
ETH Library

Practical data-centric optimization
of C/C++ applications

Bachelor Thesis

Author(s):
Lepori, Andrea

Publication date:
2022-07-15

Permanent link:
https://doi.org/10.3929/ethz-b-000571709

Rights / license:
Creative Commons Attribution-ShareAlike 4.0 International

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000571709
http://creativecommons.org/licenses/by-sa/4.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Practical data-centric optimization of
C/C++ applications

Bachelor Thesis

Andrea Lepori

Friday 15th July, 2022

Dr. Alexandru Calotoiu, Prof. Dr. Torsten Hoefler

Department of Computer Science, ETH Zürich

Abstract

C is a programming language used everywhere and in a big part of
scientific codes. With the increase of highly parallel computing machines
the code needs to be adapted to be able to use the full power available.
In my thesis I will expand a compiler frontend to be able to transform C
code into a data centric representation that will intern be able to identify
data dependencies automatically and hence produce highly parallel
code. There were a lot of challenges because pointers and structs are
hard to adapt to a data centric paradigm. In the end I was able to
find ways to work around the imposed limitations and expand the
compiler front end to support a bigger - and more general - C language
subset. On the tested benchmarks the performance of the automatic
parallelization was on par with the handmade one.

i

Acknowledgements

I would like to thank my supervisors Dr. Alexandru Calotoiu and Prof. Dr.
Torsten Hoefler for the feedback and the help provided every time I didn’t
know how to continue. I also thank the whole DaCe/DAPP team for the
very quick fixes done to DaCe every time I got stuck on an exotic bug of the
framework. In particular Dr. Tal Ben-Nun for the responsiveness to all my
doubt and questions about DaCe when I was trying to push it to its limits.

Finally I would also like to thank my parents for all the support in my studies
and in my life.

iii

Contents

Contents v

1 Introduction 1

2 State of the art 5
2.1 DaCe . 5

2.1.1 Storing and moving data 5
2.1.2 Computing values . 5
2.1.3 Control-flow and other constructs 6
2.1.4 Manipulating SDFG and compiling them 7

2.2 C2DaCe . 8
2.2.1 Ingesting C code and transforming it 9
2.2.2 From the AST to the SDFG 10
2.2.3 Optimizing the SDFG 11
2.2.4 Limitations of C2DaCe 11

3 Structure elimination 13

4 Pointers handling 17

5 Additional canonical transformations 23
5.1 Arrays . 23
5.2 Pointers . 24
5.3 Function return values . 25
5.4 Variable types . 25
5.5 Nested for loops . 26

6 Mantevo HPCCG 29
6.1 Basic preprocessing . 29
6.2 Referencing the matrix struct 30
6.3 Representing complex data storage schemes 30

v

Contents

6.4 Results . 31

7 BOTS suite FFT 37
7.1 Removal of recursive functions 37

7.1.1 Automating the removal of recursive functions 41
7.2 Complex for statements . 42
7.3 Results . 43

8 Related works 47

9 Conclusion and future work 49

A Preprocessed HPCCG C code 51

B Preprocessed BOTS FFT C code 59

Bibliography 67

vi

Chapter 1

Introduction

More that a quarter of users of the Swiss National Supercomputing Centre
use C as their primary language and more than half use C++[1]. This shows
that C/C++ is often used in scientific parallel computation. Those languages
permit a very powerful and low level control on the hardware that allows
great flexibility. To be able to use all the available computational speed that
the hardware provides it is imperative to have some knowledge about it. In
the past most hardware was created for general purpose computation but
nowadays more manufactures are creating specific hardware to speed up
specific computations [2, 3]. This creates the problem that users have to learn
the new hardware to speed up their computations.

In modern supercomputers the computational power grows two times faster
than the memory bandwidth [4]. This means that we have to think about
how we access data to not incur in bottlenecks. Unfortunately it requires
specific knowledge about the memory structure to be able to optimize data
movements.

Another problem is that the memory access flexibility that C provides is a
double edge sword. On one hand the programmer is able to specify with
great control the access patterns wanted hence - with good knowledge about
the architecture - he’s able to greatly optimize the programs. On the other
hand that flexibility could obfuscate the data movement making automatic
optimization of a compiler harder to do and less impactful.

C2DaCe [5] aims to fix those problems by translating C code into a Stateful
DataFlow multiGraph (SDFG) that is a data centric intermediate represen-
tation. SDFGs explicitly show all data movements and computations done.
Thanks to the DaCe [6] framework and the information contained in the
SDFG we are able to create an optimized program that is able to use the full
potential provided by the hardware.

Because the SDFG is hardware agnostic is can be compiled into any archi-

1

1. Introduction

char *c[] = {"CARGO", "TUNA", "NEVER", "NEON"};

char **cp[] = { c+3, c+2, c+1, c };

char *** cpp = cp;

printf("%s", **++ cpp);

printf("%s", *--*++cpp +3);

printf("%s", *cpp [-2]+3);

printf("%s\n", cpp [-1][-1]+2);

Figure 1.1: Example C code where data movement and data accesses are not easy to identify

tecture including CUDA for NVIDIA GPUs and VHDL for FPGAs. In the
future with new architectures it can be also expanded to support them.

C2DaCe was already tested on the Polybench [7] and LULESH [8] bench-
marks and showed that is able to automatically optimize C code, obtaining
even better performance than hand optimized code. Unfortunately C2DaCe
still has some limitations with more complex code. In my thesis I’ll remove
some of those limitations and point out some possible solutions for more
of them. In this way I was able the enlarge the subset of C programs that
C2DaCe is able to handle.

The most important limitations that I’ve been working on where

• Handling more complex struct usage. Including supporting pointers to
struct arrays and fields as array pointers

• Extending the support for 1D and 2D pointers to arrays initialized with
malloc

• Adding support for writing to references of values passed to different
functions

• Handling simple pointer assignments using static aliasing at compile
time

• Creating a proof of concept implementation of array pointers arithmetic
where the beginning of the array is moved by editing the pointer

Another contribution I’ve worked on is the identification of the most impor-
tant still present limitations and the proposal of possible solutions. Because
those limitations are often incurred on I’ve also proposed valid ways to
workaround them to produce working code.

In the following chapters I will first explain how DaCe and C2DaCe work. I’ll
then explain in details the current limitations of C2DaCe and how I was able
to remove them. Afterwards I’ll explain the limitations that are still present
explaining why they are hard to remove and possible way to approach the
problem. I’ll also propose possible manual workarounds to be able to run
the code for the time being. In the end I’ll explain the two benchmarks that I

2

was able to run (HPCCG [9] and FTT from the BOTS suite [10]) and show
the successful results that were on par with the parallel implementation of
the benchmarks.

3

Chapter 2

State of the art

2.1 DaCe

DaCe [6] is a parallel programming framework that uses Stateful DataFlow
multiGraph (SDFG) to represent and manipulate code. In the SDFG the code
is represented based on the data movement and not the control flow. Thanks
to this representation we can easily identify data dependencies. Using the
knowledge of those data dependencies we can automatically parallelize code.

2.1.1 Storing and moving data

The main components of the SDFG are data container (or array containers)
that are the objects containing the data. The data containers are defined with
a size and a type like in other languages. Data is moved connecting different
components with memlets that are what defines which data gets moved and
where. Memlets will also indicate the source and destination subset for the
data movement. Thanks to memlets data movements are explicitly defined
and with that information we can derivate the data dependencies between
computations.

A conflict resolution (CR) memlet is a special kind of memlet that enables
concurrent write to a data container. We can specify a two arguments function
that will be applied to resolve the write conflict between two threads. For
example if we specify the function λx.λy.x + y then when two threads try to
“execute” the memlet at the same time their values will be summed together
and saved in the destination data container.

2.1.2 Computing values

Tasklets are components that define fine-grained computations. Inside a
tasklet we define the computation using a C++ or Python statement. We can

5

2. State of the art

data

result

CR: λx.λy.x + y

data

result

src: data[0]

dst: result[0]

Figure 2.1: Left: simple memlet with the subset specified. Right: memlet with conflict resolution
write

then define input and output connectors on the tasklet where we can connect
memlets to move the necessary data.

data

out = in + 5

result

Figure 2.2: Read and increment of a value from a data container to another. The top ellipse is
the source data container, the bottom ellipse is the destination, the octahedron in the middle is a
tasklet and the arrows are the memlets.

To parallelize computations we can use maps where we apply a computation
on a data container range one element at the time. At the end side of the map
constructs all threads could write to the same data container element using
a memlet with CR or every thread can write to a different element. This
construct is completely parallelizable because maps only read independent
elements and in case of a write to the same data container a CR memlet is
used.

2.1.3 Control-flow and other constructs

The SDFG is composed by multiple states that are connected with state edges
which indicate the order of the execution. A state can have multiple inbound
and outbound edges on those edges we can have conditions based on the data.
Inside states there are the constructs talked about in the previous subsections
such as data containers, memlets, tasklets and map/reduce operations.

On state edges we can also define and update symbols. Symbols are another

6

2.1. DaCe

data

[i = 0 : 10]

result out = data in

[i = 0 : 10]

result

Map construct

Data container

Memlet

Tasklet

Memlet CR: Sum

Figure 2.3: Example of SDFG representing the sum of elements of an array

way to store data but they can only do that for single values and not arrays.
Symbols can be used to define symbolic arrays whose size depend on symbols
and for conditional state edges that depend on a symbol value.

SDFG can also be nested into each other. A nested SDFG will create a new
scope hence all previously defined data containers or symbol will not be
accessible. Symbols can be mapped entering the nested SDFG using a map.
Note that it is only when entering hence every edit to the symbol from the
nested SDFG will not be propagated to the parent SDFG. For data containers
memlets are used to indicate the data movement. This means that we can
also map only a subset of the parent data container to the new data container
in the nested SDFG.

2.1.4 Manipulating SDFG and compiling them

DaCe contains multiple transformations that improve the performance of the
SDFG. For example it can remove unneeded states, transform a loop (states
with backwards edges) directly into a map that can be parallelized, inline
nested SDFGs and many other simplifications.

DaCe has a native Python frontend and API. Code can be written in Python
and automatically transformed into an SDFG or it can be manually con-
structed using the API. DaCe also implements the backend that can compile

7

2. State of the art

GuardState98

GuardState179

_state180_180

GuardState99

state_0

state_1state_2

state_7

state_8

Figure 2.4: States with conditional branches and loops

the SDFG into optimized parallel code. At the time of writing it can target
CPUs, GPUs and FPGAs.

2.2 C2DaCe

C2DaCe is a frontend that compiles C to an SDFG that is then optimized and
compiled by the DaCe backend. This enables automatic optimization and
parallelization of C code.

8

2.2. C2DaCe

dace_a_2

dace_a_2

Figure 2.5: Nested SDFG

2.2.1 Ingesting C code and transforming it

The first step is done by LibClang [11] that takes the C source file and creates
an abstract syntax tree (AST)1. This AST directly represents the C code this
means that we still have access to all the feature of the C language. On this
AST we apply transformations that make it simpler and easier to transform
it into an SDFG.

An example is the transformation from figure 2.7 that is done to convert all
calloc calls to malloc. In this way when we are working with the SDFG we
only have to check for malloc calls for the creation of new arrays.

Another transformation done is the index extractor that creates a temporary
variable for every array index used. In this way we don’t have to handle com-
pound indices and we are also able to further optimize the SDFG. By having
a single variable as the index it is easier for DaCe to identify parallelization

1We don’t actually directly work with the AST of LibClang because it is not well docu-
mented and not easy to modify. Instead after LibClang creates its own AST we transform it
into a custom AST that is implemented directly in C2DaCe. In this way we have full control
of the AST structure.

9

2. State of the art

Input C file

AST (non data-centric)

SDFG (data-centric)

Optimized SDFG

Parallel C++ code

Clang parser

AST transformations
Transformation to SDFG

DaCe transformations/simplification

DaCe compilation

Figure 2.6: C2DaCe workflow

double* a = calloc(5, sizeof(

double));

int N = 35;

double ** b = calloc(N, sizeof

(double));

double* a = malloc (5 * sizeof

(double));

int N = 35;

double ** b = malloc(N *

sizeof(double));

Figure 2.7: Example of transformation from calloc to malloc

opportunities and converting loops to maps. An example can be found in
figure 2.8.

2.2.2 From the AST to the SDFG

Every variable will be mapped to a data container. Because we don’t have
scopes in the SDFG we could have the problem that two variables with the
same name are stored inside the same data container. To avoid this problem
we create a mapping between the C variable name and the data container
assigned to it. The current parent SDFG is also taken into account because
inside nested SDFG we have different data containers. We cannot use nested
SDFGs as scopes because they could be inlined to optimize the SDFG.

C statements are translated to some construct in the SDFG that is semantically
equivalent. This cannot be done for any C statements because there isn’t
always a one-to-one translation possible. This is the main challenge when

10

2.2. C2DaCe

double* a = calloc (100,

sizeof(double));

double* b = calloc (100,

sizeof(double));

int x = 36;

int y = 12;

a[5] = b[x];

b[x-y] = a[y];

double* a = calloc (100,

sizeof(double));

double* b = calloc (100,

sizeof(double));

int x = 36;

int y = 12;

int tmp_index_0 = 5;

int tmp_index_1 = x;

a[tmp_index_0] =

b[tmp_index_1];

int tmp_index_2 = x-y;

int tmp_index_3 = y;

b[tmp_index_2] =

a[tmp_index_3];

Figure 2.8: Example of index extraction transformation

translating and will talk about the problematic C statements in the following
chapters.

For example the statement result[0] = data[0] + 5 will be translated into
figure 2.2. More details on how different C statements are translated can be
found in the original C2DaCe [5] paper.

2.2.3 Optimizing the SDFG

The SDFG generated will be very linear in the sense that it will mostly
follow the control flow of the input C program. Instead we would like an
SDFG that depends mostly on the data flow, this can be done by applying
transformations from DaCe.

One very important transformation done in the beginning is the promotion of
scalars to symbols. This is important because symbols are treated differently
than data containers. For example the size of a data container can depend on
a symbol but not from another data container. In subsequent transformations
we can also apply constant propagation on symbols to optimize them away
if possible.

2.2.4 Limitations of C2DaCe

Because we are not able to translate any C statement one-to-one only a subset
of the C language is supported and most codes are outside this subset. Some
limitations come from the fact that the C language is very large and some
features were not encountered yet but mostly they come from the data centric
paradigm that we are using.

11

2. State of the art

In particular C2DaCe has problems handling structured data (structs) with
indirection. In the SDFG structured data cannot have arrays in it. This
means that we cannot convert C structs directly to SDFG structs. Another big
limitation are pointers (or references to data). We have pointers in the SDFG
but they are not safe. We are not able to analyze the data dependencies of
references this means that we can possibly incur in data races that would
produce incorrect behavior.

12

Chapter 3

Structure elimination

Structs are widely used in C to represent complex structured data. In
scientific code are often used to represent mathematical structures like sparse
or dense matrices.

In the SDFG we are able to create structs but we cannot have arrays in it.
Instead of arrays we can use pointers but then we lose information about data
dependencies causing worst performance or even incorrect execution (more
on this on the following chapter 4). To solve this problem C2DaCe unpacks
the fields of structs in single variables. In this way we obtain code that is
as if structs where never used. Thanks to this we can handle structs fields
exactly the same as any other variables. This was already partially supported
in C2DaCe but it was only limited to simple struct declarations without
pointers. The addition now supports struct pointers and fields defined as
pointers or double pointers. Also struct arrays can now be allocated using
malloc.

From the example in figure 3.2 you can see that a level of indirection is added
on variables that were in the struct. This is due to the fact that the struct was
defined as a struct pointer. In this way we keep the same level of indirection
as when we had structs and we still have correct code. After this whenever
we count the level of indirection, for example to find the dimensionality of
an array defined as a pointer, we need to check if it was a struct. If this was
the case then we need to remove from the count the indirection added by the
struct.

On functions call we unpack the struct in multiple arguments. When doing
this the type signature of the function must also be modified. Also here we
need to set the right level of indirection for the variables.

In the example of figure 3.1 we set two arrays inside of a struct indepen-
dently. With our implementation the write can be done with a map and be
parallelized. Using instead the native SDFG structs we have to define the

13

3. Structure elimination

two arrays as pointers hence we cannot use a map on them because we don’t
know their data dependencies.

struct example_struct {

double* x;

double* y;

}

typedef struct example_struct example;

int N = pow(2, 20);

example* ex = malloc(sizeof(example));

ex ->x = malloc(N * sizeof(double));

ex ->y = malloc(N * sizeof(double));

for (int i=0; i<N; i++) {

ex->x[i] = i+2;

ex->y[i] = i*2;

}

Figure 3.1: Example of computation to compare different struct representations

We run the example on a 8 thread CPU for 4 times (excluding a first run to
warm up the cache) an took the arithmetic mean of the running time. For the
native version we don’t have any parallelization and the mean runtime was
4.8 seconds. Instead on the parallelized version generated by C2DaCe the
run time was 30 milliseconds.

14

struct example_struct {

int size;

double* data;

};

typedef struct example_struct example;

void foo(example* ex) {

ex->size = 3;

}

void bar(example* ex) {

for (int i=0; i<ex ->size; i++) {

ex ->data[i] = i;

}

}

int main(int argc , char** argv) {

example* ex = malloc(sizeof(example));

// init variables

ex->data = malloc(sizeof(double) * 10);

foo(ex);

bar(ex);

return ex->data [2];

}

void foo(double ** c2d_struct_example_data , int*

c2d_struct_example_size) {

*c2d_struct_example_size = 5;

}

void bar(double ** c2d_struct_example_data , int*

c2d_struct_example_size) {

for (int i=0; i<* c2d_struct_example_size; i++) {

c2d_struct_example_data[i] = i;

}

}

double ** c2d_struct_example_data = malloc(sizeof(double *));

int* c2d_struct_example_size = malloc(sizeof(int));

// init variables

*c2d_struct_example_data = malloc(sizeof(double) * 10);

foo(c2d_struct_example_data , c2d_struct_example_size);

bar(c2d_struct_example_data , c2d_struct_example_size);

return c2d_struct_example_data [2];

Figure 3.2: Transforming structs from original C code to transformed code
15

3. Structure elimination

_state6_7

dace_c2d_struct_example_struct_ex___data_ptr_1

_state8_9

(c2d_struct_example_struct_ex___size_ptr_out)=3;

dace_c2d_struct_example_struct_ex___size_ptr_1

printdace_c2d_struct_example_struct_ex___size_ptr_0

Final_State_Functionbar

BeginState10

GuardState10

_state13_14

c2d_struct_example_struct_ex___data_ptr_out_1=i;

dace_c2d_struct_example_struct_ex___data_ptr_3

[i=0:dace_c2d_struct_example_struct_ex___size_ptr_2]
Default

[i=0:dace_c2d_struct_example_struct_ex___size_ptr_2]
Default

dace_c2d_struct_example_struct_ex___size_ptr_2

dace_c2d_struct_example_struct_ex___data_ptr_1

c2d_retval_out=c2d_struct_example_struct_ex___data_ptr_1;

c2d_retval

Figure 3.3: Resulting SDFG of C code containing structs from figure 3.2
16

Chapter 4

Pointers handling

Pointers are really powerful and are often used in C for complex data struc-
tures and code. When using pointers in the SDFG we cannot analyze the
data dependencies because it is not clear at which data it is pointing to.
When applying transformations this could produce incorrect results or not be
able to optimize the SDFG successfully because of the missing information
about the data movement. It is not possible in a data centric view to handle
indirection because it goes against the main idea of being able to precisely
track data movement. This means that the implementation must be done at
compile time. In the following paragraphs I will explain how some simple
static cases work.

One easy case to implement is when we have a pointer that is used for
passing around values by reference and not by copy.

int main(int argc , char** argv) {

double* value = malloc(sizeof(double));

setI(value);

return value [0];

}

void setI(double* k) {

k[0] = 5.0;

}

Figure 4.1: Example of pointer used to pass value by reference

When pointers are used for passing references of data (e.g. figure 4.1) we
can directly substitute them with their data container. Because in the SDFG
variables that are mapped to data containers are always passed by reference.
This is because when we access the variable we read or write to the same

17

4. Pointers handling

data container and not a copy of it.

The optimized SDFG obtained (figure 4.2) will directly inline the function
and set the value of the data container. Then if we compile the SDFG with
DaCe we obtain a piece of simple C++ code (figure 4.3) that encapsulate this
data movement.

dace_value_0

c2d_retval_out=value_1;

c2d_retval

k_out_1=5.0;

Figure 4.2: SDFG generated from code in figure 4.1

For simple pointer assignments we can manage that statically during the
compilation. In the example of figure 4.4 after the marked line the compiler
will substitute every occurrence of value2 with value.

Every other more complex case isn’t supported. This includes pointer assign-
ments in a conditional statement. To support cases like that we would need
to do a numerical analysis to know statically which branch will be taken.
Even then there will be branches that cannot be determined statically, for
example if they depend from user input.

From figure 4.5 you can see that if we had indirection we must be able to han-

18

double dace_value_0 [1] DACE_ALIGN (64);

{

int c2d_retval;

{

double k_out_1;

// /////////////////

k_out_1 =5.0;

// /////////////////

dace_value_0 [0] = k_out_1;

}

{

double value_1 = dace_value_0 [0];

int c2d_retval_out;

// /////////////////

c2d_retval_out=value_1;

// /////////////////

c2d_retval = c2d_retval_out;

}

}

Figure 4.3: Optimized code generated from the SDFG in figure 4.2

int main(int argc , char** argv) {

double* value = malloc (3 * sizeof(double));

value [0] = 37;

double* value2 = value; // aliasing

value2 [1] = 12;

return value [1];

}

Figure 4.4: Simple pointer assignment that can be handled statically

dle references to values. This is needed for modifying the original container
and expecting the reference to change. For a data centric representation we
have to know exactly which data we are accessing to know the data races.

For statically determinable references it could in theory be done statically
but it will require a very complex numerical analysis and pointer analysis.
But for runtime determined references we have to over approximate the set
of possible referenced data containers. In most cases the source C code can

19

4. Pointers handling

int main(int argc , char** argv) {

double ** ptr_a = malloc(sizeof(double *));

double ** ptr_b = malloc(sizeof(double *));

*ptr_a = malloc(sizeof(double *));

*ptr_b = malloc(sizeof(double *));

** ptr_a = 5;

** ptr_b = 10;

if (argc == 1) {

*ptr_a = *ptr_b;

} else {

*ptr_b = *ptr_a;

}

** ptr_a = 15;

return ** ptr_b;

}

Figure 4.5: Pointer assignment dependent on user input

be refactored to remove this kind of indirection. This is much easier to a
numerical/pointer analysis.

The only case of higher level indirection that is now supported is for mul-
tidimensional arrays created with malloc. Even then only 2D arrays are
supported. For this to work in the SDFG we have to know the size of the
array before using it. This is needed because to create the data container we
have to specify the size of it before using.

void foo(double ** x) {

for (int i=0; i<10; i++) {

x[i] = malloc (3 * sizeof(double));

x[i][0] = 1;

x[i][1] = 13;

x[i][2] = 45;

}

}

double **data = malloc (10 * sizeof(double *));

// data is an incomplete 2D array of size [10, ?]

double data [0] = malloc (3 * sizeof(double)); // marked

// data is a complete 2D array of size [10, 3]

// data can now be used

foo(data);

Figure 4.6: Creation of a 2D array using malloc

20

The marked line in figure 4.6 is needed for the compiler to know the size to
allocate for the data container. Even if the data container is not written to or
read from it is passed to a nested SDFG. Because we need to specify the data
movement (with a memlet) from the parent to the nested SDFG we have to
invoke the data container. To do so we need to know the size of it.

C2DaCe creates nested SDFGs for function calls and for loops. Because
of this the size of the data container must be known before any of those
occurrences. The first malloc encountered will be considered for setting the
size of the data container. This means that it shouldn’t be inside a branch.
This limitations come from the fact that we have to know statically the size
of the data container and because we are not doing a numerical analysis we
cannot resolve branches statically.

Another limitation is the handling of moving the start pointer of an array.

void foo(double* a) {

a[1] = a[0] + a[1]

}

double size = 3;

double* data = malloc(size * sizeof(double));

foo(data);

foo(data +1);

data ++;

double result = data [0] + data [1];

Figure 4.7: Example of moving the start pointer of an array

This could be supported by adding an offset variable for every array that
is modified at runtime instead of the pointer. Because this is a very com-
mon pattern in C adding this transformation will greatly expand the set of
supported C programs.

The transformation is partially implemented but only support simple cases.
Mainly it cannot pass an array to a function call with its offset. Because the
implementation is not complete and was not tested thoroughly it could cause
incorrect behaviors. By this reason and because in the tested HPCCG [9]
benchmark this pattern was not present the transformation is not currently
applied.

21

4. Pointers handling

void foo(double* a, int* a_offset) {

a[* a_offset + 0] = a[* a_offset + 0] + a[* a_offset + 1]

}

double size = 3;

double* data = malloc(size * sizeof(double));

int* data_offset = malloc(sizeof(int));

*data_offset = 0;

foo(data , data_offset);

*data_offset += 1;

foo(data , data_offset);

*data_offset -= 1;

*data_offset += 1;

double result = data[data_offset + 0] + data[data_offset + 1];

Figure 4.8: Transformed code from figure 4.7. The start pointer of the array is moved using an
additional variable.

22

Chapter 5

Additional canonical transformations

C2DaCe only supports a subset of the C language. This means that we expect
any general C code to not be able to run directly. All input files should be
transformed before to constrain them into this supported subset. C2DaCe
supports simple C code and really simple C++ constructs. To improve the
success of the compilation code should be transformed from C++ to C.

Some transformations are done automatically by C2DaCe as AST transforma-
tions. Unfortunately some still has to be done by the user manually. In most
cases the the limitations could be removed by adding some additional AST
transformations. But because they are mostly complex one they need to be
fully tested to have a fully safe transformation. Some could also impact the
performance hence they need some considerations when applied.

Even if some transformations need to be done by hand it is still faster than
rewriting the whole code into a parallelized version. Most hand made
transformations are really quick to do and don’t require much thinking to be
applied.

The following section can be viewed as a showcase of the currently still
present limitations with insight on how to work around them for the time
being. It will also explains the motivation on why it is not trivial to remove
them and possible ways to approach the problems in the future.

5.1 Arrays

Depending on how the array is declared it is handled differently. An array in
C can be declared in the stack (e.g. double a[5]) or in the heap (e.g. double
*a = malloc(5 * sizeof(double))). Each case is handled by different func-
tions in C2DaCe because it also has different behavior in C. I mainly focused
on the malloc implementation hence this section will be mainly about it.

23

5. Additional canonical transformations

malloc declared arrays can be of 1 or 2 dimensions only (other array sizes
are not supported yet). Others sizes are not trivially supported because of the
way we impose the size of the arrays. We derive the number of dimensions
of the array based on the number of indirections on the type. For example an
array of type double* will be 1 dimensional and one of type double** will
be 2 dimensional1. For 1 dimensional arrays we immediately know the size
because of the malloc arguments. For 2 dimensional arrays instead we only
know the size of the first dimension. For the second dimension we look for
the first malloc on an element of the array. Until the first malloc we cannot
use the array. This is because C2DaCe has to know the size before using the
data container.

int N = 10;

double *a = malloc(N * sizeof(double));

double **b = malloc(N * sizeof(double *));

// cannot use b here

b[0] = malloc (13 * sizeof(double));

// now we can use b

Figure 5.1: Allocation of an array using malloc. Code annotated to show where the array can
be used.

Usually in C the second call to malloc from figure 5.1 is done in a for loop.
As explained in more details in chapter 4 we cannot call the second malloc

from a for loop. Because of this most times it is required to manually move
a malloc outside of the for loop. This could be automated by searching
the malloc in the code statically. To do this you would need to also follow
functions call and do some pointer analysis to find the right pointer that was
initialized. Because of those reasons the process was not yet automated.

5.2 Pointers

Because of the data centric nature of the SDFG pointers cannot be supported
directly. But we can handle passing around data by reference by substituting
pointers with their data containers. This still has the limitation that we cannot
handle indirection, assignment or direct pointer arithmetic.

The * operator can be used to access pointers to single value but not pointers
to arrays. It is best to access pointers using the array access notation (a[0]),
in this way pointers to values and to arrays can be accessed.

1As talked about in chapter 3 for arrays that were in structs it is different. The number of
indirections of the original struct must be subtracted from the number of indirections of the
current variable.

24

5.3. Function return values

void foo(double* a, double* b)

{

b++;

a = b;

}

// some code

double* a = calloc(2, sizeof(

double));

double* b = calloc(3, sizeof(

double));

foo(a, b);

// some other code

Invalid

void foo(double* a, double* b)

{

a[0] = b[0];

}

// some code

double* a = calloc(2, sizeof(

double));

double* b = calloc(3, sizeof(

double));

b[0] = 42;

foo(a, b);

double* c = calloc(4, sizeof(

double));

double* c_alias = c;

// some other code

Valid

Figure 5.2: Examples of supported and unsupported use of pointers

Note that the invalid code in figure 5.2 cannot be transformed directly in
something valid. In order to transform the code there must be an higher level
understanding on what the code is doing and hence it is hard to automate.

More details and some possible expansions were talked about in chapter 4.

5.3 Function return values

When a function returns a value it should be saved in a variable on the
function call. C doesn’t enforce this behavior but we are enforcing it on our
strict subset of C. We assume that if a function is not of type void then it has
some data output. Otherwise if there is no output it has to be declared as
void. This is needed because it will influence the data flow hence when we
create the SDFG we want to know if there is a return value.

This could be automated in theory by checking for every function call and
adding a temporary variable to be thrown away afterwards. This was not
done because this behavior is not often found and not too problematic to
handle by hand.

5.4 Variable types

The type of a variable influences the way a variable is handled in C2DaCe.
double is for values and int is for indices of arrays/matrices. Because
integers are promoted to symbols (that are not passed by reference) all integer

25

5. Additional canonical transformations

int foo(double* a, double* b) {

a[0] = b[0];

return 0;

}

// some code

foo(a, b, c);

// some other code

Invalid

int foo(double* a, double* b) {

a[0] = b[0];

return 0;

}

// some code

int result = foo(a, b, c);

// some other code

or

void foo(double* a, double* b)

{

a[0] = b[0];

return 0;

}

// some code

foo(a, b, c);

// some other code

Valid

Figure 5.3: Example of correct way to define functions and do function calls

values passed around in scopes must be declared as double. Unfortunately
is not always possible to use doubles everywhere, for example array indices
must be integers otherwise the C compiler will complain. To work around
this it is possible to define a temporary integer variables that is a copy of the
double one.

This can be automated by changing every variable to double and for every
read of an originally int variable we create a temporary int copy to read from
instead. The performance impact should be tested and considered before
implementing this. Casting is not an option because it is not implemented
fully at the moment and in some cases produces undefined behaviors. A
correct and complete implementation of casting could be another possible fix
for this limitation.

5.5 Nested for loops

When optimization is done on the SDFG functions are often inlined into
another. This will cause loops that where not nested in the scope to be nested
after the inlining of the functions. Intern this causes the loops to possibly
have the same loop variable. To fix this every loop that could be possibly
nested has to have different loop variables.

26

5.5. Nested for loops

int N = 10;

int computation = N*2 - 18 + 2;

double* a = malloc(N * sizeof(double));

return a[computation];

double N = 10;

double computation = N*2 - 18 + 2;

int N_int = N;

double* a = malloc(N_int * sizeof(double));

int computation_int = computation;

return a[computation_int];

Figure 5.4: Workaround to handle int type variables

void foo() {

for (int i = 0; i < 5; i++)

{

// do something

}

}

int main ([...]) {

for (int i = 0; i < 5; i++)

{

foo();

}

}

void foo() {

for (int j = 0; j < 5; j++)

{

// do something

}

}

int main ([...]) {

for (int i = 0; i < 5; i++)

{

foo();

}

}

Figure 5.5: Different for loop iteration variable names to counteract function inlining

To automatically fix this every loop in the whole code should have a different
loop variable. It is difficult to rename all variables in scope correctly taking
care of all possible cases hence an automatic transformation was not yet
implemented.

Another solution is to change the way symbols are handled by C2DaCe.
Currently for data containers we use a map that maps the current scope
and the variable name to a new unique variable name used for the data
containers. Symbols defined in a for loop instead don’t use any kind of
mapping. Extending the data container mapping strategy to all symbols
could solve this problem.

27

Chapter 6

Mantevo HPCCG

One of the main objectives of the thesis is to make C2DaCe able to handle
the HPCCG [9] benchmark. The HPCCG benchmark is a simple conjugate
gradient benchmark. The benchmark uses a sparse matrix format that is
implemented with pointers in a struct.

Because of the way the matrix is stored the limitations in C2DaCe were
impeding it to transform the HPCCG benchmark. Thanks to the removal of
the limitations described in section 3, section 4 and other limitation described
in the following sections the benchmark was able to be transformed by
C2DaCe.

6.1 Basic preprocessing

The benchmark is written in C++ with constructs that C2DaCe is not able to
handle. First it was converted to simple C. The benchmark was also merged
in a single file to make it easier to work with. By having a single file it is
easier to debug and find where problematic statements are.

Because HPCCG almost doesn’t use any objects or classes the conversion
is pretty simple. The only object is YAML Doc that is used to store logs but
this can be substituted by a simple printf to print to the stdout. Then all
the cout where substituted by printf and all the macros were removed.
The macros where only used for the setup of MPI, OpenMP or the debug
information so they where pretty trivial to remove (because we don’t need
either MPI nor OpenMP). Then all C++ references were converted to pointers.

Most int variables were changed to double. Not all variables can be double

as explained in section 5.4. The variables that caused problem where mostly
discovered by trial and error. C2DaCe and DaCe will produce a parallel C++
file that will be compiled with Clang. When Clang fails it is mostly due to
variables with the wrong type. Looking at the error logs of Clang it is easy

29

6. Mantevo HPCCG

to pinpoint the variables causing errors and apply the correct workaround to
correct it.

6.2 Referencing the matrix struct

To pass around the matrix struct it is stored as a double pointer that will be
initialized by the function generate matrix. The implementation described
in chapter 3 and chapter 4 is able to only manage single pointers to structs.
As explained in chapter 4 we cannot handle data indirection in the SDFG.

To fix this issue we only use a single pointer as a reference to the matrix
struct. To initialize the matrix we inline the function so we don’t need to add
the extra level of indirection.

Thanks to the work done from chapter 3 we are able to handle single pointers
structs without problems including passing structs around in functions.

6.3 Representing complex data storage schemes

The (sparse) matrix is defined with the struct from figure 6.1.

struct HPC_Sparse_Matrix_STRUCT {

char *title;

int start_row;

int stop_row;

int total_nrow;

long long total_nnz;

int local_nrow;

int local_ncol; // Must be defined in make_local_matrix

int local_nnz;

int * nnz_in_row;

double ** ptr_to_vals_in_row;

int ** ptr_to_inds_in_row;

};

Figure 6.1: Sparse matrix struct definition

The matrix is stored with the LIL format where it has 2 arrays for every row
namely ptr to vals in row and ptr to inds in row. The two arrays are of
size #rows × 27 because every row has a maximum of 27 non zero elements.
One array stores the values and the other the column index. The initialization
code can be seen in figure 6.2.

As explained in chapter 4, pointer arithmetic and assignments of references
are not supported in C2DaCe. To work around the limitation the initialization
was modified to allocate the data row by row and assign it directly into the

30

6.4. Results

for (int iz=0; iz <nz; iz++) {

[...]

A->ptr_to_vals_in_row[curlocalrow] = curvalptr;

A->ptr_to_inds_in_row[curlocalrow] = curindptr;

[...]

for (int sz=-1; sz <=1; sz++) {

[...]

if (curcol == currow) {

A->ptr_to_diags[curlocalrow] = curvalptr;

*curvalptr ++ = 27.0;

} else {

*curvalptr ++ = -1.0;

}

*curindptr ++ = curcol;

nnzrow ++;

[...]

}

[...]

}

Figure 6.2: Original HPCCG matrix initialization code snippet

2D array. The resulting code from the transformation can be seen in figure 6.4
and the resulting SDFG in figure 6.5.

The transformation is done automatically by an AST transformation that
matches the specific pattern of LIL sparse matrices defined with a struct. That
is, two subsequent assignment to pointer arrays as fields on the same struct
followed by the increment and writing to the pointers that were assigned to
the struct fields.

The advantage of this workaround is that - other than the initialization code
- every other access to the matrix can remain the same because we use the
same pattern. We also don’t use any more space than the original code. The
implementation is also data centric friendly because we are working basically
with 2 dense matrices that we are already able to handle.

6.4 Results

All runs were done 10 times on a 4 core 8 threads Intel i5-1035G4 with 8GB
of RAM. The problem size was: nx = 89, ny = 96, nz = 101. All bench-
marks where compiled with gcc 10.2.1. The original benchmark was com-
piled with OpenMP enabled and the following compilation arguments -O3

-ftree-vectorize -ftree-vectorizer-verbose=2 -march=native -fopenmp

-lm. Serial was obtained by compiling the file before ingestion into C2DaCe
and the C2DaCe version was obtained by compiling the C++ file generated

31

6. Mantevo HPCCG

by C2DaCe. Both Serial and C2DaCe where compiled with the following
arguments -O3 -march=native -lm.

●

●

8

10

12

14

ru
nt

im
e

[s
]

Original Serial C2DaCe

Figure 6.3: Boxplot of running time in seconds with different benchmarks. Whiskers extend to
data points that are less than 1.5 IQR away from 1st/3rd quartile.

As you can see from figure 6.3 the running time of the C2DaCe auto optimized
version is about the same as the original parallel one. This shows that C2DaCe
is able to obtain performance at least as good as hand optimized code.

This result is easily explained by looking at the generated SDFG where we
notice that the parallelized loops are the same. For example in figure 6.6
we can see that the original ddot function is parallelized using OpenMP
annotations on the loops and in figure 6.7 we see that the SDFG version of
the function is implemented using parallel maps for the same loops. Every
loop that the original code parallelized also C2DaCe was able to find the
same parallelization opportunity.

32

6.4. Results

A->ptr_to_vals_in_row [0] = calloc(max_nnz , sizeof(double));

A->ptr_to_inds_in_row [0] = calloc(max_nnz , sizeof(int));

for (int iz=0; iz <nz; iz++) {

[...]

A->ptr_to_vals_in_row[curlocalrow] = calloc(max_nnz , sizeof(

double));

A->ptr_to_inds_in_row[curlocalrow] = calloc(max_nnz , sizeof(int

));

[...]

for (int sz=-1; sz <=1; sz++) {

[...]

if (curcol == currow) {

A->ptr_to_vals_in_row[curlocalrow][curvalptr] = 27;

} else {

A->ptr_to_vals_in_row[curlocalrow][curvalptr] = -1;

}

A->ptr_to_inds_in_row[curlocalrow][curvalptr] = curcol;

curvalptr ++;

nnzrow ++;

}

[...]

}

Figure 6.4: Modified HPCCG matrix initialization code without pointer arithmetic

_state48_49

_state60_61

_state187_188

_state105_106

_state163_164

Figure 6.5: SDFG of the matrix initialization loops

33

6. Mantevo HPCCG

#include "ddot.hpp"

int ddot (const int n, const double * const x, const double *

const y,

double * const result , double & time_allreduce)

{

double local_result = 0.0;

if (y==x)

#ifdef USING_OMP

#pragma omp parallel for reduction (+: local_result)

#endif

for (int i=0; i<n; i++) local_result += x[i]*x[i];

else

#ifdef USING_OMP

#pragma omp parallel for reduction (+: local_result)

#endif

for (int i=0; i<n; i++) local_result += x[i]*y[i];

[...]

}

Figure 6.6: Original HPCCG code of the ddot function using OpenMP annotations

34

6.4. Results

_state386_387

T386

dace_local_result_0 T388

dace_y_10dace_x_16

dace_tmp_if_2_0

_state405_406

T405

dace_local_result_0

dace_result_0

_state403_404

T403

dace_x_16 dace_y_10

dace_local_result_0

[i=0:dace_nrow_1_1]
Default

[i=0:dace_nrow_1_1]
Default

_state396_397

T396

dace_x_16

dace_local_result_0

[i=0:dace_nrow_1_1]
Default

[i=0:dace_nrow_1_1]
Default

Figure 6.7: ddot function in the optimized SDFG using maps to parallelize the computation

35

Chapter 7

BOTS suite FFT

After having experience making HPCCG work I wanted to tackle another
benchmark to see if with the new implemented features and with my new
knowledge it was possible to adapt another benchmark in less time.

The benchmark I selected was the FFT program from the BOTS suite [10]. It
was selected because it is an important suite of parallel benchmarks. But also
because it is self contained and written in C and not C++.

The benchmark implements a Fast Fourier Transform (FFT) that works by
taking an input and an output N sized array. The array is split as part of the
divide and conquer algorithm and then joined again to have the global result.

The preprocessing went mostly without problems following the directives
from chapter 5. But then two big issues were encountered. The first of which
was the presence of recursive functions. Those are not supported in the
SDFG because of the graph nature of the representation. Another problem
was encountered with for loops using more complex manipulations of the
loop variable. This is a current limitation of C2DaCe that only implements a
subset of the for instruction.

7.1 Removal of recursive functions

It is not possible to have a recursive call in the SDFG. To create recursion
we need to store the order of the recursive calls. To do this in the SDFG we
would have to create an undefined number of states in a tree like structure.
Because we don’t know in advance how deep and wide the tree should be
and because we cannot create new states during runtime it is not possible to
have recursion in the SDFG.

The solution is to convert the recursive calls to iterative ones. Some functions
where easy to make iterative because the iterative version was already im-

37

7. BOTS suite FFT

plemented. The function in figure 7.1 is a divide and conquer style function
with an iterative version for small numbers.

void compute_w_coefficients(int n, int a, int b, COMPLEX * W)

{

double twoPiOverN;

int k;

double s

double c;

if (b - a < 128) {

twoPiOverN = 2.0 * 3.1415926535897932384626434 / n;

for (k = a; k <= b; ++k) {

c = cos(twoPiOverN * k);

(W[k]).re = c

(W[n - k]).re = c;

s = sin(twoPiOverN * k);

(W[k]).im = -s;

(W[n - k]).im = s;

}

} else {

int ab = (a + b) / 2;

compute_w_coefficients(n, a, ab , W);

compute_w_coefficients(n, ab + 1, b, W);

}

}

Figure 7.1: compute w coefficients function of the FFT benchmark from the BOTS suite.
Recursive function with cutoff value for an iterative version.

It is easy to see that in this case if we remove the if that sets the threshold for
the recursive version we can run the for loop for the whole array size and
obtain the same result.

A more challenging function to transform was the main auxiliary FFT func-
tion from figure 7.2.

The function is only implemented with a recursive call and there is no
iterative version already implemented. But we can notice that it is still a
divide and conquer style of function.

Another thing that we notice from the implementation of unshuffle and
fft twiddle gen is that both functions will only access the subset [o f f set, m+
o f f set] of in and out. Also the for loop is covering the whole range of the
array because r is a factor of n hence m (m = n / r) is an integer. Between
recursive calls with the same depth the variables n, m, r and factor offset

are the same. We can map out the subset that is accessed by every call and
see that we can compute those values knowing only the current depth.

What we can do is divide the function in two separate while loops the

38

7.1. Removal of recursive functions

void fft_aux(int n, COMPLEX * in, COMPLEX * out , int *factors ,

int factor_offset , COMPLEX * W, int nW , int offset)

{

int r, m;

int k;

r = factors[factor_offset];

m = n / r;

if (r < n) {

/*

* split the DFT of length n into r DFTs of length n/r, and

* recurse

*/

unshuffle(0, m, in , out , r, m, offset);

for (k = 0; k < n; k += m) {

fft_aux(m, out , in , factors , factor_offset + 1, W, nW,

offset+k);

}

}

/*

* now multiply by the twiddle factors , and perform m FFTs

* of length r

*/

fft_twiddle_gen (0, m, in, out , W, nW, nW / n, r, m, offset);

}

Figure 7.2: Main auxiliary function of the FFT benchmark (BOTS)

[0, n[

[0, n/r0[[n/r0, 2n/r0[

[n/r0, n/r0 + n/(r0 · r1)[... [n/r0 + (n · (r1 − 1))/(r0 · r1), 2n/r0[

... [(n · (r0 − 1))/r0, n[

Figure 7.3: Tree of accessed subsets from fft aux recursion where ri is the (i + 1)-th factor of n

first one will do all the unshuffle calls and the second one will do all the
fft twiddle gen calls. Every loop represents an increase of recursion depth.
The only value that changes at the same depth is the offset, we create an
array to keep track of the different offset values. Knowing the current offsets
and depth we can compute the offsets for the next depth. For the unshuffle

loop we start at depth 0 and we increase the depth with every iteration. With
the fft twiddle gen loop we reverse the process starting from the deepest

39

7. BOTS suite FFT

depth and going up until reaching depth 0. We can keep track of the depth
using the factor offset that starts with 0 at depth 0 and increases by one
at every depth increase.

// unshuffle loop

while (r < n) {

// apply unshuffle with every offset

for (int k = 0; k <= last_offset; k++) {

if (invert) {

unshuffle(0, m, out , in , r, m, offsets[k]);

} else {

unshuffle(0, m, in , out , r, m, offsets[k]);

}

}

double max_offset = last_offset;

// for every offset compute the offsets for the new depth

for (int i = 0; i <= max_offset; i++) {

double cur_offset = offsets[i];

double x = m;

// same loop as recursion but we append new offsets to the

list

for (int tmp_3 = 0; x < n; tmp_3 ++) {

last_offset += 1;

last_offset_int = last_offset;

offsets[last_offset_int] = cur_offset+x;

x += m;

}

}

// update values for new loop

n = m;

factor_count += 1;

factor_count_int = factor_count;

r = factors[factor_count_int];

m = n / r;

offsets_count[factor_count_int] = last_offset + 1;

invert = !invert;

}

Figure 7.4: First loop of the iterative main auxiliary function from the FFT benchmark (BOTS)

Another thing to keep track of is the inversion of the in and output. After
every recursion the arrays are inverted. To do so we keep a variable that we
invert after every loop iteration.

The recursive implementation was executing the computations in a depth-
first (DF) order. With our interactive implementation we instead use the
breadth-first (BF) ordering. Each computation can be executed only if their

40

7.1. Removal of recursive functions

// twiddle gen loop

while (factor_count >= 0) {

// use only the correct offsets slice

factor_count_int = factor_count;

last_offset = offsets_count[factor_count_int] - 1;

// apply twiddle gen for every offset

for (int x = 0; x <= last_offset; x++) {

if (invert) {

fft_twiddle_gen (0, m, out , in, W, nW, nW / n, r, m, offsets

[x]);

} else {

fft_twiddle_gen (0, m, in, out , W, nW, nW / n, r, m, offsets

[x]);

}

}

// update values to go back to previous depth ones

m = n;

factor_count -= 1;

factor_count_int = factor_count;

if (factor_count_int < 0) {

factor_count_int = 0;

}

r = factors[factor_count_int];

n = m*r;

invert = !invert;

}

Figure 7.5: Second loop of the iterative main auxiliary function from the FFT benchmark (BOTS).
Together with first loop in figure 7.5 it is semantically equivalent to the original recursive one in
figure 7.2

parent was. This is because the subset that the parent access includes the
subsets of all its children hence it must be executed before. But this property
is met in both DF and BF this means that both orderings are fine.

The resulting SDFG from figure 7.10 show two big blocks. The one in the
top left is the first while loop and the one in the bottom right is the second
loop. Every block contains two other block that are the two function call
from inside every loop.

7.1.1 Automating the removal of recursive functions

The removal of recursive functions is the most time consuming step to be
done by hand. Even then it is much faster than having to adapt the whole
code to a parallelization paradigm.

The procedural removal of any recursive function is a really hard problem. It
could be done by simulating a stack and emulating the recursive calls. Even

41

7. BOTS suite FFT

then it is not clear how this could scale and be parallelizable effectively. A
possible specific case to handle is one such as the one of figure 7.1. In that
case the iterative version is already implemented to be run for small problem
sizes. A transformation can be done on this type of recursive function to
remove the condition for the cutoff and run the iterative version for any
problem size.

7.2 Complex for statements

As discussed in section 5.5 for loops currently have some limitations on name
mapping of loop variables. Those are defined as symbols in the SDFG such
that they can be defined and modified on inter state edges. This makes the
creation of for loops simple. The problem is that C2DaCe assumes that the
increment statements only use symbols in it hence it will not apply any name
mapping (as opposed to data containers where the variable name in C is
mapped to a unique data container in the SDFG). This will fail when a data
container is used to increment the loop variable because it will not substitute
the variable name with the mapped name in the scope.

double* x = malloc(sizeof(double));

x[0] = 15;

for (int i=0; i<95; i+=x[0]) {

[...]

}

Figure 7.6: Example of for loop using variables that are not symbols

In the example of figure 7.6 it will not work because x is mapped to a data
container. C2DaCe will fail to find a data container with the name x because
the C variable name has to be first passed to the name mapping map.

As explained in the end of section 5.5 this could by fixed by applying the
name mapping also to symbols. A quick manual solution is to define the loop
variable outside of the loop and do the increment at the end of the loop body.
In this way it will be treated as any other variable with the correct mappings.
But this could create worst performance because the loop variable is not
defined in the loop header anymore hence the automatic transformation
done by DaCe to transform loops to map could not be applied in the same
way.

42

7.3. Results

double* x = malloc(sizeof(double));

x[0] = 15;

double i = 0;

for (int tmp =0; i<95; tmp ++) {

[...]

i += x[0];

}

Figure 7.7: Workaround to use variables that are not symbols as increment values in for loops

7.3 Results

By printing the output at the end of the benchmark we can compare the two
versions and see that we have correctness. Unfortunately for this benchmark
we cannot test performance because of a problem with allocation when
compiling the SDFG.

When DaCe compiles the SDFG to C++ code it has to know where to allocate
and unallocate the data containers. This information is not saved into the
SDFG because it is hardware agnostic and the target could not have the
concept of memory allocation. When compiling to C++ DaCe has to infer
where to allocate and unallocate the data containers based on the accesses.
Unfortunately there could be some ambiguous cases.

double* a = malloc(N * sizeof(double));

for (int i=0; i<N; i++) {

// do something with a[i]

}

free(a);

// other case

for (int i=0; i<N; i++) {

double* a = malloc(N * sizeof(double));

// do something with a[i]

free(a);

}

Figure 7.8: C code that generates an ambiguous allocation case inside an SDFG

In the two cases from figure 7.8 the data is accessed in the same way inside the
loop but the allocation and unallocation is different. But when we translate it
to the SDFG we obtain the same one because we don’t have the concept of
allocation.

To workaround this issue a new transformation was added to create dummy
accesses at the malloc and free instruction.

43

7. BOTS suite FFT

double* a = malloc(N * sizeof(double));

a[0] = 0;

for (int i=0; i<N; i++) {

// do something with a[i]

}

double tmp_0 = a[0];

free(a);

// other case

for (int i=0; i<N; i++) {

double* a = malloc(N * sizeof(double));

a[0] = 0;

// do something with a[i]

double tmp_1 = a[0];

free(a);

}

Figure 7.9: Ambiguous allocation case with dummy accesses

This works for the non optimized SDFG but after the optimization the
workaround is removed as it is dead code. This problem is currently dis-
cussed internally of the DaCe team to find the best possible solution which
will probably be an edit to both the frontend and backend. This means that
C2DaCe will have to be modified to be able to work with this new solution.

Because of this we are able to only compile the non optimized SDFG to check
for correctness. The performance before the optimizations is even worst that
the serial version hence it is pointless to obtain performance metric.

Nevertheless in about a week worth of work the benchmark was able to be
compiled into an SDFG. Because the optimization transformations are safe
once a solution for the allocation dilemma is found the SDFG should be able
to be directly optimized without modifications.

44

7.3. Results

stateFOR166

stateunshuffle

stateFOR186

stateFOR193

dace_c2d_struct_COMPLEX_struct_in___re_ptr_6dace_c2d_struct_COMPLEX_struct_in___im_ptr_6 dace_c2d_struct_COMPLEX_struct_out___re_ptr_5

dace_c2d_struct_COMPLEX_struct_out___re_ptr_5

dace_c2d_struct_COMPLEX_struct_out___im_ptr_5

dace_c2d_struct_COMPLEX_struct_out___im_ptr_5

dace_m_d_1 dace_offset_d_1 dace_print_10

dace_print_10

dace_offset_1

dace_offset_1

dace_m_3

dace_m_3

dace_ip_ind_d_1

dace_ip_ind_d_1

dace_ip_ind_1

dace_ip_ind_1

dace_j_ind_d_0

dace_j_ind_d_0

dace_j_ind_0

dace_j_ind_0

dace_j_0

dace_j_0

stateFOR256

dace_c2d_struct_COMPLEX_struct_in___re_ptr_5dace_c2d_struct_COMPLEX_struct_in___im_ptr_5 dace_c2d_struct_COMPLEX_struct_out___re_ptr_4

dace_c2d_struct_COMPLEX_struct_out___re_ptr_4

dace_c2d_struct_COMPLEX_struct_out___im_ptr_4

dace_c2d_struct_COMPLEX_struct_out___im_ptr_4

dace_r_3dace_m_d_0 dace_offset_d_0 dace_print_9

dace_print_9

dace_r4_0dace_offset_0

dace_offset_0

dace_m_2

dace_m_2

dace_ip_ind_d_0

dace_ip_ind_d_0

dace_ip_ind_0

dace_ip_ind_0

dace_print_8

dace_print_8dace_m_1 dace_c2d_struct_COMPLEX_struct_out___re_ptr_3dace_c2d_struct_COMPLEX_struct_out___im_ptr_3

dace_c2d_struct_COMPLEX_struct_in___re_ptr_4

dace_c2d_struct_COMPLEX_struct_in___re_ptr_4

dace_c2d_struct_COMPLEX_struct_in___im_ptr_4

dace_c2d_struct_COMPLEX_struct_in___im_ptr_4 dace_r_2dace_m_1 dace_offsets_1

stateunshuffle_0

stateFOR297

stateFOR304

dace_c2d_struct_COMPLEX_struct_in___re_ptr_10dace_c2d_struct_COMPLEX_struct_in___im_ptr_10 dace_c2d_struct_COMPLEX_struct_out___re_ptr_9

dace_c2d_struct_COMPLEX_struct_out___re_ptr_9

dace_c2d_struct_COMPLEX_struct_out___im_ptr_9

dace_c2d_struct_COMPLEX_struct_out___im_ptr_9

dace_m_d_5 dace_offset_d_5 dace_print_14

dace_print_14

dace_offset_5

dace_offset_5

dace_m_6

dace_m_6

dace_ip_ind_d_5

dace_ip_ind_d_5

dace_ip_ind_5

dace_ip_ind_5

dace_j_ind_d_3

dace_j_ind_d_3

dace_j_ind_3

dace_j_ind_3

dace_j_3

dace_j_3

stateFOR367

dace_c2d_struct_COMPLEX_struct_in___re_ptr_9dace_c2d_struct_COMPLEX_struct_in___im_ptr_9 dace_c2d_struct_COMPLEX_struct_out___re_ptr_8

dace_c2d_struct_COMPLEX_struct_out___re_ptr_8

dace_c2d_struct_COMPLEX_struct_out___im_ptr_8

dace_c2d_struct_COMPLEX_struct_out___im_ptr_8

dace_r_5dace_m_d_4 dace_offset_d_4 dace_print_13

dace_print_13

dace_r4_2dace_offset_4

dace_offset_4

dace_m_5

dace_m_5

dace_ip_ind_d_4

dace_ip_ind_d_4

dace_ip_ind_4

dace_ip_ind_4

dace_print_8

dace_print_8dace_m_1 dace_c2d_struct_COMPLEX_struct_in___re_ptr_4dace_c2d_struct_COMPLEX_struct_in___im_ptr_4

dace_c2d_struct_COMPLEX_struct_out___re_ptr_3

dace_c2d_struct_COMPLEX_struct_out___re_ptr_3

dace_c2d_struct_COMPLEX_struct_out___im_ptr_3

dace_c2d_struct_COMPLEX_struct_out___im_ptr_3 dace_r_2dace_m_1 dace_offsets_1

dace_c2d_struct_COMPLEX_struct_in___re_ptr_3

dace_c2d_struct_COMPLEX_struct_in___re_ptr_3

dace_c2d_struct_COMPLEX_struct_in___im_ptr_3

dace_c2d_struct_COMPLEX_struct_in___im_ptr_3

dace_c2d_struct_COMPLEX_struct_out___re_ptr_2

dace_c2d_struct_COMPLEX_struct_out___re_ptr_2

dace_c2d_struct_COMPLEX_struct_out___im_ptr_2

dace_c2d_struct_COMPLEX_struct_out___im_ptr_2

dace_print_7

dace_print_7

dace_r_1dace_m_0 dace_offsets_0dace_invert_0

stateFOR394

stateFOR438

statefft_twiddle_gen

stateFOR450

statefft_twiddle_gen1

stateFOR477

stateFOR498

dace_c2d_struct_COMPLEX_struct_in___re_ptr_17dace_c2d_struct_COMPLEX_struct_in___im_ptr_17dace_c2d_struct_COMPLEX_struct_W___re_ptr_8dace_c2d_struct_COMPLEX_struct_W___im_ptr_8 dace_m_14 dace_offset_11 dace_print_23

dace_print_23

dace_r0_1

dace_r0_1

dace_i0_1

dace_i0_1

dace_rt_1

dace_rt_1

dace_it_1

dace_it_1

dace_rw_1

dace_rw_1

dace_iw_1

dace_iw_1

dace_l1_1dace_l0_1

dace_l0_1

dace_l0_int_1

dace_l0_int_1

dace_computed_offset_1

dace_computed_offset_1

dace_c2d_struct_COMPLEX_struct_in___re_ptr_16dace_c2d_struct_COMPLEX_struct_in___im_ptr_16 dace_c2d_struct_COMPLEX_struct_out___re_ptr_15

dace_c2d_struct_COMPLEX_struct_out___re_ptr_15

dace_c2d_struct_COMPLEX_struct_out___im_ptr_15

dace_c2d_struct_COMPLEX_struct_out___im_ptr_15

dace_c2d_struct_COMPLEX_struct_W___re_ptr_7dace_c2d_struct_COMPLEX_struct_W___im_ptr_7 dace_r_10dace_m_13 dace_nWdnti_0 dace_nWdntm_0 dace_offset_10 dace_print_22

dace_print_22

dace_r0_0

dace_r0_0

dace_i0_0

dace_i0_0

dace_rt_0

dace_rt_0

dace_it_0

dace_it_0

dace_rw_0

dace_rw_0

dace_iw_0

dace_iw_0

dace_l1_0

dace_l1_0

dace_l0_0

dace_l0_0

dace_l0_int_0

dace_l0_int_0

dace_computed_offset_0

dace_computed_offset_0

dace_print_21

dace_print_21dace_c2d_struct_COMPLEX_struct_in___re_ptr_15dace_c2d_struct_COMPLEX_struct_in___im_ptr_15

dace_c2d_struct_COMPLEX_struct_out___re_ptr_14

dace_c2d_struct_COMPLEX_struct_out___re_ptr_14

dace_c2d_struct_COMPLEX_struct_out___im_ptr_14

dace_c2d_struct_COMPLEX_struct_out___im_ptr_14dace_c2d_struct_COMPLEX_struct_W___re_ptr_6dace_c2d_struct_COMPLEX_struct_W___im_ptr_6 dace_r_9dace_m_12 dace_tmp_arg_2_0 dace_tmp_arg_3_0 dace_tmp_arg_4_0

dace_c2d_struct_COMPLEX_struct_in___re_ptr_14

dace_c2d_struct_COMPLEX_struct_in___re_ptr_14

dace_c2d_struct_COMPLEX_struct_in___im_ptr_14

dace_c2d_struct_COMPLEX_struct_in___im_ptr_14

dace_c2d_struct_COMPLEX_struct_out___re_ptr_13

dace_c2d_struct_COMPLEX_struct_out___re_ptr_13

dace_c2d_struct_COMPLEX_struct_out___im_ptr_13

dace_c2d_struct_COMPLEX_struct_out___im_ptr_13

dace_c2d_struct_COMPLEX_struct_W___re_ptr_5

dace_c2d_struct_COMPLEX_struct_W___re_ptr_5

dace_c2d_struct_COMPLEX_struct_W___im_ptr_5

dace_c2d_struct_COMPLEX_struct_W___im_ptr_5

dace_nWdn_0 dace_r_8dace_m_11 dace_offset_8 dace_print_20

dace_print_20

dace_w_0

dace_w_0

dace_print_19

dace_print_19dace_m_10

dace_c2d_struct_COMPLEX_struct_out___re_ptr_12

dace_c2d_struct_COMPLEX_struct_out___re_ptr_12

dace_c2d_struct_COMPLEX_struct_out___im_ptr_12

dace_c2d_struct_COMPLEX_struct_out___im_ptr_12

dace_c2d_struct_COMPLEX_struct_in___re_ptr_13

dace_c2d_struct_COMPLEX_struct_in___re_ptr_13

dace_c2d_struct_COMPLEX_struct_in___im_ptr_13

dace_c2d_struct_COMPLEX_struct_in___im_ptr_13

dace_c2d_struct_COMPLEX_struct_W___re_ptr_4

dace_c2d_struct_COMPLEX_struct_W___re_ptr_4

dace_c2d_struct_COMPLEX_struct_W___im_ptr_4

dace_c2d_struct_COMPLEX_struct_W___im_ptr_4 dace_tmp_arg_5_0 dace_r_7dace_m_10 dace_offsets_4

statefft_twiddle_gen_0

stateFOR550

statefft_twiddle_gen1

stateFOR577

stateFOR598

dace_c2d_struct_COMPLEX_struct_in___re_ptr_22dace_c2d_struct_COMPLEX_struct_in___im_ptr_22dace_c2d_struct_COMPLEX_struct_W___re_ptr_13dace_c2d_struct_COMPLEX_struct_W___im_ptr_13 dace_m_19 dace_offset_16 dace_print_28

dace_print_28

dace_r0_4

dace_r0_4

dace_i0_4

dace_i0_4

dace_rt_4

dace_rt_4

dace_it_4

dace_it_4

dace_rw_4

dace_rw_4

dace_iw_4

dace_iw_4

dace_l1_4dace_l0_4

dace_l0_4

dace_l0_int_4

dace_l0_int_4

dace_computed_offset_4

dace_computed_offset_4

dace_c2d_struct_COMPLEX_struct_in___re_ptr_21dace_c2d_struct_COMPLEX_struct_in___im_ptr_21 dace_c2d_struct_COMPLEX_struct_out___re_ptr_19

dace_c2d_struct_COMPLEX_struct_out___re_ptr_19

dace_c2d_struct_COMPLEX_struct_out___im_ptr_19

dace_c2d_struct_COMPLEX_struct_out___im_ptr_19

dace_c2d_struct_COMPLEX_struct_W___re_ptr_12dace_c2d_struct_COMPLEX_struct_W___im_ptr_12 dace_r_14dace_m_18 dace_nWdnti_2 dace_nWdntm_2 dace_offset_15 dace_print_27

dace_print_27

dace_r0_3

dace_r0_3

dace_i0_3

dace_i0_3

dace_rt_3

dace_rt_3

dace_it_3

dace_it_3

dace_rw_3

dace_rw_3

dace_iw_3

dace_iw_3

dace_l1_3

dace_l1_3

dace_l0_3

dace_l0_3

dace_l0_int_3

dace_l0_int_3

dace_computed_offset_3

dace_computed_offset_3

dace_print_26

dace_print_26dace_c2d_struct_COMPLEX_struct_in___re_ptr_20dace_c2d_struct_COMPLEX_struct_in___im_ptr_20

dace_c2d_struct_COMPLEX_struct_out___re_ptr_18

dace_c2d_struct_COMPLEX_struct_out___re_ptr_18

dace_c2d_struct_COMPLEX_struct_out___im_ptr_18

dace_c2d_struct_COMPLEX_struct_out___im_ptr_18dace_c2d_struct_COMPLEX_struct_W___re_ptr_11dace_c2d_struct_COMPLEX_struct_W___im_ptr_11 dace_r_13dace_m_17 dace_tmp_arg_2_1 dace_tmp_arg_3_1 dace_tmp_arg_4_1

dace_c2d_struct_COMPLEX_struct_in___re_ptr_19

dace_c2d_struct_COMPLEX_struct_in___re_ptr_19

dace_c2d_struct_COMPLEX_struct_in___im_ptr_19

dace_c2d_struct_COMPLEX_struct_in___im_ptr_19

dace_c2d_struct_COMPLEX_struct_out___re_ptr_17

dace_c2d_struct_COMPLEX_struct_out___re_ptr_17

dace_c2d_struct_COMPLEX_struct_out___im_ptr_17

dace_c2d_struct_COMPLEX_struct_out___im_ptr_17

dace_c2d_struct_COMPLEX_struct_W___re_ptr_10

dace_c2d_struct_COMPLEX_struct_W___re_ptr_10

dace_c2d_struct_COMPLEX_struct_W___im_ptr_10

dace_c2d_struct_COMPLEX_struct_W___im_ptr_10

dace_nWdn_2 dace_r_12dace_m_16 dace_offset_13 dace_print_25

dace_print_25

dace_w_2

dace_w_2

dace_print_19

dace_print_19dace_m_10

dace_c2d_struct_COMPLEX_struct_in___re_ptr_13

dace_c2d_struct_COMPLEX_struct_in___re_ptr_13

dace_c2d_struct_COMPLEX_struct_in___im_ptr_13

dace_c2d_struct_COMPLEX_struct_in___im_ptr_13

dace_c2d_struct_COMPLEX_struct_out___re_ptr_12

dace_c2d_struct_COMPLEX_struct_out___re_ptr_12

dace_c2d_struct_COMPLEX_struct_out___im_ptr_12

dace_c2d_struct_COMPLEX_struct_out___im_ptr_12

dace_c2d_struct_COMPLEX_struct_W___re_ptr_4

dace_c2d_struct_COMPLEX_struct_W___re_ptr_4

dace_c2d_struct_COMPLEX_struct_W___im_ptr_4

dace_c2d_struct_COMPLEX_struct_W___im_ptr_4 dace_tmp_arg_6_0 dace_r_7dace_m_10 dace_offsets_4

dace_c2d_struct_COMPLEX_struct_in___re_ptr_3

dace_c2d_struct_COMPLEX_struct_in___re_ptr_3

dace_c2d_struct_COMPLEX_struct_in___im_ptr_3

dace_c2d_struct_COMPLEX_struct_in___im_ptr_3

dace_c2d_struct_COMPLEX_struct_out___re_ptr_2

dace_c2d_struct_COMPLEX_struct_out___re_ptr_2

dace_c2d_struct_COMPLEX_struct_out___im_ptr_2

dace_c2d_struct_COMPLEX_struct_out___im_ptr_2

dace_c2d_struct_COMPLEX_struct_W___re_ptr_3

dace_c2d_struct_COMPLEX_struct_W___re_ptr_3

dace_c2d_struct_COMPLEX_struct_W___im_ptr_3

dace_c2d_struct_COMPLEX_struct_W___im_ptr_3

dace_print_7

dace_print_7

dace_r_1dace_m_0 dace_offsets_0dace_invert_0

Figure 7.10: SDFG of the fft while function. Top left two unshuffle function calls and
bottom right two fft twiddle gen calls.

45

Chapter 8

Related works

DaCe and its SDFG IR is not the only backend that aims to optimize for
heterogenous architecture and possible parallelization opportunities. Be-
cause of the importance of the C language most backends also have some
implementation of a C frontend that enables the automatic translation of C
programs.

The MLIR project [12] uses a Multi-Level Intermediate Representation (MLIR)
to target multiple architecture and exploit the potential parallelism. MLIR
also has the ability to represent dataflow graphs and do optimizations on
those. A major difference to the SDFG is that MLIR encapsulate multiple
hardware specific instructions where the SDFG is hardware agnostic. MLIR is
also extensible with Dialects that extend the IR to support additional features
and architectures. Polygeist [13] is a C frontend of MLIR that uses the
polyhedral compilation support provided inside MLIR.

The Polyhedral Parallel Code Generator (PPCG) [14] also uses polyhedral
compilation to transform C to CUDA. Because PPCG is limited to the GPU ar-
chitecture it can only unveil GPU-like parallelism. This can lead to substantial
performance degradation in case of non GPU-like paradigms. Where instead
the DaCe approach is able to identify parallelism based only on the data
movements. This makes it able to work independently on the architecture.

Another approach is the one taken with OpenMP [15]. Where C/C++ code is
annotated to specify which instructions should be parallelized. This approach
require the user to specify the parallelization opportunities instead of the
framework applying automatic parallelization.

The REcursion Automatically PARallelized (REAPAR) system [16] covers
a case that C2DaCe is not able to handle, recursion. REAPAR is able to
parallelize recursive call that don’t have data dependencies assigning call to
different threads. REAPAR can only parallelize recursive call and not any

47

8. Related works

another feature. Further more it doesn’t check for data dependencies and
assumes that all recursive call are independent.

Another IR that is hardware agnostic is the Heterogenous Parallel Virtual
Machine (HPVM) [17]. It also uses a dataflow graph (DFG) to represent the
code like inside an SDFG state. The main difference is that HPVM hasn’t the
concept of states or a another concept to represent corse-grained control flow.
This makes the generation of a DFG from a language such as C much harder.
In fact the frontend HeteroC++ from HPVM needs very specific manually
annotated C++ code as input.

48

Chapter 9

Conclusion and future work

C2DaCe covers a good subset of the C language but it still has some limitation
and doesn’t support all features of the language. Most limitations can be
solved with a workaround by rewriting part of the source code. Even if
this process is quicker and easier than rewriting the whole program in a
parallelized way, automating this will greatly improve the ease of use. This
can be done by creating additional AST transformations or by modifying the
way certain language constructs are handled. Specifically:

• General implementation of pointer offsets using offset variables modi-
fied at runtime

• Handling of int types also as values that can be referenced between
multiple functions

• Fixing name mapping problems of for loops

• Matching simple recursive function patterns to be transformed into
iterative functions

Those are the main limitations that can be possibly solved in the near future.
Unfortunately there are still limitations such as the support for general
pointers and general recursive function where a solution is much harder
to find. For those problems it is important that the end user is informed
about what C2DaCe can’t do. In this way unsupported constructs could be
circumvented. A complete documentation of the project could greatly aid
the usage of C2DaCe.

Even then C2DaCe has shown to be capable of optimizing serial C code into
parallel code with performance that is on par with hand written paralleliza-
tion. This is much faster than rewriting the whole source code even if some
manual rewriting is needed to work around the limitations. Unfortunately
the process of ingesting code into C2DaCe is still slow and error prone. It is
an early tool that needs work to be efficient but results have shown that the

49

9. Conclusion and future work

capabilities are there. With time C2DaCe could be able to parallelize code
seamlessly and easily.

50

Appendix A

Preprocessed HPCCG C code

// @HEADER

//

**

//

// HPCCG: Simple Conjugate Gradient Benchmark Code

// Copyright (2006) Sandia Corporation

//

// Under terms of Contract DE-AC04 -94 AL85000 , there is a non -

exclusive

// license for use of this work by or on behalf of the U.S.

Government.

//

// BSD 3-Clause License

//

// Redistribution and use in source and binary forms , with or

without

// modification , are permitted provided that the following

conditions are met:

//

// * Redistributions of source code must retain the above

copyright notice , this

// list of conditions and the following disclaimer.

//

// * Redistributions in binary form must reproduce the above

copyright notice ,

// this list of conditions and the following disclaimer in the

documentation

// and/or other materials provided with the distribution.

//

// * Neither the name of the copyright holder nor the names of

its

// contributors may be used to endorse or promote products

derived from

// this software without specific prior written permission.

//

51

A. Preprocessed HPCCG C code

// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS "AS IS"

// AND ANY EXPRESS OR IMPLIED WARRANTIES , INCLUDING , BUT NOT

LIMITED TO , THE

// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE ARE

// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR

CONTRIBUTORS BE LIABLE

// FOR ANY DIRECT , INDIRECT , INCIDENTAL , SPECIAL , EXEMPLARY , OR

CONSEQUENTIAL

// DAMAGES (INCLUDING , BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR

// SERVICES; LOSS OF USE , DATA , OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER

// CAUSED AND ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT ,

STRICT LIABILITY ,

// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

OUT OF THE USE

// OF THIS SOFTWARE , EVEN IF ADVISED OF THE POSSIBILITY OF SUCH

DAMAGE.

//

// Questions? Contact Michael A. Heroux (maherou@sandia.gov)

//

//

**

// @HEADER

#include <stdio.h>

#include <stddef.h>

#include <math.h>

#include <stdlib.h>

struct HPC_Sparse_Matrix_STRUCT {

char *title;

int start_row;

int stop_row;

int total_nrow;

long long total_nnz;

int local_nrow;

int local_ncol; // Must be defined in make_local_matrix

int local_nnz;

int * nnz_in_row;

double ** ptr_to_vals_in_row;

int ** ptr_to_inds_in_row;

};

typedef struct HPC_Sparse_Matrix_STRUCT HPC_Sparse_Matrix;

void waxpby (int n, double alpha , double* x, double beta , double*

y, double* w)

{

if (alpha ==1.0) {

for (int i=0; i<n; i++) w[i] = x[i] + beta * y[i];

52

}

else if(beta ==1.0) {

for (int i=0; i<n; i++) w[i] = alpha * x[i] + y[i];

}

else {

for (int i=0; i<n; i++) w[i] = alpha * x[i] + beta * y[i];

}

}

void ddot (int n, double* x, double* y, double* result)

{

double local_result = 0.0;

if (y==x)

for (int i=0; i<n; i++) local_result += x[i]*x[i];

else

for (int i=0; i<n; i++) local_result += x[i]*y[i];

*result = local_result;

}

void HPC_sparsemv(HPC_Sparse_Matrix *A, double* x, double* y)

{

int nrow = A->local_nrow;

for (int i=0; i< nrow; i++) {

double sum = 0.0;

int cur_nnz = A->nnz_in_row[i];

for (int j=0; j< cur_nnz; j++) {

sum += A->ptr_to_vals_in_row[i][j]*x[A->ptr_to_inds_in_row[

i][j]];

}

y[i] = sum;

}

}

void dump_matlab_matrix(HPC_Sparse_Matrix *A, int rank) {

double nrow = A->local_nrow;

double start_row = nrow*rank; // Each processor gets a section

of a chimney stack domain

printf("===== MATRIX DUMP ======\n");

for (int i=0; i< nrow; i++) {

int cur_nnz = A->nnz_in_row[i];

for (int j=0; j< cur_nnz; j++) {

printf(" %f %d %22.16e,",start_row+i+1,A->

ptr_to_inds_in_row[i][j]+1,A->ptr_to_vals_in_row[i][j])

;

}

printf("\n");

53

A. Preprocessed HPCCG C code

}

printf("===== END DUMP ======\n");

}

void HPCCG (HPC_Sparse_Matrix * A, double* b, double* x, int

max_iter , double tolerance , int* niters , double* normr) {

int nrow = A->local_nrow;

int ncol = A->local_ncol;

double* r = calloc(nrow , sizeof(double));

double* p = calloc(ncol , sizeof(double));

double* Ap = calloc(nrow , sizeof(double));

double norm = 0.0;

double* rtrans = calloc(1, sizeof(double));

rtrans [0] = 0;

double oldrtrans = 0.0;

int rank = 0; // Serial case (not using MPI)

int print_freq = max_iter /10;

if (print_freq >50) print_freq =50;

if (print_freq <1) print_freq =1;

// p is of length ncols , copy x to p for sparse MV operation

waxpby(nrow , 1.0, x, 0.0, x, p);

HPC_sparsemv(A, p, Ap);

waxpby(nrow , 1.0, b, -1.0, Ap, r);

ddot(nrow , r, r, rtrans);

norm = sqrt(rtrans [0]);

if (rank ==0) printf("Initial Residual = %e\n", norm);

for(int k=1; ((k<max_iter) && (norm > tolerance)); k++) {

if (k == 1) {

waxpby(nrow , 1.0, r, 0.0, r, p);

} else {

oldrtrans = rtrans [0];

ddot (nrow , r, r, rtrans);// 2*nrow ops

double beta = rtrans [0]/ oldrtrans;

waxpby (nrow , 1.0, r, beta , p, p);// 2*nrow ops

}

norm = sqrt(rtrans [0]);

if (rank ==0 && (k%print_freq == 0 || k+1 == max_iter))

printf("Iteration = %d, Residual = %e\n", k, norm);

HPC_sparsemv(A, p, Ap); // 2*nnz ops

double* alpha = calloc(1, sizeof(double));

alpha [0] = 0;

ddot(nrow , p, Ap, alpha); // 2*nrow ops

alpha [0] = rtrans [0]/ alpha [0];

waxpby(nrow , 1.0, x, alpha [0], p, x);// 2*nrow ops

54

waxpby(nrow , 1.0, r, -(alpha [0]), Ap, r);// 2*nrow ops

niters [0] = k;

free(alpha);

}

double tmp = r[0] + Ap[0] + p[0];

normr [0] = norm;

}

int main(int argc , char *argv [])

{

HPC_Sparse_Matrix *A = calloc(1, sizeof(HPC_Sparse_Matrix));

double norm;

double d;

int ierr = 0;

int i, j;

int ione = 1;

int debug = 1;

int size = 1; // Serial case (not using MPI)

int rank = 0;

int nx = 89;

int ny = 96;

int nz = 101;

A->title = 0;

// Set this bool to true if you want a 7-pt stencil instead of

a 27 pt stencil

int use_7pt_stencil = 0;

int local_nrow = nx*ny*nz; // This is the size of our subblock

double max_nnz = 27;

int local_nnz = max_nnz*local_nrow; // Approximately 27

nonzeros per row (except for boundary nodes)

int total_nrow = local_nrow*size; // Total number of grid

points in mesh

long long total_nnz = max_nnz* (long long) total_nrow; //

Approximately 27 nonzeros per row (except for boundary

nodes)

double start_row = local_nrow*rank; // Each processor gets a

section of a chimney stack domain

double stop_row = start_row+local_nrow -1;

// Allocate arrays that are of length local_nrow

A->nnz_in_row = calloc(local_nrow , sizeof(int));

55

A. Preprocessed HPCCG C code

A->ptr_to_vals_in_row = calloc(local_nrow , sizeof(double *));

A->ptr_to_inds_in_row = calloc(local_nrow , sizeof(int*));

int max_nnz_int = max_nnz;

A->ptr_to_vals_in_row [0] = calloc(max_nnz_int , sizeof(double));

A->ptr_to_inds_in_row [0] = calloc(max_nnz_int , sizeof(int));

A->ptr_to_vals_in_row [0][0] = 0;

A->ptr_to_inds_in_row [0][0] = 0;

double *x = calloc(local_nrow , sizeof(double));

double *b = calloc(local_nrow , sizeof(double));

double* curvalptr = calloc(local_nnz , sizeof(double));

int* curindptr = calloc(local_nnz , sizeof(int));

long long nnzglobal = 0;

for (int iz=0; iz <nz; iz++) {

for (int iy=0; iy <ny; iy++) {

for (int ix=0; ix <nx; ix++) {

int curlocalrow = iz*nx*ny+iy*nx+ix;

int currow = start_row+iz*nx*ny+iy*nx+ix;

int nnzrow = 0;

A->ptr_to_vals_in_row[curlocalrow] = curvalptr;

A->ptr_to_inds_in_row[curlocalrow] = curindptr;

for (int sz=-1; sz <=1; sz++) {

for (int sy=-1; sy <=1; sy++) {

for (int sx=-1; sx <=1; sx++) {

int curcol = currow+sz*nx*ny+sy*nx+sx;

if (((((ix+sx >=0) && (ix+sx<nx)) && (iy+sy >=0)) &&

(iy+sy <ny)) && (curcol >=0 && curcol <total_nrow)

) {

if (! use_7pt_stencil || (sz*sz+sy*sy+sx*sx <=1)) {

// This logic will skip over point that are

not part of a 7-pt stencil

if (curcol == currow) {

*curvalptr ++ = 27.0;

} else {

*curvalptr ++ = -1.0;

}

// printf ("%f", (A->ptr_to_vals_in_row)[0][0]);

*curindptr ++ = curcol;

nnzrow ++;

}

}

} // end sx loop

} // end sy loop

} // end sz loop

A->nnz_in_row[curlocalrow] = nnzrow;

nnzglobal += nnzrow;

x[curlocalrow] = 0.0;

b[curlocalrow] = 27.0 - ((double) (nnzrow -1));

} // end ix loop

56

} // end iy loop

} // end iz loop

if (debug) printf("Process %d of %d has %d",rank ,size ,

local_nrow);

if (debug) printf(" rows. Global rows %d through %d\n",

start_row ,stop_row);

if (debug) printf("Process %d of %d has %lld nonzeros .\n",rank ,

size ,nnzglobal);

A->start_row = start_row ;

A->stop_row = stop_row;

A->total_nrow = total_nrow;

A->total_nnz = total_nnz;

A->local_nrow = local_nrow;

A->local_ncol = local_nrow;

A->local_nnz = local_nnz;

int dump_matrix = 0;

if (dump_matrix && size <=4) dump_matlab_matrix(A, rank);

int* niters = calloc(1, sizeof(int));

double* normr = calloc(1, sizeof(double));

int max_iter = 150;

double tolerance = 0.0; // Set tolerance to zero to make all

runs do max_iter iterations

HPCCG(A, b, x, max_iter , tolerance , niters , normr);

double fniters = niters [0];

double fnrow = A->total_nrow;

double fnnz = A->total_nnz;

double fnops_ddot = fniters *4* fnrow;

double fnops_waxpby = fniters *6* fnrow;

double fnops_sparsemv = fniters *2* fnnz;

double fnops = fnops_ddot+fnops_waxpby+fnops_sparsemv;

printf("Dimensions: x=%d, y=%d, z=%d\n",nx,ny,nz);

printf("Number of iterations: %d\n", niters [0]);

printf("Final residual: %e\n", normr [0]);

printf("FLOPS Summary :\n");

printf("Total : %e\n",fnops);

printf("DDOT : %e\n",fnops_ddot);

printf("WAXPBY : %e\n",fnops_waxpby);

printf("SPARSEMV: %e\n",fnops_sparsemv);

return 0;

}

57

Appendix B

Preprocessed BOTS FFT C code

/*

**

*/

/* This program is part of the Barcelona OpenMP Tasks Suite

*/

/* Copyright (C) 2009 Barcelona Supercomputing Center - Centro

Nacional de Supercomputacion */

/* Copyright (C) 2009 Universitat Politecnica de Catalunya

*/

/*

*/

/* This program is free software; you can redistribute it and/or

modify */

/* it under the terms of the GNU General Public License as

published by */

/* the Free Software Foundation; either version 2 of the License

, or */

/* (at your option) any later version.

*/

/*

*/

/* This program is distributed in the hope that it will be

useful , */

/* but WITHOUT ANY WARRANTY; without even the implied warranty

of */

/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

*/

/* GNU General Public License for more details.

*/

/*

*/

/* You should have received a copy of the GNU General Public

License */

59

B. Preprocessed BOTS FFT C code

/* along with this program; if not , write to the Free Software

*/

/* Foundation , Inc., 51 Franklin Street , Fifth Floor , Boston , MA

02110 -1301 USA */

/*

**

*/

/*

* Original code from the Cilk project

*

* Copyright (c) 2000 Massachusetts Institute of Technology

* Copyright (c) 2000 Matteo Frigo

*/

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <string.h>

struct COMPLEX_struct{

double re;

double im;

};

typedef struct COMPLEX_struct COMPLEX;

void compute_w_coefficients(double n, double a, double b, COMPLEX

* W)

{

double twoPiOverN = 0;

double s = 0;

double c = 0;

int n_int = n;

twoPiOverN = 2.0 * 3.1415926535897932384626434 / n;

for (int k = a; k <= b; k++) {

n_int = n;

c = cos(twoPiOverN * k);

(W[k]).re = c;

(W[n_int - k]).re = c;

s = sin(twoPiOverN * k);

(W[k]).im = -s;

(W[n_int - k]).im = s;

}

}

double factor(double n_d)

{

double ret_val = n_d;

double found = 0;

double smaller_n = n_d - 1;

for (int r=smaller_n; ((r>1) && (found ==0)); r--) {

int n = n_d;

60

if ((n % r) == 0) {

ret_val = n/r;

found = 1;

}

}

return ret_val;

}

void unshuffle(double a, double b, COMPLEX * in, COMPLEX * out ,

double r, double m_d , double offset_d)

{

int r_int = r;

double r4 = r_int %4;

int offset = offset_d;

int m = m_d;

double ip_ind_d = a * r;

int ip_ind = ip_ind_d;

for (int i = a; i < b; ++i) {

double j_ind_d = i;

int j_ind = j_ind_d;

double j = 0;

for (int tmp_1 = 0; (j < (r-r4)); tmp_1 ++) {

offset = offset_d;

m = m_d;

j_ind = j_ind_d;

ip_ind = ip_ind_d;

out[offset + j_ind + 0] = in[offset + ip_ind + 0];

out[offset + j_ind + m] = in[offset + ip_ind + 1];

out[offset + j_ind + 2 * m] = in[offset + ip_ind + 2];

out[offset + j_ind + 3 * m] = in[offset + ip_ind + 3];

j_ind_d += 4 * m;

ip_ind_d += 4;

j += 4;

}

for (int tmp_2 =0; j < r; tmp_2 ++) {

offset = offset_d;

ip_ind = ip_ind_d;

j_ind = j_ind_d;

out[offset + j_ind] = in[offset + ip_ind];

ip_ind_d = ip_ind + 1;

j_ind_d += m_d;

j += 1;

}

}

}

void fft_twiddle_gen1(COMPLEX * in, COMPLEX * out ,

COMPLEX * W, double r, double m,

61

B. Preprocessed BOTS FFT C code

double nW, double nWdnti , double nWdntm , double offset)

{

double r0 = 0;

double i0 = 0;

double rt = 0;

double it = 0;

double rw = 0;

double iw = 0;

double l1 = 0;

double l0 = 0;

int l0_int = l0;

int computed_offset = 0;

for (int q = 0; q < r; q++) {

r0 = 0;

i0 = 0;

rt = 0;

it = 0;

rw = 0;

iw = 0;

l1 = nWdnti + nWdntm * q;

l0 = 0;

l0_int = l0;

computed_offset = 0;

for (int j = 0; j < r; j++) {

l0_int = l0;

rw = (W[l0_int]).re;

iw = (W[l0_int]).im;

computed_offset = offset + m*j;

rt = (in[computed_offset]).re;

it = (in[computed_offset]).im;

r0 += rt * rw - it * iw;

i0 += rt * iw + it * rw;

l0 += l1;

if (l0 > nW) {

l0 -= nW;

}

}

computed_offset = offset + m*q;

(out[computed_offset]).re = r0;

(out[computed_offset]).im = i0;

}

}

void fft_twiddle_gen(double i, double i1, COMPLEX * in, COMPLEX *

out , COMPLEX * W,

double nW, double nWdn , double r, double

m, double offset)

{

double w = i;

for (int tmp_36 = 0; w < i1; tmp_36 ++) {

fft_twiddle_gen1(in , out , W, r, m, nW , nWdn * w, nWdn * m, w+

offset);

w += 1;

62

}

}

void fft_while(double n_orig , COMPLEX * in, COMPLEX * out , int *

factors , COMPLEX * W, double nW) {

double n = n_orig;

double factor_count = 0;

int factor_count_int = factor_count;

double r = factors[factor_count_int];

double m = n / r;

int n_int = n_orig;

double* offsets = malloc(n_int * sizeof(int));

double* offsets_count = malloc(n_int * sizeof(int));

double last_offset = 0;

int last_offset_int = last_offset;

double invert = 0;

offsets [0] = 0;

offsets_count [0] = 1;

double tmp = 0;

while (r < n) {

for (int k = 0; k <= last_offset; k++) {

if (invert) {

unshuffle(0, m, out , in , r, m, offsets[k]);

} else {

unshuffle(0, m, in , out , r, m, offsets[k]);

}

}

double max_offset = last_offset;

for (int i = 0; i <= max_offset; i++) {

double cur_offset = offsets[i];

double x = m;

for (int tmp_3 = 0; x < n; tmp_3 ++) {

last_offset += 1;

last_offset_int = last_offset;

offsets[last_offset_int] = cur_offset+x;

x += m;

}

}

n = m;

factor_count += 1;

factor_count_int = factor_count;

r = factors[factor_count_int];

m = n / r;

offsets_count[factor_count_int] = last_offset + 1;

invert = !invert;

}

while (factor_count >= 0) {

factor_count_int = factor_count;

last_offset = offsets_count[factor_count_int] - 1;

63

B. Preprocessed BOTS FFT C code

for (int x = 0; x <= last_offset; x++) {

if (invert) {

fft_twiddle_gen (0, m, out , in , W, nW , nW / n, r, m,

offsets[x]);

} else {

fft_twiddle_gen (0, m, in , out , W, nW , nW / n, r, m,

offsets[x]);

}

}

m = n;

factor_count -= 1;

factor_count_int = factor_count;

if (factor_count_int < 0) {

factor_count_int = 0;

}

r = factors[factor_count_int];

n = m*r;

invert = !invert;

}

tmp = offsets [0] + offsets_count [0];

free(offsets);

free(offsets_count);

}

void fft(double n, COMPLEX * in, COMPLEX * out)

{

int* factors = malloc (40 * sizeof(int)); /* allows FFTs up

to at least 3^40 */

double l = n;

double r = 0;

int n_copy_int = n;

printf("Computing coefficients ");

COMPLEX* W = malloc ((n_copy_int + 1) * sizeof(COMPLEX));

compute_w_coefficients(n, 0, n / 2, W);

printf(" completed !\n");

double p_loc = 0;

int p_loc_int = p_loc;

do {

r = factor(l);

p_loc_int = p_loc;

factors[p_loc_int] = r;

p_loc += 1;

l /= r;

} while (l > 1);

printf("Computing FFT");

fft_while(n_copy_int , in , out , factors , W, n);

printf(" completed !\n");

64

free(W);

return;

}

int main(int argc , char *argv []) {

double N = 100;

COMPLEX* in = malloc(sizeof(COMPLEX) * N);

for (int h = 0; h < N; ++h) {

(in[h]).re = sqrt(h*9283) - h*h + h + 98 - h*12;

(in[h]).im = sqrt(h*231) - h*h + h + 22 - h*34;

}

COMPLEX* out = malloc(sizeof(COMPLEX) * N);

fft(N, in , out);

for (int w = 0; w < N; ++w) {

printf("%f %f\n", (out[w]).re, (out[w]).im);

}

double tmp_val = in[0].re + in[0].im + out [0].re + out [0].im;

free(in);

free(out);

}

65

Bibliography

[1] Centro Nazionale di Calcolo Scientifico (CSCS), “CSCS annual report
2021,” 2021. [Online]. Available: https://www.cscs.ch/publications/
annual-reports/cscs-annual-report-2021/ (Accessed 2022-07-09).

[2] NVIDIA, “NVIDIA A100 Tensor Core GPU Architecture,” Tech. Rep.,
2020. [Online]. Available: https://images.nvidia.com/aem-dam/en-zz/
Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf (Ac-
cessed 2022-07-09).

[3] Xilinx, “Versal Premium ACAPs,” Tech. Rep., 2020. [Online].
Available: https://www.xilinx.com/content/dam/xilinx/support/
documents/white papers/wp519-versal-premium-intro.pdf (Accessed
2022-07-09).

[4] P. Kogge and J. Shalf, “Exascale computing trends: Adjusting to the
”new normal”’ for computer architecture,” Computing in Science and
Engineering, vol. 15, no. 6, pp. 16–26, 2013.

[5] Alexandru Calotoiu, Tal Ben-Nun, Grzegorz Kwasniewski, Johannes de
Fine Licht, Timo Schneider, Philipp Schaad, Torsten Hoefler, “Lifting c
semantics for dataflow optimization,” 2021.

[6] Tal Ben-Nun, Johannes de Fine Licht, Alexandros Nikolaos Ziogas,
Timo Schneider, Torsten Hoefler, “Stateful dataflow multigraphs: A
data-centric model for performance portability on heterogeneous archi-
tectures,” in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’19, 2019.

[7] Ohio State University, “PolyBench.” [Online]. Available: https:
//web.cs.ucla.edu/∼pouchet/software/polybench/ (Accessed 2022-07-
09).

67

https://www.cscs.ch/publications/annual-reports/cscs-annual-report-2021/
https://www.cscs.ch/publications/annual-reports/cscs-annual-report-2021/
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/white_papers/wp519-versal-premium-intro.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/white_papers/wp519-versal-premium-intro.pdf
https://web.cs.ucla.edu/~pouchet/software/polybench/
https://web.cs.ucla.edu/~pouchet/software/polybench/

Bibliography

[8] Lawrence Livermore National Laboratory, “LULESH.” [Online].
Available: https://github.com/LLNL/LULESH (Accessed 2022-07-09).

[9] Mantevo, “HPCCG,” 2017. [Online]. Available: https://github.com/
Mantevo/HPCCG (Accessed 2022-07-09).

[10] Barcelona Supercomputing Center, “Barcelona OpenMP Task Suite
(BOTS),” 2019. [Online]. Available: https://github.com/bsc-pm/bots
(Accessed 2022-07-09).

[11] LLVM Project, “LibClang Python Bindings.” [Online]. Available:
https://github.com/sighingnow/libclang (Accessed 2022-07-09).

[12] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pienaar,
R. Riddle, T. Shpeisman, N. Vasilache, and O. Zinenko, “MLIR: Scal-
ing compiler infrastructure for domain specific computation,” in 2021
IEEE/ACM International Symposium on Code Generation and Optimization
(CGO), 2021, pp. 2–14.

[13] W. S. Moses, L. Chelini, R. Zhao, and O. Zinenko, “Polygeist:
Affine c in mlir,” 2021, not a formal proceedings. [Online].
Available: https://acohen.gitlabpages.inria.fr/impact/impact2021/
papers/IMPACT 2021 paper 1.pdf

[14] S. Verdoolaege, J. Carlos Juega, A. Cohen, J. Ignacio Gómez, C. Tenllado,
and F. Catthoor, “Polyhedral parallel code generation for cuda,” ACM
Trans. Archit. Code Optim., vol. 9, no. 4, jan 2013. [Online]. Available:
https://doi.org/10.1145/2400682.2400713

[15] L. Dagum and R. Menon, “Openmp: an industry standard api for shared-
memory programming,” IEEE Computational Science and Engineering,
vol. 5, no. 1, pp. 46–55, 1998.

[16] L. Prechelt and S. Hanssgen, “Efficient parallel execution of irregular
recursive programs,” IEEE Transactions on Parallel and Distributed Systems,
vol. 13, no. 2, pp. 167–178, 2002.

[17] A. Ejjeh, A. Councilman, A. Kothari, M. Kotsifakou, L. Medvinsky, A. R.
Noor, H. Sharif, Y. Zhao, S. Adve, S. Misailovic, and V. Adve, “Hpvm:
Hardware-agnostic programming for heterogeneous parallel systems,”
pp. 1–12, 2022.

68

https://github.com/LLNL/LULESH
https://github.com/Mantevo/HPCCG
https://github.com/Mantevo/HPCCG
https://github.com/bsc-pm/bots
https://github.com/sighingnow/libclang
https://acohen.gitlabpages.inria.fr/impact/impact2021/papers/IMPACT_2021_paper_1.pdf
https://acohen.gitlabpages.inria.fr/impact/impact2021/papers/IMPACT_2021_paper_1.pdf
https://doi.org/10.1145/2400682.2400713

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.
__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that
− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information

sheet.
− I have documented all methods, data and processes truthfully.
− I have not manipulated any data.
− I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

 For papers written by groups the names of all authors are

required. Their signatures collectively guarantee the entire
content of the written paper.

