displacement spectra normalized by γEE for far-field record set, uup = 

0.05 m. 
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A2.2. Complementary data to Chapter 4 

A2.2.1. IDA Curves 

 

Figure A2.13. Typical IDA curve for a single ground motion (left) and the complete set of 

ground motions (right) for systems with fup/(mg) = 0.15 and using PGV as IM. 

 

 

Figure A2.14. Typical IDA curve for a single ground motion (left) and the complete set of 

ground motions (right) for systems with fup/(mg) = 0.15 and using PGA as IM. 
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A2.2.2. Bootstrapping analysis 

 
Figure A2.15. Median and 90% confidence interval for the spectra with 10% in 50 years 

probability of exceedance. 
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Figure A2.16. Median and 90% confidence interval for the spectra with 50% in 50 years 

probability of exceedance. 
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