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Abstract. We establish posterior sparsity in Bayesian inversion for systems with
distributed parameter uncertainty subject to noisy data. We generalize the particular
case of scalar diffusion problems with random coefficients in [32] to broad classes
of operator equations. For countably parametric, deterministic representations of
uncertainty in the forward problem which belongs to a certain sparsity class, we
quantify analytic regularity of the (countably parametric) Bayesian posterior density
and prove that the parametric, deterministic density of the Bayesian posterior
belongs to the same sparsity class. Generalizing [35, 32], the considered forward
problems are parametric, deterministic operator equations, and computational
Bayesian inversion is to evaluate expectations of quantities of interest (QoIs) under
the Bayesian posterior, conditional on given data.

In an infinite-dimensional parametric, deterministic description of distributed
parameter uncertainty we prove regularity and sparsity of the posterior density in
Bayesian inversion. These results imply, on the one hand, sparsity of Legendre
(generalized) polynomial chaos expansions of the Bayesian posterior and, on the
other hand, convergence rates for data-adaptive Smolyak integration algorithms for
computational Bayesian estimation which are independent of the dimension of the
parameter space. The rates are, in particular, superior to Markov Chain Monte-Carlo
sampling of the posterior, in terms of the number N of instances of the parametric
forward problem to be solved.

Keywords: Bayesian Inverse Problems, Parametric Operator Equations, Smolyak
Quadrature, Sparsity, Uniform Prior Measures.
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1. Introduction

The problem of computational and mathematical inference of responses of uncertain
systems, in the presence of possibly large sets of observational data that are subject
to observation noise, is a key problem in engineering and the sciences. A “most
likely” response of the uncertain system is offered by Bayesian inversion, which
characterizes the expected system response as an average over all realizations of
system uncertainty, conditional on given, noisy observational data. Computational
methods for the efficient evaluation of such expectations have received considerable
interest in recent years. The most widely used numerical methods for the
numerical treatment of Bayesian inversion and prediction problems are based on
statistical sampling from the posterior measure, and are therefore Monte-Carlo (MC)
type algorithms, in particular the so-called Markov-Chain Monte-Carlo (MCMC)
methods (eg. [21, 23, 29, 30]). While these methods are widely used and their
theoretical foundation is well-understood, their drawbacks are slow convergence,
in particular since for each draw of the Markov-Chain, one instance of the forward
problem’s governing equation must be solved numerically. In systems where these
equations are partial differential or other operator equations, generating many
samples of the Markov-Chain can be computationally costly. In [24], a stochastic
Newton method is proposed with the aim of accelerating the MCMC approach
by exploiting gradient and Hessian information of the posterior density. In the
context of multilevel discretizations for partial differential equations, multilevel
MCMC sampling strategies can provide substantial improvements [20, 22]. However,
the convergence rate which can be achieved by MLMC approaches is, ultimately,
limited to the order 1/2 of convergence of MC methods. We refer to [1, 2, 20] for
references and a detailed analysis.

A second challenge for computationally efficient Bayesian inversion of systems
governed by PDEs and more general operator equations with random inputs is
the “distributed” nature of the uncertainty: rather than expectations w.r. to a
finite number of real-valued parameters, mathematical expectations over an infinite-
dimensional space X of uncertain coefficient functions u which are distributed w.r.
to a prior measure µ0 on X must be computed. Typical cases in point are spatially
heterogeneous conductivity tensors, permeabilities in subsurface flow, dielectric
tensors in electromagnetism, obstacle shapes in scattering to name but a few. Their
presence mandates Bayesian inversion for uncertainty in forward problems which is
described by random fields rather than by real-valued random parameters.

The design and the numerical analysis of efficient, deterministic algorithms
for computational Bayesian inversion of PDE problems with distributed parameter
uncertainty is the purpose of the present paper. A computational framework for
the treatment of distributed uncertainties based on linearization of the infinite-
dimensional inverse problem is proposed in [4]. The linearization about a nominal
state in combination with low-rank approximations of the covariance of the posterior
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density allows to derive dimension-independent convergent rates for the linearized
inverse problem. The adaptive, infinite-dimensional quadrature approach in [32]
and the present work does not rely on linearization, is (through the posterior-
density) data-adaptive, and quantifies uncertainty over all scenarios (not just those
which are close to nominal). The use of polynomial chaos expansions in the Bayesian
posterior to accelerate computational Bayesian inversion has been pioneered in
[27, 26, 25] and further analyzed in [20]. Here, as in our previous work [35, 32], we
reformulate the Bayesian inversion problem as a deterministic, infinite-dimensional
quadrature problem with respect to the posterior measure, given noisy observational
data δ of a QoI φ, and analyze the regularity of the deterministic posterior in terms
of the parameters in the parametrization of the uncertainty in the forward problem.

This infinite-dimensional, deterministic quadrature problem is subsequently
treated numerically by either a dimension-adaptive Smolyak quadrature algorithm
as proposed in [32] or by a Quasi Monte-Carlo quadrature rule such as a polynomial
lattice rule, see [13, 14].

Under certain regularity assumptions on the covariance spectrum of the
unknown system parameter, our results imply that these dimension-adaptive
integration algorithms can converge at higher rates than the rate 1/2 (in terms of
the number of solutions of the forward problem for N instances of the uncertain
input u) which is best possible for the Markov-Chain MC algorithm. This program
has been implemented recently in [35, 32] for a class of scalar, isotropic diffusion
problems with uncertain diffusion coefficient. Here, we generalize this approach to
systems governed by an abstract class of parametric operator equations; while the
technicalities of the analysis, in particular the proof of sparsity of the posterior, as
well as the convergence analysis of the Smolyak quadrature, are analogous to [35]
and to [32], respectively, the increase in scope afforded by the presently considered
abstraction is as follows: the approach is equally applicable for definite or indefinite
elliptic and for parabolic evolution problems, with scalar or tensorial unknowns
(such as arise, for example, in models of anisotropic media) with single or multiple
scales (as, eg., in [1, 18]), and also to Bayesian inversion subject to uncertainty in
coefficients, in loadings and in domains. Also, the Smolyak quadrature convergence
result given in [32] is generalized herein: whereas in [32], the integrand functions
were required to allow for analytic extensions into polydiscs, here this condition
is weakened to analyticity in poly-ellipses of possibly large eccentricities, thereby
allowing poles in the analytic continuations of integrand functions which are
situated arbitrarily close to the domain of integration; in [10], this is shown in certain
cases to allow global analytic continuation of parametric solutions of nonlinear
problems, also for large data.

The outline of this paper is as follows: in Section 2, we present the Bayesian
approach to inverse problems for PDEs set in function spaces. We consider, in
particular, an abstract class of operator equations which depend on a sequence y =

(yj)j≥1 of parameters which will be the forward model in the ensuing analysis, and
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examples for conrete instance of such equations. Section 4 presents new results on
sparsity of the posterior density, generalizing the results in [35]. These results will be
used in Section 5 presents the sparse Smolyak quadratur algorithm and shows that
this algorithm can realize the (dimension-independent) convergence rates afforded
by the sparsity of the Bayesian posterior. Section 6 presents detailed numerical
experiments for parabolic evolution problems with distributed uncertainty which
corroborate the theoretical results.

Finally, in Section 7 we summarize the principal conclusions and indicate the
application to new quadrature algorithms as well as to sparse tensor discretizations.

2. Bayesian Inversion of Parametric Operator Equations

We define a class of operator equations which depend on an uncertain datum
u taking values in a separable Banach space X via a possibly countably infinite
sequence y = (yj)j∈J of parameters. We denote by X and Y two reflexive Banach
spaces over R with (topological) duals X ′ and Y ′, respectively. By L(X ,Y ′), we
denote the set of bounded linear operators A : X → Y ′. Via the Riesz representation
theorem, we associate to each A ∈ L(X ,Y ′) in a one-to-one correspondence a
bilinear form a(·, ·) : X × Y → R via (with Y 〈·, ·〉Y ′ denoting the Y × Y ′-duality
pairing)

a(v, w) :=Y 〈w, Av〉Y ′ for all v ∈ X , w ∈ Y . (1)

For some of the technical arguments which follow, we shall require also extensions
of these spaces to Banach spaces over the coefficient field C; we shall use these
without distinguishing these extensions notationally. To this end, we extend the
spaces X and Y to spaces over C and the form a(·, ·) in the usual fashion. ‡

2.1. Operator Equations with Uncertain Distributed Input

For a distributed, uncertain parameter u ∈ X, we consider a “forward” operator
A(u; q) depending on u ∈ X and acting on q ∈ X and taking values in Y ′. For the
well-posedness of operator equations involving A(u; q), we assume the map A(u; q)
to be boundedly invertible locally, at a “nominal value” 〈u〉 ∈ X. In particular, then,
for all u in a sufficiently small, open neighborhood (eg. X̃ = BR(〈u〉; X), a ball of
radius R > 0 in X centered at 〈u〉) X̃ ⊂ X of 〈u〉 ∈ X the forward problem: for every
u ∈ X̃ ⊆ X, given F(u) ∈ Y ′, find q(u) ∈ X such that

A(u; q) = A(u; q)− F(u) = 0 in Y ′ (2)

‡ If X is a Hilbertspace, for u1, u2, v1, v2 ∈ X we set u = u1 + iu2 and v = v1 + iv2 with i =
√
−1.

Then u, v ∈ XC, the “complexified” version of the Hilbert space X , is a Hilbert space with inner
product (u, v)C := (u1, v1) + (u2, v2) + i[(u2, v1) − (v1, v2)]. Linear operators A ∈ L(X ,Y ′) are
extended via ACu := Au1 + iAu2 and a bilinear form a(·, ·) : X × X 7→ R to a sesquilinear form
aC(·, ·) via aC(u, v) := a(u1, v1) + a(u2, v2) + i[a(u1, v2) + a(u2, v1)]. We omit the subscript C.
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should admit a unique solution. A key role will be played by bounded invertibility
of differentials of operator equations at so-called “nominal” parameter values (being
either a mathematical expectation, or an otherwise fixed reference for the uncertain
input). Specifically, for every fixed u ∈ X̃, for every F(u) ∈ Y ′, there should
exist a unique solution q(u) of (2). The following proposition collects well-known
sufficient conditions for well-posedness of (2). Its statement considers so-called
regular solutions q0 of (2): given u ∈ X̃, a solution q0 ∈ X of (2) is a regular solution
of (2) at u ∈ X̃ if, for this u ∈ X̃, the map X 3 q 7→ A(u; q) is Frechet differentiable
with respect to q at q0 ∈ X and if the differential DqA(u; q0) ∈ L(X ,Y ′) is an
isomorphism from X onto Y ′. For regular solutions, the differential DqA(u; q0)

satisfies the so-called inf-sup conditions.

Proposition 2.1. Assume that Y is reflexive and that, for every u in a subset X̃ ⊆ X,
the operator equation (2) admits a regular solution q(u) ∈ X . Then the bilinear map
(ϕ, ψ) 7→Y ′ 〈DqA(u; q(u))ϕ, ψ〉Y is boundedly invertible, uniformly with respect to
u ∈ X̃. Ie. that there exists a constant κ > 0 such that for every u ∈ X̃

‖(DqA)(u; q(u))‖L(X ,Y ′) = sup
0 6=ϕ∈X

sup
0 6=ψ∈Y

Y ′〈(DqA)(u; q(u))ϕ, ψ〉Y
‖ϕ‖X ‖ψ‖Y

≤ κ−1 , (3)

and

inf
0 6=ϕ∈X

sup
0 6=ψ∈Y

Y ′〈(DqA)(u; q(u))ϕ, ψ〉Y
‖ϕ‖X ‖ψ‖Y

≥ κ > 0 . (4)

Under conditions (3), (4), for every u ∈ X̃ ⊆ X, there exists a unique, regular
solution q(u) which is uniformly bounded with respect to u ∈ X̃ in the sense that
there exists a constant C(F, X̃) > 0 such that

sup
u∈X̃
‖q(u)‖X ≤ C(F, X̃) . (5)

2.2. Bayesian Inversion

By G : X → Y we denote a “forward” response map from the Banach space X of
unknown parameters u into a second Banach space Y of responses which contains
the Quantity of Interest (QoI) in the Bayesian inversion. We equip X and X with
norms ‖ · ‖X and with ‖ · ‖X , respectively and analogously Y and Y .

Then the equation (2) takes the form

Given u ∈ X̃ ⊆ X, find q ∈ X : A(u; q) = F(u) in Y ′ (6)

where the forcing function F : X̃ 7→ Y ′ is assumed to be known, and where the
uncertain operator A(u; ·) : X 7→ Y ′ is assumed to be boundedly invertible, at least
locally for uncertain input u in a sufficiently small neighborhood X̃ of a nominal
input 〈u〉 ∈ X (eg. for ‖u− 〈u〉‖X small enough) so that, for u ∈ X̃, the response of
forward problem (6)

X̃ 3 u 7→ q(u) = G(u; F) ∈ X
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is well-defined and the uncertainty-to-observation map is given by

X ⊇ X̃ 3 u 7→ G(u) := O(G(u; F)) ∈ Y .

In order to not overburden notation, we simply write q = G(u) for the uncertainty-
to-solution map.

We also assume given a bounded, linear observation functional O(·) ∈ L(X , Y),
i.e. a bounded linear observation operator on the space X of system responses. We shall
assume throughout that we are given finitely many observations, so that Y = RK

and O ∈ (X ∗)K, where X ∗ denotes the dual space of the space X of system
responses. We assume that the number of observations is finite so that K < ∞,
and equip RK with the Euclidean norm, denoted by | · |.

In this setting, we wish to predict computationally an expected (under the
Bayesian posterior) system response of the QoI, conditional on given, noisy
measurement data δ. Specifically, we assume the data δ to consist of observations of
system responses corrupted by additive noise η, ie.

δ = G(u) + η = O(G(u)) + η ∈ Y = RK (7)

where η ∈ RK represents Gaussian noise in the K-vector of observation functionals
O(·) = (ok(·))K

k=1. As in [37, 35, 32] and the references there, in the present paper
we assume that the noise process η is Gaussian on Y = RK, i.e. η is a random vector
η ∼ N (0, Γ), for a positive definite covariance operator Γ on RK (ie., a symmetric,
positive definite K × K covariance matrix Γ) which we assume to be known. We
then define the uncertainty-to-observation map of the system by G : X → Y = RK by
G = O ◦ G, so that

δ = G(u) + η = (O ◦ G)(u) + η : X 7→ L2
Γ(R

K)

where L2
Γ(R

K) denotes random vectors taking values in RK which are square
integrable with respect to the Gaussian measure on RK. In view of Bayes’ formula,
we define the least squares functional (also referred to as “potential” in what
follows) Φ : X×RK → R by Φ(u; δ) = 1

2 |δ−G(u)|2Γ where | · |Γ = |Γ− 1
2 · |. Then, the

Bayesian potential takes the form

ΦΓ(u; δ) =
1
2

(
(δ− G(u))>Γ−1(δ− G(u))

)
. (8)

In [37] an infinite-dimensional version of the Bayes’ rule is shown to hold in the
present setting. It states that, under appropriate continuity conditions on the
uncertainty-to-observation map G = (O ◦ G)(·) and the prior measure on u, the
posterior distribution µδ of u given data δ is absolutely continuous with respect
to the prior measure µ0. In particular, then, the Radon-Nikodym derivative of the
Bayesian posterior w.r. to the prior measure admits a bounded density Θ w.r. to the
prior µ0.
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2.3. Uncertainty Parametrization

We parametrize the uncertain datum u in the forward equation (6). In parametric
statistical estimation, u is a (low-dimensional) vector containing a few unknown
parameters (yj)j∈J, for a finite index set J = {1, 2, ..., J} with small cardinality J so
that X ' RJ . In the context of PDEs, often the case where u ∈ X, a separable Banach
space is of interest. To parametrize the uncertain input datum u, we assume in the
present work that there exists a countable, unconditional Schauder base (ψj)j∈J of
X such that, for some “nominal” value 〈u〉 ∈ X of the uncertain datum u, and for
some coefficient sequence y = (yj)j∈J (depending on u− 〈u〉 ∈ X) the uncertainty u
is parametrized by y in the sense that there holds

u = u(y) := 〈u〉+ ∑
j∈J

yjψj ∈ X (9)

with unconditional convergence.
If, for example, X is a separable Hilbert space, then a Riesz basis (such as a

biorthogonal wavelet basis) of X could serve as {ψj}j∈N in (9), or {ψj}j∈N in (9)
could be chosen as Schauder basis (in separable Banach spaces X that admit such
bases).

We refer to u− 〈u〉 in (9) as “fluctuation” of u about the nominal value 〈u〉 ∈ X.
Many choices for the functions ψj in (9) are conceivable; among them are

standard spline bases, but also Karhunen-Loève eigenfunctions. If the uncertain
input datum u is an X-valued random field u in arbitary domains D, and for
general covariance kernels, the ψj must be obtained numerically, eg. by Fast
Multipole Methods together with a Krylov subspace iteration, cp. [36]. With yj
denoting the coordinate variables, the parametrization (9) is deterministic. In order
to place (7), (9) into the (probabilistic) Bayesian setting of [37], we introduce (after
possibly rescaling the fluctuations) a “reference” parameter domain U = [−1, 1]J =

∏j∈J[−1, 1], and equip this countable cartesian product of sets with the product
sigma-algebra B =

⊗
j∈J B1, with B1 the sigma-algebra of Borel sets on [−1, 1].

On the measurable space (U,B) we introduce a probability measure µ0 (which will
serve a Bayesian prior in what follows), and which we shall choose as µ0 =

⊗
j∈J

1
2 λ1

with λ1 denoting the Lebesgue measure on [−1, 1]. Then (U,B, µ0) becomes (as
countable product of probability spaces) a probability space on the set U of all
sequences of coefficient vectors y. Then the uncertain datum u in (9) becomes
a random field, with µ0 charging the possible realizations of u. As indicated in
[12, 35, 32], holomorphy of uncertainty parametrization (9) with respect to the parameter
sequence y can be used to derive sparsity results for this posterior.

2.4. (b, p, ε)-Holomorphy

Analytic dependence of responses on the components yj of the parameter y ∈ U
plays an important role for polynomial approximation results, as well as for the



CONTENTS 7

sparsity of the Bayesian posterior. To state it, we recall the notion of Bernstein-ellipse
which denotes the closed ellipse Er ⊂ C with foci at z = ±1 and with semiaxis sum
r > 1, ie. Er = {(w + 1/w)/2 : 1 ≤ |w| ≤ r}. Note that dist(∂Er, [−1, 1]) = r− 1 and
that in the limit r ↓ 1, Er degenerates to [−1, 1].

Definition 2.2. Given a sequence b ∈ `p(N) for some summability exponent 0 < p < 1
and a real number ε > 0, we say that the parametric family {q(y) : y ∈ U} ⊂ X is
(b, p, ε)-holomorphic if

(b, p, ε) : 1 (well-posedness of the forward problem)
for each y ∈ U, there exists a unique realization u(y) ∈ X̃ ⊆ X of the uncertainty
and a unique solution q(y) ∈ X of the forward problem (6). The parametric solution
satisfies the a-priori estimate

∀y ∈ U : ‖q(y)‖X ≤ C0(y) (10)

where U 3 y 7→ C0(y) ∈ L1(U; µ0); we say that (6) is uniformly well-posed if in
(10) the bound C0 does not depend on y.

(b, p, ε) : 2 (analyticity)
There exists 0 ≤ p ≤ 1 and a positive sequence b = (bj)j∈J ∈ `p(J) such that for every
sequence ρ = (ρj)j∈J of poly-radii ρj > 1 such that

∑
j∈J

(ρj − 1)bj ≤ ε , (11)

the solution map U 3 y 7→ q(y) ∈ X admits an analytic continuation to the open
poly-ellipse Eρ := ∏j∈J Eρj ⊂ CJ and satisfies the bound

∀z ∈ Eρ : ‖q(z)‖X ≤ Cε(ρ) (12)

where y := <(z) ∈ ⊗j∈J[−ρj, ρj] ⊂ RJ.

In the case that the sequence b ∈ `p(N) is clear from the context, we shall call the
parametric family simply (p, ε)-holomorphic.

The following result, proved in [10], shows that (b, p, ε)-holomorphy of the
solution map y 7→ q(y) follows from (b, p, ε)-holomorphy of the maps A and F
in (2).

Theorem 2.3. Assume that for ε > 0 and for some 0 < p < 1, there exists a positive
sequence b = (bj)j≥1 ∈ `p(N), and two constants 0 < r ≤ R < ∞ and a constant M < ∞
independent of u ∈ U such that the following holds:

(i) For any sequence ρ := (ρj)j≥1 of numbers strictly greater than 1 that satisfies (11)
with the given value of ε, the maps a and F admit extensions that are holomorphic with
respect to every variable on a set of the form Oρ :=

⊗
j≥1Oρj , where, for each index

j ∈ J, Oρj ⊂ C denotes an open set containing Õρj .
(ii) These extensions satisfy for all z ∈ Oρ the uniform continuity conditions

sup
w∈Y\{0}

| f (z; w)|
‖w‖Y

≤ M, sup
v∈X\{0},w∈Y\{0}

|a(z; v, w)|
‖v‖X ‖w‖Y

≤ R, (13)
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where f denotes the corresponding linear form of F, and the uniform inf-sup conditions:
there exists r > 0 such that for every z ∈ Oρ there hold the uniform inf-sup conditions

inf
v∈X\{0}

sup
w∈Y\{0}

|a(z; v, w)|
‖v‖X ‖w‖Y

≥ r and inf
w∈Y\{0}

sup
v∈X\{0}

|a(z; v, w)|
‖v‖X ‖w‖Y

> r .(14)

Then, the nonlinear parametric operator A(u; q) = A(u; q) − F(u) in (2) satisfies the
(b, p, ε)-holomorphy assumptions with the same p and ε and with the same sequence b.

2.5. Examples

We illustrate the foregoing general concepts with several examples: diffusion
problems with an isotropic, random coefficient function, in the stationary as well as
in the time-dependent case, which will be considered in the numerical experiments.
We emphasize, however, that the setting (2) and the (b, p, ε)-holomorphy of
parametric solutions shown in Theorem 2.3 extend to a much larger range of
problems; further concrete examples are given in [10].

2.5.1. Parabolic Problems with Uncertain Operator The general, parametric operator
in the forward equation (6) accomodates parabolic problems with uncertain
coefficients, as we shall show next. To this end, we denote by B(y) ∈ L(V, V∗)
a parametric operator pencil with affine parameter dependence (9) of an elliptic
operator. We further assume that we are given a second Hilbert space H which we
identify with its own dual H∗ which constitutes a Gel’fand evolution triple

V ⊆ H ' H∗ ⊆ V∗ . (15)

For the parametric family B(y) we assume the validity of a Garding in equality, i.e.
that there exist a constant α > 0 and a compact bilinear form k(·, ·) : V × V → R

such that

∀y ∈ U , ∀v ∈ V : b(y; v, v) + k(v, v) ≥ α‖v‖2
V . (16)

For the (space-time) variational formulation of the evolution problems, for a finite
time horizon 0 < T < ∞, we define the Bochner spaces

X = L2(0, T; V) ∩ H1(0, T; V∗), Y = L2(0, T; V)× H . (17)

Then the parametric evolution operator is, formally, given by A(y) := (∂t + B(y), ι0)

where ι0 denotes the time t = 0 trace of the argument, i.e. ι0u = u(0). It follows
from the continuous embedding X ⊂ C0([0, T]; H) that for every v ∈ X , ι0v is
well-defined as an element of H and there holds the continuity estimate

‖ι0v‖H ≤ CT‖v‖X , where ‖v‖X :=
(
‖v‖2

L2(0,T;V) + ‖v‖
2
H1(0,T;V∗)

)1/2
.
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In this case, the space-time variational formulation of the parametric forward model
A(y)q(y) = f is given, for v ∈ X and for w = (w1, w2) ∈ Y , by the bilinear form

a(y; v, w) :=
∫ T

0
(V〈w1, ∂tv〉V∗ +V 〈w1, B(y)v〉V∗) dt +H 〈v(0), w2〉H

=
∫ T

0
(V〈w1, ∂tv〉V∗ + b(y; v, w1)) dt +H 〈v(0), w2〉H

(18)

and by the linear form

l(w) =
∫ T

0
(V〈w1(·, t), f (·, t)〉V∗) dt +H 〈w2, u0〉H . (19)

Note that then in the weak formulation

∀y ∈ U : q(y) ∈ X : a(y; q(y), w) = l(w) ∀w ∈ Y (20)

the initial condition ι0u = u0 has been imposed weakly. For the variational space-
time formulation (20) it is once more known (see, eg., [34, Appendix]) that the
parametric bilinear form a(y; ·, ·) satisfies the (uniform w.r. to y ∈ U) inf-sup
conditions (14), provided that the parametric spatial operator B(y) in (18) satisfies
the Garding inequality (16).

2.5.2. Elliptic Multiscale Problems with Uncertainty In [19], a general framework for
uncertainty modelling in elliptic divergence form equations with scale-separated,
uncertain coefficients aε(y; x) = a(y; x, ε−1x) where 0 < ε << 1 is a known
nondimensional length scale parameter and where a(y; x, ξ) is independent of ε,
1-periodic w.r. to ξ and depends on y once more in an affine fashion (see [19, Eqns.
(1.7), (1.10)] for details). Such problems fit once more into the general framework of
the present paper, with all bounds in error estimates valid uniformly w.r. to ε due to the
use of two-scale convergence and the avoidance of homogenization formulas.

2.6. Parametric Bayesian Posterior

Motivated by [35, 32], the basis for the presently proposed, adaptive deterministic
quadrature approaches for Bayesian estimation via the computational realization of
Bayes’ formula is a parametric, deterministic representation of the derivative of the
posterior measure with respect to the uniform prior measure µ0. The prior measure
µ0 being uniform, we admit in (9) sequences y which take values in the parameter
domain U = [−1, 1]J . As explained in Section 2.3, we consider the parametric,
deterministic forward problem in the probability space

(U,B, µ0) . (21)

We assume throughout what follows that the prior measure on the uncertain input data,
parametrized in the form (9), is the uniform measure µ0(dy). We add in passing
that unbounded parameter ranges as arise, e.g., in lognormal random diffusion
coefficients in models for subsurface flow [28], can be treated by the techniques
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developed here, at the expense of additional technicalities. With the parameter
domain U as in (21) the parametric forward map Ξ : U → RK is given by

Ξ(y) = G(u)
∣∣∣
u=〈u〉+∑j∈J yjψj

. (22)

The mathematical foundation of Bayesian inversion is Bayes’ theorem. We
present a version of it, from [35] (see also [37]). To do so, we view U as unit ball in
`∞(J), the Banach space of bounded sequences taking values in U.

Theorem 2.4. Assume that Ξ : Ū → RK is bounded and continuous. Then µδ(dy), the
distribution of y ∈ U given δ, is absolutely continuous with respect to µ0(dy), ie.

dµδ

dµ0
(y) =

1
Z

Θ(y) (23)

with the parametric Bayesian posterior Θ(y) given by

Θ(y) = exp
(
−ΦΓ(u; δ)

)∣∣∣
u=〈u〉+∑j∈J yjψj

, (24)

where the Bayesian potential ΦΓ is as in (8) and the normalization constant Z is given by

ZΓ =
∫

U
Θ(y)dµ0(y) . (25)

Computational Bayesian inversion is concerned with approximation of a “most
likely” system response φ : X → S (sometimes also referred to as Quantity of Interest
(QoI) which may take values in a Banach space S) for given (noisy) observational
data δ of the QoI φ. In particular the choices φ(u) = G(u) (with S = X ) and
φ(u) = G(u)⊗ G(u) (with S = X ⊗ X ) facilitate computation of the “most likely”
(given the data δ) mean and covariance of the system’s response.

With the QoI φ we associate the (infinite-dimensional) parametric map

Ψ(y) = Θ(y)φ(u) |u=〈u〉+∑j∈J yjψj

= exp
(
−ΦΓ(u; δ)

)
φ(u)

∣∣∣
u=〈u〉+∑j∈J yjψj

: U → S . (26)

Then the Bayesian estimate of the QoI φ, given noisy data δ, takes the form

Eµδ
[φ] =

Z′Γ
ZΓ

= 1
ZΓ

∫
y∈U Ψ(y)µ0(dy),

Z′Γ =
∫

y∈U
exp

(
−ΦΓ(u; δ)

)
φ(u)

∣∣∣
u=〈u〉+∑j∈J yjψj

µ0(dy) .
(27)

Our aim is to approximate the expectations Z′Γ and ZΓ which, in the
parametrization with respect to y ∈ U, take the form of infinite-dimensional
integrals with respect to the uniform prior µ0(dy).

In the next section we establish the joint analyticity of the posterior densities
Θ(y) and Ψ(y), as a function of the parameter sequence y ∈ U. Following [35], we
then deduce sharp estimates on size of domain of analyticity of the forward solution
q(y) and of the densities Θ(y) and Ψ(y) as a function of each coordinate yj, j ∈ N.
These will then be used to infer sparsity of gpc expansions which, in turn, are the
basis for N-term approximation rates as well as of convergence rates for various
quadrature methods.
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3. Sparsity of the Forward Solution

As shown in [35, 32] for scalar, isotropic diffusion problems, dimension-independent
convergence rates of numerical approximations of integrals like (25), (27) are based
on sparsity results for the posterior density Θ which arises in Bayes’ theorem. In
the present section, we establish such sparsity results in the general setting of the
operator equation (9). As in [12, 16], the sparsity results will be based on analytic
dependence of the forward solution q(y) of the parametric operator equation (2),
with precise bounds on the size of domain of analyticity.

3.1. Sparsity

Sparsity of the dependence of the forward solution q(y) on the parameter sequence
y is a consequence of the (b, p, ε)-holomorphy established in Theorem 2.3, we
approximate the parametric solution q(y) by partial sums of tensorized Legendre
series. As was shown in [11, 12, 8, 16], (b, p, ε)-holomorphy of the forward
solution q(y) implies that such expansions are sparse. Sparsity of tensorized Taylor
expansions requires (b, p, ε)-holomorphy of the forward map on the polydiscs Uρ (as
in [16]), whereas (b, p, ε)-holomorphy of q(y) on the (smaller) poly-ellipses Eρ (as in
[12]) suffices for sparsity of Legendre expansions.

Unconditional convergence and p-sparsity of forward maps are available for
various Legendre and Tschebyscheff expansions, also for nonaffine parameter
dependence, and for certain nonlinear operator equations (see, eg., [12, 16, 10]).
To define the Legendre polynomial chaos expansions, we introduce the univariate
Legendre polynomials Lk(zj) of degree kth of the variable zj ∈ C, normalized such
that ∫ 1

−1
(Lk(t))2 dt

2
= 1, k = 0, 1, 2, ... (28)

Since L0 ≡ 1, the Legendre polynomials Lk in (28) can be tensorized on the
parameter domains U via

Lν(z) = ∏
j∈J

Lνj(zj), z ∈ CJ, ν ∈ F . (29)

Here, F denotes the countable set N
J
0 of sequences of multi-indices ν = (νj)j∈J

which are summable: ∑j∈J νj < ∞. The set of tensorized Legendre polynomials

L(U) = {Lν : ν ∈ F} (30)

forms a countable orthonormal basis in L2(U, µ0).
This observation suggests, by virtue of the square integrability discussed below,

approximations by truncated mean square convergent gpc-expansions such as

q(y) = ∑
ν∈F

qνLν(y) , y ∈ U . (31)
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For the statement of sparsity in the response map, we shall approximate the
parametric solution q(y) of (2) and also the Bayesian posterior density in terms
of N-term truncations of the Legendre series (31).

Truncations of tensorized Legendre expansions take the form of partial sums
over finite sets ΛN ⊂ F of indices of cardinality at most N. We shall say that a
sequence (ΛN)N≥1 ⊂ F of index sets exhausts F , if for every finite subset Λ ⊂ F
there exists N0(Λ) such that for all N ≥ N0, Λ ⊂ ΛN. We recall that, by Theorem
2.3, the parametric forward solution q(y) of the forward equation (6) is (b, p, ε)-
holomorphic on a family Eρ of poly-ellipses.

The sparsity results which follow are based on establishing p-summability of
(the X -norms of) Legendre coefficients of the parametric forward solutions q(y) and,
in the next section, also of the Bayesian posterior density. The p-summability (with
the same exponent p as in the sparsity assumption (11) of Definition 2.2) will imply
convergence rates of best N-term truncations of generalized polynomial chaos (gpc
for short) expansions. In general, however, sets ΛN ⊂ F of N largest gpc coefficients
could be quite arbitrary. In view of numerical approximations it is important to
have further information about their structure. For general, (b, p, ε)-holomorphic,
parametric mappings, it was shown in [8] that partial sums of (31) with summation
over nested sequences of so-called monotone index sets§ ΛN ⊂ F of cardinality at
most N already achieve the convergence rates of best N-term approximations, albeit
with a possibly worse constant (cp. [8, Remarks 2.2 and 2.3]).

Definition 3.1. (Monotone (or lower) Index Sets) A subset ΛN ⊂ F of finite cardinality N
is called monotone if (M1) {0} ⊂ ΛN and if (M2) ∀0 6= ν ∈ ΛN it holds that ν− ej ∈ ΛN
for all j ∈ Iν, where ej ∈ {0, 1}J denotes the index vector with 1 in position j ∈ J and 0 in
all other positions i ∈ J\{j}.

Properties (M1) and (M2) in Definition 3.1 imply, for monotone ΛN ⊂ F , that

LΛN(U) = span{yν : ν ∈ ΛN} = span{Lν : ν ∈ ΛN} .

Closely related to the notion of monotone index sets is the notion of monotone
majorant which was introduced in [8] (see also [9, 10]).

Definition 3.2. A monotone majorant of a sequence (aν)ν∈F ⊂ X is a sequence
a∗ = (a∗ν)ν∈F ⊂ R which is defined by a∗ν := supµ≥ν ‖aν‖X , ν ∈ F . Here, µ ≥ ν for
µ, ν ∈ F means that µj ≥ νj for all j ∈ J.

The monotone majorant depends on the norm on X since ‖a‖`p
m(F ;X ) =

‖a∗‖`p(F ) . Sets ΛN of N largest coefficients of monotone majorants can be chosen
to be monotone sets (cp. [8, Remark 2.2]). Further, if Λ ⊂ F is any monotone set,
ν ∈ Λ and µ ≤ ν imply that µ ∈ Λ.

§ Also referred to in the literature as lower index sets
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3.2. Sparse Legendre Expansions

We recall for ν ∈ F the definition (29) of the tensorized Legendre polynomials
Lν(y); the normalization (28) differs slightly from the classical one, where

Pk(1) = 1, ‖Pk‖L∞(−1,1) = 1 , k = 0, 1, ... (32)

Also for the system (Pk)k≥0, P0 ≡ 1, and hence the (formally countable) tensor
product polynomials contain for each ν ∈ F only finitely many nontrivial factors.
Hence,

Pν(y) := ∏
j∈J

Pνj(yj), ν ∈ F

is meaningful. We also note that due to the L2(U; µ0)-orthonormality of the Lν, we
may expand every q(y) ∈ L2(U, µ0)

q(y) = ∑
ν∈F

qL
ν Lν(y) = ∑

ν∈F
qP

ν Pν(y) (33)

where
‖q‖2

L2(U,µ0;X ) = ∑
ν∈F
‖qL

ν‖2
X < ∞, qL

ν :=
∫

U
q(y)Lν(y)dµ0(y)

and where the coefficient sequences qL
ν and qP

ν in (33) are related by

qP
ν =

(
∏
j∈J

(1 + 2νj)

)1/2

qL
ν , ν ∈ F . (34)

Lemma 3.3. If the parametric forward map q(y) is (b, p, ε)-holomorphic in a poly-ellipse
Eρ ⊂ CJ, then for every ν ∈ F there holds, for every ρ as in (11) in Definition 2.2, the
estimate

‖qP
ν ‖X ≤ Cε ∏

j∈J,νj 6=0
(2νj + 1)

πρj

2(ρj − 1)
ρ
−νj
j . (35)

The proof can be found in [10, Lemma 3.1].
Due to ‖qL

ν‖X ≤ ‖qP
ν ‖X , the summability of the sequence (‖qP

ν ‖X )ν∈F directly
implies the summability of (‖qL

ν‖X )ν∈F . The next result, from [12, 16] specifies the
type of convergence in the Legendre expansions (33), and also quantifies sparsity
in the sequences {qL

ν : ν ∈ F} and {qP
ν : ν ∈ F} of Legendre coefficients. Its

proof is analogous to the arguments in [12, 10, 16]. The estimate of the Legendre
coefficients of Lemma 3.3 allows to construct a monotone majorant q∗ = (q∗ν)ν∈F of
the sequence (‖qL

ν‖X )ν∈F and thus obtain that (‖qP
ν ‖X )ν∈F ∈ `p(F ) reasoning as in

the proof of [8, Theorem 2.4].

Theorem 3.4. Assume that the parametric forward solution map q(y) admits a (b, p, ε)-
holomorphic extension to the poly-ellipse Eρ ⊂ CJ with ρ satisfying condition (11) in
Definition 2.2. Then the following holds.

(i) the Legendre series (33) converge unconditionally, in L2(U, µ0;X ) resp. in
L∞(U, µ0;X ), to q,
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(ii) with 0 < p < 1 as in (11) of Definition 2.2, the sequence (qL
ν )ν∈F of Legendre

coefficients admits a monotone majorant q∗ = (q∗ν)ν∈F which is p-summable in norm,
in the sense that

C(p, q) := ‖q‖`p
m(F ) =

(
∑

ν∈F
|q∗ν|

p

)1/p

< ∞ .

Denoting, for every N ∈N by ΛL
N ⊂ F a set of N largest coefficients of the monotone

majorant q∗ of the Legendre expansion (33), there holds the error bound∥∥∥q(·)− ∑
ν∈ΛL

N

qL
ν Lν(·)

∥∥∥
L2(U,µ0;X )

≤ C(p, q)N−(1/p−1/2) . (36)

(iii) Likewise, denoting by ΛP
N ⊂ F a set of N largest (in X -norm) terms of the monotone

majorant q of the sequence of Legendre coefficients qP
ν ∈ X in the Legendre expansions

(33), there holds the error bound

sup
y∈U

∥∥∥q(y)− ∑
ν∈ΛP

N

qP
ν Pν(y)

∥∥∥
X
≤ C(p, v)N−(1/p−1) . (37)

4. Sparsity of the Posterior Density Θ

For operator equations (6) with operators A(u; q) with parametric uncertainty
which produce parametric solutions which are (b, p, ε)-holomorphic in the sense
of Definition 2.2, in Theorem 3.4 the representation of the forward solution in
unconditionally convergent Legendre polynomial chaos expansions was presented,
with coefficient sequences which admit p-sparse, monotone majorants. In the
present section, we show corresponding results also for the Bayesian posterior
density Θ(y) which was defined in (23), (24).

4.1. (b, p, ε)-Holomorphy of Θ

Our verification of (b, p, ε)-holomorphy of the posterior density Θ will be based on
verifying (b, p, ε)-holomorphy for the parametric posterior density Θ(y) defined in
(23), (24). Once this is established, sparsity and N-term approximation results for
Θ will follow similarly as for the parametric solution q(y) of (6). As in [32], we then
infer convergence rates for Smolyak quadratures from N-term approximation rates
for truncated tensorized Legendre approximation rates for the posterior density Θ.

Theorem 4.1. Consider the Bayesian inversion of the parametric operator equation (6) with
uncertain input u ∈ X, parametrized by the sequence y = (yj)j∈J ∈ U. Assume further
that the corresponding forward solution map U 3 y 7→ q(y) is (b, p, ε)-holomorphic for
some positive sequence b = (bj)j≥1 ∈ `p(N), 0 < p < 1, and some δ > 0, with respect to
poly-ellipses Eρ. Then the Bayesian posterior density Θ(y) is, as a function of the parameter
y, likewise (b, p, ε)-holomorphic, with the same b, p and the same δ.
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The modulus of the holomorphic extension of the Bayesian posterior Θ(y) over the
poly-ellipse Eρ is bounded by C exp(b2‖Γ−1‖) with Γ > 0 denoting the positive definite
covariance matrix in the additive, Gaussian observation noise model (7). Here, the constants
b, C > 0 in the bound of the modulus supz∈∂Eρ

|Θ(z)| depend on the condition number of
the uncertainty-to-observation map G(·) = (O ◦ G)(·) but are independent of Γ in (7).

Proof. By Theorem 2.3, the (b, p, ε)-holomorphy of the operator implies that the
parametric forward solution map q(y) admits a holomorphic extension, denoted
q(z), to any poly-ellipses z ∈ Eρ whose poly-radius ρ satisfies (11) with the sequence
b ∈ `p(J).

We consider first the case when there is only a single parameter, ie. the case
that J = {1}. Then ρ = {ρ1} and we may write u = 〈u〉+ zψ ∈ X, with z ∈ Eρ1 ⊂ C

and by assumption the foward map is holomorphic with respect to z ∈ Eρ1 .
The unique holomorphic extension of the Bayesian potential ΦΓ(u; δ) defined in

(8) is, in this case, given by (assuming that the data δ, 〈u〉 and ψ are real-valued)

ΦΓ(〈u〉+ zψ; δ) =
1
2
(δ− G(〈u〉+ zψ))> Γ−1 (δ− G(〈u〉+ zψ)) .

By the holomorphy of q(z) ∈ X , the response function z 7→ G(〈u〉 + zψ) is
holomorphic in Eρ1 . Therefore, the complex extension of ΦΓ, ie.

Eρ1 3 z 7→ ΦΓ(u(z); δ) :=
1
2
(δ− G(〈u〉+ zψ))> Γ−1 (δ− G(〈u〉+ zψ))(38)

is holomorphic in Eρ1 , being a quadratric polynomial of G(〈u〉+ zψ).
The preceding argument immediately generalizes to any coordinate yj for

j ∈ J ⊆N so that we infer that the Bayesian potential

ΦΓ(u; δ) |〈u〉+∑j∈J zjψj
=

1
2

(
δ− G

(
〈u〉+ ∑

j∈J

zjψj

))>
Γ−1

(
δ− G

(
〈u〉+ ∑

j∈J

zjψj

))
is holomorphic on the poly-ellipse Eρ ⊂ CJ. Hence, also the Bayesian posterior
admits a holomorphic extension to Eρ ⊂ CJ which is given by

Θ(z) = exp
(
−ΦΓ(u; δ)|u=〈u〉+∑j∈J zjψj

)
. (39)

By the holomorphy of the Bayesian potential ΦΓ(u; δ) |〈u〉+∑j∈J zjψj
with respect to

the parameters z, the extension Θ(z) in (39) is, as composition of a holomorphic
function with the entire, analytic function exp(·), holomorphic on Eρ and, therefore,
Θ(z) in (39) is the unique analytic continuation of the Bayesian posterior Θ(y) from
U to Eρ ⊂ CJ.

It remains to deduce bounds on the modulus of this holomorphic continuation
of the posterior density Θ(z) in (39) as a function of the parameters z over the poly-
ellipses Eρ of holomorphy, with the semiaxes ρ as in (11). Recalling the definition
G(·) = (O ◦ G)(·), we find

G(u) |u=〈u〉+∑j∈J zjψj
= (ok(G(u)))K

k=1 = (ok(q(z)))K
k=1 ∈ CK .
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This implies that the modulus of the posterior density Θ(z) can be bounded as

sup
z∈Eρ

|Θ(z)| ≤ exp

sup
z∈Eρ

1
2

∥∥∥∥∥δ− G
(
〈u〉+ ∑

j∈J

zjψj

)∥∥∥∥∥
2

Γ


where ‖ ◦ ‖Γ denotes the covariance-weighted Euclidean norm in CK. Based on the
definition (38), and on the fact that δ ∈ RK, and the definition (7) of G(·), we find

∀z ∈ Eρ : |Θ(z)| ≤ exp
(

1
2

Im (G(u(z)))> Γ−1Im (G(u(z)))
)

. (40)

Since the map Eρ 3 z 7→ G(u(z)) does not depend on the observation noise
covariance Γ, a bound for the modulus supz∈Eρ

|Θ(z)| which is explicit in terms of Γ
can be inferred from (40). This establishes the asserted dependence of the modulus
of Θ(z) over Eρ and completes the proof.

Exactly the same results on analyticity and on N-term approximation of Ψ(z)
hold, cp. [35]. We omit details for reasons of brevity of exposition and confine
ourselves to establishing rates of convergence of N-term truncated representations
of the posterior density Θ. In the following, we analyze the convergence rate of
N-term truncated Legendre gpc-approximations of Θ and, with the aim of an adaptive
sparse quadrature approximation to efficiently evaluate the expectation of interest with
respect to the posterior Θ(y) in U.

4.2. Sparse Legendre Expansions of Θ

Since we assumed that the prior measure µ0 is built by tensorization of the
uniform probability measures 1

2 λ1 on [−1, 1], the normalization (28) implies that the
polynomials Lν(z) in (29) are well-defined for any z ∈ CJ since the finite support
of each element of ν ∈ F implies that Lν in (29) is the product of only finitely
many nontrivial polynomials. This observation suggests, by virtue of the square
integrability discussed below, the use of mean square convergent gpc-expansions
and their truncations to represent and approximate the densities Θ and Ψ. Such
expansions can also serve as a basis for sampling of these quantities with draws that
are equidistributed with respect to the prior µ0. In particular, the density Θ : U → R

is square integrable with respect to the prior µ0 over U, i.e. Θ ∈ L2(U, µ0
)
.

Moreover, if the QoI φ(·) : U → S in (26) is bounded, then∫
U
‖Ψ(y)‖2

Sdµ0(y) < ∞, (41)

i.e. Ψ ∈ L2(U, µ0;S
)
.

Remark 4.2. If the QoI is the parametric solution, S = X ie. when φ(u) = G(u) =

q(y) ∈ X , we have ‖Ψ(y)‖V ≤ CM/r for all y ∈ U, where the constant C is
independent of the data δ. Thus Ψ ∈ L2(U, µ0;S

)
holds for calculation of the

expectation of the pressure under the posterior distribution on u. Indeed the
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assertion holds for all moments of the pressure, the concrete examples which we
concentrate on here.

Since L(U) in (30) is a countable orthonormal basis of L2(U, µ0), the
density Θ(y) of the posterior measure given data δ ∈ Y, and the posterior
reweighted pressure Ψ(y) can be represented in L2(U, µ0) by (parametric and
deterministic) generalized Legendre polynomial chaos expansions. We first address
the representation of the scalar-valued function Θ(y).

Θ(y) = ∑
ν∈F

θL
ν Lν(y) = ∑

ν∈F
θP

ν Pν(y) in L2(U, µ0) (42)

where the gpc expansion coefficients θL
ν and θP

ν are defined by (cf. also (34))

θL
ν =

∫
U

Θ(y)Lν(y)µ0(dy) , θP
ν =

(
∏
j∈J

(1 + 2νj)

)1/2

θL
ν , ν ∈ F .

By Parseval’s equation and the normalization (28), it follows immediately from (42)
and (41) that the second moment of the posterior density with respect to the prior
is finite and can be expressed as

‖Θ‖2
L2(U,µ0)

= ∑
ν∈F
|θL

ν |2 = ‖θL‖2
`2(F ) . (43)

4.3. Monotone N-term Approximation of Θ in L2(U, µ0) and L∞(U, µ0)

For every N ∈ N, denote by ΛL
N ⊂ F a set of indices ν ∈ F corresponding to N

largest θ∗ν of the monotone majorant θL of the Legendre coefficient sequence (θL
ν )ν∈F

in (42), and denote by

ΘL
ΛN

(y) := ∑
ν∈ΛL

N

θL
ν Lν(y) (44)

the corresponding N-term truncated Legendre expansion (42) of the posterior.
Then, with 0 < p < 1 in the (b, p, ε)-holomorphy of the parametric forward
solution, there is a sequence {ΛN}N≥0 of nested, monotone index sets ΛN ⊂ F
which exhausts F , with #(ΛN) ≤ N and which is such that there exists a constant
C > 0 such that for all N ∈N holds

‖Θ(y)−ΘL
ΛN

(y)‖L2(U,µ0)
≤ CN−s‖θL‖`p

m(F ), s :=
1
p
− 1

2
. (45)

Likewise, denoting by ΛP
N ⊂ F a set of indices ν ∈ F corresponding to N largest

(in ‖ ◦ ‖X -norms) of the coefficients of the monotone majorant θP of the Legendre
coefficient sequence (θP

ν )ν∈F in (42), and denote by

ΘP
ΛN

(y) := ∑
ν∈ΛP

N

θP
ν Lν(y) (46)
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the corresponding N-term truncated Legendre expansion (42) of the posterior.
Then, with 0 < p < 1 in the (b, p, ε)-holomorphy of the parametric forward solution,
there hold the N-term approximation results

‖Θ(y)−ΘP
ΛN

(y)‖L∞(U,µ0) ≤ CN−s‖θP‖`p
m(F ), s :=

1
p
− 1 . (47)

In (47) and (45), the constant C ≥ 1 depends on s and on the covariance Γ > 0 in
the additive observation noise η in (7), but is independent of N. We refer to [33] for
detailed investigation of the scaling limit Γ→ 0.

5. Sparse Adaptive Smolyak Quadrature

5.1. Univariate Quadrature and Tensorization

We consider a sequence (Qk)k≥0 of univariate quadrature formulas of the form

Qk(g) =
nk

∑
i=0

wk
i · g(zk

i ) ,

associated with the quadrature points (zk
j )

nk
j=0 ⊂ [−1, 1] with zk

j ∈ [−1, 1] , ∀j, k
and zk

0 = 0 , ∀k and weights wk
j , 0 ≤ j ≤ nk, ∀k ∈ N0, where g is a function

g : [−1, 1] 7→ S taking values in some Banach space S . We impose the following
assumptions on the sequence (Qk)k≥0.

Assumption 5.1.

(i) (I −Qk)(vk) = 0 , ∀vk ∈ Sk := Pk ⊗ S , Pk = span{yj : j ∈N0, j ≤ k},
with I(vk) =

∫
[−1,1] vk(y)

λ1(dy)
2 .

(ii) wk
j > 0 , 0 ≤ j ≤ nk, ∀k ∈N0.

Defining the univariate quadrature difference operator by

∆j = Qj −Qj−1, j ≥ 0 .

with Q−1 = 0, Qk can be rewritten as telescoping sum

Qk =
k

∑
j=0

∆j ,

where Z k = {zk
j : 0 ≤ j ≤ nk} ⊂ [−1, 1] denotes the set of points corresponding to

Qk. Following [32], we introduce the tensorized multivariate operators

Qν =
⊗
j≥1

Qνj , ∆ν =
⊗
j≥1

∆νj . (48)

for ν ∈ F with associated set of multivariate points Zν = ×j≥1Zνj ∈ U. The
tensorization can be defined inductively: for a S-valued function g defined on U,

• If ν = 0F , then ∆νg = Qνg denotes the integral over the constant polynomial
with value g(z0F ) = g(0F ).
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• If 0F 6= ν ∈ F , then denoting by ν̂ = (νj)j 6=i

Qνg = Qνi(t 7→
⊗
j≥1

Qν̂j gt) , i ∈ Iν

and

∆νg = ∆νi(t 7→
⊗
j≥1

∆ν̂j gt) , i ∈ Iν ,

for g ∈ Z , gt is the function defined on ZN by gt(ŷ) = g(y), y =

(. . . , yi−1, t, yi+1, . . .) , i > 1 and y = (t, y2, . . .) , i = 1, see [9, 32].

5.2. Sparse Quadrature Operator

Based on the definitions in the previous subsection, we will now introduce the
sparse quadrature operator

QΛ = ∑
ν∈Λ

∆ν = ∑
ν∈Λ

⊗
j≥1

∆νj ,

for any finite monotone set Λ ⊂ F with associated collocation grid

ZΛ = ∪ν∈ΛZν .

Lemma 5.2. For any monotone index set ΛN ⊂ F , the sparse quadrature QΛN is exact for
any polynomial g ∈ SΛN , i.e. there holds

QΛN(g) = I(g), ∀g ∈ SΛN := PΛN ⊗ S ,

with PΛN = span{yν : ν ∈ ΛN} = span{Pν : ν ∈ ΛN} i.e. SΛN =

span
{

∑ν∈ΛN
sνyν : sν ∈ S

}
, and I(g) =

∫
U g(y)dµ0(y).

For the proof, we refer to [32, Theorem 4.2].
We will now establish convergence rates for the approximation of the

expectation of QoI with respect to the posterior, given data δ, based on the (p, ε)-
holomorphy results presented in sections 3 and 4. In particular, we will prove the
existence of two sequences (Λ1

N)N≥1, (Λ2
N)N≥1 of monotone index sets Λ1,2

N ⊂ F
such that #Λ1,2

N ≤ N which exhaust F and such that, for some C1, C2 > 0
independent of N,

|I(Θ)−QΛ1
N
(Θ)| ≤ C1N−s , s =

1
p
− 1 ,

with I(Θ) =
∫

U Θ(y)dµ0(y) and

‖I[Ψ]−QΛ2
N
[Ψ]‖S ≤ C2N−s , s =

1
p
− 1 ,

with I[Ψ] =
∫

U Ψ(y)dµ0(y), respectively. By Lemma 5.2, we have

‖(I −QΛN)(g)‖S = ‖(I −QΛN)(g− ΥN)‖S
≤ (|||I|||+ |||QΛN |||) · inf

Υn∈SΛN

‖g− Υn‖L∞(U;S)

≤ (1 + CQΛN
) · CN−s ,
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since |||I||| = µ0(U) = 1 and |||QΛN ||| =: CQΛN
, for a S-valued function g on U. Then

CQΛN
≤ ∑

ν∈ΛN

∏
j≥1

(cνj + cνj−1) ≤ #Λlog2 3 (49)

with ck = 1 , k ≥ 0 (note that |||Qk||| = 1 by Assumption 5.1 (ii)) and c−1 := 0, see [32,
Lemma 4.4]. In the tensor product case where, for ν ∈ F , the constant CRν

is given
by

CRν
= ∏

j≥1
cνj = 1 , with Rν = {µ ∈ F : µ ≤ ν},

so that bound (49) is pessimistic in this case.
The quadrature error for the normalization constant (25) and the quantity Z′

(27) can be bounded by relating the error with the Legendre coefficients θP
ν of

Θ = ∑ν∈F θP
ν Pν(y) and ψP

ν of Ψ = ∑ν∈F ψP
ν Pν(y) as follows:

Lemma 5.3. Assume for a S-valued function g on U that g(y) = ∑ν∈F gP
ν Pν(y) in the

sense of unconditional convergence in L∞(U,S). Then, we have

‖I(g)−QΛ(g)‖S ≤ 2 · ∑
ν/∈Λ

γν‖gP
ν ‖S

for any monotone set Λ ⊂ F , where γν := ∏j∈J(1 + νj)
2.

For the proof, we refer to [32, Lemma 4.5].

Theorem 5.4. If the forward solution map U 3 y 7→ q(y) is (b, p, ε)-holomorphic for
some 0 < p < 1 and ε > 0, then (γν|θP

ν |)ν∈F ∈ lp
m(F ) and (γν‖ψP

ν ‖S)ν∈F ∈ lp
m(F ).

Denoting by Λθ
N, Λψ

N the sets of N-largest terms of the monotone majorants of (γν|θP
ν |)ν∈F

and (γν‖ψP
ν ‖S)ν∈F , respectively, then there holds the error bound for s = 1/p− 1,

|I[Θ]−QΛθ
N
[Θ]| ≤ C1N−s , (50)

with I[Θ] =
∫

U Θ(y)dµ0(y) and, with I[Ψ] =
∫

U Ψ(y)dµ0(y),

‖I[Ψ]−QΛψ
N
[Ψ]‖S ≤ C2N−s . (51)

Proof. The proof proceeds in two steps: first, we will construct a sequence ρ of
poly-radii in the sense of (11) based on the estimate of the Legendre coefficients
in Lemma 3.3. Then, we use the resulting estimate to prove (γν|θP

ν |)ν∈F ∈ `p(F )
and (γν‖ψP

ν ‖S)ν∈F ∈ `p(F ), respectively and construct a `p-summable monotone
majorant of (γν|θP

ν |)ν∈F and (γν‖ψP
ν ‖S)ν∈F . We follow [10, 9, 12, 32], and present the

details. Due to the (b, p, ε)-holomorphy of the forward solution map, the parametric
posterior density Θ(y) defined in (24), being a composition of the holomorphic
parametric forward solution map with an exponential function and a (quadratic)
polynomial, admits likewise an extension to the complex domain. It remains to
verify the quantitative bounds on the size of domains of analytic continuation. Let
B > 0 a fixed constant and J0 ≥ 1 be an integer such that

∑
j>J0

bj ≤
ε

4B
,
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and define the constant
κ = 1 +

ε

4‖b‖`1(N)
> 1 .

We set E := {j : 1 ≤ J0} and F := N \ E and denote for each ν ∈ F by νE and
νF the restrictions of ν to E and F. Then, we define the sequence ρ = ρ(ν) by

ρj = κ , j ∈ E ; ρj = κ + B +
ενj

2bj(1 + |νF|)
, j ∈ F ,

with |νF| = ∑j>J0
νj (with the convention

νj
|νF|

= 0, if |νF| = 0). The sequence ρ

depends on the multi-index ν ∈ F and satisfies

∑
j≥1

(ρj − 1)bj = (κ − 1) ∑
j≤J0

bj + ∑
j>J0

(
κ + B +

ενj

2bj(1 + |νF|)
− 1

)
bj ≤ ε .

Using the estimate of the Legendre coefficients in Lemma 3.3 and the fact that
πρj

2(ρj−1) ≥
πρi

2(ρi−1) , ∀j < i, we have

γν|θP
ν | ≤ Cε

 ∏
j≤J0,νj 6=0

Cκ(1 + νj)
2(2νj + 1)κ−νj


·

 ∏
j>J0,νj 6=0

Cκ(1 + νj)
2(2νj + 1)ρ−νj

 ,

with Cκ := πκ
2(κ−1) . Similar to the proof of Theorem 2.2 in [10], it follows

γν|θP
ν | ≤ Cε · αE(ν) · βF(ν) ,

where αE(ν) := ∏j≤J0,νj 6=0 CκC2,κκ−νj/2 , βF(ν) := ∏j>J0,νj 6=0(mCκ)
νj ρ
−νj
j using

(1 + νj)
2(2νj + 1)κ−νj ≤ C2,κκ−νj/2 for some constant C2,κ > 0 and Cκ(1 + νj)

2(2νj +

1) ≤ (mCκ)
νj for some m > 1.

The p-summability of (γν|θP
ν |)ν∈F follows then with the same arguments as in

the proof of [10, Theorem 2.2]. If the constant B is chosen large enough, monotone
envelope can be constructed following the lines of [10, Theorem 2.2], so that it holds
(γν|θP

ν |)ν∈F ∈ `
p
m(F ).

Exactly the same analysis allows to bound the quadrature error of the density
Ψ, i.e. of (γν‖ψP

ν ‖S)ν∈F ∈ `
p
m(F ).

Remark 5.5. Theorem 5.4 ensures the existence of two monotone sequences of index
sets, such that the quantities Z′Γ and ZΓ can be approximated with convergence rate
1/p− 1. In particular, the result implies that there exists one common set ΛN for the
approximation of both quantities Z′Γ and ZΓ , which can be constructed by the union
of Λ1

N and Λ2
N defined by (50) and (51), respectively.

Based on the approximation result presented in Theorem 5.4, the error of the
expectation Eµδ

[φ] conditioned on given the observational data δ can be bounded in
the following way:
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Lemma 5.6. Assume that the forward solution map U 3 y 7→ q(y) is (b, p, ε)-holomorphic
for some 0 < p < 1 and ε > 0. Then, there exists a constant Cδ,Γ > 0 which is independent
of N (but which depends, in general, exponentially on Γ > 0, cp. Theorem 4.1 ahead) such
that there holds the error bound for s = 1/p− 1∥∥∥Eµδ

[φ]−
QΛψ

N
[Ψ]

QΛθ
N
[Θ]

∥∥∥
S
≤ Cδ,ΓN−s (52)

for sufficiently large N.

Proof. The error of the expected value Eµδ
[φ] of the QoI φ, conditioned on given

observational data δ can be written as∥∥∥Eµδ
[φ]−

QΛψ
N
[Ψ]

QΛθ
N
[Θ]

∥∥∥
S
=
∥∥∥Z′

Z
−
QΛψ

N
[Ψ]

QΛθ
N
[Θ]

∥∥∥
S

=
∥∥∥ 1

Z
(Z′ −QΛψ

N
[Ψ]) +

1
Z

QΛψ
N
[Ψ]

QΛθ
N
[Θ]

(Z−QΛθ
N
[Θ])

∥∥∥
S

.

Using the crude estimates Z ≥ exp(−1
2‖Γ−1‖(|δ| + supu∈X̃ |G(u)|)2) and Z′ ≤

exp(1
2‖Γ−1‖(|δ| + supu∈X̃ |G(u)|)2) supu∈X̃ ‖φ(u)‖S , in particular, if φ(u) = G(u),

supu∈X̃ ‖φ(u)‖S ≤ C(F, X̃), where C(F, X̃) defined by (5), we have∣∣∣∣ 1
Z

∣∣∣∣ ≤ Cδ,Γ

with Cδ,Γ = 1/ exp(−1
2‖Γ−1‖(|δ|+ C(F, X̃)

(
∑K

k=1 ‖ok‖X ′
)
)2) and for N large enough∥∥∥∥∥QΛψ

N
[Ψ]

QΛθ
N
[Θ]

∥∥∥∥∥
S
≤ Cδ,Γ,φ

due to the approximation results (50) and (51). Combining these estimates with
(50) and (51) completes the proof.

5.3. Adaptive Smolyak Construction of Monotone Index Sets

We now discuss the adaptive construction of a sequence of monotone index
sets (ΛN)N≥1 which are, in general, not equal to sets generated by N-term
approximations of monotone envelopes, but which yield in practice approximations
of the Bayesian estimates which converge with rate s = 1/p (rather than 1/p− 1 as
predicted in the theoretical error bounds). The idea is to successively identify the
index set ΛN corresponding to the N largest contributions of the sparse quadrature
operator to the approximation of the integral ZΓ and Z′Γ, i.e. to N largest

‖∆ν(Ξ)‖S = ‖
⊗
j≥1

∆νj(Ξ)‖S , ν ∈ F

with Ξ = Θ , S = R or Ξ = Ψ , S = X , minimizing the approximation error (50)
and (51), respectively (cf. [32, 9, 17, 15]).



CONTENTS 23

Following [15, 9, 8], we use a greedy-type strategy based on finite sets of
reduced neighbors defined by

N (Λ) := {ν /∈ Λ : ν− ej ∈ Λ, ∀j ∈ Iν and νj = 0 , ∀j > j(Λ) + 1}

for any monotone set Λ ⊂ F , where j(Λ) = max{j : νj > 0 for some ν ∈ Λ}. This
approach attempts to control the global approximation error by locally collecting
indices of the current set of reduced neighbors with the largest error contributions.
In the following, the resulting algorithm to adaptively construct the monotone index
set Λ in the Smolyak quadrature is summarized. We refer to [32, 9, 8, 17, 15] for
more details.

1: function ASG
2: Set Λ1 = {0} , k = 1 and compute ∆0(Ξ).
3: Determine the set of reduced neighbors N (Λ1).
4: Compute ∆ν(Ξ) , ∀ν ∈ N (Λ1).
5: while ∑ν∈N (Λk)

‖∆ν(Ξ)‖S > tol do
6: Select ν from N (Λk) with largest ‖∆ν‖S and set Λk+1 = Λk ∪ {ν}.
7: Determine the set of reduced neighbors N (Λk+1).
8: Compute ∆ν(Ξ) , ∀ν ∈ N (Λk+1).
9: Set k = k + 1.

10: end while
11: end function

The sparse quadrature operator is constructed based on the following univariate
sequences (zk

j )
nk
j=0 of quadrature points

• Clenshaw-Curtis (CC),
zk

j = − cos
(

π j
nk−1

)
, j = 0, . . . , nk − 1, if nk > 1

and zk
0 = 0 , if nk = 1 with n0 = 1 and nk = 2k + 1, for k ≥ 1,

• R-Leja sequence (RL), projection on [−1, 1] of a Leja sequence for the complex
unit disk initiated at i, i.e.
zk

0 = 0 , zk
1 = 1 , zk

2 = −1 , if j = 0, 1, 2 and
zk

j = R(ẑ), with ẑ = argmax|z|≤1 ∏
j−1
l=1 |z− zk

l | , j = 3, . . . , nk, if j odd ,

zk
j = −zk

j−1 , j = 3, . . . , nk, if j even , with nk = 2 · k + 1, for k ≥ 0, see [6].

The positivity assumption on the quadrature weights 5.1 (ii) is not satisfied in
the case of the Leja sequence. However, Theorem 5.4 can be generalized to
these quadrature formulas due to the moderate, algebraic growth of the Lebesgue
constants (cp. [32, 5, 6, 7]). The following result is shown as in [32, Lemma 4.10].

Proposition 5.7. Let QRL
Λ denote the sparse quadrature operator for any monotone set Λ

based on the univariate quadrature formulas associated with the R-Leja sequence. If the
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forward solution map U 3 y 7→ q(y) is (b, p, ε)-holomorphic for some 0 < p < 1 and
ε > 0, then (γν|θP

ν |)ν∈F ∈ `
p
m(F ) and (γν‖ψP

ν ‖S)ν∈F ∈ `
p
m(F ). Furthermore, there

exist two sequences (ΛRL,1
N )N≥1, (ΛRL,2

N ))N≥1 of monotone index sets ΛRL,i
N ⊂ F such that

#ΛRL,i
N ≤ N, i = 1, 2, and such that, for some C1, C2 > 0 independent of N, with s = 1

p − 1,

|I[Θ]−QΛRL,1
N

[Θ]| ≤ C1N−s ,

where I[Θ] =
∫

U Θ(y)dµ0(y) and, with I(Ψ) =
∫

U Ψ(y)dµ0(y), there holds

‖I[Ψ]−QΛRL,2
N

[Ψ[‖S ≤ C2N−s .

6. Numerical Experiments

We consider the following parametric, parabolic problem

∂tq(t, x)− div(u(x)∇q(t, x)) = f (t, x) (t, x) ∈ T × D ,

q(0, x) = 0 x ∈ D , (53)

q(t, 0) = q(t, 1) = 0 t ∈ T ,

with f (t, x) = 100 · tx, D = (0, 1) and T = (0, 1). The uncertain coefficient u is
parametrized as

u(x, y) = 〈u〉+
64

∑
j=1

yjψj , where 〈u〉 = 1 and ψj = αjχDj

with Dj = [(j− 1) 1
64 , j 1

64), y = (yj)j=1,...,64, X = ∪64
j=1C0(Dj) and αj =

0.9
jζ , ζ = 2, 3, 4.

For a given realization of u(x), the forward problem (53) is numerically solved
by a backward Euler scheme in time with uniform time step hT = 2−11 and by a
finite element method using continuous, piecewise linear ansatz functions in space
on a uniform mesh with meshwidth hD = 2−11. The solution of the linear system in
each time step is computed by LAPACK’s DPTSV routine.

For given noisy observational data δ, the goal of computation is the conditioned
expectation Eµδ

[φ] of the QoI φ(u) = G(u) given by

Z′Γ =
∫

U
exp

(
−Φ(u; δ)

)
φ(u)

∣∣∣
u=〈u〉+∑64

j=1 yjψj
dµ0(y) ,

with φ(u) = G(u), S = X and with the normalization constant Z given by

ZΓ =
∫

U
exp

(
−Φ(u; δ)

)∣∣∣
u=〈u〉+∑64

j=1 yjψj
dµ0(y) .

The noisy observational data is computed as a single realization of

δ = G(u) + η ,

with η ∼ N (0, Γ) and G : X → Y = RK, with K = 1, 3, 9. The noise η = (ηj)j=1,...,K
in the measurements is assumed to be independent and normally distributed with
ηj ∼ N (0, 1) and ηj ∼ N (0, 0.12). The observation operator O consists of K system
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responses at K observation points in T × D at ti = i
2NK,T

, i = 1, . . . , 2NK,T − 1 and

xj = j
2NK,D

, k = 1, . . . , 2NK,D − 1, ok(·, ·) = δ(· − tk)δ(· − xk) with K = 1, NK,D =

1, NK,T = 1, K = 3, NK,D = 2, NK,T = 1, K = 9, NK,D = 2, NK,T = 2. The
numerical results presented below are based on synthetic noisy observational data,
i.e. for a given realization of u(x), the forward problem is solved with meshwidth
hT = hD = 2−12, the data δ is then computed according to (7) by the sum of the
observed solution and a realization of the additive noise η.

In the following, we will compare the results of the proposed adaptive
algorithm with a reference solution computed by the Smolyak algorithm with a
fixed number of indices, #Λ = 1500, i.e. altogether the number of PDE solves for the
computation of the reference solution is in the range of 6149− 18721, depending on
the adaptively determined set Λ of active Smolyak details. The algorithm is used in
the 64 dimensional parameter space, i.e. the dimension is not adaptively controlled
in the case of the reference solution. Therefore, the set of reduced neighbours
coincides with the set of neighbours.

Figure 1 and 2 show the quadrature error of the normalization constant ZΓ with
respect to the cardinality of the index set Λ based on the sequence CC.
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Figure 1. Comparison of the estimated error and actual error. Curves computed by
the reference solution of the normalization constant ZΓ with respect to the cardinality
of the index set ΛN based on the sequence CC with K = 1, 3, 9, η ∼ N (0, 1) and with
ζ = 2 (l.), ζ = 3 (m.) and ζ = 4 (r.), #J = 64 and hT = hD = 2−11 for the reference
and the adaptively computed solution.



CONTENTS 26

10
0

10
1

10
2

10
3

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

s
u
p
re

m
u
m

 e
rr

o
r

# Λ

Z, ζ=2, η
j
∼ N(0,0.1

2
)

 

 

Estimated error, K=1 CC
Estimated error, K=3 CC
Estimated error, K=9 CC
Error (ref. sol.), K=1 CC
Error (ref. sol.), K=3 CC
Error (ref. sol.), K=9 CC

10
0

10
1

10
2

10
3

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

s
u
p
re

m
u
m

 e
rr

o
r

# Λ

Z, ζ=3, η
j
∼ N(0,0.1

2
)

 

 

Estimated error, K=1 CC
Estimated error, K=3 CC
Estimated error, K=9 CC
Error (ref. sol.), K=1 CC
Error (ref. sol.), K=3 CC
Error (ref. sol.), K=9 CC

10
0

10
1

10
2

10
3

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

s
u
p
re

m
u
m

 e
rr

o
r

# Λ

Z, ζ=4, η
j
∼ N(0,0.1

2
)

 

 

Estimated error, K=1 CC
Estimated error, K=3 CC
Estimated error, K=9 CC
Error (ref. sol.), K=1 CC
Error (ref. sol.), K=3 CC
Error (ref. sol.), K=9 CC

Figure 2. Comparison of the estimated error and actual error. Curves computed by
the reference solution of the normalization constant ZΓ with respect to the cardinality
of the index set ΛN based on the sequence CC with K = 1, 3, 9, η ∼ N (0, 0.12) and
with ζ = 2 (l.), ζ = 3 (m.) and ζ = 4 (r.), #J = 64 and hT = hD = 2−11 for the
reference and the adaptively computed solution.

The corresponding, estimated error curves and error curves computed by the
reference solution of the normalization constant ZΓ based on the sequence RL are
displayed in Figure 3 and 4.
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Figure 3. Comparison of the estimated error and actual error. Curves computed by
the reference solution of the normalization constant ZΓ with respect to the cardinality
of the index set ΛN based on the sequence RL with K = 1, 3, 9, η ∼ N (0, 1) and with
ζ = 2 (l.), ζ = 3 (m.) and ζ = 4 (r.), #J = 64 and hT = hD = 2−11 for the reference
and the adaptively computed solution.
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Figure 4. Comparison of the estimated error and actual error. Curves computed by
the reference solution of the normalization constant ZΓ with respect to the cardinality
of the index set ΛN based on the sequence RL with K = 1, 3, 9, η ∼ N (0, 0.12) and
with ζ = 2 (l.), ζ = 3 (m.) and ζ = 4 (r.), #J = 64 and hT = hD = 2−11 for the
reference and the adaptively computed solution.

We observe that the estimated error by the adaptive algorithm provides a
good indicator, so that the proposed algorithm shows an optimal performance with
respect to the convergence rates. The theoretical convergence rate can be observed
for all values of the parameter ζ controlling the sparsity class of the unknown
coefficient u. Further, the Clenshaw-Curtis points show a better convergence
behaviour with respect to the cardinality of the index set Λ than the Leja points.
This behaviour could be already observed in the elliptic test case, cp. [32]. It can
be attributed to the exponential growth of the number of quadrature points within
the hierarchy of CC sequences. As Figure 5 and Figure 6 exemplarily show, this
offset disappears in the error curves of the normalization constant with respect to
the number of PDE solves.
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Figure 5. Comparison of the estimated error and actual error. Curves computed by
the reference solution of the normalization constant ZΓ with respect to the number
of PDE solves needed based on the sequence CC with K = 1, 3, 9, η ∼ N (0, 1) and
with ζ = 2 (l.), ζ = 3 (m.) and ζ = 4 (r.), #J = 64 and hT = hD = 2−11 for the
reference and the adaptively computed solution.
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Figure 6. Comparison of the estimated error and actual error. Curves computed by
the reference solution of the normalization constant ZΓ with respect to the number
of PDE solves needed based on the sequence RL with K = 1, 3, 9, η ∼ N (0, 1) and
with ζ = 2 (l.), ζ = 3 (m.) and ζ = 4 (r.), #J = 64 and hT = hD = 2−11 for the
reference and the adaptively computed solution.

The same convergence behavior for the approximation of the quantity Z′Γ can
be observed, cp. Figure 7 - Figure 10 showing the error curves with respect to the
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cardinality of the index set Λ.
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Figure 7. Comparison of the estimated error and actual error. Curves computed by
the reference solution of the quantity Z′Γ with respect to the cardinality of the index
set ΛN based on the sequence CC with K = 1, 3, 9, η ∼ N (0, 1) and with ζ = 2 (l.),
ζ = 3 (m.) and ζ = 4 (r.), #J = 64 and hT = hD = 2−11 for reference solution and
adaptively computed solution.
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Figure 8. Comparison of the estimated error and actual error. Curves computed by
the reference solution of the quantity Z′Γ with respect to the cardinality of the index
set ΛN needed based on the sequence CC with K = 1, 3, 9, η ∼ N (0, 0.12) and with
ζ = 2 (l.), #J = 64 and ζ = 3 (m.) and ζ = 4 (r.), hT = hD = 2−11 for reference and
adaptively computed solution.
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Figure 9. Comparison of the estimated error and actual error. Curves computed by
the reference solution of the quantity Z′Γ with respect to the cardinality of the index
set ΛN based on the sequence RL with K = 1, 3, 9, η ∼ N (0, 1) and with ζ = 2 (l.),
ζ = 3 (m.) and ζ = 4 (r.), #J = 64 and hT = hD = 2−11 for reference and adaptively
computed solution.
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Figure 10. Comparison of the estimated error and actual error. Curves computed by
the reference solution of the quantity Z′Γ with respect to the cardinality of the index
set ΛN based on the sequence RL with K = 1, 3, 9, η ∼ N (0, 0.12) and with ζ = 2 (l.),
ζ = 3 (m.) and ζ = 4 (r.), #J = 64 and hT = hD = 2−11 for reference and adaptively
computed solution.
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In order to numerically verify the dimension-robust behavior of the proposed
algorithm, we will finally investigate the convergence rates of the model parametric
parabolic problem (53) in the 128 dimensional parameter case, i.e. the uncertain
coefficient u is parametrized by

u(x, y) = 〈u〉+
128

∑
j=1

yjψj , where 〈u〉 = 1 and ψj = αjχDj

with Dj = [(j− 1) 1
128 , j 1

128 ], y = (yj)j=1,...,128 and αj =
0.6
jζ , ζ = 2, 3, 4.

The doubling of the number of parameters has no effect on the observed
convergence rates, cp. Figure 11 and 12, this observation is consistent with the
theoretical results derived in Theorem 5.4.
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Figure 11. Comparison of the estimated error and actual error. Curves computed by
the reference solution of the normalization constant ZΓ with respect to the cardinality
of the index set ΛN based on the sequence CC with K = 1, 3, 9, η ∼ N (0, 1) and with
ζ = 2 (l.), ζ = 3 (m.) and ζ = 4 (r.), #J = 128 and hT = hD = 2−11 for reference and
adaptively computed solution.
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Figure 12. Comparison of the estimated error and actual error. Curves computed by
the reference solution of the quantity Z′Γ with respect to the cardinality of the index
set ΛN based on the sequence CC with K = 1, 3, 9, η ∼ N (0, 1) and with ζ = 2 (l.),
ζ = 3 (m.) and ζ = 4 (r.), #J = 128 and hT = hD = 2−11 for reference and adaptively
computed solution.

In summary, for the parametric, parabolic evolution problem with random
coefficients, our theoretical results could be numerically verified, and the
experimentally observed convergence rates are even slightly better. Further, the
variation of the number of observation points as well as the variation of the
observational noise do not influence the convergence behaviour of the proposed
method. The convergence only depends on the sparsity class of the unknown
coefficient u and is independent on the dimension of the underlying parameter
space.

7. Discussion and Conclusions

We consider the Bayesian inversion for classes of operator equations with distributed
uncertainties u taking values in a Banach space X. We showed sparsity of coefficient
sequences in polynomial chaos representations of the Bayesian posterior density Θ
for parametrizations of the uncertain forward solution map of the system in terms
of possibly countably many variables y = (yj)j∈J parametrizing u, provided that the
parametric responses q(y) satisfy the (b, p, ε)-holomorphy condition in Definition
2.2 with some 0 < p < 1. This analyticity condition is valid for a wide range of PDE
problems, see [10].

We showed that a certain type of degree and dimension-adaptive Smolyak
quadrature can, in principle, achieve convergence rate N−(1/p−1) where N denotes
the number quadrature points; numerical experiments indicate that even the higher
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rate N−1/p is achieved by the proposed deterministic quadrature methods, provided
that the covariance Γ > 0 of the observation noise is not small.

In the case of observation noise with variance Γ→ 0, the bound (40) reveals that
the constants in the bounds on the Legendre coefficients θP

ν in the gpc expansions
(42) and, via (43), also the constants C > 0 in the error bounds (45), (47) and, in
turn, also the constants Ci in the Smolyak quadrature error estimates (50), (51),
depend on Γ as C ∼ exp(b‖Γ−1‖) for some constant b > 0. We also note that the
convergence rates in (50), (51) are not affected by the size of Γ. In our numerical
experiments, we indeed observe this dependence on Γ, which renders our approach
infeasible for small values of Γ. This is due to concentration effects in the integrand
functions of the integrals ZΓ and Z′Γ in (27), (25) for small values of Γ. Since the
integrals (27), (25) are nonoscillatory, as Γ → 0+, all contributions to the integrals
ZΓ and Z′Γ in (27), (25) come from the vicinity of points y0 ∈ U where the potential
ΦΓ(y; δ) is minimal, and the asymptotics of ZΓ and Z′Γ as Γ→ 0+ can be analyzed by
Laplace’s method. Specifically, assuming that the number K of observations equals
one to simplify notation, we define

S(y) := −ΦΓ(y; δ) = −1
2

Γ−1(r(y))2 , Γ > 0

where the residuum r(y) := G(y)− δ ≥ 0 of the uncertainty-to-observation map is
independent of Γ and a smooth function of the coordinates yj of y ∈ U. Assume,
moreover, that the dimension U (resp. the set J) is finite, #(J) = J < ∞ (achieved by
dimension truncation in the parametric representation (9) of the uncertain input u,
see [33]).

Since U = [−1, 1]J is compact, the continuous function S(y) ≤ 0 attains its
maximum on U in a point y0 ∈ U, say (which point is also referred to as “map
point” in the literature). We distinguish two cases: y0 ∈ int(U) and y0 ∈ ∂U.
Assume the former, ie. dist(y0, ∂U) > 0. Then y0 is a critical point of S(·), and there
holds the first order necessary condition

0 = (∇yS)(y0)⇐⇒ r(y)(∇yr)(y)|y=y0 = 0 . (54)

Again two cases can occur: either (“consistent case”) r(y0) = 0 in which case the
observed noise-free data is the exact system response for the realization u = u(y0)

of the uncertainty, or (“inconsistent case”) r(y0) 6= 0. In the latter case, S(y0) < 0
and (54) implies ∇yr(y)|y=y0 = 0 i.e. that y0 is a critical point of the residuum.
Assume that y0 is nondegenerate, so that S(y0) < 0 is a local maximum of S (and,
hence, a local minimum of the potential ΦΓ) and the Hessian Syy(y0) is negative
definite. Then, an asymptotic analysis of ZΓ and of Z′Γ via Laplace’s method shows
(cp. [33])

Z′Γ = exp(Γ−1S(y0))(2πΓ)J/2 φ(y0) + O(Γ)√
|det(Syy(y0))|

as Γ→ 0+
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and likewise for ZΓ with φ(y) replaced by 1. Under the provision of nondegeneracy
of the Hessian Syy(y0), the Bayesian estimate (27) thus admits an asymptotic
expansion with respect to small observation noise variance Γ (cp. [33])

Eµδ
[φ] =

Z′Γ
ZΓ
∼ a0 + a1Γ + a2Γ2 + .... . (55)

Apart from being of interest in its own right (it indicates that in the limit of noise-
free observations the expected response φ(y0) occurs at a realization y0 which is a
(nonlinear) least square minimizer of the Bayesian potential. For the determination
of this minimizer related to the “MAP” estimate, well-developed computational
methods from nonlinear optimization are available) the information on the structure
of the integrand function which is afforded by the asymptotic analysis will also
allow the regularization of the integrand functions Θ(y) and Ψ(y) in (27) and (25).
Since the minimum y0 is, as a rule, degenerate, some form of regularization must be
employed. Mathematical details and algorithmic aspects will be addressed in [33];
there, also the effect of degeneracies in the Bayesian potential on the asymptotic
expansion (55) are considered.

For Γ > 0 not necessarily small, we showed in particular for parametric
operator equations whose solutions q(y) are (b, p, ε)-holomorphic, that in inverse
problems for such operator equations, under parametric uncertainty, the density
of the Bayesian posterior measure with respect to a uniform prior µ0 on the
parametrization space U of the uncertainty is, likewise, (b, p, ε)-holomorhic on U.

We assumed in the present paper that the uncertainties u ∈ X were charged
with a uniform prior measure µ0 which assigns equal probability to all relizations
of each coordinate yj in the uncertainty parametrization (9): we worked within
the probability space (U,B, µ0). However, all results and algorithms generalize
straightforwardly also the more general setting where U = ∏j∈J Γj with Γj ⊂ R

compact, with 1
2 λ1 replaced by the probability measures ρj(yj)dyj with

∫ 1
−1 ρj(ξ)dξ =

1. In this case, the families {Qk}k≥0 of univariate quadratures on which the Smolyak
construction in Section 5 was based will be replaced by coordinate-dependent
families {Qk,j}k≥0, j ∈ J, such as, for example, Gaussian quadratures with weight
function ρj which are tailored to the prior with respect to coordinate yj in the
parametric representation (9) of the distributed uncertainty u ∈ X.

The extension of the present theory to U = RN which arises, for example,
in the context of lognormal Gaussian models for the uncertain input u, will
require technical modifications; however, the adaptive Smolyak algorithm for fast,
deterministic Bayesian estimation presented in Section 5 ahead does generalize to
this case. See, eg., [31].

So far, we assumed that the forward problems are solved numerically with
high accuracy so that the discretization error is negligible with respect to the quadrature
error; the present error analysis allows, in addition, to adapt the discretization
error of the forward problem to the expected significance of its contribution to
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the Bayesian estimate, leading to substantial reduction in overall computational
complexity. We refer to [17] for first numerical experiments on this in the context of
adaptive solution of parametric initial value problems.
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