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Abstract

This thesis is composed of five research papers I’ve co-authored with my supervisor, i.e.

Professor Didier Sornette and my co-supervisor, i.e. Professor Claudio J. Tessone. While

two of the papers constituting this thesis have been published in peer-reviewed journals, the

other three are currently under submission. The present thesis focuses on the analysis of

centralisation in ecological, economic, financial and social networks.

The first two parts of the thesis are devoted to analyse centralisation in the Bitcoin

ecosystem. We consider the Bitcoin Lightning Network (BLN) for 18 months since its launch

in January 2018 and analyse its binary and weighted representation at the micro-, meso-,

and macro-scale. The results show that the bitcoin distribution in the BLN is strongly

uneven: the average Gini coe�cient of users’ bitcoins is 0.88, reflecting that 10% of the users

hold 80% of the bitcoins in the BLN. The increasing unevenness of the bitcoin distribution

is further confirmed by the evolution of the Gini coe�cient of the centrality measures and

by the evidence that the BLN meso-scale structure becomes increasingly compatible with a

core-periphery structure.

In the third part of the thesis, we present a novel model for the emergence of collective

dynamics in financial markets using an Ising-like model on non-normal networks. Our model

has its foundations in the intrinsic asymmetry and hierarchy of social influence that, in turn,

can be represented by non-normal networks. The influential nodes in non-normal networks

have a large influence on other nodes through directed links. Social imitation and herding

that start from the influential nodes’ opinions lead to transient dynamics that induce financial

bubbles and crashes. Via analytical results, agent-based simulations, and empirical analysis

of financial data, we show that financial bubble size is proportional to the Kreiss constant

which characterizes the degree of non-normality of the network.

The results of the first three parts of the thesis show that influential nodes play a signifi-

cant role in the centralisation of the Bitcoin ecosystem as well as in the formation of bubbles

in financial systems. Thus, in the fourth part of the thesis, we propose a dynamic Markov

process (DMP) to identify influential nodes in complex networks. This method integrates

the Markov chain and the spreading dynamics to rank the influence of nodes. Numerical

results indicate that the DMP method can accurately evaluate the influence of nodes for

both single and multi-spreaders.

In the last part of the thesis, we explore the fitness-complexity algorithm for the nest-

edness maximization problem. Nestedness refers to a hierarchical network structure where

the set of neighbors of a given node is a subset of the neighbors of better-connected nodes.

Nestedness maximization aims at sorting the rows and columns of the adjacency matrix to

maximize the level of nestedness of the network. By analysing the ecological networks and

World Trade country-product networks, we show that the fitness-complexity algorithm is
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highly e↵ective to achieve the nestedness maximization task.
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Kurzfassung

Diese Arbeit besteht aus fünf Forschungsarbeiten, die ich zusammen mit meinem Be-

treuer, Prof. Dr. Didier Sornette, und meinem stellvertretender Betreue, Prof. Dr. Claudio

Tessone verfasst habe. Zwei der in dieser Dissertation enthaltenen Artikel wurden bere-

its in von Experten begutachteten Zeitschriften verö↵entlicht, während die anderen drei

Forschungsarbeiten derzeit eingereicht werden. Die vorliegende Arbeit konzentriert sich

auf die Analyse der Zentralisierung in ökologischen, ökonomischen, finanziellen, sowie auch

sozialen Netzwerken.

Die ersten beiden Teile der Arbeit widmen sich der Analyse der Zentralisierung im

Bitcoin-Ökosystem. Wir betrachten das Bitcoin Lightning-Netzwerk (BLN) während 18

Monaten seit der Einführung im Januar 2018 und analysieren dessen binäre und gewichtete

Darstellung auf der Mikro-, Meso-, und Makroebene. Die Ergebnisse zeigen, dass die Bit-

coins im BLN stark ungleichmässig verteilt sind: Der durchschnittliche Gini-Koe�zient der

Bitcoins pro Benutzer beträgt 0.88, was widerspiegelt, dass 10% der Benutzer rund 80% der

Bitcoins im BLN halten. Die zunehmende Ungleichmässigkeit der Bitcoin-Verteilung wird

weiter bestätigt durch die Entwicklung des Gini-Koe�zienten der Zentralitätsmasse, sowie

durch den Nachweis, dass die mesoskalierte Struktur des BLN zunehmend kompatibel mit

einer Kern-Peripherie-Struktur wird.

Im dritten Teil der Arbeit präsentieren wir ein neues Modell für die Entstehung kollektiver

Dynamiken in Finanzmärkten unter Verwendung eines Ising-ähnlichen Modells basierend auf

nicht-normalen Netzwerken. Unser Modell hat seine Grundlagen in der intrinsischen Asym-

metrie und Hierarchie des sozialen Einflusses, der wiederum durch nicht-normale Netzwerke

repräsentiert werden kann. Die einflussreichen Knoten in nicht-normalen Netzwerken haben

durch gerichtete Verbindungen einen grossen Einfluss auf andere Knoten. Soziale Nachah-

mung und Herdenverhalten, die von den Meinungen der einflussreichen Knotenpunkte aus-

gehen, führen zu vorübergehenden Dynamiken, die Finanzblasen und -einbrüche hervorrufen

können. Durch analytische Ergebnisse, agentenbasierte Simulationen und empirische Anal-

ysen von Finanzdaten zeigen wir, dass die Grösse der Finanzblase proportional zur Kreiss-

Konstante ist, die den Grad der Nicht-Normalität des Netzwerks charakterisiert.

Die Ergebnisse der ersten drei Teile der Arbeit zeigen, dass einflussreiche Knoten eine

bedeutende Rolle bei der Zentralisierung des Bitcoin-Ökosystems, sowie bei der Bildung von

Blasen in Finanzsystemen spielen. Daher schlagen wir im vierten Teil der Arbeit einen dy-

namischen Markov-Prozess (DMP) vor, um einflussreiche Knoten in komplexen Netzwerken

zu identifizieren. Diese Methode integriert die Markov-Kette und die Ausbreitungsdynamik,

um den Einfluss von Knoten zu ordnen. Numerische Ergebnisse weisen darauf hin, dass

die DMP-Methode den Einfluss von Knoten sowohl für Einzel- als auch für Multi-Spreader

genau bewerten kann.
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Im letzten Teil der Arbeit erforschen wir den Fitness-Komplexitäts-Algorithmus für das

Verschachtelungs-Maximierungs-Problem. Verschachtelung bezieht sich auf eine hierarchis-

che Netzwerkstruktur, bei der die Menge der Nachbarn eines gegebenen Knotens eine Teil-

menge der Nachbarn besser verbundener Knoten sind. Die Verschachtelungs-Maximierung

zielt darauf ab, die Zeilen und Spalten der Nachbarschafts-Matrix zu sortieren, um den

Grad der Verschachtelung eines Netzwerks zu maximieren. Durch die Analyse von ökologis-

chen Netzwerken, sowie Länder-Produkt-Netzwerken des Welthandels zeigen wir, dass der

Fitness-Komplexitäts-Algorithmus sehr e↵ektiv ist, um die Aufgabe der Verschachtelungs-

maximierung zu erfüllen.
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Zürich, June 2022

6



Contents

1 Introduction 9

2 Lightning Network: a second path towards centralisa-

tion of the Bitcoin economy 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 The weighted Bitcoin Lightning Network 28

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Non-normal interactions create socio-economic bubbles 53

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Agent Based Price Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 A Primer on Non-Normality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Parametrization of Non-Normal Matrices with

Level-Dependent Reciprocal Connections . . . . . . . . . . . . . . . . . . . . . . 59

4.5 Transient Bubbles Induced by Non-Normal Interactions . . . . . . . . . . . . . 61

4.6 Non-Normal Communication in Meme Stock Trading . . . . . . . . . . . . . . . 64

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7



5 Rank the spreading influence of nodes using dynamic

Markov process 88

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6 Nestedness maximization in complex networks through

the fitness-complexity algorithm 102

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7 Conclusions 115

8



Chapter 1

Introduction

Complex systems involve a variety of research areas, including economics [1], finance [2],

society [3], and ecology [4] among many others. Such systems can be described as complex

networks, where their elements are abstracted as nodes, and the interactions between them

are represented by links. Networks provide a simple and powerful framework for character-

ising and understanding the properties of complex systems [5]. This thesis focuses on the

centralisation in financial, socio-economic, and ecological networks. Centralised networks

are those where one or a few nodes are much more important than all the other nodes. The

analysis of centralisation is significant for the resilience and security of networked systems [6].

In this thesis, we first show that the emergence of influential nodes gives rise to the cen-

tralisation and hierarchy in the Bitcoin ecosystem and the removal of influential nodes leads

to the BLN fragmentation into many components [7, 8]. Second, to analyse the influence of

influential nodes and hierarchical structure on financial systems, we develop a novel model

for the emergence of financial bubbles using an Ising-like model on non-normal networks [9].

Finally, we present a method to identify influential nodes in complex networks [10] and then

apply the fitness complexity algorithm on nestedness maximization, where nestedness refers

to a hierarchical structure of networks [11]. This thesis comprises five journal papers and

each chapter is based on a journal paper [7–11]. In paper [7, 8, 10, 11], I am the sole first

author. In paper [9], I am the co-first author. My contributions to this paper are developing

the models, performing the analysis, creating most of the figures and writing parts of the

paper. In what follows, we provide the motivation and a short summary for each chapter.

In Chapter 2 (based on [7]), we analyse the centralisation of the Bitcoin ecosystem [12].

Bitcoin [13], a decentralised digital currency that can be transferred on a peer-to-peer net-

work, is the world’s most adopted cryptocurrency. It has a market capitalization of around

1.17 trillion US dollars at the time of writing and has gained tremendous popularity over

the past few years, attracting interests of researchers from diverse disciplines ranging from

computer science, to economics and social sciences [14–16]. Such an evidence motivates us
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to focus on the centralisation of the Bitcoin ecosystem. While the vast majority of the ex-

isting papers on the topic focus on the structural analysis of either the Bitcoin user network

or the Bitcoin address network [17, 18], we consider the Bitcoin Lightning Network (BLN)

representation which has been designed to overcome the major limitation a↵ecting Bitcoin,

i.e. its poor scalability [12, 19]. The goal of this chapter is to shed light on the Bitcoin

centralisation issue, by answering a simple question: is Bitcoin becoming an increasingly

centralised system? To this end, we consider three representations of the BLN (daily, daily-

block, and weekly) for 18 months (January 2018-July 2019) on which we compute a set of

four centrality measures: degree, closeness, betweenness, and eigenvector centrality. The

analysis of the distribution of the aforementioned measures shows that the BLN topology

is becoming more and more centralised. Specifically, the BLN is becoming more and more

increasingly similar to a combination of star-like sub-graphs, where hubs play the role of

channel-switching nodes progressively clustering together into a core. The remaining nodes,

on the other hand, constitute the periphery-like part of the network behaving like leaves

attached to the core-vertices and being loosely connected among themselves. The tendency

to centralisation is also visible by analysing the distribution of strengths: as revealed by the

average Gini coe�cient: 10% of the nodes hold 80% of the bitcoins at stake in the BLN.

In Chapter 3 (based on [8]), we investigate the centralisation of the weighted BLN. Most

of the existing studies have focused on its binary structure [7,20,21] while ignoring the archi-

tecture of its weighted counterpart, which has remained largely unexplored. To fill this gap,

we consider the weighted BLN for 18 months and analyse its daily-snapshot representation,

at the micro-, meso- and macro-scale. We find the presence of fat-tailed degree distributions

- often compatible with power-laws - and of weight and strength distributions whose func-

tional form is, instead, compatible with a log-normal; Moreover, we observe disassortative

and hierarchical trends. The most remarkable result, however, concerns centralisation: a

tendency to centralisation matching the one characterizing the binary BLN in Chapter 2

can be observed. The first evidence is provided by the Nakamoto coe�cient, which we have

topologically redefined to quantify the percentage of nodes enclosing 51% of the total number

of links/total weight. As the size of the BLN increases, the Nakamoto coe�cient progres-

sively reduces, indicating that fewer nodes are needed to embody the required percentage.

This confirms the appearance of nodes constituting a topological majority. The increasing

unevenness of the distribution of the total weight is further confirmed by the evolution of

the Gini coe�cient of weighted centrality measures and by the evidence that the BLN meso-

scale structure becomes increasingly compatible with a core-periphery structure - even from

the weighted perspective, with the largest nodes by strength constituting the core of such a

network.

In Chapter 4 (based on [9]), we develop a novel model for the growth of transient bub-
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bles on non-normal networks based on the fact that social influences are intrinsically non-

symmetric and hierarchically organized [22–24]. Indeed, in financial markets, a famous

investor is significantly more influential than others and information does not spread evenly

but follows cascading circuits. This is particularly important when modelling bubbles, as

they emerge from herding and social imitation of traders. This cascade of opinions can in-

crease the order to buy before its next decline. These insights are finally related to recent

bubbles in meme stock trading. The adjacency matrix of the non-normal network should be,

in general, asymmetric, and represent a hierarchy of the social influence network. This is

illustrated by analyzing Reddit discussion forums of meme stocks. We mimic this dynamical

opinion formation using an Ising-like model, in which there are two types of agents, funda-

mentalists and noise traders, who trade a risky and a risk-free asset. The noise traders are

assumed to be on a non-normal network. They are influenced by their in-neighbors when

they must decide to invest in the two assets. From the simulated and empirical results, we

show that the bubble size is controlled by the Kreiss constant, which is a measure of the

degree of non-normality in the network.

In Chapter 5 (based on [10]), we propose a new method to identify important nodes

in complex networks. The important nodes are the extraordinary nodes that cause a large

influence on the structure and dynamics of networks. For example, the important nodes lead

to the centralisation of the Bitcoin ecosystem and give rise to transient bubbles in financial

systems. Locating important nodes can help in increasing the spread of news and impact

market sentiment collectively [25, 26], preventing the outbreak of the epidemics [27, 28],

locating the opinion leaders in social networks and quantifying the influence of scientists

and publications [29,30]. Recent studies have shown that the nodes’ influence is determined

not only by the network structure but also by the parameters of the dynamical models [31–

33]. Indeed, Liu et al. [33] show that, when the spreading rate in the susceptible-infected-

recovered(SIR) spreading model is small, degree centrality [34,35] performs better than other

centrality measures for ranking nodes’ influence . While for large spreading rates, eigenvector

centrality [36] is the best one. The key idea of the above methods is to evaluate the fraction

of susceptible nodes that have been infected. But, since these methods are linear, they

overestimate the spreading influence of nodes as the spreading process is non-linear. To fill

this gap, we present a dynamic Markov process (DMP) to evaluate the expected spreading of

the outbreak size of the nodes. It overcomes the problem of nonlinear coupling by calculating

the probability of the susceptible nodes being infected by their neighbours sequentially and

adjusting the state transition matrix during the spreading process. Simulation results in the

SIR model show that the DMP method can evaluate the influence of nodes more accurately

than the linear methods [31–33] for both single spreader and multi-spreaders.

In Chapter 6 (based on [11]), we apply the fitness-complexity algorithm to the nestedness
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maximization problem. In Chapters 2 and 3, we observe hierarchical structure in the BLN

and in Chapter 4, we show that the hierarchy leads to transient explosive growth. Thus

hierarchy plays a crucial role in the network structure and the dynamic process playing on

it. Nestedness refers to a hierarchical structure of networks. The concept of nestedness

was first coined in biology to characterise the spatial distribution of biotas in isolated, yet

spatially-related, landscapes [37]. In structural terms, a perfectly nested pattern is one such

that the set of connections of any given node is a subset of the relationships of larger degree

ones. The degree of nestedness can be measured by the nestedness temperature. Lower

temperatures correspond to more nested topologies. The algorithm to measure the nestedness

of the network includes three steps [38]. First, determine a line of perfect nestedness by

defining a perfectly nested interaction matrix with the same number of links as in the original

matrix. Second, reorder the ranking of rows and columns that produces a ranked matrix

of minimal temperature (maximal nestedness). Finally, for a given network and a given

ranking of its row-nodes and column-nodes, one calculates the nestedness temperature. In the

second step, it is hard to reorder the rows and columns of the adjacency matrix to maximize

nestedness. Indeed, there are N !M ! possible permutations of rows and columns, where N

and M are the number of rows and columns of the adjacency matrix, respectively [39]. The

nestedness maximization problem that of determining the ordering of rows and columns of the

matrix to maximize the degree of nestedness of a given matrix [39]. Nestedness Temperature

Calculator [40] and BINMATNEST (binary matrix nestedness temperature calculator) [38]

are the most popular algorithms to quantify the degree of nestedness of a given network.

The fitness-complexity algorithm was originally introduced to rank countries and products

in the country-product export network [41]. It can sort matrices exhibiting an identifiable

”triangular” shape. Thus, we explore the fitness-complexity for the nestedness maximization

problem. Our findings on ecological and World Trade data suggest that the fitness-complexity

algorithm has the potential to become a standard tool in nestedness analysis.

In Chapter 7, we expose our conclusions and open new research questions associated with

each chapter.
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Chapter 2

Lightning Network: a second path towards centralisation of

the Bitcoin economy

The Bitcoin Lightning Network (BLN), a so-called “second layer” payment protocol, was

launched in 2018 to scale up the number of transactions between Bitcoin owners. In this

paper, we analyse the structure of the BLN over a period of 18 months, ranging from 14th

January 2018 to 13th July 2019, at the end of which the network has reached 8.216 users,

122.517 active channels and 2.732,5 transacted bitcoins. Here, we consider three represen-

tations of the BLN: the daily snapshot one, the weekly snapshot one and the daily-block

snapshot one. By studying the topological properties of the binary and weighted versions

of the three representations above, we find that the total volume of transacted bitcoins

approximately grows as the square of the network size; however, despite the huge activity

characterising the BLN, the bitcoin distribution is very unequal: the average Gini coe�cient

of the node strengths (computed across the entire history of the Bitcoin Lightning Network)

is, in fact, ' 0.88 reflecting 10% (50%) of the nodes to hold 80% (99%) of the bitcoins at

stake in the BLN (on average, across the entire period). This concentration brings up the

question of which minimalist network model allows us to explain the network topological

structure. Like for other economic systems, we hypothesise that local properties of nodes,

like the degree, ultimately determine part of its characteristics. Therefore, we have tested

the goodness of the Undirected Binary Configuration Model (UBCM) in reproducing the

structural features of the BLN: the UBCM recovers the disassortative and the hierarchical

character of the BLN but underestimates the centrality of nodes; this suggests that the BLN

is becoming an increasingly centralised network, more and more compatible with a core-

periphery structure. Further inspection of the resilience of the BLN shows that removing

hubs leads to the collapse of the network into many components, an evidence suggesting that

this network may be a target for the so-called split attacks.

Based on Jian-Hong Lin, Kevin Primicerio, Tiziano Squartini, Christian Decker, and Clau-
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dio J. Tessone. ”Lightning Network: a second path towards centralisation of the Bitcoin

economy.” New Journal of Physics 22, no. 8 (2020): 083022.

2.1 Introduction

The gain of popularity of Bitcoin [13] has made apparent the problems in terms of scalability

of the technology upon which it is based: in fact, only a limited amount of transactions per

second - whose number is proportional to the size of a block and its release frequency -

can be processed by Bitcoin. This shortcoming may prevent the adoption of this payment

network at a global scale, especially when considering that classic payment mechanisms (e.g.

traditional credit cards) are able to achieve tens of thousands of transactions per second. A

näıve (and short term) solution would be represented by an increase of the block size: larger

blocks, however, would require larger validation time, storage capability and bandwidth

costs, in turn favouring centralisation, as fewer entities would become able to validate the

new blocks that are appended to the Blockchain; moreover, centralisation in the validation

process would make the system less resilient, i.e. more prone to faults and attacks.

The Bitcoin Lightning Network (BLN) [12,20,42] aims at breaking the trade-o↵ between

block size and centralisation by processing most of the transactions o↵-chain: it is a “Layer

2” protocol that can operate on top of Blockchain-based cryptocurrencies such as Bitcoin.

The origin of the BLN can be traced back to the birth of Bitcoin itself, as an attempt to cre-

ate payment channels across which any two users could exchange money without burdening

the entire network with their transaction data - thus allowing for cheaper and faster trans-

actions (as both the mining fees and the Blockchain confirmation are no longer required).

The BLN can, thus, be seen as a solution that does not sacrifice the key feature of Bitcoin,

i.e. decentralisation, that characterises its architecture (i.e. the number of computers con-

stituting the network), its political organisation (i.e. the number of individuals controlling

the network) and its wealth distribution (i.e. the number of individuals owning the actual

supply), while enhancing the circulation and the exchange of the native assets.

The BLN has recently raised a lot of interest: Seres [20] argued that the BLN structure

can be ameliorated to improve its security; Rohrer [43] showed that the current BLN can

be prone to channel exhaustion or attacks aimed at isolating nodes, thus compromising the

nodes reachability, the payment success ratio, etc. In this paper, we consider the BLN

payment channels across a period of 18 months, i.e. from 14th January 2018 to 13th July

2019, and analyze it at both the daily and the weekly timescale. Our results show that

the BLN is characterised by an unequal wealth distribution and by a larger-than-expected

centrality of nodes, thus suggesting that the BLN indeed su↵ers from the aforementioned

centralisation issue.
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2.2 Methods

Notation. For each time snapshot t, the BLN can be described as a weighted, undirected

network with total number of nodes N (t) and represented by the N (t) ⇥ N (t) symmetric

matrix W
(t) [44,45] whose generic entry w(t)

ij
indicates the total amount of money exchanged

between i and j, across all channels, at time t. The total amount of money exchanged by

node i, at time t, is s(t)
i

=
P

N
(t)

j( 6=i)=1 w(t)
ij

, a quantity that will be also called capacity. For

the present analysis, we also consider the BLN binary adjacency matrix A
(t), whose generic

entry reads a(t)
ij

= 1 if w(t)
ij

> 0 and a(t)
ij

= 0 otherwise. Naturally, the presence of a link

between any two nodes i and j, i.e. a(t)
ij

= 1, indicates that one or more payment channels

are open, between the same nodes, at time t and the total number of open channels (i.e.

links) is simply provided by L(t) =
P

N
(t)

i=1

P
N

(t)

j=i+1 a(t)
ij

.

Centrality measures. Indices measuring the centrality of a node aim at quantifying the

importance of a node in a network, according to some, specific topological property [34,35,46,

47]. Among the measures proposed so far, of particular relevance are the degree centrality,

the closeness centrality, the betweenness centrality and the eigenvector centrality. Let us

briefly describe them:

• the degree centrality [34, 35] of node i coincides with the degree of node i, i.e. the

number of its neighbours, normalized by the maximum attainable value, i.e. N � 1:

kc

i =
ki

N � 1
(2.1)

where ki =
P

N

j( 6=i)=1 aij . From the definition above, it follows that the most central

node, according to the degree variant, is the one connected to all the other nodes;

• the closeness centrality [34, 35] of node i is defined as

cc

i =
N � 1

P
N

j( 6=i)=1 dij

(2.2)

where dij is the topological distance between nodes i and j, i.e. the length of the

shortest path(s) connecting them: in a sense, the closeness centrality answers the

question “how reachable is a given node?” by measuring the length of the patterns

that connect it to the other vertices. From the definition above, it follows that the

most central node, according to the closeness variant, is the one lying at distance 1 by

each other node;

• the betweenness centrality [34, 48–50] of node i is given by
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bc

i =
NX

s( 6=i)=1

NX

t( 6=i,s)=1

�st(i)

�st

(2.3)

where �st is the total number of shortest paths between node s and t and �st(i) is the

number of shortest paths between nodes s and t that pass through node i. From the

definition above, it follows that the most central node, according to the betweenness

variant, is the one lying “between” any two other nodes;

• the eigenvector centrality [33, 34, 50] of node i, ec

i
, is defined as the i-th element of

the eigenvector corresponding to the largest eigenvalue of the binary adjacency ma-

trix (whose existence is ensured by the Perron-Frobenius theorem). According to the

definition above, a node with large eigenvector centrality is connected to other “well

connected” nodes. In this sense, its behavior is similar to the PageRank centrality

index.

Gini coe�cient. The Gini coe�cient has been introduced to quantify the inequality of a

country income distribution [51,52]: it ranges between 0 and 1, with a larger Gini coe�cient

indicating a larger “unevenness” of the income distribution. Here, we apply it to both the

distribution of the centrality measures of nodes, i.e.

Gc =

P
N

i=1

P
N

j=1 |ci � cj |
2N
P

N

i=1 ci

(2.4)

where ci = kc

i
, cc

i
, bc

i
, ec

i
and to the distribution of the total amount of money exchanged by

the nodes of the BLN, i.e.

Gs =

P
N

i=1

P
N

j=1 |si � sj |
2N
P

N

i=1 si

. (2.5)

Centralisation measures. The centrality indices defined above are all normalized be-

tween 0 and 1 and provide a rank of the nodes of a network, according to the topological

feature chosen for their definition. Sometimes, however, it is useful to compactly describe a

certain network structure in its entirety. To this aim, a family of indices has been defined

(the so-called centralisation indices), encoding the comparison between the structure of a

given network and that of the reference network, according to the chosen index. In mathe-

matical terms, any centralisation index reads Cc =
PN

i=1(c
⇤�ci)

max{
PN

i=1(c
⇤�ci)}

, where c⇤ = max{ci}N

i=1

represents the maximum value of the chosen centrality measure computed over the network

under consideration and the denominator is calculated over the benchmark, defined as the

graph providing the maximum attainable value of the quantity
P

N

i=1(c
⇤ � ci). As it can be
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proven that the most centralized structure, according to the degree, closeness and between-

ness centrality, is the star graph, one can define the corresponding centralisation indices:

• the degree-centralisation index, as

Ckc =

P
N

i=1(k
⇤ � kc

i
)

(N � 2)
; (2.6)

• the closeness-centralisation index, as

Ccc =

P
N

i=1(c
⇤ � cc

i
)

(N � 1)(N � 2)/(2N � 3)
; (2.7)

• the betweenness-centralisation index, as

Cbc =

P
N

i=1(b
⇤ � bc

i
)

(N � 1)2(N � 2)/2
; (2.8)

• the eigenvector-centralisation index, as

Cec =

P
N

i=1(e
⇤ � ec

i
)

(
p

N � 1 � 1)(N � 1)/(
p

N � 1 + N � 1)
. (2.9)

For what concerns the eigenvector index, the star graph does not represent the maxi-

mally centralised structure: however, we keep it for the sake of homogeneity with the other

quantities.

Benchmarking the observations. Beside providing an empirical analysis of the BLN, in

what follows we will also benchmark our observations against a model discounting available

information to some extent. Like for other economic and financial systems, we hypothesise

that local properties of nodes ultimately determine the BLN structure: specifically, we focus

on the degrees and adopt the the Undirected Binary Configuration Model (UBCM) as a

reference model [53,54]. The UBCM captures the idea that the probability for any two nodes

to establish a connection depends on their degrees and can be derived within the constrained

entropy maximization framework, the score function being represented by Shannon entropy

S = �
X

A

P (A) ln P (A) (2.10)

and the constraints being represented by the degree sequence {ki}N

i=1. Upon solving the

aforementioned optimization problem [53,54], one derives the probability that any two nodes

establish a connection

17



pij =
xixj

1 + xixj

, 8 i < j (2.11)

the unknowns {xi}N

i=1 representing the so-called Lagrange multipliers enforcing the con-

straints. In order to numerically determine them, one can invoke the likelihood maximization

principle, prescribing to search for the maximum of the function

L(x) = ln P (A|x) = ln

2

4
NY

i=1

NY

j=i+1

p
aij

ij
(1 � pij)

1�aij

3

5 (2.12)

with respect to the vector {xi}N

i=1, a procedure leading to the resolution of the following

system of equations [53, 54]

ki =
NX

j( 6=i)=1

pij =
NX

j( 6=i)=1

xixj

1 + xixj

, 8 i. (2.13)

Core-periphery detection. Inspecting the evolution of centralisation is useful to under-

stand to what extent the structure of a given network becomes increasingly (dis)similar to

that of a star graph; however, although encoding the prototypical centralised structure, car-

rying out a comparison with such a graph can indeed be too simplistic. Hence, we also check

for the presence of the “generalized” star graph structure also known as core-periphery struc-

ture, composed by a densely-connected core of nodes surrounded by a periphery of loosely-

connected vertices. In order to do so, we implement a recently-proposed approach [55],

prescribing to minimize the score function known as bimodular surprise and reading

Sk =
X

i�lc

X

j�lp

�
C

i

��
P

j

��
V �(C+P )
L�(i+j)

�

�
V

L

� (2.14)

where V = N(N�1)
2 is the total number of node pairs, L =

P
N

i=1

P
N

j=i+1 aij is the total

number of links, C is the number of node pairs in the core portion of the network, P is the

number of node pairs in the periphery portion of the network, lc is the observed number of

links in the core and lp is the observed number of links in the periphery. From a technical

point of view, Sk is the p-value of a multivariate hypergeometric distribution [55].

2.3 Data

Since payments in the Bitcoin Lightning Network are source-routed and onion-routed, the

sender must have a reasonably up-to-date view of the network topology, in order to pre-
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compute the entire payment route. Nodes in the BLN regularly broadcast information about

the channels they participate in: each time a channel is opened, or any of its details changes,

the two endpoints of the channel announce such changes to the rest of the network. This

exchange of information, called gossip, allows other nodes to keep their view of the network

topology up-to-date, an information that is, then, used to initiate a payment.

The network topology can be visualised by means of the the so-called routing table.

For this paper, we took regular snapshots of the routing table (every 15 minutes, between

January 14th 2018, at blockheight 503816, to July 13th 2019, at blockheight 585844); these

snapshots were, then, aggregated into timespans, each timespan representing a constant

state of a channel from its start to its end. In addition, this information is enriched with

data from the Blockchain: since every channel consists of an unspent transaction output

on the Bitcoin Blockchain, we can determine the size of a channel and its open and close

dates within minutes. Other heuristics can be used to search for potential channels on the

Blockchain, without involving the gossip mechanism: this allows us to put a lower bound on

the completeness of our measurements.

In the Bitcoin Blockchain, the time between blocks is Poisson distributed with an ex-

pected value of 10 minutes between blocks. On a single day, the expected number of new

blocks added to the Blockchain is 144. For the sake of simplicity, and without altering in

any way the results, we consider this number of blocks our natural timescale (for example,

the blocks of the first day range from the 503816th one to the 503959th one while the blocks

of the second day range from the 503960th one to the 504103rd one). In this paper, three

di↵erent representations of the BLN are studied, i.e. the daily snapshot one, the weekly

snapshot one and the daily-block snapshot one - even if the results of our analysis will be

shown for the daily-block snapshot representation only. A daily/weekly snapshot includes all

channels that were found to be active during that day/week ; a daily-block snapshot consists

of all channels that were found to be active at the time the first block of the day was released :

hence, the transactions considered for the daily-block representation are a subset of the ones

constituting the daily representation.

2.4 Results

Empirical analysis of the BLN binary structure. Figure 2.1 plots the evolution of

basic network quantities since launch of the BLN, i.e. the number of nodes, which is a proxy

of the number of users, the number of links and the link density. As it can be seen, although

the network size increases (for the daily-block snapshot N ranges from 2 to 6476 and L ranges

from 1 to 55866; in particular, in the last daily snapshot of our dataset we have 6476 nodes

and 54440 links), it becomes sparser. However, two di↵erent regimes are visible: a first phase
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Figure 2.1: (colour online) Evolution of the total number of nodes N , total number of links
L and link density ⇢ = 2L

N(N�1) of the BLN. By plotting the link density versus the total

number of nodes, further insight can be gained on the functional dependence ⇢ = f(N): in
particular, the position ⇢ ⇠ N�1 well describes the link density dependence on N for the
snapshots satisfying the condition N  103.

where a steep increase of N and L (descrease of ⇢) takes place is followed by a phase during

which a much smoother increase (decrease) of the same quantities is observed. Further

insight on the BLN evolution can be gained by plotting the link density ⇢ = 2L

N(N�1) versus

the total number of nodes N : a trend whose functional form reads ⇢ ⇠ cN�� , with � ' 1,

clearly appears. However, such a functional form seems to describe quite satisfactorily the

BLN evolution up to the period when N ' 103: afterwards, a di↵erent functional dependence

seems to hold. Notice also that the value of the numerical constant c coincides with the value

of the average degree, since c = 2L

N�1 =
PN

i=1 ki

N�1 ' k. By imagining a growth process according

to which each new node enters the network by establishing at least one new connection with

the existing ones, to ensure that Lt � N t � 1, a lower-bound on c ' k can be deduced:

c � 2 (fig. 2.1 shows the trend y = 3N�1 even if the inspection of the evolution of the

quantity c = 2L

N�1 reveals that periods where c ' k assumes di↵erent, constant values can

be individuated).

In order to comment on the centrality structure of the BLN, let us explicitly draw it: fig.

2.2 shows the largest connected component of the BLN daily-block snapshot representation

on day 16 and on day 34. Several hubs are present (e.g. on day 34, the largest one, having

degree k34
hub

= 121, is linked to the 34.3% of nodes): notice that each of them is linked to a

plethora of other nodes that, instead, are scarcely linked among themselves. The emergence

of structurally-important nodes is further confirmed by plotting the evolution of the Gini

index for the distribution of the centrality measures defined in the Methods section (i.e. the

degree, the closeness, the betweenness and the eigenvector centrality): fig. 2.3 shows that

Gc is increasing for three measures out four, pointing out that the values of centrality are
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Figure 2.2: (colour online) Comparison between the largest connected component of the BLN
(daily-block snapshot representation) on day 17 (left - 95 nodes and 155 links are present)
and on day 35 (right - 359 nodes and 707 links are present). A visual inspection of the
network evolution suggests the presence of a core-periphery structure since its early stages.

more and more unevenly distributed (irrespectively from the chosen indicator). The flat

trend characterizing the closeness centrality could be explained by the presence of nodes

with large degree ensuring the vast majority of nodes to be reachable quite easily. On the

other hand, the evolution of the centralisation indices indicates that the BLN is not evolving

towards a star graph, although the eigenvector centrality reaches quite large values in the

middle stages of the BLN history. As anticipated above, imagining that the picture provided

by a star-like structure could provide a good description of the BLN topology is indeed too

simplistic.

Benchmarking the observations. Let us now benchmark the observations concerning

the centrality and the centralisation indices with the predictions for the same quantities

output by the UBCM. More specifically, we have computed the expected value of Gc and Cc

(with ci = kc

i
, cc

i
, bc

i
, ec

i
, 8 i) and the corresponding error, by explicitly sampling the ensembles

of networks induced by the UBCM. In fig. 2.5 we plot and compare the evolution of the

observed and expected values of Gc and Cc, both as functions of N . Such a comparison

reveals that the UBCM tends to overestimate the values of the Gini index for the degree, the

closeness and the betweenness centrality and to underestimate the values of the Gini index

for the eigenvector centrality1. These results point out a behavior that is not reproducible

1Z-scores, not shown here, confirm that all observations are statistically significant.
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Figure 2.3: (colour online) Top panels: evolution of the Gini index for the degree, closeness,
betweenness and eigenvector centrality for the daily-block snapshot representation: Gc is
characterised by a rising trend, irrespectively from the chosen indicator, pointing out that
the values of centrality are increasingly unevenly distributed. Bottom panels: evolution of
the degree-, closeness-, betweenness- and eigenvector-centralisation measures: although the
eigenvector-centralization index reaches quite large values in the middle stages of the BLN
history, the picture provided by a star graph is too simple to faithfully represent the BLN
structure.

by just enforcing the degree sequence (irrespectively from the chosen index). The evidence

that the UBCM predicts a more-heterogeneous-than observed structure, could be explained

starting from the result concerning the eigenvector centrality. The latter, in fact, seems

to indicate a non-trivial (i.e. not reproducible by lower-order constraints like the degrees)

tendency of well-connected nodes to establish connections among themselves - likely, with

nodes having a smaller degree attached to them. Such a disassortative structure could explain

the less-than-expected level of unevenness characterizing the other centrality measures: in

fact, each of the nodes behaving as the “leaves” of the hubs would basically have the same

values of degree, closeness and betweenness centrality.

On the other hand, the betweenness- and the eigenvector-centralisation indices suggest

that the BLN structure is indeed characterized by some kind of more-than-expected star-

likeness: the deviations from the picture provided by such a benchmark, however, could be

explained by the co-existence of multiple star-like sub-structures (see also fig. 2.2 and the

Appendix for a more detailed discussion about this point).
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Figure 2.4: (colour online) Core-periphery structure of the BLN daily-block snapshot repre-
sentation on day 17 (left - 95 nodes and 155 links are present) and on day 35 (right - 359
nodes and 707 links are present), with core-nodes drawn in blue and periphery-nodes drawn
in yellow.

Core-periphery detection. A clearer picture of the BLN topological structure is provided

by the analysis aimed at clarifying the presence of a “core-periphery -like” organization.

Inspecting the evolution of the bimodular surprise Sk across the entire considered period

reveals that the statistical significance of the recovered core-periphery structure increases, a

result leading to the conclusion that the description of the BLN structure provided by such

a model becomes more and more accurate as the network evolves. As an example, fig. 2.4

shows the detected core-periphery structure on the snapshots depicted in fig. 2.2: the nodes

identified as belonging to the core and to the periphery are, respectively, coloured in blue

and yellow.

Empirical analysis of the BLN weighted structure. Let us now move to the empirical

analysis of the weighted structure of the BLN, by inspecting the evolution of the total

capacity W of (i.e. the total number of bitcoins within) the BLN daily-block snapshot

representation: fig. 2.6 shows the evolution of W as a function of network size N . The trend

shown in the same figure reads y = aN b with a = 2 · 10�5 and b = 2. Although the total

number of bitcoin rises, inequality rises as well: in fact, the percentage of nodes holding a

given percentage of bitcoins at stake in the BLN steadily decreases (on average, across the

entire period, about the 10% (50%) of the nodes holds the 80% (99%) of the bitcoins - see

the second panel of fig. 2.4). This trend is further confirmed by the evolution the Gini
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Figure 2.5: (colour online) Top panels: comparison between the observed Gini index for
the degree, closeness, betweenness and eigenvector centrality (blue dots) and their expected
value, computed under the UBCM (red diamonds) for the daily-block snapshot representa-
tion. Once the information contained into the degree sequence is properly accounted for,
a (residual) tendency to centralisation is still visible. Bottom panels: comparison between
the observed degree-, closeness-, betweenness- and eigenvector-centralisation measures and
their expected value computed under the UBCM (red diamonds). Once the information
contained into the degree sequence is properly accounted for, the emerging picture is that of
a network characterized by some kind of more-than-expected star-likeness: deviations from
this benchmark, however, are clearly visible and probably due to the co-existence of many
star-like sub-structures (see also fig. 2.2).

coe�cient Gs, whose value is ' 0.9 for the last snapshots of our dataset (and whose average

value is 0.88 for the daily-block snapshot representation).

2.5 Conclusions

The Bitcoin Lightning Network is a sort of “Layer 2” protocol aimed at speeding up the

Blockchain, by enabling fast transactions between nodes. Originally designed to allow for

cheaper and faster transactions without sacrificing the key feature of Bitcoin, i.e. its de-

centralisation, it is evolving towards an increasingly centralised architecture, as our analysis

reveals. In particular, its structure seems to become increasingly similar to a core-periphery

one, with well-connected nodes clustering together (as revealed by the study of the eigen-

vector centrality). More precisely, our analysis reveals the presence of many star-like sub-
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Figure 2.6: (colour online) Evolution of the total capacity of the BLN (left). Percentage of
nodes holding the ' 80%, ' 90%, ' 95% and ' 99% of the total number of bitcoins at stake
in the BLN (middle): the former has been computed as the fraction n

⇤

N
of top nodes whose

total capacity amounts at ' 80%, ' 90%, ' 95%, ' 99% of the total. Evolution of the Gini
coe�cient Gs (right): although the total number of bitcoins rises, inequality rises as well.

structures with the role of centers played by the hubs, seemingly acting as channel-switching

nodes. Such a tendency seems to be observable even when considering weighted quantities,

as only about 10% (50%) of the nodes hold 80% (99%) of the bitcoins at stake in the BLN

(on average, across the entire period); moreover, the average Gini coe�cient of the nodes

strengths is ' 0.88. These results seems to confirm the tendency for the BLN architecture

to become “less distributed”, a process having the undesirable consequence of making the

BLN increasingly fragile towards attacks and failures.

2.6 Appendix

As anticipated in the main text, the UBCM seems to underestimate the extent to which

the topological structure of the BLN is disassortative. Figure 2.7 shows the evolution of the

Newman assortativity coe�cient [56], defined as

r =
L
P

N

i=1

P
N

j( 6=i)=1 aijkikj �
⇣P

N

i=1 k2
i

⌘2

L
P

N

i=1 k3
i

�
⇣P

N

i=1 k2
i

⌘2 ; (2.15)

and its expected counterpart under the UBCM: as it is clearly visible, the BLN is more

disassortative than expected (i.e. the correlations between degrees are “more negative” than
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predicted by the UBCM), the reason lying in the presence of the aforementioned star-like

sub-structures that, instead, are absent in the model. To further confirm this, we explicitly

show two configurations drawn from the UBCM for the snapshots 16 and 34: as fig. 2.7

clearly shows, star-like sub-structures are present to a much lesser extent with respect to the

observed counterparts shown in fig. 2.2.
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Figure 2.7: (colour online) Top panels: comparison between the largest connected component
of the BLN (daily-block snapshot representation) generated by the UBCM for the day 17 and
the day 35. A visual inspection of these networks confirms that star-like sub-structures are
present to a much lesser extent with respect to the observed BLN in the same snapshots.
Bottom panel: evolution of the comparison between the empirical assortativity coe�cient r
(blue dots) and its expected value, computed under the UBCM (red diamonds), for the daily-
block snapshot representation. The BLN is significantly more disassortative than expected.
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Chapter 3

The weighted Bitcoin Lightning Network

The Bitcoin Lightning Network (BLN) was launched in 2018 to scale up the number of

transactions between Bitcoin owners. Although several contributions concerning the analy-

sis of the BLN binary structure have recently appeared in the literature, the properties of

its weighted counterpart are still largely unknown. The present contribution aims at filling

this gap, by considering the Bitcoin Lightning Network over a period of 18 months, ranging

from 12th January 2018 to 17th July 2019, and focusing on its weighted, undirected, daily

snapshot representation. As the study of the BLN weighted structural properties reveals, it

is becoming increasingly ‘centralised’ at di↵erent levels, just as its binary counterpart: 1)

the Nakamoto coe�cient shows that the percentage of nodes whose degrees/strengths ‘en-

close’ the 51% of the total number of links/total weight is rapidly decreasing; 2) the Gini

coe�cient confirms that several weighted centrality measures are becoming increasingly un-

evenly distributed; 3) the weighted BLN topology is becoming increasingly compatible with a

core-periphery structure, with the largest nodes ‘by strength’ constituting the core of such a

network, whose size keeps shrinking as the BLN evolves. Further inspection of the resilience

of the weighted BLN shows that removing such hubs leads to the network fragmentation into

many components, an evidence indicating potential security threats - as the ones represented

by the so called ‘split attacks’.

Based on Jian-Hong Lin, Emiliano Marchese, Tiziano Squartini and Claudio J. Tessone.

”The Weighted Bitcoin Lightning Network.” arXiv, preprint arXiv:2111.13494.

(submitted to Chaos, Solitons & Fractals)

3.1 Introduction

The Bitcoin Lightning Network (BLN) represents an attempt to overcome one of the main

limitations of the Bitcoin technological design, i.e. scalability : at the moment, only a limited
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amount of transactions per second, whose number is proportional to the size of blocks and

their release frequency, can be processed by Bitcoin, a major shortcoming preventing the

adoption of this payment system at a global scale - especially when considering that classic

payment mechanisms are able to achieve tens of thousands of transactions per second. In-

creasing the size of the blocks has been proposed as a solution; implementing this choice,

however, would require 1) a larger validation time, 2) a larger storage capability and 3)

larger bandwidth costs, hence favoring a more centralised validation process: in fact, fewer

entities would become able to validate the new blocks, thus making the system as a whole

more prone to faults and attacks.

Developers have tried to break the trade-o↵ between block size and centralisation by

proposing to process transactions o↵-chain, i.e. by means of a ‘Layer 2’ protocol that can

operate on top of blockchain-based cryptocurrencies such as Bitcoin: nowadays, such a

protocol is known with the name of Bitcoin Lightning Network (BLN) and works by creating

payment channels across which any two users can exchange money without having the data

related to their transactions burdening the entire blockchain.

The BLN has recently raised a lot of interest: Lee et al. [57] showed that the BLN

is characterised by a scale-free topology; Lin et al. [7] and Martinazzi et al. [21] analysed

the evolution of the BLN topology and found it to have become increasingly centralised

at di↵erent levels; Seres et al. [20] argued that the BLN structure can be ameliorated to

improve its security; the authors of [58] and [43] showed that the current BLN can be

prone to channel exhaustion or attacks aimed at isolating nodes, thus compromising their

reachability, the payment success ratio, etc. Mizrahi et al. [59] analysed the robustness of

the BLN against three di↵erent types of attacks: locking channels, disconnecting pairs of

nodes and isolating hubs; although their results indicate that the BLN can be disrupted at

a relatively low cost, Conoscenti et al. [60] suggested that the BLN is still resilient against

the removal of nodes that do not have a significant influence on the probability of success of

a payment.

However, most of the aforementioned contributions have just focused on the analysis of

the BLN binary structure, leaving its weighted counterpart largely unexplored. With the

present paper we aim at filling this gap, by studying the weighted properties of the BLN

daily snapshot representation, at the micro-, meso- and macro-scale, across a period of 18

months, i.e. from 12th January 2018 to 17th July 2019.

3.2 Data

Payments in the BLN are source-routed and onion-routed : hence, in order to pre-compute

the entire payment route, the sender must have a reasonably up-to-date view of the network
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Figure 1. Pictorial representation of the four snapshots of the BLN whose LCC is characterised by a number of nodes
amounting at 100, 1.000, 3.000, 5.000 and corresponding to the days 24-01-2018, 30-03-2018, 19-12-2018 and 01-03-2019,
respectively. The size of each node is proportional to its degree (i.e. the bigger the node, the larger its degree) while the color of
each node is proportional to its strength (i.e. the darker the node, the larger its strength).

• the closeness centrality14, 15 of node i is defined as CCi = (N � 1)/�N
j(6=i)=1 di j where di j is the topological distance

between nodes i and j, i.e. the length of any shortest path connecting them. The definition of weighted closeness
centrality of node i is based on the redefinition of shortest path length which, in turn, rests upon the redefinition of
weighted distance between any two nodes, i.e. d(w)

i j . Possible variants of the latter one read d(w)
i j = min{wih + · · ·+wh j}

and d(w)
i j = min

n
1

wih
+ · · ·+ 1

wh j

o
where h indexes the intermediary vertices lying on the path between i and j, wih . . .wh j

are the weights of the corresponding edges and the extremum is taken over all paths between i and j. Naturally, the
meaning changes along with the chosen definition: while the first one describes any two nodes as ‘closer’, the smaller the
weights of the intermediate connections, the opposite is true when the second one is considered. Hereby, we opt for the
following definition of weighted closeness centrality

WCCi =
N �1

�N
j( 6=i)=1 d(w)

i j

, 8 i (9)

with d(w)
i j = min

n
1

wih
+ · · ·+ 1

wh j

o
. This choice also implies that once the path connecting nodes i and j has been

individuated, the WCC is nothing else that the harmonic mean of the weights constituting it;

• the betweenness centrality14, 16–18 of node i is given by BCi = �N
s( 6=i)=1 �N

t(6=i,s)=1 �st(i)/�st where �st is the total number
of shortest paths between node s and t and �st(i) is the number of shortest paths between nodes s and t that pass through
node i. The weighted counterpart of it can be defined as

WBCi =
N

�
s(6=i)=1

N

�
t(6=i,s)=1

� (w)
st (i)

� (w)
st

, 8 i (10)

where, now, � (w)
st is the total number of weighted shortest paths between nodes s and t and � (w)

st (i) is the number of
weighted shortest paths between nodes s and t that pass through node i;

• the eigenvector centrality14, 18, 19 of node i is defined as the i-th element of the eigenvector corresponding to the largest
eigenvalue of the binary adjacency matrix - whose existence is guaranteed in case the Perron-Frobenius theorem holds
true. According to the definition above, a node with large eigenvector centrality is connected to other ‘well connected’
nodes. Such a definition can be extended by considering the WECi, defined as the i-th element of the eigenvector
corresponding to the largest eigenvalue of the weighted adjacency matrix.

The Gini coefficient has been introduced to quantify ‘inequality’ in wealth distribution20, 21 and ranges between 0 and 1, a

4/18

24-01-2018 30-03-2018 19-12-2018 03-01-2019

Figure 3.1: Pictorial representation of the four snapshots of the BLN whose LCC is charac-
terised by a number of nodes amounting at 100, 1.000, 3.000, 5.000 and corresponding to the
days 24-01-2018, 30-03-2018, 19-12-2018 and 01-03-2019, respectively. The size of each node
is proportional to its degree (i.e. the bigger the node, the larger its degree) while the color of
each node is proportional to its strength (i.e. the darker the node, the larger its strength).

topology. Nodes in the BLN regularly broadcast information about the channels they par-

ticipate in: such a mechanism, called gossip, allows other nodes to keep their view of the

network topology up-to-date.

The BLN topology can be visualised by means of the the so-called routing table. For

this paper, we took a snapshot of the routing table every 15 minutes, between January

12th 2018, at blockheight 503.816, to July 17th 2019, at blockheight 585.844 [61]: these

snapshots were, then, aggregated into timespans, each timespan representing a constant

state of a channel from its start to its end; for the present analysis, we considered the daily

snapshot representation of the BLN, including all channels that were found to be active

during that day. Importantly, here we do not rest upon estimates of the number of daily

blocks - obtainable by considering that the time between the appearance of two subsequent

blocks, in the blockchain, is Poisson distributed with an expected value of 10 minutes - but

on the exact time our channels have been opened: since every channel consists of an unspent

transaction output on the blockchain, we can determine the size of a channel and its opening

and closing time within minutes.

3.3 Methods

Notation. On a generic, daily snapshot t, the BLN can be described as a weighted, undi-

rected network with total number of nodes N (t) and represented by an N (t)⇥N (t) symmetric

matrix W
(t) whose generic entry w(t)

ij
indicates the total amount of money exchanged between

i and j, across all channels established by them, during the snapshot t [44,45]. Consistently,

the generic entry of the BLN binary adjacency matrix A
(t) reads a(t)

ij
= 1 if w(t)

ij
> 0 and
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a(t)
ij

= 0 otherwise: the presence of a link between any two nodes i and j, i.e. a(t)
ij

= 1,

indicates that one or more payment channels have been opened, between the same nodes,

during the snapshot t. As a last remark, we will focus on the largest connected component

(LCC) of the BLN, throughout its entire history - the percentage of nodes belonging to it

being steadily above 90%.

For the sake of illustration, we will plot our results for four snapshots, i.e. the ones

whose LCC is characterised by a number of nodes amounting at 100, 1.000, 3.000, 5.000 and

corresponding to the days 24-01-2018, 30-03-2018, 19-12-2018 and 01-03-2019, respectively -

see fig. 3.1.

Degree and strength distributions. The total number of channels (i.e. links) that

have been opened during the snapshot t is provided by L(t) =
P

N
(t)

i=1

P
N

(t)

j=i+1 a(t)
ij

; on the

other hand, the total number of channels node i participates in coincides with its degree,

i.e. k(t)
i

=
P

N
(t)

j( 6=i)=1 a(t)
ij

. The weighted counterparts of the notions above coincide with the

total weight of the network, i.e. W (t) =
P

N
(t)

i=1

P
N

(t)

j=i+1 w(t)
ij

, and with the total amount of

money exchanged by node i, i.e. s(t)
i

=
P

N
(t)

j( 6=i)=1 w(t)
ij

, a quantity often referred to as the

node strength or the node capacity.

While inspecting the functional form of the degree and strength distributions may reveal

the presence of hubs, i.e. ‘large’, single nodes, when dealing with cryptocurrencies it is of

interest making a step further and inspecting the presence of ‘large subgraphs’ of nodes. The

meaning of this sentence can be made more precise upon considering the metric designed by

Srinivasan et al. [62] to measure the number of addresses required (to collude) for gathering

over the 51% of the overall mining power and named Nakamoto index : a high Nakamoto

coe�cient indicates that many miners, or mining pools, need to combine their power to

reach the 51% threshold needed to take over the blockchain. Here, we adapt it to quantify

a ‘topological’ kind of majority, by defining

Nk = min{i 2 [1 . . . N ] :
NX

i

fi � 0.51} (3.1)

where fi = ki/2L and

Ns = min{i 2 [1 . . . N ] :
NX

i

fi � 0.51} (3.2)

where fi = si/2W : the first variant of the Nakamoto index can be calculated by starting

from the (node with) largest degree and add them up until the condition above is satisfied;

analogously, for the second variant.
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Assortativity and hierarchy. In order to gain insight into the higher-order structure of

the BLN, we can consider the quantities known as average nearest neighbors degree, defined

as

ANNDi =

P
N

j( 6=i)=1 aijkj

ki

, 8 i (3.3)

and average nearest neighbors strength, defined as

ANNSi =

P
N

j( 6=i)=1 aijsj

ki

, 8 i; (3.4)

while plotting ANNDi versus ki reveals the (either positive or negative) assortative character

of a network, i.e. the presence of (either positive or negative) correlations between degrees,

plotting ANNSi versus ki reveals the presence of (either positive or negative) correlations

between degrees and strengths. On the other hand, the ‘cohesiveness’ of the neighborhood

of each node can be inspected by calculating the binary clustering coe�cient

BCCi =

P
N

j( 6=i)=1

P
N

k( 6=i,j)=1 aijajkaki

ki(ki � 1)
, 8 i (3.5)

defined as the percentage of triangles established by any two neighbors of each node and the

node itself. Its weighted counterpart reads

WCCi =

P
N

j( 6=i)=1

P
N

k( 6=i,j)=1 wijwjkwki

ki(ki � 1)
, 8 i (3.6)

and is intended to assign a ‘weight’ to each triangle counted by the BCC, by weighing the

connections shaping it. Plotting BCCi versus ki reveals the (possibly) hierarchical character

of a network, i.e. its organisation in sub-modules; plotting WCCi versus ki, instead, pro-

vides a hint about the magnitude of the nodes inter-connections as a function of the nodes

connectivity.

Disparity. The disparity index is defined as

Yi =
NX

j( 6=i)=1


wij

si

�2

=

P
N

j( 6=i)=1 w2
ij

s2
i

=

P
N

j( 6=i)=1 w2
ij

hP
N

j( 6=i)=1 wij

i2 , 8 i (3.7)

and quantifies the (un)evenness of the distribution of the weights ‘constituting’ the i-th

strength over the ki links characterising the connectivity of node i. More specifically, the

disparity index of node i reads Yi = 1/ki in case weights are equally distributed among the

connections established by it, i.e. wij = aijsi/ki, 8 j, any larger value signalling an excess
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concentration of weight in one or more links.

Centrality. Any index measuring the centrality of a node aims at quantifying its impor-

tance in the network, according to some specific topological criterion [34, 35, 46, 47]. While

the e↵orts of researchers have mainly focused on the definition of binary centrality measures,

relatively little work has been done on their weighted counterparts. In what follows, we

will consider possible extensions of the centrality measures employed in [7], i.e. the degree,

closeness, betweenness and eigenvector centrality:

• the degree centrality [34, 35] of node i coincides with its degree, normalized by the

maximum attainable value, i.e. DCi = ki/(N � 1): the strength centrality of node i

generalises it by simply replacing the total number of ‘node-specific’ connections with

the total ‘node-specific’ weight. In what follows we will consider the (simpler) definition

WDCi = si, 8 i (3.8)

from which it follows that the most central node, according to the strength variant, is

the one characterised by the largest percentage of weight ‘embodied’ by (the totality

of) its connections;

• the closeness centrality [34,35] of node i is defined as CCi = (N�1)/
P

N

j( 6=i)=1 dij where

dij is the topological distance between nodes i and j, i.e. the length of any shortest

path connecting them. The definition of weighted closeness centrality of node i is based

on the redefinition of shortest path length which, in turn, rests upon the redefinition of

weighted distance between any two nodes, i.e. d(w)
ij

. Possible variants of the latter one

read d(w)
ij

= min{wih + · · · + whj} and d(w)
ij

= min
n

1
wih

+ · · · + 1
whj

o
where h indexes

the intermediary vertices lying on the path between i and j, wih . . . whj are the weights

of the corresponding edges and the extremum is taken over all paths between i and

j. Naturally, the meaning changes along with the chosen definition: while the first

one describes any two nodes as ‘closer’, the smaller the weights of the intermediate

connections, the opposite is true when the second one is considered. Hereby, we opt

for the following definition of weighted closeness centrality

WCCi =
N � 1

P
N

j( 6=i)=1 d(w)
ij

, 8 i (3.9)

with d(w)
ij

= min
n

1
wih

+ · · · + 1
whj

o
. This choice also implies that once the path con-

necting nodes i and j has been individuated, the WCC is nothing else that the harmonic

mean of the weights constituting it;
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• the betweenness centrality [34,48–50] of node i is given by BCi =
P

N

s( 6=i)=1

P
N

t( 6=i,s)=1
�st(i)
�st

where �st is the total number of shortest paths between node s and t and �st(i) is the

number of shortest paths between nodes s and t that pass through node i. The weighted

counterpart of it can be defined as

WBCi =
NX

s( 6=i)=1

NX

t( 6=i,s)=1

�(w)
st

(i)

�(w)
st

, 8 i (3.10)

where, now, �(w)
st

is the total number of weighted shortest paths between nodes s and t

and �(w)
st

(i) is the number of weighted shortest paths between nodes s and t that pass

through node i;

• the eigenvector centrality [33,34,50] of node i is defined as the i-th element of the eigen-

vector corresponding to the largest eigenvalue of the binary adjacency matrix - whose

existence is guaranteed in case the Perron-Frobenius theorem holds true. According

to the definition above, a node with large eigenvector centrality is connected to other

‘well connected’ nodes. Such a definition can be extended by considering the WECi,

defined as the i-th element of the eigenvector corresponding to the largest eigenvalue

of the weighted adjacency matrix.

Gc =

P
N

i=1

P
N

j=1 |ci � cj |
2N
P

N

i=1 ci

; (3.11)

hereby, we apply it to the several definitions of centrality provided above. As a general com-

ment, we would like to stress that a non-normalized centrality measure cannot be employed

to compare nodes, across di↵erent configurations, in a fully consistent way. However, if our

only interest is that of quantifying the (un)evenness of the distribution of our centrality

measures, the absence of a normalization term does not make any di↵erence: in fact, the

Gini coe�cient is not a↵ected by it.

Small-world-ness. The study of the BLN centralisation can be approached from a slightly

di↵erent perspective by asking if the BLN is (increasingly) becoming a small-world system

[63–65]. The usual way of proceeding to answer such a question prescribes to check if

d =

P
N

i=1

P
N

j( 6=i)=1 dij

N(N � 1)
⇠ ln N (3.12)

i.e. if the average path length grows logarithmically with the number of nodes and if the

average clustering coe�cient BCCi =
P

N

i=1 BCCi/N is larger than the one predicted by
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an Undirected Random Graph Model (URGM) tuned to reproduce the empirical density of

links. Recently, however, it has been argued that the same question can be answered by

considering the quantity named global e�ciency, defined as

Eg =

P
N

i=1

P
N

j( 6=i)=1 d�1
ij

N(N � 1)
, (3.13)

understood as an indicator of the ‘tra�c capacity’ of a network and, quite remarkably, not

a↵ected by the analytical problems su↵ered by the average path length [64] - potentially

diverging due to the presence of couples of nodes belonging to disconnected components.

Latora et al. [64] have also defined a local e�ciency as

El =
1

N

NX

i=1

E(Gi), (3.14)

a quantity that can be evaluated by, first, calculating the e�ciency of the subgraph induced

by the nearest neighbors of each node, upon removing it and, then, averaging such numbers.

Latora et al. [64] have argued that while Eg plays a role analogous to the inverse of the

average path length, El plays a role analogous to the average clustering coe�cient: hence,

small-world networks should have both a large Eg and a large El, i.e. should be very e�cient

in allowing nodes to communicate in both a global and a local fashion.

Core-periphery detection. As it has emerged quite clearly from the binary analysis

of the BLN, just inspecting the evolution of centrality measures can return a too simplistic

picture of the network under consideration. For this reason, we have checked for the presence

of mesoscopic ‘centralised’ structures such as the core-periphery one, composed by a densely-

connected subgraph of nodes surrounded by a periphery of loosely-connected vertices. In

order to do so, we have implemented the approach recently proposed in [66] and prescribing

to minimize the score function

W=

X

w•�w
⇤
•

X

w��w
⇤
�

��
V•
w•

����
V�
w�

����
V �V•�V�
W�w•�w�

��
��

V

W

�� (3.15)

known as bimodular surprise1; here, V = N(N �1)/2 is the total number of node pairs, W =
P

N

i=1

P
N

j=i+1 wij is the total weight of the network, V• is the number of node pairs in the core

portion of the network, V� is the number of node pairs in the periphery portion of the network,

w⇤
• is the observed number of core links and w⇤

� is the observed number of periphery links.

From a technical point of view, W is the p-value of a multivariate negative hypergeometric

1The Python package for surprise optimization, called ‘SurpriseMeMore’, is freely downloadable at the
following URL: https://github.com/EmilianoMarchese/SurpriseMeMore.
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distribution and the multiset notation, according to which
��

V•
w•

��
=
�
V•+w•�1

w•

�
allows W to

be compactly rewritten in a way that nicely mirrors that of its binary counterpart [55, 66].

Benchmarking the observations. Along the guidelines of the analysis carried out in [7],

in what follows we benchmark our observations by employing the recently-proposed null

model called CReMA - the acronym standing for Conditional Reconstruction Model A [67,68]

- that allows binary and weighted constraints to be defined in a disentangled fashion. From a

purely theoretical point of view, it is defined by the maximisation of the conditional Shannon

entropy

S(W |A) = �
X

A2A
P (A)

Z

WA

Q(W|A) ln Q(W|A)dW (3.16)

constrained to reproduce the strengths {si}N

i=1; the (conditional) weighted distribution out-

put by such an optimization procedure reads

Q(W|A) =
e�H(W)

ZA
=

NY

i=1

NY

j=i+1

qij(wij |aij) =
NY

i=1

NY

j=i+1

(�i + �j)
aije�(�i+�j)wij ; (3.17)

notice the conditional character of the distribution above, embodied by the term aij at

the exponent - as a simple consistency check, the probability that wij = 0 in case there

is no link is q(wij = 0|aij = 0) = 1 as it should be. The vector of parameters {�i}N

i=1

defining the distribution above can be estimated via a (generalized) likelihood maximisation

procedure [67] that leads to the system of N equations

si =
NX

j( 6=i)=1

hwiji =
NX

j( 6=i)=1

pij

�i + �j

, 8 i; (3.18)

the coe�cients {pij}N

i,j=1, instead, are treated as ‘prior information’ and, as such, left ‘un-

touched’ by the estimation procedure above. In a sense, we are free to combine the (condi-

tional) weighted distribution above with the purely binary probability mass function ‘best’

encoding the available information about the network structure. In what follows, we have

considered

• the one defining the Undirected Binary Configuration Model (UBCM) and following

from the maximisation of the traditional Shannon entropy S = �
P

A P (A) ln P (A)

constrained to reproduce the degrees {ki}N

i=1: the UBCM captures the idea that the

probability for any two nodes to establish a connection (solely) depends on their degrees

and can be fully determined by solving the N equations
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ki =
NX

j( 6=i)=1

pUBCM
ij =

NX

j( 6=i)=1

xixj

1 + xixj

, 8 i; (3.19)

• the deterministic recipe pij ⌘ aij , 8 i < j, accounting for the case in which the prior

knowledge concerns the entire network topological structure, now treated as given.

While, in the first case, the generic set of coe�cients {pij}N

i,j=1 is instantiated upon

identifying pij ⌘ pUBCM
ij

, 8 i < j, in the second one the, identification simply reads pij ⌘ aij ,

8 i < j; in both cases, the resolution of the related system of equations, carried out via the

Python package called ‘NEMTROPY’2, leads us to numerically determine the corresponding

vector of parameters {�i}N

i=1.

Benchmarking a set of observations ultimately boils down at verifying their ‘compatibil-

ity’ with the predictions output by a chosen null model, by testing their statistical significance

against the null model itself. To this aim, one can proceed as follows: first, sampling the

ensemble induced by the chosen null model, by generating a ‘su�ciently large’ number of

configurations (in all our experiments, 100); second, calculating the value of any quantity

of interest over each configuration; third, deriving the corresponding ensemble CDF. At

this point, a p-value remains naturally defined; in what follows, we will employ it to carry

out one-tailed tests. Whenever tests of this kind are considered, one may be interested in

calculating either the (ensemble) probability Q(X � X⇤) of observing a value, for the quan-

tity of interest X, that is larger than the empirical one, X⇤, or the (ensemble) probability

Q(X  X⇤) of observing a value, for the quantity of interest X, that is smaller than it; in

both cases, if such a probability is found to be smaller than a given threshold, the quantity is

deemed as statistically significant, hence incompatible with the description provided by the

chosen null model - which (significantly) underestimates or overestimates it, respectively.

3.4 Results

Degree and strength distributions. Giving a look at the four snapshots depicted in fig.

3.1 reveals the presence of a large heterogeneity, with nodes having a large degree/strength

co-existing with nodes having a small degree/strength; moreover, while nodes with a large

degree also have a large strength (i.e. larger nodes are also darker), small, dark nodes

can be observed as well: in other words, an overall positive correlation between degrees

and strengths co-exists with a large variability of the strength values - especially for what

concerns the nodes with a small connectivity (see fig. 3.2).

2The acronym stands for ‘Network Entropy Maximization: a Toolbox Running On Python’ and the package
is freely downloadable at the following URL: https://pypi.org/project/NEMtropy/.
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Figure 3.2: Scattering the strength sequence versus the degree sequence reveals the presence
of positive correlations between the two sets of quantities: the Pearson coe�cient describing
them, on our usual four snapshots, amounts at r = 0.84, 0.42, 0.66, 0.80, respectively.

As a first empirical analysis, we have inspected the functional form of the degree dis-

tribution for four distinct snapshots, i.e. the days 24-01-2018, 30-03-2018, 19-12-2018 and

01-03-2019; to this aim, we have plotted the cumulative density function (CDF), defined as

CDF(k) =
P

h�k
f(h) where f(h) is the fraction of nodes whose degree is h. As shown in fig.

3.3, the degree distribution becomes broader as the BLN evolves; moreover, running the code

released by Clauset et al. [69] to fit the functional form PDF(k) = (↵ � 1)k↵�1
min

k�↵ on the

data returns the values ↵ = 1.9, 2.0, 2.1, 2.2 and kmin = 1, 3, 14, 26 while the Kolmogorov-

Smirnov test returns the p-values p = 0.02, 0.03, 0.04, 0.5. Hence, the null hypothesis that

the degrees are distributed according to a power-law is never rejected, at the 1% significance

level - while it is, for the first three snapshots, at the 5% significance level. Overall, the null

hypothesis that the degrees are distributed according to a power law is not rejected for the

85% of the total number of snapshots, at the 1% significance level, and for the 71% of the

total number of snapshots, at the 5% significance level.

As a second empirical analysis, we have calculated the evolution of the CDF of the

weights, defined as CDF(w) =
P

v�w
f(v). Analogously to what has been observed for the

degrees, even the support of the weight distribution has broadened throughout the entire

BLN history (see fig. 3.4), although to a lesser extent. Fitting a log-normal distribution,

whose functional form reads PDF(w) = (w�
p

2⇡)�1e� (lnw�µ)2

2�2 , on the data reveals that, at

both the 1% and the 5% significance levels, the Kolmogorov-Smirnov test does not reject the

hypothesis that weights are log-normally distributed when N < 94 (i.e. from the fourth day

to the twelfth day). For our four snapshots, instead, the hypothesis is rejected - notice that

day 24-01-2018 is the thirteenth.

As a third empirical analysis, we have considered the evolution of the CDF of the

strengths, defined as CDF(s) =
P

t�s
f(s). The support of the distribution is enlarged

of a few orders of magnitude during the BLN history (see fig. 3.5). Analogously to the
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Figure 3.3: Cumulative density function of the degrees, for our usual four snapshots. The
support of the distribution has become broader as the BLN has evolved. Fitting a power-law
PDF(k) = (↵�1)k↵�1

min
k�↵ on the data (naturally, for k � kmin), by running the code released

by Clauset et al. [69] returns values amounting at ↵ = 1.9, 2.0, 2.1, 2.2 and kmin = 1, 3, 14, 26
while the Kolmogorov-Smirnov test returns the p-values p = 0.02, 0.03, 0.04, 0.5. Hence, the
null hypothesis that the degrees are distributed according to a power-law is never rejected,
at the 1% significance level - while it is, for the first three snapshots, at the 5% significance
level. Overall, the null hypothesis that the degrees are distributed according to a power-law
is not rejected for the 85% of the total number of snapshots, at the 1% significance level,
and for the 71% of the total number of snapshots, at the 5% significance level.
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Figure 3.4: Cumulative density function of the weights, for our usual four snapshots. The
support of the distribution has become slightly broader as the BLN has evolved. Fitting a

log-normal distribution PDF(w) = (w�
p

2⇡)�1e� (lnw�µ)2

2�2 on the data reveals that, at both
the 1% and the 5% significance levels, the Kolmogorov-Smirnov test does not reject the
hypothesis that weights are log-normally distributed when N < 94 (i.e. from the fourth day
to the twelfth day); for our four snapshots, instead, the hypothesis is rejected - notice that
day 24-01-2018 is the thirteenth.

case of the weights, we have fitted a log-normal distribution, whose functional form reads

PDF(s) = (s�
p

2⇡)�1e� (ln s�µ)2

2�2 , on the data: while the the Kolmogorov-Smirnov test returns

the p-values p = 0.061, 0.006, 4.4 · 10�7 and 1.6 · 10�7, hence does not reject the hypothesis

that strengths are log-normally distributed, at both significance levels, for the first snapshot
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Figure 3.5: Cumulative density function of the strengths, for our usual four snapshots.
The support of the distribution is enlarged of a few orders of magnitude during the BLN

history. A log-normal distribution PDF(s) = (s�
p

2⇡)�1e� (ln s�µ)2

2�2 , fitted on the data, lets
the Kolmogorov-Smirnov test returns the p-values p = 0.061, 0.006, 4.4 · 10�7 and 1.6 · 10�7.
Hence, the null hypothesis that strengths are log-normally distributed is not rejected for the
first snapshot while it is for the last three ones - at both significance levels. Overall, the null
hypothesis that the strengths are distributed according to a log-normal is not rejected for
the 16% of the total number of snapshots, at the 1% significance level, and for the 5% of the
total number of snapshots, at the 5% significance level.
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Figure 3.6: Evolution of the Nakamoto index for the degrees and the strengths, plotted
versus the total number of nodes: as the size of the system enlarges, the percentage of nodes
‘providing’ the 51% of the total number of links/the total weight progressively reduces, an
evidence pointing out that nodes embodying a ‘topological’ kind of majority indeed appear.
Moreover, the total weight seems to be distributed less evenly than the total number of
connections.

considered here, it does so for the other three ones - an evidence seemingly indicating that,

quite early in its history, the BLN has started deviating more and more from the picture

provided by the distribution tested here. Overall, the null hypothesis that the strengths

are distributed according to a log-normal is not rejected for the 16% of the total number of

snapshots, at the 1% significance level, and for the 5% of the total number of snapshots, at

the 5% significance level.
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Figure 3.7: ANNDi, hANNDii values scattered versus ki (upper panels) and ANNSi, hANNSii
values scattered versus ki (bottom panels) for our usual four snapshots (all trends are aver-
aged over the classes of nodes with the same degree). Both trends clearly signal a disassor-
tative behavior, i.e. nodes with a large degree are (preferentially) connected to nodes with
a small degree/small strength and viceversa. While the UBCM-induced CReMA model suc-
cessfully captures such a disassortative trend, the deterministic CReMA model reproduces
both the ANND and the ANNS values exactly.

The picture provided by the three distributions above can be complemented by the

information provided by the Nakamoto index (see fig. 3.6). As its evolution clearly shows,

the percentage of nodes ‘providing’ the 51% of the total number of links/the total weight

progressively reduces, as the BLN size enlarges: in particular, the total weight seems to be

distributed less evenly than the total number of connections - as fewer nodes are needed

to embody the (same) required percentage. This seems to confirm the appearance of nodes

constituting the aforementioned ‘topological’ majority.

Assortativity and hierarchy. Plotting the values of the average nearest neighbors degree

versus the degrees reveals the disassortative character of the BLN, i.e. the presence of

negative correlations between the degrees: in other words, nodes with a large degree are

(preferentially) connected to nodes with a small degree and viceversa. To be noticed that

the UBCM-induced CReMA model successfully captures such a trend, indicating that the

information encoded into the degree sequence, leading to
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Figure 3.8: BCCi, hBCCii values scattered versus ki (upper panels) and WCCi, hWCCii val-
ues scattered versus ki (bottom panels) for our usual four snapshots (all trends are averaged
over the classes of nodes with the same degree). While the trend of the BCC clearly signals
a hierarchical behavior, i.e. the tendency of nodes with a larger degree to participate into
a smaller number of connected triples than nodes with a smaller degree and viceversa, this
does not seem to be the case for the WCC values when plotted versus the degrees. While the
UBCM-induced CReMA model successfully captures both trends, the deterministic CReMA

model reproduces only the BCC values exactly.

hANNDii '
P

N

j( 6=i)=1haijihkji
hkii

=

P
N

j( 6=i)=1 pijkj

ki

, 8 i (3.20)

with pij ⌘ pUBCM
ij

, 8 i < j and where the symbol ' indicates that we have approximated

the expected value of a ratio as the ratio of the expected values, is enough to account for

the correlations between the degrees as well. An analogous decreasing trend characterises

the values of the average nearest neighbors strength when plotted versus the degrees, i.e.

nodes with a large degree are (preferentially) connected to nodes with a small strength

and viceversa; as for its binary counterpart, the UBCM-induced CReMA model successfully

reproduces the empirical ANNS values, indicating that the information encoded into the

degree and the strength sequences, leading to

hANNSii '
P

N

j( 6=i)=1haijihsji
hkii

=

P
N

j( 6=i)=1 pijsj

ki

, 8 i (3.21)
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with pij ⌘ pUBCM
ij

, 8 i < j successfully accounts for the correlations between the degrees and

the strengths as well (see fig. 3.7). On the other hand, plotting the values of the clustering

coe�cient versus the degrees reveals the hierarchical character of the BLN: nodes with a

larger degree tend to participate into a smaller number of connected triples than nodes with

a smaller degree and viceversa; the UBCM-induced CReMA model, leading to

hBCCii '
P

N

j( 6=i)=1

P
N

k( 6=i,j)=1haijihajkihakii
P

N

j( 6=i)=1

P
N

k( 6=i,j)=1haijihaiki
=

P
N

j( 6=i)=1

P
N

k( 6=i,j)=1 pijpjkpki

P
N

j( 6=i)=1

P
N

k( 6=i,j)=1 pijpik

, 8 i (3.22)

with pij ⌘ pUBCM
ij

, 8 i < j is able to capture such a trend as well. The same decreasing

trend, instead, does not characterise the values of the weighted clustering coe�cient when

plotted versus the degrees which, instead, appears as rather flat - interestingly, this is no

longer true when the weighted clustering coe�cient values are plotted versus the strengths:

in this case, a clear rising trend is visible, signalling that nodes with a larger strength tend

to participate into ‘heavier’ connected triples of nodes. Again, the UBCM-induced CReMA

model, predicting

hWCCii '
P

N

j( 6=i)=1

P
N

k( 6=i,j)=1hwijihwjkihwkii
P

N

j( 6=i)=1

P
N

k( 6=i,j)=1haijihaiki
=

P
N

j( 6=i)=1

P
N

k( 6=i,j)=1hwijihwjkihwkii
P

N

j( 6=i)=1

P
N

k( 6=i,j)=1 pijpik

, 8 i

(3.23)

with pij ⌘ pUBCM
ij

, 8 i < j successfully reproduces the empirical WCC values, indicating that

the information encoded into the degree and the strength sequences successfully accounts for

the behavior of third-order properties as well (see fig. 3.8).

Disparity. As anticipated in the paragraph introducing such a quantity, the disparity index

of node i reads Yi = 1/ki in case weights are equally distributed among the neighbors of

node i. Figure 3.9 shows the scatter plot of Yi as a function of ki (since it is plotted in a

log-log scale, the function y = �x becomes the trend signalling that weights are uniformly

distributed among the neighbors of each node): generally speaking, many values lie above

the y = �x line, an evidence indicating that some kind of ‘excess concentration’ of weight

(in one or more links) is indeed present - a tendency which is particularly evident for nodes

with smaller degree.

Let us now compare the empirical disparity values with the predictions of the null models

defined within our CReMA framework. To this aim, let us explicitly calculate the expected

value of disparity, that reads
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Figure 3.9: Upper panels: empirical disparity values scattered versus the degrees, for our
usual four snapshots. As the plots reveal, the vast majority of strength values is not evenly
distributed across the connections characterising each node, i.e. Yi > 1/ki for the vast
majority of nodes. Middle panels: expected disparity values output by the UBCM-induced
CReMA model scattered versus the empirical disparity values. Bottom panels: expected
disparity values output by the deterministic CReMA model scattered versus the empirical
disparity values. The empirical disparity values are, generally speaking, in agreement with
our benchmark models; however, the percentage of nodes for which Q(Yi � Y ⇤

i
) < 0.05, for

our usual four snapshots, amounts at 0%, 3.0%, 9.1%, 11% for the UBCM-induced CReMA

model and at 0%, 5.6%, 15%, 17% for the deterministic CReMA model: in other words, the
percentage of nodes whose empirical disparity is significantly larger than predicted by one
of the two null models considered here is rising throughout the entire BLN history - i.e. its
vertices increasingly ‘favor’ some of the links surrounding them.
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where

hwiji =
pij

�i + �j

, 8 i < j (3.25)

and

Var[si] =
NX

j( 6=i)=1

Var[wij ] =
NX

j( 6=i)=1

pij

(�i + �j)2
, 8 i (3.26)

(naturally, for the the present analysis we have considered both the case pij ⌘ pUBCM
ij

, 8i < j

and the case pij ⌘ aij , 8 i < j). As fig. 3.9 shows, disparity is, generally speaking, in agree-

ment with our benchmark models. However, the calculation of the percentage of nodes for

which Q(Yi � Y ⇤
i
) < 0.05, for our usual four snapshots, reveals it to be 0%, 3.0%, 9.1%, 11%

for the UBCM-induced CReMA model and 0%, 5.6%, 15%, 17% for the deterministic CReMA

model: in other words, the percentage of nodes whose empirical disparity is significantly

larger than predicted by one of our two null models is rising throughout the entire BLN

history. This evidence suggests that, as the BLN evolves, its vertices treat their neighbors

less and less equally: indeed, they seem to place weights in a way that increasingly ‘favors’

some of the links surrounding them - a result that remains true even when a null model

constraining the entire topology of the BLN is employed3.

Centrality. Let us now comment the results concerning the weighted centrality measures

considered in the present work. As a general observation, the weighted cases are charac-

terised by trends which are overall similar to the trends characterising the binary cases. As

already observed for the purely binary BLN structure, the evolution of the Gini index for

most centrality measures points out the latter ones to grow (strongly) unevenly distributed

throughout the entire BLN history. While the rise of the Gini coe�cient for the weighted de-

gree, betweenness and eigenvector centrality measures suggests the appearance of nodes with

‘heavy’ connections - further confirmed by the strength distribution, which is a fat-tailed one

- likely crossed by many paths and well connected between themselves, the flat trend char-

acterising the evolution of the closeness centrality confirms what has been already observed

in the purely binary case, i.e. that the aforementioned ‘hubs’ ensure the vast majority of

nodes to be reachable (hence, to be close to each other) quite easily.

Let us now compare the empirical trends of our four centrality measures with the ones

predicted by our two null models. Figure 3.10 reveals that the UBCM-induced CReMA model

3To be noticed that our null models also underestimate disparity values: however, the correspond-
ing percentages (amounting at 3.2%, 4.3%, 5.8%, 5.2% for the UBCM-induced CReMA model and at
12.8%, 10.8%, 13.0%, 13.6% for the deterministic CReMA model, for our usual four snapshots), are typically
lower and not increasing.
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Figure 10. Evolution of the Gini coefficient of the empirical weighted centrality values (blue dots) and of its expected
counterpart, under the UBCM-induced CReMA model (red squares, upper panels) and the deterministic CReMA model (yellow
squares, bottom panels). The rise of the Gini coefficient for the weighted degree, betweenness and eigenvector centrality points
out that the distribution of centrality measures becomes increasingly uneven while the flat trend characterising the evolution of
the closeness centrality confirms what has been observed in the purely binary case: the aforementioned ‘hubs’ ensure the vast
majority of nodes to be reachable quite easily. Generally speaking, our null models tend to significantly underestimate both the
weighted betweenness centrality and the weighted eigenvector centrality signalling the presence of
fewer-nodes-with-heavier-connections than predicted by chance.

coefficient for the weighted degree, betweenness and eigenvector centrality measures point out the appearance of nodes with
‘heavy’ connections - further confirmed by the strength distribution, which is a fat-tailed one - likely crossed by many paths and
well connected between themselves, the flat trend characterising the evolution of the closeness centrality confirms what has
been already observed in the purely binary case, i.e. that the aforementioned ‘hubs’ ensure the vast majority of nodes to be
reachable quite easily - hence, quite close to each other.

Let us now compare the empirical trends of our four centrality measures with the ones predicted by our two null models.
Such a comparison reveals that the UBCM-induced CReMA model tends to overestimate the values of the Gini index for the
weighted degree and closeness centrality, i.e. the empirical weighted degree and closeness centrality measures are always
significantly lower than their predicted counterparts. For what concerns the weighted betweenness centrality, instead, the
percentage of snapshots for which Q(GWBC � G�

WBC) < 0.05 amounts at ' 80%, i.e. the UBCM-induced CReMA model
significantly underestimates the weighted betweenness centrality for the 80% of the total number of snapshots. Analogously,
the same null model tends to underestimate the values of the Gini index for the weighted eigenvector centrality roughly half of
the times: in fact, the percentage of snapshots for which Q(GWEC � G�

WEC) < 0.05 amounts at ' 50%.
The deterministic CReMA model, instead, performs slightly better in reproducing the centrality patterns characterising the

BLN: in fact, while it still overestimates the Gini index for the weighted degree centrality on the ' 70% of the total number of
snapshots, Q(GWCC � G�

WCC) < 0.05 amounts at ' 80%, i.e. the deterministic CReMA model significantly underestimates
the weighted closeness centrality for the 80% of the total number of snapshots. For what concerns the weighted betweenness
centrality, Q(GWBC � G�

WBC) < 0.05 amounts at ' 33%, i.e. the deterministic CReMA model significantly underestimates
the weighted betweenness centrality (only) for the 33% of the total number of snapshots. Lastly, for what concerns the
weighted eigenvector centrality, Q(GWEC � G�

WEC) < 0.05 amounts at ' 5%, i.e. the deterministic CReMA model significantly
underestimates the weighted eigenvector centrality (only) for the 5% of the total number of snapshots.

Overall, these results point out a behavior that is not reproducible by just enforcing the degree and the strength sequences
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Figure 3: Left panel: the initial network with N0=20. Right panel: an example non-scale-free network with
N = 100, N0 = 20, m = 2 and pi!j=0.

Figure 4: Left panel: the initial network with N0=20. Right panel: an example non-scale-free network with
N = 100, N0 = 20, m = 2 and pi!j=0.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Figure 5: Left panel: the initial network with N0=20. Right panel: an example non-scale-free network with
N = 100, N0 = 20, m = 2 and pi!j = 0.
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Figure 10. Upper and middle panels: evolution of the Gini coefficient of the empirical weighted centrality values (blue dots)
and of its expected counterpart, under the UBCM-induced CReMA model (red dots, upper panels) and the deterministic
CReMA model (yellow dots, bottom panels). The rise of the Gini coefficient for the weighted degree, betweenness and
eigenvector centrality points out that the distribution of centrality measures becomes increasingly uneven while the flat trend
characterising the evolution of the closeness centrality confirms what has been observed in the purely binary case: the
aforementioned ‘hubs’ ensure the vast majority of nodes to be reachable (hence, to be close to each other) quite easily.
Generally speaking, our null models tend to significantly underestimate both the weighted betweenness centrality and the
weighted eigenvector centrality, signalling the presence of fewer-nodes-with-heavier-connections than predicted by chance.
Bottom panels: comparison between the BLN on day 20-03-2018, a configuration generated by the UBCM-induced CReMA
model and a configuration generated by the deterministic CReMA model for the same day. The latter one distributes weights
more evenly than observed, hence underestimating disparity and letting the strength distribution become wider: this has an
interesting consequence, i.e. letting the size of the core become larger than observed, under this model - it amounts at the 12%,
the 27% and the 21% of the total number of nodes on the considered day - while still allowing the unevenness of the WEC
distribution rise.
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Figure 3.10: Upper and middle panels: evolution of the Gini coe�cient of the empirical
weighted centrality values (blue dots) and of its expected counterpart, under the UBCM-
induced CReMA model (red dots, upper panels) and the deterministic CReMA model (yellow
dots, bottom panels). The rise of the Gini coe�cient for the weighted degree, betweenness
and eigenvector centrality points out that the distribution of centrality measures becomes in-
creasingly uneven while the flat trend characterising the evolution of the closeness centrality
confirms what has been observed in the purely binary case: the aforementioned ‘hubs’ ensure
the vast majority of nodes to be reachable (hence, to be close to each other) quite easily.
Generally speaking, our null models tend to significantly underestimate both the weighted
betweenness centrality and the weighted eigenvector centrality, signalling the presence of
fewer-nodes-with-heavier-connections than predicted by chance. Bottom panels: compari-
son between the BLN on day 20-03-2018, a configuration generated by the UBCM-induced
CReMA model and a configuration generated by the deterministic CReMA model for the
same day. The latter one distributes weights more evenly than observed, hence underesti-
mating disparity and letting the strength distribution become wider: this has an interesting
consequence, i.e. letting the size of the core become larger than observed, under this model -
it amounts at the 12%, the 27% and the 21% of the total number of nodes on the considered
day - while still allowing the unevenness of the WEC distribution rise.
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tends to overestimate the values of the Gini index for the weighted degree and closeness cen-

trality, i.e. the empirical weighted degree and closeness centrality measures are always signif-

icantly lower than their predicted counterparts. For what concerns the weighted betweenness

centrality, instead, the percentage of snapshots for which Q(GWBC � G⇤
WBC) < 0.05 amounts

at ' 87%, i.e. the UBCM-induced CReMA model significantly underestimates the weighted

betweenness centrality for ' 87% of the total number of snapshots. Analogously, the same

null model tends to underestimate the values of the Gini index for the weighted eigenvector

centrality roughly one third of the times: in fact, the percentage of snapshots for which

Q(GWEC � G⇤
WEC) < 0.05 amounts at ' 33%. Interestingly, the empirical WBC and WEC

values are compatible with the predictions output by the UBCM-induced CReMA model, on

the ‘remaining’ snapshots.

The deterministic CReMA model, instead, performs slightly better in reproducing the

centrality patterns characterising the BLN: in fact, while it still overestimates the Gini in-

dex for the weighted degree centrality, the percentage of snapshots for which Q(GWCC �
G⇤

WCC) < 0.05 amounts at ' 96%, i.e. the deterministic CReMA model significantly under-

estimates the weighted closeness centrality for ' 96% of the total number of snapshots. For

what concerns the weighted betweenness centrality, the percentage of snapshots for which

Q(GWBC � G⇤
WBC) < 0.05 amounts at ' 50%, i.e. the deterministic CReMA model signifi-

cantly underestimates the weighted betweenness centrality roughly half of the times. Lastly,

for what concerns the weighted eigenvector centrality, the percentage of snapshots for which

Q(GWEC  G⇤
WEC) < 0.05 amounts at ' 83%, i.e. the deterministic CReMA model signif-

icantly overestimates the weighted eigenvector centrality for ' 83% of the total number of

snapshots. The deterministic CReMA model distributes weights more evenly than observed,

hence underestimating disparity and letting the strength distribution become wider: this has

an interesting consequence, i.e. letting the size of the core under this model become larger

than observed - likely, because nodes with relatively low strength become, now, part of the

core - while still allowing the unevenness of the WEC distribution rise.

Overall, these results point out a behavior that is not reproducible by just enforcing the

degree and the strength sequences - irrespectively from the chosen index: in particular, the

behavior of the weighted betweenness centrality points out that both null models - even if

to a di↵erent extent - predict a more-even-than-observed structure.

Small-world-ness. The evidence that the BLN structure is more-centralised-than-expected

rises an interesting question, i.e. if the BLN is small-world or not. From a purely empirical

perspective, answering this question amounts at checking the behavior of the average path

length, d, and that of the average clustering coe�cient, BCC =
P

i
BCCi/N [63–65].

Figure 3.11 shows the results of these two analyses: while the evolution of d is described
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quite accurately by the function ln N during the first snapshots of the BLN history, its trend

has progressively become more and more similar to the smoothest one characterising the

function ln ln N - which has reached the value ' 3.5 on the snapshot with 104 nodes. For what

concerns the average clustering coe�cient, one needs to compare it with the value predicted

by the URGM, i.e. the null model prescribing to link each pair of nodes with the same

probability p = 2L/N(N �1): as fig. 3.11 shows, the URGM significantly underestimates the

average clustering coe�cient throughout the entire BLN history; taken together, there results

indicate that the BLN is indeed small-world. On the other hand, the UBCM overestimates

BCC =
P

i
BCCi/N during the first half of its history (for ' 40% of the total number of

snapshots), thus signalling a tendency of our system to avoid closing paths among triples of

nodes.

An alternative way of testing small-world -ness is that of checking the behavior of e�-

ciency. Overall, the global e�ciency amounts at Eg ' 0.4 and it is significantly underesti-

mated by the UBCM throughout the entire history of the BLN. This indicates that the BLN

exchanges information more-e�ciently-than-predicted by a null model retaining only the in-

formation provided by degrees and can be a consequence of the presence of hubs crossed by

many paths that shorten the topological distance between (any pair of) nodes.

These results suggest that the BLN has progressively self-organized to ‘keep the overall

distances low’. What about e�ciency from a local point of view? For what concerns the

local e�ciency, the percentage of nodes for which Q(El � E⇤
l
) < 0.05 amounts at 75%:

hence, the UBCM significantly underestimates it for a large portion of the BLN snapshots

- as evident from fig. 3.11, the most recent ones. As the local e�ciency E(Gi) provides

information about how e�cient the communication between the first neighbors of node i is,

upon its removal, our results seem to indicate that the BLN is becoming more and more

‘fault tolerant’ than its randomised counterpart (interestingly, it appeared to be much more

fragile during the first half of its history). This result can be understood by imagining that

a larger number of redundant connections has been established, among nodes, in the more

recent snapshots of the BLN history - whence the rise of the average clustering coe�cient as

well.

As an additional exercise, let us inspect the evolution of the BLN global e�ciency as

nodes are removed either randomly or sequentially, after they have been sorted in decreasing

order of weighted degree, closeness, betweenness and eigenvector centrality. The results of

our exercise are shown in fig. 3.11. The depicted trends are compatible with a robust-yet-

fragile architecture, i.e. a topological structure that is robust against a random removal of

nodes but fragile against a targeted removal of nodes (e.g. an attack) - or, more correctly,

more robust against a random node removal than against a targeted node removal: notice

how steeper the decrease of Eg is in the second case; moreover, removing nodes according to
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Figure 3.11: Upper panels: (a) evolution of the BLN average path length d̄ and of the func-
tions ln N and ln ln N ; (b) evolution of the empirical average clustering coe�cient BCC (blue
dots) and of its expected values hBCCi under the URGM (green stars) and the UBCM (red
squares); (c) evolution of the empirical global e�ciency Eg (blue dots) and of its expected val-
ues hEgi under the UBCM (red squares); (d) evolution of the empirical local e�ciency El and
of its expected values hEli under the UBCM (red squares). The BLN is indeed characterised
by a small-world structure; moreover, while it has been always more-globally-e�cient-than-
expected under the UBCM, it has ‘recently’ become also more-locally-e�cient-than-expected
under the same null model. Middle panels: evolution of the BLN global e�ciency, for our
usual four snapshots, when nodes are removed either randomly (green trend) or sequentially,
after having been sorted in decreasing order of weighted degree (blue trend), closeness (red
trend), betweenness (yellow) and eigenvector (purple) centrality. The trends above charac-
terise a robust-yet-fragile architecture: robust against a random node removal but fragile
against a targeted node removal (e.g. an attack). Bottom panels: percentage of core nodes
found within the set of nodes removed according to one of the two aforementioned criteria.
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Figure 15. Four snapshots of the BLN, depicting it in the days 13, 44, 77 and 179. The size and the color of the nodes are
proportional to their degree (i.e. the bigger the node, the larger its degree; the darker the color, the larger its degree). Left panel:
Binary Core Size VS Weighted Core Size. Middle panel: the evolution of the percentage of the overlap in the binary core and
weighted core, where P(overlap) = |XB�XW |

|XB[XW | , XB and XW are the set of nodes in the binary core and weighted core respectively.
Right Panel: the evolution of the percentage of the total weight in the binary and weighted core, where the average of the
percentage of the binary one is 0.683, while the weighted one is 0.772.

ContractNet result in the least number of articulation points. Cohesion and adhesion refer to the minimum number of vertices
and arcs, respectively, that must be removed to disconnect a network. Clearly, they are defined over undirected, connected
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Figure 12. Upper panels: core-periphery structure of our four usual snapshots on day 24-01-2018, 30-03-2018, 19-12-2018
and 01-03-2019 respectively, with core-nodes drawn in blue and periphery-nodes drawn in yellow. The size of the nodes are
proportional to their strength (i.e. the bigger the node, the larger its strength). Bottom panels: (a) comparison between the
number of nodes belonging to the binary core and the number of nodes belonging to the weighted core on day 24-01-2018,
25-02-2018, 30-03-2018, 13-07-2018, 19-12-2018, 30-01-2019 and 17-07-2019, whose LCC is characterized by a number of
nodes amounting at 100, 500, 1.000, 2.000, 3.000, 4.000, 5.000 and 6.447 respectively. (b) Comparison the percentage of the
overlap between the set of nodes belonging to the binary core and the set of nodes belonging to the weighted one on 8
snapshots of the BLN. (c) The percentage of the total weights in the set of nodes belonging to the binary core (blue dots) and
the set of nodes belonging to the weighted core (red diamonds) on 8 snapshots of the BLN. The average of the percentage of
the weights of the nodes in the binary core is 0.683, while the weighted one is 0.772. To comment better.

URGM significantly underestimates the average clustering coefficient throughout the entire BLN history; on the other hand, the
UBCM overestimates it during its first half of its history, signalling a tendency of our system to avoid closing paths among
triples of nodes.

An alternative way of testing small-world -ness is that of checking the behavior of efficiency. Global efficiency is, overall,
quite large, amounting at Eg ' 0.4. Remarkably, it is significantly underestimated by the UBCM throughout the entire history
of the BLN. This indicates that the BLN exchanges information more-efficiently-than-predicted by a null model retaining only
the information provided by degrees: this can be a consequence of the presence of hubs crossed by many paths that, overall
shorten the topological distance between (any pair of) nodes. Otherwise stated, the UBCM seems to predict larger average
distances between nodes.

For what concerns the local efficiency, the percentage of nodes for which Q(El � E�
l ) < 0.05 amounts at 75%: hence, the

UBCM significantly underestimates it for a large portion of the BLN snapshots - as evident from fig. 11, the most recent ones.
As the local efficiency El provides information on how efficient the communication between the first neighbours of a node is,
upon its removal, our results seem to indicate that the BLN is becoming more and more ‘fault tolerant’ than (or more-resilient-
than-predicted by) its randomised counterpart; interestingly, it appeared to be much more fragile during the first half of its history.
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Figure 12. Upper panels: core-periphery structure of our four usual snapshots on day 24-01-2018, 30-03-2018, 19-12-2018
and 01-03-2019 respectively, with core-nodes drawn in blue and periphery-nodes drawn in yellow. The size of the nodes are
proportional to their strength (i.e. the bigger the node, the larger its strength). Bottom panels: (a) comparison between the
number of nodes belonging to the binary core and the number of nodes belonging to the weighted core on day 24-01-2018,
25-02-2018, 30-03-2018, 13-07-2018, 19-12-2018, 30-01-2019 and 17-07-2019, whose LCC is characterized by a number of
nodes amounting at 100, 500, 1.000, 2.000, 3.000, 4.000, 5.000 and 6.447 respectively. (b) Comparison the percentage of the
overlap between the set of nodes belonging to the binary core and the set of nodes belonging to the weighted one on eight
snapshots of the BLN. (c) The percentage of the total weights in the set of nodes belonging to the binary core (blue dots) and
the set of nodes belonging to the weighted core (red diamonds) on eight snapshots of the BLN. The average of the percentage
of the weights of the nodes in the binary core is 0.683, while the weighted one is 0.772. We need to find a better graphics for
the core-periphery pictures.

5 Conclusions
The analysis of the binary BLN structure carried out in2 has revealed a system whose topology has become increasingly
characterised by star-like structures, composed by nodes attached to ‘hubs’ acting as the stars centers. The disassortativity of
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Figure 12. Upper panels: core-periphery structure, as revealed by the weighted surprise, W�, for our four usual snapshots
(core nodes are colored in orange and periphery nodes are colored in purple); the size of the nodes is proportional to their
strength (hence, the nodes constituting the core of the network are precisely those with a larger strength). Bottom panels: (a)
values of the size of the binary core scattered versus the values of the size of the weighted core; (b) evolution of (the percentage
of) the overlap between the set of nodes belonging to the binary core and the set of nodes belonging to the weighted one,
estimated via the Jaccard similarity, on a selected subset of snapshots of the BLN; evolution of the percentage of the total
network weight embodied by ‘core connections’, amounting at ' 68% in the binary case (blue dots) and at ' 77% in the
weighted one (red diamonds).

Q(El � E�
l ) < 0.05 amounts at 75%: hence, the UBCM significantly underestimates it for a large portion of the BLN snapshots

- as evident from fig. 11, the most recent one - please check the percentage of snapshots where p(ElocE  ElocO) < 0.05: it is
54/552=0.0978. As the local efficiency E(Gi) provides information about how efficient the communication between the first
neighbours of node i is, upon its removal, our results seem to indicate that the BLN is becoming more and more ‘fault tolerant’
than its randomised counterpart; interestingly, it appeared to be much more fragile during the first half of its history. In order to
better grasp the meaning of the notion of local efficiency, let us scatter the E(Gi) values versus the number of components
induced by the removal of node i. As evident upon looking at fig. 11, the lower the local efficiency of node i, the larger the
number of components N(Gi) induced by its removal - more quantitatively, the Pearson coefficient between the set {E(Gi)}N

i=1
and the set {N(Gi)}N

i=1 amounts at r = �0.30,�0.58,�0.43,�0.40 for our usual four snapshots.
The same exercise can be repeated by ranking nodes in decreasing order of weighted degree, closeness, betweenness and

eigenvector centrality and counting the number of vertices that need to be removed to disconnect the graph - i.e. ‘induce’ more
than just one component: for almost all snapshots, irrespectively from the chosen index, removing just one top node is enough
to to disconnect the graph.

Core-periphery detection. The result concerning the underestimation, by our null models, of the Gini index for the weighted
eigenvector centrality - i.e. the presence of well connected nodes which, in turn, are also well connected among them - lets us
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Figure 3.12: Upper panels: core-periphery structure, as revealed by the weighted surprise,
W, for our four usual snapshots (core nodes are colored in orange and periphery nodes are
colored in purple); the size of the nodes is proportional to their strength: hence, the nodes
constituting the core of the network are precisely those with a larger strength. Bottom
panels: (a) values of the size of the binary core scattered versus the values of the size of
the weighted core; (b) evolution of (the percentage of) the overlap between the set of nodes
belonging to the binary core and the set of nodes belonging to the weighted one, estimated
via the Jaccard similarity, on a selected subset of snapshots of the BLN; evolution of the
percentage of the total network weight embodied by ‘core connections’, amounting at ' 68%
in the binary case (blue circles) and at ' 77% in the weighted one (red diamonds).

their WBC reduces the BLN global e�ciency to the largest extent (for the vast majority of

snapshots, larger than removing nodes according to their WDC, WCC and WEC).

The same figure also shows that the nodes whose removal brings the most severe damages

to the BLN are those belonging to the core (see the next paragraph), whose size shrinks from

& 20% to ' 10% of the total number of nodes.

Core-periphery detection. The result concerning the underestimation, by our null mod-

els, of the Gini index for the weighted eigenvector centrality - i.e. the presence of well con-
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nected nodes which, in turn, are also well connected among them - lets us suppose the BLN

to be characterised by a statistically significant core-periphery structure: here, however, we

are interested in revealing the presence of a weighted core-periphery structure, i.e. a kind

of mesoscale organisation where core nodes are the ones sharing the ‘heaviest’ connections -

and not just those with ‘many’ connections.

To this aim, we adopt a recently proposed approach, based upon the surprise formalism.

In particular, we consider the evolution of the weighted bimodular surprise, W, across the

entire BLN history: it reveals that the statistical significance of the recovered core-periphery

structure increases, a result leading to the conclusion that the description of the BLN struc-

ture provided by such a model becomes more and more accurate as the network evolves. As

an example, fig. 3.12 shows the detected core-periphery structure on the snapshots depicted

in the same figure: the nodes identified as belonging to the core and to the periphery are,

respectively, colored in orange and purple. Notice also that we have drawn the node size

proportionally to the node strength: hence, larger nodes, i.e. the ones sharing the ‘heaviest’

connections, are precisely those constituting the core of the network.

First, let us check the correspondence between the nodes in the core (whose size will be

indicated as Ncore) and vertices with large weighted eigenvector centrality by ranking the

nodes in decreasing order of WEC and checking the percentage of top Ncore nodes that also

belong to the core: it amounts at 56%, 60%, 57%, 62%, for our usual four snapshots. Then,

let us compare the composition of the purely binary core - detected in [7] - with that of the

weighted core. As fig. 3.12 shows, a nice correspondence between the size of binary core and

that of the weighted one indeed exists although, from a certain moment of the BLN history

on, the binary core seems to ‘grow slower’ than the weighted one which, instead, enlarges

to reach a size of ' 600 nodes: this further confirms that the nodes with a ‘large’ strength,

revealed by surprise as the most central ones, do not necessarily coincide with those having

a ‘large’ degree.

The evolution of (the percentage of) the overlap between the set of nodes belonging to the

binary core and the set of nodes belonging to the weighted one further confirms that the two

sets do not coincide perfectly, although the Jaccard similarity steadily points out a ' 60%

of overlap: in other words, 60% of the nodes belong to both cores - likely, those hubs whose

degree and strength are large enough to justify their coreness in both senses; similarly, the

percentage of the total network weight embodied by ‘core connections’ amounts at ' 68%

in the binary case and at ' 77% in the weighted one.
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3.5 Discussion

The analysis of the binary BLN structure carried out in [7] has revealed a system whose

topology has become increasingly characterised by star-like structures, whose centers are

constituted by ‘hubs’ to which many nodes having a (much) small(er) degree, in turn, attach.

Such a structure - whose disassortativity is confirmed by scattering the ANND values versus

the degrees - could explain the more-than-expected level of unevenness characterizing the

betweenness and the eigenvector centralisation indices, suggesting them to be due to the

emergence of channel-switching nodes - apparently, an unavoidable consequence of the way

BLN is designed: on the one hand, as longer routes are more expensive, any two BLN users

will search for a short(est) path; on the other, nodes have the incentive to become as central

as possible, in order to maximize the transaction fees they may earn.

The tendency to centralisation is observable even when considering weighted quantities,

as the percentage of nodes whose connections embody the 51% of the total weight pro-

gressively reduces and the Gini coe�cient of several (weighted) centrality measures steadily

increases throughout the entire BLN history. This clearly points out the co-existence of

nodes playing deeply di↵erent ‘structural’ roles, with ‘many’ peripheral vertices co-existing

with ‘few’ core ones; if, on the one hand, this structure allows the global e�ciency to achieve

a large value (i.e. hubs facilitate the global exchange of information, being at the origin of

another structural BLN peculiarity, i.e. its small-world -ness), on the other it highlights the

tendency of the BLN architecture to become increasingly ‘less distributed’, a process having

the undesirable consequence of making it increasingly fragile towards failures and attacks.

Distinguishing between the two is crucial, in order to properly understand the BLN

robustness to ‘damages’. While resilience towards failures can be tested by looking at how

the global e�ciency ‘reacts’ to random node removal, resilience towards attacks can, instead,

be quantified by implementing targeted removals of the ‘most important’ nodes. To this aim,

we have ranked nodes in decreasing order of weighted degree, closeness, betweenness and

eigenvector centrality and removed them, sequentially: the global e�ciency drops rapidly

after few (core) nodes are deleted - in fact, for almost all snapshots, removing just one top

node (according to any of the aforementioned criteria) is enough to disconnect the graph.

Moreover, since top nodes are likely to be part of the core - whose size shrinks from & 20%

to ' 10% of the total number of nodes - our results indicate that the vertices belonging to

it are precisely those whose removal causes the major structural damages. Random failures,

instead, cause the decrease of Eg to be much less steep: taken together, the results above

seem to indicate that the BLN topology is an example of robust-yet-fragile architecture, i.e.

a structure that is robust against a random node removal but fragile against a targeted node

removal (e.g. an attack).
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Chapter 4

Non-normal interactions create socio-economic bubbles

We present a generic new mechanism for the emergence of collective exuberance among in-

teracting agents in a general class of Ising-like models that have a long history in social

sciences and economics. The mechanism relies on the recognition that socio-economic net-

works are intrinsically non-symmetric and hierarchically organized, which is represented as a

non-normal adjacency matrix. Such non-normal networks lead to transient explosive growth

in a generic domain of control parameters, in particular in the subcritical regime. Contrary

to previous models, here the coordination of opinions and actions and the associated global

macroscopic order do not require the fine-tuning close to a critical point. This is illustrated

in the context of financial markets theoretically, numerically via agent-based simulations

and empirically through the analysis of so-called meme stocks. It is shown that the size of

the bubble is directly controlled through the Kreiss constant which measures the degree of

non-normality in the network. This mapping improves conceptually and operationally on

existing methods aimed at anticipating critical phase transitions, which do not take into

consideration the ubiquitous non-normality of complex system dynamics. Our mechanism

thus provides a general alternative to the previous understanding of instabilities in a large

class of complex systems, ranging from ecological systems to social opinion dynamics and

financial markets.

Based on Didier Sornette†, Sandro Claudio Lera†, Jian-Hong Lin† and Ke Wu. ”Non-Normal

Interactions Create Socio-Economic Bubbles.” arXiv, preprint arXiv:2205.08661.

(†: equal contribution, first authors, submitted to Science Advances)

4.1 Introduction

Many complex dynamical systems are characterised by periods of relative stability and “nor-

mal” behaviors, interrupted by transient regimes during which the dynamics exhibits an

53



explosive behavior (a “bubble”) or shifts suddenly to another attractor. A large corpus of

knowledge and methods have been developed in the last two decades, which are based on

the underlying concept of tipping points, wherein a critical threshold is reached at which

the system bifurcates to a new state [70–74]. Here, we suggest that this common growing

wisdom is incomplete and present a new mechanism for the emergence of large transient

instabilities. Based on the mathematics of non-normal dynamical operators represented as

non-normal networks, we suggest that this new mechanism is much more general and likely

to be often the dominant process at work, because it does not require the fine-tuning close

to or sweeping of the system over a critical point. The robust ubiquitous ingredients are

(i) asymmetric interactions between elements or agents on the network and (ii) a degree of

hierarchy. Together, these two ingredients give rise to networks with non-normal adjacency

matrices, whose associated dynamical systems are known to induce transient bursts [75–78].

Interpreted in terms of socio-economic interactions, these transient bursts are responsible

for short-lived social contagion even well below any critical threshold. We demonstrate this

mechanism in the context of the formation of arguably the largest anomalies of financial mar-

kets, namely financial bubbles and their following crashes that lead to enormous economic

losses.

A typical ingredient of models of financial markets is the presence of two classes of

traders: fundamentalists who maximize their expected utility function and noise traders

[79–81]. Noise traders are typically assumed to influence each other according to an Ising-like

dynamics, with interaction dependencies captured by an adjacency matrix A and interaction

strength captured by a coupling constant . When the imitation strength between noise

traders is large enough, collective social behavior can occur, such as polarization of noise

traders toward buying (selling), which in turn creates bubbles (crashes) [82–85].

These bubbles and crashes are generally associated with the underlying Ising phase tran-

sition separating a disordered opinion regime for low imitation strength  from an ordered

regime where all noise traders tend to be synchronized. In all existing models of this type,

bubbles requires the imitation strength  to be close to or larger than a critical value c

associated with the underlying phase transition. In other words, in this class of models,

bubbles and crashes are the signatures of the fact that the financial market has entered a

“critical regime”, in the technical sense of the emergence of collective order in the decisions

of a large fraction of traders. There is an extensive literature on agent-based models and

generalized Ising models [86–91]. To the best of our knowledge - in all cases - the abnormal

stylized facts, such as excess volatility and transient bubbles and crashes, require the system

to be close to, at or above the critical point in the ordered polarizing regime.

In this work, we document a much more general mechanism for the nucleation and

growth of transient bubbles. It is based on the fact that social influence is typically directed
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and hierarchical [22–24]. Indeed, in our example of financial markets, the influence of a

famous investor on a retail investor is likely much larger than the other way around. The

adjacency matrix A should thus represent a hierarchy of asymmetric interactions [92, 93].

Mathematically, this is represented by non-normal adjacency matrices A [94,95]. Analyzing

Reddit discussion forums of meme stocks, we show that patterns of influence are highly non-

normal, and that the rate of reciprocity is dependent on a user hierarchy. Using a previously

validated agent-based model [96,97], we show that non-normal networks give rise to transient

bubbles even when the imitation strength is sub-critical. Intuitively, some traders are more

influential than others and information does not spread evenly but along cascading circuits.

This cascade of opinions can result in an increase of the buy orders (social ordering) before

it decays eventually. These insights are finally related to recent financial bubbles in meme

stock trading. Our work thus provides a novel angle to substantiate qualitative proposals

that financial systems are intrinsically generating crises [98, 99].

Due to the broad applicability of Ising-like interaction models [100], our model is expected

to generalize in a straight forward manner to other hierarchical socio-economic systems, and

help explain wide-spread phenomena such as social bubbles [101] and herding in opinion

dynamics [87].

4.2 Agent Based Price Simulation

Agent-based models (ABMs) have become a popular tool in interdisciplinary research over

the last decades [2,102–105], primarily due to their flexibility in accounting for heterogeneous

and non-linear interactions. Here, we implement an ABM that simulates a financial market

consisting of fundamentalists and noise traders who trade a risky and a risk-free asset [96,97].

The risky asset is a dividend paying stock. The risk-free asset pays a constant return in each

time-step and represents a bank account or risk-free government bond. Fundamentalists

are rational risk-averse investors who invest by maximizing their expected utility under a

constant relative risk aversion utility function. The noise traders invest based on social

imitation. Each trader formulates their excess demand for the next time step and the price

Pt of the risky asset is calculated as the Walras equilibrium in which supply equals demand.

Details are found in SI Appendix 1. Here, we focus our attention on the social imitation

mechanism, which is of center importance for the subsequent analysis.

The noise traders’ investment strategy is based on an Ising-like social influence model,

where they can be modeled as nodes in a network with directed edges. Each node i is

considered to be in one of the two possible states, +1 (the noise trader holds the risky asset),

and �1 (the noise trader holds the risk-free asset). The states are denoted as si = ±1,

respectively. The transition probability ⇡ that trader i flips its state si
t at time t depends on
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the opinion of its in-neighbours, according to

⇡(si

t+1 = �si

t) =
p±

2

0

@1 � 
1

kin

i

si

t

X

j

aijs
j

t

1

A (4.2.1)

where p± controls the average holding time of each asset and the social coupling strength

 determines the noise traders’ susceptibility to social imitation. The directed network of

N nodes (noise traders) is described by its adjacency matrix A = {aij}, where aij = 1 if

there exists a directed edge (influence) from node j to node i, and aij = 0 otherwise. The

in-degree of node i is the number of directed edges pointing to node i, which is given by

kin

i
=
P

N

j=1 aij .

In the Ising model, if node i switches its state from time step t to time step t + 1, i.e.

si

t+1 = �si
t, the change of the value of node i’s state is �2si

t. Given the probability of node

i to switch its state according to (4.2.1), the average rate of change of the spin starting

in the state si
t is given by �si

t = �2 si
t ⇡. We introduce the N -dimensional state vector

~s(t) =
�
s1
t , s

2
t , ..., s

N
t

�
. Together with (4.2.1), the average rate of state transition can then be

written as 4~s(t) = ~s(t + 1) �~s(t) = p±(⇤A � I)~s(t) where ⇤ is an N ⇥ N diagonal matrix

with 1
�
kin

i
on the i-th diagonal entry and I is the identity matrix. Introducing the matrix

M ⌘ p±(⇤A � I) , (4.2.2a)

allows for the simple structure

4~s(t) = M~s(t) (4.2.2b)

of a general linear stability analysis. At each time step t, the collective opinion (“magneti-

zation” in the Ising language) mt is defined as

mt =
1

N

NX

i=1

si

t 2 [�1, 1]. (4.2.3)

This system remains stable as long as the largest eigenvalue of M remains negative. As is well

known, by continuously tuning M, systems whose linear stability is controlled by (4.2.2b)

can undergo a bifurcation (or phase transition) from a stable fixed point with zero average

change of spin to a state where all spin change state to align to each other (a state described

by higher-order terms beyond the linear expansion M~s(t)). The existence of such states has

been related to the emergence of financial bubbles (crashes), diagnosed by the existence of

transient super-exponential growth (loss) [2, 85]. In the remainder of this article, we will

analyze the sub-critial regime of M, but with M being non-normal. We will show that this

non-normal structure gives rise to transient dynamics that induce bubbles and crashes much
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Figure 1: Left panel: the initial network with N0=20. Right panel: an example non-scale-free network with
N = 100, N0 = 20, m = 2 and pi!j=0.

Figure 2: Price time series of the simulation on non-scale-free network in which a new node is added to
existing node with the probability proportional to its in-degree (left panel) and out-degree (right panel).

6

Figure 4.1: (a) and (b) show the geometry of pseudo spectra. In each plot, the contours represent
the boundary of ��(M) for two values of ✏. (c) Initial, transient and asymptotic behavior of

����etM
����

for a non-normal matrix M. The graph indicates that here �(M) < 0 and hence that the asymptotic
behavior is stable. However, the asymptotic behavior is not at all predictive of the transient behavior
in case M is non-normal. Plot (d) shows the eigenvalues (black dots) and some ✏-pseudospectra
(di↵erent colors represent di↵erent values of ✏). All eigenvalues as well as the epsilon-spectral lines
are confined to the left half plane of C. Accordingly, ||st|| decays exponentially as shown in the inset
plot. By contrast, in plot (e), we show a di↵erent matrix M. While its eigenvalues are also confined
to the left half plane of C, its ✏ spectral lines are not. According to inequality (4.8.27), in the inset
plot, we see intermittent transient growth before the asymptotic decay.
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bifurcation (or phase transition) from a stable fixed point with zero average change of spin to a

state where all spin change state to align to each other (a state described by higher-order terms

beyond the linear expansion M~s(t)). The existence of such states has been related to the emergence

of financial bubbles (crashes), diagnosed by the existence of transient super-exponential growth

(loss) [2, 85]. In the remainder of this article, we will analyze the sub-critial regime of M, but with

M being non-normal. We will show that this non-normal structure gives rise to transient dynamics

that induce bubbles and crashes much like above criticality in normal symmetric networks.

4.3 A Primer on Non-Normality

One of the key properties of non-normal matrices is that their intermediate transient dynamics is

significantly di↵erent from the long-term asymptotic behavior governed by the largest eigenvalue.

Early contributions to the study of non-normal matrices have originated from hydrodynamics, where

non-normality plays a role in the emergence of turbulence [75]. Ever since, non-normal matrix theory

has helped explain phenomena such as perturbations in ecosystems [106], amplification of neural

activities [77], chemical reactions [107] and the formation of Turing patterns [78]. Following a classic

textbook [76], we briefly summarize the basic theory behind non-normal matrices (see SI Appendix

2 for details).

Let M be an (N ⇥ N)-matrix. The set of all eigenvalues of M is called the spectrum �(M).
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largest eigenvalue. Early contributions to the study of non-normal matrices have originated

from hydrodynamics, where non-normality plays a role in the emergence of turbulence [75].

Ever since, non-normal matrix theory has helped explain phenomena such as perturbations

in ecosystems [106], amplification of neural activities [77], chemical reactions [107] and the

formation of Turing patterns [78]. Following a classic textbook [76], we briefly summarize

the basic theory behind non-normal matrices (see SI Appendix 2 for details).

Let M be an (N ⇥ N)-matrix. The set of all eigenvalues of M is called the spectrum

�(M). A matrix is called normal if M
T
M = MM

T , and the spectral theorem asserts

that each normal M has a set of N pairwise orthonormal eigenvectors of M. By contrast,

if M is non-normal, M
T
M 6= MM

T , no such basis exists. Since symmetric matrices are

always normal, it is a necessary, but not a su�cient condition that matrix (4.2.2a) represents

directed interactions to be considered non-normal.

If � is an eigenvalue of M, the resolvent matrix M � �I is not invertible since there

exists an eigenvector ~v with (M � �I)~v = 0. An alternative definition of the spectrum

�(M) is thus the set of points � 2 C where the resolvent matrix does not exit. But the

question “Does (M � �I)�1 exist?” is binary and may change from “yes” to “no” by just

a tiny ✏-perturbation of �. In the presence of noise, a better question to ask is whether���
���(M � �I)�1

���
��� is large with respect to some matrix norm ||·||. This leads to the definition

of the ✏-pseudospectrum, defined as the set of points where
���
���(M � �I)�1

���
��� is large (larger

then ✏�1), or formally, �✏(M) ⌘
n

� 2 C :
���
���(M � �I)�1

���
��� > ✏�1

o
. The ✏-pseudospectrum

is the open subset of the complex plane bounded by the ✏�1 level-curve of the norm of the

resolvent. Intuitively, one can then assume that the ✏-pseudospectrum is closely confined

around the eigenvalues of M. For normal matrices, this assumption is correct. However,

for non-normal matrices it is not, and
���
���(M � �I)�1

���
��� may be large even when � is far away

from the spectrum (Figure 4.1 (a) and (b)).

Consider the proportional growth equation d~s/ dt = M~s with explicit solution ~s(t) =

etM~s(0). It is well-known that the asymptotic behavior for t ! 1 is governed by the largest

real-part of all eigenvalues of M. For the short-term behavior, t # 0, it can be shown that
d
dt

����etM
����

t=0
= !(M) ⌘ sup �

�
1
2

�
M + M

T
��

where !(M) is called the numerical abscissa

of M (Figure 4.1(c)). Our main interest are, however, intermediate values of t. To describe

such transient behavior, one has to consider ✏-spectral abscissa of a matrix M defined by

↵✏(M) = sup Re (�✏(M)) , i.e. the supremum of the real part of the ✏-pseudo-spectrum.

An important special case is the spectral abscissa ↵(M) ⌘ ↵✏=0(M), defined as the largest

real-part of all eigenvalues of M.

We now consider the case where ↵(M) < 0, i.e. where the long-term behavior is asymptot-

ically stable (Figure 4.1(c)), but ↵✏(M) > 0 for some ✏ > 0. In that case, the pseudospectra
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Figure 4.2: (a-c) Three examples of directed networks with di↵erent levels of non-normality,
di↵erent number of top nodes, and di↵erent rates of reciprocity ✓. The colors indicate the
hierarchical (in general non-integer) level ` of the nodes. A value of ✓ = 0 means no edge
can be reciprocated, whereas a value of ✓ = 1 means every edge is reciprocated (since level-
dependence is ignored). Network (c) is then normal, since it is symmetric. (d) Empirical
analysis of the Blackberry subreddit network. The rate of reciprocity is not constant, but a
function of the hierarchical level `. The higher the level, the higher the rate of reciprocity,
up to some level of saturation. The red line shows the sigmoid function that best fits the
data.

of M protrude significantly into the right-half plane of C, such that the real-parts of the

pseudo-spectrum remain positive (Figure 4.1 (e)). For any such non-normal matrix M the

Kreiss constant

K(M) ⌘ sup
✏>0

↵✏(M)

✏
(4.3.1a)

is well-defined, and it can be shown that, for intermediate times (Figure 4.1(c)), there is

transient growth according to

sup
t>0

����etM
���� > K(M). (4.3.1b)

Given an interaction matrix M as in (4.2.2b), we can calculate the Kreiss constant (4.8.26)

to obtain lower bounds for the transient growth of net magnetization. An example of such

transient growth is shown in the inset Figure 4.1(e). As we shall see, these transients are

responsible for socio-economic bubbles. By contrast, if the ✏-spectrum is confined to the

negative half-plane, no transient growth is observed (Figure 4.1(d)).

4.4 Parametrization of Non-Normal Matrices with

Level-Dependent Reciprocal Connections

A system such as eqs. (4.8.21) can be interpreted as a dynamical process on a complex

network with non-normal M. Such non-normal networks have been observed in a wide

variety of biological and socio-economic networks [94,95], and their role in the transmission
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of noise has been studied [108]. Recall that asymmetry of M is a necessary, but not a

su�cient condition for non-normality. For instance, consider a simple cyclical, directed

network of three nodes {A, B, C} where A ! B, B ! C and C ! A. An adjacency matrix

with such cyclical symmetry still gives rise to a normal adjacency matrix. The condition

MM
T 6= M

T
M is instead satisfied when the network is directed and hierarchical, which

are both intrinsic properties of socio-economic systems [109,110]. Recently, new methods to

generate non-normal networks have been proposed by taking into consideration asymmetrical

reciprocity [94] and hierarchy [95] that are typical of non-normal systems. Drawing from these

insights, we implement here an algorithm that allows us to control the rate of non-normality

along with the number of top nodes, that can be interpreted as thought leaders. In contrast

to previous approaches, our rate of reciprocity explicitly depends on the hierarchical level

which is a realistic addition as reflected in our empirical analysis below.

The non-normal network with a total of N nodes is initialized with N0 so-called top nodes.

These top nodes account for the largely independent N0 backbones of the communication

network common to typical hierarchically, non-normal networks [95]. The remaining N �N0

nodes are added to the existing network sequentially, one node at a time. Each newly added

node receives m in-edges, i.e. channels of communication through which it can be influenced.

The source of each such edge is selected with probability proportional to the existing nodes’

out-degree. As is well-known, this type of preferential attachment creates a skewed degree

distribution whereby the network is dominated by a few central nodes [111,112]. Once the m

source nodes are determined, each of the m newly formed directed edges may be reciprocated

with some independent probability ✓. The case ✓ = 1 recovers a symmetric, i.e. normal,

network, whereas levels ✓ ⌧ 1 give rise to strongly non-normal systems [94] . Examples of

such networks are shown in Figure 4.2 (a-c).

Based on our empirical analysis and to reflect the fact that nodes that are higher up in the

hierarchy are harder to be influenced, we assume further that this probability ✓ is modulated

by the hierarchical level ` of each node. The lower the node in the hierarchy (the larger `), the

more likely the node is reciprocated. Loosely speaking, the hierarchical level ` of any node i

is defined as the shortest path from a top-node to node i. More precisely, the level ` is defined

as the trophic hierarchical level [113, 114]. We have analyzed the Reddit discussion forum

for the Blackberry meme stock (see Section 4.6 below). An edge is drawn from user i to user

j is j replies to a comment of user i. In Figure 4.2(d), we show that the rate of reciprocity

is not constant, but an increasing function of `. In other words, the more popular a user’s

comments, the less likely that user is to reciprocate (comment on) any given edge. For social

communication networks, this observation is natural and rationalized as the approximately

constant, finite capacity of any given individual to respond to comments. From hereon, we

thus model the rate of reciprocity as a sigmoid-function ✓

1+e�a(`�b) . Parameter ✓ now has the
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interpretation of the asymptotic level of reciprocity at high levels `. A value of ✓ = 1 implies

that most, albeit not all edges are reciprocated. Details are found in SI Appendix 3.

Our algorithm to generate non-normal adjacency matrix A has six parameters: N , N0,

m, ✓, a and b. The four parameters m, N, a and b play a subordinate role in the qualitative

interpretation of our results. For the remainder of this paper, we thus fix N = 1000, m = 2,

a = 2.552, and b = 3.668 unless mentioned otherwise. The parameters ✓ and N0, on the

other hand, have qualitatively important implications on the behavior of our model. The

parameter ✓ characterizes the hierarchical nature of the system. The smaller ✓, the more

directed the network, and the less the top nodes may be influenced. The parameter N0

denotes the number of top nodes. If ✓ is small, then N0 may be interpreted as the number of

(largely) independent, leading opinions in the system. The price dynamics from eqs. (4.8.21)

is not directly governed by A, but rather by the related matrix M. The two parameters 

and p± allow us to control the characteristics of M for given A. In the remainder of this

article, we fix p± = 0.05 and we tune . This leaves us with a three-parameter model, N0, ✓

and . Importantly for what follows, the Kreiss constant K is strictly decreasing in ✓ and

increasing in , irrespective of N0, as long as N0 ⌧ N . Throughout this article, we constrain

the parameter such that ↵0(M) < 0, i.e. the asymptotic system dynamics is stable.

4.5 Transient Bubbles Induced by Non-Normal Interactions

Building on the three previous sections, we now run agent-based simulations with non-normal

adjacency matrix M. While it has been well-established that Ising-like agent-based models

with non-zero net opinion (non-zero magnetization) are responsible for the formation of

bubbles [82,85,115], we investigate here the regime where the net magnetization (net opinion)

fluctuates around zero (sub-critical phase). In the following analysis, we therefore set the

coupling strength  to a sub-critical value. Figure 4.3(a,b) confirms that mt fluctuates around

zero approximately symmetrically, as expected from the fact that the imitation strength 

has been chosen so that the underlying Ising model is subcritical. Furthermore, for fixed

parameters (N0, ), we compare two types of social networks: ✓ = 0 and ✓ = 1. The former

corresponds to a case of small reciprocity, and hence large non-normality of A and hence

M. The later corresponds to an almost symmetric - and hence normal - matrix A, which

coincides with a much less non-normal matrix M (see also SI Appendix 4). Comparing

Figure 4.3 (a) and (b), we see that the strongly non-normal case (low ✓) corresponds to

much more pronounced long-lived deviations of the magnetization from its zero average, as

is expected from transient dynamics (Figure 4.1(e)).

In the right most column of Figure 4.3, we additionally show the associated price-time

series Pt obtained as the Walras’ equilibrium between fundamentalists and noise traders
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Figure 4.3: (a) Magnetization (4.2.3) for ABM simulation with non-normal interaction ma-
trix M for di↵erent parameter constellations. The net magnetization of the N0 opinion
leaders is shown in grey lines in the background. (b) Same as in (a), but for a symmetrized
interaction matrix 1

2

�
M + M

T
�
. The parameter  is chosen below a sub-critical value,

hence the net magnetization is, on average, 0. In contrast to (a), the transients are less pro-
nounced. (c) Price trajectory generated by dynamics with magnetization from (a) and (b),
respectively. Only the non-normal matrices induce bubbles. (d) Bubble size as a function
of Kreiss constant for di↵erent parameter constellations. (e) Bubble steepness as a function
of numerical abscissa for di↵erent parameter constellations. (f) Bubble size as a function of
fraction of nodes receptive to antagonistic opinion.

(SI Appendix 1). It is striking to observe the drastic di↵erences in the price dynamics

between highly non-reciprocal (non-normal) interactions compared to reciprocated (normal)

ones. In the former, very strong price peaks are preceded by periods of strong price growth,

following by fast large asymmetric drawdowns. This qualifies the existence of large amplitude

bubbles as a clear diagnostic of this type of non-normal networks. In contrast, for normal

networks (and weakly non-normal M matrices), the price dynamics appears compatible with

a standard geometric Brownian motion at least at the qualitative level. As we now show, both

of these phenomena are explained as a function of the transients induced by non-normality.
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A hallmark of a financial bubble is the existence of unsustainable super-exponential price

growth [85, 116, 117]. Within our ABM, it can be shown [96] that the price grows, to first

approximation, exponentially as a function of the net magnetization, Pt = Cecmt , where

the scaling coe�cient c > 0 is a function of the model parameters. We recall that mt is

defined as the average state across all trader states ~s(t). The states ~s(t) are themselves

governed by equation (4.2.2b) involving the non-normal interaction matrix M, such that

~s(t) ⇠ eMt~s(0). In a globally stable regime all eigenvalues of M associated with the stable

equilibrium ~s(t) = 0 are negative (SI Appendix 4). The standard expectation is thus that mt

remains small and thus Pt should not exhibit abnormal fluctuations. But this is forgetting

the transients induced by the non-normality of M. Indeed, as discussed in Section 4.3 (cf.

in particular Figure 4.1(c,e)), the asymptotically stable fixed-point ~s = 0 is punctuated by

repelling dynamics over finite time scales. Furthermore, inequality (4.8.27) provides us with

a lower bound of the size of these transients, which are mainly a function of the Kreiss

constant K(M). Combining Pt = Cecmt with transient approximately exponential growth

of mt, we thus predict the occurrence of finite lived bubbles qualified as transient super-

exponential growth of price. The above considerations lead us to hypothesize that the size

of bubbles in the price realizations of our agent-based model are directly proportional to the

Kreiss constant K(M). Moreover, the dependence of the size of these bubbles on parameters

(N0, ✓, ) should only appears through the dependence of bubble sizes on K(M). To test this

hypothesis, we measure the size of the bubbles as the di↵erence in price between the beginning

and the end of a regime of super-exponential growth (see SI Appendix 5 for details). For

di↵erent parameter combinations of (N0, ✓, ), we generate 100 price simulations according to

the following procedure. We first generate a matrix M (see Section 4.4), and we subsequently

simulate a time-series with 25, 000 time-steps, corresponding to 100 years (considering 250

trading days per calendar year). On each time series, we measure the size of all bubbles.

These sizes are subsequently averaged across all 100 simulations, with the standard deviation

serving as error bars. Figure 4.3(d) demonstrates the existence of a remarkable collapse of all

curves when the average bubble sizes are plotted as a function of the Kreiss constant K(M).

A large Kreiss constant is associated with large bubble sizes, even for di↵erent network non-

normality and social coupling . The key insight is that di↵erent network parametrization

indeed all collapse onto this scaling between Kreiss constant and bubble size.

The theory of transients does not only make a prediction about the size of the transients,

but also about their steepness. As visualized in Figure 4.1(c), we expect the steepness of

the transients, and therefore of the magnetization and then price, to be increasing in the

numerical abscissa !(M). Figure 4.3(e) confirms that a large numerical abscissa !(M) is

indeed associated with large steepness of bubbles.

Finally, we test the e↵ect of an influential contrary opinion on the size of the bubble.
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Figure 4.4: (top) Co-evolution of Reddit network Kreiss constant and Blackberry meme stock
price. (bottom) ABM price time-series resulting from the simulated (net-zero) magnetization
mt, with distinct peak around the same time as the real price trajectory.

We first simulate a price dynamics with a single top node, N0 = 1, as well as N = 1000,

m = 2, N0 = 1 and ✓ = 0. Upon formation of a bubble (continuous price increase for 50

time-steps), we interfere into the system by holding a contrary opinion (opposite state of

N0) for �t time-steps. That contrary node is connected to a fraction f of all nodes with

the exception of the top node. Figure 4.3(f) shows the subsequent decrease of the bubble.

The larger f , the larger the e↵ect. This result is encouraging, suggesting that an external

controller can counter-balance sub-critical bubbles by rendering the system less non-normal.

On the other hand, this approach requires one to have large scale influence. A more scalable

approach, that we leave for future research, would be a minimal influence of a few key nodes

in order to achieve overall noise-cancellation, as has been recently shown in communication

networks [108], and which could improve on the more standard market intervention involving

large balance sheet build-up of major financial agents such as a central bank [118].

4.6 Non-Normal Communication in Meme Stock Trading

So far, our assessment of bubbles has relied on agent-based simulations, where we can control

the experimental conditions. The di�culty with empirical data is that, in general, one can-

not observe the matrix A that governs trader interactions. On social trading platforms, such

as eToro, interactions can be measured precisely [112], but the trading volume relative to the

entire market is small, such that influence on the price is, however, negligible. This is not

the case for so-called meme stocks which have enjoyed recent popularity. Driven primarily
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by retail traders, meme stock trading activity has been shown to be largely influenced by

Reddit discussion forums [119–121]. Reddit is organized into subreddits on which specific

topics are being discussed. Users interact by submitting new posts and adding comments

to existing posts or comments. Here, we analyze the posts and comments related to four

popular meme stocks (Blackberry, Nokia, GameStop and AMC) under the famous subreddit

r/wallstreetbets (also known as WallStreetBets or WSB) that has become notable for its

colorful and profane jargon, aggressive trading strategies, and for playing a major role in

the GameStop short squeeze in early 2021. For each of the four stock, at time t, we draw a

directed edge from user J to user K if K has commented or replied a stock-related text by

user J in the time interval [t � �t, t]. In other words, K has been influenced by J ’s action

in the past �t days. With this procedure, for each meme stock, we extract a dynamically

evolving influence network A(t), of which we can measure the Kreiss constant K(t). The

evolution of the Kreiss constant, along with the trading price, is shown in the top plot of

Figure 4.4 for the Blackberry stock (see SI Appendix 6 for similar plots for the other three

meme stocks). The two most prominent price peaks around January 2021 and June 2021

coincide with the two largest peaks of the Kreiss constant trajectory. This gives force to our

proposition that increased non-normality (quantified by large values of the Kreiss constant)

favours the occurrence of transient explosive price behavior (bubbles) associated with the

transient growth of perturbations before their relaxation. In other words, we interpret the

presence of financial bubbles in these meme stocks as reflecting at least partially the asym-

metric hierarchical structure of the reddit discussion forum that induced a polarized bullish

opinion among retail traders, which then in-turn pushed the price up. And indeed, the

mostly mentioned words in Jan 2021 among the reddit submissions and comments related to

BlackBerry are rocket, bb, gme, shares, and buy. In particular, among the 58,793 mentions

of rocket and 12,132 mentions of buy in 2021, 69% of rocket and 43% of buy were in January.

More generally, as is shown in SI Appendix 6, we do find a positive correlation between the

Kreiss constant and price bubbles across meme stocks. This suggests that the non-normal

structure of the Reddit meme stock discussion forum is an important driver of the observed

price instabilities.

A strong asymmetric hierarchical structure of the reddit discussion forum quantified by a

large value of the Kreiss constant provides a powerful catalysis for the emergence of transient

price bubbles. But of course, as for general dynamics following non-normal operators, not all

perturbations go through a non-monotonous transient amplification. The realized trajectory

of the transient very much depends on the projection of the perturbations onto the pseudo-

eigenvectors [76,78,122]. Not all large Kreiss constant values should thus lead to a bubble, as

the market dynamics is more complex and cannot just be reduced to one source of influence.

The mapping between large Kreiss constant and bubbles becomes rigorous when considered
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in terms of ensembles of price trajectories. To show this, we insert the empirical Blackberry

discussion forum influence network A(t) as input to our ABM. We simulate the resulting

price time-series 100 times and keep track of the average price as well as its average standard

deviation (see SI Appendix 6 for details). In the bottom plot of Figure 4.4, one can observe

indeed that price spikes coincide - in their ensemble average - with peaks of the Kreiss

constant, supporting our hypothesis that the non-normality in the Reddit discussion forum

contributes to explain the observed price bubbles.

These simulations exemplify the possibility to diagnose regimes of financial instabili-

ties by measuring the evolution of the Kreiss constant of the underlying network of social

interactions between traders. Periods in which the Kreiss constant is large should be inter-

preted as prone to bubble regimes and large price volatility. The mapping of the detection

of (financial) instabilities to the measurement of the Kreiss constant improved conceptually

and operationally on the previous approaches attempting to anticipate critical phase transi-

tions [89, 112, 123–125], which do not incorporate the ubiquitous non-normality of complex

system dynamics.

4.7 Conclusions

Until now, financial and socio-economic bubbles have been thought of as being associated

with special regimes where self-reinforcing interactions strengthen transiently towards a criti-

cal point and lead to some form of collective exuberance. This has been formalized by models

in physics, ecology and mathematics assuming the presence of an underlying phase transition,

criticality, bifurcation or catastrophe. The conceptual breakthrough of the present work is to

demonstrate formally, via agent-based model simulations and empirically, that such transient

phases of exuberance are generic in real social systems ubiquitously characterized by non-

normal properties of asymmetric hierarchical interactions. An important corollary is that

financial bubbles should be expected as intrinsic, rather than abnormal monsters appearing

in very special conditions. Due to the broad applicability of models involving hierarchical,

Ising-like interactions, our framework is expected to explain crowd-forming patterns and col-

lective structures in general hierarchical complex networks, ranging from from biological to

artificial intelligent computer systems.

4.8 Appendix

4.8.1 Agent Based Price Simulation

In this section, we explain in detail the agent-based price simulations that we employ. Fol-

lowing refs. [96, 97], it consists of fundamentalists (F) and noise traders (N ) who trade a

66



risky and a risk-free asset. The risky asset is a dividend paying stock. The risk-free asset

pays a constant return in each time-step and represents a bank account or risk-free gov-

ernment bond. Fundamentalists are rational risk-averse investors who invest by maximizing

their expected utility under a constant relative risk aversion (CRRA) utility function in

each time-step. The noise traders invest based on social imitation. Compared to previous

models where all noise traders interacted with each other, we consider here noise traders

that are positioned on a non-normal network. The noise traders are only influenced by their

in-neighbours.

4.8.1.1 Assets

The investment universe of the traders consists of two assets, which are equivalent to the set-

up in ref. [97]. The risk-free asset pays a constant return rf in each time-step. It represents a

bank account or bond with perfectly elastic supply. The risky asset represents an index fund

or stock. It pays a dividend dt in each time-step and its price Pt is defined endogenously

by demand and supply. The dividend process follows a discrete stochastic growth process

defined as

dt = dt�1

⇣
1 + rd

t

⌘
. (4.8.1)

The growth rate rd
t = rd + �dut is a Gaussian process with mean value rd > 0, variance �2

d
,

and stochastic increments ut

iid⇠ N (0, 1). The excess return rexcess,t of the risky asset with

price Pt describes the compensation for holding the risky asset instead of the risk-free asset

between t � 1 and t. It is the sum of the capital return rt = Pt
Pt�1

� 1 and the return from

the dividend dt minus the risk-free rate rf :

rexcess,t = rt +
dt�1 · (1 + rd

t )

Pt�1
� rf . (4.8.2)

4.8.1.2 Fundamentalists

Fundamentalists are risk-averse investors, endowed with a constant relative risk aversion

(CRRA) utility function

U(W ) =

8
<

:
log(W ) for � = 1

W
1��

1��
for � 6= 1.

(4.8.3)

They allocate their wealth among the two assets in order to maximise their expected utility

in each time-step.

Each fundamentalist i decides on a fraction xF i

t of his wealth WF i

t to invest into the risky
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asset based on the maximization problem

max
x
Fi
t

Et�1

h
U(WF i

t )
i
. (4.8.4)

In that sense, the fundamentalists are myopic, as they only consider expected returns one

period ahead. The resulting optimal risky fraction xF
t is identical for each fundamentalist,

because they are endowed with the same utility function and have access to the same infor-

mation. Consequently, the investment of the individual fundamentalists can be considered

at the aggregate level as a representative trader investing the risky fraction xF
t of his wealth

WF
t =

P
i
WF i

t .

The fundamentalist’s wealth at time t can be expressed iteratively as a function of the

invested risky fraction, the return on the risky asset, the dividend payment, and the risk-free

rate

WF
t = WF

t�1·
�
xF

t · rexcess,t + 1 + rf

�
= WF

t�1·
✓

xF
t ·
✓

1 + rt +
dt

Pt�1

◆
+ (1 � xF

t ) · (1 + rf )

◆
.

(4.8.5)

As derived by [96], the resulting risky fraction xF
t solving the expected utility maximisation,

given in (4.8.4) for the CRRA utility in (4.8.3) is in first order approximation and assuming

dt ⌧ Pt

xF
t�1 =

1

�

Et�1[rexcess,t]

V art�1[rexcess,t]
=

Ert + dt�1

Pt�1
(1 + rd) � rf

�(�2 +
d
2
t�1·�2

r

P
2
t�1

)
⇡

Ert + dt�1

Pt�1
(1 + rd) � rf

��2
(4.8.6)

where Ert is the expected return of the risky asset and �2 is the expected variance. Using

the wealth evolution given in (4.8.5) and denoting the number of shares invested in the risky

asset by nF
t := x

F
t W

F
t

Pt
, the excess demand of the fundamentalist, which is the net money

value of the risky asset that the investor wants to buy or sell, is

�Dt�1!t :=nF
t Pt � nF

t�1Pt

=WF
t�1

✓
xF

t


1 + rf + xF

t�1

✓
rt +

dt

Pt�1
� rf

◆�
� xF

t�1
Pt

Pt�1

◆
. (4.8.7)

4.8.1.3 Noise Traders

The noise traders’ investment strategy is based on social influence. The traders are nodes in

a non-normal network and connected through directed edges. Each noise trader is only influ-

enced by its in-neighbours. The set-up is a modification of the noise trader class presented

in kaizoji2015super,westphal2020market. The noise traders are described by an Ising-like
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structure, in which each individual noise trader is either invested in the risky asset or in

the risk-free asset. Each of them switches his position to the other asset with a transition

probability that depends on the opinion of their in-neighbours. 1

The opinion of noise traders is implemented as an Ising-like model, in which each node

i is considered to be in one of the two possible states +1 (the noise trader holds the risky

asset), and �1 (the noise trader holds the risk-free asset) denoted as si = ±1. At t = 0, one

half of randomly selected nodes are initialized in state +1, the other half are in state �1.

When t > 0, the probability of node i to switch its state is given by

⇡(si

t+1 = �si

t) =
p±

2
(1 � 

1

kin

i

si

t

X

j

aijs
j

t
) (4.8.8)

where p± controls the average holding time of each asset and the social coupling strength

 determines the noise traders’ susceptibility to social imitation. At each time step t, the

collective opinion (“magnetization” in the Ising language) mt is defined as

mt =
1

N

NX

i=1

si

t 2 [�1, 1]. (4.8.9)

Aggregating the independent investment decisions over all noise traders amounts to an

equivalent representative noise trader who decides on the fraction xN
t of his wealth to invest

in the risky asset, which is given by

xN
t =

1

2
+

1

2N

NX

i=1

si

t =
1

2
+

1

2
mt 2 [0, 1]. (4.8.10)

The noise traders’ aggregate wealth evolves equivalently to (4.8.5) as a function of the

wealth at the previous time-step, the invested risky fraction, the return on the risky asset,

the dividend payment, and the risk-free rate

WN
t = WN

t�1·
�
xN

t · rexcess,t + 1 + rf

�
= WN

t�1·
✓

xN
t ·
✓

1 + rt +
dt

Pt�1

◆
+ (1 � xN

t ) · (1 + rf )

◆
.

(4.8.11)

The resulting aggregated excess demand of the noise traders for the risky asset is described

by

�DN
t�1!t = WN

t�1

✓
xN

t


xN

t�1

✓
rt +

dt

Pt�1
� rf

◆
+ rf + 1

�
� xN

t�1
Pt

Pt�1

◆
. (4.8.12)

1Following ref. [96], we do not consider a link between noise traders and the representative fundamental
trader.
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4.8.1.4 Equilibrium Market Price

Following Walras’ theory of general equilibrium [126], the market clearing condition requires

an equilibrium between total supply and total demand at each time step. Each trader

formulates their excess demand for the next time step and the price is calculated as the

equilibrium in which supply equals demand. This is formulated as:

�DF
t�1!t + �DN

t�1!t = 0, (4.8.13)

where �DF
t�1!t

and �DN
t�1!t

are aggregated excess demands from the fundamentalists and

the noise traders respectively for the risky asset. Using the fundamentalists excess demand

(4.8.7) with the risky fraction (4.8.6) and the noise traders excess demand (4.8.12), the

market clearing condition (4.8.13) can be reformulated as a function of the price Pt. This

results in the following equation determining the price

atP
2
t + btPt + ct = 0, (4.8.14)

where at, bt and ct are given by:

at =
1

Pt�1
[WN

t�1x
N
t�1(x

N
t � 1) + WF

t�1x
F
t�1(

Ert � rf

��2
� 1)], (4.8.15)

bt =
WF

t�1

��2
{xF

t�1
dt(1 + rd)

Pt�1
+(Ert�rf )[xF

t�1(
dt

Pt�1
�rf )+rf ]}+WN

t�1x
N
t [xN

t�1(
dt

Pt�1
�1�rf )+rf ],

(4.8.16)

ct = WF
t�1

dt(1 + rd)

��2
[xF

t�1(
dt

Pt�1
� rf ) + rf ]. (4.8.17)

Then, at time step t, the unique positive solution to (4.8.14) yields the trade price.

4.8.1.5 State Switching Dynamics

The N noise traders are organized on a network with adjacency matrix A = aij , where

aij = 1 if there exists a directed edge from node j to node i, and aij = 0 otherwise. The

in-degree of node i is the number of directed edges pointing to node i, which is given by

kin

i =
NX

j=1

aij . (4.8.18)
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The transition probability ⇡ that trader i flips its state si
t at time t depends on the opinion

of their in-neighbours. In the Ising model, if node i switches its state from time step t to

time step t + 1, i.e. si

t+1 = �si
t, the change of the value of node i’s state is �2si

t. Given

the probability (4.8.8) of node i to switch its state, the average rate of change of the spin

starting in the state si
t is given by

4si

t = �2si

t⇡(si

t+1 = �si

t) = �p±

0

@si

t � 
1

kin

i

X

j

aijs
j

t

1

A . (4.8.19)

We introduce the N -dimensional state vector ~s(t) = (s1
t , s

2
t , ..., s

N
t ). We then rewrite (4.8.19)

in vectorial form as

4~s(t) = ~s(t + 1) � ~s(t) = p±(⇤A � I)~s(t) (4.8.20)

where ⇤ is an N ⇥ N diagonal matrix with 1
�
kin

i
on the i-th diagonal entry and I is the

identity matrix. Introducing the matrix

M ⌘ p±(⇤A � I) , (4.8.21a)

equation (4.8.20) exhibits the simple structure

4~s(t) = M~s(t) (4.8.21b)

of a general linear stability analysis. This system remains stable as long as the largest eigen-

value of M remains negative. As is well known, by continuously tuning M, systems whose

linear stability is controlled by (4.8.21b) can undergo a bifurcation (or phase transition) from

a stable fixed point with zero average change of spin to a state where all spin change state

to align to each other (a state described by higher-order terms beyond the linear expansion

M~s(t)). The existence of such states has been related to the emergence of financial bubbles

(crashes), diagnosed by the existence of transient super-exponential growth (loss). In the

remainder of this article, we will analyze the sub-critial regime of M, but with M being

non-normal. We will show that this non-normal structure gives rise to transient dynamics

that induce bubbles and crashes much like above criticality in normal networks.

4.8.2 Parameter values

The parameters of the agent-based models are summarized in Table 4.1.
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Parameter name Explanation Value
Assets

rf Risk free interest rate 0.00004
d0 Initial dividend 0.00016
rd Average growth rate of the dividend 0.00016
�d Standard deviation of the dividend growth rate 0.000016
P0 Initial price of the risky 1
Noise Traders

xN
0 Initial fraction of the risky asset held by the noise traders 0.5

WN
0 Initial wealth of the noise traders 109

Fundamentalists

xF
0 Initial fraction of the risky asset held by the noise traders 0.3

WF
0 Initial wealth of the fundamentalists 109

Ert Expected return of the risky asset 0.00016
�r Expected standard deviation of the risky asset price 0.02

Table 4.1: Parameter values for the agent-based-model of a financial market with traders on
a network.

4.8.3 Theory of Non-Normal Matrices

In this section, we follow a classic textbook [76] to summarize the most important, basic

concepts about non-normal matrices.

4.8.3.1 Definition of Non-Normal Matrices

Consider a linear operator M. From hereon, we assume that M is a finite-dimensional,

real N ⇥ N matrix. 2 We call a vector v an eigenvector of M when Mv = �v for some

corresponding eigenvalue � 2 C. The set of all eigenvalues of M is called the spectrum �(M)

of M.

By definition, a matrix is called normal if M
T
M = MM

T . The spectral theorem asserts

that M is normal if and only if M is diagonalizable by a unitary matrix, if and only if, there

exists a set of N eigenvectors of M that form an orthonormal basis for CN . By contrast,

if M is non-normal, i.e. M
T
M 6= MM

T , then no such basis exist. As we shall see below,

it is exactly this non-orthogonality that is responsible for the transient dynamics surmised

to induce bubbles. Note that symmetric matrices (M = M
T ) are always normal. Therefore,

all undirected Ising-like interactions are normal by definition. In other words, in order for

2Since we consider only real matrices, M 2 RN⇥N , it holds that M⇤ = MT where M⇤ is the Hermitian
conjugate of M. Therefore, we will always write MT and assume M is real even if we could write M⇤ and
assume M is complex for more generality. See ref. [76] for a generalization s to complex matrices or to infinite
dimensional vector spaces.
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M in (4.8.21b) to be non-normal, it is a necessary, but not a su�cient condition that the

matrix M represents directed interactions.

4.8.3.2 Pseudospectra

Assume � is an eigenvalue of the (invertible) matrix M with eigenvector v and consider the

resolvent matrix M � �I. The matrix M � �I does not have full rank, since there exists a

vector v which is mapped to zero, (M � �I)v = 0. Because (M � �I) does not have full

rank, it is not invertible and (M � �I)�1 does not exist. Therefore, one can also define the

spectrum �(M) as the set of points � 2 C where the resolvent matrix (M � �I)�1 does not

exit.

The answer to the question “does (M � �I)�1 exist” is binary and may change from

“yes” to “no” by just a tiny ✏-perturbation of �. In the presence of noise, a better question

to ask is therefore: “is
���
���(M � �I)�1

���
��� large? Here ||·|| is some matrix norm. This leads to

the definition of the ✏-pseudospectrum, defined as the set of points where
���
���(M � �I)�1

���
��� is

large (larger then ✏�1). In mathematical terms,

�✏(M) ⌘
n

� 2 C :
���
���(M � �I)�1

���
��� > ✏�1

o
. (4.8.22)

The ✏-pseudospectrum is the open subset of the complex plane bounded by the ✏�1 level-curve

of the norm of the resolvent. Intuitively, one can then assume that the ✏-pseudospectrum

is closely confined around the eigenvalues of M. For normal matrices, this assumption is

correct. However, for non-normal matrices it is not, and
���
���(M � �I)�1

���
��� may be large even

when � is far away from the spectrum. The concept of the ✏-spectrum provides an appealing

geometric interpretation of non-normality. One can get a good start in predicting their

behavior if, in additional to the calculation of eigenvalues, one plots a few contour lines

of the ✏-pseudospectrum. And as we shall see next, pseudo spectra are useful to describe

transient growth phenomena.

Before we move the next section, we need to define one more quantity: The ✏-spectral

abscissa of a matrix M is defined as

↵✏(M) = sup Re (�✏(M)) , (4.8.23)

i.e. ↵✏(M) is the supremum of the real part of the ✏-pseudo-spectrum. Here, we have to use

the supremum rather than the maximum since (4.8.22) is in general an open set. However,

the spectrum �(M) is a closed set, given by the set of eigenvalues. Therefore, an important

special case is the spectral abscissa ↵(M) = ↵0(M), defined as the largest real-part of all

eigenvalues of M.
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We are interested in cases in which the transient behavior of this system di↵ers from

the behavior at large times, for reasons of non-normality. If eigenvalues fail to capture the

transients, can pseudospectra do better? The answer is yes: Though pseudospectra rarely

give an exact answer, they detect and quantify transients that eigenvalues miss.

4.8.3.3 Magnitude of Transient Excursions

We assume a matrix M 2 RN⇥N and are concerned with the growth and decay of solutions

~s(t) to the time-dependent equation d~s/ dt = M~s with explicit solution ~s(t) = etM~s(0).

Specifically, we want to know something about the size of
����etM

����. Figure 1(c) in the main

paper shows three types of regimes. The asymptotic behavior for t ! 1 is well-known,

limt!1 t�1 log
����etM

���� = ↵(M) which is to say that the long-term behavior is governed by

the largest real-part of all eigenvalues of M. The typical stability criterion is therefore

↵(M) < 0.

The short-term behavior as t # 0 is less well-known. For that limit, it can be shown that

d

dt

����etM
����
����
t=0

= !(M) ⌘ sup �

✓
1

2

�
M + M

T
�◆

(4.8.24)

where !(M) is called the numerical abscissa of M.

Our main interest is not t # 0 or t ! 1 but intermediate values of t. A useful lower

bound for practical purposes is the inequality

sup
t>0

����etM
���� > ↵✏(M)

✏
8✏ > 0. (4.8.25)

Particularly interesting are cases where �(M) < 0, i.e. where the long-term behavior is

asymptotically stable, but ↵✏(M) > ✏ for some ✏ > 0. In that case, the pseudospectra of

M protrude significantly into the right-half plane of C (i.e. the positive real-part plane).

Despite the asymptotic behavior being stable, it follows from (4.8.25) that there must be

transient growth. A visualization of this concept is shown in Figure 1(d,e) of the main paper.

A useful constant in this respect is the Kreiss constant which is defined by

K(M) ⌘ sup
✏>0

↵✏(M)

✏
(4.8.26)

such that (4.8.25) implies

sup
t>0

����etM
���� > K(M). (4.8.27)

Inequality (4.8.27) is central for our application. Given an interaction matrix M as in

(4.8.21b), we can calculate the Kreiss constant (4.8.26) to obtain lower bounds for the tran-
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sient growth of net magnetization. Similarly, albeit somewhat less relevant for our prediction

of bubbles is an upper bound. It can be shown that
����etM

���� 6 eNK(M) 8t where e is Euler’s

number and N the matrix dimensionality.

4.8.3.4 Geometric Interpretation of Transients

The above inequalities provide a quantitative description of the transient growth. But there

is also a geometric interpretation. A non-normal matrix M cannot be diagonalized, i.e. one

cannot find an orthogonal set of basis vectors. It may then happen that some eigenvectors

have small angles between them. In light of the spectral theorem mentioned above, transients

occur because the transformation that takes a vector ~s to the eigenbasis of M is not unitary

if the eigenvectors of M are not orthogonal, and thus does not preserve the norm of ~s [78].

We refer to FIG. 1 in ref. [122] and FIG. 3 in ref. [78] for illuminating visualizations.

4.8.3.5 Henrici’s Departure From Normality

Denote by A the adjacency matrix that represents the network resulting from the above al-

gorithm. It has been shown [94] that the stronger the inequalities (quantified by taking small

✓ values), the stronger the non-normality of the network, as measured by (the normalized

version of) Henrici’s departure from normality

dF (A) =
s

||A||2
F

�
X

�2�(A)

|�|2
,

||A||2
F

. (4.8.28)

Henrici’s index is based on the observation that the Frobenius norm of a normal matrix is

given by ||A||2
F

= tr
�
A

T
A
�

=
P

�2�(A) |�|2. The measure (4.8.28) then attains its minimum

at zero once the matrix is normal and increases the more the matrix deviates from normality.

For example, the values of the adjacency matrices A depicted in Figure 2 (a,b,c) in the main

paper are equal to 1, 0.9007 and 0, respectively.

4.8.3.6 Hierarchies, Trophic Coherence and their Relationship with Non-Normality

Here, we elaborate more on the relationship between the hierarchical structure of a network

and its non-normality. One can tune the “level of hierarchy” of a network by picking up

the trophic coherence measure q previously developed in the context of predator-prey webs

[113, 114]. Trophic coherence q has been called a measure of how similar a graph is to a

hierarchy, and it is given by

q =

s
1

L

X

ij

aij(`i � `j)2 � 1 (4.8.29)
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where L is the total number of links and `i the trophic level of node i. For nodes with zero

in-degree, the trophic level is 1. For nodes with an in-degree larger than 0, the trophic level

is obtained by solving the following linear system of equations,

`i = 1 +
1

kin

i

X

j

aij`j , (4.8.30)

where aij is a coe�cient in the adjacency matrix and kin

i
is the in-degree of node i. The

case q = 0 is a complete military hierarchy, where no subordinate has any influence on any

superior. The case of large q is the opposite, where everybody can influence everybody else,

at least indirectly. Directed graphs that have high trophic coherence are tree like, and can

be drawn with all edges pointing in the same direction. Directed graphs with low trophic

coherence do not have edges pointing in one clear direction, and appear more random. In

ref. [114] a network generating mechanism is introduced that generates a network with given

trophic coherence value q and fixed mean degree hki. The ensemble over di↵erent realizations

of such networks with fixed q the coherence ensemble.

Trophic coherence and non-normality are related. Highly trophic networks are non nor-

mal, as is formalized in the following theorem [109]: The expected deviation from normality

dF (M) as defined in (4.8.28), for directed graphs (without loops) drawn from the coherence

ensemble tend to 1 with increasing trophic coherence, that is limq#0 dF = 1. Furthermore,

dF >

s

1 � 1

hki (4.8.31)

where hki is the mean degree.

4.8.4 Growing Non-Normal, Scale-Free Networks

Here, we explain how to grow a non-normal network that consists of a total of N nodes. It

is initialized at time t = N0 with N0 so-called top nodes. We denote the set of top nodes

by N0 ⌘ {1, . . . , N0}. At initialization, none of these N0 nodes has any in-ward or out-ward

directed edge. The remaining N � N0 nodes are added to the existing network sequentially,

one node at a time. The first node that is not a top node, i.e. node N0 + 1, is added at

time t = N0 + 1. The next node is added at time t = N0 + 2, and so forth, until the last

node is added to the network at time t = N . We denote by kin/out
i

the in/out-degree of node

i 2 {1, . . . , N} (time-dependence omitted for notational brevity). The generic in-degree of

any given node i > N0 is fixed to m > 0. Node i > N0 is added at time t = N0 + i as follows:
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1. Add node i to the network with m in-ward directed edges. More precisely, we have

kin
i = min{m, N0 + i � 1} (4.8.32)

to account for the case where there are less than m nodes in the network at time t = i.

2. Select each of the kin
i

source-nodes with probability proportional to the out-degree of

the existing nodes. More precisely, we denote a directed edge from j to i by ej!i.

Then, the probability ⇢j!i that node j is source node of edge ej!i is given by

⇢j!i =
kout

j
+ 1

P
i�1
`=1 kout

`
+ 1

(4.8.33)

where there ‘+1’-term serves as regularization, so that even disconnected nodes can

serve as source with non-zero probability.

3. We assign to node i its (hierarchical) level ` = `(i). In the case where no edge may

be reciprocated, ` has the intuitive interpretation of the path length (+1) from the

top node to node i. More formally, it is given by (4.8.30), which is a function of the

network as a whole and hence changes over time. In each iteration step, we thus have

to recalibrate ` for each node in the system by solving (4.8.30).

4. Any of the new edges ej!i may be reciprocated from i back to j with probability

⇢i!j . To obtain a non-normal network, this reciprocation could happen with fixed

probability ✓ ⌧ 1, as implemented in ref. [94]. However, our empirical analysis (cf.

Figure 2(d) in the main paper) suggests that in social communication networks ✓ is

not constant. Instead, there is a level-dependence, such that higher levels are morel

likely to reciprocate. In other words, ⇢j!i is increasing in `(j), up to some level of

saturation ✓. We parametrize this observation with a sigmoid function

⇢i!j =
✓

1 + e�a(`(j)�b)
� ✓

1 + e�a(1�b)
| {z }

⌘�

. (4.8.34)

In the remainder of this article, we fix ✓ = 0.2110, a = 2.552 and b = 3.668 as de-

termined empirically on meme-stock reddit data in Section 4.8.7 below. The o↵set

� ⇡ 0.0002 has been added so that nodes in the high-test level of the hierarchy, ` = 1

are never reciprocated. This o↵set is merely for convenience, so that we can keep the

number of top nodes (‘opinion leaders’) fixed. For large values of `, we converge to the

constant rate of reciprocity ✓ � � ⇡ ✓ as in [94].
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4.8.5 Parametric Dependence of Non-Normality

Our algorithm to generate non-normal networks has six parameters: N, N0, m, ✓, a and b.

The four parameters m, N, a and b play a subordinate role in the qualitative interpretation of

our results. We fix them to N = 1000, m = 2, a = 2.552, b = 3.668 unless specified otherwise.

The parameters ✓ and N0, on the other hand, have qualitatively important implications on

the behavior of our model. The parameter ✓ characterizes the hierarchical nature of the

system. The smaller ✓, the more directed the network. The parameter N0 denotes the

number of top nodes. Here, we analyze in more detail how these parameters e↵ect matrix

non-normality.

4.8.5.1 Characteristics of the Social-Influence Matrix M

The price dynamics is not directly governed by A, but rather by the related matrix M defined

by expression (4.8.21). The two parameters  and p± allow us to control the characteristics

of M for given A. In the remainder of this article, we fix p± = 0.05 and focus on parameter

. 3.

Figure 4.5 presents some properties of A and M as a function of backward link probability

✓ and imitation strength . For all parameter combinations, the largest real part ↵(M) of

the eigenvalues of M remains negative, ensuring that the dynamics around the �s = 0

fixed-point is stable 4.

As anticipated, the matrix A becomes less and less non-normal as ✓ increases (middle,

left plot). For A to become fully normal (dF (A) = 1, K = 0), we would need to make

sure that every edge is reciprocated. This is achieved by removing the level-dependence

(4.8.34), which is straight forward to implement (see also ref. [94]). However, A becoming

(approximately) normal does not imply that M becomes (approximately) normal (middle

plot). Recall from (4.8.21a) that M / ⇤A where ⇤ is a diagonal matrix with 1/kin
i

on the

i-th diagonal entry. The symmetry, and hence normality, of A does not imply the symmetry

of M. To see this, assume A is symmetric. It then holds that (A⇤)T = ⇤
T
A

T = ⇤A.

In general, a diagonal matrix ⇤ does not commute with A, i.e. ⇤A 6=,A⇤. Therefore, in

general, (A⇤)T 6= A⇤ and a symmetric A does not imply a symmetric M. However, as can

be seen in the middle plot of Figure 4.5, as A becomes less non-normal, so does M, which

manifests in dF (M) decaying to low values as ✓ ! 1. The larger the rate of reciprocity ✓,

the lower the non-normality of M.

3The value of p± has been calibrated such that the annualized volatility is on par with typical values for
public equity. We have checked that changing this parameter does not qualitatively e↵ect our results.

4Theoretically, this follows from the fact that ⇤A is a Markov transition matrix (the sum across each row
is equal to 1). A well known property of such transition matrices is that the largest absolute value of all its
eigenvalues are less or equal to 1. It follows that ⇤A� I has negative eigenvalues so long as  < 1, as is the
case in this paper.
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Figure 4.5: Properties of A and M for di↵erent parameters. Left panels: Properties of the
adjacency matrix A, characterizing the network of interactions. Middle and right panels:
Properties of the interaction matrix M derived from A via equation (4.8.21a). Top left
panel: ↵(A), the largest real part of the eigenvalues of A. Middle left panel: Henrici’s
departure from normality dF (A) as a function of backward link probability ✓. Top middle
and right panels: ↵(M), the largest real part of the eigenvalues of M. Note the negative
values, indicating that the dynamics around the �s = 0 fixed-point is stable. Middle panel:
As the rate of reciprocation increases, M becomes less non-normal. Middle right panel: The
larger the coupling , the less normal the matrix M. Bottom panels: The behavior of the
Kreiss constant as a function of ✓ and . Bottom right inset panel: Monotonic relationship
between the level of non-normality, dF and the Kreiss constant K. Error bars are obtained
as standard errors across 20 di↵erent realizations of the matrix A.

Since we have established that ↵(M) < 0, the Kreiss constant (4.8.26) is well-defined.

Hence, we may examine the structural dependence of the Kreiss constant as a function of the

model parameters N0, p and . Figure 4.5 (bottom panels) shows the Kreiss constant K(M)

as a function of ✓ and . Generally, K is a decreasing function of the level of reciprocity ✓.
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Figure 4.6: The evolution of the price Pt with  = 0.98 and  = 0.90. The interaction
network is non- normal, generated by our attachment algorithm with N = 1000, m = 2,
N0 = 1 and ✓ = 0. Several price-peaks are detected, but only one of those (indicated by
the red line) in each of the two plots corresponds to a bubble with super-exponential growth
(↵ > 1).

This is to be expected and in line with the behavior of dF as ✓ increases. The less non-normal

the matrix, the smaller K is.

4.8.6 Financial Bubbles

4.8.6.1 Measurement of Financial Bubbles

In this section, we explain in more detail how the size of a bubble is measured. We apply

the method used in ref. [97] to identify the bubbles in the price time series. The first step

it to identify peaks and valley in the price path. A peak at time scale �t in the price time

series occurs at time step ti if

Pti � Ptj 8tj 2 [ti � �t, ti + �t] , (4.8.35)

where Pt is the price at time step t. This peak detection is an a posteriori measure, which

is much simpler than the the notoriously di�cult task of real-time price peak prediction.

Once the peaks are determined, a valley is defined as the time at which the price is

minimal between two consecutive peaks. Potential candidates for bubbles are then the

examined as the price-time series between any valley and its consecutive peak. For a given

candidate, denote by tv the time of a valley and by tp the time of the subsequent peak.

Following [96], we fit the price time series Pt

Pt = Ptv exp
⇥
� xN

v

�
↵t�tv � 1

�⇤
(4.8.36)

where t runs from tv up to tp and xN
v denotes the risky fraction at time tv. The parameters

↵ and � are determined with a least-squares method. A value of ↵ > 1 indicates super-

exponential growth, and hence a bubble.

For values where ↵ > 1, we define the height of the bubble as log(Ptp) � log(Ptv) and its

steepness as
log(Ptp )�log(Ptv )

tp�tv
.
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Figure 4.7: (a) Left y-axes: evolution Kreiss-constant 4.8.26 of meme-stock discussions on reddit.
Right y-axes: Meme stock prices. (b) Correlation between bubble size and Kreiss constant.

peaks. This is what we have done in Figure 4.7(b) below to obtain more data-points. In real price

data, there is a lot more noise than in the simulation, thereby making it di�cult to always clearly

distinguish between the ↵ > 1 and ↵ < 1 regime. However, when enforcing the ↵ > 1 constraint,

the same trends are observed, albeit with much less data.

4.8.6.2 Scaling Laws

In Figure 4.8 we show the dependence of bubble size and bubbles steepness as a function of our model

parameters, along with the subsequent collapse when considered a function of K and !, respectively.

4.8.6.3 Parameter Sensitivity

In Figure 4.9 we show that the scaling laws holds for a wide variety of parameter constellations.
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Figure 4.7: (a) Left y-axes: evolution Kreiss-constant 4.8.26 of meme-stock discussions on
reddit. Right y-axes: Meme stock prices. (b) Correlation between bubble size and Kreiss
constant.

Given the nature of our price simulations in units of trading days, we select �t = 1 year,

such that the minimal distance between any two peaks is one year. Therefore, a bubble can

develop over the time-scale of months. Figure 4.6 shows two examples of such fits.

Although the hall-mark characteristic of an unsustainable bubble is super-exponential

growth [96], we can also relax the ↵ > 1 constraint and consider general price movements

between subsequent peaks. This is what we have done in Figure 4.7(b) below to obtain more

data-points. In real price data, there is a lot more noise than in the simulation, thereby

making it di�cult to always clearly distinguish between the ↵ > 1 and ↵ < 1 regime.

However, when enforcing the ↵ > 1 constraint, the same trends are observed, albeit with

much less data.
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Figure 4.8: Dependence of bubble size and bubble steepness as a function of di↵erent model
parameters, and subsequent collapse when considered a function of K and !, respectively.

4.8.6.2 Scaling Laws

In Figure 4.8 we show the dependence of bubble size and bubble steepness as a function of

our model parameters, along with the subsequent collapse when considered a function of K
and !, respectively.

4.8.6.3 Parameter Sensitivity

In Figure 4.9 we show that the scaling laws holds for a wide variety of parameter constella-

tions.

4.8.7 Empirical Analysis of Meme Stocks

4.8.7.1 Meme Stocks and Reddit Data

A meme stock is a stock that gains popularity among retail investors through social media.

The popularity of meme stocks is generally based on internet memes shared among traders,

on platforms such as Reddit [119–121].
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Figure 4.9: Top panel: average bubble size as a function of K(M) for di↵erent combination
of (N, m, p±). Bottom panel: average bubble steepness as a function of !(M) for di↵erent
combination of (N, m, p±). Each data point is obtained by averaging over 100 simulations
each lasting Ttotal = 25, 000 time-steps.

BB NOK GME AMC
keyword searches bb, blackberry nok, nokia gme, gamestop amc
number of submissions 11,076 6,858 36,304 20,510
number of comments and replies 222,733 67,476 1,064,624 337,933

Table 4.2: Overview of Reddit Meme stock discussion topics.

Reddit is an American social news aggregation, web content rating, and discussion web-

site. Registered members submit content to the site such as links, text posts, images, and

videos, which are then voted up or down by other members. Posts are organized by subject

into user-created boards called “communities” or “subreddits”, which cover topics such as

news, politics, religion, science, movies, video games, music, books, sports etc. Under each

subreddit, registered members can post their submissions, which are like topics they want

to discuss with others, and others can comment on the submissions. A submission is at the

highest level, and can contain thousands of comments. Each comment can contain replies.

In our paper, we collected data of all submissions, comments and replies related to four

popular meme stocks from Oct 1st, 2020 to Feb 25th, 2022. The data is extracted from the

famous subreddit r/wallstreetbets (also known as WallStreetBets or WSB) that has become

notable for its colorful and profane jargon, aggressive trading strategies, and for playing a
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major role in the GameStop short squeeze in early 2021 [119]. The four meme stocks include

BlackBerry Limited (BB), Nokia Oyj (NOK), GameStop (GME) and AMC Entertainment

Holdings Inc (AMC). Apart from GameStop, many other heavily shorted securities saw a

huge increase of their price volatilities in early 2021, and were considered to be driven by

retail investors on social platforms [127–130]. We have limited our attention to the above

mentioned four meme stocks since they had been most actively discussed on reddit.

We used the open-source python package PRAW5 and Pushshift6 to collect data from

the subreddit r/wallstreetbets. The searching key words are the name or symbol of the

four stocks. Within the subreddit r/wallstreetbets, we collect all submissions whose context

include one of the keywords, and collect all comments and replies under this submission.

Table 4.2 summarizes the keywords and the number of submissions, comments and replies.

Based on this crawled data, we construct a dynamic network A(t) of users for each stock.

For each of the four stocks, at time t, we draw a directed edge from user i to user j if user

j has commented a submission by user i or user j has replied to a comment/repliy by user

i in the time interval [t � �t, t]. In other words, j has been influenced by i’a action in the

past �t days. With this procedure, for each meme stock, we extract a dynamically evolving

influence network A(t), of which we can measure the Kreiss constant K and other related

quantities. Similarly, we can measure the number of bubbles and their size for the associated

daily stock price. The 1-minute price data of these four stocks for the time from Oct 1st,

2020 to Feb 25th, 2022 is obtained from Refinitiv Eikon.

In Figure 4.10, we show the monthly evolution of word frequency of five frequently

mentioned words within the meme-stock discussions on Reddit. In Jan-2021, the mostly

frequently mentioned word is rocket in all four meme stocks. Rocket is a symbol to express

the expectation of price rocketing at Reddit. Thus we can see that this word appears mainly

in January and June when there were two huge price bubbles.

4.8.7.2 Network Properties of Reddit Discussion Forums

In Section 4.8.4 we have discussed how to grow non-normal networks with preferential-

attachment and level-dependent rates of reciprocity. Here, we provide empirical evidence for

these assumptions by analyzing the Blackberry stock from Oct 1st, 2020 to Jul 31st, 2021.

We start by analyzing basic network properties for the network across all time. Figure

4.11(a) confirms the heavy-tailed degree-distribution of both in- and out- degree as is ubiqui-

tous in socio-economic networks [131]. In Figure 4.11(b), we see that the hierarchical level `

spans multiple orders of magnitude. Here, we have calculated the level ` of each node based

on its in-degree via (4.8.30).

5available at https://praw.readthedocs.io/en/stable/
6available at https://github.com/pushshift/api
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Figure 4.10: The number of words mentioned per month within the meme-stock discussions
on Reddit for stock AMC (upper-left), BB (upper-right), GME (lower-left) and NOK (lower-
right). Word frequency of five words (rocket in blue line, buy in orange line, bought in green
line, moon in red line, and sell in purple line) are plotted, and the total number of mentions
in 2021 is displayed in the legend.

To confirm the presence of preferential attachment, we measure for each user the total

number of previously received comments, as well as the additional number of received com-

ments in each subsequent week. We assign the total number of received comments into bins

and calculate the average number of received replies in the following week. Figure 4.11(c)

shows the average trend on a double-logarithmic scale, together with a linear fit (grey dashed

lined) obtained via least-squares regression. The slope of that least-squares fit is equal to

0.82, which is short of a slope equal to one expected from pure preferential attachment.

Instead, there seems to be a sub-linear preferential attachment, which has been well-studied

both theoretically and empirically [132]. However, for simplicity and because our results
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Figure 4.11: Analysis of Blackberry Reddit meme stock discussion forum. (a) Survival
function of in- and out-degrees. (b) Survival function of hierarchical levels. (c) Number
of previously received comments vs. number of future comments. The grey dashed line
indicates a linear fit with slope 0.82.
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Figure 4.12: Same as Figure 4 of the main paper, but for multiple realizations of the net
magnetization m(t).

are not expected to change qualitatively, we grow our simulated networks based on pure

preferential attachment via (4.8.33).

Next, we group the nodes into 9 bins, according to their level `. The bin boundaries

are as follows:
⇥
0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 10.5, 102, 103, 105

⇤
. For each such bin, we calculate

the average rate of at which users respond to reddit posts simply as the normalized count

of replies per user, averaged across all users. The result is reported in Figure 2(d) of the

main paper and shows a sigmoid-shape as in (4.8.34). With least-squares optimization, we

determine the parameters a, b and ✓ as 2.552, 3.668 and 0.2110, respectively.

4.8.7.3 ABM Simulation with Reddit Network

To paint a more causal picture, we use the Blackberry discussion network A(t) as input to

our agent-based model (see also Section 5 in the main paper). Rather than simulating once,
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we simulate 20 times due to the inherent stochasticity in the spin flip (4.8.8). Figure 4.12

shows the price evolution of each realizations. We notice two very distinct transients around

each of the two distinct bubbles in January 2021 and June 2021, respectively. However, the

simulated price is not necessarily increasing, but also decreasing, i.e. we observe both positive

and negative bubbles (“crashes”). This is a direct consequence of the inversion symmetry

in (4.8.8). The negative transients could be made positive by means of an external, positive

news source (symmetry breaking in the Ising jargon), and justifies our selection of a positive

realization in the main paper.
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Chapter 5

Rank the spreading influence of nodes using dynamic Markov

process

Ranking the spreading influence of nodes is of great importance in practice and research.

The key to ranking a node’s spreading ability is to evaluate the fraction of susceptible nodes

been infected by the target node during the outbreak, i.e., the outbreak size. In this paper,

we present a dynamic Markov process (DMP) method by integrating the Markov chain and

the spreading process to evaluate the outbreak size of the initial spreader. Following the idea

of the Markov process, this method solves the problem of nonlinear coupling by adjusting the

state transition matrix and evaluating the probability of the susceptible node being infected

by its infected neighbours. We have employed the susceptible-infected-recovered (SIR) and

susceptible-infected-susceptible (SIS) models to test this method on real-world static and

temporal networks. Our results indicate that the DMP method could evaluate the nodes’

outbreak sizes more accurately than previous methods for both single and multi-spreaders.

Besides, it can also be employed to rank the influence of nodes accurately during the spread-

ing process.

Based on Jian-Hong Lin, Zhao Yang, Jian-Guo Liu, Bo-Lun Chen, and Claudio J. Tes-

sone, ”Rank the spreading influence of nodes using dynamic Markov process.” 2022.

(submitted to Journal of The Royal Society Interface)

5.1 Introduction

Complex networks are widely used to represent interactions between people, technology, and

various entities. Among all the studies within the area of network theory, understanding the

dynamics of spreading processes is of particular interest. Although the spreading dynamics

on networks are not a new phenomenon, studies in this field lead to better understandings

of many important social and natural processes [133], such as the spreading of infectious
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diseases [134], the propagation of computer virus [135], the cascading process [136], tra�c

congestion [137], the centralization in Bitcoin system [7, 8], and so on. One important ap-

proach in studying the spreading dynamics is to estimate and rank nodes’ spreading abilities.

Through this approach, one might first locate influential nodes of complex networks and later

on control the outbreak of epidemics [27, 28], target the opinion leaders in social networks

[25], quantify the scientific impact [29, 30], and accelerate the adoption of innovation [26],

etc.

Classical centrality measures have been developed to identify the spreading influence of

nodes. The degree centrality [138] is probably the most straightforward one. Nodes with

larger degree centrality are considered to have better spreading abilities than the other nodes

within a graph. The betweenness centrality [139], which calculates the number of shortest

paths cross through a certain node, represents the controllability of information flow over the

networks. The closeness centrality [140] measures the inverse of the mean geodesic distance

from a certain node to all other nodes. The more central a node is, the closer it is to all the

other nodes. The eigenvector centrality [36] assigns relative scores to all nodes in the network

based on the concepts that connections to influential nodes, i.e., high-scoring nodes, would

be more important than that to low-scoring nodes. The k-shell decomposition method [141]

assigns nodes to di↵erent shells and considers those located within the core of the network

are the most e�cient spreaders. Furthermore, a lot of methods for identifying the node

spreading influence have been developed from di↵erent perspectives [142–148]

The classical centrality measures are based on the network topological structure solely.

However, recent studies have shown that the nodes’ spreading influence is determined not

only by the network structure but also the parameters of the dynamical processes. There-

fore, various structural based centralities cannot properly identify nodes’ influences since

the rankings remain the same under di↵erent dynamical parameters. S̆ikić et al. [31] argued

that for a given susceptible-infected-recovered (SIR) model [149], the rank of nodes’ influence

largely depends on the spreading rate and recovering rate. Klemn et al. [32] suggested that

the eigenvector centrality could only identify the nodes’ spreading influence accurately when

the spreading rate is close to the inverse of the largest eigenvalue of the network [149]. Con-

sidering the susceptible-infected-susceptible (SIS) model [150], Ide et al. [151] have proposed

a numerical framework that uses the importance of the centrality type to determine how the

vulnerable nodes change along the di↵usion phases. Besides, Liu et al. [33] have described

the infectious probabilities of nodes by a matrix di↵erential function and have developed the

dynamics-sensitive (DS) centrality to predict the outbreak size for ranking nodes’ spreading

influence.

The centrality measures proposed in [31–33] are all linear methods based on discrete

Markov process. However, it is important to note that the spreading process in SIR and
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SIS model is usually non-linear couple process. Therefore, without taking the non-linear

couple process into consideration, all the nodes’ influence would be over estimated. For

instance, if a susceptible node has n
0

infected nodes, the probability of this node to be

infected is 1 � (1 � �)n
0

instead of n
0
� approximated by the linear methods, where � is

the spreading rate in the SIR or SIS model. In this paper, we present a dynamic Markov

process (DMP) to evaluate the outbreak size of the nodes at given time steps. This method

can be directly applied in ranking nodes’ spreading influence. It overcomes the problem

of nonlinear coupling by calculating the susceptible node to be infected by its neighbours

sequentially and adjusting the state transition matrix during the spreading process. Our

simulation results on susceptible-infected-recovered (SIR) model show that the DMP method

has comparable accuracy to the linear methods [31–33] for both single spreader and multi-

spreaders [152]. Furthermore, we have employed the susceptible-infected-recovered (SIR)

and susceptible-infected-susceptible (SIS) models to test the DMP method on real static and

dynamic networks [149, 150, 153, 154]. The simulation results show that the DMP method

can rank nodes’ spreading influence accurately.

5.2 Methods

5.2.1 Centrality Measures.

A network G = (V, E) with n = |V | nodes and e = |E| links could be described by an

adjacency matrix A = {aij} where aij = 1 if node i is connected to node j, and aij = 0

otherwise. For directed network, if only node i is pointing to node j, then aij = 1 and

aji = 0.

The degree of node i is defined as the number of its neighbors, namely

ki =
nX

j=1

aij , (5.2.1)

where aij is the element of matrix A.

The main idea of eigenvector centrality is that a node’s importance is not only determined

by itself, but also by its neighbours’ importance [36]. Accordingly, eigenvector centrality of

node i, i.e. vi, is defined as

vi =
1

�

nX

j=1

aijvj , (5.2.2)

where � is a constant. Obviously, Eq. 5.2.2 can be written in a compact form as

Av = �v, (5.2.3)
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where v = (v1, v2, · · · , vn)T . That is to say, v is the eigenvector of the adjacency matrix

A and � is the corresponding eigenvalue. According to Perron-Frobenius Theorem [155],

the elements of the leading eigenvector are positive. Since the influences of nodes should

be positive, v must be the leading eigenvector corresponding to the largest eigenvalue of A,

therefore we have v = q1.

5.2.2 Dynamic Markov Process Method

In order to calculate the probabilities of nodes to be infected, one needs to solve the problem

of nonlinear couple during the spreading process. Consider the union of a finite number of

event A
0
1, . . . , A

0
n0 , the probability of the event [n

0
i=1A

0
i
could be written as [156]:

Pr[n
0

i=1A
0
i = 1�

n
0
Y

i=1

(1�Pr(A
0
i)) = Pr(A

0
1)+(1�Pr(A

0
1))Pr(A

0
2)+· · ·+

n
0�1Y

i=1

(1�Pr(A
0
i))Pr(A

0

n
0 ).

(5.2.4)

The Eq. 5.2.4 means that the probability of the event [n
0

i=1A
0
i

equals to the probability

of the event A
0
1 plus the probability of the event A

0
2 while event A

0
1 doesn’t happen plus the

probability of the event A
0
3 while both event A

0
1 and A

0
2 do not happen, so on and so forth.

Based on the above-described probability theorem, for a susceptible node with n
0

infected

neighbors, the probability of being infected during the spreading process can be represented

in the non-linear format as 1 � (1 � �)n
0
, or as � + (1 � �)� + (1 � �)2� + · · · + (1 � �)n

0�1�,

where the first term � represents the probability that this node has been infected by its first

infected neighbor, the second term (1 � �)� represents the probability that it has not been

infected by its first infected neighbor but has been infected by its second infected neighbor,

and the third one (1 � �)2� represents the probability that the node has not been infected

by its first infected neighbor nor its second infected neighbor but has been infected by its

third infected neighbor, etc.

By combining the above-described process with the standard SIR model where an infected

node would infect its susceptible neighbors with a spreading rate � and recover immediately,

we propose a dynamics Markov process method as follows: Define x(t) (t � 0) as an n ⇥ 1

vector whose components are approximated as the probabilities of nodes to be infected at

time step t. Especially, if node i is the initially infected node, then xi(0) = 1 and xj 6=i(0) = 0.

In the dynamics Markov process, the initial Markov state transition matrix M = A
T , where

A
T is the transpose of A. If mij = 0, node j could not be infected by node i anymore.

Otherwise mij is the probability of node i to be susceptible. When t = 0, if node i is the

initial infected node, it could not be susceptible anymore. Therefore we have mij = 0, where

j = 1, 2, . . . n. When t � 1, we denote C(t) as an n⇥n matrix, where cji(t) is the probability

of node j to be infected by node i at time step t.
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Figure 5.1: (Color online) An example network with 3 nodes, where node 1 and node 3 is
the initial infected nodes. The probability of node 2 x2(1) to be infected at time step 1 is
2� � �2 generated by the DMP method.

The updating rules are described as below. We first calculate the influence of node 1 to

all its susceptible neighbors. If x1(t � 1) > 0, node 1 would infect its susceptible neighbors

with a probability � at time step t. The probability of node j to be infected by node 1 is

then

cj1(t) = �mj1x1(t � 1), (5.2.5)

where j = 1, 2, . . . n. After that, for all the nodes j, if mjl > 0, where l = 1, 2, . . . n, we

calculate the probability of node j to be susceptible, i.e. the probability of node j that has

not been infected by node 1. It equals to mjl � cj1(t). After that, for all the nodes j, we

update the element of the state transition matrix as follows:

mjl := mjl � cj1(t), (5.2.6)

where l = 1, 2, . . . n. Once the state transition matrix has been updated, we continue to

calculate the impact of node 2, 3, 4, ...n sequentially in the same way. In the end, the proba-

bilities of node i been infected at time step t is

xi(t) =
nX

j=1

cij , (5.2.7)

The spreading influence of the target node within a certain time T ⇤ is
P

T
⇤

t=1

P
n

j=1 xj(t).

During the spreading process, the DMP method solves the problem of nonlinear coupling by

calculating the probability of the node to be infected by its infected neighbours sequentially

via adjusting the state transition matrix M. As shown in Fig. 5.1, node 1 and node 3 are the

initial spreaders. According to the DMP method, we firstly calculate the probability of node

2 to be infected by node 1, which is �. Then we update the state transition matrix M. After

that, we calculate the probability of node 2 to be infected by node 3, which is �(1��). And

in the end, we get the probability of node 2 to be infected by its both infected neighbours,

which equals to � + �(1 � �) = 1 � (1 � �)2. We note that this is the exact probability of
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the node 2 to be infected.

The DMP method could be extended to the SIS model with � = 1, where � is the

probability of the infected nodes enter the susceptible state (see the details in the Data

Analysis section). In SIS model, the di↵erence is that at each time step t, the transition

matrix M could be updated by mij = aji(1 � xi(t � 1)). For the temporal network, the

network could be described by A(t) at each time step t. Thus, at time t the transition

matrix M could be updated by mij = aji(t)(1 �
P

t�1
r=0 xi(r)).

5.3 Data Analysis

5.3.1 Data description

We have tested the performance of DMP method in estimating the nodes’ spreading influence

according to the SIR and SIS models on four real networks. The first network is “C. elegans”,

a directed network representing the neural network of Caenorhabditis elegans [63]. The

data is available at https://snap.stanford.edu/data/C-elegans-frontal.html. The

second network is a scientific collaboration network, “Erdös”, where nodes are scientists

and edges represent the co-authorships. The data can be freely downloaded from the web

site http://wwwp.oakland.edu/enp/thedata/. The third one is an email communication

network of University Rovira i Virgili (URV) of Spain, involving faculty members, researchers,

technicians, managers, administrators, and graduate students [157]. The data can be found

at http://konect.cc/networks/arenas-email/. The last network is a directed network

based on the ODLIS dictionary network. This a hypertext reference resource for library and

information science professionals, university students and faculty, and users of all types of

libraries. The node represents web site of Odlis and the edge represents the network are

the connection between two web sites. This data is available at http://networkdata.ics.

uci.edu/netdata/html/ODLIS.html. Basic statistical properties of these four networks are

presented in Table 5.1.

Besides, we have also analyzed four real-world dynamic networks in order to evalu-

ate the e↵ectiveness of the DMP method. The first temporal network is Contacts in a

workplace (CW) network. This data includes contacts between individuals measured in

an o�ce building in France, from June 24 to July 3, 2013 [158]. The second one is the

Primary school (PS) temporal network, where nodes are the children and teachers, and

edges represent the contacts between them [159, 160]. The CW and PS network could be

downloaded at http://www.sociopatterns.org/datasets/. The email-Eu-core-temporal-

Dept1 (EM01) and email-Eu-core-temporal-Dept2 (EM02) [161] temporal network are gen-

erated by using email data from a large European research institution, where edges present

email between members of the research institution. These two datasets are available at
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http://snap.stanford.edu/data/index.html. In Table 5.2, we provide the detailed sta-

tistical properties of the above temporal networks.

Network n e hki 1/�1

C. elegans 297 2345 7.896 0.109
Erdös 454 1313 5.784 0.079
Email 1133 5451 9.622 0.048
Odlis 2900 18241 6.290 0.077

Table 5.1: Basic statistical features of C. elegans, Erdös, Email, and Odlis networks, including
the number of nodes n, the number of the edges e, the average degree hki or hkouti (for
directed networks) and the reciprocal of the largest eigenvalue 1/�1.

Network n e
CW 92 1492
PS 242 21295
EM01 309 11106
EM02 162 7758

Table 5.2: Basic statistical features of CW, PS, EM01, and EM02 temporal networks, in-
cluding the number of nodes n and the number of the edges e respectively.

5.3.2 The SIR and SIS Model

We apply the susceptible-infected-recovered (SIR) model [149] and the susceptible-infected-

susceptible (SIS) [150] model to simulate the spreading process and record the nodes’ spread-

ing influence at each time step. In the SIR model, there are three kinds of individuals: (i)

susceptible individuals that could be infected, (ii) infected individuals which are able to in-

fect their susceptible neighbors, and (iii) recovered individuals that will never be infected

again. At each time step, every infected node will contact its neighbors and each of its

susceptible neighbors will be infected with a probability �. Then the infected nodes enter

the recovered state with a probability µ. While in SIS model, there are only two kinds of

individuals, i.e. the susceptible individuals and the infected ones. The infected nodes would

infect its susceptible neighbors with the probability � and enter the susceptible state with

a probability �. For single-node spreading, only one seed node is infected at the beginning,

and all the other nodes are susceptible. While for multiple-nodes spreading, a set of nodes

are infected and the rests are initially susceptible. At each time step t, the number of nodes

that switch from the susceptible state to the infected state represents the node’s spreading
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Figure 5.2: The performance of the DMP method and the DS centrality for evaluating the
outbreak generated by both single spreader and multiple spreaders on regular network of
N = 1000 and hki = 20 during the SIR spreading process with spreading rate � = 0.1.
The symmetric bars indicate the fluctuations around the average value computed on 105

realizations of the stochastic process.

influence. For simplicity, we set µ = 1 in SIR model and � = 1 in SIS model. In this paper,

all the analysis are based on the discrete-time dynamics.

5.3.3 Kendall’s Tau

In this paper, we use the Kendall’s tau to measure the correlation between the nodes’ spread-

ing influence and centrality measures (e.g., degree, eigenvector centrality and DMP method).

For each node i, we denote yi as its spreading influence and zi as the target centrality mea-

sure, the accuracy of the target centrality in evaluating nodes’ spreading influences can be

quantified by the Kendall’s Tau [162], as

⌧ =
2p

(n(n � 1)/2 � n1)(n(n � 1)/2 � n2)

X

i<j

sgn[(yi � yj)(zi � zj)], (5.3.1)

where n1 =
P

i
vi(vi � 1)/2, vi is the number of the ith group of ties for the first quantity

and n2 =
P

j
uj(uj � 1)/2, uj is the number of the jth group of ties for the second quantity
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Figure 5.3: (Color online) The accuracy of the DMP method for evaluating nodes’ spreading
influence in a model network without loop of N = 500 and hki = 8 during the SIR spreading
process. The subplot (a) and (b) show the outbreak size of node 1 in model network generated
by DMP method at each time steps when the spreading rate � is 0.05 and 0.1 respectively.
The subplot (c) and (d) show the outbreak size of all nodes in model network generated
by the DMP method when spreading rate � is 0.05 and 0.1 respectively. The symmetric
bars indicate the fluctuations around the average value computed on 105 realizations of the
stochastic process.

and sgn(y) is a piecewise function: when y > 0, sgn(y) = +1; y < 0, sgn(y) = �1; when

y = 0, sgn(y) = 0. ⌧ measures the correlation between two ranking lists, whose value is

between [�1, 1] and a larger ⌧ corresponds to a better performance.

5.3.4 Numerical Result

Figure 5.2 shows the comparison between the DMP method and the DS method for evaluating

the nodes’ spreading influence on four empirical networks. The results suggest that the DMP

method could evaluate the outbreak size for both single and multi spreaders more accurately

than the DS method. One could easily observe that the theoretical results generated by

DMP method are over estimated. The main reason of this overestimation is that the nodes
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Figure 5.4: (Color online) The accuracy of the DMP method in evaluating nodes’ spreading
influences according to the standard SIR model in the four real networks, quantified by the
Kendall’s Tau. The spreading rate � varies from 0.01 to 0.10, Each data point is obtained
by averaging over 105 independent runs.

infected by the initial node would infect themselves when time steps t � 3. One could then

expect that a network without any loop would diminish this bias. As shown in Fig.5.3, in

a network without loop, the DMP method could evaluate the nodes’ the spreading scope

accurately compared with the simulation result on network.

We also test the performance of the DMP method in ranking nodes’ spreading influence

during the spreading process on SIR model with di↵erent spreading rates �. The spreading

influence of an arbitrary node i is quantified by the number of infected nodes and recovered

nodes at t, where the spreading process starts with only node i being initially infected. Here

the Kendall’s tau ⌧ is used to evaluate the correlation between the nodes’ spreading influence

and the centrality measures (DMP method, degree and eigenvector centrality), where ⌧ is

in the range [�1, 1], and a larger value of ⌧ indicates a better performance. As shown in

Fig. 5.4, in all the cases, the values of ⌧ of the DMP method is always between 0.915 and

1.0, which suggests that the ranking lists generated by the DMP method is almost the same

as the ones generated by the simulation result.
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Figure 5.5: (Color online) The correlation between the minimum Kendall’s tau ⌧min and the
inverse of the largest eigenvalue of the network 1/�1.

Furthermore, one can find that the accuracy of the DMP method for ranking nodes’

spreading influence is a↵ected by the network structure. As shown in Fig. 5.4, the descent

speed of ⌧ in the C. elegans network are smaller than the ones in the Email network. To get

deeper insight of how the network structure a↵ect the performance of the DMP method, we

analyze the correlation between the minimum Kendall’s tau of the networks in Fig. 5.4 and

the inverse of the largest eigenvalue of the network 1/�1. The results are shown in Fig. 5.5.

With increasing value of 1/�1, the minimum Kendall’s tau increases. For instance, in the C.

elegans network, the reciprocal of the largest eigenvalue 1/�1 is 0.109, which is significantly

larger than that of the Email network (0.048). The fact that the DMP method performs

particularly well in C. elegans network for ranking nodes’ spreading influence indicates that

the largest eigenvalue of the network is the main factor a↵ecting the accuracy of the DMP

method. A larger value of 1/�1 would lead to a better performance of the DMP method.

In Fig. 5.4, we have shown the spreading influence of nodes during the whole process.

In the current experiment, we rank nodes’ spreading influence in a special situation: the

running time of the simulation is long enough such that there is not any infected node in the

network. For each node, since we do not the exact convergent time step in the simulation,

here we set a fix time step T ⇤ as 5 in the DMP method. The results are shown in Fig. 5.6.

The Kendall’s tau ⌧ of the DMP method is between 0.893 to 0.995, which indicates that the

ranking lists generated by the DMP method and the SIR spreading process are almost the

same. Compared with the degree and eigenvector centrality, the DMP method could locate

the influential spreaders more accurately.
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Figure 5.6: (Color online) The comparison among the DMP method, degree and eigenvector
in evaluating nodes’ spreading influences according to the standard SIR model with enough
time steps until there is not any infected in the networks, quantified by the Kendall’s Tau.
The spreading rate � varies from 0.01 to 0.10, Each data point is obtained by averaging over
105 independent runs.

The DMP method can also be used to evaluate the outbreak size in SIS model. For

simplicity, we set � = 1 in SIS model. In this case, nodes in the network could be infected

several times for high spreading rates � and long time steps t. We set the final time step t⇤ to

30. The results are shown in Fig. 5.7. The results are very similar to the ones in SIR model.

The Kendall’s tau ⌧ of the DMP method is between 0.865 and 1.0. This indicates that the

DMP method could also rank the nodes’ spreading influence accurately in SIS model.

We have extended the DMP method to temporal networks. The results are shown in

Fig. 5.8. The Kendall’s tau ⌧ is between 0.923 to 0.992, which indicates that the ranking

lists generated by the DMP method and the real SIR model on temporal are highly identical

to each other. Therefore, the DMP method could be used to detect the influential nodes in

temporal network accurately.
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Figure 5.7: (Color online) The accuracy of the DMP method in evaluating nodes’ spreading
influences according to the standard SIS model in the four real networks, quantified by the
Kendall’s Tau. The spreading rate � varies from 0.01 to 0.10, Each data point is obtained
by averaging over 105 independent runs.

5.4 Discussions

The essential question of ranking the node spreading influence is how to estimate the outbreak

size of the initial spreader [163,164]. To answer this question, one needs to fix the nonlinear

coupling issue during the spreading process. In this paper we present a new method to

evaluate the spreading scope from the perspective of Markov chain process, namely dynamics

Markov process (DMP). This method solves the problem of nonlinear coupling by adjusting

the state transition matrix, in which the elements of the matrix are the probabilities of nodes

in susceptible state. The simulation results show that the DMP method could estimate the

nodes’ spreading scope at each time steps accurately in directed network without loop.

Furthermore, according to the empirical results on four real networks, for both the SIR and

SIS model, the ranking list generated by the DMP method is very close to the the ones of

the simulation results, especially when the spreading rate and time step is small.

The DMP method could also be used to evaluate the nodes’ spreading scope generated
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Figure 5.8: (Color online) The accuracy of the DMP method in evaluating nodes’ spreading
influences according to the standard SIR model in the four real temporal networks, quantified
by the Kendall’s Tau. The spreading rate � varies from 0.01 to 0.10, Each data point is
obtained by averaging over 105 independent runs.

by multi-spreaders. Our simulation results indicate that when there exist multiple spreaders,

the DMP method significantly outperforms the DS [33] centrality with increasing values of

spreaders and time steps. The key to identifying multiple influential spreaders is to solve the

overlap problem [165], which is the non-linear couple problem during the spreading process.

Given the fact that the DMP method is a non-linear method, it will be able to identify

multiple influential spreaders by using the greedy approach [166–168]. Moreover, the DMP

method is also suitable for detecting the influential nodes in dynamic networks.

Comparing to the other methods in evaluating the outbreak size of the spreading dynam-

ics, e.g., the Message-Passing Techniques [166] and the Percolation [169], the DMP method

evaluates the spreading scope from the perspective of Markov process, and provides a gen-

eral framework for ranking node spreading influence. Therefore. it can be extended and

applied in modeling many other important dynamics such as Ising model [116], Boolean

dynamics [170], voter model [171], synchronization [172], and so on.
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Chapter 6

Nestedness maximization in complex networks through the

fitness-complexity algorithm

Nestedness refers to the structural property of complex networks that the neighborhood of

a given node is a subset of the neighborhoods of better-connected nodes. Following the

seminal work by Patterson and Atmar (1986), ecologists have been long interested in reveal-

ing the configuration of maximal nestedness of spatial and interaction matrices of ecological

communities. In ecology, the BINMATNEST genetic algorithm can be considered as the

state-of-the-art approach for this task. On the other hand, the fitness-complexity rank-

ing algorithm has been recently introduced in the economic complexity literature with the

original goal to rank countries and products in World Trade export networks. Here, by

bringing together quantitative methods from ecology and economic complexity, we show

that the fitness-complexity algorithm is highly e↵ective in the nestedness maximization task.

More specifically, it generates matrices that are more nested than the optimal ones by BIN-

MATNEST for 61.27% of the analyzed mutualistic networks. Our findings on ecological and

World Trade data suggest that beyond its applications in economic complexity, the fitness-

complexity algorithm has the potential to become a standard tool in nestedness analysis.

Based on Jian-Hong Lin, Claudio J. Tessone, and Manuel Sebastian Mariani. ”Nested-

ness maximization in complex networks through the fitness-complexity algorithm.” Entropy

20.10 (2018): 768.

6.1 Introduction

Network representations of complex interacting systems provide simple and powerful frame-

works to characterize the topology of interactions and understand its impact on the emer-

gence of collective phenomena [34, 173]. Some topological properties are found in a wide

variety of real networks, which has led scholars to investigate possible interaction mecha-
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Figure 6.1: An illustration of the interaction matrix of a perfectly nested network as com-
pared to the interaction matrix of a non-nested network (Nakaikemi marsh pollination net-
work) composed of the same number of nodes and links. In a perfectly nested network (left
panel), one can define a line (marked in red) that perfectly partitions the matrix into a filled
region (i.e., the region above the line) and an empty region (i.e., the region below the line).
The same feature does not hold for a non-nested network (right panel).

nisms behind their emergence. An example is the heavy-tailed distribution of the number

of links per node (degree): its ubiquity has motivated the study of various network growth

mechanisms that can generate networks with that property [173]. First conceived [174] and

measured [37, 40] in biogeographic studies, nestedness [175] is one of such pervasive prop-

erties. In a perfectly nested bipartite network, the interaction partners of a given node are

also partners of more generalist nodes. This property results in a ”triangular” shape of the

network’s interaction matrix (i.e., the binary matrix whose elements denote the presence or

absence of a link, see Fig. 6.1).

While perfectly nested networks are unambiguously defined, they are also rarely found in

real systems. However, many real networks exhibit a high degree of nestedness. The degree

of nestedness of a bipartite network has not been uniquely defined in the literature [175].

In the widely-adopted definition by Atmar and Patterson [40], which is the one we consider

here, a network is highly nested if the rows and columns of its interaction matrix can be

ordered in such a way that one can find a line that separates almost perfectly the filled and

empty regions of the matrix. It is essential to notice that this definition involves a reordering

of the interaction matrix’s rows and columns; alternative definitions of nestedness [176,177]

(not considered here) do not involve any matrix reordering.

Based on various metrics and definitions, nestedness has indeed been found in sys-

tems as diverse as spatial patterns of species distribution [37,175], mutualistic plant-animal

networks [178], manufacturer-contractor networks [179, 180], country-product export net-

works [181, 182], spatial patterns of firm distribution [181, 183], among others. The ubiq-
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uity of the pattern has naturally led scholars to investigate how nestedness relates to other

network properties [184–186], which mechanisms can possibly explain its emergence in eco-

logical [187–189] and socio-economic [179, 190, 190] networks, and its implications for the

stability and feasibility of ecological systems [191,192].

One of the most popular algorithms to quantify the degree of nestedness of a given net-

work is the Nestedness Temperature Calculator [40]. Introduced by Atmar and Patterson in

1993 [40], the algorithm first determines a line of perfect nestedness by defining a perfectly

nested interaction matrix with the same number of links as the original matrix. Then, it

seeks to find the ranking of rows and columns that minimizes the average distance (”temper-

ature” [40]) of observed ”unexpected” matrix elements from the line of perfect nestedness

– the unexpected matrix elements are those that are di↵erent from the corresponding ones

in a perfectly nested matrix with the same number of links as the original matrix. Lower

temperatures correspond to more nested topologies.

While the original Nestedness Temperature Calculator (NTC) by Atmar and Patter-

son [40] has been widely used in ecology [175], it exhibits some shortcomings that have been

later overcome by the BINMATNEST algorithm [38]. BINMATNEST minimizes nested-

ness temperature through a genetic algorithm that confers higher chance to reproduce upon

lower-temperature orderings [38]. The optimal matrices by BINMATNEST exhibit substan-

tially lower temperature than those ranked by the NTC [38], which is why BINMATNEST

can be considered as the state-of-the-art approach for nestedness temperature minimization

in ecology.

Here, we explore an alternative approach to nestedness temperature minimization in-

spired by the recent Economic Complexity literature [41,193]. Originally introduced to rank

countries and products in the country-product export network [41], the fitness-complexity

algorithm ranks the countries and products in such a way that the resulting incidence matrix

exhibits a (typically imperfect) ”triangular” shape [41, 193–195]. In World Trade, this sug-

gests that the most competitive countries tend to diversify their export baskets, whereas

the most sophisticated products can be only fabricated by the most competitive coun-

tries [41, 193]. The country score produced by the algorithm, referred to as country fitness,

is positively correlated with country GDP per capita [41,193]. Importantly, deviations from

the linear-regressed trend are highly informative about the future economic development of

the country [196, 197], resulting in GDP predictions often more accurate than those by the

International Monetary Fund [198,199].

The fact that matrices sorted according to the fitness-complexity algorithm exhibit a

neater ”triangular” shape than those sorted by degree [194] suggests that the algorithm might

be competitive with algorithms typically adopted in ecology for nestedness temperature min-

imization [200]. The main goal of this article is to extensively compare the fitness-complexity
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algorithm and BINMATNEST according to their ability to minimize nestedness temperature.

To this end, we analyze 142 mutualistic networks from http://www.web-of-life.es/ and

14 years of World Trade country-product networks from https://atlas.media.mit.edu/

en/resources/data/. We compare the nestedness temperature of the matrices as ranked

by BINMATNEST with those of the same matrices as ranked by the fitness-complexity

algorithm.

We find that the fitness-complexity algorithm generates sorted matrices that exhibit

a lower temperature than the optimal matrices by BINMATNEST for the 61.27% of the

analyzed ecological networks. The only matrices where BINMATNEST outperforms sub-

stantially the fitness-complexity algorithm are low-size and high-density ones. The FCA is

marginally outperformed by BINMATNEST for World Trade networks which exhibit higher

density than mutualistic networks of similar size. Our findings suggest that while originally

introduced as a ranking algorithm in economic production networks, the fitness-complexity

algorithm has the potential to become a standard tool for nestedness detection in complex

networks.

6.2 Materials and Methods

This paper focuses on binary bipartite networks. We label row-nodes (countries/pollinators)

and column-nodes (products/plants) through Latin (i 2 {1, . . . , N}) and Greek (↵ 2 {1, . . . , M})

letters, respectively. The total number of row-nodes and column-nodes is denoted as N and

M , respectively, whereas the total number of links is denoted as L. The N ⇥ M network’s

incidence matrix [34] is denoted as B: its element Bi↵ is equal to one (”filled” element) if

link (i, ↵) is observed, zero (”empty” element) otherwise. We refer to the incidence matrix

of mutualistic networks as interaction matrix [178]. The density � of the network is defined

as � = L/(M N).

6.2.1 Nestedness temperature minimization (NTM) problem

Nestedness temperature is determined through three steps: determination of the line of

perfect nestedness, node ranking, and temperature calculation. We provide below the details

of the three steps, and state the NTM problem.

First, to compute the nestedness temperature of a given matrix, one needs to determine its

line of perfect nestedness. In this work, we use the definition provided by Rodŕıguez-Gironés

and Santamaŕıa [38] which overcomes some of the shortcomings of the original geometrical

construction by Atmar and Patterson [40]. By rescaling the row and columns labels in such

a way that they range from 0 to 1, the line of perfect nestedness is determined through the
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following shape function [38]

f(x; p) =
0.5

N
+

N � 1

N

 
1 �

⇣
1 � M x � 0.5

M � 1

⌘
p

!1/p

. (6.2.1)

This function depends on a single parameter p, which is determined by imposing that the

area above the curve in the interval (0, 1) equals the fill of the matrix �.

Second, matrix temperature depends on the order of rows and columns. The nestedness

temperature minimization (NTM) problem (or, equivalently, the nestedness maximization

problem) consists in determining the ranking of rows and columns that produces a ranked

matrix of minimal temperature T (defined below). The output of this step is, therefore, a

pair of rankings, one for rows and one for columns. Equivalently, we can say that the output

of the ranking is a ranked matrix. Due to the large number of possible permutations of rows

and columns, a combinatorial search is infeasible [38], which has motivated ecologists to

search for fast ranking methods [38,40,201]. The main goal of this paper is to compare two

alternative ranking algorithms, the one adopted by BINMATNEST (details in Section 6.2.2)

and the fitness-complexity algorithm (details in Section 6.2.3).

Third, for a given network and a given ranking of its row-nodes and column-nodes, one

calculates nestedness temperature T as follows. The unexpected elements of the ranked

matrix are the the empty elements above and the filled elements below the line of perfect

nestedness (as determined through Eq. (6.2.1)). We denote by U the set of unexpected

elements. For each unexpected element (i, ↵), one draws a straight line of slope �1 in the

interaction matrix (after having normalized to one the column and row labels, as described

above). On this line, one compute the distance di↵ of unexpected element (i, ↵) from the

line of perfect nestedness, and the distance Di↵ between the intersection points of this line

with the x-axis and y-axis (see Fig. 1 in [38] for an illustration). The total unexpectedness

U of the ranked matrix is given by [38,40]

U =
1

N M

X

(i,↵)2U

 
di↵

Di↵

!2

. (6.2.2)

Matrix temperature is defined as T = 100U/Umax, where Umax = 0.04145 [38, 40]. A

perfectly nested matrix has zero temperature (”perfect order” [40]), whereas random, noisy

matrices have large temperature.

We stress that the key point in our analysis is that the calculation of nestedness temper-

ature T requires a ranked matrix as input: di↵erent rankings of rows and columns lead to

di↵erent matrix temperatures. This allows us to compare di↵erent ranking algorithms with

respect to the nestedness temperature they produce. We expect the rankings by e↵ective

106



algorithms for NTM to produce ranked matrices that exhibit lower temperature than the

ranked matrices by other algorithms.

6.2.2 Genetic algorithm approach: BINMATNEST (BIN)

The BINMATNEST algorithm [38] adopts a genetic-algorithm approach [202] to the NTM

problem. As the computational steps of the ranking algorithm are detailed in [38], we only

discuss here the main ideas behind the algorithm. The goal is to find a ”solution” to the NTM

problem, i.e., the minimal-temperature ranking of the nodes. The algorithm starts with a

set of candidate solutions (”chromosomes” in the genetic-algorithm language [202]) – among

these solutions, the rankings by degree and by the Nestedness Temperature Calculator by

Atmar and Patterson [40]. In each generation, the algorithm considers a well-performing

solution, and it generates an ”o↵spring” solution o by probabilistically combining elements

of the well-performing solution w with elements of a randomly-selected ”partner” solution p.

More specifically, let us consider the ranking of the row-nodes. Given a well-performing

solution w = {w1, . . . , wN} and a partner solution p = {p1, . . . , pN}, the each element of the

o↵spring solution is given by the corresponding element of w with probability 1/2; otherwise,

it is determined by the following steps:

• We randomly select an integer k between 1 and N .

• We set oi = wi for i 2 {1, . . . , k}.

• We set oi = pi for i 2 {k + 1, . . . , N}, if and only if pi 62 {w1, . . . , wk}.

• If pi 2 {w1, . . . , wk}, we assign one of the ranking positions that have not yet appeared

in o to 0i.

One applies the same steps to the ranking of the column-nodes. Besides, after these steps

are performed, the o↵spring solution can undergo a mutation with a given probability (set

to 0.1 in [38]). If the mutation happens, in the case of row-nodes, one extracts uniformly

at random two integers k1, k2 2 {1, . . . , N} (k1 < k2), and cyclically permutes the elements

{ok1 , . . . , ok2}. The process described above is iterated for a given number of generations, and

the minimal-temperature solution is eventually selected to determine the network nestedness

temperature.

The output of the BINMATNEST algorithm is therefore a ranking of the rows and

columns that minimizes nestedness temperature T . Importantly, the optimal rankings by

BINMATNEST lead to temperature values that are substantially lower than those deter-

mined by the widely-used Nestedness Temperature Calculator [40] – see Figs. 4-5 in [38], for

example. Based on those results, BINMATNEST can be considered as the state-of-the-art
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Figure 6.2: Six empirical mutualistic matrices of di↵erent density packed according to three
di↵erent methods: fitness-complexity algorithm (top row), BINMATNEST (intermediate
row), and degree (bottom row). The matrices ranked by fitness-complexity and BIN-
MATNEST are significantly more nested than those ranked by degree.

approach for NTM in ecological networks. In this paper, we implement the BINMATNEST

algorithm by using the function nestedrank from the R package bipartite with argument

method="binmatnest". This function gives as output the ranking of row-nodes and column-

nodes by the BINMATNEST algorithm.

6.2.3 Non-linear iterative algorithms: Fitness-Complexity algorithm (FCA)

Originally introduced to rank countries and products in the bipartite country-product export

network [41], the fitness-complexity algorithm has been applied to diverse systems including

ecological mutualistic networks [200], knowledge production networks [203], food production

networks [204]. In its formulation for countries and products [41], the algorithm aims to find

a vector of ”fitness” scores F = {Fi} for countries and ”complexity” scores Q = {Q↵} for

products, respectively. The algorithm starts from a uniform initial condition [41]

F (0)
i

= 1,

Q(0)
↵ = 1,

(6.2.3)
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and it subsequently refines the fitness and complexity scores according to the following non-

linear iterative equations:

F̃ (n)
i

=
X

↵

Bi↵Q(n�1)
↵ ,

Q̃(n)
↵ =

1
P

i
Bi↵/F (n�1)

i

.
(6.2.4)

After each iterative step, the scores are normalized by their mean:

F (n)
i

= F̃ (n)
i

/hF̃ (n)
i

i,

Q(n)
↵ = Q̃(n)

↵ /hQ̃(n)
↵ i.

(6.2.5)

Di↵erently from widely-used spectral ranking algorithms (see [197] for a review), the second

line of Eq. (6.2.4) is markedly non-linear. Such non-linearity is motivated by economic-

complexity considerations. Empirical evidence indicates indeed that competitive countries

tend to diversify their export baskets, which makes it reasonable to quantify the score of a

given country as the sum over the scores of its exported products. At the same time, the fact

that a product is exported by many countries (in particular, developing countries) suggests

that the product might require few productive capabilities to be made and it is unlikely to

be a sophisticated one. This motivates the non-linear dependence of product score Q̃(n)
↵ on

country score F (n�1)
i

: Q̃(n)
↵ is heavily penalized if ↵ is exported by a low-fitness country.

Do the iterations above converge to a unique fixed point? Scholars have found that

while the answer is positive, the scores of several nodes can potentially converge to a zero

value, which reduces the discriminative power of the ranking based on the fixed point of

the map [205]. Besides, this convergence to zero tends to be relatively slow, and it strongly

depends on the density and shape of the incidence matrix [195,205]. To prevent this potential

issue, we adopt a convergence criterion based on ranking: we stop the iterations at step n⇤

if and only if the ranking of countries and products at step n⇤ is almost exactly the same

as the ranking at step n⇤ + �n, i.e., if few ranking variations occurred in the subsequent

�n steps. In practice, the stopping iteration n⇤ is defined as the smallest iteration such

that both Spearman’s correlation coe�cients ⇢(F (n⇤), F (n⇤+�n)) and ⇢(Q(n⇤), Q(n⇤+�n)) are

larger than 1 � 10�3. Unless otherwise stated, the results presented in this manuscript

refer to �n = 10 – the criterion allows us to stop the algorithm after a finite number of

iteration for all the analyzed networks. We find that results for �n = 20 and �n = 30 are in

qualitative agreement with those obtained with �n = 10; the same holds for results obtained

by running a fixed number n⇤ = 100 of iterations of the FCA – details are provided in the

Results section.

While we formulated the algorithm for the country-product network, the algorithm can
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Figure 6.3: Results on mutualistic networks: a comparison of the nestedness tempera-
ture TFC of the matrices ranked by the FCA with the nestedness temperature TBIN of
the optimal matrices found by the BINMATNEST genetic algorithm. The two temper-
atures are positively correlated (panel A), yet the temperature measured by the fitness-
complexity algorithm is lower than that by BINMATNEST for the majority of analyzed
networks. The only networks where BINMATNEST produces a substantially lower temper-
ature (TFCA/TBIN > 1) are characterized by small size N + M (panel B) and high density
� (panel C).

be applied to any bipartite network by replacing ”countries” with the system’s row-nodes

(e.g., animals in mutualistic networks [200]) and ”products” with the system’s column-nodes

(e.g., plants). In this paper, we apply it not only to the country-product network, but

also to mutualistic networks: the fitness score of animal and plant species represents their

importance and vulnerability, respectively [200].

6.3 Results

6.3.1 Mutualistic networks

We analyzed the 142 pollination networks provided by The Web of Life (www.web-of-life.es)

project. The species are plants (rows) and pollinators (columns) and the type of interaction

is Pollination. The main goal of our paper is to compare the FCA and the BINMATNEST

algorithm with respect to their performance in the NTM problem. Fig. 6.2 shows that

qualitatively, the matrices produced by the fitness-complexity algorithm are substantially

more nested than those produced by ranking the nodes by degree, and their nestedness

might be comparable or even larger than that of the matrices ranked by BINMATNEST.

The reason why the FCA produces highly nested structures is that the score of a plant/product
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is mostly determined by the least-fit pollinator/country1: a plant/product that is polli-

nated/produced by a generalist pollinator/country – i.e., many pollinators/countries can

pollinate/produce it – is heavily penalized and achieves a low complexity score Q; whereas

a plant/product that is only pollinated/produced by specialist pollinator/country – i.e., few

pollinators/countries can pollinate/produce it – attains a high complexity score. Hence,

when sorting plants/products and pollinators/countries by the FCA, the plants/products

are essentially ranked by the degree of generalization of their least-fit pollinators/exporters,

which naturally results in a nested structure.

We now proceed in a more quantitative fashion by comparing, for all the analyzed empir-

ical networks, the temperature values produced by the FCA with those by BINMATNEST.

To do this, for the rankings determined by both methods, we determine the corresponding

matrix temperature T according to Eq. (6.2.2). We find that while the temperature values

achieved by the two methods are positively correlated (Fig. 6.3A), the temperature TFCA by

the FCA is lower than the temperature TBIN by BINMATNEST for 61.27% of the networks.

This result is stable with respect to variations in the convergence criterion adopted for the

FCA2.

The only matrices where the FCA is substantially outperformed by BINMATNEST are

characterized by small size (Fig. 6.3B) and high density (Fig. 6.3C), yet these two properties

seem necessary but not su�cient for BINMATNEST to outperform the FCA. Interestingly,

among matrices that are found to be ”colder” by the FCA, the lowest TFCA/TBIN ratio

(TFCA/TBIN = 0.75) was observed in the M PL 060 13 network (N = 31, M = 7, L = 48);

in this dataset, TBIN = 10.15 whereas TFCA = 7.64. By contrast, among matrices that are

found to be ”colder” by BINMATNEST, the highest TFCA/TBIN ratio (TFCA/TBIN = 1.46)

was observed in the M PL 042 network (N = 6, M = 12, L = 18).

To deepen our understanding of the relation between the rankings by the FCA and

BINMATNEST, we study their correlation and how such correlation depends on network

properties. The Spearman’s correlation coe�cient [206] between the rankings by the two

methods is positive and relatively high for both plants and pollinators (Fig. 6.4). Yet, as

we have seen in Fig. 6.3, discrepancies between the two rankings point to a better ability

of the FCA to ”pack” the matrix in such a way that it displays a nested structure. The

networks where we observe the largest discrepancies between the rankings by BINMATNEST

1Such dependence can be even sharpened by replacing 1/F (n) with (1/F (n))� (with � > 0) in the de-
pendence of the complexity score on fitness score (second line of Eq. (6.2.4)) [194, 205], or by defining the
complexity of a product directly as the minimum fitness of its interaction partners [195]. However, we do not
explore these possibilities here.

2This result was obtained with �n = 10. The fraction of datasets where TFCA < TBIN is equal to 61.97%
and 61.97% for �n = 20 and �n = 30, respectively. Besides, the same fraction was equal to 62.68% when
using a fixed number n⇤ = 100 of iterations for all the networks. We conclude that the fraction of datasets
where TFCA < TBIN is not substantially a↵ected by the adopted convergence criterion for the FCA.
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Figure 6.4: Results on mutualistic networks: Spearman’s rank correlation coe�cient ⇢ be-
tween the rankings by BINMATNEST and the fitness-complexity algorithm, for the rankings
of pollinators (rhombuses) and plants (circles). Panels A and B represent ⇢ as a function of
size N + M and density �, respectively. The two methods produce highly-correlated rank-
ings: the networks where we observe the lowest values of correlation are the small (panel A)
and high-density ones (panel B).

and the FCA are the small and high-density ones – for example, the minimal observed

correlation for the rankings of pollinators is ⇢ = 0.20, observed for one of the smallest

networks [M PL 069 02 which has N = 4, M = 10, L = 16]. All the other Spearman’s

coe�cient values are above 0.67.

6.3.2 Country-product networks

We analyzed 14 years of World Trade data obtained from https://atlas.media.mit.edu/

en/resources/data/. The raw data include information on which country exported which

products to which countries, and the volume (measured in US dollars) of each trade relation.

For each country-product pair (i, ↵), we denote by wi↵ the volume of product ↵ exported

by country i. In line with the Economic Complexity literature [41, 193, 207], we construct

a binary country-product network by only keeping the links between those country-product

pairs such that Ri↵ � 1, where Ri↵ := wi↵/hwi↵i is referred to as revealed comparative

advantage [41], wi↵ = wi w↵/W denotes the expected weight based on the total export

volume wi :=
P

�
wi� of country i, the total export volume w↵ :=

P
j
wj↵ of product ↵,

and the total export volume W =
P

j�
wj� in the system. In other words, a given country

i is connected to a given product ↵ in the bipartite country-product network if and only if

the export volume wi↵ exceeds the expected export volume. Based on this assumption, we

construct 14 binary networks corresponding to the 2001-2014 period.

Fig. 6.5 compares the temperature by the FCA and BINMATNEST in the size-density
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Figure 6.5: Results on mutualistic and World Trade networks. In panel A, each dot represents
a network in the size-density plane; the dots’ shape and color depend on the TFCA/TBIN

ratio, in such a way that mutualistic networks with a ratio larger or smaller than one are
represented by red squares or blue circles, respectively. This illustration confirms that the
mutualistic networks where TFCA is substantially larger than TBIN are characterized by
small size and high density. The World Trade network from 2001 (represented by the circled
rhombus) exhibits relatively high density compared to mutualistic networks of comparable
size; World Trade networks from other years (2002-2014) exhibit a similar size and density as
the one from 2001, and they are not shown here. Panel B shows that the temperature TBIN

by BINMATNEST is marginally smaller than the temperature TFCA by the FCA for all the
analyzed years of World Trade, and the temperature values do not exhibit wide fluctuations
over time.

plane, for all the analyzed mutualistic networks and the World Trade networks. The figure

reveals that compared to the mutualistic networks analyzed above, the obtained country-

product networks turn out to have a similar size as the largest mutualistic networks, but

substantially larger density (see Fig. 6.5A). For all the analyzed World Trade networks, the

temperature by BINMATNEST is marginally smaller than the one by the FCA, and both

temperatures are stable over the years (see Fig. 6.5B): the average of TFCA/TBIN over the

14 analyzed years is equal to 1.04.

6.4 Discussion

We showed that the fitness-complexity ranking algorithm [41] is a highly e↵ective method to

”pack” the incidence matrix of a given bipartite network in order to maximize its nestedness.

In particular, an extensive comparison with BINMATNEST – the state-of-the-art nestedness

maximization method in ecology – revealed that the FCA produces ranked matrices with

temperature values substantially lower than those of the optimal matrices by BINMATNEST
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for the majority of analyzed datasets. Small-size and high-density ecological matrices are

those where the rankings by the two methods di↵er the most, and where BINMATNEST

has a chance to produce matrices of significantly smaller temperature than those ranked by

the fitness-complexity algorithm.

Importantly, the Nestedness Temperature Minimization problem is not only a theoretical

one, but it has also implications for the important problem of forecasting of the secondary

e↵ects of species’ extinctions [200]. More specifically, recent works [194, 200] have pointed

out that the rankings of active and passive species (countries and products, in World Trade

analysis [194]) that result in the most packed matrices are also those that best reproduce

the rankings of the nodes according to their structural importance and vulnerability (as

determined by numerical simulations of ranking-based targeted attacks to the network).

Maximizing nestedness is therefore highly informative on the structural importance of active

species and vulnerability of passive species.

Finally, recent literature has reinterpreted nestedness as a mesoscopic property instead

of a macroscopic one [186, 208, 209]. This means that nestedness can be interpreted not as

a hierarchical organization of interactions between all pairs of nodes (as in Fig. 6.1), but

as a property of subcomponents of the network. While our results show that the fitness-

complexity algorithm can be used as a nestedness detection tool, whether it can be exploited

(and arguably, generalized) to detect network compartments that exhibit an internal nested

topology remains an intriguing open question.
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Chapter 7

Conclusions

This thesis contributes to a better understanding of the structure and dynamics of financial,

socio-economic, and ecological systems. Chapters 2 and 3 show that the Bitcoin ecosystem is

evolving towards an increasingly centralised system from the binary and weighted versions.

This is illustrated by the inequality of the bitcoin distribution in the BLN, where only

about 10% of the nodes hold 80% of the bitcoins. And the averaged Gini coe�cient of

the binary and weighted centrality measures steadily increases throughout the entire BLN

history. Furthermore, removing influential nodes leads to the collapse of the BLN into

many components. In future research, we will first explore the mechanisms that induce the

centralisation of the BLN. To this end, we will analyse the evolution of users’ centrality in

the BLN. On the other hand, we will explore the mechanism underlying the evolution of the

BLN structure. Then, how the removal of important nodes and links impacts the failure

rates of transactions is still an open question. To address this issue, we will propose a model

for payment flow dynamic simulation on BLN and analyse the influence of important nodes

and links. Finally, it is interesting to study the influence maximization in BLN, i.e. to locate

a subset of important nodes which have a large influence on the structure and transition of

the BLN.

The main contributions of Chapter 4 include three aspects. First, we develop an algorithm

to generate non-normal networks based on the empirical evidence that nodes with a higher

hierarchy are harder to be influenced. Second, we present a more realistic model for the

transient explosive growth using an Ising-like model on non-normal networks. We show

that non-normality leads to financial bubbles and crashes generically at subcriticality. This

conceptually and operationally improves previous models aimed at anticipating critical phase

transitions, which do not consider the non-normality of complex systems. Third, we reveal

that in financial systems bubble size is directly controlled by the Kreiss constant of the

non-normal matrix and bubble steepness is determined by the numerical abscissa of the

non-normal matrix. In future works, our model can be extended to temporal networks

115



and weighted networks. Furthermore, we will also analyse how non-normality a↵ects other

dynamical models in complex systems.

In Chapter 5, we present a dynamic Markov process to evaluate the outbreak size of nodes

at a given time step, which can be directly applied in ranking the spreading influence of nodes.

This method overcomes the problem of nonlinear coupling by calculating the probability of

susceptible nodes being infected by their neighbours sequentially and adjusting the state

transition matrix during the spreading process. Simulation results on SIR and SIS models

show that the dynamic Markov process can rank the spreading influence of nodes accurately.

In the future, we will extend our method to solve the influence maximization problem on

complex networks, where influence maximization is an NP-hard problem to identify a subset

of nodes to maximize the spread of influence.

In Chapter 6, we apply the fitness-complexity algorithm to maximize the nestedness of

matrices. We reveal that matrices reordered by the fitness–complexity and BINMATNEST

- the state-of-the-art nestedness maximization method in ecology - are substantially better

”packed” than those reordered by degree centrality. Furthermore, the fitness-complexity

algorithm can reorder matrices with substantially lower temperature values than those re-

ordered by BINMATNEST. As a part of future work, we will apply the fitness complexity

algorithm to detect network compartments that exhibit an internally nested topology, and

extend the fitness-complexity algorithm to the nestedness of temporal and multilayer net-

works.
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