
ETH Library

The multi-level Monte Carlo Finite
Element Method for a stochastic
Brinkman problem

Report

Author(s):
Gittelson,Claude J.; Könnö, Juho; Schwab, Christoph; Stenberg, Rolf

Publication date:
2011-05

Permanent link:
https://doi.org/10.3929/ethz-a-010402591

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
SAM Research Report 2011-31

Funding acknowledgement:
247277 - Automated Urban Parking and Driving (EC)

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-010402591
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
! Eidgenössische
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THE MULTI-LEVEL MONTE CARLO FINITE ELEMENT

METHOD FOR A STOCHASTIC BRINKMAN PROBLEM

CLAUDE J. GITTELSON, JUHO KÖNNÖ, CHRISTOPH SCHWAB, AND ROLF STENBERG

Abstract. We present the formulation and the numerical analysis of the
Brinkman problem derived rigorously in [2, 3] with a random permeability
tensor. The random permeability tensor is assumed to be a lognormal random
field taking values in the symmetric matrices of size d × d, where d denotes
the spatial dimension of the physical domain D. We prove that the solutions
admit bounded moments of any finite order with respect to the random in-
put’s Gaussian measure. We present a Mixed Finite Element discretization in
the physical domain D which is uniformly stable with respect to the realiza-
tion of the lognormal permeability field. Based on the error analysis of this
Mixed Finite Element Method (MFEM), we develop a Multi-Level Monte Carlo
(MLMC) discretization of the stochastic Brinkman problem and prove that the
MLMC-MFEM allows to estimate the statistical mean field with asymptoti-
cally the same accuracy versus work as the MFEM for a single instance of the
stochastic Brinkman problem. The robustness of the MFEM implies in partic-
ular that the present analysis also covers the Darcy diffusion limit. Numerical
experiments confirm the theoretical results.

1. Introduction

Efficient numerical simulation of a viscous, incompressible flow in porous media is
a key problem in the field of geosciences. It arises in an increasing number of appli-
cations related to natural resource management, environmental impact assessment
and the planning and risk assessments of waste disposals. Porous media modelling
is characterized by multiple scales of the permeability of the media of interest, and
by uncertain geometry and material parameters of these media. The present paper
is devoted to a numerical analysis of a Multilevel Monte Carlo Method for a stochas-
tic variant of the Brinkman problem. Major applications of the Brinkman model
lie in petroleum engineering, in particular in the simulation of fractured reservoirs.
Other industrial applications include e.g. the simulation of resin flow in composite
molding and modelling of oil filters.

The Brinkman model was justified as an asymptotic limit ε → 0 for media with
deterministic, periodic spatial distributions of inhomogeneities of size and period
O(ε) in [2]. In [3], it was shown that under slightly different asymptotic scaling
hypotheses, either the Stokes problem or the Darcy law is obtained in the limit
ε → 0. The rather delicate dependence of the limit problem on the scaling hypoth-
esis prompted in [13] the development and the numerical analysis of robust mixed
FEM for a parametric class of Brinkman models which comprise, in particular, all
three scaling limits obtained in [2, 3]. The derivation of the Brinkman model in
[2] required in particular full knowledge of the microscopic grain geometry of the
porous medium in the derivation of the effective permeability tensor in the upscaled
Brinkman model.
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In subsurface flow models in computational geosciences, however, pore struc-
ture and geometry are not explicitly known. Accordingly, statistical hypotheses on
spatial correlations of distributions of pore sizes and grain shape are made. Most
widely used is the so-called log-normal distribution, in particular in connection with
the (postulated valid) Darcy limit for permeability.

We therefore analyze in the present paper the Finite Element discretization of
a parametric, stochastic family of Brinkman models in a bounded domain D ⊂ Rd:
a scale parameter 0 ≤ t < ∞ allows a seamless transition between the Darcy and
Stokes flow, whereas the (possibly anisotropic) stochastic pore-scale geometry is
assumed as a family of symmetric random d× d tensors with a log-normal law.

Robustness of the mixed FEM with respect to the scaling parameter t is ensured
by an error analysis in the mesh dependent norms introduced in [13], whereas the
log-normal randomness in the permeability tensors is accounted for by aMulti-Level
Monte Carlo sampling strategy following [4].

We prove optimal convergence rates of the Mixed Finite Element Approximations
of the mean velocity and pressure fields, and establish complexity bounds which
show that, under realistic assumptions on the spectrum of the covariance operator
for the log-normal family of permeability tensors, the Multi-Level Monte Carlo
Mixed Finite Element discretization allows approximating the mean velocity and
pressure fields with work proportional to, essentially (i.e. up to logarithmic terms),
that of a single, deterministic Brinkman solve on the finest spatial grid. In our
analysis, we also exploit a discretization level dependent truncation order of the
log-normal tensors’ Karhunen–Loève expansions. We mention that the present
Multi-Level MC approach is a so-called non-intrusive sampling strategy which is to
be contrasted with recent, intrusive efforts, e.g. in [11] where a polynomial chaos
type discretization for the Darcy limit was proposed and analyzed. For a general
survey of theoretical properties of polynomial chaos based discretizations, we refer
to [17].

Throughout the paper, we employ standard notation and terminology. The
triplet (Ω,A,P) will denote a probability space on which uncertainty is modelled.
By E we denote the mathematical expectation with respect to the probability mea-
sure P. The symbol D will signify a bounded domain in Rd, d = 2, 3, with a
Lipschitz boundary ∂D. For 1 ≤ p ≤ ∞, we denote by Lp(D) the space of Lebesgue-
measureable, real-valued functions in D which are p-integrable with respect to the
Lebesgue measure. For k ∈ N0 we denote by Hk(D) the usual Sobolev spaces of
functions in L2(D) whose weak derivatives of order k are square integrable over D.

2. The deterministic Brinkman problem

Let D ⊂ Rd be a bounded Lipschitz polyhedron. The deterministic Brinkman
problem on D with parameters t ≥ 0 and M ∈ L∞(D; Sd) is

{
−t2Au+Mu+∇p = f ,

divu = g ,
(1)

where Au = div ε(u) for ε(u) = (∇u + ∇u")/2 and Sd denotes the space of
symmetric d × d matrices, endowed with the spectral norm. We assume that M
is uniformly positive definite on D. For t > 0, we assume homogeneous essential
boundary conditions

u = 0 on ∂D . (2)

In the limit t = 0, we consider the natural boundary conditions

u · n = 0 on ∂D . (3)
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Both cases require the compatibility condition g ∈ L2
∗(D). Here and in what follows,

L2
∗(D) = L2(D)/R denotes the space of equivalence classes of functions in L2(D)

which are equal up to a constant. We shall identify L2
∗(D) in what follows with the

closed subspace of L2(D) of functions with vanishing mean. We impose the same
condition p ∈ L2

∗(D) in order to ensure uniqueness of the pressure p in (1). The
solution space V for the velocity is defined as completion of [C∞

0 (D)]d with respect
to the norm

t2‖ε(v)‖20 + ‖v‖20 . (4)

By Korn’s inequality, this norm is equivalent (uniformly with respect to t ≥ 0, with
constants depending only on D) to

‖v‖2t := t2‖∇v‖20 + ‖v‖20 , (5)

which is the norm we use in the following. Consequently,

V = [H1
0 (D)]d (6)

if t > 0, and for t = 0, this space is

V = [L2(D)]d . (7)

The space for the pressure p is defined through the norm

|||q|||t := sup
v∈V

〈v,∇q〉
‖v‖t

, (8)

where 〈·, ·〉 denotes the duality pairing in V × V ∗, as

Q :=
{
q ∈ L2

∗(D) ; |||q|||t < ∞
}
. (9)

Note that for v ∈ V and q ∈ Q,

〈v,∇q〉 =
{
−(div v, q) for t > 0 ,

(v,∇q) for t = 0 ,
(10)

where (·, ·) denotes the inner product in L2(D)d. For t > 0, the Babuška–Brezzi
property

sup
v∈V

(div v, q)

‖v‖t
≥ C‖q‖0 ∀q ∈ L2

∗(D) (11)

implies that Q = L2
∗(D). In the case t = 0, we have |||q|||t = ‖∇q‖0, and thus

Q = H1
∗ (D) = H1(D) ∩ L2

∗(D).
We define the bilinear forms

a(u,v) := t2(ε(u), ε(v)) + (Mu,v) , (12)

b(v, q) := 〈v,∇q〉 , (13)

and
B(u, p;v, q) := a(u,v) + b(v, p) + b(u, q) . (14)

The weak formulation of (1) with the boundary conditions (2) or (3) is to find
(u, p) ∈ V ×Q such that

B(u, p;v, q) = L(v, q) ∀(v, q) ∈ V ×Q (15)

for the linear functional
L(v, q) := (f ,v)− (g, q) . (16)

By Korn’s inequality, uniform positive definiteness of M , and (8), Brezzi’s coer-
civity conditions for saddle point problems are satisfied,

a(v,v) ≥ α‖v‖2t ∀v ∈ V and sup
v∈V

b(v, q)

‖v‖t
≥ |||q|||t ∀q ∈ Q . (17)
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Furthermore, the bilinear forms a(·, ·) and b(·, ·) are bounded,

a(w,v) ≤ ca‖w‖t‖v‖t ∀w,v ∈ V , (18)

b(v, q) ≤ ‖v‖t|||q|||t ∀(v, q) ∈ V ×Q . (19)

This implies continuity of the bilinear form B(·; ·) on [V × Q]2, and the stability
condition

sup
(v,q)∈V ×Q

B(w, r;v, q)

‖v‖t + |||q|||t
≥ C(‖w‖t + |||r|||t) ∀(w, r) ∈ V ×Q , (20)

by which the solution (u, p) ∈ V ×Q exists and is unique. Moreover, we have the
bounds

‖u‖t ≤
1

α
‖f‖V ∗ +

(
1 +

ca
α

)
‖g‖Q∗ , (21)

|||p|||t ≤
(
1 +

ca
α

)
‖f‖V ∗ + ca

(
1 +

ca
α

)
‖g‖Q∗ ; (22)

see for example [6] for details. Note that the constants α and ca depend on M but
not on t.

3. The stochastic Brinkman problem

We consider the matrix M in the Brinkman problem (1) to be a random field.
Let G be an Sd-valued centered Gaussian field on D with bounded paths. The
distribution ofG is a centered Gaussian measure on L∞(D; Sd), which we assume to
be a Radon measure or, equivalently, that it is concentrated on a separable subspace
of L∞(D; Sd), such as Cb(D; Sd), see e.g. [5]. Then for an M0 ∈ L∞(D; Sd) which
is uniformly positive definite, we consider M of the form

M = M0 exp(G) , (23)

where exp(·) denotes the matrix exponential. By construction, M is almost surely
in L∞(D; Sd) and uniformly positive definite.

We will denote the underlying set of elementary events by Ω and the probability
measure by P. The expectation operator E is the integral over Ω with respect to
P.

Lemma 3.1. For all q > 0,

E[exp(q‖G‖L∞(D;Sd))] < ∞ . (24)

Proof. By Fernique’s theorem [9, 5], there is a κ > 0 such that

E[exp(κ‖G‖2L∞(D;Sd))] < ∞ .

Consequently, for any q > 0,

E[exp(q‖G‖L∞(D;Sd))] ≤ exp( q
2

4κ )E[exp(κ‖G‖2L∞(D;Sd))] < ∞ . !

Let the random variables µmin and µmax denote the minimal and maximal eigen-
values of M on the domain D. By the above assumptions, µ−1

min and µmax are a.s.
finite. Lemma 3.1 implies the following stronger property.

Proposition 3.2. For any q ∈ (0,∞), µ−1
min, µmax ∈ Lq(Ω).

Proof. The assertion follows from Lemma 3.1 since

µmax ≤ ‖M0‖L∞(D;Sd) exp(‖G‖L∞(D;Sd)) ,

and similarly for µ−1
min. !
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Together with the stability bounds (21) and (22), Proposition 3.2 leads to inte-
grability properties of u and p. We note that ca and α are of the form

ca = max(c̄a, µmax) and α = min(ᾱ, µmin) , (25)

with c̄a and ᾱ independent of M . In particular, ca and α−1 are also in Lq(Ω) for
any q ∈ (0,∞).

Proposition 3.3. For all q ∈ [1,∞), u ∈ Lq(Ω;V ) and p ∈ Lq(Ω;Q).

Proof. Measurability of u and p follows as in [12, Lemma 3.4] by truncating the
Gaussian measure such that M is uniformly bounded, formulating a sequence of
well-posed saddle point problems on L2(Ω;V ) and L2(Ω;Q), and passing to the
limit. Suitable truncated measures can be constructed by restricting the distribu-
tion of G to a sequence of compact subsets of L∞(D; Sd), as in [5, Theorem 3.4.1].

By (21) and Hölder’s inequality,

‖u‖Lq(Ω;V ) ≤ ‖α−1‖Lq(Ω)‖f‖V ∗ +
(
1 + ‖α−1‖L2q(Ω)‖ca‖L2q(Ω)

)
‖g‖Q∗ ,

and using (22),

‖p‖Lq(Ω;Q) ≤
(
1 + ‖α−1‖L2q(Ω)‖ca‖L2q(Ω)

)
‖f‖V ∗

+ ‖ca‖L3q(Ω)

(
1 + ‖α−1‖L3q(Ω)‖ca‖L3q(Ω)

)
‖g‖Q∗ .

!

Remark 3.4. Proposition 3.3 extends to stochastic f and g. It follows as above that
if f ∈ Lq̄(Ω;V ∗) and g ∈ Lq̄(Ω;Q∗), then u ∈ Lq(Ω;V ) and p ∈ Lq(Ω;Q) for all
q ∈ [1, q̄). For simplicity, we consider only deterministic f and g in the following.

4. Approximation by finitely many random variables

4.1. Truncated Gaussian field. We approximate M by expanding the Gaussian
field G in a series, and truncating this series after N terms. We consider the
Karhunen–Loève expansion of G; however, all of the following also holds for more
general series representations.

Let SdF denote Sd endowed with the Frobenius norm instead of the spectral norm.
Since L2(D; SdF ) is a separable Hilbert space, the covariance of G can be interpreted
as a symmetric nuclear operator KG on L2(D; SdF ) which is given by

KGA = E
[∫

D
trace(A"G) dxG

]
, A ∈ L2(D; SdF ) . (26)

Let (λn)∞n=1 denote the eigenvalues of KG, and let (Φn)∞n=1 be corresponding eigen-
vectors, normalized in L2(D; SdF ). The Karhunen–Loève expansion of G is

G =
∞∑

n=1

Yn

√
λnΦn , (27)

where

Yn = λ−1/2
n

∫

D
trace(G"Φn) dx (28)

are i.i.d. standard normal random variables. Let Ψn :=
√
λnΦn and

GN :=
N∑

n=1

YnΨn , N ∈ N . (29)

More generally, (Ψn)∞n=1 may be any orthonormal basis of the Cameron–Martin
space of G. Since the distribution of G is a centered Radon Gaussian measure on
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L∞(D; Sd), GN converges to G P-a.s. in L∞(D; Sd) by [5, Theorem 3.5.1]. Further-
more, convergence in Lq(Ω;L∞(D; Sd)) for all q ∈ [1,∞) follows from [5, Corol-
lary 3.5.8]. We make additional assumptions in order to derive a convergence rate.

We abbreviate ψn := ‖Ψn‖L∞(D;Sd), and assume without loss of generality that
ψ := (ψn)∞n=1 is nonincreasing. Furthermore, let δn := ψκ

n‖DΨn‖L∞(D;L(Rd,Sd)) for
a κ ≥ 0, and δ := (δn)∞n=1.

Assumption 4.1. The functions Ψn are in W 1,∞(D; Sd) for all n ∈ N. The
sequence of norms ψ is in )τ for a τ ∈ (0, 2), and δ is in )$ for a + ∈ [τ,∞].

Remark 4.2. Assumption 4.1 implies in particular thatG ∈ Cb(D; Sd) almost surely.
Since Ψn ∈ Cb(D; Sd) for all n ∈ N, GN is continuous for all N , and continuity of
G follows since GN converges to G a.s. in L∞(D; Sd).

Lemma 4.3. For any q ≥ τ and any N ∈ N,
( ∞∑

n=N+1

ψq
n

)1/q

≤ ‖ψ‖%τ (N + 1)−s , s =
1

τ
− 1

q
. (30)

Proof. Due to the elementary estimate

‖ψ‖τ%τ =
∞∑

i=1

ψτ
i ≥

n∑

i=1

ψτ
i ≥

n∑

i=1

ψτ
n = nψτ

n ,

we have ψn ≤ n−1/τ‖ψ‖%τ for all n ∈ N. Therefore, using q − τ > 0,

∞∑

n=N+1

ψq
n ≤

∞∑

n=N+1

ψτ
nψ

q−τ
N+1 ≤ ‖ψ‖τ%τ (N + 1)−(q−τ)/τ‖ψ‖q−τ

%τ = ‖ψ‖q%τ (N + 1)−sq

for all N ∈ N, with s as in (30). !

Theorem 4.4. For any q ∈ [1,∞) and any sufficiently small ϑ > 0, there is a
constant cq,ϑ such that for all N ∈ N,

‖G−GN‖Lq(Ω;L∞(D;Sd)) ≤ cq,ϑ‖ψ‖1−(1+κ)ϑ
%τ ‖δ‖ϑ%"(N + 1)−s (31)

with s = 1−(1+κ)ϑ
τ + ϑ

$ − 1
2 if + < ∞ and s = 1−(1+κ)ϑ

τ − 1
2 if + = ∞.

Proof. Let ) ∈ (Sd)∗ with ‖)‖(Sd)∗ = 1, N ∈ N and

g :=
∞∑

N+1

Yn)(Ψn) . (32)

Following the proof of [7, Proposition 4], we show below that for any q ∈ [1,∞)
and any sufficiently small ϑ > 0, there is a constant c̃q,ϑ independent of ) and N
such that

‖g‖Lq(Ω;L∞(D)) ≤ c̃q,ϑ‖ψ‖1−(1+κ)ϑ
%τ ‖δ‖ϑ%"(N + 1)−s (33)

with s as above. This shows the claim since Sd is isomorphic to Rk with k =
d(d+1)/2 equipped with the )q(Rk) norm, and thus there exist k continuous linear
functionals )i ∈ (Sd)∗ with ‖)i‖(Sd)∗ = 1 such that

‖A‖Sd ≤ Cq

(
k∑

i=1

|)i(A)|q
)1/q

∀A ∈ Sd .
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Consequently,

E[‖G−GN‖qL∞(D;Sd)] ≤ Cq
qE

[
k∑

i=1

‖)i(G−GN )‖qL∞(D)

]

= Cq
q

k∑

i=1

‖)i(G−GN )‖qLq(Ω;L∞(D)) ,

and (31) follows by applying (33) independently to each summand.
Using that (Yn)∞n=1 are mutually uncorrelated and have unit variance, for any

x, y ∈ D,

E[(g(x)− g(y))2] = E




( ∞∑

n=N+1

Yn)(Ψn(x)− Ψn(y))

)2




=
∞∑

n=N+1

()(Ψn(x)− Ψn(y)))
2 .

Due to ‖)‖(Sd)∗ = 1 and

‖Ψn(x)− Ψn(y)‖Sd ≤ min
(
2‖Ψn‖L∞(D;Sd), ‖DΨn‖L∞(D;L(Rd,Sd))|x− y|

)
,

for any ϑ ∈ [0, 1] and every x, y ∈ D, we have

|)(Ψn(x)− Ψn(y)| ≤ 21−ϑ‖Ψn‖1−ϑ
L∞(D;Sd)‖DΨn‖ϑL∞(D;L(Rd,Sd))|x− y|ϑ .

Consequently,

E[(g(x)− g(y))2] ≤
(
22(1−ϑ)

∞∑

n=N+1

‖Ψn‖2(1−ϑ)
L∞(D;Sd)‖DΨn‖2ϑL∞(D;L(Rd,Sd))

)
|x− y|2ϑ ,

which is independent of ) ∈ (Sd)∗. By definition of ψn and δn, the above sum is
equal to

∞∑

n=N+1

ψ2(1−(1+κ)ϑ)
n δ2ϑn ≤

( ∞∑

n=N+1

ψ2(1−(1+κ)ϑ)p
n

)1/p ( ∞∑

n=N+1

δ$
)2ϑ/$

with p = +/(+− 2ϑ), if ϑ > 0 is sufficiently small. Lemma 4.3 implies
( ∞∑

n=N+1

ψ2(1−(1+κ)ϑ)p
n

)1/p

≤ ‖ψ‖2(1−(1+κ)ϑ)
%τ (N + 1)−2s

with s as in the statement of the theorem. This shows the estimate

E[(g(x)− g(y))2] ≤ 22(1−ϑ)‖ψ‖2(1−(1+κ)ϑ)
%τ ‖δ‖2ϑ%" (N + 1)−2s|x− y|2ϑ

for almost all x, y ∈ D.
For any q ∈ [1,∞) there is a constant cq such that for all centered Gaussian

random variables X,

(E[|X|q])1/q ≤ cq
(
E[|X|2]

)1/2

since for σ = (E[|X|2])1/2,

E[|X|q] = 1√
2πσ

∫ ∞

−∞
|x|q exp(−x2

2σ2 ) dx =
σq

√
2π

∫ ∞

−∞
|y|q exp(−y2

2 ) dy = cqqσ
q .

Therefore, as g(x)− g(y) is a centered Gaussian random variable,

E[|g(x)− g(y)|q] ≤ 2q(1−ϑ)cqq‖ψ‖q(1−(1+κ)ϑ)
%τ ‖δ‖qϑ%" (N + 1)−qs|x− y|qϑ
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Let 0 < ν < ϑ ≤ 1. Abbreviating η := 2q(1−ϑ)cqq‖ψ‖q(1−(1+κ)ϑ)
%τ ‖δ‖qϑ%" (N + 1)−qs,

we have

E[|g|qW ν,q(D)] = E
[∫

D

∫

D

|g(x)− g(y)|q

|x− y|d+qν
dy dx

]
≤ η

∫

D

∫

D
|x− y|q(ϑ−ν)−d dy dx ,

and the latter integral is finite sinceD is bounded. Similarly, recalling the definition
(32) of g, we have for any x ∈ D,

E[g(x)2] =
∞∑

n=N+1

)(Ψn)
2 ≤

∞∑

n=N+1

ψ2
n ≤ ‖ψ‖2%τ (N + 1)−2s̄ ,

where s̄ := τ−1 − 1/2 > s. Since g(x) is a centered Gaussian random variable,

(E[|g(x)|q])1/q ≤ cq(E[|g(x)|2])1/2 ≤ cq‖ψ‖%τ (N + 1)−s̄

for any q ∈ [1,∞). Integrating over D, it follows that

E[‖g‖qLq(D)] ≤ |D|cqq‖ψ‖q%τ (N + 1)−qs̄ ≤ Cη .

Finally, we choose q > d/ν, such that W ν,q(D) embeds continuously into Cb(D),
see e.g. [1, Thm. 7.3.4]. Then

E[‖g‖qL∞(D)] ≤ C(E[‖g‖qLq(D)] + E[|g|qW ν,q(D)]) ≤ Cη ,

which shows (33) for q > d/ν. For smaller q, (33) follows by Jensen’s inequality. !
Remark 4.5. We note that the convergence rate in Theorem 4.4 is independent of
q, and essentially independent of the summability + of δ and the parameter κ in
the definition of δ. For any q ∈ [1,∞) and any 0 < s < s̄ := τ−1 − 1/2,

‖G−GN‖Lq(Ω;L∞(D;Sd)) ≤ CN−s , N ∈ N . (34)

4.2. Truncation error in the log-Gaussian field. We define a sequence of ap-
proximations to the log-Gaussian field M by

MN := M0 exp(GN ) = M0 exp

(
N∑

n=1

YnΨn

)
, N ∈ N . (35)

By continuity of the matrix exponential, MN converges to M a.s. in L∞(D; Sd).
We show that convergence also holds in Lq(Ω;L∞(D; Sd)), with the same rate as
in the convergence of GN to G.

Lemma 4.6. For all q ∈ [1,∞) there is a constant Bq such that

‖exp(‖GN‖L∞(D;Sd))‖Lq(Ω) ≤ Bq ∀N ∈ N , (36)

‖exp(‖G‖L∞(D;Sd))‖Lq(Ω) ≤ Bq . (37)

Proof. The claim is a consequence of Fernique’s theorem, see [5, Theorem 2.8.5]
and [7, Proposition 7]. Since GN converges to G in L2(Ω;L∞(D; Sd)), there is a
constant b such that

‖G‖L2(Ω;L∞(D;Sd)) ≤ b , ‖GN‖L2(Ω;L∞(D;Sd)) ≤ b ∀N ∈ N .

By Chebyshev’s inequality, for any β > 0 and any N ∈ N,
P(‖GN‖L∞(D;Sd) > β) ≤ β−2‖GN‖L2(Ω;L∞(D;Sd)) ≤ β−2b2 ,

and the same bound holds for G in place of GN . For β >
√
2b, Fernique’s theorem

provides a constant B0 depending only on β and b such that

E[exp(λ‖GN‖2L∞(D;Sd))] ≤ B0 ∀N ∈ N ,

with λ = 1
24β log(β

2

b2 − 1), and thus

E[exp(q‖GN‖L∞(D;Sd))] ≤ exp( 1
4λq

2)B0 =: Bq
q ∀N ∈ N .
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As above, the same estimate holds for G in place of GN . !

Proposition 4.7. For any q ∈ [1,∞) and any sufficiently small ϑ > 0, there is a
constant Cq,ϑ such that for all N ∈ N,

‖M −MN‖Lq(Ω;L∞(D;Sd)) ≤ Cq,ϑ‖ψ‖1−(1+κ)ϑ
%τ ‖δ‖ϑ%"(N + 1)−s (38)

with s = 1−(1+κ)ϑ
τ + ϑ

$ − 1
2 if + < ∞ and s = 1−(1+κ)ϑ

τ − 1
2 if + = ∞.

Proof. For any A,B ∈ Sd, the matrix exponential satisfies

‖exp(A)− exp(A+B)‖Sd ≤ ‖B‖Sd exp(‖A‖Sd) exp(‖B‖Sd) .
Setting A := G(x) and B := GN (x)−G(x), x ∈ D, and using the triangle inequal-
ity, we have

‖exp(G(x))−exp(GN (x))‖Sd ≤ ‖G(x)−GN (x)‖Sd exp(2‖G(x)‖Sd) exp(‖GN (x)‖Sd).
For q−1 = q̄−1 + 3r−1, Hölder’s inequality and Lemma 4.6 imply

‖M −MN‖Lq(Ω;L∞(D;Sd)) ≤ ‖M0‖L∞(D;Sd)‖exp(G)− exp(GN )‖Lq(Ω;L∞(D;Sd))

≤ ‖G−GN‖Lq̄(Ω;L∞(D;Sd))‖M0‖L∞(D;Sd)B
3
r .

Then the claim follows using Theorem 4.4 for q̄. !

4.3. Solvability of the truncated stochastic Brinkman problem. Let (u, p)
and (uN , pN ) denote the solutions to the stochastic Brinkman problem with log-
Gaussian random fields M and MN , respectively, and let

a(u,v) := t2(ε(u), ε(v)) + (Mu,v) , (39)

aN (u,v) := t2(ε(u), ε(v)) + (MNu,v) , N ∈ N , (40)

denote the bilinear forms from (12). Then (u, p) and (uN , pN ) satisfy

B(u, p;v, q) = L(v, q) ∀(v, q) ∈ V ×Q (41)

BN (uN , pN ;v, q) = L(v, q) ∀(v, q) ∈ V ×Q (42)

for the bilinear forms B(·; ·) and BN (·; ·) defined by (14) with a(·, ·) and aN (·, ·)
from (39) and (40), and with L(·, ·) as in (16).

Lemma 4.8. There are random variables α, ca, αN and ca,N , N ∈ N, such that

a(v,v) ≥ α‖v‖2t , aN (v,v) ≥ αN‖v‖2t , N ∈ N , (43)

a(w,v) ≤ ca‖w‖t‖v‖t , aN (w,v) ≤ ca,N‖w‖t‖v‖t , N ∈ N , (44)

for all v,w ∈ V . Furthermore, for any q ∈ [1,∞) there is a constant Aq such that

‖X‖Lq(Ω) ≤ Aq (45)

uniformly for X = α−1, X = ca, X = α−1
N and X = ca,N , N ∈ N.

Proof. By Korn’s inequality, there exist constants k and K such that

k‖∇v‖20 ≤ ‖ε(v)‖20 ≤ K‖∇v‖20 ∀v ∈ V .

Let the random variables µmin and µmax denote the minimal and maximal eigen-
values of M on the domain D, and let µmin,N , µmax,N denote the analogous values
of MN , N ∈ N. Then (43) and (44) are satisfied for

α = min(k, µmin) ca = max(K,µmax)

αN = min(k, µmin,N ) ca,N = max(K,µmax,N ) ∀N ∈ N .

The estimate (45) follows from Lemma 4.6, using uniform boundedness and uniform
positivity of M0. !
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Using the stability estimates (21) and (22), the convergence from Theorem 4.4
and Proposition 4.7 carries over to (uN , pN ).

Theorem 4.9. For any q ∈ [1,∞) and any sufficiently small ϑ > 0, there are
constants Cu

q,ϑ and Cp
q,ϑ such that for all N ∈ N,

‖u− uN‖Lq(Ω;V ) ≤ Cu
q,ϑ(‖f‖V ∗ + ‖g‖Q∗)‖ψ‖1−(1+κ)ϑ

%τ ‖δ‖ϑ%"(N + 1)−s (46)

‖p− pN‖Lq(Ω;Q) ≤ Cp
q,ϑ(‖f‖V ∗ + ‖g‖Q∗)‖ψ‖1−(1+κ)ϑ

%τ ‖δ‖ϑ%"(N + 1)−s (47)

with s = 1−(1+κ)ϑ
τ + ϑ

$ − 1
2 if + < ∞ and s = 1−(1+κ)ϑ

τ − 1
2 if + = ∞.

Proof. Subtracting (42) from (41) leads to the error equation

B(u−uN , p− pN ;v, q) = BN (uN , pN ;v, q)−B(uN , pN ;v, q) = ((MN −M)uN ,v)

for all (v, q) ∈ V ×Q. The last term satisfies

((MN −M)uN ,v) ≤ ‖M −MN‖L∞(D;Sd)‖uN‖(L2(D))d‖v‖(L2(D))d

≤ C‖M −MN‖L∞(D;Sd)‖uN‖V ‖v‖V
Furthermore, (21) implies

‖uN‖t ≤
1

αN
‖f‖V ∗ +

(
1 +

ca,N
αN

)
‖g‖Q∗ .

Applying (21) and (22) to the error equations gives us

‖u− uN‖t ≤ C
1

α

[
1

αN
‖f‖V ∗ +

(
1 +

ca,N
αN

)
‖g‖Q∗

]
‖M −MN‖L∞(D;Sd) ,

|||p− pN |||t ≤ C
(
1 +

ca
α

)[
1

αN
‖f‖V ∗ +

(
1 +

ca,N
αN

)
‖g‖Q∗

]
‖M −MN‖L∞(D;Sd) .

Then the claim follows by applying Hölder’s inequality, using Proposition 4.7 to
estimate ‖M −MN‖L∞(D;Sd) and Lemma 4.8 to estimate the remaining terms. !

Corollary 4.10. For any q ∈ [1,∞)and any 0 < s < s̄ = τ−1 − 1/2,

‖u− uN‖Lq(Ω;V ) + ‖p− pN‖Lq(Ω;Q) ≤ CN−s(‖f‖V ∗ + ‖g‖Q∗) , N ∈ N . (48)

5. Mixed finite element methods

We consider a mixed finite element approximation to the deterministic truncated
Brinkman problem (42). The analysis presented in [13] is augmented to cover the
case of a nondiagonal permeability matrix MN . Let Th be a quasiuniform and
shape-regular partition of D into simplices. The diameter of an element T ∈ Th is
denoted by hT , and the global meshwidth h is defined as h = maxT∈Th hT .

We choose the finite element spaces V h × Qh ⊂ V × Q for the mixed finite
element discretization of (42) as

V h = {v ∈ V ∩ [C(D)]d | v|T ∈ [Pk(T )]
d ∀T ∈ Th}, (49)

Qh = {q ∈ L2
∗(D) ∩ C(D) | q|T ∈ Pk(T ) ∀T ∈ Th}, (50)

in which Pk(T ) are polynomials of degree k. Since the equal order polynomial
spaces are not stable for the problem, we employ a mesh-dependent stabilization
procedure.

The stabilized finite element formulation of (42) reads: Find (uN,h, pN,h) ∈
V h ×Qh such that

BN,h(uN,h, pN,h;v, q) = Lh(v, q) ∀(v, q) ∈ V h ×Qh. (51)
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The mesh-dependent bilinear form is defined with the stability parameter γ > 0 as

BN,h(u, p;v, q) = BN (u, p;v, q)

− γ
∑

T∈Th

h2
T

t2 + h2
T

(t2M−1
N Au− u−M−1

N ∇p), t2M−1
N Av − v −M−1

N ∇q)K , (52)

and the corresponding load functional is

LN,h(v, q) = L(v, q) + γ
∑

T∈Th

h2
T

t2 + h2
T

(M−1
N f , t2M−1

N Av − v −M−1
N ∇q)K . (53)

Assuming

−t2Au+MNu+∇p = f ∈ [L2(D)]d, (54)

we have a consistent method, that is

BN,h(uN − uN,h, pN − pN,h;v, q) = 0, ∀(v, q) ∈ V h ×Qh. (55)

5.1. Stability. To show the stability of the method, we follow [13] and define the
following mesh-dependent norm for the pressure,

|||q|||2t,h =
∑

T∈Th

h2
T

t2 + h2
T

‖∇q‖20,T . (56)

We first recall the following inverse estimate:

h2
T ‖Av‖20,T ≤ CI‖∇v‖20,T , ∀v ∈ V h. (57)

Let µmin,N and k be defined as in Lemma 4.8. Then we have

Theorem 5.1. Choose γ = min{µmin,N

4 ,
kµ2

min,N

4CI
}. Then for each N there exists a

constant βN such that

sup
(v,q)∈V h×Qh

BN,h(w, r;v, q)

‖v‖t + |||q|||t,h
≥ βN (‖w‖t + |||r|||t,h) ∀(w, r) ∈ V h ×Qh. (58)

Proof. Let (w, r) ∈ V h ×Qh be arbitrary. Then we have

BN,h(w, r;w,−r) = t2(ε(w), ε(w)) + (MNw,w)

− γ
∑

T∈Th

h2
T

h2
T + t2

(
‖t2M−1

N Aw −w‖20,T − ‖M−1
N ∇q‖20,T

)
. (59)

Estimating the negative terms from above and using the inequality (57), we get

BN,h(w, r;w,−r) ≥ kt2‖∇w‖20 + µmin,N‖w‖20 + γµ−2
max,N |||q|||2t,h

− 2γ
∑

T∈Th

h2
T

h2
T + t2

(
µ−2
min,N‖t2Aw‖20,T + ‖w‖20,T

)
(60)

≥ (k − 2γCIµ
−2
min,N )‖∇w‖20 + (µmin,N − 2γ)‖w‖20

+ γµ−2
max,N |||q|||2t,h (61)

≥ k

2
‖∇w‖20 +

µmin,N

2
‖w‖20 + γµ−2

max,N |||q|||2t,h. (62)

Thus the theorem holds with

βN = min{k
2
,
µmin,N

2
,
µmin,N

4µ2
max,N

,
kµ2

min,N

4CIµ2
max,N

}. (63)

!
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Remark 5.2. Note that for first order elements Aw = 0 for every w ∈ V h. Thus
it suffices to choose γ = µmin,N

4 and βN will not depend on the constant CI of the
inequality (57). The smallest eigenvalue can be easily estimated from the stochastic
coefficients of the Karhunen–Loève expansion (29) for each sample.

Remark 5.3. It is also possible to choose the stabilization parameter elementwise
with γT = min{ 1

4µmin,N,T ,
k

4CI
µmin,N,T

2}. Then elementwise estimation gives the
sharper lower bound

βN = min
T∈Th

{k
2
,
µmin,N

2
,

µmin,N,T

4µmax,N,T
2
,

kµmin,N,T
2

4CIµmax,N,T
2
}. (64)

Next, we use the result for the mesh-dependent norm to show that the stability
holds also in the continuous pressure norm. With a small modification of the
arguments presented in [10], one has

Lemma 5.4. There exists constants C1 and C2 independent of the meshwidth h,
and the parameters t and MN such that

sup
w∈V h

b(w, q)

‖w‖t
≥ C1|||q|||t − C2|||q|||t,h. (65)

Now we are ready to prove the stability in the continuous norm.

Theorem 5.5. Suppose the stability of Theorem 5.1 holds. Then for each N there
exists a constant β̂N such that

sup
(v,q)∈V h×Qh

BN,h(w, r;v, q)

‖v‖t + |||q|||t,h
≥ β̂N (‖w‖t + |||r|||t) ∀(w, r) ∈ V h ×Qh. (66)

Furthermore, the constant β̂N has a polynomial dependence on the constant βN and
the constants αN and ca,N .

Proof. Letw ∈ V h be the function for which the supremum is attained in Lemma 5.4,
and assume that w is scaled such that ‖w‖t = |||q|||t,h. Employing the techniques
of the proof in [10, Lemma 3.2] it can be shown that for every (v, q) ∈ V h ×Qh we
have

BN,h(v, q;−w, 0) ≥ −C3‖v‖2t + (C4|||q|||t − C5|||q|||t,h)|||q|||t,h, (67)

in which the constants C3,C4, and C5 are polynomial functions of the constants αN

and ca,N . Now, choosing 0 < δ = βN

2(C3+C5)
yields

BN,h(v, q;v − δw,−q) ≥ (βN − δC3)‖v‖2t + δC4|||q|||t|||q|||t,h + (βN − δC5)|||q|||2t,h

≥ βN

2
‖v‖2t +

βNC4

2(C3 + C5)
|||q|||t|||q|||t,h. (68)

!

5.2. A priori estimates. We approximate the error of the velocity field in the
‖·‖t-norm and the error of the pressure field in both the continuous norm ||| · |||t and
in the computable mesh-dependent norm ||| · |||t,h. The following quasi-optimal error
bound holds. Note that a term estimating the residual is included, as is typical for
stabilized methods.

Theorem 5.6. Let the stabilization parameter γ be chosen as in Theorem 5.1.
Then the finite element solution (uN,h, pN,h) of (42) is P-measurable. Moreover,
it holds for every N ∈ N and a constant C independent of ω, the meshwidth h and
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of the parameters t and MN with the random variables X = α, X = ca, X = α−1
N

and X = ca,N satisfying (45),

‖uN − uN,h‖t + |||pN − pN,h|||t,h

≤ C

βN
(2 + ca,N +

1 + αN

α2
N

) inf
(v,q)∈

V h×Qh

{
|||pN − q|||t + |||pN − q|||t,h + ‖uN − v‖t

+

(
∑

T∈Th

t2

h2
T

‖uN − v‖20,T +
h2
T

h2
T + t2

‖t2Av −MNv −∇q + f‖20,T

) 1
2
}
. (69)

Proof. Using the triangle inequality we have for arbitrary (v, q) ∈ V h ×Qh

‖uN − uN,h‖t + |||pN − pN,h|||t,h
≤ ‖uN − v‖t + |||pN − q|||t,h + ‖v − uN,h‖t + |||q − pN,h|||t,h. (70)

Using Theorem 5.1 we have functions (w, r) ∈ V h ×Qh with

‖w‖t + |||r|||t,h ≤ C, (71)

such that there holds

βN‖v − uN,h‖t + |||q − pN,h|||t,h ≤ BN,h(uN,h − v, pN,h − q;w, r)

= BN,h(uN − v, pN − q;w, r)

= BN (uN − v, pN − q;w, r)− S,

in which by the assumption (54)

S = γ
∑

T∈Th

h2
T

h2
T + t2

(−t2M−1
N Av + v +M−1

N ∇q −M−1
N f ,

t2M−1
N Aw −w −M−1

N ∇r)K . (72)

Estimating the first term yields

BN (uN − v, pN − q;w, r)

≤ ca,N‖uN − v‖t‖w‖t − b(w, pN − q) + (uN − v,∇r) (73)

≤ ca,N‖uN − v‖t‖w‖t + |||pN − q|||t‖w‖t

+

(
∑

T∈Th

h2
T

h2
T + t2

‖uN − v‖20,T

)1/2 ( ∑

T∈Th

h2
T

h2
T + t2

‖∇r‖20,T

)1/2

(74)

≤



(1 + ca,N )‖uN − v‖t + |||pN − q|||t + t

(
∑

T∈Th

h−2
T ‖uN − v‖20,T

)1/2




× (‖w‖t + |||r|||t,h) (75)
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Turning to the stabilizing term, we have using the inverse inequality (57)

S ≤
(

∑

T∈Th

1

µ2
min,N

h2
T

h2
T + t2

‖−t2Av +MNv +∇q − f‖20,T

) 1
2

×
(

∑

T∈Th

h2
T

h2
T + t2

‖t2M−1
N Aw −w −M−1

N ∇r‖20,T

) 1
2

(76)

≤ C
1 + µmin,N

µ2
min,N

(
∑

T∈Th

h2
T

h2
T + t2

‖t2Av −MNv −∇q + f‖20,T

) 1
2

× (‖w‖t + |||r|||t,h) (77)

!
With exactly the same arguments as above, and using Lemma 5.5, we can derive

a quasioptimal a priori result in the continuous pressure norm with a stability
constant β̂N instead of βN .

Theorem 5.7. Let the assumption of Theorem 5.6 hold. Then we have

‖uN − uN,h‖t + |||pN − pN,h|||t

≤ C

β̂N

(2 + ca,N +
1 + αN

α2
N

) inf
(v,q)∈

V h×Qh

{
|||pN − q|||t + ‖uN − v‖t

+

(
∑

T∈Th

t2

h2
T

‖uN − v‖20,T +
h2
T

h2
T + t2

‖t2Av −MNv −∇q + f‖20,T

) 1
2
}
. (78)

5.3. A priori estimate for a regular solution. Even though in practice the
solution to the equations is seldom smooth, it is often beneficial to write the error
estimate assuming a smooth solution and thus exposing the convergence rates.
Assuming uN ∈ [Hk+1(D)]d and pN ∈ Hk+1(D) we have the following convergence
result for a polynomial approximation of degree k.

Theorem 5.8. There is a constant C independent of the meshwidth h and of the
parameters t and MN , such that in the continuous pressure norm with random
variables X = α, X = ca, X = α−1

N and X = ca,N as in (45) independent of h and
0 ≤ t ≤ 1,

‖uN − uN,h‖t + |||pN − pN,h|||t
≤ CR(αN , ca,N )

[
(t+ h)hk‖uN‖k+1 + (t+ h)−1hk+1‖pN‖k+1

]
, (79)

in which R(·, ·) is a rational function of the two arguments. The same result holds
also for the mesh-dependent pressure norm.

Remark 5.9. In the limit t = 0 the method constitutes a stabilized mixed finite
element approximation of the Darcy equation. Also the norms (5) and (56) reduce
to those used in the dual mixed formulation of the Darcy problem. However, the
method is not optimal since we only get order k convergence in the aforementioned
norms, as opposed to the k + 1 convergence provided by the H(div)-conforming
elements, cf. [15, 16].

6. The multi-level Monte Carlo method

6.1. Single Level Monte Carlo. We have shown in Proposition 3.3 and in Sec-
tion 4 that the solutions U := (u, p) and UN := (uN , pN ) of the stochastic Brinkman
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problem with lognormal permeabilityM from (23) andMN from (35), respectively,
admit bounded moments of any finite order q. Choosing q = 2k for k ∈ N, this
implies that the second moments of the k-point correlation functions of the random
fields U and UN are bounded and can be estimated by Monte Carlo (MC) sampling
of the mixed FE approximations of the random solutions.

We give an a priori error analysis of the resulting MC-MFEM. For the sake of
brevity, we develop the results only for k = 1 but hasten to add that all results
which follow admit generalizations to moments of order k > 1; we refer to [4] for
statements and proofs in the case of Darcy equations with random permeability.

Let us first address the Single Level MC method. Here, for a given, fixed trunca-
tion order N in (35), and for a given pair Vh×Qh of FE spaces, we draw M ≥ 1 in-
dependent, identically distributed realizations M̂ i(x) := MN (x,ωi), i = 1, . . . ,M ,
using the N -term truncated Karhunen–Loève expansion (35). Note that the work
to do so grows as O(MN) as N,M → ∞. For each M̂ i, we solve the FE equations
(51). We assume for now that the FE solutions Û i

N,h := (ûi
N,h, p̂

i
N,h) are computed

exactly, although in general an approximate solution (obtained, for example, by a
multilevel method) will suffice. We denote by W (h) the computational work for
the numerical solution of the linear system (51).

In the Single Level MC MFEM, we estimate the mathematical expectation E[U ]
by the ensemble average of the M MFEM sample solutions, i.e. by

EM [UN,h] :=
1

M

M∑

i=1

Û i
N,h . (80)

The total work for the computation of this estimate is O(MNW (h)). For the
convergence analysis of this MC-FE approximation, we assume as usual (see e.g.
[4]) the FE solutions Û i

N,h corresponding to the M coefficient draws M̂ i in (80)
to be M i.i.d. copies of the random FE solutions UN,h = (uN,h, pN,h) defined in
(51). To estimate the MC-MFEM error, we measure the FE error in mean-square
in probability, i.e.

‖E[U ]− EM [UN,h]‖L2(Ω,V ×Q)

=

(
E
[
‖E[u]− 1

M

M∑

i=1

ûi
N,h‖2t + |||E[p]− 1

M

M∑

i=1

p̂iN,h|||2t

])1/2

. (81)

Combining the a priori error bound of Theorem 5.8 with Lemma 4.8 and a standard
argument as in Lemma 4.1 of [4], we obtain the following convergence property.

Theorem 6.1. For any q > 1, 0 < s < τ−1 − 1/2 and 0 ≤ t < ∞, if the solution
to the truncated problem (42) satisfies

uN ∈ Lq(Ω;Hk+1(D)d) and pN ∈ Lq(Ω;Hk+1
∗ (D)) (82)

for all N , then there is a constant C independent of N , h, M and t such that

‖E[U ]− EM [UN,h]‖L2(Ω,V ×Q) ≤ C

((
N−s(‖f‖V ∗ + ‖g‖Q∗)

+ (t+ h)hk‖uN‖Lq(Ω;Hk+1(D)d) + (t+ h)−1hk+1‖pN‖Lq(Ω;Hk+1(D))

)2

+M−1(‖f‖V ∗ + ‖g‖Q∗)2
)1/2

, (83)

where k is the order of the mixed finite element discretization. The total work for
the computation of EM [UN,h] is O(M(Nh−d +W (h))).
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Proof. Since E[EM [UN,h]] = E[UN,h], we can expand the error as

‖E[U ]− EM [UN,h]‖2L2(Ω,V ×Q)

= ‖E[U ]− E[UN,h]‖2V ×Q + ‖E[UN,h]− EM [UN,h]‖2L2(Ω,V ×Q) .

By the a priori error bound of Theorem 5.8, the truncation error estimate Corol-
lary 4.10 and the bound Lemma 4.8, the first term satisfies

‖E[U ]− E[UN,h]‖V ×Q ≤ ‖U − UN,h‖L1(Ω;V ×Q)

≤ N−s(‖f‖V ∗ + ‖g‖Q∗) + (t+ h)hk‖uN‖Lq(Ω;Hk+1(D)d)

+ (t+ h)−1hk+1‖pN‖Lq(Ω;Hk+1(D)) .

For the second term, using that the samples Û i
N,h are independent and have expec-

tation E[UN,h], we have

‖E[UN,h]− EM [UN,h]‖2L2(Ω,V ×Q) = E
[
‖E[UN,h]−

1

M

M∑

i=1

Û i
N,h‖2V ×Q

]

= E
[
‖ 1

M

M∑

i=1

E[UN,h]− Û i
N,h‖2V ×Q

]

=
1

M
E[‖UN,h − E[UN,h]‖2V ×Q] ,

and using Lemma 4.8, due to the stability of the mixed finite element discretization,

E[‖UN,h − E[UN,h]‖2V ×Q] ≤ E[‖UN,h‖2V ×Q] ≤ C(‖f‖V ∗ + ‖g‖Q∗)2 .

The computational cost is O(Nh−d) for the summation of the Karhunen–Loève
series, and W (h) for the solution of the resulting linear system; both operations are
performed M times, resulting in a total cost of O(M(Nh−d +W (h))). !

We remark that due to the potentially low regularity of the Gaussian field
M(x,ω), in general the regularity of the solution U is rather low, and we can
realistically expect only 0 < k ≤ 1 in (82) resp. in (83) for U in place of UN . Due
to the truncation of the Gaussian field, the regularity of UN is higher, although
Sobolev norms of uN and pN may not be bounded uniformly in N .

6.2. Multi-level Monte Carlo. A substantial efficiency increase compared to
SLMC-MFEM can be obtained by the Multi-Level Monte Carlo Mixed Finite El-
ement Method (MLMC-MFEM), which is based on a hierarchic family of FE dis-
cretizations.

Let {Tl}Ll=0 be a sequence of meshes with mesh widths hl := max{diamT ; T ∈
Tl}. For example, Tl could be obtained by l-fold regular subdivision of an initial
regular simplicial triangulation T0 of D, in which case hl = 2−lh0. To ease notation,
we denote the corresponding FE spaces Vhl ×Qhl by V l ×Ql in the following.

We also introduce a sequence (Nl)Ll=0 of truncations of the series expansion (29).
The FE solution of the Brinkman problem (51) on the mesh Tl with lognormal
permeability MNl is denoted by Ul := (ul, pl), with ul := uNl,hl and pl := pNl,hl .
With the convention U−1 := 0, we may write

UL =
L∑

l=0

Ul − Ul−1 . (84)

By linearity of the mathematical expectation, it follows that

E[UL] =
L∑

l=0

E[Ul − Ul−1] . (85)
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We replace each expectation in this telescoping sum by an MC estimate, with a
level-dependent number Ml of samples. This yields the MLMC-MFE estimator

EL[U ] :=
L∑

l=0

EMl [Ul − Ul−1] . (86)

We note that, since U−1 = 0, EL[U ] is an unbiased estimator for E[UL],

E[EL[U ]] =
L∑

l=0

E[EMl [Ul − Ul−1]] =
L∑

l=0

E[Ul − Ul−1] = E[UL] . (87)

Consequently, E[E[UL] − EL[U ]] = 0, and since E[U ] − E[UL] is a deterministic
quantity,

‖E[U ]− EL[U ]‖2L2(Ω;V ×Q) = ‖E[U ]− E[UL]‖2V ×Q + ‖E[UL]− EL[U ]‖2L2(Ω;V ×Q) .
(88)

By definition and due to Theorem 6.1, the computational cost of EL[U ] is

WL ∼
L∑

l=0

Ml(Nlh
−d
l +W (hl)) . (89)

The a priori error bound for the MLMC estimator is as follows.

Theorem 6.2. If Ml ≥ CMl−1 for l = 1, . . . , L then for any q > 2 and 0 < s <
τ−1 − 1/2, if the solution to the truncated problem (42) satisfies

uN ∈ Lq(Ω;Hk+1(D)d) and pN ∈ Lq(Ω;Hk+1
∗ (D)) (90)

for all N , there is a constant C independent of (Nl)Ll=0, (hl)Ll=0 and (Ml)Ll=0 such
that

‖E[UL]− EL[U ]‖L2(Ω;V ×Q)

≤ C

(
1

M0

(
‖f‖V ∗ + ‖g‖Q∗

)2
+

L∑

l=1

1

Ml

(
N−s

l (‖f‖V ∗ + ‖g‖Q∗)

+ (t+ hl)h
k
l ‖uNl‖Lq(Ω;Hk+1(D)d) + (t+ hl)

−1hk+1
l ‖pNl‖Lq(Ω;Hk+1

∗ (D))

)2
)1/2

(91)

and

‖E[U ]− E[UL]‖V ×Q ≤ C
(
N−s

L (‖f‖V ∗ + ‖g‖Q∗) + (t+ hL)h
k
L‖uNL‖Lq(Ω;Hk+1(D)d)

+ (t+ hL)
−1hk+1

L ‖pNL‖Lq(Ω;Hk+1
∗ (D))

)
,

(92)
where k is the order of the mixed finite element discretization.

Proof. Using independence of the samples in the MC estimators on all levels, we
have

‖E[UL]− EL[U ]‖2L2(Ω;V ×Q) = E




∥∥∥∥∥E[UL]−

L∑

l=0

1

Ml

Ml∑

i=1

Û i
l − Û i

l−1

∥∥∥∥∥

2

V ×Q





= E




∥∥∥∥∥

L∑

l=0

1

Ml

Ml∑

i=1

(
E[Ul − Ul−1]− (Û i

l − Û i
l−1)

)∥∥∥∥∥

2

V ×Q





=
L∑

l=0

1

Ml
E[‖Ul − Ul−1 − E[Ul − Ul−1]‖2V ×Q] .
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Since U−1 = 0, the first term in this sum satisfies

E[‖U0 − E[U0]‖2V ×Q] ≤ E[‖U0‖2V ×Q] ≤ C(‖f‖V ∗ + ‖g‖Q∗)2 =: CΞ2

for any q > 2 due to Lemma 4.8 and the estimates in Proposition 3.3. For the other
terms in the sum, we estimate

E[‖Ul − Ul−1 − E[Ul − Ul−1]‖2V ×Q] ≤ E[‖Ul − Ul−1‖2V ×Q]

≤ E[(‖UNl − Ul‖V ×Q + ‖UNl − UNl−1‖V ×Q + ‖UNl−1 − Ul−1‖V ×Q)
2]

≤
(
‖UNl − Ul‖L2(Ω;V ×Q) + ‖UNl − UNl−1‖L2(Ω;V ×Q)

+ ‖UNl−1 − Ul−1‖L2(Ω;V ×Q)

)2
.

Due to Lemma 4.8 and Theorem 5.8, using Hölder’s inequality, we have

‖UNl − Ul‖L2(Ω;V ×Q)

≤ C
(
(t+ hl)h

k
l ‖uNl‖Lq(Ω;Hk+1(D)d) + (t+ hl)

−1hk+1
l ‖pNl‖Lq(Ω;Hk+1

∗ (D))

)

for any q > 2. Furthermore, Corollary 4.10 implies

‖UNl − UNl−1‖L2(Ω;V ×Q) ≤ ‖U − UNl‖L2(Ω;V ×Q) + ‖U − UNl−1‖L2(Ω;V ×Q)

≤ C(N−s
l +N−s

l−1)(‖f‖V ∗ + ‖g‖Q∗)

for any 0 < s < s̄ = τ−1 − 1/2. We abbreviate

Θl := N−s
l (‖f‖V ∗ + ‖g‖Q∗)

+ (t+ hl)h
k
l ‖uNl‖Lq(Ω;Hk+1(D)d) + (t+ hl)

−1hk+1
l ‖pNl‖Lq(Ω;Hk+1

∗ (D))

for l = 0, 1, . . . , L. Combining the above estimates, we arrive at

‖E[UL]− EL[U ]‖L2(Ω;V ×Q) ≤ C

(
Ξ2

M0
+

L∑

l=1

1

Ml
(Θl +Θl−1)

2

)1/2

.

By triangle inequality, the right hand side is less than
(
Ξ2

M0
+

L∑

l=1

Θ2
l

Ml

)1/2

+

(
L−1∑

l=0

Θ2
l

Ml+1

)1/2

.

Since Ml ≥ CMl−1 by assumption, and noting that we may replace Θ0 by Ξ in the
above estimate, it follows that the latter term is bounded by the former. Therefore,

‖E[UL]− EL[U ]‖L2(Ω;V ×Q) ≤ C

(
Ξ2

M0
+

L∑

l=1

Θ2
l

Ml

)1/2

.

Similarly, we estimate

‖E[U ]− E[UL]‖V ×Q ≤ ‖U − UNL‖L1(Ω;V ×Q) + ‖UNL − UL‖L1(Ω;V ×Q) ≤ CΘL .

!

Remark 6.3. We choose Nl and hl such that their contributions to the error bounds
in Theorem 6.2 are of the same order. If the norms ‖uN‖Lq(Ω;Hk+1(D)d) and
‖pN‖Lq(Ω;Hk+1

∗ (D)) are bounded independently of N , this is the case for N−s ∼ hk.
More generally, we assume that there are constants C and r ≥ 0 such that

‖uN‖Lq(Ω;Hk+1(D)d) ≤ CNr and ‖pN‖Lq(Ω;Hk+1
∗ (D)) ≤ CNr . (93)

Then the truncation error and spatial discretization error are equilibrated for Nl ∼
h−k/(s+r)
l .
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This choice ofNl disregards the additional power of hl in (91) and (92). If the two
estimates in (93) hold with ru and rp, respectively, then the truncation error and
spatial discretization error are equilibrated for Nl ∼ h−ν

l with ν = min( k
s+ru

, k+1
s+rp

)

if t > 0 and ν = min( k+1
s+ru

, k
s+rp

) if t = 0. Thus we may set r := k
ν − s, which

satisfies 0 ≤ r ≤ max(ru, rp).

Remark 6.4. Let hl = 2−lh0, which holds if the meshes Tl are constructed as regular
refinements of T0. As in Remark 6.3, we set

Nl := 12kl/(s+r)N02 ∼ h−k/(s+r)
l , l = 0, 1, . . . , L . (94)

This results in a convergence of 2−skl/(s+r) of the truncation of the random field
combined with the mixed finite element approximation. For a parameter M̄ , we
select the number of samples as

Ml := 122sk(L−l)/(s+r)M̄L2 , l = 0, 1, . . . , L . (95)

Then the error bound (91) in Theorem 6.2 is

‖E[UL]− EL[U ]‖2L2(Ω;V ×Q)

≤ C

(
1

M̄L
2−2skL/(s+r) +

(N−s
0 + hk

0N
r
0 )

2

M̄L

L∑

l=1

2−2sk(L−l)/(s+r)2−2skl/(s+r)

)

= CM̄−1
(
L−1 + (N−s

0 + hk
0N

r
0 )

2
)
2−2skL/(s+r) .

(96)

Adding the error contribution (92), we see that

‖E[U ]−EL[U ]‖L2(Ω;V ×Q) ≤ C
(
M̄−1L−1+(1+M̄−1)(N−s

0 +hk
0N

r
0 )

2
)1/2

2−skL/(s+r).
(97)

Thus the total error is on the order of hk
LN

r
L, N

−s
L and M−1/2

0 .

Remark 6.5. We assume that the computational cost of the numerical solution
of a sample of (51) is W (h) ∼ h−σd, i.e. the linear solver may be suboptimal.
Then by (89), the computational cost of MLMC-MFEM with the parameters from
Remark 6.4 is

WL ∼ 22skL/(s+r)LM̄

(
N0h

−d
0

L∑

l=0

2l(d−(2s−1)k/(s+r)) + h−σd
0

L∑

l=0

2l(σd−2sk/(s+r))

)
.

(98)
Thus the total work can be decomposed as WL = WL

KL + WL
FE with WL

KL, which
represents the cost of the summation of the Karhunen–Loève series, equivalent to

WL
KL ∼ M̄N0h

−d
0






22skL/(s+r)L if d < (2s− 1)k/(s+ r),

2(d+k/(s+r))LL2 if d = (2s− 1)k/(s+ r),

2(d+k/(s+r))LL if d > (2s− 1)k/(s+ r),

(99)

and WL
FE, which represents the cost of the finite element solution of samples of (51),

is

WL
FE ∼ M̄h−σd

0






22skL/(s+r)L if σd < 2sk/(s+ r),

2σdLL2 if σd = 2sk/(s+ r),

2σdLL if σd > 2sk/(s+ r).

(100)

If σd ≥ 2sk/(s + r), WL
FE is equivalent to the computational cost of a single de-

terministic problem, up to a factor of L. For σd < 2sk/(s + r), WL
FE is equiv-

alent to the cost of Monte Carlo sampling alone, with no spatial discretization.
Similarly, WL

KL is equal to the cost of computing a single realization of the ran-
dom field, using NL terms of the series, or Monte Carlo for a scalar problem,
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whichever is more expensive, up to a constant and a factor of L. We note that, if
d ≥ kmax(2s−1, 2s/σ)/(s+r), then the total computational costWL = WL

KL+WL
FE

of MLMC-MFEM is equivalent to that of one realization of the random field withNL

terms plus the finite element solution of a single deterministic Brinkman problem,
up to a logarithmic factor. In any case, the cost WL of MLMC-MFEM compares
favorably to that of MC-MFEM, which by Theorem 6.1 is on the order of

2(d+k(2s+1)/(s+r))L + 2(σd+2sk/(s+r))L as L → ∞ (101)

since h = hL = 2−Lh0 entails N = 12kL/(s+r)N02 and M = 122skL/(s+r)M02 in
order to equilibrate the error contributions in (83).

Remark 6.6. The derivation in Remark 6.5 of the total computational cost provides
insight on the distribution of the work load among the discretization levels l =
0, . . . , L since the terms 2l(d−(2s−1)k/(s+r)) and 2l(σd−2sk/(s+r)) in (98) represent
the computations performed on level l. Clearly, the latter term is the same for
all levels if σd = 2sk/(s + r). For σd > 2sk/(s + r), the computational cost of
finite element solves is dominated by the finest discretization level, and the work
per level increases exponentially in l. If σd < 2sk/(s + r), more work is done
on coarse discretization levels, and the work per level decreases exponentially in
l. Similar considerations apply to the first term, which is the same on all levels
if d = (2s − 1)k/(s + r). We note that if σ > 2s/(2s − 1), it is possible for the
first term to decrease in l but for the second to increase in l, i.e. for the total work
required by computing realizations of the random field to be dominated by the
coarsest discretization while the total cost of finite element solves is maximal on
the finest mesh.

Remark 6.7. The error bound from Theorem 6.2 induces confidence bounds for
MLMC-MFEM. By Chebyshev’s inequality,

P
(
‖E[UL]− EL[U ]‖V ×Q ≥ η

)
≤ 1

η2
‖E[UL]−EL[U ]‖2L2(Ω;V ×Q) ∀η > 0 . (102)

Equivalently,

P
(
‖E[UL]− EL[U ]‖V ×Q ≤ 1√

ε
‖E[UL]− EL[U ]‖L2(Ω;V ×Q)

)
≥ 1− ε ∀ε > 0 .

(103)
Comparing with (96), we see that the M̄ should be chosen on the order of ε−2,
independently of the number of discretization levels, to ensure a failure probability
of at most ε. Then the number of samples on the finest level ML = M̄L scales as
ε−2L.

Remark 6.8. The assumption of uniform boundedness or algebraic increase of the
norms ‖uN‖Lq(Ω;Hk+1(D)d) and ‖pN‖Lq(Ω;Hk+1

∗ (D)) in Remark 6.3 is realistic. For

example, if t > 0, g = 0 and f ∈ L2(D)d, then uN and pN solve the Stokes problem
{
−t2∆uN +∇pN = f −MNuN ,

divuN = 0 ,
(104)

with homogeneous boundary conditions uN = 0 on ∂D. We note that due to
Lemma 4.6 and Lemma 4.8, for any q ∈ [1,∞),

‖MNuN‖Lq(Ω;L2(D)d) ≤ C‖f‖V ∗ ≤ C‖f‖L2(D)d (105)

with a constant independent of N . If D is a convex polygon in R2, then the
regularity result [14, Theorem 2] implies

t2‖uN‖Lq(Ω;H2(D)2) + ‖pN‖Lq(Ω;H1
∗(D)) ≤ C‖f‖L2(D)2 . (106)
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Thus ru = 0 for k = 1 in Remark 6.3, and we may set r = 0 provided that rp ≤ s,
making use of the additional factor of hl in (91) and (92). Similar regularity results
for polyhedral domains in three dimensions are given in [8].

Remark 6.9. For the case t = 0, it is also realistic to expect algebraic growth
in (93). For example, for f = 0, uN = −M−1

N ∇pN , and therefore pN is the
solution of − div(M−1

N ∇pN ) = g on D and (M−1
N ∇pN ) ·n = 0 on ∂D. We assume

for simplicity that each Ψn is a scalar function multiplied by the identity matrix.
Then we have

−∆pN = MNg +MN∇M−1
N ·∇pN . (107)

By similar arguments as in the proof of Theorem 4.4, it can be shown that
∥∥∥∥∥

N∑

n=1

Yn∇Ψn

∥∥∥∥∥
Lq(Ω;L∞(D)d)

≤ C

( N∑

n=1

|Ψn|2(1−ϑ)
W 1,∞(D)‖Ψn‖2ϑW 2,∞(D)

)1/2

(108)

for any q ∈ [1,∞) and ϑ ∈ (0, 1). If D is a convex domain, using (22) and
Lemma 4.8, it follows that

‖pN‖Lq(Ω;H2
∗(D)) ≤ C

[
1 +

( N∑

n=1

|Ψn|2(1−ϑ)
W 1,∞(D)‖Ψn‖2ϑW 2,∞(D)

)1/2]
‖g‖L2(D) . (109)

In many examples, such as the model problem from Section 7 below, the right hand
side of (109) is either uniformly bounded in N or grows algebraically in N .

7. Numerical computations

In the following we verify the performance of the MLMC-MFEM method with
numerical examples in R2. The physical domainD is chosen asD = [−1, 1]×[−1, 1].
We load the problem with boundary conditions only, thus g = 0 and f = 0. By
choosing Dirichlet boundary data

uD = ∇(rβ sin(βϕ)) (110)

in polar coordinates (r,ϕ), we have uD ∈ [Hβ(D)]d and for the boundary trace
it holds uD|∂D ∈ [Hβ−1/2(∂D)]d. The boundary conditions are enforced using
Nitsche’s method, cf. [13]. Thus the norm for the velocity becomes

‖v‖2t,h := ‖v‖2t + t2
∑

E∈∂Eh

1

hE
‖[[v]]‖20,E , (111)

in which ∂Eh denotes the collection of edges residing on the boundary ∂D. In all
of the numerical examples we choose β = 3.1 to ensure sufficient regularity of the
boundary data.

In the following we assume for simplicity the stochastic permeability matrix M
to be isotropic, lognormal, i.e.

M(x,ω) = exp(m(x,ω))I, (112)

in which m is an R-valued Gaussian field on D and m(x,ω) ∈ L∞(D,R). For
practical applications, such as oil reservoir simulation, the permeability is usually
of this diagonal form, and thus the test case is also of practical importance.

7.1. Karhunen–Loève eigenpairs. To compute the eigenpairs of the truncated
Karhunen–Loève expansion (29) numerically, one could employ e.g. finite element
methods [18]. For simplicity, we only consider analytically known eigenexpansions
for the Karhunen–Loève series. We use the following result in one space dimension
as a basis.
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Proposition 7.1. Let D = (−1, 1), E(x) = x, C(x, x′) = min{x,x′}+1
2 ∈ H1,1(D ×

D). Then the eigenpairs of the Karhunen–Loève expansion are

λ̃m =
8

π2(2m− 1)2
, ϕ̃m(x) = sin(

x+ 1√
2λm

) .

In two dimensions, we choose the eigenexpansion as the tensor product of the
expansion in one dimension. Thus the truncated Karhunen–Loève expansion with
N terms can be written as

MN (x,ω) = exp(
N∑

m=1

Ym(ω)
√
λmϕm(x))I. (113)

Here, the eigenpairs are chosen as λm(i,j) = λ̃iλ̃j and ϕm(i,j)(x) = ϕ̃i(x1)ϕ̃j(x2)
ordered by the magnitude of the resulting eigenvalues {λm}m≥1.

7.2. Numerical experiments. We consider three distinct test cases, each with
several values of the viscosity parameter t. In all tests we employ first-order ele-
ments. We introduce the scaling parameter Θ for the eigenvalues, that is we modify
the eigenvalues by

λm → λΘ
m. (114)

This gives an algebraic decay rate of Θ for the square roots of the eigenvalues, and
accordingly the sequence of norms Ψ in Assumption 4.1 belongs to )1/Θ+ε for every
ε > 0. Thus in Corollary 4.10 we have s " Θ − 1/2. Using the optimistic estimate
r = 0 we choose the number of terms in the Karhunen–Loève expansion on level l
according to (94) as

Nl = N02
l/(Θ−1/2). (115)

Similarly, the number of samples on level l is chosen according to (95) as

Ml = M̄L22(L−l). (116)

In all of the computations we use M̄ = 4 and N0 = 1. As is evident from (115), the
decay rate of the Karhunen–Loève expansion has a strong effect on the feasibility
of the method, since evaluating a massively long series on the finer mesh levels
increases the computational cost very quickly. We use an initial mesh with only
five nodes for all of the computations, with the nodes located at the vertices and in
the middle of the domain. The stabilization parameter γ is chosen elementwise as
proposed in Remark 5.3. Using the solution on level L+1 as the reference solution,
we plot in Figures 1, 4, and 7 the relative error

‖E[U ]− El[U ]‖L2(Ω;V ×Q)

‖E[U ]‖L2(Ω;V ×Q)
(117)

for several values of the viscosity parameter t. In the above error expression we
use for the velocity the mesh dependent norm (111) and similarly for the pressure
the mesh dependent norm (56). We employ the Matlab backslash operator as the
linear solver in all of the computations, thus we have at most σ = 2 in Remark 6.5.

The computations were performed on the HP CP4000 BL Vuori cluster at Fin-
land’s CSC1 comprising of 272 nodes with twelve 2.6 GHz AMD Opteron cores and
16 or 32 GB of memory.

7.2.1. Series with a fast decay rate. In the first example we choose Θ = 2.5. Thus
the number of terms in the K-L expansion grows as Nl ∼ 2l/2, which allows us to
test a greater number of levels. We choose L = 10 as the reference solution with
approximately 1.6 million degrees of freedom on the highest level, and test with
values of t ranging from 10−5 to 10.

1CSC - IT Center for Science, www.csc.fi
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Figure 1. Convergence in the mesh dependent norm for several
values of t with Θ = 2.5.

Referring to Figure 1, the convergence rates predicted by Theorem 6.2 for all
values of t akin to the deterministic Brinkman problem [13] are attained. Further-
more, we observe that the error drops by one to two orders of magnitude as we pass
numerically to the Stokes regime, where the stochastic effects of the Darcy term
are suppressed by the dominating viscous Stokes term, cf. (1).

Figure 2. Sublevel CPU time for different levels of the MLMC
method with Θ = 2.5.

In Figure 2 we plot the CPU time used on each sublevel for the MLMC-MFEM
method with a total of L levels. In addition, the green lines represents growth
relative to 22l and the red lines growth relative to 2l/2, corresponding to the
rates predicted in Remark 6.6 for the computation of the MFEM problem and
the Karhunen–Loève series, respectively. Up to level nine the computation time
appears to be dominated by the computation of the Karhunen–Loève series and
the matrix assembly. However, on level ten there is already some evidence of the
linear solver starting to take a more dominant part of the computational work.

In Figure 3 we compare the CPU time of the method with the theoretical bound
in Remark 6.5, as well as the total wallclock time spent on all of the nodes used
in the computation. As observed, both the quantities obey the theoretical bound.
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Figure 3. Total CPU and wallclock time for different levels of the
MLMC method with Θ = 2.5.

Comparing to Remark 6.5, it is evident that the work estimate is dominated by
the term WL

KL. On the lowest levels the discrepancy is due to the relatively high
amount of time spent on initialization routines etc. Moreover, the ratio between the
elapsed time and the CPU time remains approximately constant as the number of
levels is increased. Thus the in-node parallelization performs equally well regardless
of the number of levels.

7.2.2. Unscaled series. Now we consider the original series resulting from the tensor
product of the one dimensional series with no scaling. This gives a rapid rate of
growth for the number of terms in the K-L expansion, namely Nl ∼ 22l. The corre-
sponding reference line is colored green in Figure 5. Thus we limit the computations
to using level L = 8 as the reference solution, which results in approximately 100
000 degrees of freedom and a series with 65 536 terms on the last level.

Figure 4. Convergence in the mesh dependent norm for several
values of t with no scaling of the eigenvalues.

As is evident from Figure 4 the convergence properties of the MLMC are as
predicted. One also witnesses the same improvement in the relative error upon
passing into the Stokes regime. Figure 5 suggests that now the computational
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cost per sublevel grows as 22l in accordance with Remark 6.6. This is due to the
increasing cost of evaluating the K-L series on all of the integration points, which
can be clearly seen by comparing the values to those in Figure 2 with the same
system matrix size. Also for this case the total CPU time used seems to be in good
agreement with the theoretical bound of Remark 6.5, as seen in Figure 6.

Figure 5. Sublevel CPU time for different levels of the MLMC
method with no scaling.

Figure 6. Total CPU and wallclock time for different levels of the
MLMC method with no scaling.

7.2.3. Moderately scaled series. To further test and verify the performance of the
method regardless of the convergence rate of the Karhunen–Loève expansion, we
test with an intermediate choice of Θ = 1.5 for the scaling of the eigenvalues. Here,
we use the solution on level L = 9 as the reference solution. Figure 7 shows con-
sistent convergence properties for the error in the mesh dependent norm compared
to the previous two cases.

As for the CPU time per sublevel, the work load stemming from evaluating the
Karhunen–Loève expansion is clearly reduced compared to the non-scaled Karhunen–
Loève expansion. Again in Figure 8 the green lines represent growth relative to 22l
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Figure 7. Convergence in the mesh dependent norm for several
values of t with Θ = 1.5.

and the red lines relative to 2l corresponding the the work load of the MFEM
solution and computing the Karhunen–Loève series, respectively. Evidently the
growth rate is considerably faster than that of the Karhunen–Loève expansion with
Θ = 2.5. As can be seen from Figure 9, the total CPU time once again obeys the
theoretical bounds given in Remark 6.5.

Figure 8. Sublevel CPU time for different levels of the MLMC
method Θ = 1.5.

7.3. Implementation and load balancing. Monte Carlo methods are so-called
embarassingly parallel methods, ie. during the sampling phase they achieve near
optimal speedups. However, parallelizing the MLMC Finite Element method adds
new technical complications. Firstly, the stiffness matrices for the problem on
different mesh levels differ vastly in size, as does the number of individual problems
solved per level. Accordingly, one would prefer lots of nodes with very little memory
and only one core for the low-level problems, whereas for the highest levels one
should have as much memory as possible. Thus, for each level the optimal division
of hardware resources is different, and allocating nodes with different amounts of
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Figure 9. Total CPU and wallclock time for different levels of the
MLMC method Θ = 1.5.

memory and CPU power might lead to hard-to-resolve resource starvation problems
on the cluster.

Our approach is to collect the small problems into larger batches. Specifically,
we assemble several (tens to tens of thousands) problems on one node into a large
matrix of approximately equal size for every level. Thus, on each level the linear
system to solve is of the same order of complexity, which allows us to make use of
multithreaded direct solvers inside the multicore node and take better advantage
of the memory available on the individual node. Furthermore, we assemble the de-
terministic parts only once. There is also a considerable reduction in the internode
traffic since one can sum up the results in the node and broadcast only one result
vector per batch to the master MPI process, instead of communicating for each
sample separately.

Another numerical complication is the numerical evaluation of a slowly converg-
ing Karhunen–Loève series. We need to evaluate the basis functions with random
coefficients on a fine mesh at each integration point. Precomputing the basis func-
tions consumes extreme amounts of memory and could not be practically imple-
mented since the memory requirements are easily in tens or hundreds of gigabytes.

From Figures 3,6, and 9 one can clearly see the considerable performance gain
from the internode parallelization. The Finite Element method is implemented
by using a MATLAB-based Finite Element solver compiled into a standalone C
library using the MATLAB Compiler.2 The main C program is a master-slave type
MPI implementation.3 In addition, the numerical evaluation of the Karhunen–
Loève expansion is parallelized using OpenMP in a mex-file written in C from
inside the MATLAB compiled library. The normally distributed random numbers
were generated using Matlab’s intrinsic functions. The underlying algorithm for
generating the random numbers is the well-known Mersenne Twister, and all of the
subtasks divided to the nodes are seeded individually.

2Matlab R2010a, compiler version 4.11, gcc version 4.4.3
3OpenMPI version 1.4.3
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