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Abstract

This thesis deals with graphs having geometric representations. On
one hand we consider graphs whose vertices can be mapped to geo-
metric objets in an Euclidean space (for instance disks in the plane),
such that two vertices are adjacent if and only if the corresponding
objects intersect. Those are called “intersection graphs”, and if all
objects are constrained to be, e.g. disks, then they are referred to
as “disk graphs”. On the other hand we study graphs that can be
represented in the plane such that vertices are mapped to points and
edges to straight-line segments, such that no two edges cross. Those
are called “plane geometric graphs”. In this thesis, we also have ad-
ditional conditions. We consider for instance convex partitions, for
which the union of the faces is equal to the convex hull of the points
and each bounded face is convex. As a special case, we also study
triangulations, for which we additionally require that every bounded
face be a triangle.

For intersection graphs, we study the problem of finding a maximum
clique in disk-like intersection graphs. In 1990, a seminal paper by
Clark, Colbourn and Johnson showed that maximum clique can be
solved in polynomial time in unit disk graphs. However, the com-
plexity of maximum clique in disk graphs is still unknown. Recently,
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Bonamy et al. showed the existence of an EPTAS for maximum
clique in disk graphs. This leads to the following questions: Are
there superclasses of unit disk graphs in which maximum clique can
be solved in polynomial time? Are there superclasses of disk graphs
for which there is an EPTAS? Are there related classes for which we
can show NP-hardness? Concerning the first question, we show that
maximum clique can be solved in polynomial time in intersection
graphs of translates of a fixed bounded convex set. Furthermore, we
define a superclass C of both unit disk graphs and interval graphs,
where C is defined as the intersection graph class of some specified
sets, for which there exists a polynomial time algorithm. For the
second question, we prove the existence of an EPTAS for homoth-
ets of a fixed bounded and centrally symmetric convex set. We also
give partial results toward showing the existence of an EPTAS for
intersection graphs of convex pseudo-disks. Finally, for the third
question, we show that maximum clique is NP-hard, and even APX-
hard, in intersection graphs of unit disks and axis-parallel rectangles.

Concerning triangulations and convex partitions, we study two prob-
lems that were previously only considered under the assumption that
no three of the n input points are on a line. For triangulations, we
extend a result by Wagner and Welzl and show that the bistellar flip
graph is (n−3)-connected. For convex partitions, we provide the first
approximation algorithms for computing convex partitions with as
few faces as possibles when three points or more may lie on a line. In
particular, we give an O(log(OPT ))-approximation algorithm run-
ning in time O(n8), where OPT denotes the size of a minimum
solution. We additionally provide an O(

√
n log(n))-approximation

algorithm running in time O(n2). We also show that minimising the
number of faces is NP-hard.



Résumé

Cette thèse a pour sujet les graphes qui admettent des représenta-
tions géométriques. D’une part, nous considérons des graphes dont
on peut associer les sommets avec des objets géométriques dans un
espace euclidien (par exemple des disques dans le plan), de sorte
que deux sommets soient adjacents si et seulement si les objets
correspondants s’intersectent. Ces graphes sont appelés “graphes
d’intersection”, et si tous les objets sont, par exemple, des disques,
on parle alors de “graphes de disque”. D’autre part, nous étudions
des graphes qui peuvent être représentés dans le plan, de sorte que
les sommets soient représentés par des points, les arêtes par des seg-
ments, et que les arêtes ne se croisent pas. Ceux-ci sont appelés
“graphes géométriques planaires”. Dans cette thèse, nous posons des
restrictions additionnelles. Nous considérons par exemple les par-
titions convexes, pour lesquelles chaque face bornée doit être con-
vexe. Nous étudions aussi un cas particulier, les triangulations, pour
lesquelles il faut également que chaque face bornée soit un triangle.

Concernant les graphes d’intersection, nous considérons le problème
de la clique maximale dans des graphes d’intersection d’objets sim-
ilaires à des disques. En 1990, un papier fondateur de Clark, Col-
bourn et Johnson montra que le problème de la clique maximum
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peut être résolu en temps polynomial dans les graphes de disque-
unité. Cependant, la complexité du problème de la clique maximum
dans les graphes de disque reste inconnue. Récemment, Bonamy
et al. ont montré l’existence d’un EPTAS (schéma d’approximation
en temps polynomial) pour la clique maximale dans les graphes de
disque. Les questions suivantes viennent naturellement : existe-t-il
des superclasses des graphes de disque-unité pour lesquelles le prob-
lème de la clique maximale peut être résolu en temps polynomial
? Existe-t-il des superclasses des graphes de disque pour lesquelles
le problème peut être approximé par un EPTAS ? Existe-t-il des
classes similaires pour lesquelles l’on peut montrer que le problème
est NP-difficile ? Pour la première question, nous montrons que
le problème de la clique maximale peut être résolu en temps poly-
nomial dans les graphes d’intersection de translatés d’un ensemble
convexe fixé. De plus, il existe une superclasse C des graphes de
disque et des graphes d’intervalle, où C est définie comme la classe
de graphes d’intersection de certains ensembles, pour laquelle il ex-
iste un algorithme polynomial. Concernant la seconde question, nous
montrons l’existence d’un EPTAS pour les homothètes d’un ensem-
ble fixé, borné et centralement symétrique. Nous donnons aussi
des résultats partiels au sujet de l’existence d’un EPTAS pour les
graphes d’intersection de pseudo-disques convexes. Enfin, concer-
nant la troisième question, nous montrons que le problème de la
clique maximum est NP-difficile, et même APX-difficile, dans les
graphes d’intersection de disques unités et de rectangles dont les
côtés sont parallèles aux axes.

Au sujet des triangulations et des partitions convexes, nous étudions
deux problèmes qui avaient été préalablement considérés seulement
sous la condition que pour tout triplet de points, les trois points
ne soient pas alignés. Concernant les triangulations, nous éten-
dons un résultat de Wagner et Welzl et montrons que le graphe des
flips bistellaire est (n − 3)-connecté. Pour les partitions convexes,
nous donnons les premiers algorithmes d’approximation pour trouver
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des partitions convexes avec aussi peu de faces que possible lorsque
trois points ou plus peuvent être alignés. En particulier, nous don-
nons un algorithme réalisant une O(log(OPT ))-approximation en
temps O(n8), où OPT désigne la taille d’une solution minimum.
De plus, nous donnons un algorithme réalisant une O(

√
n log(n))-

approximation en temps O(n2). Nous montrons aussi que minimiser
le nombre de faces est NP-difficile.
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CHAPTER 1

Introduction

The topics studied in this thesis are at the intersection between graph
theory, geometry and complexity theory. Graphs are commonly used
to represent relations between different objects. The graphs we con-
sider here originate from some geometric considerations. Those are
twofold. On one hand, we consider intersection graphs of geomet-
ric objects. There is one vertex for each object, and two vertices
are adjacent if and only if the two objects intersect. An intersec-
tion graph therefore summarises the relations between the objects
with respect to intersections. On the other hand, we study plane
geometric representations of graphs, where each vertex is mapped
to a point in an Euclidean space, a (straight-line) segment connects
the two points corresponding to a pair of adjacent vertices, and no
two segments cross. Roughly speaking, in the first scenario, the ge-
ometry related to the vertices is interesting, whereas in the second
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2 Introduction

scenario the edges are what matters. As mentioned, we refer to the
first type of graphs as intersection graphs and to the second type as
plane geometric graphs. Another interesting topic that mixes graph
theory and geometry is the one of graph drawing. In this setting,
each vertex is mapped to a point in the plane, but now edges are rep-
resented as simple curves, instead of being constrained to segments.
However, this topic is not covered in this thesis.

Concerning intersection graphs, the geometric objects we consider
in this thesis include unit disks, disks with arbitrary radii, and axis-
parallel rectangles among others. In particular, all objects consid-
ered are convex. Convexity also plays a fundamental role in the
chapters of the thesis about geometric graphs. Indeed, a part of our
results concerns convex partitions: plane geometric graphs where all
bounded faces are convex, and the union of the bounded faces is
equal to the convex hull of the vertex set (seen as a point set).

We study these topics through the lens of complexity theory. We
consider maximisation and minimisation problems, and try to find
efficient algorithms to solve them, or try to show that none exists.
In our language, “efficient” means that the algorithms run in poly-
nomial time. Under the assumption that P is not equal to NP, we
show that some problems cannot be solved, or even approximated,
in polynomial time.

1.1 Definitions and notations

1.1.1 Graph notations

Let G be a simple graph. We denote by V (G) the vertex set of G.
We say that two vertices are adjacent if there is an edge between
them, otherwise they are independent. If v′ is adjacent to v, for v
and v′ in V (G), we also say that v′ is a neighbour of v. For a vertex
v in V (G), the set N (v) denotes its neighbourhood, i.e. the set of
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vertices adjacent to v.

Let H be an induced subgraph of G, meaning that V (H) is a subset
of V (G) and two vertices in V (H) are adjacent in H if and only if
they are adjacent in G. We denote by G \H the subgraph induced
by V (G) \ V (H). We denote by G the complement of G, which is
the graph with the same vertex set, but where edges and non-edges
are interchanged. A clique is a set of pairwise adjacent vertices. An
independent set is a set of pairwise non-adjacent vertices. A graph
is bipartite if its vertex set can be partitioned into two independent
sets. A graph is cobipartite if its complement is a bipartite graph.
The clique number, ω(G), is the size of a maximum clique. The
independence number, α(G), is the size of a maximum independent
set.

1.1.2 Geometric notations

Throughout the thesis we only consider Euclidean spaces with the
Euclidean distance. Let P be a point set in Rd, where d is a positive
integer. We say that P is in general position if no k + 2 points lie
on an affine subspace of dimension k, where k < d. If a point set is
not in general position, we say that it is in degenerate position. The
words “general position” are the usual way of qualifying these types
of points sets, but note that they can be misleading: Assuming that
a point set is in general position is actually a significant restriction
for many problems. Some results of this thesis illustrate perfectly
this fact.

The convex hull of P , conv(P ), is the intersection of all convex sets
that contain P . A point p in P is said to be extreme if P and P \{p}
do not have the same convex hulls. We say that P is in convex
position if all points are extreme. A point p in P is an interior
point or inner point if it lies in the interior of conv(P ). Observe that
a point may be both not extreme and not an inner point. If this
occurs, then P is in degenerate position. A point set in R2 in convex
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position is also in general position, but this does not necessarily hold
in higher dimensions.

A geometric graph is an embedding of a graph in the plane, where
each edge is realised as a straight-line segment. If the edges only meet
at vertices, we say that the embedding is plane. A convex partition
is a plane geometric graph, where each bounded face is convex, each
vertex has positive degree, and the union of the bounded faces is
equal to the convex hull of the vertex set. A triangulation is a
convex partition where each bounded face is a triangle.

Let p and p′ be two points in Rd. We denote by (p, p′) the line
going through them, and by [p, p′] the line segment with endpoints
p and p′. We denote by d(p, p′) the distance between p and p′. We
denote by Od (or simply by O when it is clear from the context)
the origin in Rd. When d = 2, we denote by Ox and Oy the x and
y-axis, respectively. For d = 3, we denote by xOy the xy-plane.

Definition 1.1. Let S be a family of subsets of Rd. We denote the
intersection graph of S by G(S). It is the graph whose vertex set is
S and where there is an edge between two vertices if and only if the
corresponding sets in S intersect.

One can easily observe that all graphs are intersection graphs of
some connected sets in R3. Let G be a graph, and let P be a set of
|V (G)| points in convex and general position in R3. Let us consider
any bijective map ϕ from V (G) to P . For v ∈ V , we define the
set sv as the union of all segments [ϕ(v), (ϕ(v) + ϕ(v′))/2], where v′

is a neighbour of v. Now observe that sv and sv′ intersect if and
only if v and v′ are adjacent. In this thesis, we consider only some
constrained types of geometrical objects, therefore all intersection
graph classes that we consider have forbidden graphs.

For a given family of objects, say unit disks, a graph is said to be a
unit disk graph if it is the intersection graph of some unit disks in
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the plane. We do likewise with all objects, e.g. disks, axis-parallel
rectangles, segments, and so on. Note that any of those are abstract
graphs. For a unit disk graph G, a representation of G is a set of
unit disks U such that G is the intersection graph of U . Likewise,
we speak of representations of disk graphs, segment graphs, and so
on. A representation is generally not unique.

A family of closed sets in the plane is a pseudo-disk arrangement if
the boundaries of any two sets intersect at most twice. In this thesis,
we consider convex pseudo-disk graphs, i.e. intersection graphs of
arrangements of pseudo-disks, where each set in the family is convex.

We name a ball of dimension d living in Rd a d-ball. Therefore 1-ball
graphs are interval graphs and 2-ball graphs are disk graphs. When
d is omitted we implicitly assume d = 3, i.e. a ball is a 3-ball.

We sometimes consider intersection graphs of two types of objects,
for instance unit disks and axis-parallel rectangles. Therefore when
we speak of an intersection graph of unit disk and axis-parallel rect-
angles, we are referring to a graph that admits a representation where
the sets in the plane can be unit disks and axis-parallel rectangles.
In general, the class of intersection graphs of two objects A and B
is a strict superclass of the union of the classes of A-graphs and
B-graphs.

1.1.3 Complexity notation

A polynomial-time approximation scheme (PTAS) for a maximisa-
tion problem is an algorithm which takes, together with its input of
size n, a parameter ε > 0 and outputs in time nf(ε) a solution of value
at least (1− ε)OPT, where OPT is the optimum value. An efficient
PTAS (EPTAS) is the same but has running time f(ε)nO(1). Note
that the existence of an EPTAS, for a problem in which the objective
value is the size of the solution k, implies an FPT algorithm in k, by
setting ε to 1 − 1

k+1 . Indeed in time f(1 − 1
k+1)n

O(1) = g(k)nO(1),
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one then obtains an exact solution. A quasi PTAS (QPTAS) is
an approximation scheme with running time npolylog n, for every
ε > 0. Less standardly, we call subexponential AS (SUBEXPAS)
an approximation scheme with running time 2n

γ for some γ < 1,
for every ε > 0. These approximation schemes can come determin-
istic or randomised. A maximisation problem Π is APX-hard if
there is a constant γ < 1 such that γ-approximating Π is NP-hard.
Unless P = NP , an APX-hard problem cannot admit a PTAS.
Ruling out a SUBEXPAS (under admittedly a stronger assumption
than P̸=NP) constitutes a sharper inapproximability than an APX-
hardness proof. For a minimisation problem, the definitions are the
same except that the minus signs are replaced by plus signs and a
minimisation problem Π is APX-hard if there is a constant γ > 1
such that γ-approximating Π is NP-hard.

1.2 Contributions

1.2.1 Clique problems

A very elegant algorithm by Clark, Colbourn and Johnson outputs
in polynomial time a maximum clique in a unit disk graph, given
with a representation [19]. Finding the complexity of computing a
maximum clique in general disk graphs (with arbitrary radii) is a
longstanding open problem. However in 2017, Bonnet et al., found
a subexponential algorithm and a quasi polynomial time approx-
imation scheme (QPTAS) for maximum clique in disk graphs [9].
The following year, Bonamy et al. extended the result to unit ball
graphs, and gave a randomised EPTAS for both settings [8]. The
current state-of-the-art about the complexity of computing a maxi-
mum clique in d-ball graphs is summarised in Table 1.1.

In order to find the complexity of maximum clique in disk graphs,
it may be helpful to find superclasses of unit disk graphs for which
maximum clique can be solved in polynomial time. Indeed, one
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unit d-ball graphs general d-ball graphs
d = 1 polynomial [39] polynomial [39]
d = 2 polynomial [19] Unknown but EPTAS [9, 8]
d = 3 Unknown but EPTAS [8] NP-hard [8]
d = 4 NP-hard [8] NP-hard [8]

Table 1.1: Complexity of computing a maximum clique in d-ball
graphs

might gain ideas on how to solve the problem in polynomial time in
disk graphs, or on the contrary pinpoint the difference between unit
disks and disks that makes the problem easy only in unit disk graphs.
Similarly, we are interested in extending the EPTAS of Bonamy et
al. to superclasses of disk graphs. Finally, showing NP-hardness of
maximum clique for related graph classes can be helpful in gaining
ideas for a NP-hardness proof in disk graphs.

Bonamy et al. show that the existence of an EPTAS is implied by
the following fact: For any graph G that is a disk graph or a unit ball
graph, the disjoint union of two odd cycles is a forbidden induced
subgraph in the complement of G. Surprisingly, the proofs for disk
graphs on one hand and unit ball graphs on the other hand are not
related. Bonamy et al. ask whether there is a natural explanation
of this common property. They say that such an explanation could
be to show the existence of a geometric superclass of disk graphs
and unit ball graphs, for which there exists an EPTAS for solving
maximum clique.

By looking at Table 1.1, a pattern seems to emerge: The complexity
of computing a maximum clique in (d − 1)-ball graphs and unit d-
ball graphs might be related. We extend the question of Bonamy
et al. and ask for a class of geometric intersection graphs that 1)
contains all interval graphs and all unit disk graphs, and 2) for which
maximum clique can be solved in polynomial time. Observe that
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finding such a class also suits our goal of finding superclasses of unit
disk graphs for which maximum clique is in P.

Our results on this topic are based on papers that have been pub-
lished under the following titles:

• Maximum Clique in Disk-Like Intersection Graphs, by Édouard
Bonnet, Nicolas Grelier and Tillmann Miltzow.

• Computing a maximum clique in geometric superclasses of disk
graphs, by Nicolas Grelier.

We show that maximum clique can be solved in polynomial time
in translates of a fixed bounded convex set, and that there is an
EPTAS in homothets of a fixed centrally symmetric bounded convex.
Furthermore, our main contribution in [10] is a proof that maximum
clique is NP-hard and even APX-hard in intersection graphs of unit
disks and axis-parallel rectangles. We provide a new technique to
show APX-hardness of maximum clique in intersection graphs for
which gadgets are arguably easier to create. We also give partial
results towards obtaining an EPTAS for maximum clique in convex
pseudo-disk graphs [34].

Our main contribution in [34] is the definition of a class C of geo-
metric intersection graphs which contains all interval graphs and all
unit disk graphs, with a proof that maximum clique can be solved
efficiently in C. Furthermore, the definition of our class generalises
to any dimension, i.e. for any fixed d ≥ 2 we give a class of geo-
metric intersection graphs that contains all (d − 1)-ball graphs and
all unit d-ball graphs. We conjecture that for d = 3, there exists
an EPTAS for computing a maximum clique in the corresponding
class. It is necessary that these superclasses be defined as classes
of geometric intersection graphs. Indeed, it must be if we want to
understand better the reason why efficient algorithms exist for both
settings. For instance, taking the union of interval graphs and unit
disk graphs would not give any insight, since it is a priori not defined
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x-axis s
••

Figure 1.2: The union of the unit disks centred at points of s is a
2-pancake.

by intersection graphs of some geometric objects.

In order to define the class, we first introduce the concept of d-
pancakes. A 2-pancake is defined as the union of all unit disks whose
centres lie on a line segment s on the x-axis. An example is depicted
in Figure 1.2. This definition is equivalent to the Minkowski sum
of a unit disk centred at the origin and a line segment on the x-
axis, where the Minkowski sum of two sets A,B is defined as the set
{a+ b | a ∈ A, b ∈ B}. Similarly a 3-pancake is the union of all unit
balls whose centres lie on a disk D on the xy-plane. More generally,
we have:

Definition 1.2. A d-pancake is a d-dimensional geometric object.
Let us denote by {ξ1, ξ2, . . . , ξd} the canonical basis of Rd. A d-
pancake is defined as the Minkowski sum of the unit d-ball cen-
tred at the origin and a (d − 1)-ball in the linear space spanned by
{ξ1, ξ2, . . . , ξd−1}.

We denote by Πd the class of intersection graphs of some finite
collection of d-pancakes and unit d-balls. In this paper, we give a
polynomial time algorithm for solving maximum clique in Π2: the
intersection graph class of unit disks and 2-pancakes. This is to
put in contrast with the fact that computing a maximum clique in
intersection graphs of unit disks and axis-parallel rectangles (instead
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of 2-pancakes) is APX-hard [10], even though maximum clique can
be solved in polynomial time in axis-parallel rectangle graphs [43].

Our polynomial time algorithm for maximum clique inΠ2 gives some
insight to why the complexity of maximum clique in disk graphs is
still unknown. The class of interval graphs is arguably small: there is
no induced cycle of length at least 4. Likewise, one can say that the
class of unit disk graphs is small, as there is no star with at least 6
leaves. However, with disks one can realise arbitrarily large induced
cycles and stars. One could have wondered whether when looking for
a geometric class of graphs, wanting both arbitrarily large induced
cycles and stars would force too much complexity. Our results with
Π2 shows that actually, this is not where the difficulty lies. Indeed,
one can realise with unit disks and 2-pancakes arbitrarily large in-
duced cycles and stars. To solve maximum clique in disk graphs, or
to show NP-hardness, it seems a good idea to investigate what are
the disk graphs that are not in Π2.

1.2.2 Plane geometric graphs on degenerate point sets

We study problems on plane geometric graphs on point sets where
several points can lie on a line, i.e. degenerate point sets. There
are problems for which the difference between general position and
degenerate position is negligible. Let us briefly state an example
here: Given a simple polygon and two points p and q, check whether
p and q are on the same side of the polygon. To solve the problem, a
solution consists in considering the segment [p, q], and then counting
how many segments of the polygon it intersects. If the point set P
defined as the vertices of the polygon union p and q is in general
position, observe that p and q are on the same side if and only
if [p, q] intersects an even number of segments of the polygon. If
P is in degenerate position, the situation can only be slightly more
difficult. Indeed, it might occur that [p, q] intersects a vertex r of the
polygon. Then, one has to check whether [p, q] is actually traversing
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the polygon at r, or simply touching it. Thus, this is an example
where allowing for degenerate point set only requires slightly more
care.

In this thesis, we study two problems on degenerate point sets, where
there is a fundamental difference with the general position setting.
The results are based on papers with the following titles:

• Hardness and approximation of minimum convex partition, by
Nicolas Grelier.

• Connectivity of bistellar flip graphs of planar point sets in spe-
cial position, by Nicolas Grelier and Emo Welzl.

The first paper has appeared in the proceedings of the 38th Interna-
tional Symposium on Computational Geometry (SoCG 2022). The
second paper is not submitted yet.

The first problem we present is the one of finding a convex partition
of a point set with as few faces as possible. It is known that there is
an 8

3 -approximation algorithm running in polynomial time for point
sets in general position [52, 71]. However for point sets that can be
degenerate no O(n1−ε)-approximation algorithm was known for any
ε > 0. Our main contributions are an O(log(OPT ))-approximation
algorithm running in polynomial time that works for all point sets,
and a proof of NP-hardness [35]. We also present several other ap-
proximations algorithms, some with faster running time at the cost
of a worse approximation ratio, some algorithms that require ad-
ditional restrictions on the point set, and an FPT approximation
algorithm with respect to the number of faces in a minimum solu-
tion.

The second problem concerns the connectivity of the bistellar flip
graph of triangulations on a point set. In this graph, there is a
vertex for each triangulation, and two triangulations are adjacent if
they are sufficiently similar, as characterised by the notion of flip: a
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minimal change to a triangulation that yields another triangulation.
It was shown by Wagner and Welzl that the bistellar flip graph is
(n− 3)-connected for point sets in the plane in general position [82].
We extend this result to point sets in degenerate position. Our main
contribution is the finding of a point set in degenerate position for
which one of the lemmas in [82] does not hold, with a proof on
how to circumvent this issue for extending the main theorem to the
degenerate setting.

1.2.3 Other contributions

We give here an exhaustive list of the papers on which we worked
during the doctoral studies, but which are not part of this thesis.
It includes two papers about colourings, one paper about the VC-
dimension of convex sets, and one about hyperplane transversals in
high dimensions.

• Approximate Strong Edge-Colouring of Unit Disk Graphs [37],
by Nicolas Grelier, Rémi de Joannis de Verclos, Ross J. Kang
and François Pirot.

• Nearest-Neighbor Decompositions of Drawings [20], by Jonas
Cleve, Nicolas Grelier, Kristin Knorr, Maarten Löffler, Wolf-
gang Mul-zer and Daniel Perz.

• On the VC-dimension of convex sets and half-spaces [36], by
Nicolas Grelier, Saeed Gh. Ilchi, Tillmann Miltzow and Shakhar
Smorodinsky.

• Well-Separation and Hyperplane Transversals in High Dimen-
sions [7], by Helena Bergold, Daniel Bertschinger, Nicolas Gre-
lier, Wolfgang Mulzer and Patrick Schnider.



CHAPTER 2

Maximum clique in superclasses of unit disk graphs

2.1 Introduction

The study of unit disk graphs really started in 1990 after the pub-
lication of the suitably titled paper “Unit disk graphs” by Clark,
Colbourn and Johnson [19]. Along with unit disk graphs, they con-
sider the class of grid graphs. A graph is a grid graph if there is an
injective map from its vertex set to points in the plane with integer
coordinates, such that two vertices are adjacent if and only if their
L1 distance is equal to 1. It is easy to observe that grid graphs
are a subclass of unit disk graphs. In 1990, it was already known
that the dominating set problem, hamiltonicity or the Steiner tree
problem are NP-hard in grid graphs [32, 46, 48]. This immediately
implies that the same problems are also NP-hard in unit disk graphs.
Moreover, Clark, Colbourn and Johnson show that 3-colouring and

13
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maximum independent set in unit disk graphs are NP-hard too [19].
It seems that most problems that are NP-hard for general graphs
are also NP-hard for unit disk graphs. Surprisingly, they show that
maximum clique is an exception when a unit disk representation is
given.

Theorem 2.1 ([19]). Given a representation of a unit disk graph
with n vertices, one can compute a maximum clique in O(n4.5)-time.

Let us state here a sketch of the proof. First, we define the notions
of lens and half-lens.

Definition 2.2 (Lens and half-lens). We denote by D(c, ρ) a closed
disk centred at c with radius ρ. Let D = D(c, ρ) and D′ = D(c′, ρ′)
be two intersecting disks. We call lens induced by D and D′ the
region D ∩ D′. We call half-lenses the two closed regions obtained
by dividing the lens along the line (c, c′).

Observe that in Definition 2.2, we consider disks of any radius instead
of unit disks. In the proof of Theorem 2.1, the authors first observe
that the diameter of a half-lens of two disks with radius r whose
centres are at distance r is equal to r. Therefore, if r is at most 2
then two unit disks whose centres are in such a half-lens intersect.
Now to compute a maximum clique in a unit disk graph given with a
representation, first guess in O(n2) two most remote centres c and c′

of unit disks in a maximum clique. Let us denote by ρ the distance
between c and c′. By assumption, all the centres of the other unit
disks in that maximum clique are in the lens induced by D(c, ρ)
and D(c′, ρ). To compute the maximum clique, one has simply to
compute a maximum clique among the unit disks whose centres are
in that lens. The set of unit disks whose centres are in the same
half-lens induce a clique, because the diameter of the half-lens is
equal to ρ, which is at most 2. Therefore the problem boils down to
computing a maximum clique in a cobipartite graph, which can be
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done in O(n2.5) [28].

A question follows naturally: What if the unit disk graph is given as
an abstract graph, without a representation? Is it possible to find
such a representation, and then use the algorithm by Clark, Col-
bourn and Johnson [19]? This cannot be done in polynomial time,
unless P = NP , as shown by Breu and Kirkpatrick [13]. Even-
more, Kang and Müller showed that recognition of unit disk graphs
is ∃R-hard [49].

However, Raghavan and Spinrad [70] showed in 2003 the existence
of an algorithm running in polynomial time that given an abstract
graph G, either outputs a maximum clique of G or a certificate that
G is not a unit disk graph. Note that even if G is not a unit disk
graph, the algorithm may still output a maximum clique. Such an
algorithm which does not require a representation is called robust.
They introduce the concept of Cobipartite Neighbourhood Edge Elim-
ination Ordering (CNEEO). Let G be a graph with m edges. Let
Λ = e1, e2, . . . , em be an ordering of the edges. Let GΛ,k be the sub-
graph of G with edge set {ek, ek+1, . . . , em}. For each ek = {u, v},
NΛ,k is defined as the set of vertices adjacent to u and v in GΛ,k.

Definition 2.3 ([70]). An edge ordering Λ = {e1, e2, . . . , em} is a
CNEEO if for each ek, NΛ,k induces a cobipartite graph in G.

Lemma 2.4 ([70]). Given a graph G and a CNEEO Λ for G, a
maximum clique in G can be found in O(n4.5)-time.

The algorithm consists in computing a maximum clique in eachNΛ,k,
for 1 ≤ k ≤ m. As NΛ,k is a cobipartite graph, the total running
time is in O(n4.5) [28].

They propose a greedy algorithm for finding a CNEEO: When having
chosen the first i−1 edges e1, . . . , ei−1, try every remaining edge one
by one until finding one ei that satisfies the required property. If no
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such edge exists, return that the graph does not admit a CNEEO,
which follows from Lemma 2.5.

Lemma 2.5 ([70]). If G admits a CNEEO, then the greedy algorithm
finds a CNEEO for G.

Assume the first i − 1 edges are chosen by this greedy algorithm.
There are O(n2) remaining edges to consider, and it takes O(n2.5)-
time to check whether a new edge satisfies the conditions. Therefore,
the total running time to check if a graph has a CNEEO, and to
output it if it has one, is in O(n6.5). Raghavan and Spinrad show
that all unit disk graphs have a CNEEO (by considering edges in
decreasing order of length in any fixed representation), which implies
that one can compute a maximum clique in unit disk graphs, even
without a representation, in time O(n6.5).

In this section, we show that the class of intersection graphs of trans-
lates of a fixed convex set, as well as the class Π2, are subclasses of
the class of graphs which admit a CNEEO. It immediately follows
that one can compute a maximum clique in those classes in time
O(n6.5).

2.2 Translates of a fixed set

We show in this section that we can extend the algorithm of Clark,
Colbourn and Johnson [19] and its robust version [70] from unit disks
to any centrally symmetric, bounded, convex set.

Theorem 2.6. Maximum clique admits a robust algorithm in run-
ning in O(n6.5)-time in intersection graphs of translates of a fixed
centrally symmetric, bounded, convex set.

Moreover, as shown by Aamand et al. [1], for every bounded and con-
vex set S1, there exists a centrally symmetric, bounded and convex
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set S2 such that GS1 = GS2 , where GS denotes the intersection graphs
class of translates of S. Thus we obtain the immediate corollary:

Corollary 2.7. Maximum clique admits a robust algorithm in run-
ning in O(n6.5)-time in intersection graphs of translates of a fixed
bounded and convex set.

We prove Theorem 2.6 in two steps. First we show how to compute
in polynomial time a maximum clique when a representation is given.
Secondly we use the result by Raghavan and Spinrad [70] to obtain
a robust algorithm.

2.2.1 Maximum clique with a representation

Let S be a centrally symmetric, bounded, convex set. We can define
a corresponding norm as follow: for any x ∈ R2, let ∥x∥ be equal
to inf{λ > 0 | x ∈ λS}. This is well-defined since S is bounded.
It is absolutely homogeneous because S is centrally symmetric, and
it is subadditive because S is convex. Therefore ∥.∥ is a norm. Let
S1 and S2 be two translates of S, with respective centres c1 and c2.
Observe that S1 and S2 intersect if and only if ∥c1−c2∥ ⩽ 2. Let us
assume that d := ∥c1 − c2∥ ⩽ 2. We denote by S′ the set S scaled
by d: S′ := dS, and we then define: D := {x ∈ R2 | ∥x − c1∥ ⩽
d, ∥x − c2∥ ⩽ d}. Equivalently we have D = (c1 + S′) ∩ (c2 + S′).
Figure 2.1 shows an example. If S is a unit disk, then D is the lens
induced by two disks with radius d, such that the boundary of one
contains the centre of the other.

Lemma 2.8. The set D is centrally symmetric around c := (c1 +
c2)/2.

Proof. Let x be a point in D, we need to show that x̄ := x+2(c−x)
is in D too. As D = (c1 + S′) ∩ (c2 + S′), it is sufficient to show
x̄ ∈ c1 + S′ and x̄ ∈ c2 + S′. By definition, x̄ is equal to c1 + c2 − x.
Since x is in D, then ∥c2 − x∥ ⩽ d, which implies that c2 − x is in
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(c2 − x) ∈ S′
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Figure 2.1: Top left: The grey sets are scaled about their centre so
that the centre of one set is on the boundary of the other. Top right:
the intersection D. Bottom left: Illustration of Lemma 2.8. Bottom
right: Illustration of Lemma 2.10.

S′. Therefore x̄ is in c1 + S′. By the symmetry of the arguments,
we obtain that x̄ is in D.

Lemma 2.9. There exist parallel tangents to D at c1 and c2.

Proof. Let us denote by ℓ1 a tangent to D at c1. Then we denote
by ℓ2 the line parallel to ℓ1 that contains c2. We claim that ℓ2 is
tangent to D. By construction D is convex, as the intersection of
two convex sets. This implies that ℓ2 is tangent to D if and only if
D ∩ ℓ2 is a line segment that contains c2. This line segment may be
only one point. Let x be a point in D ∩ ℓ2. By Lemma 2.8, D is
centrally symmetric around c. Therefore x + 2(c − x) is in D, and
by construction it is also in ℓ1. Since D ∩ ℓ1 is a line segment that
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contains c1, thus D ∩ ℓ2 is a line segment that contains c2.

We cut D along the line ℓ going through c1 and c2, and split D into
two sets denoted by D1 and D2. We define D1 as the set of points
below this line, and D2 as the set of points not below. We have the
following lemma:

Lemma 2.10. Let i be in {1, 2}, and let x and y be in Di. Then we
have ∥x− y∥ ⩽ d.

Proof. We do the proof for i = 1, and the case i = 2 can be done
symmetrically. By Lemma 2.9, there are parallel tangents ℓ1 and ℓ2
of D at c1 and c2. Without loss of generality, let us assume that they
are vertical, that c1 is to the left of c2 and x to the left of y. We
denote by x̃ (respectively ỹ) the vertical projection of x (respectively
y) on ℓ. Without loss of generality ∥x − x̃∥ ⩽ ∥y − ỹ∥. We define
t = x− x̃. Note that ∥x− y∥ = ∥(x− t)− (y − t)∥ = ∥x̃− (y − t)∥.
Furthermore, we can move x̃ on ℓ towards c1 and this will only
increase the distance to (y− t). We get ∥x̃−(y− t)∥ ⩽ ∥c1−(y− t)∥.
By definition (y − t) ∈ D1 ⊂ D and thus ∥c1 − (y − t)∥ ⩽ d. This
implies ∥x− y∥ ⩽ d and finishes the proof.

Following the arguments of Clark, Colbourn and Johnson [19], one
first guesses in quadratic time S1 and S2 in a maximum clique C
such that the distance between their centres ∥c1 − c2∥ is maximised
among the pairs S1, S2 ∈ C. One can then remove all the objects not
centred in D. By Lemma 2.10, the intersection graph induced by the
sets centred in D is cobipartite. Since computing an independent set
in a bipartite graph can be done in O(n2.5)-time, one can compute
a maximum clique in G in O(n4.5)-time.
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2.2.2 Maximum clique without a representation

Proof of Theorem 2.6. By what was argued in Section 2.1, it is suf-
ficient to show that for any centrally symmetric, bounded, convex
set S, and any intersection graph G of translated of S, there exists
a CNEEO on G. Let us consider such a graph G with a representa-
tion. Arguing with Lemma 2.10 as previously, ordering the edges by
non-increasing length gives a CNEEO, where the length of an edge
is the distance between the two centres.

2.3 Axis-parallel rectangles and unit disks

In Sections 2.3 and 2.4, we consider intersection graphs of two types
of geometrical objects. In this section, we consider intersection
graphs of axis-parallel rectangles and unit disks, whereas in Sec-
tion 2.4, we consider intersection graphs of 2-pancakes and unit
disks. Recall that we denote this class by Π2. In Section 2.4, we
show how to compute a maximum clique in Π2 in polynomial time.
To motivate better this result, we show here that maximum clique is
NP-hard, and even APX-hard, for intersection graphs of axis-parallel
rectangles and unit disks. This can be surprising, as maximum clique
in axis-parallel rectangles is in P [43], and maximum clique in unit
disk graphs is in P too by Theorem 2.1.

2.3.1 The co-2-subdivision approach

Let us first discuss a technique, the co-2-subdivision approach, that
has been used to show hardness of maximum clique in intersection
graphs. Maximum independent set, which boils down to maxi-
mum clique in the complement graphs, is APX-hard on subcubic
graphs [3]. A folklore self-reduction first discovered by Poljak [68]
consists of subdividing each edge of the input graph twice (or any
even number of times). One can show that this reduction preserves
the APX-hardness. Therefore, a way to establish such an intractabil-
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ity for maximum clique on a given intersection graph class is to show
that for every (subcubic) graph G, its complement of 2-subdivision
Subd2(G) (or Subds(G) for a larger even integer s, see [30]) is rep-
resentable. Maximum independent set admits a PTAS on planar
graphs, but remains NP-hard. Hence showing that for every (sub-
cubic) planar graph G, the complement of an even subdivision of G
is representable shows the simple NP-hardness (see [16, 30]).

So far, representing complements of even subdivisions of graphs be-
longing to a class on which maximum independent set is NP-hard
(respectively APX-hard) has been the main, if not unique1, approach
to show the NP-hardness (respectively APX-hardness) of maximum
clique in geometric intersection graph classes. This approach was
used by Middendorf and Pfeiffer [62] for some restriction of string
graphs, the so-called B1-VPG graphs, by Cabello et al. [16] to settle
the then long-standing open question of the complexity of maximum
clique for segments (with the class of planar graphs), by Francis et
al. [30] for 2-interval, unit 3-interval, 3-track, and unit 4-track graphs
(with the class of all graphs; showing APX-hardness), and unit 2-
interval and unit 3-track graphs (with the class of planar graphs;
showing only NP-hardness), by Bonnet et al. [9] for filled ellipses
and filled triangles, and by Bonamy et al. [8] for ball graphs, and
4-dimensional unit ball graphs. Bonnet et al. [9] show that the com-
plement of two mutually induced odd cycles is not a disk graph. As
a consequence, to show the NP-hardness of maximum clique on disk
graphs with the described approach, one can only hope to represent
all the graphs without two mutually induced odd cycles. However
we do not know if maximum independent set is even NP-hard in that
class.

The main conceptual contribution of this section is to suggest an

1Admittedly Butman et al. [15] showed that maximum clique is NP-hard on
3-interval graphs, by reducing from Max 2-DNF-SAT which is very close to
Max Cut. However this result was later subsumed by [30].
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alternative to that approach. We introduce a technical intermediate
problem that we call Max Interval Permutation Avoidance (MIPA,
for short), which is a convenient way of seeing Max Cut. We prove
that MIPA is unlikely to have an approximation scheme running in
subexponential time. We then transfer that lower bound to maxi-
mum clique in the intersection graphs of objects that can be either
unit disks or axis-parallel rectangles; a class for which the co-2-
subdivision approach does not seem to work. Recall that when all
the objects are unit disks or when all the objects are axis-parallel
rectangles, polynomial-time algorithms are known.

E

V

(a) Co-2-subdivision of subcubic
graphs: edges are represented by
an antimatching, vertices, by a
clique.

V

E

(b) MIPA approach: vertices are
represented by an antimatching
with constant weight, edges, by
a clique.

Figure 2.2: Dashed segments represent non-edges. Both the co-2-
subdivision and the MIPA approaches require to construct an anti-
matching and a clique. In the co-2-subdivision approach, the clique
vertices have co-degree 3 to the antimatching. In the MIPA approach
their co-degree is only 2. While the difference is seemingly small, the
graph class formed by axis-parallel rectangles and unit disks is not
amenable to the co-2-subdivision approach (see Section 2.3.3).

Anticipating on Section 2.3.3 where MIPA is defined, one can already
see on Figure 2.2 that both approaches require to represent an anti-
matching (i.e., a complement of an induced matching), a clique, and
some relation between them. Antimatchings (and obviously cliques)
of arbitrary size are representable by half-planes and unit disks. The
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difficulty in both cases is to get the right adjacencies between the an-
timatching and the clique. The MIPA approach only needs the ver-
tices of the clique to avoid two vertices in the antimatching, whereas
this number is at least three in the co-2-subdivision approach. This
seemingly small difference is actually crucial, as we will see in Sec-
tion 2.3.3.

2.3.2 Some background inapproximability results

The Exponential-Time Hypothesis (ETH, for short) of Impagliazzo
and Paturi [44] asserts that there is no subexponential-time algo-
rithm solving k-SAT. More precisely, for every integer k ⩾ 3, there
is an ε > 0 such that k-SAT cannot be solved in time 2εn on n-
variable instances. If we define s3 (taking the same notation as
in the original paper) as the infimum of the reals δ such that 3-
SAT can be solved in time 2δn, then the ETH can be expressed
as s3 > 0. Impagliazzo et al. [45] present a subexponential-time
Turing-reduction parameterized by a positive real ε > 0 which, given
a k-SAT-instance ϕ with n variables and m clauses, produces at
most 2εn k-SAT-instances ϕ1, . . . , ϕt such that ϕ ⇔

∨
i∈[t] ϕi, each

ϕi having no more than n variables and Cεn clauses for some con-
stant Cε (depending solely on ε, and not on n and m). This im-
portant reduction is known as the Sparsification Lemma. One can
observe that, due to the Sparsification Lemma, there is an ε > 0
such that there is no algorithm solving k-SAT in time 2εm on m-
clause instances, assuming that the ETH holds. For the sparsifica-
tion of a 3-SAT-instance, the constant Cε can be upper-bounded
by 108(1/ε)2 log2(1/ε). One can sparsify a 3-SAT-instance in 2

s3
2
n

instances with at most X := Cs3/2 ⩽ 108(2/s3)
2 log2(2/s3) occur-

rences per variable. Assuming the ETH, these sparse instances can-
not be solved in time 2

s3
2
n.

Let us state some inapproximability results, that we use for our
reduction. A detailed proof of these theorems can be found in [10].
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Theorem 2.11. [41, 64, 45] Under the ETH, for every δ > 0

one cannot distinguish in time 2n
1−δ , n-variable m-clause 3-SAT-

instances that are satisfiable from instances where at most (7/8 +
o(1))m clauses can be satisfied, even when each variable appears in at
most X clauses. Thus 3-SAT-X cannot be 7/8+ o(1)-approximated
in time 2n

1−δ .

Now, we recall the definition of Not-All-Equal k-SAT (NAE k-SAT,
for short).

Not-All-Equal k-SAT
Input: A conjunction of m “clauses” ϕ =

∧
i∈[m]Ci each on at

most k literals.
Goal: Find a truth assignment of the n variables such that
each “clause” has at least one satisfied literal and at least one
non-satisfied literal.

The Not-All-Equal k-SAT-B-problem is the same but each variable
appears in at most B clauses (similarly as for k-SAT-B). The ad-
jective Positive prepended to a satisfiability problem means that
no negation (or negative literal) can appear in its instances. As a
slight abuse of notation, we keep the same problem names for the
maximisation versions, where all the clauses may not be simultane-
ously satisfied but the goal is to satisfy the largest fraction of them.
Another abuse of notation is that we call clauses the not-all-equal
constraints, and still denote them with ∨. The performance guaran-
tee of an approximation algorithm is then defined as the minimum
of number of satisfied clauses/m taken over all the instances.

We recall that X is a function of the value s3 assumed to be positive
by the ETH.

Theorem 2.12 ([10]). Under the ETH, for every δ > 0 one cannot
distinguish in time 2n

1−δ , n-variable m-clause Positive Not-All-Equal
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3-SAT-3-instances that are satisfiable from instances where at most
γm clauses can be satisfied, with γ := (60000X2 − 9)/(60000X2).
Thus Positive Not-All-Equal 3-SAT-3 cannot be γ-approximated in
time 2n

1−δ .

Corollary 2.13 ([10]). Approximating Positive NAE 3-SAT-3
within ratio 49888956/49888957 is NP-hard.

2.3.3 MIPA, unit disks and rectangles

We first introduce the Max Interval Permutation Avoidance-problem
(MIPA, for short), a convenient intermediate problem to show APX-
hardness for geometric problems. We start with an informal descrip-
tion. Let M be a perfect matching between the n points [n] × {0}
and [n]×{1}, in N2. This matching can be represented by a permu-
tation σ, such that for every i ∈ [n], (i, 0) is matched with (σ(i), 1).
Imagine now a set of intervals on the line y = 1/2 whose endpoints
are all in [n]. The aim is to move each interval “up” or “down”, by
translating it by (0, 1/2) or by (0,−1/2), respectively, such that the
number of edges of M with no endpoint on a translated interval is
maximised. An edge of M with at least one endpoint in a moved
(or positioned) interval is said covered or destroyed. The edge is
said uncovered or preserved otherwise. Equivalently Max Interval
Permutation Avoidance aims to minimising the number of covered
edges, or maximising the number of uncovered edges. We choose the
maximisation formulation, since we will both reduce from a maximi-
sation problem (Positive Not-All-Equal 3-SAT-3) and to a maximi-
sation problem (maximum clique in disks and rectangles). Thus the
objective value will be the number of uncovered edges.
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Max Interval Permutation Avoidance
Input: A permutation σ over [n] representing a perfect
matching M between the points (1, 0), (2, 0), . . . , (n, 0) and
(σ(1), 1), (σ(2), 1), . . . , (σ(n), 1) respectively, and a set of inte-
ger ranges I := {I1, . . . , Ih} where Ik := [ℓk, rk] and 1 ⩽ ℓk ⩽
rk ⩽ n, for every k ∈ [h].
Goal: A placement function p : I → {0, 1} encoding that inter-
val Ik has its endpoints positioned in (ℓk, p(Ik)) and (rk, p(Ik)),
which maximises the number of edges of M with no endpoint
on a positioned interval.

1 2 3 4 5 6 7 8 9 10

Figure 2.3: An example of a symmetric instance of MIPA with three
disjoint ranges.

A MIPA-input may interchangeably be given as (σ, I) or as (M, I).
One may observe that a constant placement (i.e., p(I1) = . . . =
p(Ih) = 0, or p(I1) = . . . = p(Ih) = 1) is a worse solution when
the intervals of I span [n], since it covers all the edges of M . We
say that the matching M is symmetric if (i, 0)(j, 1) ∈ M implies
that (i, 1)(j, 0) ∈M , for every i, j ∈ [n]; in the geometric viewpoint,
it is equivalent to y = 1/2 being a symmetry axis of M , and in
the permutation viewpoint, it is equivalent to σ being a product of
pairwise-disjoint transpositions. Other handy (as far as hardness of
geometric problems is concerned) technical problems involving in-
tervals and/or permutations include crossing-avoiding matching in
Guśpiel [40] or crossing-minimising perfect matching in Guśpiel et
al. [2], the problem of covering a 2-track point set by selecting k
2-track intervals [61] or structured 2-track hitting set [11]. It is
no coincidence that these convenient starting problems all involve
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matchings/permutations and/or intervals. Indeed the latter objects
are more easily encoded in a geometric setting than their general-
izations: arbitrary binary relations and arbitrary sets. Later we will
see how disks can encode intervals and how rectangles can encode a
permutation, in the context of the maximum clique problem.

We rule out an approximation scheme for Max Interval Permutation
Avoidance, even if subexponential-time is allowed. In particular a
QPTAS for MIPA is highly unlikely. We recall that γ = (60000X2−
9)/(60000X2) and that X is a finite integral constant, assuming the
ETH (s3 > 0).

Lemma 2.14. For every δ > 0, Max Interval Permutation Avoid-
ance cannot be γ′-approximated in time 2|M |1−δ , with γ′ := 1− (1−
γ)/13 < 1, unless the ETH fails. Besides Max Interval Permutation
Avoidance is NP-hard and APX-hard. These results hold even if the
length of every interval of I is at most 5, and the matching M is
symmetric.

Proof. We give a reduction ϕ from Positive Not-All-Equal 3-SAT-3
to Max Interval Permutation Avoidance. Let ϕ be a Positive NAE
3-SAT-3-instance, with variables x1, . . . , xn and clause C1, . . . , Cm.
For every xi ∈ Cj , we denote by occ(xi, Cj) the number of occur-
rences of xi in the clauses C1, . . . , Cj . We observe that occ(xi, Cj) ∈
{1, 2, 3}. We build an instance ρ(ϕ) := (M, I) of MIPA in the fol-
lowing way. For each variable xi of ϕ, we reserve a range [3(i− 1) +
1, 3(i− 1) + 3] with 3 integral points on both lines y = 0 and y = 1.
These points will be matched by M to points in the clause gadgets.
We add the interval Xi := [3(i− 1) + 1, 3(i− 1) + 3] to I. We now
describe the 2-clause and the 3-clause gadgets.

For every 2-clause Cj := xa ∨ xb, we allocate a slot Sj of size 9
(on y = 0 and y = 1) appended to the current last position. The
first half of Sj , that is, the indices in [sj , sj + 4] of Sj correspond
to xa, while the indices in [sj + 5, sj + 9] correspond to xb. For
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every (d1, d2) ∈ {(0, 1), (1, 0)} and h ∈ [4], we add to M the edge
between (sj + h, d1) and (sj + 5 + h, d2). We add the intervals
Cj(xa) := [sj , sj + 4] and Cj(xb) := [sj + 5, sj + 9] to I. Finally
for each (d1, d2) ∈ {(0, 1), (1, 0)}, we add to M the edges between
(sj , d1) and (3(a−1)+occ(xa, Cj), d2), and between (sj +3, d1) and
(3(b− 1) + occ(xb, Cj), d2).

For every 3-clause Cj := xa ∨ xb ∨ xc, we allocate a slot Sj of size
15 (on y = 0 and y = 1) appended to the current last position. The
first third of Sj , that is, the indices in [sj , sj +4] of Sj correspond to
xa, the second third, the indices in [sj + 5, sj + 9] correspond to xb,
and the last third, the indices in [sj + 10, sj + 14] correspond to xc.
We add the intervals Cj(xa) := [sj , sj +4], Cj(xb) := [sj +5, sj +9],
and Cj(xc) := [sj + 10, sj + 14] to I. Similarly for every (d1, d2) ∈
{(0, 1), (1, 0)} and (h, p) ∈ {(a, 0), (b, 1), (c, 2)}, we add to M the
edge between (sj + 5p, d1) and (3(h− 1) + occ(xh, Cj), d2). We call
these edges internal (same for the 2-clause gadget). Finally we add
to M four edges from every pair of ranges in {[sj , sj+4], [sj+5, sj+
9], [sj+10, sj+14]}, two starting on the line y = 0 (ending on y = 1)
and two starting on y = 1 (ending on y = 0). We call these edges
variable-clause (same for the 2-clause gadget).

For each variable xi with only two occurrences in ϕ, we link its third
occurrence pair to a dummy pair (di, 0), (di, 1), appended to the
current last position. That is, we add the edges (3(i−1)+3, 0)(di, 1)
and (3(i− 1) + 3, 1)(di, 0) to M . Although not needed, we also add
the singleton interval Di := {di} to I. We call it dummy gadget
and consider it as a special case of a clause gadget. This finishes the
construction of the MIPA-instance (M, I). Observe that every point
is matched, and that all the intervals of I are pairwise disjoint, and
of length at most 5. The perfect matching M comprises at most
3n+ 15m+ n ⩽ 49n edges.

We assume that ϕ is satisfiable, and let V be a satisfying assignment.
We build the following solution to the MIPA-instance. We push the
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interval Xi up (to the line y = 1) if xi is set to true by V, and we
push it down (to the line y = 0) otherwise. In the clause gadgets
(and dummy gadgets), we do the opposite: we push Cj(xi) (Di)
down if xi is set to true, and up if xi is set to false. This solution
preserves four edges within each clause gadget, and an additional 3n
edges between the variable gadgets and the clause gadgets. Hence
the total number of preserved edges is 4m+ 3n.

We now assume that at most γm clauses of ϕ are satisfiable. Let p
be a placement function of the intervals of I, maximising the num-
ber of preserved edges of M . We first argue that not giving the
same placement (up/1 or down/0) to the three (respectively two)
intervals Cj(xa), Cj(xb), Cj(xc) (respectively Cj(xa), Cj(xb)) of a 3-
clause gadget (respectively 2-clause gadget) is always better. Note
that any equal placement destroys all the edges of M internal to
the clause gadget of Cj , and preserves at most three variable-clause
edges. On the other hand, a placement with at least one interval
on each side preserves already four internal edges. We can then as-
sume that p does not give equal placement in any clause gadget.
Let V be the assignment of the variables of ϕ which sets xi to true
if p(Xi) = 1, and to false, if p(Xi) = 0. By assumption V does
not satisfy at least (1 − γ)m clauses. In each corresponding clause
gadget, one can preserve at most two variable-clause edges of M .
Indeed all three variable-clause edges incident to the clause gadget
and not covered by the placement of the Xi land on the same side.
By the previous remark, at least one such edge should be destroyed
(to preserve four internal edges). Thus the placement p preserves at
most 3n+ 4m− (1− γ)m edges.

Since |M | = O(n+m) = O(n) and 3n+4m−(1−γ)m
3n+4m ⩽ 1− 1−γ

13 , by The-
orem 2.12 MIPA cannot be γ′-approximated in time 2|M |1−δ , under
the ETH. Besides, by Corollary 2.13, MIPA cannot be approximated
with ratio 648556435/648556436 in polynomial-time, unless P=NP.
In particular, this problem is NP-hard and even APX-hard.
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We recall that maximum clique can be solved in polynomial-time in
unit disk graphs [19, 70] and in axis-parallel rectangle intersection
graphs [14]. Now if the objects can be unit disks and axis-parallel
rectangles, we show that even a SUBEXPAS is unlikely.

Theorem 2.15. For every δ > 0, maximum clique in intersec-
tion graphs G of unit disks and axis-parallel rectangles cannot be
c-approximated in time 2|V (G)|1−δ

, with c := 1 − (1 − γ)/153 < 1,
unless the ETH fails. Besides this problem is NP-hard and APX-
hard.

Proof. We give a reduction from Max Interval Permutation Avoid-
ance to maximum clique in intersection graphs of unit disks and
axis-parallel rectangles, that also holds for maximum clique in inter-
section graphs of half-planes and axis-parallel rectangles. Let (M, I)
be an instance of MIPA over [n], where M is symmetric, and all the
intervals of I have size at most 5. We build the following set of
axis-parallel rectangles R and half-planes H. See Figure 2.4 for an
illustration.

Let O be the origin of the plane. We place from left to right n + 2
points p0, p1, . . . , pn, pn+1 on a convex curve in the top-left quad-
rant, say x 7→ −1/x on [−(1 + λ),−1] for some small λ > 0.
We wiggle the points pi so that for every i ⩽ j ∈ [n], the slope
of the line passing through middle(pi−1, pi) and middle(pj , pj+1)
has a distinct value. We define q0, q1, . . . , qn, qn+1, such that O is
the middle of the segment piqi for every i ∈ [0, n + 1]. In other
words, this new chain is obtained by central symmetry about O.
Observe that sorted by x-coordinates, these 2n + 4 points read
p0, p1, . . . , pn, pn+1, qn+1, qn, . . . , q1, q0. The points p1, . . . , pn rep-
resent [n] × {0} in the MIPA-instance, while the points q1, . . . , qn
represent [n]× {1}.

For every pair i ⩽ j ∈ [n], we can associate a line ℓp(i, j) pass-
ing through middle(pi−1, pi) and middle(pj , pj+1). Notice that, by
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convexity, ℓp(i, j) separates the points pi, pi+1, . . . , pj−1, pj (below
it) from the points p1, . . . , pi−1, pj+1, . . . , pn (above it). We simi-
larly define ℓq(i, j) as the line passing through middle(qi−1, qi) and
middle(qj , qj+1). We observe that ℓp(i, j) and ℓq(i, j) are parallel.
For every interval I = [i, j] ∈ I, we introduce in the maximum
clique-instance the half-plane hp(I) := hp(i, j) as the closed upper
half-plane whose boundary is ℓp(i, j), and hq(I) := hq(i, j) as the
closed lower half-plane whose boundary is ℓq(i, j). We give these
two objects weight 5 by superimposing 5 copies of them. All pairs of
introduced half-planes intersect, except the pairs {hp(i, j), hq(i, j)}.

Finally for every edge (i, 0)(j, 1) of the matching M (with i, j ∈ [n]),
we add an axis-parallel rectangle R(i, j) whose top-left corner is
pi and bottom-right corner is qj . This finishes the construction of
(R,H). When λ tends to 0, the rectangles are arbitrary close to
squares of equal side-length. In other words, for any ε > 0, the axis-
parallel rectangles can be made ϵ-squares. The half-planes can be
turned into unit disks, making the side-length of the rectangles very
small compared to 1. We denote by (R,D) the corresponding sets of
axis-parallel rectangles and unit disks, and by G their intersection
graph.

Let consider instances of MIPA produced by the previous reduction
from Positive NAE 3-SAT-3, on ν-variable µ-clause formulas that
are either satisfiable or with at least (1−γ)µ non satisfiable clauses.
We call yes-instances the former MIPA-instances, and no-instances,
the latter. If (M, I) is a yes-instance, we claim that G has a clique
of size 5|I| + 3ν + 4µ. Indeed there is a placement p that pre-
serves 3ν + 4µ edges of M . We start by taking in the clique all the
half-planes (or corresponding unit disks) hp(I) whenever p(I) = 0,
and hq(I) whenever p(I) = 1. Since these objects have weight 5
(actually 5 stacked copies), this amounts to 5|M| vertices. The cor-
responding half-planes pairwise intersect since their boundaries have
distinct slopes. Then we include to the clique the 3ν+4µ rectangles
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Figure 2.4: The output of the reduction on the instance of Figure 2.3.

R(i, j) ∈ R such that (i, 0)(j, 1) is preserved by p. All the rectangles
pairwise intersect since they all contain the origin O. Every pair
of chosen half-plane hz(I) (z ∈ {p, q}) and rectangle R(a, b) inter-
sects, otherwise the placement of I would cover (a, 0)(b, 1). Thus we
exhibited a clique of size 5|I|+ 3ν + 4µ in G.

We now assume that (M, I) is a no-instance, and we claim that G
has no clique larger than 5|I|+3ν+4µ− (1−γ)µ. Let us see how to
build a clique in G. One can take at most one object between hp(I)
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and hq(I) (since they do not intersect). There is a maximum clique
that takes at least one of hp(I) and hq(I) since hp(I) has weight 5
and intersects every object but hq(I) plus at most 5 rectangles (recall
that the intervals of I have size at most 5). Thus we assume that our
maximum clique takes exactly one object between hp(I) and hq(I),
for every I ∈ I. We consider the placement p defined as p(I) = 0 if
hp(I) is in the clique, and p(I) = 1 if hq(I) is in the clique. Now the
rectangles R(i, j) that are adjacent to the chosen half-planes of H
(or unit disks of D) correspond to the edges (i, 0)(j, 1) of M which
are preserved. By Lemma 2.14, there are at most 3ν+4µ− (1−γ)µ
such rectangles.

Since |V (G)| = |H| + |R| = 10|I| + |M | = O(ν + µ) = O(ν) and
5|I|+3ν+4µ−(1−γ)µ

|I|+3ν+4µ ⩽ 1− (1−γ)µ
140µ+9µ+4µ = 1− 1−γ

153 = c, by Theorem 2.12,

maximum clique cannot be c-approximated in time 2|V (G)|1−δ , under
the ETH. Besides, Corollary 2.13 implies that this problem cannot
be 7633010347/7633010348-approximated in polynomial-time, un-
less P=NP. In particular, it is NP-hard and even APX-hard.

Of course the ratios that are shown not achievable, even in time
subexponential, under the ETH, are very close to 1. The current
best exact exponential algorithm solving 3-SAT has running time
1.308n [42], building upon the PPSZ algorithm [67]. Assuming get-
ting this down to 1.14n is impossible, which implies s3 > 0.2, the
inapproximability bound in subexponential-time of respectively γ′

for Max Interval Permutation Avoidance and c for maximum clique
in intersection graphs of unit disks (or half-planes) and axis-parallel
rectangles are roughly 1− 6 · 10−26 and 1− 5 · 10−27, respectively.

Let us briefly discuss the issue the co-2-subdivision approach encoun-
ters for maximum clique in intersection graphs of half-planes and axis
parallel-rectangles. Axis-parallel rectangles cannot represent a large
antimatching (they already cannot represent 3K2). Hence, as in our
construction, the large antimatching has to be, for the most part,
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realised by half-planes. Now in the MIPA approach, the axis-parallel
rectangles can avoid two arbitrary half-planes with the freedom of
their top-left and bottom-right corners. In the co-2-subdivision ap-
proach, they would have to avoid at least three arbitrary half-planes,
and do not have enough degrees of freedom for that.

2.4 2-pancakes and unit disks

In this section we prove the following theorem:

Theorem 2.16. There exists a polynomial time algorithm for com-
puting a maximum clique in Π2, even without a representation.

We first give a proof when a representation is given. The idea of the
algorithm is similar to the one of Clark, Colbourn and Johnson [19].
We prove that if u and v are the most distant vertices in a maximum
clique, then N (u)∩N (v) is cobipartite. In a second part, we give a
robust algorithm, meaning that it does not require a representation,
using the tools introduced by Raghavan and Spinrad [70].

2.4.1 Additional definitions and notations

For any x1 ≤ x2, we denote by P 2(x1, x2) the 2-pancake that is
the Minkowski sum of the unit disk centred at O and the line seg-
ment with endpoints x1 and x2. Therefore we have P 2(x1, x2) =⋃

x1≤x′≤x2
D((x′, 0), 1). Behind the definition of the d-pancakes is

the idea that they should be as similar as possible to unit d-balls.
In particular 2-pancakes should behave as much as possible like unit
disks. This is perfectly illustrated when the intersection of a 2-
pancake and a unit disk is a lens, as the intersection of two unit
disks would be.

Definition 2.17. Let {P 2
j }1≤j≤n be a set of 2-pancakes. For any

unit disk D, we denote by L(D, {P 2
j }), or simply by L(D) when
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there is no risk of confusion, the set of 2-pancakes in {P 2
j } whose

intersection with D is a lens.

Let D denote D(c, 1) for some point c. Observe that if a 2-pancake
P 2(x1, x2) for some x1 ≤ x2 is in L(D), then the intersection between
D and P 2(x1, x2) is equal to D ∩ D((x1, 0), 1) or D ∩ D((x2, 0), 1).
We make an abuse of notation and denote by d(D, P 2(x1, x2)) the
smallest distance between c and a point in the line segment [x1, x2].
Observe that if the intersection between D and P 2(x1, x2) is equal to
D∩D((x1, 0), 1), then d(D, P 2(x1, x2)) = d(c, (x1, 0)), and otherwise
d(D, P 2(x1, x2)) = d(c, (x2, 0)). The following observation gives a
characterisation of when the intersection between a unit disk and a
2-pancake is a lens.

Observation 2.18. Let D((cx, cy), 1) be a unit disk intersecting
with a 2-pancake P 2(x1, x2). Then their intersection is a lens if and
only if (cx ≤ x1 or cx ≥ x2) and the interior of D((cx, cy), 1) does
not contain any point in {(x1,±1), (x2,±1)}.

The observation follows immediately from the fact that the intersec-
tion is a lens if and only if D((cx, cy), 1) does not contain a point in
the open line segment between the points (x1,−1) and (x2,−1), nor
in the open line segment between the points (x1, 1) and (x2, 1).

2.4.2 Maximum clique with a representation

In their proof, Clark, Colbourn and Johnson use the following fact:
if c and c′ are two points at distance ρ, then the diameter of the
half-lenses induced by D(c, ρ) and D(c′, ρ) is equal to ρ. We prove
here a similar result.

Lemma 2.19. Let c and c′ be two points at distance ρ, and let be
ρ′ ≥ ρ. Then the diameter of the half-lenses induced by D(c, ρ) and
D(c′, ρ′) is at most ρ′.



36 Maximum clique in superclasses of unit disk graphs

Proof. First note that if ρ′ > 2ρ then the half-lenses are half-disks
of D(c, ρ). The diameter of these half-disks is equal to 2ρ, which
is smaller than ρ′. Let us now assume that we have ρ′ ≤ 2ρ. The
boundary of the lens induced by D(c, ρ) and D(c′, ρ′) consists of two
arcs. The line (c, c′) intersects exactly once with each arc. One
of these two intersections is c′, we denote by c′′ the other. Let us
consider the disk D(c′′, ρ′). Note that it contains the disk D(c, ρ).
Therefore the lens induced by D(c, ρ) and D(c′, ρ′) is contained in
the lens induced by D(c′′, ρ′) and D(c′, ρ′), whose half-lenses have
diameter ρ′. The claim follows from the fact that the half-lenses of
the first lens are contained in the ones of the second lens.

Before stating the next lemma, we introduce the following definition:

Definition 2.20. Let {Si}1≤i≤n and {S′
j}1≤j≤n′ be two families of

sets in R2. We say that {Si} and {S′
j} fully intersect if for all

1 ≤ i ≤ n and 1 ≤ j ≤ n′ the intersection between Si and S′
j is not

empty.

Lemma 2.21. Let D := D(c, 1) be a unit disk and let the 2-pancake
P 2 := P 2(x1, x2) be in L(D). Let {Di} be a set of unit disks
that fully intersect with {D, P 2}, such that for any unit disk Di we
have d(D,Di) ≤ d(D, P 2). Moreover if P 2 is in L(Di) we require
d(Di, P

2) ≤ d(D, P 2). Also let {P 2
j } be a set of 2-pancakes that fully

intersect with {D, P 2}, such that for any P 2
j in {P 2

j } ∩ L(D), we
have d(D, P 2

j ) ≤ d(D, P 2). Then G({Di} ∪ {P 2
j }) is cobipartite.

Proof. The proof is illustrated in Figure 2.5. Without loss of gener-
ality, let us assume that the intersection between D and P 2 is equal
to D ∩D((x1, 0), 1). Remember that by definition we have x1 ≤ x2.
Let P 2(x′1, x

′
2) be a 2-pancake in {P 2

j }. As it is intersecting with P 2,
we have x′2 ≥ x1−2. Assume by contradiction that we have x′1 > x1.
Then with Observation 2.18, we have that P 2(x′1, x

′
2) is in L(D) and
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d(D, P 2(x′1, x
′
2)) > d(D, P 2), which is impossible. Therefore we have

x′1 ≤ x1, and so P 2(x′1, x
′
2) must contain D((x′, 0), 1) for some x′ sat-

isfying x1−2 ≤ x′ ≤ x1. As the line segment [(x1−2, 0), (x1, 0)] has
length 2, the 2-pancakes in {P 2

j } pairwise intersect.

We denote by ρ the distance d(D, P 2). Let D(ci, 1) be a unit disk in
{Di}. By assumption, ci is in D(c, ρ)∩D((x1, 0), 2). We then denote
by R the lens that is induced by D(c, ρ) and D((x1, 0), 2). We cut
the lens into two parts with the line (c, (x1, 0)), and denote by R1

the half-lens that is not below this line, and by R2 the half-lens that
is not above it. With Lemma 2.19, we obtain that the diameter of R1

and R2 is at most 2. Let us assume without loss of generality that
c is not below Ox. We denote by X1 the set of unit disks in {Di}
whose centre is in R1. We denote by X2 the union of {P 2

j } and of the
set of unit disks in {Di} whose centre is in R2. Since the diameter
of R1 is 2, any pair of unit disks in X1 intersect, therefore G(X1) is
a complete graph. To show that G(X2) is a complete graph too, it
remains to show that any unit disk D(ci, 1) in X2 and any 2-pancake
P 2(x′1, x

′
2) in {P 2

j } intersect. We denote by P 2
+ the following convex

shape: ∪x′
1≤x≤x′

2
D((x, 0), 2). Note that the fact that D(ci, 1) and

P 2(x′1, x
′
2) intersect is equivalent to having ci in P 2

+. Let us consider
the horizontal line going through c, and let us denote by c′ the left
intersection with the circle centred at (x1, 0) with radius 2. We also
denote by r2 the extremity of R that is in R2.

Let us assume by contradiction that ci is above the line segment
[c, c′]. As by assumption ci is in R2, it implies that the x-coordinate
of ci is smaller than the one of c. Therefore P 2 is in L(Di) and
d(Di, P

2) > d(D, P 2), which is impossible by assumption. Let us
denote by R2,− the subset of R2 that is not above the line segment
[c, c′]. To prove that D(ci, 1) and P 2(x′1, x

′
2) intersect, it suffices to

show that P 2
+ contains R2,−. As shown above, P 2(x′1, x

′
2) contains

D((x′, 0), 1) for some x′ satisfying x1 − 2 ≤ x′ ≤ x1. This implies
that P 2

+ contains D((x1 − 2, 0), 2) ∩ D((x1, 0), 2), and in particular
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Figure 2.5: Illustration of the proof of Lemma 2.21

contains (x1, 0). Moreover as c is not below Ox, r2 is also in D((x1−
2, 0), 2) ∩ D((x1, 0), 2). As P 2 intersects D, P 2

+ contains c. Let us
assume by contradiction that P 2

+ does not contain c′. Then x′2 must
be smaller than the x-coordinate of c′, because otherwise the distance
d((x′2, 0), c

′) would be at most d((x1, 0), c′), which is equal to 2. But
then if P 2

+ does not contain c′, then it does not contain c either,
which is a contradiction. We have proved that P 2

+ contains the
points (x1, 0), c, c′ and r2. By convexity, and using the fact that two
circles intersect at most twice, we obtain that R2,− is contained in
P 2
+. This shows that any two elements in X2 intersect, which implies

that G(X2) is a complete graph. Finally, as X1∪X2 = {Di}∪{P 2
j },

we obtain that G({Di} ∪ {P 2
j }) can be partitioned into two cliques,

i.e. it is cobipartite.

Lemma 2.22. Let D := D((cx, cy), 1) and D′ := D((c′x, c
′
y), 1) be

two unit disks such that cx ≤ c′x. Let P 2
1 := P 2(x1, x2) be a 2-

pancake intersecting with D and D′, such that x1 ≥ cx and P 2
1 is not

in L(D). If P 2
2 := P 2(x′1, x

′
2) is a 2-pancake intersecting with D and

D′, but not intersecting with P 2
1 , then P 2

2 is in L(D) ∩ L(D′).
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(xℓ, 0)(xℓ − 2, 0)

D

D′
Ox

ℓ

••

•

Figure 2.6: Illustration of the proof of Lemma 2.22

Proof. The proof is illustrated in Figure 2.6. First let us prove that
P 2
2 cannot be on the right side of P 2

1 , i.e. we have x′1 ≤ x1. Let us
assume by contradiction x′1 > x1. As P 2

1 and P 2
2 are not intersecting,

we have x′1 > x1 + 2. Hence, since we assume x1 ≥ cx, we obtain
d(c, (x′1, 0)) > 2, which is impossible. Therefore we have x′1 ≤ x1,
and even x′1 < x1 − 2 since P 2

1 and P 2
2 are not intersecting.

Without loss of generality, let us assume cy ≥ 0. Let us consider
the horizontal line ℓ with height 1. By assumption it intersects with
the circle centred at (cx, cy) with unit radius. There are at most
two intersections, and we denote by xℓ the x-coordinate of the one
to the right. As P 2

1 is not in L(D), we have x1 ≤ xℓ. Then, since
x′1 < x1 − 2 and the fact that D has diameter 2, we know that the
points (x′1, 1) and (x′1,−1) are not in D, which implies that P 2

2 is in
L(D). Likewise as we have cx ≤ c′x, the points (x′1, 1) and (x′1,−1)
are not in D′, and so P 2

2 is in L(D) ∩ L(D′).

Lemma 2.23. Let D := D(c, 1) and D′ := D(c′, 1) be two intersect-
ing unit disks. Let {Di} be a set of unit disks that fully intersect with
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{D,D′}, such that for each unit disk Di we have d(D,Di) ≤ d(D,D′)
and d(D′,Di) ≤ d(D,D′). Also let {P 2

j } be a set of 2-pancakes that
fully intersect with {D,D′}, such that for any P 2

j in {P 2
j } ∩ L(D),

we have d(D, P 2
j ) ≤ d(D,D′), and for any P 2

j in {P 2
j } ∩ L(D′), we

have d(D′, P 2
j ) ≤ d(D,D′). Then G({Di} ∪ {P 2

j }) is cobipartite.

Proof. We denote by ρ the distance between c and c′. We denote by
R the lens induced by D(c, ρ) and D(c′, ρ). We cut R with the line
segment [c, c′], which partitions R into two half-lenses that we denote
by R1 and R2. By assumption, the centre of any unit disk in {Di}
must be in R. Since R1 and R2 have diameter ρ which is at most
2, any two unit disks having their centres in R1 must intersect, and
the same holds with R2. Therefore G({Di}) is cobipartite, which is
the claim if {P 2

j } is empty.

We now assume that {P 2
j } is not empty. In order to show the claim,

we do a case analysis according to whether the intersection between
D(c, 2) ∩ D(c′, 2) and Ox is empty or not. Let us assume that the
latter holds, as shown in Figure 2.7. Let P 2 be in a 2-pancake
in {P 2

j }. As P 2 intersects with D, P 2 contains a unit disk that
intersects with D. Likewise, P 2 contains a unit disk that intersects
with D′. This implies that P 2 contains a point in D(c, 2) ∩Ox and
a point in D(c′, 2)∩Ox. By convexity of a 2-pancake, P 2 contains a
point (x′, 0), where (x′, 0) is in D(c, 2)∩D(c′, 2)∩Ox. We denote by
R+ the lens that is induced by D(c, 2) and D(c′, 2) and cut it with
the line (c, c′). We denote by R+

1 (respectively R+
2 ) the half-lens

that contains R1 (respectively R2). Let us assume that (x′, 0) is in
R+

1 . By assumption D((x′, 0), 2) contains c and c′. Let us consider
the third extremity of R1, along with c and c′, that we denote by r1.
By making a circle centred at r1 grow, we observe that the farthest
point from r1 in R+

1 can only be at one of the three extremities of
R+

1 . However by Lemma 2.19 these distances are at most 2, which
implies that the distance between (x′, 0) and r1 is at most 2. Using
the fact that two circles intersect at most twice, we obtain that R1 is
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contained in D((x′, 0), 2). Therefore P 2 intersect with all unit disks
whose centre is in R1, and with all 2-pancakes in L(D)∩L(D′) that
contain a disk whose centre is in R1. Let P 2(x1, x2) and P 2(x′1, x

′
2)

be two 2-pancakes in {P 2
j } such that they contain each a unit disk

whose centre is in R+
1 , but such that they do not contain a unit

disk whose centre is in R1. In particular, P 2(x1, x2) and P 2(x′1, x
′
2)

are not in L(D) ∩ L(D′). We claim that they intersect. Suppose
by contradiction that they do not. Without loss of generality, let us
assume that P 2(x1, x2) is to the right of P 2(x′1, x

′
2), and that cx ≤ c′x,

where cx and c′x denote the x-coordinate of c and c′ respectively.
Since P 2(x1, x2) does not contain a disk in R1, and since it is on the
right side of P 2(x′1, x

′
2), it implies that it does not contain a disk with

centre in D(c, ρ). Therefore P 2(x1, x2) cannot be in L(D). Moreover
the fact that it does not contain a disk with centre in D(c, ρ) implies
x1 ≥ cx. We finally apply Lemma 2.22 to obtain a contradiction. We
denote X1 the set of unit disks whose centre is in R1 and 2-pancakes
that contain a disk whose centre is in R+

1 . We know that two unit
disks in X1 intersect. Moreover we have shown that a 2-pancake and
a unit disk in X1 intersect. For a pair of two pancakes, if one of them
contains a disk whose centre is in R1 it is done for the same reasons.
If none of them does, then we have shown above that they intersect.
This shows that G(X1) is a complete graph. By defining X2 as the
set of the remaining disks and 2-pancakes, using the symmetry of
the problem we obtain that G(X2) is also a complete graph.

Now let us assume that the intersection between D(c, 2)∩D(c′, 2) and
Ox is empty, as shown in Figure 2.8. As {P 2

j } is not empty, the set
Ox \ (D(c, 2)∪D(c′, 2)) consists of three connected component, one
of them bounded. We denote by s the closed line segment consisting
of the bounded connected component and its boundaries. Any 2-
pancake P 2 in {P 2

j } contains a unit disk whose centre is in D(c, 2)∩
Ox, otherwise P 2 would not intersect with D. Likewise P 2 contains
a unit disk whose centre is in D(c′, 2)∩Ox, and therefore P 2 contains
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s. This implies that all 2-pancakes in {P 2
j } pairwise intersect. Let

us assume without loss of generality that R1 is closer to Ox than R2.
Let us show that any 2-pancake P 2 in {P 2

j } and any unit disk whose
centre is in R1 intersect. This is equivalent to show that for any
point p in R1, there exists a unit disk contained in P 2 with centre
q ∈ P 2∩Ox, such that the Euclidean distance between p and q is at
most 2. We denote by P 2

+ the Minkowski sum of the disk with radius
2 centred at O and the line segment s, i.e. P 2

+ = ∪x′∈sD(x′, 2). Note
that P 2

+ is convex. We claim that P 2
+ contains R1, which implies

the desired property. Since s contains a point p1 in D(c, 2), we
know that P 2

+ contains c. Likewise, as s contains a point p2 in
D(c′, 2), then P 2

+ contains c′, and therefore by convexity the whole
line segment [c, c′]. Therefore P 2

+ contains the quadrilateral cc′p2p1.
If this quadrilateral contains R1 we are done. Otherwise, it may not
contain a circular segment of the disk D(c′, ρ) or a circular segment of
the disk D(c, ρ). Let us assume that we have the worst case, meaning
that both circular segments are not in cc′p2p1. Let us consider the
circle C1 centred at p1 with radius 2, and the circle C′ centred at c′

with radius ρ. The two circles intersect at c. Let us consider the
point p′1 that is at the intersection between C′ and the line segment
[c, p1]. By definition, p′1 is inside the disk induced by C1. As two
circles intersect at most twice, we obtain that the arc cp′1 centred at
c′ with radius ρ is contained in the disk induced by C1, and therefore
also in P 2

+. By convexity, we know that the circular segment of the
disk D(c′, ρ) with chord [c, p′1] is in P 2

+. We can apply the same
arguments for the other side to show that R1 is in P 2

+. Hence by
defining X1 as the set of disks whose centre centre is in R1, union
the set of 2-pancakes, and X2 as the set of disks whose centre is in
R2, we have that G(X1) and G(X2) are complete graphs.

Note that Lemma 2.21 and Lemma 2.23 give a polynomial time al-
gorithm for maximum clique in Π2 when a representation is given.
First compute a maximum clique that contains only 2-pancakes,
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Figure 2.7: First case: D(c, 2) ∩ D(c′, 2) ∩Ox ̸= ∅
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Figure 2.8: Second case: D(c, 2) ∩ D(c′, 2) ∩Ox = ∅

which can be done in polynomial time since the intersection graph
of a set of 2-pancakes is an interval graph [39]. Then for each unit
disk D, compute a maximum clique which contains exactly one unit
disk, D, and an arbitrary number of 2-pancakes. Because finding out
whether a unit disk and a 2-pancake intersect takes constant time,
computing such a maximum clique can be done in polynomial time.
Note that if a maximum clique contains at least two unit disks, then
in quadratic time we can find in this maximum clique either a pair
of unit disks or a unit disk and a 2-pancake whose intersection is a
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lens, such that the conditions of Lemma 2.21 or of Lemma 2.23 are
satisfied. By applying the corresponding lemma, we know that we
are computing a maximum clique in a cobipartite graph, which is
the same as computing a maximum independent set in a bipartite
graph. As this can be done in polynomial time [28], we can compute
a maximum clique in Π2 in polynomial time when the representation
is given.

2.4.3 Maximum clique without a representation

To obtain an algorithm that does not require a representation, we use
the notion of CNEEO as introduced by Raghavan and Spinrad [70].
The definition can be found in Section 2.1. To show that it is possible
to compute a maximum clique in a graph G in Π2, we show that
such a graph admits a CNEEO.

Theorem 2.24. If a graph G is in Π2, then G admits a CNEEO.

Theorem 2.24, Lemma 2.4 and Lemma 2.5 immediately imply The-
orem 2.16. To prove Theorem 2.24, we use two more lemmas.

Lemma 2.25. Let D = D((cx, cy), 1) be a unit disk. Let {P 2
j } be a

set of 2-pancakes that all intersect with D. Then G({P 2
j }) is cobi-

partite.

Proof. Let P 2(x1, x2) be in {P 2
j }. By triangular inequality we have

x1 ≤ cx + 2 or x2 ≥ cx − 2. It implies that P 2(x1, x2) contains the
line segment [(x′ − 1, 0), (x′ + 1, 0)] for some x′ satisfying cx − 2 ≤
x′ ≤ cx + 2. We define X1 as the set of 2-pancakes in {P 2

j } that
contain the line segment [(x′−1, 0), (x′+1, 0)] for some x′ satisfying
cx − 2 ≤ x′ ≤ cx, and X2 as {P 2

j } \X1. We obtain that G(X1) and
G(X2) are complete graphs.

Lemma 2.26. Let P 2 = P 2(x1, x2) and P ′2 = P 2(x′1, x
′
2) be two
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intersecting 2-pancakes. Let {P 2
j } be a set of 2-pancakes that fully

intersect with {P 2, P ′2}, such that for any P 2
j in {P 2

j }, P 2
j is not

contained in P 2 nor in P ′2. Then G({P 2
j }) is cobipartite.

Proof. Let P 2(x′′1, x
′′
2) be in {P 2

j }. Let us first assume that one of
P 2, P ′2 is contained in the other. Without loss of generality, let us
assume that P 2 is contained in P ′2, which is equivalent to having
x′1 ≤ x1 ≤ x2 ≤ x′2. By assumption, as P 2(x′′1, x

′′
2) is not contained

in P 2, we have x′′1 < x1 or x2 < x′′2. As P 2(x′′1, x
′′
2) intersects with

P 2, it implies that P 2(x′′1, x
′′
2) contains (x1 − 1, 0) or (x2 +1, 0). We

define X1 as the set of 2-pancakes in {P 2
j } that contains (x1 − 1, 0),

andX2 as {P 2
j }\X1. We obtain that G(X1) and G(X2) are complete

graphs.

If none of P 2, P ′2 is contained in the other, we can assume without
loss of generality that x1 ≤ x′1 ≤ x2 ≤ x′2. Therefore we have x′′1 < x′1
or x2 < x′′2, which implies that P 2(x′′1, x

′′
2) contains (x′1 − 1, 0) or

(x2 + 1, 0). We conclude as above.

Proof of Theorem 2.24. Let us consider any representation ofG with
unit disks and 2-pancakes. We divide the set of edges into three
sets: E1, E2 and E3. E1 contains all the edges between a pair of
unit disks, or between a unit disk D and a 2-pancake in L(D). E2

contains the edges between a unit disk and a 2-pancake that are not
in E1. E3 contains the edges between a pair of 2-pancakes. For an
edge e = {u, v} in E1, we call length of e the distance between u
and v, be they unit disks or a unit disk D and a 2-pancake in L(D).
We order the edges in E1 by non increasing length, which gives an
ordering Λ1. We take any ordering Λ2 of the edges in E2. For E3,
we take any ordering Λ3 such that for any edge e = {u, v}, no edge
after e in Λ3 contains a 2-pancake contained in u or v. This can
be obtained by considering the smallest 2-pancakes first. We finally
define an ordering Λ = Λ1Λ2Λ3 on E. Let us consider an edge ek.
If ek is in E1, Lemma 2.21 and Lemma 2.23 show that NΛ,k induces
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a cobipartite graph. If ek is in E2, we use Lemma 2.25, and if ek
is in E3, we conclude with Lemma 2.26. This shows that Λ is a
CNEEO.

2.4.4 A motivation for Πd

As we define it, Πd is the class of intersection graphs of d-pancakes
and unit d-balls. The properties that we desire are:

1. Πd contains (d− 1)-ball graphs and unit d-ball graphs,

2. Maximum clique can be computed as fast in Πd as in (d− 1)-
ball graphs and unit d-ball graphs.

Let {ξi}1≤i≤d be the canonical basis of Rd. Let us consider another
class Π̃d, that might a priori satisfy those properties.

Definition 2.27. We denote by Π̃d the class of intersection graphs
of (d− 1)-balls lying on the hyperspace induced by {ξ1, ξ2, . . . , ξd−1}
and of unit d-balls.

This class might look more natural since it makes use only of balls
and not of pancakes. It contains by definition (d − 1)-ball graphs
and unit d-ball graphs. Moreover, as we want to be able to com-
pute a maximum clique fast, we are looking for a “small” superclass.
However, while we do not rule out the existence of a polynomial
algorithm for computing a maximum clique in Π̃2, we prove that
Lemma 2.23 does not hold in Π̃2.

The counterexample is illustrated in Figure 2.9. We have two inter-
secting unit disks D and D′. Moreover each one of D1, D2 and the
line segment [x1, x2] intersects with both D and D′. The distances
d(D,D1), d(D′,D1) are smaller than d(D,D′), and the same hold for
D2. To define L(D), a natural way would be to use the same charac-
terisation as in Observation 2.18. Therefore the line segment [x1, x2]
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D D′

x1 x2

D1

D2

• •

Figure 2.9: Lemma 2.23 does not hold in Π̃2: G({D1,D2, [x1, x2]})
is not cobipartite

is not in L(D) nor in L(D′). However, G({D1,D2, [x1, x2]}) is an
edgeless graph with three vertices, and therefore is not cobipartite.

2.4.5 Recognition of graphs in Π2

We show that testing whether a graph can be obtained as the inter-
section graph of unit disks and 2-pancakes is hard, as claimed in the
following theorem:

Theorem 2.28. Testing whether a graph is in Π2 is NP-hard, and
even ∃R-hard.

Proof. We do a reduction from recognition of unit disk graphs, which
is ∃R-hard as shown by Kang and Müller [49]. Let G = (V,E) be
a graph with n vertices. We are going to construct

(
n
2

)
graphs such

that G is a unit disk graph if and only if at least one of these new
graphs is in Π2. Let S and S′ be two stars with internal vertex s and
s′ respectively, having 14n + 8 leaves each. Let W and W ′ be two
paths with 2n vertices each with end vertices w1, w2n and w′

1, w
′
2n

respectively. Let u and v be two vertices in V . We define Gu,v as the
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graph obtained by connecting s to s′, w1 to u, w′
1 to v, w2n to s and

w′
2n to s′. We claim that G is a unit disk graph if and only if Gu,v

is in Π2 for some u and v in V . First let us assume that G is a unit
disk graph. Let us consider the set P of the centres of the unit disks
in any fixed representation of G. Consider two extreme points in P ,
meaning that removing any of them modifies the convex hull of the
point set. Take the two unit disks D and D′ corresponding to those
two extreme points, and let us denote by u and v the corresponding
vertices in G. Now take two sets {Di}1≤i≤2n and {D′

j}1≤j≤2n of 2n
unit disks such that G({Di}) and G({D′

j}) are paths, and such that
no two unit disks of the form Di,D′

j intersect. Moreover we require
that G({Di}) ∩G = ({u}, ∅) and G({Dj}) ∩G = ({v}, ∅), and that
all unit disks centres are on the same side of the line (c2n, c

′
2n),

which are the centres of D2n and D′
2n respectively. This is possible

because the most distant points in the unit disk representation of G
have distance at most 4n, and we have 2n unit disks in each path.
Then we translate and rotate everything so that the y-coordinate of
c2n and c′2n is equal to 2, and that all other centres are above the
horizontal line with height 2. We take two intersecting 2-pancakes
such that one also intersect with D2n and the other with D′

2n. We
choose these 2-pancakes big enough so that for each of them we can
add 14n + 8 pairwise non intersecting unit disks, but intersecting
with their respective 2-pancake. This shows that if G is a unit disk
graph, then Gu,v is in Π2.

Let us now assume that Gu,v is in Π2, for some u, v in V . As a
unit disk can intersect at most with 5 pairwise non intersecting unit
disks, we have that in any Π2 representation of Gu,v, s and s′ must
be represented by 2-pancakes, denoted by P and P ′ respectively.
Let x be the length of the line segment obtained as the intersection
of P and Ox. Note that all points of a unit disk intersecting a
2-pancake are within distance 3 of Ox. Therefore, the unit disks
corresponding to leaves of s are contained in a rectangle with area
6(x + 4). Moreover, for each 2-pancake intersecting P , there is a
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unit disk contained in this 2-pancake that intersects P . We have
14n+8 pairwise non-intersecting unit disks in a rectangle with area
6(x+4). As the area of a unit disk is bigger than 3, we have 6(x+4) ≥
3(14n+8), or equivalently x ≥ 7n. Note that the same holds with P ′.
Let us show that in any Π2 representation of Gu,v, all the vertices
in V are represented by unit disks. Assume by contradiction that it
is not the case. Without loss of generality, let us assume P is to the
left of P ′, and that one vertex uG in V is represented by a 2-pancake
that is to the right of P ′. Indeed this 2-pancake cannot be between P
and P ′ because they are intersecting. Let us consider the last vertex
in a path from s to uG that is a disk. By construction, the distance
between P and the unit disk corresponding to this vertex is at most
2(2n+ n− 1) = 6n− 2. This shows that this vertex is still far from
the right end of P ′, and so the next vertex has to be represented by
a unit disk because it is not intersecting P ′, which is a contradiction.
We have shown that G is a unit disk graph if and only if there exist
u, v in V such that Gu,v is in Π2, and the construction of these

(
n
2

)
graphs takes linear time for each of them.
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CHAPTER 3

Maximum Clique in superclasses of disk graphs

3.1 Introduction

In Chapter 2, we studied maximum clique in superclasses of unit
disk graphs. In Section 2.2, we extended the polynomial-time al-
gorithms by Clark, Colbourn and Johnson [19] and Raghavan and
Spinrad [70] to the case of translates of a fixed bounded convex set.
In Section 2.4, we extended it to Π2, the class of intersection graphs
of unit disks and 2-pancakes. In this chapter, we study superclasses
of disk graphs, and try to extend the EPTAS of Bonamy et al. [8]
to new settings. We first give some definitions.

A cycle is said induced if it is chordless. An odd cycle (respec-
tively even cycle) is a cycle on an odd (respectively even) number
of vertices. One can observe that an odd cycle always contains an

51
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induced odd cycle. Two cycles are said mutually induced if they are
chordless and there is no edge linking a vertex of one to a vertex of
the other. The induced odd cycle packing number is the maximum
number of disjoint odd cycles, that are pairwise mutually induced.
We denote the induced odd cycle packing number of a graph G by
iocp(G).

Bonamy et al. showed:

Theorem 3.1 ([8]). For any constants d ∈ N, 0 < β ⩽ 1, for every
0 < ε < 1, there is a randomized (1 − ε)-approximation algorithm
running in time 2Õ(1/ε3)nO(1), and a deterministic PTAS running
in time nÕ(1/ε3) for maximum clique in n-vertex graphs G satisfying
the following conditions:

• there is a constant K such that iocp(G) ≤ K,

• the VC-dimension of the neighborhood hypergraph {N [v] | v ∈
V (G)} is at most d, and

• G has a clique of size at least βn.

The first item is enough to obtain a subexponential-algorithm [9]
and boils down to proving a structural lemma on the representation
of K2,2 (see Lemma 3.6). Observe that in this statement we consider
the complement of G, and not G itself. For intersection graphs, the
first item is usually the hardest part to prove. For a disk graph or
a unit ball graph G, Bonnet et al. and Bonamy et al. proved that
we have iocp(G) ≤ 1 [9, 8]. Not all disk graphs satisfy the third
item. However Bonnet et al. showed how to reduce the problem of
maximum clique in disk graphs to the case where the third item is
satisfied.

We show how to compute a maximum clique in homothets of a fixed
centrally symmetric convex set using Theorem 3.1. Indeed we prove
that for such a graph G, we have iocp(G) ≤ 1. We conjecture that
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the same holds with intersection graphs of convex-pseudo disks. We
denote the class of convex pseudo-disk graphs by G. The proof of
Bonnet et al., and ours for homothets of a fixed centrally symmetric
convex set rely heavily on the fact that such objects have centres [9].
However, convex pseudo-disks do not, therefore adapting the proof in
this new setting does not seem easy. While we are not able to extend
this structural result to the class G, we show a weaker property: The
complement of a triangle and an odd cycle is a forbidden induced
subgraph in G. We write “complement of a triangle” to make the
connection with iocp clear, but note that actually the complement
of a triangle is an independent set of three vertices. Below we state
this property more explicitly.

Theorem 3.2. Let G be in G. If there exists an independent set of
size 3, denoted by H, in G, and if for any u ∈ H and v ∈ G\H, the
edge {u, v} is an edge of G, then G \H is cobipartite.

Note that a cobipartite graph is not the complement of an odd cycle.
Given the three pairwise non-intersecting convex pseudo-disks in H,
we give a geometric characterisation of the two independent sets in
the complement of G \H. We conjecture that Theorem 3.2 is true
even when H is the complement of any odd cycle, which implies:

Conjecture 3.3. For any convex pseudo-disk graph G, we have
iocp(G) ≤ 1.

If Conjecture 3.3 holds, it is straightforward to obtain an EPTAS for
maximum clique in convex pseudo-disks graphs, by using the method
of Bonamy et al. [8].

Recall that Bonamy et al. asked for a geometric superclass of both
disk graphs and unit ball graphs, in which maximum clique would
admit an EPTAS. Let us consider the class Π3, the class of intersec-
tion graphs of 3-pancakes and unit balls. We show that the following
conjecture implies the existence of an EPTAS by using Theorem 3.1.
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Conjecture 3.4. There exists an integer K such that for any graph
G in Π3, we have iocp(G) ≤ K.

3.2 Homothets of a fixed set

Here we observe that the EPTAS for maximum clique in disk graphs
extends to the intersection graphs of homothets of a centrally sym-
metric convex set.

Theorem 3.5. Maximum clique admits a subexponential-time algo-
rithm and an EPTAS in intersection graphs of homothets of a fixed
bounded centrally symmetric convex set S.

We use the associated norm as defined in Section 2.2, and check the
three conditions of Theorem 3.1.

Lemma 3.6. In a representation of K2,2 with homothets of S placing
the four centers in convex position, the non-edges are between vertices
corresponding to opposite corners of the quadrangle.

Proof. Let S1, S2, S3 and S4 be the four homothets. We denote
by ci the center of Si, and by λi its scaling factor. Let us assume
by contradiction that they appear in this order on the convex hull,
that S1 and S2 make one non-edge, and that S3 and S4 make the
other. By assumption, we have ∥c1 − c2∥ > λ1 + λ2, and likewise
∥c3 − c4∥ > λ3 + λ4. Let us denote by c the intersection of the lines
ℓ(c1, c3) and ℓ(c2, c4). We have ∥c1 − c∥ + ∥c − c2∥ > ∥c1 − c2∥ by
triangular inequality. Likewise it holds ∥c3−c∥+∥c−c4∥ > ∥c3−c4∥.
We therefore obtain λ1 + λ2 + λ3 + λ4 < ∥c1 − c∥+ ∥c− c2∥+ ∥c3 −
c∥+ ∥c− c4∥ = ∥c1 − c3∥+ ∥c2 − c4∥ ⩽ λ1 + λ3 + λ2 + λ4, which is
a contradiction.

Lemma 3.6 implies by some parity arguments that the first condition
of Theorem 3.1 holds (see Theorem 6 in [9]). It is well known that a
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c1 c2

c3

c4

> λ1 + λ2

> λ3 + λ4

c

Figure 3.1: Illustration of the proof of Lemma 3.6. Non-edges are
dotted and edges are dashed. By Assumption the top and bottom
segment have a length of at least λ1 + λ2 + λ3 + λ4. By the triangle
inequality the green plus the blue path are even longer.

family of homothets forms a pseudo-disk arrangement. Therefore the
second property holds as shown by Aronov et al. [4]. Finally we en-
force the third condition of Theorem 3.1, by using a chi-boundedness
result of Kim et al. [51].

Lemma 3.7. With a polynomial multiplicative factor in the run-
ning time, one can reduce to instances satisfying the third condition
of Theorem 3.1 with β = 1/36.

Proof. Kim et al. [51] show that in any representation of an inter-
section graph G of homothets of a convex set, a homothet S with
a smallest scaling factor has degree at most 6ω(G)− 7, where ω(G)
denotes the clique number of G. Their proof also implies that the
independence number of its neighborhood is at most 6. By a degen-
eracy argument, the colouring number, denoted by χ(G) is at most
6ω(G)−6. First we find in polynomial-time a vertex v such that the
independence number of its neighborhood is at most 6. Let us denote



56 Maximum Clique in superclasses of disk graphs

by Gv the subgraph induced by its neighborhood, and n denotes its
number of vertices. We denote by α(.) the independence number of
a graph. As Gv has a representation with homothets of S, we have
χ(Gv) ⩽ 6ω(Gv). Therefore α(Gv)ω(Gv) ⩾ 1

6α(Gv)χ(Gv) ⩾ 1
6n.

Thus by assumption we have ω(Gv) ⩾ 1
36n. Then we can com-

pute a maximum clique that contains v, or remove v from the graph
and iterate. The EPTAS of Bonamy et al. is called linearly many
times.

3.3 Convex pseudo-disks

In this section we are interested in computing a maximum clique
in intersection graphs of convex pseudo-disks. As mentioned in the
introduction, there exists an EPTAS for maximum clique in disk
graphs [9, 8]. The main property used is that for any disk graph G,
we have iocp(G) ≤ 1. The proof of this inequality relies on the fact
that disks have centres. However in this section we are considering
convex pseudo-disks, which do not have centres. Our proof that the
complement of a triangle and an odd cycle is a forbidden induced
subgraph in convex pseudo-disk graphs relies on line transversals
and their geometric permutations on the three convex pseudo-disks
that form a triangle in the complement, denoted by D1, D2 and
D3. As there are only three sets, the geometric permutation of a
line transversal is given simply by stating which set is the second
one intersected. We denote by {D′

j}1≤j≤n (or simply {D′
j}) a set of

convex pseudo-disks that fully intersect with {D1,D2,D3}. Our aim
is to show that G({D′

j}) is cobipartite.

Throughout this section, for the sake of readability, we refer to the
convex pseudo-disks simply as “disks”. We always assume that no
disk D ∈ {D′

j} contains any of D1, D2 and D3. Indeed, D would
intersect any disk that intersects pairwise with D1, D2 and D3. Thus,
such a disk D could be arbitrarily added to any of the two cliques of
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the cobipartition.

Definition 3.8. A line transversal ℓ is a line that intersects each of
the three disks D1, D2 and D3. We call disk in the middle of a line
transversal the disk it intersects in second position.

We are going to conduct a case analysis depending on the number of
disks being the disk in the middle for some line transversal. If there
exists no line transversal, we can prove a stronger statement.

Lemma 3.9. If there is no line transversal through a family of con-
vex sets F , then for any pair of convex sets {C1, C2} that fully in-
tersects with F , the sets C1 and C2 intersect.

Proof. Let us prove the contrapositive. Assume that C1 and C2 do
not intersect, therefore there exists a separating line. As all sets in
F intersect C1 and C2, they also intersect the separating line, which
is thus a line transversal of F .

Using the notation of Theorem 3.2, Lemma 3.9 immediately implies
that if there is no line transversal through the sets representing H,
then G \ H is a clique, which is an even stronger statement than
required.

Definition 3.10. Let D1 and D2 be two disjoint disks and let p, q
be in the interior of D1,D2 respectively. We call external tangents
of D1 and D2 the two tangents that do not cross the line segment
[p, q].

Definition 3.11. Let us consider a disk in {D1,D2,D3}, say D2,
such that it is the disk in the middle of a line transversal. We denote
by τ and τ ′ the two external tangents of D1 and D3. We say that
D2 is contained if it is contained in the bounded region S delimited
by D1, τ , D3 and τ ′. If D2 intersects exactly one of the external



58 Maximum Clique in superclasses of disk graphs

D1
D′′

2 D3

D2

D′
2

τ

τ ′
S

Figure 3.2: D2 is contained, D′
2 is 1-intersecting and D′′

2 is 2-
intersecting.

tangents, we say that D2 is 1-intersecting. If D2 intersects both
external tangents, we say that D2 is 2-intersecting. The different
cases are illustrated in Figure 3.2.

Lemma 3.12. If D2 is 2-intersecting, then it is the disk in the mid-
dle of all line transversals.

Proof. By definition, D2 is the disk in the middle of a line transversal.
We denote by τ and τ ′ the external tangents. let p be a point in
D2∩τ and p′ be in D2∩τ ′. The line segment [p, p′] is contained in D2,
and the line (p, p′) separates D1 from D3. Let ℓ be a line transversal.
Let p1 be in ℓ ∩ D1 and p3 be in ℓ ∩ D3. The line segment [p1, p3]
must cross [p, p′], which shows that the disk in the middle of ℓ is
D2.

Lemma 3.13. If D2 is contained, then either D1 is not the disk in
the middle of a line transversal, or D1 is 1-intersecting. The same
holds with D3.
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τ2

D1

D2

D3

A2

Figure 3.3: Illustration of Definition 3.14, with D2 being the 1-
intersecting disk

Proof. We prove the statement for D1, the same arguments hold with
D3. Observe that there is a line transversal having D2 as disk in the
middle. Let us assume that there is a line transversal having D1 as
disk in the middle, and let us show that D1 is 1-intersecting. As D2

is contained, no point in D2 lies on the boundary of the convex hull
of D1∪D2∪D3. This immediately implies that some points in D1 lies
on the boundary of the convex hull of D1∪D2∪D3. Therefore, D1 is
not contained. Moreover, D1 is not 2-intersecting, for otherwise D2

would not be the disk in the middle of a line transversal, as stated
in Lemma 3.12. We have shown that D1 is 1-intersecting.

The following definition is illustrated in Figures 3.3, 3.4 and 3.5.

Definition 3.14. Let us consider a disk Di in {D1,D2,D3} that is
1-intersecting, say Di = D2. We denote by τ2 the external tangent of
D1 and D3 that D2 intersects. We denote by A2 the part of D2 that
is on the same side of τ2 as D1 and D3. Let D′ be a disk intersecting
pairwise with D1, D2 and D3. We say that D′ is outside-containing
D2 if D2 \ A2 is a subset of D′. We denote by χ1 and χ2 the points
where the boundaries of D′ and D2 intersect. Note that they are
both in A2. We denote by H the closed halfplane with bounding
line (χ1, χ2) that contains D2 \ A2. Let H′ be the closed halfplane
with bounding line τ2 that contains A2. Note that (H∩H′)\A2 is the
union of one or two connected sets. We have D′∩D1 ⊂ (H∩H′)\A2
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D1

D2

D3

τ2

H

D′

χ2χ1

••

Figure 3.4: Illustration of Definition 3.14, D′ is centred with respect
to D2.

D1

D2

D3

τ2

D′′

H

Figure 3.5: Illustration of Definition 3.14, D′′ is outside-containing
D2, but not centred with respect to D2.
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and D′ ∩D3 ⊂ (H∩H′) \A2. If D′ ∩D1 and D′ ∩D3 are not in the
same connected set, we say that D′ is centred with respect to D2.

Let us consider a disk in {D1,D2,D3}, say D2, and let us assume
it is the disk in the middle of a line transversal. Let us denote by
τ and τ ′ the two external tangents of D1 and D3. Let D be a disk
in {D′

j}, such that there exists a pair of points p1 ∈ D ∩ D1 and
p3 ∈ D∩D3, such that the segment [p1, p3] intersects D2, potentially
at a single point. Without loss of generality, we can even assume
that [p1, p3] ∩ D1 = {p1} and [p1, p3] ∩ D3 = {p3}. The segment
[p1, p3] splits D2 into two closed parts. One of them can potentially
be a single point p if [p1, p3] ∩ D2 = {p}. Observe that D contains
exactly one of those two parts: at least one because of the pseudo-
disk property, and at most one because D does not contain D2. Let
us denote by A2 ⊂ D2 the part that is contained in D. We say that
the side of [p1, p3] where A2 lies is the positive side of [p1, p3]. By
definition, p1 and p3 lie between τ and τ ′. By moving p1 and p3
toward the positive side of [p1, p3] and along the boundary of D1

and D3 respectively, only two things can happen by construction:
Either both of them reach τ , or both of them reach τ ′.

Definition 3.15. We denote by XD2 (or simply by X when there is
no risk of confusion) the set of disks in {D′

j} for which the external
tangent reached is τ . Likewise, we denote by X ′

D2
(or simply by X ′)

the set of disks in {D′
j} for which the external tangent reached is τ ′.

Let us now assume the existence of a disk D′ ∈ {D′
j}, which is not

in X ∪X ′. Let us consider p1 ∈ D′ ∩ D1 and p3 ∈ D′ ∩ D3. By as-
sumption, the segment [p1, p3] does not intersect D2. Observe that
this implies that D2 is not 2-intersecting. It is possible to contin-
uously move p1 and p3 in D1 and D3 respectively, such that they
both reach either τ or τ ′, and while maintaining the property that
[p1, p3] ∩ D2 = ∅. Observe that the choice of p1 ∈ D ∩ D1 and
p3 ∈ D ∩ D3 has no impact on whether they can both reach τ , or
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both reach τ ′. Otherwise, it would be possible to move them from
τ to τ ′ without having [p1, p3] intersecting D2, which would imply
that D2 is not the disk in the middle of any line transversal. If D2

is 1-intersecting, then exactly one of τ, τ ′ will always be reached, for
any disk in {D′

j}.

Definition 3.16. We denote by YD2 (or simply by Y when there
is no risk of confusion) the set of disks in {D′

j} \ (XD2 ∪ X ′
D2

) for
which the external tangent reached is τ , and which are not centred
with respect to D1 or D3. Likewise, we denote by Y ′

D2
(or simply

by Y ′) the set of disks for which the external tangent reached is τ ′,
and which are not centred with respect to D1 or D3. We denote
by ZD2 (or simply by Z), the set of disks for which the external
tangent reached is τ ′, and which are centred with respect to D1 or
D3. Finally, we denote by Z ′

D2
(or simply by Z ′), the set of disks for

which the external tangent reached is τ , and which are centred with
respect to D1 or D3.

We want to emphasise the fact that indeed in the definition of Z, p1
and p3 can reach τ ′ and not τ . This choice of notation comes from
the fact that, assuming that D1 and D3 are the disks in the middle of
no line transversal, or that they are 1-intersecting, all pairs of disks
in X ∪ Y ∪ Z intersect, and the same holds with all pairs of disks
in X ′ ∪ Y ′ ∪ Z ′, as we show later. Observe that if a disk is centred
with respect to D1, then D1 is 1-intersecting. Thus if both D1 and
D3 are not 1-intersecting, the sets Z and Z ′ are empty.

Lemma 3.17. If D and D′ are in XD2 , then they intersect.

Proof. Let p1, p3, p′1, p′3 be points coming from the definition of D
and D′ being in X. Recall that p1 and p′1 lie on the boundary of D1.
Similarly, p3 and p′3 lie on the boundary of D3. If [p1, p3] and [p′1, p

′
3]

intersect then we are done. Otherwise, we can assume without loss
of generality that p1 is closer to τ than p′1 is, and that p3 is closer to
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Figure 3.6: Illustration of Lemma 3.18. The segment [p2, p3] splits
D1, thus D contains p′1 or is centred with respect to D1.

τ than p′3 is (when considering them as points on the boundaries of
D1 and D3 respectively). Let A2, respectively A′

2, be the part of D2

contained in D, respectively in D′. By assumption, A2 is contained
in A′

2, which implies that the two disks intersect.

Lemma 3.18. Let us assume that D1 is the disk in the middle of
no line transversal or is 1-intersecting, and that the same holds with
D3. If D and D′ are in YD2, then they intersect.

Proof. The proof is illustrated in Figure 3.6. Let p1, p3, p′1, p′3 be
points in D ∩D1, D ∩D3, D′ ∩D1 and D′ ∩D3, respectively. Let us
assume for a contradiction that D and D′ do not intersect. Let p2
be in D ∩ D2 and p′2 be in D′ ∩ D2. We claim that p2 is not in the
quadrilateral p1p3p′3p′1. By assumption, it is possible to continuously
move the points p1, p3 in D1 and D3 respectively such that p1 and p′1
overlap, the points p3 and p′3 overlap, while keeping the property that
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[p1, p3] does not intersect D2. Observe that this is not possible if p2
is in the quadrilateral p1p3p′3p′1, because D1 and D3 do not intersect
with D2. Moreover by assumption D2 does not intersect with the
segments [p1, p3], [p3, p′3], [p′3, p′1] and [p′1, p1]. This implies that D2

is outside of the quadrilateral p1p3p′3p′1. Let us consider a separating
line ℓ of D and D′. As ℓ intersects the segments [p1, p

′
1], [p2, p′2] and

[p3, p
′
3], we observe that ℓ is a line transversal of {D1,D2,D3}. Let

us consider the intersection s of ℓ with the quadrilateral p1p3p′3p′1.
This intersection s could a priori be the union of two segments if the
quadrilateral p1p3p′3p′1 is not convex, however that is not possible
since ℓ does not intersect [p1, p3] and [p′1, p

′
3]. We have that s is a

segment with one endpoint in D1 and the other in D3. This implies
that the disk in the middle of ℓ is not D2.

If D2 is the disk in the middle of all line transversals, we have al-
ready reached a contradiction. Let us now assume that at least one
of D1 and D3 is 1-intersecting. Without loss of generality, let us
assume that D1 is the disk in the middle of ℓ. We denote by τ1 the
external tangent of D2 and D3 which intersects D1. Both segments
[p2, p3] ∩ D1 and [p′2, p

′
3] ∩ D1 are on the same side of τ1. By as-

sumption, only one of the two segments can be continuously moved
to τ1 without touching ℓ. Without loss of generality, let us assume
that this segment is [p2, p3]∩D1. Observe that [p2, p3] and p′1 are on
different sides of ℓ. The line segment [p2, p3] splits D1 into two parts,
one of them being contained in D. This implies that D contains p′1
or is centred with respect to D1, which is a contradiction.

Lemma 3.19. Let us assume that D1 is the disk in the middle of
no line transversal or is 1-intersecting, and that the same holds with
D3. If D is in XD2 and D′ is in YD2, then they intersect.

Proof. Let p1, p3 be points coming from the definition of D being
in X. Let p′1, p′3 be points in D′ ∩ D1 and D′ ∩ D3, respectively.
By definition, the segment [p1, p3] splits D2 into two parts. We
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denote by A2 the part of D2 that is contained in D. Assume for
a contradiction that D and D′ do not intersect. We claim that A2

is inside the quadrilateral p1p3p′3p′1. Without loss of generality, let
us assume that [p′1, p

′
3] ∩ D1 = {p′1} and [p′1, p

′
3] ∩ D3 = {p′3}. It

is possible to move p′1 and p′3 to τ , while following the boundaries
of D1 and D3 respectively, such that [p′1, p

′
3] does not intersect D2.

Since D and D′ do not intersect, it implies that [p1, p3] and [p′1, p
′
3]

do not intersect. In particular, it implies that p′1 is closer to τ than
p1 (when considering them as points on the boundary of D1), and
likewise p′3 is closer to τ than p3 is. By assumption, D2 does not
intersect the segments [p1, p

′
1], [p′1, p′3] and [p′3, p3]. We have shown

that A2 is inside the quadrilateral p1p3p′3p′1.

As D and D′ are not intersecting, we have that D′∩A2 is empty. Let
us denote by ℓ a separating line of D and D′. As ℓ does not intersect
[p1, p3] or [p′1, p

′
3], but because ℓ intersects [p1, p

′
1] and [p3, p

′
3], we

have that ℓ splits the quadrilateral p1p3p′3p′1. Furthermore, ℓ does
not intersect A2, and thus it is a line transversal of {D1,D2,D3}
whose disk in the middle is not D2. If D2 is the disk in the middle of
all line transversals, we have already reached a contradiction. Let us
now assume that at least one of D1 and D3 is 1-intersecting. Without
loss of generality, let us assume that the disk in the middle of ℓ is D1.
Let τ1 be the external tangent of D2 and D3 which intersects D1. Let
p′2 be in D′∩D2. Now, the segment [p′2, p′3]∩D1 lies between the lines
τ1 and ℓ, and [p′2, p

′
3] splits D1 in such a way that D′ either contains

p1 or is centred with respect to D1, which is a contradiction.

We have now shown that under certain conditions, G(X ∪ Y ) and
G(X ′ ∪ Y ′) are complete graphs. We now prove three lemmas to
show that G(X ∪ Y ∪ Z) and G(X ′ ∪ Y ′ ∪ Z ′) are complete graphs.
To do so, we have to show that all pairs of disks in Z intersect. In
the following lemma, we prove the stronger statement that all pairs
of disks in Z∪Z ′ intersect. Then, in Lemmas 3.21 and 3.22, we show
that a disk D in Z intersects any disk in X or Y . This implies that
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D′ D′′
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Figure 3.7: The disk D is in Z, the disk D′ is in X ′ and the disk D′′

is in Y ′. Observe that D does not intersect D′ or D′′.
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Figure 3.8: Illustration of the proof of Lemma 3.20.

if D does not intersect a disk D′ in {D′
j}, then D′ is in X ′ ∪ Y ′, as

illustrated in Figure 3.7.

Lemma 3.20. Let D′ and D′′ be intersecting with {D1,D2,D3}.
If D′ and D′′ are respectively centred with respect to Di and Dj,
i, j ∈ {1, 2, 3}, then they intersect.

Proof. The proof is illustrated in Figure 3.8. For a disk Di in
{D1,D2,D3} which is 1-intersecting, we denote by τi the external
tangent of the two other disks that Di intersects. Furthermore, we
denote by Ai the subset of Di which lies on the same side of τi as the
two other disks. Let D′ and D′′ be two disks in that are centred. If
they both contain the same subset Di\Ai for some i ∈ {1, 2, 3}, then
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they intersect. Otherwise, let us assume without loss of generality
that D′ is centred with respect to D1 and D′′ is centred with respect
to D2. There are two intersections between the boundaries of D′′

and D2, that we denote by χ′′
1 and χ′′

2. We denote by H′′ the closed
halfplane with bounding line (χ′′

1, χ
′′
2) that contains D2 \A2. We de-

note by H2 the closed halfplane with bounding line τ2 that contains
A2. By assumption, D1 intersects only one of the two connected sets
of (H′′ ∩ H2) \ A2. Let us consider the intersections of τ2 with the
boundary of D2. By what we just said, there is a closest intersection
to D1, that we denote by p′′2. Note that p′′2 is in H′′, and therefore in
D′′. Let p′′1 be a point in D′′ ∩D1. If p′′1 is in D′ then we are done.
Let us now assume that it is not the case. We denote by χ′

1 and
χ′
2 the intersections of D′ with the boundary of D1. Without loss

of generality, we can assume that p′′1 is on the boundary of D1. We
denote by p′1 the intersection of τ1 and the boundary of D1 that is
the closest to D2, which can be defined similarly to how we defined
p′′2. Now observe that one of χ′

1 and χ′
2 is between p′′1 and p′1 on the

boundary of D1. Assume without loss of generality that χ′
2 is the

closest to D2. Let us consider the halfplane H′ with bounding line
(χ′

1, χ
′
2) that contains D1 \A1. We also denote by H1 the halfplane

with bounding line τ1 that contains A1. As D′ is centred with respect
to D1, there is one of the two connected component that intersects
with D2, and the other with D3. Note that the connected component
on the side of χ′

2 cannot intersect with D3, since otherwise D1 would
not be the disk in the middle of τ1. This implies that the connected
component on the side of χ′

2 is the one that intersects D2. Finally,
observe that either D′ contains p′′2, or it does not intersect with A2,
and thus contains a point in D2 \ A2. In both cases, D′ contains a
point in D′′.

Lemma 3.21. Let us assume that D1 or D3 is 1-intersecting. If D
is in XD2 and D′ is in ZD2, then they intersect.

Proof. Let p1, p3 be the points coming from the definition of D being
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in X. By assumption, the segment [p1, p3] splits D2 into two parts.
Let us denote by A2 the part that is contained in D. Without loss of
generality, let us assume that D′ is centred with respect to D1. We
have that p1 is on the boundary of D1. Let us denote by p′1 and q′1
the two intersections between the boundaries of D′ and D1. Let us
consider the boundary of D1. The lines τ and τ ′ cut it into two parts,
one of them containing p1, p′1 and q′1. Let us consider that part of
the boundary of D1. We assume that when going from τ to τ ′ while
following this part, we see the points in that order: p′1, p1 and then
q′1. Indeed if p1 does not appear between p′1 and q′1, then p1 is in D′

and we are done. We can assume without loss of generality that we
reach first p′1 and last q′1 by relabelling if need be. Let us follow the
boundary of D′ from p′1 while staying outside of D1 (therefore not
going in the direction of q′1), until we reach either D2 or D3. This
must happen as D′ is centred with respect to D1. We claim that we
can only reach D2. Indeed, assume for a contradiction that we reach
a point p′3 at an intersection between the boundaries of D′ and D3.
As D′ is in Z, the segment [p′1, p

′
3] does not intersect D2. However,

the segment [p1, p3] does intersect D2. As [p1, p3] and [p′1, p
′
3] do not

intersect, and since p′1 is closer to τ than p1 is (when considering
their positions on the boundary of D1), it implies that p′3 is closer
to τ than p3 is (when considering their positions on the boundary of
D3). It is now possible to continuously move p′1 and p′3 to τ while
keeping the property that [p′1, p

′
3] does not intersect D2, which is

impossible. We have shown that when following the boundary of D′

from p′1, we meet a point p′2 in D′ ∩ D2. By construction, as p′1 is
closer to τ than p1 is, we know that p′2 is in A2, which implies that
D and D′ intersect.

Lemma 3.22. Let us assume that D1 or D3 is 1-intersecting. If D
is in YD2 and D′ is in ZD2, then they intersect.

Proof. Assume for a contradiction that they do not intersect. Let p1
and p3 be in D ∩ D1 and D ∩ D3 respectively. We can even assume
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that [p1, p3] ∩ D1 = {p1} and [p1, p3] ∩ D3 = {p3}. Without loss
of generality, let us assume that D′ is centred with respect to D1.
We define p′1 and q′1 as in the proof of Lemma 3.21. We follow the
boundary of D′ from p′1 while staying outside of D1 (therefore not
going in the direction of q′1), until we reach either D2 or D3. Again,
this must happen as D′ is centred with respect to D1. However,
we cannot reach D3 because if so, by denoting p′3 the point on the
boundary of D3 that we reach, the points p′1 and p′3 could be moved
to τ while having [p′1, p

′
3] not intersecting D2. This is because p′1

is closer to τ than p1 is (when considering their positions on the
boundary of D1), and the same holds with p′3 and p3. Since D is in
Y , [p1, p3] can be moved to τ without intersecting D2, and thus so
can [p′1, p

′
3]. This implies that the disk we reach is D2. But this is in

contradiction with the fact that [p1, p3] can be moved to τ without
intersecting D2, since p′1 is closer to τ than p1 is.

We can now prove Theorem 3.2.

Proof of Theorem 3.2. We consider any fixed representation of G
with convex pseudo-disks. We denote by D1, D2 and D3 the three
non-intersecting sets corresponding to H. Likewise we denote by
{D′

j} the convex pseudo-disks in G \H. If there is no line transver-
sal of {D1,D2,D3}, we conclude with Lemma 3.9. If there is one
disk that is 2-intersecting, say D2, then we have that Y , Y ′, Z
and Z ′ are empty. We conclude with Lemma 3.17. Now let us
assume that one disk, say D2 is contained. Then we know with
Lemma 3.13 that D1 is the disk in the middle of no line transver-
sal, or it 1-intersecting. The same holds with D3. Therefore we
can apply Lemmas 3.17, 3.18, 3.19, 3.20, 3.21 and 3.22. They imply
that G(X ∪ Y ∪ Z) is a complete graph. By the same arguments,
G(X ′ ∪ Y ′ ∪ Z ′) is a complete graph too. As {D′

j} is the disjoint
union of X, X ′, Y , Y ′, Z and Z ′, it implies that G\H is cobipartite.
If no disk is 2-intersecting and no disk is contained, then all disks
are either the disk in the middle of no line transversal, or are 1-
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intersecting. As we are now assuming that there is a line transversal
of {D1,D2,D3}, we assume without loss of generality that its disk
in the middle is D2, and we use Lemmas 3.17, 3.18, 3.19, 3.20, 3.21
and 3.22 to conclude.

3.4 3-pancakes and disks

In this section, we show the following theorem:

Theorem 3.23. If Conjecture 3.4 holds, there exists a randomised
EPTAS for computing a maximum clique in Π3, even without a rep-
resentation.

We first give some definitions. Vapnik and Chervonenkis have in-
troduced the concept of VC-dimension in [81]. In this paper, we
are only concerned with the VC-dimension of the neighbourhood of
some geometric intersection graphs. In this context, the definition
can be stated as follows:

Definition 3.24. Let F be a family of sets in Rd, and let G be the
intersection graph of F . We say that F ⊆ F is shattered if for every
subset X of F , there exists a vertex v in G that is adjacent to all
vertices in X, and adjacent to no vertex in F \X. The VC-dimension
of the neighbourhood of G is the maximum cardinality of a shattered
subset of F .

We define the class X (d, β,K) as introduced by Bonamy et al. in [8].
Let d and K be in N, and let β be a real number such that 0 < β ≤ 1.
Then X (d, β,K) denotes the class of simple graphs G such that the
VC-dimension of the neighbourhood of G is at most d, α(G) ≥
β|V (G)|, and iocp(G) ≤ K. They show that there exist EPTAS
(Efficient Polynomial-Time Approximation Scheme) for computing
a maximum independent set in X (d, β,K). An EPTAS for a max-
imisation problem is an approximation algorithm that takes a pa-
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rameter ε > 0 and outputs a (1 − ε)-approximation of an optimal
solution, and running in f(ε)nO(1) time. More formally, we have the
following:

Theorem 3.25 (Bonamy et al. [8]). For any constants d,K ∈
N, 0 < β ≤ 1, for every ε > 0, there is a randomised (1 − ε)-
approximation algorithm running in time 2Õ(1/ε3)nO(1) for maximum
independent set on graphs of X (d, β,K) with n vertices.

Recently, Dvořák and Pekárek have announced that it is not nec-
essary to have bounded VC-dimension [27]. More explicitly, there
is an EPTAS for the class X (+∞, β,K). However, their running
time dependence in n is higher: Õ(n5) with Dvořák and Pekárek’s
algorithm compared to Õ(n2) with the one of Bonamy et al. Also,
Dvořák and Pekárek do not compute the dependence in ε. For this
reason, we prefer the algorithm of Bonamy et al., despite the fact
that we have to show bounded VC-dimension.

Theorem 3.25 states that there exists an EPTAS for computing a
maximum independent set on graphs of X (d, β,K), for any d,K ∈ N
and 0 < β ≤ 1. Let G be in Π3. In order to prove Theorem 3.23,
we show that the VC-dimension of the neighbourhood of any vertex
in G is bounded. Observe that the VC-dimension of a graph and
its complement are equal. We aim at using the EPTAS mentioned
above for computing a maximum independent set in the complement,
which is equivalent to computing a maximum clique in the original
graph. However a graph G in Π3 does not necessarily satisfy α(G) ≥
β|V (G)| for some 0 < β ≤ 1. Even if it does, we need to know the
value of β in order to use the EPTAS of Theorem 3.25. Therefore
we show how to compute a maximum clique in any G ∈ Π3 by
using polynomially many times the EPTAS of Theorem 3.25 on some
subgraphs of G, which have the desired property.

In general, for intersection graphs of geometric objects that can be
described with finitely many parameters, the VC-dimension of the
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neighbourhood is bounded. For graphs in Π3, we were able to show
an upper bound of 28. We do not expect this value to be tight, but
showing any constant was sufficient for our purpose.

Proposition 3.26. The VC-dimension of the neighbourhood of a
graph G = (V,E) in Π3 is at most 28.

We use the fact that the VC-dimension of the neighbourhood of disk
graphs (and even pseudo-disk graphs) is at most 4, as proved by
Aronov et al. [4]. Likewise, the VC-dimension of the neighbourhood
of unit ball graphs is at most 4, as noticed by Bonamy et al. [8]. For
any point c ∈ R3 and any non-negative real number ρ, we denote by
B(c, ρ) the ball centred at c with radius ρ. Moreover, we denote by
P 3(c, ρ) the 3-pancake that is the Minkowski sum of the unit ball
centred at the origin and the disk lying on the plane xOy, centred
at c with radius ρ. Note that if ρ = 0, then P 3(c, ρ) is the unit
ball centred at c. Before showing Proposition 3.26, we show the
following:

Lemma 3.27. Let B be a unit ball centred at c and let P 3(c′, ρ) be a
3-pancake. We denote by D the disk that is the intersection of B(c, 2)
and the plane xOy. Also, we denote by D′ the disk D(c′, ρ) (which
is a strict subset of the intersection of P 3 and the plane xOy). We
have that B and P 3 intersect if and only if D and D′ intersect.

Proof. By definition, B and P 3 intersect if and only if there exists
a unit ball B′ whose centre lies in D′ such that B and B′ intersect.
This is equivalent to say that B(c, 2) contains a point in D′. Finally,
this statement is equivalent to having D and D′ intersecting.

Proof of Proposition 3.26. First let us show that if V is shattered,
then in anyΠ3 representation ofG there are at most four 3-pancakes.
Let us assume by contradiction that there exists a set S of five 3-
pancakes, such that for every subset T of S, there exists a unit ball
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or a 3-pancake intersecting all elements in T and intersecting no
element in S \ T . For each 3-pancake P 3(ci, ρi) in S, we denote by
Di the disk D(ci, ρi) lying on the plane xOy. Let T be a subset
of S. If there exists a 3-pancake P 3(c′, ρ′) intersecting with the
elements of T and with no element in S \ T , we denote by DT the
disk D(c′, ρ′ + 2) lying on the plane xOy. Otherwise there exists a
unit ball B centred at c′′ intersecting intersecting with the elements
of T and with no element in S \ T , and then we denote by DT the
intersection between B(c′′, 2) and xOy. As B intersects with a 3-
pancake, DT is not empty. Using Lemma 3.27, we have that Di

intersects with DT if and only if P 3(ci, ρi) is in T . This implies that
if S is shattered by some 3-pancakes and unit balls, then the set
{Di} is shattered by {DT | T ⊆ S}. However this is not possible
because the VC-dimension of the neighbourhood of disk graphs is at
most 4.

Now let us prove the claim. Assume by contradiction that we have
a shattered set with 29 elements. As shown above, in any Π3 rep-
resentation there are at least 25 unit balls. Let us consider such a
representation. We denote by S1, . . . , S5 five sets of five unit balls
each. As the VC-dimension of the neighbourhood of unit ball graphs
is at most 4, for each set Si there exists a non-empty subset Ti ⊆ Si
such that no unit ball can intersect with the unit balls in Ti, but not
with those in Si \ Ti. Therefore the absolute height of the centre of
any unit ball in Ti is at most 2, since Ti is realised by a 3-pancake.
For each Ti, we choose arbitrarily one unit ball Bi, and define a new
set T as {B1, . . . ,B5}. Moreover for each unit ball Bi centred at
ci, we denote by Di the intersection between B(ci, 2) and the plane
xOy. Note that Di is not empty. Let T ′ be a subset of T , and let
us consider the set ∪Bi∈T ′Ti, that we denote by T ′

+. Note that un-
less T ′ = ∅, no unit ball can intersect with all elements in T ′

+ and
with no element in S \T ′

+. Therefore this can only be achieved by a
3-pancake P 3(c, ρ), and we denote by DT ′ the disk D(c, ρ) lying on
the plane xOy. Using Lemma 3.27, the five disks Di are shattered
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by the disks in {DT ′ | T ′ ⊆ T}, which is impossible.

Proof of Theorem 3.23. Let G be a graph in Π3 with n vertices.
Since the VC-dimension of a graph is the same as its complement,
Proposition 3.26 implies that the VC-dimension of G is at most 28.
First let us assume that a representation of G is given. For every ver-
tex represented by a unit ball, we are going to compute a maximum
clique containing this vertex. As noticed by Bonamy et al., for any
vertex v represented by a unit ball, we have |N (v)| ≤ 25ω(G) [8].
Let us denote by Gv the subgraph induced by N (v). Thus we have
α(Gv) ≥ |N (v)|/25. This shows that Gv is in X (28, 1/25,K). Us-
ing Theorem 3.25, we have a randomised EPTAS for computing a
maximum independent set in Gv, which is equivalent to computing
a maximum clique in Gv. Note that computing a maximum clique
in Gv for each vertex v represented by a unit ball adds at most
a multiplicative factor n in the running time. It remains to com-
pute a maximum clique that only contains vertices represented by
3-pancakes. Instead of considering 3-pancakes, one can only look
at the corresponding disks on the plane xOy. This can be done as
suggested in [8]: find four piercing points in time O(n8), then con-
sider the subgraph H of disks that are pierced by at least one of
these points. We have α(H) ≥ n′/4 where n′ denotes the number of
vertices in H. This implies that H is in X (28, 1/4,K), and we can
conclude as before.

Now assume that a representation is not given. As we do not know
whether a vertex can be represented by a unit ball, we cannot com-
pute a maximum clique as was done above. If there exists a repre-
sentation of G with at least one vertex v represented as a unit ball,
then α(Gv) ≤ 12, because the kissing number for unit spheres is
12. Indeed for any 3-pancake P 3 intersecting a unit ball B, there
exists a unit ball B′ ⊆ P 3 such that B and B′ intersect. Thus, if
instead of each pancake there were such a unit ball, we would have
the desired inequality. But since such a unit ball B′ is contained
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in the corresponding 3-pancake P 3, the independence number of Gv

can only decrease when considering the actual 3-pancakes, which
implies α(Gv) ≤ 12. If there exists a representation only with 3-
pancakes, then the vertex v corresponding the 3-pancake with the
smallest radius satisfies α(Gv) ≤ 6. Therefore in any case there must
be a vertex v with α(Gv) ≤ 12. We can find such a vertex in O(n13)
time by testing for each v whether there is an independent of size 12
in Gv.

In order to give a linear lower bound on α(Gv), we first give an upper
bound on the chromatic number of any graph in Π3. Let G̃ be a
graph in Π3, given with a fixed representation. We denote by V1 the
set of vertices represented by unit balls, and by V2 those represented
by 3-pancakes. We denote by G̃1 the graph induced by V1. As
noted in [8], we have for each v1 ∈ V1, |N (v1)| ≤ 25ω(G̃1). Since
ω(G̃1) ≤ ω(G̃), the maximum degree in G̃1 is at most 25ω(G̃) − 1,
which implies that we can colour the vertices in V1 using at most
25ω(G̃) colours. For disk graphs, the chromatic number is at most 6
times the clique number. Thus we can colour the vertices in V2 using
at most 6ω(G̃) other colours. So in total we have χ(G̃) ≤ 31ω(G̃).

Let us consider again the subgraph Gv, we have α(Gv)ω(Gv) ≥
α(Gv)χ(Gv)/31 ≥ |N (v)|/31. Therefore, we obtain the inequality
ω(Gv) ≥ |N (v)|/372. This implies that Gv is in X (28, 1/372,K),
and therefore we have an EPTAS for computing a maximum clique
containing v. We can iterate this process in the graph G where v has
been removed to compute a maximum clique that does not contain v.
As we repeat this process linearly many times, we obtain an EPTAS
for computing a maximum clique in G.



CHAPTER 4

Minimum convex partition

4.1 Introduction

In Chapters 2 and 3, we discussed the maximum clique problem in
intersection graphs (of disk-related shapes). In Chapters 4 and 5,
we study problems on geometric plane graphs on point sets in degen-
erate position. The two parts of this thesis are morally independent.

The CG Challenge 2020 organised by Demaine, Fekete, Keldenich,
Krupke and Mitchell [24], was about solving instances of Minimum
Convex Partition (MCP).

77
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Definition 4.1 (Demaine et al. [24]: Minimum Convex Partition
problem). Given a set P of n points in the plane. The objective is
to compute a plane graph with vertex set P (with each point in P
having positive degree) that partitions the convex hull of P into the
smallest possible number of convex faces. Note that collinear points
are allowed on face boundaries, so all internal angles of a face are at
most π.

As explained by Bose et al., this problem has applications in rout-
ing [12]. They showed that a routing algorithm named Random-
Compass that works for triangulations can be extended to convex
partitions. Having a convex partition with few faces reduces the
amount of data to store. From now on, we denote by P a set of n
points in the plane.

In this chapter, we present several approximation algorithms for
MCP. We obtain those approximation algorithms by relating the
MCP problem to the Covering Points with Non-Crossing Segments
(CPNCS) problem. First, we define what non-crossing segments are.

Definition 4.2 (Non-Crossing Segments). We call a part of a line
bounded by two points a segment. The two points are referred to as
endpoints of the segment. Note that we do not force the endpoints
to be distinct, therefore we consider a point p as being a segment.
The endpoint of p is p itself. Two segments are non-crossing if the
intersection of their relative interior is empty.

Definition 4.3 (Covering Points with Non-Crossing Segments). Let
P be a set of n points. Find a minimum number of non-crossing
segments whose endpoints are in P such that each point of P is
contained in at least one segment.

The condition that the endpoints of the segments must be in P
has no effect on the number of segments required. We add it as it
simplifies some arguments. Note that CPNCS is not a so-called set
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cover problem nor an exact cover problem. We believe that CPNCS
is interesting in itself. Even though it is a very natural problem, to
the best of our knowledge it had not been introduced before.

4.1.1 NP-hardness results

Fevens, Meijer and Rappaport first considered the MCP problem in
2001 [29], and its complexity was explicitly asked about by Knauer
and Spillner in 2006 [52]. It has remained open since then [6, 24].
We show in Section 4.4 that MCP is NP-hard. To do this, we use
the decision version of the problem, as stated below:

Definition 4.4 (MCP - decision version). Given a set P of points
in the plane and a natural number k, is it possible to find at most
k closed convex polygons whose vertices are points of P , with the
following properties:

• The union of the polygons is the convex hull of P ,

• The interiors of the polygons are pairwise disjoint,

• No polygon contains a point of P in its interior.

We also show NP-hardness of a similar problem, which we call Min-
imum Convex Tiling problem (MCT). The problem is exactly as in
Definition 4.4, but the constraint about the vertices of the polygons
is removed (i.e. they need not be points of P ). This can make a
difference as shown in Figure 4.1. Equivalently, the MCT problem
corresponds to the MCP problem when Steiner points are allowed.
A Steiner point is a point that does not belong to the point set given
as input, and which can be used as a vertex of some polygons. The
MCT problem has been studied in 2012 by Dumitrescu, Har-Peled
and Tóth, who asked about the complexity of the problem [25]. We
answer their question, and our proofs are very similar for MCP and
MCT.
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Figure 4.1: A minimum partition with three convex polygons and a
tiling with two.

We show in Section 4.4.5 that CPNCS is NP-hard, even for some
constrained point sets, using a reduction from Maximum Indepen-
dent Set in Intersection Graphs of Segments.

4.1.2 Approximation algorithms

For the related problem Minimum Convex Partition of Polygons
with Holes, Bandyapadhyay, Bhowmick and Varadarajan showed
the existence of a (1 + ε)-approximation algorithm running in time
nO((logn/ε)4) [5]. Although they only consider holes with non empty
interior, one can observe that their proof extends to the case of point
holes. This is an even more general setting than MCP for point sets,
so their algorithm also applies in our setting. This implies that MCP
is not APX-hard unless NP ⊆ DTIME(2polylog n).

Under the assumption that no three points are collinear, Knauer and
Spillner have shown a 30

11 -approximation algorithm [52] for MCP in
2006. As a lower bound on the number of convex faces for one partic-
ular point set, they rely on the observation that each inner point has
degree at least 3. This gives a lower bound on the number of edges,
and therefore on the number of faces, by Euler’s formula. Note that
the restriction that no three points are on a line is necessary, as
shown in Figure 4.2. There are only two faces in a minimum convex
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partition of this point set, and all the inner points have degree 2.

•
•

•

•

•
•

•

• • • • •

Figure 4.2: The number of inner points can be arbitrarily much
larger than the number of convex faces required.

Additionally, Knauer and Spillner showed how to adapt any con-
structive upper bound on the number of faces into an approximation
algorithm. More explicitly, they showed that if one can compute in
polynomial time a convex partition with at most λn convex faces,
then there exists a 2λ-approximation algorithm running in polyno-
mial time. The best result to date is a proof by Sakai and Urrutia
that one can partition a point set in quadratic time using at most
4
3n convex faces (the result was presented at the 7th JCCGG in
2009, the paper appeared on arXiv in 2019) [71]. Although they do
not mention it, combining this result with the one by Knauer and
Spillner gives a quadratic time 8

3 -approximation algorithm.

Concerning previous upper bounds, Neumann-Lara, Rivero-Campo
and Urrutia first showed in 2004 how to construct in quadratic time
a partition of any point set with at most 10

7 n convex faces [65]. In
2006, Knauer and Spillner improved this to 15

11n convex faces [52].
As said above, the best known upper bound is 4

3n, as proven by
Sakai and Urrutia in 2009.

Relatedly for lower bounds, García-Lopez and Nicolás have given in
2013 a construction of point sets for which any convex partition has
at least 35

32n− 3
2 faces [31].
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All these results concerning upper bounds hold for all point sets,
even where many points are on a line. Indeed, slightly shifting the
points so that no three points are on a line can only increase the
number of convex faces needed. So an upper bound for point sets
where no three points are on a line also holds for all point sets.
However, as mentioned above, the lower bound used by Knauer and
Spillner does not extend to our setting, where we consider all point
sets. They say that a constant-approximation algorithm would be
desirable for unrestricted point sets, but so far not even an O(n1−ε)-
approximation is known. For the MCT problem, Dumitrescu, Har-
Peled and Tóth showed the existence of a 3-approximation algo-
rithm for point sets with no three collinear points [25]. They also
ask whether a constant-approximation algorithm exists when this
constraint is removed. However, so far no O(n1−ε)-approximation
algorithm is known. In Section 4.2.2, we prove the following:

Theorem 4.5. There exist O(logOPT)-approximation algorithms
for MCP, MCT and CPNCS running in O(n8)-time.

Allowing several points to be on a line does not simply create tedious
technicalities to deal with. The crux of the matter is to find, for a
fixed point set, an exploitable lower bound on the number of faces
in a minimum convex partition. When no three points are on a
line, the number of inner points in P gives a linear lower bound
on the number of faces in a convex partition [52], and in a convex
tiling [25]. In this chapter, we consider point sets with no restriction.
We introduce the CPNCS problem as it pinpoints where the difficulty
of finding a constant-approximation algorithm for MCP is and makes
the problem easier to study. The inner points of P are the points
not on the boundary of the convex hull. We show in Section 4.2.1
the following:

Theorem 4.6. Let P be a set of n points with at least one inner
point, and let λ ≥ 1 be a real number. Let fm denote the minimum
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number of faces in a convex partition of P . Let sm denote the min-
imum number of non-crossing segments in a covering of the inner
points of P , denoted by Pi.

1. It holds that sm
6 ≤ fm ≤ 8sm.

2. Given a covering of Pi with s ≤ λsm non-crossing segments, it
is possible to compute in O(n2)-time a convex partition of P
with at most 24λfm convex faces.

3. Given a convex partition of P with f ≤ λfm convex faces, it is
possible to compute in O(n)-time a covering of Pi with at most
44λsm non-crossing segments.

The theorem also holds when considering convex tilings instead of
convex partitions.
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Figure 4.3: On the left side, a minimum covering of the inner points
of P with 4 segments. A convex partition which contains those
segments has at least 9 convex faces. On the right side, a covering
of the inner points of P with 6 segments. There exists a minimum
convex partition of P with 7 faces, which contains those segments.
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Remark 4.7. The idea behind the similarity of MCP, MCT and
CPNCS is that they are all about maximizing the number of vertices
of degree 2 with incident edges being aligned in a plane straight-line
drawing of a graph on a point set. We illustrate in Figure 4.3 that
MCP and CPNCS are not strictly equivalent: We give a point set
P in which the unique minimum convex partition of P does not
contain the segments of any minimum covering of the inner points
of P with non-crossing segments. Let us denote by Ps the set of
endpoints of the three non-vertical segments of the covering. In
any convex partition of P that contains those four segments of the
covering, the points in Ps need to have degree at least 3. Moreover,
each of them has to be connected to at least one point not in Ps.
Finally, the topmost and bottommost of those six endpoints must
be connected to at least two points not in Ps. Therefore, the convex
partition drawn on the left is one that minimises the number of edges
(and thus of faces) among the convex partitions that contain this
minimum covering. This implies that finding a minimum covering
of the inner points of some point set P with non-crossing segments
does not necessarily help in finding a minimum convex partition of
P . Nonetheless, Theorem 4.6 states that such a covering leads to an
approximation for the MCP problem.

We call the algorithm for CPNCS the algorithm that iteratively picks
a new segment among the valid ones that cover as many points
not yet covered as possible, until all points in P are covered, the
greedy algorithm. As we consider points to be potential segments,
the algorithm terminates. We prove the following in Section 4.4.6.

Theorem 4.8. There exist point sets for which the greedy algorithm
for solving CPNCS realises an Ω(

√
n)-approximation.

The CPNCS problem bears a resemblance with Covering Points with
Lines (CPL), defined below, that we use in one of our approximation
algorithms.
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Definition 4.9 (Covering Points with Lines). Given a set P of n
points, find a minimum number of lines such that each point of P is
contained in at least one line.

Before going into the proofs, we want to make a remark that we deem
interesting. In [54], Anil Kumar, Arya and Ramesh mention that the
CPL problem was motivated by the problem of Covering a Rectilin-
ear Polygon with Holes using Rectangles. They say that getting a
o(log n)-approximation for this problem seems to require a better un-
derstanding of CPL. However, they are “not sure of the exact nature
of this relationship”. In this chapter, we show the hardness of MCP
by using tools developed by Lingas to show NP-hardness of Mini-
mum Rectangular Partition for Rectilinear Polygons with Holes [58].
The difference between a covering and a partition is that, in the lat-
ter, objects are interior-disjoint. Moreover, we prove that obtaining
a constant-approximation algorithm for MCP is equivalent to find-
ing one for CPNCS. Again, CPNCS is the non-crossing version of
CPL. We hope our results help to better understand the relationship
between these problems.

4.1.3 Exact algorithms, FPT algorithms

Under the assumptions that the points lie on the boundaries of a
fixed number h of nested convex hulls, and that no three points
lie on a line, Fevens, Meijer and Rappaport gave an algorithm for
solving MCP in time O(n3h+3) [29]. Observe that this is not an
FPT algorithm. Some integer linear programming formulations of
the problem have been recently introduced [6, 74, 17].

A first FPT algorithm with respect to the number k of inner points
was introduced by Grantson and Levcopoulos, with running time
O(216kk6k−5n) [33]. The idea of the algorithm is to enumerate all
plane graphs on the inner points, and then for each to them to
guess how to connect the inner points to the points on the boundary
of the convex hull. Another FPT algorithm with respect to the
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number of inner points was later found by Spillner, with running
time O(2kk4n3 + n log n) [75].

We show in Section 4.3 the existence of an FPT algorithm that checks
whether there is a solution for CPNCS with at most k non-crossing
segments, running in time O(2k

2
k7k + n4 log n). By Theorem 4.6,

this gives us a constant-approximation FPT algorithm for MCP and
MCT, where the parameter is the number of convex faces needed.
Under the assumption that no three points are on a line, the num-
ber of faces in a minimum convex partition or in a minimum convex
tiling is the same as the number of inner points, up to a constant
multiplicative factor [52, 25]. However, when removing this assump-
tion, the number of inner points can be arbitrarily much larger than
the minimum number of convex faces, as shown in Figure 4.2. Our
algorithm runs in time O(236f

2
f42f+1 + n4 log n), where f denotes

the minimum number of convex faces needed in a convex partition
or in a convex tiling.

4.2 Approximation algorithms

4.2.1 The relation between MCP, MCT and CPNCS

Throughout this section, we denote by P a point set in the plane.
We denote by Pi the set of inner points of P . Let p be in P . If
P and P \ {p} do not have the same convex hull, we say that p is
an extreme point. We denote by P ′ ⊆ Pi the extreme points in Pi,
where Pi denotes the inner points in P . Note that a point might
lie on the boundary of the convex hull of a point set without being
an extreme point. We say that P is special if |P ′| ≤ 2. Recall that
for a given covering of a point set Q with non-crossing segments, we
always assume that the endpoints of the segments are in Q.

Lemma 4.10. Let P be a set of n points that is not special. Given a
covering K of Pi with s non-crossing segments, one can compute in
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O(n2)-time a convex partition Σ of P with at most 4s+2|P ′| faces.
Moreover every segment in K is the union of some edges in Σ.

Proof. Let Q ⊆ Pi be the set of the endpoints of segments in the
covering. Note that |Q| is at most 2s. As P is not special, there
exist triangulations of Q. We compute a constrained triangulation
(for example Delaunay) of Q with respect to the segments of the
covering. This can be done in O(n log n)-time [18], and there are
at most 2|Q| faces. We observe that the triangulation of Q gives
a convex partition of Pi. We add all segments between consecutive
points on the boundary of the convex hull of P . Now, it remains to
deal with the surface that is within the convex hull of P , but not
within the convex hull of Pi. To do that, we add for each point in
P ′ at most two edges to points on the boundary of the convex hull
of P . We do it such that the angle between any consecutive edges
around a point in P ′ is at most π. This takes O(n2) time [52]. We
have now obtained a convex partition of P .

If one is interested in a convex tiling instead of a convex partition in
Lemma 4.10, note that it is possible to add only one edge for each
point in P ′, resulting in a convex tiling with at most 4s+ |P ′| faces.

Lemma 4.11. Let P be a set of n points. Given a convex tiling Σ
of P with f faces, one can compute in O(n)-time a covering K of
Pi with at most 6f − 2|P ′| non-crossing segments. Moreover every
segment in K is the union of some edges in Σ.

Proof. The proof is illustrated in Figure 4.4. Let us denote by G0 =
(V0, E0) the plane graph corresponding to the convex tiling, where
a point in V0 is extreme or has degree at least 3. Observe that some
points in V0 might not be in P . Also, the relative interior of an
edge in E0 might overlap with points in P . We assume that G0

is given with a doubly connected edge list (DCEL) structure. If
there is an edge between two points on the boundary of the convex
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Figure 4.4: Illustration of Lemma 4.11. The green dashed edge and
the triangle points are removed at the beginning for the analysis, and
added back at the end. The extreme points in P ′ are represented as
square points. The edges in E′ are in red. The other edges from P ′

to the boundary of the convex hull are in blue.
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hull of V0, but not consecutive, we remove this edge. Note that
this decreases the number of faces by 1, and does not break the
convexity property. We denote by m the number of such edges that
we have removed. We also remove from P all points contained in
the relative interior of an edge between two points on the boundary
of the convex hull. We denote by P ′′ the extreme points in Pi that
we have not removed. As an edge contains at most two points in
P ′, we have |P ′′| ≥ |P ′| − 2m. Using the DCEL structure, this can
be done in O(n)-time. We have obtained a new graph G = (V,E),
and there are f −m convex faces in G. We denote by Q the set of
inner points that are of degree at least 3 in G. We set k := |Q|.
Now observe that for each point p in P ′′, there exists at least one
edge e in E with one endpoint in Q, one endpoint on the boundary
of the convex hull, such that e overlaps with a point in P ′′. This
is because if we consider p and the two lines going through p and
one of the two consecutive vertices in ′P ′ (the one before p and the
one after p when going around P ′′ in clockwise order), they define a
wedge in which one edge must lie because of convexity. The point
in P ′′ can be an endpoint of e or in its relative interior. If for a
point p ∈ P ′′ there are several edges that satisfy the conditions, we
choose one arbitrarily. We denote these edges by E′. An edge in
E′ overlaps with exactly one point in P ′′, thus |E′| = |P ′′|. We
denote by Eb the edges not in E′ that have a point on the boundary
of the convex hull and the other in Q, and we denote |Eb| by m′.
The vertices on the boundary of the convex hull are adjacent to
two other vertices on the boundary of the convex hull. Moreover,
those vertices are incident to |P ′′| +m′ additional edges. We have
2|E| =

∑
v∈V deg(v) ≥ 3k+2(n−k)+|P ′′|+m′ = k+2n+|P ′′|+m′.

By Euler’s formula, we have f −m = |E| − n+ 1 ≥ k+|P ′′|+m′

2 + 1.

Now, the solution consists of the union of all edges in E incident to
two points in Q, with the m edges in E0 that we have removed, and
with the |P ′′|+m′ edges in E′∪Eb. We may need those edges as they
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might overlap with points in Pi. Note that there are at most 3k edges
in E incident to two points in Q as G is plane. Moreover, all points in
Pi are indeed covered by the edges in our solution. Thus, we obtain
a covering of Pi with s segments, where s ≤ 3k +m +m′ + |P ′′| ≤
3(2(f − m) − |P ′′| − m′) + m + m′ + |P ′′| ≤ 6f − 5m − 2|P ′′| ≤
6f − 5m− 2(|P ′| − 2m) ≤ 6f − 2|P ′|.

It is now possible to combine Lemmas 4.10 and 4.11 to prove Theo-
rem 4.6.

Proof of Theorem 4.6. Let us denote by f ′m the minimum number of
convex faces in a convex tiling of P . We have f ′m ≤ fm. First, if P
is special, then the three problems are trivial to solve. It remains to
prove statement 1. Recall that we assume that Pi is not empty. As
P is special, we need exactly one segment to cover the inner points,
and thus sm = 1. Now observe that we need between two and four
convex faces in a convex partition, and exactly two convex faces in
a convex tiling, thus it holds sm

6 ≤ f ′m ≤ fm ≤ 8sm.

Let us now assume that P is not special. Starting with a covering
of the set Pi with sm non-crossing segments, Lemma 4.10 indicates
that it is possible to find a convex partition with at most 4sm+2|P ′|
convex faces. Therefore we have 4sm + 2|P ′| ≥ fm. Starting from a
convex tiling with f ′m convex faces, we know from Lemma 4.11 that
there exists a covering of Pi with at most 6f ′m − 2|P ′| non-crossing
segments. This implies 6f ′m − 2|P ′| ≥ sm. Note that any segment
in a covering can cover at most two points in P ′. Therefore we have
sm ≥ |P ′|/2. Putting everything together, we obtain sm

6 ≤ f ′m ≤
fm ≤ 8sm.

Let us consider a covering of Pi with s ≤ λsm non-crossing segments.
By Lemma 4.10, we can compute in O(n2)-time a convex partition of
P with at most f := 4s+2|P ′| faces. We now have f = 4s+2|P ′| ≤
4λsm + 2|P ′| ≤ 4λ(6f ′m − 2|P ′|) + 2|P ′| ≤ 24λf ′m. This implies that
the convex partition we have is a 24λ-approximation for MCP and



4.2. Approximation algorithms 91

for MCT.

Let us consider a convex tiling of Pi with f ≤ λfm convex faces. Note
that this encompasses the case where the convex tiling is actually
a convex partition. By Lemma 4.11, we can compute a covering
of Pi with at most s := 6f − 2|P ′| segments. We have s = 6f −
2|P ′| ≤ 6λfm−2|P ′| ≤ 6λ(4sm+2|P ′|)−2|P ′| ≤ 24λsm+10λ|P ′| ≤
44λsm.

4.2.2 Approximation algorithms for CPNCS

In this section we present several approximation algorithms for CP-
NCS. Let us first consider the ones whose approximation ratio is not
output-dependent. The best algorithms in terms of approximation
ratio are constant-approximation algorithms. The fastest algorithms
take quadratic time. Therefore by 2. of Theorem 4.6, all the algo-
rithms we present for CPNCS can be used to obtain approximation
algorithms for MCP and MCT with the same order of approximation
ratio, and the same order of running time. We have also one algo-
rithm for CPNCS which realises an O(logOPT )-approximation in
time O(n8), where OPT denotes the minimum number of segments
needed. Using 1. and 2. of Theorem 4.6, we also derive from it the
O(logOPT )-approximation algorithm for MCP and MCT running
in time O(n8), where now OPT denotes the minimum number of
faces needed in a convex partition, or in a convex tiling, respec-
tively. This is how we prove Theorem 4.5. We first present an easy
approximation algorithm running relatively fast, at the cost of a high
approximation ratio.

Theorem 4.12. There exists an
√
n log(n)-approximation algorithm

for CPNCS running in O(n2)-time.

Proof. Let us denote by ℓm the minimum number of lines needed to
cover P , as in the CPL problem. We denote by sm the minimum
number of segments in a valid solution of CPNCS. We have ℓm ≤ sm.
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Using the greedy algorithm for set cover problems, we can compute
a covering of P with ℓ lines, where ℓ ≤ log(n)ℓm [47, 59]. The
greedy algorithm runs in quadratic time. Indeed, it is folklore that
the greedy algorithm for covering a set X with the family of subsets
F ⊆ 2X can be implemented in O(Z) time, where Z =

∑
F∈F |F |.

In our situation, Z is the number of point-line incidences, and so
Z = O(n2) because each point lies on at most n− 1 lines.

We distinguish two cases, depending on the value of ℓ. We denote by
ϕ(n) a threshold function, that will be determined later. In the first
case, we assume ℓ ≥ ϕ(n). In this situation, we cover each point
in P by a segment reduced to that point. We have n segments,
and we needed at least sm ≥ ℓm ≥ ℓ/ log(n) ≥ ϕ(n)/ log(n). The
approximation ratio is n log(n)

ϕ(n) .

Now, let us assume ℓ < ϕ(n). We transform each of the ℓ lines
into a segment, such that the new segments still cover P . Now,
at each of the O(n2) intersections between the relative interior of a
pair of segments, we split one segment into two, such that there is
no crossing anymore. Let us denote by s the number of segments
obtained. We have s ≤ ℓ2 ≤ ℓ log(n)ℓm ≤ ϕ(n) log(n)sm. The
approximation ratio is ϕ(n) log(n).

We make the two approximation ratios equal by setting ϕ(n) :=
√
n.

We obtain a
√
n log(n)-approximation.

Mitchell presented in a technical report some approximation algo-
rithms for the problem of covering a point set with a minimum num-
ber of pairwise-disjoint triangles [63]. In his problem, the triangles
of the covering must be subtriangles of some triangles given as input,
for otherwise the problem would be trivial. He makes the assump-
tion that no three points are on a line. We adapt his algorithms to
our setting of CPNCS for point sets with no constraint. It seems
that there were two mistakes in his proof, that we show how to fix.
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Let P be a set of n points. By doing a rotation if necessary, we can
assume that no two points in P have the same x-coordinate. We
say that a trapezoid is constrained if 1) it has two disjoint vertical
sides, each lying on a line that contains a point in P , and 2) the
two remaining sides are lying on lines that contain each at least two
points in P . Note that there are O(n6) constrained trapezoids.

In his paper, Mitchell calls the trapezoids “canonical” instead of “con-
strained” [63]. We make the choice of changing the name for better
clarity later. Also, concerning constraint 1), he has the stronger
constraint that the vertical sides must each contain a point in P .
It seems to be a mistake, for otherwise it is not clear how his dy-
namic programming algorithms work, and some of his arguments do
not hold. Anyway, even with his definition, he only uses the fact
that there are O(n6) constrained trapezoids for computing the run-
ning time of his algorithms. Therefore there is no loss in using our
definition.

We also allow for some degeneracies. Let us consider a triangle with
vertices a, b and c, not all three on a line. If a is in P , the segment
with endpoints b, c is vertical and lies on a line that contains a point
in P , and the segments with endpoints a, b and a, c respectively
are contained in some lines ℓ and ℓ′ such that ℓ and ℓ′ contains at
least two points in P , then we say that the triangle is a constrained
trapezoid. If a constrained trapezoid is split into two halves by a
vertical line ℓ going through its interior, with ℓ containing a point
in P , we obtain two constrained trapezoids. Likewise, if a segment
s is in a constrained trapezoid τ , such that s lies on a line that
contains at least two points in P , s intersects the interior of τ , and
the endpoints of s are contained in the vertical sides of τ , then s
splits τ into two constrained trapezoids.

For a set of points P where no two points have the same x-coordinate,
we define the enclosing trapezoid as follows. Let ℓ1 be the vertical
line that contains the leftmost point in P , and let ℓ2 be the vertical
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line that contains the rightmost point in P . Let L be the set of all
lines containing at least two points in P . Observe that no line in L
is vertical. We denote by a the highest intersection point between
ℓ1 and a line in L. We denote by b the lowest point intersection
point between ℓ1 and a line in L. Similarly, we denote by c and d,
respectively, the highest intersection point, respectively the lowest
intersection point, between ℓ2 and a line in L. We denote by ℓ3 the
line containing a and c, and by ℓ4 the line containing b and d. The
enclosing trapezoid of P is the constrained trapezoid of P∪{a, b, c, d}
defined by ℓ1, ℓ2, ℓ3 and ℓ4. It is denoted by TP .

Mitchell uses in his paper the notion of guillotine property. He shows
that if there is a covering of the points in P with s elements, then
there is a covering of P with at most O(s log s) elements having the
guillotine property. He then presents an algorithm, and claims that
it outputs an optimal solution among all coverings that have the
guillotine property. While we agree that his algorithm outputs a
solution with at most O(s log s) elements, we present a counterex-
ample to the fact that his algorithm outputs an optimal solution
among all coverings that have the guillotine property. Although he
considers the problem of covering points with triangle, he reduces
the problem to covering a set of points with constrained trapezoids.
He defines the guillotine property for trapezoids as follows: A set
T of constrained trapezoids has the guillotine property if a) it con-
tains at most one trapezoid, or if b) there exists a partitioning line
ℓ containing at least two points in P not intersecting the interior
of any constrained trapezoid in T , such that the sets of constrained
trapezoids on both sides of ℓ also have the guillotine property, or if c)
there exists a vertical partitioning line ℓ not intersecting the interior
of any constrained trapezoid in T , such that the sets of constrained
trapezoids on both sides of ℓ are not empty also have the guillotine
property [63]. Mitchell’s wording is not exactly the same as ours but
the two definitions are equivalent.
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Figure 4.5: The constrained trapezoids T2 and T3 have the guillotine
property, and cover the points in P . Mitchell’s algorithms applied
to T1 outputs a solution with three trapezoids and is therefore not
optimal.

In Figure 4.5 we have represented three constrained trapezoids, with
T3 being reduced to a triangle. Observe that T2 and T3 have the
guillotine property. Indeed the line going through a and c satisfies
condition b) of the guillotine property. Let us now apply Mitchell’s
algorithm to the constrained trapezoid T1. In Mitchell’s setting, not
all constrained trapezoids can be used to cover the points in P : they
must be subtrapezoids of some given trapezoids. Here the two given
trapezoids are T2 and T3. Observe that a minimum covering of P
uses T2 and T3. We claim that Mitchell’s algorithm outputs at least
three trapezoids. His algorithm recurses on all the ways of splitting
P with a vertical line. Observe that any vertical line going through
a point in P intersects the interior of T2 or T3, and therefore cannot
lead to a solution with two trapezoids. In addition, his algorithm
recurses on all the ways of splitting P with a segment that contains
at least two points in P , and whose endpoints are on the vertical
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sides of T1. Observe that any such segment σ splits the interior
of T2 or T3. Moreover, the points contained in the trapezoid that
is split by σ are not on the same side of σ. This implies that all
those recursions will lead to solutions with at least three trapezoids.
Figure 4.5 thus depicts a counterexample to the fact that Mitchell’s
algorithm outputs an optimal solution among the ones that have
the guillotine property. The reason for that is that the line ℓ going
through a and e, and the line ℓ′ going through a and c, which are
the certificates that T2 and T3 have the guillotine property, do not
intersect T1 only at its vertical sides. Therefore splitting along ℓ and
ℓ′ is not tested by Mitchell’s algorithm.

We define the strong guillotine property in the special case of seg-
ments. We show that if there is a covering of P with s non-crossing
segments, then there is a covering of S with O(s log s) non-crossing
segments having the strong guillotine property. We then present an
algorithm that outputs an optimal solution among all the coverings
with non-crossing segments having the strong guillotine property.
Let S be a set of non-crossing segments covering P . We assume that
the endpoints of the segments in S are in P . We say that S has the
strong guillotine property with respect to a constrained trapezoid
T that contains all segments in S if a) S contains at most one seg-
ment, or if b) there exists a partitioning line ℓ containing at least two
points in P and at least one segment in S, such that for any segment
s ∈ S, ℓ either contains s or does not intersect the relative interior
of s, and ℓ splits T into two constrained trapezoids T1 and T2, such
that the segments in T1, respectively T2, have the strong guillotine
property with respect to T1, respectively T2, or if c) there exists a
vertical line not intersecting with the relative interior of any segment
in S, that splits T into two constrained trapezoids T1 and T2, such
that the segments in T1, respectively T2, have the strong guillotine
property with respect to T1, respectively T2. Observe that the line
ℓ in case b) only intersects the vertical sides of T , for otherwise ℓ
would not split T into constrained trapezoids. We simply say that
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S has the strong guillotine property if it has the strong guillotine
property with respect to the enclosing trapezoid TP .

Lemma 4.13. If there exists a covering of P with s non-crossing
segments, then there exists a covering of P with O(s log(s)) non-
crossing segments with the strong guillotine property.

Proof. Recall that we assume that the endpoints of the segments
are in P , by cropping them if need be. We can even crop some seg-
ments further such that they are pairwise-disjoint (it may be that
now some segments are reduced to points). Consider the endpoints
of the segments in that covering, that we denote by P ′. We denote
|P ′| by n′, and we have n′ ≤ 2s. Note that no two points in P ′ have
the same x-coordinate. We denote by X the set of x-coordinates of
the points in P ′. We now consider the segment tree based on X, as
defined in [69]. The segment tree defines some canonical intervals.
Each interval, whose endpoints are in X, is partitioned into O(log s)
canonical intervals. We partition each segment in the covering, such
that the projection on the x-axis of each new segment is a canonical
interval. Therefore we obtain a covering of P with O(s log(s)) non-
crossing segments. We claim that this family of segments has the
strong guillotine property. Let us denote by xi, 1 ≤ i ≤ n′ the ele-
ments in X, ordered by increasing value. We distinguish two cases.
If there exists a segment σ whose projection on the x-axis is equal to
the interval [x1, xn′ ], then we recurse on the parts above and below
σ which contain some segments. Observe that if n′ = 2 we are done.
If there is no such segment, then by definition of a segment tree,
there is no segment in the covering whose relative interior intersects
the vertical line ℓ with x-coordinate equal to x⌊(1+n′)/2⌋. Thus we
can recurse on the left and right side of ℓ.

Theorem 4.14. There exists an O(log(OPT ))-approximation algo-
rithm running in O(n8)-time for CPNCS.
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Proof. We explain how to recursively compute a minimum covering
of P with non-crossing segments under the constraint that the solu-
tion has the strong guillotine property. The approximation ratio for
the CPNCS problem when this additional constraint is removed fol-
lows from Lemma 4.13. If P is empty, we return no segment, which is
a valid solution. If P can be covered with a single segment, we return
that segment. This can be tested in O(n2) time using duality. Now
let us assume that not all points in P are on a line. We compute the
enclosing trapezoid TP of P . We consider the four vertices a, b, c, d
of TP . We start by adding the segment with endpoints a, c, and the
segment with endpoints b, d. Now all the points to cover are within
the enclosing trapezoid TP . We distinguish two cases, according to
whether a segment with endpoints on the vertical sides of TP is in
a minimum covering with non-crossing segments having the strong
guillotine property. If it is, we can add it to the solution and recurse
on the two new constrained trapezoids. If no such segment is part of
a minimum solution, then there exists a vertical line ℓ that splits a
minimum solution into two parts, such that ℓ does not intersect the
relative interior of any segment in that minimum solution. We can
recurse on the O(n) choices of splitting vertically the constrained
trapezoid into two constrained trapezoids. For each of the O(n2) re-
cursions, we compute the number of segments corresponding to that
solution, and we output the solution corresponding to the one that
minimises the number of segments.

To optimise we can do dynamic programming, and solve first the
thinnest constrained trapezoids (in terms of width on the x-axis).
There are O(n6) constrained trapezoids, and we take quadratic time
for each of them, so the total running time is O(n8).

It is possible to use the segment tree technique for the computation
as done by Mitchell. It reduces the running time to O(n7) at the
cost of a slightly worse approximation ratio.
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Theorem 4.15. There exists an O(log(n))-approximation algorithm
running in O(n7)-time for CPNCS.

Proof. We consider the set X of x-coordinates of points in P . We
compute the corresponding segment tree in O(n log(n))-time. Let us
consider a minimum covering of P with s non-crossing segments. We
crop the segments so that their endpoints are in P . We partition each
segment in the covering such that the projection of each new segment
on the x-axis is a canonical interval of the segment tree. We say that
a segment is canonical if its projection on the x-axis is a canonical
interval. We observe that there is a covering of P with O(s log(n))
non-crossing canonical segments. Thus, we can adapt the algorithm
of Theorem 4.14 to obtain an O(log(n))-approximation, by output-
ing a minimum covering of P with non-crossing canonical segments.

We call a constrained trapezoid whose projection on the x-axis is a
canonical interval a canonical trapezoid (note that this definition is
not the same as Mitchell’s). As there are O(n) canonical intervals,
there are O(n5) canonical trapezoids. We do as in the algorithm of
Theorem 4.14. The difference is that when we assume that there ex-
ists a vertical line ℓ that splits P , with ℓ not intersecting the relative
interior of any segment in an optimal solution, we can assume that
the x-coordinate of ℓ is equal to the median of X. For each canonical
trapezoid we still do O(n2) recursions, so the overall running time
of the algorithm is O(n7).

We say that a point set P is k-directed if there exists a set D of k
directions, such that for any line ℓ that contains at least three points
in P , the direction of ℓ is in D. Without loss of generality, we can as-
sume that the two directions of a 2-directed point set P are vertical
and horizontal. Indeed, this has no impact for the CPNCS problem.
For convenience, for any set of directions D and any segment s re-
duced to a point, we say that the direction of s is in D. We say that
a set of segments S has the autopartition property if |S| = 1, or if
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there exists a line ℓ which contains at least one segment in S, and
splits S into two sets that are either empty or have the autopartition
property. The relative interior of a segment in S is either contained
in ℓ or does not intersect ℓ.

Lemma 4.16. Let P be a k-directed point set with set of directions
D. If there exists a covering of P with s non-crossing segments,
then there exists a covering of P with O(sk) non-crossing segments
having the autopartition property, such that the direction of each
segment is in D. If k = 2 then there exists a covering with at most
4s non-crossing segments, being vertical or horizontal, having the
autopartition property.

Proof. Let D be the set of k directions, such that the direction of
any line that contains at least three points in P belongs to D. From
the covering with s segments, we can obtain a covering with at most
2s segments such that the direction of each segment is in D. Indeed,
a segment in the covering whose direction is not in D contains at
most two points in P . We crop some segments if necessary such that
no two segments intersect, and they still cover P . Now, we use a
theorem by Tóth who showed that any set of s′ disjoint segments
having up to k directions have an autopartition of size O(s′k) [78].
This immediately implies the result.

Let us now assume k = 2. Let us consider a set of s′ segments that
are vertical or horizontal. There exists a partition of the segments
that contains at most 2s′ segments, and which has the autopartition
property [26]. An upper bound of 3s′ was first shown by Paterson
and Yao [66]. It was then improved to 2s′ by d’Amore and Fran-
ciosa [21], although not explicitly. Dumitrescu, Mitchell and Sharir
made the result explicit later [26].

Theorem 4.17. There exists an O(k)-approximation algorithm for
CPNCS in k-directed sets running in nO(k). Furthermore, there ex-
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ists a 4-approximation algorithm for CPNCS in 2-directed sets run-
ning in time O(n5).

Proof. Let P be a k-directed point set with set of directions D. We
show how to compute an optimal covering of P with non-crossing
segments, such that the solution has the autopartition property,
and the direction of each segment in the solution is in D. By
Lemma 4.16, our algorithm realises an O(k)-approximation, and a
4-approximation for the special case k = 2.

The recursion of the algorithm is as follows. If there exists a segment
that contains all points in P , we add it to the solution. This can
be tested in time O(n2). Otherwise, for each direction δ in D, we
recurse in the O(n) ways of splitting P with a line ℓ, such that the
direction of ℓ is δ, and ℓ contains at least a point in P . We add to
the solution the shortest segment containing the points in ℓ, and we
recurse on both sides of ℓ.

The subsets of R2 we are considering in the recursion are defined by
giving for each direction the two extreme points for that direction.
For each point we have O(n) choices, so in total there are n2k of
such subsets. For each subset by using dynamic programming, we
need O(nk)-time. Thus, the total running time is nO(k), and simply
O(n5) for the special case k = 2.

A natural question is whether we can use the autopartition prop-
erty when the number of directions is not fixed. It is known that
a set of s pairwise-disjoint segments allows for an autopartition
with O(s log s/ log log s) segments [79]. This is tight [77]. Using
the techniques we have presented, one could hope to obtain an
O(logOPT/ log logOPT )-approximation algorithm. However, this
autopartition might not have any good structure, and so we cannot
use dynamic programming because there are too many subsets of R2

to consider. In any case, because of the tightness on the number of
segments in the autopartition, it seems that the autopartition tech-
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nique cannot be used to obtain constant-approximation algorithms,
or even an o(logOPT/ log logOPT )-approximation algorithm.

4.3 Fixed-parameter algorithm for CPNCS

As mentioned in the introduction, there are known fixed-parameter
algorithms for MCP, where the parameter is the number of inner
points. We present here a fixed-parameter constant-approximation
algorithm for MCP and MCT, where the parameter is the number
of faces in a minimum convex partition or a minimum convex tiling,
respectively. For point sets where no three points are on a line,
the minimum number of convex faces is at least half the number of
inner points [52], and the number of convex tiles is at list a sixth of
the number of inner points [25]. However, as shown in Figure 4.2,
when we allow for several points to be on a line, the number of
inner points can be arbitrarily larger than the number of convex
faces in a minimum convex partition. If the number of inner points
is significantly higher than the number of convex faces needed, our
algorithm has a lower running time. We first show that CPNCS is
in FPT.

Theorem 4.18. It is possible to compute in O(2k
2
k7k + n4 log n)-

time whether a point set P can be covered with at most k non-crossing
segments, and to output such a covering if it exists.

The proof uses a kernelisation technique presented by Langerman
and Morin for CPL [55]. Assume there is a line ℓ that contains at
least k + 1 points in P . Then in any covering of P with at most
k lines, ℓ must be in the covering. Otherwise, we would need at
least k + 1 lines to cover the points contained in ℓ. Now one can
compute all of these lines that contain at least k+ 1 points, dismiss
all of the covered points, until no line covers more than k of the
remaining points. If there remains more than k2 points, then there
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is no covering of the point set with at most k lines. Otherwise, one
can compute every way of covering the O(k2) remaining points, and
check whether there is one that uses in total at most k lines. In our
setting, we are looking for a covering with non-crossing segments,
which makes it more difficult. Indeed, if a line ℓ contains at least
k+1 points, we only know that ℓ must contain at least one segment
of the covering. This means that we cannot simply dismiss the points
covered by such a line. Also, we have to be careful about crossings.
Before proving Theorem 4.18, we first show several lemmas. For a
point set P , we say that a segment s is a P -segment if its endpoints
are in P . Recall that we only consider coverings of a point set P
with non-crossing P -segments.

Definition 4.19. Let P be a point set, and let s and t be two
crossing P -segments. We denote by p the intersection of s and t.
We determine four points in P , that we call the points enclosing p.
There are two points on s ∩ P and two points on t ∩ P . The two
points on s ∩ P , denoted by u and v, are such that the segment
with endpoints u and v, which we denote by uv, is the shortest P -
segment contained in s whose relative interior contains p. Likewise,
the two points u′ and v′ are such that u′v′ is the shortest P -segment
contained in t whose relative interior contains p. The points u, v, u′

and v′ are the points enclosing p.

Lemma 4.20. Given a set P of n points, it is possible to compute in
time O(n4 log n) the pairs of crossing P -segments, to find whether
their intersection p is in P , and to store the points enclosing p.
Additionally, we can also store for each P -segment how many points
in P they contain, and the list of those points.

Proof. Let s be a P -segment. We first store the number of points
contained in s, as well as the list consisting of those points. We then
sort the list so that when going from one endpoint of s to the other,
the points appear consecutively on the list. As there are O(n2) of



104 Minimum convex partition

such segments, this preprocessing can be done in time O(n3 log n).
Let s and s′ be some crossing P -segments. There are O(n4) pairs
of such segments. We denote by p the intersection of s and s′. We
check whether p is in P . This can be done in time O(log n) by
searching through the list of points in s. We denote by u, v, u′ and
v′ the points enclosing p. Observe that given s and s′, it takes time
O(log n) to find the points enclosing p, and to test whether p is in
P . Thus when considering all pairs of segments, we can compute
this information in time O(n4 log n), and so given the endpoints of
some crossing P -segments s and s′, we can retrieve this information
in constant time. Thus, the total running time of the algorithm is
in O(n4 log n).

Lemma 4.21. Given a set P of n points, and a natural number k,
it is possible to find in time O(2k

2
+n4 log n) either a certificate that

there is no covering of P with at most k non-crossing segments, or to
output a family F of O(2k

2
) sets S containing at most k non-crossing

P -segments, with the following properties: For any fixed covering of
P with at most k non-crossing P -segments, there exists a set S in
F such that a) any segment s ∈ S contains at least k + 1 points in
P , b) for each segment t of the covering, if |P ∩ t ∩ s| ≥ 2 for some
s ∈ S, then t is contained in s, and c) if a segment of the covering
contains at least k+1 points in P , then it is contained in a segment
in S.

Let P be a point set and let k be a natural number. Observe that
if a set S of segments satisfies property a), then in a covering with
at most k segments of P , each segment s in S contains at least one
segment t of the covering, such that |P ∩ t| ≥ 2. Indeed if there
exists a segment s ∈ S such that for any segment t in the covering,
we have that s ∩ t contains at most one point in P , then at least
k+1 segments are needed to cover the points in P ∩ s. This implies
that if S consists of m segments and satisfies properties a) and b),
then there are at least m segments in the considered covering of P
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with non-crossing segments.

Proof of Lemma 4.21. We first do some preprocessing by using the
algorithm of Lemma 4.20. This takes O(n4 log n) time. We create a
list L of segments, which at the beginning is empty, and will contain
the segments in S when we are done. For each line ℓ that contains at
least k+1 points, we find the extremal points p and q of P contained
in ℓ in time O(n). Then we add the line segment with endpoints p
and q to L. Using the algorithm presented by Guibas et al. [38],
we can compute all lines containing more than k points in time
O(n

2

k log(nk )). If there are more than k of such lines, we already
know that there is no covering of P with at most k non-crossing
segments of P . Indeed such a covering can only exist if there exists
a covering of P with at most k lines. Let us now assume that there
are at most k such lines. We add all corresponding segments to L in
total time O(kn + n2

k log(nk )). Let us show that the segments in L
satisfy properties a), b) and c), although they might still be crossing.
First, property a) holds by definition. Moreover property b) holds
for all covering of P with at most k segments because a segment in
L containing points p and q also contains all points on the line (p, q).
Finally, property c) also holds trivially for all covering of P with at
most k segments.

We are now going to modify L and make copies of it while main-
taining the fact that properties a), b) and c) hold. Our aim is that
no two segments in L cross. Let us consider one segment s in L
which is crossed by another segment s′ in L. We denote by p the
intersection of s and s′. We retrieve the points u and v such that
uv is the shortest P -segment in s whose relative interior contains p.
We do likewise with u′ and v′ in s′. Observe that not both uv and
u′v′ can be in a covering of P with non-crossing segments. More
generally, in a valid covering, at least one of uv and u′v′ is not con-
tained in any segment of the covering. We create one copy of L, and
recurse on two cases, one where we assume that uv is not contained
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in a segment of the covering, and one where we assume that u′v′ is
not contained in a segment of the covering. In the case where we
assume that uv is not in the covering, s′ remains in L, and might
still be removed at a later step. Let us assume for now that uv is
not contained in a segment of the covering. We remove s from L.
The candidate segment s′ splits s at p into two sides. Let us denote
by x and y the endpoints of s, with u being closer to x than v is. If
p is not in P , we consider the segments xu and vy. If p is in P , we
consider the segments xp and py. Any of the two new segments that
contains more than k points in P is added to L. Indeed property
a) holds by definition. Moreover property b) holds because s was
in L, and we are assuming that the segment uv is not contained in
a segment of the covering. If a segment contains at most k points,
we do not add it to L. We claim that property c) still holds. This
is because if a point q ∈ P which lies on a line that contains more
than k points is not contained in some segment in L, that means
that if a segment t contains q as well as at least k other points in P ,
then t also contains some segment which we are assuming not to be
contained in a covering.

If we obtain more than k segments in L, we stop this branch of the
recursion, as we already know that there is no valid covering of P
with at most k segments, assuming that uv is not contained in a
segment of the covering. We now iterate over all crossing segments
in L. We obtain O(k) segments in L, which are by construction non-
crossing. As the depth of the recursion tree is in O(k2), the number
of leaves is in O(2k

2
). We would like to say that each recursion

implies the existence of one more segment in a covering with non-
crossing segments, but this is a priori not the case. Therefore, if
the number of lines containing more than k points is in Ω(k), we
might have to do Ω(k2) recursions. We can do the computation
in total time O(2k

2
+ kn + n2

k log(nk )), using the information we
preprocessed. If we add to it the running time of the preprocessing,
the total running time of the algorithm is in O(2k

2
+ n4 log n).
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Proof of Theorem 4.18. We first use the algorithm of Lemma 4.21.
In particular, we keep the information that is preprocessed with the
algorithm of Lemma 4.20. If we have a certificate that there is no
covering of P with at most k non-crossing segments, we stop. Let
us assume that the algorithm outputs a family F of O(2k

2
) sets S,

such that F satisfies the conditions of Lemma 4.20. Let us consider
a fix covering of P with at most k non-crossing segments, assuming
one exists. We guess the corresponding set of segments S in time
O(2k

2
). We call the segments in S candidate segments.

Let us denote bym the number of candidate segments, and bym′ the
number of points not contained in a candidate segment. Computing
m and m′ takes O(n) time. If m′ is larger than k2, we output
that there is no solution. Indeed, by property c), a segment in the
covering can contain at most k points which are not contained in
some candidate segment. If m +m′ is at most k, then we take the
covering consisting of all candidate segments, and segments reduced
to a point for each point which is currently uncovered. Otherwise,
for a covering to have at most k non-crossing segments, there must
be a segment that contains at least two points which are currently
not covered by candidate segments. Indeed by properties a) and b)
we know that for each candidate segment s, there exists a segment
t in the covering that is contained in s, and therefore t contains
no point currently uncovered. Thus to have a covering with fewer
than m +m′ segments, there must be a segment σ in the covering
which contains at least two points for now uncovered. Recall that
m′ is at most k2. We consider the O(k4) lines going through at least
two uncovered points. As we have shown, there exists a line ℓ that
contains two uncovered points, and also contains σ. Observe that
the endpoints of σ might be contained in some candidate segments.
We first guess in O(k4) time the largest segment τ contained in σ,
such that the endpoints of τ are uncovered points. If ℓ intersects
a candidate segment at a point p ∈ P , such that p is not in τ , we
want to guess whether p is an endpoint of σ. As there are at most
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k candidate segments, given τ , we can guess the endpoints of σ in
O(k2) time. Therefore, we can guess σ in O(k6) time. We find
in O(k) time the list of candidate segments σ intersects, and also
check that σ does not intersect any segment that we have already
taken in the solution during a past iteration. For each candidate
segment s that σ intersect, we do as in the algorithm of Lemma 4.20
and we split s into two sides. We also update m and m′. For a
specific candidate segment, this can be done in constant time thanks
to the preprocessing. We now iterate from the beginning of the
paragraph. At each iteration, we are either done, or we have one
more segment in our partial covering. Therefore we iterate at most
k times. The total running time of this algorithm (not including the
preprocessing) is in O(k7k). The total running time of the algorithm
is in O(2k

2
k7k + n4 log n).

Theorem 4.22. It is possible to compute in time O(236f
2
f42f+1 +

n4 log n) a convex partition of a point set P with at most 24f convex
faces, where f denotes the minimum number of convex faces required.
The same holds when considering convex tilings.

Proof. We first compute a minimum covering of the inner points
in time O(2s

2
s7s+1 + n4 log n) by applying the algorithm of Theo-

rem 4.18 for k = 1, 2, . . . , s, where s denotes the minimum number
of segments required in a covering of the inner points. Then, by 2.
of Theorem 4.6, we obtain in O(n2)-time a convex partition with at
most 24f convex faces. The same holds with convex tilings for the
same arguments. As by 1. of Theorem 4.6, we have s ≤ 6f , the
total running time of the algorithm is as stated.

There is a strong similarity between CPNCS and Maximum Indepen-
dent Set in Segment Intersection Graphs (MISSIG). As an example,
we show in Section 4.4.5 that CPNCS is NP-hard by doing a reduc-
tion from MISSIG. We have shown that CPNCS is in FPT, but Marx
has shown that MISSIG is W[1]-hard [60]. We do a sanity check and
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explain why his hardness reduction does not apply to CPNCS. In
his reduction, there are f(k) gadgets, each gadget containing O(n2)
segments. In each gadget, a constant number of segments has to be
taken in an independent set of size k. We could try to mimic our NP-
hardness reduction of Section 4.4.5: Take the same set of segments
as Marx, and then replace each segment by a set of four collinear
points. Taking a segment in the independent set corresponds to cov-
ering these four points with one segment. If a segment is not taken
in the independent set, then we need two segments to cover the four
points. Therefore, one needs Ω(n) segments in each gadget to cover
the points, and not some constant number, which implies that the
W[1]-hardness reduction we are trying to do is not valid.

We now discuss why the FPT algorithm and the techniques presented
for CPNCS do not give us an FPT algorithm for MCP where the
parameter is the number of faces. One can first use Lemma 4.21 to
guess some candidate segments. Then it is possible to guess how
many vertices of degree at least 3 lie on each of the O(k) candidate
segments. Then we can enumerate all plane graphs on this vertex set,
and guess which one corresponds to our convex partition. However,
for now we have only guessed on which candidate segment does a
vertex lie. It remains to check whether all those points can be placed
at points in P , while preserving the fact that the graph is a convex
partition. This can be modelled as an integer linear programming
problem, but as the number of constraints is linear in n, this does
not give an FPT algorithm.

4.4 Hardness

Our proof builds upon gadgets introduced by Lingas [58]. He used
them to prove NP-hardness of several decision problems, including
Minimum Convex Partition for Polygons with Holes and Minimum
Rectangular Partition for Rectilinear Polygons with Holes. In the
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second problem, Steiner points are allowed. However, as noted by
Keil [50], one can easily adapt Lingas’ proof to not use Steiner points.
We use a similar idea to prove NP-hardness of the MCP problem.
Lingas’ proofs for the two problems are similar, and consist in a re-
duction from the following variation of planar 3-SAT. The instances
are a CNF formula F with set of variables X and set of clauses C,
and a planar bipartite graph G = (X ∪ C,E), such that there is an
edge between a variable x ∈ X and a clause c ∈ C if and only if
x or x̄ is a literal of c. Moreover, each clause contains either two
literals or three, and if it contains three, the clause must contain
at least one positive and one negative literal. Lingas refers to this
decision problem as the Modified Planar 3-SAT (MPLSAT). Lingas
claims that planar satisfiability can easily be reduced to MPLSAT
by adding new variables. As planar satisfiability was shown to be
NP-complete by Lichtenstein [57], this would imply that MPLSAT
is NP-complete too. For the sake of completeness, we remark that it
is not clear why adding these new variables would not break the pla-
narity of the graph. This can be solved by considering the following
lemma of Lichtenstein:

Lemma 4.23 (Lichtenstein [57]). Planar satisfiability is still NP-
complete even when, at every variable node, all the arcs representing
positive instances of the variable are incident to one side of the node
and all the arcs representing negative instances are incident to the
other side.

This lemma can easily be strengthened to the case of planar 3-SAT
as noted by Lichtenstein, and explicitly done by Tippenhauer [76]
in his Master’s thesis. From here a reduction to MPLSAT becomes
indeed straightforward.

Theorem 4.24. MPLSAT can be reduced in polynomial time to
MCP, and to MCT.
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As it is easy to see that MCP is in NP, Theorem 4.24 implies that
MCP is NP-complete. The question whether MCT is in NP is still
open. Let P be a point set, and let us consider the set L of all lines
going through at least two points in P . Let P ′ be the set of points
at the intersection of at least two lines in L. One might think that
there exists a minimum convex tiling, such that all Steiner points
belong to P ′. We show in Figure 4.6 that this is not the case.

•

•

•

•
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••
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Figure 4.6: Points in black are the input point set P . The points
in red are Steiner points in the unique minimum convex tiling of P .
The point in red to the right does not belong to the set P ′.

We first prove Theorem 4.24 for the MCT problem. We do the
reduction from MPLSAT to MCT by constructing a point set in
three steps. First we construct a non-simple polygon, in a similar
way as in Lingas’ proof, with some more constraints. Secondly, we
add some line segments to build a grid around the polygon, and
finally we discretise each line segment into evenly spaced collinear
points. The idea of the first part is to mimic Lingas’ proof. The
second part makes the correctness proof easier, and the last part
transforms the construction into our setting. The aim of the grid is
to force the polygons in a minimum convex tiling to be rectangular.

We use the gadgets introduced by Lingas, namely cranked wires
and junctions [58]. A wire is shown in Figure 4.7. It consists of
a loop delimited by two polygons, one inside the other. In Lingas’
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construction, the two polygons are simple, and a wire is therefore a
polygon with one hole. Moreover in his proof the dimensions of the
cranks do not matter. In our case, the polygon inside is not simple,
and each line segment has unit length. Each wire is bent several
times with an angle of 90◦, as shown in Figure 4.7, in order to close
the loop.

Figure 4.7: A cranked wire, edges are in black and its interior is
in grey. The wire follows the whole red loop, but for the sake of
simplicity, only a section of the wire at a bend is drawn.

The wires are used to encode the values of the variables, with one
wire for each variable. We are interested in two possible tilings of a
wire, called vertical and horizontal, which are shown in Figure 4.8.

As in Lingas’ proof, we interpret the vertical tiling as setting the
variable to true, and the horizontal as false. Lingas proved the fol-
lowing:

Lemma 4.25 (Lingas [58]). A minimum tiling with convex sets of
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Figure 4.8: A section of a wire and its optimal tilings: vertical (left)
and horizontal (right).

a wire uses either vertical or horizontal rectangles but not both. Any
other tiling requires at least one more convex set.

The second tool is called a junction, and it serves to model a clause.
Figure 4.9 depicts a junction corresponding to a clause of three lit-
erals. Figure 4.10 shows a zoom on the most important part of a
junction. A junction has three arms, represented as dashed black
line segments. A junction for a clause of two literals is obtained by
blocking one of the arms of the junction. The blue line segments
have length 1 + ε, for a fixed ε arbitrarily small. Therefore, the red
line segments are not aligned with the long black line segment to
their right. A junction can be in four different orientations, which
can be obtained successively by making rotations of 90◦. Let us
consider the orientation of the junction in Figure 4.9. One wire is
connected from the left, one from above, and one from the right. A
wire can only be connected to a junction at one of its bends (see
Figure 4.7). We then remove the line segment corresponding to the
arm of the junction, as illustrated in Figure 4.9.

If the tiling of the wire connected from the left is horizontal, then
one of the rectangles can be prolonged into the junction. The same



114 Minimum convex partition

Figure 4.9: A junction for the MCT problem.

Figure 4.10: A zoom on a junction for the MCT problem. The blue
segments have length 1 + ε. One of the intersections between two
dashed brown segments lies in the interior of the polygon. The red
segments are not aligned with the long thick one to the right.
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holds for the wire connected from the right. On the contrary, a
rectangle can be prolonged from the wire connected from above only
if the tiling is vertical. If a rectangle can be prolonged, we say that
the wire sends true, otherwise it sends false. If a clause contains two
negative literals x̄, ȳ and one positive z, the corresponding junction
is as in Figure 4.9, or the 180◦ rotation of it. The wire corresponding
to z is connected from above or below, and the wires corresponding
to x and y are connected from the left and from the right, or vice
versa. Therefore, the wire corresponding to z sends true if and only
if z is set to true. On the contrary, the wire corresponding to x
(respectively y) sends true if and only if x (respectively y) is set
to false. If the clause has two positive literals, then the junction is
vertical, and the junction behaves likewise.

Lingas proved that when minimising the number of convex polygons
in a tiling, for each junction at least one adjacent wire sends true.
Before stating Lingas’ lemma exactly, we need to explain the first
step of the construction of the point set.

4.4.1 Construction of the polygon with holes

Let us consider one instance (F,G) of MPLSAT. Lingas states that
the planarity of G implies that the junctions and the wires can be
embedded as explained above, and so that they do not overlap [58].
Thus we obtain a polygon with holes, that we denote by Π. He adds
without proof that the dimensions of Π are polynomially related to
|V |, where V denotes the vertex set of G. We show in the following
paragraph how to embed the polygon with holes into a grid Λ, such
that each edge consists of line segments of Λ. Actually, some parts of
edges are not exactly line segments of Λ, but are shifted orthogonally
by distance ε (recall the red segments in Figure 4.9). However, as ε
is arbitrarily small, this does not impact our proof. Thus, for sake of
simplicity, we will from now on do as if the edges entirely consisted
of segments of Λ. Moreover, we show how to construct Λ in Θ(|V |2)
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size.

Let us consider an instance (F,G) of MPLSAT. Recall that the ver-
tex set of G is the union of X and C, where X denotes the set of vari-
ables and C the set of clauses. We define a new graph G′ = (V ′, E′)
as follow: For each vertex x ∈ X of degree δ, we have δ vertices
x1, . . . , xδ in V ′. Moreover for each c ∈ C we have one vertex c in
V ′. Now for each edge (x, c) ∈ E, we have one edge between c ∈ V ′

and one of the xi ∈ V ′. We do so such that each vertex xi in V ′

corresponding to some x ∈ V has degree 1. Then we add edges
between the vertices x1, . . . , xδ so that they induce a path. We can
do this such that the graph we obtain, G′, is still planar. Moreover,
since a clause contains at most three vertices, the maximal degree of
G′ is at most 3. The number of vertices we have added is at most
the number of edges in G, therefore |V ′| = Θ(|V |). Following the
result of Valiant [80], we can embed G′ in a grid of size Θ(|V |2),
such that the edges consist of line segments of the grid. Let s be the
line segment incident to c in the edge {xi, c}, where xi corresponds
a variable x ∈ X and c is a clause. Our constraint is that x appears
positively in c if and only if s is vertical. Moreover we impose s
to be of length at least 10, so that we have enough space later to
replace c by a junction. We claim that we can find an embedding
of G on another grid, still of size Θ(|V |2), that satisfies our con-
straint. We first scale the embedding by 3. Then we can change the
path of each edge adjacent to c as illustrated in Figure 4.11, so that
the embedding satisfies our first constraint. The line segments in
red (respectively blue) correspond to edges {x, c} where x appears
positively (respectively negatively) in c. By assumption, at most
two variables appear positively, and at most two appear negatively.
Therefore it is possible to adapt the paths of the edges so that the
red line segments are vertical and the blue ones horizontal. Finally,
we scale the grid by 10 to satisfy the second constraint.

Now we replace each clause by a junction. Let x1, . . . , xδ be the
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Figure 4.11: How to adapt the embedding to satisfy the constraint.
On the left, before adaptation, on the right, after adaptation.

vertices corresponding to a variable x ∈ X. Observe that the set
of line segments

⋃
1≤i≤δ{e ∈ E′ | xi ∈ e} is a tree. Let us take a

constant sufficiently big, and scale the grid so that we can replace
each tree corresponding to some variable x ∈ X by a simple polygon
that is as close as possible to the tree. Then, after a new scaling,
we can replace each polygon by a wire, in a grid which is still of
size Θ(|V |2). As ε introduced in the definition of the junctions is
arbitrarily small, we can consider that all line segments of junctions
and wires are segments of a grid. For sake of simplicity, we will from
now on omit to mention that some line segments are not exactly on
the grid. Again, it is possible to find an embedding in a grid of size
Θ(|V |2), such that wires do not intersect, and a wire is connected
to a junction if and only the variable corresponding to the wire is
contained in the clause corresponding to the junction.

We can now state Lingas’ lemma:
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Lemma 4.26 (Lingas [58]). In a minimum tiling with convex sets
of Π, a junction contains wholly at least three convex sets. The
junction contains wholly exactly three if and only if at least one of
the wires connected to the junction sends true.

4.4.2 Discretisation of the line segments

To construct the point set of the reduction from MPLSAT to MCT,
we first construct a collection of line segments. We then discretise
this collection by replacing each line segment by a set of collinear
points.

Let us consider our polygon with holes Π that lies in the grid Λ. The
grid consists of points with integer coordinates, and line segments
between points that are at distance 1. We consider the collection of
line segments consisting of Π union each line segment of Λ whose
relative interior is not contained in the interior of Π. Notice that
therefore we have line segments outside Π, but also inside its holes.
Moreover, the collection of line segments that we obtain, denoted by
Φ, is a subgraph of the grid graph Λ.

Now we define K as twice the number of unit squares in Λ plus 1.
Finally, we replace each line segment in Φ by K points evenly spaced.
We denote this point set by P .

4.4.3 Proof of correctness

We have constructed P in order to have the following property:

Lemma 4.27. In a minimum convex tiling Σ of P , for each convex
set S ∈ Σ, the interior of S does not intersect Φ.

Before proving Lemma 4.27, we first explain how we use it. Let K ′

denote the number of unit squares in Φ, plus the minimum number
of rectangles in a partition of the wires, plus three times the number
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of clauses. Using Lemmas 4.25 and 4.26 shown by Lingas coupled
with Lemma 4.27, we immediately obtain the following theorem:

Theorem 4.28. The formula F is satisfiable if and only if there
exists a convex tiling of P with K ′ polygons.

Since P and K ′ can be computed in polynomial time, Theorem 4.28
implies Theorem 4.24 for the MCT problem. We use a packing
argument, and claim that in a convex tiling Σ of P , if a convex set
S ∈ Σ has large area, then most of its area is contained in a unique
cell of Φ. Then we show that in a minimum convex tiling, all convex
sets have large area, and that each of them fills the cell that contains
it. For a set S, let A(S) be the area of S.

Lemma 4.29. Let L and L′ be two squares in Λ, and S be a convex
polygon whose interior does not contain any point in P . If A(S∩L) >
1/K, and the boundary of S crosses a line segment of Φ between L
and L′, then A(S ∩ L′) ≤ 1/K.

Proof. The proof is illustrated in Figure 4.12. By assumption, S
intersects a line segment whose endpoints p and q are at distance
1/K. Let us consider the two line segments s and s′ of the boundary
of S that intersect the line ℓ which contains p and q. Assume for
contradiction that the lines containing respectively s and s′ do not
intersect, or intersect on the side of ℓ where L lies. This implies that
S∩L is contained in a parallelogram that has area 1/K, as illustrated
in Figure 4.13. Indeed such a parallelogram has base 1/K and height
1, therefore A(S ∩ L) ≤ 1/K. This shows that the lines containing
respectively s and s′ intersect on the side of ℓ where L′ lies. Using
the same arguments as above, this implies A(S ∩ L′) ≤ 1/K.

Lemma 4.30. Let R be a rectilinear polygon on Λ whose interior
does not contain any point in P . Let Ψ be a set of squares of Λ
contained in R, such that no two of them are on the same row or
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Figure 4.12: If A(S ∩ L) > 1/K, the two lines containing s and s′

intersect on the left side.

same column of Λ. Let Σ be a minimum convex tiling of P . Let S
be an element of Σ, such that for each Li ∈ Ψ , we have A(S ∩Li) >
1/K. Then there exist |Ψ | − 1 squares {Li} in Ψ and |Ψ | − 1 convex
sets {Si} in Σ, such that for any i: A(Si ∩ Li) > 1/K.

Proof. We assume |Ψ | ≥ 2, otherwise there is nothing to prove. Us-
ing Lemma 4.29, we know that if such a S exists, then there are no
line segment of Φ between any two squares in Ψ . We can observe
thanks to how wires and junctions are defined that |Ψ | is at most
three. Moreover for the same reason, there are |Ψ | − 1 squares in
Ψ such that the area of their intersection with S is at most 1/2, as
illustrated in Figure 4.14. Observe that by taking each unit square
in Λ as a convex face, we obtain a convex partition with K−1

2 convex
faces. In particular, there are at most K convex faces in Σ, which
implies that for each unit square L ∈ Ψ , there exists a convex face
S̃ ∈ Σ with A(S̃ ∩L) > 1/K. Moreover by iterating this process we
can choose these convex sets so that they are distinct.

Proof of Lemma 4.27. We define a function f0 : Λ → Σ that maps
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q

L

Figure 4.13: The area of the parallelograms is 1/K.

each square L in Λ to a convex set S ∈ Σ such that A(S∩L) > 1/K.
Such a set exists since otherwise we would need more than K sets
only to fill the square L. Now we define a map f in several steps.
We start from f0. At step i + 1, find L and L′ on the same line or
the same column, and L′′ between them, such that fi(L) = fi(L

′) ̸=
fi(L

′′). If this is not possible then stop. Otherwise define fi+1

as identically equal to fi, except for all square between L and L′,
that are mapped to fi(L). Notice that fi+1 keeps the property that
for each square L̃, we have A(fi(L̃) ∩ L̃) > 1/K. Moreover, this
procedure must stop eventually because the interiors of the convex
sets are non-overlapping. We denote by f the map obtained after
the last iteration.

We denote by f−1 the function that maps a set S ∈ Σ to {L ∈ Λ |
f(L) = S}. By Lemmas 4.29 and 4.30, if for some S there are m
squares in f−1(S) ≥ 2 such that no pair of squares are on a line nor
on a column, then there exists at least m−1 convex sets Si such that
for each Si, f−1(Si) = ∅. Moreover, such a Si cannot appear when
considering another element of Σ: If Lemma 4.30 when applied to
S gives the existence of the {Si}, and when applied to S′ ̸= S gives
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L1

L2

L3

S

Figure 4.14: If A(S ∩ L1) ≥ 1/2, then A(S ∩ L2) ≤ 1/2 and A(S ∩
L3) ≤ 1/2.

the existence of the {S′
j}, then all these convex sets are distinct. We

denote by M the number of such sets, taken over all sets S ∈ Σ with
f−1(S) ≥ 2.

We are going to partition P into at most |Σ|−M rectilinear polygons
(not necessarily convex). We denote by T the partition. For each
set S ∈ Σ such that |f−1(S)| = 1, we add in T the square in f−1(S).
For each S ∈ Σ such that |f−1(S)| ≥ 1, we add in T the rectilinear
polygon consisting of the union of the squares in f−1(S). We know
thanks to Lemma 4.29 that the boundary of this rectilinear polygon
does not cross any line segment in Φ. Following what was argued
above, there are at most |Σ|−M sets in T . We now construct a new
convex tiling Σ′, that we claim to be minimum. We replace each set
in T that is not convex by rectangles. From the construction of wires
and junctions, there exists a partition of the sets in T into rectangles
that will add M new sets. Looking at the construction of T and then
Σ′, we can observe that the convex tiling Σ was minimum if and only
if the interior of all sets S does not intersect Φ.
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4.4.4 How to adapt the proof to MCP

Let us explain how to adapt the proof to the case of the MCP prob-
lem. Notice that the only lemma for which it makes a difference
is Lemma 4.26. Indeed, if in Figure 4.9 the wire connected from
below sends true, then one can prolong a rectangle of this wire so
that it contains the small rectangle in the junction. Therefore only
three rectangles are wholly contained in the junction. However, the
vertex on the top left of the prolonged rectangle is not a point of
P . This can be solved by adding a line segment to the construction,
coloured in red in Figure 4.15. With this construction, the rectangle
is prolonged into a trapezoid (delimited above by the dashed red line
segment). The convex set above remains a rectangle, and the one
to the left becomes a convex quadrilateral with a right angle. Now
one can adapt the proof by taking into account this new triangular
hole that has been inserted in each junction. The proof can then be
done similarly to the one of the MCT problem.

4.4.5 NP-hardness of CPNCS

Let us consider the CPNCS problem with additional constraints on
the input point set P . We consider the CPNCS problem on a 3-
directed point set P with set of directions L, such that there are
no five collinear points, and a point p ∈ P is contained in at most
one line in L. We show that CPNCS is NP-hard, even for such
constrained point sets.

Kratochvíl and Nešetřil have shown that Maximum Independent Set
in Intersection Graphs of Segments is NP-hard, even when the seg-
ments lie in only three possible directions [53]. The problems corre-
sponds to finding a maximum set of pairwise non-intersecting seg-
ments. There is an additional constraint that no two parallel seg-
ments intersect. We do a reduction from this problem to CPNCS
with the additional constraints. The reductions is illustrated in Fig-
ure 4.16. Let us consider a set of such line segments. We first shift
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Figure 4.15: A junction for the MCP problem.
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Figure 4.16: The reduction from Maximum independent set in seg-
ments to CPNCS. A segment in an independent set corresponds to a
segment in a covering which covers four points instead of only two.

the segments so that no two segments are aligned. Since no two par-
allel segments intersect, this does not change the intersection graph.
We also extend some segments such that if two segments intersect,
then the intersection is in the relative interiors of the segments. We
replace each segment by four collinear points, that lie on the seg-
ment. Let us consider a segment s with endpoints u and v. By
construction, there is a connected subset of s that contains u but
no intersection point between s and another segment. We add two
points in this connected subset. The same holds with v, and we add
two other points in the corresponding connected subset of s that
contains v. We do it such that three points are collinear only if they
lie on the same segment of the input set. It is clear that the point
set satisfies our constraints.

We denote by n the number of segments. We claim that there is an
independent set of s segments if and only if there is a covering of
the points with 2n − s non-crossing segments. Assume there is an
independent set of s segments, and let us show the existence of a
covering with 2n− s elements. For each segment in the independent
set, we take it in the covering. For the other segments, we take two
segments to cover the four points: one for each pair of close points.
Therefore we have covered the points with s + 2(n − s) segments,
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Figure 4.17: On the left a minimum covering of the point set. On
the right a covering given by the greedy algorithm. As the horizontal
segments contain seven points, they are the firsts taken by the greedy
algorithm. However, afterwards many segments are needed to cover
the remaining points.

which are non-crossing by assumption.

Let us now assume that there is a covering of the point set with
2n − s non-crossing segments. Let us denote by x the number of
segments that cover more than two points. Such a segment covers
at most four points, and there are 4n points to cover. Hence, we
have 4x+2(2n− s−x) = 4n, which implies x = s. By construction,
each segment that covers more than two points is a segment of the
input set, thus there exists an independent set of s segments.

4.4.6 Lower bound for the greedy algorithm

The construction is illustrated in Figure 4.17. Consider the set of
2k(2k+1) points P := {(x, y) | x, y ∈ N, 1 ≤ x ≤ 2k+1, 1 ≤ y ≤ 2k}.
Now we perturb slightly the points such that any line that covers
at least three points is either vertical or horizontal. Actually, after
perturbation, the lines might not be exactly vertical or horizontal,
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but we keep referring to them as such for simplicity. Moreover, we
perturb again the points such that only k horizontal lines cover at
least three points. We do so such that, for any pair of consecutive
horizontal lines that covers at least three points, there are k + 1
points in between (which correspond to the points of the former
horizontal line). In the end, a vertical line covers at least three points
if and only if it covers exactly 2k points. Similarly, a horizontal line
covers at least three points if and only if it covers exactly 2k + 1
points. We denote this new point set by P ′, and denote by n the
cardinality of P ′. It is clear that one can cover all points using
2k + 1 vertical segments (which are thus non-crossing). However,
the greedy algorithm will first pick the k horizontal segments with
even y-coordinate. Then it remains to cover the k(2k + 1) = n

2
remaining points, but there is no line covering three of these points.
Therefore the greedy algorithm picks at least k(2k+1)

2 more segments.
Hence, the approximation ratio is at least k(2k+1)/2

2k+1 = k/2 = Ω(
√
n).

Recall that in Theorem 4.5, we introduce another algorithm whose
approximation ratio is O(

√
n log n) for solving CPNCS. The algo-

rithm first computes a minimum covering with lines of the point
set, and then divides these lines into non-crossing segments. By the
same reasoning, this algorithm will also have an approximation ratio
in Ω(

√
n) on the point set P ′.
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CHAPTER 5

Triangulations and the bistellar flip graph

5.1 Introduction

In Chapter 4 we studied convex partitions of points sets in degen-
erate position. A convex partition where all faces are triangles is a
“triangulation”. In this chapter, we study triangulations on degen-
erate point sets. Triangulations provide structure on point sets, flip
graphs provide structure on the set of all triangulations of a given
point set, see e.g. [22]. A triangulation can be flipped to another if
they are sufficiently similar. As we detail later more formally, this
notion of flip is actually connected to the concept of convex parti-
tions.

Since the seventies, it has been known that in the plane these flip
graphs are connected, [56], while it is known since the turn of the cen-

129
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tury that there are point sets in dimension 5 or higher for which this
graph (more precisely, the so-called bistellar flip graph) is not con-
nected, [72, 73]; the situation in dimension 3 and 4 remains open. De
Loera, Rambau and Santos, [22], raised the question of the vertex-
connectivity of the flip graph in the plane, which was recently an-
swered for point sets in general position (i.e. no three points on a
line), [82]. The goal of this chapter is to complete the picture in the
plane by showing that the bistellar flip graph of point sets in the
plane is always (n − 3)-vertex-connected. That is, we allow sets in
which three or more points lie on a common line. Following [22], we
include even the possibility of repeated points, a situation that is
modelled by so-called point configurations (to be defined below).

A motivation for considering such point configurations with repeated
points comes, e.g. from the fact that in some applications the points
we are considering are projected from a higher dimension where some
points may have the same image. Other motivations come from Gale
duality, see [22, Sec. 2.1.2].

For the rest of this section, we provide the formal setting for the
chapter (as given in [22]) and the statement of the results.

5.1.1 Point configurations and triangulations

Formally, we define a point configuration A as a set of labels J with
a mapping J → R2; we write A as (pj)j∈J . A subconfiguration B =
(pj)j∈I of A induced by a subset I of the labels J is called affinely
independent if the points labelled by I are affinely independent – in
particular, they are all distinct. We denote by conv(B) the convex
hull of the points {pj}j∈I with labels in I, and we denote by relint(B)
the relative interior of conv(B).

While triangulations of point sets in general position can be defined
as maximal straight line embedded plane graphs, see [82] for ex-
ample, the situation is more subtle for point configurations. The



5.1. Introduction 131

(a) (b) (c) (d)

Figure 5.1: The four triangulations of a point configuration with no
repeated point. A cross indicates a skipped point.

following is the established definition (as a simplicial complex) for
this set-up, see [22].

Definition 5.1 (Triangulation). A triangulation of a point configu-
ration A is a collection T of affinely independent subconfigurations
with the following properties:

1. If B is in T and F is a subset of B, then F is in T . (Closure
Property)

2. If B and B′ are two different elements in T , then relint(B) ∩
relint(B′) = ∅. (Intersection Property)

3. The union
⋃

B∈T conv(B) equals conv(A). (Union Property)

A set of one, two, or three elements in T is called a vertex, an
edge, or a triangle, respectively, of the triangulation T . Note that
no set in T contains more than three elements because of affine
independence. Observe that some labels may not appear in any set
of T – such elements are called skipped in T . Figure 5.1 shows the
four triangulations of a point configuration without repeated points.
In triangulations (c) and (d) one point is skipped. Observe that
this skipped point might lie on a triangle, see (c), or on an edge, see
(d). It might also lie on an edge on the boundary of the convex hull
of the point configuration. A skipped point may even lie on a vertex
in the case of repeated points.
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(1) (2) (3) (4) (5)

Figure 5.2: The five subdivisions which are not triangulations of
a point configuration with no repeated point. A cross indicates a
skipped point.

5.1.2 Flips: Via faces, subdivisions, and coarsenings

In order to proceed to the definition of bistellar flip graphs of point
configurations, we need to introduce flips, the minimal changes ap-
plied to a triangulation. Point and edge flips allow for a simple direct
definition in general position, see [82], for example. Here we need to
first introduce faces and (polyhedral) subdivisions.

We start off with the definition of a face of a point configuration,
as given in [22]. These are subconfigurations which can be obtained
as intersections of the point configuration with a face (in the “con-
ventional sense” as a convex set) of the convex hull of the point
configuration. Or, equivalently, these are the subconfigurations of
all labels whose points maximize some given linear function.

Definition 5.2 (Face). Let A = (pj)j∈J be a point configuration.
Let C be a subset of J . For a linear function ψ : R2 → R, the
face of C in direction ψ is the set faceA(C,ψ) := {j ∈ C | ψ(pj) =
maxb∈C(ψ(pb))}.

We say that F is a face of C if it is a face for some linear function
ψ. Observe that C is always a face of C as obtained with the zero
function. Moreover, we consider the empty set as a face of C. We
are now ready to define subdivisions as in [22].

Definition 5.3 (Subdivisions). A subdivision of a point configura-
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tion A = (pj)j∈J is a collection S of subsets of J that satisfies the
following properties:

1. If B is in S and F is a face of B, then F is in S. (Closure
Property)

2. If B and B′ are two different elements in S, then relint(B) ∩
relint(B′) = ∅ (Intersection Property)

3. The union
⋃

B∈S conv(B) equals conv(A). (Union Property)

The elements of a subdivision are called cells. As before for trian-
gulations we say that a label that does not appear in any set of S
is skipped, and that a cell with one element is called a vertex. A cell
whose convex hull has dimension k is called a k-cell. Roughly speak-
ing, subdivisions look like convex partitions as defined in Chapter 4.
Recall that convex partitions are geometric plane graphs. According
to our definition, subdivisions are not. However, for each subdivision
we can associate a geometric plane graph. For each 1-cell we draw
a segment between the two extreme points of that 1-cell. Figure 5.2
shows the five subdivisions which are not triangulations of the point
configuration from Figure 5.1. Observe that a cell may contain more
than two elements and still be a 1-cell, as in subdivision (4). Like-
wise, as we allow point repetitions, a cell may contain arbitrarily
many labels and still be a 0-cell.

The following remark lists some differences between convex parti-
tions and geometric plane graphs associated with subdivisions.

Remark 5.4. In subdivisions some points may be skipped, but are
still taken into consideration. Moreover, there might be isolated
points. Some of them are in some 2-cells, and some lie on 1-cells.
They may look like vertices of degree 2, but it is important to keep
in mind that they are actually just isolated points (of degree 0) that
lie on some 1-cell. Finally, if a point is not extreme in one of the
convex faces, then it has degree 0. This is shown in Figure 5.3. If
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1 2

34

5

Figure 5.3: A convex partition which is not a subdivision (see Re-
mark 5.4). If it were a subdivision S, then S would be equal to
{1, 4, 5}, {1, 2, 5}, {2, 3, 4, 5} and all faces of these sets. However, the
intersection of the interior of the faces relint({2, 5})∩relint({2, 4, 5})
is not empty.

T were a subdivision, the 2-cells in T would be {1, 5, 4}, {1, 2, 5}
and {2, 3, 4, 5}. But this is not valid as therefore {2, 5} and {2, 4, 5}
would be 1-cells of T (closure property), but then relint({2, 5}) ∩
relint({2, 4, 5}) is not empty, in contradiction with the intersection
property.

Definition 5.5 (Refinement and coarsening). Given two subdivi-
sions S and S ′, S is a refinement of S ′ if for each cell B of S, B is
a subset of a cell B′ of S ′. We also say that S ′ is a coarsening of S.

The coarsening relation gives a partial order. The minimal elements
are the triangulations, which cannot be refined. There is a unique
maximal element, called the trivial subdivision Striv, where all faces
of A are in Striv (including J itself). Figure 5.4 shows the Hasse
diagram of the coarsening relation for the point configuration of
Figures 5.1 and 5.2.

Definition 5.6 (Height). The height of a subdivision S in the partial
order given by the coarsening relation is equal to the size of a longest
chain in the Hasse diagram ending in S minus one.
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Figure 5.4: Hasse diagram of a point configuration where no point
is repeated. The partial order displayed corresponds to coarsenings.

Note that the height of a triangulation is 0. We also give a special
name to subdivisions of height 1.

Definition 5.7 (Almost-triangulations). A subdivision at height
one in the poset of subdivisions is called an almost-triangulation.
That is, it is not a triangulation but all its proper refinements are
triangulations.

Lemma 5.8 ([22]). Any almost-triangulation has exactly two proper
refinements, which are both triangulations.

Definition 5.9 (Flips [22]). We say that two triangulations of the
same point configuration are connected by a flip supported on the
almost-triangulation S if they are the two triangulations refining S.

As noted in [22], every flip happens on a circuit, where a circuit



136 Triangulations and the bistellar flip graph

is a minimal affinely dependent subset of points, and splits in a
unique way into a pair (Z+, Z−) with the property that conv(Z+) ∩
conv(Z−) ̸= ∅. We recall the definition of a circuit to explain the
names of the types of flips. We say that (Z+, Z−) is a circuit of type
(|Z+|, |Z−|), with the convention |Z+| ≥ |Z−|.

Let us consider a point configuration in the plane. There are four
types of flips [22]. The first is the flip of type (2, 2). It occurs when
there is a 2-cell with four elements in the almost-triangulation S,
such that the four corresponding points are in convex position. This
2-cell is the only non-simplicial cell of S. The two triangulations are
obtained by adding one or the other diagonal. This can be seen in
Figure 5.1: one can go from (a) to (b) and vice versa with an edge
flip. The corresponding almost-triangulation is subdivision (1) in
Figure 5.2. Likewise, one can go from (c) to (d) and vice versa in
Figure 5.1, as those are the two proper refinements of subdivision
(3) in Figure 5.2.

The second flip is the (3, 1)-flip. It occurs when there is a 2-cell with
four elements in the almost-triangulation S, such that one point p
is in the convex hull of the three others. The two triangulations are
obtained by either skipping p, or by connecting it to the three other
points. This operation can be seen in Figure 5.1 when going from
(b) to (c) and reciprocally. Those two triangulations are the proper
refinements of subdivision (2) in Figure 5.2.

The third flip is the (2, 1)-flip. It occurs when there are three
collinear points in one or two 2-cells (depending on whether they
lie on the boundary of the convex hull or not). Let us denote by
p the point in between the two others. In this flip, we remove the
edge on which p lies, and we connect p to all vertices of the triangles
that were adjacent to the edge. This point has now degree 4 if it is
an inner point, and degree 3 if it lies on the boundary of the convex
hull. The converse operation consists in finding a point adjacent to
four if it is an inner point, or to three if it lies on the boundary
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of the convex hull, such that two of the incident edges are aligned.
The point becomes skipped, the edges are removed, and a new edge
covering the two that were aligned is added. This flip can be seen
in Figure 5.1 when going from (a) to (d). Those two triangulations
are the proper refinements of subdivision (4) in Figure 5.2.

The fourth flip is the (1, 1)-flip. When a point is repeated, with one
label j not skipped and the other j′ being skipped, it consists in
removing the edges incident to j and making them incident to j′.
Also, j becomes skipped and j′ becomes not skipped. This has no
visual effect on the triangulation.

Definition 5.10 (Bistellar flip graph). The vertex set of the bistel-
lar flip graph of a point configuration A is the set of all triangula-
tions on A. Two triangulations are adjacent if there is an almost-
triangulation that coarsens both.

The bistellar flip graph of the point configuration depicted in Fig-
ure 5.1 consists of four vertices. Observe that this graph is a cycle
of length 4.

In [22], De Loera, Rambau and Santos asked whether for all point
configurations of size n ≥ 3 in the plane, the bistellar flip graph is
(n− 3)-connected. Wagner and Welzl showed that this is true when
the configuration is in general position [82], meaning that no three
points are on a line, thereby also implying that no point is repeated.
Observe that therefore they did not consider (2, 1)-flips and (1, 1)-
flips. Allowing for points to be repeated, or for points to be on a
line, does not only create new kinds of vertices in the bistellar flip
graph. It also creates new types of edges, corresponding to those
new types of flips. We extend their result to all point configurations
in the plane.

Theorem 5.11. The bistellar flip graph of a point configuration with
convex hull of dimension d, where d ≤ 2, with n labels is (n−d−1)-
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connected, and this is tight for all point configurations.

We immediately prove the result for a point configuration A whose
convex hull has dimension 0. Observe that in a triangulation of A
all points but one are skipped. In an almost-triangulation, all points
but two are skipped. The bistellar flip graph is isomorphic to a
complete graph of size n, and is therefore (n− 1)-connected but not
n-connected.

Let us now consider a point configuration A whose convex hull is
1-dimensional. In a triangulation of A, every point that is skipped
can be flipped via a (2, 1)-flip or a (1, 1)-flip. Every point that is
not skipped can be flipped via a (2, 1)-flip, except for the two ex-
treme points. Therefore, the bistellar flip graph is (n − 2)-regular,
and cannot be (n − 1)-connected. If no point is repeated, then the
bistellar flip graph is the hypercube graph of dimension n−2, which
is (n− 2)-connected.

Finally, let us consider a point configuration A whose convex hull is
2-dimensional. As shown in [23], there is a triangulation that has
degree n − 3 in the bistellar flip graph of A, and all triangulations
have degree at least n− 3. We show the following:

Theorem 5.12. The bistellar flip graph of a point configuration in
the plane where no point is repeated with n ≥ 3 points is (n − 3)-
connected.

Assuming that no point is repeated simplifies quite a lot the defi-
nitions. This is why we prove the theorem for point configurations
where no point is repeated, which can be seen as a point set, and
we extend it to all point configurations in a separate step. We have
argued above that the bistellar flip graph of a point configuration
with 1-dimensional convex hull where no point is repeated is (n−2)-
connected. Therefore, assuming that Theorem 5.12 holds, to prove
Theorem 5.11 it remains to show that if it holds for point config-
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urations where x points are repeated, then it also holds for point
configurations where x+ 1 points are repeated. This is what we do
in the next section.

5.2 From point sets to point configurations

In this part, we assume that Theorem 5.12 holds, and we show by
induction on the number of repeated points that Theorem 5.11 holds
too. If we consider a point configuration with no repeated points,
then we are immediately done. Let us now assume that Theorem 5.11
holds for all configurations where at most x points are repeated.
We show that the theorem holds for all configurations where x + 1
points are repeated. Let A′ be a configuration where x+1 points are
repeated, including point p. We denote by ℓ the number of labels
which are mapped to p in A′. Let A denote the point configuration
identical to A′, except for point p which is not repeated. We want
to describe the relation between the bistellar flip graphs of A and
A′. To do so, we first define a concept.

Let G = (V,E) be a graph. Given an induced subgraph H of G, and
any positive integer ℓ, we define below the (H, ℓ)-clone of G, denoted
by G′. First, let us give an intuitive definition. The graph G′ is the
union of ℓ graphs isomorphic to H, union a graph isomorphic to
G \ H, with few more edges. The corresponding vertices of two
different copies of H are connected by an edge. Moreover, when
considering the union of two graphs, one isomorphic to H and the
other to G \H, this union is isomorphic to G.

We define now the (H, ℓ)-clone formally. It is depicted on Figure 5.5.
Let n and m denote the number of vertices in G and H, respectively.
We denote by {vj}1≤j≤m the vertices in H, and by {vj}m+1≤j≤n the
vertices in G\H. We define a set of ℓm vertices, denoted by vi,j , for
1 ≤ i ≤ ℓ and 1 ≤ j ≤ m. We denote by Vi the set {vi,j | 1 ≤ j ≤ m},
for all 1 ≤ i ≤ ℓ. We also define V0 := {v0,j | m + 1 ≤ j ≤ n} a
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G

H

G \H

H H

H

G

G

G

Figure 5.5: A (H, 4)-clone of a graph G. The union of G \H and a
copy of H is isomorphic to G. Moreover, the corresponding vertices
of two different copies of H are connected by an edge.
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set of n −m vertices. We define V ′ as ∪0≤i≤ℓVi. Finally, we define
E′ by the four following properties. Property 1. states that the
subgraph induced by V0 is isomorphic to G \ H, Property 2. that
for all 1 ≤ i ≤ ℓ, the subgraph induced by V0 ∪ Vi is isomorphic to
G, Property 3. that for all 1 ≤ i ≤ ℓ, the subgraph induced by Vi
is isomorphic to H and Property 4. states that the corresponding
vertices of two different copies of H are connected by an edge.

1. for all m + 1 ≤ j1, j2 ≤ n, we have {v0,j1 , v0,j2} ∈ E′ ⇐⇒
{vj1 , vj2} ∈ E,

2. for all 1 ≤ i ≤ ℓ, 1 ≤ j1 ≤ m, m + 1 ≤ j2 ≤ n, we have
{vi,j1 , v0,j2} ∈ E′ ⇐⇒ {vj1 , vj2} ∈ E,

3. for all 1 ≤ i ≤ ℓ, 1 ≤ j1, j2 ≤ m, we have {vi,j1 , vi,j2} ∈
E′ ⇐⇒ {vj1 , vj2} ∈ E,

4. for all 1,≤ i1, i2 ≤ ℓ, i1 ̸= i2, 1 ≤ j1, j2 ≤ m we have
{vi1,j1 , vi2,j2} ∈ E′ ⇐⇒ j1 = j2.

Finally, we define G′ as the graph (V ′, E′). Recall that we have
defined A to be a point configuration where a point p is not repeated,
and a point configuration A′ where p is repeated ℓ times. Let us
denote by G = (V,E) the bistellar flip graph of A, and by G′ =
(V ′, E′) the bistellar flip graph of A′. Let us denote by VH the set
of vertices in V corresponding to triangulations of A where p is not
skipped. Observe that for all triangulations in A where p is not
skipped, there are ℓ triangulations in A′ where one of the repetitions
of p is not skipped. Those are the only new triangulations that we
can have by allowing the repetition of p. Therefore, V ′ is the union
of V \VH and ℓ copies of VH . Moreover, the subgraph of G′ induced
by V \ VH union a copy of VH is isomorphic to G. Finally, two
triangulations from different copies of VH are connected by an edge
in G′, as one can go from one to the other via a (1, 1)-flip. Let
us denote by H the graph induced by VH in G. Therefore, G′ is
isomorphic to the (H, ℓ)-clone of G. Let us denote by n the number
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of labels in A. Thus, the number of labels in A′ is equal to n+ ℓ−1.
We are assuming that G is (n−3) connected. We have to show that
G′ is (n+ ℓ− 4)-connected. To do this we use the following lemma:

Lemma 5.13. Let G be a graph, and let H be an induced subgraph
of G such that any vertex v in G \ H is connected to exactly one
vertex in H. If G is k-connected, H is connected, and G \ H is
(k− 1)-connected, then for any positive integer ℓ, the (H, ℓ)-clone of
G is (k + ℓ− 1)-connected.

Before showing Lemma 5.13, let us explain how it implies that Theo-
rem 5.11 holds for all configurations where x+1 points are repeated.
We only have to argue why any vertex v in G \ H is connected to
exactly one vertex in H, why G is (n − 3)-connected, why H is
connected, and why G \H is (n− 4)-connected.

First, let us consider the bistellar flip graphs of A and the one of
A\{p}. Observe that the bistellar flip graph of A\{p} is isomorphic
to the subgraph of G induced by G \H. For both of them, x points
are repeated, so we can apply induction. There are n labels in A,
and therefore (n − 1) labels in A \ {p} because p is not repeated
in A. This implies that G is (n − 3)-connected and that G \ H
is (n − 4)-connected. We claim that H is connected. Take two
triangulations T1 and T2 in H. If the two triangulations use different
repetitions of a point q, we can flip one of the triangulations so
that they use the same label of this repeated point. Let us now
assume that if T1 and T2 use the same point, then it is with the
same label. Let P1, respectively P2, denote the set of points that
are not skipped in T1, respectively T2. Observe that it is always
possible to flip a point which is currently skipped, either by a (3, 1)-
flip or by a (2, 1)-flip. So we can flip in T1 the skipped points in
P2 \ P1 to obtain a triangulation T ′

1 with set of points being equal
to P1 ∪P2. We do the same for T2 and obtain T ′

2 . Now by Lawson’s
Theorem [56] we can go from T ′

1 to T ′
2 by doing (2, 2)-flips. Observe
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that during this process p is never skipped. Thus H is connected.
Finally, we claim that any vertex v in G \H is connected to exactly
one vertex in H. This follows immediately from the fact that in the
triangulation corresponding to v, the point p is skipped. It can be
flipped to obtain a unique triangulation where p is part of some cell,
whose corresponding vertex is therefore in H. We have shown that
Lemma 5.13 implies that Theorem 5.11 holds for all configurations
where x+ 1 points are repeated.

We now prove Lemma 5.13. Using the Local Menger Lemma intro-
duced by Wagner and Welzl [82], it is sufficient to show the existence
of k + 1− ℓ paths between pairs of vertices at distance 2.

Lemma 5.14 (Local Menger [82]). Let k ≥ 2 be an integer and let
G be a connected simple undirected graph. The graph G is k-vertex
connected if and only if G has at least k + 1 vertices and for any
pair of vertices u and v at distance 2 there are k pairwise internally
vertex disjoint u-v-paths.

Proof of Lemma 5.13. The proof is illustrated in Figure 5.6. We use
the same notation as in the definition of (H, ℓ)-clone. By assumption,
for any m+1 ≤ j1 ≤ n, there exists a unique 1 ≤ j2 ≤ m, such that
for any 1 ≤ i ≤ ℓ, {v0,j1 , vi,j2} is in E′. We define by ϕ the function
that maps such a j1 to this uniquely defined j2.

We denote by G′ the (H, ℓ)-clone of G. By Menger’s Theorem, the
statement is equivalent to say that for any pair of distinct vertices
in G′, there are k + ℓ − 1 internally vertex-disjoint paths between
them. Here, we use the local version of this theorem (Lemma 5.14),
and assume that the two vertices of the pair are at distance 2 in G′.
We are going to distinguish cases depending on whether the vertices
belong to V0 or to Vi for i > 0. Note that we only use the fact that
the vertices are at distance 2 in the last case. Let us begin with the
case when they both belong to V0. This is illustrated in Figure 5.6a.
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k − 1
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(b) One vertex is in V0 and the other in V4
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(c) Both vertices are in V4

v4,j1

v1,j1

v1,j2

v3,j1
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(d) Different vertices in H in different copies of H

Figure 5.6: Illustration of Lemma 5.13. Dashed lines represent edges.
Thick lines represent paths of arbitrary lengths. Such a path can
even be of length 0, as the endpoints might be the same vertex. The
green and orange numbers denote the number of green and orange
paths, respectively.
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Let m+1 ≤ j1, j2 ≤ n be two different integers. We show that there
are k + ℓ − 1 (internally vertex-disjoint) paths between v0,j1 and
v0,j2 . By assumption, the graph induced by V0 is (k− 1)-connected.
Therefore there are k − 1 paths between the two vertices for which
all vertices are in V0. Moreover by assumption, for all 1 ≤ i ≤
ℓ, {v0,j1 , vi,ϕ(j1)} and {v0,j2 , vi,ϕ(j2)} are in E′. Note that vi,ϕ(j1)
and vi,ϕ(j2) might be the same. As H is connected, there is a path
between vi,ϕ(j1) and vi,ϕ(j2) that uses only vertices of Vi. In total, we
have found (k − 1) + ℓ paths.

Let us now assume that one vertex belongs to V0, and the other to
Vi1 for some 1 ≤ i1 ≤ ℓ. This is illustrated in Figure 5.6b. Let
1 ≤ j1 ≤ m and m+1 ≤ j2 ≤ n be two integers. We show that there
are k+ℓ−1 paths between vi1,j1 and v0,j2 . As G is k-connected, there
are k paths between the two for which all vertices are in V0 ∪ Vi1 .
Moreover, for all 1 ≤ i2 ≤ ℓ with i2 ̸= i1, {vi1,j1 , vi2,j1} is in E′.
Furthermore, {v0,j2 , vi2,ϕ(j2)} is in E′. As H is connected, there is
a path between vi2,j1 and vi2,ϕ(j2), which only uses vertices of Vi2 .
There are ℓ− 1 such paths, which makes in total k + (ℓ− 1) paths.

Now, we assume that the vertices belong to the same Vi1 , for 1 ≤
i1 ≤ ℓ. This is illustrated in Figure 5.6c. Let 1 ≤ j1, j2 ≤ m be some
different integers. We show that there are k + ℓ − 1 paths between
vi1,j1 and vi1,j2 . As G is k-connected, there are k paths between
them which only use vertices of V0 ∪ Vi1 . For all 1 ≤ i2 ≤ ℓ, with
i2 ̸= i1, {vi1,j1 , vi2,j1} and {vi1,j2 , vi2,j2} are in E′. Moreover, as H
is connected, there is a path between vi2,j1 and vi2,j2 that only uses
vertices of Vi2 . In total, there are k + (ℓ− 1) paths.

Finally, let us assume that the vertices belong to Vi1 and Vi2 , with
i1 ̸= i2. Let 1 ≤ j1, j2 ≤ m be some integers. We show that
there are k + ℓ− 1 paths between vi1,j1 and vi2,j2 . Here, we use the
assumption that vi1,j1 and vi2,j2 are at distance 2. This immediately
implies j1 ̸= j2, otherwise the two vertices would be adjacent. Let
us consider a vertex v in V ′, that is adjacent to both vi1,j1 and vi2,j2 ,
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and that belongs to Vi3 for some 0 ≤ i3 ≤ ℓ. If i3 = 0, then v is a
vertex of H, so we use the fact that v is adjacent to a unique vertex
in G\H to infer j1 = j2, a contradiction. Likewise, if i3 /∈ {0, i1, i2},
then by definition of a clone we have j1 = j2.

Thus, we have that each vertex v adjacent to both vi1,j1 and vi2,j2
is in Vi1 or in Vi2 . By assumption, there exists at least one such
v, and we assume without loss of generality that v is in Vi1 . As
there exists a unique vertex in Vi1 adjacent to vi2,j2 , we infer that
v is equal to vi1,j2 . This is illustrated in Figure 5.6d. As G is k-
connected, there are k paths between vi1,j1 and vi1,j2 that only use
vertices of V0 ∪ Vi1 . Without loss of generality, we can assume that
the path consisting of the single edge {vi1,j1 , vi1,j2} is one of them.
We denote this path consisting of a single edge by Pe. For any path
P1 among the remaining k−1 paths, we can associate to each vertex
of P1 in Vi1 , a corresponding vertex in Vi2 . As the graphs induced
by V0 ∪ Vi1 and V0 ∪ Vi2 are isomorphic, this characterises a path
P2 between vi2,j1 and vi2,j2 that uses only vertices of V0 ∪ Vi2 . We
associate P1 and P2 in order to obtain a path from vi1,j1 to vi2,j2 .
Observe that if there is a vertex v0 of P1 in V0, then v0 is also an
internal vertex of P2. Thus, we obtain a path by following P1 until
v0, and then following P2 to vi2,j2 . If there is no such vertex of P1 in
V0, let us consider one internal vertex v1 of P1 in Vi1 . Such a vertex
exists, because we assume P1 not to be equal to Pe. Therefore,
there is a vertex v2 in Vi2 , that is an internal vertex of P2, with
{v1, v2} ∈ E′. We obtain a path by following P1 until v1, then
going to v2, and finally following P2 to vi2,j2 . Observe that by doing
so we have found k − 1 internally vertex disjoint paths from vi1,j1
to vi2,j2 which only use vertices in V0 ∪ Vi1 ∪ Vi2 \ {vi1,j2 , vi2,j1}.
We add the two following paths of length 2: (vi1,j1 , vi1,j2 , vi2,j2) and
(vi1,j1 , vi2,j1 , vi2,j2). Finally, for each 1 ≤ i3 ≤ ℓ, with i3 ̸= i1 and
i3 ̸= i2, the edges {vi1,j1 , vi3,j1} and {vi2,j2 , vi3,j2} are in E′. As H
is connected, there is a path between vi3,j1 and vi3,j2 that only uses
vertices of Vi3 . Therefore we obtain ℓ− 2 new paths. In total there
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are (k − 1) + 2 + (ℓ− 2) = k + ℓ− 1 paths.

5.3 Some properties of subdivisions in any di-
mension

The connectivity results we present in this paper hold in dimension 2.
It is known that they do not hold in dimension 5 and higher [72, 73].
However, some of our lemmas hold in all dimensions. We state them
in this section. Recall that we have shown in Section 5.2 why we
can afford to only consider point configurations where no points are
repeated, which can simply be seen as point sets. In particular, we
make no difference between a label and its corresponding point. The
following definitions are inspired by [82]. An important difference is
that we allow for degenerate point sets, whereas in [82] only point
sets in the plane in general position are considered. Let P be a set
of n points in Rd, such that the dimension of the affine hull of P is
d. A point p in P is extreme if P and P \ {p} do not have the same
convex hull. Observe that a point can lie on the boundary of the
convex hull while still not being extreme.

Definition 5.15 (Bystanders). Let S be a subdivision. If a label
j is in some cell of S, but {j} is not a cell in S, then j is called a
bystander.

It follows easily from the definition of subdivisions that j is a by-
stander if and only if in all cells that contain j it is not an extreme
point. Thus a point is either skipped, a bystander, or an extreme
point in all cells that contain it. In the last case, we call it an in-
volved point. Observe that skipping all bystanders in a subdivision S
gives a refinement of S. Recall that we assume here that no point is
repeated. If we had allowed repeated points and kept the same def-
inition, a repeated point would be a bystander. But if all points are
repeated then skipping all of them would not yield a subdivision.
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This is one of the reasons why we treated the case with repeated
points in Section 5.2, and from now on forbid repeated points. We
call size of a d-cell B the number of involved points in B.

Definition 5.16 (Slack of a subdivision). Let S be a subdivision
whose affine hull has dimension d. The slack of S is equal to (

∑
i fi−

d−1)+β, where fi denotes the number of d-cells of size i and β the
number of bystanders.

Lemma 5.17. A subdivision is an almost-triangulation if and only
if it has slack 1.

Proof. Observe that a subdivision is an almost-triangulation if and
only if it has exactly one d-cell of size d + 2 and the others of size
d+ 1, and no bystander, or if all d-cells have size d+ 1 and there is
one bystander. This is exactly the definition of being of slack 1.

Lemma 5.18. A subdivision has height 2 if and only if it has slack
2. In particular, any proper refinement of a subdivision of slack 2
has slack at most 1.

Proof. Let S be a subdivision of height 2. Observe that it has at
most two bystanders, and that all d-cells are of size at most d+3. If
there are two bystanders, then all d-cells must be of size d+1. If there
is exactly one bystander, then as S is not an almost-triangulation,
there must be a d-cell of size d + 2, and all others must be of size
d+ 1. If there are no bystanders, then there is either a d-cell of size
d+ 3 or two d-cells of size d+ 2. In all cases we have a subdivision
of slack 2.

By Lemmas 5.8 and 5.17, we know that a proper refinement of a
subdivision of slack 1 has slack equal to 0. Lemma 5.18 could make us
believe that this is a general property, i.e. that a proper refinement
of a subdivision of slack k has slack at most k − 1. However, this is
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not the case: See [82] for an example of a subdivision of slack 5 with
a refinement of slack 6.

Lemma 5.19. Let S and S ′ be two distinct almost-triangulations.
If a subdivision S2 at height 2 coarsens S and S ′, then it is unique.

Proof. In an almost-triangulation, there are two possibilities. Either
there is a bystander and all d-faces have size d + 1, or there is no
bystander and all faces have size d + 1 except for one that has size
d+ 2. If p is a bystander in S and q is a bystander in S ′, then S2 is
the unique subdivision where p and q are bystanders and all d-faces
have size d+ 1. Likewise, if B is a d-face of size d+ 2 in S, then S2

is the unique subdivision where q is a bystander and all d-faces have
size d+1 except for B that has size d+2. Finally, let us assume that
B′ is a d-face of size d+2 in S ′. If B ∩B′ contains at most d points,
then S2 is the unique subdivision where all d-faces have size d + 1
except for B and B′ of size d + 2. Lastly, if B ∩ B′ contains d + 1
points (it cannot contain d + 2 as S ̸= S ′), then S2 is the unique
subdivision where all d-faces have size d+1 except for B ∪B′ which
has size d+ 3.

Definition 5.20 (Set of refining triangulations). For a subdivision
S, we denote by Tref⟨S⟩ the set of triangulations that refine S.

For a triangulation T and an almost-triangulation S that coarsens T ,
we denote by T [S] the unique triangulation distinct from T that re-
fines S. Its existence and uniqueness is given by Lemma 5.8. Observe
that if S1 and S2 are different almost-triangulations that coarsen T ,
then T [S1] and T [S2] are different triangulations.

Lemma 5.21. i) For two subdivision S1 and S2 of slack 2, Tref⟨S1⟩∩
Tref⟨S2⟩ is either a) empty, b) equals {T } for some triangulation T ,
c) equals Tref⟨S3⟩ for some almost-triangulation S3, or d) S1 = S2.

ii) Let S1 and S2 be two different almost-triangulations that coarsen
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a triangulation T . If there is a subdivision S3 of slack 2 that satisfies
{T [S1], T , T [S2]} ⊆ Tref⟨S3⟩, then this subdivision S3 is unique.

Proof. i) Let us assume that Tref⟨S1⟩ ∩ Tref⟨S2⟩ is not empty. By
Lemma 5.18, S1 and S2 have height 2. Let us denote by S a refine-
ment of S1 and S2 with maximal height. If S has height 0 we are in
case b). If it has height 2 we are in case d). Let us now assume that
it has height 1. By Lemma 5.19, if another subdivision S ′ refines S1

and S2, then S ′ is equal to S. Therefore we are in case c).

ii) Let S3 and S4 be two subdivisions of slack 2 such that we have
{T [S1], T , T [S2]} ⊆ Tref⟨S3⟩ and {T [S1], T , T [S2]} ⊆ Tref⟨S4⟩. It
implies that we have {T [S1], T , T [S2]} ⊆ Tref⟨S3⟩ ∩Tref⟨S4⟩. Since
we are not in case a), b) or c), we have S3 = S4.

Definition 5.22 (Compatible almost-triangulations). Let T be a
triangulation. Two almost-triangulations S1 and S2 that coarsen T
are called compatible with respect to T , in symbols S1 ⋄ S2 if there
exists a subdivision S1,2 of slack 2 such that {T [S1], T , T [S2]} ⊆
Tref⟨S1,2⟩. Otherwise, S1 and S2 are called incompatible with respect
to T , in symbols S1 ̸ ⋄ S2

Observe that by Lemma 5.21 that if S1,2 exists then it is unique.
We now observe that for any triangulation T , and any two almost-
triangulations S1 and S2 that coarsen T with S1 ⋄ S2, there exists a
T -avoiding T [S1]-T [S2]-path of length at most d+1 in the bistellar
flip graph. It is sufficient to show the following lemma:

Lemma 5.23. Let S be a subdivision of slack 2. Then the subgraph
of the bistellar flip graph induced by Tref⟨S⟩ is a k-cycle, where 3 ≤
k ≤ d+ 3.

Proof. First, it is easy to observe that if there are exactly two d-cells
of size d + 1 that contain a bystander, or if there are two d-cells of
size d+ 2, or if there is one d-cell B of size d+ 2 and one bystander
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Figure 5.7: A 2-dimensional subdivision S of slack 2, and the four
triangulations in Tref⟨S⟩. The flips can be done independently, and
so Tref⟨S⟩ induces a 4-cycle.

not in B, then there are four triangulations in Tref⟨S⟩ and they form
a cycle of length 4, as shown in Figure 5.7 for the case d = 2. If
we are not in one of the previous cases, there is a d-face B of size
d + 3. Observe that we can focus on B and forget about the rest
of the subdivision. Chapter 5.5.1 in [22] deals with configurations
of d+ 3 points. It is shown that all subdivisions of a d-dimensional
point configuration with d+3 points are regular. Thus, the bistellar
flip graph of this point configuration is the graph of a (n − d − 1)-
dimensional polytope, that is a polygon. Moreover, it is shown that
there are at most d+3 triangulations. For the sake of completeness,
we illustrate in Figure 5.8 the situation for d = 2. The cases where
no three points are on a line were already presented in [82].

Recall that by Lemma 5.8 for a triangulation T and an almost-
triangulation S that coarsens T , there exists a corresponding trian-
gulation T ′ that refines S, such that one can flip from T to T ′. We
now claim that there is an equivalent thing between subdivisions of
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Figure 5.8: Bistellar flip graphs for five points in the plane. A cross
indicates a skipped point.
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slack 1 and 2.

Lemma 5.24. Let T be a triangulation, and let S1 be an almost-
triangulation that coarsens T . For any subdivision S2 of slack 2 that
coarsens S1, there exists an almost-triangulation S ′

1 that coarsens T
and refines S2 such that S1 ⋄ S ′

1 with respect to T . Also, distinct
coarsenings of S1 lead to distinct almost-triangulations.

Proof. By Lemma 5.23, Tref⟨S2⟩ is a k-cycle, where 3 ≤ k ≤ d +
3. There are two triangulations which are adjacent to T in this
cycle. As T [S1] is one, the other is uniquely defined, and can be
written as T [S ′

1] for some almost-triangulation S ′
1. By Lemma 5.21,

if {T [S1], T , T [S ′
1]} ⊆ Tref⟨S ′

2⟩ for some subdivision of slack 2 S ′
2,

then we have S ′
2 = S2. This implies that distinct coarsenings of S1

lead to distinct almost-triangulations.

Lemma 5.25. Let T be a triangulation, and let p be a skipped point
in T . Let S1 denote the almost-triangulation identical to T except
that p is now a bystander. Let S2 be any almost-triangulation that
coarsens T and which is not S1. We have that S1 and S2 are com-
patible.

Proof. Observe that p must be skipped in S2, for otherwise it would
be equal to S1. Now let us consider S3 which is identical to S2

except that p is now a bystander. Therefore S3 has slack 2. By
assumption, S3 coarsens T and T [S2]. Now, for the same reason
that S2 coarsens T , we have that S3 coarsens S1. This is because
the only modification is that p is a bystander in S1 and S3 whereas
it is skipped in T and S2. Thus we have S1 ⋄ S2.

5.4 Definitions for point sets in the plane

In this section, we consider point sets in the plane. For some of our
purposes, it will be convenient to look at a subdivision as straight-
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line plane graph. This is only possible because we are not allowing
point repetitions. Thus there is no risk of confusion as to which
point is an edge incident.

Definition 5.26 (The graph of a subdivision). Let S be a subdi-
vision. Let Vinv be the set of involved points, and let V be the set
of points that are not skipped. The graph G = (V, E) of S is the
straight-line plane graph with vertex set V, where there is an edge
between two vertices in Vinv if they are the two extreme points of
some 1-cell in S.

Observe that the bystanders may lie on some edge, but they are still
of degree 0. Furthermore, G is a convex partition on Vinv (if we forget
about the bystanders). Let us recall that the converse is not true,
as shown in Figure 5.3: There are convex partitions which are not
the plane graph of any subdivision. The graph of a triangulation is
a maximal plane graph on V = Vinv.

5.4.1 The unoriented edge Lemma

We now consider a fixed subdivision S on P with N involved points
and no bystanders. We consider G = (Vinv, E) its corresponding
plane graph. Throughout Section 5.4.1, we say edge for an edge of
G. The aim of this section is to show a lower bound on the number
of (2, 2)-flips that can be done.

Definition 5.27 (Locked edges). Let p be a point in P, and e be an
edge incident to p, with e not on the convex hull. We say that e is
concave-locked at p if its removal would create an angle larger than
π at p. Similarly, e is straight-locked at p if its removal would create
an angle of exactly π. An edge is locked at p if it is concave-locked
or straight-locked at p. An edge is unlocked if it is not locked at any
endpoint.
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Definition 5.28. We denote by Pi,j the set of inner points p in P
with i edges concave-locked at p and j edges straight-locked at p.
We denote by Ci,j the cardinality of Pi,j . Likewise, Pb

i,j denotes the
set of points p on the convex hull with i edges concave-locked at p
and j edges straight-locked at p, and Cb

i,j denotes the cardinality of
Pb
i,j .

Observation 5.29. If p is in P3,0, then there are exactly three edges
incident to p. If p is in P1,2, there are exactly four edges incident to
p, two of them being aligned. If p is in P0,4, there are also four edges
incident to p, the angle between any two consecutive edges being π/2
(there are two pairs of aligned edges). If p is in Pb

0,1, there are three
edges incident to p, two of them being aligned and on the boundary
of the convex hull.

Definition 5.30 (Orientation of a subdivision). Let S be a subdi-
vision. An orientation of S is the assignment to each inner edge
of either having no direction, or being directed towards one of its
endpoints, or being directed towards both endpoints. We call these
edges unoriented, directed, mutual, respectively. We denote by Ci

the number of inner points with indegree i, and by Cb
i be the num-

ber of non-extreme points on the boundary of the convex hull with
indegree i.

Lemma 5.31 (Unoriented edges Lemma). Let S be a subdivision on
N involved points, no bystanders, and with D edges missing towards
being a triangulation. We consider an orientation of S. The number
of unoriented inner edges is at least N − 3 − D +

∑
i((2 − i)Ci) −∑

i iC
b
i . The inequality becomes an equality under the assumption

that edges can be oriented towards at most one endpoint.

Proof. Let O denote the number of oriented inner edges, and U the
number of unoriented inner edges. Let us denote by n◦ the number of
inner points in S, and by h the number of points on the boundary of
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the convex hull. There are 3N −3−h edges in a triangulation of the
involved points. The number of inner edges in S is therefore equal
to 3N −3−2h−D = N +2n◦−3−D. We have O ≤

∑
i i(Ci+C

b
i ),

and there is equality if no edge is oriented towards both endpoints.
Therefore we obtain U = N +2n◦ − 3−D−O ≥ N − 3−D+2n◦ −∑

i i(Ci + Cb
i ) = N − 3−D +

∑
i((2− i)Ci)−

∑
i iC

b
i .

Definition 5.32. We say that a partial orientation on the inner
edges of a subdivision S is admissible if we have the following prop-
erties:

1. Cb
i > 0 =⇒ i ≤ 1,

2. Ci > 0 =⇒ i ≤ 4.

Observation 5.33. Let S be a subdivision. Orient all inner edges
towards points where they are locked. This orientation is admissible.

Lemma 5.34. In an admissible orientation of a subdivision, there
are at least N − 3−D+2C0+C1− 2C4−C3−Cb

1 unoriented inner
edges.

Proof. This is a direct application of Lemma 5.31 and the definition
of being admissible. Let us denote by U the number of unoriented
inner edges. We have U ≥ N − 3 −D +

∑
i((2 − i)Ci) −

∑
i iC

b
i =

N − 3−D + 2C0 + C1 − C3 − 2C4 − Cb
1.

5.4.2 Coarseners of subdivisions

We now define the coarseners of a subdivision, similarly to [82].
When no three points are on a line, there are only two kinds of flips:
(2, 2)-flips and (3, 1)-flips. A (2, 2)-flip is characterised by giving the
edge which is to be flipped. A (3, 1)-flip is characterised by giving
which point is to be flipped. This is not true for (2, 1)-flips, which
can happen when several points are allowed to be on a line. When
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making a point a bystander, one must also specify which edges are
to be removed. This issue also appears when defining coarseners.
Wagner and Welzl characterise a coarsener simply by giving a set
of points. Below, we extend their definition to our broader setting,
where we need to specify a set of edges.

Definition 5.35 (Coarsener). Let S be a subdivision. Let U be
a non-empty set of non-extreme points, containing only involved
points, and let E be a set of 1-cells that each contain at least one
point in U . We say that (U,E) is a coarsener if there exists a coars-
ening S ′ of S such that:

1. Every point in U is a bystander in S ′, and every involved point
not in U remains involved in S ′.

2. Every 1-cell in E is not a subset of any 1-cell in S ′,

3. Every 1-cell not in E which contains a point in U is a proper
subset of a 1-cell in S ′.

4. Every 1-cell not in E which does not contain a point in U is a
1-cell of S ′.

We say that S ′ is the subdivision obtained by isolating the coarsener
(U,E). Every subdivision with at least one non-extreme point in-
volved has a coarsener. Simply take U as the set of all non ex-
treme points, and E as the set of all inner edges. By isolating this
coarsener, we obtain the trivial subdivision Striv.

Let us analyse the implications of Definition 5.35. A point u in
U must become a bystander in S ′ by Property 1., therefore u may
be either part of a 1-cell or a 2-cell. If u lies on the boundary of
the convex hull, then it must be part of a 1-cell. By Property 2.
and the fact that S ′ is a coarsening of S, a 1-cell in E is a proper
subset of a 2-cell in S ′. Visually, the corresponding edge in the
straight-line plane graph has disappeared. Relatedly, the two aligned
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edges corresponding to 1-cells not in E which contain u are now
merged into one edge on which the point u lies. This is just a visual
description, which is not formal. By Property 4. all the other edges
remain the same. Assuming that E contains all edges needed such
that every point in U becomes isolated, either lying on a 2-cell or
on a 1-cell, the only reason why S ′ may not exist would be because
some 2-cells are not convex anymore.

Definition 5.36 (Fixing a pair of 1-cells). Let S be a subdivision,
and let (U,E) be a coarsener with corresponding coarsening S ′. Let
u be a point in U that is part of some 1-cell in S ′. The two 1-cells
in S not in E that contain u are called fixed by the coarsener (U,E)
at u. For a point u that is not contained in any 1-cell in S ′, we say
that (U,E) fixes no 1-cell at u.

Recall that if two 1-cells are fixed by a coarsener at point u, then all
the points they contain are aligned. Therefore, if two coarseners fix
the same 1-cell at u, then they fix the same pair of 1-cells at u.

Definition 5.37 (Increment of a coarsener). Let S be a subdivision,
and (U,E) be a coarsener with corresponding coarsening S ′. Let
U1 ⊆ U denote the set of inner points in U that are contained in
some 1-cell in S ′. Let U b

1 ⊆ U the set of points, non-extreme but
lying on the boundary of the convex hull, that are contained in some
1-cell in S ′. The increment of (U,E), denoted by inc(U,E), is equal
to |E| − 2|U |+ |U1|+ 2|U b

1 |.

Lemma 5.38. Let S = (V,E) be a subdivision, and (U,E) be a
coarsener with corresponding coarsening S ′. We have slS ′ = slS +
inc(U,E).

Proof. By Definition 5.16, slS is equal to (
∑

i fi−3)+β, where fi de-
notes the number of 2-cells of size i and β the number of bystanders.
Remark that

∑
i fi − 3 corresponds to the number of 1-cells missing
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towards being a triangulation. Let us denote by N the number of
points involved in S, and by h the number of points involved that lie
on the boundary of the convex hull. Let us denote by YS the num-
ber of 1-cells in S. Therefore we have slS = 3N − 3 − h − YS + B.
Each point in U is a bystander in S ′. Thus the number of by-
standers in S ′ is B′ := B+ |U |, and the number of involved points is
N ′ := N − |U |. For the same reason, the number of involved points
on the boundary of the convex hull in S ′ is h′ := h − |U b

1 |. Each
1-cell in E does not appear in S ′, and for each point in U1 ∪U b

1 , two
1-cells in S correspond to only one 1-cell in S ′. Thus the number
of 1-cells in S ′ is Y ′

S = YS − |E| − |U1| − |U b
1 |. Finally, we have

slS ′ = 3N ′− 3−h′−Y ′
S +B′ = (3N − 3|U |)− 3− (h−|U b

1 |)− (YS −
|E| − |U1| − |U b

1 |) + (B + |U |) = slS + |E| − 2|U |+ |U1|+ 2|U b
1 |.

Definition 5.39 (Prime coarsener). Let S be a subdivision, and
(U,E) be a coarsener. We say that (U,E) is a prime coarsener if for
any set (U ′, E′) with E′ ⊆ E, we have that (U ′, E′) is a coarsener if
and only if U ′ = U and E′ = E.

Observation 5.40. Taking the notation of the Definition 5.39, we
have that if (U ′, E′) is a coarsener and E′ ⊆ E then U ′ ⊆ U . In-
deed it is not possible to obtain a new bystander with fewer edges.
Therefore the definition essentially means that there is no smaller
coarsener.

Definition 5.41 (Perfect coarsener). A prime coarsener (U,E) in a
subdivision S is a perfect coarsener if inc(U,E) = 1.

Definition 5.42 (Perfect coarsening). A coarsening of a subdivision
S is a perfect coarsening if it is obtained by either adding a skipped
point as a bystander, removing an unlocked edge or by isolating a
perfect coarsener.
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Lemma 5.43. Let S be a subdivision. Let X1 = (U1, E1) and X2 =
(U2, E2) be coarseners. Let U be the set of points u in U1 ∩ U2 such
that either X1 and X2 fix the same pair of 1-cells at u, or at least
one of them fixes no 1-cell. Let E be the set of 1-cells in E1 ∩ E2

that contain at least one point in U . If U is not empty, then (U,E)
is a coarsener.

Proof. By assumption, there is at least one involved point u in U .
For each such point, we have to show that either each 1-cell that
contains u is in E, or that exactly two of such 1-cells B and B′

are not in E, and then the points in B and B′ are aligned. This
implies that u is indeed a bystander in the coarsening S ′, obtained
by isolating (U,E). If X1 and X2 fix the same pair of 1-cells at u,
all other 1-cells that contain u are in E1 and in E2, and thus also in
E. If one coarsener, say X1, fixes no 1-cell and the other, X2, fixes a
pair B and B′ of 1-cells, then every 1-cell that contains u apart from
B and B′ is in E. In the last case, both X1 and X2 fix no 1-cells at
u, and then all 1-cells that contain u are in E.

It remains to show that the plane graph that we obtain from the new
subdivision is a convex partition. Let u be a point in P \ (U1 ∩U2).
Assume without loss of generality that u is not in U1. We know that
(U1, E1) is a coarsener. By isolating it, we obtain S1. As u is not in
U1, it is not a bystander in S1, and therefore the angle between any
two consecutive 1-cells in S1 around u is at most π. There are fewer
1-cells in E than in E1, thus the angle between any two consecutive
1-cells in S \ E around u is at most π. Finally, let u be a point in
U1 ∩ U2, such that X1 and X2 do not fix the same pair of 1-cells at
u. Let B1 and B′

1 be the two 1-cells containing u whose points are
aligned that are not in E1. Likewise, let B2, B

′
2 be the two 1-cells

containing u whose points are aligned that are not in E2. Observe
that the four distinct 1-cells B1, B

′
1, B2, B

′
2 are not in E. As they

consist of two pairs of aligned edges, the angle between any two
consecutive 1-cells in S \E around u is less than π. We have shown
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that if U is not empty, then (U,E) is a coarsener.

Lemma 5.44. Let S be a subdivision. If X1 = (U1, E1) and X2 =
(U2, E2) are prime coarseners, then either X1 = X2, or ∀u ∈ U1∩U2,
X1 and X2 do not fix the same pair of 1-cells at u (which includes
the case U1 ∩ U2 = ∅).

Proof. We define U and E as in the statement of Lemma 5.43. Let
us assume X1 ̸= X2, which implies that (U,E) is not equal to X1.
As X1 is prime, Lemma 5.43 implies that U is empty. This means
that for any point u in U1 ∩U2, X1 and X2 do not fix the same pair
of edges at u.

Observation 5.45. Let S = (V,E) be a subdivision, and let G be
its corresponding plane graph. If (U,E) is a prime coarsener, then
the subgraph of G with vertex set U and edge set E is connected.

5.5 The coarsening Lemma

In this section, we give a lower bound on the number of perfect
coarsenings in a subdivision S in the plane. We denote byG = (V, E)
the plane graph corresponding to S. We make no difference between
an edge of G and its corresponding 1-cell in S. We denote by n
the number of points in the point set (including the skipped points),
and by N the number of points that are involved or bystanders in
S. We extend the coarsening Lemma by Wagner and Welzl to point
sets in degenerate position. This Lemma gives a lower bound on the
number of perfect coarsenings of S.

In the proof of the coarsening Lemma, we use an algorithm that al-
lows us to identify perfect coarseners, and to give an admissible ori-
entation. We call this algorithm the orienting algorithm. Recall that
by Lemma 5.34, there are at leastN−3−D+2C0+C1−2C4−C3−Cb

1

unoriented edges. We show that for each of this unoriented edge,
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there is one perfect coarsening obtained by removing this edge. Fur-
thermore, for each inner point of indegree 3 there is one correspond-
ing perfect coarsener, for each inner point of indegree 4 there are two
corresponding perfect coarseners, and for each point on the bound-
ary with indegree 1, there is one corresponding perfect coarsener.
We also show that all these coarsenings are distinct. In total, we
obtain N−3−D+2C0+C1 perfect coarsenings. We conclude using
the following observation:

Observation 5.46. Any point that is skipped can always be inserted.
Therefore there are n − N perfect coarsenings of S consisting in
adding a skipped point as a bystander.

5.5.1 The orienting algorithm

Let S be a subdivision with no bystander. The orienting algorithm
has three phases. In the first one, we orient every edge towards a
point where it is locked. It may be that edges are locked at both
endpoints, and are therefore mutual. Observe that this orientation
is admissible.

The candidate components and the second phase

Let U be a set of points and E a set of inner edges, such that U ̸= ∅
and each edge in E contains a least one point in U . Recall that we
speak equivalently of edges and of 1-cells. Let U0 denote the set of
points u in U such that all 1-cells in S that contain u are in E. Let
U1 ⊆ U denote the set of inner points u in U such that exactly two
1-cells B and B′ that contain u are not in E, and the points in B∪B′

are aligned. Let U b
1 ⊆ U the set of points, non-extreme but lying

on the boundary of the convex hull, such that exactly two 1-cells B
and B′ that contain u are not in E, and the points in B ∪ B′ are
aligned. We say that (U,E) is a candidate component if:
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1. We have U = U0 ∪ U1 ∪ U b
1 ,

2. An edge in E with exactly one endpoint in U is oriented to-
wards it and is not mutual,

3. No edge in E is unoriented,

4. Let E′ ⊆ E be the set of mutual edges in E. The subgraph
(U,E′) is a spanning tree of U ,

5. There are exactly three edges in E oriented towards a point
in U0, exactly two edges in E oriented towards a point in U1,
and exactly one edge in E oriented towards a point in U b

1 .

If (U,E) is a candidate component, then |E| = 3|U0|+2|U1|+ |U b
1 |−

(|U |−1) = 2|U0|+|U1|+1 = 2|U |−|U1|−2|U b
1 |+1. This immediately

implies that if (U,E) is a coarsener, then inc(U,E) = 1. Moreover in
a coarsener, after the first phase of the orienting algorithm, either no
edge or all edges of a candidate component are in the edge set of the
coarsener. This is because the mutual edges form a spanning tree
of U , and if two points connected by a mutual edge of a candidate
component must be both bystanders or both involved in a coarsen-
ing of S. This implies that if a candidate component (U,E) is a
coarsener, then it is a prime coarsener, and even a perfect coarsener
as inc(U,E) = 1.

Now let us describe the second phase of the orienting algorithm. We
are going to modify the orientation of the edges, while maintaining
the property that if a candidate component is a coarsener, then it is
a perfect coarsener. At the end, the aim is that (U,E) is a candidate
component if and only if it is a perfect coarsener. Thus the candidate
components are going to grow (in order to become closer to being a
coarsener), or disappear (if no perfect coarsener contains them).

Let (U,E) be a candidate component. Suppose q is a point not in
U such that removing the edges in E creates an angle of at least
π at q. We orient one of the edges e in E incident to q towards
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q, thus making e mutual. The other edges in E incident to q are
called the witnesses of the extra new orientation of e from p to q.
We iterate as long as possible. This must end, as at each step we
make one directed edge become mutual. The candidate components
may grow, or disappear if the new vertex does not have the right
indegree, or is adjacent to an unoriented edge that needs to be in E.
When we are done, it is the end of the second phase.

Let us make some remarks. When removing all witnesses incident
to a point p, the edges that remain are locked at p. In particular,
the indegree of p is at most 4, and if it is, then there are four edges
incident to p and the angle between to consecutive edge around p is
π/2. In this case we say that p is in the regular situation. If p is an
inner point not in the regular situation, the indegree of p is at most
3. If p is on the boundary of the convex hull, then its indegree is at
most 1. Observe that if an unoriented edge e is incident to a point
p, then p the indegree of p is at most 3 and it is 3 if and only if e is
aligned with another edge incident to p.

Observe that we maintained the following property: If two points
in a candidate component (U,E) are connected by a mutual edge in
E, then either both or non are bystanders in a coarsening of S. As
in a candidate component the mutual edges form a spanning tree of
U , we have that if a candidate component is a coarsener, then it is
a prime coarsener. Observe a point u is in U1 may be adjacent to a
mutual edge e, as long as e is not in E.

The third phase

It is clear that from an edge e, we can find all the points that need to
be bystanders in a coarsening where e is missing. One has simply to
do a depth-first search on the mutual edges from the endpoints of e,
by applying the following rule. Let us assume that we are following
a mutual edge from u to v. If when removing u and the witnesses of
the extra new orientation of {u, v} from u to v (if there are some) we
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obtain an angle larger than π at v, then we continue the search on
all the mutual edges incident to v. This is because in any coarsening
where u is a bystander, v must be a bystander lying in some 2-cell,
and cannot be in any 1-cell. Now let us assume that we obtain an
angle of exactly π, formed by the aligned edges denoted by e and
e′. Observe that there cannot be mutual edges apart from {u, v} on
the same side of the edges e, e′ as {u, v}. On the other side, there
can be at most one mutual edge, denoted by e′′, and let us denote
by w the other endpoint of e′′. Let us remove e′′ and the witnesses
of the extra new orientation of e from w to v (if there are some).
If the angle at v is larger than π, then we continue the search on
all the mutual edges incident to v. This is because in a coarsening
where u is a bystander, v has to be a bystander, and thus so does
w. But now, since the angle when removing w and its corresponding
witnesses is larger than π, v cannot be a bystander in some 1-cell
in the coarsening. Likewise, if when removing w and the witnesses
of e′′ we obtain an angle of π, but it is formed by a pair of aligned
edges which is not e, e′, then we continue the search on all the mutual
edges incident to v. Once again, the reason is that v cannot be a
bystander belonging to some 1-cell in the coarsening. Finally, if the
pair of aligned edges is e, e′, then we continue the search uniquely
on e′′. In this scenario, it may be that there is a coarsening where v
lies on a 1-cell that contains e and e′.

Observe that from what we argued above, we can define an equiv-
alence relation on the set of mutual edges. Two edges e and e′ are
equivalent if when when doing the operation described above from
an endpoint of e, we visit e′. The fact that this relation is reflexive
and transitive is trivial. The fact that it is symmetric follows from
what we do when the angle is exactly π. This equivalence relation
gives us a partition of the mutual edges. Observe that if an edge e
is in a candidate component, then the set of edges equivalent to e
are the mutual edges of that candidate component.
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Now let us consider one set of equivalent mutual edges of the parti-
tion. If those mutual edges form cycles, choose such a cycle c, and
orient the edges clockwisely. For any other edge of the set, orient it
towards c (breaking ties arbitrarily). Let p be an endpoint of one
of the mutual edge. If p is on the boundary of the convex hull, its
indegree is now 0. If it is an inner point not in the regular situation,
its indegree is at most 2. If it is in the regular situation, its indegree
is at most 3.

Now let us consider a set E of equivalent mutual edges, such that
there is no candidate component with edge set E′ ⊇ E. As those
edges in E form no cycle, there is a point p which satisfies one of
these two properties: i) in any coarsener where p is a bystander it
lies on a 2-face and it has indegree at most 2, ii) it is in not of the
previous case, and at least one of the edges in E incident to p is not
oriented towards p. If that was not the case then E would be the
mutual edges of some candidate component. We orient all mutual
edges in E towards p. Once again, if p is on the boundary of the
convex hull, its indegree is now 0. If it is an inner point not in the
regular situation, its indegree is at most 2. If it is in the regular
situation, its indegree is at most 3.

Now, any remaining set of mutual edges is the set of mutual edges in
some candidate component (U,E). Indeed the set of mutual edges
must form a spanning tree, the points have the right indegree, no
edge in E is unoriented and all edges in E with exactly one endpoint
in U are oriented towards it. We choose an arbitrary endpoint p of
some edge in E, and orient all mutual edges of the set towards p. We
call this point the leader of this candidate component. For a point
q different from p, if q is on the boundary of the convex hull, its
indegree is now 0. If q is an inner point not in the regular situation,
its indegree is at most 2. If it is in the regular situation, its indegree
is at most 3.

Observe that an unoriented edge after phase 1 is still unoriented af-
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ter phase 3, and thus the unoriented edges in the orientation given
by the orienting algorithm are unlocked. Moreover, the orientation
is admissible. We claim that for each point on the boundary of the
convex hull of indegree 1, and for each inner point of indegree 3
corresponds a candidate component. We know that candidate com-
ponents are prime coarseners, and that their increment is 1, therefore
they are perfect coarseners. By Lemma 5.44, perfect coarseners do
not fix the same pair of edges. Thus a point of degree 4 is actually
part of two coarseners. Also, if a point p in the regular situation
has indegree 3, then only one of the two pairs of edges incident to p
consists of edges in some candidate component. So in this situation
p is the leader for exactly one perfect coarsener. By construction,
it is clear that the points on the boundary of the convex hull with
indegree 1 are exactly those that are leaders. Thus to each leader of
indegree 1 or 3 corresponds a perfect coarsener, and for each leader
of indegree 4 corresponds two perfect coarseners.

5.5.2 Proof of the coarsening Lemma

Observation 5.47. • Let p be in P3,0, and let Ep be the set of
edges incident to p. If the edges in Ep are only locked at p,
then ({p}, Ep) is a perfect coarsener.

• Let p be in P1,2. If the the edges e1 and e2 which are straight-
locked at p are only locked at p, then ({p}, {e1, e2}) is a perfect
coarsener.

• Let p be in Pb
0,1, and let e be the edge straight locked at p. If e

is only locked at p, then ({p}, {e}) is a perfect coarsener.

• Let p be in P0,4, let e1, e2 be a pair of aligned edges incident to
p, and let e3, e4 be the other pair of edges aligned. If e1 and e2
(respectively e3 and e4) are only locked at p, then ({p}, {e1, e2})
(respectively ({p}, {e3, e4})) is a perfect coarsener.
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Lemma 5.48. In a triangulation, no edge is locked at both end-
points.

Proof. If an edge e is locked at both endpoints u, v, then the angle
at u and v after the removal of e is at least π. Therefore, one of the
face adjacent to e is not a triangle.

Lemma 5.49 (Coarsening lemma). Let us consider S be a sub-
division of slack D. Let us consider the refinement S0 of S ob-
tained by skipping all bystanders in S. We consider the orienta-
tion on S0 returned by the orienting algorithm. There exist at least
n− 3−D + 2C0 + C1 perfect coarsenings of S.

Proof. First let us assume D = 0, meaning that S is a triangula-
tion. By Lemma 5.48, no edge is locked at both endpoints. Thus,
by Observation 5.47, for each point in P3,0 ∪P1,2 ∪Pb

0,1 there exists
a perfect coarsening, and for each point in P0,4 there are two per-
fect coarsenings. Thus there are at least C3,0 + C1,2 + 2C0,4 + Cb

0,1

perfect coarsenings obtained by isolating a perfect coarsener. Let us
consider the orientation on S0 given by the orienting algorithm. Ob-
serve that it does nothing in the second and third phases. Thus, we
have simply oriented the edges towards the endpoint where they
are locked, if such exists. By Observation 5.33, this orientation
is admissible. Thus Lemma 5.34 implies that there are at least
N − 3 + 2C0 + C1 − 2C4 − C3 − Cb

1 perfect coarsenings obtained
by removing an unlocked edge. We observe that the points of inde-
gree 4 are exactly those in P0,4. Moreover, the points of indegree
3 are exactly those of P3,0 ∪ P1,2. Finally, the points of indegree 1
lying on the boundary of the convex hull are exactly those in Pb

0,1.
By Observation 5.46, there are also n − N perfect coarsenings ob-
tained by adding a skipped point as a bystander. In total, there are
at least n− 3 + 2C0 + C1 perfect coarsenings, which is the claim.

Now let us prove the statement for 1 < D < n− 3, assuming that it
holds for any D′ < D. Let S be a subdivision of slack D. If there is
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a bystander p0 in S, then the refinement S ′ obtained by skipping p0

is a subdivision on n− 1 points with slS ′ = D− 1. Observe that the
orienting algorithm outputs the same orientation on S and S ′ since
it starts by forgetting about all bystanders anyway. Therefore there
exist (n−1)−3− (D−1)+2C0+C1 = n−3−D+2C0+C1 perfect
coarsenings of S ′. Remark that for each of these perfect coarsenings
in S ′ corresponds a perfect coarsening in S. Therefore there are
n− 3−D + 2C0 + C1 perfect coarsenings in S.

Finally, let us assume that there is no bystander in S. Observe that
in the orientation returned by the orienting algorithm, we have one
perfect coarseners for each leader of indegree 1 or 3, and two perfect
coarseners for the leaders of indegree 4. As these perfect coarseners
are all distinct, we obtain 2C4+C3+C

b
1 perfect coarseners. Moreover,

we have N − 3 + 2C0 + C1 − 2C4 − C3 − Cb
1 perfect coarsenings

obtained by removing an unlocked edge. With the n − N perfect
coarseners consisting of adding a skipped point as a bystander, we
obtain n− 3−D + 2C0 + C1 perfect coarsenings.

5.6 Link of a triangulation

In this section, we define the link of a triangulation. This was already
defined by Wagner and Welzl for point sets in general position [82].
We extend their definition to point configurations in any dimension.
We write the definition in this section instead of Section 5.3 because
all results we state about it are only proven for point sets in the plane.
Before giving the definition of the link, we state the following lemma
about compatible almost-triangulations. Recall that in Lemma 5.25
we showed that for a skipped point p in a triangulation T , the almost-
triangulation that coarsens T where p is a bystander is compatible
with all other almost-triangulations that coarsen T . We show here
a result with a similar flavour.
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Lemma 5.50. Let T be a triangulation, let p and q be two dis-
tinct involved points in T , and let S1, respectively S2, be an almost-
triangulation that coarsens T where p is a bystander, respectively
where q is a bystander. We have that S1 and S2 are compatible.

Proof. If there is no cell of T that contains both p and q, it is easy to
observe that S1 and S2 are compatible. Indeed, flipping from T to
make p a bystander has then no impact on the possibility of flipping
q. If there is a cell that contains both p and q, then there exists a
1-cell B that contains both p and q, because T is a triangulation.
Now observe that either p and q are of degree 4, or one has degree
4 and the other degree 3. In the first case, there are three 1-cells
which contain p or q such that all their points are aligned. In this
case we merge those three 1-cells and remove the other 1-cells that
contain p or q to obtain a subdivision S3 where all 2-cells are of size
3, and one 1-cell contains two bystanders: p and q. In the second
case, by deleting all 1-cells and that contain either p or q we obtain
a subdivision S3 of slack 2 where all 2-cells have size 3 and one 2-cell
contains two bystanders: p and q. We conclude by observing that
S3 coarsens S1 and S2.

5.6.1 Connectivity of the link

Definition 5.51 (Link). For a triangulation T the link of T , de-
noted by LkT , is the edge-weighted graph with vertex set being
the set of all almost-triangulations that coarsen T , and there is an
edge between two almost-triangulations if they are compatible. The
weight of an edge {S1,S2} is |Tref⟨S1,2⟩|−2 (which is between 1 and
3 for point sets in the plane).

In [82], Wagner and Welzl show that for a triangulation T on a
point set with no three points on a line, LkT is (n − 4)-connected.
First, they argue with Lemma 5.49 that LkT has at least n − 3
vertices, and that each has degree at least n − 4 as we ourselves
detail later. To show (n − 4)-connectivity of LkT , they show that
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Figure 5.9: A triangulation T such that the complement of LkT
contains a 4-cycle. Three of the corresponding almost-triangulations
are depicted, the fourth one being symmetric to the second. In
red are points of indegree at most 1 in the orientation given by
the orienting algorithm. In blue are unlocked edges incident to red
points.

under the assumption that no three points are on a line, there is no
4-cycle in the complement of LkT . They conclude with the following
lemma:

Lemma 5.52 ([82]). Let G be a graph with its complement having
no cycle of length 4, meaning that for any sequence (x1, x2, x3, x4) of
four distinct vertices in G, there exists an index i ∈ {1, 2, 3, 4} with
{xi, xi+1mod 4} being an edge in G. Then G is δ-vertex connected,
where δ is the minimum vertex degree in G.

Interestingly, we show that when we remove the assumption that no
three points are on a line, there may be 4-cycles in the complement of
LkT , as depicted in Figure 5.9. We have one triangulation T , with
some vertices p, q and some edges e, e′. The almost-triangulation
where e is missing is denoted by S1, the one where p is a bystander
is denoted by S2, the one where e′ is missing is denoted by S3 and
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the one where {p, q} is missing is denoted by S4. We list here the
important properties of this triangulation. There are two aligned
edges incident to p, one of them being {p, q}. Let us denote by r the
endpoint of e which is not q. Removing e and the edges incident to p
that are not aligned creates an angle larger than π at r. Moreover r
has degree at least 5. The same holds with e′ and the edges incident
to p which are not aligned. This implies that we have S1 ̸ ⋄ S2 and
S2 ̸ ⋄ S3. Removing e and {p, q} creates an angle larger than π at q,
and the same holds with e′ and {p, q}. Thus we have S1 ̸ ⋄ S4 and
S3 ̸ ⋄ S4. We have shown that (S1,S2,S3,S4) is a sequence of almost-
triangulations that form a 4-cycle in the complement of LkT . Thus
we cannot use Lemma 5.52 to show the (n− 4)-connectivity of LkT .
We circumvent it by showing the following lemma.

Lemma 5.53. Let T be a triangulation that contains the situation
depicted in Figure 5.9. Let S1,S2,S3,S4 be almost-triangulations
as defined above. For any i ∈ {1, 2, 3, 4}, in the orientation given
by the orienting algorithm on Si (when forgetting about possible by-
standers), there is an inner point of indegree at most 1.

Proof. Let us consider S2, which is the easiest case. The blue edge
is unlocked, and therefore unoriented. Observe that there must be
at least two other unlocked edges incident to q, and we can even
choose them such that no two are aligned. We claim that every
other edge incident to q is not oriented towards q, and not mutual.
Observe that the angle between any two blue edges is smaller than π.
Therefore to create an angle of at least π, one would need to remove
an unoriented edge. But this never happens during the second phase
of the orienting algorithm, because an unoriented edge cannot be in
a candidate component. Thus q has indegree 0 in the orientation.

Now let us consider S1. The same holds with S3 by symmetry. Let s
denote the endpoint of e′ which is not q. Observe that any coarsening
of S1 where p is a bystander has slack at least 3, because r would
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also be a bystander, and then not all 2-cells can be triangle or even
more points need to be bystanders. Let us denote by t the fourth
neighbour of p. Observe that if t is a bystander in a coarsening of
S1, then so is p. There are at least two unlocked edges incident to s,
as shown in Figure 5.9. Let us denote by u the common neighbour
of q and s depicted on the figure which is not p. Observe that after
the first phase of the orienting algorithm, s has indegree at most 1,
and if it is 1, then it must be from the edge {u, s} or the edge {t, s}.
Now observe that on the side of these two unlocked edges where p
lies, no edge can become mutual. This is because p and t cannot
be in a candidate component, as otherwise the increment would be
larger than 1. Observe that u must be in any candidate component
whose removal would create an angle of at least π at s. Thus only
one edge incident to s can become mutual during the second phase,
if {u, s} was not already oriented towards s after the first phase. If
{t, s} is oriented towards s then no edge can become mutual.

Finally, let us consider S4. We claim that r and s have indegree at
most 1. It is sufficient to argue for r. Observe that there exists a per-
fect coarsener consisting of p and the edges incident to p. Therefore
the orienting algorithm will not change anything to the orientation
of the edges incident to p. For this reason, t cannot be a point in
any candidate component, as the edge {t, p} is oriented towards p.
Moreover q must be incident to at least one unlocked edge. Thus
q cannot be in any candidate component. Let us denote by v the
point adjacent to q and r in Figure 5.9. Observe that if the removal
of the edges of a candidate component creates an angle of at least π
at r, then v is part of this candidate component. This implies that
either the edge {v, r} is oriented towards r after the first phase, or
no edge is oriented towards r after the first phase, and at most one
can become mutual during the second. In both cases r has indegree
at most 1 after the second phase.

Lemma 5.54. Let T be a triangulation, and let (S1,S2,S3,S4) be
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p q p q

Figure 5.10: In both cases, there exist almost-triangulations where
p or q is a bystander. However {p, q} is not the intersection of two 2-
cells of size 4 from two almost-triangulations as defined in the proof
of Lemma 5.54.

a sequence of almost-triangulations coarsening T , such that for any
i ∈ {1, 2, 3, 4}, we have Si ̸ ⋄ Si+1mod 4. In this situation, for any
i ∈ {1, 2, 3, 4}, (S1,S2,S3,S4) is the unique 4-cycle in the comple-
ment of LkT that contains Si. Moreover, in the orientation given
by the orienting algorithm on Si (when forgetting about possible by-
standers), there is an inner point of indegree at most 1.

Proof. Let p be a point that is skipped in T , and let S be the
almost-triangulation identical to T except that p is a bystander. By
Lemma 5.25, S is compatible with every other almost-triangulation
that coarsens T . So let us assume that no almost-triangulation in
{S1,S2,S3,S4} is identical to T except for a skipped point which is
now a bystander. Moreover by Lemma 5.50, if S and S ′ are two tri-
angulations where respectively p and q are bystanders, where p and
q are involved in T , then S and S ′ are compatible. Thus, we assume
that no two consecutive almost-triangulations in (S1,S2,S3,S4) are
of this sort. Without loss of generality, let us assume that S1 and
S3 are identical to T except for one 1-cell B which has disappeared,
and the two 2-cells that had B has a face have now merged.

Let B1, respectively B3, be the 2-cell of size 4 in S1, respectively S3.
Let S ′ be an almost-triangulation that coarsens T , with S1 ̸ ⋄ S ′. If
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Figure 5.11: Four cases which do not satisfy the conditions of
Lemma 5.54. In the two first, {p, q} is not the intersection of two
2-cells of size 4. In the two last, there is no cycle of length 4 in the
complement of LkT .

there is a 2-cell B′ of size 4 in S ′, then observe that B1 ∩ B′ is not
empty. Moreover, the 1-cell of T which is not in B′ must be a face
of B1. Likewise, if p is an involved point in T and a bystander in
S ′, then p is in B1.

We first show that B1∩B3 = {p, q}, for some points p and q. Let us
assume for a contradiction that this is not the case. We show that
there is at most one almost-triangulation S ′ which coarsens T , such
that S ′ ̸ ⋄ S1 and S ′ ̸ ⋄ S3. Therefore one of S2,S4 has to be compatible
with S1 or S3, which is a contradiction. First, if B1 ∩ B3 contains
at most one element we are done. Now, as B1 and B3 are different,
we have that B1 ∩B3 contains three points. Let us denote by e the
edge in T that is removed in S1, and let e′ be the edge in T that is
removed in S3. Only one of the three points in B1 ∩ B3 is adjacent
to both e and e′. Let us denote this point by p. By construction p
has degree at least 4, and is not in the regular situation. Moreover,
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even if some pair of edges incident to p are aligned, e and e′ must
be on the same side of this pair of aligned edges. So there is no
almost-triangulation where p is a bystander. Let q and r denote the
other points in B1 ∩B3. They have degree at least 3. If they are on
the boundary of the convex hull, then there cannot be bystanders in
some almost-triangulation that coarsen T , because no pair of edges
are aligned. Thus, if one of them is a bystander in some almost-
triangulation, say q which is the other endpoint of e, then q has
degree 4 and is incident to another edge aligned with e. In this
situation, it is clear that there is no almost-triangulation where r is
a bystander, as otherwise the 2-cell incident to {q, r} which is not
B1∩B3 would not be a triangle. Moreover, the edge {q, r} cannot be
removed in any almost-triangulation because the angle at q after its
removal would be equal to π. We have shown that there is at most
one almost-triangulation that is incompatible with both S1 and S3.

Now, let us assume B1 ∩ B3 = {p, q}. Observe that {p, q} is a face
of B1 and B3. Indeed, 2-cells are convex, and thus if they share
two elements, those form a 1-cell. We claim that there cannot be
an almost-triangulation that refines T where p is a bystander and
one where q is a bystander. Indeed, if that would be the case, then
not both p and q would be of degree 3 in T and the situation would
be one of the two cases in Figure 5.10. Observe that in both cases
{p, q} cannot be the intersection of the two convex 2-cells B1 and B3.
Finally, we observe that there can be an almost-triangulation that
refines T where p is a bystander and one where {p, q} is missing.
Without loss of generality, we assume that the one where p is a
bystander is S2 and the one where {p, q} is missing is S4. Observe
that if there is an almost-triangulation where {p, q} is missing, then
at most one of p and q can have degree at most 4, and none of them
can be of degree 3. Therefore p has degree 4. Let e denote the edge
removed in B1 and e′ denote the edge removed in B3. We show that
none of the situations depicted in Figure 5.11 can happen. Cases 1)
and 2) are not possible because {p, q} cannot be the intersection of
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the two convex 2-cells B1 and B3. Case 3) is not possible because
there is a coarsening of slack 2 where e is missing and p is a bystander,
thus S1 and S2 would be compatible. In this coarsening, we have one
bystander p, and a 2-cell of size 4, obtained by removing e and one
edge incident to p. There is a second issue in Case 3), as S3 and S2

are compatible too. Indeed removing e′ and the two edges incident
to p which are not aligned gives a coarsening with two bystanders
(p and the endpoint of e′ which is not q) and all 2-cells are of size
3. Thus it has slack 2. If we are not in one of the previous cases,
then removing e and the edges incident to p creates an angle larger
than π at the endpoint which is not q, and the same holds with e′.
Let us denote by r the other endpoint of e. Observe that this point
cannot be of degree 4 as in Case 4), for in this case S1 and S2 would
be compatible. Indeed, by removing the edges incident to r as well
as the other edge incident to p which is not one of the aligned edges,
it creates a coarsening with two bystanders (p and r) and all 2-cells
are of size 3. Hence this coarsening has slack 2. A second issue with
Case 4) is that removing the edges e and {p, q} creates an angle
smaller than π at q. Thus S1 and S4 are also compatible. Finally,
we observe that we must be in the situation depicted in Figure 5.9.
We conclude with Lemma 5.53 that we have for all subdivisions an
inner point with indegree at most 1. It can be easily observed that
for any i ∈ {1, 2, 3, 4}, there is only one 4-cycle in the complement
of LkT that contains Si.

Lemma 5.55. Given three triangulations T1, T2 and T3 and a pair
of almost-triangulations S1 and S2 such that S1 coarsens T1 and T3
and such that S2 coarsens T3 and T2, every S1-S2-path of weight w
in LkT3 induces a T3-avoiding T1-T2-path of length w in the bistel-
lar flip graph. Internally vertex disjoint S1-S2-paths in LkT3 induce
internally vertex disjoint T1-T2-paths in the bistellar flip graph.

Proof. Let us consider a S1-S2-path in LkT3. Let {S,S ′} be an edge
of this path. By assumption, there exists a subdivision of slack 2 S ′′
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that coarsen S and S ′. By Lemma 5.23, there exists a path in the
bistellar flip graph from T3[S] to T3[S ′] of length between 1 and 3,
which does not go through T3. The internal vertices of this path are
the triangulations in Tref⟨S ′′⟩\{T3[S], T3, T3[S ′]}. Those vertices are
at distance 2 from T3 in the bistellar flip graph, and T3[S] and T3[S ′]
are both at distance 1. We concatenate all these paths to obtain one
from T3[S1] = T1 to T3[S2] = T2.

Let us consider a set of internally vertex disjoints S1-S2-path in LkT3.
Let S ′ be an internal vertex of one of these paths. In the correspond-
ing path of the bistellar flip graph, S ′ corresponds to T3[S ′]. This
implies that internal vertices at distance 1 from T3 in the paths on
the bistellar flip graphs are all distinct. It remains to show that ver-
tices at distance 2 are also all distinct. Suppose we have T and T ′,
both at distance 2 from T3, that appear in some paths from T1 to
T2. Thus there exists S and S ′ of slack 2 such that S coarsen T and
T3, and S ′ coarsen T ′ and T3. By Lemma 5.21, Tref⟨S⟩ ∩ Tref⟨S ′⟩
is either equal to Tref⟨S0⟩ for some almost-triangulation S0 or we
have S = S ′. In the first case, Tref⟨S⟩ and Tref⟨S ′⟩ cannot share a
triangulation at distance 2 from T3, thus T and T ′ cannot be the
same. If S = S ′, then they correspond to the same path in LkT3.

Lemma 5.56. For a triangulation T , the link LkT is (n− 4)-vertex
connected.

Proof. First, LkT has at least n−3 vertices because by Lemma 5.49,
there are at least n− 3 almost-triangulation that coarsen T . More-
over, we have observed that no two of these almost-triangulations
leads to the same neighbour of T in the bistellar flip graph.

If S1 is a vertex in LkT , then by Lemma 5.17 S1 has slack 1. Thus
S1 has (n− 4+ 2C0 +C1) perfect coarseners by Lemma 5.49, where
Ci denotes the number of inner point with indegree i in the orienta-
tion given by the orienting algorithm on S1 (when forgetting about
possible bystanders). Each subdivision obtained by isolating such a
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perfect coarsener is equal to S1,2 for some almost-triangulation S2

with S1 ⋄ S2, as implied by Lemma 5.24, and this S1,2 is uniquely
defined by the perfect coarsener. This implies that S1 has minimum
degree at least (n− 4 + 2C0 + C1) in LkT .

Now let us consider two almost-triangulations S1 and S2 that coarsen
T , such that they are at distance 2 in LkT . By Lemma 5.14, to show
that LkT is (n−4)-connected, it is sufficient to show that there exist
(n − 4) internally vertex disjoint S1-S2-paths. First let us assume
that no 4-cycle in the complement of LkT contains S1 and S2. Both
almost-triangulations have at least (n − 4) neighbours in LkT . Let
us denote by ℓ the number of common neighbours they have. If
ℓ ≥ n − 4 we are done. Otherwise there are (n − 4 − ℓ) almost-
triangulations compatible with S1 but not with S2, and (n− 4− ℓ)
almost-triangulations compatible with S2 but not with S1. Let us
consider one almost-triangulation S3 and one almost-triangulation
S4 from each group. We have S1 ̸ ⋄ S2, S3 ̸ ⋄ S2 and S4 ̸ ⋄ S1. As there
is no 4-cycle in the complement of LkT that contains S1 and S2, we
infer S3⋄S4. Thus, we have found ℓ paths of length 2 and (n−4−ℓ)-
paths of length 3 that are pairwise internally vertex disjoint.

Finally let us assume that there exists a 4-cycle in the complement
of LkT that contains S1 and S2. By Lemma 5.54, there exist S3 and
S4 such that (S1,S2,S3,S4) forms a cycle in the complement of LkT ,
and this 4-cycle is the unique one that contains S1 and S2. Moreover,
Lemma 5.54 implies that the orienting algorithm on S1 or S2 returns
an orientation with at least one inner point with indegree at most
1. This implies that S1 and S2 have degree at least (n− 3) in LkT .
Let ℓ denote the number of common neighbours of S1 and S2. If
ℓ ≥ (n− 4) we are done. Otherwise we can argue as above. It might
be that one of the remaining neighbours of S1 is not adjacent to one
of the remaining neighbours of S2, but then those two neighbours
must be S3 and S4. Thus, as there are at least (n− 3− ℓ) remaining
neighbours, we can find in total at least (n − 4) internally vertex
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disjoint S1-S2-paths.

5.6.2 Proof of connectivity of the bistellar flip graph

We prove Theorem 5.12. This last part is exactly as in [82], but we
state it as our notation is quite different from theirs, following the
fact the we allow for several points to be on a line.

Proof of Theorem 5.12. If n is at most 4, we can check easily (n−3)-
connectivity according to the definition of k-vertex connectivity. For
n ≥ 5, we can use Lemma 5.14. There are at least (n− 2) triangula-
tions since the graph is non-empty and each triangulation has degree
at least n−3 by Lemma 5.49. By Lemma 5.14, it is sufficient to show
that for any pair of triangulations T1 and T2 at distance 2 in the bis-
tellar flip graph, there are (n− 3) pairwise internally vertex disjoint
T1-T2-paths. By assumption, there exists T3 such that there is a flip
between T1 and T3, as well as a flip between T3 and T2. Let us denote
by S1 the almost-triangulation corresponding to the flip between T1
and T3, and let S2 be the almost-triangulation corresponding to the
flip between T3 and T2. By Lemma 5.56, there exists (n−4) internally
vertex disjoint paths between T3[S1] and T3[S2] in LkT3. Therefore
Lemma 5.55 implies the existence of (n − 4) internally vertex dis-
joint paths between T1 and T2 in the bistellar flip graph, which avoid
T3. In total, we have found (n − 3) internally vertex disjoint paths
between T1 and T2 in the bistellar flip graph.
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