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Abstract. In this thesis, we ultimately develop first-kind boundary integral equations for boundary
value problems involving the Hodge–Dirac and Hodge–Laplace operators associated with the de
Rham Hilbert complex on compact Riemannian manifolds and in Euclidean space. We show that
first-kind boundary integral operators associated with these boundary value problems posed on
submanifolds with Lipschitz boundaries are Hodge–Dirac and Hodge–Laplace operators as well,
but associated with trace de Rham complexes on the boundary whose spaces are equipped with
non-local inner products defined through boundary potentials. The correspondence is to some extent
structure-preserving in the sense that adding zero-order terms to these operators lead to the addition
of zero-order terms in the trace de Rham complexes at the level of boundary integral operators.
We put forth Boundary Integral Exterior Calculus (BIEC), a calculus of boundary potentials that
significatively ease the derivation of boundary integral equations for (possibly perturbed) Hodge–
Dirac, Hodge–Yukawa and possibly other boundary value problems. The ability to appeal to the
powerful theory of Hilbert complexes greatly simplifies their analysis. This paves the way for the
developement of Boundary Element Exterior Calculus (BEEC), where Galerkin discretizations of
variational boundary integral equations could be studied in the language of differential forms.

Résumé. Dans cette thèse, nous développerons ultimement des équations intégrales de frontière
du premier type pour des problèmes aux limites qui impliquent les opérateurs Hodge–Dirac et
Hodge–Laplace associés à un complexe d’Hilbert (de Rham) sur des variétés riemanniennes com-
pactes et dans l’espace euclidien. Nous montrerons que les opérateurs intégrals du premier type
associés à ces problèmes limites posés sur des sous-variétés lipschitziennes sont aussi des opéra-
teurs Hodge–Dirac et Hodge–Laplace, mais associés à des complexes de traces (de Rham) sur la
frontière dont les espaces sont équipés de produits intérieurs non-locaux définis à l’aide de po-
tentiels de frontière. La correspondance préserve dans une certaine mesure la structure, dans ce
sens qu’ajouter un terme d’ordre zéro à ces opérateurs mène à l’ajout d’un terme d’ordre zéro dans
le complexe de trace au niveau des opérateurs intégraux. On propose Boundary Integral Exterior
Calculus (BIEC), un calculus de potentiels de frontière qui facilite significativement la dériva-
tion d’équations intégrales de frontières pour des problèmes aux limites impliquant l’opérateur de
Hodge–Dirac (possiblement perturbé), de Hodge–Yukawa et autres. La capacité de faire appel à
la puissante théorie des complexes de Hilbert simplifie considérablement leur analyse. Cela ouvre
la voie au développement de Boundary Element Exterior Calculus (BEEC), où les discrétisations
de Galerkin des équations intégrales variationnelles de frontière pourraient être étudiées dans le
langage des formes différentielles.
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“If you are receptive and humble, mathematics will lead you
by the hand.”

— Paul Dirac





Preface

This quotation from Paul Dirac is quite à-propos. When I started working with Ralf Hiptmair in
2018, our objective was broadly speaking to study boundary integral equations for non-standard
differential operators. In themost general context, our distant goal was to characterize those formally
self-adjoint linear operators acting on distributions that admit an (hopefully explicit) fundamental
solution. The Hodge–Laplacian, the related Hodge–Helmholtz and Hodge–Yukawa operators, the
(possibly perturbed) Hodge–Dirac operator and Friedrich operators, are all special cases belonging
to that interesting class of problems. At the time, I imagined that our focus would be technical in
nature, probably we would prove a number of stability results before establishing the convergence
of boundary element methods for a given type of problems. This was an inaccurate forecast. I was
naively underestimating the unpredictability of mathematical research.

In 2020, we had a new vision for the thesis after we made a surprising discovery: first-kind
boundary integral operators for Hodge–Dirac operators arising from the de Rham complex are
Hodge–Dirac operators themselves in trace de Rham complexes. It is sometimes difficult to draw a
line between what can justifiably be called a discovery versus an observation. What best describes
the creative drive behind the most exciting developments of this thesis is a combination of meticu-
lousness, perceptiveness and luck. On that account, at least two things are worth mentioning. First,
there are various ways in which boundary integral equations for the Hodge–Dirac operator can
be written, especially in the fairly unfriendly setting of classical vector calculus used in Chapter
3, where we initially noticed the correspondence. Without intuition and awareness, we might not
have uncovered that particular connection between the studied boundary value problems and their
associated boundary integral equations. Our work on the Hodge–Dirac operator would then have
been somewhat of a missed opportunity. Secondly, we dared to believe that this hinted at a deeper
structure that was worth investigating. Thus, we embarked on a study of boundary integral equations
for Hodge–Laplace and Hodge–Dirac operators on manifolds, which led to the boundary integral
exterior calculus described in the last chapter bearing the same title as this thesis.

I believe that readers will agree that the few selected articles assembled in this thesis together
make for a sound whole. It is divided in three parts. To each chapter corresponds a different article.
The articles are ordered chronologically. In my opinion, this structure is optimal to convey how the
research I’ve carried at ETH followed a coherent storyline. It is always easier in hindsight to look
back at previous results and findwhere things could be improved or simplified. For instance, Chapter
5 generalizes and to some extent simplifies a large part of Chapter 3. The proof of the main result
in Chapter 1 would also have been simpler using the theory developed at the end of the thesis—at
least simpler to read. But until recently, we didn’t necessarily have the tools to see it clearly. It’s one
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thing to derive boundary integral equations, be it in the language of exterior calculus, it’s another
to develop a mature theory to better understand where they come from and how to work with them
efficiently. So, in Part I, we solely work within the framework of classical vector analysis. Literature
concerned with boundary integral equations in Euclidean space based on the later has a long
history. It is rich, well-established and provided important results which helped us move forward.
In particular, unbounded domains could be considered. While the presentation is technically heavy,
our community is familiar with the operators involved. Hence, it may appeal to a wider audience.
In Part II, we study traces for abstract Hilbert complexes and leverage the language of exterior
calculus. The articles in the second part of this thesis can be regarded as the culmination of our
recent research and (with Chapter 3) certainly the most original. In Appendix A, we introduce a
boundary element Galerkin discretization for the first-kind boundary integral equations associated
with Hodge–Dirac boundary value problems in three-dimensional Euclidean space. We briefly
discuss stability and convergence before performing a simple numerical experiment to empirically
confirm a theoretical result of Chapter 3.

Needless to say, Chapter 5 is interesting in its own right and might find theoretical applications
at the continuous level. Be that as it may, it is noteworthy that I had first proposed the title
Boundary Element Exterior Calculus (BEEC), a title which also conveys well the philosophy
behind our investigations. I believe that we can create a BEEC that would be to Finite Element
Exterior Calculus (FEEC) what the boundary element method (BEM) is to the finite element
method (FEM). This thesis shows that such a program is possible using Boundary Integral Exterior
Calculus (BIEC) as foundation at the continuous level. In Appendix A, even though we do not
exploit exterior calculus, the ease with which we use the Hilbert complex framework to cover
stability and convergence demonstrates the potential usefulness of this perspective to study related
boudary integral equations in general. There, we rely on a discrete Poincaré inequality previously
established by Ralf Hiptmair and Xavier Claeys for piecewise linear tangential surface vector
fields with continuous tangential components across interelement edges [6], but the proof can be
generalized without difficulty to discrete differential forms. To develop bounded projections from
the spaces of the trace de Rham complex to conforming finite element spaces that commute with
the exterior derivative (or finding a systematic way to avoid the need of using them in establishing
improved convergence estimates à la FEEC) is an interesting open problem that may lead to fruitful
research in the future.

Chapter 1. The contents of Chapter 1 were my first scientific contributions at ETH. Before writing
this paper, I knew next to nothing about boundary integral equations. Therefore, the project served
the dual purpose of contributing to ongoing research and at the same time learning about classical
theory of boundary integral equations in Euclidean space before moving on to manifolds. Ralf
Hiptmair suggested that we study transmission problems for Hodge–Helmholtz operators in late
2018. He had recently developed, together with Xavier Claeys, boundary integral equations for
Hodge–Helmholtz boundary value problems posed in Lipschitz subdomains of three-dimensional
Euclidean space [5]. My task was to couple the mixed variational formulation of the interior
boundary value problem with the exterior scattering problem using the Dirichlet-to-Neumann map
provided by the new boundary integral operators. The project proved very technical, partly due to
the insufficient level of abstraction provided by the framework of vector analysis. We could already
foresee the benefits of introducing exterior calculus to simplify the equations.
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Chapter 2. It is well-known that the operators associated with common coupled domain-boundary
variational formulations of acoustic and electromagnetic transmission problems are singular at
certain frequencies. It was reasonable to expect that the issue would also arise for the coupled
system of equations developed in Chapter 1. Since the matter belonged somewhat outside the scope
of that chapter, our investigation of the topic eventually deserved its own paper. In Chapter 2, the
main challenge is that working at an abstract level is needed to account for the peculiarities of the
new operator: (1) a mixed formulation is used for the interior problem and (2) the boundary data
lives in product spaces. By abstracting some of the main (functional analytic) features of first-kind
boundary integral operators, the kernels of a class of operators associated with symmetrically
coupled domain-boundary variational problems can be characterized explicitly in terms of the
spectra of interior “Dirichlet” operators and “Neumann” traces of their eigenspaces. We conclude
that the phenomenon is rooted in the formal structure of Calderon’s identities. The desired result
concerning the operator from Chapter 1 is obtained as a special case. A couple of results from
classical theory are generalized. The research conducted in Chapter 2 is another example where
mathematics has guided me by the hand. The difficulties that arise from the complicated structure
of the coupled domain-boundary system of equations for the Hodge–Helmholtz operator were
fortuitous in two ways. First, along with analysing the issue successfully for the transmission
problem studied in Chapter 1, we found an approachable proof that covers at once a few coupled
systems of interest in acoustics and electromagnetism. Secondly, it is by following the blueprint
detailed inChapter 2 that the boundary integral equations of Chapter 3 andChapter 5 are established.
In a way, the projects behind Chapter 1 and Chapter 2 gave us the right tools to tackle what comes
in the rest of the thesis.

Chapter 3. Scientifically speaking, the article in this chapter is very well in continuity with the
work of Xavier Claeys and Ralf Hiptmair on the Hodge–Helmholtz operator [5], but it is a turning
point mathematically. Up to that point, the study of the Hodge–Helmholtz operator by our research
group had been largely motivated by boundary value problems in electromagnetism. The Hodge–
Helmholtz operator arisewhen imposing the Lorenz gauge to the potential formulation ofMaxwell’s
equations in the frequency domain. In the limit as the frequency tends to zero, classical second-order
electric and magnetic formulations break down [7,9], because the curl curl operator has an infinite
dimensional kernel. Contrastingly, the low frequency limit of the Hodge–Helmholtz operator is the
Hodge–Laplacian, which merely has a finite dimensional kernel whose dimension depends on the
topology of the domain. The hope is then to find some clever regularization strategy for Hodge–
Laplace boundary value problems that could lead to new ways of overcoming low frequency
instabilities in electromagnetic simulation. This is a promising research direction, especially on
“almost trivial” topologies where we face a one-dimensional kernel made of constants, such as
on Lipschitz multi-screens which have relatively recently been a popular area of research [1, 3, 4].
Studying the Hodge–Dirac operator can be motivated in a similar way. The operator appears under
a change of variables in the works of M. Taskinen, S. Vänskä and P. Ylä-Oijala [12–14] as Rainer
Picard’s extended Maxwell operator. It was originally assembled by Rainer Picard by combining
the first-order Maxwell operator with the principal part of the equations of linear acoustics [10,11].

Roughly speaking, Chapter 3 harnesses the same tips and tricks as in [5]. Thanks to the previous
chapters, I had a deep understanding of the new theory on first-kind boundary integral equations
for the Hodge–Helmholtz operator and I could repeat its key developments for the Hodge–Dirac
operator. Initially, my work had the same intentions—it simply concerned a different model. In this
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context, what makes Chapter 3 special is a surprising mathematical discovery: first-kind boundary
integral operators for the Hodge–Dirac operator were Hodge–Dirac operators in trace de Rham
complexes where the trace spaces are equipped with non-local inner products defined through
boundary potentials. We found ourselves at a crossroads. The Hodge–Dirac operator was not to be
seen exclusively as a candidate for the stable simulation of electromagnetic phenomena anymore,
but as a possible highway to a deeper understanding of the structure of first-kind boundary integral
operators associatedwithwhat came to call “Hodge–X” operators in general (Hodge–Dirac, Hodge–
Laplace, Hodge–Yukawa, Hodge–Helmholtz, etc.).

The intuition that such a connection could be unveiled between the “Dirichlet” and “Neumann”
boundary value problems involving these operators and the associated boundary integral equations
was in the air. In light of our discovery, it was now clear that one of the first-kind boundary integral
operator associated with the Hodge–Laplacian in [5] was indeed an Hodge–Laplacian in mixed-
order form in a trace de Rham complex. However, the other integral operator featured a curious
term involving unit normal vector-fields at the boundary that was difficult to identify.

Chapter 4. Our work with Dirk Pauly on traces for Hilbert complexes slightly breaks apart from
the central theme of this thesis. The other chapters mainly concern the formulation and analysis
of boundary integral equations. In Chapter 4, we focus on the trace complexes themselves. Before
we would utilize the discovery made in Chapter 3, we wanted to better understand how surface
operators spawn Fredholm Hilbert complexes. A mature literature is available concerning traces on
the boundary of three-dimensional Lipschitz subdomains of Euclidean space. Notably, tangential
traces are analyzed in the importantwork ofA.Buffa,M.Costabel andD. Sheen [2], later generalized
to differential forms by N. Weck [15]. D. Mitrea, M. Mitrea and M.-C. Shaw also published a
comprehensive analysis of traces on Lipschitz subdomains of compact Riemannian manifolds in
which properties of the trace de Rham complex are studied [8]. By adopting a new notion of trace
operators for abstract Hilbert complexes, our contribution to the subject was to show that many
of the properties established in [2], [8] and [15] for the trace de Rham complex are rooted in the
general structure of Hilbert complexes. The trace spaces are introduced as annihilators/quotient
spaces. The quotient space point of view is particularly relevant to boundary integral equations. By
doing awaywith the concept of function space on the boundary, this alternative framework paves the
way for the definition of traces on more complicated sets than Lipschitz boundaries. In that regard,
it recently proved successful for the de Rham complex in [4], where boundary integral operators
are defined on multi-screens. Beyond shedding new light on the origin of the duality between the
classical traces, the main results of Chapter 4 are (1) that so-called stable “regular” decompositions
are sufficient to generalize the classical trace theorems and (2) that if the lifting operators involved in
those decompositions are compact, then the associated trace Hilbert complexes are Fredholm (they
satisfy the compactness property). Evidently, since in the abstract setting there is no boundary, the
analysis is detached from regularity considerations. Nevertheless, it is particularly interesting that
the theory in Chapter 4 is built from the ground up using relatively elementary results of functional
analysis, making it accessible to a very wide audience. In the future, more traces could be studied
within this framework by applying the theory to other Hilbert complexes, such as to the elasticity
complex.

Chapter 5. In this chapter, we generalize [5] and Chapter 3 to differential forms on compact
manifolds without boundaries and in Euclidean space. First-kind boundary integral operators as-
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sociated with Hodge–Dirac boundary value problems are shown to be Hodge–Dirac operators in
trace de Rham complexes whose spaces are equipped with non-local inner products defined through
boundary potentials. We also confirm our suspicion that the first kind boundary integral operators
associated with Hodge–Laplace boundary value problems are Hodge-Laplace operators in mixed-
order formulation in those same complexes. This discovery greatly simplifies their analysis, because
we know from existing literature on abstract Hilbert complexes that the Hodge–Laplacian and the
Hodge–Dirac operator are Fredholm operators of index zero. We found that the correspondence
is structure-preserving to the extent that adding zero-order terms to the Hodge–Dirac and Hodge–
Laplace operators lead to the addition of zero order terms in the trace de Rham complexes at the
level of boundary integral operators. In Chapter 5, we study in particular Hodge–Yukawa operators
and purely imaginary perturbations of the Hodge–Dirac operator.

As a byproduct of our investigations, Chapter 5 introduces a calculus of boundary potentials
which leverage the language of differential forms to ease the derivation of boundary integral
equations for Hodge-X operators in general. I call atomic the boundary potentials at the heart of
this calculus, because every other boundary potential in this work is also obtained from them by
applying the exterior derivative or the codifferential. Moreover, they are the elementary building
blocks in the definitions of the non-local inner products that we equip on the spaces of the trace
de Rham complexes. In a few words, the gist of Boundary Integral Exterior Calculus (BIEC)
is the observation that a few commutation identities involving the traces, the exterior derivative,
the codifferential and these atomic boundary potentials streamline the derivation of boundary
integral equations related to the Hodge–Laplacian (which provides fundamental solutions) and
allow expressing them in trace de Rham complexes.
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BIEC: A Brief Overview

Applying the so-called tangential and normal traces t = ı∗ and n = ?−1 ı∗? to the de Rham complex
in a Lipschitz subdomain Ω of a manifoldM, we obtain the trace de Rham complexes

...
d−→ H

− 1
2

⊥ Λ`−1(d, Γ )
d−→ H

− 1
2

⊥ Λ`(d, Γ )
d−→ ..., (0.1a)

...←−
δ
H
− 1

2

‖ Λ`−1(δ, Γ )←−
δ
H
− 1

2

‖ Λ`(δ, Γ )←−
δ
...., (0.1b)

on the boundary Γ = ∂Ω, respectively. We equip these spaces with the non-local inner products

(u, v)− 1
2
,λ,t = 〈tS(u), v〉Γ , u, v ∈ H−

1
2

‖ Λ`(Γ ), (0.2a)

(w, z)− 1
2
,λ,n = 〈nD(w), w〉Γ , w, z ∈ H−

1
2

⊥ Λ`(Γ ), (0.2b)

involving the boundary potentials

Su(x) = 〈u, tG(x, ·)〉Γ , and Dw(x) = 〈w, nG(x, ·)〉Γ , (0.3)

where G is a fundamental solution for the Hodge–Laplace or Yukawa operator

−∆+ λ = dδ + δd + λ, λ ≥ 0. (0.4)

The gist of the calculus of atomic boundary potentials presented in Chapter 5 is the observation
that two commutation identities are available which greatly simplify the derivation of bound-
ary integral equations for operators associated to the Hodge–Laplace/Yukawa operator acting on
differential forms of order ` and to the (possibly perturbed) Hodge–Dirac operator

D + iκ = d + δ + iκ, κ ∈ R. (0.5)

acting on the full graded algebra of differential forms:

1. The pullback commutes with exterior differentiation as

t ◦ d = d ◦ t and n ◦ δ = −δ ◦ n. (0.6)

2. The boundary potentials commute with exterior differentiation as

δS(v) = S(δv) and dD(u) = −D(du). (0.7)

xvii
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Since ∂Γ = ∅, integrating by parts then reveals that

〈tdS(u), v〉Γ = (δ∗u, v)− 1
2
,λ,t , 〈tδS(u), v〉Γ = (δu, v)− 1

2
,λ,t , (0.8a)

〈ndD(w), z〉Γ = −(dw, z)− 1
2
,λ,n, 〈nδD(w), z〉Γ = −(d∗w, z)− 1

2
,λ,n, (0.8b)

where d∗ and δ∗ are Hilbert space adjoint to the exterior derivative and codifferential under the
non-local inner products (0.2a) and (0.2b). These identities are crucial, because they make it
possible to recognize that the first-kind boundary integral operators for Hodge–Dirac and Hodge–
Laplace operators are Hodge–Dirac andHodge–Laplace operators themselves in the trace de Rham
complexes.
For example, suppose that a full formU ∈ L2Λ(M) is compactly supported and that there exists

F ∈ L2Λ(M) such that F |Ω = (D + iκ)U |Ω and F |Ω+ = (D + iκ)U |Ω+ . Then, we will see in
Chapter 5 that have the representation formula

U = (D− iκ)
(
NF − SλJnUK + DλJtUK

)
, (0.9)

where N is the Newton operator given by the integral transformation involving G and J•K denotes
the jump of a trace across Γ , • = t or n. Taking average traces {•} on both sides of (0.9) yields the
boundary integral operators

V[D] := {t} (D− iκ)S, K[D] := {t} (D− iκ)D, (0.10a)
A[D] := {n} (D− iκ)S, W[D] := {n} (D− iκ)D, (0.10b)

that enter the variational formulations

h ∈ H−
1
2

‖ Λ(δ, Γ ) : 〈V[D]h,w〉Γ = 〈(1

2
Id + K[D])g,w〉Γ , ∀w ∈ H−

1
2

‖ Λ(δ, Γ ), (0.11a)

g ∈ H−
1
2

⊥ Λ(d, Γ ) : 〈W[D]g,v〉Γ = 〈(1

2
Id− A[D])h,v〉Γ , ∀v ∈ H−

1
2

⊥ Λ(d, Γ ), (0.11b)

associated with first-kind direct boundary integral equations. But from the jump relations

JtK S = 0, JtdK S = 0, JtδK S = 0, (0.12a)
JnK S = 0, JndK S = −Id, JnδK S = 0, (0.12b)
JtK D = 0, JtdK D = 0, JtδK D = Id, (0.12c)
JnK D = 0, JndK D = 0, JnδK D = 0, (0.12d)

that were used to establish those equations, we also have that the first-kind boundary integral
operators can be evaluated as one-sided traces, i.e.V[D] = t (D− iκ)Sλ andW[D] = n(D−iκ)D.
Based on the previous identities, we can thus evaluate

〈V[D]h,w 〉Γ = (δh,w)− 1
2
,λ,t + (h, δw)− 1

2
,λ,t − iκ(h, δw)− 1

2
,λ,t, (0.13a)

〈W[D]g,v 〉Γ = −(dg,v)− 1
2
,λ,n − (g,dw)− 1

2
,λ,n − iκ(g,v)− 1

2
,λ,n, (0.13b)

from which we discover that
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V[D] = δ + δ∗ − iκ and W[D] = −(d + d∗)− iκ (0.14)
(0.15)

on the boundary.
More involved calculations reveals that the first-kind boundary integral operators for the Hodge–

Laplacian are also Hodge–Laplace operators on the boundary. This is true for both the strong and
the mixed formulation

M =

(
−Id δ
d δd + λ

)
,

obtained by introducing an auxiliary unknown V = δU . Indeed, we will prove in Chapter 5 that
these operators admit the representation formulas

U = NF −
(

d Id
)( SJnUK

SJndUK

)
+
(
Id δ

)(DJtδUK
DJtUK

)

and (
V
U

)
=

(
−dδ − λId δ

d Id

)((
NH
NF

)
−

(
0

D JtV K + δD JtUK

)
+

(
S JnUK

S JndUK

))
,

respectively, that eventually lead to the boundary integral operators

V[∆] = V[M] =

(
−δ∗δ − λId δ

δ∗ Id

)
(0.16a)

and

W[∆] = W[M] =

(
Id −d∗

−d`−1 −d∗d− λId

)
(0.16b)

formulated in the trace de Rham complexes equipped with the non-local inner products.
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Chapter 1
Coupled Domain-Boundary Variational Formulations for
Hodge–Helmholtz Operators

Erick Schulz and Ralf Hiptmair

AbstractWe couple the mixed variational problem for the generalized Hodge-Helmholtz or Hodge-
Laplace equation posed on a bounded 3D Lipschitz domain with the first-kind boundary integral
equations arising from the latter when constant coefficients are assumed in the unbounded comple-
ment. Recently developed Calderón projectors for the relevant boundary integral operators are used
to perform a symmetric coupling. We prove stability of the coupled problem away from resonant
frequencies by establishing a generalized Gårding inequality (T-coercivity). The resulting system
of equations describes the scattering of monochromatic electromagnetic waves at a bounded in-
homogeneous isotropic body possibly having a “rough" surface. The low-frequency robustness of
the potential formulation of Maxwell’s equations makes this model a promising starting point for
Galerkin discretization.

1.1 Introduction

Let Ωs ⊂ R3 be a bounded Lipschitz domain [38, Def. 2.1] representing a region of space
occupied by a dielectric object, the scatterer, with spatially varying material properties. The scalar
material coefficients are assumed to be bounded, i.e. µ, ε ∈ L∞(R3). In a non-dissipative medium,
the functions µ and ε are real-valued and uniformly positive. Dissipative effects are captured by
allowing the coefficients to have non-negative imaginary parts [5, Sec. 1.1.3]. We follow [22] and
suppose that

0 < µmin ≤ Re(µ) ≤ µmax, 0 ≤ Im(µ),

0 < εmin ≤ Re(ε) ≤ εmax, 0 ≤ Im(ε),

0 ≤ Re(κ2), 0 ≤ Im(κ2).

We assume for simplicity that Ωs has trivial cohomology, in other words that its first and second
Betti numbers are zero [2, Sec. 4.4]. Qualitatively, this means that it doesn’t feature handles nor
interior voids: it is homeomorphic to a ball.

Remark 1.1 The hypothesis that the second Betti number is zero is only used to prove injectivity
of the coupling problem for Hodge–Laplace operators. It can be dropped without any changes
to the following development for couplings involving the Hodge–Helmholtz operator (non-static
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electromagnetic transmission problems). The hypothesis that the first Betti number is zero is used
in Section 1.5 to guarantee the existence of a certain “scalar potential lifting" that greatly simplifies
the Fredholm arguments.

Inside this possibly inhomogeneous isotropic physical body, the potential formulation of
Maxwell’s equations in frequency domain driven by a source current J ∈ L2(Ωs) with angu-
lar frequency ω > 0 reads [12]

curl (µ−1(x) curl U) + iωε(x)∇V − ω2ε(x) U = J, (1.1.1a)
div (ε(x)U) + iωV = 0, (1.1.1b)

where the Lorenz gauge (1.1.1b) relates the scalar potential V to the vector potentialU. Elimination
of V using this relation leads to the Hodge–Helmholtz equation

curl (µ−1(x) curl U)− ε(x)∇ div (ε(x)U)− ω2ε(x) U = J. (1.1.2)

Away from the source current, in the unbounded region Ω′ := R3\Ωs outside the scatterer Ωs,
where we assume a homogeneous material with scalar constant permeability µ0 > 0 and dielectric
permittivity ε0 > 0, equation (1.1.2) reduces to

−∆ηU− κ2U := curl curl U− η∇ divU− κ2U = 0,

with constant coefficients η = µ0ε
2
0 and κ2 = µ0ε0ω

2.
For given data gR ∈ H−1/2(divΓ , Γ ), gn ∈ H−1/2(Γ ), ζD ∈ H1/2(Γ ) and ζt ∈ H−1/2(curlΓ , Γ )

on the boundary Γ = ∂Ωs, we are interested in the following transmission problem, cf. [22, Sec.
2.1.2], [12]:

Volume equations

curl (µ−1(x) curl U)− ε(x)∇ div (ε(x) U)− ω2ε(x) U = J in Ωs, (1.1.3a)
curl curl Uext − η∇divUext − κ2 Uext = 0 in Ω′, (1.1.3b)

Transmission conditions

γ−R,µ(U) = γ+
RUext + gR, γ−n,ε(U) = γ+

n (Uext) + gn on Γ, (1.1.4a)
γ−D,ε(U) = η γ+

DUext + ζD, γ−t U− γ+
t U = ζt on Γ. (1.1.4b)

The traces γ∓• , • = R, D, n, etc., on Γ from inside (superscript −) and outside (superscript +)
Ωs are defined for a smooth vector-field U by

γ−R,µ(U) := −γ−τ (µ−1(x) curl(U)), γ+
R(Uext) := −γ+

τ (curl(Uext)),

γ−D,ε(U) := γ−(div(ε(x) U)), γ+
D(Uext) := γ+(div(Uext)),

γ−n,ε(U) := γ−n (ε(x) U) γ±t (U) := n× (γ±τ (U)),
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involving the classical traces

γ(U) := U
∣∣
Γ
, γn(U) := γ(U) · n, γτ (U) := γ(U)× n,

where n ∈ L∞(Γ ) is the essentially bounded unit normal vector field on Γ directed toward the
exterior of Ωs [20, Thm. 3.1.6].

For positive frequencies ω > 0, we supplement (1.1.4b) with the variants of the Silver-Müller’s
radiation condition imposed at infinity provided in [22]. In the static case where κ = ω = 0, we seek
a solution in an appropriate weighted Sobolev space that accounts for decay conditions [37, Sec.
2.5].

Remark 1.2When derived from Maxwell’s equations stated in terms of the magnetic and electric
fields, the classical wave equation for an electric field E reads

curl(µ−1(x) curl E)− κ2 ε(x) E = J. (1.1.5)

The regularizing term ε∇div(εU) which appears in (1.1.3a), but not in (1.1.5), makes for a sig-
nificant structural difference [22]. For suitable boundary conditions, the zero-order term ω2εU
in (1.1.3) is a compact perturbation in the weak formulation of the Hodge-Helmholtz equation.
Ergo, coercivity of the associated boundary value problem is preserved in the low frequency limit
ω → 0. This is not the case for the “Maxwell operator" found on the left hand side of (1.1.5), whose
associated scattering equation is characterized by an “incessant conversion" between electric and
magnetic energies that play symmetric roles [11]. Functionally, the infinite dimensional kernel of
the curl operator thwart compactness of the embedding H(curl, Ωs) ↪→ L2(Ωs). This is different
from the weak variational formulation of the scalar Helmholtz equation −∆u − κ2u = f . In that
model of acoustic scattering, potential energy turns out to be a compact perturbation of the kinetic
energy due to Rellich’s compact embedding H1(Ωs) ↪→ L2(Ωs).

Remark 1.3 It is stressed in [12] that from the rapid development in quantum optics emerged the
need for electromagnetic models valid in both classical and quantum regimes. Robustness of the
potential formulation of Maxwell’s equations in the low frequency limit makes it a promising
candidate for bridging physical scales.

Remark 1.4 The terminology used above is rooted in geometry. The equations (1.1.3a)-(1.1.3b)
contain generalized instances of the Hodge–Helmholtz operator −∆− κ2Id = δd + d δ − κ2Id as
it applies to differential 1-forms defined over 3D differentiable manifolds. When ω = κ = 0, the
left hand sides reduce to applications of the Hodge-Laplace operator. We refer to [26] and [24] for
a thorough introduction to the formulation of Maxwell’s equations in terms of differential/integral
forms.

Remark 1.5 Boundary integral operators of the second-kind were extensively studied in the liter-
ature devoted to the Hodge-Laplace and Hodge-Helmholtz operators acting on differential forms
over smooth manifolds (e.g. [33], [34], [37] and [32]). However, little attention was paid to the
formulation of Hodge-Helmholtz/Laplace boundary value problems as first-kind boundary integral
equations. Only recently, a boundary integral representation formula for Hodge-Helmholtz/Laplace
equation in three-dimensional Lipschitz domains was derived in [15] which leads to boundary
integral operators of the first-kind inducing bounded and coercive sesquilinear forms in the natural
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energy spaces for that equation. These innovative investigations are particularly relevant to the
numerical analysis community. Operators admitting natural variational formulations in well-known
energy trace spaces via duality are appealing for the development and numerical analysis of new
Galerkin discretizations. For the case κ2 = 0 of the Hodge–Laplace operator in 3D, a thorough
a priori analysis of a Galerkin BEM was already proposed in [16] with additional experimental
evidence.

1.1.1 Our contributions.

In the following, we couple the mixed formulation of the weak variational problem associated
to (1.1.3a) with the first-kind boundary integral equation (BIE) arising from (1.1.3b) using these
recently developed Calderón projectors for the Hodge–Helmholtz and Hodge–Laplace operators.
The proof of the well-posedness of the coupled problem relies on T-coercivity (c.f. [14]) and is
given in Subsection 1.5.2. It draws on and integrates several fundamental results of the theory of
first-kind boundary integral operators on Lipschitz domains and of the mathematical analysis of
Maxwell’s equations:

. M. Costabel’s symmetric coupling approach linking volume variational equations with BIEs
[18],

. T-coercivity for electromagnetic variational problems via Hodge–type decompositions [15,25],

. mixed variational formulations of boundary value problems for Hodge–Laplace operators [3].

A crucial and surprising discovery is the perfect match of the interface terms naturally arising from
the mixed variational formulation and from the first-kind BIE, see Section 1.3, and in particular
(1.3.6), for details.

1.2 Preliminaries

Let Ω ∈ {Ωs, Ω
′}. As usual, L2(Ω) and L2(Ω) denote the Hilbert spaces of square integrable

scalar and vector-valued functions defined over Ω. We denote their inner products using round
brackets, e.g. (·, ·)Ω. Similarly, H1(Ω) and H1(Ω) refer to the corresponding Sobolev spaces. We
write C∞0 (Ω) for the space of smooth compactly supported functions in Ω, but denote by D(Ω)3

the analogous space of vector fields to simplify notation. The Banach spaces

H(div, Ω) := {U ∈ L2(Ω) | div(U) ∈ L2(Ω)},
H(ε; div, Ω) := {U ∈ L2(Ω) | ε(x) U ∈ H(div, Ω)},
H(curl, Ω) := {U ∈ L2(Ω) | curl (U) ∈ L2(Ω)},
H(∇div, Ω) := {U ∈ H(div, Ω) | div(U) ∈ H1(Ω)},

H(ε;∇div, Ωs) := {U ∈ L2(Ω) | ε(x) U ∈ H(∇div, Ω)},
H(curl2, Ω) := {U ∈ H(curl, Ω) | curl(U) ∈ H(curl, Ω)},

H(µ−1; curl2, Ω) := {U ∈ H(curl, Ω) |µ−1 curl(U) ∈ H(curl, Ω)},
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equipped with the natural graph norms will be important. The variational space for the primal
variational formulation of the classical and generalized Hodge–Helmholtz/Laplace operator is
given by

X(∆,Ω) := H(curl2, Ω) ∩H(∇div, Ω). (1.2.1)

A subscript is used to identify spaces of locally integrable functions or vector fields, e.g. U ∈
L2
loc(Ω) if and only if φU is square-integrable for all φ ∈ C∞0 (R3). Dual spaces, e.g. H1

0 (Ωs)
′ =

H−1(Ωs), and dual operators, e.g. (γ−)′ are written with primes. We use an asterisk to indicate
spaces of functions with zero mean, e.g. H1

∗ (Ωs), and let mean : H1(Ωs)→ R be the continuous
operator defined by

mean(P ) :=
1

|Ωs|

∫
Ωs

P (x)dx.

Since its range is finite dimensional, mean is a compact operator [30, Thm. 2.18]. The operator
Q∗ : H1(Ωs)→ H1

∗ (Ωs) defined by Q∗ = Id−mean is a projection onto mean zero functions.

1.2.1 Trace spaces

Development of trace-related theory for Lipschitz domains and detailed definitions for the surface
differential operators∇Γ , curlΓ , curlΓ and divΓ can be found in [7], [8] and [10]. In this section, we
define the product trace spaces required for a variational treatment of theHodge–Laplace/Helmholtz
operator. The traces are adapted to the system of equations at hand by accounting for the varying
coefficients of (1.1.3a).

Based on the continuous and surjective extensions

γ : H1(Ω)→ H1/2(Γ ), [29, Thm. 4.2.1]
γn : H(div, Ω)→ H−1/2(Γ ), [21, Thm. 2.5, Cor. 2.8]
γτ : H(curl, Ω)→ H−1/2(divΓ , Γ ), [10, Thm. 4.1]
γt : H(curl, Ω)→ H−1/2(curlΓ , Γ ), [10, Thm. 4.1]

the traces previously introduced can also be extended by continuity to the relevant Sobolev spaces.
We denote the duality pairing between H1/2(Γ ) and H−1/2(Γ ) by 〈·, ·〉Γ , but use 〈·, ·〉τ for the
duality pairing between the trace spaces H−1/2(curlΓ , Γ ) and H−1/2(divΓ , Γ ) [10, Eq. 36].

The duality pairings enter Green’s formulas (+ for Ω = Ωs)

〈γ(P ), γn(W)〉Γ = ±
∫
Ω

div(W)P + W · ∇P dx, (1.2.2a)

〈γt(V), γτ (U)〉τ = ±
∫
Ω

U · curl (V)− curl (U) ·Vdx, (1.2.2b)

〈γt(V), γR(E)〉τ = ±
∫
Ω

curl curl E ·V − curl E · curl Vdx, (1.2.2c)

which hold for all P ∈ H1(Ω), W ∈ H(div, Ω), U,V ∈ H(curl, Ω) and E ∈ H(curl2, Ω).
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As explained in [15, Sec. 3], a theory of differential equations for the Hodge–Helmholtz/Laplace
problem in three dimensions entails partitioning our collection of traces into two dual pairs.
Accordingly, we now introduce the continuous and surjective mappings

T −D,ε : Hloc(curl, Ωs) ∩Hloc(ε;∇div, Ωs)→ HD(Γ ),

T +
D : Hloc(curl, Ω′) ∩Hloc(∇div, Ω′)→ HD(Γ ),

T −N,µ : Hloc(µ
−1; curl2, Ωs) ∩Hloc(ε; div, Ωs)→ HN(Γ ),

T +
N : Hloc(curl2, Ω′) ∩Hloc(div, Ω′)→ HN(Γ ),

defined by

T −D,ε(U) :=

(
γ−t (U)
γ−D,ε(U)

)
, T −N,µ(U) :=

(
γR,µ(U)
γ−n,ε(U)

)
,

T +
D (U) :=

(
γ+
t (U)

γ+
D,η(U)

)
, T +

N (U) :=

(
γR(U)
γn(U)

)
,

where

HD := H−1/2(curlΓ , Γ )×H1/2(Γ ),

HN := H−1/2(divΓ , Γ )×H−1/2(Γ ).

They admit continuous right-inverses, i.e. liftingmaps from the trace spaces intoX(∆,Ω) [15, Lem.
3.2].

In literature the pair of traces involved in TN is labelled as magnetic, while the pair in TD
is referred to as electric—simply because one recovers the magnetic field by taking the curl of
the potential U. However, our choice of subscripts is motivated by the analogy between this pair
of product traces and the classical Dirichlet and Neumann boundary conditions for second-order
elliptic BVPs.

The trace spaces HD and HN are put in duality using the sum of the inherited component-wise
duality parings. That is, for −→p = (p, q) ∈ HN and −→η = (η, ζ) ∈ HD, we define

〈−→p ,−→η 〉 := 〈p,η〉τ + 〈q, ζ〉Γ .

We indicate with curly brackets the average

{γ•} :=
1

2
(γ+
• + γ−• )

of a trace and with square brackets its jump

[γ•] := γ−• − γ+
•

over the interface Γ , • = R, D, t, τ , or n. Corresponding notation is used for the product traces.

Warning. Notice the sign in the jump [γ] = γ− − γ+, which is often taken to be the opposite in
literature.
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1.2.2 Boundary potentials

By exploiting the radiating fundamental solution

Gν(x) := exp
(
iν|x|

)
/4π|x|

for the scalar Helmholtz operator −∆ − ν2Id, it is shown in [15, Sec. 4.2] that a distributional
solution U ∈ L2(R3) such that U|Ωs ∈ X(∆,Ωs) and U|Ω′ ∈ Xloc(∆,Ω

′) of the homogeneous
(scaled) Hodge–Helmholtz/Laplace equation (1.1.3b) with constant coefficients η > 0, κ ≥ 0,
stated in the whole of R3 with radiation conditions at infinity as considered in Section 1.1, affords
a representation formula

U = SLκ · [TN(U)] +DLκ · [TD(U)] in R3\Γ. (1.2.3)

Letting κ̃ = κ/
√
n, the Hodge-Helmholtz single layer potential is explicitly given by

SLκ(

(
p
q

)
) = −Ψκ(p)−∇ψ̃k(divΓ (p)) +∇ψκ̃(q), (1.2.4)

where the Helmholtz scalar single-layer, vector single-layer and the regular potentials are written
individually for p ∈ H−1/2(divΓ , Γ ) and q ∈ H−1/2(Γ ) as

ψν(q)(x) :=

∫
Γ

q(y)Gν(x− y)dσ(y), x ∈ R3\Γ, (1.2.5a)

Ψν(p)(x) :=

∫
γ

p(y)Gν(x− y)dσ(y), x ∈ R3\Γ, (1.2.5b)

ψ̃κ(q)(x) :=

∫
Γ

q(y)
Gκ −Gκ̃

κ2
(x− y)dσ(y), x ∈ R3\Γ, (1.2.5c)

respectively. The expression (1.2.4) is derived with (1.2.5a)-(1.2.5c) understood as duality pairings.
However, if the essential supremum of p, q and divΓ (p) is bounded, then they can safely be
computed as improper integrals [15, Rmk. 4.2]. These classical potentials satisfy

−∆ψκ̃(q) = κ̃2ψκ̃(q), (1.2.6a)
−∆Ψκ(p) = κ2Ψκ(p), (1.2.6b)

−∆ψ̃κ(q) = ψκ(q)−
1

η
ψκ̃(q), (1.2.6c)

and the identity [31, Lem. 2.3]

divΨν(p) = ψν (divΓp) ∀p ∈ H−1/2(divΓ , Γ ). (1.2.7)

The mapping properties of ψν , Ψν ,∇ψκ̃ and ∇ψ̃κ are detailed in [15, Sec. 5].
Ultimately, we will resort to a Fredholm alternative argument to prove well-posedness of the

coupled system. It is therefore evident that the compactness properties of the boundary integral
operators introduced in the next Lemma will be extensively used both explicitly and implicitly—
notably through exploiting the results found in [15, Sec. 6].
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From [35, Lem. 3.9.8] and [11, Lem. 7], we know that for any ν ≥ 0, the following operators are
compact:

γ±(ψν − ψ0) :H−1/2(Γ )→ H1/2(Γ ), (1.2.8a)
γ±n (∇ψν −∇ψ0) :H−1/2(Γ )→ H−1/2(Γ ), (1.2.8b)

γ±t (Ψν − Ψ0) : H−1/2(divΓ , Γ )→ H−1/2(curlΓ , Γ ), (1.2.8c)
γ±n∇ψ̃ν :H−1/2(Γ )→ H−1/2(Γ ). (1.2.8d)

Compactness of the second boundary integral operator listed immediately entails compactness of

ν2γ±n∇ψ̃ν = γ±n (∇ψν −∇ψν̃) = γ±n (∇ψν −∇ψ0)− (γ±n (∇ψν̃ −∇ψ0))

by linearity. While it seems that blow-up occurs in ψ̃ν as ν → 0, ∇ψ̃ν happens to be an entire
function of ν that vanishes at ν = 0 [15, Sec. 4.1].
The Hodge–Helmholtz double layer potential is given for boundary data η ∈ H−1/2(curlΓ , Γ )

and ξ ∈ H1/2(Γ ) by

DLκ(

(
η
ξ

)
) := curlΨκ(η × n) + Υκ(ξ). (1.2.9)

We recognize in (1.2.9) the (electric) Maxwell double layer potential (c.f. [25, Sec. 4], [11, Eq. 28])
and the normal vector single-layer potential

Υκ(ξ) :=

∫
Γ

ξ(y)Gκ(x− y)n(y)dσ(y), x ∈ R3\Γ,

in which appears the matrix-valued fundamental solution

Gκ := GκId + κ−2∇2(Gκ −Gκ̃)

satisfying −∆ηGκ − κ2Gκ = δ0 Id exploited in [15] and detailed in [22, App. A]. This surface
potential satisfies

−∆ηΥκ(ξ) = κ2Υκ(ξ) (1.2.10)

and the identity [15, Sec.5.4] curlΥκ(ξ) = curlΨκ(ξn).
The mapping properties of the potentials curlΨκ(· × n) and Υκ are detailed in [15, Sec. 5].

1.2.3 Integral operators

In this section, we extend the analysis performed in [11,25] for the classical electric wave equation
to the boundary integral operators arising from Hodge–Helmholtz and Hodge–Laplace problems.

The well-known Caldéron identities are obtained from (1.2.3) upon taking the classical com-
pounded traces on both sides and utilizing the jump relations

[TD] · DLκ(−→η ) = −→η , [TN ] · DLκ(−→η ) = 0, −→η ∈ HD, (1.2.11a)
[TD] · SLκ(−→p ) = 0, [TN ] · SLκ(−→p ) = −→p , −→p ∈ HN , (1.2.11b)
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given in [15, Thm. 5.1]. The operator forms of the interior and exterior Caldéron projectors defined
onHD ×HN , which we denote P−κ and P+

κ respectively, enter the Caldéron identites:(
{TD} · DLk + 1

2
Id {TD} · SLk

{TN} · DLk {TN} · SLk + 1
2
Id

)
︸ ︷︷ ︸

=:P−κ

(
T −D U
T −N U

)
=

(
T −D U
T −N U

)
, (1.2.12a)

(
−{TD} · DLk + 1

2
Id −{TD} · SLk

−{TN} · DLk −{TN} · SLk + 1
2
Id

)
︸ ︷︷ ︸

=:P+
κ

(
T +
D Uext

T +
N Uext

)
=

(
T +
D Uext

T +
N Uext

)
. (1.2.12b)

Note that P−κ + P+
κ = Id and that the range of P+

κ coincides with the kernel of P−κ and vice-
versa [11, Sec. 5]. As a consequence of the jump relations (1.2.11a)-(1.2.11b), the representation
formula (1.2.3) and the existence of trace liftings, the pair of “magnetic" and “electric" traces
(−→η −→p )> ∈ HD ×HN is valid interior or exterior Cauchy data, if and only if it lies in the kernel
of P+

κ or P−κ respectively (c.f. [38, Lem. 6.18], [11, Thm. 8] and [15, Prop. 5.2]).
Inspecting equations (1.2.12a)-(1.2.12b) reveals that the Caldéron projectors share a common

structure. They can be written as

P−κ =
1

2
Id + Aκ and P+

κ =
1

2
Id− Aκ,

and where the Caldéron operator Aκ : HD ×HN → HD ×HN is given by

Aκ :=

(
ADD
κ AND

κ

ADN
κ ANN

κ

)
:=

(
{TD} · DLκ {TD} · SLκ
{TN} · DLκ {TN} · SLκ

)
. (1.2.13)

An analog of the operator matrix Ak was found convenient in the study of the boundary integral
equations of electromagnetic scattering problems [11, Sec. 6]. It is known from [15] that the
off-diagonal blocks ADN

κ and AND
κ of Aκ independently satisfy generalized Gårding inequalities

making them of Fredholm type with index 0. Injectivity holds when κ2 lies outside a discrete
set of “forbidden resonant frequencies” accumulating at infinity [15, Sec. 3]. More explanations
will be given in Section 1.3. In the static case κ = 0, the dimensions of ker

(
{TN} · SL0

)
and

ker
(
{TD} · DL0

)
agree with the zeroth and first Betti number of Γ , respectively [15, Sec. 7].

In the case of the classical electric wave equation, the boundary integral operators involved in
the Caldéron projectors enjoy a hidden symmetry: there exists a compact linear operator

Cκ : H−1/2(divΓ , Γ )→ H−1/2(divΓ , Γ )

such that
〈{γR}Ψκ(p),η〉τ = 〈p, {γt}Ψκcurl(η × n)〉τ + 〈Cκp,η〉τ (1.2.14)

for all p ∈ H−1/2(divΓ , Γ ) and η ∈ H−1/2(curlΓ , Γ ), cf. [25, Lem. 5.4] and [11, Lem. 6].
We will extend this result to the integral operators defined for the scaled Hodge–Helmholtz

equation to better characterize the structure of (1.2.13). The symmetry we are about to reveal in
the diagonal blocks ANN

κ and ADD
κ of the Caldéron projectors will be crucial in the derivation of

the main T-coercivity estimate of this work. It will be exploited for complete cancellation, up to
compact terms, of the operators lying on the off-diagonal of the block operator matrix associated
to the coupled variational system introduced in Section 1.3. The following lemmas are required.
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Lemma 1.1 There is a compact linear operator Cκ : H−1/2(Γ )→ H−1/2(Γ ) such that

〈{γn}∇ψκ̃(q), ξ〉Γ = −〈q, {η γD}Υκ(ξ)〉Γ + 〈Ckq, ξ〉Γ ,

for all q ∈ H−1/2(Γ ), ξ ∈ H1/2(Γ ).

Proof. This proof utilizes a strategy found in [25, Lem. 5.4] and [9, Thm. 3.9]. Let ρ > 0 be such
that Bρ is an open ball containing Ωs. We will indicate with a hat (e.g. γ̂) the traces taken over the
boundary ∂Bρ of that ball and use Green’s formula to compare the following terms.

On the one hand, using the scalar Helmholtz equation (1.2.6a) and recalling that κ̃ = κ/
√
η, we

have

〈η γ−D ∇ψκ̃(q), γ
−
n Υκ(ξ)〉Γ

=

∫
Ωs

η div
(
∇ψκ̃(q)

)
divΥk(ξ) + η∇div

(
∇ψκ̃(q)

)
· Υκ(ξ)dx

= −
∫
Ωs

κ2ψκ̃(q)divΥk(ξ)dx−
∫
Ωs

κ2∇ψκ̃(q) · Υκ(ξ)dx, (1.2.15)

and similarly,

〈η γ+
D∇ψκ̃(q), γ

+
n Υκ(ξ)〉Γ =

∫
Ω′∩Bρ

κ2ψκ̃(q) divΥk(ξ) +∇ψκ̃(q) · Υκ(ξ)dx

+〈η γ̂+
D∇ψκ(q), γ̂

+
n Υκ(ξ)〉∂Bρ .

On the other hand, using (1.2.6a) together with the scaled Hodge–Helmholtz equation (1.2.10), we
also have

〈 γ−n ∇ψκ̃(q), η γ−D Υκ(ξ)〉Γ

=

∫
Ωs

η div
(
∇ψκ̃(q)

)
divΥκ(ξ)dx +

∫
Ωs

η∇ψκ̃(q) · ∇divΥκ(ξ)dx

= −
∫
Ωs

κ2ψκ̃(q) divΥκ(ξ)dx +

∫
Ωs

∇ψκ̃(q) · curl curlΥκ(ξ)dx

−
∫
Ωs

κ2∇ψκ̃(q) · Υκ(ξ)dx . (1.2.16)

Equations (1.2.15) and (1.2.16) together yield

〈 γ−n ∇ψκ̃(q), η γ−D Υκ(ξ)〉Γ = 〈η γ−D ∇ψκ(q), γ
−
n Υκ(ξ)〉Γ

+

∫
Ωs

∇ψκ̃(q) · curl curlΥκ(ξ)dx .

Similarly, the terms involving the exterior traces satisfy

〈γ+
n∇ψκ̃(q), η γ+

DΥκ(ξ)〉Γ = 〈η γ+
D∇ψκ(q), γ

+
n Υκ(ξ)〉Γ
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− 〈η γ̂+
D∇ψκ(q), γ̂

+
n Υκ(ξ)〉∂Bρ

−
∫
Ω′∩Bρ

∇ψκ̃(q) · curl curlΥκ(ξ)dx

+ 〈γ̂+
n∇ψκ̃(q), η γ̂+

DΥκ(ξ)〉∂Bρ .

From the first row of the jump properties [15, Sec. 5]

[γD]∇ψκ̃(q) = 0, [γn]Υκ(ξ) = 0, (1.2.17a)
[γD]Υκ(ξ) = ξ/η, [γn]∇ψκ̃(q) = q, (1.2.17b)

we obtain, by gathering the above results, integrating by parts again and using that curl ◦ ∇ ≡ 0,

〈γ−n∇ψκ̃(q), η γ−DΥκ(ξ)〉Γ

= 〈η γ+
D∇ψκ(q), γ

+
n Υκ(ξ)〉Γ +

∫
Ωs

κ2∇ψκ̃(q) · Ψκ(ξn)dx

= 〈γ+
n∇ψκ̃(q), η γ+

DΥκ(ξ)〉Γ +

∫
Bρ

∇ψκ̃(q) · curl curlΥκ(ξ)dx

+〈η γ̂+
D∇ψκ(q), γ̂

+
n Υκ(ξ)〉∂Bρ − 〈γ̂+

n∇ψκ̃(q), η γ̂+
DΥκ(ξ)〉∂Bρ .

= 〈γ+
n∇ψκ̃(q), η γ+

DΥκ(ξ)〉Γ + 〈γt∇ψκ̃(q), γRΥκ(ξ)〉∂Bρ

+〈η γ̂+
D∇ψκ(q), γ̂

+
n Υκ(ξ)〉∂Bρ − 〈γ̂+

n∇ψκ̃(q), η γ̂+
DΥκ(ξ)〉∂Bρ . (1.2.18)

Fortunately, when restricted to domains away from Γ , the potentials are C∞-smoothing. Hence,
their evaluation on ∂Bρ, the highlighted terms in (1.2.18), induce compact operators. This shows
that for some compact operator Cκ : H−1/2(Γ )→ H−1/2(Γ ),

〈γ−n∇ψκ̃(q), η γ−DΥκ(ξ)〉Γ = 〈γ+
n∇ψκ̃(q), η γ+

DΥκ(ξ)〉Γ + 〈Cκq, ξ〉Γ . (1.2.19)

The jump identities (1.2.17b) for the potentials yield formulas of the form {γ•}K = γ±• K ±
(1/2)Id, where • = n, D and K = ∇ψκ̃, Υκ accordingly. Substituting each one-sided trace
involved in the two leftmost duality pairings of (1.2.19) for the integral operators using these
equations completes the proof. ut

Lemma 1.2 For all p ∈ H−1/2(divΓ , Γ ) and ξ ∈ H1/2(Γ ), we have

〈p, γ±t Υκ(ξ)〉τ = 〈γ±n Ψκ(p), ξ〉Γ + 〈γ±n∇ψ̃κ(divΓ (p)), ξ〉Γ .

Proof. In the following calculations, the boundary integrals are to be understood as duality pairings.
Since p ∈ L2

t (Γ ) is a tangent vector field lying in the image of γt, the tangential trace operator can
safely be dropped in expanding these integrals using the definitions of Subsection 1.2.2. On the one
hand, this leads to

〈p, γ±t Υκ(ξ)〉τ =

∫
Γ

∫
Γ

ξ(y)p(x) · (Gκ(x− y)n(y))dσ(y)dσ(x)
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=

∫
Γ

∫
Γ

ξ(y)Gκ(x− y)p(x) · n(y)dσ(y)dσ(x)

+

∫
Γ

∫
Γ

ξ(y)p(x) · (∇2G̃κ(x− y)n(y))dσ(y)dσ(x),

where G̃κ := (Gκ −Gκ̃)/κ
2.

On the other hand, the same observation implies that 〈p,∇ΓγV)〉τ = 〈p, γ∇V)〉τ for any
V ∈ H1

loc(R3), and thus that

〈γ±n∇ψ̃κ(divΓ (p)), ξ〉Γ =

∫
γ

∫
γ

ξ(y)n(y) · ∇G̃κ(y − x)divΓ (p(x))dσ(y)dσ(x)

= −
∫
γ

∫
γ

ξ(y)p(x)∇x(n(y) · ∇G̃κ(y − x))dσ(y)dσ(x)

=

∫
γ

∫
γ

ξ(y)p(x)(∇2G̃κ(x− y)n(y))dσ(y)dσ(x),

where we have remembered that the tangential divergence defined in Subsection 1.2.1 was adjoint
to the negative surface gradient. Recognizing the Helmholtz vector single-layer potential in the first
expression on the right hand side concludes the proof. ut

Proposition 1.1 There exists a compact operator Cκ : HN → HN such that

〈ANN
κ (−→p ),−→η 〉 = −〈−→p ,ADD

κ (−→η )〉+ 〈Ck−→p ,−→η 〉

for all −→η := (η, ξ)> ∈ HD and −→p := (p, q)> ∈ HN .

Proof. Recall that ANN
κ = {TN} · SLκ and ADD

κ = {TD} · DLκ. Since curl ◦ ∇ = 0,
〈{γR}∇ψk̃(q),η〉τ = 0 and 〈{γR}∇ψ̃k(divΓ (p)),η〉τ = 0; therefore,

〈{TN} · SLk(−→p ),−→η 〉 = 〈−{γR}Ψκ(p),η〉τ + 〈{γn}∇ψκ̃(q), ξ〉Γ
− 〈{γn}Ψκ(p), ξ〉Γ − 〈{γn}∇ψ̃κ(divΓ (p)), ξ〉Γ . (1.2.20)

Since div ◦ curl = 0, we also have {γD} curlΨκ = 0. Hence, we need to compare (1.2.20) with

〈−→p , {TD} · DLk(−→η )〉 = 〈p, {γt}curlΨk(η × n)〉τ + 〈q, {η γD}Υκ(ξ)〉Γ
+ 〈p, {γt}Υκ(ξ)〉τ .

The desired result follows by combining the known symmetry result from (1.2.14) with Lemma 1.1
and Lemma 1.2. ut

As consequence of Proposition 1.1, we have

(P+
κ )∗11=̂(P−κ )22,

where =̂ is used to indicate equality up to compact terms.
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1.3 Coupled problem

In this section, we derive a variational formulation for the system (1.1.3a)-(1.1.4b) which couples
a mixed variational formulation defined in the interior domain to a boundary integral equation of
the first kind that arises in the exterior domain.

As proposed in [3], we introduce a new variable P = −div(ε(x)U) into equation (1.1.3a)
to dispense with trial spaces contained in H(curl, Ωs) ∩H(div, Ωs). Applying Green’s formula
(1.2.2c) in Ωs, we obtain∫

Ωs

µ−1 curl U · curl Vdx +

∫
Ωs

ε∇P ·Vdx

−ω2

∫
Ωs

εU ·Vdx + 〈γ−R,µU, γ
−
t V〉τ = (J,V)Ωs ,∫

Ωs

P Qdx−
∫
Ωs

εU · ∇Qdx + 〈γ−n,εU, γ−Q〉Γ = 0

(1.3.1)

for all V ∈ H(curl, Ωs), Q ∈ H1(Ωs). The volume integrals in these equations enter the interior
bi-linear form

Bκ(

(
U
P

)
,

(
V
Q

)
) :=

∫
Ωs

µ−1 curl U · curl Vdx +

∫
Ωs

ε∇P ·Vdx

+

∫
Ωs

P Qdx−
∫
Ωs

εU · ∇Qdx− ω2

∫
Ωs

εU ·Vdx (1.3.2)

related to the one supplied for the Hodge-Laplace operator in [4, Sec. 3.2]. We aim to couple (1.3.2)
with the BIEs replacing the PDEs in Ω′. We use the transmission conditions (1.1.4a)-(1.1.4b) to
couple (1.3.1) to the variational equation

Bκ(

(
U
P

)
,

(
V
Q

)
) +

〈
T +
N (Uext),

(
γ−t V
γ−Q

)〉
= G (

(
V
Q

)
),

which involves a functional

G ((VQ)>) := (J,V)Ωs − 〈(gR gn)>, (γ−t V γ−Q)>〉

bounded over the test space. The exterior Calderón projector can be used to express the so-called
Dirichlet-to-Neumann operator in two different ways.

1. Introducing the jump conditions into the first exterior Calderón identity given on the first line
of (1.2.12b) along with a new unknown −→p = T +

N (Uext) yields a variational system

Bκ(

(
U
P

)
,

(
V
Q

)
) +

〈−→p ,(γ−t V
γ−Q

)〉
= G (

(
V
Q

)
),〈

({TD} · DLκ +
1

2
Id)T −D,ε(U),−→a

〉
+
〈
{TD} · SLκ(−→p ),−→a

〉
= R(−→a ),

(1.3.3)
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for all (VQ)> ∈ H(curl, Ωs)×H1(Ωs) and −→a ∈ HN , resembling the original Johnson-Nedélec
coupling [6]. The new functional appearing on the right hand side of (1.3.3) is defined as

R(−→a ) := 〈({TD} · DLκ +
1

2
Id)(ζt, ζD)>,−→a 〉. (1.3.4)

2. Following the exposition of Costabel in [18], we also retain the second exterior Calderón
identity —in which we again introduce the jump conditions to eliminate the dependence on the
exterior solution— and insert the resulting equation in (1.3.3) to obtain the symmetrically coupled
problem. Again, the right hand side of our system of equations has to be modified to include a new
bounded linear functional

F (
−→
V) := G (V ) + 〈−{TN} · DLκ(ζt, ζD)>, (γ−t V, γ−Q)>〉. (1.3.5)

We arrive at the following variational problem.

Find
−→
U := (U, P )> ∈ H(curl, Ωs)×H1(Ωs) and −→p ∈ HN such that

Bκ(
−→
U,
−→
V) +

〈
(−ANN

κ +
1

2
Id)−→p ,

(
γ−t V
γ−Q

)〉
+
〈
− ADN

κ

(
γ−t U
−γ−(P )

)
,

(
γ−t V
γ−Q

)〉
= F (

−→
V)

〈
(ADD

κ +
1

2
Id)

(
γ−t U
−γ−(P )

)
,−→a
〉

+
〈
ADD
κ (−→p ),−→a

〉
= R(−→a ),

(1.3.6)

for all
−→
V := (V, Q)> ∈ H(curl, Ωs)×H1(Ωs), −→a ∈ HN .

Remark 1.6 Part of the justification for usingmixed formulations for problems involving the Hodge–
Helmholtz/Laplace operator is the need to avoid trial spaces contained inH(curl, Ωs)∩H(div, Ωs),
because the latter doesn’t allow for viable discretizations using finite elements [4]. While from
(1.3.3) the issue seems to reappear after using the Caldéron identities, the benefits of the introduced
new unknown P ∈ H1(Ωs) in the mixed formulation conveniently carries over to the coupled
system (1.3.6) upon substituting −γ−(P ) in place of γD,ε(U) in T −D,ε(U).

In the following proposition, we call forbidden resonant frequencies the interior “Dirichlet" (or
electric) eigenvalues of the scaled Hodge-Laplace operator with constant coefficient η = µ0ε

2
0. That

is, κ2 is a forbidden frequency if there exists a non-trivial solution U 6= 0 in X(∆,Ω) to

∆ηU− κ2U = 0, in Ωs,

T −D U = 0, on Γ.

We refer the reader to [15], where the spectrum of the scaled Hodge-Laplace operator is completely
characterized. See for e.g. [36], [35], [13], [19] and [17] for an overview of the issue of spurious
resonances in electromagnetic and acoustic scattering models based on integral equations.
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Proposition 1.2 Suppose that κ2 ∈ C avoids forbidden resonant frequencies. By retain-
ing an interior solution U ∈ H(curl, Ωs) and producing Uext ∈ Xloc(∆,Ω

′) using the
representation formula (1.2.3) for the obtained Cauchy data (−→p , T −D,εU − (ζt, ζD)>) with
γ−D,ε(U) = −γ−(P ), a solution to (1.3.6) solves the transmission system (1.1.3a)-(1.1.4b) in
the sense of distribution.

Proof. The proof follows the approach in [25, Lem. 6.1]. Since D(Ωs)
3 × C∞0 (Ωs) is a subset

of the volume test space, any solution to the problem (1.3.6) solves (1.1.3a) in Ωs in the sense
of distribution. It follows that (1.3.1) holds for all admissible

−→
V , which reduces (1.3.6) to the

variational system

0 =
〈

(ADD
κ +

1

2
Id)
−→
ξ ,−→η

〉
+
〈
{AND

κ (−→p ),−→η
〉

0 = −
〈−→q ,(γ−t V

γ−Q

)〉
+
〈

(−ANN
κ +

1

2
Id)−→p ,

(
γ−t V
γ−Q

)〉
−
〈
ADN
κ (
−→
ξ ),

(
γ−t V
γ−Q

)〉
where −→q := T −N,µ(U)− (gR, gn)> and

−→
ξ := T −D,ε(U)− (ζt, ζD)>.

We recognize in the equivalent operator equation(
ANN
κ + 1

2
Id ADN

κ

AND
κ ADD

κ + 1
2
Id

)
︸ ︷︷ ︸

P−κ

(−→p
−→
ξ

)
=

(−→p −−→q
0

)
(1.3.7)

the interior Caldéron projector (1.2.12a) whose image is the space of valid Cauchy data for the
homogeneous (scaled) Hodge–Laplace/Helmholtz interior equation with constant coefficient η. In
particular, −→p −−→q = T −N (Ũ) for some vector-field Ũ ∈ X(∆,Ωs) satisfying

∆ηŨ− κ2Ũ = 0, in Ωs

T −D (Ũ) = 0, on Γ.
(1.3.8)

If κ2 6= 0, we rely on the hypothesis that κ2 doesn’t belong to the set of forbidden resonant
frequencies to guarantee injectivity of the above boundary value problem [15, Sec. 3] [22, Sec.
3]. Otherwise, the second Betti number of Ωs being zero implies that zero is not a Dirichlet
eigenvalue [2, Sec. 4.5.3]. We conclude that Ũ = 0 is the unique trivial solution to (1.3.8).
Therefore, for the right hand side of (1.3.7) to exhibit valid Neumann data, it must be that−→p = −→q .
Now, the null space of the interior Caldéron projector P−κ coincides with valid Cauchy data

for the exterior boundary value problem (1.1.3b) complemented with the radiation conditions at
infinity introduced in Subsection 1.1. In particular (−→p ,

−→
ξ )> is valid Cauchy data for that exterior

Hodge–Helmholtz or Hodge–Laplace problem andUext = SLκ(−→p )+DLκ(
−→
ξ ) solves (1.1.3b) and

(1.1.4b) by construction. The fact that −→p = T +
N (Uext) solves (1.1.4a) is confirmed by the earlier

observation that −→p = −→q . ut
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Corollary 1.1 Suppose that κ2 ∈ C avoids forbidden resonant frequencies. A solution pair
(
−→
U, −→p ) to the coupled problem (1.3.6) is unique.

Remark 1.7We show in [36], where the kernel of the coupled problem is completely characterized,
that when κ2 happens to be a resonant frequency, the interior solution U remains unique. This is
no longer true for −→p however, which is in general only unique up to Neumann traces of interior
Dirichlet eigenfunctions of ∆η associated to the eigenvalue κ2. Fortunately, this kernel vanishes
under the exterior representation formula obtained from (1.2.3).

1.4 Space decompositions

Using the classical Hodge decomposition, a general inf-sup condition for Hodge–Laplace problems
posed on closedHilbert complexeswas derived in [4].However, as orthogonalitywon’t be important,
we rather opt for the enhanced regularity of the regular decomposition proposed in [11] and
[15]. There, a continuous projection Z : H(curl, Ωs) → H1(Ωs) is defined such that ker(Z) =
ker(curl) ∩ H(curl, Ωs) and curl(Z(U)) = curl(U). From Rellich’s theorem, this operator is
compact as amappingZ : H(curl, Ωs)→ L2(Ωs). Therefore, a stable direct regular decomposition

H(curl, Ωs) = X(curl, Ωs)⊕N(curl, Ωs). (1.4.1)

is provided by defining the subspaces

X(curl, Ωs) := Z(H(curl, Ωs)),

N(curl, Ωs) := ker(curl) ∩H(curl, Ωs).

A decomposition with similar properties can be designed for the space H−1/2(divΓ , Γ ) with
a projection operator ZΓ : H−1/2(divΓ , Γ ) → H

1/2
R (Γ ) satisfying ker(ZΓ ) = ker(divΓ ) ∩

H−1/2(divΓ , Γ ) and divΓ (ZΓ (p)) = divΓ (p).
As before, the extra regularity of the range, in this case provided by [25, Lem. 3.2], leads to

compactness of the mapping ZΓ : H−1/2(divΓ , Γ )→ H
−1/2
R (Γ ).

The subspaces

X(divΓ , Γ ) := ZΓ (H−1/2(divΓ , Γ )),

N(divΓ , Γ ) := ker(divΓ ) ∩H−1/2(divΓ , Γ ),

provide a stable direct regular decomposition

H−1/2(divΓ , Γ ) = X(divΓ , Γ )⊕N(divΓ , Γ ). (1.4.2)

In the following, we may simplify notation by using U⊥ := ZU, p⊥ := ZΓp, U0 := (Id− Z)U
and p0 := (Id− ZΓ )p.

A very useful property of this pair of decompositions is stated is shown in [25, Lem. 8.1]
and [25, Lem. 8.2]: The operators
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(γ−t )′ ◦ ({γR}Ψκ +
1

2
Id) : N(divΓ , Γ )→ N(curl, Ωs)

′, (1.4.3a)

and
(γ−t )′ ◦ ({γR}Ψκ +

1

2
Id) : X(divΓ , Γ )→ X(curl, Ωs)

′ (1.4.3b)

are compact.
Another benefit of this pair of regular decompositions will become explicit in the poof of Lemma

1.4 found in the next section.
It follows from [15, Lem. 6.4] that divΓ : X(divΓ , Γ )→ H

−1/2
∗ (Γ ) is a continuous bijection. The

bounded inverse theorem guarantees the existence of a continuous inverse (divΓ )† : H
−1/2
∗ (Γ ) →

X(divΓ , Γ ) such that

(divΓ )† ◦ divΓ = Id
∣∣∣
X(divΓ ,Γ )

, divΓ ◦ (divΓ )† = Id
∣∣∣
H
−1/2
∗ (Γ )

.

1.5 Well-posedness of the coupled variational problem

Weuse the direct decompositions introduced in Section 1.4 to prove that the bilinear form associated
to the coupled system (1.2) of Section 1.3 satisfies a generalized Gårding inequality.

The coupled variational problem (1.3.6) translates into the operator equation

Gκ

(−→
U
−→p

)
=

(
F
R

)
∈ (H(curl, Ωs)×H1(Ω))′ × (HN)′.

Letting Bκ : H(curl, Ωs)×H1(Ωs)→ (H(curl, Ωs)×H1(Ωs))
′ be the operator

〈Bκ(
−→
U)
−→
V〉 := Bκ(

−→
U,
−→
V)

associated with the Hodge–Helmholtz/Laplace volume contribution to the system, the operator

Gκ : (H(curl, Ωs)×H1(Ω))×HN → (H(curl, Ωs)×H1(Ω))′ × (HN)′

can be represented by the block operator matrix

Gκ =


Bκ−

(
(γ−t )′

(γ−)′

)
· ADN

κ ·

(
γ−t
−γ−

) (
(γ−t )′

(γ−)′

)
· (P+

κ )22

(P−κ )11 ·

(
γ−t
−γ−

)
AND
κ

 ,

shown here in “variational arrangement".
The symmetry revealed in Subsection 1.2.3 makes explicit much of the structure of the above

operator. We have introduced colors to better highlight the contribution of each individual block in
the following sections.
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Our goal is to design an isomorphism X of the test space and resort to compact perturbations
of Gκ ◦ X−1 to achieve an operator block structure with diagonal blocks that are elliptic over the
splittings of Section 1.4 and off-diagonal blocks that fit a skew-symmetric pattern. Stability of the
coupled system can then be obtained from the next theorem. An overline indicates component-wise
complex conjugation.

Theorem 1.1 ( [11, Thm. 4]) If a bilinear form a : V × V → C on a reflexive Banach space V is
T-coercive: ∣∣a(u,Xu) + c(u, u)

∣∣ ≥ C‖u‖2
V ∀u ∈ V, (1.5.1)

with C > 0, c : V × V → C compact and X : V → V an isomorphism of V , then the operator
A : V → V ′ defined by A : u 7→ a(u, ·) is Fredholm with index 0.

The authors of [9] refer to (1.5.1) as “Generalized Gårding inequality", because∣∣a(u,Xu)
∣∣ ≥ C‖u‖2

V −
∣∣c(u, u)

∣∣ ∀u ∈ V,

generalizes the classical Gårding inequality for a bilinear form b associated with uniformly elliptic
operator of even order 2`: ∃C2 ≥ 0, C1 > 0 such that

b(u, u) ≥ C1‖u‖2
H`(Ω) − C2‖u‖L2(Ω) ∀u ∈ H`

0(Ω).

Assuming that (1.5.1) holds with X = Id, a simple proof of the stability estimate ‖u‖V ≤ C‖f‖V ′ ,
obtained for the unique solution of the operator equation Au = f when A is injective is given
in [38, Thm. 3.15]. A proof of the general case can be deduced from [23]. T-coercivity theory
is a reformulation of the Banach-Necas-Babuska theory. The former relies on the construction of
explicit inf-sup operators at the discrete and continuous levels, whereas the later develops on an
abstract inf-sup condition [14].

In deriving the following results, it will be convenient to denote
−→
U := (U, P )> ∈ H(curl, Ωs)×

H1(Ω) and −→p := (p, q)> ∈ HN . We indicate with a hat equality up to a compact perturbation
(e.g. =̂).

1.5.1 Space isomorphisms

In this section, we take up the challenge of finding a suitable isomorphismX. We build it separately
for the function spaces in Ωs and on the boundary Γ . Crucial hints are offered by the construction
of the sign-flip isomorphism for the classical electric wave equation in [11].

We start with devising an isomorphism Ξ of the volume function spaces and show that the
upper-left diagonal block of Gκ satisfy a generalized Gårding inequality.

Under the assumption that the first Betti number of Ωs is zero, there exists a bijective “scalar
potential lifting" S : N(curl, Ωs) → H1

∗ (Ωs) satisfying ∇S(U) = U. The Poincaré-Friedrichs
inequality guarantees that this map is continuous.

Notice that since it also follows from the Poincaré-Friedrichs inequality that ∇ : H1
∗ (Ωs) →

N(curl, Ωs) is injective, S ◦ ∇ : H1(Ωs) → H1
∗ (Ωs) is a bounded projection onto the space of

Lebesgue measurable functions having zero mean. Its nullspace consists of the constant functions
in Ωs.
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Proposition 1.3 For any θ > 0 and β > 0, the bounded linear operator Ξ : H(curl, Ωs) ×
H1(Ωs)→ H(curl, Ωs)×H1(Ωs) defined by

Ξ(
−→
U) :=

(
U⊥ −U0 + β∇P

−θ(S(U0) + βmean(P ))

)
,

−→
U = (U, P )>,

has a continuous inverse. In other words, Ξ is an isomorphism of Banach spaces.

Proof. By showing that Ξ is a bijection, the theorem follows as a consequence of the bounded
inverse theorem.

Let (V Q)> ∈ H(curl, Ωs) × H1(Ωs). Since ∇Q ∈ N(curl, Ωs), we immediately have
Z(V⊥ − θ−1∇Q) = V⊥ and (Id − Z)(V⊥ − θ−1∇Q) = −θ−1∇Q. Hence, relying on the re-
sulting observation that

∇S((V⊥ − θ−1∇Q)0) = −θ−1∇Q

and exploiting that mean(H1
∗ (Ωs)) = {0}, we have

Ξ(

(
V⊥ − θ−1∇Q

β−1(S(V0)− θ−1Q)

)
) =

(
V

S(∇Q) + mean(Q)

)
. (1.5.2)

SinceH1(Ωs) decomposes into the stable direct sum ofH1
∗ (Ωs) and the space of constant functions

in Ωs, (1.5.2) shows that Ξ is surjective.
Now, suppose that Ξ(

−→
V) = Ξ(

−→
U). Then, we have

U0 −V0 = ∇S(U0 −V0) = β∇(mean(Q− P )) = 0.

Since the considerations of Section 1.4 readily yield that V⊥ = U⊥, we conclude that V = U. In
turn, it follows that ∇P = ∇Q and mean(P ) = mean(Q). Therefore, Ξ is injective. ut

We now turn to the design of an isomorphism for the Neumann trace space HN and prove that
the lower-right block AND

κ of Gκ satisfies a generalized Gårding inequality.

Proposition 1.4 For any τ > 0 and λ > 0, the bounded linear operator ΞΓ : HN → HN defined
by

ΞΓ (−→p ) :=

(
p⊥ − p0 − λ(divΓ )†Q∗q
−τ(divΓ (p) + λmean(q))

)
, −→p = (p, q)>,

has a continuous inverse. In other words, ΞΓ is an isomorphism of Banach spaces.

Proof. We proceed as in proposition 1.3. Since (divΓ )†Q∗q ∈ X(divΓ , Γ ), we have ZΓ (ΞΓ
1 (−→p )) =

p⊥ − (divΓ )†Q∗q. Using that mean ◦ divΓ = 0 and (divΓ )†divΓp = p⊥, we evaluate

ΞΓ (

(
−p0 − τ−1(divΓ )†Q∗q
λ−1(−divΓ (p)− τ−1q)

)
) =

(
p0 + p⊥

Q∗q + mean(q)

)
.

This shows that ΞΓ is surjective.
Suppose thatXΓ (−→p ) = XΓ (−→a ). It is immediate that p0 = a0. On the one hand, we obtain from

XΓ
1 (−→p ) = XΓ

1 (−→a ) that
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p⊥ − a⊥ = λ(divΓ )†(Q∗q − Q∗b). (1.5.3)

On the other hand, XΓ
2 (−→p ) = XΓ

2 (−→a ) implies that

divΓ (p− a) = λmean(q − b). (1.5.4)

Relying on the fact that divΓ = divΓ ◦ ZΓ again, combining (1.5.3) and (1.5.4) yields

Q∗q + mean(q) = Q∗b+ mean(b).

Evidently, (1.5.3) then also guarantees that p⊥ = a⊥. We can finally conclude that XΓ is injective
and thus the result follows from the bounded inverse theorem. ut

In the following, we will write ΞΓ
1 and ΞΓ

2 for the components of the isomorphism of the trace
space.

1.5.2 Main result

The main result of this work, stated in Theorem 1.2, asserts that the operatorGκ associated with the
coupled system (1.3.6) is well-posed when κ2 lies outside the discrete set of forbidden frequencies
described in [15]. It relies on two propositions, whose proofs are postponed until the end of Section
1.5.

The first claims that the block diagonal of Gκ (as a sum of block operators) is T-coercive.

Proposition 1.5 For any frequency ω ≥ 0, there exist a compact operator K : H(curl, Ωs) ×
H1(Ωs)×HN → H(curl, Ωs)×H1(Ωs)×HN , a positive constant C > 0 and parameters θ > 0
and τ > 0, possibly depending on Ωs, ε, µ, κ and ω, such that

Re

〈
diag(Gκ)

(−→
U
−→p

)
,

(
Ξ
−→
U

ΞΓ−→p

)〉
+
〈

K

(−→
U
−→p

)
,

(−→
U
−→
p

)〉
≥ C(‖U‖2

H(curl,Ωs) + ‖P‖2
H1(Ωs)

+ ‖−→p ‖2
HN )

for all
−→
U := (U P )> ∈ H(curl, Ωs)×H1(Ωs) and −→p ∈ HN .

The proof of this proposition will rely on several steps: Lemma 1.3, Lemma 1.4 and Lemma 1.5.
The second proposition states that the off-diagonal blocks are compact operators. The proof of

that fact relies on definitions and results that belong to the next technical section. It will materialize
as the last piece of the puzzle that completes the proof of the T-coercivity of Gκ.

Proposition 1.6 For any frequency ω ≥ 0, there exists, for a suitable choice of τ , β, θ and λ, a
continuous compact endomorphism K of the space H(curl, Ωs)×H1(Ωs)×HN such that

Re

〈
(Gκ − diag(Gκ))

(−→
U
−→p

)
,

(
Ξ
−→
U

ΞΓ−→p

)〉
=
〈

K

(−→
U
−→p

)
,

(−→
U
−→
p

)〉
. (1.5.5)
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The main result immediately follows from the two previous propositions.

Theorem 1.2 For anyω ≥ 0, there exists an isomorphismXκ of the trial spaceH(curl, Ωs)×
H1(Ωs)×HN , and compact operatorK : H(curl, Ωs)×H1(Ωs)×HN → (H(curl, Ωs)×
H1(Ωs))

′ ×H′N such that

Re

〈
(Gκ + K)

(−→
U
−→p

)
,X

(−→
U
−→
p

)〉
≥ C(‖U‖2

H(curl,Ωs) + ‖P‖2
H1(Ωs)

+ ‖−→p ‖2
HN )

for some positive constant C > 0.

Proof. The proof will amount to the validation that the choices of parameters in the previous
propositions 1.5 and 1.6 are compatible. ut

The following corollary is immediate upon applying Theorem 1.1.

Corollary 1.2 The system operator Gk : H(curl, Ωs)×H1(Ωs)×HN → (H(curl, Ωs)×
H1(Ωs))

′ ×H′N associated with the variational problem (1.3.6) is Fredholm of index 0.

Injectivity, guaranteed when κ2 avoids resonant frequencies by corollary 1.1, yields well-
posedness.

1.5.3 T-Coercivity of the diagonal blocks

Equipped with the isomorphism Ξ , let us now study coercivity of the bilinear form Bκ defined in
(1.3.2) and associated to the Hodge–Helmholtz/Laplace operator.

Lemma 1.3 For any frequency ω ≥ 0 and parameter β > 0, there exist a positive constant C > 0
and a parameter θ > 0, possibly depending onΩs, µ, ε and ω, and a compact bounded sesqui-linear
form K defined over H(curl, Ωs)×H1(Ωs), such that

Re(Bκ(
−→
U, Ξ

−→
U)− K(

−→
U,
−→
U)) ≥ C(‖U‖2

H(curl,Ωs) + ‖P‖2
H1(Ωs)

)

for all
−→
U := (U, P )> ∈ H(curl, Ωs)×H1(Ωs).

Proof. As curl(U0) = 0, curl(∇P ) = 0, and∇ ◦mean = 0, we evaluate

Bκ(

(
U
P

)
,

(
U
⊥ −U

0
+ β∇P

−θ(S(U
0
) + βmean(P ))

)
)

= (µ−1curl(U⊥), curl(U⊥))Ωs + (ε∇P,U⊥)Ωs − (ε∇P,U0)Ωs

+ β(ε∇P,∇P )Ωs + θ(εU⊥,U0)Ωs + θ(εU0,U0)Ωs
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− ω2(εU⊥,U⊥ −U0 + β∇P )Ωs − ω2(εU0,U⊥) + ω2(εU0,U0)

− βω2(εU0,∇P )− (P, θS(U0))Ωs − (P, θβmean(P ))Ωs .

Upon application of the Cauchy-Schwartz inequality, the bounded sesqui-linear form

K(
−→
U,
−→
U) := (ε∇P,U⊥)Ωs − (P, θS(U0))Ωs + θ(εU⊥,U0)Ωs

− ω2(εU0,U⊥)Ωs − ω2(εU⊥,U⊥ −U0 + β∇P )Ωs
− (P, θβmean(P ))Ωs

is shown to be compact by compactness of Z and the Rellich theorem. Using Young’s inequality
twice with δ > 0, we estimate

Re(Bκ(
−→
U, Ξ

−→
U)− K(

−→
U,
−→
U))

≥ µ−1
max ‖curl U⊥‖2

Ωs + (εmin(θ + ω2)− δ εmax(1 + βω2))‖U0‖2
Ωs

+ Re(εmin β −
1

δ
εmax (1 + βω2))‖∇P‖2

Ωs .

The operator curl : Z(H(curl, Ω)) → L2(Ωs) is a continuous injection, hence since its image is
closed in L2(Ωs), it is also bounded below. Hence, for any β > 0, choose δ > 0 large enough, then
θ > 0 accordingly large, and the desired inequality follows. ut

The complex inner products

(a, b)−1/2 :=

∫
Γ

∫
Γ

G0(x− y)a(x) b(y)dσ(x)dσ(y),

(a,b)−1/2 :=

∫
Γ

∫
Γ

G0(x− y)a(x) · b(y)dσ(x)dσ(y),

defined overH−1/2(Γ ) and H−1/2(divΓ , Γ ) respectively, are positive definite Hermitian forms and
they induce equivalent norms on the trace spaces [9, Sec. 4.1]. Combined with the stability of the
decomposition introduced in Section 1.4, this observation also allows us to conclude that

a 7→ ‖divΓ (a)‖−1/2 + ‖(Id− P Γ ) a‖−1/2

also defines an equivalent norm in H−1/2(divΓ , Γ ).
Let us denote the two components of the isomorphism Ξ by

Ξ1(
−→
U) := U⊥ −U0 +∇P, Ξ2(

−→
U) := −θ(S(U0) + mean(P )).

We now derive an estimate similar to the one found in Lemma 1.3 that completes the proof of the
coercivity of the upper-left diagonal block of Gκ.

Lemma 1.4 For any frequency ω ≥ 0 and parameter β > 0, there exist a positive constant C > 0
and a parameter θ > 0, possibly depending on Ωs, µ, ε and κ, and a compact linear operator
K : H(curl, Ωs)×H1(Ωs)→ H(curl, Ωs)×H1(Ωs) such that
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Re

(〈
−ADN

κ

(
γ−t U
−γ−(P )

)
,

γ−t Ξ1

−→
U

γ−Ξ2

−→
U

〉

+
〈
K

(
γ−t U
−γ−(P )

)
,

γ−t Ξ1

−→
U

γ−Ξ2

−→
U

〉) ≥ C‖

(
γ−t U
γ−(P )

)
‖2
HD(Ωs)

for all
−→
U := (U P )> ∈ H(curl, Ωs)×H1(Ωs).

Proof. The jump condition (1.2.11a) yield {TN} · DLκ = TN · DLκ. We deduce from [15, Sec.
6.4] that, 〈

− TN · DLκ

(
γ−t U
−γ−(P )

)
,

(
γ−t Ξ1

−→
U

γ−Ξ2

−→
U

)〉
=̂(divΓ (n× γ−t U)), divΓ (n× γ−t Ξ1

−→
U)))−1/2

− κ2(n× γ−t U,n× γ−t Ξ1

−→
U)−1/2 + (n× γ−t U, curlΓ (γ−Ξ2

−→
U))−1/2

− (n× γ−t Ξ1

−→
U, curlΓ (γ−(P )))−1/2

= (divΓ (γ−τ U)), divΓ (γ−τ Ξ1

−→
U)))−1/2 − κ2(γ−τ U, γ−τ Ξ1

−→
U)−1/2

− (γ−τ U, curlΓ (γ−Ξ2

−→
U))−1/2 + (γ−τ Ξ1

−→
U, curlΓ (γ−(P )))−1/2 (1.5.6)

We consider each component of the isomorphim Ξ in turn. Since Z(U) ∈ H1(Ωs) [1, Lem.
3.5] and γtH

1(Ωs) is compactly embedded in L2
t (Γ ) [25, Lem. 3.2], the continous mapping

γτ ◦ Z : H(curl, Ωs)→ H
1/2
R (Ωs) is compact. Therefore,

γ−τ Ξ1(
−→
U) = γ−τ U⊥ − γ−τ U0 + βγ−τ ∇P

=̂ ZΓ (γ−τ U)− (Id− ZΓ )γ−τ U + β curlΓ (γ−P ). (1.5.7)

Let’s introduce expression (1.5.7) in the various terms of (1.5.6) involving Ξ1(
−→
U). We find that(

divΓ
(
γ−τ U)

)
,divΓ (γ−τ Ξ1

−→
U))

)
−1/2

=̂(divΓ (γτU), divΓ (ZΓ (γ−τ U)))−1/2

− (divΓ (γτU), divΓ ((Id− ZΓ )γ−τ U))−1/2

+ β(divΓ (γτU), divΓ (curlΓ (γ−P )))−1/2

= (divΓ (γ−τ U), divΓ (γ−τ U))−1/2.

Similarly,

− κ2(γ−τ U, γ−τ Ξ1

−→
U)−1/2=̂ κ2((Id− ZΓ )γ−τ U, (Id− ZΓ )γ−τ U)−1/2

− βκ2((Id− ZΓ )γ−τ U, curlΓ (γ−P ))−1/2

and
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(γ−τ Ξ1

−→
U, curlΓ (γ−(P )))−1/2=̂− ((Id− ZΓ )γ−τ U, curlΓ (γ−(P )))−1/2

+ β(curlΓ (γ−P ), curlΓ (γ−(P )))−1/2.

We now want to evaluate the terms involving Ξ2(
−→
U). We introduce

curlΓ (γ−Ξ2

−→
U) = −θγ−τ ∇(S(U0) + mean(P )) = −θ(Id− ZΓ )γ−τ U,

in (1.5.6) to obtain

−(γ−τ U, curlΓ (γ−Ξ2

−→
U))−1/2 = θ((Id− ZΓ )γ−τ U, (Id− ZΓ )γτU)−1/2

Using Young’s inequality twice with δ > 0,

Re(
〈
− {TN} · DLκ

(
γ−t U
−γ−(P )

)
,

(
γ−t Ξ1

−→
U

γ−Ξ2

−→
U

)〉
)

=̂ ‖divΓ (γ−τ U)‖2
−1/2 + (Re(κ2) + θ)‖(Id− ZΓ )γ−τ U‖2

−1/2

+ β‖curlΓ (γ−(P ))‖2 − ((Id− ZΓ )γ−τ U, curlΓ (γ−(P )))−1/2

− βRe(κ2)((Id− ZΓ )γ−τ U, curlΓ (γ−P ))−1/2

≥ ‖divΓ (γ−τ U)‖2
−1/2 + (β − 1

δ
(1 + βRe(κ2)))‖curlΓ (γ−(P ))‖2

+ (Re(κ2) + θ − δ (1 + βRe(κ2)))‖(Id− ZΓ )γ−τ U‖2
−1/2.

The operator curlΓ : H1
∗ (Ωs)→ H−1/2(divΓ , Γ ) is a continuous injection [15, Lem. 6.4]. It is thus

bounded below. Since the mean operator has finite rank, it is compact. Therefore, for any β > 0,
choose δ > 0 large enough, then θ > 0 accordingly large, and the desired inequality follows by
equivalence of norms. ut

In the next lemma, we prove coercivity of the lower diagonal block of the coupling operatorGκ.

Lemma 1.5 For any frequency ω ≥ 0, there exist a compact linear operator K : HN → HD, a
positive constants C > 0 and parameters τ > 0 and λ > 0, possibly depending on Ωs, µ, ε and κ,
such that

Re(
〈
AND
κ (−→p ), ΞΓ−→p

〉
+
〈
K−→p ,−→p

〉
) ≥ C‖−→p ‖2

HN

for all −→p ∈ HN . In particular, for Re(k2) 6= 0, the inequality holds with τ = 1/κ2.

Proof. The jump conditions (1.2.11b) yield {TD}·SL(−→p ) = TD·SL(−→p ).We deduce from [15, Sec.
6.3] and the compact embedding of X(divΓ , Γ ) into H

−1/2
R (Γ ) that〈

TD · SL(−→p ), ΞΓ−→p
〉

=̂− (p0, ΞΓ
1 (p))−1/2 − (q, divΓ (ΞΓ

1 (p)))−1/2

− (divΓ (p), ΞΓ
2
−→p )−1/2 − κ2(q, ΞΓ

2 (−→p ))−1/2

=̂(p0,p0)−1/2 − (q, divΓ (p⊥))−1/2 + λ(q,Q∗q)−1/2

+ τ(divΓ (p), divΓ (p))−1/2 + τκ2(q, divΓ (p⊥))−1/2.



27

WhenRe(κ2) > 0, setting τ = 1/κ2 immediately yields the existence of a compact linear operator
K : HN → HD such that〈

TD · SL(−→p ), ΞΓ−→p
〉

+
〈
K−→p , ΞΓ−→p

〉
≥ C(‖divΓ (p)‖2

−1/2 + ‖p0‖2
−1/2 + ‖Q∗q‖2

−1/2).

When κ2 = 0, the same inequality is obtained for any λ > 0 by using Young’s inequality as in the
proof of Lemma 1.4 and choosing τ large enough. The claimed inequality follows by equivalence
of norms. ut

Equipped with the previous three lemmas, we are now ready to prove Proposition 1.5.

Proof of Proposition 1.5. For any parameters β > 0 and λ > 0, the choices of δ and θ in the
proofs of Lemma 1.3 and Lemma 1.4 are not mutually exclusive. The choice of τ in Lemma 1.5 is
independent of the choice of θ. ut

1.5.4 Compactness of the off-diagonal blocks

Finally, The off-diagonal blocks remain to be considered. We will show that, up to compact
perturbations, a suitable choice of parameters in the isomorphismsΞ andΞΓ of the test space leads
to a skew-symmetric pattern inGκ. In other words, up to compact terms, the volume and boundary
parts of the system decouples over the space decompositions introduced in Section 1.4.

Proof of Proposition 1.6. The isomorphisms Ξ and ΞΓ were designed so that favorable cancella-
tions occur in evaluating the left hand side of (1.5.5).

From the jump properties (1.2.11b), we have {TN}SLκ = T −N SLκ − (1/2)Id. Therefore, as in
(1.2.20), we evaluate

〈
(P+

κ )22
−→p ,

γ−t Ξ1

−→
U

γ−Ξ2

−→
U

〉

=
〈

(−{TN} · SLκ +
1

2
Id)−→p ,

γ−t Ξ1

−→
U

γ−Ξ2

−→
U

〉

=
〈
− T −N · SLκ(

−→p ),

γ−t Ξ1

−→
U

γ−Ξ2

−→
U

〉+
〈−→p ,

γ−t Ξ1

−→
U

γ−Ξ2

−→
U

〉
= 〈γ−RΨκ(p), γ−t Ξ1

−→
U〉τ − 〈γ−n∇ψκ̃(q), γ−Ξ2

−→
U〉Γ + 〈γ−n Ψκ(p), γ−Ξ2

−→
U〉Γ

+ 〈γ−n∇ψ̃κ(divΓp), γ−Ξ2

−→
U〉Γ + 〈p, γ−t Ξ1

−→
U〉τ + 〈q, γ−Ξ2

−→
U〉Γ

=̂ 〈γ−RΨκ(p
0), γtU

⊥〉τ−〈γ−RΨκ(p
0), γtU0〉τ+β 〈γ−RΨκ(p

0), γt∇P 〉τ
+ 〈γ−RΨκ(p

⊥), γtU
⊥〉τ−〈γ−RΨκ(p

⊥), γtU0〉τ
+ β 〈γ−RΨκ(p

⊥), γt∇P 〉τ + θ 〈γ−n∇ψκ̃(q), γ−S(U
0
)〉Γ

− θ 〈γ−n Ψκ(p), γ−S(U
0
)〉Γ − 〈γ−n∇ψ̃κ(divΓp), θ γ−S(U

0
)〉Γ
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+〈p0, γ−t U
⊥〉τ+〈p⊥, γ−t U

⊥〉τ−〈p0, γ−t U
0〉τ−〈p⊥, γ−t U

0〉τ
+β 〈p0, γ−t ∇P 〉τ + β 〈p⊥, γ−t ∇P 〉τ − θ 〈q, γ−S(U0)〉Γ , (1.5.8)

where we have used that the finite rank of the mean operator implies compactness.
Similarly, using Proposition 1.1, we find

〈
(P−κ )11

(
γ−t U
−γ−(P )

)
, ΞΓ−→p

〉
=
〈( γ−t U
−γ−(P )

)
, (P+

κ )22Ξ
Γ−→p
〉

=̂ 〈γ−RΨκ(p
⊥), γtU

0〉τ−〈γ−RΨκ(p
0), γtU

⊥〉τ
− λ 〈γ−RΨκ((divΓ )†Q∗q), γ

−
t U0〉τ + 〈γ−RΨκ(p

0), γtU
⊥〉τ

−〈γ−RΨκ(p
0), γtU

⊥〉τ−λ 〈γ−RΨκ((divΓ )†Q∗q), γ
−
t U⊥〉τ

− τ 〈γ−n∇ψκ̃(divΓp⊥), γ−P 〉 − 〈γ−n Ψκ(p⊥), γ−P 〉Γ ...

(1.5.9)

... + 〈γ−n Ψκ(p0), γ−P 〉Γ + λ 〈γ−n Ψκ((div)†Q∗q), γ
−P 〉Γ

− 〈γ−n∇ψ̃κ(divΓp⊥), γ−P 〉Γ + λ 〈γ−n∇ψ̃κ(Q∗q), γ−P 〉Γ
+〈γ−t U0,p⊥〉τ+〈γ−t U⊥,p⊥〉τ−〈γ−t U⊥,p0〉τ
−〈γ−t U0,p0〉τ−λ 〈γ−t U⊥, (divΓ )†Q∗q〉Γ
− λ 〈γ−t U0, (divΓ )†Q∗q〉+ τ 〈γ−P, divΓ (p⊥)〉Γ . (1.5.10)

Many terms in these equations can be combined and asserted compact by (1.4.3a) and (1.4.3b).
They are indicated in blue. When summing the real parts of (1.5.8) and (1.5.10), the terms in red
cancel. Relying on (1.2.8a) to (1.2.8d), some terms amount to compact perturbations so that we
may replace κ and κ̃ by zero in those instances. We have arrived at the following identity:

Re(
〈

(Gκ − diag(Gκ))

(−→
U
−→p

)
,

(
Ξ
−→
U

ΞΓ−→p

)〉
)

=̂ Re

(
β 〈γ−RΨ0(p⊥), γt∇P 〉τ + θ 〈γ−n∇ψ0(q), γ−S(U

0
)〉Γ

−θ 〈γ−n Ψ0(p), γ−S(U
0
)〉Γ+β 〈p⊥, γ−t ∇P 〉τ − θ 〈q, γ−S(U0)〉Γ

− λ 〈γ−RΨ0((divΓ )†Q∗q), γ
−
t U0〉τ − τ 〈γ−n∇ψ0(divΓp⊥), γ−P 〉Γ

−〈γ−n Ψ0(p⊥), γ−P 〉Γ + 〈γ−n Ψ0(p0), γ−P 〉Γ
+λ 〈γ−n Ψ0((div)†Q∗q), γ

−P 〉Γ

−λ 〈γ−t U0, (divΓ )†Q∗q〉τ + τ 〈γ−P, divΓ (p⊥)〉Γ

)
.

We claim that the terms colored in green are compact. Indeed, the integral identities of Subsection
1.2.1 together with equality (1.2.7) yield



29

〈γ−n Ψ0(p), γ−S(U
0
)〉Γ
≤ (‖ψ0(divΓp)‖L2(Ωs) + ‖Ψ0(p)‖L2(Ωs))‖U

0‖L2(Ωs),

〈γ−n Ψ0(p), γ−P 〉Γ
≤ (‖ψ0(divΓp)‖L2(Ωs) + ‖Ψ0(p)‖L2(Ωs))‖P‖H1(Ωs)

〈γ−n Ψ0((div)†Q∗q), γ
−P 〉Γ ,
≤ (‖ψ0(Q∗q)‖L2(Ωs) + ‖Ψ0(divΓp)‖L2(Ωs))‖P‖H1(Ωs).

Since ψ0 : H−1/2(Γ ) → H1(Ωs) and Ψ0 : H−1/2(Γ ) → H1(Ωs) are continuous, compactness is
guaranteed by Rellich’s Theorem.

To go further, we need to settle for a choice of parameters in the volume and boundary isomor-
phisms. Choose τ to satisfy the requirements of Lemma 1.5, then set β = τ . We are still free to let
θ satisfy both Lemma 1.3 and Lemma 1.4, and then choose λ = θ.
Under this choice of parameters, the terms in orange vanish, because we have 〈p⊥, γ−t ∇P 〉τ =
〈p⊥,∇Γγ

−P 〉τ = −〈divΓ (p⊥), γ−P 〉Γ , and similarly

〈γ−t U0, (divΓ )†Q∗q〉τ = 〈γ−t ∇S(U0), (divΓ )†Q∗q〉τ
= −〈γ−S(U0), Q∗q〉Γ .

Finally, relying on (1.2.6a), (1.2.6b) and (1.2.7) once more, we observe that

〈γ−RΨ0(p⊥), γ−t ∇P 〉τ = (curl curlΨ0(p⊥),∇P )Ωs

= (∇ψ0(divΓp⊥),∇P )Ωs = 〈γ−n∇ψ0(divΓp⊥), γ−P 〉Γ .

A similar derivation shows that

〈γ−n∇ψ0(q), γ−S(U
0
)〉Γ =̂ 〈γ−RΨ0((divΓ )†Q∗q), γ

−
t U0〉τ .

We conclude that for such a choice of parameters,

Re(
〈

(Gκ − diag(Gκ))

(−→
U
−→p

)
,

(
Ξ
−→
U

ΞΓ−→p

)〉
) =̂ 0,

which concludes the proof of this proposition. ut

1.6 Conclusion

In Section 1.3 we have proposed a system of equations coupling themixed formulation of the varia-
tional form of the Hodge-Helmholtz and Hodge-Laplace equation with first-kind boundary integral
equations. Well-posedness of the coupled problem was obtained using a T-coercivity argument
demonstrating that the operator associated to the coupled variational problem was Fredholm of
index 0. When κ2 ∈ C avoids resonant frequencies, the operator’s injectivity is guaranteed, and
thus stability of the problem is obtained along with the existence and uniqueness of the solution. For
such κ2, Proposition 1.2 shows how solutions to the coupled variational problem are in one-to-one
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correspondence with solutions of the transmission system. In principle, the CFIE-type stabilization
strategy applicable to transmission problems for the scalar Helmholtz operator [27] or the electric
wave equation [28] could also be attempted here to get rid of the spurious resonances haunting the
coupled problem (1.3.6), but such developments lie outside the scope of this work.

The symmetrically coupled system (1.3.6) offers a variational formulation of the transmission
problem (1.1.3) in well-known energy spaces suited for discretization by finite and boundary
elements. It is therefore a promising starting point for Galerkin discretization.
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Chapter 2
Spurious Resonances in Coupled Domain–Boundary Variational
Formulations of Transmission Problems in Electromagnetism and
Acoustics

Erick Schulz and Ralf Hiptmair

Abstract We develop a framework shedding light on common features of coupled variational
formulations arising in electromagnetic scattering and acoustics. We show that spurious resonances
haunting coupled domain-boundary formulations based on direct boundary integral equations of the
first kind originate from the formal structure of their Calderón identities. Using this observation, the
kernel of the coupled problem is characterized explicitly and we show that it completely vanishes
under the exterior representation formula.

2.1 Introduction

Transmission problems in electromagnetism and acoustics model the following typical experiment.
An incident wave penetrates an object and travels inside the possibly inhomogeneous medium.
Concurrently, it also scatters at its surface and propagates in the outside homogeneous region to
eventually decay at infinity. Simulation of the complete phenomenon entails coupling the interior
and exterior problems. A vast literature is devoted to the design of such couplings for various
physical situations. Notably, the described setting is considered in [17], [21], [8], [19] and [27].

On the one hand, domain based variational methods offer a familiar way of modeling wave
propagation in materials whose properties vary in space. The texts [20], [18], [1] and [24] are
thorough analyses for electromagnetism. Standard references such as [28] and [13] introduce the
reader to the Helmholtz operator as it appears in acoustic scattering.

On the other hand, boundary integral equations are capable of describing the behavior of the
waves in unbounded homogeneous regions, because they provide validCauchy data that can be fed to
the representation formula. Their complete derivation and properties can be found in [28], [25], [22]
and [23]. In the following, we consider in particular the direct boundary integral equations of the
first kind detailed in [26], [7] and [11].

Even if a transmission problem involving a Helmholtz-like operator P−λId has a unique solution
at a given fixed frequency λ ∈ C, the standard direct first-kind boundary integral equations obtained
for the associated exterior problem is haunted by the existence of “spurious frequencies": the kernel
of the Dirichlet-to-Neumann map supplied by the first exterior Calderón identity is spanned by the
interior Dirichlet λ-eigenfunctions of P. Similarly, the related Neumann eigenspace corresponds to
the kernel of the Neumann-to-Dirichlet map supplied by the second exterior Calderón identity. This
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issue was investigated for the electric field integral equation in [10]. Eigenvalues of the Laplacian
were studied in [16] and [26] from the perspective of resonant frequencies.

Unsurprisingly, this deficiency of the boundary integral equations carries over to the coupled
domain-boundary variational formulations. Its consequences for the symmetric approach to the
coupling problem in the context of electromagnetism (classical E–H formulation) and acoustics
(Helmholtz equation) were stated without proof in [7] and [21], respectively. The development
presented below is inspired by the analysis carried out in [19, Lem. 6.1] and [27, Prop. 3.1]
for electromagnetism, where equivalence between domain-boundary couplings and associated
transmission problems is established based on ideas from [29, Sec. 4.3] for acoustics.

This article is motivated by our impression that the occurrence and nature of spurious resonances
is presumably “well-known in the community”, but that it is difficult to locate a systematic analysis
and rigorous results in literature. We thus give in this essay a unified treatment of a few sym-
metric domain-boundary variational formulations for the time-harmonic solutions of transmission
problems in electromagnetism and acoustics under a common framework. Particular problems are
discussed in Section 2.5. Costabel’s symmetric approach introduced in [14] is generalized to allow
for the mixed formulation of the interior problem. The lack of uniqueness due to resonant frequen-
cies is shown to result from the formal structure of the Calderón identities. The phenomenon is
thus shared by all three couplings under consideration. The kernel of the abstract coupled problem
is fully characterized in Section 2.4.

We point out that, from a theoretical point of view, the post-processing required to recover the
scattered waves in the exterior region restores uniqueness of the solutions. Indeed, the kernel of
the Dirichlet-to-Neumann map vanishes under the representation formula. In practice however, the
poor conditioning of the linear systems of boundary integral equations near so-called resonant
frequencies leads to severe impact of round-off errors in computations and to slow convergence
of iterative solvers, but while these so-called “spurious resonant frequencies" generally cause
instabilities after discretization that enforce the use of regularization strategies, their mere existence
is harmless to the physical validity of the domain-boundary coupling models. This explains why
classical coercive symmetric couplings remain nonetheless valuable pilot formulations for Galerkin
discretization. We refer to [26] for an introduction to a classical approach originally suggested by
Brakhage and Werner [3] to regularize the indirect BIEs for the Helmholtz operator. We also point
out that a CFIE-type stabilization procedure for the Helmholtz transmission problem is studied
in [21], where a symmetric coupling stable for all positive frequencies is obtained. However,
stabilization techniques are not the focus of this paper.

2.2 Formal framework

2.2.1 Notation and conventions

LetΩ− ⊂ R3 be a bounded simply connected domainwith Lipschitz boundaryΓ := ∂Ω−.We think
ofΩ− as a bounded volume occupied by an inhomogeneous object with a possibly “rough" surface.
Usually,Ω− is assumed to be a curvilinear polyhedron. Throughout this work, we useΩ generically
to denote eitherΩ− orΩ+ := R3\Ω−. Physically,Ω+ often represents an unbounded homogeneous
air region around Ω−. We let L2(Ω) and L2(Γ ) denote, respectively, spaces of square-integrable
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functions over Ω and Γ . Whenever it is possible, we use bold letters to differentiate vector-valued
quantities from scalars. Capitals are often used to denote fields defined over a volume, while small
characters usually refer to functions on Γ . The space of smooth fields compactly supported in Ω is
writtenD(Ω). The subscript ‘loc’ is used to extend a given function space V to the larger space Vloc
comprising all functions u such that uψ ∈ V for all ψ ∈ D(Ω). A prime will be used to indicate the
dual of a space, e.g. V ′. Duality parings are written with angular brackets, e.g. ⟪·, ·⟫, but we also
often allow ourselves to substitute integrals for these angular brackets when we want to emphasize
L2(Ω) and L2(Γ ) as pivot spaces or highlight the analogy between the identities introduced in this
formal framework and Green’s classical formulas.

We call weak differential operator matrices the various linear operators that can be represented
by a matrix of partial derivatives. We understand their arrangement in a weak sense. If no particular
structure is recognized, then we must accept to define them on the Sobolev spaceH1(Ω). However,
in the models we consider in this work, the partial derivatives often sum up to form divergence and
curl operators respectively defined on

H(div, Ω) := {U ∈ L2(Ω) | divU ∈ L2(Ω)}, (2.2.1a)
H(curl, Ω) := {U ∈ L2(Ω) | curl U ∈ L2(Ω)}. (2.2.1b)

The following Green’s formulas can be extended to these spaces:

±
∫
Ω∓

div(U)P + U · ∇P dx =

∫
Γ

P (U · n)dσ, (2.2.2a)

±
∫
Ω∓

U · curl (V)− curl (U) ·Vdx =

∫
Γ

V · (U× n)dσ. (2.2.2b)

Here and in the remainder of the paper, n(x) stands for the unit normal boundary vector field
oriented outward from Ω−. The same notation is kept throughout this section.

2.2.2 Boundary value problems

We consider a formally self-adjoint linear weak differential operator matrix

P : Xloc (Ω) := Xloc (P, Ω)→ L2
loc(Ω). (2.2.3)

In accordance with this definition, we assume that Xloc (Ω) ⊂ L2
loc(Ω). Ultimately, our goal is to

develop variational transmission equations in which exterior problems of the form

(P− λ Id)U ext = 0 in Ω+ (2.2.4)

for some fixed λ ∈ C are formulated using BIEs.What we have in mind for P is a range of important
operators. A few examples that arise in the study of acoustic and electromagnetic scattering will be
presented in Section 2.5.

The first step in the formulation of BVPs for P is to establish a definition of boundary data. In
the following, square brackets indicate the jump [T•] := T−• −T+

• of a trace, specified by • = D or
N , over the boundary Γ . Let XD

loc (Ω) and XN
loc (Ω) be two subspaces of L2(Ω) such that
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Xloc (Ω) ⊂ XD
loc (Ω) ∩XN

loc (Ω) .

The next assumption is motivated by [23, Sec. 3 & 4], [7, Sec. 2] and [11, Sec. 3.1], among
others.

Assumption I (Existence of traces and Green’s second formula) There exist two non-
trivial Hilbert trace spaces of distributions HN and HD supported on Γ that are dual under
a pairing ⟪·, ·⟫Γ , together with continuous and surjective linear operators

T∓D : XD
loc(Ω)→ HD, T∓N : XN

loc(Ω)→ HN , (2.2.5)

admitting continuous right inverses and satisfying Green’s second formula∫
Ω∓

PU · V − U · PV dx = ±⟪T∓NU,T
∓
DV ⟫Γ ∓ ⟪T∓NV,T

∓
DUΓ⟫Γ , ∀U, V ∈ X(Ω∓).

(2.2.6)
We suppose thatD(Ω∓) ⊂ ker(T∓D)∩ker(T∓N).Moreover, we take for granted that

[
TD(φ)

]
=[

TN(φ)
]

= 0 whenever φ is smooth in a neighborhood of Γ .

The archetypes behind these operators are the Dirichlet and Neumann traces, but all the traces
occurring in the examples presented in this paper also satisfy Assumption I.

Remark 2.1 Roughly speaking, the hypothesis that D(Ω) ⊂ ker(T∓D)∩ker(T∓N) simply asks for the
traces of functions vanishing on the boundary to vanish.

Given boundary data g ∈ HD and η ∈ HN , we use the traces supplied in Assumption I to impose
boundary conditions in the statement of interior and exterior BVPs:

PU − λU = 0, in Ω∓

T∓DU = g, on Γ,
radiation conditions at∞, if Ω = Ω+

(abstract Dirichlet BVPs for P) (2.2.7a)


PU − λU = 0, in Ω∓

T∓NU = η, on Γ,
radiation conditions at∞, if Ω = Ω+.

(abstract Neumann BVPs for P) (2.2.7b)

Assumption II (Uniqueness for exterior BVPs) The solutions to the exterior (abstract)
Dirichlet and Neumann BVPs (2.2.7a) and (2.2.7b) posed on X

(
Ω+
)
are unique.

See [23, Thm. 9.11], [13, Thm. 6.10], [17] and [11, Cor. 3.9].
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2.2.3 Transmission problems

Let P be defined on X(P, Ω∓) ⊂ XD
P (Ω∓) ∩XN

P (Ω∓) such that it satisfies assumptions I and II
for continuous and surjective traces T∓P,D : XD

P (Ω∓) → HD(Γ ) and T∓P,N : XN
P (Ω∓) → HN(Γ ).

Further suppose that L is a linear differential operator defined on X(L, Ω−) ⊂ XD
L (Ω∓)∩XN

L (Ω∓)
that satisfies Assumption I for the traces T−L,D : XD

L (Ω∓) → HD(Γ ) and T−L,N : XN
L (Ω∓) →

HD(Γ ). Notice that the trace spaces associated with the two operators are required to correspond.
We are interested in well-posed transmission problems of the form: given a source term f ∈

L2(Ω−) and boundary data (g, η) ∈ HD×HN , find (U,U ext) ∈ X(L, Ω−)×X(P, Ω+) satisfying



LU = f, in Ω−

PU ext − λU ext = 0, in Ω+

T−L,DU = T+
P,DU

ext + g, on Γ,
T−L,NU = T+

P,NU
ext + η, on Γ,

radiation conditions at∞,

(abstract transmission problem) (2.2.8)

cf. [21, Eq. 2], [19, Eq. 1.1], [27, Eq. 3-4], [17, Sec. 2] and related literature.
The operator L models propagation of waves inside the object Ω−. The later phenomenon

can be described using different formulations, thus we emphasize that vector-valued functions
U ∈ X(L, Ω−) need not have the same number of entries as vector-valued functions U ext ∈
Xloc(P, Ω+). In other words, the number of unknowns in the interior problem may differ from the
number of unknowns in the exterior problem. For instance, this occurs with mixed formulations,
in which auxiliary variables increase the dimensionality of the system of equations. Nevertheless,
the transmission problem (2.2.8) covers the important and common case where L = P − λId.
Intuitively, it is a good heuristic to think of L as “the operator P in which the spacial coefficients
may vary in space”. See Figure 2.1.

T+
P,NU

ext T−L,NU

T+
P,DU

ext T−L,DU LU = F

Ω−

PU ext − λU ext = 0

Ω+ = R3\Ω−

Fig. 2.1 Depiction of the abstract transmission problem (2.2.8). The shaded region represents a volume
occupied by a scattering object.

We refer to [15], [24], [7], [11] and [27, Sec. 3] for the next assumption.
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Assumption III (Green’s first formula) There exist a non-trivial subspace V(Ω−) ⊂
XD

L (Ω−) and a continuous bilinear form Φ on V(Ω−)×V(Ω−) such that∫
Ω−

LU · V dx = Φ(U, V ) + ⟪T−L,NU,T
−
L,DV ⟫Γ ∀U ∈ X

(
L, Ω−

)
, V ∈ V(Ω−).

(2.2.9)

Assumption III states that for g ∈ HD, the problem

U ∈ V(Ω−) ∩ {T−L,DU = g} : Φ(U, V ) = 0 ∀V ∈ V(Ω−) ∩ ker(T−L,D) (2.2.10)

is a weak variational formulation for the interior Dirichlet problem{
LU = 0 in Ω−,
T−L,DU = g on Γ.

(abstract interior Dirichlet BVP for L) (2.2.11)

By testing with V ∈ D(Ω−), we immediately find that a solution U ∈ V(Ω−) of (2.2.10) solves
LU = 0 in the sense of distributions. Therefore, it also solves (2.2.11) in L2(Ω) if it is regular
enough. It is necessary and sufficient that U ∈ X

(
L, Ω−

)
. It is thus reasonable to assume the

following regularity result.

Assumption IV (Regularity) A distribution U ∈ V(Ω−) which solves LU = 0 in the sense
of distributions also belongs to X(L, Ω−).

This assumption is modeled on the examples below. For e.g., in the simple case where U ∈
H1(Ω−) is a weak solution of the interior variational problem associated with the scalar Helmholtz
operator, then it follows that∇U ∈ H(div, Ω), i.e. U ∈ H(∆,Ω).

Assumption V (Uniqueness) The transmission problem (2.2.8) is uniquely solvable.

In the following sections, we use TD := TP,D and TN := TP,N to ease notation.

2.2.4 Representation by boundary potentials

Given a formally self-adjoint weak differential operator matrix L and a locally integrable source
term F , we say that LU = F holds in Ω in the sense of distributions if

⟪LU, V ⟫ :=

∫
Ω

U · LV dx =

∫
Ω

F · V dx, ∀V ∈ D(Ω). (2.2.12)
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From this point of view, we have U, F ∈ D(Ω)′ and the action of L is extended by the left hand
side of (2.2.12) to be also defined on the space of distributions. That is to say, the solution U is
interpreted as a bounded linear functional over the space of test functions.

LetU ∈ L2
loc(R3) be such thatU |Ω− ∈ X

(
Ω−
)
andU |Ω+ ∈ Xloc

(
P, Ω+

)
with (P−λId)U |Ω∓ =

0, where the restrictions are to be understood in the sense of distributions. Using Green’s second
formula (2.2.6) both in Ω− and Ω+ as in [11, Sec. 4.2], we obtain under Assumption I that

〈PU − λU, ψ〉 = ⟪[TDU ] ,T−Nψ⟫Γ − ⟪T−Dψ, [TNU ]⟫Γ (2.2.13)

for all smooth compactly supported fieldsψ defined overR3. Therefore, in the sense of distributions,

PU − λU = (T−N)∗ [TDu]− (T−D)∗ [TNu] , (2.2.14)

where the mappings (T−N)∗ and (T−D)∗ are adjoint to T−N and T−D, respectively—to be compared
with [23, Thm. 6.10], [15, Eq. 3.8], [11, Eq. 38].

Let δ0 be the Dirac distribution centered at 0, i.e. 〈δ0, V 〉 = V (0) for all V ∈ D(R3). Recall that
convolution by a matrix-valued function M defined on R3\{0} is given by

M ? U =

∫
R3

M(x− y)U(y)dx. (2.2.15)

Compare the following assumption with [26, Sec. 1.1.3], [28, Chap. 5], [23, Chap. 6], [7, Sec. 4]
and [11, 4.1].

Assumption VI (Fundamental solution) There exists a smooth (possibly matrix-valued)
complex Green tensor Gλ defined over R3\{0} satisfying

(P− λ Id)Gλ = δ0 Id (2.2.16)

as a distribution and the radiation conditions at infinity stated in (2.2.7a) and (2.2.7b).

Convolution with Gλ on both sides of (2.2.14) using (2.2.16) yields the representation formula

U = SLλ([TNU ]) +DLλ([TDU ]), (2.2.17)

where we have defined for all g ∈ HD and η ∈ HN the layer potentials

SLλ(g) := −Gλ ? ((T−D)∗g), DLλ(η) := Gλ ? ((T−N)∗η). (2.2.18)

2.2.5 Boundary integral operators

Boundary integral equations for the BVPs (2.2.7a) and (2.2.7b) are obtained by establishing the
famous Caldéron identities.

The following continuity result and jump relations can be found for all examples to be covered
below in [21, Eq. 5], [28, Chap. 6], [7, Thm. 7] and [11, Thm. 5.1] (beware of the sign in the
definition of the jump across Γ , which may differ from one reference to another).
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Assumption VII (Jump identities) We assume that the boundary potentials are continuous
as mappings

SLλ : HN → Xloc(Ω), DLλ : HD → Xloc(Ω), (2.2.19)

and suppose that they satisfy the jump relations

[TD]DLλ = Id, [TD]DLλ = 0, (2.2.20a)
[TD]SLλ = 0, [TN ]SLλ = Id. (2.2.20b)

Applying averaged traces {T•} := 1/2(T+
• + T−• ) specified with • = D andN to SLλ andDLλ

yields four continuous boundary integral operators:

Vλ := {TD} SLλ : HN → HD, K†λ := {TN} SLλ : HN → HN , (2.2.21a)
Kλ := {TD}DLλ : HD → HD, Wλ := {TN}DLλ : HD → HN . (2.2.21b)

Taking the traces on both sides of the representation formula (2.2.17) and using the jump relations
of Assumption VII, we obtain the interior and exterior Caldéron identities

PU − λU in Ω− =⇒

(
Kλ + 1

2
Id Vλ

Wλ K†λ + 1
2
Id

)
︸ ︷︷ ︸

=:P−λ

(
T−DU
T−NU

)
=

(
T−DU
T−NU

)
, (2.2.22a)

PU − λU in Ω+ =⇒

(
−Kλ + 1

2
Id −Vλ

−Wλ −K†λ + 1
2
Id

)
︸ ︷︷ ︸

=:P+
λ

(
T+
DU

T+
NU

)
=

(
T+
DU

T+
NU

)
, (2.2.22b)

respectively, cf. [28, Sec. 6.6.], [7, Sec. 5], [11, Sec. 5], [27, Sec. 2.3], [26, Sec. 3.6], [21, Sec. 4].
Note that P+

λ + P−λ = Id so that the range of P+
λ coincides with the kernel of P−λ and vice-versa.

The next theorem is a consequence of the existence of continuous right inverses for the traces
stated in Assumption I. It promotes the Caldéron projectors to a pivotal role in domain–boundary
formulations of transmission problems.

A pair of boundary functions (g, η) ∈ HD×HN is said to be valid interior/exterior Cauchy data
if there exists a distribution U∓ ∈ Xloc

(
Ω∓
)
solving the Dirichlet and Neumann BVPs (2.2.7a) and

(2.2.7b) in Ω∓ such that T∓P,DU
∓ = g and T∓P,NU

∓ = η . We refer to [7, Thm. 8], [29, Thm. 3.7]
and [26, Prop. 3.6.2] for the proof of the next result (cf. [28, Lem. 6.18], [11, Prop. 5.2] and [27, Sec.
2.3]).

Lemma 2.1 A pair (g, η) ∈ HD×HN is valid interior or exterior Cauchy data if and only if it lies
in the kernel of P+

λ or P−λ , respectively.
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2.2.6 Boundary integral equations

The rows of the exterior Caldéron identities give rise to the following two direct variational BIEs
of the first kind for the exterior Dirichlet (2.2.7a) and Neumann (2.2.7b) problems respectively:

ξ ∈ HN(Γ ) :

∫
Γ

Vλξ · ζdσ = −
∫
Γ

(Kλ +
1

2
Id)g · ζdσ ∀ζ ∈ HN(Γ ), (2.2.23a)

ξ ∈ HD(Γ ) :

∫
Γ

Wλξ · ζdσ = −
∫
Γ

(K†λ +
1

2
Id)η · ζdσ ∀ζ ∈ HD(Γ ). (2.2.23b)

2.3 Coupled domain–boundary variational formulations

The idea behind the so-called symmetric approach to marrying domain and boundary variational
formulations (originally developed in [14] for problems involving linear strongly elliptic differential
operators) is to introduce a particularly clever choice of Dirichlet-to-Neumann map

DtN : HD → HN (2.3.1)

into Green’s first formula—the validity of which, following M. Costabel, we have required in
Assumption III. Notice that both rows of the exterior Caldéron projection P+

λ realize a Dirichlet-
to-Neumann map [26, Sec. 3.7], [21, Sec. 4]:

DtN1 := −V−1
λ (Kλ +

1

2
Id) : HD → HN , DtN2 := −(K†λ +

1

2
Id)−1Wλ : HD → HN .

M. Costabel’s insight was to combine both rows into the expression

DtN := −Wλ + (−K†λ +
1

2
Id)DtN1.

Introducing the transmission conditions into (2.2.9), the transmission problem (2.2.8) can be cast
into the operator equation

ΦU + (T−L,D)∗(DtN ◦ T−L,DU) = r.h.s.,

where (T−L,D)∗ : HN = H′D → XD(L, Ω−)′ denotes the adjoint of T−L,D. Here, H′D and HN were
identified using the duality pairing from Assumption I. Indeed, the details read

T−L,NU = T+
P,NU

ext + η

= −WλT+
P,DU

ext + (−K† +
1

2
Id)T+

P,NU
ext + η

= −WλT+
P,DU

ext + (−K† +
1

2
Id)DtN1(T+

P,DU
ext) + η (2.3.2)

= DtN(T−L,DU) + η − DtN(g).
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Of course, we dispense with the explicit inverse of Vλ by introducing an auxiliary unknown

ξ := T+
P,NU

ext = DtN1T+
P,DU

ext ∈ HN (2.3.3)

in (2.3.2), seeking instead a solution pair (U, ξ) ∈ V(Ω)×HN to the variational problem

Φ(U, V ) + ⟪(−K†λ +
1

2
Id)ξ,TL,DV ⟫+ ⟪−WλT−L,DU,TL,DV ⟫ = RV(v),

⟪(Kλ +
1

2
Id)T−L,DU, ζ⟫+ ⟪Vλ ξ, ζ⟫ = RT(ζ),

(2.3.4)

for all (V, ζ) ∈ V(Ω)×HN .
A few terms were moved to the continuous functionals on the right hand sides. In particular,

RV(V ) :=

∫
Ω−

f · V dx− ⟪η,TL,DV ⟫− ⟪Wλg,TL,DV ⟫, (2.3.5a)

RT(ζ) := ⟪(Kλ +
1

2
Id)g, ζ⟫. (2.3.5b)

An alternative (arguably simpler) derivation based on the idea of modifying the Johnson-Nedélec
coupling is presented in [2] and [27]. In this work, to choice to obtain (2.3.4) based on (2.3.2) is
motivated by our intention to share the details behind the derivation available in [7, Sec. 10].

2.4 Resonant frequencies

We call Dirichlet or Neumann resonant frequency any eigenvalue in the Dirichlet or Neumann
spectrum

ΛD(P, Ω−) := {λ ∈ C| ∃U ∈ X
(
P, Ω−

)
, 0 6= U solving (2.2.7a) in Ω− with g = 0},

ΛN(P, Ω−) := {λ ∈ C| ∃U ∈ X
(
P, Ω−

)
, 0 6= U solving (2.2.7b) in Ω− with η = 0},

respectively. Given a frequency λ ∈ ΛD or ΛN , we denote the λ-eigenspaces by

Eλ
D(P, Ω−) := {U ∈ X

(
P, Ω−

)
|U solving (2.2.7a) in Ω− with g = 0},

Eλ
N(P, Ω−) := {U ∈ X

(
P, Ω−

)
|U solving (2.2.7a) in Ω− with η = 0},

respectively.

2.4.1 Kernels of first-kind direct boundary integral equations

The nontrivial eigenfunctions in Eλ
D(P, Ω−) and Eλ

N(P, Ω−) foil uniqueness of solutions of the
boundary integral problems (2.2.23a) and (2.2.23b). The next lemmas completely characterize the
kernels of the operators Vλ andWλ.
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Lemma 2.2 ker(Vλ) = T−P,N(Eλ
D(P, Ω−))

Proof. (⊃) Suppose that λ ∈ ΛD and let 0 6= U ∈ Eλ
D(P, Ω−). By Lemma 2.1, the valid Cauchy

data (0,T−P,NU) ∈ HD × HN for the interior problem is in the kernel of the exterior Caldéron
projection. The first row of the matrix equation(

−VλT−P,NU

(−K†λ + 1
2
Id)T−P,NU

)
=

(
−Kλ + 1

2
Id −Vλ

−Wλ −K†λ + 1
2
Id

)(
0

T−P,NU

)

= P+
λ

(
0

T−P,NU

)
=

(
0
0

) (2.4.1)

implies that T−P,NU ∈ ker(Vλ).
(⊂) If ξ ∈ HN is such that Vλξ = 0, then

P+
λ

(
0
ξ

)
=

(
0

(−K†λ + 1
2
Id)ξ

)
.

Lemma 2.1 then guarantees that (0, (−K†λ+ 1
2
Id)ξ)> is valid Cauchy data for the exterior boundary

value problem (2.2.7a) in Ω+. By Assumption II, the unique solution to the exterior Dirichlet
boundary value problem (2.2.7a) with g = 0 is trivial, so it must be that K†λξ = 1

2
ξ. Therefore, we

find that

P−λ

(
0
ξ

)
=

(
Kλ + 1

2
Id Vλ

Wλ K†λ + 1
2
Id

)(
0
ξ

)
=

(
0
ξ

)
.

We conclude relying on Lemma 2.1 again that there exists 0 6= U ∈ Eλ
D(P, Ω−) with T−P,NU =

ξ. ut

Because of the formal symmetry in the structure of the Caldéron identities, we also conclude from
the above proof that the kernel ofWλ is spanned by the Dirichlet traces of the interior Neumann
eigenfunctions of P.

Lemma 2.3 ker(Wλ) = T−P,D(Eλ
N(P, Ω−))

The operators on the right-hand sides of the Dirichlet and Neumann variational boundary integral
equations (2.2.23a) and (2.2.23b) display similar properties.
Lemma 2.4 ker(−K†λ + 1

2
Id) = T−P,N(Eλ

D(P, Ω−))

Proof. (⊂) Suppose that λ ∈ ΛD and let U ∈ Eλ
D(P, Ω−). Using Theorem 1, the valid Cauchy

data (0,T−P,NU) ∈ HD × HN belongs to the kernel of P+
λ . We read from (2.4.1) that T−P,NU ∈

ker(−K†λ + 1
2
Id).

(⊃) If (−K†λ + 1
2
Id)ξ = 0, then similarly as in the proof of Lemma 2.2,

P+
λ

(
0
ξ

)
=

(
−Vλξ

0

)
,

which by Lemma 2.1 shows that (Vλξ, 0) is valid Cauchy data for the exterior boundary value
problem. By Assumption II, the unique solution to (2.2.7b) in Ω+ with η = 0 is trivial, so it must
be that Vλξ = 0. The conclusion follows from Lemma 2.2. ut
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The following result shouldn’t come as a surprise now.

Lemma 2.5 ker(−Kλ + 1
2
Id) = T−P,D(Eλ

N(P, Ω−))

Corollary 2.1 A solution of the Dirichlet variational boundary integral equations (2.2.23a) is
unique if and only if λ /∈ ΛD.

Corollary 2.2 A solution to the Neumann variational boundary integral equations (2.2.23b) is
unique if and only if λ /∈ ΛN .

2.4.2 Kernel of the domain-boundary coupled variational formulation

At this point, we are well equipped to study the kernel of the operator

P :=

(
Φ− (T−L,D)∗Wλ ◦ T−L,D (T−L,D)∗(−K†λ + 1

2
Id)

(Kλ + 1
2
Id)T−L,D Vλ

)

arising from the variational problem (2.3.4).

Proposition 2.1 The following are equivalent.

1. (U, ξ) ∈ V(Ω−)×HN is in the kernel of P .
2. The pair (U, ξ) ∈ V(Ω−)×HN is such that

• LU = 0 in the sense of distributions,
• (T−L,NU − ξ) ∈ T−P,NE

λ
D(P, Ω−),

• (T−L,DU,T
−
L,NU) is valid Cauchy data in Ω+.

Proof. (1⇒ 2) Suppose that (U, ξ) ∈ V(Ω−)×HN is such that for all V ∈ V(Ω−),

Φ(U, V ) + ⟪(−K†λ +
1

2
Id)ξ,TL,DV ⟫+ ⟪−WλT−L,DU,TL,DV ⟫ = 0,

⟪(Kλ +
1

2
Id)T−L,DU, ζ⟫+ ⟪Vλ ξ, ζ⟫ = 0.

There are three elements that we need to check.
Testing with V ∈ D(Ω), we immediately find that LU = 0 holds in the sense of distributions .
Therefore, we can rely on Assumption IV and use the generalized version (2.2.9) of Green’s first

formula to obtain

⟪(−K†λ +
1

2
Id)ξ,T−L,DV ⟫+ ⟪−WλT−L,DU,T

−
L,DV ⟫ = ⟪T−L,NU,T

−
L,DV ⟫, (2.4.2a)

⟪(Kλ +
1

2
Id)T−L,DU, ζ⟫+ ⟪Vλ ξ, ζ⟫ = 0. (2.4.2b)
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This allows us to evaluate

P+
λ

(
T−L,DU
ξ

)
=

(
−Kλ + 1

2
Id −Vλ

−Wλ −K†λ + 1
2
Id

)(
T−L,DU
ξ

)
=

(
T−L,DU
T−L,NU

)
,

where the last equality was obtained by subtracting T−L,DU on both sides of (2.4.2b). Since the range
of the exterior Calderón projector coincides with the kernel of its interior counterpart, Lemma 2.1
implies that the pair (T−L,DU,T

−
L,NU) ∈ HD ×HN is valid exterior Cauchy data for (2.2.7a) .

Moreover, from (2.4.2a) and (2.4.2b), we know that

VλTL,DU = −Vλξ, and WλTL,DU = (−K†λ +
1

2
Id)ξ − TL,NU.

Hence,

0 = P−λ

(
T−L,DU
T−L,NU

)
=

(
Kλ + 1

2
Id Vλ

Wλ K†λ + 1
2
Id

)(
T−L,DU
T−L,NU

)

=

(
Vλ(T−L,NU − ξ)

(−K†λ + 1
2
Id)(ξ − T−L,NU)

) (2.4.3)

and conclude from Lemma 2.2 that T−L,NU − ξ ∈ T−P,NE
λ
D(P, Ω−) .

(2 ⇒ 1) Since T−L,NU − ξ is the interior Neumann trace of a Dirichlet λ-eigenfunction of P, it
follows from Lemma 2.2 and Lemma 2.4 that

VλT−NU = Vλξ,

and
(−K†λ +

1

2
Id)T−NU = (−K†λ +

1

2
Id)ξ.

Moreover, because LU = 0 in the sense of distributions, then Assumption IV guarantees that
U ∈ X(L, Ω−). We can thus integrate by parts using Assumption III to verify that Φ(U, V ) =
⟪−T−L,NU,T

−
L,DV ⟫Γ for all V ∈ V(Ω−).

Therefore,

⟪P
(
U
ξ

)
,

(
V
ζ

)
⟫ =

〈( −Wλ −K†λ + 1
2
Id

Kλ + 1
2
Id Vλ

)(
T−L,DU
T−L,NU

)
−

(
T−L,NU

0

)
,

(
T−L,DV
ζ

)〉
=
〈( 0 Id
−Id 0

)
P−λ

(
T−L,DU
T−L,NU

)
,

(
T−L,DV
ζ

)〉
vanishes for all (V, ζ) ∈ V(Ω)×HN , since valid exterior Cauchy data for P−λId lies in the kernel
of the interior Caldéron projector. This shows (U, ξ) ∈ ker(P). ut

The previous characterization is technical, but it tells us a lot more than what is immediately
apparent. It leads to the following main result.
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Theorem 2.1 The interior function U ∈ V(Ω−) of a solution pair (U, ξ) ∈ V(Ω−) ×HN

solving the coupled variational problem (2.3.4) is always unique. Ifλ /∈ ΛD, then the boundary
data ξ is also unique. It is otherwise only unique up to adding a boundary function lying in
T−P,N(Eλ

D(P, Ω−)). In other words,

ker(P) = {0} × T−P,NE
λ
D(P, Ω−). (2.4.4)

Proof. (⊂) Suppose that the pair (U, ξ) ∈ V(Ω−)×HN is in the kernel of P . By Proposition 2.1,
U ∈ X(L, Ω−) and it solves LU = 0 in the sense of distributions. The lemma also guarantees that
the boundary field (T−L,DU,T

−
L,NU) is valid Cauchy data for the Dirichlet BVP (2.2.7a) inΩ+. Thus,

∃U ext ∈ X(P, Ω+) with PU − λU = 0 satisfying T−L,DU = T+
P,DU

ext and T−L,NU = T+
P,NU

ext.
The pair (U,U ext) solves the transmission problem (2.2.8) with g = 0 and η = 0. Therefore, by

Assumption V, it can only be the trivial solution.
In particular, U = 0. Going back to Proposition 2.1 with this new information, we are left with

the assertion (using (1) =⇒ (2)) that ξ ∈ T−P,NE
λ
D(P, Ω−).

(⊃) It follows immediately from ((2) =⇒ (1)) in Proposition 2.1 that (0, ξ) ∈ ker(P) for all
ξ ∈ T−P,NE

λ
D(P, Ω−), because (0, 0) is the valid Cauchy data associatedwith the trivial solution. ut

2.4.3 Recovery of field solution inΩ+

In practice, one is less interested by the solution pair (U, ξ) of (2.3.4) than by the actual simulation
(U, U ext) solving the transmission problem (2.2.8). To recover the exterior function U ext, we use
the exterior representation formula

U ext = −SLλ(T+
P,NU)−DLλ(T+

P,DU), (2.4.5)

obtained from (2.2.17). This step was called post-processing in the introduction.
It goes as follows. The right hand side of (2.4.5) defines an operatorR : HD×HN → X(P, Ω+)

by

R

(
h
ζ

)
= −SLλ(ζ)−DLλ(h)

Therefore, given a solution pair (U, ξ) solving (2.3.4), one retrieves the value of the scattered wave
at a location x ∈ Ω+ in the exterior region by computing

U ext(x) = R

(
TL,DU − g

ξ

)
(x). (2.4.6)

Because (2.4.4) was established in Theorem 2.1, we need to verify the following.

Proposition 2.2 {0} × T−P,NE
λ
D(P, Ω−) ⊂ ker(R)
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Proof. Let ξ ∈ T−P,NE
λ
D(P, Ω−). Using the jump identities of Assumption VII, we notice that

T+
P,DR

(
0
ξ

)
= −{TP,D} SLλ(ξ)

= −Vλ(ξ)

vanishes by Lemma 2.2. We conclude thatR

(
0
ξ

)
solves (2.2.7a) inΩ+ with g = 0. By assumption

II, this can only occur for R(0 ξ)> = 0 in L2(Ω+). ut

Since R is linear, this confirms uniqueness of the pair (U, U ext), and along with it validity of
the coupled problem (2.3.4) as a physical model for electromagnetic and acoustic transmission
problems.

2.5 Examples

We now survey three concrete examples of transmission problems where the above assumptions
are met.

2.5.1 Acoustics in frequency domain

The simplest examples of BVPs satisfying these hypotheses are obtained from elliptic operators
acting on scalar real-valued functions, of which the Laplacian

P := −∆ = − div ◦ ∇ = −
3∑
i=1

∂2
i

is the most famous one. It acts on a suitably scaled pressure amplitude U in the scalar Helmholtz
equation

LU := − div(∇U)− κ2r(x)U = 0 (2.5.1)

that models the propagation of plane time harmonic sound waves with real positive wave number
κ > 0. While the bounded refractive index r(x) may vary inside the inhomogeneous body Ω−,
it is a constant r0 ∈ R in the unbounded air region Ω+, leading to an exterior problem involving
P − λ with λ = κ2r0. BIEs offer the most flexible way of tackling the exterior problem, but a
domain formulation is best suited to deal with the interior inhomogeneity. Because of its simplicity,
acoustic scattering thus presents itself as a canonical example to illustrate the relevance of coupled
domain–boundary variational formulations.

In this framework, the domain of the Laplace operator is easily seen to be

Xloc(Ω) := Hloc(∆,Ω) = {U ∈ H1
loc(Ω)| ∇U ∈ Hloc(div, Ω)}. (2.5.2)

Boundary value problems are stated using the classical Dirichlet and Neumann traces
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γ∓U (x) = lim
Ω∓3y→x

U(y),

γ∓n U (x) = − lim
Ω∓3y→x

n(x) · ∇U (y),

which enter Green’s identity (2.2.2a). These traces are well-defined on smooth scalar fields and can
be extended continuously to Sobolev spaces:

T∓P,D := γ∓ : H1
loc(Ω

∓)→ H1/2(Γ ) =: HD, (2.5.3a)

T∓P,N := γ∓n : Hloc(div, Ω∓)→ H−1/2(Γ ) =: HN . (2.5.3b)

The classical symmetric coupling for (2.5.1) derived in [21] fits the abstract framework of the
previous sections with T−L,D = T−P,D, T−L,N = T−P,N and

Φ(U, V ) :=

∫
Ω

∇U · ∇V − κ2r(x)dx

defined on V(Ω−)×V(Ω−) where V(Ω−) := H1(Ω−).
In this case, the bilinear form on the left-hand side of (2.3.4) isH1(Ω−)×H−1/2(Γ )-coercive [21,

Lem. 5.1].

2.5.2 E–H electromagnetism

As explained in the introduction, we also consider the non-elliptic linear operators arising in
the simulation of electromagnetic scattering phenomena. A prominent example is the curl curl
operator

E 7→ curl(µ−1(x) curl E) (2.5.4)

occurring in the frequency domain formulation of the electric wave equation

LE := curl(µ−1(x) curl E)− ω2ε(x)E = 0, (2.5.5)

in which ε(x) and µ(x) are material properties known, respectively, as the dielectric and perme-
ability tensors. Again, these quantities are assumed constant outside the scatterer, i.e. µ(x) = µ0

and ε(x) = ε0 in Ω+. This is the most standard time-harmonic model for the propagation of an
electromagnetic wave with angular frequency ω. As opposed to the Helmholtz equation of acoustic
scattering, the unknown is a vector-valued function.

We note that the curl curl operator can be represented by the operator matrix

P :=

 0 −∂3 ∂2

∂3 0 −∂1

−∂2 ∂1 0


2

(2.5.6)

involved in the the exterior problem for P− λ, where λ := ω2µ0ε0. Its domain of definition is

Xloc(Ω) := Hloc(curl2, Ω) := {E ∈ Hloc(curl, Ω) | curl(E) ∈ Hloc(curl, Ω)}.
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Well-posed boundary value problems are established for the electric wave equations by continuously
extending the tangential traces

T∓P,D := γ∓t E(x) := n(x)× γτ (E(x)), (2.5.7a)
T∓P,N := γ∓R E(x) := −γ∓τ curl E(x) (2.5.7b)

to mappings

T∓P,D : Hloc(curl, Ω∓)→ H−1/2(curlΓ , Γ ) =: HD, (2.5.8)

T∓P,L : Hloc(curl2, Ω∓)→ H−1/2(divΓ , Γ ) =: HN . (2.5.9)

Note that γ∓τ E := E × n enters Green’s identity (2.2.2b). The “magnetic trace" γ∓R E plays a
role akin to the Neumann trace. The relatively recent development of tangential traces theory for
Lipschitz domains can be found in [4], [5] and [6]. A symmetric domain-boundary variational
coupling for (2.5.5) fitting the framework of this article is performed in [19]. There, the bilinear
form

Φ(E,V) :=

∫
Ω

µ−1(x) curl E · curl V − ω2ε(x)dx

enters Green’s first formula together with the traces

T−L,D := T−P,D,

T−L,N := γ−R (µ−1(x) E(x)).

As proved in [19], the bilinear form underlying the coupled variational problem (2.3.4) in this
case satisfies a generalized Gårding inequality (T-coercivity) in H(curl, Ω−)×H−1/2(divΓ , Γ ).

2.5.3 A-φ electromagnetism

Equation (2.5.5) is obtained upon combining the dynamical equations

curl E = −iωµ(x)H, curl H = iωε(x)E,

that are part of the E–H formulation of Maxwell’s equations. When the magnetic and electric
fields are expressed in terms of the vector and scalar electromagnetic potentials, which satisfy
H = µ−1(x) curl A and E = −∂tA−∇φ, these two equations instead combine to form

curl(µ−1(x) curl A) + iωε(x)∇φ− ω2ε(x)A = 0.

Elimination of φ using the Lorenz gauge

div(ε(x)A) + iωφ = 0 (2.5.10)

leads to the Hodge-Helmholtz equation

curl(µ−1(x) curl A)− ε(x)∇ div(ε(x)A)− ω2ε(x)A = 0. (2.5.11)



50

Remark 2.2 The link between electromagnetism and geometry through the Hodge-Laplace operator
is the subject of a vast literature. Because (2.5.11) is robust in the low-frequency limit ω →
0, its extension to inhomogeneous materials through the generalized Lorenz gauge (2.5.10) has
resurfaced relatively recently as an interesting alternative to the standard electric wave equation for
the simulation of some contemporary physical experiments in quantum optics [9].

When the material properties ε(x) = ε0 and µ(x) = µ0 are assumed constant, equation (2.5.11)
reduces to

P := curl curl A− η∇ divA− κ2A = 0, (2.5.12)

where η = µ0ε
2
0 and κ2 = µ0ε0ω

2. The domain of the so-called Hodge–Helmholtz operator on the
left hand side is the intersection space X(Ω∓) := Hloc(curl2, Ω∓) ∩Hloc(∇div, Ω∓), where

Hloc(∇div, Ω) := {U ∈ Hloc(div, Ω) | divU ∈ H1
loc(Ω)}.

A pair of suitable traces for the formulation of boundary value problems is given by [11, 12]

T∓P,NA(x) := T ∓mg A(x) =

(
γ∓R A(x)
γ∓n A(x)

)
, (2.5.13a)

T∓P,DA(x) := T ∓el A(x) =

(
γ∓t A(x)

η γ∓divA(x)

)
. (2.5.13b)

Notice that their ranges are product trace spaces. This is partly due to the fact that theA–φ potential
formulation of Maxwell’s equations initially introduced two unknowns in the wave equation. Going
back to the Lorenz gauge (2.5.10), we see in the context of transmission problems that the second
component of the “electric trace" T ∓el is in hiding a continuity condition for the scalar potential.
Once again, it is the “magnetic trace" T ∓mg that resembles the Neumann trace. We refer to [9] for
more details.

The natural trial and test subspaces ofH(div, Ω−)∩H(curl, Ω−) readily obtained upon establish-
ing domain based variational formulations for (2.5.12) using (2.2.2a) and (2.2.2b) are unfortunately
not viable for discretization by finite elements [18, Sec. 6.2]. This is the reason why in [27] the
mixed formulation

curl (µ−1(x) curl A) + ε(x)∇P − ω2ε(x)A = F,

− div (ε(x)A)− P = 0,
(2.5.14)

is considered. The operator matrix

L :=

(
curl ◦ µ−1(x)curl− ω2ε(x) ε(x)∇

− div(ε(x)·) − Id

)

is well defined over X(L, Ω−) := H(curl2, Ω−) × H1(Ω−) and therefore more convenient to
model the interior problem. This subtlety justifies generalizing Green’s first formula in Assumption
III, because integration by parts yields∫

Ω−
L

(
A
P

)
·

(
V
Q

)
dx = Φκ(

(
A
P

)
,

(
V
Q

)
) +

〈
T−L,N

(
A
P

)
,T−L,D

(
V
Q

)〉
, (2.5.15)



51

where the bilinear form defined on V(Ω−) ×V(Ω−) with V(Ω−) := H(curl, Ω) ×H1(Ω−) is
given by

Φκ(

(
A
P

)
,

(
V
Q

)
) :=

∫
Ωs

µ−1 curl A · curl Vdx +

∫
Ωs

ε∇P ·Vdx−
∫
Ωs

P Qdx

+

∫
Ωs

A · ε∇Qdx− ω2

∫
Ωs

εA ·Vdx

and the traces are

T−L,N

(
A
P

)
=

(
γ−R(µ−1(x)A(x))
γ−n (ε(x)A(x))

)
,

T−L,D

(
V
Q

)
=

(
γ−t V(x)
−γ−Q

)
.

For this formulation, T-coercivity in H(curl, Ω−)×H1(Ω−)×H−1/2(divΓ )×H−1/2(Γ ) of the
bilinear form in (2.3.4) is established in [27, Thm. 5.6].

2.6 Conclusion

Wehave abstracted the common characteristics of the three particular problems presented in Section
2.5. As a consequence, Costabel’s original symmetric coupling was generalized to allow for a larger
class of operators. The issues raised by spurious resonant frequencies were found to be rooted in
the formal structure detailed by the framework of Section 2.2. In Section 2.4, the consequences of
their existence were investigated. In doing so, the kernels of the operators entering the problems
(2.2.23a), (2.2.23b) and (2.3.4) were completely characterized. It was also shown that the Neumann
eigenfunctions which thwart the uniqueness of solutions for the coupled problem vanish under the
exterior representation formula, thus showing that the complete field solution U remains unique
despite the existence of spurious resonance frequencies. The symmetric approach to symmetric
domain-boundary coupling therefore remains a valuable starting point for Galerkin discretization.
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Chapter 3
First-Kind Boundary Integral Equations for the Dirac Operator in
3-Dimensional Lipschitz Domains

Erick Schulz and Ralf Hiptmair

Abstract We develop novel first-kind boundary integral equations for Euclidean Dirac operators
in 3D Lipschitz domains. They comprise square-integrable potentials and involve only weakly
singular kernels. Generalized Gårding inequalities are derived and we establish that the obtained
boundary integral operators are Fredholm of index zero. Their finite dimensional nullspaces are
characterized and we show that their dimensions are equal to the number of topological invariants
of the domain’s boundary, in other words, to the sum of its Betti numbers. This is explained by
the fundamental discovery that the associated bilinear forms agree with those induced by the 2D
Dirac operators for surface de Rham Hilbert complexes whose underlying inner-products are the
non-local inner products defined through the classical single-layer boundary integral operators for
the Laplacian. Decay conditions for well-posedness in natural energy spaces of the Dirac system in
unbounded exterior domains are also presented.

3.1 Introduction

We develop first-kind boundary integral equations for the Hodge-Dirac operator in 3-dimensional
Euclidean space

D := d + δ : H(d, Ω∓) ∩H(δ, Ω∓)→ L2(Ω∓)8, (3.1.1)
involving the exterior derivative and codifferential

d :=


0 0> 0> 0

∇ 03×3 03×3 0

0 curl 03×3 0

0 0> div 0

 and δ :=


0 − div 0> 0

0 03×3 curl 0

0 03×3 03×3 −∇
0 0> 0> 0

 . (3.1.2)

We are concerned with the partial differential equations D
−→
U =

−→
F , which in components

−→
U =

(U0,U1,U2, U3)> and
−→
F = (F0,F1,F2, F3)> read

N

− divU1 = F0,

∇U0 + curl U2 = F1,

−∇U3 + curl U1 = F2,

divU2 = F3.

(3.1.3)
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We will consider both interior and exterior boundary value problems, and assume that (3.1.3)
is either posed on a bounded domain Ω− having a Lipschitz boundary Γ := ∂Ω−, or on the
unbounded complementΩ+ := R3\Ω−. In the latter case, suitable decay conditions at infinity will
be needed. Throughout, Ω ∈ {Ω−, Ω+}.

3.1.1 Related work

Current work discussing Dirac operators from the point of view of Hodge theory offers solutions to
boundary value problems for (3.1.3) and related eigenvalue problems based on domain variational
formulations [13, 26].

The operator matrix in (3.1.1) appears under a change of variables in the works of M. Taskinen,
S. Vänskä and P. Ylä-Oijala [41–43] as R. Picard’s extended Maxwell operator. It was originally
assembled by R. Picard by combining the first-order Maxwell operator with the principal part of
the equations of linear acoustics [25,34,35]. In [41–43], Helmholtz-like boundary value problems
for Picard’s operator are studied with a focus on second-kind boundary integral equations.

Eigenvalue problems related to acoustic and electromagnetic scattering, that is transmission
problems for the so-called perturbed Dirac operator, have also guided the study of second-kind
boundary integral equations in the literature of harmonic and hypercomplex analysis. Important
contributions were made in that direction by E. Marmolejo-Olea, I. Mitrea, M. Mitrea, Q. Shi [28],
A. Axelsson, A. Rosén and J. Helsing [4, 20, 36]. There, the Dirac operator enters larger systems
of equations that encompass or correspond to Maxwell’s equations [20, 28]. An extensive body of
work, created by these authors together with R. Grognard and J. Hogan [5], S. Keith [6], A.McIntosh
and S.Monniaux [30,31], is devoted to the harmonic analysis of Dirac operators inLp spaces [7,29].

3.1.2 Our contributions

In this work, we derive novel first-kind boundary integral equations for the Dirac equation D
−→
U = 0

with suitable boundary and decay conditions. Two boundary integral operators are obtained and
shown to satisfy generalized Gårding inequalities, making them Fredholm of index 0. Their finite
dimensional nullspaces are characterized in Section 3.7, where we show that their dimension equals
the number of topological invariants of the boundary—counted as the sum of its Betti numbers.
Indeed, the integral representations of their associated bilinear forms turn out to be related to the
variational formulations of the surface Dirac operators introduced in Section 3.8. Recognizing
these surface operators will simultaneously reveal how the boundary integral operators introduced
in Section 3.5, which are related to two different sets of boundary conditions, arise as “rotated"
versions of one another. The exterior representation formula of Lemma 3.11 and the condition at
infinity identified in (3.4.66) eventually lead, together with the coercivity results of Section 3.6, to
well-posedness of Euclidean Dirac exterior boundary value problems in natural energy spaces in
the complement of the finite dimensional nullspaces.

The new integral formulas display desirable properties: the surface potentials are square-
integrable and the kernels of the bilinear forms associated with the boundary integral operators are
merely weakly singular, i.e. they are bounded by|x− y|−α, α < 2, cf. [24, Sec. 2.4]. Nevertheless,
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we want to emphasize that the main result is the discovery that they relate to the Hodge–Dirac
operators of surface de Rham Hilbert complexes equipped with the non-local inner products de-
fined as the bilinear forms associated with the classical single-layer potential for the Laplacian. As
a consequence, we already know a lot about these first-kind boundary integral operators for the
Dirac operator. Moreover, this relationship suggests that they are related to the first-kind boundary
integral operators for the Hodge–Laplacian.

For the sake of readability, we adopt the framework of classical vector analysis rather than exterior
calculus. It is in this framework that the structural relationship between the following development
and the standard theory for second-order elliptic operators seemed most explicit.

In summary, our main contributions are:

. We derive representation formulas for the Dirac equation posed on domains having a Lipschitz
boundary by following the approach pioneered by M. Costabel [16]. The novelty here is to
follow and extend the elegant strategy used in [14]—there used to find a representation formula
for Hodge–Laplace and Helmholtz operators—that leads to potentials having simple explicit
expressions. By adapting the arguments in the now classical monographs by W. McLean [32,
Chap. 7] and A. Sauter and C. Schwab [37, Chap. 3], we also establish an exterior representation
formula. We will observe that the development of this theory is possible due to the strong
structural similarity between integration by parts for the first-order Dirac operator and Green’s
second formula for second-order elliptic operators.

. A sneak peek at the potentials presented in (3.4.39) and (3.4.42) will already convince the reader
that the approach we have adopted leads to simple formulas for the square-integrable potentials
involved in the representation formula. Some terms are recognizable from [14,15], while others
occur in well-known theory for elliptic second-order operators. The simplicity that comes with
the calculation procedure provided by Lemma 3.6 allows for a straightforward analysis of their
mapping and jump properties.

. Given the previous items, it is not surprising that decay conditions at infinity for exterior
boundary value problems posed on the unbounded domain Ω+ can be easily established by
adapting the approach for second-order elliptic operators presented in [32, Chap. 7].

. The crux of our calculations are the formulas (3.5.12) and (3.5.13) for the bilinear forms
associated with the obtained weakly-singular first-kind boundary integral operators. We provide
generalized Gårding inequalities for the two operators and characterize their null-spaces.

. Our main discovery is presented in Section 3.8, where we expose the relationship between these
boundary integral operators and surface Dirac operators in an Hilbert complex framework.

3.2 Function spaces and traces

As usual, L2(Ω) and L2(Ω) denote the Hilbert spaces of complex square-integrable scalar and
vector-valued functions defined over Ω. We denote their inner products using round brackets, e.g.
(·, ·). The spaces H1(Ω) and H1(Ω) refer to the corresponding Sobolev spaces. The notation
C∞(Ω) is used for smooth functions. The subscript in C∞0 (Ω) further specifies that these smooth
functions have compact support in Ω. C∞(Ω) is defined as the space of uniformly continuous
functions over W that have uniformly continuous derivatives of all order. A subscript is used to
identify spaces of locally integrable functions/vector fields, e.g. U ∈ L2

loc(Ω) if and only if ϕU is
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square-integrable for all ϕ ∈ C∞0 (R3). We denote with an asterisk the spaces of functions with zero
mean, e.g. H1

∗ (Ω).
In general, given an operator L acting on square-integrable fields in the sense of distributions,

we equip
H(L, Ω) := {U ∈ (L2(Ω))•

∣∣∣ LU ∈ (L2(Ω))†} (3.2.1)

with the natural graph norm, where • = 8 or 3 and † = 8, 3 or 1. Important specimens are

H(div, Ω) :=
{
U ∈ (L2(Ω))3 | divU ∈ L2(Ω)

}
, (3.2.2)

H(curl, Ω) :=
{
U ∈ (L2(Ω))3 | curl U ∈ (L2(Ω))3

}
. (3.2.3)

Of course, in all of the above definitions, Ω can be replaced by R3, or any other domain. We un-
derstand restrictions in the sense of distributions when working with domains having disconnected
components. For example, in line with the above notation we mean in particular

H(D,R3\Γ ) := H(D, Ω)×H(D,R3\Ω) ⊂ (L2(R3))8. (3.2.4)

We use a prime superscript to denote dual spaces, for instanceC∞0 (Ω)′ is the space of distributions
in Ω. Angular brackets indicate duality pairings, e.g. 〈·, ·〉Ω or ⟪·, ·⟫Γ . The former will be used for
domain-based quantities in Ω, while the latter will pair spaces on Γ .
Trace-related theory for Lipschitz domains can be found in [8, 9, 11] and [19, 32], where it is

established that the traces

γW := W
∣∣
Γ
, ∀W ∈ C∞(Ω), (3.2.5a)

γnW := γW · n, ∀W ∈ C∞(Ω), (3.2.5b)
γτW := γW × n, ∀W ∈ C∞(Ω), (3.2.5c)
γtW := n× (γτW), ∀W ∈ C∞(Ω), (3.2.5d)

extend to continuous and surjective linear operators

γ : H1(Ω)→ H1/2(Γ ), [22, Thm. 4.2.1] (3.2.6a)
γn : H(div, Ω)→ H−1/2(Γ ), [19, Thm. 2.5, Cor. 2.8] (3.2.6b)
γτ : H(curl, Ω)→ H−1/2(divΓ , Γ ), [11, Thm. 4.1] (3.2.6c)
γt : H(curl, Ω)→ H−1/2(curlΓ , Γ ), [11, Thm. 4.1] (3.2.6d)

with nullspaces

H1
0 (Ω) := C∞0 (Ω)

H1(Ω)
= ker γ, [32, Thm 3.40] (3.2.7)

H0(div, Ω) := C∞0 (Ω)3
H(div,Ω)

= ker γn, [33, Thm. 3.25] (3.2.8)

H0(curl, Ω) := C∞0 (Ω)3
H(curl,Ω)

= ker γτ = ker γt. [33, Thm. 3.33] (3.2.9)

Here, n ∈ L∞(Γ ) is the essentially bounded unit normal vector field on Γ directed toward the
exterior of Ω−. Detailed definitions can be found in [8, 9, 11] together with a study of the involved
surface differential operators. Short practical summaries are also provided in [12, 14, 23, 38].
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Similarly as for the Hodge–Laplace operator [14,15,38,39], a theory of boundary value problems
for the Hodge–Dirac problem in three dimensions entails partitioning our collection of traces into
two “dual" pairs. Accordingly, we assemble the traces into

γT(
−→
U) :=

 γ(U0)
γt(U1)
γn(U2)

 and γR(
−→
U) :=

γn(U1)
γτ (U2)
γ(U3)

. (3.2.10)

Warning. Wewant to highlight that in spite of the notation, γT and γR arenot defined as in [14], [15]
and related work.

The trace spaces

HT:= H1/2(Γ )×H−1/2(curlΓ , Γ )×H−1/2(Γ ), (3.2.11a)
HR:= H−1/2(Γ )×H−1/2(divΓ , Γ )×H1/2(Γ ), (3.2.11b)

are dual to each other with respect to the L2(Γ ) duality pairing (c.f. [11, Lem. 5.6]). In this sense,
we can identify

H′T = HR and H′R = HT. (3.2.12)

Naturally, the traces can also be taken from the exterior domain. The extensions (3.2.6) will be
tagged with a minus subscript (only when required to avoid confusion), e.g. γ−, to distinguish them
from the extensions obtained from (3.2.5) by replacing Ω with Ω+ := R3\Ω, which we will label
with a plus superscript, e.g. γ+.

Lemma 3.1 (See [14, Lem. 6.4]) The linear mappings

γ±T : Hloc(D, Ω±)→ HT, γ±R : Hloc(D, Ω±)→ HR, (3.2.13)

defined by (3.2.10) are continuous and surjective. There exist continuous lifting maps ET : HT →
Hloc(D,R3\Γ ) and ER : HR → Hloc(D,R3\Γ ) such that γT ◦ ET = Id and γR ◦ ER = Id.

Lemma 3.2 (See [14, Lem. 6.4]) The surface divergence extends to a continuous surjection
divΓ : H−1/2(divΓ , Γ ) → H

−1/2
∗ (Γ ), while curlΓ : H

1/2
∗ → H−1/2(divΓ , Γ ) is a bounded

injection with closed range such that curlΓ ξ = ∇Γ ξ × n for all ξ ∈ H1/2(Γ ). These operators
satisfy divΓ ◦ curlΓ = 0.

Lemma 3.3 For all
−→
U ∈ H(d, Ω∓) and

−→
V ∈ H(δ, Ω∓),∫

Ω∓
d
−→
U ·
−→
Vdx =

∫
Ω∓

−→
U · δ

−→
Vdx± ⟪γT−→U, γR

−→
V⟫Γ . (3.2.14)

Proof. We integrate by parts using Green’s identities to obtain∫
Ω∓

dU ·Vdx =

∫
Ω∓
∇U0 ·V1dx +

∫
Ω∓

curl U1 ·V2dx +

∫
Ω∓

(divU2)V3dx

= −
∫
Ω∓

U0 (divV1)dx +

∫
Ω∓

U1 · curl V2dx−
∫
Ω∓

U2 · ∇V3dx



60

+ 〈γU0, γnV1〉Γ + 〈γtU1, γτV2〉Γ + 〈γnU2, γV3〉Γ

=

∫
Ω∓

U · δVdx + ⟪γTU, γRV⟫Γ .

ut

Corollary 3.1 (Green’s formula for Dirac operator) For all
−→
U,
−→
V ∈ H(D, Ω∓), we have∫

Ω∓
D
−→
U ·
−→
Vdx =

∫
Ω∓

−→
U · D

−→
Vdx± ⟪γT−→U, γR

−→
V⟫Γ ∓ ⟪γT−→V , γR

−→
U⟫Γ . (3.2.15)

Remark 3.1 It is remarkable that despite the fact that D is a first-order operator, eq. (3.2.15) nev-
ertheless resembles Green’s classical second formula for the Laplacian. This induces profound
structural similarities between the representation formula, potentials and boundary integral equa-
tions for the Dirac operator established in the next sections and the already well-known theory for
second-order elliptic operators. As emphasized in [39], a formula such as eq. (3.2.15) paves the
way for harnessing powerful established techniques.

We will indicate with curly brackets the average {γ•} := 1
2
(γ+
• + γ−• ) of a trace and with square

brackets its jump [γ•] := γ−• − γ+
• over the interface Γ .

Warning. Notice the sign in the jump [γ] = γ−− γ+, which is often taken to be the opposite in the
literature!

3.3 Boundary value problems

In light of Lemma 3.1 and the duality in (3.2.12), the integration by parts formula (3.2.15) points
towards two types of boundary conditions. Consider the boundary value problems of finding−→
U ∈ H(D, Ω) satisfying{

D
−→
U =

−→
0 , in Ω,

γT
−→
U =

−→
b , on Γ,

−→
b ∈ HT, (T)

or {
D
−→
U =

−→
0 , in Ω,

γR
−→
U = −→a , on Γ,

−→a ∈ HR. (R)

For Ω = Ω+, also impose the decay condition that
−→
U(x) → 0 uniformly as x → ∞, cf.

Lemma 3.12. In the following sections, development related to problem (T) will be colored in
blue, while red will be used for (R).
When Ω is bounded, the self-adjoint Dirac operator behind (R) is

DΩ
R = d + d∗, (3.3.1)

where d : L2(Ω)8 → L2(Ω)8 is the closed densely defined Fredholm-nilpotent linear operator
associated with the L2 de Rham cochain complex [1, 26]
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H1(Ω) ∇ //H(curl, Ω) curl //H(div, Ω)
div // L2(Ω), (3.3.2)

cf. [1, Chap. 3-4], [26, Sec. 2]. The Hilbert space adjoint d∗ is the nilpotent operator associated
with the dual chain complex [1, Sec. 4.3, Thm. 6.5]

L2
∗(Ω) H0(div, Ω)−div

oo H0(curl, Ω)
curl
oo H1

0(Ω).
−∇
oo (3.3.3)

The mapping properties of DR and its domain are detailed in Figure 3.1.
Similarly, the self-adjoint operator

DΩ
T := δ + δ∗ (3.3.4)

behind (T) arises from the dual perspective, where we view the codifferential operator

δ : L2(Ω)8 → L2(Ω)8

as the nilpotent operator associated with the Hilbert chain complex

L2(Ω) H(div, Ω)−div
oo H(curl, Ω)

curl
oo H1(Ω).

−∇
oo (3.3.5)

The adjoint δ∗ is spawned by the chain complex

H1
0 (Ω) ∇ //H0(curl, Ω) curl //H0(div, Ω)

div // L2
∗(Ω). (3.3.6)

See Figure 3.2 for the explicit mapping properties of DΩ
T and its domain of definition.

Fig. 3.1 This diagram shows the mapping properties of the exterior derivatives and their Hilbert space
adjoints corresponding to the functional analytic setting of [26] for problem (R) in Ω−. In the figure, the
operators on the left-hand side are to be understood as the adjoint operators −div = ∇∗, curl = curl∗ and
−∇ = div∗.

So unlike second-order operators, the Hodge–Dirac operator admits two distinct fundamental
symmetric bilinear forms

aδ(
−→
U,
−→
V) =

∫
Ω

δ
−→
U ·
−→
V +

−→
U · δ

−→
Vdx,

−→
U,
−→
V ∈ H(δ, Ω), (3.3.7a)
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Fig. 3.2 This diagram shows the mapping properties of the codifferentials and their Hilbert space adjoints
corresponding to the functional analytic setting of [26] for problem (T) inΩ−. In the figure, the operators on
the left-hand side are to be understood as the adjoint operators∇ = −div∗, curl = curl∗ and div = −∇.

ad(
−→
U,
−→
V) =

∫
Ω

d
−→
U ·
−→
V +

−→
U · d

−→
Vdx,

−→
U,
−→
V ∈ H(d, Ω), (3.3.7b)

that rest on an equal footing. They readily appear upon integrating by parts with Lemma 3.3 and
they are involved in the first-order analogs of Green’s identities∫

Ω∓
D
−→
U ·
−→
V = aδ(

−→
U,
−→
V)± ⟪γT−→U, γR

−→
V⟫Γ , (3.3.8a)∫

Ω∓
D
−→
U ·
−→
V = ad(

−→
U,
−→
V)∓ ⟪γT−→V , γR

−→
U⟫Γ , (3.3.8b)

which hold for all
−→
U,
−→
V ∈ H(D, Ω).

These identities lead to the variational problems:
−→
U ∈ H(δ, Ω) : aδ(

−→
U,
−→
V) = −⟪−→b , γR−→V⟫Γ , ∀

−→
V ∈ H(δ, Ω), (VT)

and
−→
U ∈ H(d, Ω) : ad(

−→
U,
−→
V) = ⟪−→a , γT−→V⟫Γ , ∀

−→
V ∈ H(d, Ω). (VR)

3.3.1 Compatibility conditions

Either from Green’s second formula for the Dirac operator (3.2.15) or the variational problems
themselves, we see that the boundary values

−→
b ∈ HT and −→a ∈ HR must fulfill compatibility

conditions. For the problems to admit solutions, we require that

⟪−→b , γR−→V⟫Γ =
−→
0 , ∀

−→
V ∈ HT, (CCT)

and

⟪−→a , γT−→V⟫Γ =
−→
0 , ∀

−→
V ∈ HR, (CCR)
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where

HT(Ω) :=
{−→

V ∈ H(D, Ω) : D
−→
V = 0, γT

−→
V =

−→
0
}

(3.3.9a)

and

HR(Ω) := {
−→
V ∈ H(D, Ω) : D

−→
V = 0, γR

−→
V =

−→
0 } (3.3.9b)

are spaces of harmonic vector-fields. We refer to [1–3] and [26] for explanations on how these
spaces exactly correspond to the nullspaces of the Hodge-Laplacian with natural and essential
boundary conditions.

The fact that there are two distinct bilinear forms in the expressions (VT) and (VR) is one of
the appealing use of the dual perspective involving the codifferential δ. It points to the symmetry
presented in Remark 3.7 below, and it highlights the necessity of imposing compatibility conditions
on the data. For example, we could alternatively formulate (T) as the variational problem

−→
U ∈ H(d, Ω) with γT

−→
U =

−→
b : ad(

−→
U,
−→
V) = 0, ∀

−→
V ∈ H0(d, Ω), (3.3.10)

where H0(d, Ω) = H1
0 (Ω) ×H0(curl, Ω) ×H0(div, Ω) × L2(Ω). But according to (3.2.15) the

condition (CCT) must remain, and it now appears less obviously so when the type of boundary
condition is essential. Anyway, in a formulation such as (3.3.10), one proceeds with a lifting of the
boundary data and is left with the solvability of the problem

−→
U0 ∈ H0(d, Ω) : ad(

−→
U,
−→
V) = −ad(ET

−→
b ,
−→
V), ∀

−→
V ∈ H0(d, Ω). (3.3.11)

So the question of compatibly cannot be avoided: integrating by parts with the right-hand side
evaluated at a nullspace element in HT using (3.3.8b) leads to (CCT). We discuss in greater details
the reason why the two boundary conditions can be formulated both as natural and essential in
Remark 3.7.

3.3.2 Well-posedness

Since the bilinear form aδ is associated with the self-adjoint operator DT obtained from the chain
complex (3.3.6) and ad to the self-adjoint operator DR spawned by the cochain complex (3.3.2),
they fit the framework of [26, Sec. 2]. The abstract inf-sup inequality supplied in [26, Thm. 6]
applies to both bilinear forms and leads to well-posedness of the mixed variational problems:

aδ(
−→
U,
−→
V) + (

−→
P ,
−→
V)Ω = −⟪−→b , γR−→V⟫Γ ∀

−→
V ∈ H(δ, Ω−),

(
−→
U,
−→
W)Ω = 0 ∀

−→
W ∈ ker DΩ

T ,
(MVT)

and

ad(
−→
U,
−→
V) + (

−→
Q,
−→
V)Ω = ⟪−→a , γT−→V⟫Γ ∀

−→
V ∈ H(d, Ω−),

(
−→
U,
−→
W)Ω = 0 ∀

−→
W ∈ ker DΩ

R ,
(MVR)
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for unknown pairs (
−→
U,
−→
P ) ∈ H(δ, Ω−)× ker DT and (

−→
U,
−→
Q) ∈ H(d, Ω−)× ker DR.

Consistency of the right-hand side in (VT) exactly corresponds to requiring that (CCT) holds for
the given data

−→
b ∈ HT, while (CCR) similarly guarantees consistency of the right-hand side in

(VR). We conclude that if the compatibility conditions are satisfied, solutions to (VT) and (VR) in
Ω− are unique up to contributions of harmonic vector-fields in ker DT and ker DR. Moreover, they
continuously depend on the boundary data.

3.4 Representation formulas

We derive interior and exterior representation formulas for solutions of the Dirac equation. It is
expressed through known boundary potentials, whose jump properties across Γ are elaborated.

3.4.1 Fundamental solution

Convolution of a vector field
−→
U : R3 → R8 by a matrix-valued function K : R3\{0} → R8,8

possibly having a singularity at the 0 ∈ R3 is defined, if the limit exists, as the Cauchy principal
value

(K ∗
−→
U)(x) := lim

ε→0

∫
R3\Bε(x)

K(x− y)
−→
U(y)dy ∈ R8, (3.4.1)

where Bε(x) ⊂ R3 is a ball of radius ε centered at x.
Let G : R3\ {0} → R be given by G(z) := (4π|z|)−1, and set

G(z) := G(z)I8 ∈ R8,8, z 6= 0, (3.4.2)

where I8 is the identity matrix on R8. Then, define Φ : R3\{0} → R8,8 by applying the Dirac
operator to the columns of G as

Φ(z) :=


0 −(∇G)>(z) 0> 0

(∇G)(z) 0 3×3 A3×3(z) 0
0 A3×3(z) 0 3×3 −(∇G)(z)
0 0> (∇G)>(z) 0

 ∈ R8×8, z 6= 0,

where the anti-symmetric blocks

A3×3(z) :=

 0 −(∂3G)(z) (∂2G)(z)
(∂3G)(z) 0 −(∂1G)(z)
−(∂2G)(z) (∂1G)(z) 0

 ∈ R3×3, z 6= 0, (3.4.3)

are associated with the curl operator.

Lemma 3.4 For z 6= 0,

Φ(−z) = −Φ(z) and Φ(z)
−→
U ·
−→
V = −

−→
U · Φ(z)

−→
V (3.4.4)

for all
−→
U,
−→
V ∈ R8.
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Proof. Let s : R3 → R3 be the sign flip operation s(z) = −z. For the fist identity, we simply rely
on the fact that G(x) = G(|x|) to verify that for any

−→
U ∈ R8,

Φ(−z)
−→
U = D(G

−→
U)
∣∣∣
s(z)

= −Dx(G(s(x))
−→
U)
∣∣∣
x=z

= −Dx(G(s(x))
−→
U)
∣∣∣
x=z

= −Dx(G(x)
−→
U)
∣∣∣
x=z

= −Φ(z)
−→
U. (3.4.5)

The second identity is clear by definition. ut

This lemma allows to extend the domain of the Newton-type potential

N : C∞0 (R3)8 → C∞(R3)8

−→
U 7→ Φ ∗

−→
U

to distributions.

Lemma 3.5 For all
−→
U,
−→
V ∈ C∞0 (R3)8,(

N
−→
U,
−→
V
)

=
(−→

U,N
−→
V
)
. (3.4.6)

Proof. Using Lemma 3.4, we can change the order of integration using Fubini’s theorem and
evaluate (

N
−→
U,
−→
V
)

=

∫
R3

∫
R3

Φ(x− y)
−→
U(y) ·

−→
V(x)dxdy (3.4.7)

=

∫
R3

∫
R3

−→
U(y) · Φ(y − x)

−→
V(x)dxdy (3.4.8)

=

∫
R3

−→
U(y) ·

∫
R3

Φ(y − x)
−→
V(x)dxdy (3.4.9)

=
(−→

U,N
−→
V
)
. (3.4.10)

ut

Remark 3.2 Lemma 3.5 reflects the fact that the Dirac operator is symmetric as an unbounded
operator on (L2(R3))8.

The extension
N : (C∞(R3)8)′ → (C∞0 (R3)8)′ (3.4.11)

is obtained as in [37, Sec. 3.1.1] via dual mapping by defining the action of the distribution
N
−→
U ∈ (C∞0 (R3)8)′ on

−→
V ∈ C∞0 (R3)8 as

〈N
−→
U,
−→
V〉 := 〈

−→
U,N

−→
V〉. (3.4.12)

Proposition 3.1 (Fundamental solution) For all compactly supported distributions
−→
U ∈

(C∞(R3)8)′,
N D
−→
U =

−→
U = D N

−→
U (3.4.13)

holds on C∞0 (R3)8.
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Proof. We first show that for
−→
U ∈ (C∞(R3)8)′,

〈N D
−→
U,
−→
V〉 = 〈

−→
U,
−→
V〉 (3.4.14)

for all
−→
V ∈ C∞0 (R3)8.

The argument is inspired by the proof of [18, Thm.1]. Let ei ∈ R3 be the vector with 1 at the i-th
entry and zeros elsewhere, i = 1, 2, 3. Since

N
−→
V =

∫
R3

Φ(x− y)
−→
V(y)dy =

∫
R3

Φ(y)
−→
V(x− y)dy, (3.4.15)

we have

N
−→
V(x + hei)− N

−→
V(x)

h
=

∫
R3

Φ(y)

−→
V(x + hei − y)−

−→
V(x− y)

h
dy. (3.4.16)

Hence,
DxN
−→
V(x) =

∫
R3

Φ(y)D
−→
V(x− y)dy, (3.4.17)

because the assumption that
−→
V is smooth and compactly supported guarantees that

−→
V(x + hei − y)−

−→
V(x− y)

h
→ ∂

∂xi

−→
V(x− y) (3.4.18)

uniformly for h → 0. The main idea is to isolate Φ’s singularity at the origin by splitting the right
hand side of eq. (3.4.17) into two integrals as

DxN
−→
V(x) =

∫
Bε(0)

Φ(y)D
−→
V(x− y)dy︸ ︷︷ ︸
Iε

+

∫
R3\Bε(0)

Φ(y)D
−→
V(x− y)dy︸ ︷︷ ︸

Jε

(3.4.19)

whose limits as ε→ 0 we can control.
The main difficulty is that we cannot readily mimic the standard proof commonly given for the

Poisson equation, because the integration by parts formula supplied for the product of two vectors
by eq. (3.2.15) is not applicable to the matrix–vector multiplication involved in the integrands of
eq. (3.4.19). The analysis of

Φ(y)D
−→
V(x− y) =

−∇G(y) · ∇V0(x− y)−∇G(y) · curl V1(x− y)
−divV1(x− y)∇G(y)−∇G(y)×∇V3(x− y) +∇G(y)× curl V1(x− y)
−∇G(y)×∇V0(x− y) +∇G(y)× curl V2(x− y)− divV2(x− y)∇G(y)

−∇G(y) · ∇V3(x− y) +∇G(y) · curl V2(x− y)

 (3.4.20)

is carried out component-wise.
There are five different types of terms whose limit need to be investigated. Let V ∈ (C∞0 (R3))3

and V ∈ C∞0 (R3) be arbitrary fields. To ease the reading, we write Vx(y) := V (x − y) and
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Vx(y) := V(x−y) . We denote by nε the unit normal vector field pointing towards the interior of
Bε(0).

Integrating by parts using that ∆G = 0 in R3\(0) and curl ◦ ∇ ≡ 0, we find that∫
R3\Bε(0)

∇G(y) · ∇V (x− y)dy =

∫
∂Bε(0)

∇G(y) · nε(y)V (x− y)dσ(y)

=
1

4π

∫
∂Bε(0)

V (x− y)

|y|3
(−y · y

|y|
)dσ(y) = − 1

4πε2

∫
∂Bε(0)

V (x− y)dσ(y)

= −−
∫
∂Bε(x)

V (y)dσ(y) −−→
ε→0
−V (x) (3.4.21)

and∫
R3\Bε(0)

∇G(y) · curl V(x− y)dy

= −
∫
∂Bε(0)

(∇G(y)× nε(y)) ·V(x− y)dσ(y)

= − 1

4πε4

∫
∂Bε(0)

(y × y) ·V(x− y)dσ(y) = 0. (3.4.22)

Similarly, integrating by parts component-wise yields∫
R3\Bε(0)

∇G(y)×∇Vx(y)dy

=

∫
R3\Bε(0)

∂2G(y)∂3Vx(y)− ∂3G(y)∂2Vx(y)
∂3G(y)∂1Vx(y)− ∂1G(y)∂3Vx(y)
∂1G(y)∂2Vx(y)− ∂2G(y)∂1Vx(y)

 dy

=

∫
R3\Bε(0)

G(y)∂2∂3Vx(y)−G(y)∂3∂2Vx(y)
G(y)∂3∂1Vx(y)−G(y)∂1∂3Vx(y)
G(y)∂1∂2Vx(y)−G(y)∂2∂1Vx(y)

 dy

+

∫
∂Bε(0)

−(nε)2(y)G(y)∂3Vx(y) + (nε)3(y)G(y)∂2Vx(y)
−(nε)2(y)G(y)∂1Vx(y) + (nε)1(y)G(y)∂3Vx(y)
−(nε)1(y)G(y)∂2Vx(y) + (nε)2(y)G(y)∂1Vx(y)

 dy. (3.4.23)

Since V is smooth everywhere inR3, partial derivatives commute and the volume integral vanishes,
leading to∫

R3\Bε(0)

∇G(y)×∇Vx(y)dy = −
∫
∂Bε(0)

G(y)nε(y)×∇Vx(y)dσ(y). (3.4.24)

This integral vanishes under the limit ε→ 0, because

sup
x∈R3

∣∣∣∣∣
∫
∂Bε(0)

G(y)nε(y)×∇V (x− y)dσ(y)

∣∣∣∣∣
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≤ ‖∇V ‖∞
∫
∂Bε(0)

∣∣G(y)
∣∣ dσ(y) = O(ε). (3.4.25)

Moving on to the next term, one eventually obtains from similar calculations that∫
R3\Bε(0)

∇G(y)× curl Vx(y)dy =

∫
R3\Bε(0)

G(y)curl curl Vx(y)dy

+

∫
∂Bε(0)

G(y)(curl Vx(y)× nε(y))dσ(y). (3.4.26)

Since ‖curl V‖∞ < ∞, the boundary integral on the right hand side vanishes under the limit by
repeating the argument of eq. (3.4.25). Finally, commuting partial derivatives after integrating by
parts also yields∫

R3\Bε(0)

divV(x− y)∇G(y)dy

=

∫
R3\Bε(0)

G(y)∇divV(x− y)−
∫
∂Bε(0)

G(y)divV(x− y)nε(y)dσ(y) (3.4.27)

Putting the two previous calculations together, we find that

lim
ε→0

∫
R3\Bε(0)

∇G(y)× curl V(x− y)− divV(x− y)∇G(y)dy

= − lim
ε→0

∫
R3\Bε(0)

G(y)∆V(x− y)dy = V(x), (3.4.28)

where we recognized the vector (Hodge-) Laplace operator −∆ ≡ curl curl−∇ div.
We have found that Jε −→

−→
V(x) as ε→ 0. Meanwhile,

‖Iε‖∞ ≤ ‖D
−→
V‖∞

∫
Bε(0)

‖Φ‖∞dy = O(

∫
Bε(0)

‖∇G‖∞dy) = O(ε). (3.4.29)

The calculations for
−→
U = D N

−→
U follow similarly starting from (3.4.17). ut

In light of Proposition 3.1, we say that the kernel Φ of N is a fundamental solution for the Dirac
operator.

3.4.2 Surface potentials

Adopting the perspective on first-kind boundary integral operators from [16], [32], [37] and [14]—
in the later works for the study of second-order elliptic operators—for the first-order Dirac operator,
we define the surface potentials

LT(−→a ) := N(γ′T
−→a ), ∀−→a = (a0, a1, a2) ∈ HR, (3.4.30)

LR(
−→
b ) := −N(γ′R

−→
b ), ∀

−→
b = (b0,b1, b2) ∈ HT, (3.4.31)
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where the mappings γ′T : HR = H′T → Hloc(D,R3\Ω)′ and γ′R : HT = H′R → Hloc(D,R3\Ω)′ are
adjoint to the trace operators γT and γR defined in (3.2.10).

It will be convenient to denote by Φx the map y 7→ Φ(x− y). Let
−→
E j ∈ R8 denote the constant

vector with 1 at the j-th entry and zeros elsewhere, j = 1, ..., 8. Similarly for Ek ∈ R3, k = 1, 2, 3.
Adapting the calculations found in [14, Sec. 4.2], we will establish integral representation

formulas for these potentials by splitting the pairings into their components.

Lemma 3.6 Given −→a ∈ HR and
−→
b ∈ HT, it holds for x ∈ Ω\Γ that

LT(−→a )(x) ·
−→
E j = −⟪−→a , γ−T (Φx

−→
E j)⟫Γ , (3.4.32a)

LR(
−→
b )(x) ·

−→
E j = ⟪−→b , γ−R (Φx

−→
E j)⟫Γ . (3.4.32b)

Proof. Let V ∈ C∞0 (R3) and suppose that −→a is the trace of a smooth 8-dimensional vector-field.
Using Fubini’s theorem, Lemma 3.5 and the fact that Φ is smooth away from the origin,

〈N(γ′T
−→a ), V

−→
E j〉R3 = ⟪−→a , γTN(V

−→
E j)⟫Γ (3.4.33)

=

∫
Γ

−→a (y) · γT
∫
R3

Φ(y − x)V (x)
−→
E j(x)dxdσ(y) (3.4.34)

(∗)
= −

∫
R3

V (x)(

∫
Γ

−→a (y) · γTΦ(x− y)
−→
E jdσ(y))dx, (3.4.35)

where the sign was obtained in (∗) thanks to Lemma 3.4. The integrals on the right-hand side of
(3.4.35) can be extended to duality pairings by a standard density argument exploiting Lemma 3.1.

Similar calculations can be carried out for LR. ut

In particular,

Φx(y)
−→
E 1 =


0

∇G(x− y)
0
0

 , Φx(y)
−→
E 8 =


0
0

−∇G(x− y)
0

 , (3.4.36)

Φx(y)
−→
E i =


− ∂
∂zµ(i)

G(z)

0
∇G(z)× Eµ(i)

0

∣∣∣z=x−y
, Φx(y)

−→
E k =


0

∇G(z)× Eν(k)

0
∂

∂zν(k)
G(z)

∣∣∣z=x−y
, (3.4.37)

for i = 2, 3, 4, k = 5, 6, 7, µ(i) = i− 1 and ν(k) = k − 4.
Therefore, we can evaluate

LT(−→a )(x) ·
−→
E 1 = −

∫
Γ

a1(y) · ∇G(x− y)dσ(y) (3.4.38a)

LT(−→a )(x) ·
−→
E i =

∫
Γ

a0(y) ∂µ(i)G(x− y)dσ(y) (3.4.38b)
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−
∫
Γ

a2(y) (∇G(x− y)× Eµ(i)) · n(y)dσ(y)

= ∂µ(i)

∫
Γ

a0(y)G(x− y)dσ(y)

+ Eµ(i) ·
∫
Γ

a2(y)∇G(x− y)× n(y)dσ(y)

LT(−→a )(x) ·
−→
E k = −

∫
Γ

a1(y) · (∇G(x− y)× Eν(k))dσ(y) (3.4.38c)

= Eν(k) ·
∫
Γ

∇yG(x− y)× a1(y)dσ(y)

LT(−→a )(x) ·
−→
E 8 =

∫
Γ

a2(y)∇yGx(y) · n(y)dσ(y), (3.4.38d)

where we have used the fact that a1 ∈ H−1/2(divΓ , Γ ) was “tangential" to safely drop the trace
γt everywhere. Similarly as in the proof of Lemma 3.6, all these integrals should be understood
as duality pairings and the following explicit representations do not only hold in the sense of
distributions, but also pointwise on R3\Γ .
We collect the above entries to obtain

LT(−→a ) =


− divΨ(a1)

∇ψ(a0) + curl Υ(a2)
curl Ψ(a1)
divΥ(a2)

 , pointwise on R3\Γ, (3.4.39)

where we respectively recognize in

ψ(q)(x) :=

∫
Γ

q(y)G(x− y)dσ(y), x ∈ R3\Γ, (3.4.40a)

Ψ (p)(x) :=

∫
γ

p(y)G(x− y)dσ(y), x ∈ R3\Γ, (3.4.40b)

Υ(q)(x) :=

∫
Γ

q(y)G(x− y)n(y)dσ(y) x ∈ R3\Γ, (3.4.40c)

the well-known single layer, vector single layer and normal vector single layer potentials. They
notably enter eq. (3.4.39) in the expression for the classical double layer potential divΥ(q) and
for the Maxwell double layer potential curlΨ(p) as they arise in acoustic and electromagnetic
scattering respectively.

Similarly, for i = 2, 3, 4 and k = 5, 6, 7,

LR(
−→
b )(x) ·

−→
E 1 =

∫
Γ

b0(y)∇G(x− y) · n(y)dσ(y) (3.4.41a)

LR(
−→
b )(x) ·

−→
E i =

∫
Γ

b1(y) · (∇G(x− y)× Eµ(i))× n(y)dσ(y) (3.4.41b)
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=

∫
Γ

(∇G(x− y)× Eµ(i)) · n(y)× b1(y)dσ(y)

= Eµ(i) ·
∫
Γ

(n(y)× b1(y))×∇G(x− y)dσ(y)

LR(
−→
b )(x) ·

−→
E k =

∫
Γ

b0(y)(∇G(x− y)× Eν(k)) · n(y)dσ(y) (3.4.41c)

+

∫
Γ

b2(y)∂jG(x− y)dσ(y)

= Eν(k) ·
∫
Γ

b0(y)n(y)×∇G(x− y)dσ(y)

+

∫
Γ

b2(y)∂jG(x− y)dσ(y)

LR(
−→
b )(x) ·

−→
E 8 = −

∫
Γ

b1(y) · ∇G(x− y)× n(y)dσ(y) (3.4.41d)

= −
∫
Γ

∇G(x− y) · n(y)× b1(y)dσ(y)

so that we have

LR(
−→
b ) =


divΥ(b0)

curlΨ(b1 × n)
− curlΥ(b0) +∇ψ(b2)

divΨ(b1 × n)

 , pointwise on R3\Γ. (3.4.42)

3.4.3 Mapping properties of the surface potentials

Fortunately, we already know a lot about each potential entering eq. (3.4.39) and eq. (3.4.42).

Lemma 3.7 The potentialsLT : HR → H(D,R3\Γ ) andLR : HT → H(D,R3\Γ ) explicitly given
by eq. (3.4.39) and eq. (3.4.42) are continuous.

Proof. Recall that if b1 ∈ H−1/2(curlΓ , Γ ), then n × b1 ∈ H−1/2(divΓ , Γ ). So the proof simply
boils down to extracting from the discussion of Section 5 in [14] the mapping properties

∇ψ :H−1/2(Γ )→ Hloc(curl2,R3\Γ ) ∩Hloc(∇div,R3\Γ ), (3.4.43a)
divΥ :H1/2 → H1

loc(∆,R3\Γ ), (3.4.43b)
curl Υ : H−1/2(divΓ , Γ )→ Hloc(curl,R3\Γ ), (3.4.43c)
divΨ : H−1/2(divΓ , Γ )→ H1

loc(R3\Γ ), (3.4.43d)
curl Ψ : H−1/2(divΓ , Γ )→ Hloc(curl,R3\Γ ). (3.4.43e)
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Since div ◦ curl ≡ 0, we have in particular

curl Υ : H−1/2(divΓ , Γ )→ Hloc(curl,R3\Γ ) ∩Hloc(div,R3\Γ ), (3.4.44a)
curl Ψ : H−1/2(divΓ , Γ )→ Hloc(curl,R3\Γ ) ∩Hloc(div,R3\Γ ). (3.4.44b)

Now, for z 6= 0, the kernels of the two surface potentials decay as

‖∇G(z)‖ . ‖z‖−2,

thus are not only square-integrable locally, but in fact belong to (L2(R3\Γ ))8. ut

The next lemma shows that the surface potentials solve the homogeneous Dirac equation.

Lemma 3.8 For all
−→
b ∈ HT and −→a ∈ HR, it holds on R3\Γ that

DLR(
−→
b ) ≡ −→0 , (3.4.45a)

DLT(−→a ) ≡ −→0 . (3.4.45b)

Proof. The well-known vector and scalar potentials of (3.4.40) are harmonic. Hence, since div ◦
curl ≡ 0 and curl ◦ ∇ ≡ 0, we directly evaluate

DLT(−→a ) =


−div∇ψ(a0)− div curlΥ(a2)
−∇divΨ(a1) + curl curlΨ(a1)

curl∇ψ(a0) + curl curlΥ(a2)−∇divΥ(a2)
div curlΨ(a1)



=


−∆ψ(a0)

−∇divΨ(a1) + curl curlΨ(a1)
−∇ divΥ(a2) + curl curl Υ(a2)

0

 =
−→
0 .

(3.4.46)

A similar calculation holds for DLR(
−→
b ). ut

Remark 3.3 Lemma 3.8 was proved using the explicit representations (3.4.39) and (3.4.42). The
technique revealed some structure behind the two boundary potentials. However, notice that adapting
the argument found in the proof of [37, Thm. 3.1.6], the desired result could also be obtained by
observing that

γ′T : HR → (Hloc(D,R3\Γ ))′ ⊂ (C∞(R3\Γ )8)′, (3.4.47)

together with Proposition 3.1, guarantees the equality DLT
−→a = γ′T

−→a as continuous linear func-
tionals on C∞0 (R3\Γ ).

Remark 3.4 It is a nice and unusual property for the potentials to belong to (L2(Ω+))8 as opposed
to being only locally square-integrable. We see from Lemma 3.6 that this is a consequence of two
ingredients: the stronger singularity of the Dirac fundamental solution, combined with the absence
of differential operators acting on the relevant traces.
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Lemma 3.9 (Jump relations) For all −→a ∈ HR and
−→
b ∈ HT,

[γT]LT(−→a ) =
−→
0 , [γR]LT(−→a ) = Id, (3.4.48)

[γT]LR(
−→
b ) = Id, [γR]LR(

−→
b ) =

−→
0 . (3.4.49)

Proof. For the most part, the following jump relations can be inferred from known theory. We
carefully evaluate

[γT]LT(−→a ) =

 − [γ] divΨ(a1)
[γt]∇ψ(a0) + [γt] curlΥ(a2)

[γn] curlΨ(a1)

 =

0
0
0

 , (3.4.50a)

[γR]LT(−→a ) =

[γn]∇ψ(a0) + [γn] curlΥ(a2)
[γτ ] curlΨ(a1)
[γ] divΥ(a2)

 =

a0

a1

a2

 , (3.4.50b)

[γT]LR(
−→
b ) =

 [γ] divΥ(b0)
[γt] curlΨ(b1 × n)

− [γn] curlΥ(b0) + [γn]∇ψ(b2)

 =

b0

b1

b2

 , (3.4.50c)

[γR]LR(
−→
b ) =

 [γn] curlΨ(b1 × n)
− [γτ ] curlΥ(b0) + [γτ ]∇ψ(b2)

[γ] divΨ(b1 × n)

 =

0
0
0

 . (3.4.50d)

The individual terms appearing in the above calculations can be found in [14, Sec. 5] and [21, Sec.
4], possibly up to tangential rotation by 90◦. Some terms slightly differ. In both eq. (3.4.50b) and
eq. (3.4.50c), we are particularly concerned with the normal jump of curl Υ across Γ . Fortunately,
we know that the restriction of Υ to H1/2 (Γ ) is a continuous map with codomain Hloc(curl2, Ω).
Its image is therefore regular enough for the identity

[γn] curl Υ (q) = divΓ
(
[γτ ] Υ (q)

)
= 0

to hold for all q ∈ H1/2(Γ ) [12, Eq. 8]. ut
Remark 3.5 The formal structure of these jump relations is the same as that of the jump identities
for the potentials associated with other operators such as
� scalar second-order strongly elliptic operators [32, 37],
� second-order Maxwell wave operators [10, 12],
� Hodge–Laplace and Hodge–Helmholtz operators [14, 15].

3.4.4 Representation by surface potentials

Following McLean in [32, Chap. 7], we mimic the approach introduced by Costabel and Dauge
[16, 17]. Corollary 3.1 plays the role of Green’s second identity. We begin with the case where a
solution of the Dirac equation defines a compactly supported distribution. This covers for instance
interior problems and yields a representation formula in Ω−. However, a condition on the behavior
of solutions at infinity will be needed for Ω+.
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Proposition 3.2 (Interior representation formula) If
−→
U ∈ H(D,R3\Γ ) is compactly supported

and
−→
F ∈ (L2(R3))8 is such that

−→
F
∣∣
Ω

:= (DU)
∣∣
Ω
and
−→
F
∣∣
Ω+ := (DU)

∣∣
Ω+ . Then

−→
U(x) = Φ ∗

−→
F (x) + LT

[
γR
−→
U
]

(x) + LR

[
γT
−→
U
]

(x), x ∈ R3\Γ. (3.4.51)

Proof. According to eq. (3.2.15),

〈D
−→
U,
−→
V〉R3

(∗)
=

∫
Ω

−→
U · D

−→
Vdx +

∫
R3\Ω

−→
U · D

−→
Vdx

=

∫
Ω

−→
F ·
−→
Vdx + ⟪γ−R

−→
U, γ−T

−→
V⟫Γ − ⟪γ−T

−→
U, γ−R

−→
V⟫Γ

+

∫
R3\Ω

−→
F ·
−→
Vdx− ⟪γ+

R

−→
U, γ+

T

−→
V⟫Γ + ⟪γ+

T

−→
U, γ+

R

−→
V⟫Γ

=

∫
R3

−→
F ·
−→
Vdx + ⟪

[
γR
−→
U
]
, γT
−→
V⟫Γ − ⟪

[
γT
−→
U
]
, γR
−→
V⟫Γ

(3.4.52)

for all
−→
V ∈ (C∞0 (R3))8. The regularity assumptions on

−→
U guarantee that the traces are well-

defined. We have used the fact that
−→
V is smooth across the boundary to obtain the last equality,

because smoothness guarantees that γ−T
−→
V = γ+

T

−→
V and γ−R

−→
V = γ+

R

−→
V . Therefore, in the sense of

distributions, we have
D
−→
U = F + (γ−T )′

[
γ−R
−→
U
]
− (γ−R )′

[
γ−T
−→
U
]
. (3.4.53)

Since
−→
U is assumed to have compact support, it can interpreted as a continuous linear functional

on C∞(R3)8 and convolution with Φ using Proposition 3.1 shows that the identity is valid when
interpreted in the sense distributions. Lemma 3.7 confirms that the equality holds in (L2(R3))8. ut

In the following, we will work over the domains defined as the interior Bρ and exterior B+
ρ of an

open ball of radius ρ. Therefore, we must introduce the traces γρT and γρR that extend the operators
defined in (3.2.5) where Γ is replaced by the boundary ∂Bρ of the open ball. The surface potentials
LρR and LρT are defined accordingly with respect to these trace mappings. Similarly, a dagger † will
refer to any given Lipschitz domainΩ† ⊂ R3. The following development parallels that of [32, Sec.
7].

Lemma 3.10 For −→U ∈ (C∞0 (Ω+)8)′ such that D
−→
U has compact support in Ω+, there exists a

unique vector field M
−→
U ∈ (C∞(R3))8 such that

M
−→
U(x) = L†T(γ†R

−→
U)(x) + L†R(γ†T

−→
U)(x) (3.4.54)

for all x inside any bounded Lipschitz domain Ω† such that

Ω ∪ supp(D
−→
U) b Ω†. (3.4.55)

Remark 3.6 It is key in the statement of Lemma 3.10 that the vector field M
−→
U is independent ofΩ†.
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Proof. Under the above hypotheses,
−→
U is harmonic in Ω+\supp(D

−→
U), because D

−→
U =

−→
0 implies

that
−→
∆
−→
U = D2−→U =

−→
0 . Standard elliptic regularity theory [32, Thm. 6.4] further tells us that

−→
U is

a regular distribution whose components are smooth in that domain. Therefore, we can define M
−→
U

in Bρ1 as in the right hand side of (3.4.54) by

M
−→
U(x) := Lρ1T (γρ1R

−→
U)(x) + Lρ1R (γρ1T

−→
U)(x), (3.4.56)

where the radius ρ1 is large enough that Ω ∪ supp(D
−→
U) b Bρ1 .

Applying eq. (3.2.15) inside Bρ2\Bρ1 with ρ1 < ρ2 eventually shows that this definition is
independent of the radius. Indeed, for any x ∈ Bρ1 , Φx is a smooth matrix in R3\Bρ1 , and, thus,
supp(D

−→
U) b Bρ1 guarantees for i = 1, ..., 8 that

0 =

∫
Bρ2\Bρ1

Φ(x− y)D
−→
U(y)dy ·

−→
E i =

∫
Bρ2\Bρ1

Φi,:(x− y)D
−→
U(y)dy

(∗)
= −

∫
Bρ2\Bρ1

Φ:,i(x− y) · D
−→
U(y)dy = −

∫
Bρ2\Bρ1

DyΦ:,i(x− y) ·
−→
U(y)dy

− ⟪γρ2T
−→
U, γρ2R Φ:,i(x− ·)⟫Γ − ⟪γρ2T Φ:,i(x− ·), γρ2R

−→
U⟫Γ

+ ⟪γρ1T
−→
U, γρ1R Φ:,i(x− ·)⟫Γ + ⟪γρ1T Φ:,i(x− ·), γρ1R

−→
U⟫Γ , (3.4.57)

where Φi,: corresponds to the i-th row of Φ, Φ:,j to its j-th column, and Lemma 3.4 was used to
obtain (∗).

On the one hand, for x 6= y,

DyΦ:,i(x− y) ·
−→
U(y) = Dx(Φx(y)

−→
U(y)) ·

−→
E i

= DxDx(G(x− y)
−→
U(y)) ·

−→
E i = (−∆xG(x− y))

−→
U(y) ·

−→
E i = 0. (3.4.58)

On the other hand,

⟪γρ2T
−→
U, γρ2R Φ:,i(x− ·)⟫ = −⟪γρ2T

−→
U, γρ2R (Φx

−→
E i)⟫ = −Lρ2R (γρ2T

−→
U)(x) ·

−→
E j (3.4.59)

by Lemma 3.6, and similarly for the remaining boundary terms. These two pieces of information
together prove the validity of the independence claim.

In fact, the same argument can be repeated inBρ1\Ω† to confirm that (3.4.54) holds independently
of the chosen Lipschitz domain satisfying the hypotheses.

Smoothness of M
−→
U is inherited from the smoothness of the integrands. ut

Lemma 3.11 Let −→F ∈ (L2(Ω+))8 be compactly supported and suppose that
−→
U ∈ (C∞0 (Ω+)8)′

satisfies D
−→
U =

−→
F on Ω+. If the restriction of

−→
U to Ω+ ∩Bρ belongs to H(D, Ω+ ∩Bρ) for some

ρ large enough that Ω ∪ Γ b Bρ and supp
−→
F b Ω+ ∩Bρ, then

−→
U = Φ ∗

−→
F − LTγ

+
R

−→
U − LRγ

+
T

−→
U + M

−→
U (3.4.60)

holds in H(D, Ω+).
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Proof. Upon applying Proposition 3.2 to the distribution

−→
U0 :=


−→
0 , in Ω,
−→
U, in Ω+ ∩Bρ,−→
0 , in R3\Bρ,

(3.4.61)

that is compactly supported and belongs to Hloc(D,R3\(Γ ∪ ∂Bρ)), we obtain
−→
U0 = Φ ∗

−→
F − LT(γ+

R

−→
U)− LR(γ+

T

−→
U) + LρT(γρR

−→
U) + LρR(γρT

−→
U) (3.4.62)

as a functional on (C∞0 (R3))8. Since Bρ satisfies the hypotheses imposed on Ω† in the statement of
Lemma 3.10, we recognize that

LρT(γρR
−→
U)(x) + LρR(γρT

−→
U)(x) = M

−→
U(x) (3.4.63)

for all x ∈ Bρ. Hence,
−→
U = Φ ∗

−→
F − LTγ

+
R

−→
U − LRγ

+
T

−→
U + M

−→
U in Ω+ ∩Bρ. (3.4.64)

As in Lemma 3.10, it follows from supp
−→
F ⊂ Bρ that

−→
U is harmonic in R3\Bρ, and thus

smooth everywhere outside the ball Bρ by well-known elliptic regularity theory [32, Thm. 6.4].
Hence, the hypothesis that

−→
U ∈ H(D, Ω+ ∩ Bρ) for at least one ball Bρ satisfying the hypotheses

in fact guarantees that it belongs to that space independently of the radius satisfying those same
requirements. Therefore, (3.11) holds in the whole of Ω+. Based on Lemma 3.10, the mapping
properties of the potentials established in Lemma 3.7 and Proposition 3.1, we conclude that the
equality (3.4.64) holds in fact not only in Hloc(D, Ω+), but in H(D, Ω+)—which is the desired
result. ut

Lemma 3.12 Under the hypotheses of Lemma 3.11,

M
−→
U =

−→
0 (3.4.65)

if and only if
‖
−→
U(z)‖ → 0 uniformly as z→∞. (3.4.66)

Proof. The condition (3.4.66) is well-defined, because as in Lemma 3.11, there exists a radius ρ1

large enough that the vector-field
−→
U is smooth outside Bρ1 . For the same reason, the traces of

−→
U

appearing in the following inequalities are smooth boundary fields.
Recall that for z 6= 0,

‖∇G(z)‖ . ‖z‖−2. (3.4.67)

Therefore, it is easily seen from (3.4.39) and (3.4.42) that if ρ2 > ρ1,

‖Lρ2• (γρ2•
−→
U)(x)‖ . ρ−2

2 ‖
∫
∂Bρ2

γ•
−→
U(y)dσ(y)‖ . max

y∈∂Bρ2
‖
−→
U(y)‖ (3.4.68)

for all x ∈ Bρ1 , • = T or R. Notice that the left hand side of (3.4.68) is well-defined, because
as in Lemma 3.10, Lemma 3.8 and D2 = −∆ guarantee that away from the boundary ∂Bρ2 , the
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potentials are smooth harmonic vector fields. No differential operator appears in the definition of
the trace mappings γR and γT. The independence of M

−→
U from its domain of definition thus directly

yields one implication of the lemma upon taking ρ2 →∞.
The converse follows from the exterior representation formula (3.4.60) with M

−→
U =

−→
0 and an

analysis exploiting (3.4.67) that leads to an inequality similar to (3.4.68). However, this time the
potentials are computed as integrals (duality pairings) on the fixed boundary Γ and an inverse
square decay is inherited from the decay of the fundamental solution. ut

Proposition 3.3 (Exterior representation formula) If −→U ∈ Hloc(D, Ω+) is such that
−→
U(z) → 0

as z→∞ and
−→
F := DU is compactly supported. Then

−→
U(x) = Φ ∗

−→
F (x)− LTγ

+
R

−→
U(x)− L+

Rγ
+
T

−→
U(x), x ∈ Ω+. (3.4.69)

3.5 Boundary integral equations

Boundary integral equations are obtained by taking the traces γR and γT on both sides of the rep-
resentation formulas (3.4.51) and (3.4.69). The operator form of the interior and exterior Calderón
projectors defined on HR × HT, which we denote P− and P+ respectively, enter the Calderón
identities (

{γR}LT + 1
2
Id {γR}LR

{γT}LT {γT}LR + 1
2
Id

)
︸ ︷︷ ︸

P−

(
γ−R (U)
γ−T (U)

)
=

(
γ−R (U)
γ−T (U)

)
, (3.5.1)

(
−{γR}LT + 1

2
Id −{γR}LR

−{γT}LT −{γT}LR + 1
2
Id

)
︸ ︷︷ ︸

P+

(
γ+
R (U)
γ+
T (U)

)
=

(
γ+
R (U)
γ+
T (U)

)
. (3.5.2)

For example, extend a solution
−→
U ∈ H(D, Ω) of the homogeneous Dirac equation in Ω− to the

whole of R3 by zero. Using Proposition 3.2,
−→
U(x) = LTγ

−
R

−→
U(x) + LRγ

−
T

−→
U(x), x ∈ R3\Γ. (3.5.3)

Then, applying γ−R on both sides of the equation yields

γ−R
−→
U(x) = γ−RLTγ

−
R

−→
U(x) + γ−RLRγ

−
T

−→
U(x), x ∈ Γ. (3.5.4)

It is a simple calculation to verify that the jump identities of Lemma 3.9 implies

{γT}LT(−→a ) = γ−TLT(−→a ), {γR}LT(−→a ) = γ−RLT(−→a )− 1

2
−→a , (3.5.5)

{γT}LR(
−→
b ) = γ−TLR(

−→
b )− 1

2

−→
b , {γR}LR(

−→
b ) = γ−RLR(

−→
b ). (3.5.6)

Substituting the interior traces for the averages using these relations leads to the top row of (3.5.1).
The other identities are obtained similarly.
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A classical argument, cf. [40, lem. 6.18], shows that P− and P+ are indeed projectors, i.e.
(P∓)2 = P∓. The proof, which for the homogeneous Dirac equation is essentially based on
Lemma 3.8, also shows as a byproduct, cf. [44, Thm. 3.7], that the images of P− and P+ are spaces
of valid interior and exterior Cauchy data, respectively. In fact, as observed in [12, Sec. 5], we have
P− + P+ = Id. So the range of P− coincides with the nullspace of P+ and vice versa. Therefore,
we find the important property that (−→a ,

−→
b ) ∈ HR×HT is valid interior or exterior Cauchy data if

and only if it lies in the nullspace of P+ or P−, respectively.
The two direct boundary integral equations of the first-kind related to (R) and (T) then read as

follows. Given γR
−→
U = −→a ∈ HR, the task is to determine the unknown

−→
b = γT

−→
U ∈ HT by solving

γRLR(
−→
b ) =

1

2
−→a − {γR}LT(−→a ). (BR)

If
−→
b ∈ HT is known instead, then we solve

γTLT(−→a ) =
1

2

−→
b − {γT}LR(

−→
b ) (BT)

for the unknown −→a ∈ HR.

Remark 3.7 (Duality and symmetry) Let us revisit the boundary value problems of Section 3.3.
We wish to highlight that (T) and (R) are really the same problem in hiding. For example, we can
always relabel the components of an unknown vector-field

−→
U ∈ H(D, Ω) to

V0 := U3, V1 := −U2 V2 := −U1 and V3 := V0, (3.5.7)

and set
a0 := −b2 a1 := n× b1 and a3 = b0. (3.5.8)

This turns a problem (T) for
−→
U into a problem (R) for

−→
V ∈ H(D, Ω).

Since both a solution
−→
U of (T) and a solution

−→
V of (R) can be written using the representation

formula (3.4.51), we expect (3.5.8) to define an isomorphism T : HT → HR that also turns one of
the boundary integral equation into the other. And indeed, one can verify that

{γR}LT

(
T
−→
b
)

= T γTLR

(−→
b
)

and {γT}LT

(
T
−→
b
)

= T {γR}LR

(−→
b
)
.

Hence, (BT) can be equivalently formulated as a problem (BR) with unknown “T−1−→a " and given
data T

−→
b .

Let us take a closer look at the bilinear forms naturally associated with the continuous first-kind
boundary integral operators

γTLT :HR → HT, (3.5.9)
γRLR :HT → HR, (3.5.10)

that map trace spaces to their dual spaces.
Let −→a and −→c be trial and test boundary vector fields lying inHR, and similarly for

−→
b and

−→
d in

HT. Catching up with the calculations of Subsection 3.4.2, we want to derive convenient integral
formulas for
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⟪−→c , γTLT

(−→a )⟫ = −〈c0, γ divΨ (a1)〉Γ + 〈c1, γt∇ψ(a0)〉τ
+ 〈c1, γt curlΥ(a2)〉τ + 〈c2, γn curlΨ (a1)〉Γ

and

⟪−→d , γRLR(
−→
b )⟫ = 〈d0, γn curlΨ (b1 × n)〉Γ − 〈d1, γτ curlΥ(b0)〉τ

+ 〈d1, γτ∇ψ(b2)〉τ + 〈d2, γ divΨ (b1 × n)〉Γ .

In the course of our derivation, we will often rely implicitly on the fact that a1 and b1 are
tangential vector fields.

Using the fact that divΨ (a1) = ψ (divΓ a1) and divΨ (b1 × n) = ψ (curlΓb1) [27, Lem. 2.3],
we immediately find that

〈c0, γ divΨ (a1)〉Γ =

∫
Γ

∫
Γ

Gx(y) c0(x) divΓa1(y)dσ(x)dσ(y)

and

〈d2, γ divΨ (b1 × n)〉Γ =

∫
Γ

∫
Γ

Gx(y) d2(x) curlΓb1(y)dσ(y)dσ(x). (3.5.11)

We know from [14, Sec. 6.4] that

〈d1, γτ curlΥ(b0)〉τ

= −
∫
Γ

∫
Γ

Gx(y)
(
n(x)× d1(x)

)
·
(
n(y)×∇Γ b0(y)

)
dσ(y)dσ(x)

=

∫
Γ

∫
Γ

Gx(y)
(
n(x)× d1(x)

)
· curlΓ b0(y)dσ(y)dσ(x).

Adapting the arguments, we also obtain

〈c1, γt curlΥ(a2)〉τ = 〈c1 × n, γτ curlΥ(a0)〉τ

=

∫
Γ

∫
Γ

Gx(y)
(
n(x)× (c1(x)× n(x))

)
· curlΓ a2(y)dσ(y)dσ(x)

=

∫
Γ

∫
Γ

Gx(y) c1(x) · curlΓ a2(y)dσ(y)dσ(x).

Again, from [14, Sec. 6.4], we can similarly extract

〈c2, γn curlΨ (a1)〉Γ = −
∫
Γ

∫
Γ

Gx(y) a1(y) ·
(
n(x)×∇Γ c2(x)

)
dσ(y)dσ(x)

=

∫
Γ

∫
Γ

Gx(y) a1(y) · curlΓ c2(x)dσ(y)dσ(x)

and

〈d0, γn curlΨ(b1 × n)〉Γ = −
∫
Γ

∫
Γ

Gx(y) (n(y)× b1(y)) · curlΓ d0(x)dσ(y)dσ(x)
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Finally, it follows almost directly by definition that

〈c1, γt∇ψ(a0)〉τ = −
∫
Γ

∫
Γ

Gx(y) a0(y) divΓ c1(x)dσ(y)dσ(x),

and

〈d1, γτ∇ψ(b2)〉τ =

∫
Γ

∫
Γ

Gx(y) b2(y) curlΓ d1(x)dσ(y)dσ(x).

Putting everything together yields the symmetric bilinear forms

⟪−→c , γTLT

(−→a )⟫ = −
∫
Γ

∫
Γ

G(x− y) c0(x) divΓa1(y)dσ(x)dσ(y)

−
∫
Γ

∫
Γ

G(x− y) a0(y) divΓ c1(x)dσ(y)dσ(x)

+

∫
Γ

∫
Γ

G(x− y) c1(x) · curlΓ a2(y)dσ(y)dσ(x)

+

∫
Γ

∫
Γ

G(x− y) a1(y) · curlΓ c2(x)dσ(y)dσ(x),

(3.5.12)

⟪−→d , γRLR(
−→
b )⟫ = −

∫
Γ

∫
Γ

G(x− y)
(
n(y)× b1(y)

)
· curlΓ d0(x)dσ(y)dσ(x)

−
∫
Γ

∫
Γ

G(x− y)
(
n(x)× d1(x)

)
· curlΓ b0(y)dσ(y)dσ(x)

+

∫
Γ

∫
Γ

G(x− y) b2(y) curlΓ d1(x)dσ(y)dσ(x)

+

∫
Γ

∫
Γ

G(x− y) d2(x) curlΓb1(y)dσ(y)dσ(x).

(3.5.13)

The above integrals must be understood as duality pairings.

Remark 3.8 Let us highlight here, as we have announced in the introduction, that in the sense
of [24, Chap. 2.5], these double integrals feature only weakly singular kernels!

The non-local inner products

(u, v)−1/2 :=

∫
Γ

∫
Γ

Gx(y)u(x) v(y)dσ(x)dσ(y), (3.5.14a)

(u,v)−1/2,T :=

∫
Γ

∫
Γ

Gx(y)u(x) · v(y)dσ(x)dσ(y), (3.5.14b)

(u,v)−1/2,R :=

∫
Γ

∫
Γ

Gx(y)(n(x)× u(x)) · (n(y)× v(y))dσ(x)dσ(y), (3.5.14c)



81

respectively defined over H−1/2(Γ ), H
−1/2
T (Γ ) := (H

1/2
T (Γ ))′ and H

−1/2
R (Γ ) := (H

1/2
R (Γ ))′,

where

H
1/2
T (Γ ) := γt(H

1(Ω)) and H
1/2
R (Γ ) := γτ (H

1(Ω)), (3.5.15)

are positive definite Hermitian forms, and induce equivalent norms on the trace spaces [10, Sec.
4.1]. In the following, we will concern ourselves with the coercivity and geometric structure of the
bilinear forms

bT(−→a ,−→c ) := ⟪γTLT

(−→a ) ,−→c ⟫
= (−divΓ a1, c0)−1/2 + (a0,−divΓ c1)−1/2

+ (curlΓ a2, c1)−1/2,T + (a1, curlΓ c2)−1/2,T

(3.5.16)

and

bR(
−→
b ,
−→
d ) := ⟪γRLR

(−→
b
)
,
−→
d ⟫

= (b1,∇Γ d0)−1/2,R + (∇Γ b0,d1)−1/2,R

+ (b2, curlΓd1)−1/2 + (curlΓb1, d2)−1/2 .

(3.5.17)

3.6 T-coercivity

Based on the space decomposition introduced by the next lemma, we design isomorphismsHR →
HR andHT → HT that are instrumental for obtaining the desired generalized Gårding inequalities
for bT and bR.

Lemma 3.13 (See [21, Sec. 7] and [12, Lem. 2]) There exists a continuous projection ZΓ :

H−1/2(divΓ , Γ )→ H
1/2
R (Γ ) with

ker(ZΓ ) = ker(divΓ ) ∩H−1/2(divΓ , Γ ) (3.6.1)

and satisfying
divΓ (ZΓ (v)) = divΓ (v). (3.6.2)

The closed subspaces X(divΓ , Γ ) := ZΓ (H−1/2(divΓ , Γ )) and N(divΓ , Γ ) := ker(divΓ ) ∩
H−1/2(divΓ , Γ ) provide a stable direct regular decomposition

H−1/2(divΓ , Γ ) = X(divΓ , Γ )⊕N(divΓ , Γ ). (3.6.3)

Hence, it follows from (3.6.2) that
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v 7→ ‖divΓ (v)‖−1/2 + ‖(Id− ZΓ ) v‖−1/2 (3.6.4)

also defines an equivalent norm in H−1/2(divΓ , Γ ).
Note that since, by Rellich’s embedding theorem, H

1/2
R (Γ ) compactly embeds in the space

L2
t (Γ ) := {u ∈ L2(Γ ) |u · n ≡ 0} of square-integrable tangential vector-fields, this is also the

case for X(divΓ , Γ ).
From Lemma 3.2, divΓ : X(divΓ , Γ ) → H

−1/2
∗ (Γ ) is a continuous bijection, thus the bounded

inverse theoremguarantees the existence of a continuous inverse (divΓ )† : H
−1/2
∗ (Γ )→ X(divΓ , Γ )

such that

(divΓ )† ◦ divΓ = Id
∣∣∣
X(divΓ ,Γ )

, divΓ ◦ (divΓ )† = Id
∣∣∣
H
−1/2
∗ (Γ )

.

The existence of an operator curl†Γ : N(divΓ , Γ ) → H
1/2
∗ (Γ ) satisfying curl†Γ ◦ curlΓ = Id

and curlΓ ◦curl†Γ = ‘H−1/2(divΓ , Γ )-orthogonal projection onto (surface) divergence-free vector-
fields’ also follows by Lemma 3.2.

In the following, we will denote by Q∗ both the projection H1/2(Γ ) → H
1/2
∗ (Γ ) onto mean

zero functions and the projection H−1/2(Γ ) → H
−1/2
∗ (Γ ) onto the space of annihilators of the

characteristic function.
Lemma 3.14 The bounded linear operator

Ξ : H−1/2
∗ (Γ )×H−1/2(divΓ , Γ )×H1/2

∗ (Γ )→ H−1/2
∗ (Γ )×H−1/2(divΓ , Γ )×H1/2

∗ (Γ )

defined by

Ξ

a0

a1

a2

 =

 −divΓ a1

−(divΓ )†(Q∗a0) + curlΓ (Q∗a2)

(curlΓ )† ((Id− ZΓ )a1)


is a continuous involution. In particular, Ξ is an isomorphism of Banach spaces.

Proof. We directly evaluate

Ξ2

a0

a1

a2

 = Ξ

 −divΓ a1

−(divΓ )†(Q∗a0) + curlΓ (Q∗a2)

(curlΓ )† ((Id− ZΓ )a1)


=

(
N

divΓ ((divΓ )†(Q∗a0))−divΓ (curlΓ (Q∗a2))

(divΓ )†(Q∗(divΓ a1))+curlΓ (Q∗(curlΓ )†((Id−ZΓ )a1))

−(curlΓ )†((Id−ZΓ )((divΓ )†(Q∗a0)))+(curlΓ )†((Id−ZΓ )(curlΓ (Q∗a2)))

)

=

 Q∗a0

ZΓa1 + (Id− ZΓ )a1

Q∗a2

 =

a0

a1

a2

 .

ut

Proposition 3.4 There exists a constantC > 0 and a compact bilinear form c : HR×HR → R
such that ∣∣⟪Ξ −→a , γTLT

(−→a )⟫× + c(−→a ,−→a )
∣∣ ≥ C‖−→a ‖2

HR
∀−→a ∈ HR. (3.6.5)
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Proof. The operator curlΓ : H1
∗ (Γ ) → H−1/2(divΓ ) is a continuous injection with closed range,

it is thus bounded below. Since the mean operator has finite rank, it is compact. Moreover,
(divΓ )†(H

−1/2
∗ (Γ )) ⊂ H

1/2
R (Γ ) is compactly embedded in L2

t (Γ ). Hence, the proof ultimately
follows from

⟪Ξ −→a , γTLT

(−→a )⟫× =̂ (divΓ a1, divΓ a1)−1/2 + (a2, Q∗a2)−1/2

+ ((divΓ )†Q∗a2, curlΓ a0)−1/2 + (curlΓ Q∗a0, curlΓ a0)−1/2

+ (a1, (Id− ZΓ )a1)−1/2

and the opening observations of this section. ut

Since curlΓ (d) = divΓ (n × d) for all d ∈ H−1/2(curlΓ , Γ ), tinkering with the signs and
introducing rotations in the definition of Ξ easily leads to an analogous generalized Gårding
inequality for γRLR.

Corollary 3.2 The boundary integral operators γTLT : HR → HT and γRLR : HT → HR

are Fredholm of index 0.

3.7 Kernels

We conclude from Corollary 3.2 that the nullspaces of γTLT and γRLR are finite dimensional. In
this section, we proceed similarly as in [14, Sec. 7.1] and [15, Sec. 3] to characterize them explicitly.

Suppose that −→a ∈ HR is such that γTLT(−→a ) = 0.

• Since divΓ a1 ∈ H−1/2(Γ ), we can test the bilinear form of Equation (3.5.12) with c0 = divΓ a1,
c1 = 0 and c2 = 0 to find that divΓ a1 = 0.

• Testing with c0 = 0 and c1 = 0 shows that (a1, curlΓ v)−1/2 = 0 ∀ v ∈ H1/2(Γ ).
• Because divΓ ◦ curlΓ = 0, we can choose c2 = 0, c0 = 0 and c1 = curlΓa2 to conclude that
curlΓa2 = 0.

• We are left with (a0, divΓv)−1/2 = 0 ∀v ∈ H−1/2(divΓ , Γ ).

In H1/2(Γ ), ker(curlΓ ) = ker(∇Γ ) is the space of functions c(Γ ) that are constant over
connected components of Γ . Defining Ψt := γtΨ, we have found that

ker(γTLT) ={
−→a ∈ HR

∣∣∣ a0 ∈ c(Γ ), curlΓΨt(a1) = 0, divΓa1 = 0, ∇Γψ(a′0) = 0

}
. (3.7.1)

Now, suppose that
−→
b ∈ HT is such that γRLR(

−→
b ) = 0.

• As curlΓ (b1) ∈ H−1/2(Γ ), we may test Equation (3.5.13) with d2 = curlΓ b1, d1 = 0 and
d0 = 0 to find that curlΓ b1 = 0.
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• Testing with d2 = 0 and d1 = 0, we find that (n× b1, curlΓ v)−1/2 = 0 for all v ∈ H1/2(Γ ).
• Since curlΓ ◦ ∇Γ = 0, we can choose d0 = 0, d2 = 0 and d1 = ∇Γ b0 to conclude that
curlΓ b0 = 0.

• Finally, it follows that (b2, curlΓ v)−1/2 = 0 for all v ∈ H−1/2(curlΓ , Γ ).

Notice that since ∇Γ (v) is tangential for all v ∈ H1/2(Γ ),

(n× b1, curlΓ v)−1/2 = (n× b1,∇Γv × n)−1/2 = 〈n×Ψ(n× b1),∇Γv〉

for all v ∈ H1/2(Γ ). Therefore, we let Ψτ (·) := −γτΨ(n× ·) and conclude that

ker(γRLR) ={
−→
b ∈ HT

∣∣∣ b0 ∈ c(Γ ), curlΓ b1 = 0, divΓΨτ (b1) = 0, curlΓψ(b′0) = 0

}
. (3.7.2)

Equation (3.7.1) and Equation (3.7.2) together with the mapping properties of the scalar and
vector single layer potentials allow us to determine as in [14, Sec. 7.2] and [15, Lem. 2, Lem. 6]
that the dimension of these nullspaces relate to the Betti numbers of Γ .

Proposition 3.5 The dimensions of ker(γTLT) and ker(γRLR) are finite and equal to the sum
of the Betti numbers β0(Γ ) + β1(Γ ) + β2(Γ ).

Remark 3.9 The zeroth Betti number β0(Γ ) indicates the number of connected components of Γ .
The first Betti number β1(Γ ) amounts to the number of equivalence classes of non-bounding cycles
in Γ . For the second Betti number, it holds that β2(Γ ) = β2(Ω+)+β2(Ω−), which sums the number
of holes in Ω+ and Ω−, respectively.

3.8 Surface Dirac operators

In this section, we reveal the geometric structure behind the formulas of the bilinear forms bR and
bT established in Section 3.5. They turn out to be associated with the 2D surface Dirac operators
induced by the chain and cochain Hilbert complexes

H−1/2(Γ )
∇Γ //H

−1/2
T (Γ )

curlΓ // H−1/2(Γ ) (3.8.1)

and
H−1/2(Γ ) H

−1/2
R (Γ )−divΓ

oo H−1/2(Γ ),
curlΓ
oo (3.8.2)

equipped with the non-local inner products (3.5.14a), (3.5.14b) and (3.5.14c). Their associated
domain complexes
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H1/2(Γ )
∇Γ //H−1/2(curlΓ , Γ )

curlΓ // H−1/2(Γ ) (3.8.3)

and
H−1/2(Γ ) H−1/2(divΓ , Γ )−divΓ

oo H1/2(Γ ),
curlΓ
oo (3.8.4)

are equipped with the natural graph inner products.

Remark 3.10 Notice that (3.8.3) and (3.8.4) are dual to each other with respect to the duality pairing
on the boundary introduced in Section 3.2.

The Hilbert space adjoint d∗Γ and δ∗Γ of the nilpotent operators

dΓ : HT → HT, (3.8.5)
δΓ : HR → HR, (3.8.6)

represented by the block operator matrices

dΓ :=

 0 0> 0
∇Γ 03×3 0
0 curlΓ 0

 and δΓ :=

0 −divΓ 0
0 03×3 curlΓ
0 0> 0


are non-local operators.
In terms of variational formulations, the bilinear forms associatedwith the surfaceDirac operators

DΓ
R := dΓ + d∗Γ (3.8.7)

DΓ
T := δΓ + δ∗Γ (3.8.8)

are precisely bR and bT defined in (3.5.17) and (3.5.16), previously associated to the boundary
integral operators γRLR and γTLT:

(DΓ
R

−→
b ,
−→
d )HT

= (dΓ
−→
b ,
−→
d )HT

+ (
−→
b ,dΓ

−→
d )HT

= (∇Γ b0,d1)−1/2,R + (curlΓb1, d2)−1/2

+ (b1,∇Γ d0)−1/2,R + (b2, curlΓd1)−1/2

= bR(
−→
b ,
−→
d ),

(3.8.9)

and similarly

(DΓ
T
−→a ,−→c )HR

= (δΓ
−→a ,−→c )HR

+ (−→a , δΓ−→c )HR

= (−divΓ a1, c0)−1/2 + (a0,−divΓ c1)−1/2

+ (curlΓ a2, c1)−1/2,T + (a1, curlΓ c2)−1/2,T

= bT(−→a ,−→c ).

(3.8.10)
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First-kind boundary integral operators spawned by the (volume)Dirac operators in 3DEuclidean
space thus coincide with (surface) Dirac operators on 2D boundaries: boundary value problems
related to DΩ

R = d + d∗ in Ω can be formulated as problems for DΓ
R = dΓ + d∗Γ in Γ , and similarly

problems for DΩ
T = δ + δ∗ in Ω correspond to problems for DΓ

T = δΓ + δ∗Γ in Γ .
This explains why the dimension of the nullspaces of first-kind boundary integral operators is

the sum of the dimensions of the standard spaces of surface harmonic scalar and vector fields.

3.9 Solvability

Thanks to the duality between the trace spaces, (BT) and (BR) can be reformulated into the
variational problems:

−→a ∈ HR : bT(−→a ,−→c ) = `T(−→c ), ∀−→c ∈ HR, (BVT)

and
−→
b ∈ HT : bR(

−→
b ,
−→
d ) = `R(

−→
d ), ∀

−→
d ∈ HT, (BVR)

with right-hand side functionals

`T(−→c ) = ⟪1

2

−→
b − {γT}LR(

−→
b ),−→c ⟫Γ (3.9.1)

and
`R(
−→
d ) = ⟪1

2
−→a − {γR}LT(−→a ),

−→
d ⟫Γ . (3.9.2)

As explained in Remark 3.7, it is sufficient when it comes to well-posedness to restrict our
considerations to only one of the two boundary integral equations stated in Section 3.5. The
following result makes explicit the condition under which a solution to (BVR) exists.

Proposition 3.6 If the boundary data −→a ∈ HR satisfies the compatibility condition (CCR), then
the right-hand side ` ∈ H′T of (BVR) is consistent in the sense that

`R(
−→
d ) = 0, ∀

−→
d ∈ kerBT. (3.9.3)

Proof. Following the strategy found in the proofs of [15, Lem. 4] and [15, Lem. 8], we use (3.4.39)
to directly evaluate

`R(
−→
d ) = ⟪1

2
−→a − {γR}LT(−→a ),

−→
d ⟫Γ

= ⟪1

2
−→a ,
−→
d ⟫Γ − 〈{γn} curlΥ (a2), d0〉Γ + 〈K′(a0), d0〉Γ

+ 〈a1,C(b1)〉Γ − 〈K(a2), b2〉Γ

= 〈(1

2
Id− K′)a0, d0〉Γ + 〈{γn} curlΥ (a2), d0〉Γ
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+ 〈a1, (
1

2
Id + C)b1〉Γ + 〈(1

2
Id + K)a2, b2〉Γ ,

where we recognize the “Maxwell double layer boundary integral operator" C, and the double layer
boundary integral operator K for the Laplacian.

Locally constant functions are trivially harmonic. They can thus be written using the classical
representation formula for the scalar Laplacian in which the Neumann trace vanishes to yield
d0 = γ (1

2
Id−K)d0. Since K is dual to K′, the first term on the right-hand side vanishes because of

the compatibility condition (CCR).
The second term also evaluates to zero. On the one hand, ker curlΓ = ker∇Γ . On the other

hand, γn curl = curlΓ γt in H(curl, Ω), and curlΓ is dual to curlΓ .
The third and fourth terms are shown to vanish in [15, Lem.4] and [15, Lem.3] with similar

arguments. ut

In the framwork of Section 3.8, a standard result is the Poincaré inequality: ∃C > 0, only
depending on Γ , such that [1, 26]

‖
−→
b ‖HR

≤ C‖dΓ
−→
b ‖HR

, ∀
−→
b ∈ K, (3.9.4)

where K := (ker dΓ )⊥ ∩ dom(dΓ ) and orthogonality is taken in the non-local inner products
introduced in Section 3.5. From the complex (3.8.3),

dom(dΓ ) = H1/2(Γ )×H−1/2(curlΓ , Γ )×H−1/2(Γ ), (3.9.5)

and thus
K = K0 × K1 × K2 ∈ HT (3.9.6)

with

K0 := ker∇Γ , K1 := ker curlΓ ∩
(
∇ΓH

1
2 (Γ )

)⊥
, K2 :=

(
curlΓ H−

1
2 (curlΓ , Γ )

)⊥
.

It is routine to verify from (3.7.2) that K = ker bR. Hence, due to the inf-sup inequality supplied
in [26, Thm. 2.4], the problem of finding

−→
b ∈ HT and −→p ∈ K such that

bR

(−→
b ,
−→
d
)

+ ⟪−→p ,−→d ⟫Γ = `R(
−→
d ) ∀

−→
d ∈ HT,

⟪−→b ,−→g ⟫Γ = 0 ∀−→g ∈ ker bR

(MBVR)

is well-posed.
Similarly, the problem of solving

bT

(−→a ,−→c )+ ⟪−→q ,−→c ⟫Γ = `T(−→c ), ∀−→c ∈ HT,

⟪−→a ,−→g ⟫Γ = 0, ∀−→g ∈ ker bT

(MBVT)

for the unknown pair (−→a ,−→q ) ∈ HR × ker bT is well-posed.
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Theorem 3.1 The mixed variational problems (MBVR) has a unique solution
−→
b ∈ HT such that−→

b ⊥ ker bR. Moreover,

‖
−→
b ‖−1/2 + ‖−→p ‖−1/2 . ‖

1

2
−→a − {γR}LT(−→a )‖HR

, (3.9.7)

where the constant depends only on the constant in the Poincaré inequality (3.9.4). If −→a satisfies
(CCR), then this result extends to the variational problem (BVR) and (3.9.7) holds with −→p = 0.
Similarly, the mixed variational problems (MBVT) has a unique solution −→a ∈ HR such that
−→a ⊥ ker bT. Moreover,

‖−→a ‖−1/2 + ‖−→q ‖−1/2 . ‖
1

2

−→
b − {γT}LR(

−→
b )‖HT

, (3.9.8)

where the constant depends only on the constant in the Poincaré inequality for δΓ . If
−→
b satisfies

(CCT), then this result extends to the variational problem (BVT) and (3.9.8) holds with −→q = 0.

3.10 Conclusion

First-kind boundary integral equations are appealing to the numerical analysis community because
they lead to variational problems posed in natural “energy" trace spaces that are generally well-
suited for Galerkin discretization. Therefore, on the one hand, the new equations pave the way
for development of new Galerkin boundary element methods. On the other hand, our results
simultaneously open a new perspective towards the recent developments in boundary integral
equations for Hodge-Laplace problems. As it stands, the rich theories of Hilbert complexes and
nilpotent operators not only support our observations with the help of already established abstract
inf-sup conditions, but in fact also supply the framework and analysis tools needed to relate the
studied non-standard surface Dirac operators to the mixed variational formulations associated with
the first-kind boundary integral operators for the Hodge-Laplacian. In fact, this insight already led
us to observe that the variational formulation [15, Eq. 25] is associated with the Laplace-Beltrami
of the Hilbert complex (3.8.1). We note that [15, Eq. 34] also appears to be related to higher-order
differential forms on surfaces. The significant observation that our integral operators arise as “non-
standard” surface Dirac operators associated to trace Hilbert complexes suggests a new analysis of
Hodge-Dirac and Hodge-Laplace related first-kind boundary integral equations which has yet to be
explored.
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Chapter 4
Traces for Hilbert Complexes

Erick Schulz, Dirk Pauly and Ralf Hiptmair

Abstract We study a new notion of trace operators and trace spaces for abstract Hilbert complexes.
We introduce trace spaces as quotient spaces/annihilators.We characterize the kernels and images of
the related trace operators and discuss duality relationships between trace spaces. We elaborate that
many properties of the classical boundary traces associated with the Euclidean de Rham complex
on bounded Lipschitz domains are rooted in the general structure of Hilbert complexes.We arrive at
abstract trace Hilbert complexes that can be formulated using quotient spaces/annihilators.We show
that, if a Hilbert complex admits stable “regular decompositions” with compact lifting operators,
then the associated trace Hilbert complex is Fredholm. Incarnations of abstract concepts and results
in the concrete case of the de Rham complex in three-dimensional Euclidean space will be discussed
throughout.

4.1 Introduction

4.1.1 Starting point: the de Rham complex

In vector-analytic notation, the L2 de Rham complex in a bounded domain Ω ⊂ R3 reads1

R L2(Ω) L2(Ω) L2(Ω) L2(Ω) {0}.
ıR grad curl div π{0}

(4.1.1)

It involves unbounded first-order differential operators inducing the domain Hilbert complex

R H1(Ω) H(curl, Ω) H(div, Ω) L2(Ω) {0},
ıR grad curl div π{0}

(4.1.2)

where customary notation for Sobolev spaces equipped with graph inner products was adopted2.
Taking the closure of compactly supported functions in these Sobolev spaces and tagging the
resulting closed subspaces with ‘ ◦ ’ on top, we obtain a subcomplex

1 Throughout, we use special arrows to indicate properties of mappings: ‘�’ for surjectivity, ‘↪→’ for injectivity and
‘99K’ for isometry.
2 For instance, the spaces H1(Ω), H(curl, Ω) and H(div, Ω) are discussed in [22]. They are equipped with the
obvious graph norms making the operators involved in the domain Hilbert complex trivially bounded. In the Euclidean
setting, we distinguish vector quantities from scalars by using a bold font.
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{0} H̊1(Ω) H̊(curl, Ω) H̊(div, Ω) L2
∗(Ω) {0},ı grad curl div 0 (4.1.3)

giving rise to the following structure:

H1(Ω) H(curl, Ω) H(div, Ω) L2(Ω)

∪ ∪ ∪ ∪

H̊1(Ω) H̊(curl, Ω) H̊(div, Ω) L2(Ω).

grad curl div

grad curl div

(4.1.4)

4.1.2 The de Rham complex and trace operators

The focus of this work is on trace operators. For the de Rham complex above, those are usually
introduced as linear mappings of functions in Ω to functions on Γ = ∂Ω. The classical traces are
obtained by extending the restriction operators3

γu := u
∣∣
Γ

(pointwise trace), (4.1.5a)
γtu := n× (u

∣∣
Γ
× n) (pointwise tangential component trace), (4.1.5b)

γnu := u
∣∣
Γ
· n (pointwise normal component trace), (4.1.5c)

to continuous and surjective mappings

γ : H1(Ω)→ H1/2(Γ ) [26, Thm. 4.2.1], (4.1.6a)
γt : H(curl, Ω)→ H−1/2(curlΓ , Γ ) [15, Thm. 4.1], (4.1.6b)
γn : H(div, Ω)→ H−1/2(Γ ) [22, Thm. 2.5, Cor. 2.8]. (4.1.6c)

from the Sobolev spaces involved in the domain de Rham complex to so-called trace spaces whose
characterization is the main assertion of the standard trace theorems for a Lipschitz domain Ω.

The classical trace spaces can be defined based on the vector-valued rotated surface gradient
curlΓ and the scalar-valued surface rotation curlΓ as

H1/2(Γ ) :=
{
φ ∈ H−1/2(Γ ) | curlΓ φ ∈ H

−1/2
t (Γ )

}
, (4.1.7a)

H−1/2(curlΓ , Γ ) :=
{
φ ∈ H

−1/2
t (Γ ) | curlΓ φ ∈ H−1/2(Γ )

}
, (4.1.7b)

where H
−1/2
t (Γ ) is defined as the dual of the range of the tangential trace applied to H1(Ω). The

mathematical theory of the pointwise trace γ is well established, cf. [29, Chap. 3]. That for the
normal component trace γn is carefully developed in [22, Chap. 1]. Regarding the tangential trace
γt in (4.1.6b) and the trace space (4.1.7b), we recommend the comprehensive and profound analysis
of [15], based on the earlier works [1, 13, 14].

These important results were generalized to arbitrary dimensions by Weck in [43] using the
framework of differential forms, where pullback by the boundary’s inclusion map provides a

3 We denote by n ∈ L∞(Γ ) the exterior unit normal vector-field on the boundary Γ .



97

unified description and generalization of the traces (4.1.6). A similar characterization of the range
of the boundary restriction operator for Lipschitz subdomains of compact manifolds is given in [30],
where a boundary de Rham complex involving surface operators is also studied.

One may wonder whether the structures shining through in (4.1.7a) and (4.1.7b) hint at a more
general pattern governing the structure of trace spaces. Thus, in this article, we are going to elaborate
this structure in the abstract framework of Hilbert complexes, of which the de Rham complex is the
best-known representative. Since there is no notion of “boundary” in that abstract framework, we
have to detach the concept of a trace space from the idea of a function space on a boundary. This
can be accomplished by adopting a quotient-space view of traces.

Let us sketch this idea for the Euclidean de Rham complex. Since the kernels of the classical
trace operators (4.1.6a)-(4.1.6c) are4

N (γ) = H̊1(Ω) := C∞0 (Ω)
H1(Ω)

[29, Thm. 3.40], (4.1.8a)

N (γt) = H̊(curl, Ω) := C∞0 (Ω)3
H(curl,Ω)

[31, Thm. 3.33], (4.1.8b)

N (γn) = H̊(div, Ω) := C∞0 (Ω)3
H(div,Ω)

[31, Thm. 3.25], (4.1.8c)

we immediately conclude that these trace operators induce isomorphisms between the classical
trace spaces and the quotient spaces:

H1(Ω)/H̊1(Ω) ∼= H1/2(Γ ), (4.1.9a)

H(curl, Ω)/H̊(curl, Ω) ∼= H−1/2(curlΓ , Γ ), (4.1.9b)

H(div, Ω)/H̊(div, Ω) ∼= H−1/2(Γ ). (4.1.9c)

This paves the way for an alternative characterization of trace spaces independent of the notion
of “function space on Γ ”. We remark that the quotient space approach to the definition of trace
spaces has also proved successful for the de Rham complex in order to define traces on sets more
complicated than boundaries of Lipschitz domains [17, 18].

Classical theory of trace spaces for H1(Ω), H(curl, Ω) and H(div, Ω) also addresses duality
between trace spaces:

• The L2(Γ ) inner product induces a duality betweenH1/2(Γ ) andH−1/2(Γ ); cf. [26, Chap. 4.2]
and [29, Chap. 3].

• The skew-symmetric pairing5

〈u,v〉× :=

∫
Γ

(u× n) · v dσ (4.1.10)

can be extended from L2(Γ ) × L2(Γ ) to H−1/2(curlΓ , Γ ) × H−1/2(curlΓ , Γ ), allowing the
identification of H−1/2(curlΓ , Γ ) with its own dual space; cf. [15, 16, 31].

The possibility to put trace spaces for the 3D de Rham complex into duality seems to follow general
rules:

4 We write N (T) andR(T) for the kernel/nullspace and range/image space, respectively, of a linear operator T.
5 We denote by σ the surface measure on the boundary.
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H1(Ω) H(curl, Ω) H(div, Ω)

H1/2(Γ ) H−1/2(curlΓ , Γ ) H−1/2(Γ )

grad

γ

curl

γt γn

L2-duality

L2-self duality

(4.1.11)

4.1.3 Goals, outline, and main results

There are obvious parallels in the definitions of the different trace spaces and their duality relations.
One may wonder if this kind of resemblance between the trace spaces arise only for the de Rham
complex or whether it is already manifest in a more basic/general setting, of which the de Rham
complex is just a prominent specimen. That setting is the framework of Hilbert complexes6, first
introduced in [12]. Therefore, the guiding question behind this work is:

To what extent can results about traces for the de Rham domain complex be transferred to
abstract Hilbert complexes?

Of course, abstract Hilbert complexes know neither domains nor boundaries. Therefore, as already
mentioned above, we cannot expect to arrive at a characterization of trace spaces as function
spaces on a boundary. Yet, a theory based on the quotient space view of trace spaces is feasible.
Its development will be pursued in Section 4.3. There, we first propose trace operators induced
by “generalized integration by parts formulas” and mapping into dual spaces, and then generalize
(4.1.9) to a quotient-space understanding of trace spaces.

Next, in Section 4.4, we shed light on duality relationships between trace spaces and find that
the observation made in (4.1.11) is a generic pattern; see Theorem 4.3. This even holds in a setting
simpler than Hilbert complexes. “Minimal Hilbert complexes” will only enter the stage in Section
4.5 in order to define so-called “surface operators”, which are abstract counterparts of the classical
surface differential operators such as gradΓ and curlΓ . The full structure of Hilbert complexes is
exploited starting from Section 4.6. Augmenting it by assumptions about the existence of so-called
stable regular decompositions (Assumptions B and C), we obtain characterizations of traces spaces,
in Theorem 4.6 and Theorem 4.7, which reveal that the definitions (4.1.7a) and (4.1.7b) of classical
trace spaces reflect a more general pattern. This paves the way for the key insight expressed in
Theorem 4.9 that trace spaces and surface operators are the building blocks of what we call a
trace Hilbert complex, a full-fledged Hilbert complex of unbounded, densely defined, and closed
operators.

Parallel to its development, we will apply our new abstract theory to the de Rham complex
in three-dimensional Euclidean space. We hope that this will motivate some of the assumptions

6 For the functional analytic foundations, we refer to parts of the FA-ToolBox from [35, Sec. 2], which is a compilation
of useful functional analysis results that grew from its use in previous works, cf. [33, Sec. 4.1], [34, Sec. 2], [36, Sec.
2.1], [37, Sec. 2.1], [38, 2.2], [35, Sec. 2] and [32, App. 3]. We find the introduction in [6, Chap. 4] to be an accessible
resource for readers unacquainted with Hilbert complexes, because it reviews in detail the material more concisely
presented in [9, Sec. 3], cf. [7, Sec. 2] and [12].
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made on the abstract spaces. The discussion will take the form of an ongoing specialization of the
definitions and results, set apart from the main line of reasoning.

3D de Rham setting I: Traces and integration by parts

The key trace operators and trace spaces associated with the Euclidean de Rham complex
in three space dimensions have already been introduced in (4.1.5) and (4.1.6). We just want
to add the well-known fact that the trace operators (4.1.6a)-(4.1.6c) have a close link with
Green’s formulas

〈γu, γnv〉Γ =

∫
Ω

gradu · v + u div(v) dx ∀u ∈ H1(Ω),v ∈ H(div, Ω), (4.1.12a)

〈γtu, γtv〉× =

∫
Ω

curl u · v − u · curl vdx ∀u,v ∈ H(curl, Ω). (4.1.12b)

On the left, we denoted the duality pairing between H1/2(Γ ) and H−1/2(Γ ) by 〈·, ·〉Γ , but
wrote 〈·, ·〉× for the skew-symmetric self-duality pairing on H−1/2(curlΓ , Γ ), cf. [15, Lem.
5.6].

Finally, we stress that we could have demonstrated the specialization of our results also in the
setting of general exterior calculus, but refrained from it in the interest of readability.

List of symbols

Ak =̂ closed densely defined unbounded operators 4.2.2, (4.2.5a)
A∗k =̂ Hilbert space adjoint of Ak 4.2.2, (4.2.5b)
Åk =̂ closed densely defined unbounded operator Åk ⊂ Ak 4.2.3, (4.2.8a)
A>k =̂ Hilbert space adjoint of Åk 4.2.3, (4.2.8b)
RD(A>k ) =̂ Riesz isomorphism D(A>k )→ D(A>k )′ 4.3.3, (4.2)
Tt
k =̂ primal Hilbert trace D(Ak)→ D(A>k )′ 4.3.1, (4.3.3)

Tn
k =̂ dual Hilbert trace D(A>k )→ D(Ak)

′ 4.4.1, (4.4.2)
T (Ak) =̂ quotient space D(Ak)/D(Åk) 4.3.2, (4.3.23)
T (A>k )=̂ quotient space D(A>k )/D(A∗k) 4.4.1, (4.4.8)
Itk =̂ isometric isomorphism D(Ak)→ R(Tt

k) 4.3.2, (4.3.38)
Ink =̂ isometric isomorphism D(A>k )→ R(Tn

k) 4.4.1, (4.4.19)
⟪·, ·⟫k =̂ duality pairing 4.4.2, (4.4.24b)
Kk =̂ isometric isomorphism induced by 〈·, ·〉k 4.4.2, (4.4.26)
Ptk =̂ orthogonal projection D(Ak)→ D(Å)⊥ 4.3.1, (4.3.28)
Pnk =̂ orthogonal projection D(A>k )→ D(A∗k)

⊥ 4.4.1, (4.4.12)
πtk =̂ canonical quotient map D(Ak)→ T (Ak) 4.3.1, (4.3.28)
πnk =̂ canonical quotient map D(A>k )→ T (A>k ) 4.3.1, (4.4.12)
W+

k =̂ dense inclusion W+
k ↪→ D(Ak) and/or D(A>k−1) 4.6.1, (4.6.1)
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W−
k =̂ dual space (W+

k )′ 4.6.1, (4.6.7)
W̊n,+

k =̂ intersection space D(A∗k−1) ∩W+
k = N (Tn

k−1) ∩W+
k 4.6.3, (4.6.32)

W̊t,+
k =̂ intersection space D(Åk) ∩W+

k = N (Tt
k) ∩W+

k 4.6.3, (4.6.32)
Tn,+
k =̂ quotient space W+

k /W̊
n,+ 4.6.4, (4.6.41b)

Tt,+
k =̂ quotient space W+

k /W̊
t,+ 4.6.4, (4.6.41a)

Tn,−
k =̂ dual space (Tn,+

k )′ 4.6.4, (4.6.41b)
Tt,−
k =̂ dual space (Tt,+

k )′ 4.6.4, (4.6.41a)
Dt
k =̂ surface operator (A>k+1)′ : D(A>k )′ → D(A>k+1)′ 4.5.1, (4.5.4a)

Dn
k =̂ surface operator A′k−1 : D(Ak)

′ → D(Ak−1)′ 4.5.1, (4.5.4b)
Stk =̂ surface operator Ak : T (Ak)→ T (Ak+1) 4.5.2, (4.5.22)
Stk =̂ surface operator A>k : T (A>k )→ T (A>k−1) 4.5.2, (4.5.22)
Ŝtk =̂ surface operator Ak : Tt,+

k+1 → T (Ak+1) 4.6.4 (4.6.44)
Ŝnk =̂ surface operator A>k : Tn,+

k+1 → T (A>k−1) 4.6.4, (4.6.44)
D̂t
k =̂ surface operator (Ŝnk+1)′ : T (A>k )′ → Tn,−

k+2 4.6.4, (4.6.46)
D̂n
k =̂ surface operator (Ŝtk)

′ : T (Ak+1)′ → Tt,−
k 4.6.4, (4.6.46)

4.2 Hilbert Complexes

4.2.1 Operators on Hilbert spaces

In this article, both bounded and unbounded linear operators take center stage7. We distinguish
them using the following notation. Let X and Y be two Hilbert spaces equipped with the inner
products (·, ·)X and (·, ·)Y, respectively. We will consistently write A : D(A) ⊂ X→ Y to indicate
that A is regarded as an unbounded linear operator from X to Y with domain D(A), whereas we
mean by A : X → Y that A is viewed as a bounded operator from X to Y defined on the whole
space X.

Recall that the difference between A : D(A) ⊂ X→ Y and A : D(A)→ Y comes from whether
the topology of the subspace D(A) ⊂ X is given by the norm of X or the graph norm induced by
the inner product (x1,x2)D(A) := (x1,x2)X + (Ax1,Ax2)Y ∀x1,x2 ∈ D(A).
An unbounded operator A : D(A) ⊂ X→ Y is said to be closed if and only if its domain D(A)

is a Hilbert space when endowed with the graph norm, cf. [6, Prop. 3.1]. It is densely defined if
D(A) is a dense subset of X. The kernel and range of A, whether it is bounded or not, will be
denoted N (A) andR(A), respectively.
Topological dual spaces will be tagged with prime, e.g. X′. We use angle brackets for duality

pairings, e.g. 〈φ,x〉X′ ,φ ∈ X′, x ∈ X. Accordingly, the operator dual to a bounded linear operator
A : X→ Y is a bounded operator A′ : Y′ → X′.

The Hilbert space adjoint of A : D(A) ⊂ X→ Y is written A∗ : D(A∗) ⊂ Y → X. Recall that
it is the unbounded linear operator satisfying

(A∗y,x)X = (y,Ax)Y ∀y ∈ D(A∗), ∀x ∈ D(A), (4.2.1)

7 Standard references concerning bounded and unbounded linear operators are [27, Chap. 3] and [44, Chap. 7]. We
also particularly recommend [6, Chap. 3], [11, Chap. 1-6] and [40, Chap. 6-8].
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whose domain D(A∗) consists of all y ∈ Y for which the linear functional D(A) → R defined
by x 7→ (y,Ax)Y is continuous in the X norm, i.e. for every y ∈ D(A∗), ∃Cy > 0 such that
|(y,Ax)Y| ≤ Cy‖x‖X, ∀x ∈ D(A). If A is closed and densely defined, then A∗ is also closed and
densely defined [6, Prop. 3.3]—in which case A∗∗ = A.
We write Å ⊂ A and say that an unbounded linear operator A : D(A) ⊂ X→ Y is an extension

of another unbounded linear operator Å : D(Å) ⊂ X → Y when D(Å) ⊂ D(A) and Ax◦ = Åx◦
for all x◦ ∈ D(Å).

3D de Rham setting II: Differential operators

We refer to [6, Chap. 3] for the followingmappings properties. The linear differential operators

grad :H1(Ω) ⊂ L2(Ω)→ L2, (4.2.2a)
curl : H(curl, Ω) ⊂ L2 → L2, (4.2.2b)
div : H(div, Ω) ⊂ L2 → L2(Ω), (4.2.2c)

are densely defined and closed unbounded linear operators. They are extensions of

˚grad : H̊1(Ω) ⊂ L2(Ω)→ L2, (4.2.3a)
˚curl : H̊(curl, Ω) ⊂ L2 → L2, (4.2.3b)

d̊iv : H̊(div, Ω) ⊂ L2 → L2(Ω). (4.2.3c)

The L2 Hilbert space adjoints of (4.2.2a)-(4.2.2c) are

grad∗ = −d̊iv : H̊(div, Ω) ⊂ L2 → L2(Ω), (4.2.4a)

curl∗ = ˚curl : H̊(curl, Ω) ⊂ L2 → L2, (4.2.4b)

div∗ = − ˚grad : H̊1(Ω) ⊂ L2(Ω)→ L2, (4.2.4c)

respectively. Then, the adjoint operators of (4.2.3a)-(4.2.3c) are obtained using the fact that
A∗∗ = A for all densely defined and closed unbounded linear operators between Hilbert
spaces.

By abuse of notation, we generally write grad = ˚grad, curl = ˚curl and div = d̊iv.

4.2.2 Definition

A Hilbert complex is a sequence of Hilbert spaces Wk, k ∈ Z, together with a sequence of
closed and densely defined unbounded linear operators Ak : D(Ak) ⊂ Wk → Wk+1 such that
R(Ak) ⊂ N (Ak+1), i.e. Ak+1 ◦ Ak ≡ 0 for all k ∈ Z. It can be written as

· · · D(Ak−1) ⊂Wk−1 D(Ak) ⊂Wk D(Ak+1) ⊂Wk+1 · · · ,
Ak−2 Ak−1 Ak Ak+1

(4.2.5a)
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cf. [6, Def. 4.1]. The associated sequence of adjoint operators spawns the so-called dual Hilbert
complex

· · · D(A∗k−2) ⊂Wk−1 D(A∗k−1) ⊂Wk D(A∗k) ⊂Wk+1 · · · ,
A∗k−2 A∗k−1 A∗k A∗k+1

(4.2.5b)
which by (4.2.1) is itself a Hilbert complex, because A∗k−1 ◦ A∗k ≡ 0 for all k ∈ Z. “Finite” Hilbert
complexes can be embedded into (4.2.5a) by setting Wk = {0} for all k /∈ {0, 1, ..., N}.

Notice that sinceR(Ak) ⊂ D(Ak+1) andR(A∗k+1) ⊂ D(A∗k), the sequences of bounded operators
Ak : D(Ak)→Wk+1 and A∗k : D(A∗k)→Wk also induce Hilbert complexes themselves:

· · · D(Ak−1) D(Ak) D(Ak+1) · · · ,
Ak−2 Ak−1 Ak Ak+1

(4.2.6a)

· · · D(A∗k−2) D(A∗k−1) D(A∗k) · · · .
A∗k−2 A∗k−1 A∗k A∗k+1

(4.2.6b)

These are examples of bounded Hilbert complexes in which every operator is continuous. We refer
to (4.2.6a) and (4.2.6b) as the domain complexes of (4.2.5a) and (4.2.5b).

If the rangeR(Ak) is a closed subset of Wk+1 for all k, we say that the Hilbert complex (4.2.5a)
is closed. If this is the case, thenR(A∗k) is also closed in Wk by the closed range theorem [6, Thm.
3.7], making the dual complex (4.2.5b) a closed Hilbert complex too. Furthermore, (4.2.5a) is
said to be Fredholm if the codimension of R(Ak) is finite in N (Ak+1)—in which case it is
also closed by [6, Thm. 3.8]. Equivalently, a Hilbert complex is Fredholm if the quotient spaces
N (Ak+1)/R(Ak) and N (A∗k)/R(A∗k+1) are finite dimensional, in other words, if the cohomology
spaces of (4.2.5a) and (4.2.5b) have finite dimension. It is a sufficient condition for aHilbert complex
to be Fredholm to satisfy the compactness property, that is, the embeddingD(Ak)∩D(A∗k−1) ↪→Wk

is compact for all k ∈ Z.

3D de Rham setting III: The L2 de Rham complex in R3

The L2 de Rham complex (4.1.1) is a standard example of a Hilbert complex, where Ak ≡ 0
and Wk = {0} is set for k ∈ Z\{0, 1, 2, 3}. Its dual complex is represented by the sequence

{0} L2(Ω) H̊(div, Ω) H̊(curl, Ω) H̊1(Ω) {0},
0 −div curl −grad ı

(4.2.7)
cf. [6, Sec. 3.4] and [6, Sec. 4.3], and its embedding into our abstract framework is summarized
in the following table:

k Wk Ak D(Ak) A∗k D(A∗k) D(Ak) ∩ D(A∗k−1)

0 L2(Ω) grad H1(Ω) − div H̊(div, Ω) H1(Ω)

1 L2(Ω) curl H(curl, Ω) curl H̊(curl, Ω) H(curl, Ω) ∩ H̊(div, Ω)

2 L2(Ω) div H(div, Ω) −grad H̊1(Ω) H(div, Ω) ∩ H̊(curl, Ω)

3 L2(Ω) 0 L2(Ω) Id {0} H̊1(Ω)
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The de Rham complex satisfies the compactness property, and thus it is Fredholm. Indeed,
recall that Rellich’s compact embedding theorem states that the inclusion of H1(Ω) and
H̊1(Ω) in L2(Ω) is compact. We refer to [39] for a proof that H(curl, Ω) ∩ H̊(div, Ω) and
H(div, Ω) ∩ H̊(curl, Ω) are compactly embedded in L2(Ω).

4.2.3 Basic setting

Now, let a Hilbert complex as in (4.2.5a) be given and suppose that the unbounded linear operators
of a second Hilbert complex

· · · D(Åk−1) ⊂Wk−1 D(Åk) ⊂Wk D(Åk+1) ⊂Wk+1 · · ·
Åk−2 Åk−1 Åk Åk+1

(4.2.8a)

are such that Åk ⊂ Ak, i.e. D(Åk) ⊂ D(Ak) and Ak|D(Åk) = Åk. In other words, for all k ∈ Z, Ak is
an extension of Åk. It is easy to verify that the adjoint operators A>k := Å∗k : D(Å∗k) ⊂Wk+1 →Wk

involved in the dual complex

· · · D(A>k−2) ⊂Wk−1 D(A>k−1) ⊂Wk D(A>k ) ⊂Wk+1 · · ·
A>k−2 A>k−1 A>k A>k+1

(4.2.8b)

are such that A∗k ⊂ A>k . In particular, the bounded domain complexes

· · · D(Åk−1) D(Åk) D(Åk+1) · · · ,
Åk−2 Åk−1 Åk Åk+1

(4.2.9a)

· · · D(A∗k−2) D(A∗k−1) D(A∗k) · · · ,
A∗k−2 A∗k−1 A∗k A∗k+1

(4.2.9b)

are examples of Hilbert subcomplexes of the domain Hilbert complexes (4.2.6a) and (4.2.6b).
For reference, this basic setting is summarized in the following assumption.

Assumption A For all k ∈ Z let Wk be real Hilbert spaces, and suppose that

Ak : D(Ak) ⊂Wk →Wk+1 and Åk : D(Åk) ⊂Wk →Wk+1

are densely defined and closed unbounded linear operators such that R(Ak) ⊂ N (Ak+1),
R(Åk) ⊂ N (Åk+1), and Ak is an extension of Åk, i.e. D(Åk) ⊂ D(Ak) and Akx◦ = Åkx◦ for
all x◦ ∈ D(Åk).

3D de Rham setting IV: Boundary conditions

The Hilbert complex
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{0} H1
0 (Ω) H̊(curl, Ω) H̊(div, Ω) L2(Ω) {0}ı grad curl div 0

(4.2.10a)
fulfills the hypothesis on (4.2.8a) for the L2 de Rham complex (4.1.1). Owing to (4.2.4a)-
(4.2.4c), its dual complex is written

{0} L2(Ω) H(div, Ω) H(curl, Ω) H1 {0}.
0 −div curl −grad ı

(4.2.10b)

Summing up, the various operators and spaces have the following incarnations for the de
Rham complex in three-dimensional Euclidean space:

k Wk Åk D(Åk) A>k D(A>k ) D(Åk) ∩ D(A>k−1)

0 L2(Ω) grad H̊1(Ω) − div H(div, Ω) H̊1(Ω)

1 L2(Ω) curl H̊(curl, Ω) curl H(curl, Ω) H̊(curl, Ω) ∩H(div, Ω)

2 L2(Ω) div H̊(div, Ω) −grad H1(Ω) H̊(div, Ω) ∩H(curl, Ω)

3 L2(Ω) 0 L2(Ω) Id {0} H1(Ω)

4.3 Trace Operators

The following sections lay the foundations of a general quotient-based abstract theory for traces in
Hilbert spaces. To that end, we do not require the full structure of Hilbert complexes, but it suffices
to focus on the following snippet of the Hilbert complexes (4.2.5a) and (4.2.8a):

· · · D(Ak−1) ⊂Wk−1 D(Ak) ⊂Wk D(Ak+1) ⊂Wk+1 · · · ,
∪ ∪ ∪

· · · D(Åk−1) ⊂Wk−1 D(Åk) ⊂Wk D(Åk+1) ⊂Wk+1 · · · .

Ak−2 Ak−1 Ak Ak+1

Åk−2 Åk−1 Åk Åk+1

In the sequel, we fix k ∈ Z and take for granted Assumption A.

4.3.1 Hilbert traces

Using the shorthand A>k := Å∗k : D(A>k ) ⊂Wk+1 →Wk, it follows from the estimate

|(Akx,y)Wk+1
− (x,A>k y)Wk

| ≤ ‖Akx‖Wk+1
‖y‖Wk+1

+ ‖x‖Wk
‖A>k y‖Wk

≤ ‖x‖D(Ak)‖y‖D(A>k )

(4.3.1)

that the following definition of a particular notion of a trace makes sense.
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Definition 4.1 In the setting of Assumption A, the bounded linear operator

Tt
k : D(Ak)→ D(A>k )′ (4.3.2)

defined for all x ∈ D(Ak) and y ∈ D(A>k ) by

〈Tt
kx,y〉D(A>k )′ := (Akx,y)Wk+1

− (x,A>k y)Wk
(4.3.3)

is called the (primal) Hilbert trace associated with the pair of operators Ak and Åk.

It also follows from (4.3.1) that
‖Tt

k‖ = 1, (4.3.4)
where ‖ · ‖ is the operator norm.
We point out that defining a trace operator as a mapping into a dual space has precedents in the

theory of Friedrichs operators, has been pursued in [21, Sect. 2.2] and [20, Sect. 56.3.2], and is also
discussed in [3–5]. In these works, the authors have dubbed “boundary operators” what we have
decided to call “Hilbert traces”.

Let us motivate the above notion of trace with classical examples.

3D de Rham setting V: Hilbert traces

Applying Definition 4.1 in the 3D de Rham setting II, we obtain the Hilbert traces

Tt
0 = Tt

grad
: H1(Ω)→ H(div, Ω)′, (4.3.5a)

Tt
1 = Tt

curl
: H(curl, Ω)→ H(curl, Ω)′, (4.3.5b)

Tt
2 = Tt

div : H(div, Ω)→ H1(Ω)′, (4.3.5c)

defined by

〈Tt
grad v,u〉H(div,Ω)′ := (gradv,u)L2 + (v, divu)L2(Ω), (4.3.6a)

〈Tt
curlz,w〉H(curl,Ω)′ := (curl z,w)L2 − (z, curl w)L2 , (4.3.6b)
〈Tt

divu, v〉H1(Ω)′ := (divu, v)L2 + (u,grad v)L2 , (4.3.6c)

for all v ∈ H1, u ∈ H(div, Ω) and z,w ∈ H(curl, Ω).
We recognize on the right hand sides of (4.3.6a)-(4.3.6c) the continuous bilinear forms

occurring in Green’s formulas (4.1.12a) and (4.1.12b). Introducing the operators

γ′n : H1/2(Γ )→ H(div, Ω)′, (4.3.7)
γ′t : H−1/2(curlΓ , Γ )→ H(curl, Ω)′, (4.3.8)
γ′ : H−1/2 → H1(Ω)′, (4.3.9)

dual to the classical traces, where we have identified H−1/2(Γ ) with (H1/2(Γ ))′ through the
L2(Γ )-pairing on the boundary and H−1/2(curlΓ , Γ ) with its own dual through the skew-
symmetric pairing defined in (4.1.10), we obtain
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Tt
grad = γ′n ◦ γ, Tt

curl = γ′t ◦ γt, Tt
div = γ′ ◦ γn. (4.3.10)

Observe that
(Tt

grad)′ = Tt
div. (4.3.11)

The appeal of definitions (4.3.6a)-(4.3.6c) is that they do not explicitly depend on Γ . In
fact, notice that they are well-defined for general bounded open setsΩ without any assumption
on the regularity of their boundary Γ := ∂Ω.

Proposition 4.1 Under Assumption A,

N (Tt
k) = D(Åk). (4.3.12)

Proof. On the one hand, for any x◦ ∈ D(Åk), it follows from Åk ⊂ Ak and (4.2.1) that

〈Tt
kx◦,y〉D(A>k )′ = (Akx◦,y)Wk+1

− (x◦,A
>
k y)Wk

= (Åkx◦,y)Wk+1
− (x◦,A

>
k y)Wk

= (x◦,A
>
k y)Wk+1

− (x◦,A
>
k y)Wk

= 0
(4.3.13)

for all y ∈ D(A>k ). This shows that D(Åk) ⊂ N (Tt
k).

On the other hand, if x ∈ D(Ak) is such that x ∈ N (Tt
k), then

0 = 〈Tt
kx,y〉D(A>k )′ = (Akx,y)Wk+1

− (x,A>k y)Wk
∀y ∈ D(A>k ). (4.3.14)

If we set Cx := ‖x‖D(Ak), we see that

|(x,A>k y)Wk
| = |(Akx,y)Wk+1

| ≤ ‖Akx‖Wk+1
‖y‖Wk+1

≤ Cx‖y‖Wk+1
∀y ∈ D(A>k ).

As explained in Subsection 4.2.2, this means that x ∈ D((A>k )∗) = D(Å∗∗k ) = D(Åk). ut

3D de Rham setting VI: Kernels of classical Hilbert traces

Comparing Proposition 4.1 with (4.1.8a)-(4.1.8c), we verify that

N (Tt
grad) = N (γ), N (Tt

curl) = N (γt), N (Tt
div) = N (γn). (4.3.15)

Remark 4.3.1. Intuitively, we think of a trace operator as a means of imposing “boundary condi-
tions”. The idea behind Definition 4.1 is to impose these boundary conditions on the operator itself,
which is a common strategy in the analysis of variational problems and related operator equations.
In this work, Ak is the operator of interest. We regard Åk as the operator on which boundary con-
ditions are imposed. From that perspective, the operator A>k does not feature boundary conditions.
The right hand side of (4.3.3) plays a role akin to the bilinear form involved in classical integration
by parts formulas.
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4.3.2 Trace spaces

Recall that by hypothesis,D(A∗k) ⊂ D(A>k ). The next proposition involves the annihilator ofD(A∗k)
in D(A>k )′:

D(A∗k)
◦ :=

{
φ ∈ D(A>k )′ | 〈φ,y〉D(A>k )′ = 0 ∀y ∈ D(A∗k)

}
⊂ D(A>k )′. (4.3.16)

Proposition 4.2 Under Assumption A, we find for the ranges of the Hilbert traces

R(Tt
k) = D(A∗k)

◦. (4.3.17)

Proof. Suppose that φ ∈ D(A∗k)
◦ and let w ∈ D(A>k ) be its Riesz representative in D(A>k ), that is

〈φ,y〉D(A>k )′ = (w,y)D(A>k ) ∀y ∈ D(A>k ). (4.3.18)

We claim that x := −A>k w ∈ D(Ak). Indeed, (4.3.18) implies that for all y∗ ∈ D(A∗k), we have

0 = (w,y∗)D(A>k ) = (w,y∗)Wk+1
+(A>k w,A>k y∗)Wk

= (w,y∗)Wk+1
+(A>k w,A∗ky∗)Wk

. (4.3.19)

This means (w,y∗)Wk+1
= (x,A∗ky∗)Wk

. Therefore, if we setCx := ‖w‖Wk+1
, we find the estimate

|(x,A∗ky∗)Wk
| = |(w,y∗)Wk+1

| ≤ ‖w‖Wk+1
‖y∗‖Wk+1

= Cx‖y∗‖Wk+1
∀y∗ ∈ D(A∗k), (4.3.20)

which as explained in Subsection 4.2.1 implies that x ∈ D(A∗∗k ) = D(Ak).
In particular, according to (4.2.1), it also follows from (4.3.19) that Akx = w. Hence, the

inclusionR(Tt
k) ⊃ D(A∗k)

◦ is verified by observing that for all y ∈ D(A>k ),

〈Tt
kx,y〉D(A>k )′ = (Akx,y)Wk+1

− (x,A>k y)Wk
= (w,y)Wk+1

+ (A>k w,A>k y)Wk

= (w,y)D(A>k ) = 〈φ,y〉D(A>k )′ ,
(4.3.21)

i.e. Tt
kx = φ.

To show that R(Tt
k) ⊂ D(A∗k)

◦, let φ = Tt
kx for some x ∈ D(Ak). Then, since A∗k ⊂ A>k , we

obtain by (4.2.1) that for all y∗ ∈ D(A∗k)

〈φ,y∗〉D(A>k )′ = (Akx,y∗)Wk+1
− (x,A>k y∗)Wk

= (x,A∗ky∗)Wk+1
− (x,A∗ky∗)Wk

= 0, (4.3.22)

i.e. φ ∈ D(A∗k)
◦. ut

Since D(Åk) is a Hilbert subspace of D(Ak), it is closed and we can proceed with the next
definition.

Definition 4.2 In the setting of Definition 4.1, we call trace spaces the quotient spaces

T (Ak) := D(Ak)/D(Åk), (4.3.23)

equipped with the quotient norm

‖[x]‖T (Ak) := inf
z̊∈D(Åk)

‖x− z̊‖D(Ak) ∀x ∈ D(Ak). (4.3.24)



108

Remark 4.3.2. Notice that due to Proposition 4.1,

T (Ak) = D(Ak)/N (Tt
k). (4.3.25)

In Definition 4.2, the equivalence class in T (Ak) of x ∈ D(Ak) is denoted [x] = {x + z̊ | z̊ ∈
D(Åk)}. Write πtAk : D(Ak)→ T (Ak) for the canonical projection (also frequently called quotient
map), i.e. πtAk(x) = [x]. It is an application of a classical theorem of functional analysis that there
exists a bounded orthogonal projection Ptk : D(Ak)→ D(Åk)

⊥ onto the complement space

D(Åk)
⊥ :=

{
x ∈ D(Ak) | (x, z̊)D(Ak) = 0 ∀̊z ∈ D(Åk)

}
⊂ D(Ak) (4.3.26)

such that

‖Ptkx‖D(A) = ‖[x]‖T (Ak) ∀x ∈ D(Ak), (4.3.27)

cf. [44, Chap. 3.1] and [11, Chap. 5]. Write ıtk : D(Åk)
⊥ ↪→ D(Ak) for canonical inclusion maps.

Since N (Ptk) = D(Åk) by (4.3.27) , the bounded linear map Gt
k : T (Ak) → D(Åk)

⊥ defined by
Gt
k[x] := Ptkx and involved in the commutative diagram

D(Ak) D(Åk)
⊥

D(Ak)/N (Ptk) = T (Ak)

Ptk

πtk Gtk

(4.3.28)

as provided by the first isomorphism theorem for modules is a well-defined isometric isomorphism,
cf. [19, Chap. 10.2, Thm. 4]. Since D(Åk)

⊥ is closed [44, Chap. 3.1, Thm. 1], it is a Hilbert space,
and therefore so is T (Ak). The quotient norm is induced by the inner product

([x], [z])T (Ak) := (Ptkx,P
t
kz)D(Ak) ∀[x], [z] ∈ T (Ak). (4.3.29)

Remark 4.3.3. Notice that N (Ptk) = D(Åk) = N (Tt
k).

That the projection Ptk is orthogonal means that (x − Ptkx, z⊥)D(Ak) = 0 for all x ∈ D(Ak)

and z⊥ ∈ D(Åk)
⊥. In other words, (Id − Ptk)x ∈ D(Åk) for all x ∈ D(Ak). Hence, the simple

observation that Id = Ptk + (Id− Ptk) shows that any element x ∈ D(Ak) can be decomposed as

x = x⊥ + x◦ (4.3.30)

where x⊥ ∈ D(Åk)
⊥ and x◦ ∈ D(Åk). It is easy to see that the decomposition (4.3.30) is unique.

3D de Rham setting VII: Trace spaces

In the 3D de Rham setting V, applying Definition 4.2 leads to

T (A0) = T (grad) = H1(Ω)/H̊1(Ω), (4.3.31a)

T (A1) = T (curl) = H(curl, Ω)/H̊(curl, Ω), (4.3.31b)
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T (A2) = T (div) = H(div, Ω)/H̊(div, Ω). (4.3.31c)

Based on Example 3.3, the linear mappings

Xgrad :H1(Ω)/H̊1(Ω)→ H1/2(Γ ), (4.3.32a)

Xcurl : H(curl, Ω)/H̊(curl, Ω)→ H−1/2(curlΓ , Γ ), (4.3.32b)

Xdiv : H(div, Ω)/H̊(div, Ω)→ H−1/2(Γ ) (4.3.32c)

defined by

Xgrad[u] = γu ∀u ∈ H1(Ω), (4.3.33a)
Xcurl[u] = γtu ∀u ∈ H(curl, Ω), (4.3.33b)

Xdiv[v] = γnv ∀v ∈ H(div, Ω), (4.3.33c)

are the Hilbert space isomorphisms induced by the canonical projections involved in the
following commutative diagrams:

H1(Ω) H1/2(Γ ) H(curl, Ω) H−1/2(curlΓ , Γ ) H(curl, Ω) H−1/2(Γ )

T (grad) T (curl) T (div)

γ

πtgrad

γt

πtcurl

γn

πtdivXgrad Xcurl Xcurl

The trace spacesH1/2(Γ ),H−1/2(curlΓ , Γ ) andH−1/2(Γ ) can therefore be identified with the
quotient spaces T (grad), T (curl) and T (div), respectively, as we have already observed in
(4.1.9). Under these identifications, the bounded inverse theorem guarantees that the quotient
spaces are equippedwith equivalent norms.Moreover, due to the Lipschitz regularity ofΓ and
Sobolev extension theorems, the definitions of T (grad), T (curl) and T (div) are intrinsic, in
the sense that the quotient spaces H1(R3\Ω)/H̊1(R3\Ω), H(curl,R3\Ω)/H̊(curl,R3\Ω)
and H(div,R3\Ω)/H̊(div,R3\Ω) are also Hilbert spaces with equivalent norms [17].

Lemma 4.1 Under Assumption A, if x⊥ ∈ D(Åk)
⊥, then Akx⊥ ∈ D(A>k ) and

(A>k Ak + Id) x⊥ = 0. (4.3.34)

Proof. Suppose that x⊥ ∈ D(Åk)
⊥. Since Åk ⊂ Ak, we have by definition that

0 = (x⊥, z◦)D(Ak) = (x⊥, z◦)Wk
+ (Akx⊥,Akz◦)Wk+1

= (x⊥, z◦)Wk
+ (Akx⊥, Åkz◦)Wk+1

(4.3.35)

for all z◦ ∈ D(Åk), which means

(Akx⊥, Åkz◦)Wk
= −(x⊥, z◦)Wk

∀z◦ ∈ D(Åk). (4.3.36)

So by setting Cx⊥ := ‖x⊥‖Wk
, we conclude from the estimate
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|(Akx⊥, Åkz◦)Wk+1
| = |(x⊥, z◦)Wk

| ≤ ‖x⊥‖Wk
‖z◦‖Wk

= Cx⊥‖z◦‖Wk
∀z◦ ∈ D(Åk),

that Akx⊥ ∈ D(Å∗k) = D(A>k ). Then as in (4.2.1), the identity (4.3.34) follows from (4.3.36). ut

Corollary 4.3.4. Under Assumption A, the linear map Ak : D(Åk)
⊥ → D(A>k ) is an isometry.

Proof. Suppose that x⊥ ∈ D(Åk)
⊥. Then, by Lemma 4.1,

‖Akx⊥‖2
D(A>k ) = ‖Akx⊥‖2

Wk+1
+ ‖A>k Akx⊥‖2

Wk
= ‖Akx⊥‖2

Wk+1
+ ‖x⊥‖2

Wk
= ‖x⊥‖2

D(Ak).

(4.3.37)
ut

Theorem 4.1 Under Assumption A, the linear map

Itk :

{
T (Ak)→R(Tt

k)

[x] 7→ Tt
kx

(4.3.38)

is a well-defined isometric isomorphism.

Proof. Since D(Åk) = N (Tt
k) by Proposition 4.1, notice that Itk : T (Ak) → R(Ak) is simply the

well-defined induced isomorphism of modules involved in the commutative diagram

D(Ak) R(Tt
k)

D(Ak)/N (Tt
k) = T (Ak)

Ttk

πtk Itk

provided by the first isomorphism theorem [19, Chap. 10.2, Thm. 4]. It only remains to show that
it is an isometry.

Let x ∈ D(Ak). By Proposition 4.1,

‖ Itk[x] ‖D(A>k )′ = ‖Tt
kx‖D(A>k )′ = ‖Tt

k(x⊥ + x◦)‖D(A>k )′ = ‖Tt
kx⊥‖D(A>k )′ . (4.3.39)

Using that A>k Akx⊥ = −x⊥ by Lemma 4.1, we can choose y = Akx⊥ ∈ D(A>k ) to obtain

‖Tt
kx⊥‖D(A>k )′ = sup

06=y∈D(A>k )

|〈Tt
kx⊥,y〉|
‖y‖D(A>k )

≥ |〈T
t
kx⊥,Akx⊥〉|
‖Akx⊥‖D(A>k )

=
|(Akx⊥,Akx⊥)Wk+1

− (x⊥,A
>
k Akx⊥)Wk

|
‖Akx⊥‖D(A>k )

=
‖x⊥‖2

D(Ak)

‖Akx⊥‖D(A>k )

.

(4.3.40)

Recalling that ‖Akx⊥‖D(A>k ) = ‖x⊥‖D(Ak) by Corollary 4.3.4, we arrive at the inequality

‖Tt
kx⊥‖D(A>k )′ ≥

‖x⊥‖2
D(Ak)

‖x⊥‖D(Ak)

= ‖x⊥‖D(Ak). (4.3.41)
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Therefore, on the one hand, ‖ Itk[x] ‖D(A>k )′ ≥ ‖x⊥‖D(Ak) = ‖[x]‖T (Ak) by (4.3.27).
On the other hand, inserting (4.3.4) in (4.3.39) leads to the estimate

‖ Itk[x] ‖D(A>k )′ = ‖Tt
kx⊥‖D(A>k ) ≤ ‖Tt

k‖‖x⊥‖D(Ak) = ‖x⊥‖D(Ak) = ‖[x]‖T (Ak), (4.3.42)

which concludes the proof. ut

It is natural to think of a trace operator as a bounded linear operator from a domain to a trace
space. Therefore, based on the identification provided by Theorem 4.1, we introduce the following
perspective: in the setting of Definition 4.1, we call quotient trace the canonical projection

πtk :

{
D(Ak)→ T (Ak)

x 7→ [x]
. (4.3.43)

Notice that because Itk is an isomorphism, it follows from Itk(Itk)
−1Tt

kx = Tt
kx = Itk[x] that

πtkx = (Itk)
−1Tt

kx. (4.3.44)

4.3.3 Riesz representatives

Let RD(A>k ) : D(A>k ) → D(A>k )′ be the Riesz isomorphism defined by RD(A>k )y = (y, ·)D(A>k ) for all
y ∈ D(A>k ), cf. [11, Thm. 5.5]. Notice that in the first part of the proof of Proposition 4.2, we have
shown that the following result holds with A>k R−1

D(A>k )φ ∈ D(Ak).

Lemma 4.2 Under Assumption A, if φ ∈ D(A∗k)
◦, then A>k R−1

D(A>k )φ ∈ D(Åk)
⊥ with

(AkA>k + Id) R−1
D(A>k )

φ = 0 and Tt
k(A>k R−1

D(A>k )
φ) = −φ. (4.3.45)

Proof. It only remains to show that in particular A>k R−1
D(A>k )φ ∈ D(Åk)

⊥. Recall that A>k := Å∗k. Since
A∗k ⊂ A>k , we find, using (AkA>k + Id) R−1

D(A>k )φ = 0, that for all x◦ ∈ D(Åk),

(A>k R−1
D(A>k )

φ,x◦)D(Ak) = (A>k R−1
D(A>k )

φ,x◦)Wk
+ (AkA>k R−1

D(A>k )
φ,Akx◦)Wk+1

= (R−1
D(A>k )

φ, Åkx◦)Wk+1
− (R−1

D(A>k )
φ, Åkx◦)Wk+1

= 0.
(4.3.46)

ut

Applying (Itk)
−1 on both sides of the second identity in Lemma 4.2, we find using (4.3.44) a

slightly more explicit expression of the inverse (Itk)
−1.

Lemma 4.3 Under Assumption A, we have

(Itk)
−1φ = −πtAk(A>k R−1

D(A>k )
φ) ∀φ ∈ D(A∗k)

◦ = R(Tt
k). (4.3.47)

Remark 4.3.5. The operators A>k R−1
D(A>k )

: R(Tt
k) → D(Åk)

⊥ ⊂ D(Ak) could be called D(Ak)-
harmonic extension operators.
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In summary, we have shown so far in Section 4.3 that the following diagram is commutative:

D(A∗k)
◦ = R(Tt

k)

D(Ak) D(Åk)
⊥

T (Ak) = D(Ak)/D(Åk)

−A>k R−1
D(A>k )

(Itk)−1

Ptk

Ttk

πtk

ıtk

Ttk

πtk

Gtk

Itk

4.4 Duality

In this section, we maintain the setting of Assumption A, and we focus on the following snippet of
the dual Hilbert complex (cf. Sections 4.2.2 and 4.2.3):

· · · D(A>k−2) ⊂Wk−1 D(A>k−1) ⊂Wk D(A>k ) ⊂Wk+1 · · ·

∪ ∪ ∪
· · · D(A∗k−2) ⊂Wk−1 D(A∗k−1) ⊂Wk D(A∗k) ⊂Wk+1 · · ·

A>k−2 A>k−1 A>k A>k+1

A∗k−2 A∗k−1 A∗k A∗k+1

Recall the simple though important observation that because (A>k )∗ = Å∗∗k = Åk, then we have
Åk ⊂ Ak ⇐⇒ A∗k ⊂ A>k . Given two operators Ak : D(Ak) ⊂ Wk → Wk+1 and Åk : D(Åk) ⊂
Wk →Wk+1 satisfying Assumption A, the Hilbert space adjoints A>k : D(A>k ) ⊂Wk+1 →Wk

and A∗k : D(A∗k) ⊂ Wk+1 → Wk thus also satisfy Assumption A, but with the roles of Wk and
Wk+1 swapped. Indeed, both A>k and A∗k are densely defined and closed unbounded linear operators
between the Hilbert spaces and A>k is an extension of A∗k, i.e. D(A∗k) ⊂ D(A>k ) and A∗ky∗ = A>k y∗
for all y∗ ∈ D(A∗k).
In Subsection 4.4.1, the dual Hilbert trace Tn

k will be nothing more than the primal Hilbert trace
from Definition 4.1 but associated with the pair of operators A>k and A∗k. Nevertheless, we state its
properties for completeness and to set up notation, because it will be used for the important duality
results of Subsection 4.4.2.

4.4.1 Dual traces

As before, it follows from (4.3.1) that the following operator is well-defined.
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Definition 4.3 Under Assumption A, we call dual Hilbert trace the bounded operator

Tn
k : D(A>k )→ D(Ak)

′, (4.4.1)

defined for all y ∈ D(A>k ) and x ∈ D(Ak) by

〈Tn
ky,x〉D(Ak)′ := (A>k y,x)Wk

− (y,Akx)Wk+1
. (4.4.2)

As in (4.3.4), we have ‖Tn
k‖ = 1, where ‖ · ‖ is the operator norm. Note that for all x ∈ D(Ak)

and y ∈ D(A>k ),
〈Tt

kx,y〉D(Ak)′ = −〈x,Tn
ky〉D(A>k )′ . (4.4.3)

In other words

(Tt
k)
′ = −Tn

k and (Tn
k)′ = −Tt

k. (4.4.4)

The results of Section 4.3 can be mirrored by interchanging the roles of Ak and A>k (and the roles
of Åk and A∗k accordingly). We translate a few of them without proof.

Proposition 4.3 (cf. Proposition 4.1) Under Assumption A, we have

N (Tn
k) = D(A∗k). (4.4.5)

The next proposition involves the annihilator of D(Åk) in D(Ak)
′:

D(Åk)
◦ := {φ ∈ D(Ak)

′ | 〈φ,x◦〉 = 0, ∀x◦ ∈ D(Åk) }. (4.4.6)

Proposition 4.4 (cf. Proposition 4.2) Under Assumption A, we have

R(Tn
k) = D(Åk)

◦. (4.4.7)

Definition 4.4 (cf. Definition 4.2) We call dual trace spaces the quotient spaces

T (A>k ) := D(A>k )/D(A∗k), (4.4.8)

equipped with the quotient norm

‖[y]‖T (A>k ) := inf
z∗∈D(A∗k)

‖y − z∗‖D(A>k ) ∀y ∈ D(A>k ). (4.4.9)

Remark 4.4.1. Just as in Remark 4.3.2, notice that due to Proposition 4.3,

T (A>k ) = D(A>k )/N (Tn
Ak

). (4.4.10)
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In (4.4.9), we used square brackets to denote the equivalence class in T (A>k ) of y ∈ D(A>k ), i.e.
[y] = {y + z∗ | z∗ ∈ D(A∗k)}. We will write πnk : D(A>k ) → T (A>k ) for the associated canonical
projection (quotient map), i.e. πnk (y) = [y]. Then, as previously detailed in Subsection 4.3.2, there
exists a bounded orthogonal projection Pnk : D(A>k )→ D(A∗k)

⊥ onto the complement space

D(A∗k)
⊥ :=

{
y ∈ D(A>k ) | (y, z∗)D(A>k ) = 0, ∀z∗ ∈ D(A∗k)

}
(4.4.11)

satisfying ‖Pnky‖D(A>k ) = ‖[y]‖T (A>k ) for all y ∈ D(A>k ). We denote by ınk : D(A∗k)
⊥ ↪→ D(A>k ) the

canonical inclusion maps.
The induced operator Gn

k : T (A>k )→ D(A∗k)
⊥ involved in the commutative diagram

D(A>k ) D(A∗k)
⊥

D(A>k )/N (Pnk) = T (A>k )

Pnk

πnk Gnk

(4.4.12)

is an isometric isomorphism. Accordingly, any y ∈ D(A>k ) can be uniquely decomposed as

y = Pnky + y∗, y∗ := (Id− Pnk)y ∈ N (Pnk) = D(A∗k). (4.4.13)

3D de Rham setting VIII: Classical dual traces

Using (4.4.4), we find for the de Rham complex that

Tn
grad = −γ′ ◦ γn, Tn

curl = γ′t ◦ γt, Tn
div = −γ′n ◦ γ. (4.4.14)

Recalling (4.1.8a) to (4.1.8c), we see from the table of the 3D de Rham setting IV that
based on Proposition 4.3,

N (Tn
grad) = N (γn), N (Tn

curl) = N (γt), N (Tn
div) = N (γ). (4.4.15)

The trace spaces provided by Definition 4.4 in this setting are

T (grad>) = T (div) = H(div, Ω)/H̊(div, Ω), (4.4.16a)

T (curl>) = T (curl) = H(curl, Ω)/H̊(curl, Ω), (4.4.16b)

T (div>) = T (grad) = H1(Ω)/H̊1(Ω). (4.4.16c)

Notice that from (4.3.11), we also

(Tt
div)
′ = Tt

grad = −Tn
div = −(Tn

grad)′ and (Tt
grad)′ = Tt

div = −Tn
grad = −(Tn

div)
′. (4.4.17)

Moreover, we see that the skew-symmetry behind (4.1.10) is rooted in the fact that the identity
A1 = curl = A>1 leads to skew-symmetry of the pairing

(x,y) 7→ (curl x,y)L2(Ω) − (x, curl y)L2(Ω). (4.4.18)

This is reflected in the observation that (γ′t ◦ γt)′ = (Tt
1)′ = −Tn

1 = −γ′t ◦ γt, which indeed
occurs when duality is taken with respect to the skew-symmetric pairing (4.1.10).
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Theorem 4.2 (cf. Theorem 4.1) Under Assumption A, the linear map

Ink :

{
T (A>k )→R(Tn

k)

[y] 7→ Tn
ky

(4.4.19)

is a well-defined isometric isomorphism.

We call dual quotient trace the canonical projection (cf. (4.3.43))

πnk :

{
D(A>k )→ T (A>k )

y 7→ [y]
. (4.4.20)

Similarly as before, notice that (cf. (4.3.44))

πnky = (Ink)−1Tn
ky, (4.4.21)

and the following diagram is commutative:

D(Åk)
◦

D(A>k ) D(A∗k)
⊥

T (A>k )

−AkR−1
D(Ak)

(Ink )−1

Pnk

Tnk

πnk

ınk

Tnk

πnk

Gnk

Ink

4.4.2 Duality of trace spaces

In this section, we show that the trace spaces T (Ak) and T (A>k ) can be put in duality through an
isometry. In fact, this follows immediately from a classical result in functional analysis. Indeed,
according to [41, Thm. 4.9], we have the isometric isomorphisms

D(A∗k)
◦ ∼=

(
D(A>k )/D(A∗k)

)′
and D(Åk)

◦ ∼=
(
D(Ak)/D(Åk)

)′
. (4.4.22)

Combining these results with propositions 4.2 and 4.4, along with theorems 4.1 and 4.2,

T (Ak) ∼= R(Tt
k) = D(A∗k)

◦ ∼=
(
D(A>k )/D(A∗k)

)′
= (T (A>k ))′, (4.4.23a)

T (A>k ) ∼= R(Tn
k) = D(Åk)

◦ ∼=
(
D(Ak)/D(Åk)

)′
= (T (Ak))

′. (4.4.23b)

Nevertheless, we provide a detailed proof below, not only for convenience and completeness, but
also because the exercise is illuminating. We proceed with the definition of a continuous bilinear
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form on T (Ak)×T (A>k ) and prove that the associated induced linear operator is an isometry. This
pairing will be at the heart of sections 4.7.2 and 4.7, where it will be used to prove that Hilbert
complexes affording so-called compact regular decompositions spawn Fredholm trace Hilbert
complexes.

Lemma 4.4 Under Assumption A, the bilinear form

⟪·, ·⟫k : T (Ak)× T (A>k )→ R, (4.4.24a)

defined by

⟪[x], [y]⟫k := (Akx,y)Wk+1
− (x,A>k y)Wk

∀[x] ∈ T (Ak),∀[y] ∈ T (A>k ), (4.4.24b)

is well-defined and continuous with norm ≤ 1.

Proof. Since ⟪[u], [v]⟫k = 〈Tt
kx,y〉D(Ak)′ , it is well-defined thanks to Proposition 4.1 and Proposi-

tion 4.2. By the same propositions, the orthogonal decompositions (4.3.30) and (4.4.13) yield the
estimate

|〈Tt
kx,y〉D(Ak)′ | = |〈Tt

kPtkx,P
n
ky〉D(Ak)′|

= |(AkPtkx,P
n
ky)Wk+1

− (Ptkx,A
>
k Pnky)Wk

|
≤ ‖AkPtkx‖Wk+1

‖Pnky‖Wk+1
+ ‖Ptkx‖Wk

‖A>k Pnky‖Wk

≤ ‖Ptkx‖D(Ak)‖Pnky‖D(A>k )

= ‖[x]‖T (Ak)‖[y]‖T (A>k ),

(4.4.25)

showing that the bilinear form is continuous with norm ≤ 1. ut

The next result shows in particular that T (Ak) and T (A>k ) can be put in duality through the
bilinear form ⟪·, ·⟫k.

Theorem 4.3 Under Assumption A, the bounded linear operator

Kk :

{
T (Ak)→ T (A>k )′

[x] 7→ ⟪[x], ·⟫k
(4.4.26)

induced by the bilinear form defined in Lemma 4.4 is an isometric isomorphism.

Proof. The key to the proof is that (4.4.24b) permits us to appeal to Theorem 4.1.
Notice that since R(Tt

k) = D(A∗k)
◦, it follows from the orthogonal decomposition (4.4.13) that

Kk is the pullback byGn
k of Itk, i.e.Kk[x]([y]) = Itk[x](Gn

k [y]).We first show that it is an isomorphism.
If Kk[x] = Kk[z], then since Gn

k is an isomorphism onto D(A∗k)
⊥, it then follows from Proposi-

tion 4.2 and decomposition (4.4.13) that Itk[x](y) = Itk[z](y) for all y ∈ D(A>k ). But Itk is also an
isomorphism, so Itk[x] = Itk[z] implies that x = z and we conclude that Kk is injective.

Suppose thatφ ∈ T (A>k )′. Then the pullback ofφ by the canonical quotient map πnk : D(A>k )→
T (A>k ) is a bounded linear functional on D(A>k ), i.e. φ ◦ πnk ∈ D(A>k )′. Indeed, this simply holds
because
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|φ(πnky)| = ‖φ‖‖πnky‖T (A>k ) ≤ ‖φ‖‖πnk‖‖y‖D(A>k ) ∀y ∈ D(A>k ). (4.4.27)

Moreover, since N (πnk ) = D(A∗k), we find in particular that φ ◦ πnk ∈ D(A∗k)
◦ = R(Tt

k). But Itk is
an isomorphism ontoR(Tt

k), so there exists [x] ∈ T (Ak) such that Itk[x] = φ ◦ πnk . Evaluating

Kk[x] = Itk[x] ◦ Gn
k = φ ◦ πnk ◦ Gn

k = φ (4.4.28)

shows that Kk is surjective.
We now prove that Kk is an isometry. Using similar arguments as above, we estimate

‖Kk[x]‖ = sup
[y]∈T (A>k ),
‖[y]‖T (A>

k
)
=1

|Kk[x]([y])| = sup
y⊥∈D(A∗k)⊥,
‖y⊥‖D(A>

k
)
=1

|Itk[x](y⊥)| = ‖Itk[x]‖ = ‖[x]‖T (Ak). (4.4.29)

ut

We have arrived at an integration by parts formula involving the traces from Subsection 4.3.1
and Subsection 4.4.1: for all x ∈ D(Ak) and y ∈ D(A>k ),

(Akx,y)Wk+1
− (x,A>k y)Wk

= ⟪πtkx,πnky⟫Ak . (4.4.30)

Theorem 4.3, in combination with (4.1.12a) and (4.1.12b), reveals the abstract version of the
duality observed for the de Rham complex in Section 4.1.

4.5 Operators on Trace Spaces

Starting from this section, we start exploiting more of the structure of Hilbert complexes by
introducing the minimal Hilbert complex setting required to define what we will call surface
operators. We “zoom in” on short snippets of (4.2.5a) and (4.2.8a) of the form

· · · D(Ak) ⊂Wk D(Ak+1) ⊂Wk+1 D(Ak+2) ⊂Wk+2 · · ·
∪ ∪ ∪

· · · D(Åk) ⊂Wk D(Åk+1) ⊂Wk+1 D(Åk+2) ⊂Wk+2 · · ·

Ak−1 Ak Ak+1 Ak+2

Åk−1 Åk Åk+1 Åk+2

(4.5.1)
We may call the highlighted sequences “minimal Hilbert complexes”. The index k should be
considered arbitrary but fixed in this section.

3D de Rham setting IX: Minimal Hilbert complexes

Based on the 3D de Rham setting III and IV, we obtain two minimal complexes such as
(4.5.1). For k = 0, we have
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H1(Ω) ⊂ L2(Ω) H(curl, Ω) ⊂ L2 L2,

H̊1(Ω) ⊂ L2(Ω) H̊(curl, Ω) ⊂ L2 L2.

grad curl

grad curl
(4.5.2)

For k = 1, we get

H(curl, Ω) ⊂ L2 H(div, Ω) ⊂ L2 ⊂ L2,

H̊(curl, Ω) ⊂ L2 H̊(div, Ω) ⊂ L2 L2.

curl div

curl div
(4.5.3)

4.5.1 Surface operators in domains

Notice that due to the complex property, we have in particular that R(Ak) ⊂ D(Ak+1) and
R(A>k+1) ⊂ D(A>k ). The following key operators are thus well-defined.

Definition 4.5We call surface operators the bounded linear maps

Dt
k := (A>k+1)′ : D(A>k )′ → D(A>k+1)′, (4.5.4a)

Dn
k+1 := A′k : D(Ak+1)′ → D(Ak)

′, (4.5.4b)

dual to A>k+1 : D(A>k+1)→ D(A>k ) and Ak : D(Ak)→ D(Ak+1), respectively. Equivalently,

〈Dt
kφ, z〉D(A>k+1)′ = 〈φ,A>k+1z〉D(A>k )′ , ∀φ ∈ D(A>k )′,∀z ∈ D(A>k+1) ⊂Wk+2, (4.5.5a)

〈Dn
k+1ψ,y〉D(Ak)′ = 〈ψ,Akx〉D(Ak+1)′ , ∀ψ ∈ D(Ak+1)′,∀x ∈ D(Ak) ⊂Wk. (4.5.5b)

Remark4.5.1. Recall the distinctionmade in Subsection 4.2.1 between the notation for bounded and
unbounded linear operators. We point out that in Definition 4.5, the operators A>k+1 : D(A>k+1)→
D(A>k ) and Ak : D(Ak)→ D(Ak+1) are bounded.

Remark 4.5.2. The name ‘surface operators’ was chosen by analogy with standard surface op-
erators on the boundary of a domain, despite the fact that there is no boundary involved in the
above definition. The relation between Definition 4.5 and standard surface operators is made more
explicit in the 3D de Rham settings X and XI.

3D de Rham setting X: Surface operators in domains

In the 3D de Rham setting IX, we find the surface operators

Dt
0 := curl′ : H(div, Ω)′ → H(curl, Ω)′, (4.5.6a)
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Dt
1 := (−grad)′ : H(curl, Ω)′ → H̃−1(Ω), (4.5.6b)

dual to the bounded operators

curl : H(curl, Ω)→ H(div, Ω) and −grad : H1(Ω)→ H(curl, Ω), (4.5.7)

where we have written H̃−1(Ω) := H1(Ω)′. That is,

〈Dt
0φ,v〉H(curl,Ω)′ = 〈φ, curl v〉H(div,Ω)′ , ∀φ ∈ H(div, Ω)′,∀v ∈ H(curl, Ω),

〈Dt
1φ,u〉H̃−1(Ω) = 〈ψ,−gradu〉H(curl,Ω)′ ∀φ ∈ H(curl, Ω)′, ∀u ∈ H1(Ω).

In the adjoint perspective, the bounded linear operators

Dn
1 := grad′ : H(curl, Ω)′ → H̃−1(Ω) (4.5.8a)

Dn
2 := curl′ : H(div, Ω)′ → H(curl, Ω)′ (4.5.8b)

are dual to the bounded linear operators

grad : H1(Ω)→ H(curl, Ω) and curl : H(curl, Ω)→ H(div, Ω). (4.5.9)

That is,

〈Dn
1φ, u〉H̃−1(Ω) = 〈φ,gradu〉H(curl,Ω)′ ∀φ ∈ H(curl, Ω)′,∀u ∈ H1(Ω),

〈Dn
2ψ,v〉H(curl,Ω)′ = 〈ψ, curl v〉H(div,Ω)′ ∀ψ ∈ H(div, Ω)′,∀v ∈ H(curl, Ω).

Since

R(Ak) ⊂ D(Ak+1) = D(Tt
k+1), R(Tt

k) ⊂ D(A>k )′ = D(Dt
k), (4.5.11a)

R(A>k+1) ⊂ D(A>k ) = D(Tn
k), R(Tn

k+1) ⊂ D(Ak+1)′ = D(Dn
k+1), (4.5.11b)

the linear operators

Dt
k ◦ Tt

k : D(Ak)→ D(A>k+1)′, Tt
k+1 ◦ Ak : D(Ak)→ D(A>k+1)′, (4.5.12a)

Dn
k+1 ◦ Tn

k+1 : D(A>k+1)→ D(Ak)
′, Tn

k ◦ A>k+1 : D(A>k+1)→ D(Ak)
′, (4.5.12b)

are also well-defined and bounded.

Lemma 4.5 Assumption A implies the following commuting relations:

−Dt
k ◦ Tt

k = Tt
k+1 ◦ Ak and −Dn

k+1 ◦ Tn
k+1 = Tn

k ◦ A>k+1. (4.5.13)

Proof. By symmetry, we need to verify only one relation. Recall that because of the complex
property Ak+1 ◦ Ak = 0, we also have A>k ◦ A>k+1 = 0. Therefore, for all x ∈ D(Ak) ⊂ Wk and
z ∈ D(A>k+1) ⊂Wk+2, we have on the one hand that
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〈Dt
kTt

kx, z〉D(A>k+1)′ = 〈Tt
kx,A

>
k+1z〉D(A>k )′ = (Akx,A

>
k+1z)Wk+1

− (u,A>k A>k+1z)Wk

= (Akx,A
>
k+1z)Wk+1

.
(4.5.14)

On the other hand, we also evaluate

〈Tt
k+1Akx, z〉D(A>k+1)′ = (Ak+1Akx, z)Wk+2

− (Akx,A
>
k+1z)Wk+1

= −(Akx,A
>
k+1z)Wk+1

.
(4.5.15)

ut

Remark 4.5.3. Consistent with (4.4.4), (Dt
k ◦ Tt

k)
′ = Dn

k+1 ◦ Tn
k+1 and Dt

k ◦ Tt
k = (Dn

k+1 ◦ Tn
k+1)′.

Lemma 4.5 states that the following diagrams commute:

D(Ak) D(Ak+1) D(A>k+1) D(A>k )

R(Tt
k) R(Tt

k+1) R(Tn
k+1) R(Tn

k)

Ak A>k+1

Ttk

−Dtk

Ttk+1 Tnk+1

−Dnk+1

Tnk

(4.5.16)
An important consequence of this result is that

Dt
k(R(Tt

k)) ⊂ R(Tt
k+1) = D(A∗k+1)◦, (4.5.17)

an observation that is key to the introduction of trace Hilbert complexes in later sections.

3D de Rham setting XI: Commutative relations

In the 3D de Rham setting, it follows from (4.4.17) that the four relations obtained from
Lemma 4.5 boil down to the single identity

grad′γ′t ◦ γt = γ′ ◦ γncurl. (4.5.18)

In particular, (4.5.18) states that for all u ∈ H(curl, Ω) and v ∈ H1(Ω),∫
Γ

v n · curl u dσ =

∫
Γ

n× (u× n) · (grad v × n) dσ. (4.5.19)

Recall that n · curl = curlΓ ◦ γt on H(curl, Ω), while the L2(Γ )-dual operator curlΓ =
curl′Γ is such that grad · ×n = curlΓ ◦ γ on H1(Ω). Therefore, (4.5.19) expresses that∫

Γ

u curlΓu dσ =

∫
Γ

curlΓu · u dσ ∀u ∈ H1/2(Γ ), u ∈ H−1/2(curlΓ , Γ ). (4.5.20)

We conclude that the duality between the surface operators and their surface vector calculus
counterparts in classical trace spaces is indeed captured by the duality in Subsection 4.4.2
and Lemma 4.5.

We point out that if one works with the L2(Γ )-pairing instead of the skew-symmetric pair-
ing (4.1.10) from the start, then the two isometrically isomorphic perspectives of tangential
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and “rotated” tangential traces from [15] are also captured by the abstract theory. Indeed, by
introducing the trace γτ : · 7→ ·×n, one obtains Tt

curl = γ′t ◦γτ and Tn
curl = −γ′τ ◦γτ , which

also satisfy (4.4.4). With these definitions, Lemma 4.5 leads to two identities corresponding
to (4.5.20) and∫

Γ

v divΓv dσ = −
∫
Γ

gradΓv · vdσ ∀v ∈ H1/2(Γ ), v ∈ H−1/2(divΓ , Γ ), (4.5.21)

which is a “rotated” version of (4.5.20), where γncurl = divΓγτ on H(curl, Ω) and
H−1/2(divΓ , Γ ) is defined by analogy with (4.1.7b).

4.5.2 Surface operators in quotient spaces

Let us investigate the properties of the linear operators between trace spaces induced by the surface
operators defined in Subsection 4.5.1.

Definition 4.6We call quotient surface operators the bounded linear maps

Stk :

{
T (Ak)→ T (Ak+1)

[x] 7→ πtk+1Akx
and Snk+1 :

{
T (A>k+1)→ T (A>k )

[z] 7→ πnkA>k+1z
. (4.5.22)

We verify that Stk is well-defined. The analogous result holds for Snk+1 by duality. Suppose that
x◦ ∈ D(Åk). By the complex property, we evaluate

⟪πtk+1Akx◦, [z]⟫Ak+1
= (Ak+1Akx◦, z)Wk+2

− (Akx◦,A
>
k+1z)Wk+1

= −(Åkx◦, Å
∗
k+1z)Wk+1

= −(Åk+1Åkx◦, z)Wk+1
= 0

(4.5.23)

for all z ∈ D(A>k+1) ⊂Wk+2. By Subsection 4.4.2, we conclude that πtk+1Akx̊ = 0.
From the above, we also find that for all x ∈ D(Ak) ⊂Wk and z ∈ D(A>k+1) ⊂Wk+2,

⟪Stk ◦ πtk x,πnk+1 z⟫k+1 = −(Akx,A
>
k+1z)Wk+1

= −⟪πtk x, Snk+1 ◦ πnk+1 z⟫k. (4.5.24)

We can view the identity

⟪Stk[x], [z]⟫k+1 = −⟪[x], Snk+1[z]⟫k ∀[x] ∈ T (Ak),∀[z] ∈ T (A>k+1), (4.5.25)

as an integration by parts formula in (quotient) trace spaces.
Recalling Subsection 4.4.2, we can rewrite (4.5.25) as

Kk+1 ◦ Stk = −(Snk+1)′ ◦ Kk, (4.5.26)
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which gives rise to the commutative diagram

T (A>k )′ T (A>k+1)′

T (Ak) T (Ak+1)

−(Snk+1)′

Stk

Kk Kk+1
(4.5.27)

We end this section by putting the results of the subsections 4.5.1 and 4.5.2 together into a
single diagram. On the one hand, for all x ∈ D(Ak) and z ∈ D(A>k+1), we find from the proof of
Lemma 4.5 that

〈Dt
k ◦ Tt

k x, z〉D(A>k+1)′ = 〈Dn
k+1 ◦ Tn

k+1z,x〉D(Ak)′

= ⟪πtk x, Snk+1 ◦ πnk+1 z⟫k
= −⟪Stk ◦ πtk x,πnk+1 z⟫k+1.

(4.5.28)

On the other hand, we have by definition

Stkπ
t
k x = πtk+1Akx and Snk+1π

n
k+1 z = πnkA>k+1z. (4.5.29)

Also recall (4.3.44) and (4.4.21). In summary, the following diagrams are commutative:

T (Ak) T (Ak+1) T (A>k+1) T (A>k )

D(Ak) D(Ak+1) D(A>k+1) D(A>k )

R(Tt
k) R(Tt

k+1) R(Tn
k+1) R(Tn

k)

Stk

Itk Itk+1

Snk+1

Ink+1
Ink

πtk

Ak

πtk+1
πnk+1

A>k+1

πnk

Ttk

−Dtk

Ttk+1 Tnk+1

−Dnk+1

Tnk

(4.5.30)

4.6 Trace spaces: Characterization by Regular Subspaces

4.6.1 Bounded regular decompositions

In this section, we augment Assumption A. We first detail results in the setting of Definition 4.1
for primal Hilbert traces, then formulate their analogs in the dual setting of Definition 4.3. By
symmetry, the primal and dual settings are evidently two faces of the same coin. From an abstract
point of view, they are identical. Nevertheless, the dual setting is presented for convenience. The
two settings are covered independently to avoid loosing sight of the core considerations.

4.6.1.1 Primal decomposition

Now, we aim at a more detailed characterization of the space D(A>k )′. Recall that by the complex
property,R(A>k+1) ⊂ D(A>k ).
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We refer to [35, Def. 2.12] for the next assumption, which introduces additional structure.

Assumption B For all k ∈ Z, Assumption A holds along with the following hypotheses:

I The Hilbert spaces W+
k ⊂ Wk are such that the inclusion maps spawn continuous and

dense embeddings

W+
k ↪→ D(A>k−1). (4.6.1)

II There exist bounded linear operators

Ltk+1 : D(A>k )→W+
k+1 and Vt

k+1 : D(A>k )→W+
k+2 (4.6.2)

such that

y = (Ltk+1 + A>k+1Vt
k+1) y ∀y ∈ D(A>k ). (4.6.3)

III The Hilbert spaces

W+
k+2(A>k+1) :=

{
z ∈W+

k+2 | A>k+1z ∈W+
k+1

}
, (4.6.4)

equipped with the graph inner product defined for all z1, zz ∈W+
k+2(A>k+1) by

(z1, z2)W+
k+2(A>k+1) := (z1, z2)W+

k+2
+ (A>k+1z1,A

>
k+1z2)W+

k+1
, (4.6.5)

are such that the inclusions W+
k+2 ⊂Wk+2 induce continuous and dense embeddings

W+
k+2(A>k+1) ↪→ D(A>k−1). (4.6.6)

We adopt a shorter notation for the dual spaces:

W−
k := (W+

k )′, k ∈ Z. (4.6.7)

Remark 4.6.1. In Hypothesis II, (4.6.3) is a stable regular decomposition of the form

D(A>k ) = W+
k+1 + A>k+1W

+
k+2, k ∈ Z. (4.6.8)

By stable, we mean that the lifting and potential operators in (4.6.2) are bounded. We call it regular
due to Hypothesis I, based on which we can imagine the W+

k s as subspaces of “extra regularity”.
Remark 4.6.2. The decomposition in (4.6.3)/ (4.6.8) need not be direct.
Remark 4.6.3. Assumption B is stated for all k ∈ Z. Strictly speaking, in the setting of a minimal
complex with k ∈ Z fixed, to which we adhere in this section, only one stable regular decomposition
(the one written in (4.6.3) and involving the regular spaces W+

k+1 and W+
k+2) is necessary for the

characterization of D(A>k )′ andR(Tt
k).
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Lemma 4.6 Under Assumption B, the surface operator Dt
k : D(A>k )′ → D(A>k+1)′ defined in

(4.5.4a) can be extended to a continuous mapping

Dt
k :

W−
k+1→W+

k+2(A>k+1)′

φ 7→ 〈φ,A>k+1· 〉W−
k+1

, (4.6.9)

still designated by the same notation.

Proof. For all φ ∈W−
k+1, it follows by definition that ∀z ∈W+

k+2(A>k+1),

|〈φ,A>k+1z〉W−
k+1
| ≤ ‖φ‖W−

k+1
‖A>k+1z‖W+

k+1
≤ ‖φ‖W−

k+1
‖z‖W+

k+2(A>k+1). (4.6.10)

ut

4.6.1.2 Dual decomposition

Wemay also adopt the adjoint perspective. It goeswithout saying that the development is completely
symmetric to Subsection 4.6.1.1. We present it for completeness.

Assumption C (cf. Assumption B) For all k ∈ Z, beside Assumption A we stipulate the
following:

I The Hilbert spaces W+
k ⊂ Wk are such that the inclusion maps spawn continuous and

dense embeddings

W+
k ↪→ D(Ak). (4.6.11)

II There exist bounded operators

Lnk+1 : D(Ak+1)→W+
k+1 and Vn

k+1 : D(Ak+1)→W+
k (4.6.12)

such that

y = (Lnk+1 + AkVn
k+1) y ∀y ∈ D(Ak+1). (4.6.13)

III The Hilbert spaces

W+
k (A>k ) :=

{
x ∈W+

k | Akx ∈W+
k+1

}
, (4.6.14)

equipped with the graph inner product defined for all x1,xz ∈W+
k (Ak) by

(x1,x2)W+
k (Ak) := (x1,x2)W+

k
+ (Akx1,A

>
k+1x2)W+

k+1
, (4.6.15)

are such that the inclusions W+
k ⊂Wk induce continuous and dense embeddings

W+
k (Ak) ↪→ D(Ak). (4.6.16)
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Lemma 4.7 Under Assumption C, the surface operator Dn
k+1 can be extended to a continuous

mapping

Dn
k :

W−
k+1→W+

k (Ak)
′

ψ 7→ 〈ψ,Ak· 〉W−
k+1

. (4.6.17)

Proof. Parallel to the proof of Lemma 4.6, it follows by definition that given ψ ∈W−
k+1,

|〈ψ,Akx〉W−
k+1
| ≤ ‖ψ‖W−

k+1
‖Akx‖W+

k+1
≤ ‖ψ‖W−

k+1
‖x‖W+

k (Ak) ∀x ∈W+
k (Ak). (4.6.18)

ut

It is not excluded that both assumptions B and C hold, in which case the inclusion

W+
k+1 ↪→ D(A>k ) ∩ D(Ak+1) (4.6.19)

is assumed to be a dense embedding.

3D de Rham setting XII: Stable regular decompositions

There is some freedom in choosing the spacesW+
k , k ∈ Z. For the de Rham complex though,

there are obvious candidates satisfying (4.6.19) that also satisfy both assumptions B and C:
functions in the Sobolev space H1(Ω) and vector-fields with components in H1(Ω), which
by Rellich’s lemma are compactly embedded in the spaces L2(Ω) and L2(Ω), respectively.

k 0 1 2 3

Wk L2(Ω) L2 L2 L2(Ω)

W+
k H1(Ω) H1(Ω) H1(Ω) H1(Ω)

D(Ak) H1(Ω) H(curl, Ω) H(div, Ω) L2(Ω)

D(A>k ) H(div, Ω) H(curl, Ω) H1(Ω) {0}

It is well-known (cf. [24, Sec.2], [23, Lem. 2.4] and [25, Sec. 3]) that the graph spaces
D(Ak) and D(A>k ) given in the above table admit the stable decompositions

D(A2) = D(A>0 ) = H(div, Ω) = H1(Ω) + curl H1(Ω), (4.6.20a)
D(A1) = D(A>1 ) = H(curl, Ω) = H1(Ω) + gradH1(Ω) (4.6.20b)

These satisfy assumptions B and C. Moreover, you may recall that

H1(Ω) ↪→ H(curl, Ω) ∩H(div, Ω) (4.6.21)

is a dense embedding [2, Prop. 2.3].
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4.6.2 Characterization of dual spaces

In light of Lemma 4.6, the Hilbert space

W−
k+1(Dt

k) :=
{
φ ∈W−

k+1 | Dt
kφ ∈W−

k+2

}
, (4.6.22)

equipped with the graph norm ‖ · ‖2
W−

k+1(Dtk)
:= ‖ · ‖2

W−
k+1

+ ‖Dt
k · ‖2

W−
k+2

, is well-defined under
Assumption B. In this setting, observe that, if φ ∈ W−

k+1(Dt
k), then based on the decomposition

(4.6.3), the evaluation

φ(y) = φ(Ltk+1y) + φ(A>k+1Vt
k+1y) = φ(Ltk+1y) + Dt

kφ(Vt
k+1y) (4.6.23)

is well-defined for all y ∈ D(A>k ) thanks to the hypothesis that guarantees R(Ltk+1) ⊂W+
k+1 and

R(Vt
k+1) ⊂W+

k+2.

Theorem 4.4 Assumption B guarantees the following isomorphism of normed vector spaces,

D(A>k )′ ∼= W−
k+1(Dt

k). (4.6.24)

Proof. Due to (4.6.1) fromHypothesis I ofAssumptionB, the restriction of functionalsD(A>k+1)′ ↪→
W−

k+2 is a continuous embedding, so the inclusion D(A>k )′ ⊂ W−
k+1(Dt

k) is immediate from
Definition 4.5.

Moreover, for all φ ∈W−
k+1(Dt

k), we estimate using (4.6.23) that

|φ(y)| ≤ ‖φ‖W−
k+1
‖Ltk+1y‖W+

k+1
+ ‖Dt

kφ‖W−
k+2
‖Vt

k+1y‖W+
k+2

≤ C(‖φ‖W−
k+1

+ ‖Dt
kφ‖W−

k+2
)‖y‖D(A>k )

(4.6.25)

for all y ∈ D(A>k ), where C > 0 is a constant of continuity related to the boundedness of the
potential and lifting operators in hypothesis II of Assumption B. We conclude that

W−
k+1(Dt

k) ⊂ D(A>k )′. (4.6.26)

Notice that it also follows from (4.6.25) that

‖φ‖D(A>k )′ = sup
06=y∈D(A>k )

|φ(y)|
‖y‖D(A>k )

≤ C(‖φ‖W−
k+1

+ ‖Dt
kφ‖W−

k+2
) = C‖φ‖W−

k+1(Dtk) (4.6.27)

for all φ ∈W−
k+1(Dt

k). In other words, the identity map is continuous as a mapping

W−
k+1(Dt

k) ↪→ D(A>k )′. (4.6.28)

Appealing to the bounded inverse theorem verifies the equivalence of norms. ut

Similarly, under Assumption C, Lemma 4.7 ensures that the Hilbert space

W−
k+1(Dn

k+1) :=
{
ψ ∈W−

k+1 | Dn
k+1ψ ∈W−

k

}
, (4.6.29)

equipped with the graph norm ‖ · ‖W−
k+1(Dnk+1) := ‖ · ‖W−

k+1
+ ‖Dn

k+1 · ‖W−
k
, is well-defined. We

obtain the following analogous result.

Theorem 4.5 (cf. Theorem 4.4) Under Assumption C, we conclude the isomorphism of normed
vector spaces

D(Ak)
′ ∼= W−

k (Dn
k). (4.6.30)
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3D de Rham setting XIII: Characterization of dual spaces

Now, we specialize the theoretical results of Subsection 4.6.2 to the 3D de Rham setting
using the table in example XII. We obtain the following characterization of the dual spaces:

H(curl, Ω)′ = D(A1)′ = D(A>1 )′ ∼=
{
φ ∈ H̃−1(Ω) | grad′φ ∈ H̃−1(Ω)

}
, (4.6.31a)

H(div, Ω)′ = D(A2)′ = D(A>0 )′ ∼=
{
φ ∈ H̃−1(Ω) | curl′φ ∈ H̃−1(Ω)

}
. (4.6.31b)

Note that these characterizations are interesting in their own right. They do not depend on
the theory of traces developed in the previous sections. The take-home message from the de
Rham settings XII and XIII is that via the decompositions (4.6.20a) and (4.6.20b), the dual
spaces of H(curl, Ω) and H(div, Ω) can be characterized using more regular spaces such as
H1(Ω) and H1(Ω).

4.6.3 Characterization of trace spaces

We have almost reached characterizations of the ranges of the Hilbert traces R(Tt
k) and R(Tn

k) in
terms of the spaces of “extra regularity” provided by Assumptions B and C. To achieve these new
characterizations, we introduce the following spaces for all k ∈ Z:

W̊n,+
k := W+

k ∩ D(A∗k−1), and W̊t,+
k := W+

k ∩ D(Åk). (4.6.32)

Notice that by propositions 4.3 and 4.1, we have

W̊n,+
k = W+

k ∩N (Tn
k−1), and W̊t,+

k = W+
k ∩N (Tt

k), (4.6.33)

respectively.

Assumption D Suppose that Assumption B holds. For all k ∈ Z, we make the hypothesis
that the inclusion map W+

k ⊂ D(A>k−1) spawns a continuous and dense embedding

W̊n,+
k ↪→ D(A∗k−1). (4.6.34)

The next result involves the annihilator

(W̊n,+
k+1)◦ :=

{
φ ∈W−

k+1 | 〈φ,y〉W−
k+1

= 0, ∀y ∈ W̊n,+
k+1

}
. (4.6.35)
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Theorem 4.6 Taking for granted Assumption D we obtain the characterization

R(Tt
k) = W−

k+1(Dt
k) ∩ (W̊n,+

k+1)◦ =
{
ψ ∈ (W̊n,+

k+1)◦ | Dt
kψ ∈ (W̊n,+

k+2)◦
}
, (4.6.36)

in the sense of equality of functionals in W−
k+1 and with equivalent norms.

Proof. We already know by Proposition 4.2 that R(Tt
k) = D(A∗k)

◦. To verify the equality on the
right, recall that Dt

k(R(Tt
k)) ⊂ R(Tt

k+1) = D(A∗k+1)◦.
“⊂”: On the one hand, since D(A∗k)

◦ ⊂ D(A>k )′, it follows immediately from Theorem 4.4 and
(4.6.34) thatR(Tt

k) ⊂W−
k+1(Dt

k). Moreover, as W̊n,+
k+1 ⊂ D(A∗k), any functional in the annihilator

of D(A∗k) will, in particular, vanish on W̊n,+
k+1, which implies D(A∗k)

◦ ⊂ (W̊n,+
k+1)◦.

Thanks to the continuous embedding of Assumption BI and (4.5.5a) from the definition of the
operator Dt

k, we find for every ϕ ∈ D(A>k )′:

‖ϕ‖W−
k+1

+ ‖Dt
kϕ‖W−

k+2
= sup

06=w∈W+
k+1

|ϕ(w)|
‖w‖W+

k+1

+ sup
0 6=w∈W+

k+2

|ϕ(A>k+1w)|
‖w‖W+

k+2

≤ C sup
06=w∈D(A>k )

|ϕ(w)|
‖w‖D(A>k )

+ sup
0 6=w∈D(A>k+1)

|ϕ(A>k+1w)|
‖w‖D(A>k+1)

≤ 2C‖ϕ‖D(A>k )′ ,

for some constant C > 0 independent of ϕ.
“⊃”: On the other hand, it also follows by Theorem 4.4 that any φ ∈ W−

k+1(Dt
k) ∩ (W̊n,+

k+1)◦

is a continuous functional in D(A>k )′ vanishing on W̊n,+
k+1. By Assumption D W̊n,+

k+1 is densely
embedded in D(A∗k). Thus, φ must also vanish on D(A∗k) by continuity. We conclude that the
inclusion W−

k+1(Dt
k) ∩ (W̊n,+

k+1)◦ ⊂ R(Tt
k) = D(A∗k)

◦ holds.
Finally, the estimate (4.6.25) gives us

‖φ‖D(A>k )′ ≤ C(‖φ‖W−
k+1

+ ‖Dt
kφ‖W−

k+2
)

with C > 0 independent of φ. ut

Of course, there is a symmetric statement on the dual side.

Assumption E (cf. Assumption D) Suppose that Assumption C holds. For all k ∈ Z, we
make the hypothesis that the inclusion map W+

k ⊂ D(Ak) spawns a continuous and dense
embedding

W̊t,+
k ↪→ D(Åk). (4.6.37)
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Theorem 4.7 (cf. Theorem 4.6) Under Assumption E we have equality in W−
k+1 with

equivalent norms,

R(Tn
k+1) = W−

k+1(Dn
k+1) ∩ (W̊t,+

k+1)◦ =
{
ψ ∈ (W̊t,+

k+1)◦ | Dn
k+1ψ ∈ (W̊t,+

k )◦
}
. (4.6.38)

3D de Rham setting XIV: Characterization of trace spaces

We specialize the theoretical results of Subsection 4.6.3 to the 3D de Rham setting.

k 0 1 2 3

Wk L2(Ω) L2 L2 L2(Ω)

W+
k H1(Ω) H1(Ω) H1(Ω) H1(Ω)

W̊t,+
k H̊1(Ω) H1(Ω) ∩ H̊(curl, Ω) H1(Ω) ∩ H̊(div, Ω) H̊1(Ω)

W̊n,+
k H̊1(Ω) H1(Ω) ∩ H̊(div, Ω) H1(Ω) ∩ H̊(curl, Ω) H̊1(Ω)

Loosely speaking, theorems 4.6 and 4.7 state that the range of theHilbert trace is a subspace
of functionals in the dual of a regular spaceW+

k whose image under the corresponding surface
operator also lies in the dual of W+

k+1. Linear functionals in that subspace vanish on a dense
subset of the dual trace’s kernel:

R(Tn
curl) =

{
φ ∈ H̃−1(Ω) ∩ H̊(curl, Ω)◦|grad′φ ∈ H̃−1(Ω) ∩ H̊1(Ω)◦

}
, (4.6.39a)

R(Tn
div) =

{
φ ∈ H̃−1(Ω) ∩ H̊(div, Ω)◦|curl′φ ∈ H̃−1(Ω) ∩ H̊(curl, Ω)◦

}
, (4.6.39b)

with

R(Tt
curl) = R(Tn

curl) (4.6.39c)
R(Tt

grad) = R(Tn
div) (4.6.39d)

The identities (4.6.39c) and (4.6.39d) are expected, because we already know from previ-
ous sections that

R(Tn
curl) = D(Å1)◦ = H̊(curl, Ω)′ = D(A∗1)◦ = R(Tt

curl), (4.6.40a)

R(Tn
div) = D(Å2)◦ = H̊(div, Ω)′ = D(A∗1) = R(Tt

grad). (4.6.40b)

Before we compare these characterizations with (4.1.7a) and (4.1.7b), we want to refor-
mulate them in terms of quotient spaces in the next section.
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4.6.4 Characterization of trace spaces in quotient spaces

We can reformulate the characterizations of Subsection 4.6.3 in terms of quotient spaces. To
proceed, let us set

Tt,+
k := W+

k /W̊
t,+
k , Tt,−

k :=
(
Tt,+
k

)′
, (4.6.41a)

Tn,+
k := W+

k /W̊
n,+
k , Tn,−

k :=
(
Tn,+
k

)′
. (4.6.41b)

Under Assumption D (resp. E), it follows by definition of the space W̊n,+
k (resp. W̊t,+

k ) that
the dense embedding W+

k ↪→ D(A>k−1) (resp. W+
k ↪→ D(Ak)) induces a well-defined and dense

embedding{
Tn,+
k ↪→ T (A>k−1)

[x] 7→ πnk−1x

(
resp.

{
Tt,+
k ↪→ T (Ak)

[x] 7→ πtkx

)
(4.6.42)

on the quotient spaces. Accordingly, the associated restriction of functionals{
T (A>k−1)′ ↪→Tn,−

k

ψ 7→
{

[x] 7→ ψ(πnk−1x)
} (

resp.

{
T (Ak)

′ ↪→Tt,−
k

φ 7→
{

[x] 7→ φ(πtkx)
} )

(4.6.43)

is also well-defined and gives rise to dense embeddings.
In the next lemma, we make explicit the mappings induced on the quotient spaces by restricting

the operators A>k−1 and Ak to W+
k . Those are the restrictions of the surface operators Snk−1 and Stk

to Tn,+
k and Tt,+

k , respectively; cf. Definition 4.6.

Lemma 4.8 Assumptions D and E imply that the mappings

Ŝnk+1 :

{
Tn,+
k+2→ T (A>k )

[z] 7→ πnkA>k+1z
and Ŝtk :

{
Tt,+
k → T (Ak+1)

[x] 7→ πtk+1Akx
, (4.6.44)

respectively, are well-defined and continuous.

Proof. Consider the mapping on the left. We know from the complex property for A>k in Assumption
A that A>k+1z ∈ D(A>k ) for all z ∈ W+

k+1. We only need to verify that A>k+1z◦ ∈ D(A∗k) for all
z◦ ∈ W̊n,+

k+2 = W+
k+2∩D(A∗k+1), but this immediately follows from the complex property for A∗k+1,

also provided by Assumption A. The proof is similar for Ŝtk. ut

Using the same strategy as in lemmas 4.6 and 4.7, the mappings

D̂t
k := (Ŝnk+1)′ : T (A>k )′ → Tn,−

k+2 and D̂n
k := (Ŝtk)

′ : T (Ak+1)′ → Tt,−
k , (4.6.45)

defined as the bounded operators dual to Ŝnk+1 and Ŝtk, can be extended, using (4.6.43), to the
continuous mappings

D̂t
k : Tn,−

k+1 → Tn,+
k+2(Ŝnk+1)′ and D̂n

k : Tt,−
k+1 → Tt,+

k (Ŝtk)
′, (4.6.46)
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involving the dual spaces of the Hilbert spaces

Tn,+
k+2(Ŝnk+1) :=

{
[z] ∈ Tn,+

k+2 | Ŝnk+1[z] ∈ Tn,+
k+1

}
, (4.6.47a)

Tt,+
k (Ŝtk) :=

{
[x] ∈ Tt,+

k | Ŝtk[x] ∈ Tt,+
k+1

}
, (4.6.47b)

equipped with the natural graph inner products.
With the operators (4.6.46), we can reformulate theorems 4.6 and 4.7 using the isometric iso-

morphisms

(W+
k /W̊

t,+
k )′ ∼= (W̊t,+

k )◦ and W+
k /W̊

n,+
k
∼= (W̊n,+

k )◦ (4.6.48)

provided by [41, Thm. 4.9].

Theorem 4.8 Under assumptions D and E we have the isomorphisms of Hilbert spaces

R(Tt
k)
∼=
{
φ ∈ Tn,−

k+1 | D̂t
kφ ∈ Tn,−

k+2

}
, (4.6.49a)

R(Tn
k) ∼=

{
φ ∈ Tt,−

k | D̂n
kφ ∈ Tt,−

k−1

}
, (4.6.49b)

respectively.

3D de Rham setting XV: Characterization of trace spaces by quotient spaces

Recall from (4.1.8b) and (4.1.8c) thatN (γt) = H̊(curl, Ω) andN (γn) = H̊(div, Ω). So let
us denote the spaces of H1-regular vector fields with vanishing tangential and normal traces
by

H1
t (Ω) := N (γt

∣∣
H1(Ω)

) = H1(Ω) ∩ H̊(curl, Ω) (4.6.50a)

H1
n(Ω) := N (γn

∣∣
H1(Ω)

) = H1(Ω) ∩ H̊(div, Ω), (4.6.50b)

respectively.

k 0 1 2 3

Wk L2(Ω) L2 L2 L2(Ω)

W+
k H1(Ω) H1(Ω) H1(Ω) H1(Ω)

Tt,+
k H1(Ω)/H̊1(Ω) H1(Ω)/H1

t (Ω) H1(Ω)/H1
n(Ω) H1(Ω)/H̊1(Ω)

Tn,+
k H1(Ω)/H̊1(Ω) H1(Ω)/H1

n(Ω) H1(Ω)/H1
t (Ω) H1(Ω)/H̊1(Ω)

Reformulating (4.6.39a) and (4.6.39b), we obtain

R(Tn
curl)

∼=
{
φ ∈

(
H1(Ω)/H1

t (Ω)
)′
| grad′φ ∈

(
H1(Ω)/H̊1(Ω)

)′}
, (4.6.51a)
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R(Tn
div)
∼=
{
φ ∈

(
H1(Ω)/H1

n(Ω)
)′
| curl′φ ∈

(
H1(Ω)/H1

t (Ω)
)′}

, (4.6.51b)

still with

R(Tt
curl) = R(Tn

curl), (4.6.51c)
R(Tt

grad) = R(Tn
div). (4.6.51d)

These characterizations are to be compared with

H−1/2(curlΓ , Γ ) =
{
φ ∈ H

−1/2
t (Γ ) | curlΓ φ ∈ H−1/2(Γ )

}
= R(γt), (4.6.52a)

H1/2(Γ ) =
{
φ ∈ H−1/2(Γ ) | curlΓ φ ∈ H

−1/2
t (Γ )

}
= R(γ), (4.6.52b)

where as before the two spaces

H−1/2(Γ ) =
(
H1/2(Γ )

)′
=
(
γH1(Ω)

)′ (4.6.53a)

H
−1/2
t (Γ ) =

(
H

1/2
t (Γ )

)′
=
(
γtH

1(Ω)
)′ (4.6.53b)

are dual to the more regular spaces γ H1(Ω) and γt H1(Ω), respectively.
In the classical trace spaces, the quotient spaces involved in (4.6.51a) and (4.6.51b) are

featured implicitly, because as previously stated in (4.6.50a) and (4.6.50b),H1
t (Ω) andH1

n(Ω)
are kernels which vanish under application of the traces. In fact, since γ : H1(Ω)→ H1/2(Γ )

and γt : H1(Ω) → H
1/2
t (Γ ) are surjective, it follows from (4.6.50a) and (4.6.50b) that the

same argument as in the 3DdeRham settingVII shows that the traces induce the isomorphisms

H
1/2
t (Γ ) ∼= H1(Ω)/H1

t (Ω) and H1/2(Γ ) ∼= H1(Ω)/H̊1(Ω), (4.6.54)

which in turn imply isomorphisms between the dual spaces.
We would like to draw the reader’s attention to the fact that it is an annihilator related

to the kernel of the dual trace that is used to characterize the range of the primal trace and
vice-versa. This is in agreement with the characterizations provided in [15], where the range
of γt is characterized using the dual space (γτH

1(Ω))′, involving the rotated tangential trace
γτ discussed in the 3D de Rham setting XI. As in [15], recall that if the skew-symmetric
pairing (4.1.10) is replaced with the L2(Γ )-pairing, the dual trace Tn

curl, corresponding with
the rotated tangential trace (roughly speaking), arises in the abstract setting of Subsection
4.4.1 as dual to Tt

curl, which corresponds to γt.
Finally, notice that the surface operators curlΓ and curlΓ are dual to the domain operators

on which the relevant traces are applied, which is in line with (4.6.51a) and (4.6.51b), i.e.
(cf. [15])

curlΓ ◦ γ = (γt ◦ ∇)′ and curlΓ ◦ γt = (γn ◦ curl)′. (4.6.55)
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4.7 Trace Hilbert Complexes

From now on, we make use of the full setting of Hilbert complexes as presented in Subsection
4.2.2. Both Assumptions D and E are not required for the mere characterization of the trace
Hilbert complexes in Subsection 4.7.1: each one of these hypotheses suffices for the corresponding
characterization. However, we do rely on both decompositions for the upcoming compactness result
in Subsection 4.7.2, where we must take (4.6.19) for granted.

4.7.1 Complexes of quotient spaces

It is easy to verify that Dt
k+1 ◦Dt

k = 0, Dn
k ◦Dn

k+1 = 0, Stk+1 ◦Stk = 0 and Snk ◦Snk+1 = 0. Therefore,
we have already seen from (4.5.30) that Hilbert complexes give rise to Hilbert complexes in trace
spaces. The bounded complexes

· · · R(Tt
k) R(Tt

k+1) R(Tt
k+2) · · · ,

Dtk Dtk Dtk+1 Dk+2

(4.7.1a)

and

· · · R(Tn
k) R(Tn

k+1) R(Tn
k+2) · · · ,

Dk Dnk+1 Dnk+2 Dk+3

(4.7.1b)

are isometrically isomorphic to the bounded complexes of quotient spaces

· · · T (Ak) T (Ak+1) T (Ak+2) · · · ,
Stk Stk Stk+1 Stk+2

(4.7.2a)

and

· · · T (A>k ) T (A>k+1) T (A>k+2) · · · .
Snk Snk+1 Snk+2 Snk+3

(4.7.2b)

While the bounded domain complexes are interesting in their own right, the rich structure of
Hilbert complexes reveals itself when closed densely defined unbounded operators are introduced.
As stated in [6, Chap. 4], the complex produced by the latter contains more information than the
associated domain complexes. It turns out that the characterizations provided in Section 4.6 shed
more light on the structure of (4.7.1a)-(4.7.2b). The next theorem provides a first characterization
of what we call trace Hilbert complexes.

Theorem 4.9 Under assumptionsDandE respectively, the sequences of unbounded operators

· · ·
Dtk−1−−−→ R(Tt

k) ⊂ (W̊n,+
k+1)◦

Dtk−−−→ R(Tt
k+1) ⊂ (W̊n,+

k+2)◦
Dtk+2−−−→ · · · (4.7.3)

and

· · · ←−−−
Dnk

R(Tn
k) ⊂ (W̊t,+

k )◦ ←−−−
Dnk+1

R(Tn
k+1) ⊂ (W̊t,+

k+1)◦ ←−−−
Dnk+2

· · · (4.7.4)

are Hilbert complexes as defined in Subsection 4.2.2.
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Proof. By symmetry, it is sufficient to verify the claim for (4.7.3). In light for (4.7.1a) and Theo-
rem 4.6, we simply need to show that Dt

k : R(Tt
k) ⊂ (W̊n,+

k+1)◦ → (W̊n,+
k+2)◦ is a densely defined

and closed unbounded linear operator. In fact, sinceR(Tt
k) = D(A∗k)

◦ ⊂ D(A>k )′ is a Hilbert space
by Proposition 4.2, we already know that such an operator must be closed, and we only need to
confirm thatR(Tt

k) is dense in (W̊n,+
k+1)◦.

We need two key mappings:

• Recall that sinceW+
k+1 is a Hilbert space and Hilbert spaces are reflexive (cf. [41, Sec. 4.5], [11,

Thm. 5.5]), the map

ρ :


W+

k+1 −→ (W−
k+1)′

y 7→

{
W−

k+1→ R
φ 7→ ρy(φ) = φ(y)

(4.7.5)

is an isometric isomorphism. Substituting ρ−1(φ̃) for y in the definition (ρy)(φ) = φ(y), we
find a useful formula involving the inverse:

ψ̃(φ) = φ(ρ−1ψ̃) (4.7.6)

for all φ ∈W−
k+1 and ψ̃ ∈ (W−

k+1)′.
• Since the inclusion W+

k+1 ↪→ D(A>k ) is continuous and dense by Assumption B, the restriction
of functionals J : D(A>k )′ → W−

k+1 is also a continuous and dense embedding. In particular,
becauseR(Tt

k) = D(A∗)◦ by Proposition 4.2 and W̊n,+
k+1 ⊂ D(A∗k) by definition, it satisfies the

important property that J(R(Tt
k)) ⊂ (W̊n,+

k+1)◦.

To prove density, we show that an arbitrary functional φ̃◦ ∈ ((W̊n,+
k+1)◦)′ such that φ̃◦(Jξ) = 0

for all ξ ∈ R(Tt
k) vanish in ((W̊n,+

k+1)◦)′. We proceed in three short steps.

1) First, we use theHahn–Banach theorem to extend φ̃◦ to a functional φ̃ ∈ (W−
k+1)′. By definition,

φ̃(Jξ) = 0 ∀ξ ∈ R(Tt
k). (4.7.7)

2) Secondly, we set y := ρ−1φ̃ ∈W+
k+1 ⊂ D(A>k ). Based on (4.7.6), it follows from (4.7.7) that

ξ(y) = Jξ(y) = Jξ(ρ−1φ̃) = φ̃(Jξ) = 0 ∀ξ ∈ R(Tt
k) = D(A∗k)

◦. (4.7.8)

In particular, we obtain from (4.7.8) that y ∈ D(A∗k). Thus, under the choice made in (4.6.32),
y ∈ D(A∗k) ∩W+

k+1 = W̊n,+
k .

3) Finally, the previous step implies that

φ̃(φ◦) = ρy(φ◦) = φ◦(y) = 0 ∀φ◦ ∈ (W̊n,+
k+1)◦. (4.7.9)

Therefore, φ̃◦ = φ̃
∣∣
(W̊n,+

k+1)◦
= 0, which concludes the proof. ut
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Now, rewriting the trace Hilbert complexes (4.7.3) and (4.7.4) in terms of the isometrically
isomorphic characterizations given in Theorem 4.8, we obtain the Hilbert complexes

· · · Tn,−
k+1(D̂t

k) ⊂ Tn,−
k+1 Tn,−

k+2(D̂t
k+1) ⊂ Tn,−

k+2 · · ·
D̂tk−1 D̂tk D̂tk+1

(4.7.10a)

and

· · · Tt,−
k (D̂n

k) ⊂ Tt,−
k Tt,−

k+1(D̂n
k+1) ⊂ Tt,−

k+1 · · · .
D̂nk D̂nk+1 D̂nk+2

(4.7.10b)

4.7.2 Compactness property

It is well-known that compact embeddings of the regular spaces W+
k ⊂Wk in the stable decom-

positions (4.6.3) and (4.6.13) lead to the Hilbert complexes (4.2.5a) and (4.2.8b) being Fredholm.
For convenience, we review this result in the next lemma.

Assumption F Suppose that the dense inclusions ı+k : W+
k ↪→Wk are compact for all k ∈ Z.

Lemma 4.9 Under Assumption F, Assumptions B and C guarantee compactness of the inclusions

D(A>k ) ∩ D(Åk+1) ↪→Wk+1 and D(Ak+1) ∩ D(A∗k) ↪→Wk+1, (4.7.11)

respectively.

Proof. By symmetry, it is sufficient to prove that, under Assumption F, it follows from Assumption
C that the dense inclusion D(Ak+1) ∩ D(A∗k) ↪→ Wk is a compact operator. In particular, let
(y`)`∈Z ⊂ D(Ak+1) ∩ D(A∗k) be an arbitrary sequence that is bounded in D(Ak+1) ∩ D(A∗k). We
only need to show that there exists a subsequence (y`ρ)ρ∈Z that is Cauchy in Wk.

By Assumption C, for all ` ∈ Z, there exist p+
` ∈W+

k+1 and x+
` ∈W+

k such that

y` = p+
` + Akx

+
`

(
in particular, p+

` := Lnk+1y` and x+
` := Vn

k+1y`

)
. (4.7.12)

The norm inD(Ak+1)∩D(A∗k) is stronger than the norm inD(Ak+1), so since the decomposition is
stable by hypothesis II from Assumption C, the sequences (p+

` )` and (x+
` )` are bounded in W+

k+1

and W+
k , respectively. Under Assumption F, we can thus find subsequences (p+

`ρ
)ρ and (x+

`ρ
)ρ that

are Cauchy in Wk+1 and Wk, respectively. Evaluating

‖y`n − y`m‖2
Wk+1

=
(
p+
`n
− p+

`n
,y`n − y`n

)
Wk+1

+

(
Ak

(
x+
`n
− x+

`n

)
,y`n − y`n

)
Wk+1

≤ ‖p+
`n
− p+

`n
‖Wk+1

‖y`n − y`n‖Wk+1
+
(
x+
`n
− x+

`n
,A∗k (y`n − y`n)

)
Wk+1
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≤ ‖p+
`n
− p+

`n
‖Wk+1︸ ︷︷ ︸

→0 as n,m→0

‖y`n − y`n‖Wk+1
+ ‖x+

`n
− x+

`n
‖Wk︸ ︷︷ ︸

→0 as n,m→0

‖A∗k (y`n − y`n) ‖Wk+1
,

we arrive at the conclusion once noticing that ‖y`n−y`n‖Wk+1
and ‖A∗k (y`n − y`n) ‖Wk+1

are also
bounded by hypothesis. ut

In other words, under Assumption F, the stable decompositions of Subsection 4.6.1 imply
complex properties, which as stated in Subsection 4.2.2, guarantee that the associated Hilbert
complexes are Fredholm. The goal of this section is to show that this carries over to the trace spaces.
Ultimately, this is because what is essential for Lemma 4.9 to go through is not compactness of the
spaces, but rather that the potential and lifting operators are compact operators.

In order to obtain the complex properties for the trace Hilbert complexes, we find it most
convenient to work with the characterizations provided in Theorem 4.9, because it allows us to
harness the theory developed in Subsection 4.3.3. By symmetry, we may focus on (4.7.3).

For any x ∈ D(Ak), it follows from Assumption C and the commuting relations of Lemma 4.5
that

Tt
kx = Tt

kLnkx + Tt
kAk−1Vn

kx = Tt
kLnkx− Dt

k−1Tt
k−1Vn

kx. (4.7.13)

Recall fromLemma4.2 that theD(Ak)-harmonic extension operators−A>k R−1
D(A>k )

: R(Tt
k)→ D(Ak)

satisfy Tt
k(−A>k R−1

D(A>k )φ) = φ for all φ ∈ R(Tt
k). Inserting this identity in (4.7.13) yields the

decomposition
φ = −Tt

kLnkA>k R−1
D(A>k )

φ+ Dt
k−1Tt

k−1Vn
kA>k R−1

D(A>k )
φ (4.7.14)

for all φ ∈ R(Tt
k).

Compare (4.7.14) with the regular decompositions provided in (4.6.3) and (4.6.13). In (4.7.14),
the bounded maps

−Tt
kLnkA>k R−1

D(A>k )
: R(Tt

k)→ Tt
k(W

+
k ) ⊂ R(Tt

k) (4.7.15)

and

Tt
k−1Vn

kA>k R−1
D(A>k )

: R(Tt
k)→ Tt

k−1(W+
k−1) ⊂ R(Tt

k−1) (4.7.16)

play the roles of lifting and potential operators. Compactness of these operators as mappings
R(Tt

k)→ (W̊n,+
k+1)◦ andR(Tt

k)→ (W̊n,+
k )◦ follows upon observing that under Assumption F, the

map
Tt
k : W+

k → (W̊n,+
k )◦ (4.7.17)

is a compact operator, because the product of two bounded linear operators between normed spaces
is compact if any one of the operand is [28, Thm. 2.16]. To confirm that (4.7.17) is compact, it is
sufficient to recall from Definition 4.1 that it is the operator associated with the compact bilinear
form (cf. [42, Chap. 3]){

W+
k ×W+

k+1→ R
(x,y) 7→ (Akx, ı

+
k+1y)Wk+1

− (ı+k x,A>k y)Wk

(4.7.18)

where we have introduced for clarity the compact inclusions supplied by Assumption F.
In the next theorem, the unbounded linear operators
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(Dt
k)
∗ : D

(
(Dt

k)
∗) ⊂ (W̊n,+

k+2)◦ → (W̊n,+
k+1)◦, (4.7.19a)

(Dn
k)∗ : D

(
(Dn

k)∗
)
⊂ (W̊t,+

k−1)◦ → (W̊t,+
k )◦, (4.7.19b)

are the Hilbert space adjoints of the closed densely defined unbounded operators

Dt
k : R(Tt

k) ⊂ (W̊n,+
k+1)◦ → (W̊n,+

k+2)◦ and Dn
k : R(Tn

k) ⊂ (W̊t,+
k )◦ → (W̊t,+

k−1)◦, (4.7.20)

respectively.

Theorem 4.10 Under assumptions D, E and F, the inclusions

R(Tt
k) ∩ D

(
(Dt

k−1)∗
)
↪→ (W̊t,+

k+1)◦ and R(Tn
k) ∩ D

(
(Dn

k+1)∗
)
↪→ (W̊n,+

k )◦ (4.7.21)

are compact.

Proof. We follow the arguments in the proof of Lemma 4.9. Let (φ`)`∈Z ⊂ R(Tt
k) ∩ D

(
(Dt

k)
∗) be

a bounded sequence inR(Tt
k) ∩ D

(
(Dt

k)
∗).

The goal is to find a subsequence (φ`ρ)ρ∈Z that is Cauchy in (W̊t,+
k+1)◦. Similarly to (4.7.12), we

use the stable decomposition in trace spaces (4.7.14):

φ` = ξ+
` + Dt

k−1ζ
+
` (4.7.22)

for all ` ∈ Z, where ξ+
` := −Tt

kLnkA>k R−1
D(A>k )φ` and ζ` := Tt

k−1Vn
kA>k R−1

D(A>k )φ`. Since the norm in
R(Tt

k) ∩ D
(
(Dt

k)
∗) is stronger than the norm in R(Tt

k), the sequence (φ`)`∈Z is bounded in the
norm of R(Tt

k). Hence, by compactness of the operators −Tt
kLnkA>k R−1

D(A>k )
: R(Tt

k) → (W̊t,+
k+1)◦

and Tt
k−1Vn

kA>k R−1
D(A>k )

: R(Tt
k)→ (W̊t,+

k )◦, there exist subsequences (ξ+
`ρ

)ρ∈Z and (ζ+
`ρ

)ρ∈Z that are
Cauchy in (W̊t,+

k+1)◦ and (W̊t,+
k )◦, respectively.

Now, we verify that (φ`ρ)ρ∈Z is indeed Cauchy in (W̊t,+
k+1)◦. We evaluate directly

‖φ`n − φ`n‖(W̊t,+
k+1)◦

= (ξ`n − ξ`n ,φ`n − φ`n)(W̊t,+
k+1)◦ +

(
Dt
k−1 (ζ`n − ζ`n) ,φ`n − φ`n

)
(W̊t,+

k+1)◦

≤ ‖ξ`n − ξ`n‖(W̊t,+
k+1)◦‖φ`n − φ`n‖(W̊t,+

k+1)◦ +
(
ζ`n − ζ`n , (Dt

k−1)∗ (φ`n − φ`n)
)

(W̊t,+
k )◦

,

from which we conclude that

‖φ`n − φ`n‖(W̊t,+
k+1)◦ ≤‖ξ`n − ξ`n‖(W̊t,+

k+1)◦︸ ︷︷ ︸
→0 asm,n→0

‖φ`n − φ`n‖(W̊t,+
k+1)◦

+ ‖ξ`n − ξ`n‖(W̊t,+
k )◦︸ ︷︷ ︸

→0 asm,n→0

‖(Dt
k−1)∗ (φ`n − φ`n) ‖(W̊t,+

k )◦ .

The desired result thus follows because ‖φ`n−φ`n‖(W̊t,+
k+1)◦ and ‖(Dt

k−1)∗ (φ`n − φ`n) ‖(Wt,+
k )◦ are

bounded by hypothesis. ut
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Corollary 4.7.1. Under assumptions D, E and F, the trace Hilbert complexes introduced in
Theorem 4.9 are Fredholm.

It is particularly interesting thatwhile only one decompositionwas sufficient to obtain Lemma4.9,
we needed both decompositions (assumptions B and C) to achieve a proof of the compactness
property for the trace Hilbert complex: one for the space characterization and the other for the
decomposition formula itself. The question whether it is necessary to have both remains open.

3D de Rham setting XVI: Trace de Rham complexes

Trace Hilbert complexes for the de Rham complex in 3D arise from the results of XV:

{0} {0}

D(curl′) ⊂ H̃−1(Ω) ∩ H̊(div, Ω)◦ D(curl′) ⊂
(
H1(Ω)/H1

n(Ω)
)′

D(grad′) ⊂ H̃−1(Ω) ∩ H̊(curl, Ω)◦ D(grad′) ⊂
(
H1(Ω)/H1

t (Ω)
)′

H̃−1(Ω) ∩ H̊1(Ω)◦
(
H1(Ω)/H̊1(Ω)

)′

{0} {0}

ı ı

curl′ curl′

grad′ grad′

0 0

(4.7.23)

In light of the de Rham setting XV, they correspond to

{0} H1/2(Γ ) ⊂ H−1/2(Γ ) H−1/2(curlΓ , Γ ) ⊂ H
−1/2
t H−1/2(Γ ) {0}ı curlΓ curlΓ 0

(4.7.24)
or its rotated version.

Since by Rellich’s lemma the embeddings H1(Ω) ↪→ L2(Ω) and H1(Ω) ↪→ L2(Ω) are
compact, the de Rham complexes in (4.1.4) satisfy Assumption F with the regular decom-
positions presented in the de Rham setting XII. Therefore, the associated trace de Rham
complexes are Fredholm. As a consequence, their cohomology spaces are finite-dimensional.

4.8 Conclusion

Aswe have demonstrated in the present article, it takes only a pair of Hilbert complexes linked by the
sub-complex relationship of their domain complexes to recover essential aspects of the structures
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inherent in the trace operators and trace spaces for the de Rham complex. Relying on notions of
trace spaces as dual spaces or quotient spaces, we could establish detailed characterizations merely
assuming the existence of stable regular decompositions induced by bounded lifting operators.
These developments culminated in the discovery of associated trace Hilbert complexes, which are
Fredholm under the mild additional assumption that the lifting operators are compact.

Hilbert complexes have recently moved into the focus of applied mathematicians, since they
underlie a host of PDE-based mathematical models in areas as diverse as linear elasticity, gravity,
and fluid dynamics. The related complexes are known as the elasticity complex, [8, Sect. 11]
and [38], conformal complex, or Stokes complex [10, Sect. 4.4]. These and many more complexes
[36,37] arise from the de Rham complex through the powerful Bernstein-Gelfand-Gelfand (BGG)
construction, as has been shown in [10]. Most likely, many more Hilbert complexes relevant for
mathematical modeling still await discovery.

This backdrop lends relevance to our present work. Once the Hilbert complex structure is
established, trace operators and trace spaces become available, which can serve as stepping stones
towards the study of boundary value problems and the development of integral representations.
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Chapter 5
Boundary Integral Exterior Calculus

Erick Schulz, Ralf Hiptmair and Stefan Kurz

AbstractWe develop first-kind boundary integral equations for Hodge–Dirac and Hodge–Laplace
operators associated with de Rham Hilbert complexes on compact Riemannian manifolds and in
Euclidean space. We show that from a variational perspective, the first-kind boundary integral
operators associated with Hodge–Dirac and Hodge–Laplace boundary value problems posed on
submanifolds with Lipschitz boundaries are Hodge–Dirac and Hodge–Laplace operators as well,
this time spawned by trace de Rham Hilbert complexes on the boundary whose spaces are equipped
with non-local inner products defined through boundary potentials. The correspondence is to some
extent structure-preserving in the sense that zero-order perturbations are also formally reproduced
at the level of integral equations.

5.1 Introduction

LetM be either a smooth orientable compact RiemannianN -dimensional manifold without bound-
ary or Euclidean space RN , cf. [1, Chap. 3 and 7] and [19, Chap. 6]. Assume that Ω = Ω− ⊂ M
is a submanifold of the same dimension with a compatibly oriented Lipschitz boundary Γ := ∂Ω,
cf. [23, Chap. 3], [24, sect. 2], [27, App. 1], [38, sect. 1] and [40, sect. 1]. Define Ω+ =M\IntΩ
and write ı∓Γ : Γ → Ω∓ for the inclusion maps. IfM = RN , we suppose for simplicity that Ω is
bounded to avoid explicitly handling the necessary complications introduced by the need for decay
or radiation conditions at infinity, cf. [11, sect. 3.3], [14], [23, Chap. 7] and [33, sect. 4.4].

5.1.1 Overview

Our goal is to understand the structural properties of first-kind boundary integral operators (BIOs)
associated with boundary value problems (BVPs) for the Hodge–Dirac and Hodge–Laplace opera-
tors

D = d + δ and −∆` = d`−1δ` + δ`+1d`, 0 ≤ ` ≤ N,

cf. [11, 13, 23, 31] and [33]. We will find that the obtained first-kind BIOs are Hodge–Dirac and
Hodge–Laplace operators themselves, but associated with trace de Rham complexes whose spaces
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are equipped with non-local inner products defined through boundary potentials. This discovery
reveals the importance of the trace de Rham complex to study related BVPs in general.

An unavoidable difficulty arises at the outset of our program. In Euclidean space, both the Hodge–
Dirac operator and theHodge–Laplacian admit two-sided inverses in the sense of distributions when
suitable decay conditions are imposed. However, there are topological obstructions on compact
manifolds that may prevent the existence of fundamental solutions. To recover their existence, we
regularize the Hodge–Dirac and Hodge–Laplace operators by adding zero-order terms when they
have non-trivial kernels onM. Our main intent being to display the structure-preserving power
of first-kind boundary integral equations (BIEs), it will be sufficient motivation to focus on the
simplest type of perturbation.

In that regard, the simplest option is to work with modified Hodge–Dirac and Hodge–Yukawa
operators of the form

D + iκ, κ ∈ R\{0}, and −∆` + λ, λ > 0,

which are related by the identity

(D− iκ) (D + iκ) = −∆+ κ2. (5.1.1)

5.1.2 Related work

We draw on the previous article by Schulz and Hiptmair, presented in Chapter 3, in which the
correspondence between domain and boundary Hodge–Dirac operators was initially discovered
[33]. Inspired by [11] and [12], where first-kind boundary integral equations for Hodge–Helmholtz
operators were studied, only three-dimensional Euclidean space M = R3 is studied in [33].
The investigation was solely based on classical vector calculus. The idea was to emphasize that
although the Hodge–Dirac operator is only first-order, there is a close formal relationship between
our arguments and the well-known theory of first-kind boundary integral equations for second-
order elliptic operators in Euclidean space. Our goal now is to generalize these results to arbitrary
dimensions by translating [11] and [33] into the language of differential forms. In doing so, the theory
naturally extends to Riemannian manifolds and hidden structures behind the integral equations are
revealed.

We owe to a rich literature on boundary integral equations formulated in the framework of
Grassmann algebras. Most notably, D. Mitrea, I. Mitrea, M. Mitrea and Taylor extensively studied
second-kind boundary integral equations related to the Hodge–Laplacian on compact manifolds
[25, 27]. Auchmann and Kurz also used exterior algebra to study boundary integral equations for
Maxwell-type problems [20].

The important results of D. Mitrea, M. Mitrea, Shaw [26] and Weck [40] on the existence
and properties of surjective trace operators for the relevant spaces of differential forms allow the
development of boundary integral exterior calculus on boundaries of mere Lipschitz regularity.
Abstract trace complexes are also studied in [18], where an alternative proof than that given in [26]
is provided for the compactness property of the trace de Rham complex.
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5.1.3 Exterior Calculus

Subspaces of the space of differential forms of order ` onM characterized by coefficient-based
regularity properties will be denoted by L∞Λ`(M), L2Λ`(M), HsΛ`(M) and so forth, cf. [26]
and [40]. Similar notation is used for submanifolds. Following [16, Chap. 3], we will shorthand
E `(M) = C∞Λ`(M) and D`(M) = C∞0 Λ

`(M) for spaces of test functions. Their topological
duals will be written D′`(M) and E ′`(M). Primes always refer to dual spaces or dual maps, e.g.
H−1Λ`(Ω) = (H1

0Λ
`(Ω))′. We write in a bold font, e.g.U = (U`)`, the elements of full Grassman

algebras such as L2Λ(M) = ⊕` L2Λ`(M). For convenience, we let ` ∈ Z run over all integers, but
identify forms of rank ` < 0 and ` > n with zero.
The Hodge star ?` : L2Λ`(M)→ L2ΛN−`(M) is induced by the Riemannian metric onM. The

symmetric pairing

〈U`, V`〉Ω =

∫
Ω

U` ∧ ?`V`, ∀U`, V` ∈ L2Λ`(Ω), (5.1.2)

is distinguished from the Hermitian inner product (U`, V`)Ω = 〈U`, V`〉Ω, where the overline
indicates complex conjugation of the coefficients.

The codifferential δ`+1 = (−1)`+1 ?−1
` dN−`−1 ?`+1 is formally adjoint to the exterior derivative.

We adopt the view that d` : L2Λ`(Ω) → L2Λ`+1(Ω) and δ`+1 : L2Λ`+1(Ω) → L2Λ`(Ω) are the
closed densely defined unbounded linear operators giving rise to the Fredholm Hilbert cochain and
chain complexes

...
d`−1−−→ HΛ`(d, Ω)

d`−→ HΛ`+1(d, Ω)
d`+1−−→ ... (5.1.3a)

and
...←−−

δ`−1

HΛ`−1(δ, Ω)←−
δ`
HΛ`(δ, Ω)←−−

δ`+1

... (5.1.3b)

satisfying the compactness property, cf. [2, Chap. 4 and 6], [4], [24] and [30].
The corresponding diffuse Fredholm–nilpotent operators d : L2Λ(Ω) → L2Λ(Ω) and δ :

L2Λ(Ω)→ L2Λ(Ω) are formally adjoint under the Hermitian inner product (U ,V )Ω = 〈U ,V 〉Ω
defined through the symmetric pairing

〈U ,V 〉Ω =
∑
`

〈U`, V`〉Ω, ∀U ,V ∈ L2Λ(Ω),

cf. [21, sect. 3 and 5] and [5, sect. 3]. As operator matrices acting on vectors of differential forms
of the form U = (U0, ..., UN)>, the full exterior derivative and codifferential read

d =


0 0 0 . . . 0
d0 0 0 . . . 0
0 d1 0 . . . 0
...
. . .

. . .
. . .

...
0 0 0 dN−1 0

 and δ =



0 δ1 0 . . . 0

0 0 δ2

. . . 0

0 0 0
. . . 0

...
...
...
. . . δN

0 0 0 0 0


. (5.1.4)

Similarly, the full Hodge star is represented by
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? =



?0

0 ?1

. .
.

?N−1 0
?N


. (5.1.5)

We find it convenient to write the duality pairings that extend symmetric L2-type pairings of the
form (5.1.2) using double angular brackets, e.g. ⟪·, ·⟫M.

For later use, we define the Sobolev spaces of `-forms

HΛ`(dδ, Ω) =
{
U` ∈ HΛ`(δ, Ω)

∣∣ δ`U` ∈ HΛ`−1(d, Ω)
}
,

HΛ`(δd, Ω) =
{
U` ∈ HΛ`(d, Ω)

∣∣ d`U` ∈ HΛ`+1(δ, Ω)
}
,

HΛ`(∆,Ω) = HΛ`(dδ, Ω) ∩HΛ`(δd, Ω),

XΛ`(Ω) = HΛ`(d, Ω) ∩HΛ`(δ, Ω),

equipped with graph inner products.
Because ⊕`XΛ`(Ω) will be the domain of the Hodge–Dirac operator, we introduce the notation

HΛ(D, Ω) = HΛ(d, Ω) ∩HΛ(δ, Ω)

for that space of full forms.

5.1.4 Trace spaces

We will impose boundary conditions via trace operators. We briefly review their definition and
mapping properties, cf. [9, 18, 26, 40]. In accordance with standard practice, we repurpose the
notation from Subsection 5.1.3 for operators on the boundary, but point out that the indices must
account for the change in dimension when passing to a submanifold. In particular, notice that
the Hodge star associated with the induced metric on the boundary is a continuous mapping
?` : L2Λ`(Γ )→ L2ΛN−`−1(Γ ), cf. [26, 40].

5.1.4.1 Traces of differential forms

Relevant traces for HlocΛ
`(d, Ω∓) and HlocΛ

`(δ, Ω∓) are obtained by extending the pullback and
“rotated” pullback of differential forms, also called tangential and normal traces. They are defined
for all smooth forms U` ∈ D`(M) by

t∓` U` = ı∗∓U` and n∓` U` = ?−1
`−1 ı

∗
∓ ?` U`. (5.1.6)

Adopting the notation of [20], we define the dual spaces

H
− 1

2

‖ Λ`(Γ ) := (H
1
2

‖ Λ
`(Γ ))′ and H

− 1
2

⊥ Λ`(Γ ) := (H
1
2
⊥Λ

`(Γ ))′,
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where the regular trace spaces are given by

H
1
2

‖ Λ
`(Γ ) := t∓` H

1Λ`(Ω∓) and H
1
2
⊥Λ

`(Γ ) = n∓` H
1Λ`+1(Ω∓).

They generalize the well-known space of Dirichlet traces H 1
2Λ0(Γ ).

On the boundary, we view the exterior derivative and the codifferential as the closed densely
defined unbounded linear operators d` : H

− 1
2

⊥ Λ`(Γ ) −→ H
− 1

2
⊥ Λ`+1(Γ ) and δ` : H

− 1
2

‖ Λ`(Γ ) −→

H
− 1

2

‖ Λ`−1(Γ ) giving rise to the Fredholm Hilbert complexes

...
d`−1−−→ H

− 1
2

⊥ Λ`−1(d, Γ )
d`−→ H

− 1
2

⊥ Λ`(d, Γ )
d`+1−−→ ... (5.1.7a)

and
...←−−

δ`−1

H
− 1

2

‖ Λ`−1(δ, Γ )←−
δ`
H
− 1

2

‖ Λ`(δ, Γ )←−−
δ`+1

... (5.1.7b)

associated with the domain complexes (5.1.3a) and (5.1.3b), cf. Chapter 4 and [18, 26, 40].
It is the content of the trace theorems studied in Chapter 4 and [9, 18, 26, 40] that the operators

t∓` : H1Λ`loc(M) −→ H
1
2

‖ Λ
`(Γ ) and n∓` : H1Λ`loc(M) −→ H

1
2
⊥Λ

`−1(Γ ) (5.1.8)

extend to continuous and surjective mappings

t∓` : HlocΛ
`(d, Ω∓) −→ H

− 1
2

⊥ Λ`(d, Γ )

n∓` : HlocΛ
`(δ, Ω∓) −→ H

− 1
2

‖ Λ`−1(δ, Γ )
(5.1.9)

such that the integration by parts formula

〈d` U`, V`+1〉Ω∓ = 〈U`, δ`+1 V`+1〉Ω∓ ± ⟪t∓` U`, n
∓
`+1V`+1⟫Γ (5.1.10)

holds for all U` ∈ HΛ`(d, Ω∓) and V`+1 ∈ HΛ`+1(δ, Ω∓).
On the right-hand side of (5.1.10), the duality pairing on the boundary extends the L2Λ`(Γ )-

pairing. That is, it puts H−
1
2

⊥ Λ`(d, Γ ) in duality with H−
1
2

‖ Λ`−1(δ, Γ ) using L2Λ`(Γ ) as a pivot
space.

In a similar notation to [2, Thm. 6.5],
◦
HΛ`(d, Ω) = D(Ω)

HΛ`(d,Ω)
= ker t` ∩HΛ`(d, Ω)

◦
HΛ`(δ, Ω) = D(Ω)

HΛ`(δ,Ω)
= ker n` ∩HΛ`(δ, Ω).

Despite Γ being merely Lipschitz regular, the usual commutative relations

t∓` ◦ d` = d` ◦ t∓` and n∓`−1 ◦ δ` = −δ`−1 ◦ n∓` , (5.1.11)

also hold at the level of trace spaces. In particular, the second identity can be obtained from the
first:

n`−1δ` = ?−1
`−2ı

∗ ?`−1

(
(−1)` ?−1

`−1 dN−`?`

)
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= −(−1)`−1 ?`−2 dN−` ı
∗?`

= −
(

(−1)`−1 ?`−2 dN−`?`−1

)
?−1
`−1 ı

∗?` = −δ`−1 ◦ n∓` .

We use a bold font to denote traces acting on the full algebra of forms, i.e.

t∓U = ı∗∓U and n∓V = ?−1 t∓ ? V . (5.1.12)

Then, applying the integration by parts formula (5.1.10) order-wise yields

〈dU ,V 〉Ω∓ = 〈U , δ V 〉Ω∓ ± ⟪t∓U ,n∓V ⟫Γ (5.1.13)

for all U ∈ HΛ(d, Ω) and V ∈ HΛ(δ, Ω).

5.1.4.2 Lifting maps

The purpose of this section is twofold. Firstly, it is immediate by surjectivity that the traces in
(5.1.9) admit continuous right inverses into HΛ`(d, Ω) and HΛ`(δ, Ω), respectively. We want to
show in particular that these right inverses can be designed to lift the boundary data into the more
regular space HΛ`(∆,Ω). Secondly, we also build lifting maps for the continuous traces

t∓`−1 ◦ δ` : HΛ`(dδ, Ω)→ H
− 1

2
⊥ Λ`−1(d, Γ ),

n∓`+1 ◦ d` : HΛ`(δd, Ω)→ H
− 1

2

‖ Λ`(δ, Γ ),

that will be used to impose boundary conditions for the Hodge–Laplacian.
With the next two lemmas, we generalize to differential forms the results of [11, Sec. 2.5].

Lemma 5.1 There exist continuous operators E t` : H
− 1

2
⊥ Λ`(d, Γ ) → HΛ`(∆,Ω) and En` :

H
− 1

2

‖ Λ`−1(δ, Γ )→ HΛ`(∆,Ω) such that

t` E t` g` = g` and n` En` h`−1 = h`−1

for all g` ∈ H
− 1

2
⊥ Λ`(d, Γ ) and h`−1 ∈ H

− 1
2

‖ Λ`−1(δ, Γ ).

Proof. Given g` ∈ H
− 1

2
⊥ Λ`(d, Γ ), let E t`(g`) be the unique element in HΛ(d, Ω) defined by

E t`(g`) = arg minV`∈HΛ`(d,Ω),
t`V`=g`

‖V`‖HΛ`(d,Ω).

This minimization problem is equivalent to satisfying the Euler equations

〈d` E t`(g`), d` V`〉Ω + 〈E t`(g`), V`〉Ω = 0

for all V` ∈
◦
HΛ`(d, Ω). Testing with suitable choices of test functions shows that E t` :

H
− 1

2
⊥ Λ`(d, Γ )→ HΛ`(d, Ω) is a continuous operator satisfying the equations
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δ`+1d` E t`g` + E t`g` = 0 in Ω, , (5.1.14a)
t`E t`g` = g` on Γ. (5.1.14b)

In particular, (5.1.14a) not only reveals that E t`g` ∈ HΛ`(δd, Ω), but also that δ` E t`g` = 0 in Ω. We
conclude that E t` exhibits the claimed regularity and (5.1.14b) confirms that the defined map is a
right-inverse for the tangential trace.

ThemapEn` can be defined similarly using aminimization problem involving the normal trace. ut

Lemma 5.2 There exist continuous operators Rt
` : H

− 1
2

⊥ Λ`−1(d, Γ ) → HΛ`(∆,Ω) and Rn
` :

H
− 1

2

‖ Λ`(δ, Γ )→ HΛ`(∆,Ω) such that

t`−1δ`Rt
` g`−1 = g`−1 and n`+1d`Rn

` h` = h`

for all g`−1 ∈ H
− 1

2
⊥ Λ`−1(d, Γ ) and h` ∈ H

− 1
2

‖ Λ`(δ, Γ ).

Proof. Given boundary data h` ∈ H
− 1

2

‖ Λ`(δ, Γ ), we define Rn
` (h`) as the unique element of

HΛ`(d, Ω) such that

〈d`Rn
` (h`), d` V`〉Ω + 〈Rt

`(h`), V`〉Ω = ⟪h`, t`V`⟫Γ
for all V` ∈ HΛ`(d, Ω). Lax-Milgram lemma guarantees thatRn

` is well-defined and continuous as
a mapRn

` : H
− 1

2

‖ Λ`(δ, Γ )→ HΛ`(d, Ω).
Routine verification using suitable test functions and the integration by parts formula (5.1.10)

shows that it satisfies the equations

δ`+1d`Rn
` (h`) +Rn

` (h`) = 0 in Ω, (5.1.15a)
n`+1d`Rn

` h` = h` on Γ. (5.1.15b)

Similarly as in the proof of Lemma 5.1, we obtain from (5.1.15a) that Rn
` (h`) ∈ HΛ`(δd, Ω) and

δ`Rt
`h` = 0 in Ω, i.e. Rt

`h` ∈ HΛ`(∆,Ω). Then, (5.1.15b) confirms that Rt
` is a right-inverse for

the trace n`+1d`.
The analogous result for t`−1δ` is obtained similarly by defining Rt

`(h`) using the graph inner
product on HΛ`(δ, Ω). ut

Before moving on, we want to verify that the lifting operators from Lemma 5.1 and Lemma 5.2
can be used to construct right-inverses for the compound traces of the Hodge–Laplacian.

Recalling Subsection 5.1.4, the traces defined for all U` ∈ D`(M) by

Tt
∆ U` =

(
t`−1δ`U`

t`U`

)
and Tn

∆ U` =

(
n`U`

n`+1d`U`

)
(5.1.16)

are continuous as mappings

Tt
∆ : HΛ`(dδ, Ω) ∩HΛ`(d, Ω) −→ H t

∆(Γ ),

Tn
∆ : HΛ`(δ, Ω) ∩HΛ`(δd, Ω) −→ Hn

∆(Γ ),
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where the product of trace spaces are given by

H t
∆(Γ ) = H

− 1
2

⊥ Λ`−1(d, Γ )×H−
1
2

⊥ Λ`(d, Γ ),

Hn
∆(Γ ) = H

− 1
2

‖ Λ`−1(δ, Γ )×H−
1
2

‖ Λ`(δ, Γ ).

We want to show that their restriction to HΛ`(∆,Ω) are surjective and admit continuous lifting
operators.

Lemma 5.3 There exist continuous operators Lt
` : H t

∆(Γ ) → HΛ`(∆,Ω) and Ln
` : Hn

∆(Γ ) →
HΛ`(∆,Ω) such that

Tt
∆ Lt

(
g`−1

g`

)
=

(
g`−1

g`

)
and Tn

∆ Ln
`

(
h`−1

h`

)
=

(
h`−1

h`

)

for all (g`−1, g`)
> ∈ H t

∆(Γ ) and (h`−1, h`)
> ∈ Hn

∆(Γ ).

Proof. We prove the result for Tn
∆. The proof is similar for Tt

∆. The trick is to define the lifting for
all (h`−1, h`)

> ∈ Hn
∆(Γ ) by

Ln
`

(
h`−1

h`

)
= En` h`−1 +Rn

`h` − d`−1Rn
`−1(n`Rn

`h`).

The first two terms are immediately seen to belong inHΛ`(∆,Ω) thanks to the mapping results of
Lemma 5.1 and Lemma 5.2. To confirm that the third term also displays the same regularity, we
dig deeper into the proof of Lemma 5.2 and simply recall (5.1.15a).

By construction, d` ◦ En` = 0. Indeed, the analogous result for the tangential trace in the proof
of Lemma 5.1 was that δ` ◦ E t = 0. Hence, using the established properties of the lifting operators
and the fact that d2 = 0, we compute

Tn
∆Ln

`

(
h`−1

h`

)
=

(
n`En` h`−1 + n`Rn

`h` − n`d`−1Rn
`−1(n`Rn

`h`)
n`+1d`En` h`−1 + n`+1d`Rn

`h` − n`+1d`d`−1Rn
`−1(n`Rn

`h`)

)

=

(
h`−1 + n`Rn

`h` − n`Rn
`h`

n`+1d`Rn
`h`

)
=

(
h`−1

h`

)
,

which shows that Ln
` is a right-inverse for Tn

∆. ut

5.2 Boundary value problems

In this section, we formulate the BVPs of interest in this article. We begin with the Hodge–Dirac
operator before moving on to the Hodge–Laplacian. In Subsection 5.2.1.1, readers might notice
that because the Hodge star operators

?` : XΛ`(Ω)→ XΛN−`(Ω) and ?` : H
− 1

2
⊥ Λ`(d, Γ )→ H

− 1
2

‖ ΛN−1−`(δ, Γ )
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are isometric isomorphisms [40, Lem. 5], the two boundary value problems stated for the Hodge–
Dirac operator are, at the abstract level of Hilbert complexes, equivalent in terms of solvability. One
corresponds to the Hodge–Dirac operator associated with the cochain complex (5.1.3a), while the
other corresponds to the Hodge–Dirac operator associated with the chain complex (5.1.3b). Each
of these problems can be turned into the other, cf. [11, Rmk. 3.3] and [33, Rmk. 5.1]. A similar
observation can be made for the two BVPs involving the Hodge–Laplacian that will be presented in
Subsection 5.2.2.1. The reason we insist on formulating each of them explicitly and independently
is to highlight the formal difference in the expressions of the self-adjoint operators behind them.
It turns out that it is those expressions that we will recognize in the formulas of the associated
first-kind BIOs.

5.2.1 Hodge–Dirac operators

We take HΛ(D, Ω) to be the domain of the Hodge–Dirac operator

D = δ + d : HΛ(D, Ω)→ L2Λ(Ω) (5.2.1)

on which we want to impose boundary conditions.

5.2.1.1 BVPs for Hodge–Dirac operators

In light of Subsection 5.1.4, the duality between the trace spacesH−
1
2

⊥ Λ(d, Γ ) andH−
1
2

‖ Λ(δ, Γ ) in-
volved in the integration by parts formula (5.1.13) points towards two types of boundary conditions.
For κ ∈ R, we consider the BVPs

U ∈ HΛ(D, Ω) :

{
(D + iκ)U = 0 in Ω

tU = g on ∂Ω , g ∈ H−
1
2

⊥ Λ(d, Γ ), (5.2.2a)

and

U ∈ HΛ(D, Ω) :

{
(D + iκ)U = 0 in Ω

nU = h on ∂Ω , h ∈ H−
1
2

‖ Λ(δ, Γ ). (5.2.2b)

The self-adjoint operators underlying (5.2.2a) and (5.2.2b) are

Dt = δ + δ∗ : HΛ(δ, Ω) ∩
◦
HΛ(d, Ω)→ L2Λ(Ω), (5.2.3a)

Dn = d + d∗ :
◦
HΛ(δ, Ω) ∩HΛ(d, Ω)→ L2Λ(Ω), (5.2.3b)

respectively. These are the Hodge–Dirac operators associated with the nilpotent operators δ and d
arising from the Hilbert complexes (5.1.3a) and (5.1.3b), respectively; cf. [21, Sec. 2], [33, Sec. 3].

We notice that the null-spaces

Ht = ker(Dt) =
{
U ∈ HΛ(D, Ω) : dU = 0, δU = 0, tU = 0

}
, (5.2.4a)
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Hn = ker(Dn) =
{
U ∈ HΛ(D, Ω) : dU = 0, δU = 0, nU = 0

}
, (5.2.4b)

are direct sums of harmonic spaces of all orders, cf. [2], [21, sect. 2], [33, sect. 3] and [38, Prop.
5.1]. In particular, whenM = RN and κ = 0, the Hodge–Dirac operators have non-trivial finite
dimensional kernels. Nevertheless, the BVPs (5.2.2a) and (5.2.2b) are well-posed on the orthogonal
complements of ker(Dt) and ker(Dn) if we impose the following compatibility conditions on the
boundary data:

〈g,nV 〉Γ = 0 ∀V ∈ ker(Dt), (5.2.5a)
〈h, tV 〉Γ = 0 ∀V ∈ ker(Dn), (5.2.5b)

respectively, cf. [21] and [33].
Otherwise, if κ 6= 0, recall that the inclusion map spawns compact embeddings dom(Dt) ↪→

L2Λ(Ω) and dom(Dn) ↪→ L2Λ(Ω), and so Dt + iκ and Dn + iκ are Fredholm operators of
index zero [18, Lem. 7.2], [30, Lem. 4.1]. Because Lemma 5.1 offers continuous lifting maps
from the trace spaces to the domain of the Hodge–Dirac operator HΛ(D, Ω), well-posedness of
the boundary value problems (5.2.2a) and (5.2.2b) thus follow by injectivity, which is evidently
guaranteed because the zero-order perturbations are purely imaginary.

5.2.1.2 Variational formulations for Hodge–Dirac BVPs

As discussed in [33, Sec. 3], a key feature of the Hodge–Dirac operator is that it admits the two
distinct fundamental symmetric bilinear forms

Aδ(U ,V ) := 〈δU ,V 〉Ω + 〈U , δV 〉Ω, ∀U ,V ∈ HΛ(δ, Ω) (5.2.6a)
Ad(U ,V ) := 〈dU ,V 〉Ω + 〈U ,dV 〉Ω, ∀U ,V ∈ HΛ(d, Ω), (5.2.6b)

that rest on an equal footing. They arise in first-order analogs of Green’s identities

〈DU ,V 〉Ω = Aδ(U ,V ) + ⟪tU ,nV ⟫Γ , (5.2.7a)
〈DU ,V 〉Ω = Ad(U ,V )− ⟪nU , tV ⟫Γ , (5.2.7b)

which hold for all U ,V ∈ HΛ(D, Ω). They lead to two variational problems associated with
(5.2.2a) and (5.2.2b), respectively:

U ∈ HΛ(δ, Ω) : Aδ(U ,V ) + iκ〈U ,V 〉Ω = −⟪g,nV ⟫Γ , ∀V ∈ HΛ(δ, Ω), (5.2.8a)
U ∈ HΛ(d, Ω) : Ad(U ,V ) + iκ〈U ,V 〉Ω = ⟪h, tV ⟫Γ , ∀V ∈ HΛ(d, Ω). (5.2.8b)

It is a simple exercise in integration by parts to verify using suitable test functions that the
variational problems (5.2.8a) and (5.2.8b) are equivalent with the strong formulations (5.2.2a) and
(5.2.2b), respectively. Nevertheless, the analysis of the Hodge–Dirac operator is not as common as
that of the Hodge–Laplacian. Because of the importance of inf-sup inequalities for the analysis of
Galerkin discretization, we thus findmeaningful to also cover solvability of the variational problems
directly without assuming prior knowledge of the Hodge–Dirac operator’s properties and take the
opportunity to point at important references.
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If κ = 0, solvability of the variational problems (5.2.8a) and (5.2.8b) is covered by the theory
for the abstract Hodge–Dirac operator provided in [21, Sec. 2]. Specifically, the bilinear forms
associated with each of the variational problems

Aδ(U ,V ) + 〈P ,V 〉Ω = −⟪g,nV ⟫Γ , ∀V ∈ HΛ(δ, Ω),

〈U ,W 〉Ω = 0 ∀W ∈ Ht,
(5.2.9a)

and

Ad(U ,V ) + 〈Q,V 〉Ω = ⟪h,nV ⟫Γ , ∀V ∈ HΛ(d, Ω),

〈U ,W 〉Ω = 0 ∀W ∈ Hn,
(5.2.9b)

satisfy inf-sup inequalities [21, Thm. 6]. The compatibility conditions (5.2.5b) and (5.2.5a) ensure
compatibility of the right-hand sides and thus well-posedness.

We now show that when κ 6= 0, generalized Gårding inequalities hold for the bilinear forms
associated with the variational problems (5.2.8a) and (5.2.8b), cf. [10, Thm. 4], [7, Chap. 11.4].

Lemma 5.4 Let κ 6= 0. The bilinear forms associated with the variational problems (5.2.8a) and
(5.2.8b) are T-coercive. In other words, there exist positive constants Ct, Cn > 0, isomorphisms
Ξt : HΛ(δ, Ω) → HΛ(δ, Ω) and Ξn : HΛ(d, Ω) → HΛ(d, Ω), and compact operators Kt :
HΛ(δ, Ω)→ HΛ(δ, Ω) and Kn : HΛ(d, Ω)→ HΛ(d, Ω), such that

‖U‖2
HΛ(d,Ω) ≤ Cn

∣∣∣Ad(U , ΞnU) + iκ〈U , ΞnU〉Ω + 〈KnU ,U〉Ω
∣∣∣ (5.2.10a)

‖V ‖2
HΛ(δ,Ω) ≤ Cn

∣∣∣Aδ(V , ΞtV ) + iκ〈U , ΞtV 〉Ω + 〈KtV ,V 〉Ω
∣∣∣ (5.2.10b)

for all U ∈ HΛ(d, Ω) and V ∈ HΛ(δ, Ω).

Proof. By duality, it is sufficient to focus on (5.2.10a). The isomorphism Ξn is designed based on
the L2Λ(Ω)-orthogonal Hodge decomposition

HΛ(d, Ω) = B⊕ Hn ⊕ Z⊥, (5.2.11)

where B = range(d) and Z = ker(d). The intent is to exploit that the identity map spawns
compact embeddings Z⊥ ↪→ L2Λ(Ω) and Hn ↪→ L2Λ(Ω), cf. [3], [4], [29, Sec. 2], [30]. According
to (5.2.11), any element U ∈ HΛ(d, Ω) can be uniquely written as U = UB +UHn +UZ⊥ .
Recall that dZ⊥ = d

∣∣
Z⊥

: Z⊥ → B is a bounded isomorphism, because d has closed range
(Fredholm property). Therefore, it has a continuous inverse d−1

Z⊥
: B → Z⊥. We define Ξn :

HΛ(d, Ω)→ HΛ(d, Ω) by

ΞnU = αdUZ⊥ − iκαUB +UHn + d−1
Z⊥UB, (5.2.12)

where 0 < α < 1/κ2. It is easy to see that Ξn is bounded.
We claim that Ξn is injective. Indeed, if we suppose that ΞnU = 0, then by orthogonality
‖UHn‖ = ‖d−1

Z⊥UB‖ = 0, and thus UB = UHn = 0. We are left with the identity 0 = dUZ⊥ =
dZ⊥UZ⊥ , from which once again UZ⊥ = 0.
To see that Ξn is surjective, we simply verify that
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Ξn

(
dUZ⊥ +UHn + α−1d−1

Z⊥UB + iκUZ⊥

)
= αd

(
α−1d−1

Z⊥UB + iκUZ⊥

)
− iκαdUZ⊥ +UHn + d−1dUZ⊥

= dd−1
Z⊥UB +UHn +UZ⊥ = UB +UHn +UZ⊥ = U .

Now, let us indicate by a hat inequalities and identities that hold up to compact perturbation, e.g.
=̂ and ≥̂. Due to orthogonality, we find that

〈dU , ΞnU〉Ω = α ‖dUZ⊥‖2 + iκα
(
dUZ⊥ ,UB

)
Ω
, (5.2.13a)

〈UB,dΞnU〉Ω = ‖UB‖2, (5.2.13b)
iκ〈U , ΞnU〉Ω =̂− κ2α‖UB‖2 + iκα

(
UB,dUZ⊥

)
Ω
, (5.2.13c)

where compact terms involvingUZ⊥ andUHn were dropped. Summing the contributions of (5.2.13a)
to (5.2.13c), we obtain

Ad(U , ΞnU ) + iκ〈U , ΞnU〉Ω =̂ α ‖dUZ⊥‖2 + (1− κ2α)‖UB‖2 + iκα(ν + ν),

where ν = (UB,dUZ⊥)Ω. Since the initial choice of parameter α guarantees that 1− κ2α > 0 and
the last term is purely imaginary, we conclude that∣∣∣Ad(U , ΞnU) + iκ〈U , ΞnU〉Ω

∣∣∣ ≥̂ C
(
‖dUZ⊥‖2 + ‖UB‖2

)
for C = min{α, 1− κ2α}, which concludes the proof. ut

Corollary 5.1 The variational problems (5.2.8a) and (5.2.8b) are well-posed.

Proof. Based on Lemma 5.4, the operators associated with the variational problems (5.2.8a) and
(5.2.8b) are Fredholm of index 0. We thus only need to show that they are injective. We focus on
(5.2.8b).

Suppose that U ∈ HΛ(d, Ω) is such that

Ad(U ,V ) + iκ〈U ,V 〉Ω = 0

for all V ∈ HΛ(d, Ω). Testing with V = U , we find that

iκ‖U‖2
Ω + ω + ω = 0,

where ω = (dU ,U)Ω. As in the proof of Lemma 5.4, ω + ω is a real number, so ‖U‖2
Ω = 0, from

which we conclude that U = 0. ut

The ability to introduce two distinct bilinear forms associated with (5.2.2a) and (5.2.2b) for the
Hodge–Dirac operator is crucially rooted in the fact that both the cochain and chain perspective of
the de Rham complex can be adopted in formulating BVPs for the Hodge–Dirac operator. Notably,
it points to the symmetry between the BVPs (5.2.2a) and (5.2.2b) as discussed in the introduction of
Subsection 5.2.1 and emphasizes for κ = 0 the necessity of imposing the compatibility conditions
(5.2.5a) and (5.2.5b) on the boundary data. For example, we could alternatively formulate (5.2.2a)
as the variational problem of finding a full form U ∈ HΛ(d, Ω) with tU = g such that
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Ad(U ,V ) + iκ〈U ,V 〉Ω = 0, ∀V ∈
◦
HΛ`(d, Ω). (5.2.14)

Recall that in a formulation such as (5.2.14), we lift the boundary data and solve

W ∈
◦
HΛ(d, Ω) : Ad(W ,V ) + iκ〈W ,V 〉Ω = Fg(V ), ∀V ∈

◦
HΛ(d, Ω),

where Fg(V ) = −Ad(E tg,V )− iκ〈E tg,V 〉Ω. This is the mainstream perspective adopted in the
literature of finite element exterior calculus. We depart from this standard because, as opposed to
Dt and Dn in (5.2.3a) and (5.2.3b), the self-adjoint operator behind (5.2.14) is

◦
Dt =

◦
d +

◦
d∗,

where
◦
d :

◦
HΛ(d, Ω)→

◦
HΛ(d, Ω)

is obtained by restricting the exterior derivative to the kernel of the tangential trace. For the
goal of this article, this approach is inconvenient because it modifies the exterior derivative such
that it is no longer the one which enters the definition of the Hodge–Dirac operator introduced
in (5.2.1) that leads to the BVPs (5.2.2a) and (5.2.2b). It is the maximal Hodge–Dirac operator
D = δ + d : HΛ(D, Ω)→ L2Λ(Ω) involving the exterior derivative d : HΛ(d, Ω)→ HΛ(d, Ω)
that appears in the representation formula given in Subsection 5.4.1.1 from which BIEs are derived.
Indeed, the BVPs (5.2.2a) and (5.2.2b) lead to four variational problems: to each one of the two
BVPs is associated both a variational problem featuring natural boundary conditions (such as in
(5.2.8a)) and a variational problem with essential boundary conditions imposed on the domain of
the operator (such as in (5.2.14)). As we will see, it is the structure of the variational problems
with natural boundary conditions— and accordingly the expressions of the self-adjoint operators
(5.2.3a) and (5.2.3b)—that is reproduced at the level of the trace de Rham complex in the first-kind
BIOs.

5.2.2 Hodge–Laplace operators

Wenow turn to theHodge–Laplacian and zero-order perturbations involving a non-negative constant
λ ≥ 0 (non-negative whenM = RN and strictly positive whenM is a compact manifold). We
will be interested in both strong and mixed formulations of the operator. While equivalent from
the point of view of solvability, the formal distinction in their structure is important in revealing
the connection we seek with first-kind BIOs. It is a straightforward exercise in integration by parts
to show that all the formulations presented below are indeed equivalent. Since well-posedness of
BVPs for the Hodge–Laplacian has been extensively studied and is very well-known, we omit the
details and refer to standard references such as [2, Chap. 4].

5.2.2.1 BVPs for the Hodge–Laplacian

Our starting point is the strong formulation

−∆` + λ : HΛ`(∆,Ω)→ L2Λ`(Ω). (5.2.15)
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Suitable boundary conditions for this operator can be imposed using the surjective compound
traces introduced in Subsection 5.1.4.2. Recall that the traces

Tt
∆ U` =

(
t`−1δ`U`

t`U`

)
and Tn

∆ U` =

(
n`U`

n`+1d`U`

)
(5.2.16)

are continuous and surjective as mappings

Tt
∆ : HΛ`(dδ, Ω) ∩HΛ`(d, Ω) −→ H t

∆(Γ ),

Tn
∆ : HΛ`(δ, Ω) ∩HΛ`(δd, Ω) −→ Hn

∆(Γ ),

where the product of trace spaces are given by

H t
∆(Γ ) = H

− 1
2

⊥ Λ`(d, Γ )×H−
1
2

⊥ Λ`−1(d, Γ ),

Hn
∆(Γ ) = H

− 1
2

‖ Λ`−1(δ, Γ )×H−
1
2

‖ Λ`(δ, Γ ).

The significance of these traces for the Hodge–Laplacian has long been recognized in related
literature. They are covered extensively in [25, Sec.1.1] and [27, Chap. 5]. Imposing boundary
conditions using these traces was shown in [35, Sec. 1.6] to render the Hodge–Laplacian elliptic
in the sense of Sapiro–Lopatinski. In [11, 12], [15, Sec. 1.c], [17] and [33, 34], these traces are
seen to appear naturally in variational problems from identities obtained using integration by parts.
In particular, our derivation of a representation formula will use the fact that they give rise to a
generalization of Green’s second formula to differential forms.

For 0 ≤ ` ≤ N , we consider the BVPs

U` ∈ HΛ`(∆,Ω) :


(−∆` + λ)U` = 0 in Ω

Tt
∆ U` =

(
g`−1

g`

)
on ∂Ω ,

(
g`−1

g`

)
∈ H t

∆(Γ ), (5.2.17a)

and

U` ∈ HΛ`(∆,Ω) :


(−∆` + λ)U` = 0 in Ω

Tn
∆ U` =

(
h`−1

h`

)
on ∂Ω ,

(
h`−1

h`

)
∈ Hn

∆(Γ ). (5.2.17b)

We will derive BIEs for the BVPs (5.2.17a) and (5.2.17b) using the strong formulation of
the Hodge–Laplacian in Subsection 5.4.2.2. However, as mentioned in the closing discussing of
Subsection 5.1.1, if a Hodge–Laplace operator is to appear in the trace de Rham complex, it has to
be in mixed form, because the boundary data lies in product spaces. With this guiding principle,
we now introduce mixed formulations for (5.2.17a) and (5.2.17b). We will later recognize their
structure in the first-kind BIOs.

Introducing an auxiliary variable U`−1 = δ`U` ∈ HΛ`−1(d, Ω), we obtain the mixed-order
formulation

δ`U` − U`−1 = 0,
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δ`+1d`U` + d`−1U`−1 + λU` = 0.

More succinctly,

M

(
U`−1

U`

)
=

(
0
0

)
,

where the perturbed Hodge–Laplacian in mixed form

M : dom(M) = HΛ`−1(d, Ω)×
(
HΛ`(δd, Ω) ∩HΛ`(δ, Ω)

)
→ L2Λ`−1(Γ )× L2Λ`(Γ )

can be represented by the operator matrix

M =

(
−Id δ`
d`−1 δ`+1d` + λ

)
. (5.2.18)

By substituting the auxiliary variable U`−1 in the traces (5.2.16) for Hodge–Laplace operators in
strong formulation, we obtain the pair of traces

Tt
M

(
U`−1

U`

)
=

(
t`−1U`−1

t`U`

)
and Tn

M

(
U`−1

U`

)
=

(
n`U`

n`+1d`U`

)
, (5.2.19)

which are continuous as mappings

Tt
M : HΛ`−1(d, Ω)×HΛ`(d, Ω) −→ H t

M(Γ ) = H t
∆(Γ ),

Tn
M : L2Λ`−1(Ω)×

(
HΛ`(δ, Ω) ∩HΛ`(δd, Ω)

)
−→ Hn

M(Γ ) = Hn
∆(Γ ).

The associated boundary value problems read, respectively:

(
U`−1

U`

)
∈ dom(M) :


M

(
U`−1

U`

)
=

(
0
0

)
in Ω

Tt
M

(
U`−1

U`

)
=

(
g`−1

g`

)
on ∂Ω

,

(
g`−1

g`

)
∈ H t

∆(Γ ), (5.2.20a)

(
U`−1

U`

)
∈ dom(M) :


M

(
U`−1

U`

)
=

(
0
0

)
in Ω

Tn
M

(
U`−1

U`

)
=

(
h`−1

h`

)
on ∂Ω

,

(
h`−1

h`

)
∈ Hn

∆(Γ ). (5.2.20b)

Starting from the BVPs (5.2.17a) and (5.2.17b) in strong form, we could have alternatively
opted for an auxiliary variable U`+1 = d`U` ∈ HΛ`(δ, Ω) to obtain the equivalent mixed-order
formulation

δ`+1U`+1 + d`−1δ`U` + λU` = 0,
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d`U` − U`+1 = 0,

or in short,

R

(
U`
U`+1

)
=

(
0
0

)
,

where this time the perturbed Hodge–Laplacian in mixed form is a continuous map

R : dom(R) = HΛ`+1(δ, Ω)×HΛ`(dδ, Ω) ∩HΛ`(d, Ω)→ L2Λ`(Γ )× L2Λ`+1(Γ ),

whose operator matrix representation reads

R =

(
d`+1δ` + λ δ`+1

d` −Id

)
. (5.2.21)

We then reach instead the BVPs

(
U`
U`+1

)
∈ dom(R) :


R

(
U`
U`+1

)
=

(
0
0

)
in Ω

Tt
R

(
U`
U`+1

)
=

(
g`−1

g`

)
on ∂Ω

,

(
g`−1

g`

)
∈ H t

R(Γ ), (5.2.22a)

(
U`
U`+1

)
∈ dom(R) :


R

(
U`
U`+1

)
=

(
0
0

)
in Ω

Tn
R

(
U`
U`+1

)
=

(
h`−1

h`

)
on ∂Ω

,

(
h`−1

h`

)
∈ Hn

R(Γ ), (5.2.22b)

involving the continuous and surjective traces

Tt
R

(
U`
U`+1

)
=

(
t`−1δ`U`

t`U`

)
and Tn

R

(
U`
U`+1

)
=

(
n`U`

n`+1U`+1

)
. (5.2.23)

5.2.3 Variational formulations for Hodge–Laplace BVPs

In line with our goal, it is sufficient for our purposes to present only two variational problems
equivalent to the BVPs (5.2.17a), (5.2.17b), (5.2.20a), (5.2.20b), (5.2.22a) and (5.2.22b). We focus
on those two because they are the only variational formulations obtained by integration by parts
sharing the two following characteristics:

• They are in mixed formulation. Therefore, they involve product spaces of differential forms of
order `− 1 and `, or ` and ` + 1, analogous to the structure of the trace spaces Tt

∆ and Tn
∆ for

the Hodge–Laplacian.
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• The boundary conditions are natural, so that no restriction is needed on the domain of the
featured exterior derivative or codifferential.

Integrating by parts using (5.1.10), we find the analog of Green’s first identities for Hodge–
Laplace operators in mixed formulation:M

(
U`−1

U`

)
,

(
V`−1

V`

)
Ω

= Bd

(U`−1

U`

)
,

(
V`−1

V`

)− ⟪Tn
M

(
U`−1

U`

)
,Tt

M

(
V `−1

V `

)
⟫
Γ

, (5.2.24a)

R

(
U`
U`+1

)
,

(
V`
V`+1

)
Ω

= Bδ

( U`
U`+1

)
,

(
V`
V`+1

)+ ⟪Tt
R

(
U`
U`+1

)
,Tn

R

(
V `

V `+1

)
⟫
Γ

, (5.2.24b)

where the fundamental bilinear forms associated withM and R are

Bd

(U`−1

U`

)
,

(
V`−1

V`

) = (d`U`, d`V`)Ω + λ (U`, V`)Ω + (d`−1U`−1, V`)Ω

+ (U`, d`V`−1)Ω − (U`−1, V`−1)Ω ,

(5.2.25)

Bδ

( U`
U`+1

)
,

(
V`
V`+1

) = (δ`U`, δ`V`)Ω + λ (U`, V`)Ω + (δ`+1U`+1, V`)Ω

+ (U`, δ`+1V`+1)Ω − (U`+1, V`+1)Ω .

(5.2.26)

They lead to two variational problems. In the first, we suppose that the boundary data
(h`−1, h`)

> ∈ T n
M(Γ ) is given and we seek (U`−1, U`)

> ∈ HΛ`−1(d, Ω)×HΛ`(d, Ω) such that

Bd

(U`−1

U`

)
,

(
V`−1

V`

) = ⟪
(
h`−1

h`

)
,Tt

M

(
V `−1

V `

)
⟫
Γ

(5.2.27a)

for all (V`−1, V`)
> ∈ HΛ`−1(d, Ω)×HΛ`(d, Ω). In the second, (g`, g`+1)> ∈ H t

R(Γ ) is given and
we seek (U`, U`+1) ∈ HΛ`(δ, Ω)×HΛ`+1(δ, Ω) such that

Bδ

( U`
U`+1

)
,

(
V`
V`+1

) = ⟪
(
g`−1

g`

)
,Tn

R

(
V `

V `+1

)
⟫
Γ

(5.2.27b)
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for all (V`, V`+1)> ∈ HΛ`(δ, Ω)×HΛ`+1(δ, Ω).
The variational problem (5.2.27a) is an equivalent reformulation of the problems (5.2.20b) and

(5.2.17b) where the trace data Tn
∆U` is known, while (5.2.27b) is a variational formulation for

(5.2.22a) and (5.2.17a) where Tt
∆U` is known.

The self-adjoint operators behind these BVPs and associated with the bilinear forms in the
analogs of Green’s first formulas are

Mn =

(
−Id d∗`
d`−1 d∗`d` + λ

)
: HΛ`−1(d, Ω)×

(
◦
HΛ`(δ, Ω) ∩

◦
HΛ`(δd, Ω)

)
→ L2Λ(Ω), (5.2.28a)

Rt =

(
δ∗` δ` + λ δ`+1

δ∗`+1 −Id

)
:

(
◦
HΛ`(d, Ω) ∩

◦
HΛ`(dδ, Ω)

)
×HΛ`+1(δ, Ω)→ L2Λ(Ω), (5.2.28b)

where similarly as for (5.2.3a) and (5.2.3b), the traces vanish on

◦
HΛ`(δd, Ω) = HΛ`(δd, Ω) ∩ ker n`+1d`,
◦
HΛ`(dδ, Ω) = HΛ`(dδ, Ω) ∩ ker t`−1δ`.

5.3 Calculus of boundary potentials

Our main tool in deriving BIEs for Hodge–Dirac and Hodge–Laplace operators is a calculus of
atomic boundary potentials. We call atomic the two boundary potentials defined in this section,
because all the other layer potentials in this work are obtained from them by differentiation. We
intend to convey that the commutation identities and jump relations involving the exterior derivative
and codifferential are valuable instruments that greatly simplify derivations. In that sense, viewing
these potentials as elementary building blocks unlocks the power of exterior calculus as a framework
for calculations. Moreover, these atomic potentials are the crucial components in the definitions
of the non-local inner products on the spaces of the trace de Rham complex where the claimed
correspondence between the operators entering the BVPs of Section 5.2 and the first-kind BIOs
studied in Section 5.4 is revealed.

5.3.1 Newtonian potential

ForM = RN , a fundamental solution Φλ` for the scalar differential operator −∆` + λ satisfying
suitable decay conditions at infinity exists for all λ ≥ 0, cf. [22, Eq. 4.1], [23, Chap. 8 and 9].
Denote by I` the identity double form of bi-degree (`, `) on RN × RN and for x 6= y let

Gλ` (x, y) = Φλ
(
|x− y|

)
I`(x, y) (5.3.1)

be the singular kernel of the symmetric integral transformation

Nλ
` U`(x) = lim

ε→0
〈 Gλ` (x, ·), U`(·) 〉RN\Bε(x), U` ∈ D`(RN), (5.3.2)
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whereBε(x) is theN -dimensional ball of radius ε > 0 centered at x. The extension Nλ
` : E ′`(RN)→

D′`(RN) to distributions via the dual mapping is a two-sided inverse of −∆` + λ in the sense
of distributions, cf. [16, Chap. 12 and 16], [20, sect. 2.2 and 2.3], [23, Chap. 6], [31, Chap. 3]
and [39, sect. 3].

On a compact boundaryless manifold, not only the Hodge–Laplacian is not invertible, we must
also be wary of its non-trivial eigenspaces. Thankfully though,−∆+λ : H1Λ`(M)→ H−1Λ`(M)
is invertible for at least all λ > 0, in which case the Schwarz kernel of its continuous inverse is
available, cf. [25, Chap. 3] and [27].

To keep our exposition simple, we thus settle for imposing on λ ≥ 0 the condition that λ > 0
wheneverM is compact.

Assumption A. IfM = RN , we allow κ ∈ R and λ ≥ 0, but we impose κ > 0 and λ > 0 when
M is a compact manifold without boundary.

Under Assumption A, we can always assume that a Newtonian potential

Nλ
` : H−1

compΛ
`(M) = H−1Λ`(M) ∩ E ′` → H1

locΛ
`(M) ∩HlocΛ

`(∆,M) (5.3.3)

for the Hodge–Yukawa operator exists whose integrable kernel satisfies

d`,x Gλ` (x, y) = δ`+1,y Gλ`+1(x, y) and δ`,x Gλ` (x, y) = d`−1,y Gλ`−1(x, y) (5.3.4)

for x 6= y, cf. [20, Lem. 3] and [25, eq. 3.1.44]. Moreover,

?`,y ?`,x Gλ` = ?`,x ?`,y Gλ` = GλN−`, (5.3.5)

cf. [25, 3.1.23] and [20, Lem. 1]. At the level of the full Grassman algebra of differential forms, the
identities in (5.3.4) translate for Gλ = (Gλ` )` to

dx Gλ = δy Gλ and δx Gλ = dy Gλ, (5.3.6)

while property (5.3.5) implies that

?y ?x Gλ = ?x ?y Gλ = Gλ.

5.3.2 Atomic boundary potentials

Consider the bounded operators

t′` : H
− 1

2

‖ Λ`(Γ )→ H−1
compΛ

`(M) and n′` : H
− 1

2
⊥ Λ`−1(Γ )→ H−1

compΛ
`(M),

dual to the trace mappings in (5.1.8). As previously stated, the atomic boundary potentials

S`λ = Nλ
` t′` : H

− 1
2

‖ Λ`(Γ ) −→ H1
locΛ

`(M),

D`
λ = Nλ

` n′`−1 : H
− 1

2
⊥ Λ`−1(Γ ) −→ H1

locΛ
`(M),

(5.3.7)

take center stage throughout this article, cf. [11], [13] and [33].
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If u` ∈ L1Λ`(Γ ), it follows by symmetry of the fundamental solution that for x /∈ Γ , they admit
the integral representations

Sλ`u`(x) = 〈u`, t` Gλ` (x, ·)〉Γ and Dλ
`u`−1(x) = 〈u`−1, n`Gλ` (x, ·)〉Γ , (5.3.8)

cf. [23, Thm. 6.10] and [31, Thm. 3.1.6].
Since ?` is an isometry, we observe using (5.3.5) that for x /∈ Γ ,

?−1
`+1,x〈 ?`,y u`(y), tN−`−1,y GλN−`−1(x, y)〉Γ = 〈u`(y), ?−1

`,y tN−`−1,y ?`+1,y Gλ`+1(x, y)〉Γ
= 〈u`(y), n`+1,yGλ`+1(x, y)〉Γ .

Therefore, a density argument eventually shows that

?−1
` SλN−` ?`−1 = Dλ

` and ?−1 Sλ ? = Dλ, (5.3.9)

where a bold font denote the boundary potentials Sλ = (Sλ` )` and Dλ = (Dλ
` )` acting on the full

algebra of differential forms.

Lemma 5.5 For all v` ∈ H
− 1

2

‖ Λ`(δ, Γ ) and u` ∈ H
− 1

2
⊥ Λ`(d, Γ ),

δ` Sλ` (v`) = Sλ`−1(δ` v`) and d`+1 Dλ
`+1(u`) = −Dλ

`+2(d` u`).

Proof. We refer to [20, Lem. 3] and [25, Eq. 3.2.41] for the first identity. The second then follows
as a consequence of (5.3.9), but can also be verified directly using (5.3.4) and integration by parts
as follows.

Let u` ∈ L∞Λ`(Γ ) ∩H−
1
2

⊥ Λ`(d, Γ ) be the tangential trace of a smooth `-form onM. Then, for
x /∈ Γ , we can evaluate directly using the integral representation of the boundary potential that

d`+1Dλ
`+1u`(x) =

∫
Γ

u`(y) ∧y ı∗y ?`+1,y d`+1,x Gλ`+1,`+1(x, y) dy

=

∫
Γ

u`(y) ∧y ı∗y ?`+1,y δ`+2,y Gλ`+2,`+2(x, y) dy (5.3.10)

= (−1)`+2

∫
Γ

u`(y) ∧y dn−`−2,y ı
∗
y ?`+2,y Gλ`+2,`+2(x, y) dy (5.3.11)

= −(−1)`(−1)`+2

∫
Γ

d`,y u`(y) ∧y ı∗y ?`+2,y G
λ
`+2,`+2(x, y) dy (5.3.12)

= −〈d` u`, n`+2Gλ`+2,`+2〉Γ ,

where (5.3.10) is obtained using (5.3.4), (5.3.11) holds because the exterior derivative commutes
with pullbacks, and (5.3.12) follows by integration by parts. ut

Corollary 5.2 For all v ∈ H−
1
2

‖ Λ(δ, Γ ) and u ∈ H−
1
2

⊥ Λ(d, Γ ),

δSλ(v) = Sλ(δv) and dDλ(u) = −Dλ(du).



163

Lemma 5.6 The boundary potentials restrict to continuous mappings

S`λ : H
− 1

2

‖ Λ`(δ, Γ ) −→ H1
locΛ

`(M) ∩HΛ`(−∆,Ω),

D`+1
λ : H

− 1
2

⊥ Λ`(d, Γ ) −→ H1
locΛ

`+1(M) ∩HΛ`+1(−∆,Ω),

satisfying, in the sense of distributions,
(−∆` + λ) Sλ` (u`) = 0, and (−∆`+1 + λ) Dλ

`+1(w`) = 0, (5.3.13)

for all u` ∈ H
− 1

2

‖ Λ`−1(δ, Γ ) and w` ∈ H
− 1

2
⊥ Λ`(d, Γ ).

Proof. For the first identity in (5.3.13), we refer to [25, Eq. 3.2.5] and [20, Lem. 3 (ii)]. The
second is obtained as a corollary using (5.3.9), because the Hodge star commutes with the Hodge–
Laplacian [25, Lem. 2.8]. ut

Denote the jump of a trace across Γ by J•K = •+ − •−, where • = t or n.

Lemma 5.7 We have the jump relations

Jt`K Sλ` = 0, Jt`+1d`K Sλ` = 0, Jt`−1δ`K Sλ` = 0, (5.3.14a)
Jn`K Sλ` = 0, Jn`+1d`K Sλ` = −Id, Jn`−1δ`K Sλ` = 0, (5.3.14b)
Jt`K Dλ

` = 0, Jt`+1d`K Dλ
` = 0, Jt`−1δ`K Dλ

` = Id, (5.3.14c)
Jn`K Dλ

` = 0, Jn`+1d`K Dλ
` = 0, Jn`−1δ`K Dλ

` = 0. (5.3.14d)

Proof. We appeal to continuity and [20, Lem. 10], which already gives us

Jt`K Sλ` = 0, Jt`+1d`K Sλ` = 0, Jt`K Dλ
` = 0,

Jn`K Sλ` = 0, Jn`+1d`K Sλ` = −Id, Jn`K Dλ
` = 0.

Based on these jump identities, the commutative relations for the trace operators in (5.1.11) and
for the boundary potentials given in Lemma 5.5 immediately yield

Jt`−1δ`K Sλ` = 0, Jt`+1d`K Dλ
` = 0, Jn`−1δ`K Dλ

` = 0,

Jn`−1δ`K Sλ` = 0, Jn`+1d`K Dλ
` = 0.

It only remains to verify that Jt`−1δ`K Dλ
` = Id. Using (5.3.9), we expand the definition of the

codifferential to get

t`−1δ` Dλ
` = (−1)`t`−1 ?

−1
`−1 dN−` ?` ?

−1
` SλN−` ?`−1

= (−1)`t`−1 ?
−1
`−1 dN−` SλN−` ?`−1 .

It is a tedious but straightforward calculation to invert the domain and boundaryHodge star operators
to further conclude that

t`−1δ` Dλ
` = (−1)`(−1)`+1t`−1 ?N−`+1 dN−` SλN−` ?

−1
N−` = t`−1Φ,

where we have recognized the double layer potential

Φ = − ?N−`+1 dN−` SλN−` ?
−1
N−`

studied in [20] and for which we know from [20, Lem. 10] that Jt`−1KΦ = Id. ut
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5.3.3 Trace de Rham complex with non-local inner products

The trace de Rham complexes introduced in (5.1.7a) and (5.1.7b) are the canvas on which the theory
in this article is drawn. Ultimately, it is by formulating the first-kind boundary integral equations
for the Hodge–Dirac and Hodge–Laplace operators as variational problems in the trace de Rham
complex that their structure is revealed with the most clarity.

We generalize to differential forms of any degree and to arbitrary dimension the theory presented
in [33, Sec. 8]. It should be compared with [18] and [26].

The key observation is that the continuous sesquilinear forms

(u`, v`)− 1
2
,λ,t = ⟪u`, t`Sλ` (v`)⟫Γ , u`, v` ∈ H

− 1
2

‖ Λ`(Γ ), (5.3.15a)

(w`, z`)− 1
2
,λ,n = ⟪w`, n`+1Dλ

` (z`)⟫Γ , w`, z` ∈ H
− 1

2
⊥ Λ`(Γ ), (5.3.15b)

define non-local inner products on the spaces H−
1
2

‖ Λ`(Γ ) and H−
1
2

⊥ Λ`(Γ ).
In the following results, it is a convenient notation to write

‖U`‖2
λ,XΛ`(M) = λ ‖U`‖2

M + ‖d`U`‖2
M + ‖δ`U`‖2

M, ∀U` ∈ XΛ`(M),

where we allow λ = 0. Evidently,M can be replaced by Ω∓.

Lemma 5.8 For all h` ∈ H
− 1

2

‖ Λ`(Γ ) and g` ∈ H
− 1

2
⊥ Λ`(Γ ), we have

‖h`‖2
− 1

2
,λ,t

= ⟪h`, t`Sλ` (h`)⟫Γ = ‖Sλ`h`‖2
λ,XΛ`(M), (5.3.16a)

‖g`‖2
− 1

2
,λ,n

= ⟪g`, n`Sλ` (g`)⟫Γ = ‖Dλ
` g`‖2

λ,XΛ`(M). (5.3.16b)

Proof. For convenience, let us shorthand Ψ = Sλ`h`. Integrating by parts the first term on the
right-hand side of

‖Ψ‖2
λ,XΛ`(M) = ‖Ψ‖2

λ,XΛ`(λ,Ω−) + ‖Ψ‖2
λ,XΛ`(λ,Ω+),

we obtain

‖Ψ‖2
XΛ`(λ,Ω−) = (d`Ψ, d`Ψ)Ω− + (δ`Ψ, δ`Ψ)Ω− + λ‖Ψ‖2

Ω−

= (−∆`Ψ, Ψ)Ω− + ⟪n−`+1d`Ψ, t
−
` Ψ⟫Γ − ⟪t−`−1δ`Ψ, n

−
` Ψ⟫Γ + λ‖Ψ‖2

Ω−

= ⟪n−`+1d`Ψ, t
−
` Ψ⟫Γ − ⟪t−`−1δ`Ψ, n

−
` Ψ⟫Γ ,

where we have used the fact that Ψ satisfies the equation−∆Ψ = −λΨ inΩ−, i.e. (−∆`Ψ, Ψ)Ω− =
−λ(Ψ, Ψ)Ω− = −λ‖Ψ‖2

Ω− . We find similarly in Ω+ that

‖Ψ‖2
λ,XΛ`(Ω+) = −⟪n+

`+1d`Ψ, t
+
` Ψ⟫Γ + ⟪t+

`−1δ`Ψ, n
+
` Ψ⟫Γ .

Summing these contributions and using the jump relations from Lemma 5.7 yields

‖Ψ‖2
λ,XΛ`(M) = ⟪−J n`+1d`KΨ, tΨ⟫Γ = ⟪h`, tSλ`u`⟫Γ = ‖h`‖2

− 1
2
,λ,t
.

ut
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The next result generalizes [8, Thm. 4] to arbitrary dimensions. We indicate inequalities that
hold up to a positive constant multiple depending on Ω and λ using ..

Theorem 5.1 Under Assumption A, we have

‖h`‖2

H
− 1

2
‖ Λ`(Γ )

. (h`, h`)− 1
2
,λ,t , ∀h` ∈ H

− 1
2

‖ Λ`(Γ ),

‖g`‖2

H
− 1

2
⊥ Λ`(Γ )

. (g`, g`)− 1
2
,λ,n , ∀w` ∈ H

− 1
2

⊥ Λ`(Γ ).

Proof. We focus on the first inequality. The second can be obtained using analogous arguments.
In the first step, we use two ingredients:

• Recall from Subsection 5.1.4 that the tangential trace t` : H1Λ`(Ω)→ H
1
2

‖ Λ
`(Γ ) is a surjective

operator admitting a bounded right-inverse

t† : H
1
2

‖ Λ
`(Γ )→ H1Λ`(Ω),

i.e ‖t†g`‖H1Λ`(Ω) . ‖g`‖
H

1
2
‖ Λ

`
(Γ ) and t` ◦ t†g` = g` for all g` ∈ H

1
2

‖ Λ
`(Γ ).

• According to [26, prop. 3.1], there exists a continuous extension operator

E : H1Λ`(Ω)→ H1Λ`(M)

such that (EU`)
∣∣
Ω

= U` for all U` ∈ H1Λ(Ω).

Given h` ∈ H
− 1

2

‖ Λ`(Γ ), we can introduce these operators in the definition of H−
1
2

‖ Λ`(Γ ) to
obtain the estimate

‖h`‖2

H
− 1

2
‖ Λ`(Γ )

= sup

g`∈H
1
2
‖ Λ

`(Γ )

∣∣⟪h`, g`⟫Γ ∣∣
‖g`‖

H
1
2
‖ Λ

`(Γ )

. sup

g`∈H
1
2
‖ Λ

`(Γ )

∣∣⟪h`, t`t†g`⟫Γ ∣∣
‖t†g`‖H1Λ`(Ω)

≤ sup
W`∈H1Λ`(Ω)

∣∣⟪h`, t`W`⟫Γ
∣∣

‖W`‖H1Λ`(Ω)

. sup
W`∈H1Λ`(Ω)

∣∣⟪h`, t`EW`⟫Γ
∣∣

‖EW`‖H1Λ`(M)

. sup
W`∈H1Λ`(M)

∣∣⟪h`, t`W`⟫Γ
∣∣

‖W`‖H1Λ`(M)

. (5.3.17)

In the second step, we recognize in the numerator the definition of the atomic boundary potential.
Recall that Sλ` = Nλ

` ◦t′` = (−∆`+λId)−1◦t′`. In other words, Sλ`h` satisfies the variational equation(
d`S

λ
` g`, d`V`

)
Ω

+
(
δ`S

λ
` g`, δ`V`

)
Ω

+ λ
(

Sλ` g`, V`
)
Ω

= ⟪t′`h`, V`⟫Γ = ⟪h`, t`V`⟫Γ (5.3.18)

for all V` ∈ H1Λ`(Ω). Hence, we arrive at the identity



166 ∣∣⟪h`, t`V`⟫Γ ∣∣ =

∣∣∣∣(S``h`, V`
)
λ,XΛ`(M)

∣∣∣∣ (5.3.19)

and plug it into (5.3.17) to obtain

‖h`‖2

H−
1
2Λ`(Γ )

. sup
V`∈H1Λ`(M)

∣∣∣(S``h`, V`)λ,XΛ`(M)

∣∣∣
‖V`‖H1Λ`(M)

. (5.3.20)

In the third step, we simply appeal to a Gaffney inequality (the easy direction), which states that

‖V`‖H1Λ`(M) ∼ ‖V`‖λ,XΛ`(M) (5.3.21)

for all V` ∈ H1Λ`(Ω), cf. [36], [28, Thm. 7.2.6], [6]. Going back to (5.3.20) and applying the
Cauchy-Schwartz inequality yields

‖h`‖2

H−
1
2Λ`(Γ )

. sup
V`∈XΛ`(M)

∣∣∣(S``h`, V`)λ,XΛ`(M)

∣∣∣
‖V`‖XΛ`(λ,M)

= ‖Sλ`h`‖2
λ,XΛ`(M). (5.3.22)

Finally, using Lemma 5.8, we arrive at

‖h`‖2

H−
1
2Λ`(Γ )

. ‖h`‖2
− 1

2
,λ,t
.

ut

5.4 Boundary integral equations

In this section, we exploit the results of Section 5.3 to derive boundary integral equations for
the BVPs of Section 5.2. We follow the same recipe for every operator. The approach has a long
history. Standard references for scalar-valued BVPs in Euclidean space are [23, 31] and [37]. We
also particularly recommend [13]. We refer to [10] for classical electromagnetism, where the
perspective is also prominently adopted. As mentioned in the introduction—and directly relevant
to this work—the abstract procedure was used to derive BIEs for the Hodge–Dirac and Hodge–
Helmholtz operators using vector calculus in [12] and [33] under the hypothesis thatM = R3. An
overview similar to what follows is given in [34].

Let L stand for any one of the operators introduced in Section 5.2: D + iκ, −∆` + λ, M or R.
1. We confirm that the operator satisfies an identity of the form

〈LU, V 〉Ω∓ = 〈U,LV 〉Ω∓ ± ⟪Tt
LU,T

n
LV ⟫Γ ∓ ⟪Tt

LV,T
n
LU⟫Γ (5.4.1)

resembling Green’s second formula and identify a “Newton potential operator” N[N], i.e. an
inverse of L in the sense of distributions. Together, these two ingredients enable us to find a
representation formula of the form

U = N[L]U − SL[L]
(
JTn

LUK
)

+ DL[L]
(
JTt

LUK
)
, (5.4.2)

where SL[L] and DL[L] are potential operators playing roles analogous to the single and double
layer potentials in the classical theory of BIEs for scalar Laplace problems or electromagnetic
scattering.
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2. We apply average traces {T•L} = (T•,−L + T•,+L )/2 to the obtained boundary potentials SL[L]
and DL[L] to define four BIOs:

V[L] = {Tt
L}SL[L] : Hn

L(Γ ) −→ H t
L(Γ ),

K[L] = {Tt
L}DL[L] : H t

L(Γ ) −→ H t
L(Γ ),

A[L] = {Tn
L}SL[L] : Hn

L(Γ ) −→ Hn
L(Γ ),

W[L] = {Tn
L}DL[L] : H t

L(Γ ) −→ Hn
L(Γ ).

3. We verify that the jump relations

JTt
LKSL[L] = 0, JTt

LKDL[L] = Id,
JTn

LKSL[L] = −Id, JTn
LKDL[L] = 0,

hold in the trace spaces T t
L and T n

L . Applying average traces on both sides of the representation
formula and appealing to these jump relations lead to a Calderón operator

C[L] =

(
1
2
Id + K[L] −V[L]
−W[L] 1

2
Id− A[L]

)
(5.4.3)

whose kernel fully characterizes the space of valid Cauchy data. In other words, boundary data
(g, h)> ∈ T t

L(Γ ) × T n
L(Γ ) satisfies C[L](g, h)> = 0 if and only if there exists U ∈ dom(L)

such that LU = 0 with Tt
LU = g and Tt

LU = h.
4. We extract two first-kind BIEs:

h ∈ T n
L(Γ ) : V[L]h = (

1

2
Id + K[L])g, g ∈ T t

L(Γ ), (5.4.4a)

g ∈ H t
L(Γ ) : W[L]g = (

1

2
Id− A[L])h, h ∈ Hn

L(Γ ). (5.4.4b)

It suffices to take duality pairing on both sides of these equations to obtain the equivalent
variational problems

⟪V[L]h,w⟫Γ = ⟪(1

2
Id + K[L])g, w⟫Γ , ∀w ∈ T n

L(Γ ), (5.4.5a)

⟪W[L]g, v⟫Γ = ⟪(1

2
Id− A[L])h, v⟫Γ , ∀v ∈ T t

L(Γ ). (5.4.5b)

We will show that the first-kind BIOs operators V[L] and W[L] associated with the bilinear
forms on the left-hand side of these variational problems are Hodge–Dirac and Hodge–Laplace
operators in variational form in the trace de Rham complex with the non-local inner products
presented in Subsection 5.3.3.

Remark 5.1 The signs in (5.4.3), and thus accordingly in (5.4.4a) and (5.4.4b), were chosen as
per convention to mimic the well-known theory for the scalar Laplacian. This choice is somewhat
arbitrary and the equations can be altered to avoid some sign flips that occur in the next sections.
We restrain ourselves from doing so as we do not believe there is much to gain so far by departing
from classical sign conventions.
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5.4.1 BIEs for Hodge–Dirac BVPs

In this section, the abstract theory is instantiated according to the following table.

L dom(L) Tt
L Tn

L H t
L(Γ ) Hn

L(Γ )

D + iκ HΛ(D, Ω) t n H
− 1

2
⊥ Λ(d, Γ ) H

− 1
2

‖ Λ(δ, Γ )

Integration by parts reveals that the Hodge–Dirac operator satisfies an identity such as (5.4.1):

〈DU ,V 〉Ω∓ = 〈U ,DV 〉Ω∓ ± ⟪tU ,nV ⟫Γ ∓ ⟪tV ,nU⟫Γ (5.4.6)

for all U ,V ∈ HΛ(D, Ω)

Remark 5.2 It is remarkable that an identity resembling Green’s second formula is available despite
the operator being only first-order. Evidently, this is due to its symmetric structure. The Hodge–
Dirac operator is a sum of two operators that are formally adjoint to each other. Thanks to that, a
representation by boundary potentials can be derived using the approach promoted by Costabel for
second order elliptic operators, cf. [11, sect. 4.2], [13], [33, sect. 4.4] and [34, Sec. 2.4].

5.4.1.1 Representation formula for Hodge–Dirac operators

This section generalizes [33, Sec. 4]. It follows immediately from (5.3.6) that

DxGλ = DyGλ.

Integrating by parts after using the commutative relations (5.3.6) eventually verifies that

NλD = DNλ (5.4.7)

in the sense of distributions. Going back to (5.1.1) with λ = κ2, we find that

(D− iκ)Nλ (D + iκ) = (−∆+ κ2)Nλ = Id.

In other words,
N[D] = (D− iκ)Nλ = Nλ (D− iκ)

is a fundamental solution for the perturbed Hodge–Dirac operator (D + iκ).

Proposition 5.1 If U ∈ L2Λ(M) is compactly supported and there exists F ∈ L2Λ(M)
such that F |Ω = (D + iκ)U |Ω and F |Ω+ = (D + iκ)U |Ω+ , then

U = (D− iκ)
(
NλF − SλJnUK + DλJtUK

)
. (5.4.8)
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Proof. According to (5.4.6), we have

⟪(D + iκ)U ,V ⟫M = 〈U , (D + iκ)V 〉Ω + 〈U , (D + iκ)V 〉Ω+

= 〈F ,V 〉Ω + ⟪t−V ,n−U⟫Γ − ⟪t−U ,n−V ⟫Γ
+ 〈F ,V 〉Ω+ − ⟪t+V ,n+U⟫Γ + ⟪t+U ,n+V ⟫Γ

= 〈F ,V 〉M − ⟪tV , JnKU⟫Γ + ⟪JtKU ,nV ⟫Γ
for all V ∈ D(M). The regularity assumption on U guarantees that the traces are well-defined.
We have used the fact that V is smooth across the boundary to obtain the last equality, because
smoothness guarantees that t+V = t−V and n+V = n−V , i.e. the jumps vanish on Γ . Hence, in
the sense of distributions,

(D + iκ)U = F − t′ JnUK + n′ JtUK.

Since U has compact support, it can be interpreted as a continuous linear functional on E(M).
With the definitions of the atomic boundary potentials from (5.3.7) at hand, applying the Newton
potential operator Nλ on both sides of this equation yields

Nλ(D + iκ)U = NλF −Nλt
′ JnUK + Nλn

′ JtUK
= NλF − Sλ JnUK + Dλ JtUK.

(5.4.9)

Since (D+ iκ)U is square-integrable, the mapping properties of the Newton potential provided
in eq. (5.3.3) ensure that the left-hand side of this identity lies in the domain of the Hodge–Dirac
operator, since it is in fact component-wise weakly differentiable. Moreover, that the images of the
atomic boundary potentials belong toH1

locΛ(M) was the result of Lemma 5.6. Therefore, we can
applyD− iκ on both sides of (5.4.9) and use the commutation relation (5.4.7) to reach (5.4.8). ut

We are tempted to call single and double layer potentials for the Hodge–Dirac operator the
boundary potentials

SL[D] = (D− iκ)Sλ : H
− 1

2

‖ Λ`−1(δ, Γ ) −→ HΛ(D, Ω), (5.4.10a)

DL[D] = (D− iκ)Dλ : H
− 1

2
⊥ Λ`(d, Γ ) −→ HΛ(D, Ω), (5.4.10b)

respectively. However, while this nomenclature is a convenient way to highlight the similarities
between our development and the classical theory of boundary integral equations for second-order
elliptic operators, we stress that it may also be misleading. Both traces in (5.1.6) rest on an equal
footing in that none involves a differential operator. We saw in (5.3.9) that the two boundary
potentials are not only isometrically isomorphic, but also symmetric in the sense of Hodge duality.

It follows immediately from Lemma 5.7 that these boundary potentials satisfy the abstract jump
relations stated above. For example,

JTn
DKSL[D] = JnK (D− iκ)Sλ = JndKSλ + JnδKSλ − iκJnKSλ = −Id.

The other relations are computed similarly.
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5.4.1.2 BIOs for Hodge–Dirac operators

Since the boundary potentials may jump across Γ , we resort as per convention to the average traces
{•} = (•− + •+)/2, where • = t or n. In particular, we let

V[D] = {t} (D− iκ)Sλ : H
− 1

2

‖ Λ(δ, Γ ) −→ H
− 1

2
⊥ Λ(d, Γ ),

K[D] = {t} (D− iκ)Dλ : H
− 1

2
⊥ Λ(d, Γ ) −→ H

− 1
2

⊥ Λ(d, Γ ),

A[D] = {n} (D− iκ)Sλ : H
− 1

2

‖ Λ(δ, Γ ) −→ H
− 1

2

‖ Λ(δ, Γ ),

W[D] = {n} (D− iκ)Dλ : H
− 1

2
⊥ Λ(d, Γ ) −→ H

− 1
2

‖ Λ(δ, Γ ).

As a consequence of the jump relations, these boundary integral operators enter a Calderón
operator C[D] such as (5.4.3) whose kernel fully characterizes the space of valid Cauchy data. This
last property is a consequence of three ingredients: the jump relations, the representation formula
and the lifting maps from Subsection 5.1.4.2.

From the jump relations, V[D] = t (D− iκ)Sλ, i.e. the average of the traces is equal to taking
a single-sided trace. Using Corollary 5.2, it follows by integration by parts and (5.1.11) that

⟪V[D]h,w ⟫Γ = ⟪ tδSλh,w ⟫Γ + ⟪ tdSλh,w ⟫Γ − iκ⟪tSλh,w⟫Γ
= ⟪ tSλδh,w ⟫Γ + ⟪ tSλh, δw ⟫Γ − iκ⟪tSλh,w⟫Γ
= (δh,w)− 1

2
,λ,t + (h, δw)− 1

2
,λ,t − iκ(h,w)− 1

2
,λ,t

(5.4.11)

for all h,w ∈ H−
1
2

‖ Λ(δ, Γ ).
Similarly, we can also compute

⟪W[D]g,v ⟫Γ = ⟪ ndDλg,v ⟫Γ + ⟪ nδDλg,v ⟫Γ − iκ⟪nDλg,v⟫Γ
= −⟪ nDλdg,v ⟫Γ − ⟪ nDλg,dv ⟫Γ − iκ⟪nDλg,v⟫Γ
= −(dg,v)− 1

2
,λ,n − (g,dw)− 1

2
,λ,n − iκ(g,v)− 1

2
,λ,n

(5.4.12)

for all g,v ∈ H−
1
2

⊥ Λ(d, Γ ).
We urge the reader to compare these bilinear forms on the boundary with the bilinear forms Aδ

and Ad that appear in the variational problems (5.2.8a) and (5.2.8b) for the Hodge–Dirac operator
in the domain Ω.

We conclude from (5.4.11) and (5.4.12) that the first-kind boundary integral operators
V[D] and W[D] associated with the direct first-kind boundary integral equations (5.4.4a)
and (5.4.4b) are zero-order perturbations of Hodge–Dirac operators in the trace de Rham
complexes of Subsection 5.3.3. More precisely,

V[D] = δ + δ∗ − iκ, (5.4.13a)
W[D] = −(d + d∗)− iκ, (5.4.13b)

where the closed densely defined unbounded operators
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δ∗ : H
− 1

2

‖ Λ(Γ ) −→ H
− 1

2

‖ Λ(Γ ),

d∗ : H
− 1

2
⊥ Λ(Γ ) −→ H

− 1
2

⊥ Λ(Γ ),

are the Hilbert space adjoint of the closed densely defined unbounded operators

δ : H
− 1

2

‖ Λ(δ, Γ ) ⊂ H
− 1

2

‖ Λ(Γ ) −→ H
− 1

2

‖ Λ(Γ ),

d : H
− 1

2
⊥ Λ(d, Γ ) ⊂ H

− 1
2

⊥ Λ(Γ ) −→ H
− 1

2
⊥ Λ(Γ ),

introduced in Subsection 5.1.4, but where the spacesH−
1
2

‖ Λ(Γ ) andH−
1
2

⊥ Λ(Γ ) are equipped
with the non-local inner products defined in Subsection 5.3.3.

As in Subsection 5.2.1, it follows immediately from the abstract theory for the Hodge–
Dirac operator in Hilbert complexes that V[D] and W[D] are invertible for κ 6= 0. They are
Fredholm operators of index zero when κ = 0, in which case the dimension of their finite
dimensional kernel is the sum of the Betti numbers of the boundary Γ .

The expressions (5.4.13a) and (5.4.13b) should be compared with the self-adjoint operators
(5.2.3a) and (5.2.3b).

unknown nU

boundary data tU

self-adjoint op. in Ω Dt + iκ = δ + δ∗ + iκ

first-kind BIO V[D] = δ + δ∗ − iκ

bilinear form on Γ ⟪V[D]h,w ⟫Γ = (δh,w)− 1
2
,λ,t + (h, δw)− 1

2
,λ,t

−iκ(h, δw)− 1
2
,λ,t

bilinear form in Ω Aδ(U ,V ) + iκ(U ,V )Ω = (δU ,V )Ω + (U , δV )Ω

+iκ (U ,V )Ω

Fig. 5.1 Table of relations for the BVPs (5.2.2a) and (5.2.8a).
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unknown tU

boundary data nU

self-adjoint op. in Ω Dn = d+ d∗ + iκ

first-kind BIO W[D] = −d− d∗ − iκ

bilinear form on Γ ⟪W[D]g,v ⟫Γ = −(dg,v)− 1
2
,λ,n − (g,dw)− 1

2
,λ,n

−iκ(g,v)− 1
2
,λ,n

bilinear form in Ω Ad(U ,V ) + iκ(U ,V )Ω = (dU ,V )Ω + (U ,dV )Ω

+iκ (U ,V )Ω

Fig. 5.2 Table of relations for the BVPs (5.2.2b) and (5.2.8b).

5.4.2 BIEs for Hodge–Laplace BVPs

In Subsection 5.2.2, the notation was kept consistent with the abstract overview given at the
beginning of Section 5.4, so we can jump straight into calculations. It is routine to verify that
Green’s second formulas such as (5.4.1) hold for the Hodge–Laplacian in both strong and mixed
formulations, cf. [11,12,32,34]. For the mixed formulations, this can be seen directly from the fact
the bilinear forms in Subsection 5.2.3 are symmetric.

Remark 5.3 It is worth noting that the strong form of the Hodge–Laplace operator fails to admit an
identity akin to Green’s first formula:

〈−∆`U`, V`〉Ω 6= B∆(U`, V`)± ⟪Tn
∆U`,T

t
∆U`⟫Γ ,

where B∆(U`, V`) = 〈d`U`, d`V`〉Ω + 〈δ`U`, δ`V`〉Ω is the fundamental bilinear form associated
with−∆`. When it comes to the use of BIEs in scattering and transmission problems, this can be a
serious drawback. The perfect match between the boundary term that arises in domain variational
problems for the mixed Hodge–Laplacian and the product space of traces on which first-kind BIEs
are defined was crucial in [32] to establish variational formulations which coupled the two.

5.4.2.1 Representation formula for the strong Hodge–Laplacian

We have already seen in Subsection 5.3.1 that a Newton operator N[∆] = Nλ
` is available for the

Hodge–Laplacian in strong second-order formulation.
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Proposition 5.2 If U` ∈ L2Λ`(M) is compactly supported and there exists F` ∈ L2Λ`(M)
such that F`|Ω = (−∆` + λ)U`|Ω and F`|Ω+ = (−∆` + λ)U`|Ω+ , then

U` = Nλ
`F` −

(
d`−1 Id

) Sλ`−1Jn`U`K

Sλ` Jn`+1d`U`K

+

(
Id δ`+1

)Dλ
` Jt`−1δ`U`K

Dλ
`+1Jt`U`K

 .

Proof. Details of the argument are similar to those in the proof of (5.1), so we proceed faster through
the derivation. From Green’s second formula,

⟪(−∆` + λId)U`, V`⟫Ω = 〈U`, (−∆` + λId)V`〉Ω− + 〈U`, (−∆` + λId)V`〉Ω+

= 〈F`, V`〉Ω− − ⟪Tt,−
∆`
U`,T

n,−
∆`
V`⟫Γ + ⟪Tn,−

∆`
U`,T

t,−
∆`
V`⟫Γ

+ 〈F`, V`〉Ω+ + ⟪Tt,+
∆`
U`,T

n,+
∆`
V`⟫Γ − ⟪Tn,+

∆`
U`,T

t,+
∆`
V`⟫Γ

= 〈F`, V`〉M + ⟪JTt
∆`
U`K,Tn

∆`
V`⟫Γ − ⟪JTn

∆`
U`K,Tt

∆`
V`⟫Γ

for all V` ∈ D`(M). Hence, in the sense of distributions, we have

U` = Nλ
` (−∆` + λId)U` = Nλ

`F` + Nλ
`

(
Tn
∆`

)′
JTt

∆`
U`K− Nλ

`

(
Tt
∆`

)′
JTn

∆`
U`K.

Explicitly, we appeal to the integral representations provided in (5.3.8) to evaluate

Nλ
`

(
Tt
∆`

)′
(h`, h`−1)> = ⟪h`−1(y), t`−1,yδ`,y Gλ` (x, y)⟫Γ + ⟪h`, t`Gλ` ⟫Γ

= d`−1,x⟪h`−1, t`−1Gλ`−1⟫Γ + ⟪h`, t`Gλ` ⟫Γ
= d`−1Sλ`−1(h`−1) + Sλ` (h`),

and

Nλ
`

(
Tn
∆`

)′
(g`, g`−1)> = ⟪g`−1, n`Gλ` ⟫Γ + ⟪g`(y), n`+1,yd`,yGλ` (x, y)⟫Γ

= ⟪g`−1, n`Gλ` ⟫Γ + δ`+1,x⟪g`, n`+1Gλ`+1⟫Γ
= Dλ

` (g`−1) + δ`+1Dλ
`+1(g`),

where we have used the identities stated in (5.3.4) to proceed.
We have arrived at the representation formula

U` = Nλ
`F` − d`−1Sλ`−1Jn`U`K− Sλ` Jn`+1d`U`K + Dλ

` Jt`−1δ`U`K + δ`+1Dλ
`+1Jt`U`K.

ut

In the representation formula of Proposition 5.2, the boundary potentials

SL[∆] : T n
∆(Γ )→ HΛ`(∆,Ω) and DL[∆] : T t

∆(Γ )→ HΛ`(∆,Ω)
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defined by

SL[∆](h`−1, h`)
> = d`−1Sλ`−1(h`−1) + Sλ` (h`),

DL[∆](g`−1, g`)
> = Dλ

` (g`−1) + δ`+1Dλ
`+1(g`),

play the roles of single and double layer for the Hodge–Laplacian in strong form.
Once again, the jump relations for these potentials are obtained from those of the atomic potentials

stated in Lemma 5.7. However, unlike for the Hodge–Dirac operator, for which the calculations
were direct, we now need to appeal to Lemma 5.6. For example,

JTn
∆KSL[∆](h`−1, h`)

> =

 Jn`Kd`−1Sλ`−1(h`−1) + Jn`KSλ` (h`)

Jn`+1d`Kd`−1Sλ`−1(h`−1) + Jn`+1d`KSλ` (h`)

 =

h`−1

h`


simply follows from Lemma 5.7 because d2 = 0, but we must evaluate in

JTt
∆KSL[∆](h`−1, h`)

> =

Jt`−1δ`Kd`−1Sλ`−1(h`−1) + Jt`−1δ`KSλ` (h`)

Jt`Kd`−1Sλ`−1(h`−1) + Jt`KSλ` (h`)


the jump Jt`−1δ`Kd`−1Sλ`−1, which we haven’t encountered before. To show that it vanishes, we
use the fact that the atomic potential satisfies the equation in the interior and exterior domains to
compute

Jt`−1δ`Kd`−1Sλ`−1 = −d`−2Jt`−1δ`−1KSλ`−1 − λJt`−1KSλ`−1 = 0.

The other jump relations are obtained similarly.

5.4.2.2 BIOs for the strong formulation of the Hodge–Laplacian

We want to find explicit expressions for the first-kind BIOs

V[∆] = {Tt
∆}SL[∆] : Hn

∆(Γ ) −→ H t
∆(Γ ),

W[∆] = {Tn
∆}DL[∆] : H t

∆(Γ ) −→ Hn
∆(Γ ).

Once again, we work under the duality pairings on the left of the variational problems (5.4.5a)
and (5.4.5b), which allows us to combine the “integration by parts trick” with the commutative
relations of Lemma 5.5. Starting with V[∆], we evaluate using Lemma 5.5 (terms in green and
blue), Lemma 5.6 (terms in blue) and (5.1.11) (terms in red) that

Tt
∆SL[∆](h`−1, h`)

>

=

t`−1δ`d`−1Sλ`−1h`−1 + t`−1δ`S
λ
`h`

t`d`−1Sλ`−1h`−1 + t`S
λ
`h`
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=

−d`−2t`−2Sλ`−2δ`−1h`−1 − λt`−1Sλ`−1h`−1+t`−1Sλ`−1δ`h`

d`t`−1Sλ`−1h`−1 + t`S
λ
`h`

 ,

from which we can further obtain

⟪Tt
∆SL[∆](h`−1, h`)

>, (w`−1, w`)
>⟫Γ

= −⟪t`−2Sλ`−2δ`−1h`−1, δ`−1w`−1⟫Γ − λ⟪t`−1Sλ`−1h`−1, w`−1⟫Γ
+⟪t`−1Sλ`−1δ`h`, w`−1⟫Γ + ⟪t`−1Sλ`−1h`−1, δ`w`⟫Γ
+⟪t`S

λ
`h`, w`⟫Γ

= − (δ`−1h`−1, δ`−1w`−1)− 1
2
,λ,t − λ (h`−1, w`−1)− 1

2
,λ,t

+ (δ`h`, w`−1)− 1
2
,λ,t + (h`−1, δ`w`)− 1

2
,λ,t

+ (h`, w`)− 1
2
,λ,t

(5.4.14)

using integration by parts.
Similarly for W[∆], evaluating

Tn
∆`

DLλ` [∆](g`−1, g`)
>

=

 n`D
λ
` g`−1 + n`δ`+1Dλ

`+1g`

n`+1d`D
λ
` g`−1 + n`+1d`δ`+1Dλ

`+1g`



=

 n`D
λ
` g`−1−δ`n`+1Dλ

`+1g`

−n`+1Dλ
`+1d`−1g`−1−n`+1δ`+2d`+1Dλ

`+1g` − λn`+1Dλ
`+1g`



=

 n`D
λ
` g`−1−δ`n`+1Dλ

`+1g`

−n`+1Dλ
`+1d`−1g`−1−δ`+1n`+2Dλ

`+2d`g` − λn`+1Dλ
`+1g`


eventually leads to

⟪Tn
∆`

DLλ` [∆](h`−1, h`)
>, (v`−1, v`)

>⟫Γ
= (g`−1, v`−1)− 1

2
,λ,n − (g`, d`−1v`−1)− 1

2
,λ,n

− (d`−1g`−1, v`)− 1
2
,λ,n − (d`g`, d`v`)− 1

2
,λ,n

− λ (g`, v`)− 1
2
,λ,n .

(5.4.15)
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We conclude from (5.4.14) and (5.4.15) that the first-kind boundary integral operators
V[∆] and W[∆] associated with the direct first-kind boundary integral equations (5.4.4a)
and (5.4.4b) are zero-order perturbations of Hodge–Laplace operators in the trace de Rham
complexes equipped with the non-local inner products introduced in Subsection 5.3.3. More
precisely, in the same sense as (5.4.13a) and (5.4.13b), we have

V[∆] =

−δ
∗
`−1δ`−1 − λId δ`

δ∗` Id

 , (5.4.16a)

W[∆] =

 Id −d∗`

−d`−1 −d∗`d` − λId

 . (5.4.16b)

The results of the abstract theory of Hodge–Laplace operators in Hilbert complexes is
therefore available to analyze the BIOS. When λ > 0, V[∆] and W[∆] are invertible. They
are Fredholm operators of index zero when λ = 0, in which case the dimension of their finite
dimensional kernel is the same as the Betti number of corresponding order on the boundary.

The expressions (5.4.16a) and (5.4.16b) should be compared with the self-adjoint operators
(5.2.28a) and (5.2.28b), while the bilinear forms (5.4.14) and (5.4.15) should be compared with the
bilinear forms (5.2.25) and (5.2.26).

5.4.2.3 Representation formula for the mixed-order Hodge–Laplacian

Similarly as for the Hodge–Dirac operator, we can build a fundamental solution for the mixed-order
Hodge–Laplacian using the one available for the Hodge–Laplacian in strong formulation. Notice
that −d`−2δ`−1 − λId δ`

d`−1 Id

M =

−d`−2δ`−1 − λId δ`

d`−1 Id


−Id δ`

d`−1 δ`+1d` + λ Id



=

−∆` + λId 0

0 −∆` + λId

 .

Moreover, integrating by parts after using the commutative relations (5.3.4) verifies that the com-
mutation property



177−d`−2δ`−1 − λId δ`

d`−1 Id


Nλ

`−1 0

0 Nλ
`

 =

Nλ
`−1 0

0 Nλ
`


−d`−2δ`−1 − λId δ`

d`−1 Id


holds in the sense of distributions. We conclude that

N[M] =

−d`−2δ`−1 − λId δ`

d`−1 Id


Nλ

`−1 0

0 Nλ
`


is a fundamental solution for the Hodge–LaplacianM in mixed formulation.

A similar fundamental solution can be designed for R, but since the following development is
mirrored for the mixed formulation involving R, we will focus our attention onM.

Proposition 5.3 If (U`−1, U`)
> ∈ L2Λ`−1(M)×L2Λ`(M) is compactly supported and there

exists (F`−1, F`)
> ∈ L2Λ`−1(M) × L2Λ`(M) such that (F`−1, F`)

>|Ω = M(U`−1, U`)
>|Ω

and (F`−1, F`)
>|Ω+ = M(U`−1, U`)

>|Ω+ , thenU`−1

U`

 =

−d`−2δ`−1 − λId δ`

d`−1 Id


(Nλ

`−1F`−1

Nλ
`F`



−

 0

Dλ
` Jt`−1U`−1K + δ`+1Dλ

`+1 Jt`U`K

+

 Sλ`−1 Jn`U`K

Sλ` Jn`+1d`U`K


)

Proof. As before, it follows from Green’s second formula thatU`−1

U`

 =

−d`−2δ`−1 − λId δ`

d`−1 Id


(Nλ

`−1F`−1

Nλ
`F`



−

Nλ
`−1 0

0 Nλ
`

 (Tn
M)′ JTt

M(U`−1, U`)
>K
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+

Nλ
`−1 0

0 Nλ
`

(Tt
M

)′ JTn
M(U`−1, U`)

>K

)
.

Explicitly, we evaluateNλ
`−1 0

0 Nλ
`

 (Tn
M)′

g`−1

g`

 =

 0

⟪g`−1, n`Gλ` ⟫Γ + ⟪g`, n`+1d`Gλ` ⟫Γ



=

 0

Dλ
` g`−1 + δ`+1Dλ

`+1g`


and Nλ

`−1 0

0 Nλ
`

(Tt
M

)′
h`−1

h`

 =

⟪h`−1, t`−1Gλ`−1⟫Γ

⟪h`, t`Gλ` ⟫Γ

 =

Sλ`−1h`−1

Sλ`h`

 .

ut

In the representation formula of Proposition 5.3, the potentials

SL[M] : Hn
M(Γ )→ dom(M) and DL[M] : H t

M(Γ )→ dom(M)

defined by

SL[M]

h`−1

h`

 =

−d`−2δ`−1 − λId δ`

d`−1 Id


Sλ`−1h`−1

Sλ`h`

 ,

DLλ` [M]

g`−1

g`

 =

−d`−2δ`−1 − λId δ`

d`−1 Id


 0

Dλ
` g`−1 + δ`+1Dλ

`+1g`



=

 δ`D
λ
` g`−1

Dλ
` g`−1 + δ`+1Dλ

`+1g`

 ,

play the roles of single and double layer potentials for the Hodge–Laplace operator in mixed form
M.
Jump relations for these boundary potentials are obtained using the same techniques as in the

previous sections.
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5.4.2.4 Boundary integral operators for the mixed Hodge–Laplacian

We now derive explicit expressions for the first-kind BIOs

V[M] = {Tt
M}SL[M] : Hn

M(Γ ) −→ H t
M(Γ ),

W[M] = {Tn
M}DL[M] : H t

M(Γ ) −→ Hn
M(Γ ).

After evaluating

{Tt
M}SL[M](h`−1, h`)

>

=

−d`−2t`−2S`−2δ`−1h`−1 − λt`−1Sλ`−1h`−1 + t`−1Sλ`−1δ`h`

d`−1t`−1Sλ`−1h`−1 + t`S
λ
`h`

 ,

we find that

⟪V[M](h`−1, h`)
>, (w`−1, w`)

>⟫Γ
= − (δ`−1h`−1, δ`−1w`−1)− 1

2
,λ,t − λ (h`−1, w`−1)− 1

2
,λ,t

+ (δ`h`, w`−1)− 1
2
,λ,t + (h`−1, δ`w`)− 1

2
,λ,t

+ (h`, w`)− 1
2
,λ,t .

(5.4.17)

Similarly, evaluating

Tn
MDLλ` [M](g`−1, g`)

> = Tn
M

 δ`D
λ
` g`−1

Dλ
` g`−1 + δ`+1Dλ

`+1g`



=

 n`D
λ
` g`−1 + n`δ`+1Dλ

`+1g`

n`+1d`D
λ
` g`−1 + n`+1d`δ`+1Dλ

`+1g`



=

 n`D
λ
` g`−1 − δ`n`+1Dλ

`+1g`

−n`+1Dλ
`+1d`−1g`−1 + n`+1δ`+2Dλ

`+2d`g` − λn`+1Dλ
`+1g`



=

 n`D
λ
` g`−1 − δ`n`+1Dλ

`+1g`

−n`+1Dλ
`+1d`−1g`−1−δ`+1n`+2Dλ

`+2d`g` − λn`+1Dλ
`+1g`


leads to
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⟪W[M](g`−1, g`)
>, (v`−1, v`)

>⟫Γ
= (g`−1, v`−1)− 1

2
,λ,n − (g`, d`−1v`−1)− 1

2
,λ,n

− (d`−1g`−1, v`)− 1
2
,λ,n − (d`g`, d`v`)− 1

2
,λ,n

− λ (g`, v`)− 1
2
,λ,n .

(5.4.18)

We conclude from (5.4.17) and (5.4.18) that the first-kind boundary integral operators
V[M] and W[M] associated with the direct first-kind boundary integral equations (5.4.4a)
and (5.4.4b) are zero-order perturbations of Hodge–Laplace operators in the trace de Rham
complexes equipped with the non-local inner products introduced in Subsection 5.3.3. More
precisely, in the same sense as (5.4.13a), (5.4.13b), (5.4.16a) and (5.4.16b) we have

V[M] =

−δ
∗
`−1δ`−1 − λId δ`

δ∗` Id

 , (5.4.19a)

W[M] =

 Id −d∗`

−d`−1 −d∗`d` − λId

 . (5.4.19b)

The results of the abstract theory of Hodge–Laplace operators in Hilbert complexes is
therefore available to analyze the BIOS. When λ > 0, V[∆] and W[∆] are invertible. They
are Fredholm operators of index zero when λ = 0, in which case the dimension of their finite
dimensional kernel is the same as the Betti number of corresponding order on the boundary.

Importantly, we have unveiled that

V[∆] = V[W],

W[∆] = W[W].

Notice that in themixed formulation, the tangential trace was relieved of differential operators,
but these were account for in the factor−d`−2δ`−1 − λId δ`

d`−1 Id


appearing in the fundamental solution, which should be compared with (5.4.19a) and the
mixed Hodge–Laplacian R.
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unknown Tn
∆,T

n
M, Tn

R

boundary data Tt
∆,T

t
M, Tt

R

self-adjoint operator in Ω Rt =

δ
∗
` δ` + λ δ`+1

δ∗`+1 −Id



first-kind BIOs V[M] = V[∆] =

−δ
∗
`−1δ`−1 − λId δ`

δ∗` Id


bilinear form on Γ ⟪V[M](h`−1, h`)

>, (w`−1, w`)
>⟫

= − (δ`−1h`−1, δ`−1w`−1)− 1
2
,λ,t − λ (h`−1, w`−1)− 1

2
,λ,t

+(δ`h`, w`−1)− 1
2
,λ,t + (h`−1, δ`w`)− 1

2
,λ,t

+(h`, w`)− 1
2
,λ,t

bilinear form in Ω Bδ
(
(U`, U`+1)

>, (V`, V`+1)
>
)

= (δ`U`, δ`V`)Ω + λ (U`, V`)Ω + (δ`+1U`+1, V`)Ω

+(U`, δ`+1V`+1)Ω − (U`+1, V`+1)Ω

Fig. 5.3 Table of relations for the BVPs (5.2.17a), (5.2.20a), (5.2.22a) and (5.2.27b).

5.5 Conclusion

We have seen in Subsection 5.4.2 that while the correspondence between the BVPs for the Hodge–
Dirac operator in Ω and its first-kind BIOs on Γ displays a striking simplicity and elegance,
the correspondence claimed in the introduction for the Hodge–Laplacian hid that the first-kind
BIOs on Γ turn out to be Hodge–Laplace operators in mixed formulation. However, far from
undermining the relevance of the connections revealed by boundary integral exterior calculus, this
interesting complication sheds new light on the structure of the so-called “compound” traces for
the Hodge–Laplacian, which appear naturally from integration by parts. In mixed formulation, the
Hodge–Laplacian in Ω can be represented by an operator matrix acting on a product space. The
associated BIOs are then also Hodge–Laplace operators in mixed formulation acting on products
of trace spaces. But it is clear that such a correspondence cannot materialize for the second-order
strong formulation of the Hodge–Laplacian: we cannot expect to obtain an Hodge–Laplacian on
the boundary in strong formulation, because such an operator only acts on forms of a given order.
In fact, if the BIOs associated with the strong formulation are to be Hodge–Laplace operators at
all, then they must be in mixed formulation, because they operate on boundary data that lives in
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unknown Tt
∆,T

t
M, Tt

R

boundary data Tn
∆,T

n
M, Tn

R

self-adjoint operator in Ω Mn =

−Id d∗`

d`−1 d∗`d` + λ



first-kind BIO W[M] = W[∆] =

 Id −d∗`

−d`−1 −d∗`d` − λId


bilinear form on Γ ⟪W[M](g`−1, g`)

>, (v`−1, v`)
>⟫Γ

= (g`−1, v`−1)− 1
2
,λ,n − (g`, d`−1v`−1)− 1

2
,λ,n

− (d`−1g`−1, v`)− 1
2
,λ,n − (d`g`, d`v`)− 1

2
,λ,n

−λ (g`, v`)− 1
2
,λ,n

bilinear form in Ω Bd

(
(U`−1, U`)

>, (V`−1, V`)
>
)

= (d`U`,d`V`)Ω + λ (U`, V`)Ω + (d`−1U`−1, V`)Ω

+(U`,d`V`−1)Ω − (U`−1, V`−1)Ω

Fig. 5.4 Table of relations for the BVPs (5.2.17b), (5.2.20b), (5.2.22b) and (5.2.27a).

product spaces. It turns out that first-kind BIOs for the Hodge–Laplacian in strong form and the
first-kind BIOs for the Hodge–Laplacian in mixed form are the same! The difference in meaning
of the solutions of the BIEs is accounted for on the right hand sides.

As a by product of our study, an exterior calculus of boundary potentials was described that eases
calculations. Recognizing the structure of the BIOs as operators in trace de Rham complexes also
enables us to harness a rich and powerful literature on Hilbert complexes for their analysis.
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Appendix A
Boundary Element Galerkin Discretization for Hodge–Dirac in 3D

A.1 Boundary element method

We will assume for simplicity that Ω is a Lipschitz polyhedron, so that no variational crime is
committed when triangulating its surface in the creation of a piecewise flat, shape-regular mesh Γh.
We follow [5, Sec. 4.1] in our choice of piecewise polynomial boundary element spaces. They are
defined in Figure A.1.

S1,0(Γh) continuous piecewise linear scalar functions

S0,−1(Γh) piecewise constant scalar functions

E0(Γh) piecewise linear tangential surface vector fields
with continuous tangential components across interelement edges

Fig. A.1 Choice of boundary element spaces for the Galerkin discretization of Appendix A.1.

These boundary element spaces are involved in the discrete surface de Rham complex

0 // S1,0(Γh)
∇Γ // E0(Γh)

curlΓ // S0,−1(Γh) // 0. (A.1)

Following Section 3.8, we view

Hh
T := S1,0(Γh)× E0(Γh)× S0,−1(Γh) (A.2)

as a Hilbert space equipped with the non-local inner products (3.5.14a) and (3.5.14b). Accordingly,
orthogonal complements indicated by ⊥ are taken within Hh

T throughout Appendix A.1. We write
VhT to speak of the same space of functions, but equipped with the graph inner products associated
with the closed, everywhere defined, Fredholm-nilpotent linear operator

dhT := dT

∣∣
VhT

: VhT → VhT. (A.3)
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LetK = kerD. Similarly as in [12, Sec. 6], it can be verified using a collection of suitably chosen
test functions, that the kernel of the bilinear form

BhT(
−→
b h,
−→
d h) := BT

∣∣
HhT×H

h
T
(
−→
b h,
−→
d h) = (dhT

−→
b h,
−→
d h)−1/2,T + (

−→
b h,d

h
T

−→
d h)−1/2,T (A.4)

is Xh = Xh
0 × Xh

1 × Xh
2 , involving the discrete harmonic spaces

Xh
0 = K0, Xh

1 = (∇ΓS
1,0(Γh))

⊥ ∩ ker curlΓ and Xh
2 = (curlΓE0(Γh))

⊥ (A.5)

of the complex (A.1).
As pointed out in [5, Sec. 4], [1, Chap. 5] and [8, Sec. 3], notice that in general Xh 6⊂ K, because

in the discrete setting, orthogonality is taken over smaller spaces, i.e. ∇ΓS
1,0(Γh) ( ∇ΓH

1
2 (Γ )

and curlΓE0(Γh) ( curlΓH−
1
2 (curlΓ , Γ ). As a consequence, even though

S1,0(Γh) ⊂ V
1
2 (Γ ), S0,−1(Γh) ⊂ V −

1
2 (Γ ) and E0(Γh) ⊂ V−

1
2 (curlΓ , Γ ), (A.6)

the discrete mixed variational problem of finding a pair (bh,
−→p h) ∈ VhT × Xh satisfying

BhT
(−→

b h,
−→
d h

)
+
(−→p h,

−→
d h

)
−1/2,T

= `R(dh), ∀
−→
d h ∈ VhT,(−→

b h,
−→q h

)
−1/2,T

= 0, ∀−→q h ∈ Xh,
(MBVRh)

is not a conforming Galerkin discretization for (MBVR). Alternatively, while it is true that
−→
b h ∈ VhT : BT(

−→
b h,
−→
d h) = `(

−→
d h), ∀

−→
d h ∈ VhT, (BVRh)

is conforming for (BVR), it generally comes at the price of an inconsistent right-hand side.
Nevertheless, it is an important result of algebraic topology that the dimension of Xh remains

equal to the dimension of K independently h. In particular, the dimensions Xh
0 = β0, Xh

1 = β1 and
Xh

2 = β2 are the Betti numbers of the surface Γ , despite discretization [13, Chap. 4].

A.1.1 h-uniform stability

In this setting, a double inf-sup condition for the bilinear form on the left-hand side of (MBVRh)
is freely granted by the abstract theory [8, Thm. 2.4]: ∃ γh > 0 such that for all non-vanishing
bh ∈ Hh

T and −→p h ∈ Xh, one can find dh ∈ VhT and −→q h ∈ Xh such that

BhT(
−→
b h,
−→
d h)+(−→p h,

−→
d h)VT

+(
−→
b h,
−→q h)−1/2,T ≥ γh( ‖

−→
b h‖HT

+‖−→p h‖VT
)+( ‖

−→
d h‖HT

+‖−→q h‖VT
),

(A.7)
where γh only depends on the parameter h of the mesh through the constant in the Poincaré
inequality associated with the discrete complex (A.1), cf. [8, Sec. 3], [1, Chap. 5].

Therefore, it is sufficient for a proof of h-uniform stability, to show that there exists a constant
C > 0, depending only on Γ and the shape-regularity of Γh, such that

‖
−→
b h‖−1/2,T ≤ C ‖dT

−→
b h‖−1/2,T, ∀

−→
b h ∈

(
ker dhT

)⊥
, (A.8)
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because this guarantees that γh = γ is independent of the discretization.
In finite element exterior calculus literature, a great deal of work is devoted to the design of

bounded commuting projections [4, 6, 10, 11], which is a general approach to this problem. P.
Leopardi and A. Stern rely on their existence in the discretization of their abstract theory for
the Hodge-Dirac operator [8]. In the current setting, we are only aware of the existence of an
interpolation operator Πh : dom(Πh)→ E0(Γh) satisfying the commuting diagram property

curlΓ ◦Πhu = Qh ◦ curlΓu, u ∈ H−
1
2 (curlΓ , Γ ) ∩ dom(Πh), (A.9)

where Qh is an L2(Γ )-orthogonal projection onto a suitable space of piecewise polynomial discon-
tinuous functions on the boundary [3, Sec.8], and it fails to be bounded H−

1
2 (curlΓ , Γ ).

Fortunately, (A.7) also supplies a discrete inf-sup condition for the bilinear form BhT of (BVRh)
in the orthogonal complement X⊥h , and this result can evidently also be obtained by approaching
the problem from the point of view of Babuska-Brezzi theory.

This perspective is fruitful, because it points to the argumentation in the recent work of X. Claeys
and R. Hiptmair, in which they use (A.9) to prove that

‖wh‖− 1
2
,T . ‖curlΓwh‖− 1

2
, ∀bh ∈ (ker curlΓ

∣∣
E0(Γh)

)⊥, (A.10)

with a constant that only depends on Γ and the shape-regularity of Γh. The inequality directly
follows from [5, Lem. 11] and the injectivity of curlΓ in the orthogonal complement of its kernel.

This proves (A.8) directly, because it simply remains to establish an analogous inequality for
the surface gradient, and this is a particular case of the Poicaré inequality that holds in the infinite
dimensional case! Recall from (A.5) thatXh

0 = K0 and the constant involved in (3.9.4) only depends
on Γ .

Lemma A.1 The constant γ > 0 entering (A.7) depends only on Γ and the shape-regularity of Γh.

Proposition A.1 Both the bilinear form associated with the left-hand side of (MBVRh) and the
restriction of BhT to the orthogonal complement X⊥h of its kernel are h-uniformly stable.

A.1.2 Gap-based a priori Galerkin error estimate

According to Proposition A.1, the Galerkin discretization proposed in (MBVRh) is h-uniformly
well-posed, but as we’ve previously mentioned, it isn’t conforming for (MBVR).
By the same token, we emphasize that since the consistency result of Proposition 3.6 does not

carry to the discrete setting, existence of a solution to (BVRh) is not guaranteed in general. Yes,
the bilinear form BhT is h-uniformly stable in the orthogonal complement of its kernel, and so the
restriction of (BVR) to X⊥h possesses a unique solution. But again, since X⊥h 6⊂ K⊥, the Galerkin
formulation obtained upon restriction is not conforming either.

This calls for a gap-based a priori estimate based on a variant of the second Strang lemma,
cf. [2, Chap. 3], [5, App. A], [1, Chap. 5]. Recall that the gap between two subspaces V,W ⊂ X
of a normed space X is defined by [7, Chap. 4]

gap (V,W ) := sup
v∈V \{0}

1

‖v‖X
inf
w∈W
‖v − w‖X . (A.11)
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Theorem A.1 Let (
−→
b ,−→p ) ∈ VT×K be the unique solution to (MBVR). If (bh,

−→p h) ∈ VhT×Xh is
the unique solution to (MBVRh), then

‖
−→
b −
−→
b h‖VT +‖−→p −−→p h‖WT

. inf−→
d h∈VhT

‖
−→
b −
−→
d h‖+ inf−→q h∈Xh

‖−→p −−→q h‖WT
+gap(Xh,K), (A.12)

with a constant depending only on Γ , the shape regularity of Γh and the norm of
−→
b . Moreover, if

−→a ∈ HR satisfies (CCR) and
−→
b is the unique solution to (BVR) such that b ⊥ K, then the unique

solution
−→
b h of the restriction of (BVRh) to X⊥h satisfies (A.12) with −→p = −→q h = 0.

The takeaway is that Galerkin solutions of (MBVRh) and of the restriction of (BVRh) to X⊥h are
quasi-optimal up to the discrepancy between the harmonic spaces K and Xh. These both have the
same dimension, c.f. [13, Chap. 4], [9, Sec. 4] and [5]—but exhibit a non-zero gap. The rate of
convergence of gap(Xh,K)→ 0 as h→ 0 depends on the regularity of the harmonic vector-fields
in K and the quality of local mesh refinement near corners [5, Rmk. 7].

A.2 Numerical experiments

In this section, we supply empirical evidence of the theory’s correctness by performing the following
numerical experiment: we compute the dimension of the Galerkin matrices for BhT assembled over
compact surfaces and verify that it is equal to the sum of their Betti numbers.

The numerical experiments are conducted using the open software GYPSILAB (version 0.61)
developed at Institut Polytechnique de Paris by Matthieu Aussal, as well as standard MATLAB
libraries.

A.2.1 Computing Betti numbers

Let {s1
1, ..., s

1
n}, {e0

1, ..., e
0
m} and {s0

1, ..., s
0
q} be bases for S1,0(Γh), S0,−1(Γh) and E0(Γh), respec-

tively. Then, dim(VhT) = N with N = n+m+ q. We have produced the Galerkin matrix

BN×N =

 0n×n An×m 0
(A>)m×n 0m×m Bm×q

0q×n (B>)q×m 0q×q

 (A.1)

of BhT, where

Aij := (e0
i ,∇Γ s

1
j)− 1

2
,R and Bij := (s0

i , curlΓe0
j)− 1

2
, (A.2)

over different surfaces: the sphere, the torus and disjoint unions of those. An example of such a
union mesh is provided in Figure A.2. The dimensions of the kernels were simply computed as
the size of the null-space matrix provided by MATLAB’s funtion null. In every cases, the correct
dimension was obtained, independently of h: 2 for the sphere, 4 for the union of two spheres, 4 for
the torus, 6 for the union of a sphere and a torus, etc.
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Fig. A.2 The discrete surface Γh is a coarse triangular meshing of the disjoint union of a sphere and a torus.
The sum of the Betti numbers β0 + β1 + β2 of the sphere is 1 + 0+ 1 = 2, while it is 1 + 2+ 1 = 4 for the
torus. We assert numerically that kerBhT = 6, the sum of the Betti numbers Γh.
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Appendix B
Generalized Lorenz Gauge in Vector Potential Electromagnetics

It was brought to my attention by Stefan Kurz that from a physical point of view, the gauge proposed
in (1.1.1b) of Chapter 1 does not respect the units of the physical objects it claims to model. This
appendix serves to resolve the issue. The change in the equations entering the transmission problem
stated in (1.1.3) are inconsequential to the development of Chapter 1, whose setting is general
enough to cover the corrected model. Nevertheless, it is meaningful to briefly comment on them
for completeness.

In accordance with the SI base units, we write ‘s’ for seconds, ‘m’ for meters, ‘A’ for ampere
and ‘V” for volts. We indicate in square brackets when we are calculating with units. Recall that

[U] =
Vs

m
, [V ] = V, [ε] =

sA

mV
, [ω] =

1

s
, and [µ] =

sV

mA
. (B.1)

Following W.C. Chew [1, Sec. 2], we replace (1.1.1b) by the generalized Lorenz gauge

div (εU) + iωχV = 0, (B.2)

in which the parameter χ has the appropriate units. From (B.1), we must have

[χ] = [div(εU)]/[ωV ] =
s[ε]A[µ]

mV
= [ε]2[µ], (B.3)

were we have used that [U] = A[µ].
Eliminating the scalar potential in (1.1.1a) using (B.2) leads to the equation

curl (µ−1(x) curl U)− ε(x)∇χ−1(x) div (ε(x)U)− ω2ε(x) U = J. (B.4)

It is straightforward to verify that if (B.3) holds, then the units on the left-hand side of (B.4) respect
the units [J] = m−2A of the source current.
A natural choice is χ = ε2µ. Then, in the exterior domain, where the material properties are

constant, (B.4) reduces to

curl curl U−∇ divU− µ0ω
2U = 0. (B.5)

Notice that (B.5) is even simpler than generalized Hoge–Helmholtz operator studied in Chapter 1
which involved η. In the interior domain, χ is absorbed in the bilinear form Bκ.
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