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Testing Graph Databases using Predicate Partitioning

ABSTRACT
Graph Database Management Systems (GDBMS) store data as part

of graph structures and allow the efficient querying of nodes and

their relationships. With the rise of social networks and big data,

graph databases have gained popularity in recent years. Logic bugs

in GDBMS are bugs that manifest by returning an incorrect result

for a given query (e.g., by returning incorrect nodes or relation-

ships). The impact of such bugs can be extremely severe since they

often go unnoticed. In this paper we apply Ternary Logic Partition-

ing (TLP), an existing technique used to test Relational Database

Management Systems (RDBMS), to GDBMS. Moreover, we refine it

into an approach that we call Predicate Partitioning (PP). The core

idea behind this approach is that the result set of a given query

can be partitioned based on a predicate into disjoint subsets. In our

experience, these partitioning queries are very effective in testing

filtering clauses of queries. We have extensively tested three popu-

lar GDBMS and found a total of 40 previously unknown bugs. We

consider 16 of them to be logic bugs and the rest are error or crash

bugs. We expect that this simple, yet effective, approach will be

used to test other GDBMS.

1 INTRODUCTION
Graph Database Management Systems (GDBMS) [23, 28, 32] allow

the storage and efficient querying of data stored in graph struc-

tures. In recent years, the popularity of such systems has increased

drastically due to their applicability in social networks, knowledge

graphs [19] and fraud detection [35]. Examples of the most popu-

lar GDBMS are Neo4j [11], JanusGraph [7], RedisGraph [14] (an

extension of Redis [13]) and Memgraph [10].

As with any other software, GDBMS can be affected by various

kinds of bugs. An important category of bugs are logic bugs, which

we define as bugs that cause incorrect result sets. For example,

for a given query, a GDBMS might mistakenly omit a vertex from

the result set or it includes an edge that should not be part of

the result. Such bugs are difficult to detect by users and might

go unnoticed, especially considering the complexity of modern

GDBMS (e.g., Neo4j has 468k LOC).

Logic bugs in GDBMS are notoriously difficult to detect. The

following reasons make it difficult to automatically test GDBMS:

(1) Each GDBMS uses a different query language to support

data retrieval and insertion. This makes it more cumber-

some to test multiple GDBMS at the same time because

each system needs an individual implementation.

(2) Some languages, such as the Cypher query language [24]

are supported by multiple GDBMS; however, the syntax as

well as the semantics of the languages vary. This limits dif-

ferential testing approaches, which compare the results of a

query between multiple GDBMS. Only a common subset of

the query language, that also follows the same specification,

can be used as part of a testing infrastructure.

(3) Some GDBMS do not support fixed data schemas. Gen-

erating valid queries to insert and retrieve data becomes

more difficult because of this. Moreover, it can happen that

two nodes have the same property p which is of different

type for each of them. This unpredictable behavior can be

remedied during the database generation step.

Existing research focuses on differential testing approaches [27].

Such an approach feeds the same test case input to at least two

systems that are supposed to implement the same behavior. If the

outputs do not agree, we conclude that at least one of the systems

is incorrect. There are two downsides to differential testing. First,

it can only be applied to the potentially small common core of two

systems. In particular, one cannot test GDBMS with different query

languages. Moreover, one cannot detect which system exhibits the

incorrect behavior if two outputs differ. This step requires man-

ual effort. Differential testing has been employed to test GDBMS

through a tool called Grand [38].

Relational Database Management Systems (RDBMS) also suffer

from logic bugs and there has been much research in the area of

testing said systems. Several tools, such as RAGS [34], SQLsmith

[16] and SQLancer [30], have been proposed and successfully used

to discover bugs. However, these tools cannot be directly used on

GDBMS to detect logic bugs. This is because they only generate

Structured Query Language (SQL) queries which cannot be run

on GDBMS. Moreover, RDBMS usually work with a schema and a

similar concept does not exist in the world of graph databases.

We combine the insights from existing RDBMS and GDBMS

testing approaches to form a new testing approach that solves all

of the above challenges. We apply the Ternary Logic Partitioning

(TLP) technique [31], which has been successfully used to find logic

bugs in RDBMS, to graph databases. The key insight of TLP is that

a result set 𝑅𝑆 (𝑄) of a query 𝑄 can be partitioned into disjoint

subsets based on a predicate 𝜙 . A predicate 𝜙 evaluates to either

TRUE, FALSE or NULL for a given context (nodes, edges and variables).
Given a query 𝑄 , a filtering clause and the predicate 𝜙 it is now

possible to create three new derived queries with the predicates:

𝜙,¬𝜙 and 𝜙 IS NULL. These three queries partition 𝑅𝑆 (𝑄) into
disjoint subsets.

Listing 1: An illustrative example of a logic bug found using
Predicate Partitioning (PP) in Neo4j.

1 CREATE (:L {p:"test"})
2 CREATE INDEX FOR (n:L) ON (n.p)
3
4 MATCH (n:L)
5 RETURN COUNT(n)
6
7 MATCH (n:L) WHERE n.p STARTS WITH lTrim(n.p)
8 RETURN COUNT(n)
9
10 MATCH (n:L) WHERE NOT (n.p STARTS WITH lTrim(n.p))
11 RETURN COUNT(n)
12
13 MATCH (n:L) WHERE (n.p STARTS WITH lTrim(n.p)) IS NULL
14 RETURN COUNT(n)

Listing 1 shows an example of a bug that we found in Neo4j 4.6 by

applying Predicate Partitioning (PP), our test oracle approach. The

first two CREATE statements in line 1 and 2 set up the database

state. The first statement creates a new node with label L and

property pwith value test. The second line creates an index on the

newly created label-property combination. Line 4 to 14 represent

the queries of the oracle, each being a MATCH that counts the amount

of nodes. While the first query calculates the number of nodes with
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label L where the predicate 𝜙 is TRUE, the second one matches all

of them where the predicate 𝜙 is FALSE and the last one does the

same but with 𝜙 being NULL. Since the first count outputs 1 and

the subsets are disjoint subsets that partition the initial result, we

would expect one of the other three counts to be exactly one as well.

In this case, however, all other counts were zero which indicates a

logic bug.

In this paper we propose a new testing approach for testing

GDBMS by using Query Partitioning to tackle the test oracle prob-

lem and a test case generation approach inspired by existing RDBMS

testing approaches. We implemented this approach as a tool called

GDBMeter that supports two important graph query languages,

Cypher [24] and Gremlin [33]. Note, however, that any other graph

query language could be tested using the same approach.

To evaluate the effectiveness and generality of GDBMeter, we

tested the three well-established GDBMS Neo4j, RedisGraph and

JanusGraph and we found 40 previously unknown bugs. 25 of

which have already been fixed. Neo4j and JanusGraph were ex-

tensively tested by Grand [38], a differential testing approach,

which found 3 bugs in each GDBMS. We compare GDBMeter to

Grand and highlight the key advantages of our approach, the lack

of false positives and the fact that GDBMeter can be applied to

GDBMS that not only support Gremlin. GDBMeter is available at

https://github.com/InverseIntegral/gdbmeter.

Overall, this paper makes the following contributions:

• A randomized approach to generate metamodels and la-

beled property graphs.

• Application of the Query Partitioning technique [31], in

particular Ternary Logic Partitioning, on GDBMS to find

logic bugs.

• Comprehensive evaluation of the oracle on three widely-

adopted GDBMS, in which the technique found 40 new

bugs.

• A comparison to an existing approach based on differential

testing implemented in Grand [38].

The remainder of this paper is structured as follows. Section

2 provides necessary background information that is needed to

understand our approach. Section 3 describes our approach in more

detail. In particular, it explains the graph metamodel generation as

well as a testing oracle that detects logic bugs. Selected bugs and

how they were found is part of section 4. Section 5 evaluates our

approach and is followed by a brief discussion of said approach

in section 6. Section 7 goes over the related work and section 8

concludes the paper.

2 BACKGROUND
Graph Database Management Systems. Graph Database Manage-

ment Systems (GDBMS) store and manipulate data as part of graphs.

In the mathematical sense, a directed graph 𝐺 consists of vertices

𝑉 and edges 𝐸, we usually write𝐺 = (𝑉 , 𝐸). The set 𝐸 is a subset of

𝑉 ×𝑉 and we can think of an edge (𝑣1, 𝑣2) = 𝑒 ∈ 𝐸 as a connection

that starts at 𝑣1 and ends at 𝑣2. Note that (𝑣1, 𝑣2) ≠ (𝑣2, 𝑣1) because
these are directed edges for which the order matters. This is the

mathematical notation used to describe graphs.

GDBMS are often schema-less, meaning that data does not have

to adhere to a fixed structure. This allows software systems to evolve

over time without having to think about the schema changes and

data migrations. Instead of SQL, GDBMS use domain specific query

languages with a syntax that allows for easy selection of vertices

and their corresponding edges.

Labeled property graph model. The labeled property graph model

is one of two commonly usedmodels in modern GDBMS [36]. Neo4j,

JanusGraph and RedisGraph are examples of GDBMS that use the

labeled property graph model. This model is a refinement of the

pure mathematical model described above. From now on we also

refer to vertices as nodes and edges as relationships because this is

the notation used in the labeled property graph model. Nodes and

relationships are the core components of this model. Furthermore,

nodes and relationships can have key-value pairs attached. These

pairs are named properties and are usually written in JavaScript

Object Notation (JSON). Lastly, labels can be used to mark nodes (re-

lationships). Nodes (relationships) of the same label belong together

and form a subset of all the nodes (relationships). Queries usually

operate on these label sets for performance reasons. Sometimes

labels on relationships are also referred to as relationship types.

Contrary to Relational Database Management Systems, where data

related to the connection of two entities has to be modeled as an in-

termediate table. GDBMS treat edges as first-class citizens, meaning

that data can be directly stored as part of an edge itself.

Person

name: Michael

Company

name: Neo4j
Technology

type: Graphs

Person

name: Jennifer

IS_FRIENDS_WITH
since: 2018

WORKS_FORLIKES

WORKS_FOR
until: 2022

Figure 1: An example of a labeled property Graph.

Figure 1 shows an example of a labeled property graph. The graph

consists of four nodes and four relationships. The Person node with
property name set to “Jennifer” has a relationship IS_FRIENDS_WITH
with the Person node named “Michael”. This relationship has again

a property since that specifies since when this relationship exists.

Graph Database Query Languages. Unlike RDBMS, which sup-

port the standardized Structured Query Language (SQL), GDBMS

do not have one common query language. Instead, each GDBMS

supports its own query language, luckily for us, there are some

languages that are supported by multiple GDBMS. The two most

prominent ones [36] are Gremlin [33], which is the graph traversal
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language of Apache TinkerPop [4], and Cypher [24] which was de-

veloped for Neo4j [11]. There has been an effort in making Cypher

an open standard called openCypher [12]. Neither of those two

languages is formally specified and they are therefore subject to

change [18].

Cypher is a declarative query language that provides a visual way

of matching nodes and their relationships. The ASCII-art syntax

uses round brackets to represent nodes and arrows for relationships.

Listing 2 depicts an example of a Cypher query. It selects all the

movies that were directed by the person named “Tom Hanks”. The

fact that a person directed a movie is represented by a label on

the respective relationship. As shown with this example, we do

not specify how the data should be fetched but rather which data

we want. Fetching the data efficiently is the responsibility of the

GDBMS.

Gremlin is a functional graph traversal language that composes

so-called Gremlin steps. The steps are the primitives of the Gremlin

graph traversal machine, which ultimately executes the supplied

queries. In total there are approximately 30 such steps [5]. Listing

3 shows an example of a query written in Gremlin. First we select

all the vertices that have the label “Person” and the property name
set to “Tom Hanks”. Then we follow all outgoing edges with label

“DIRECTED” and finally return all the vertices that we can reach

like this which have label “Movie”. The traversal-style is very no-

ticeable in this example since we specify a path through the graph

by calling a functional API.

Listing 2: An example of a Cypher query.

1 MATCH (:Person {name: "Tom Hanks"})-[:DIRECTED]->(movie:Movie)
2 RETURN movie

Listing 3: An example of a Gremlin query.

1 g.V()
2 .has("Person", "name", "Tom Hanks")
3 .outE("DIRECTED")
4 .inV()
5 .hasLabel("Movie");

Automated Testing. In this paper we present a new and auto-

mated way of testing GDBMS. Automated testing of databases con-

sist of two steps. First, an appropriate database has to be generated.

This challenge has been widely studied for relational databases

[20, 22, 25] but at the same time there has been little to no research

in the area of graph database generation. We believe that the same

ideas can be applied to graph databases. Our implementation is

loosely based on the database and expression generator of SQLancer

[30]. However, this is not the main focus of our work.

Importantly, a test oracle is required, which is the mechanism

that validates the result of a test case. Our work focuses on the

class of metamorphic test oracles [21]. These oracles can be used

to generate new test cases based on a metamorphic relation and

previously known inputs and outputs of a system. An example

for such a relation for a program that calculates the sine value is

sin(𝑥) = sin(𝑥 + 2𝜋). One can generate a follow-up test case to

establish that the relation holds based on the result of a previous

test case.

3 APPROACH
In this paper, we propose a metamorphic testing approach, imple-

mented in GDBMeter, a tool that automatically detects bugs in

GDBMS. GDBMeter operates on three phases which are depicted

in Figure 2. First, the metamodel, an abstract representation of

available labels and properties (name-type combinations), is gen-

erated (Section 3.1). Then, a random graph is generated based on

that model (Section 3.2). Finally, the chosen test oracle is executed

on the random graph (Section 3.4). Since syntax and semantics of

query languages vary widely between GDBMS, GDBMeter con-

tains database specific components. For instance, the graph and

expression generators are considered database specific. Both are

implemented manually and in a straight-forward way. GDBMeter

also consists of database independent components that take care of

data generation, logging and configuration handling.

Metamodel

Generator

Schema

Serializer

Graph

Generator

Test Oracle

Query

Generator

1

1.1

2

3




GDBMS

uses

CRUD

Execute

Result Set

Figure 2: GDBMeter first uses the metamodel generator to
create a fresh metamodel, which is then used by the graph
generator and the test oracle. Optionally, the metamodel
can be exported to the GDBMS if it supports a schema. The
graph generator uses the query generator to generate the
actual graph using CRUD operations. Finally the test oracle
executes queries and reports bugs if any are found.

In the first step, GDBMeter has to randomly generate a meta-

model that describes available labels for nodes and edges as well

as property names and their respective type 1 . This is because

not every GDBMS supports schemas and we do need some form

of predetermined structure later on during the test oracle phase.

Optionally, the metamodel can be passed to the GDBMS by adding

corresponding schema constraints 1.1 . The second step generates

a random graph based on the metamodel 2 . To do this create,
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read, update and delete (CRUD) queries are randomly generated

by consulting the query generator. Lastly, a test oracle is executed

on the GDBMS 3 . An oracle can be either of type read-only or

read-write. The former never modifies any data whereas the latter

might delete nodes and edges. If this step detects a (logic) bug, it

reports it to the user.

3.1 Metamodel Generation
The first step in the execution of GDBMeter is to generate a so-

called metamodel. The metamodel encodes the available graph

labels, properties as well as their types. This model is necessary

because someGDBMS do not support schemas. However, at runtime

we need to knowwhich properties have which type. This is required

to generate correct expression and therefore queries. To ensure,

with a high probability, that our queries do not return empty result

sets, we have to know the labels that appear in our graph.

Let 𝐿 be the set of valid identifiers for labels and properties

for our GDBMS under consideration. And let 𝑇 be the types sup-

ported by the GDBMS, these usually include Strings, Booleans,

Integers and Points. The structure of our metamodel𝑀 is a 4-tuple

(𝐿𝑉 , 𝐿𝐸 , 𝑃𝑉 , 𝑃𝐸 ), where 𝐿𝑉 , 𝐿𝐸 ⊆ 𝑁 describe the available labels

for nodes and edges respectively and 𝑃𝑉 , 𝑃𝐸 describe the available

properties for nodes and edges respectively. 𝐿𝑉 , 𝐿𝐸 are sets that

simply contain valid, randomly generated, strings. 𝑃𝑉 (𝑃𝐸 ) is a func-

tion of type 𝐿𝑉 ↦→ P(𝐿×𝑇 ) (𝐿𝐸 ↦→ P(𝐿×𝑇 )) where P denotes the

power set. This mapping describes which properties (string-type

combinations) can be found on which label.

To illustrate the metamodel, consider the graph graph of Figure

1. It has the metamodel𝑀 = (𝐿𝑉 , 𝐿𝐸 , 𝑃𝑉 , 𝑃𝐸 ) that looks like this:

𝐿𝑉 = {Person, Company, Technology}
𝐿𝐸 = {LIKES, WORKS_FOR, IS_FRIENDS_WITH}
𝑃𝑉 = {(Person, {(name, String)}),

(Company, {(name, String)}),
(Technology, {(type, String)})}

𝑃𝐸 = {(WORKS_FOR, {(until, Date)}),
(IS_FRIENDS_WITH, {(since, Date)}),
(LIKES, {})}

(1)

Note that since the edge label LIKES does never have any prop-

erties, we use an empty set to denote its properties. With this

information the schema of a graph is completely described. GDB-

Meter can, based on this information, generate random graphs or,

as is used in some cases, generate a GDBMS specific schema.

In Listing 4 a simplified version of our metamodel in Java code

can be seen. 𝐿𝑉 and 𝐿𝐸 are the key sets of the maps in the Schema
class. The mappings 𝑃𝑉 and 𝑃𝐸 are represented by the field

availableProperties in the Entity class.

To generate a fresh metamodel 𝑀 , we start by generating 𝐿𝑉
and 𝐿𝐸 . This is done by simply generating random, yet valid, names

for our labels. Then 𝑃𝑉 and 𝑃𝐸 are created by generating random

name-type combinations. Depending on the GDBMS under test

different types are valid, this is solved through Java generics in our

approach. Furthermore, for some GDBMS the property names have

to be unique and this has to be taken into consideration during the

metamodel generation.

Listing 4: We represent the metamodel in Java by using two
classes. One represents the complete schema and one an en-
tity which can be either a node or an edge. For each entity we
store its associated name and the corresponding properties
and types. The actual implementation is more complex since
we have to support different data types depending on the
GDBMS.

1 class Schema {
2 Map<String, Entity> nodeSchema;
3 Map<String, Entity> relationshipSchema;
4 }
5
6 class Entity {
7 Map<String, Type> availableProperties;
8 }

3.2 Graph Generation
Based on the just generated metamodel𝑀 , the graph𝐺 is generated.

To do this, we first generate a set of vertices 𝑉 that adheres to the

metamodel𝑀 by following the label-property mapping. For each

of the |𝑉 ×𝑉 | potential directed edges, we generate an edge with

a fixed probability. The edges also follow the metamodel 𝑀 by

only generating valid labels and respective properties. Currently,

GDBMeter allows exactly one label per node and relationship. In

the future it would be possible to drop this restriction.

Algorithm 1 describes the graph generation algorithm. Line 1-9

describe how we generate a set of properties. To do so, we go over

all elements (name-type combinations) of the schema. For each

entry we generate a random boolean value and if said value is true,

we include the current property in our subset. The returned value

𝑃 consists of name-value pairs where the first component is the

property name and the second one is its value.

Line 10-20 describe how we generate nodes and edges. In both

functions, we first sample a random label. Then, based on the se-

lected label, we select the available properties and generate a subset

of all the available properties. This is done using the algorithm

described above. Finally, the node (edge) is constructed and re-

turned. For the edge construction 𝑢 and 𝑣 describe the outgoing

and incoming node respectively.

Finally, line 30-34 describe how the graph can be generated based

on the metamodel𝑀 . First 𝑛 nodes are created using the function

described before. The number of nodes 𝑛 can be configured but is

currently set to a random value between 1 and 6. Once all the nodes

are generated, we loop over all possible edges (i.e., every possible

combination of start and end nodes). Then, based on a random

variable with a binomial distribution with 𝑝 = 0.5 we generate the

edges. Finally, the graph is constructed and returned.

3.3 Query Generation
The query generator is used to generate random mutation queries

of different kinds. For each kind we define an interval that describes

the amount of queries that can be generated. Thenwe iterate over all

the available kinds and generate a random integer 𝑛 in its interval.

This integer 𝑛 is then used to generate exactly 𝑛 queries of this kind

using a query generator implementation. Since the query languages

vary between GDBMS, this component must be GDBMS-specific.
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Algorithm 1 The graph generation algorithm which consists of

four different functions.

1: function makeProperties(𝑆)

2: 𝑃 ← ∅
3: for all (𝑛, 𝑡) ∈ 𝑆 do
4: if RandomBoolean() then
5: 𝑃 ← 𝑃 ∪ {(𝑛, generateValue(𝑡))}
6: end if
7: end for
8: return 𝑃

9: end function
10: function makeNode(𝐿𝑉 , 𝑃𝑉 )

11: 𝑙
𝑅← 𝐿𝑉

12: 𝑝 ← makeProperties(𝑃𝑉 (𝑙))
13: return Node(𝑙, 𝑝)
14: end function
15: function makeEdge(𝐿𝐸 , 𝑃𝐸 , 𝑢, 𝑣)

16: 𝑙
𝑅← 𝐿𝐸

17: 𝑝 ← makeProperties(𝑃𝐸 (𝑙))
18: return Edge(𝑙, 𝑝,𝑢, 𝑣)
19: end function
20: function makeGraph(𝑀)

21: (𝐿𝑉 , 𝐿𝐸 , 𝑃𝑉 , 𝑃𝐸 ) ← 𝑀

22: 𝑉 , 𝐸 ← ∅
23: loop 𝑛 times

24: 𝑉 ← 𝑉 ∪ {makeNode(𝐿𝑉 , 𝑃𝑉 )}
25: end loop
26: for all 𝑢 ∈ 𝑉 do
27: for all 𝑣 ∈ 𝑉 do
28: if RandomBoolean() then
29: 𝐸 ← 𝐸 ∪ {makeEdge(𝐿𝐸 , 𝑃𝐸 , 𝑢, 𝑣)}
30: end if
31: end for
32: end for
33: return Graph(𝑉 , 𝐸)
34: end function

For Neo4j we have listed the possible query kinds in Table 1.

Note that the example queries are simplified and are usually much

larger. The generated queries are executed in a random order in

between the create statements of the actual graph. The result of

this random process is a graph database in a deterministic state

which is ready to be tested by our test oracles.

To generate a query we internally use an expression generator

which operates in a top-down fashion. It randomly selects applicable

operators, functions and leaf nodes (i.e., variables and constants).

Once a maximum depth is reached, only leaf nodes are consid-

ered. This ensures that the expressions do not become too large.

Constants are generated using a random data generator which is

biased to generate boundary values, such as minimum and maxi-

mum integers. This random data generator is an adapted version

of SQLancer’s [30] random data generator.

3.4 Predicate Partitioning (PP) Oracle
Ternary Logic Partitioning is an instance of the general partition

strategy idea invented by Rigger and Su. The high level idea of their

approach is that a predicate (expressions of type boolean) on a node

or edge must evaluate to TRUE, FALSE or NULL. A given query can

therefore be partitioned into three new queries that return disjoint

subsets of the original result set. One query selects all nodes and

edges where the predicate 𝑝 holds, one query where 𝑝 does not

hold and one for which 𝑝 evaluates to NULL. To implement these

three queries we generate three predicates: 𝑝 , NOT 𝑝 and 𝑝 IS NULL.
Each predicate is then used once in a filter clause to partition the

original result set. These predicates are randomly generated just

like the queries.

We present a generalized approach called Predicate Partitioning

(PP) that is based on TLP. The core idea stays the same, however,

certain GDBMS do not support NULL values in their database and

in that case, the partitioning involves only two disjoint subsets. To

implement PP we used Algorithm 2 which does exactly what is

described above. First, we generate a predicate 𝑃 and a query 𝑄 .

Then, the partitioning queries (𝑅, 𝑆,𝑇 ) are generated by changing

the predicates based on modified versions of 𝑃 . Finally, we select

the nodes using𝑄 as well as 𝑅, 𝑆,𝑇 and we expect these two sets to

be the same. If they are not, we know that we detected a bug.

Algorithm 2 The Predicate Partitioning (PP) oracle.

1: function PredicatePartitioning(𝑀)

2: 𝑃 ← generateExpression(𝑀 , boolean) ⊲ 𝑃 is a predicate

3: 𝑄 ← generateSelectionQuery(𝑀)

4: 𝑅 ← modifyFilterClause(𝑄 , 𝑃 )

5: 𝑆 ← modifyFilterClause(𝑄 , ¬𝑃 )
6: ⊲ 𝑇 is only necessary if the GDBMS supports NULL values

7: 𝑇 ← modifyFilterClause(𝑄 , 𝑃 IS NULL)

8: return SelectNodes(𝑅, 𝑆,𝑇 )
!

= SelectNodes(𝑄)

9: end function

3.5 Bug Reporting
Whenever the oracle detects a test case that fails it does report said

case to the console. GDBMeter does not provide a reduced test case,

meaning that some queries might be superfluous when reproducing

the bug or even that parts of a query are unnecessary. The reduction

step has to be done manually by the developer. Usually, this can

be done by minimizing the amount of queries that still trigger the

bug and then minimizing the queries themselves. The result of this

process is a minimal example that can be reported to the developers

of the GDBMS. To ease this tedious manual process, GDBMeter

provides a feature that runs queries from a file and reproduces

the exact state based on a serialized version of the metamodel. In

the future this replay future could be extended to automatically

reduce a set of queries to a minimal set that still produces the same

error by using the Delta Debugging approach [37]. One project that

already applies this approach successfully to reduce C/C++ files is

C-Reduce [29].
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Table 1: The different query kinds of Neo4j supported by GDBMeter and simplified example queries.

Kind (Keyword) Example

CREATE CREATE (:LABEL {property: true})

CREATE (TEXT) INDEX CREATE INDEX name FOR (n:LABEL) ON (n.property)

DELETE MATCH (n:LABEL) DELETE n

DROP INDEX DROP INDEX name IF EXISTS

REMOVE MATCH (n:LABEL) REMOVE n.property

SET MATCH (n:LABEL) SET n.property = false

The random query generation of GDBMeter can sometimes pro-

duce expected errors (i.e., errors that happen at runtime that are

not classified as bugs). For instance, a division by zero could result

in an error but before we run the query we cannot know if said

query will result in a division by zero. Therefore, GDBMeter sup-

ports expected exceptions that can be specified on a per-query level.

If the GDBMS throws an exception for such an annotated query,

GDBMeter would not report an incorrect bug.

4 SELECTED BUGS
This section gives an overview over interesting bugs that we found.

For brevity, we show only reduced test cases that demonstrate the

underlying core problem, rather than the original queries that found

the bugs. The original queries are usually much more complex and

contain lots of random data that, after reduction, turns out to be

irrelevant to reproduce the bug.

NaN value optimization bug in Neo4j. Listing 5 shows a query

that produces the result NaN, false, false. The first value Not a
Number (NaN) is defined by the IEEE Standard for Floating-Point

Arithmetic [1] and exhibits completely normal behavior. By this

standard, a comparison with NaN produces the value false which

is exactly what happens with the second expression. The last ex-

pression is where the bug occurs. Neo4j incorrectly assumes that

it can change NOT(0.0 < (0.0/0.0)) into 0.0 >= (0.0/0.0)
which then evaluates to false as any comparison with NaN should.

This assumption is incorrect, though, because NOT(false) is true
and therefore this is a case of premature optimization. This exam-

ple shows that handling NaN values correctly can be challenging,

especially when combined with query optimizations.

Listing 5: Neo4j incorrectly replaces the logical not operation
when an operand is not a number (NaN).

1 RETURN (0.0/0.0), 0.0 < (0.0/0.0), NOT(0.0 < (0.0/0.0))

Neo4j string comparison bug. Listing 6 shows a set of queries that
contains a logic bug. First, a node is created with the property p
set to "test". Then we ask for all nodes where property p starts
with its lTrim value. lTrim removes leading white spaces from an

expression. In our case it leaves the value untouched and clearly

"test" STARTS WITH "test" evaluates to true. That is why line 2
returns a count of 1. We then create a normal index on the property

p, note that this is not a string index. Finally, we ask for the exact

same nodes again but this time the count is 0. This shows that there

is some form of incorrect behavior related to normal (non-text)

indices and the function lTrim.

Listing 6: Neo4j does not return a node that is intended to be
part of the result set when an index is present.

1 CREATE (:L {p:"test"})
2 MATCH (n:L) WHERE n.p STARTS WITH lTrim(n.p) RETURN COUNT(n)
3 CREATE INDEX FOR (n:L) ON (n.p)
4 MATCH (n:L) WHERE n.p STARTS WITH lTrim(n.p) RETURN COUNT(n)

RedisGraph NaN value comparison bugs. Listing 7 shows a col-
lection of comparison queries written for RedisGraph that return

incorrect results. Each of them returns the exact negation of the

truth value it is supposed to return according to the IEEE Standard

for Floating-Point Arithmetic [1]. This example shows that even

simple comparisons involving NaN values can go wrong when not

handled with great care. These incorrect results could occur in more

complex queries and result in incorrect result sets.

Listing 7: RedisGraph handles comparisons with NaN values
incorrectly.

1 RETURN 0.0/0.0 = 1
2 RETURN 0.0/0.0 <> 1
3 RETURN 0.0/0.0 <= 1
4 RETURN 0.0/0.0 >= 1

RedisGraph distance query results in an infinite loop. Listing 8

shows a bug that is not considered a logic bug but shows that GDB-

Meter is also able to detect other interesting bugs. RedisGraph uses

RedisSearch [15] as its index backend. To answer certain queries

that involve indices, it asks RedisSearch for an answer. In this case,

the second query involves the distance, a function which calcu-

lates the distance between two points, and since an index is present

RedisSearch is consulted. However, since the comparison involves

a negative value on one side, RedisSearch runs into an endless loop

and never returns. Interestingly enough, this bug occurs even when

no node is present.. This example shows that the bugs found using

GDBMeter have an impact on other projects too (e.g., the ones that

use RedisSearch as an index backend).
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Listing 8: RedisGraph runs into an infinite loop when com-
paring a distance to a negative value.

1 CREATE INDEX FOR (n:L) ON (n.p)
2
3 MATCH (n:L)
4 WHERE distance(point({ longitude: 1, latitude: 1 }), n.p) <= -1
5 RETURN n

RedisGraph null value in WHERE clause bug. Listing 9 shows a
logic bug related to null values in WHERE clauses. The expression
(null <> false) XOR true evaluates to null because the left side
of the XOR is already null. Usually, whenever the WHERE clause it not
true then COUNT(n) is zero. However, in this example RedisGraph

returns a COUNT(n) of one because it incorrectly assumes that the

expression is true.

Listing 9: RedisGraph returns a node although the WHERE
clause evaluates to null.

1 CREATE (:L)
2 MATCH (n:L) WHERE (null <> false) XOR true RETURN COUNT(n)

JanusGraph mixed index where one property is not present bug.
Listing 10 shows a logic bug related to mixed indices of multiple

properties. A mixed index can be used for lookups on any combina-

tion of indexed keys and supports multiple condition predicates [8].

Lines 1-3 create an appropriate schema consisting of two properties

p and q. We then index those two properties on label L through a

mixed index backend. After creating a node with label L and prop-

erty p set to 1, we would expect the query of line 10 to return a

count of 0 since there is no node with label q. Instead, JanusGraph
returns a count of 1 which is incorrect.

Listing 10: JanusGraph returns a node when a mixed index
is present, although the condition does not match said node.

1 l = makeVertexLabel("L").make()
2 p = makePropertyKey("p").dataType(Integer.class).make()
3 q = makePropertyKey("q").dataType(Integer.class).make()
4
5 buildIndex().addKey(p).addKey(q).indexOnly(l).buildMixedIndex();
6
7 g.addV("L").property("p", 1)
8
9 g.V().hasLabel("L").has("q").count() // 0
10 g.V().hasLabel("L").has("q", not(eq(2))).count() // 1

5 EVALUATION
We evaluated the effectiveness of the Predicate Partitioning oracle

for finding logic bugs in GDBMS. Furthermore, we compare our

approach to an existing one that uses differential testing and is

implemented in a tool called Grand [38].

Table 2: We tested the most popular GDBMS currently avail-
able. All numbers are the latest as of September 2022.

GDBMS DB-Engines
1

GitHub LOC
2

First Release

Neo4j 1 10.1k 468k 2007

RedisGraph - 1.6k 44k 2018

JanusGraph 7 4.6k 93k 2017

Implementation. We implemented our approach in GDBMeter, a

framework that is able to test various GDBMS. The whole project,

including the infrastructure, is implemented in about 6’000 LOC.

An implementation of the partition oracle, however, only requires

about 150 LOC. The project is open-source and available at

https://github.com/InverseIntegral/gdbmeter.

Tested GDBMS. In our evaluation we considered three popular

and widely-used GDBMS (See Table 2). Neo4j is considered to be

the industry standard when it comes to graph databases. It can be

queried using the Cypher query language. Similarly, RedisGraph, an

extension of the well-known NoSQL database Redis, also uses the

Cypher query language. However, RedisGraph does only support a

subset of Cypher features but they try to follow the openCypher

standard [12] where possible. The last graph database that we tested

is JanusGraph which uses the TinkerPop graph computing frame-

work [4] and the underlying graph traversal language Gremlin.

Moreover, JanusGraph supports different index backends such as

Apache Lucene [3] and Elasticsearch [6]. For all GDBMS we tested

their latest available versions. In particular, for Neo4j we tested the

versions 4.4.8 and 4.4.9. RedisGraph was tested using a self-built ver-

sion based on the master branch (up to commit 166a643f3) which
is included in version 2.8.19 and for JanusGraph we tested version

0.6.2.

Test environment. We used an 4-core Intel i7-4790K CPU and 16

GB of memory running Arch Linux 5.19 for our bug finding effort.

To run GDBMeter we used Java 11 with the JVM flag

OmitStackTraceInFastThrow which prevents the JIT Compiler

from optimizing away exception messages
3
.

5.1 Effectiveness
Study methodology and challenges. We tested the GDBMS over a

period of roughly three months. Oftentimes we could not proceed

with finding bugs effectively because bugs either prevented other

bugs from happening or our tool found duplicate bugs that we had

already reported. To remedy the latter, we tried to prevent the bug

from being found again. To this end, we implemented a feature that

could be toggled through a simple configuration that would make

sure that a class of bugs did not happen repeatedly. As described

earlier, we reduced the test cases manually and made sure that these

were actual bugs and not just false positives. We then made sure

that no one else found the same bug previously and finally reported

it through the issue trackers provided by the developers.

1
A database ranking based on various factors: https://db-

engines.com/en/ranking/graph+dbms

2
These numbers are best effort estimates. They are calculated using cloc and tests are

excluded

3
For more information on this see: https://github.com/neo4j/neo4j/issues/12874

7

https://github.com/InverseIntegral/gdbmeter
https://db-engines.com/en/ranking/graph+dbms
https://db-engines.com/en/ranking/graph+dbms
https://github.com/neo4j/neo4j/issues/12874


Matteo Kamm

Table 3: We found 40 previously unknown bugs, 25 of which
have been fixed. One bug has been found in Jedis which is
not a GDBMS and therefore not listed here.

Closed

GDBMS Fixed Verified Intended Duplicate

Neo4j 9 12 1 2

RedisGraph 14 21 1 0

JanusGraph 1 1 0 0

Oracle implementation. We first implemented the predicate parti-

tioning oracle for Neo4j in a straight-forward manner. After seeing

its initial success, we decided to test other GDBMS. In order to reuse

as much of our implementation as possible, we chose to target a

GDBMS that uses the Cypher query language. RedisGraph was an

optimal candidate since it supports similar features as Neo4j, uses

Cypher too and is under active development. Finally, we decided

to show that our approach is applicable not only to Cypher based

GDBMS by implementing the oracle for JanusGraph, which sup-

ports the Gremlin query language. This is also one of the advantages

over differential testing. The challenge in that was that Gremlin

does not support arbitrary predicates like Cypher does, thus, we

had to use predefined predicate functions through the Gremlin API.

Found bugs. Table 3 shows the bugs that we found grouped by

GDBMS and status. We have found a total of 40 bugs which were

previously unknown, 36 of which have already been fixed or con-

firmed by the developers. This demonstrates that the majority of

our bugs are deemed to be important by the developers. Two of

our reported bugs were duplicates, one such duplication occurred

because GDBMeter generated two seemingly unrelated test cases

which turned out to have the same root cause. All other confirmed

bugs were unique and we achieved this by thoroughly checking

the issue trackers before reporting our bugs. Interestingly enough,

GDBMeter also found a total of 9 crash bugs (i.e., bugs that make

the server shut down during the execution a query). All of these

bugs were found in RedisGraph and some of them had to do with

memory management, in particular, illegal memory accesses. Neo4j

and JanusGraph, on the other hand, seem to catch exceptions on a

per-query basis which allows them to recover even when execut-

ing malicious queries. Finally, two bugs that we found caused the

GDBMS to hang indefinitely and the execution of the query had to

be terminated manually. GDBMeter also found a bug in the Java

client for Redis, called Jedis [9], which did not handle the double

values for infinity and Not a Number (NaN) correctly.

Soundness. Our approach is sound (i.e., a reported bug is always

a real bug). This is because GDBMeter only reports a bug when

a query returns an incorrect result, when the GDBMS throws an

unexpected exception or when it unexpectedly crashes. We encoun-

tered one bug that was marked as “won’t fix” for now because

the change would be too severe and would require a change in

semantics. This bug is an actual bug in our eyes since the database

returns an incorrect result, the developers referred to the undefined

semantics of this particular case though.

Table 4: A sample of 30 potential bugs that Grand found in
10’000 queries grouped by exception type.

Type Amount

ClassCastException (to Comparable) 11

IllegalArgumentException 8

Parsing Error 6

NumberFormatException 3

IllegalStateException 1

NoIndexException 3

5.2 Comparison with Grand
One existing approach that tests GDBMS is Grand [38]. It uses ran-

domized differential testing to find bugs in GDBMS that support the

Gremlin query language [33]. The basic idea is that they generate

random graphs and queries and execute those on multiple different

GDBMS with the same exact capabilities. They then compare the

results of those queries and if they do not match, Grand reports a

bug. The reasoning behind this approach is that one would expect

that different implementations of the same query language follow

the same semantics. The crucial component in this process is the

model-based query generator. It should support a wide variety of

interesting queries while still adhering to the syntax of the query

languages. Grand found a total of 21 bugs, 7 of which have been

fixed.

We have tried Grand and planned on doing a thorough analysis of

its bug finding capabilities. To do this we followed the instruction

given on GitHub and we used the provided scripts to perform

differential testing between JanusGraph [7], TinkerGraph [17] and

HugeGraph [2]. Once we concluded our initial experiments with

Grand, we realized that it would be close to impossible to compare

our approaches due to the amount of bugs that Grand reported. We

suspect that most of them are false positives which would need

to be investigated manually. To support this claim, we let Grand

run for 10 iterations each of which generated 1’000 queries. 615 of

all the 10’000 queries were potential bugs reported by Grand. We

inspected 30 of those potential bugs and all of them turned out to

be false positives. The inspected bugs occurred due to differences

in exception handling. For instance, 11 of those 30 reported bugs

were due to ClassCastException being thrown for HugeGraph

and TinkerGraph but not for JanusGraph. In one case, HugeGraph

threw an IllegalStateException whilst the other two GDBMS

simply returned null. And 6 of the potential bugs were due to

illegal symbols triggering different parsing errors. We have counted

the appearances of the different exceptions in those 30 potential

bugs and summarized them in Table 4. This strongly implies that

there are a lot of false positives. We have reported this on GitHub

through an issue
4
. A direct quantitative comparison between Grand

and GDBMeter seems infeasible because of this.

4
The issue can be found at https://github.com/choeoe/Grand/issues/1
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6 DISCUSSION
Challenges. One challenge that we faced during the testing of

GDBMS, RedisGraph in particular, was that we were unable to re-

produce a class of bugs. The bugs appeared to happen sporadically

during the execution of seemingly unrelated queries. We then re-

ported the bug by providing the stack trace as well as any other

relevant information. Later on the developers of RedisGraph figured

out that the bug occurred due to internal locks not being held and

a respective invariant being violated at that point. This shows that

GDBMeter is able to detect bugs that are notoriously difficult to

reproduce because they depend on exact timing and the execution

of multiple threads.

Bug importance. It is difficult to quantify the importance of bugs

but the feedback that we received of the developers was always

positive. The developers of RedisGraph are planning to integrate

GDBMeter into their tool chain to extensively test their database.

We have been in direct contact with them and they wrote: “We’ve

seen several academic teams developing tools for finding bugs in

graph databases, but most of the time, the queries are generated

using fuzzing techniques and seem synthetic. This is not a problem

by any means, but we found that researchers couldn’t identify the

root cause of the issues detected. If I understand correctly, your

method has the potential to make this task easier.” The developer

of Jedis were really happy that we provided a helpful test case

that made reproducing the bug easier for them. Most bugs that we

reported for RedisGraph were fixed within a few days which could

be an indicator for the importance of the bugs.

Generalization to more GDBMS. GDBMeter has been written

such that extending it to support more GDBMS would be easily pos-

sible. To this end, we separated GDBMS-specific components from

general purpose components to enable reuse when implementing

support for a new GDBMS. For instance, the graph generation can

be reused as long as the GDBMS is based on the property graph

model. Testing Cypher based GDBMS is even simpler since there are

already complete components which can be used without any mod-

ifications. Supporting other GDBMS is also not a problem as can

be seen with JanusGraph which uses the Gremlin query language.

Limitations. Our testing could use more complex features of the

query languages that we support (i.e., Cypher and Gremlin). We

have focused on the most important features such as Create, Read,

Update and Delete (CRUD) operations as well as indexing features.

We found that RedisGraph has some peculiarities when printing

floating-point numbers
5
which made it difficult to compare them

exactly to our expected result. Because of this we use an epsilon

when comparing floating-point numbers during the execution of

our oracle. Finally, one limiting factor is the manual reduction

that is required when finding a test case. One has to manually

remove queries or part of the queries to arrive at a minimal example.

And this process requires great care as to not lose any relevant

information.

5
For more information see: https://github.com/RedisGraph/RedisGraph/issues/2417

7 RELATEDWORK
Differential testing of DBMS. Differential testing [27] is a test-

ing technique where multiple systems are supposed to implement

equivalent behavior, a single input is sent to all of them and if the

outputs disagree, a bug in at least one of them has been detected.

Slutz applied this technique for testing RDBMS and realized a sys-

tem called RAGS. GDsmith [26] and Grand [38] are two tools that

successfully apply the same idea to GDBMS. GDsmith uses skeleton

generation and completion to generate semantically valid Cypher

queries which are then sent to different graph database instances.

Grand, on the other hand, uses a model-based approach to generate

valid Gremlin queries and then uses differential testing to detect

logic bugs.

Metamorphic testing of DBMS. Metamorphic testing [21] addresses

the test oracle problem by generating new input, for which the re-

sult is already known, based on previous input. The metamorphic

relation, which infers the expected results, is vital to this approach.

Rigger and Su apply this technique to find logic bugs in RDBMS

and implemented their approach in a tool called SQLancer. To the

best of our knowledge, there is no previous research in the area of

metamorphic testing of GDBMS.

8 CONCLUSION
This paper has presented how the idea of Ternary Logic Partition-

ing (TLP) can be applied to Graph Database Management Systems

(GDBMS). In this process, we developed a new form of Query Par-

titioning that we call Predicate Partitioning (PP). The basic idea

behind this approach is to partition the result set of a query based on

a random predicate, which is has a domain of only two (sometimes

three) values. With this we are able to predict if a query returns

an incorrect result whenever a filter step based on a predicate oc-

curs. Through our evaluation on three widely-used GDBMS we

have shown that PP is highly effective. It has found a total of 42

bugs, 16 of which are logic bugs. We are convinced that the idea of

Query Partitioning can be extended further in the domain of graph

databases and that there are more bugs to be found.
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