

A bi-axially zero Poisson's ratio morphing skin system

Other Conference Item

Author(s): <u>Kölbl, Michael</u> (D; Bossart, Dominic; <u>Ermanni, Paolo</u> (D)

Publication date: 2022-07-19

Permanent link: https://doi.org/10.3929/ethz-b-000572680

Rights / license: In Copyright - Non-Commercial Use Permitted

Funding acknowledgement: 192082 - Variable Stiffness Composite Metamaterials (SNF)

A bi-axially zero Poisson's ratio morphing skin system

Michael Kölbl, Dominic Bossart, Paolo Ermanni

Laboratory of Composite Materials and Adaptive Structures, ETH Zürich

ICCS25, Porto, 19 July 2022

Bi-axially morphing skins for morphing transition regions

Conventional and transitioning morphing aileron

CMASLab

ETH zürich

- Aerodynamics
 - Decreased vortex formation and drag
 - Reduced noise emission
- Mechanics
 - Strains in chord and span direction up to 20%
 - Load carrying
 - Complex shape

Vortex comparison with morphing aileron transition region

Requirements of a morphing wing skin system and state of the art implementations

Lattice structures with elastomeric covers

(Un)covered corrugations

[McKnight, 2010]

Material approach

Light

- Thin
- Highly orthotropic
 - In-plane compliant
 - Out-of-plane stiff
- Closed and smooth surface

An adaptive skin is always a compromise

1st Concept bi-axially morphing skin system Working principle

- 3 shifted platelets form a stack
- Overlapping platelet stacks
 - Create a closed surface
 - Provide local out-of-plane stiffness
 - Move relative to each other
- Ligaments connecting platelet stacks
 - Provide in-plane compliance
 - Meander for Zero Poisson's ratio

1st Concept bi-axially morphing skin system Challenges

bi-axially streched LMS

- Ligament stresses at 16.1% in-plane strain
 - Stress concentration
 - Local Plastification

23 V A-A side view u_, [mm] [Kölbl, 2022] 1.19 1.08 0.97 0.86 0.74 0.63 0.52 0.41 0.30 0.19 0.08 -0.04 -0.15

top view

- Out-of plane deformation under 632 Pa (Cessna)
 - Global out-of-plane stiffness sufficient only with regular structural support

1st Concept bi-axially morphing skin system Challenges

- Ligament stresses at 16.1% in-plane strain
 - Stress concentration
 - Local Plastification

- Out-of plane deformation under 632 Pa (Cessna)
 - Global out-of-plane stiffness sufficient only with regular structural support

2nd Iteration bi-axially morphing skin system

Working principle

- Platelet stacks provide
 - Local out-of-plane stiffness
 - Closed surface
- Metastructure
 - Supports and positions platelet stacks
 - No ligaments required for platelet stacks
 - Provides global mechanical properties
- Requirements on metastructure
 - Highly orthotropic
 - Lightweight
 - Zero Poisson's ratio

- Soft ligaments connected to stiff plates provide in-plane compliance
- Double corrugation
 - Higher out-of-plane stiffness
 - Increased orthotropy

- Soft ligaments connected to stiff plates provide in-plane compliance
- Double corrugation
 - Higher out-of-plane stiffness
 - Increased orthotropy

 Double corrugated strip also exhibits increased orthotropy

 Metastructure assembled from double corrugated strips

ETHzürich **CMASLab**

Ĵу

X

Ĵу

X

CMASLab

ETH zürich

 Metastructure assembled from double corrugated strips

 Metastructure assembled from double corrugated strips

 Metastructure assembled from double corrugated strips

Metastructure assembled from double ٠ corrugated strips

- Metastructure assembled from double corrugated strips
- Bi-axial deformation in tension and compression
- Extreme orthotropic behaviour
 - In-plane compliant
 - Out-of-plane stiff

- Metastructure assembled from double corrugated strips
- Bi-axial deformation in tension and compression
- Extreme orthotropic behaviour
 - In-plane compliant
 - Out-of-plane stiff
- Platelet stacks bonded to crossing points

Zero Poisson's ratio deformation pattern

Manufacturing process metastructure

Corrugated strips

Metastructure

- Thin-ply sheets
 - NTPT T800/402, 40 g/m²
 - Layup [0°, 90°, 0°]
 - Total thickness 165 μm
- CFRP sandwich
 - 2 mm PET foam core
 - 160 g/m² CF/epoxy weave
- Bonding of sandwich and thinply sheets with epoxy resin
- Cutting strips (10 mm wide)
- Assembly with bonded crosslap joints
- Approximately 2 kg/m²

Manufacturing process skin system

Metastructure

ETH zürich

Platelet stack assembly

Bonding stacks and metastructure

CMASLab

Skin system

- Platelets
 - [0°, 90°]_s
 - 150 g/m² TC250/HTS40
- Platelet stacks
 - Assembly with rig
 - Bonded with epoxy resin
- Skin system
 - Bonded with epoxy resin
 - Approximately 5 kg/m²

Testing and simulation set-up metastructure

- Experimental set-up
 - In-plane tensile test up to $\varepsilon_x = 15\%$
 - 3-point bending test, $u_z = 10mm$ deflection

- Finite Element model
 - Quadratic shell elements
 - Boundary conditions tensile test
 - Boundary conditions 3-point bending test

Validation of Finite Element model for metastructure

- Tensile response
 - Experiments twice as stiff

• Bending response

Simulation nearly twice as stiff

10

Validation of Finite Element model Effect of excessive resin

Excessive resin in ligament radii

- Tensile response
 - Excessive resin effectively shortens ligaments
 - FEM agrees with experiments

- Bending response
 - Further increased bending stiffness
 - FEM results far off

Validation of Finite Element model Effect of sandwich ligament interface

- Tensile response hardly influenced by sandwich thin-ply sheet interface
- Poisson's ratio: -0.05 (experiments), -0.02 (FEM)

- Bending response highly sensitive to sandwich – thin-ply sheet interface
- Sandwich support crucial

ETH zürich CMASLab

10

Parametric study of metastructure

Parametric study of metastructure Metastructure height

Parametric study of metastructure Ligament length

Parametric study of metastructure Ligament thickness

Parametric study of metastructure Radius of ligaments

Parametric study of metastructure Comparison

Experimental results skin system

- Tensile response not influenced by platelet stacks
- Convex curvature
 - Hardly influences bending response
 - Protrusion of platelet stacks
- Concave curvature
 - Significantly increased bending stiffness (and orthotropy)
 - No protrusion of platelet stacks

Outlook

Mechanical effect of platelet stacks on morphing skin system

- Aerodynamic study
 - How does the platelet surface influence drag

• Stacking sequence of platelets to prevent protrusion

Manufacturing quality

References

- [Ott, 2020] Ott, V., Keidel, D., Kölbl, M., & Ermanni, P. (2020). [Abdessemed, Investigation of an adaptive, hinge-less, and highly shear stiff structure for morphing skins. *Journal of Intelligent Material Systems and Structures*, *31*(3), 445-456. [Woods, 2016]
- [Olympio, 2010] Olympio, K. R., & Gandhi, F. (2010). Flexible skins for morphing aircraft using cellular honeycomb cores. *Journal of intelligent material systems and structures*, *21*(17), 1719-1735.
- [Thill, 2010] Thill, C., Etches, J. A., Bond, I. P., Potter, K. D., & [Kölbl, 2022] Weaver, P. M. (2010). Composite corrugated structures for morphing wing skin applications. *Smart Materials and Structures*, *19*(12), 124009.
- [Previtali, 2015] Previtali, F., Arrieta, A. F., & Ermanni, P. (2015). Double-walled corrugated structure for bending-stiff anisotropic morphing skins. *Journal of Intelligent Material Systems and Structures*, *26*(5), 599-613.
- [Murugan, 2013] Murugan, S., & Friswell, M. I. (2013). Morphing wing flexible skins with curvilinear fiber composites. *Composite Structures*, *99*, 69-75.
- [McKnight, 2010] Mcknight, G., Doty, R., Keefe, A., Herrera, G., & Henry, C. (2010). Segmented reinforcement variable stiffness materials for reconfigurable surfaces. *Journal of Intelligent Material Systems and Structures*, 21(17), 1783-1793.

- [Abdessemed, 2022] Abdessemed, C., Bouferrouk, A., & Yao, Y. (2022). Effects of an Unsteady Morphing Wing with Seamless Side-Edge Transition on Aerodynamic Performance. *Energies*, *15*(3), 1093.
 - Woods, B. K., Parsons, L., Coles, A. B., Fincham, J. H., & Friswell, M. I. (2016). Morphing elastically lofted transition for active camber control surfaces. *Aerospace Science and Technology*, *55*, 439-448.
 - Kölbl, M., & Ermanni, P. (2022). Structural design and analysis of an anisotropic, bi-axially morphing skin concept. *Aerospace Science and Technology*, *120*, 107292.