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Abstract 

A fluid that is composed of anisotropic particles may show birefringence when 

under the effect of shear. This phenomenon is known as shear induced 

birefringence and it is of interest to researchers for two reasons. First, to study the 

rheological behaviour as birefringence is linked to particle alignment. Second, to 

study and visualize fluid flows. The most common way to measure birefringence 

is to send polarized light through the birefringent material and to measure the 

change in polarization. 

This thesis considers five aspects of flow birefringence measurements which were 

also the subject of five corresponding publications. 

First, we give guidance for researchers calibrating a polarization-sensitive 

camera. For this, we define an error that quantifies the quality of the polarization 

measurements and discuss multiple factors influencing the measurement quality. 

We show that sufficiently large f-numbers no longer influence measurement 

quality and argue that lens design and focal length have little influence. 

Second, we describe a two-dimensional birefringence measurement technique 

that is based on a rotatable linear polarizer and a polarization camera. By 

measuring the first three Stokes parameters, the technique determines the relative 

position of the refractive index axes and the relative phase difference. The 

measurement range of the optical retardation is half the wavelength of the 

illumination. 

Third, we present an experimental procedure to measure the optical response of a 

birefringent fluid to shear. The experimental set-up is based on a Taylor-Couette 

flow where transparent end plates at the top and bottom enable optical access. 

Using a polarization camera, the absolute difference between the two main 



refractive indices and the relative position of the refractive index axes with respect 

to the flow direction (commonly referred to as extinction angle) are determined. 

Fourth, we report birefringence measurements in aqueous cellulose nanocrystal 

suspensions. Suspensions with concentrations between 0.7 and 1.3% per weight 

are sheared with shear rates up to 31 1/s and show extinction angles of 23-40° and 

birefringence in the order of 1e-5.  

Fifth, the birefringence response of aqueous cellulose nanocrystal suspensions is 

used to measure shear and strain rates in a two-dimensional fluid flow. The results 

show that the study of shear rates in a two-dimensional shearing flow by means 

of flow birefringence is feasible and therefore encourage the use of aqueous CNC 

suspensions for birefringent flow studies. However, the results indicate that the 

angle between principal strain rate and direction of flow affects particle alignment 

and thus birefringence. 

  



 

Kurzfassung 

Ein Fluid, das aus anisotropen Partikeln zusammengesetzt ist, kann unter dem 

Einfluss von Scherung doppelbrechend werden. Dieses Phänomen ist auch 

bekannt unter dem Namen Strömungsdoppelbrechung und für Forscher aus zwei 

Gründen von Interesse. Zum einen für die Untersuchung von rheologischen 

Eigenschaften, da Strömungsdoppelbrechung im Zusammenhang mit der 

Ausrichtung der Partikel steht. Zum anderen für Visualisierungen und Studien 

von Strömungen. Die gängigste Art Doppelbrechung zu messen ist polarisiertes 

Licht durch das doppelbrechende Material zu schicken und die Änderung der 

Polarisation zu bestimmen.  

Diese Arbeit beschäftigt sich mit fünf Aspekten der Messung von 

Strömungsdoppelbrechung, die auch den Inhalt von fünf entsprechenden 

wissenschaftlichen Veröffentlichungen darstellen. 

Zunächst berichten wir von unseren Erfahrungen mit der Kalibration einer 

polarisationsempfindlichen Kamera. Wir definieren eine Fehlergrösse, die die 

Messqualität der Polarisationsmessungen quantifiziert und untersuchen mithilfe 

der Fehlergrösse verschiedene Einflussfaktoren auf die Messqualität. Wir zeigen, 

dass bei hinreichend grosser F-Zahl diese keinen Einfluss auf die Messqualität 

hat und argumentieren, dass der Einfluss des Objektivs sowie der Brennweite zu 

vernachlässigen ist. 

Als Zweites beschreiben wir eine Messmethodik, um zweidimensional verteilte 

Doppelbrechung zu messen. Die Technik basiert auf einen rotierbaren linearen 

Polarisationsfilter und einer Polarisationskamera. Mit der Kamera werden die 

ersten drei Stokes Parameter gemessen, mit denen die relative Position der beiden 

Hauptbrechungsindex Achsen sowie die relative Phasenverschiebung bestimmt 



werden. Das Verfahren kann optische Verzögerungen von einer halben 

Wellenlänge der Beleuchtung messen.  

Im dritten Teil beschreiben wir ein experimentelles Verfahren, mit dem die 

Strömungsdoppelbrechung einer Flüssigkeit in einer Scherströmung bestimmt 

werden kann. Das Experiment basiert auf einer Taylor-Couette Strömung. 

Transparente Endflächen im Boden und an der Decke ermöglichen einen 

optischen Zugang. Mittels einer Polarisationskamera kann die absolute Differenz 

der beiden Hauptbrechungsindexe sowie die relative Position derer Achsen (auch 

bekannt als Auslöschwinkel) bestimmt werden. 

Im vierten Teil charakterisieren wir die Strömungsdoppelbrechung in wässrigen 

Suspensionen bestehend aus Cellulose Nanokristallen mit Gewichtsprozentsätzen 

von 0.7 bis 1.3%. Scherraten von bis zu 31 1/s ergaben Auslöschwinkel im 

Bereich von 23-40° und Doppelbrechungen in der Grössenordnung von 1e-5. 

Im fünften Teil werden anhand der gemessenen Strömungsdoppelbrechung die 

Scher- und Dehnraten einer zweidimensionalen Strömung ermittelt. Die 

Ergebnisse zeigen, dass das Messen von Scherraten in einer zweidimensionalen 

Scherströmung mittels Strömungsdoppelbrechung zu plausiblen Ergebnissen 

führt. Jedoch deuten die Ergebnisse auch darauf hin, dass der Winkel zwischen 

Dehnungshauptachse und Strömungsrichtung die Partikelausrichtung und somit 

die Strömungsdoppelbrechung beeinflusst. 
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Chapter 1 

1. Introduction 

1.1. Motivation 

When the propagation of light through a material depends on the oscillation 

direction of the light, the material is optically anisotropic; or stated otherwise, the 

material is birefringent. For solid materials, birefringence can be classified into 

two types, intrinsic birefringence and stress induced birefringence (AZoOptics, 

2014). Intrinsic birefringence is caused by an anisotropic structure within the 

material. Crystals such as calcite are well known examples. Stress-induced 

birefringence is caused by mechanical deformation, and this phenomenon is 

known as photoelasticity. Glass and plastics are typical materials which show this 

effect. When assessing these effects, the linear relation between phase difference 

and difference of the two corresponding principal stresses is described by the 

stress-optic law (Ramesh, 2000, p. 9). Prior to the introduction of numerical 

methods, photoelasticity had been routinely used for stress analysis.  

Although the distinction between intrinsic and stress-induced birefringence is 

mainly associated with solids, it similarly applies to fluids. Liquid crystals have 

ordered structures that are (intrinsically) birefringent (Cowling, 2014; Te 

Nijenhuis et al., 2007). Because of their ordered structure liquid crystals are 

sometimes seen as a fourth state of matter, positioned between liquid and solid, 

and possessing fluid-like and solid-like properties (Kent State University, 2022). 

Fluids that show shear (stress) induced birefringence are composed of anisotropic 

particles or macromolecules (Merzkirch, 2001). At rest, these particles or 

macromolecules are randomly oriented due to Brownian motion. When under the 

effect of shear, the particles or macromolecules align in a preferential direction. 

Due to this anisotropic alignment the fluid becomes birefringent. 
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The experimental determination of shear rates and shear stresses in fluid flows is 

a challenge and currently there seems to be no generally preferred approach. If 

velocity measurements (McKeon et al., 2007) are available, the shear rates, being 

velocity derivatives, can be approximated. However, the differentiation of 

experimental data is not always straightforward (Ahnert & Abel, 2007), especially 

when the data is rather noisy. As photoelasticity has proven to be a successful 

method to visualize and study stresses in solids, it is only consequent that 

researchers have tried and are still trying to utilize this measurement technique 

for the study of fluid flows. To date, however, it seems that this application to 

fluid flows cannot match the success of photoelasticity in solids. This is thought 

to be due to several reasons, which we will discuss in section 2.5. The task within 

this thesis is therefore to investigate the potential of shear rate imaging using 

birefringent fluids and to improve the current state of the art. In addition, new 

measurement techniques that are based on a polarization camera are presented, 

and a new type of birefringent fluid based on cellulose nanocrystals is studied. 

1.2. Thesis structure  

The main part of the thesis is composed of five papers. Four of them are journal 

papers that have been published in peer-reviewed journals. The fifth paper is a 

conference paper (with peer-reviewed acceptance) outlining the corresponding 

oral presentation delivered at that conference.  

Prior to the main part of the thesis, we begin with a theory section, in which we 

present most of the physical concepts that the publications consider. The intention 

of this is to give the reader some additional background information. Part of 

section 2.2, “Stokes parameters and Mueller matrices”, is also presented and 

discussed in the papers. However, as Stokes parameters and Mueller matrices are 
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central elements in this thesis, we have introduced these concepts separately and 

comprehensively. 

The titles of the five papers are: 

1. Calibration of a polarization image sensor and investigation of 

influencing factors 

2. Two-dimensional birefringence measurement technique using a 

polarization camera 

3. Optical characterization method for birefringent fluids using a 

polarization camera 

4. Birefringent properties of aqueous cellulose nanocrystal suspensions 

5. Shear rate imaging using a polarization camera and a birefringent 

aqueous cellulose nanocrystal suspension 

They have been arranged thematically and in a logical order (It is worth noting 

that the chronological order of publication is 3,2,1,4,5). The first paper discusses 

the calibration of a polarization camera and investigates the relevant parameters. 

We utilized a polarization camera throughout the entire project, and it is therefore 

reasonable to start by introducing this measurement device. The second paper 

presents a two-dimensional birefringence measurement technique that is based on 

the use of a polarization camera. The technique can be applied to any form of 

birefringence, including both photoelasticity and flow birefringence. The third 

paper uses a slightly modified version of the technique presented in the second 

paper to measure the optical response of a birefringent fluid in a Taylor-Couette 

flow. The fourth paper applies the measurement technique presented in the third 

paper to characterize the optical response to shear of aqueous cellulose 

nanocrystal (CNC) suspensions. These kind of CNC suspensions are a rather new 

type of birefringent fluid. In the fifth paper, the conference paper, we describe the 
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design of a two-dimensional flow channel and how we measure the flow induced 

birefringence with the help of our previously described measurement techniques. 

We use aqueous CNC suspensions similar to the ones we have characterized 

before and compare the optically determined shear rates to numerical simulations.  

We end the thesis by reviewing our work and putting it into an overall context. 

Additionally, new research opportunities that we consider to be potentially 

interesting are described and we propose further work in this field of research. 

 

 

 



Chapter 2 

2. Theory 

2.1. Birefringence explained on a linear retarder 

If a material is a linear retarder, then linear polarized light is able to travel through 

it without a change in the state of polarization, provided that the polarization 

direction is parallel to one of the two main refractive index axes. We note that 

also elliptic retarders exist, where two states of orthogonal elliptic polarization 

can travel through the retarder and have the same state of polarization afterwards 

(Sarma, 1977; Yu, 2016). More information on this can be found in the literature 

(Jones, 1942; P. L. Lin et al., 2008). Fig. 2.1 illustrates birefringence for the 

example of a linear retarder. Linear polarized light at position 1 is represented as 

an electromagnetic wave with angular frequency   and wavenumber 2 .k  =  

Parameter   is the wavelength, t the time and x the spatial position. We define 

0c  as the speed of light in vacuum (and accordingly 0  and 0k ) and 1 2,c c  as 

the speed along the corresponding refractive indices 1,2 0 1,2n c c= . The angular 

wavenumbers along the refractive indices can then be calculated as 

 1,2 1,2 1,2 0
1,2 0

k n n k
c c

 
= =  =  . (2.1) 

A linear retarder has two main refractive indices. We define 1n  to be the fast axis, 

meaning 1 2n n , and describe its position with the angular coordinate  . When 

the linear polarized light from position 1 enters the birefringent medium 

(indicated by the grey background at position 2), the electromagnetic wave can 

be decomposed into two linear polarized components, each travelling along one 

of the main refractive index axes. Each component travels at a different speed and 
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with a different wavenumber. After leaving the birefringent medium of length L, 

the retardation along the refractive index axes can be modelled by additional 

phase offsets 1,2 1,2k L = −  . The phase difference between the two components 

is then given as 

 1 2 2 1 2 1
0 0

2 2
) (( )k L n L Lk n n

 
  

 
= −  =  − =− = , (2.2) 

where  

 2 1n n n = −  (2.3) 

is the difference between the refractive indices. Generally, the two components 

will be out of phase when leaving the birefringent medium and thus the light at 

position 3 will have a different state of polarization. It may be linear, circular or 

elliptical polarized. By knowing the state of polarization at position 1 and 

measuring the state of polarization at position 3, the amount of retardation n L   

can be derived. 
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Fig. 2.1. Linear polarized light travelling through a birefringent material and 

exiting with a changed state of polarization. 

2.2. Stokes parameters and Mueller matrices 

Stokes parameters and Mueller matrices are useful tools when describing 

polarized light and modelling optical elements. Here, we briefly introduce the 

expressions and formulations used in this thesis. For more information, we 

recommend consulting one of these books (Chipman, 1994; Chipman et al., 

2018b; Collett, 2005; Fuller, 1995a). 

Stokes parameters 

The Stokes vector with its four Stokes parameters 0 1 2 3, , ,S S SS  is defined as 

(Chipman, 1994, p. 22.8-22.9) 

 

0 900

0 901

2 45 135

3 R L

I IS

I IS
S

S I I

S I I

+  
  
  = =
   −
  

−    

−

 

, (2.4) 
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where 0 45 90 135, , ,I I I I  are, as marked by the subscripts, the intensities of light 

in directions 0°, 45°, 90°, 135° defined with respect to an arbitrary direction. They 

can be measured by placing a linear polarizer accordingly. The intensity passing 

the polarizer placed in this manner is the desired quantity. Ideally, the equation 

0 0 90 45 135S I I I I= + = +  holds. Intensities ,R LI I  correspond to the right and 

left circular polarization. Additional components such as circular polarizers are 

necessary for their measurement. Generally, the Stokes vector is defined in terms 

of six flux measurements. Choosing intensities such as in Eq. (2.4) is beneficial 

when working with intensity measurements obtained by orientating linear 

polarizers. The Stokes parameters for elliptically polarized light (fully polarized) 

can also be expressed in a fixed (x,y) basis by means of two perpendicular 

electromagnetic waves (increasing phase convention) 

 

0

( )
0

)(

,

,

x

yt

i

i

t kz
x x

kz
y y

E

E

E

E

e

e

 

 

− +

− +

=

=
 (2.5) 

giving (Collett, 2005, p. 13): 

 

2* *

0
* *

1

* *
2 0 0

3 *

2
0 0

2 2
0 0

*
0 0

2 cos

2 sin( )

y y x y

y y x y

y y x

y y x

x x

x x

x x y

x yx

E E

E E

E E

S
E E E E

E ES E E

S E E E E

S
E Ei E EE E





 +  +     
     − −     = =
     +
     
      −    

, (2.6) 

where i is the imaginary number, * the complex conjugate and y x  = −  the 

phase difference. With the notation in Eq. (2.6) the relation between 2S  and 3S  

becomes clearer. However, this expression requires the light to be fully polarized. 
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The degree of polarization (DOP), the degree of linear polarization (DOLP) and 

the degree of circular polarization (DOCP) are defined as 

 

2

0

0

2 2
1 2

2
1

3

0

3

2
2

DOP ,

DOLP ,

DOCP .

S S S

S

S S

S

S

S

+ +
=

+
=

=

 (2.7) 

It is worth noting that 

 2 2 2 2
0 1 2 3S S S S + +  (2.8) 

and hence 0 DOP 1  . Similarly, 0 DOLP 1   but 1 DOCP 1−   . If light is 

only partially polarized (DOP<1), the Stokes vector can be considered as a 

superposition of a fully polarized Stokes vector PS  and an unpolarized Stokes 

vector US  (Chipman, 1994, p. 22.9), 

 

0 0

1

2

3

DOP 0
DOP (1 DOP)

DOP 0

DOP 0

P U

S S

S
S S S

S

S

   
   
   = + = + −
   
   

  

. (2.9) 

The first Stokes parameter 0S  relates to the total intensity. A normalized form is 

therefore given as 

 
0

1
NS S

S
= . (2.10) 
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In this thesis, the linear components of the normalized and fully polarized part of 

the Stokes vector will be used frequently. The expressions 

 
,

,

0

2

1

0
2

1

S DOP

S DOP

P N

P N

S
S

S
S

=


=


 (2.11) 

follow directly from Eq. (2.9) and Eq. (2.10). The polarization ellipse describes 

the oscillation of the electric (and magnetic) field vectors rotating clockwise or 

counter-clockwise. If a is the length of the major axis and b the length of the 

minor, the ellipse can be described by two parameters, the orientation angle of the 

major axis, also known as azimuth, )(0   ; and the ellipticity (0 1)    

(Chipman et al., 2018b, p. 73) 

 2

1

1
arctan

2

S

S


 
=  

 
, (2.12) 

 
2 2 2 2 2

3

3

1 2 1 2

Sb

a S S S S S

 = =

+ + + +
. (2.13) 

Mueller matrices 

Mueller matrices are 4x4 matrices and are used together with Stokes vectors to 

describe optical elements. They transform the Stokes parameters of the incident 

light to the Stokes parameters of the outgoing light 

 out inS M S=  . (2.14) 
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Mueller matrices are associative but not commutative. The Mueller matrix of a 

linear polarizer oriented at   is  
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, (2.15) 

and that of a linear retarder ,( )X    inducing a phase difference   with a fast 

axis orientation ,  
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 (2.16) 

Fig. 2.2 shows a series of the two optical elements represented by the Mueller 

matrices in Eq. (2.15) and Eq. (2.16). Light from a light source is linear polarized 

and then travels through a linear retarder. The situation is similar to the one 

depicted in Fig. 2.1 (only that now the linear polarizer can be actively rotated). If 

we assume that our light source emits unpolarized light of intensity sI , 

corresponding to a Stokes vector 
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, (2.17) 
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the outgoing light can be modelled as 

 , ) )( ( inoutS X P S  =   , (2.18) 

resulting in 
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 (2.19) 

 

Fig. 2.2. Light passing through a linear polarizer )(P   and a linear retarder 

,( )X   .  

The polarizer )(P  blocks half of the light and hence halves the total intensity. No 

reduction comes from the linear retarder, as it merely changes the state of 

polarization. We would like to discuss two special cases. First, if the phase 
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difference of the linear retarder is a multiple of 2  (a so-called quarter wave 

plate), 

 , with 1,2,3,...
2

NN


  ==  (2.20) 

and, furthermore, if the relative position between polarizer and fast axis is a 

multiple of 4 , 

 , with 1,2,3,...
4

N N


  − = =  (2.21) 

the combination of polarizer and quarter wave plate will form a circular polarizer, 

meaning that the resulting light will be fully circular polarized, 3 0.S S=  

The second special case concerns only the relative position between polarizer and 

refractive index axes. If 

 , with 0,1,2,...
2

N N


  − = =  (2.22) 

then the outgoing light will have the state of polarization 
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 (2.23) 

that equals )( inP S  , meaning that the linear retarder has no effect. Eq. (2.22) 

applies when the linear polarization is in line with one of the refractive index axes 

and in this case the light does not split into two components that travel at different 
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velocities but all of the light travels along one axis and hence no birefringence 

occurs.  

 

2.3. Strain and shear rates in a two-dimensional fluid flow 

The symmetric strain rate tensor for a two-dimensional fluid flow is given as 

(Kundu et al., 2012, p. 76) 
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, (2.24) 

with u and v being the velocity components in x and y direction in a cartesian 

coordinate system. If we assume the flow to be incompressible, the divergence of 

the velocity field is zero,  

 0
u v

x y

 
+ =

 
. (2.25) 

Note that stress and strain rates are related. For a Newtonian, incompressible, and 

isotropic fluid the stress tensor is given as (Kundu et al., 2012, p. 113) 

 +
ji

i
ij ij

j

u
p

x x

u
  

 
= −   

 
  

+


. (2.26) 

The maximum strain rate max  can then be expressed as (derived for example 

with the help of Mohr’s circle) 
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22

max
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x y x


    
= + +  

     
. (2.27) 

The maximum strain rate max  is the positive eigenvalue and the maximum strain 

rate axis the corresponding eigenvector of the matrix in Eq. (2.24). Let us now 

define a local set of cartesian coordinates ( ,  ), with   pointing in the direction 

of the flow. The strain rate tensor for an incremental fluid element in the 

coordinate system ( ,  ) will therefore have the form 
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, (2.28) 

with 
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=
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 (2.29) 

being the strain rate in flow direction, and 
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 (2.30) 

the corresponding shear rate. Note that shear rates are defined as 2ij ij =  . 

Equations (2.27) can now be written as 

 22
max

1

4
   = +  . (2.31) 
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Following the idea discussed by Wayland (1960, 1964), we define 0  as the 

angle between the maximum strain rate axis and the direction of flow, 

 0
1

arctan 2
2 2









 
 =  

  

. (2.32) 

This gives 

 max 0cos2 =  , (2.33) 

and 

 max 0
1

2
sin 2  =  . (2.34) 

Figure 2.3 shows different strain rate tensors in Mohr’s circle. We can see that the 

maximum strain rate max  is the radius of the circle. The eigenvectors are located 

at maxii = , 0ij =  and maxii = − , 0ij = . The angle between the position 

of the eigenvectors and the  -axis can be calculated using simple geometrical 

relations. With the help of Mohr’s circle, Eq. (2.32) can easily be understood. 

Therefore, every strain rate tensor in Eq. (2.28) can be transformed into a 

representation with strain rates only, 

 max

max

0

0






 
=  

− 
. (2.35) 

Merely the axes are rotated by angle 0 , which therefore describes the relative 

position between flow direction and strain rate tensor.  
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Fig. 2.3. Mohr’s circles for various two-dimensional strain rate tensors in ( ,  ) 

coordinates. The  -axis is in the direction of flow. (a)-(e) illustrate different 

situations. 

We would now like to look at different strain rate tensors given in the ( ,  ) 

coordinate system, and their corresponding representation in Mohr’s circle. 

Different strain rate tensors describe different flow situations. Situation (a) and 

(b) in Fig. 2.3 describe the flow down the centreline of a symmetrically 

converging and diverging channel, respectively. In (a), the fluid is accelerated in 

the direction of flow whereas it is slowed down in (b). Situation (c) describes a 
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shearing flow where different layers of the fluid move parallel to each other but 

at different velocities. A Taylor-Couette flow and a flow through a straight 

channel (plane Poiseuille flow) are two typical examples. Situations (d) and (e) 

can be seen as a combination of (a) and (c), and (b) and (c), respectively. 

In this thesis we often use the term ‘shear rate’ for any type of flow. Due to the 

assumed incompressibility, Eq. (2.25), we can find a reference coordinate system 

that allows us to transform any strain rate tensor to the form 
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, (2.36) 

with max2 =  being the characteristic shear rate. Every flow situation can 

therefore be expressed as a state of pure shear rate. This quickly becomes clear if 

we look at the Mohr’s circles in Fig. 2.3. All center points are in the origin of the 

, ,( , 2)i i i j  coordinate system. Note that generally the center points can move 

along the ,i i -axis (if it was not for the two-dimensional incompressibility 

condition). If we rotate the reference coordinate system by -45° for situation (a) 

and +45° for situation (b) in Fig. 2.3, the strain rate tensors will take the form 

given in Eq. (2.36). Talking of measuring shear rates therefore comprises all 

(incompressible, two-dimensional) flow fields. 

Alternative definition 

In section 6 we define the maximum strain rate as 
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This definition corresponds to the strain rate magnitude as defined in the utilized 

fluid simulation software, Ansys Fluent (Ansys, 2022). Both definitions, Eq. 

(2.27) as well as Eq. (2.37), can be found in the literature (for example compare 

(Wayland, 1964) with (Peebles & Liu, 1965)). Equation (2.27) corresponds to the 

eigenvalue of the strain rate tensor in Eq. (2.24). However, Eq. (2.37) is more 

practical, as we get max  =  for a shearing flow. 

2.4. Birefringent fluids 

Birefringence in a fluid occurs when elongated and deformable macromolecules 

(polymers) or nonspherical particles align under the effect of shear (Merzkirch, 

2001). The terms shear rate or strain rate may equally be used, as they are only a 

matter of reference coordinate systems (not taking the flow direction into 

account). Merzkirch points out that “theoretically, any fluid consisting of 

nonspherical particles or molecules should show this effect” (Merzkirch, 2001, p. 

181) and cites Boyer et al. (1978), who measured birefringence in air flows with 

high velocity gradients. Boyer et al. (1978) mention two other studies that report 

flow birefringence in gases of linear molecules: polyatomic gases (Hess, 1969), 

and 2CO  and 2N  (Baas, 1971). In the following however, we focus on fluids in 

the liquid state.  

2.4.1. Characteristic properties 

Birefringent fluids are characterised by two properties (Pindera & 

Krishnamurthy, 1978), the amount of birefringence n  and the position of the 

refractive index axes in relation to the direction of flow, commonly described by 

the extinction angle .  (The term extinction angle is mostly used in the context 

of a Taylor-Couette flow. A more general expression is “position” or “orientation 

of the isoclinic”, as for example used by Wayland (1964)). If the Taylor-Couette 
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flow is viewed through two crossed linear polarizers, an isoclinic cross appears, 

indicating the position of the refractive index axes. The relation between n  and 

the flow is also known as the flow-optic relation (Merzkirch, 2001), and it 

characterises the sensitivity of a birefringent fluid to shear. According to Wayland 

(1960, 1964), the birefringence response of suspensions composed of rigid 

particles to a general two-dimensional laminar flow is a function of the maximum 

strain rate max  (compare section 2.3) and the flow state, expressed with angle 

0  (compare section 2.3). We can therefore write 

 max 0

max 0

( ),

( ).

,

,

n n





 

 =  

= 
 (2.38) 

For example, the flow field given in Fig. 2.3 (a) leads to 0 =   regardless of the 

strain rate, whereas a Taylor-Couette flow with shear rate   gives 45 =   for 

0 → , and 0 =   for  →  (Scheraga et al., 1951).  

2.4.2. Applications 

Birefringent fluids are of interest for two reasons. First, they can be used to 

investigate the alignment of particles and macromolecules as well as for optical 

rheometry (Fuller, 1995a; Janeschitz-Kriegl, 1983). Second, they can be utilized 

to visualize and study fluid flows (Pih, 1980). There are several literature 

references available for both areas of application. We cite many of them in the 

papers accordingly. 

Schneider (2013, pp. 34–35) lists certain requirements that a birefringent fluid 

should meet to be suitable for flow measurement studies. They can be briefly 

summarized as: Optical aspects (birefringence and transparency); rheology; 
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availability; and manageability (non-toxic and easy to prepare). Schneider also 

gives an overview of various birefringent fluids (Schneider, 2013, pp. 36–41).  

2.5. Streaming birefringence in fluids vs. photoelasticity in solids 

As mentioned earlier, photoelasticity is an established experimental method for 

analysing stress and strain fields in solids. There are many textbooks available on 

this topic (for example (Föppl & Mönch, 1950; Ramesh, 2000; Wolf, 1961)). 

Current work has been focusing on digital photoelasticity (Ramesh & Sasikumar, 

2020).  

The following assumes the solid to be linear elastic and isotropic. The stress-optic 

law for two-dimensional photoelasticity is given as (Ramesh, 2000, pp. 9–10) 

 1 2
0

)
2

(
L

C


  



= − , (2.39) 

where   is the phase difference, L the path length, 0  the speed of light in 

vacuum, 1 2,   are the principal stresses, and C the stress-optic coefficient. The 

directions of the main refractive indices 1n  and 2n  correspond to the directions 

of  1  and 2 . The stress-optic coefficient C can be interpreted when comparing 

Eq. (2.39) to Eq. (2.2), resulting in 

 1 2( )n C   =  − . (2.40) 

The amount of birefringence n  is thus a linear function of the difference in 

principal stresses. By making use of the constitutive equations, with E being 

Young’s modulus and   Poisson’s ratio, we can write 
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 1 2 1 2( ( )
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
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  
+

− −= . (2.41) 

With this, we can express the stress-optic law by means of strains, giving 

 1 2
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)
2

* (
L

C


 





= −  (2.42) 

and 

 1 2 )* (n C  = − , (2.43) 

where C* is now the strain-optic coefficient with  

 *
1

E
C C


= 

+
. (2.44) 

Concluding, photoelasticity in solids is based on two properties: 

1. The amount of birefringence is linearly dependent on the difference in 

principal strains / stresses. 

2. The directions of 1 2,n n  correspond to the directions of 1 2,   (and to 

1 2,  ) 

In fluid flows, stresses lead to strain rates rather than strains. So ideally, Equation 

(2.43) should translate into 

 1 11 x2 ma) ( )* ( * ( * 2) *C C Cn C     == − = − = −  . (2.45) 

Note the use of the incompressibility 2 1 = −  (two-dimensional), as well as that 

max2 =  is the diameter of Mohr’s circle shown in Fig. 2.3.  
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Equation (2.45) does not generally hold for two reasons. The first reason is that 

the coefficient C* is usually not constant. This can be seen, for example, in section 

4 for Xanthan solutions and in section 6 for aqueous cellulose nanocrystal 

suspensions. Some studies however make certain assumptions such as assuming 

small shear rates in order to apply a linear relationship (for example (Schneider, 

2013; Y.-D. Sun et al., 1999)). The second reason is that the flow state, expressed 

by angle 0 , is thought to affect birefringence. This aspect is discussed in section 

7. 

Furthermore, the directions of 1 2,n n  do not necessarily correspond with the 

directions of 1 2,  . In fact, they only correspond with the directions of 1 2,   for 

situations (a) and (b) depicted in Fig. 2.3 (flow down the centreline of a 

symmetrically converging and diverging channel), and for situation (c) if 0 →  

(extinction angle close to 45 =   for 0 → , compare section 2.4.1).  

2.6. Three-dimensional flow birefringence 

2.6.1. Refractive index tensor 

The dielectric tensor   (note the new definition for   here) for a nonmagnetic 

and transparent material is real and symmetric (Yariv et al., 2007, pp. 30–31), and 

is therefore orthogonally diagonalizable, giving 

 

1

2

3

2

2

2

0

0 0

0 0

0 0

n

n

n

 

 
 
 

=  
 
 
 

, (2.46) 
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where 0  is the vacuum permittivity and 1,n  2 ,n  and 3n  are the principal 

refractive indices. If 1 2 3n ,n n   the material is referred to as a biaxial crystal 

(Hecht, 1998b). The dielectric tensor of a birefringent fluid in a three-dimensional 

flow field will have the form of Eq. (2.46). The directions of the main refractive 

indices do not necessarily coincide with the directions of the principal strain rates.  

2.6.2. Measurement techniques 

There are two common approaches to study three-dimensional flow birefringence, 

the integrated photoelasticity method, and the scattered-light photoelasticity 

method.  

Integrated photoelasticity method: Following their work on integrated 

photoelasticity for axisymmetric flows (H. Aben & Puro, 1993), Aben and Puro 

(1997) published a work titled “Photoelastic tomography for three-dimensional 

flow birefringence studies”. Similar to their previous study, they make the 

assumption of weak birefringence (H. K. Aben et al., 1989), and that the principal 

refractive index axes correspond to the directions of the principal strain rates. This 

approach allows to simplify the relationships so that they can be solved using the 

Radon inversion and hence provides a conceptual guideline for a suitable 

experiment. More information on the topic of integrated photoelasticity can be 

found in the literature, for example in (H. Aben, 1979; H. Aben et al., 2010; H. 

Aben & Guillemet, 1993; H. K. Aben et al., 1992; Ainola & Aben, 2005). To our 

knowledge, integrated photoelasticity so far has only been applied to solids (for 

example by Aben et al. (2005, 2010)) and no three-dimensional flow fields have 

been studied by means of this approach. We suppose that the rather complicated 

experimental design as well the requirements on the birefringent fluid are issues 

that need to be addressed.  
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Scattered-light photoelasticity method: A review of the scattered-light method 

is given by Ascough (1981) and the basic principles of scattered-light 

measurements are summarized by Pih (1980). The technique has been used in 

solids, for example (Kihara, 2004; Swinson et al., 1980), as well as in fluids 

(Ahimaz, 1970; Dupré et al., 2010; Horsmann & Merzkirch, 1981; Krishnamurthy 

& Pindera, 1982; McAfee & Pih, 1971). To increase the scattering effect, 

Schneider et al. (2012) propose adding small droplets of mineral oil to the 

birefringent fluid (milling yellow). Details are given by Schneider (2013).  

2.6.3. Challenges 

The evaluation and utilization of three-dimensional flow birefringence presents a 

challenging task due to several reasons. The experimental design can be difficult 

and has to be in accordance with the measurement technique. Some components 

such as the flow channel must be transparent or at least allow optical access. 

Ideally, these components are non-birefringent and not refractive. The integrated 

photoelasticity method is based on strong assumptions (see previous section), and 

the scattered-light photoelasticity method relies on an additional physical effect 

(light scattering), that has to be taken into account. The relation between strain 

rate tensor and dielectric tensor is most likely not straightforward. We discussed 

in section 2.3 the two-dimensional case and argued that the flow state affects this 

relation (see Eq. (2.38)). As a consequence, the strain rate tensor cannot simply 

be derived from the refractive index tensor and hence measuring the refractive 

index tensor does not automatically lead to reliable strain rates.  
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3. Calibration of a polarization image sensor and investigation 

of influencing factors 
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Abstract 

Polarization measurements conducted with a polarization camera using the Sony 

IMX 250 MZR polarization image sensor are assessed with the super-pixel 

calibration technique and a simple test setup. We define an error that quantifies 

the quality of the polarization measurements. Multiple factors influencing the 

measurement quality of the polarization camera are investigated and discussed. 

We demonstrate that polarization measurements are generally consistent 

throughout the sensor if not corrupted by large chief ray angles or large angles of 

incidence. The central 600 x 400 pixels were analyzed and it is shown that 

sufficiently large f-numbers no longer influence the measurement quality. We 

also argue that lens design and focal length have little influence on these central 

pixels. The findings of this study provide useful guidance for researchers using 

such a polarization image sensor. 

3.1. Introduction 

Polarization refers to the geometric orientation of a transverse electromagnetic 

wave, and the Stokes parameters can be used to describe the state of polarization. 

The corresponding Stokes vector S  is defined as (Chipman, 1994) 
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, (3.1) 

wherein 0 45 90 135,, ,I II I  represent the intensities of the light in the directions 0°, 

45°, 90°, 135°, as indicated by their subscripts. They can be measured by 
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orientating a linear polarizer accordingly. The intensities ,R LI I  correspond to the 

right and left circular polarization and their measurement requires additional 

components such as circular polarizers. Stokes parameters are hence defined by 

means of intensities and their differences and can therefore describe not only fully 

polarized light but non-polarized and partially polarized light as well. With known 

Stokes vector, the degree of polarization and its orientation can be calculated. 

Commercially available polarization image sensors such as the Sony IMX 250 

MZR sensor (Sony Semiconductor Solutions Corporation, 2022) apply a 

Polarizer Filter Array (PFA) as a division-of-focal-plane polarimeter. This 

constitutes a four-directional polarizer. The four linear polarizers with orientation 

axes 0°, 45°, 90° and 135° are arranged in a specific spatial pattern, as indicated 

in Fig. 3.1. Each linear polarizer is covered by an on-chip micro-lens, and the 

passing light intensity is captured by individual sensor pixels. A set of four 

neighboring pixels, each with different polarizer orientations, forms what is 

known as a super-pixel (Powell & Gruev, 2013). With the definition in Eq. (1), 

each super-pixel can measure the first three Stokes parameters 0 1 2, ,S S S . The 

fourth Stokes parameter 3S  requires knowledge of the rotational direction of the 

light and therefore cannot be measured with linear polarizers alone. To achieve a 

full Stokes imaging polarimeter, different approaches have been proposed by 

researchers (Li et al., 2020, 2021; Otani, 2021; Shibata et al., 2019; Vedel et al., 

2011). Polarization image sensors applied in polarization cameras measure Stokes 

parameters with a resolution defined by the corresponding super-pixels. These 

types of cameras are being more frequently used in various applications (Iwata et 

al., 2019; Lane et al., 2021a, 2021b; Liu et al., 2020; Oba & Inoue, 2016; Sattar 

et al., 2020; Wolff, 1995) because of their ability to measure four different 

polarization directions with a single snapshot. For example, with the theory of 
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(Onuma & Otani, 2014), a polarization camera can measure two-dimensional 

birefringence with a single exposure. As polarization imaging systems are of 

interest in various applications (Ferraton et al., 2009; S.-S. Lin et al., 2006; Morel 

et al., 2006; Puttonen et al., 2009; Schechner et al., 2003; Shwartz et al., 2006; 

Tominaga & Kimachi, 2008; Treibitz & Schechner, 2009; Tyo et al., 2006), the 

increased availability of polarization cameras is thought to promote the use of 

such systems.   

 

Fig. 3.1. Structure of the Sony polarization image sensor. Figure adapted from 

(Sony Semiconductor Solutions Corporation, 2022). 

Due to the spatial arrangement, polarization measurements conducted with a 

polarization camera suffer from sparsity, meaning that each single-pixel senses 

only one polarization direction. The resulting field-of-view errors can be 
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corrected (Ratliff et al., 2009; Tyo et al., 2009). Besides these and general digital 

imaging errors such as fixed pattern noise and photon response nonuniformity 

(Chen et al., 2015) that occur during a sensor readout, the PFA introduces a new 

type of error due to imperfections in the polarization filters. Each polarization 

filter will have slightly different optical properties which affect transmission, 

orientation and the extinction ratio due to micro-polarizer non-uniformities and 

orientation misalignments. Various calibration techniques have been presented 

and summarized by Giménez et al. in (Gimenez et al., 2020; Giménez et al., 

2019), such as single-pixel calibration (Hagen et al., 2019; Powell & Gruev, 

2013), super-pixel calibration (Myhre et al., 2012; Powell & Gruev, 2013), 

adjacent super-pixel calibration (Chen et al., 2015), average analysis matrix 

calibration (Zhang et al., 2016) and installation calibration (Han et al., 2017). It 

was found that the relatively simple super-pixel method performs well and the 

more advanced approaches reportedly bring no significant advantages. Regarding 

the training data, Giménez et al. (Gimenez et al., 2020) recommend applying at 

least four different polarization angles and two different dynamic ranges. It was 

pointed out that the gap between PFA and sensor causes measurement errors that 

depend on the focal length and the f-number (Myhre et al., 2012). Therefore, a 

camera ought to be recalibrated when the focal length or the f-number are 

changed, as a decrease of the focal length or the f-number is said to decrease 

performance. York and Gruev (2012) arrived at a similar conclusion regarding 

the divergence of the light. To counteract this effect, the Sony IMX 250 MZR 

sensor places the PFA below the on-chip micro-lenses, reducing the gap between 

the PFA and the photo diodes. This is thought to increase performance of the 

polarization filtering and decrease calibration sensitivity on the focal ratio. In 

general, it would be convenient if one calibration were to be valid for all super-

pixels, i.e. that super-pixel performance does not differ significantly within the 
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sensor. The intention of this study is therefore to present a practical optical setup 

for calibration; study any differences in the super-pixels; propose a definition of 

a measurement error that quantifies the polarization measurement quality and 

discuss other relevant aspects such as pixel position within the sensor, f-number 

and camera lens dependencies. This is done using a specific monochrome 

polarization camera utilizing the Sony IMX 250 polarization image sensor. 

3.2. Material and methods 

3.2.1. Optical setup 

The optical setup used in this study is depicted in Fig. 3.2. A 150W EKE light 

bulb in a fiber optic illuminator with an IR blocking glass (Transmission >90% 

@ 400-690nm; Edmund Optics Inc #64-457) was used as the light source. Two 

color filters were applied. We generated blue-green light with a bandpass filter 

(CWL 493nm, FWHM 120nm; Edmund Optics Inc #46-051) and red light with a 

longpass filter (Cut-Off 620nm; Edmund Optics Inc #66-055). A broadband 

hybrid diffuser (200x200mm, Edmund Optics Inc #36-619) was used as a target 

on which the lenses were focused. A rotatable linear polarizer (Techspec Glass 

polarizer 50.8mm; Edmund Optics Inc #66-183) in a continuous manual rotation 

mount (Thorlabs Part RSP2/M) with an extinction ratio of 10,000:1 was placed 

directly in front of the lens. The camera was a monochrome polarization camera 

(Phoenix PHX050S-P, Lucid Vision Labs (LUCID Vision Labs, 2022)) 

containing the Sony IMX 250 MZR sensor (Sony Semiconductor Solutions 

Corporation, 2022). The sensor size is 11.1mm and the resolution of the camera 

is 2448 x 2048 pixels with a pixel size of 3.45 x 3.45 micrometer. This gives a 

spatial resolution of 1224 x 1024 (1.25 MP) super-pixels (compare Fig. 3.1).  
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Fig. 3.2. Optical setup consisting of a rotatable linear polarizer and a polarization 

camera with a mounted lens, focused at an optical diffuser illuminated by color 

filtered light. 

The various lenses that were investigated are summarized in Table 3.1. For each 

lens, the camera was positioned with the stated object distance to the diffuser and 

the focus adjusted accordingly. All available focal ratios up to a ratio of 22 were 

tested. The lenses chosen are commonly used types and were chosen to represent 

a sample within the wide spectrum of available lenses. 

Table 3.1. Applied lenses and tested focal lengths, f-numbers and object 

distances. 

Lens Focal length 

(mm) 

f-numbers Object 

Distance (cm) 

Nikon Micro-Nikkor 

105mm 1:2.8 

105 2.8-22 60 

Nikon Micro-Nikkor 

60mm 1:2.8 

60 2.8-22 50 

Nikon Nikkor 35-70mm 

1:3.3-4.5 

35, 70 3.3-22, 4.5-22 50 
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Nikon Nikkor 85mm 

1:1.4 

85 1.4-16 85 

Schneider Xenon 25mm 

f/0.95 

25 0.95-11 40 

Sill TZM 1260/0.31 - 2.8-16 19 

Pentax 8.5mm 1:1.5 8.5 1.5-16 20 

Pentax 12.5mm 1:1.8 12.5 1.8-16 30 

 

3.2.2. Calibration Procedure 

The polarization camera was assessed by implementing the super-pixel 

calibration technique. The concept of this method is that the information from all 

four individual pixels within one super-pixel is considered. Derived quantities 

from the measured intensities such as degree of linear polarization and angle of 

linear polarization are more precise than those achieved by use of a single-pixel 

calibration approach. The calibration function 

 ( ) ( )Cal I G I d=  −  (3.2) 

consists of a matrix G , referred to as gain correction, the measured intensity 

vector  0 45 90 135
T

I I I I I=  and a vector  0 45 90 135
T

d d d d d= , 

which corrects for sensor dark noise. Equation (3.2) is well established in the 

literature (Powell & Gruev, 2013). However, some studies neglect the dark noise 

parameter d  (Myhre et al., 2012). If the training data has to be considered as only 

partially polarized, meaning that the degree of polarization (DOP), defined as 
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is below 1, i.e. DOP 1 , the Stokes vector should be considered as a 

superposition of a fully polarized Stokes vector PS  and an unpolarized Stokes 

vector US (Chipman, 1994) 
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 (3.4) 

In the case of purely linear polarization, the fourth Stokes parameter 3S  is equal 

to zero, enabling the measurement of the DOP with a polarization camera. 

Following this approach, unpolarized light equally distributed over the 0°, 45°, 

90°, 135° pixels can be treated without the necessity to add it to the parameter d

. The intensity values corresponding to the unpolarized Stokes vector US  are to 

be subtracted prior to the calibration. In this study, it can be assumed that the 

training data is fully polarized (DOP=1), as the linear polarizer was placed 

directly in front of the lens.  

The imaging model that transforms the incoming Stokes vector into the measured 

intensities I  is modeled as 

 I AS d= + . (3.5) 

The ideal transfer function A  is 
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The gain correction matrix for the calibration function of a super-pixel is 

calculated as: 

 
idealG A A

+
=  , (3.7) 

where A
+

 is the pseudo-inverse of the measured transfer function A . This 

approach calibrates the measured intensities to idealI , so that they correspond to 

an ideal transfer function idealA  

 ( ) ( ) ( ) idealideal idealCal I G I d A A AS d d A S I
+

= − = + − = = . (3.8) 

For each calibration, training data for six different (linear) polarization angles {0°, 

30°, 60°, 90°, 120°, 150°} at each of the three levels of dynamic range {50%, 

70%, 90%} are acquired. This is considered to provide sufficient training data for 

the calibration (Gimenez et al., 2020). For each angle and at each dynamic range 

level, 10 images were taken and averaged. This results in a total of 180 images 

per calibration. The different dynamic range levels were obtained by varying the 

set exposure time. The images were taken at 12-bit resolution and without 

additional electronic gain (0 dB). For each lens, each f-number, wavelength and 

distance setting, the exposure time was adjusted so that the desired dynamic 

ranges were obtained. We use the normalized Stokes vector definition: 

 
0 0 45 90 135

1 2
NS S S

S I II I+
= =

+ +
, (3.9) 
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and normalize intensity vector and dark noise vector accordingly 
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and 
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so that we can rewrite Eq. (3.5) as: 

 N N NI d AS− = . (3.12) 

The rotatable linear polarizer was aligned to the 0° direction of the polarization 

camera. However, as the manual arrangement with its 2° increment scale could 

introduce alignment errors, a misalignment correction factor   is introduced. 

The normalized Stokes vector of linearly polarized light with polarization angle 

  can be calculated with Mueller matrices. Together with the misalignment 

correction factor  , this leads to 
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The misalignment correction factor   is estimated in an optimization routine 

by fitting the measured Stokes parameters 1 )(
N

S   and 2 )(
N

S   to the expected 

distributions in Eq. (3.13). For known ,N NI d and NS , the matrix A  in Eq. 

(3.12) is estimated by a second optimization routine with starting point idealA . 

For the fitting of Eqs. (3.12) and (3.13), all three dynamic range levels were 

considered. We propose a relative error as the difference between measured 

normalized intensity vector ,N linearI  and calibrated (ideal) normalized intensity 

vector , ,N linear idealI  in relation to the latter. By making use of the compatibility 

between Euclidean and Frobenius norm, indicated with 
2

 and 
F

, we obtain 
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 (3.14) 

For the equation above, it is important to note that the Euclidean norm of the 

normalized linear Stokes vector in Eq. (3.13) is 2 . We define the result of Eq. 

(3.14) as our error estimation Err 

 
2

:
3

ideal F
Err A A= − . (3.15) 

It will therefore serve as a parameter that quantifies the amount of required 

calibration and the measurement error of a polarization camera when used 
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uncalibrated. The relative error Err is based on linear polarized light with DOP=1. 

The absolute measurement error ,
2

N N idealI I−  for partially polarized or 

unpolarized light is smaller, due to the smaller Euclidean norm of the 

corresponding Stokes vector (compare Eq. (3.3)) 

 
2 2 2 2 2 2 2

10 1 2 3 0 0 0
2 2

( ) 2 DOPS S SS S S DOP S S S == = +   + =+ + .

 (3.16) 

In conclusion, the measurement error of a polarization camera is maximum when 

measuring completely linear polarized light defined with DOP=1 and

2 2
0 1 2S S S= + . As mentioned in section 3.1, a polarization camera is not able to 

measure circular polarized light and thus 3 0S =  is assumed here.  

3.2.3. Image Analysis 

For the analysis in section 3.3.3, a region of interest of 600 x 400 pixels in the 

center of the sensor was selected. The same pixels were investigated in each 

measurement. This gives 300 x 200 analyzed super-pixels and hence 60,000 

solutions of A  for Eq. (3.12). We limited the amount of analyzed pixels for two 

reasons: first, due to the large number of required optimization routines and the 

consequent computational cost which would result if all 1224 x 1024 super-pixels 

are considered for every lens assessment. Secondly due to potential distortions 

related to geometrical optics (Hecht, 1998a; Theuwissen, 2011). The chief ray 

angle, the angle between the principle ray and the optical axis, is a function of the 

distance between exit pupil (relevant aperture seen from the image plane) and 

sensor and the pixel position on the sensor. If the distance between exit pupil and 

sensor is small, the chief ray angle for the pixels in the periphery of the sensor 
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might cause the rays to be not appropriately focused onto the corresponding 

photodiodes. This can cause pixel vignetting and cross-talk. Pixels in the center 

of the sensor are illuminated by principal rays that are largely parallel to the 

optical axis and hence the microlenses are able to focus the light correctly to the 

photodiodes. By choosing the region in the center of the sensor we try to avoid 

corruption from large chief ray angles. 

Light from the exit pupil entering a microlens is shaped like a cone, with the 

principle ray being in the center. The half-angle   of the cone is the angle at 

which the marginal ray enters the microlens. This angle can be described by the 

numerical aperture. Increasing the f-number decreases this angle, as the rays that 

remain able to enter the microlens become increasingly parallel to each other. 

Decreasing the f-number by opening the aperture enables more light to reach the 

microlens by widening the light cone. This implies that the additional rays enter 

the microlens at an increased angle. Very small f-numbers lead to rays with large 

angles of incidence that may not be correctly focused on to the photodiode. 

Moreover, large angles of incidence reduce the polarization efficiency of the PFA 

due to the dependence of polarizers on the angle of incidence (Chipman et al., 

2018a).  

In section 3.3.2 the individual super-pixels are studied and we evaluate the 

uniformity of the polarization measurement across the sensor. Therefore, 

potential corruption from large chief ray angles and from marginal rays with large 

angles of incidence   is avoided as far as practically possible. We conducted 

measurements with the Nikon Micro-Nikkor 105mm 1:2.8 lens and set the f-

number to 22. This gives marginal rays with a small incidence angle of about 

1sin [1 (2 22)] 1.3 −    . The distance between exit pupil and sensor is lens 
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type dependent, but a lens with a large focal length usually comes with a larger 

exit pupil distance than a lens with a small focal length. 

3.3. Results and Discussion 

3.3.1. Effect of Dark Noise 

Figure 3.3 shows the distribution of the dark noise pixel counts (12-bit) for an 

exposure time of one second. The image was acquired with a lid covering the 

camera to block the surrounding light. The pixels are sorted according to their 

position within the polarization filter array: 0°, 45°, 90°, 135°. We can see that 

the dark noise pixel count values (12-bit) are small with respect to the available 

gray levels (4096). There seems to be a slight difference between the 0°-135° 

pixels and the 45°-90° pixels. The 45°-90° pixels, which are on the same 

horizontal sensor row, perform slightly better than their counterparts. If the 

measured intensities can be kept significantly large ( I d ), the overall 

influence of the dark noise should be negligible, as the normalized vector in Eq. 

(3.12) will be close to zero due to Eq. (3.11): 0Nd → . We propose that it is 

feasible not to model the dark noise via vector 𝑑, provided that the measured 

intensity values are sufficiently large compared to the dark noise. In the following 

section 3.3.2 and 3.3.3, we will therefore neglect the impact of the dark noise and 

do not consider its modeling, i.e., by setting 0d = . 
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Fig. 3.3. Histogram of the pixel counts (12-bit) for an exposure time of one 

second. 

3.3.2. Consistency of the 1224 x 1024 super-pixels 

The analyzed images in this section were taken with a Nikon Micro-Nikkor 

105mm 1:2.8. The settings were f/22 and exposure times of 1440ms, 1920ms and 

2400ms were used to measure at three dynamic ranges. As discussed in section 

3.2.3, the large focal length of 105mm is chosen to minimize distortion from large 

chief ray angles, and the high f-number leads to rays that are largely parallel to 

each other. The blue-green bandpass filter was applied, limiting the wavelengths 

to a range of 413-573 nm. Each super-pixel was assessed by applying Eq. (3.12) 

and Eq. (3.13), and the relative error Err was calculated using Eq. (3.15). Mean 

and standard deviation of the 1224 x 1024 correction factors   in Eq. (3.13) 

are 0.26° and 0.09°, respectively. Figure 3.4 (a) shows measured and calibrated 

data for an exemplary super-pixel. Figure 3.4 (b) depicts all 1224 x 1024 super-

pixel errors Err. The overall mean is 0.024 with a standard deviation (Std) of 

0.006. Most super-pixels produce errors below 4%. The mean of the fitted transfer 

functions A  is 
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with a standard deviation of: 
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Figure 3.4 (c) shows the relative error Err for all analyzed 1224 x 1024 super-

pixels. No influence of the sensor position can be identified. The “stripes” in the 

image are thought to be caused by the column-parallel readout of the CMOS 

sensor. We conclude that super-pixel polarization measurements are generally 

consistent across the sensor. Due to the small standard deviations in Eq. (3.18) 

(one order of magnitude smaller) we also conclude that all super-pixels perform 

similarly, and hence the mean of the transfer matrix A  is a valid estimate for all 

super-pixels. 
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Fig. 3.4. Super-pixel assessment: (a) Measured vs. calibrated data for a single 

super-pixel. (b) Histogram of the relative error Err for all super-pixels. Overall 

mean: 0.024 and standard deviation: 0.006. (c) Variation of the relative error Err 

for all 1224 x 1024 super-pixels. Lens: Nikon Micro-Nikkor 105mm 1:2.8 with 

f/22. Wavelength: 413-573 nm. 

3.3.3. Influence of Focal Ratio and Choice of Lens 

The results described in this section have been obtained by analyzing the images 

in the way described in section 3.2.3. For the reasons given, a region of 600 x 400 

pixels in the center of the sensor was selected. No dark noise effect was taken into 

account. For the lenses summarized in Table 3.1, all available f-numbers up to 

f/22 have been tested by changing the aperture. The results obtained for the 

Schneider Xenon 25mm f/0.95 lens and with red light are shown in Fig. 3.5 (a). 
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All relative errors Err of the 300 x 200 super-pixels are plotted as a function of 

the f-number. For f/0.95, the relative errors are between 9.6-12.3% and for f/11 

between 2-5% (except for two outliers). Differences within the super-pixels are 

significantly smaller compared to the variations caused by changing the aperture. 

Mean values of the transfer functions A  for the f/0.95 configuration are 
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with standard deviations of 
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The standard deviations in Eq. (3.20) are small, indicating similar performance of 

the superpixels across the sensor area and supporting the conclusion of section 

3.3.2. Looking at Fig. 3.5 (b) we can see that the measurements at position 2 (

2 = , polarization parallel to 90I ) are less accurate compared to those at 

position 1 ( 0 = , polarization parallel to 0I ).  It seems, that the values for 1N
S

are slightly too high at position 2, indicating that the intensity measurements of 

the 0I  pixels are either too high or that the 90I  measurements are too low. The 

results for 2N
S  do not show this mismatch, indicating that the 45I  and 135I  

pixels perform similarly. However, mismatching measurements for position 1 and 

2 were observed at low f-numbers and not at higher f-numbers. Besides 
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comparing Fig. 3.5 (b) with Fig. 3.4 (a), measurement positions 1 and 2 can also 

be studied by means of entries 11 12 31 32, , ,A A A A  in Eqs. (3.19) and (3.17).   

 

Fig. 3.5. Measurement results for the Schneider Xenon 25mm f/0.95 lens. (a) Box 

plots of the relative error Err for the 300 x 200 analyzed super-pixels plotted as 

function of the f-number. (b) Measured vs. calibrated data for a single super-pixel 

with Err=10.8% taken with f/0.95. Measurements at position 1 ( 0 = ) are more 

accurate than at position 2 ( 2 = ). 

The results for all lenses are shown in Fig. 3.6. The depicted values are the mean 

values for the calculated relative errors Err of the 300 x 200 analyzed super-pixels 

for each test case. We distinguish between blue-green light in Fig. 3.6 (a), and red 

light in Fig. 3.6 (b). Selected full transfer functions A  for some of the results can 

be found in the appendix in Table 3.3-3.5. The overall performance of the blue-

green light measurements is better. This is assumed to be due to a higher 

omnidirectional extinction ratio of the IMX250MZR sensor for wavelengths in 

the blue-green range compared to the longer wavelengths of the red light. Sony 

states an extinction ratio of 330 for a wavelength of 500nm compared to a ratio 

of 130 for a wavelength of 650nm (Sony Semiconductor Solutions Corporation, 

2022). The results for Err are very close for nearly all investigated lenses, 
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indicating good measurement repeatability as well as a lack of focal length 

dependency. The focal length could however have an influence on the pixels in 

the periphery of the sensor due to cross-talk resulting from large chief ray angles. 

Besides, the distance to the objective and hence the focus does not seem to 

influence the results, as both are varied from lens to lens. Although these 

parameters have not been examined individually, the results obtained do not 

indicate any potential dependency. The only results that do not match the others 

are those of the measurements conducted with red light and the Sill TZM 

1260/0.31. It being the only telecentric lens investigated, we assume the particular 

telecentric design to be responsible. However, to clearly identify the cause of the 

deviation and to exclude any potential measurement errors, further investigation 

would be required.  

The influence of the focal ratio on the performance is apparent in Fig. 3.6 (a) and 

(b). In case of the blue-green light, focal ratios below 2.8 perform significantly 

worse. For ratios 2.8 and above, no differences between the lenses can be 

observed, and the results do not improve with increasing focal ratio. The same 

trend can be seen for the red wavelengths, but an increase of the focal ratio up to 

values of 8 seems to constantly improve performance. Focal ratios above 2.8 for 

blue-green light and above 8 for red light seem to have converged to lower limits 

for Err of approximately 2.4% and 2.7%, respectively. We suppose these limits 

are more likely to be linked to the performance of the sensor than to the choice of 

lens. Similar to the consideration referred to in section 3.2.3, we explain the 

inferior accuracy at low f-numbers with ray optics. Estimating the incident angles 

  of the marginal rays with sin =1/(2xf-number) gives an angle of about 32° 

for f/0.95. For these large angles of incidence the polarization efficiency of the 

PFA is reduced (Chipman et al., 2018a). Moreover, f-numbers this low might not 

focus the rays correctly. For the sufficiently large f-numbers stated this effect 
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seems to disappear and any further increase does not bring any noticeable 

improvements, as the transfer functions A  (and consequently the calibration 

functions Eq. (3.2)) for high focal ratios are similar (e.g. Table 3.3: f/8-f/16 and 

Table 3.4: f/2.8-f/11 in the appendix). We also learn that the choice of lens does 

not seem to have an influence on the transfer function, as our tested lenses give 

similar results (see for example Table 3.5 in the appendix). The transfer function 

does however depend on the wavelength (as seen for instance by comparing Table 

3.3: f/8 with Table 3.5). Summarizing, focal ratio and wavelength affect 

polarization measurements and researchers should consider these parameters, 

whereas, since we could not determine any significant differences between the 

tested lenses, their choice of lens is not otherwise constrained. It is important to 

note however, that polarization measurement accuracy in the periphery of the 

sensor might deteriorate due to increased chief ray angles. This is particularly 

important for small focal lengths.  

 

Fig. 3.6. Relative error Err for the tested lenses and focal ratios: (a) blue-green 

light and (b) red light. 
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3.3.4. LCD Monitor Test Case 

A LCD monitor emitting green light was analyzed. The intensities were calibrated 

with Eq. (3.2) using the corresponding transfer matrices for f/0.95 and f/8 (see 

Table 3.4, appendix) and the Stokes parameters calculated with Eq. (3.1). We 

measured the angle of linear polarization (AOLP) using: 

 1 2

1

1
AOLP tan

2

S

S

−=  (3.21) 

and the degree of linear polarization (DOLP) applying Eq. (3.3) with 3 0S = . 

Eight measurements were conducted and all 1224 x 1024 pixels evaluated. Table 

3.2 summarizes the results. We rotated the camera to change the AOLP. The 

images 0 45 90 135,, ,I II I  showed a striped pattern due to the unused red and blue 

LCD pixels. We applied Gaussian filtering to unify the images. A LCD monitor 

emits light with DOLP=100%. A DOLP above 100% is physically not possible 

but calibrated results happen to be above this value. Looking at Table 3.2 it is 

striking that the measurements for an AOLP close to 0° seem to be more accurate 

with f/0.95 than with f/8. It is however important to note that these are only 

exemplary measurements and no general conclusions should be drawn from them. 

The uncalibrated measurements for f/0.95 are more accurate in the 0° direction 

than they are in the 90° direction, which is consistent with Fig. 3.5 (b) and the 

transfer function in Eq. (3.19). The maximum measurement errors in Table 3.2 

are around 8% for f/0.95 and 3% for f/8. This is in line with the results for the 

calculated relative Err plotted in Fig. 3.6 (a). 
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Table 3.2. Measurement results for LCD monitor. Uncalibrated (raw) and 

calibrated data. Standard deviations for AOLPs were <0.5° and <0.7% for the 

DOLPs. Lens: Schneider Xenon 25mm f/0.95. 

 mean AOLP mean DOLP 

f-number raw calibrated Raw calibrated 

0.95 -0.7° -0.7° 98.5% 98.6% 

 42.5° 43.8° 98.3% 99.3% 

 89.4° 89.4° 92.4% 101.3% 

 134.1° 134.7 98.4% 99.5% 

     

8 -0.7° -0.7° 97.4% 99.4% 

 44.0° 44.1° 99.9% 99.4% 

 89.3° 89.3° 97.4% 99.7% 

 134.4° 134.4° 99.7% 99.4% 

 

3.4. Conclusion 

In this paper, the Sony polarization image sensor IMX250MZR was calibrated 

using different lenses and focal ratios and two wavelengths: blue-green (413-

573nm) and red (620-690nm). The sensor has 2448 x 2048 pixels covered by a 

polarization filter array. Four neighboring single-pixels form a super-pixel, 

resulting in 1224 x 1024 available super-pixels. We have defined a parameter that 

quantifies the amount of calibration necessary and thus serves as an indicator for 

the polarization measurement quality. With the help of this parameter we show 

that polarization measurements are consistent for all super-pixels within 

quantifiable variances. Therefore, not every super-pixel has to be calibrated 

individually. We also deduce that dark noise does not significantly corrupt the 

results and hence does not have to be modeled, provided that the measured 
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intensity values are sufficiently large. Various lenses and focal ratios up to 22 

were tested. It was demonstrated that polarization measurements with blue-green 

light are generally more precise than with red, as the sensor’s extinction ratio is 

about three times higher for these shorter wavelengths (Sony Semiconductor 

Solutions Corporation, 2022). Moreover, the choice of lens does not influence the 

polarization measurement quality, but the results indicate that focal ratios below 

2.8 disrupt the measurements. We finally determine that measurements conducted 

with f-numbers of above 2.8 (blue-green light) and 8 (red light) are no longer 

affected by the focal ratio and the upper error in these cases is estimated to be 

below 4%. This is however only valid for the central pixels. For a short focal 

length, a potential measurement deterioration towards the peripheral pixels due 

to an increasing influence of the chief ray angle cannot be excluded. 

3.5. Appendix 

Evaluated transfer functions A  for some of the measurements conducted in 

section 3.3.3. They are given in Table 3.3-3.5 in the form of: 
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Table 3.3. Matrix entries for the transfer functions calculated with a Nikon Nikkor 

85mm 1:1.4 lens. Wavelength: 620-690nm. 

 11a  21a  31a  41a  12a  22a  

f/1.4 1.017 1.003 0.961 1.020 0.957 -0.019 

f/2 1.016 1.001 0.962 1.021 0.957 -0.018 

f/2.8 0.992 1.004 0.990 1.014 0.958 0.000 
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f/4 0.990 1.004 0.993 1.012 0.963 0.002 

f/5.6 0.991 1.008 0.993 1.008 0.968 0.001 

f/8 0.993 1.008 0.991 1.009 0.971 0.000 

f/11 0.993 1.011 0.990 1.006 0.973 0.000 

f/16 0.994 1.009 0.989 1.008 0.974 -0.001 

 32a  42a  13a  23a  33a  43a  

f/1.4 -0.917 -0.022 -0.001 0.961 0.000 -0.961 

f/2 -0.919 -0.020 -0.002 0.962 0.002 -0.962 

f/2.8 -0.958 0.000 -0.002 0.977 0.002 -0.977 

f/4 -0.969 0.003 -0.002 0.983 0.002 -0.983 

f/5.6 -0.972 0.003 -0.001 0.987 0.001 -0.987 

f/8 -0.972 0.001 -0.001 0.989 0.001 -0.989 

f/11 -0.972 0.000 0.000 0.991 0.001 -0.990 

f/16 -0.972 -0.001 0.000 0.992 0.000 -0.991 

 

 

Table 3.4. Matrix entries for the transfer functions calculated with a Schneider 

Xenon 25mm f/0.95 lens. Wavelength: 413-573nm. 

 11a  21a  31a  41a  12a  22a  

f/1.4 1.028 1.015 0.941 1.017 0.985 -0.028 

f/2 1.006 1.016 0.966 1.012 0.981 -0.012 

f/2.8 0.991 1.013 0.984 1.013 0.976 -0.001 

f/4 0.988 1.016 0.986 1.010 0.976 0.001 

f/5.6 0.989 1.014 0.985 1.012 0.978 0.000 

f/8 0.988 1.017 0.986 1.009 0.979 0.000 

f/11 0.989 1.014 0.985 1.012 0.979 0.000 

f/16 0.988 1.017 0.986 1.009 0.978 0.000 
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 32a  42a  13a  23a  33a  43a  

f/1.4 -0.925 -0.033 0.002 0.989 -0.004 -0.987 

f/2 -0.954 -0.015 0.001 0.999 -0.003 -0.997 

f/2.8 -0.974 -0.002 -0.001 1.003 -0.001 -1.001 

f/4 -0.977 0.000 0.000 1.005 -0.002 -1.003 

f/5.6 -0.978 0.000 0.000 1.006 -0.002 -1.003 

f/8 -0.978 -0.001 0.001 1.006 -0.003 -1.004 

f/11 -0.978 -0.001 0.000 1.005 -0.002 -1.003 

f/16 -0.978 -0.001 0.000 1.005 -0.003 -1.003 

 

Table 3.5. Comparison of transfer functions calculated with different lenses. 

Focal ratio: f/8. Wavelength: 413-573nm. 

 
11a  21a  31a  41a  12a  22a  

Nikon Micro-Nikkor 105mm 1:2.8 

f/8 0.988 1.017 0.986 1.009 0.980 -0.001 

 

Nikon Micro-Nikkor 60mm 1:2.8 

f/8 0.988 1.016 0.986 1.010 0.981 0.000 

 

Nikon Nikkor 35-70mm 1:3.3-4.5 with 35mm 

f/8 0.988 1.017 0.986 1.009 0.980 -0.001 

 

Nikon Nikkor 35-70mm 1:3.3-4.5 with 70mm 

f/8 0.988 1.014 0.986 1.012 0.980 0.000 

 

Nikon Nikkor 85mm 1:1.4 

f/8 0.989 1.014 0.985 1.012 0.981 0.000 

 

Schneider Xenon 0.9/25 

f/8 0.989 1.014 0.985 1.012 0.979 0.000 

 

Sill TZM 1260/0.31 

f/8 0.989 1.014 0.986 1.012 0.979 0.000 
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Pentax 8.5mm 1:1.5 

f/8 0.989 1.014 0.985 1.012 0.98 0.000 

 

Pentax 12.5mm 1:1.8 

f/8 0.988 1.016 0.986 1.010 0.981 0.000 

 
32a  42a  13a  23a  33a  43a  

Nikon Micro-Nikkor 105mm 1:2.8 

f/8 -0.979 0.000 0.000 1.002 -0.002 -1.000 

 

Nikon Micro-Nikkor 60mm 1:2.8 

f/8 -0.980 -0.001 0.000 1.007 -0.002 -1.005 

 

Nikon Nikkor 35-70mm 1:3.3-4.5 with 35mm 

f/8 -0.979 0 0.000 1.008 -0.002 -1.006 

 

Nikon Nikkor 35-70mm 1:3.3-4.5 with 70mm 

f/8 -0.979 -0.001 0.000 1.007 -0.002 -1.005 

 

Nikon Nikkor 85mm 1:1.4 

f/8 -0.980 -0.001 0.000 1.007 -0.002 -1.005 

 

Schneider Xenon 0.9/25 

f/8 -0.978 -0.001 0.000 1.005 -0.002 -1.003 

 

Sill TZM 1260/0.31 

f/8 -0.979 0 -0.001 1.003 -0.001 -1.001 

 

Pentax 8.5mm 1:1.5 

f/8 -0.979 -0.001 0.000 1.008 -0.002 -1.006 

 

Pentax 12.5mm 1:1.8 

f/8 -0.980 -0.001 0.000 1.007 -0.002 -1.005 
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Abstract 

A two-dimensional birefringence measurement method is described. In this 

procedure, we send light through a rotatable linear polarizer and subsequently 

through a transparent and birefringent specimen. A polarization camera measures 

the state of linear polarization from which the relative position of the refractive 

index axes and the relative phase difference are determined. The measurement 

range of the phase difference is up to π radians, which corresponds to an optical 

retardation of half the wavelength of the light. The imaging system can measure 

a large sample area within one measurement cycle. Measurement performance is 

demonstrated with a quarter-wave plate and an exemplary test case is shown.   

4.1. Introduction 

The ability to measure birefringence distributions is important for various 

applications. These include the analysis of inner stress by means of photoelasticity 

in optically anisotropic solids composed of transparent materials such as crystals, 

polymers or glasses. Besides these established applications, other potential use 

cases for birefringence imaging techniques are being explored. Examples include 

biomedical research (Boer et al., 1997; de Boer et al., 1998; Walther et al., 2019; 

Yasuno et al., 2002), material inspection systems (Ganapati et al., 2010), 

microfluidics (Yang et al., 2020) and polarization-sensitive optical diffraction 

tomography (Saba et al., 2021). In many applications, a two-dimensional 

birefringence measurement system is desirable. The system requirements are to 

identify the relative retardation and the position of the refractive index axes. 

Several researchers have proposed and discussed such measurement systems. 

Reviews on relevant techniques used in photoelasticity can be found in the 

literature (Ajovalasit et al., 1998, 2015; Ramesh, 2000; Ramesh et al., 2011; 

Ramesh & Ramakrishnan, 2016; Ramesh & Sasikumar, 2020; Solaguren-Beascoa 
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Fernández, 2011). Their utility can also be evaluated in the broader context of 

general two-dimensional birefringence. A common method is the phase shifting 

technique (Onuma & Otani, 2014; Otani, Shimada, & YoSHIZAWA, 1994; 

Otani, Shimada, Yoshizawa, et al., 1994; M. I. Shribak et al., 1999), applied in 

precise and fast 2-D analysis systems. Using circularly polarized light and a 

polarization image sensor, it allows determination of the position of the fast axis 

and phase differences of up to 2  radians (Onuma & Otani, 2014). Stokes vector 

and Mueller matrix polarimetry have been used to characterize materials and 

measure the state of polarization (Azzam, 2016; Hall et al., 2013; Pezzaniti & 

Chipman, 1995). The literature offers several other studies dealing with 

photoelasticity, birefringence and polarimetry, e.g. (Glazer et al., 1996; Mei & 

Oldenbourg, 1994; Nurse, 1997; Oldenbourg & Mei, 1995; Patterson et al., 1997; 

M. I. Shribak & Oldenbourg, 2002; M. Shribak & Oldenbourg, 2003; Zhu et al., 

1999). Approaches differ in experimental design and evaluation techniques. Most 

use rotating optical polarization components or variable retarders and determine 

birefringence by analyzing the resulting changes in light intensity. Technological 

advances in imaging and measurement systems continue to facilitate new 

approaches. The recent introduction of polarization sensitive cameras represents 

such an advancement and they are increasingly used in research studies, e.g. 

(Iwata et al., 2019; Liu et al., 2020; Oba & Inoue, 2016). Currently, most 

techniques are complex, require expensive hardware or are only able to measure 

phase differences of up to 2 , corresponding to a quarter of the applied 

wavelength. This range may be expanded by considering other information, for 

example conducting the measurements with two or more wavelengths (Ajovalasit 

et al., 2015), but the periodic nature of the relative retardation, a fundamental 

challenge to all methods (Patterson et al., 1997), may require the maximum 

measurement range of the phase difference in particular cases. We introduce a 
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measurement system that consists of a single rotatable linear polarizer and a 

polarization camera. The measurement range of the phase difference is up to   

radians (half of the applied wavelength) and the relative position of the refractive 

index axes can be determined. However, fast and slow axis cannot be 

distinguished. The overall idea and concept are based on a previous study (Lane 

et al., 2021b), in which we analyzed birefringence of a fluid in a Taylor-Couette 

flow. There, the circular geometry of the experiment naturally lead to a rotation 

of the sample and thus polarizer and polarization camera could remain at fixed 

positions. The approach described in the present study could be more broadly 

appliable. 

4.2. Theory 

The basic optical measurement setup is shown in Fig. 4.1. Light from a source 

passes a linear polarizer ( )P  . A global coordinate system X-Y is given as a 

reference. The polarizer is rotated by an angle  . A transparent sample ,X   

with an unknown 2-D distribution of the birefringent properties   and   is to be 

examined, where   is the relative phase difference and   the angle of the 

refractive index axis 1n . We define this axis to be the fast ( 1n < 2n ) vibration 

direction of the light. This definition sets   to the range [0, ]. If the optical 

properties are assumed to be constant throughout the thickness of the sample, the 

phase shift   is given by 

 2 n
L

 


  = . (4.1) 
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Here,   is the wavelength of the light, L the thickness of the sample and 

2 1n n n = −  the difference of the refractive indexes. n L   is referred to as 

optical retardation.  

 

Fig. 4.1. Principle Optical setup. 

A polarization camera detects the light which passes through the sample. The 

camera used in this study is based on a division-of-focal-plane polarization image 

sensor (Sony IMX 250 MZR (Sony Semiconductor Solutions Corporation, 

2022)). The basic structure of such a polarization image sensor is shown in Fig. 

4.2.  

Small polarizers are aligned in four defined directions, forming a polarizer filter 

array. The direction depends on the position of the pixel. Arrays of these polarized 

pixel combinations enable the camera to simultaneously measure the intensities 

passing through the specified directions, which we define as 0 45 90 135, , ,I I I I . 

Four neighboring pixels with polarizers oriented at 0°, 45°, 90° and 135° form a 
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so-called super-pixel as depicted in Fig. 4.2. In our setting, direction 0I  is in line 

with the X-axis. A polarization camera introduces errors such as field-of-view 

errors resulting from the spatial arrangement of the polarizer filter array (Ratliff 

et al., 2009) and errors introduced by optical imperfections of the polarizer filter 

array (Gimenez et al., 2020; Powell & Gruev, 2013). Alternatively, instead of the 

polarization camera, a second rotatable linear polarizer mounted in front of a 

monochrome camera could be used. The second polarizer would then be rotated 

to the corresponding positions: 0°, 45°, 90°, 135°. An advantage of such a setup 

would be the mitigation of the errors introduced by a polarization camera and to 

have the opportunity to apply polarizers of the highest possible quality. The 

advantage of the polarization camera, however, is the concurrent measurement of 

the four directions of polarization. 

 

Fig. 4.2. Schematic structure of a division-of-focal-plane polarization image 

sensor. 
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With the definition of the Stokes parameters being 
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, (4.2) 

each super-pixel of the polarization image sensor can measure the first three 

parameters. Parameter 3S  requires information about the rotation direction of the 

light that cannot be directly measured with the polarization camera.  

 

Stokes parameters and Mueller matrices are used to describe the state of 

polarization and its changes, respectively. The following vectors and matrixes 

refer to the fixed X-Y coordinate system and can be found in the literature, for 

example in (Chipman, 1994; Fuller, 1995b). We define inS  as the corresponding 

Stokes vector of an unpolarized light source and )(P   as the Mueller matrix of a 

linear polarizer oriented at  , 
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A linear retarder ,X   inducing a phase shift   with an orientation angle of the 

fast axis   can be expressed as 
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The relation between incident and outgoing Stokes vector is then given by 

 , )( inS X P S  =  . (4.5) 

Using the normalized representation of the Stokes parameters 01NS S S=   (note 

the difference to a regular vector normalization), the expressions for 1N
S and 

2N
S that are independent of the light source intensity are derived, 
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We can see that 

 12
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4N N
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 

    + + =  . (4.7) 

This is in line with the definition of 1N
S  and 2N

S , as their corresponding 

intensities ( 0 90,I I  and 345 1 5,I I ) are rotated by 4 . Due to the range for the 

degree of linear polarization (DOLP), 
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1N
S  and 2N

S must fulfil 

 2 2
1 2

1
N N

S S+  . (4.9) 

The position of the linear polarizer is described by the known angular coordinate 

 . This reduces Eq. (4.6) to two equations with two unknowns ( , ) and two 

measurable parameters ( 1 2,
N N

S S ). For a specific position of the linear polarizer, 

we can therefore derive explicit relations for , , here done for the case 0 = , 
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Figures 4.3 (a), (b) show Eq. (4.6) for the case 0 =  and Fig. 4.3 (e), (f) the 

corresponding inverse relationships from Eqs. (4.10). From Eqs. (4.6) and (4.10) 

and Fig. 4.3 it is clear that the Stokes parameters 1N
S and 2N

S are periodic with 

period 2  in   (the range [ 4− ,0] corresponding to [ 4 , 2 ]). Fig. 4.3 (f) 

shows the orientation angle for all possible combinations of 1N
S  and 2N

S  (with 

2 2
1 2

1
N N

S S+  ). It stays in the range [0, 2 ]. This means that no distinction 

between fast and slow vibration axis can be made, as otherwise the period of   

would have to be   and the range of values [0,  ]. The periodicity of   is 2 . 

When the retardation n L  is a multiple of  , the phase difference   is a 

multiple of 2  and the state of polarization will be linear again, orientated at   

equal to the state and orientation of the linear polarizer )(P  . Both relations in 
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Eq. (4.10) are not defined for 1 1
N

S =  and 2 0
N

S = . Such a Stokes vector can 

be anywhere on an isoclinic or isochromatic (blue dashed lines and black solid 

lines in Fig. 4.3 (a), (b)), with corresponding values for   and  . Looking at Fig. 

4.3 (e) we can see, that  =  applies for a circle defined by 2 2
1 2

1
N N

S S+ = . In 

this case the light beam is fully linear polarized ( 1DOLP = ). Fully linear 

polarization is only possible if retardation n L  is an odd multiple of / 2

(besides the discussed and trivial case of 1 1
N

S =  and 2 0
N

S = ). This means that 

the relative phase between the two oscillating and perpendicular electromagnetic 

vibrations has shifted by an odd multiple of  , the location of maximum (relative) 

phase difference. Relations (4.10) also give insight to the direct measurement 

ranges of   and  . Unless further information is supplied, it remains undefined 

how many periods of retardation have occurred. If the only available information 

is based on 1N
S  and 2N

S , the period number, also known as order, remains 

unclear. Moreover, retardation could also be in the “second half” of the 

corresponding period number, meaning that retardation could be between either 

[0, / 2  ] or [ / 2 ,  ], which corresponds to relative phase differences of [0, 

] and [ , 2 ]. Summarizing, the orientation of the refractive index axes can only 

be measured in the range [0, 2 ], and it is not possible to distinguish between 

fast and slow axis. Phase differences   are measurable in the range [0,  ]. 

However, for any measured (relative) phase difference  , the following 

(absolute) phase differences 
A  are possible: 

 with 0,1,2,3,. .2 .A NN   ==   (4.11) 
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As the relation (4.10) is not defined for the case 21 1, 0
N N

S S= = , we suggest 

multiple measurements at different angles   to determine the optical properties. 

Rotating the linear polarizer by   will lead to distributions of 1 )(
N

S  and 

2 )(
N

S  . Figures 4.3 (c) and 4.3 (d) show distributions for the case 0 = . From 

such distributions, we will be able to clearly identify the optical parameters within 

the discussed ranges. 
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Fig. 4.3. Stokes parameters 1N
S  and 2N

S  in relation to the phase difference   

and angle  . (a) and (b): Eq. (4.6) for the case 0 = . Blue dashed lines indicate 

isoclinics (no change in polarization as linear polarization is in line with refractive 

index axes). Black solid lines indicate isochromatics (retardation being a multiple 

of  ). (c) and (d): Eq. (4.6) for the case 0 = . (e) and (f): Eq. (4.10), being the 

inverse relationships of Eq. (4.6) for the case 0 = . The phase difference   in 
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(e) is not defined for the case 1 1
N

S = . The surface in (f) was created using 

atan2(), the 2-argument arctangent. 

4.3. Material and methods 

4.3.1. Applied materials 

A halogen incandescent lamp was applied as light source and a white optical 

diffusor was placed between the lamp and the linear polarizer to illuminate the 

specimen as evenly as possible. The linear polarizer had an extinction ratio of 

10,000:1 and was manually rotated using a continuous rotation mount (Thorlabs 

#RSP2/M).  The test sample was an achromatic polymer quarter-wave plate 

(inducing a phase difference of 2  rad) with a wavelength range of 450-600nm, 

retardance tolerance of 10nm and diameter 25mm (Edmund Optics Inc., article 

number #88-198). Placed before the specimen was a green bandpass filter (CWL 

526nm, FWHM 53nm; Edmund Optics Inc #46-053). The camera was a 

monochrome polarization camera (Phoenix PHX050S-P from Lucid Vision Labs 

(LUCID Vision Labs, 2022) based on a Sony IMX250MZR CMOS (mono) 

sensor [34]) equipped with a Schneider Xenon 50mm/0.95 lens. The f-number 

was set to f/0.95. The camera resolution is 2448 x 2048 (5 MP) pixels with a pixel 

size of 3.45 x 3.45 micrometer. As indicated in Fig. 4.2, four neighboring single 

pixels, each having a different linear polarizer, form a super-pixel. This leads to 

a spatial resolution for Stokes parameter measurements of 1224 x 1024 (1.25 MP) 

super-pixels. 

4.3.2. Measurement procedure 

The linear polarizer is rotated by changing  . Looking at relations (4.6) and Fig. 

4.3 we see, that besides the periodicities in   and  , the Stokes parameters 1N
S  
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and 2N
S  are also periodic with period   in  . To get full resolution along one 

period of  , the polarizer will hence have to be rotated up to   radians.  

For every polarizer position  , the first three Stokes parameters are measured, 
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Formally, the first Stokes parameter can be derived as 0 0 90 45 135.S I II I+ += =  

We therefore average both measurements. The normalized form results following 

01NS S S=  . Ideally, the degree of polarization (DOP) should equal one: 

DOP 1= .  The DOP is defined as (note the difference to the DOLP): 

 

2 2 2
1 2 3

0

DOP
S SS

S

++
=  (4.13) 

However, the measured Stokes vector will only be partially polarized ( DOP 1

). Noisy unpolarized light intensities arising from the environment and from 

imperfections of the optical components are unavoidable. This is particularly the 

case when a distributed light source instead of a laser is applied, as it is done in 

this study. Partially polarized Stokes vectors can be considered as a superposition 

of a fully polarized Stokes vector PS  and an unpolarized Stokes vector US  

(Chipman, 1994), 
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The normalized representation of the fully polarized part of the Stokes vector 

measured at a polarizer position   can be written as 
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where the DOP is unknown. As we cannot measure 3S , it is simply left out. This 

leads to measurable distributions of 1 1 0) ( ) ( )(
N

S S S  =  and 

2 2 0) ( ) ( )(
N

S S S  = . Due to imperfect alignment of the polarizer camera an 

additional parameter d  was introduced, that corrects for alignment errors. 

Together with the previous three unknowns, this gives two equations, sampled at 

the multiple different points  , with four parameters ( , , DOP, d  ),

 

1

2
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) (cos[2( )] cos[2( )]cos cos[2 2 4 ](1 cos )),

2

DOP
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 (4.16) 
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Rotating the linear polarizer ( )P   and taking images at different positions   

results in measured distributions of 1 )(
N

S   and 2 )(
N

S   . Fitting Eq. (4.16) to 

these measurements gives the parameters , , DOP, d  . This can be 

simultaneously done throughout an area, resulting in a two-dimensional 

birefringence measurement. 

4.3.3. Camera calibration 

The camera was calibrated following the super-pixel calibration described in 

(Gimenez et al., 2020; Powell & Gruev, 2013). Test images for the training data 

were taken at three different intensity values (achieved by varying the exposure 

time) and at ten different polarizer positions ( )P  , each having a step size of 20° 

between them. The training data was acquired using the same optical setup as 

shown in Fig. 4.1 but without a specimen ,X  . At first, aligning imperfections 

between polarizer ( )P   and polarization camera were corrected with d . 

Therefore, the idealized distributions of the Stokes parameters 1 )(
N

S   and 

2 )(
N

S   were fitted to the measurements: 
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 (4.17) 

These equations result when setting 0 =  and DOP = 100% in Eq. (4.16). Fitting 

Eq. (4.17) to the measurements gives d . The resulting distributions [Eq. (4.17)

] (including d ) are then used as training data for the super-pixel calibration, 

which gives a calibration function as follows: 
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 ( ) ( )Cal I G I d=  −  (4.18) 

Here  0 45 90 135
T

I I I I I=  are the measured intensities, d  is the darknoise 

offset and G  the gain correction of the super-pixel. Each analyzed super-pixel 

was calibrated separately. However, variation among the super-pixels was 

negligible and we hence averaged the calibration function over all involved super-

pixels. Figure 4.4 summarizes the calibration. 

 

Fig. 4.4. Nominal, measured and calibrated data for an exemplary measurement 

point with 0.29d = −  . 

4.3.4. Performance tests 

In total we conducted a series of 6 tests. For every test, a region of 200 x 160 

pixels (100 x 80 super-pixels) was analyzed. This gives a sufficient number of 

measurements (8000) without having to consider the computational effort fitting 

Eqs. (4.16). The position of the linear polarizer ( )P   was varied between 0° and 

180°. At every position   one image was taken with the polarization camera. 
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Starting at 0 =   and increasing the angle by one degree for every step gave 181 

evaluated polarizer positions. The intensities 0 45 90 135,, ,I II I  of the analyzed 

pixels were calibrated with Eq. (4.18). Following Eq. (4.12), the normalized 

Stokes parameters 1N
S  and 2N

S  were obtained for every evaluated polarizer 

position. This gives distributions along   for every analyzed super-pixel. Fitting 

Eq. (4.16) to the measurements 1 )(
N

S   and 2 )(
N

S   leads to estimates for 

, , ,DOP d  . Repeating this for every super-pixel generates a two-dimensional 

distribution. Parameter d  was fitted in section 4.3.3 for the camera calibration. 

However, it is fitted again for every measurement, as the results of section 4.3.3 

did not always match the results we achieved when fitting parameter d  

concurrently with Eq. (4.16). One reason for this could be that the quarter-wave 

plate rotates the incident linear polarized light. The second reason is that we 

assume our manual positioning of the polarizer ( )P   to be slightly inconsistent 

from measurement to measurement. 

4.4. Results and discussion 

Figure 4.5 shows results for a test carried out with the quarter-wave plate. The 

results correspond to Test 2 in Table 4.1. Fig. 4.5 (a) shows an example of 

measured and fitted distributions of normalized Stokes parameters 1 )(
N

S   and 

2 )(
N

S   for a super-pixel. The data was fitted with a nonlinear least-squares 

algorithm. Fig. 4.5 (b) shows the variation of   for all measured 100 x 80 super-

pixels. All phase differences are in the range [1.584, 1.609]. In the following 

subsections, we analyze the two-dimensional measurement capability, compare 

the performed tests and discuss the number of polarizer positions ( )P   necessary 
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for satisfactory results. Finally, an exemplary test case is given to demonstrate the 

measurement system.  

 

Fig. 4.5. Exemplary measurement results for a quarter-wave plate (The results 

correspond to Test 2 in Table 4.1): (a) Measured and fitted distributions for one 

super-pixel. (b) Variation of   for the analyzed area of 100 x 80 super-pixels. 

4.4.1. Two-dimensional measurements 

As each super-pixel is evaluated separately, a two-dimensional analysis is 

obtained. Table 4.1 summarizes the results for the six conducted tests. Average 

(av) and standard deviation (std) were calculated for  the analyzed super-pixels. 

Looking at the average values of  , our test scheme for the quarter wave-plate 

becomes obvious: 0°, 10°, 20°, 30° and 40°. Measurements of angle   describe 

the relative position of one of the refractive index axes in the range [0°,90°] 

without distinguishing between slow and fast axis (compare section 4.2). Results 

for Test 2 are depicted in Fig. 4.5. The mean measured phase difference Δ 

throughout the wave plate is 1.597. This is reasonably close to the ideal phase 

difference of 2 1.571   a quarter-wave plate is supposed to induce. The 
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difference of about 0.026 is well within the retardance tolerance of the quarter-

wave plate: 
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The degree of polarization DOP is close to 100%, indicating low ambient light 

influence. However, the conditions of these measurements were similar to the 

conditions of the calibration measurements, where the DOP was set to 100% and 

thus the calibration function will have eliminated most ambient conditions. Rather 

surprising are the results for the correction angle d  of about 2.5°. In Fig. 4.4 

and during the camera calibration, the misalignment between camera and initial 

polarizer position ( 0)P  =  was found to be 0.5°d   . We therefore assume 

that the quarter-wave plate rotates the incident polarized light. Test 5 was 

conducted with strong ambient light. This influenced the degree of polarization 

(DOP) but was found to have little to no effect on the other parameters. Therefore, 

by introducing parameter DOP in relation (4.16) this approach can be applied 

when ambient light is present. 

Table 4.1. Average (av) and standard deviation (std) of the 144 measurement 

points spaced over the two-dimensional area, conducted with (QW) and without 

(-) the quarter-wave plate. 

Test 1 2 3 4 5 6 

Specimen QW QW QW QW QW - 

 av 1.59 1.60 1.60 1.60 1.60 0.04 

std   0.005 0.005 0.005 0.005 0.005 0.04 

 av 0.3° 10.5° 20.2° 30.2° 40.7° - 

std   0.1° 0.1° 0.1° 0.1° 0.1° - 
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DOP av 100% 100% 100% 100% 95% 100% 

std DOP <1% <1% <1% <1% <1% <1% 

d av 1.5° 2.6° 2.2° 3.0° 2.3° 0.2° 

std d  0.2° 0.2° 0.2° 0.2° 0.3° 0.1° 

 

4.4.2. Number of required polarizer positions 

For each test in Table 4.1 we analyzed 181 polarizer positions ( )P   from 0 =   

up to 180 =  . This represents a rather large experimental effort, so this section 

investigates the possibility to decrease the number of polarizer positions. The 

question of how many different positions are necessary to achieve reasonable 

results is studied in Fig. 4.6 using an exemplary super-pixel. The parameters 

, , ,DOP d   were fitted applying only a limited number of the available 

polarizer positions ( )P  . At first, only one position was used. This is similar to 

equations (4.10), which calculate ,  from single values for 21 ,
N N

S S . When 

only one position is considered, no results for the DOP and d  are available, as 

our fitting algorithm requires at least the same number of equations as parameters. 

The DOP is then set to 100% and 0d =  . We analyzed all 180 different 

positions, ranging from 790 1 −=  . The results are shown in Fig. 4.6 and are 

labelled #1. We then plotted the results considering two, three, four, six and nine 

polarizer positions. The angles between the positions are shown in the x-axis. By 

assuming periodic continuation of the polarizer positions from 0 −  to 2 −  

(meaning position +x180° =  is equal to position x = ), we analyzed all 180 

possible combinations. For example, in the case of 3 positions, we considered 
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positions 1 2 3,, 6 600 2x x x  + = + = =   and varied x from 0°-179°. The 

starting position for the fitting algorithm was 0  = , 0 0 =  , 0 %DOP 100= , 

0d =  .   

 

Fig. 4.6. Optimization results for one super-pixel. The number # on the x-axis 

corresponds to the number of polarizer positions considered in the fitting 

algorithm and the angle [°] to the relative difference of the positions: (a) Phase 

difference and (b) Relative position of the refractive index axis. 

Figure 4.6 indicates that configurations #1 and #2-90° are not suitable for 

birefringence measurements. Acceptable results are available for #2-45°, #3-60° 

and thereafter. However, compared with Table 4.1, accuracy in the area close to 

0 =  is decreased. The general procedure is relatable to a phase-stepping method 

for a plane polariscope composed of two rotatable linear polarizers. One polarizes 

the incident light (Polarizer: orientation  ) and the other analyzes the transmitted 

light (Analyzer). The polarization camera herby concurrently acts as four analyzer 

positions (0°, 45°, 90°, 135°). The #2-45° configuration can be interpreted as a 

phase-stepping method that gives eight intensity measurements for the governing 

phase-stepping equations (Ajovalasit et al., 1998; Ramesh, 2000). This is 

summarized in Table 4.2 together with the method conducted by Nurse (1997) for 
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comparison. As Nurse (1997) is using a three-wavelength approach, we suggest 

the use of a color polarization camera in this context.  

Table 4.2. Intensity measurements 1-8 of the equivalent Polarizer (P) and 

Analyzer (A) positions for a plane polariscope phase-stepping method of the #2-

45° configuration in comparison with the procedure described by Nurse (1997). 

The fields marked with (-) indicate which measurements have not been 

conducted. 

 1 2 3 4 5 6 7 8 

 

#2-45° configuration: 

P: 0° 0° 0° 0° 45° 45° 45° 45° 

A: 0° 45° 90° 135° 0° 45° 90° 135° 

 

Nurse (1997): 

P: 0° - 0° 0° 45° - 45° 45° 

A: 0°  90° 135° 0°  90° 135° 

 

4.4.3. Error analysis 

This subsection investigates the effect of inevitable measurement errors on the 

result quality. Assuming an equal measurement uncertainty for 1N
S  and 2N

S  of 

NS , the error propagation on phase difference and extinction angle are modelled 

from the ideal relations as 
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and 
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We can see that measurement errors for the phase difference   are larger when 

  is close to zero or multiples of  . This can be seen in the   results of Table 

4.1. For all super-pixels, the same calibration function [Eq. (4.18)] was applied, 

as differences between the calibration functions were negligible. Because of the 

similar super-pixel performance, the standard deviations of Tests 1-5 are small 

(std   = 0.005). However, in agreement with Eq. (4.20), these small differences 

are intensified in Test 6, causing the resulting non-zero average value of 0.04 and 

the standard deviation to be nearly ten times higher (std   = 0.04). Equation 

(4.20) also explains the slower convergence to the mean value of Test 6 in Fig. 

4.6 (a). Measurement results for   tend to be inaccurate if   is zero (in this case, 

  does not exist) or a multiple of 2 . The term ]sin[2( ) −  in relation (4.20) 

explains the poorly performing cases of configurations #1 and #2-90° in section 

4.4.2. If the polarizer positions   happen to inconveniently lead to 

0sin[2( )] − = , measurements will be corrupted. 

4.4.4. Exemplary test case 

The images in Fig. 4.7 show an exemplary test case with three plastic cuvettes 

and one glass cuvette as specimens. Internal stresses in the plastic cuvettes induce 
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birefringence whereas little to no birefringence is seen with the glass cuvette. The 

visible result is the cumulated birefringence of both surfaces. The optical 

materials and measurement method of section 4.3 were used and 4 polarizer 

positions were taken into account: ,45 , 30 90 ,1 5   =  . Any desired spatial 

resolution is possible with the actual camera resolution being the limiting factor. 

In this case, we analyzed every eighth super-pixel position. Each intensity 

0 45 90 135,, ,I II I  was derived by averaging the corresponding 37 pixels in a 

circular neighborhood with a diameter of 8 super-pixels. Fig. 4.7 (c) is a vector 

plot where the length corresponds to the measured phase difference   and the 

orientation to the relative position of the refractive index axes between [

4, 4 − ]. Fig. 4.7 (d) is a two-dimension contour plot visualizing coherent 

areas. We can see that phase differences range from 0 to  , therefore some areas 

will most likely exceed the measurement limit of   radians. However, these cases 

exceeding the limit are few and occur in close proximity. 
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Fig. 4.7. Two-dimensional birefringence measurement of an exemplary test case 

with three plastic cuvettes (first three from the left) and a glass cuvette (right): (a) 

Parallel polarizers ( 00, I = ). (b) Crossed polarizers ( 900, I = ). 0I  and 90I  

refer to the corresponding images of the polarization camera. (c) Vector plot with 

the length of the vector corresponding to the measured phase difference   and 

the orientation to the relative position of the refractive index axes. (d) Filled 2-D 

contour plot with 7 isolines separating 8 levels of birefringence. Plot (c) and (d) 

show, that the three plastic cuvettes to the left have a similar birefringence 

distribution, resulting from internal stresses presumably due to the same 

manufacturing process. The glass cuvette to the right does not show any 

birefringence above 4   but the edges induce phase differences between 

8 4    . 
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4.5. Conclusion 

The described technique presents a practical approach to measure two-

dimensional birefringence. The proposed procedure is able to identify optical 

retardations of up to half the wavelength of light (phase differences   rad) and 

gives the relative positions of the refractive index axes. In comparison to methods 

based on circularly polarized light, the use of linearly polarized light increases the 

measurement range for retardation but cannot distinguish between the fast and the 

slow axis. It may represent an attractive alternative to previous methods, 

especially in the case of phase differences larger than 2 . The experimental 

setup and data analysis are comparatively simple and enable the rapid evaluation 

of a large sample area. The use of a polarization-sensitive camera in this 

measurement context is promising and suggests that further research in the field 

should be undertaken. 
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Chapter 5 

5. Optical characterization method for birefringent fluids 

using a polarization camera 
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Abstract 

Various techniques exist for characterizing a birefringent fluid by means of 

extinction angle and birefringence. We summarize these techniques and present 

a new procedure. The approach derives the first three Stokes parameters from 

images of a polarization camera and uses them to calculate the corresponding 

streaming birefringence by applying the Mueller matrix calculus. The required 

theory and a suitable experimental set-up are described. We apply the new 

measurement procedure to two Xanthan gum solutions and characterize their 

optical properties. The results agree with published data. Advantages of the new 

measurement technique are ease of handling, high robustness against optical 

imperfections and the possibility to measure a continuous response to shear in a 

single test series. 

Keywords: Optical Characterization; Birefringence; Polarization Camera; Stokes 

Parameter; Mueller Calculus; Xanthan Gum Solutions 

5.1. Introduction 

If a fluid is composed of optically anisotropic particles or molecules, shear 

induced birefringence may occur during flow. At rest, Brownian motion randomly 

orientates the constituents. Therefore, on a larger scale, the fluid appears 

isotropic. Shear and viscous forces, on the other hand, cause local alignment 

leading to a preferential orientation that induces birefringence as a form of 

optically anisotropic response (Cerf & Scheraga, 1952; Pih, 1980; Tsvetkov, 
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1964). Physically the alignment is based on either the stretching and orientation 

of long polymer-like chains or the deformation or orientation of suspended 

macromolecules or colloidal particles (Jeffery, 1922; Pih, 1980). Birefringent 

fluids exhibit shear-dependent polarization behavior, an effect called 

photoelasticity. Maxwell (1874) used this effect to visualize fluid motion and 

documented the phenomenon in 1873, and it has continuously attracted attention 

ever since. Reviews are given by Cerf and Scheraga (1952), Pih (1980) and 

Peterlin (1976), and a summary of these reviews can be found in the study 

conducted by Hu et al. (2009). Known birefringent fluids are for example Canada 

balsam (Maxwell, 1874), vanadium pentoxide (Freundlich, 1916; Humphry, 

1922), cetyltrimethylammonium bromide (CTAB) (Decruppe et al., 1995), 

bentonite (Decruppe et al., 1989), tobacco mosaic virus (Decruppe et al., 1989; 

Hu et al., 2009; Sutera & Wayland, 1961), milling yellow (Peebles et al., 1964) 

and Xanthan (Chow & Fuller, 1984; Kaap, 2010; Meyer et al., 1993; Smyth et al., 

1995; Yevlampieva et al., 1999) solutions. We focus on Xanthan solutions in this 

study. 

Birefringent fluids can be used in flow measurement and visualization techniques. 

They have a major advantage in that they allow non-invasive measurement and 

therefore offer the possibility of studying shear rates and shear stresses within the 

bulk fluid (C. Sun & Huang, 2016). This is particularly interesting for the study 

of biomedical flows where flow-induced stresses can evoke physiological 

responses. Currently no single ideal measurement technique has been established 

and this allows room for new approaches (Deplano & Siouffi, 1999; Papaioannou 

& Stefanadis, 2005). Various research groups have applied birefringence 

techniques for this purpose (Rankin et al., 1989; Y.-D. Sun et al., 1999), and new 

measuring methods are emerging (Schneider, 2013). In biomedical flows, shear 
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rates of all scales are of interest including the range below 100 1/s (Walker et al., 

2014).  

When the incident light beam is perpendicular to the flow direction and the shear 

gradient, the optical properties of the birefringent fluid are similar to those of a 

uniaxial crystal plate with two main optical axes and their corresponding 

refractive indices 1n  and 2n  (Tsvetkov, 1964). The optical response of the fluid 

is then characterized by two quantities (Pindera & Krishnamurthy, 1978). The 

first is the birefringence n . This is the absolute difference between the two 

main refractive indexes 1 2,n n : 

 2 1n nn = −  (5.1) 

The second is the extinction angle  . This is the angle between the flow 

direction and the refractive index axis. The relationship between flow direction, 

refractive index axis and the resulting extinction angle   is illustrated in Fig. 

5.1.   
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Fig. 5.1. Extinction angle   of a birefringent flow in the velocity field 

 ,0,0
T

u Gy= . 

Peterlin and Stuart (1939a, 1939b) investigated and summarized the relationship 

between a flow field u  in Cartesian coordinates: 

  ,0,0
T

u Gy=  (5.2) 

with the velocity gradient and shear rate G = , the particle orientation of rigid 

submicroscopic optically anisotropic ellipsoids and the position of the resulting 

main optical axes 1 2,n n . Following their findings, it is notable that the refractive 

index axis is not necessarily aligned with the particle axis of the ellipsoids, and 

that birefringence is related to size, shape and optical properties of the particles 

and the solute, whereas the extinction angle only depends on the size and shape 

of the particles. 
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Both properties are functions of the shear rate  : 

 ( )n f  =  (5.3) 

 ( )g =  (5.4) 

These relationships summarize the optical response of a material under shear. 

Theoretical approaches relating birefringence to strain rates have been published 

by Wayland (1964, 1960), and Aben and Puro (1993, 1997). Wayland developed 

a 2D orientation theory that relates birefringence and optical axes directions to 

the principal strain rate. He assumed ellipsoidal particles and took into account 

their optical anisotropy, their rotary-diffusion coefficient and axial ratio as well 

as their mean index of refraction and the volume concentration of the solution. 

Aben and Puro presented a photoelastic tomography approach for 3D flow 

birefringence studies by assuming weak birefringence and interpreting integrated 

photoelasticity as tensor-field tomography. With the help of the Radon transform, 

Aben and Puro derived 3D field equations which link the optical response of the 

flow to its velocity field. 

For the experimental characterization of birefringent fluids, various test devices 

and measurement procedures have been developed to determine Eqs. (5.3)  and  

(5.4). Cerf and Scheraga (1952) as well as Chow and Fuller (1984)  summarize 

the basic concepts. Most test procedures are of the Taylor-Couette type in which 

the fluid is placed in the gap between two concentric cylinders. This apparatus is 

considered best practice (Tsvetkov, 1964). Rotating the inner or the outer cylinder 

causes the fluid to be sheared. If the gap is small compared to the cylinder radius, 

the velocity gradient within the gap is close to constant. The resulting 

birefringence in the gap is most easily studied by placing two crossed linear 

polarizers at the top and the bottom of the cylinders, viewing the gap from one 



5.1. Introduction 95 

end of the longitudinal axis and illuminating from the other end. Light passing 

through the first linear polarizer will be linearly polarized with half the intensity 

2inI . When the fluid is at rest the gap appears dark. When rotating one of the 

two cylinders, the fluid is subject to shear and the shear induces birefringence. As 

a consequence, the resulting light emerging from the gap after passing through 

the fluid is in general elliptically polarized. Depending on the amount of 

birefringence, the gap will appear bright with a dark cross. This cross is referred 

to as the isoclinic cross. The isoclinic cross occurs when one of the refractive 

index axes is in line with the linear polarization. The perceivable light intensity 

varies with (Pih, 1980): 

 
2 2

90 ) [2( )] sin [ ]( sin
2

inI
L

n
I

   


= +   . (5.5) 

Here L is the path length,   the wavelength of the light, and   the angular 

coordinate. The measurable intensity pattern Eq. (5.5) depends on the optical 

parameters n  and  . The subscript indicates the angle of the polarizers 

relative to each other. The basic test set-up, as stated by Chow and Fuller (1984), 

is shown in Fig. 5.2. Figure 5.3 shows part of the resulting isoclinic cross and 

defines the parameter   as the angle between refractive index axis and plane of 

vibration of the incident light, in our case corresponding to the horizontal 

polarizer (Peebles et al., 1964): 

   = + . (5.6) 

Generally, the refractive index axis 1n  referred to by 𝛼 could be the fast axis 1n

, with 1 2n n , or the slow axis. The definition in Fig. 5.3 does not distinguish 

between fast and slow axis. 
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Fig. 5.2. Basic test setup for birefringence studies, as described by Chow and 

Fuller (1984). 
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Fig. 5.3. Isoclinic Cross and associated extinction angle of a birefringent fluid in 

a Taylor-Couette type setting (Peebles et al., 1964). 

Chow and Fuller (1984) describe different methods for measuring n  and  . 

The standard approach requires multiple measurements. First, the position of the 

isoclinic cross and the extinction angle have to be determined. The isoclinic cross 

occurs when the first sine term in Eq. (5.5) becomes zero and thus the light 

intensity becomes zero. This is equal to ( ) +  being zero or multiples of 2

. Rotating ±45° from these locations gives the maximum intensity and 

birefringence can then be derived from the second sine term in Eq. (5.5): 

 
1

90sin ( 2)
L

inI In




−


 = . (5.7) 
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This procedure has to be repeated for each desired velocity gradient and is 

therefore laborious. Osaki et al. (1979) use a similar approach, measuring at two 

different points separated by 45° from each other. From these two measurements 

the two parameters n  and   are derived. Although being faster, this approach 

still requires two consecutive measurements per velocity gradient. 

Due to these drawbacks, Chow and Fuller (1984, 1985) designed a technique 

called ‘two color flow birefringence’ which uses two lasers of different 

wavelengths. With this method two separate measurements can be taken 

simultaneously and so only one measurement setting is required. Extinction angle 

and birefringence are measured simultaneously. The disadvantages of this method 

are the complexity of setting up the lasers and the sensitivity of the lasers to 

disturbances such as air pockets (Fuller, 1990). Fundamentally, this approach 

implies that the material parameter n  is wavelength independent. Although the 

difference in wavelength might be small, the authors indicate that each system 

must be checked to ensure that any dispersion of n  at the chosen wavelengths 

is negligible. This technique has however been successfully used by other 

researchers (Quinzani et al., 1994). 

Another well-established approach is to use a single monochromatic laser and 

combine the so-called null method with the classical method of Senarmont (De 

Senarmont, 1840; Janeschitz-Kriegl, 1969; Jerrard, 1948). In the null method, the 

position of the isoclinic cross ( )  is determined by rotating a crossed 

polarizer/analyser pair. The method of Sénarmont, also referred to as Sénarmont 

compensation, uses a rotatable analyser together with a polarizer and a quarter-

wave plate to determine small retardations (birefringence) with an accuracy on 

the order of magnitude of the wavelength of the light. Again, the required manual 

operation may be considered a drawback of the technique. 
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A precise method to measure birefringence has also been presented by Matsuura 

et al. (1978). They used an advanced setup transmitting circularly polarized light 

through a birefringent medium and applied a Babinet-Soleil plate and a rotating 

analyser to convert the elliptically polarized wave back into a circularly polarized 

wave. 

Considering Eq. (5.5)  it becomes clear that the appearance of the isoclinic cross 

is due to the first sine term being zero linked with the material parameter  . The 

most common and easiest way to measure   is therefore to use two crossed 

polarizers and to measure the angle between the polarizers and the cross as 

indicated in Fig. 5.3. If the second sine term in Eq. (5.5) becomes zero the whole 

gap appears dark. This is referred to as an isochromatic fringe. In this case, the 

following relationship holds: 

 n
L

N 


 =   (5.8) 

with N being the fringe order (= 0, 1, 2, 3, …) and hence: 

 
L

n N


 =  . (5.9) 

Birefringence n  can be therefore measured by counting the isochromatic 

fringes N as the speed of the rotating cylinder is increased. The order N=0 

corresponds to zero birefringence when the liquid is at rest. This simple but 

effective procedure can be found in McHugh et al. (1987) and is often used to 

determine the birefringence of milling yellow (Peebles et al., 1964; Schneider, 

2013). The method can only measure defined points (isochromatic fringes) and it 

requires the fluid to show strong birefringence within the range of shear rates 

investigated, as Eq. (5.9) has to show multiple fringe orders. 
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In order to use optical fluids for quantitative measurements, reliable data for n   

and   are necessary. However, variance in the published data of n  for similar 

solutions suggests that the optical properties vary depending on how the fluids are 

produced and the general material quality. Fig. 5.4 shows published results for 

different Xanthan based birefringent fluids. In practice researchers are therefore 

advised to calibrate their birefringent fluid. For calibration a simple and 

convenient characterization method is desirable. It should not require an advanced 

set-up or a laborious procedure and should be suitable for different types of 

birefringent fluids. The intention of this study is to present such an approach. Our 

method allows simultaneous measurement of n   and   even in transient flows 

whilst using only one light source. It can also be fully automated, and no manual 

adjustments have to be made. As the light source fully illuminates the flow 

chamber, single disturbances from air pockets do not affect the accuracy of 

measurements. By using Stokes parameters to determine n  any effects from 

optical elements and surfaces of the test configuration are eliminated.  
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Fig. 5.4. Birefringence for various Xanthan based fluids. Solutions differ in 

Xanthan concentration and solvent composition: 1. Meyer et al. (1993), Xanthan: 

0.05-0.4 wt%, Solvent: Water; 2. Chow and Fuller (1984), Xanthan: 0.03 wt%, 

Solvent: 90% Glycerin, 10% Water; 3. Kaap (2010), Xanthan: 0.25, 0.5 wt%, 

Solvent: Water; 4. Smyth et al. (1995), Xanthan: 0.05 wt%, Solvent: Water with 

75 wt% fructose; 5. Yevlampieva et al. (1999), Xanthan: 0.011-0.054 , Solvent: 

Water. 

5.2. Materials and Methods 

In this section we outline the theoretical approach and experimental evaluation of 

the measurement procedure. With the help of a polarization camera we can 

measure three of the four Stokes parameters that characterize the polarization 

state of an electromagnetic light wave. With this measured data for the 

polarization state, we can derive the material characteristics n  and   inducing 

birefringence. 
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5.2.1. Theory 

A polarization camera has small polarizers on each pixel. The polarizers vary in 

direction depending on the pixel position. A schematic representation of a 

polarized pixel array is given in Fig. 5.5. 

 

Fig. 5.5. Schematic representation of the polarized pixel arrays in a polarization 

camera. 

A polarization camera is therefore able to simultaneously measure the intensities 

passing the horizontal (0°), vertical (90°) and two diagonal (45° and 135°) 

polarizers. The intensities are referred to as: 0 45 90 135, , ,I I II . With these 

intensities, the first three Stokes parameters can be determined (Chipman, 1994): 
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. (5.10) 
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Ideally, the first Stokes parameter can be computed as 0 0 90 45 135.S III I++= =  

The fourth Stokes parameter requires information about the rotation direction of 

the light ( ),R LI I  and therefore cannot be directly measured with a polarization 

camera. Stokes parameters describe the state of polarization. Changes in this state 

resulting from optical components can be modelled with the help of Mueller 

matrices (Chipman, 1994). 

 

Fig. 5.6. Basic elements of the optical set-up used in this study. Unpolarized light 

from a light source is linearly polarized before travelling through a birefringent 

fluid that is represented as linear retarder with refractive indexes 1n  and 2n  and 

orientation angle  . The resulting Stokes vector S  is determined by a 

polarization camera. 

The basic elements of the optical set-up used in this study are outlined Fig. 5.6. 

A light source emits unpolarized light of intensity inI . The corresponding Stokes 

vector representation is 
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0

0

0

in
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I

S

 
 
 =
 
 
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. (5.11) 

The Mueller matrix of the linear polarizer 0P  with axis orientation 0° is 

 0
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1 1 0 01

0 0 0 02

0 0 0 0

P

 
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 
 

 (5.12) 

and the respective matrix of a birefringent medium  

,X  , represented as a linear retarder with   being the linear phase retardance 

and 𝛼 the orientation angle   of the fast axis 1n  1 2( )n n  
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The orientation angle   lies in the range of [0, ]. The resulting Stokes vector 

of the light, emitted from the light source and travelling through the polarizer and 

the birefringent medium can be calculated as 

 , 0 inS X P S =   . (5.14) 

The resulting output parameters are 
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Taking Eq. (5.10) into account, we also get 
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The second equation in Eqs. (5.16) is equal to Eq. (5.5). As the polarization 

camera cannot measure 3S , we shall neglect this fourth Stokes parameter in the 

following. Using the normalized representation of the Stokes vector 0NS S S=  

and applying some trigonometry, the remaining first three parameters can be 

written as 
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The relation between phase retardation   and the difference of the refractive 

indexes n  is given as (Otani, Shimada, Yoshizawa, et al., 1994) 
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 2 n
L

 


=   (5.18) 

For a known path length L and wavelength  ,   and n  are linearly related. 

We learn from Eqs. (5.17) that the Stokes parameters 1N
S  and 2N

S  are periodic 

with period 2  in   and with 2  in  . The first periodicity means that this 

approach cannot distinguish between fast and slow vibration axis ( 1n  and 2n ). 

The second periodicity leads to Eq. (5.9).  

Using (5.17), the Stokes parameters 1N
S  and 1N

S   can be computed in the  −  

space, as shown in Fig. 5.7. For this,   was varied between 0 −  and   

between 0 4− . The latter corresponds to fringe orders 0 ( 0 = ; 0n = ) and 2 

( 4 = ; 2n L = ).  

 

Fig. 5.7. Computed results for the Stokes parameter and as functions of 𝛿 and 𝛼. 

No change in polarization can be seen for ],[0, 2  =  (Isoclinic cross, red 

dashed lines) or 2N =   (isochromatic fringes, black solid lines). 
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In theory, knowing 0S , 1S , 2S  at one point is sufficient to calculate 𝛿 and 𝛼 at 

this point, as (5.15) gives 
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 (5.19) 

In practice however, measurements with a polarization camera showed that it is 

not reliable to derive   and   correctly from a single point measurement. This 

is particularly the case in the area of isoclinics, where   is close to 0 or 2N   

where the orientation of the linear polarization is aligned with one of the main 

refractive indices 1n  or 2n . The polarization then remains unchanged, and hence 

one cannot derive  . In this study we measure the distributions of 1N
S  and 2N

S  

along an extended circular arc segment and obtain   and   by fitting Eqs. (5.17) 

to the measured distributions. Isoclinics therefore present no longer a problem, as 

they are part of the distributions. 

Eqs. (5.19) however help us to understand the measurement ranges of   and .  

The inverse of the cosine function is only defined for values between [0,  ], but 

results for   could also lie between [ − ,0]. In order to determine the sign, 

knowledge about the direction of rotation and therefore the fourth Stokes 

parameter 3S  would be required. Without 3S , any resulting   is either between 

[0, ] or between [ − ,0]. Clearly, the range [ − ,0] is equal to [ , 2 ] due to 

periodicity. The measurable range of   is thus [0,  ] and that of 𝛼 is [ 4,−

4 ], which corresponds to [0, 2 ] due to the periodicity. It is noted once again 
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that this approach cannot distinguish between fast and slow vibration axes, hence 

the measurement range. Onuma and Otani (2014) used a similar set-up to the one 

outlined in Fig. 5.6 but placed a quarter-wave plate at 45° behind the linear 

polarizer 0P  to create circular polarized light. The authors employed this 

approach for two-dimensional birefringence distribution measurements and 

quantified   and   by measuring 0I , 45I , 90I , 135I  at every point. The use of 

circular polarized light seems to be advantageous compared to the linear 

arrangement if   and   are to be determined from single point measurements 

of 0I , 45I , 90I , 135I , as no isoclinics appear. However, the (dynamic) 

measurement ranges for   and   are different. In the circular case, the range for 

the phase difference   is [0, 2 ] and that of   is [ 2− , 2 ] (Onuma & Otani, 

2014). As a consequence, the (dynamic) measurable range for the retardation   

is halved, whereas it is doubled for  . When using circular polarized light, the 

location of the fast axis can be determined. The approach is therefore 

advantageous when determining two-dimensional birefringence with retardations 

up to values of 2 , as it can distinguish fast and slow axes of the birefringent 

sample. If phase differences 𝛿 are larger than 2  however, the use of a linear 

configuration appears advantageous, with the drawback that information about 

the position of the fast axis is lost. When characterizing birefringent fluids, the 

extinction angle   only describes the relative position of the refractive index 

axes. Moreover, phase differences are likely to exceed values of 2 . For these 

reasons, linearly polarized light is recommended for the characterization of 

birefringent fluids and is used in this study. 
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5.2.2. Material 

For this study two Xanthan solutions of 0.2 and 0.3 wt% were prepared by 

dissolving Xanthan powder in demineralized water. The powder was stirred into 

the solution until fully dissolved. Being a food additive, Xanthan is safe to handle 

and cheap. It shows good birefringence behaviour that has been studied in 

previous literature (Chow & Fuller, 1984; Kaap, 2010; Meyer et al., 1993; Smyth 

et al., 1995; Yevlampieva et al., 1999). The Xanthan gum powder used in this 

study was purchased from Sigma Aldrich. The mixtures were both prepared a 

week before testing and the error in concentration is about c = ±0.05 wt%. 

5.2.3. Experimental Procedure 

The experimental set-up based on the concept introduced in section 5.1 is shown 

in Fig. 5.8. A small DC motor rotates the inner cylinder at a given rotation speed. 

The height of the inner cylinder, equaling the path length L, is 25mm. Two glasses 

at the top and bottom allow optical access. The outer radius of the inner cylinder 

and the inner radius of the outer cylinder are 48mm and 49mm respectively, 

leading to a gap width of 1mm. Due to the gap being small in comparison with 

the diameter, a constant shear rate within the gap is assumed and modeled as 

 
outer inner

innerR

R R



=

−
 (5.20) 

Here   is the angular velocity and innerR , outerR  the radii of the respective 

cylinders. In each test sequence, 49 single measurements were conducted by 

evenly increasing the angular velocity from 0-0.9 1/s, leading to shear rates 

between 0-43 1/s. All experiments were therefore well below the critical Taylor 

number (Taylor, 1923), ensuring laminar flow without instabilities. At every 

measurement point the angular velocity was kept steady for 5 seconds before the 
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measurements to eliminate any time-dependent birefringence effects (Chow & 

Fuller, 1984). Light from a halogen incandescent lamp was filtered using a long- 

and a short pass filter, principally limiting transmission to a spectrum of 650-

690nm. This red light was then linearly polarized with an extinction ratio of 

10000:1, collimated and redirected through the Taylor-Couette flow. A 

monochrome polarization camera (Lucid Vision Labs Phoenix PHX050S-P, 

Schneider Xenon 50mm/0.95 lens) mounted above the set-up captured the optical 

response created by the birefringent fluid. Preliminary investigations showed that 

camera-related errors did not influence the results significantly. For each 

concentration, 15 test series were conducted. For the last 5 series the testing 

conditions were slightly modified to study the impact of several external 

parameters: First, a variation of the light source intensity led to the same 

measurement results. This is not surprising, as the procedure is based on 

normalized Stokes parameters. Second, the linear polarizer was rotated ±1° from 

its original position. A change of angle of the incident linear polarized light 

changes the extinction angle in the same manner with respect to a global 

coordinate system. Taking this into account, the measured results for   remain 

the same. Third, unpolarized ambient light was employed. Considering the 

following two equations, Eq. (22) and Eq. (23), the results were not noticeably 

affected. 
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Fig. 5.8. Experimental set-up of the Taylor-Couette flow: Light from a light 

source is filtered, polarized and sent through the sheared flow. A polarization 

camera mounted above the experiment captures the optical response. 

With the test set up being at rest, the polarization camera was adjusted in such a 

way that maximum light intensity is measured at 0
restI , minimum intensity at 

90
restI  and equal intensities for 45

restI  and 135
restI . This setting is closest to the desired 

set-up outlined in Fig. 5.6, with a 0° linear polarizer. However, the image of 90
restI  

still detects some light passing through the gap. These residual intensities arise 

from stray light reflections. Therefore, the measured Stokes vector will not be 

completely polarized. This is quantified by the degree of polarization (DOP) 

 
2

0

2 2 2
1 3

DOP ,
S S S

S

+ +
=  (5.21) 
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A partially polarized Stokes vector (DOP<1) can be considered as a superposition 

of a fully polarized Stokes vector PS  and an unpolarized Stokes vector US  

(Chipman, 1994): 
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 (5.22) 

We assume that the DOP remains constant during one test series (during the 

increase of shear rate  ) but will vary as a function of   due to non-uniform 

lighting, irregularities induced by the optical path and reflections from the black 

cylinder surfaces which are manufactured from Polyoxymethylene (POM). 

Figure 5.9 indicates the automated image analysis. The intensities )(I   were 

measured at select angular coordinates, with   being the angle as defined in Fig. 

5.3.  
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Fig. 5.9. Schematic representation of the intensity evaluation along half of the 

Taylor-Couette flow under shear. The isoclinic cross is visible to the naked eye. 

At rest, the fluid is not birefringent. The Stokes vector will therefore be composed 

of a purely linear polarized part (linear polarizer) and an unpolarized part (stray 

contribution). If only linear polarized components are present, 3S  is zero by 

definition. The DOP can then be calculated as 
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 (5.23) 

At every shear rate, the four images of the polarization camera were used to obtain 

the first three Stokes parameters 
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Together with the DOP ( ) , the polarized part of the measured Stokes vector is 

given as 

 

0

1

2

( )

( ) DOP( )
) DOP( )

( ) D

(

OP( )

M

M

P
M

MS

S

S

S



 
 

 

 
 
 

=  
 
 

− 

 (5.25) 

Here, as 3( )S   cannot be measured, it is simply left out. With this approach we 

measure the distribution of )(M
PS   along the gap. In the following, we will drop 

subscript P but all Stokes parameter refer to the fully polarized part )(M
PS  . 

5.2.4. Data Fitting 

In order to compare the measurements with the theoretical distributions Eqs. 

(5.17), a coordinate transformation is applied for each measurement point at every 

shear rate, following the geometry relationships outlined in Fig. 5.3. It is 

important to note that the extinction angle   is a function of the shear rate and 

thus the relation between   and  , Eq. (5.6), is a function of the shear rate as 

well. Eqs. (5.17) can be written as 
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 (5.26) 

Using a numerical optimization algorithm, Eqs. (5.26) can be fitted to the 

measured distributions. We would like to note that for the numerical fitting of the 

phase difference   only the magnitude of the two amplitudes )1 2 (1 cos −  were 

considered. This was done in order to avoid distortions due to centerline offset 

errors. 

 

Fig. 5.10. Experimental data )(M
PS   and numerical fits for the Stokes Parameter 

1N
S  and 2N

S  as a function of  . Experiment: 0.3 wt%,  =8.2 1/s. 
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Figure 5.10 shows an example of the normalized Stokes parameters 
1N

MS  and 
2N

MS  

resulting from the polarized part of the measured Stokes parameters )(M
PS   Eq. 

(5.25). The corresponding numerical fits are also plotted in the figure. Each fit 

gives an associated extinction angle   and phase difference   for the 

corresponding shear rate  . This characterises the optical response of the fluid to 

shear: 

 1 2( , ) ) )]( (,[ M MFit S S    = . (5.27) 

The birefringence value is then calculated using 

 
2 L

n





 =  (5.28) 

In this study we used a wavelength of 670nm, which is the centerline value of the 

transmitted light spectrum ranging from 650-690nm. The path length is 25mm. 

Fitting the optical parameters is independently done for every conducted test 

series at every measured shear rate  . Considering the fitting algorithm for  , it 

is important to notice that the algorithm takes into account that with increased 

shear rate the birefringence has to generally increase. This assures that ambiguous 

solutions do not occur, as the fitted Stokes parameters are periodic with period 

2  in  . Moreover, as discussed in section 5.2.1., any solution of   being 

within [0, ] could also lie between [ , 2 ]. This is also considered in the fitting 

algorithm. The algorithm requires the step size of the measured shear rates   to 

be small enough to ensure an unambiguous allocation.  

The fitting algorithm exhibits weaknesses for phase differences   close to zero 

and  . This is due to inevitable measurement uncertainties of the normalized 
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Stokes parameters. If we assume measurement uncertainties of 1N
S  and 2N

S  to 

be of equal magnitude NdS , the error propagation considering phase difference 

and extinction angle can be modelled from Eqs. (5.26) by the derivative of the 

inverse 
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and 
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 (5.30) 

Plotting the uncertainty propagations (Fig. 5.11) shows that the extinction angle 

  cannot be measured precisely when   is close to 0 (or multiples of 2 , i.e. 

the definition of isochromatics). Propagation of uncertainty for the phase 

difference   is large when ( ) +  is 0 or multiples of 2 . This means that the 

amount of birefringence cannot be measured along an Isoclinic. It also underlines 

the statements made in section 5.2.1. regarding Eqs. (5.19), that single point 

measurement of the Stokes parameter are not reliable for determining   and  . 

Our proposed measurement procedure evaluates the Stokes parameters along a 
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distribution of   that inevitably includes ( ) 4  + =  (and/or multiples of it), 

so we assume that the parameter ( ) +  does not affect the quality of our results. 

However, measurement uncertainties of   remain large at N =   (with 𝑁 =

0,1,2, …), as shown in Fig. 5.11 (a). 

 

Fig. 5.11. Propagation of measurement uncertainties. (a) Phase difference 𝛿: 

Measured data close to δ = 0, π are unreliable due to inevitable small 

uncertainties in  𝑑𝑆𝑁. The plot was created for χ + ϕ = π/4. (b) Extinction angle 

χ: If the phase difference is a multiple of 2π (location of an Isoclinic), the 

extinction angle cannot be measured. 

Plotting distributions of 1N
S  and 2N

S  for various shear rates in the  −  space 

- implying the knowledge of   - leads to 3-dimensional plots that show strong 

similarities to the theoretical results described in section 5.2.1. Such resulting data 

plots are shown in Fig. 5.12 (a) and (b) for the 0.2 wt% solution and in Fig. 5.13 

(a) and (b) for the 0.3 wt% solution. Figures 5.12 (c), (d) and 5.13 (c), (d) 

exemplify the corresponding superimpositions of the experimental results onto 

the theoretical distributions in the  −  space. 
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Fig. 5.12. Experimental data of the Stokes Parameters for a Xanthan Solution of 

0.2 wt%. (a) 
1N

MS  and (b) 
2N

MS : Data as a function of  and  . (c) 
1N

MS  and (d) 

2N

MS : Superimposed with the theoretical distributions of Fig. 5.7. 
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Fig. 5.13. Experimental data of the Stokes Parameters for a Xanthan Solution of 

0.3 wt%. (a) 
1N

MS  and (b) 
2N

MS : Data as a function of  and  . (c) 
1N

MS  and (d) 

2N

MS : Superimposed with the theoretical distributions of Fig. 5.7. 

5.3. Results and Discussion 

The results of the experiments described in section 5.2 can be compared with the 

relevant literature. Advantages and drawbacks of the applied optical 

characterization method can then be identified. The data considered are the mean 

values of the experimental series. The error bars indicate full range between 

minimum and maximum values within which all experiments fall. 
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5.3.1. Measurement of extinction angle 

The evaluated extinction angles   are shown in Fig. 5.14 for Xanthan solutions 

of 0.2 and 0.3 wt%, respectively. Within measurement errors, the curve of 0.3 

wt% is slightly lower than the 0.2 wt% curve. The shapes of both curves follow 

the usual result of decreasing extinction angle with increasing shear rate (Chow 

& Fuller, 1984). Both figures also show that our results are in good agreement 

with the corresponding data published by Meyer et al. (1993), and thus we 

conclude that our measurements are consistent. The variances are bigger for the 

0.2 wt% Xanthan solutions. The reason for this may be the parameter sensitivity 

of the experiments on the  -axis, as discussed in section 5.2.4. and shown in Fig. 

5.11 (b). This parameter selection is defined by the experimental design 

parameters: path length L and wavelength   (compare Eq. (5.18)). For the 0.2 

wt% case, most data fits are half way up the slope and not close to the peak, which 

is defined to be at  =  and thus at 5(2 ) 1.32 10Ln  −=  =  in our case. 

Therefore, the amplitudes of the corresponding Stokes parameter distributions are 

lower for the 0.2 wt% compared to the 0.3 wt% solution, which are gathered 

closer to the peak. The fits are more consistent throughout the test series of 0.3 

wt%, leading to smaller deviations of the resulting extinction angles   and 

suggesting that measurement accuracy is higher in the region around  =  and 

thus 5(2 ) 1.32 10Ln  −=  =  (or multiples thereof). 
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Fig. 5.14. Shear rate dependent extinction angle   for Xanthan solutions 

compared with relevant literature data (Meyer et al., 1993). (a) 0.2 wt%. (b) 0.3 

wt%. 

5.3.2. Measurement of birefringence 

Birefringence results are plotted in Fig. 5.15 together with the data published by 

Meyer et al. (1993) The measurements are in the correct order of magnitude and 

appear consistent. It can be seen that variances are higher in the area around 

5(2 ) 1.32 10Ln  −=  =  (equal to  = ). This is in line with the considerations 

discussed in section 5.2.4. and Fig. 5.11 (a). As outlined in section 5.2.1., results 

for n  are not unique within one period, as any resulting n  can be either 

between [0, (2 )L ] or between [ (2 )L , L ]. Therefore, the fitting algorithm 

shows decreased accuracy for birefringence values close to (2 )L , as n  

could be allocated below or above the value of (2 )L . (This would also hold 

for values close to L . For all other values the assignment is unambiguous due 

to the assumption of monotonically increasing birefringence. Figure 5.15 shows 

that a higher concentration in Xanthan leads to higher birefringence. The shapes 

of both curves are similar to the shape of the curve plotted by Chow and Fuller 



5.3. Results and Discussion 123 

(1984) in Fig. 5.4. At low shear rates, the gradient of the curve is highest and with 

increasing shear rates the gradient decreases. Meyer et al. (1993) examined two 

different Xanthan samples from two different suppliers. Despite using similar 

concentrations, both samples showed different birefringence (data points plotted 

with and without filling effect in Fig. 5.15).  

 

Fig. 5.15. Shear rate dependent birefringence of Xanthan solutions of 0.2 and 0.3 

wt% in comparison with the literature (Meyer et al., 1993). 

The discrepancy between our results and the data published by Meyer et al. could 

therefore be related to material differences not taken into account in this study. 

Another source of error may come from the experimental set-up. Many of the 

established birefringent measurement techniques described in section 5.1 apply a 

laser with a narrowly defined wavelength  . Meyer et al. use a helium-neon laser 

with 632.8nm wavelength to obtain the data given in the plots. We use a halogen 

lamp and two filters to narrow the transmitted wavelengths down to the range 

between 650 – 690nm (see section 5.2.3.) and substitute a wavelength of 670nm 



124   5. Optical characterization method for birefringent fluids 

to obtain our results. Therefore, an influence of   within this range cannot be 

excluded and the propagated error in birefringence is estimated as 
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L cm

 −= 


 =  . (5.31) 

5.4. Conclusions 

The new measurement procedure to characterize birefringent fluids represents an 

attractive alternative to previous methods. The advantages are a continuous 

analysis with increasing shear rates, high resilience towards optical imperfections 

in the beam path and the possibility to determine extinction angle and 

birefringence simultaneously. Compared to established methods, the 

experimental set-up appears easier to handle. It was successfully applied to 

measure extinction angle and birefringence of two Xanthan Gum solutions. The 

results are in agreement with the literature.  It is expected that the accuracy of the 

method can be improved further by employing a narrowband light source (e.g. 

LED or laser) instead of the present finite bandwidth source 
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Abstract 

Birefringence measurements of aqueous cellulose nanocrystal (CNC) suspensions 

are reported. Seven suspensions with concentrations between 0.7-1.3 percentage 

per weight are sheared in a Taylor-Couette type setting and characterized using a 

birefringent measurement technique based on linear polarized light and 

acquisition with a polarization camera. Steady state measurements with shear 

rates up to 31 1/s show extinction angles of 23-40° and birefringence in the order 

of 1e-5. The findings demonstrate the utility of CNC suspensions for flow 

birefringence studies. 

Keywords: Flow birefringence, Cellulose nanocrystal suspensions, Optical 

characterization, Polarization camera, Taylor-Couette flow 

6.1. Introduction 

Birefringent fluids are composed of optically anisotropic particles (colloidals) or 

macromolecules (polymers) (Merzkirch, 2001). At rest, these particles or 

macromolecules are randomly orientated by Brownian motion and the fluid 

appears optically isotropic. When under the effect of shear, the particles align in 

a preferential direction and the fluid becomes birefringent. This phenomenon is 

also known as flow birefringence and has been studied ever since it was first 

described by Maxwell (1874). Flow birefringence and birefringent fluids are of 

interest for two reasons: the study of particles, macromolecules or polymer chains 

(Cerf & Scheraga, 1952; Fuller, 1995a; Janeschitz-Kriegl, 1983; Wayland, 1964); 

and the visualization and study of flows and shear rates (Pih, 1980). 

Macromolecular stretching and orientation as well as particle alignment lead to 
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birefringence and influence the rheology. Birefringence is therefore linked to the 

rheological behavior and researchers have studied this relation. Several 

birefringent fluids have been researched. For example, the macromolecules of 

Xanthan gum solutions have been studied by means of flow birefringence(Chow 

& Fuller, 1984; Meyer et al., 1993; Smyth et al., 1995; Yevlampieva et al., 1999). 

Flow-induced birefringence measurements have also been linked to the stress in 

the material by the so-called stress-optical rule (Fuller, 1995a; Janeschitz-Kriegl, 

1983). If this rule applies, birefringence is linearly proportional to the principal 

stress difference. Researchers apply the stress-optical rule to study the rheo-

optical and structural behavior of fluids (Calabrese, Varchanis, et al., 2021; Ober 

et al., 2011). 

Many flow visualization studies use Milling Yellow (Durelli & Norgard, 1972; 

Peebles et al., 1964; Rankin et al., 1989; Schneider, 2013; Y.-D. Sun et al., 1999), 

an industrial dye and a test fluid for simulating blood flows (Schmitz & 

Merzkirch, 1984). Other fluids have also been successfully investigated 

(Funfschilling & Li, 2001; Hu et al., 2009; Mackley & Hassell, 2011; Martyn et 

al., 2000; Tomlinson et al., 2006). 

Cellulose nanocrystals (CNCs) are currently attracting much attention, and 

several potential applications are being explored and discussed (Habibi et al., 

2010; Lagerwall et al., 2014). CNCs are rod-like particles and have birefringent 

optical properties (Parker et al., 2018). Aqueous cellulose suspensions have been 

reported to be birefringent when the crystals are aligned magnetically (Frka-

Petesic et al., 2015), electrically (Bordel et al., 2006) or mechanically (Calabrese, 

Varchanis, et al., 2021; Chowdhury et al., 2017; Ebeling et al., 1999; Hausmann 

et al., 2018). In this study, velocity gradients in laminar flows cause mechanical 

alignment. Flow birefringence has been used to study the birefringence relaxation 

of CNCs (Tanaka et al., 2019). The complex strain-optical coefficient was 



128   6. Birefringent properties of aqueous CNC suspensions 

measured experimentally using a custom-built apparatus for oscillatory flow 

birefringence measurements (Tanaka et al., 2018) and was compared to 

theoretical values, for which the CNCs dimensions were measured by 

transmission electron microscopy. They concluded that birefringence relaxation 

is well-described by the theory for rigid rods and that flow birefringence is an 

efficient tool to determine the length distribution function of the CNCs. It was 

also noted that birefringence relaxation is less sensitive to internal motions such 

as tension and bending than to rotational motions.  

In general, a birefringent fluid is characterized by two properties (Pindera & 

Krishnamurthy, 1978). The first is the relationship between shear rate   and the 

magnitude of birefringence, expressed as ( )n  , where n  is the difference 

between the main refractive indices 1n  and 2n . If we define 1n  as the refractive 

index associated with the fast axis, meaning 1 2n n , this gives 2 1n n n = − . The 

second property refers to the orientation of the refractive index axes and is 

commonly described by the extinction angle ( )  . In order to measure optical 

properties, various polarized light imaging techniques have been proposed. 

Common experimental techniques use specially designed flow channels 

(Calabrese, Haward, et al., 2021), plate-plate geometries (Hausmann et al., 2018; 

Mykhaylyk et al., 2016) or Taylor-Couette type settings (Cerf & Scheraga, 1952). 

The advantage of the latter is the straightforward identification of the extinction 

angle in the annular gap between the concentric cylinders. If two crossed linear 

polarizers are utilized in a Taylor-Couette type setting, one in front of the 

birefringent fluid and the other behind, an isoclinic cross appears, marking the 

orientation of the refractive index axes. The extinction angle is defined as the 

smaller of the two angles between the isoclinic cross and the linear polarizers. 

Possible values range between 0° and 45°.  
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If the refractive index of an ellipsoidal particle along the symmetry axis differs 

from the indices along the semi-axes, the optical response of one particle is similar 

to that of a uniaxial crystal with an extraordinary and an ordinary refractive index, 

en  and 0n , respectively. A uniaxial crystal is said to be positive if e on n  and 

negative if e on n . For rod-like CNC particles, studies have reported e on n  

(Frka-Petesic et al., 2015; Iyer et al., 1968; Klemm et al., 1998), making them 

optically positive. Peterlin (1938) and Peterlin and Stuart (1939a, 1939b) (in 

German) presented a three-dimensional distribution function of rigid rotational 

ellipsoidal particles in a laminar flow with a constant velocity gradient. Part of 

that theory was evaluated numerically (Cressely et al., 1985; Nakagaki & Heller, 

1975; Scheraga et al., 1951). Peterlin and Stuart (1939a, 1939b) applied the 

hydrodynamic equations of motion based on the work by Jeffery (1922) and 

added a rotational diffusion coefficient rD  to model the effect of Brownian 

motion. They showed that the extinction angle is a result of the distribution 

function and argue that the fluid behaves like a biaxial crystal. If the ellipsoidal 

particles are aligned electrically or magnetically, the fluid behaves like a uniaxial 

crystal with the optical axis in the direction of alignment. In a flow with a constant 

velocity gradient (gradient perpendicular to the flow direction), the particles align 

in a preferential direction within the flow plane but the in-plane alignment 

distribution is different to the out-of-plane distribution, resulting in the biaxial 

crystal behavior (three different main refractive indices). Peterlin and Stuart 

(1939a, 1939b) did not take particle-particle interactions into account. Therefore, 

their theoretical findings are limited. However, their conclusion that a sheared 

fluid behaves like a biaxial crystal due to the three-dimensional distribution 

function is thought to be transferable. Due to the symmetric setting here, one main 

refractive index axis is perpendicular to the flow plane.  
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A single rod-like particle in a fluid flow with constant velocity gradient is 

primarily oriented as indicated in Fig. 6.1 (Calabrese, Haward, et al., 2021; Cerf 

& Scheraga, 1952; Mykhaylyk et al., 2016). The relation between alignment and 

rotational diffusion is described by the Péclet number rPe D= . Rotational 

diffusion is dominant when 1Pe   whereas the velocity gradient dominates 

when 1Pe  . For 1Pe  , the rods start to align in a preferential orientation, 

causing the onset of shear thinning and birefringence. At small velocity gradients 

( 1Pe  ) the preferred orientation of the rods is 5°4 =  due to the hydrodynamic 

tensile and compression forces, which are at an angle of 45° to the direction of 

flow. With higher velocity gradients ( 1Pe ), the longitudinal axis of the rods is 

increasingly parallel to the direction of flow, leading to 0 →   (Scheraga et al., 

1951). For optically positive, rod-like particles, the extinction angle lies between 

the direction of flow and the slow refractive index axis 2n  ( 2 1n n ). This is 

because of the larger extraordinary optical index of the longitudinal axis of the 

particles e on n .  

The intention of this study is to present streaming birefringence measurements of 

CNC water suspensions. Utilizing a Taylor-Couette type setting, the optical 

properties ( )n   and ( )   are determined as functions of the shear rate. The 

results are of interest for two reasons. First, they help characterizing aqueous CNC 

suspensions and are therefore of interest to researchers studying the suspension 

physics. Second, the measurements indicate that these types of birefringent fluids 

can be used to visualize and study fluid flows and could present an alternative to 

current birefringent fluids.  
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Fig. 6.1. Indicated position of an optically positive rod-like particle with .ne no  

Dotted lines represent the laminar velocity field with a constant gradient 

6.2. Materials and methods 

6.2.1. Material 

Aqueous CNC suspensions were prepared by dispersing CelluForce NCC® 

powder (CelluForce Inc., www.celluforce.com) in distilled water. Jakubek et al. 

(2018) measured the average length and width of CelluForce CNC (spray dried) 

by transmission electron microscopy (87nm, 7.4nm; axial ratio ~11; longest 

reported length ~250nm) and atomic force microscopy (77nm, 3.5nm; axial ratio 

~22, longest reported length ~200nm). Bertsch et al. (2018) also use atomic force 

microscopy and arrive at similar results (79nm, 4.8nm; axial ratio ~16; longest 

reported length ~400nm). Seven suspensions with different concentrations 

(weight percentage, wt%) CNC were studied: 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3 wt%. 

The mixtures were allowed one week to settle before the experiments so that the 

nanocrystals could disperse homogeneously. The distilled water had a 

conductivity of <0.07 mS c  and the error in concentration is estimated to be 

0.03 %c wt =  .  
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6.2.2. Experimental setup 

The experimental setup is shown in Fig. 6.2. It is the same apparatus as 

documented in Lane et al. (2021b) with only small modifications. Unpolarized 

light from a halogen bulb (150W EKE) is emitted through a 600nm bandpass filter 

(600FS10-50 from Andover Corporation, HBW 10nm). The light is then 

polarized by a linear polarizer (extinction ratio 10,000:1). The polarized light is 

collimated and redirected by a mirror upwards through a Taylor-Couette flow cell. 

The linear polarizer was placed in such a way that the light is fully p-polarized 

(electric field in the plane of incidence on the mirror). The Taylor-Couette 

experiment consists of a feedback-controlled DC motor with a tachometer and a 

415:1 reduction gear rotating the inner cylinder at a selected angular velocity 

, two glass windows at top and bottom enabling optical access and an outer 

cylinder sealing the setup. The height of the inner cylinder is 25mm and the radius 

48innerr mm= . The inner radius of the outer cylinder is 49.5outerr mm= , 

resulting in a gap width of 1.5mm. The shear rate in a Taylor-Couette flow can 

be derived from (Davey, 1962) and is given as 
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We approximate the close to constant shear rate with the shear rate in the middle 

of the gap )( middler , where ( ) 2middle inner outerr r r= + . The relative difference 

between inner and outer shear rate is 
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With this design, shear rates between 0-31 1/s were tested. A monochrome 

polarization camera (Lucid Vision Labs Phoenix PHX050S-P, Nikon Nikkor 35-

70mm 1:3.3-4.5, applied f-number: f/3.3) placed above the setup measured the 

optical response. The default gain setting was used, and the exposure time was 

set to ensure a dynamic range of about 70%. The camera was not calibrated, as 

measurement errors are estimated to remain below 4% for this setting (Lane, 

Rode, et al., 2022a).  

Using a linear polarizer has the advantage that phase differences up to   radians 

can be measured. However, only the relative positions of the refractive index axes 

can be determined, and no distinction between fast axis and slow axis is possible.  

 

Fig. 6.2. Experimental setup of the Taylor-Couette flow. Light from a light source 

is color filtered (600nm), polarized and directed through the Taylor-Couette flow. 

A polarization camera measures the optical response in the gap. The figure is 

adapted from Lane et al. (2021b). 
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6.2.3. Optical characterization 

The polarization camera used in this study is a division-of-focal-plane polarimeter 

that features small polarizers on every pixel. The polarizers have the directions 

0°, 45°, 90°, 135° and vary in a regular pattern. The measured light intensities 

passing the corresponding polarizers are referred to as 0 45 90 135,, ,I II I . These 

intensities give the first three of the four Stokes parameters, 
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A polarization camera is therefore able to measure the Stokes parameters in Eq. 

(6.3) with a single snapshot. If light is only partially polarized, meaning that the 

light is composed of a polarized part and an unpolarized part, the fully polarized 

part can be expressed with the help of the degree of polarization ( 1DOP  ). 

Applying the DOP and normalizing the Stokes parameters by 0S  results in two 

normalized expressions for the fully polarized part of the light (Chipman, 1994): 
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 (6.4) 

The DOP in the experiments was typically between 90-95%. By linking Stokes 

parameters to the birefringent properties of the flow, it is possible to optically 

characterize the fluid. The suspension is sheared due to the rotating inner cylinder 

and therefore becomes birefringent. The axis 2n  is located at an angle  , and 
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the extinction angle   describes the relative position between axis 2n  and flow 

direction. The situation is schematically shown in Fig. 6.3. The drawing outlines 

the relation between extinction angle  , angular coordinate   and absolute 

position   of the slow axis 2n : 

   = + . (6.5) 

 

 

Fig. 6.3. Relation between extinction angle  , angular coordinate   and 

absolute position of the optical axes  . 

The Mueller matrix in Lane et al. (2021b) relates   to the fast axis, which would 

be 1n  in our case. However, as the method cannot distinguish between fast and 

slow axis, we relate   directly to 2n , the correct reference axis. To make sure 
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that this axis is the slower axis, we used a circular polarizer and analyzed the 

results following the theory described by Onuma and Otani (2014). This approach 

distinguishes fast and slow axis but can only measure phase differences up to 2  

radians. The measurements were not used to quantify the optical properties but to 

determine the position of the fast and slow refractive index axes. The 

measurements confirmed that fast and slow axis are indeed located as indicated 

in Fig. 6.3. (It is worth mentioning that the mirror reverses the direction of circular 

polarization. Left-handed circularly polarized light is therefore right-handed 

circularly polarized after reflection. Also, if right-handed circular polarized light 

undergoes a phase shift of  , it is left-handed circular polarized and the equations 

require a proper adaptation). The relationship between phase differences   and 

difference of the refractive indices is given as: 

 
2

n
L





 = . (6.6) 

Here,   is the wavelength of the light (600nm) and L  the optical path length, 

equaling the height of the inner rotating cylinder (25mm). 

We use the measurement technique described in a previous study (Lane et al., 

2021b) to characterize the birefringent fluid. At each position  , the polarization 

camera records the intensities 0 45 90 135( ( , ( ,), ) )()I I II    . The degree of 

polarization for each location is estimated when the fluid is at rest, hence not 

being birefringent:  
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With Eq. (6.3) and Eq. (6.7), the normalized expressions in Eq. (6.4) can be 

measured at every position  , giving 
,1 )(

N P
S  and 

,2 )(
N P

S  . If we assume that 

the birefringent fluid can be approximated as a linear retarder with   being the 

phase difference and   the position of an axis, theoretical expressions for the 

normalized Stokes parameters 
,1N P

S  and 
,2N P

S  are obtained by applying Mueller 

calculus. If the linear polarizer in Fig. 6.2 is in line and hence parallel to the 0I  

direction of the polarization camera, the normalized Stokes parameters resulting 

from Mueller calculus are: 
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Measuring 
,1 )(

N P
S  and 

,2 )(
N P

S   as functions of the angular coordinate and 

fitting Eq. (6.8) to the measured distributions gives estimates for the extinction 

angle   and the phase difference  . The distributions in Eq. (6.8) are periodic 

with period 2  in   and therefore the resulting extinction angle remains in the 

range between [0°,90°]. For this reason, the distributions in Eq. (6.8) cannot 

distinguish between fast and slow axis. The results for the phase difference   

using Eq. (6.8) are within the range [0, ]. Fig. 6.4 (a) and (b) show sample 

measurements of the Stokes parameters as function of the polar coordinate   and 

the correspondingly fitted distributions. In total, 200 measurement points with   

varying between [-3°,154°] were analyzed. From the fits, parameters   and   

are determined. Without any further information, it cannot be determined if the 

result for   is within the range [0, ] or within [ , 2 ]. At the beginning of a 
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measurement, the fluid is at rest and no birefringence occurs, corresponding to 

0 = . If the shear rate is increased by small enough steps, the measured phase 

differences that lie between [0, ] can be unwrapped to higher intervals. For 

example, the measurements ][0, 2, 2,0,, 2,      correspond to 

][0, 2, 3 2,2, ,5 2,3      . With the unwrapping procedure, birefringence of 

multiple order retardance can be determined. This can be seen in Fig. 6.4 (c) 

where the measured phase differences   are expanded to higher values. The 

measurement error resulting from the fitting procedure is discussed by Lane et al. 

(2021b). For phase differences close to 0,2 ,... = , the measurement error for 

the extinction angle   is high. This becomes obvious when comparing Fig. 6.4 

(a) and Fig. 6.4 (b). The accuracy of the   measurements for the periodic 

distributions in Fig. 6.4 (a) is significantly larger compared to the distributions 

shown in Fig. 6.4 (b). The reason for this is found in Eq. (6.8), indicating that the 

amplitude of the distributions is directly linked to the phase difference  . If   is 

below a certain limit, we therefore neglect the corresponding   measurement. 

In this study, a limit of 4   was chosen for which the measured extinction 

angles   are considered valid. Finally, we would like to note that the fitting of 

  appeared more robust compared to the fitting of  . Many measurement points 

showed a strong discontinuity for   at 0,2 ,... = . The CNC suspensions are 

strongly birefringent, and we assume that an unwanted re-alignment of the fluid 

at the top and bottom surfaces of the cylinder gap disturbs the measurements of 

 . The optical influence of the unwanted alignment seems minimal in areas 

where the gap is parallel or perpendicular to the linear polarization of the incident 

light. Therefore, the presented measurements of   were obtained by only 

considering the 20 measurement points for which   is within [-3°,5°] or 
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[86°,94°]. For   however, all 200 measurement points were used, as depicted in 

Fig. 6.4. 

 

Fig. 6.4. Birefringence measurements with a linear polarizer. Suspension: 1.3 

wt% CNC. (a) and (b) Results obtained by fitting Eq. (6.8) to the measured 

distributions of Eq. (6.4) are shown in (a) for 17.6 =  and (b) for 7.6 = . (c) 

The fitted results for   are between [0, ], sorting them according to the periodic 

nature gives the correct phase difference. Birefringence n  is calculated with 

Eq. (6.6). (d) Measurement results for the extinction angle   using the 

measurement points for which   is between [-3°,5°] or [86°,94°]. 

6.2.4. Experimental procedure 

Fifty different shear rates between 0-31 1/s were studied. Fig. 6.4 shows the result 

for the suspension with 1.3 wt%. The first measurement was done at rest. After 
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each stepwise increase, the shear rate was kept steady for five seconds before 

recording ten images and averaging them. From the mean image the 

corresponding parameters ,   were derived. Phase differences were sorted 

following the procedure depicted in Fig. 6.4 (c). The relationship between 

birefringence n , shear rate  , and mass fraction CNC totalw ww =  is modeled 

as: 

 ( )n mwn A   = . (6.9) 

6.3. Results and discussion 

Measurement results for the extinction angle   are shown in Fig. 6.5 (a) and are 

given in Table 6.1 in the appendix. All measurements that are considered valid 

(compare Fig. 6.4 for the distinction between valid and non-valid measurements) 

are within 23-40°. Increasing the shear rate tends to decrease the extinction angle, 

which is in line with common theory as discussed in the introduction. For all 

suspensions most of the decrease can be seen between 0-5 1/s. After 5 1/s, the 

extinction angle decreases rather slowly. We explain outliers such as the 35° 

measurement for 1.0 wt% at a shear rate of 24.9 1/s with measurement limitations 

and its uncertainties. Birefringence measurements n  are shown in Fig. 6.5 (b), 

(c) and (d). The values can be looked up in Table 6.2 in the appendix. It is 

important to note that measurement errors of   are high for phase differences 

close to 0, , 2  =  (Lane et al., 2021b). The non-zero values at zero shear rate 

in Table 6.2 are therefore thought to result from measurement inaccuracies. Eq. 

(6.9) was fitted to the measurements and the result is plotted for comparison. The 

determined parameters are A=0.1070 s, n =0.537 and m=2.445, giving a root-

mean-square-error of 9e-7. Fig. 6.5 (d) shows the measurements and the fit in a 

base-10 logarithmic scale for the shear rates. We can see that the fit is working 
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particularly well for the 1.1 wt% and 1.3 wt% suspension. Increasing the shear 

rate generally increases birefringence. The increase in birefringence per shear rate 

decreases for higher shear rates as the slope decreases. A rather sharp increase at 

low shear rates and a levelling off at higher velocity gradients has been similarly 

found for Xanthan gum solutions (Chow & Fuller, 1984; Lane et al., 2021b). 

Birefringence of Milling Yellow suspensions has been reported to be proportional 

to the shear rate at low shear rates but also shows a levelling off at higher shear 

rates (Peebles et al., 1964). The studied CNC suspensions display birefringence 

of magnitude 1e-5 and are in the same order as Xanthan gum (Lane et al., 2021b) 

and Milling Yellow (Peebles et al., 1964). Hence CNC suspensions appear as an 

attractive alternative for flow visualization studies due to their stability, ease of 

preparation and low cost. 

The critical concentration for interparticle interactions of aqueous CNC is 

reported to be 0.5 wt% and the critical volume fraction for the isotropic 

cholesteric phase transition is at about 3-4 wt% (Bertsch et al., 2019). Below a 

concentration of 0.5 wt%, CNCs are assumed to be isotropically oriented. Above 

0.5 wt%, cholesteric tactoids are formed. The suspensions in this study are above 

0.5 wt% and we hence expect interparticle interactions. 
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Fig. 6.5. Steady state response as function of mass fraction and shear rate. (a) 

Extinction angle measurements. (b) Birefringence n  measurements and fitted 

Eq. (6.9) with A=0.1070 s, n=0.537, m=2.445 and a root-mean-square-error of 

9e-7. (c) Measurement points and surface plot of Eq. (6.9). (d) Birefringence n  

measurements and fitted Eq. (6.9) in a base-10 logarithmic scale for the shear 

rates. 

It was stated in the introduction that the relation between shear alignment and 

rotational diffusion is described by the Péclet number rPe D= . The rotational 

diffusion coefficient rD  for interacting rods decreases with increasing rod 

concentration (Doi & Edwards, 1978; Maguire et al., 1980; Teraoka & Hayakawa, 

1989). This is because the rotational motion of a rod is increasingly restricted by 

its neighbors (Tao et al., 2005). Therefore, the required shear rate for the onset of 

particle alignment decreases with increasing concentration. It can be seen in Fig. 
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6.5 (d) that the birefringence data seems to shift to the left with increasing 

concentration, which is in line with the theory. Shafiei-Sabet et al. (2012) report 

rheology measurements of aqueous CNC suspensions. Their 1 wt% CNC 

suspension is thought to be comparable to the suspensions used in this study 

(CNC powder dispersed in distilled water; average length: 100nm, average width: 

7nm). The steady-state shear viscosity measurements for the 1wt% suspension 

show a Newtonian plateau at low shear rates ( 210 1 s− ), a shear thinning 

region at intermediate shear rates ( 2 010 1 10 1s s− − ); and a second plateau 

at higher shear rates. The onset of shear thinning is related to the onset of shear 

alignment ( 1Pe  ), and the shear rate corresponding to the onset of shear 

thinning can be taken as an estimate for the rotational diffusion coefficient 

(Corona et al., 2018). We therefore assume that all our measurements (except at 

zero shear rate) are taken in the shear aligned regime.  

As expected, increasing the amount of CNC increases the birefringence response. 

Calabrese et al. (Calabrese, Haward, et al., 2021) studied the birefringence of a 

0.1 wt% CNC dispersion that had been similarly prepared (CNC purchased from 

CelluForce, diluted in deionized water). However, they purchased an aqueous 

dispersion (never-dried) from CelluForce whereas this study uses re-suspended 

CNC powder. The CNC dimensions reported by Calabrese et al. (Calabrese, 

Haward, et al., 2021) are: average length 260nm; average diameter 4.8nm; aspect 

ratio ~54; longest reported length ~700nm. Shear induced birefringence is 

reported to be 
63 10n −    ( 100 1 s  ) and 

69 10n −    ( 400 1 s  ). 

Compared to these values our birefringence results are much higher. This is 

plausible as we are using much higher CNC concentrations. For shear rates below 

40 1/s the fluid from Calabrese et al. (Calabrese, Haward, et al., 2021) is 

considered isotropic ( 0n = ). The onset of shear alignment and therefore equally 
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the rotational diffusion ( 1Pe  ) is reported to be 40 1/s. The authors propose a 

proportionality of 0.9~n  . The exponent 0.9 is significantly different to our 

result, 0.537. We consider several possible reasons for this difference. Calabrese 

et al. (Calabrese, Haward, et al., 2021) are using a CNC suspension in the dilute 

regime and the relation between rotational diffusion coefficient 0rD  (no particle 

interaction) and rod length is given as 3
0rD l−  (Doi & Edwards, 1978). The 

suspensions in this study are thought to be above the dilute regime and hence 

particle interactions have to be considered. According to Maguire et al. (1980) the 

rotational diffusion coefficient for interacting rods is concentration and rod length 

dependent, giving 2 9
rD c l− − . Our different exponent could therefore be 

explained by a different particle interaction behavior due to the different 

concentrations and the shorter rod lengths. The morphological properties are 

dependent on the drying method (Peng et al., 2012) and this might also explain 

the difference.   

Calabrese et al. (Calabrese, Haward, et al., 2021) report that extensional forces, 

described by the extensional rate  , are four times more effective in aligning 

CNCs than shear forces, stating 0.9 0.9~ ~ (4 )n    . As we only study shear 

forces in the Taylor-Couette flow this aspect has not been researched and it is not 

clear if the factor 4 is transferable to our suspensions. 
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6.4. Appendix 

Table 6.1. Extinction angle data as plotted in Fig. 6.5 (a). Note that the fields 

marked with (-) are empty due to measurement limitations when 4   

(Compare Fig. 11 (b) in (Lane et al., 2021b)). 

Shea

r 

Rate 

Extinction angle  [°] 

[1/s] 
0.7 

wt% 

0.8 

wt% 

0.9 

wt% 

1.0 

wt% 

1.1 

wt% 

1.2 

wt% 

1.3 

wt% 

0.0 - - - - - - - 

0.6 - - - - 34.3 39.6 34.8 

1.3 - - - 35.9 32.1 35.5 32.1 

1.9 - - 36.8 34.1 30.7 33.8 30.4 

2.6 - - 35.4 33.2 30.2 32.6 29.3 

3.2 - 32.7 34.4 32.6 29.8 31.7 28.4 

3.8 31.8 32.4 33.7 32.2 29.7 31.0 27.8 

4.5 31.6 32.2 33.4 31.8 29.1 30.4 27.5 

5.1 31.5 32.0 33.0 31.5 29.0 30.0 26.9 

5.8 31.4 31.7 32.7 31.2 28.7 29.5 27.1 

6.4 31.3 31.4 32.4 31.0 28.5 29.0 - 

7.0 31.1 31.3 32.2 30.9 28.7 28.6 - 

7.7 31.1 31.2 31.9 30.7 28.1 28.2 - 

8.3 31.0 31.1 31.8 30.6 28.0 27.6 - 

9.0 31.0 31.0 31.6 30.5 28.0 28.0 - 

9.6 31.0 30.9 31.5 30.4 28.1 27.3 - 

10.2 30.9 30.8 31.3 30.3 27.8 27.9 32.0 

10.9 30.9 30.7 31.2 30.2 28.2 28.5 31.1 

11.5 30.9 30.6 31.1 30.0 28.2 - 29.8 

12.1 30.8 30.6 31.0 30.2 28.1 - 29.2 

12.8 30.7 30.5 31.0 30.0 29.0 - 28.5 

13.4 30.7 30.4 30.8 30.0 29.4 - 28.4 

14.2 30.7 30.5 30.8 30.0 32.0 - 27.8 
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14.7 30.6 30.5 30.5 29.9 - - 27.7 

15.3 30.7 30.4 30.5 30.0 - - 27.2 

15.9 30.6 30.3 30.4 30.1 - - 27.0 

16.7 30.6 30.2 30.3 30.1 - - 26.9 

17.3 30.6 30.1 30.3 29.9 - 32.0 26.5 

17.9 30.6 30.1 30.2 29.8 - 31.1 26.3 

18.6 30.5 30.1 30.1 30.1 - 31.0 26.3 

19.3 30.5 30.0 30.1 30.1 - 30.5 26.0 

19.8 30.5 30.0 30.0 30.2 - 29.8 25.6 

20.4 30.5 30.0 30.0 30.6 - 29.3 25.5 

21.0 30.4 29.9 29.9 30.7 - 29.3 25.3 

21.7 30.5 29.9 29.8 31.1 - 29.0 25.2 

22.4 30.4 29.9 29.8 31.2 - 28.8 25.1 

23.1 30.4 29.8 29.7 31.6 - 28.5 24.9 

23.7 30.4 29.8 29.8 32.5 30.5 28.2 24.7 

24.3 30.4 29.8 29.7 33.7 29.5 28.0 24.5 

24.9 30.4 29.8 29.7 34.8 29.6 27.8 24.4 

25.5 30.4 29.8 29.6 - 29.3 27.6 24.0 

26.2 30.5 29.7 29.7 - 28.8 27.4 24.5 

26.9 30.3 29.7 29.6 - 28.6 27.5 24.0 

27.6 30.3 29.7 29.6 - 28.3 27.3 23.6 

28.2 30.3 29.6 29.7 - 28.3 27.3 23.5 

28.7 30.4 29.7 30.1 - 28.0 27.1 23.5 

29.4 30.3 29.6 29.8 - 28.0 26.9 - 

30.0 30.3 29.7 29.8 - 27.7 26.7 - 

30.7 30.3 29.7 29.8 - 27.7 26.4 - 

31.4 30.2 29.6 30.0 - 27.6 26.5 - 
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Table 6.2. Birefringence data as plotted in Fig. 6.5 (b) and (c). Note that the values 

in brackets have been obtained within 16  of 0,   and are therefore 

thought to be potentially affected by measurement uncertainties (Compare Fig. 

11 (a) in (Lane et al., 2021b)). These measurement inaccuracies are thought to be 

the main reason for the non-zero values at zero shear rate. 

Shea

r 

Rate 
Birefringence 

510n   

[1/s] 
0.7 

wt% 

0.8 

wt% 

0.9 

wt% 

1.0 

wt% 

1.1 

wt% 

1.2 

wt% 

1.3 

wt% 

0.0 (0.05) (0.05) (0.06) (0.06) (0.06) (0.07) (0.07) 

0.6 0.11 0.12 0.16 0.20 0.34 0.33 0.52 

1.3 0.16 0.18 0.24 0.33 0.53 0.54 0.84 

1.9 0.21 0.24 0.32 0.42 0.67 0.72 1.12 

2.6 0.25 0.29 0.39 0.52 0.81 0.89 (1.20) 

3.2 0.29 0.35 0.45 0.60 0.94 1.03 1.45 

3.8 0.33 0.40 0.51 0.67 1.03 (1.20) 1.60 

4.5 0.36 0.44 0.58 0.75 (1.16) (1.20) 1.74 

5.1 0.40 0.48 0.63 0.81 (1.20) 1.28 1.88 

5.8 0.42 0.51 0.68 0.89 (1.27) 1.43 2.01 

6.4 0.45 0.55 0.73 0.94 1.34 1.53 2.16 

7.0 0.49 0.60 0.78 1.00 1.43 1.61 2.25 

7.7 0.52 0.63 0.83 1.07 1.51 1.70 2.32 

8.3 0.54 0.65 0.86 (1.13) 1.58 1.81 2.55 

9.0 0.57 0.70 0.92 (1.16) 1.62 1.86 2.61 

9.6 0.60 0.72 0.96 (1.20) 1.71 1.93 2.67 

10.2 0.61 0.75 0.99 (1.24) 1.75 2.04 2.78 

10.9 0.65 0.79 1.04 1.29 1.82 2.08 2.81 

11.5 0.66 0.81 1.07 1.35 1.87 2.18 2.93 

12.1 0.69 0.85 (1.13) 1.38 1.92 2.22 2.98 

12.8 0.71 0.86 (1.15) 1.44 1.97 (2.32) 3.07 

13.4 0.74 0.90 (1.20) 1.47 2.03 (2.33) 3.13 

14.2 0.75 0.92 (1.20) 1.52 2.07 2.53 3.24 
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14.7 0.78 0.96 (1.21) 1.55 2.13 2.54 3.26 

15.3 0.79 0.97 (1.27) 1.59 2.15 2.61 3.37 

15.9 0.81 0.99 1.29 1.65 2.23 2.66 3.41 

16.7 0.84 1.03 1.35 1.66 2.26 2.67 3.48 

17.3 0.85 1.05 1.36 1.70 2.29 2.76 (3.60) 

17.9 0.87 1.07 1.39 1.76 (2.32) 2.80 (3.60) 

18.6 0.90 1.10 1.44 1.78 2.50 2.81 (3.60) 

19.3 0.91 (1.13) 1.47 1.79 2.50 2.88 3.68 

19.8 0.93 (1.13) 1.48 1.84 2.53 2.95 3.79 

20.4 0.94 (1.13) 1.50 1.89 2.57 3.00 3.84 

21.0 0.96 (1.17) 1.54 1.92 2.61 3.02 3.86 

21.7 0.98 (1.18) 1.58 1.94 2.64 3.06 3.90 

22.4 1.01 (1.25) 1.62 1.97 2.66 3.11 3.96 

23.1 1.02 (1.27) 1.63 2.00 2.69 3.15 4.02 

23.7 1.03 1.29 1.67 2.02 2.71 3.21 4.09 

24.3 1.05 1.30 1.69 2.05 2.73 3.27 4.15 

24.9 1.06 1.32 1.71 2.08 2.78 3.31 4.21 

25.5 1.08 1.34 1.73 2.11 2.81 3.36 4.25 

26.2 1.09 1.36 1.76 2.14 2.85 3.40 4.30 

26.9 1.11 1.38 1.79 2.16 2.88 3.42 4.33 

27.6 1.12 1.40 1.82 2.20 2.92 3.47 4.37 

28.2 (1.14) 1.41 1.84 2.23 2.97 3.49 4.40 

28.7 (1.14) 1.42 1.86 2.27 3.00 3.57 (4.44) 

29.4 (1.15) 1.43 1.87 2.30 3.03 3.60 (4.50) 

30.0 (1.15) 1.45 1.89 (2.34) 3.04 3.60 (4.58) 

30.7 (1.15) 1.48 1.93 (2.34) 3.05 3.60 (4.63) 

31.4 (1.17) 1.50 1.96 (2.33) 3.11 3.60 (4.62) 
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Abstract 

Two aqueous cellulose nanocrystal suspensions are used to experimentally 

measure the shear and strain rates in a two-dimensional fluid flow. Cellulose 

nanocrystals are rod-like particles that align when subjected to shear, whereas at 

rest, they are randomly orientated by Brownian motion. The alignment causes 

birefringence, a phenomenon also known as flow-induced birefringence. The 

amount of birefringence is measured using a rotatable linear polarizer and a 

polarization camera. The linear polarizer is rotated to nine different positions. At 

each position, light from a light source becomes linear polarized before entering 

the birefringent fluid. Because of the birefringence the state of polarization is 

changed. This change is measured by the polarization camera. From the nine 

measurements the two-dimensional birefringence distribution is determined and 

from the amount of birefringence the strain rate is derived with the help of the 

data published by Lane et al. (2022b). We define Λ0 as the angle between the 

(maximum) strain rate and the direction of flow. A shearing flow leads to Λ0 =

45°, whereas Λ0 = 0° and Λ0 = 90° describe a flow down the centerline of a 

symmetrically converging and diverging channel, respectively. The measured 

strain rates are compared to simulations. The reference data in (Lane, Rode, et al., 

2022b) was taken at Λ0 = 45°. For Λ0 ≈ 45°, measurements and simulations 

correspond well to each other. If Λ0 ≈ 0° is assumed, measured strain rates appear 

too high whereas they are too low for Λ0 ≈ 90°. These results may be of interest 

for two reasons. First, shear rate imaging gave satisfying results in areas where 

Λ0 ≈ 45°. Therefore, we propose the study of shear rates in a two-dimensional 

shearing flow by means of the presented method. Second, the results indicate that 

the flow state affects the degree of particle alignment and thus birefringence. This 

finding is in line with the statements made by Wayland (1960, 1964). The study 

of particle alignment and its influencing factors is of interest, and the 
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experimental approach presented here is thought to be practicable for such 

studies. 

Keywords: Shear Birefringence, Cellulose Nanocrystals, Polarization Camera 

7.1. Introduction 

Some types of birefringent fluids are composed of suspended anisotropic particles 

(Merzkirch, 2001). At rest, Brownian motion randomly orientates these particles, 

and the birefringent fluid is optically isotropic. Local velocity gradients align the 

particles and, as a result, the fluid becomes optically anisotropic. This 

phenomenon is also referred to as flow-induced birefringence and can be used to 

visualize and study fluid flows (Hu et al., 2009; Pih, 1980; Rankin et al., 1989) as 

well as to assess particle alignment and rheological properties (Fuller, 1995a; 

Janeschitz-Kriegl, 1983). The amount of birefringence is expressed by the 

difference between the two main refractive indices, Δ𝑛. Generally, Δ𝑛 is a 

function of the shear rate 𝛾̇, where increasing 𝛾̇ increases Δ𝑛. Various 

experimental methods have been applied to determine Δ𝑛(𝛾̇) and therefore to 

characterize a birefringent fluid (Calabrese, Haward, et al., 2021; Lane et al., 

2021b; Mykhaylyk et al., 2016).  

Many flow birefringence studies use an industrial dye called Milling Yellow 

(Peebles et al., 1964; Schneider, 2013; Y.-D. Sun et al., 1999). However other 

fluids such as solutions of tobacco mosaic virus have also been used (Hu et al., 

2009). Cellulose nanocrystals (CNCs) are rod-like particles, and the refractive 

index of their longitudinal axis is larger than the refractive index of the semi-axes 

(Frka-Petesic et al., 2015). A recent study reports birefringence measurements of 

aqueous CNC suspensions and suggests their use in flow birefringence studies 

(Lane, Rode, et al., 2022b). 



152   7. Shear rate imaging using a birefringent suspension 

In this study the birefringence response Δ𝑛 of aqueous CNC suspensions in a two-

dimensional flow is measured with a polarization camera and the corresponding 

shear rates are derived by applying the data from Lane et al. (2022b). By 

comparing the measurements to analytical solutions as well as simulations, we 

confirm the results from Lane et al. (2022b) and show that aqueous CNC 

suspensions are promising birefringent fluids for shear rate imaging. 

7.2. Material and methods 

7.2.1. Experimental set-up 

The experimental set-up is shown in Fig. 7.1. It consists of a light source (halogen 

bulb; 150W EKE) and a color filter (600nm bandpass filter; 600FS10-50 from 

Andover Corporation, HBW 10nm). The light is polarized by a rotatable linear 

polarizer (Techspec Glass polarizer 50.8 m; Edmund Optics Inc #66-183; 

extinction ratio 10,000:1) which is placed in a continuous manual rotation mount 

(Thorlabs Part RSP2/M). The light then travels through the birefringent fluid flow 

and is finally captured by a polarization camera (Phoenix PHX050S-P, Lucid 

Vision Labs (LUCID Vision Labs, 2022)) which is equipped with a high 

resolution telecentric lens (TC4MHR036-C from Opto Engineering; working f/#: 

30). Polarization measurement errors from the polarization camera are estimated 

to be below 3% due to the sufficiently large f-number (Lane, Rode, et al., 2022a).  
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Fig. 7.1. Experimental set-up. 

The flow channel was prepared using an additive manufacturing technique (3D 

Printer: Form3 from Formlabs; Material: Clear Resin). The channel dimensions 

can be seen in Fig. 7.2 (a). The cosine shaped constriction is described as: 

 3mm 3mm cos for -10mm 10mm
10mm

x
y x

 
= +     

 
. (7.1) 

Except for the constriction, the channel is 8mm wide and has a depth of 25mm. 

The flow direction is upwards. The main 3D printed part is shown in Fig. 7.2 (b). 

The front and back surfaces were milled in order to create plane surfaces. 

Additionally, a sealing groove was machined into each surface. Two glass plates 

level with the surfaces sealed the flow channel. 
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Fig. 7.2. (a) Flow channel dimensions and (b) 3D printed part 

7.2.2. Two-dimensional birefringence measurements 

We apply the measurement technique described in (Lane et al., 2021a). The linear 

polarizer is rotated to nine different positions: 𝜙 = 0° + 20° ∙ 𝑁 with 𝑁 =

1,2, … , 9. At each position, the light transmitted through the birefringent flow is 

captured by the polarization camera. The polarization camera measures the state 

of linear polarization. From the nine measurements, the relative phase difference 

𝛿 is calculated, from which the birefringence is determined: 

 
2

n
L




 
 = . (7.2) 

Here, 𝐿=25 mm is the path length and 𝜆 the wavelength (600nm). Equation (7.2)

requires that the optical properties are constant along the path length. We assume 
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an essentially two-dimensional flow due to the width / depth aspect ratio of the 

channel (8mm / 25mm) and therefore expect Eq. (7.2) to be a valid approximation. 

The measurement technique described in (Lane et al., 2021a) has a measurement 

range for the phase difference of 𝜋 rad (half the wavelength). We limit ourselves 

to this measurement range (corresponding to Δ𝑛 = 1.2 ∙ 10−5) since in this case 

the measured (relative) phase differences are the actual phase differences and Eq. 

(7.2) is directly applicable. 

7.2.3. Aqueous cellulose nanocrystal suspensions 

Two aqueous CNC suspensions with 1.0 wt% (weight percentage) and 1.2 wt% 

CNC were prepared by dispersing CelluForce NCC® powder (CelluForce Inc., 

www.celluforce.com) into distilled water. Lane et al. (2022b) used similar 

suspensions and report their birefringence response to shear. The measurement 

technique applied here can only measure birefringence in the range 0 ≤ Δ𝑛 ≤

1.2 ∙ 10−5. Therefore, only the values in that region are of interest to us. These 

values are shown in Table 7.1. Table 7.1 served as a look-up table for deriving 

𝛾̇(Δ𝑛) from Δ𝑛 measurements. Linear interpolation was used between the 

tabulated values. 

Table 7.1. Birefringence measurement data taken from Lane et al. (2022b). We 

only consider the values Δn ≤ 1.2 ∙ 10−5, as our measurement technique can only 

measure birefringence up to Δn = 1.2 ∙ 10−5. The values in brackets are 

potentially affected by measurement uncertainties. 

 Shear rate [1/s] 

wt% 0 0.6 1.3 1.9 2.6 3.2 3.8 

 Birefringence Δ𝑛 ∙ 105: 

1.0 (0.06) 0.2 0.33 0.42 0.52 0.60 0.67 
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1.2 (0.07) 0.33 0.54 0.72 0.89 1.03 (1.20) 

 

 Shear rate [1/s] 

wt% 4.5 5.1 5.8 6.4 7.0 7.7 8.3 9.0 9.6 

 Birefringence Δ𝑛 ∙ 105: 

1.0 0.75 0.81 0.89 0.94 1.00 1.07 1.13 1.16 (1.20) 

 

7.2.4. Fluid flow simulation with Ansys Fluent 

A two-dimensional fluid flow simulation of the flow channel depicted in Fig. 7.2 

(a) was performed using Ansys Fluent. The flow was assumed to be laminar, and 

the CNC suspensions were modelled as Newtonian fluids with a constant 

viscosity of 10 mPa∙s. This was done even though it is commonly known that 

CNC suspensions are non-Newtonian, as they display shear-thinning (Shafiei-

Sabet et al., 2012). However, the Newtonian simulations corresponded well with 

the measurements in the straight channel section (linear shear rate profile). 

7.2.5. Measurement assumption 

If 𝑢 and 𝑣 are the velocity components in x- and y-direction, respectively, and 

subscripts x and y indicate the directional derivates, we define the (maximum) 

strain rate   as: 

 2 2 22 22 2 ( 4 ( .) )y xx y xy xu v u v u u v += + + =+ +  (7.3) 

Note that the 2D incompressibility condition 𝑢𝑥 = −𝑢𝑦 was used above. We also 

define Λ0 (Wayland, 1960, 1964) as the angle between the direction of  : 
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 ( )
1

atan2 ,,
2

2y x xvu u+  (7.4) 

and the direction of flow: 

 ( )atan2 ,v u . (7.5) 

The angle Λ0 can take values in the range [0°,90°]. Wayland (1960, 1964) argues 

that the angle Λ0 affects birefringence and that Δ𝑛 is therefore a function of   

and Λ0, giving 0( ),n n  =   . For Λ0 = 45° the flow is a shearing flow in which 

different layers move parallel to each other at different speeds. The results shown 

in Table 7.1 were measured in a Taylor-Couette flow (i.e., a shearing flow) where 

Λ0 = 45° and yu = = . If Λ0 = 0°, the fluid is strained in the direction of the 

flow, for example down the centerline of a symmetrically converging channel 

flow. In comparison, the flow down the centerline of a symmetrically diverging 

channel flow is strained perpendicular to the flow direction, giving Λ0 = 90°. In 

this study we use the values in Table 7.1 for all strain rates by setting: 

0 0(, 45( ) ),n n    =  . 

7.3. Results and discussion 

7.3.1. Straight channel section 

Figure 7.3 (a) shows the simulation and Fig. 7.3 (b) the measurements of the 

straight channel and the beginning of the constriction. The measurements were 

done using the 1.2 wt% CNC suspension. The figures are qualitatively and 

quantitatively similar. Most strain rates are in the range of 0-4 s-1 (except in the 

top right-hand corner of Fig. 7.3 (a) with values >4s-1). Figure 7.3. (c) compares 

simulation and measurement results in the range -18mm ≤ x ≤ -16mm to the 
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theoretical solution of a plane Poiseuille flow. A straight channel flow is a 

shearing flow, and the linear shear rate profile is evident (note that 𝜖̇ = 𝛾̇ here). 

The figures show that if  =  the proposed measurement technique gives 

reasonable results. The measurements also confirm part of the results published 

in Lane et al. (2022b). 

 

Fig. 7.3. Volume flow rate 500 𝜇𝑙 𝑠⁄  (equivalent to an average flow velocity of 

2.5 𝑚𝑚 𝑠⁄ ). CNC suspension 1.2 wt%. Flow direction from left to right. (a) 

Simulation and (b) Measurement results. (c) Comparison of simulation, theory 

(plane Poiseuille flow), and measurements for the straight channel section.   

7.3.2. Cosine shaped constriction 

Figure 7.4 shows simulation and measurement results for three different flow 

rates in the cosine shaped constriction. Shear rates are in the range 0-10 s-1. By 

comparing all three pairs: (a)-(b), (c)-(d), and (e)-(g) we notice that measurements 
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close to the wall compare well to the simulations, whereas measurements in the 

center of the channel display noticeable differences.  

 

Fig. 7.4. Simulation vs. Measurement for flow rates 100 𝜇𝑙 𝑠⁄ : (a) and (b), 125 

𝜇𝑙 𝑠⁄ : (c) and (d), and 166.6: (e) and (f). Flow direction from left to right. CNC 

suspension 1.0 wt%. 

The flow profile should be symmetric about the x=0mm axis. The measured shear 

rate profiles clearly do not show this symmetry. The center shear rates are higher 

in the converging part than in the diverging area. We argue that the flow state, 

expressed by angle Λ0, affects particle alignment and hence the birefringence 

response. Angles Λ0 can easily be calculated from simulation results using Eq. 
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(7.4) and (7.5). Figure 7.5 shows results for a volume flow rate of 125 μl s⁄ . The 

angles in the center are close to 0° and 90° in the converging and diverging 

channel, respectively. Calabrese et al. (2021) studied the effects of shearing and 

extensional flows on the alignment of CNC. For Λ0 = 90° the rods were 

orientated perpendicular to the flow direction and for Λ0 = 0° the rods were 

orientated parallel to the flow direction. For Λ0 = 45° the rods were orientated at 

about 20-30° towards the direction of flow. The rod orientation for Λ0 = 45° was 

also studied by Lane et al. (2022b) (referred to as extinction angle). Similar to 

Calabrese et al. (2021), rods were orientated within 23-40° towards the direction 

of flow. We conclude that the order of alignment for 0° < Λ0 < 45° may be 

higher than it is for 45° < Λ0 < 90°. This would explain the asymmetrical shear 

rate distribution of Fig. 7.4 (b), (d), and (f).  

 

Fig. 7.5. Simulation of the angle Λ0 between (maximum) strain rate 𝜖̇ and 

direction of flow. Flow rate 125 𝜇𝑙 𝑠⁄ . 

7.4. Conclusion 

Strain rates have been experimentally measured using a birefringent aqueous 

CNC suspension, a rotatable linear polarizer, and a polarization camera. The 

measurement accuracy seems to depend on the flow type. For a shearing flow 

(i.e., with an angle between maximum strain rate and direction of flow of Λ0 =
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45°) the achievable accuracy is good. If, however, the angle is close to 0° or 90°, 

measurement accuracy is affected. For 0° < Λ0 < 45°, measured strain rates are 

slightly too high, whereas they are slightly too low in regions where 45° < Λ0 <

90°. It appears that the combination of strain rate in flow direction and shear rate 

is more efficient in aligning the particles than the combination of strain rate 

perpendicular to the flow direction and shear rate. The results encourage the use 

of aqueous CNC suspensions for birefringent flow studies, either for shear rate 

imaging or for the study of shear- and strain-induced particle alignment.  
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Chapter 8 

8. Overall conclusion and outlook 

8.1. Discussion 

8.1.1. Summary 

Several aspects have to be taken into account when measuring flow birefringence, 

such as an appropriate measurement technique, a feasible experimental design, 

and the actual appearance of the physical property. All three aspects were studied 

within this thesis. 

The first two papers titled ‘Calibration of a polarization image sensor and 

investigation of influencing factors’ (Lane, Rode, et al., 2022a) and ‘Two-

dimensional birefringence measurement technique using a polarization camera’ 

(Lane et al., 2021a) focus on aspects of an appropriate measurement technique. 

The recent introduction of polarization cameras that are based on polarization 

image sensors (division-of-focal-plane polarimeters) offer new opportunities that 

have been explored. In the first paper we define an error that quantifies the 

polarization measurement quality and investigate the influence of lens design, 

focal length, and f-number on the measurement quality. The findings provide 

guidance for researchers using these types of cameras. The second paper describes 

a two-dimensional birefringence measurement technique that uses a polarization 

camera. The presented approach adds to the many available birefringence 

measurement techniques. Advantages are its simplicity as well as the 

comparatively large measurement range of half the wavelength of the light. 

Disadvantages are that the technique cannot distinguish between the fast and slow 

refractive index axis and that it requires several measurements.  
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The third paper, ‘Optical characterization method for birefringent fluids using a 

polarization camera’ (Lane et al., 2021b), combines the previously discussed 

measurement technique with a well-known experimental design, the Taylor-

Couette flow. Studying flow birefringence between two rotating cylinders is a 

common approach for which the paper presents a simple and convenient 

measurement approach.  

In our study ‘Birefringent Properties of Aqueous Cellulose Nanocrystal 

Suspensions’ (Lane, Rode, et al., 2022b) we measured the amount of flow 

birefringence of a rather new type of birefringent fluid and propose its use in 

future studies. The findings are thought to be of interest to researchers studying 

cellulose nanocrystals as they characterize the response of the suspensions to 

shear. The results also show that these types of fluids qualify as birefringent fluids 

that can be used to study or visualize fluid flows.  

In our final paper (Lane, Baumann, et al., 2022) presented at the 20th 

International Symposium on Applications of Laser and Imaging Techniques to 

Fluid Mechanics conference we describe an experimental design that enables 

two-dimensional flow birefringence measurements and argue that not only the 

shear rate, but also the flow state, affects the degree of particle alignment and 

hence birefringence. We propose further research following these findings in 

section 8.2. 

Several aspects within the frame of flow birefringence measurements have been 

studied. Some of the findings can be transferred to other research areas. The work 

conducted on polarization image sensors and birefringence measurement is 

thought to be of interest to researchers in the field of polarization imaging systems 

and photoelasticity. We also hope that the birefringence data of aqueous cellulose 

nanocrystal suspensions is relevant to the cellulose community. However, the 
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main objective in this thesis was to improve measurement practicability and the 

understanding of flow-induced birefringence as well as shear rate imaging. We 

have addressed some relevant aspects and hope to have given inspiration for 

subsequent studies. 

8.1.2. Personal conclusion 

Flow birefringence is an interesting phenomenon that deserves attention. It is 

important to realize that birefringence is primarily related to the alignment of 

anisotropic particles or macromolecules and not directly to stresses or strain rates. 

Increasing the order of alignment generally increases the amount of birefringence 

and the refractive index axes indicate the direction of this alignment. The degree 

of particle alignment is a function of the amount of stress or strain rate. However, 

relating flow birefringence solely to stresses and strain rates (as it is done in 

photoelasticity for solids) bears the risk of oversimplifying things. In particular, 

the results of section 7 indicate that the flow state, characterized with the help of 

angle 0  (the angle between maximum strain rate and flow direction), influences 

particle alignment. Particle alignment in fluid flows is, of course, of interest to 

researchers and for this purpose birefringence measurements are being used, as 

they are very attractive in this context.  

To draw reliable conclusions on local stresses and shear rates with the help of 

birefringence measurements I suggest combining them with velocity 

measurements (for example using particle image velocimetry). From the velocity 

measurements the flow state can be derived (angle 0 ), and with this 

information stresses and strain rates can be estimated more reliably. This, 

however, requires appropriate reference data. Alternatively, some assumptions on 

the fluid flow, such as assuming a shear-dominated flow, have to be made. 
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As many studies do, this work has limited itself to the two-dimensional case. In 

the general three-dimensional case not only do the optical measurement 

techniques become more sophisticated, but also the relation between particle 

alignment and flow state is thought to be more complex. I therefore believe that 

the field of flow birefringence will continue to offer many research challenges as 

well as opportunities. In the following section we will be looking at opportunities 

that seem promising. 

8.2. Potential future studies 

8.2.1. The effect of the two-dimensional flow state on birefringence  

Regarding the effect of the flow state on the amount of birefringence, as 

mentioned in section 2.4.1 and discussed in section 7, the birefringence response 

of aqueous cellulose nanocrystal (CNC) suspensions in a fluid flow is not only a 

function of the effective shear rate (or rather maximum strain rate), but also of the 

flow state. The flow state can be expressed with the help of angle 0 ,  which was 

defined in Eq. (2.32) (alternatively, it can be calculated with Eq. (7.4) and (7.5)). 

We propose further studies on this subject matter. For example, flow channels 

identical or similar to the one shown in Fig. 7.2 seem appropriate to study the 

influence of the flow state. First of all, researchers should make sure that their 

fluid simulations are accurate. In section 7.2.4 a Newtonian behaviour was 

assumed although CNC suspensions are thought to show shear-thinning effects. 

Nevertheless, the Newtonian assumption seemed to work well as indicated by the 

results shown in Fig. 7.3 (linear shear profile in a straight channel flow). The 

velocity field can be determined with the help of particle image velocimetry. 

These measurements can be compared to simulations. If the experimentally 

measured and simulated velocities agree, determination of the strain rates and the 
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angles 0  from the simulations should be feasible. With this, we can measure 

the two-dimensional birefringence distribution and determine the amount of 

birefringence as well as the orientation of the refractive index axes as functions 

of max  (see section 2.3 for the definition) and 0 , giving (compare section 

2.4.1) 

 max 0

max 0

( ),

( ).

,

,

n n





 

 =  

= 
 (8.1) 

This research will help scientists to characterize degree and orientation of CNC 

particle alignment for such suspensions in a fluid flow. Moreover, we hope that 

the findings will be able to verify our conclusion from section 7 and the general 

assumption that the flow state expressed by angle 0  affects particle alignment.   

8.2.2. Flow birefringence in axisymmetric flows 

Aben and Puro (1993) describe an integrated photoelasticity method for 

axisymmetric flow birefringence. They make two assumptions. The first being 

weak birefringence (H. K. Aben et al., 1989) and the second being that the 

refractive index axes are aligned with the principal strain rates. They simplify the 

flow birefringence relations to a scalar field tomography problem where the axial 

velocity gradient can be determined with the help of the Radon inversion. An 

alternative integrated photoelasticity approach and experimental results for the 

strain rate analysis in a diverging and converging axisymmetric tube flow are 

given by Yuhai et al. (1990).  

The experimental design for such flow birefringence studies is not straightforward 

and issues are discussed by Aben and Puro (1993). The flow channel should be 

placed in an immersion bath to avoid light refractions, and the channel itself must 
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not be birefringent. Ideally, the refractive indices of the immersion fluid, flow 

channel, and birefringent fluid are matched. In the scope of a student project 

(Köpfli, 2021) we designed such an experimental setup and our initial insights are 

presented here. Axisymmetric flow channels were made by shrinking a shrinking 

tube onto a machined core element made from metal (note that it was beneficial 

to drill a hole along the longitudinal axis and small holes into the side wall to 

avoid a vacuum when removing the shrinked-on tube). The shrinking tube was 

made from fluorinated ethylene propylene (FEP) with an estimated refractive 

index of 1.34. Due to the extrusion process involved in the manufacture of the 

FEP tube, the flow channel was not completely free of birefringence. A glycerol-

water solution was used as an immersion fluid because the refractive index of 

such solutions can easily be tuned (Glycerine Producers’ Association and others, 

1963). Adding cellulose nanocrystals made the fluid birefringent. With this, we 

were able to match the refractive indices of all three parts (immersion fluid, flow 

channel, birefringent fluid). Our preliminary experiments showed effects of flow 

birefringence, but ultimately remained inconclusive, and we suggest future work 

on this topic. 

8.2.3. Three-dimensional flow birefringence studies 

We briefly discussed three-dimensional flow birefringence in section 2.6. We 

elaborate here briefly on two possible research opportunities in this context.  

 

Firstly, it might be possible to develop a birefringent fluid based on cellulose 

nanocrystals and an experiment design that meet the conditions for the utilization 

of the integrated photoelasticity method (H. Aben & Puro, 1997). Preliminary 

studies on the birefringent fluid would be necessary to show that it fulfils the 

requirements. As the integrated photoelasticity method has so far not been applied 
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to birefringent fluids in this context (at least to our knowledge), it appears that 

that this research direction is worth looking in to.  

 

Secondly, the birefringence response of the fluid is of interest. A birefringent fluid 

in a three-dimensional flow will generally show an optical response like a biaxial 

crystal. Note that this is also true for a two-dimensional flow if the third dimension 

is considered (see the results from Peterlin and Stuart (1939a, 1939b) described 

in section 6.1). For example, birefringence measurements could be conducted 

using two experimental designs, such as a Taylor-Couette type and a plate-plate 

geometry (shearing rheometers of both designs exist). Combining these results 

should characterize the three-dimensional optical response. As birefringence is 

linked to particle alignment, this is considered to be of interest. 

8.2.4. Polarization sensitive optical coherence tomography 

Polarization sensitive (PS) optical coherence tomography (OCT) is an extension 

of the established OCT technique. A review is given by de Boer et al. (2017).  

Researchers have applied PS-OCT in the scope of photoelasticity (Heise et al., 

2010; Oh & Kim, 2003; Stifter et al., 2003). The PS-OCT technique should also 

be able to measure flow birefringence, and we therefore suggest flow 

birefringence measurements by means of PS-OCT. We also propose cellulose 

nanocrystal suspensions as birefringent fluids in this context, since the 

birefringence, as well as the transparency, can easily be modified by in- or 

decreasing the amount of cellulose nanocrystals.  

8.3. Concluding remarks 

In this thesis we have looked at birefringence measurement techniques, the 

physics behind flow birefringence, and the utilization of flow birefringence for 
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shear rate imaging. We presented the fundamentals, explained our research, and 

described the insights we have gained.  

Measuring birefringence with the help of polarized light is a well-known 

approach. The rather recent introduction of commercially available polarization 

image sensors created new measurement opportunities in this field. The first part 

of this thesis deals with the application of such sensors to exploit the measurement 

opportunities presented. 

Flow birefringence is based on the alignment of anisotropic particles or 

macromolecules and is an interesting phenomenon. In the second half of this 

thesis we report our research results on flow birefringence of aqueous cellulose 

nanocrystal suspensions. Cellulose nanocrystals are currently attracting a lot of 

scientific attention. In suspensions and when subjected to shear, these rod-like 

nanocrystals align, and the fluid becomes birefringent. Our work delivers 

experimental data that can be compared with alignment theories. 

Using flow birefringence to study shear rates in a fluid flow is attractive as the 

measurement technique is non-invasive. If the relationship between flow state 

(strain rate tensor as well as direction of flow) and birefringence response can be 

understood and modeled, then flow birefringence will be a powerful tool for 

studying fluid flows.  
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