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A B S T R A C T

An organism’s genome sequence is a rich source of information on its
current characteristics and its evolutionary history. In this thesis, I refine and
apply methods to extract information from pathogen genome sequences via
phylogenetic reconstructions. I extend existing phylogeny-based models to
new applications in genome-wide association studies (GWAS) and genomic
epidemiology. First, I show that correlations in an infectious disease trait
due to shared pathogen ancestry can reduce GWAS power. I extend a
statistical model of evolution to estimate and correct for these correlations.
Second, I apply a phylodynamic model to estimate the origin and early
transmission patterns of the SARS-CoV-2 virus during the first European
outbreaks of COVID-19. Third, I describe a data infrastructure we built
to generate SARS-CoV-2 genome sequences from cases in Switzerland.
Finally, I develop a phylogenetic and phylodynamic framework to perform
a large-scale analysis on these data. In particular, I evaluate the effect of
several major public health measures in Switzerland in 2020 on SARS-CoV-2
introduction and transmission dynamics. All together, this thesis aims to
enhance our understanding of infectious diseases and how to combat them.
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Z U S A M M E N FA S S U N G

Die Genomsequenz eines Organismus enthält vielfältige Informationen
über seine Charakteristiken und Evolutionsgeschichte. In dieser Disserta-
tion entwickle und verwende ich Methoden, die Informationen aus den
Genomsequenzen von Pathogenen mithilfe phylogenetischer Bäume ex-
trahieren. Ich erweitere bestehende phylogeniebasierte Modelle für neue
Applikationen in genomweite Assoziationsstudien (GWAS) und in der ge-
netischen Epidemiologie. Zuerst zeige ich, dass die aus der gemeinsamen
Abstammung von Pathogenen resultierenden Korrelationen im Merkmal
einer ansteckenden Krankheit die Power von GWAS reduzieren können.
Ich erweitere ein statistisches Evolutionsmodell, um diese Korrelationen zu
schätzen und dafür zu korrigieren. Zweitens benutze ich ein phylodyna-
misches Modell, um den Ursprung und die frühe Transmissionsgeschichte
von SARS-CoV-2 Viren während den ersten europäischen Outbreaks von
COVID-19 zu schätzen. Drittens beschreibe ich eine Dateninfrastruktur,
die wir implementiert haben, um SARS-CoV-2 Genomsequenzen in der
Schweiz zu generieren. Anschliessend entwickle ich ein phylogenetisches
und phylodynamisches Framework, um umfangreiche Analysen dieser
Daten durchführen zu können. Insbesondere evaluiere ich die Effekte von
einigen wichtigen öffentlichen Gesundheitsmassnahmen in der Schweiz in
2020 auf die Dynamiken hinsichtlich der Einschleppungen und Übertra-
gungen von SARS-CoV-2. Insgesamt hat diese Dissertation als Ziel, unser
Verständnis von übertragbaren Krankheiten und ihrer Bekämpfung zu
verbessern.
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1
I N T R O D U C T I O N

One of the major promises of large-scale genome sequencing was to uncover
the genetic basis of disease. Sequence-based insights were envisioned to
yield improvements in diagnostics, therapeutics, and public health, ush-
ering in a new era of precision genomic medicine. In this thesis, I extend
and apply methods aiming to deliver on this promise for infectious dis-
eases. In particular, I focus on methods that utilize pathogen phylogenetic
reconstructions, which represent the evolutionary relationships between
infecting strains. Applications include genome-wide association studies for
understanding the genetic basis of infectious disease traits and phylogenetic
and phylodynamic methods for quantifying infectious disease transmission
dynamics. The following sections are devoted to introducing these concepts
in greater detail.

1.1 genome sequencing and genomic epidemiology

The first human genome sequence was released in 2003. At the time, gen-
erating this ordered readout of the ≈3 billion DNA bases comprising the
human genome cost an estimated 500 million to 1 billion U.S. dollars (Wet-
terstrand, 2019). Since then, the cost per megabase for DNA sequencing
has dropped over 300,000 fold (Wetterstrand, 2019), thanks in large part
to methodological advances in “next-generation” sequencing (EMBL-EBI,
2022). As of June 2022, over 1.7 billion whole-genome sequences are publicly
available in the GenBank database (NCBI, 2022). Thus, the generation of
large amounts of genome sequence data is no longer necessarily a primary
limitation for research.

So, how has this abundance of genome sequence data advanced public
health? This thesis falls into the broad field of “genomic” or “molecular”
epidemiology, which is concerned with extracting epidemiological insights
from genome sequence data - in other words, pushing the envelope on that
question. The next sections outline two key methodological approaches in
the field of genomic epidemiology with particular application to infectious
disease. These methods form the basis for the following chapters.
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2 introduction

1.2 genome-wide association studies

One of the first applications of large-scale genome sequencing was for
genome-wide association studies (GWAS) (Uffelmann et al., 2021). GWAS
test for statistical associations between genetic variants and a phenotypic
trait across a large cohort of genotypically and phenotypically diverse
individuals. Depending on whether the phenotype is binary, like diseased
versus healthy status, or continuous, like growth rate or viral load, a logistic
or linear regression model is typically used to test the strength of association.
The predictor variables in these models are typically the presence/absence
or copy number of a genetic variant. GWAS are “genome-wide” in that they
test thousands or millions of different genetic variants from an organism
for association with the same trait, screening for those with the strongest
associations. Since many variants are considered independently, correction
for multiple testing is important to control for false discoveries. Even so,
associated variants may not be truly causal due to linkage disequilibrium.
In other words, causal and non-causal variants may be genomically linked
and thus commonly inherited together. Therefore, functional annotation
and/or validation in model organisms is necessary to determine which
associated variant(s) are truly causal for a given phenotype (Albert and
Kruglyak, 2015; Cano-Gamez and Trynka, 2020).

A flurry of GWAS were conducted in the late-2000s (Topol et al., 2007),
primarily focusing on non-infectious human disease. These early studies
quickly revealed that susceptibility to most common human diseases like
asthma and obesity is determined by a multitude of genetic variants, often of
small individual effect (Vercelli, 2008; Bogardus, 2009). Due to the complex
genetic underpinnings of these diseases, translation of GWAS results to
clinical practice is challenging (Barton, 2007). However, a few breakthrough
successes have been realized. For example, genetic risk prediction is now
common for some types of cancer (Kuchenbaecker et al., 2017). Attempts to
utilize GWAS-identified genes and pathways as drug targets are ongoing,
e.g. Li et al. (2022); Shu et al. (2018); Okada et al. (2014).

GWAS have also increasingly been applied to human genomes and
infectious disease traits (Mozzi et al., 2018). So far, these GWAS established
that human genetic variation influences susceptibility to a wide variety of
infectious diseases, including HIV-1, hepititis B and C, and malaria, among
others (Chapman and Hill, 2012). However, such direct applications of
GWAS to infectious disease traits ignore variation in pathogen genomes,
which can also strongly influence infectious disease traits (Mitov and Stadler,
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2018). In fact, GWAS using microbial genomes instead of human genomes,
or “mGWAS”, have identified pathogen genetic variants that influence
a variety of infectious disease traits (San et al., 2020). Several methods
aim to incorportate information from both host and pathogen genomes
in GWAS. For instance, genome-to-genome studies test for associations
between host and pathogen genetic variants (Bartha et al., 2013). Then,
Wang et al. (2018) introduced a linear mixed-model approach to test for
interaction and marginal effects of variants from both genomes on a trait.
Methods like this to account for pathogen genetic effects in GWAS using
host genomes are an area of ongoing development (Kwok et al., 2021).

1.3 phylogenetic reconstructions

A second, broad application of genome sequencing is for phylogenetic
reconstruction. In this case, similarities and differences between related
organisms are used to reconstruct their evolutionary relationships. This
information is represented as a phylogenetic tree, where related individuals
cluster closer together than more distantly related individuals and ancestral
branches represent shared evolutionary history.

Phylogenetic reconstructions have been used for over 140 years, with
initial applications focusing on systematics (Felsenstein, 2004). The first
phylogenies were constructed on the basis of morphological characteris-
tics. With the advent of molecular sequencing - first protein, then DNA
sequencing - in the 1960s and 1970s, a rich new data source was available
for reconstructing phylogenies (Barton, 2007). Concurrent methods devel-
opments introduced algorithmic methods for reconstructing phylogenies,
including parsimony, distance matrix, and maximum likelihood methods
(Felsenstein, 2004). These methods all make different assumptions to al-
gorithmically generate a phylogenetic reconstruction of the evolutionary
relationships between organisms. As opposed to GWAS, where linkage
between sites makes it difficult to tease apart causal and non-causal ge-
netic variants, these phylogenetic reconstruction methods assume complete
linkage between sites. In other words, even sites far apart on the genome
should be representative of the same evolutionary history. When this as-
sumption is satisfied, phylogenetic reconstructions are useful summaries of
the evolutionary relationships between organisms.

In addition, phylogenetic reconstructions are a key data structure for
generating insights on population biology and evolution. For instance, a
common question in evolutionary biology is whether certain traits are
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correlated, for instance brain and body size, and if so, what selective forces
constrain their evolution in this way. Basic statistical tests to assess such
associations assume independence of samples. However, many traits are
related in related species due to shared evolutionary history. Phylogenetic
comparative methods apply evolutionary models to trait values at the tips
of phylogenies, accounting for shared evolutionary history and enabling
rigorous statistical hypothesis testing (Harvey et al., 1998).

Another application of phylogenies is the study of their branch length
distributions and topologies to generate insights on population dynam-
ics, known as phylodynamics (Grenfell et al., 2004). A dated phylogeny
has branch lengths in time units. Short branch lengths then correspond to
short observed speciation intervals and vice versa. For infectious diseases,
“speciation” is transmission from one infected host to another, after which
daughter lineages evolve independently in the two hosts. Stochastic mod-
els can be used to relate these branching times to underlying population
dynamics. Two commonly used classes of models are derived from the coa-
lescent process (Wakeley, 2009) and the birth-death process (Stadler, 2010).
These processes provide mathematical frameworks for relating variation in
branch lengths to population dynamics - population size, in the case of the
coalescent, or birth and death rates, in the case of the birth-death model.
The implementation of coalescent and birth-death models in Bayesian infer-
ence frameworks enables joint inference of a phylogeny and the population
dynamics that generated it, representing another advance in methods for
phylogenetic reconstruction (Suchard et al., 2018; Bouckaert et al., 2019).
Development of these models is ongoing, extending their applicability to
populations with more complex dynamics, e.g. Kühnert et al. (2016), and
pathogens with more complex evolutionary processes, e.g. Müller et al.
(2020).

1.4 practical applications of pathogen phylogenies

In practice, phylogenetic reconstruction may be the focus of an analysis,
or, increasingly, treated as a means to another end. For instance, statistics
calculated from a phylogeny or parameters estimated while integrating over
a multitude of plausible phylogenies may take center stage, while the actual
phylogenetic reconstruction fades into the background as an intermediate
data representation or even a nuisance parameter. Here, I will highlight
prior applications of pathogen phylogenies in infectious disease research
that set the stage for the advances presented in this thesis.
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In GWAS, phylogenies are primarily used in microbial GWAS as a conve-
nient representation for the uniquely strong population structure in clonally
reproducing microorganisms. If unaccounted for, systematic differences in
pathogen populations might yield spurious genetic correlations with a trait.
Phylogenetic reconstructions can be used to adjust for these differences. For
instance, phylogenies have been used to generate principle components or
a kinship matrix describing microbial population structure. These can be
included as covariates in linear association models (Naret et al., 2018) or as
a random effect in linear mixed models of association (Lees et al., 2018) to
control for population structure. These methods have been used to better
understand infectious disease pathology. For example, Lees et al. (2019)
identified two genes in Streptococcus pneumoniae associated with invasive
propensity.

In public health, phylogenies are more often at the forefront of practical
analyses. Outbreak phylogenies help establish whether cases are epidemio-
logically linked and where the outbreak may have originated (Armstrong
et al., 2019). Recent examples include identifying a household product as
the source of a geographically wide-spread melioidosis outbreak in the U.S.
(Gee et al., 2022) and understanding the likely zoonotic origins of the new
human pathogen SARS-CoV-2 (Wu et al., 2020).

Phylodynamic methods aim to generate even more information than this
from pathogen genome sequence data. As previously discussed, these meth-
ods jointly infer the phylogeny alongside population dynamics of interest,
like the size of the infected population or transmission rates. Depending on
the application, the phylogeny itself may be more or less interesting. For
instance, Stadler et al. (2013) estimed the time-varying reproductive number
of HIV-1 in the U.K. and hepititis C virus in Egypt using a birth-death
phylodynamic framework and Dudas et al. (2018) used a structured coales-
cent framework to show that MERS-CoV in humans is driven by seasonal
zoonotic spillover from camels with limited human-to-human transmission.
More recently, phylodynamic methods have also been extensively applied
to study the transmission dynamics of SARS-CoV-2 (Attwood et al., 2022).

1.5 pushing the envelope

In this thesis, I employ a variety of phylogeny-based methods in genomic
epidemiology, extending and applying them to new infectious disease
contexts. These methods include phylogenetic comparative methods, GWAS,
the generation and linking of genome sequence data with metadata, and
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phylogenetic and phylodynamic inference. Applications include HIV-1 in
Switzerland and SARS-CoV-2 in Europe and in Switzerland. As a unifying
theme, this thesis is primarily concerned with the generation of practical
insights from pathogen genome sequence data.

This remainder of this thesis is organized as follows: Chapter 2 intro-
duces a new approach to estimate and correct for pathogen effects prior
to infectious disease GWAS using host genomes. Chapter 3 tests a specific
hypothesis about the routes of introduction of SARS-CoV-2 into Europe
at the onset of the COVID-19 pandemic. Chapter 4 outlines our efforts
to generate SARS-CoV-2 genome sequences from the Swiss epidemic and
link these sequences to relevant metadata. Chapter 5 probes how useful
these genome sequence data are for evaluating public health measures in
the first year of the Swiss COVID-19 epidemic. Finally, I summarize the
advances presented in this thesis and highlight where I believe the biggest
opporunities lie going forward for generating translational impact from
pathogen genome sequence data.



B I B L I O G R A P H Y

Albert, F. W. and Kruglyak, L. 2015. The role of regulatory variation in
complex traits and disease. Nature Reviews Genetics, 16(4): 197–212.

Armstrong, G. L., MacCannell, D. R., Taylor, J., Carleton, H. A., Neuhaus,
E. B., Bradbury, R. S., Posey, J. E., and Gwinn, M. 2019. Pathogen genomics
in public health. The New England Journal of Medicine, 381(26): 2569–2580.

Attwood, S. W., Hill, S. C., Aanensen, D. M., Connor, T. R., and Pybus, O. G.
2022. Phylogenetic and phylodynamic approaches to understanding and
combating the early sars-cov-2 pandemic. Nature Reviews Genetics, pages
1–16.

Bartha, I., Carlson, J. M., Brumme, C. J., McLaren, P. J., Brumme, Z. L., John,
M., Haas, D. W., Martinez-Picado, J., Dalmau, J., López-Galíndez, C.,
et al. 2013. A genome-to-genome analysis of associations between human
genetic variation, HIV-1 sequence diversity, and viral control. eLife, 2:
e01123.

Barton, N. H. 2007. Evolution. CSHL Press.

Bogardus, C. 2009. Missing heritability and GWAS utility. Obesity, 17(2):
209–210.

Bouckaert, R., Vaughan, T. G., Barido-Sottani, J., Duchêne, S., Fourment,
M., Gavryushkina, A., Heled, J., Jones, G., Kühnert, D., De Maio, N.,
et al. 2019. BEAST 2.5: An advanced software platform for bayesian
evolutionary analysis. PLOS Computational Biology, 15(4): e1006650.

Cano-Gamez, E. and Trynka, G. 2020. From gwas to function: Using
functional genomics to identify the mechanisms underlying complex
diseases. Frontiers in Genetics, 11.

Chapman, S. J. and Hill, A. V. 2012. Human genetic susceptibility to
infectious disease. Nature Reviews Genetics, 13: 175–188.

Dudas, G., Carvalho, L. M., Rambaut, A., and Bedford, T. 2018. Mers-cov
spillover at the camel-human interface. eLife, 7.

7



8 bibliography

EMBL-EBI 2022. What is next generation dna sequencing? | func-
tional genomics ii. https://www.ebi.ac.uk/training/online/courses/
functional-genomics-ii-common-technologies-and-data-analysis-methods/

next-generation-sequencing/. Accessed: 2022-7-5.

Felsenstein, J. 2004. Inferring Phylogenies. Sinauer Associates Incorporated.

Gee, J. E., Bower, W. A., Kunkel, A., Petras, J., Gettings, J., Bye, M., Firestone,
M., Elrod, M. G., Liu, L., Blaney, D. D., et al. 2022. Multistate outbreak
of melioidosis associated with imported aromatherapy spray. The New
England Journal of Medicine, 386(9): 861–868.

Grenfell, B. T., Pybus, O. G., Gog, J. R., Wood, J. L., Daly, J. M., Mum-
ford, J. A., and Holmes, E. C. 2004. Unifying the epidemiological and
evolutionary dynamics of pathogens. Science, 303: 327–332.

Harvey, P. H., Harvey, P. P., Reader in Biology Department of Zoology Paul
H Harvey, Pagel, M. D., and Pagel, M. D. 1998. The Comparative Method
in Evolutionary Biology. Oxford University Press on Demand.

Kuchenbaecker, K. B., Hopper, J. L., Barnes, D. R., Phillips, K.-A., Mooij,
T. M., Roos-Blom, M.-J., Jervis, S., van Leeuwen, F. E., Milne, R. L.,
Andrieu, N., et al. 2017. Risks of breast, ovarian, and contralateral breast
cancer for BRCA1 and BRCA2 mutation carriers. JAMA, 317(23): 2402–
2416.

Kühnert, D., Stadler, T., Vaughan, T. G., and Drummond, A. J. 2016. Phy-
lodynamics with migration: A computational framework to quantify
population structure from genomic data. Molecular Biology and Evolution,
33(8): 2102–2116.

Kwok, A. J., Mentzer, A., and Knight, J. C. 2021. Host genetics and infec-
tious disease: new tools, insights and translational opportunities. Nature
Reviews Genetics, 22: 137–153.

Lees, J. A., Galardini, M., Bentley, S. D., Weiser, J. N., and Corander, J. 2018.
pyseer: a comprehensive tool for microbial pangenome-wide association
studies. Bioinformatics, 34(24): 4310–4312.

Lees, J. A., Ferwerda, B., Kremer, P. H. C., Wheeler, N. E., Serón, M. V.,
Croucher, N. J., Gladstone, R. A., Bootsma, H. J., Rots, N. Y., Wijmega-
Monsuur, A. J., et al. 2019. Joint sequencing of human and pathogen
genomes reveals the genetics of pneumococcal meningitis. Nature Com-
munications, 10(1): 1–14.

https://www.ebi.ac.uk/training/online/courses/functional-genomics-ii-common-technologies-and-data-analysis-methods/next-generation-sequencing/
https://www.ebi.ac.uk/training/online/courses/functional-genomics-ii-common-technologies-and-data-analysis-methods/next-generation-sequencing/
https://www.ebi.ac.uk/training/online/courses/functional-genomics-ii-common-technologies-and-data-analysis-methods/next-generation-sequencing/


bibliography 9

Li, M., Li, T., Xiao, X., Chen, J., Hu, Z., and Fang, Y. 2022. Phenotypes,
mechanisms and therapeutics: insights from bipolar disorder GWAS
findings. Molecular Psychiatry, pages 1–13.

Mitov, V. and Stadler, T. 2018. A practical guide to estimating the heritability
of pathogen traits. Molecular Biology and Evolution, 35: 756–772.

Mozzi, A., Pontremoli, C., and Sironi, M. 2018. Genetic susceptibility to
infectious diseases: Current status and future perspectives from genome-
wide approaches. Infection, Genetics and Evolution, 66: 286–307.

Müller, N. F., Stolz, U., Dudas, G., Stadler, T., and Vaughan, T. G. 2020.
Bayesian inference of reassortment networks reveals fitness benefits of
reassortment in human influenza viruses. Proceedings of the National
Academy of Sciences of the United States of America, 117(29): 17104–17111.

Naret, O., Chaturvedi, N., Bartha, I., Hammer, C., Fellay, J., and The Swiss
HIV Cohort Study (SHCS) 2018. Correcting for population stratification
reduces false positive and false negative results in joint analyses of host
and pathogen genomes. Frontiers in Genetics, 9.

NCBI 2022. GenBank and WGS statistics. https://www.ncbi.nlm.nih.gov/
genbank/statistics/. Accessed: 2022-6-14.

Okada, Y., Wu, D., Trynka, G., Raj, T., Terao, C., Ikari, K., Kochi, Y., Ohmura,
K., Suzuki, A., Yoshida, S., et al. 2014. Genetics of rheumatoid arthritis
contributes to biology and drug discovery. Nature, 506(7488).

San, J. E., Baichoo, S., Kanzi, A., Moosa, Y., Lessells, R., Fonseca, V., Mogaka,
J., Power, R., and de Oliveira, T. 2020. Current affairs of microbial genome-
wide association studies: Approaches, bottlenecks and analytical pitfalls.
Frontiers in Microbiology, 10: 3119.

Shu, L., Blencowe, M., and Yang, X. 2018. Translating GWAS findings
to novel therapeutic targets for coronary artery disease. Frontiers in
Cardiovascular Medicine, 0.

Stadler, T. 2010. Sampling-through-time in birth-death trees. Journal of
Theoretical Biology, 267: 396–404.

Stadler, T., Kühnert, D., Bonhoeffer, S., and Drummond, A. J. 2013. Birth-
death skyline plot reveals temporal changes of epidemic spread in hiv
and hepatitis c virus (hcv). Proceedings of the National Academy of Sciences
of the United States of America, 110: 228–233.

https://www.ncbi.nlm.nih.gov/genbank/statistics/
https://www.ncbi.nlm.nih.gov/genbank/statistics/


10 bibliography

Suchard, M. A., Lemey, P., Baele, G., Ayres, D. L., Drummond, A. J., and
Rambaut, A. 2018. Bayesian phylogenetic and phylodynamic data inte-
gration using BEAST 1.10. Virus Evolution, 4(1): vey016.

Topol, E. J., Murray, S. S., and Frazer, K. A. 2007. The genomics gold rush.
JAMA, 298(2): 218–221.

Uffelmann, E., Huang, Q. Q., Munung, N. S., de Vries, J., Okada, Y., Martin,
A. R., Martin, H. C., and Lappalainen, T. 2021. Genome-wide association
studies. Nature Reviews Methods Primers, 1(1): 1–21.

Vercelli, D. 2008. Discovering susceptibility genes for asthma and allergy.
Nature Reviews Immunology, 8(3): 169–182.

Wakeley, J. 2009. Coalescent Theory: An Introduction. Roberts Publishers.

Wang, M., Roux, F., Bartoli, C., Huard-Chauveau, C., Meyer, C., Lee, H.,
Roby, D., McPeek, M. S., and Bergelson, J. 2018. Two-way mixed-effects
methods for joint association analysis using both host and pathogen
genomes. Proceedings of the National Academy of Sciences of the United States
of America, 115(24): E5440–E5449.

Wetterstrand, K. A. 2019. The cost of sequencing a human
genome. https://www.genome.gov/about-genomics/fact-sheets/

Sequencing-Human-Genome-cost. Accessed: 2022-6-14.

Wu, F., Zhao, S., Yu, B., Chen, Y.-M., Wang, W., Song, Z.-G., Hu, Y., Tao,
Z.-W., Tian, J.-H., Pei, Y.-Y., et al. 2020. A new coronavirus associated with
human respiratory disease in china. Nature, 579(7798): 265–269.

https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost
https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost


2
A P H Y L O G E N Y- AWA R E G WA S F R A M E W O R K T O
C O R R E C T F O R H E R I TA B L E PAT H O G E N E F F E C T S O N
I N F E C T I O U S D I S E A S E T R A I T S

This chapter is submitted as:
Sarah Nadeau, Christian W. Thorball, Roger Kouyos, Huldrych F. Gün-

thard, Jürg Böni, Sabine Yerly, Matthieu Perreau, Thomas Klimkait, An-
dri Rauch, Hans H. Hirsch, Matthias Cavassini, Pietro Vernazza, Enos
Bernasconi, Jacques Fellay, Venelin Mitov†, Tanja Stadler†, and the Swiss
HIV Cohort Study (SHCS). A phylogeny-aware GWAS framework to correct
for heritable pathogen effects on infectious disease traits.

†equal contributions

abstract

Infectious diseases are particularly challenging for genome-wide association
studies (GWAS) because genetic effects from two organisms (pathogen and
host) can influence a trait. Traditional GWAS assume individual samples
are independent observations. However, pathogen effects on a trait can be
heritable from donor to recipient in transmission chains. Thus, residuals
in GWAS association tests for host genetic effects may not be independent
due to shared pathogen ancestry. We propose a new method to estimate
and remove heritable pathogen effects on a trait based on the pathogen
phylogeny prior to host GWAS, thus restoring independence of samples.
In simulations, we show this additional step can increase GWAS power
to detect truly associated host variants when pathogen effects are highly
heritable, with strong phylogenetic correlations. We applied our framework
to data from two different host-pathogen systems, HIV in humans and X.
arboricola in A. thaliana. In both systems, the heritability and thus phyloge-
netic correlations turn out to be low enough such that qualitative results of
GWAS do not change when accounting for the pathogen shared ancestry
through a correction step. This means that previous GWAS results applied
to these two systems should not be biased due to shared pathogen ances-
try. In summary, our framework provides additional information on the
evolutionary dynamics of traits in pathogen populations and may improve

11
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GWAS if pathogen effects are highly phylogenetically correlated amongst
individuals in a cohort.

2.1 introduction

A key goal of genome-wide association studies (GWAS) is to understand the
genetic basis of phenotypic variation among individuals. In a typical GWAS,
millions of genetic variants from across an organism’s genome are screened
for statistical association with a trait of interest. Ideally, this procedure
identifies variants that are located in, or are in linkage disequilibrium
with, alleles that directly affect the trait. If GWAS finds a variant strongly
associated with a disease trait, the gene product may be a good drug target
(Okada et al., 2014). Even if no single variant has a strong association, many
small associations can be aggregated into a polygenic risk score to identify
susceptible individuals (Dudbridge, 2013).

It is well-known that GWAS can be sensitive to confounding variables.
Shared ancestry among individuals, especially between close relatives, can
give rise to spurious genetic correlations with a trait. Corrections for these
types of population structure in human GWAS cohorts are well-developed
and widely accepted (Astle and Balding, 2009; Price et al., 2006). More
recently, analogous methods have been developed for microbial GWAS,
where clonal reproduction exacerbates population structure (Power et al.,
2017). Phylogenetic methods to account for population structure in micro-
bial GWAS include explicitly testing for lineage-specific effects as in Earle
et al. (2016) and modified association tests that account for phylogenetic
relationships amongst samples as in Collins and Didelot (2018). These ap-
proaches are designed to quantify genetic effects from one organism on a
trait.

In the infectious disease context, genetic effects from two organisms - the
host and the pathogen - may affect an infectious disease trait. GWAS using
paired host-pathogen genotype data have previously been done to elucidate
the marginal and interaction effects of host and pathogen genetic variants.
Methods to account for microbial population structure when testing for
marginal host associations or host-pathogen interaction effects include
adding the microbial kinship matrix as a random effect in a linear mixed
model as in Wang et al. (2018) and using principle components derived
from either this matrix or the pathogen phylogeny as covariates in a linear
model as in Naret et al. (2018). These methods focus on capturing and
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accounting for correlations due to the pathogen phylogeny, without further
investigating the nature of these correlations.

In this work, we draw from the field of phylogenetic comparative methods
to propose a new two-step framework that corrects for pathogen population
structure and thus satisfies the GWAS assumption of independent samples.
The introduced framework relies on paired pathogen-host genotyping
and is envisioned specifically for continuous-valued traits that are highly
heritable from infection partner to infection partner. We hypothesized that
our approach should improve GWAS power to identify host genetic variants
broadly associated with disease traits.

In a first step, we fit an evolutionary model to trait data and the pathogen
phylogeny. This first step provides an estimate of the correlation structure
of the trait due to heritable pathogen effects. The estimate is used to remove
pathogen effects on the trait. In the second step, the resulting corrected
trait data is used in a GWAS with host genetic variants. The GWAS can
be performed as normal under the assumption of independent samples.
The main advantage of this two-step approach compared to the previously
outlined methods to correct for pathogen population structure is that it
generates additional information on the evolutionary dynamics of the trait
in the pathogen population. The advances presented here are on the first
step, while in the second step existing, highly optimized tools to perform
GWAS association tests under a variety of models can be employed.

In the following, we describe the evolutionary model for heritable,
continuous-valued infectious disease traits upon which our method is
based. We derive a maximum likelihood estimate for the pathogen part of
a trait under this model. We then describe a new infectious disease GWAS
framework assessing associations of the trait with host genetic variants
using the maximum likelihood estimates. In simulations, we show that this
framework can improve GWAS power to detect host genetic variants that af-
fect disease traits. Finally, we apply our framework to paired host-pathogen
genotyping data from the Swiss HIV Cohort Study (SHCS) and a previously
studied Arabidosis thaliana-Xanthomonas arboricola pathosystem. We show
that associations with set-point viral load (spVL) and quantitative disease
resistance (QDR) traits, respectively, are robust to a correction for pathogen
effects.
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new approaches

A statistical model for heritable, continuous-valued infectious disease traits

Variation in infectious disease traits like viral load or infection severity can
come from several sources. These include host genetic factors, pathogen
genetic factors, interaction effects between the host and the pathogen, or
non-genetic factors like healthcare quality or temperature. GWAS typically
stratify samples or include covariates to correct for host genetic factors or
non-genetic factors that may be correlated with a trait value. This leaves
pathogen genetic factors as a remaining source of correlation, since close
transmission partners may be infected with very similar pathogen strains.
We aim to remove this pathogen-induced correlation in the trait data prior
to performing GWAS on the host genomes.

Broad-sense pathogen heritability H2 quantifies the fraction of total
variance in a trait that is “inherited” from infection partner to infection
partner, i.e., due to pathogen factors. To characterize H2 and the heritable
and non-heritable factors that determine infectious disease traits, we use a
phylogenetic mixed model (PMM) (Housworth et al., 2004). PMMs assume
continuous traits are the sum of independent heritable and non-heritable
parts. In the infectious disease GWAS case, we assume the heritable part
comprises pathogen genetic factors and all other factors are non-heritable.
The heritable pathogen part is modeled by a random process occurring
in continuous time along the branches of the pathogen phylogeny, as in
Figure 2.1A. The non-heritable part is modeled as Gaussian noise added to
sampled individuals at the tips of the phylogeny.

PMMs have previously been applied to the study of infectious disease
traits using two different types of random processes to model trait evolution.
The Brownian Motion (BM) process assumes unbounded trait values, i.e. the
trait can attain any value. The Ornstein-Uhlenbeck (OU) process assumes
trait values fluctuate around an optimal value, i.e. extreme trait values are
unlikely. Here, we assume the more flexible OU process as it encompasses
a wider variety of evolutionary scenarios. For example, Mitov and Stadler
(2018) and Bertels et al. (2018) previously showed the OU process has higher
statistical support for HIV-1 spVL. This makes sense given that spVL is
likely under stabilizing selection to maximize viral transmission potential
(Fraser et al., 2014). The full model is called the phylogenetic Ornstein-
Uhlenbeck mixed model (POUMM) and is described in detail by Mitov and
Stadler (2018). Here, we review the main points relevant to our method.
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Under the POUMM, the trait z is the sum of heritable genetic effects g,
i.e. due to the pathogen, and non-heritable “environmental” effects ϵ, i.e.
host genetic effects and other environmental or interaction effects:

z = g + ϵ (2.1)

g is a pathogen trait that evolves along the phylogeny according to an OU
process. The OU process is defined by a stochastic differential equation
with two terms. The first term represents a deterministic pull towards an
optimal trait value and the second term represents stochastic fluctuations
modelled by Brownian motion (Butler and King, 2004):

dg(t) = α[θ − g(t)]dt + σdWt

g(0) = g0
(2.2)

Here the parameter α represents selection strength towards an evolution-
arily optimal value represented by parameter θ. The parameter σ measures
the intensity of stochastic fluctuations in the evolutionary process. Finally,
dWt is the Wiener process underlying Brownian motion. The OU process
is a Gaussian process, meaning that g(t) is a Gaussian random variable.
Assuming g(t) starts at initial value g0 at time t = 0 at the root of the
phylogeny, we can write the expectation for g(t) at time t:

E[g(t)] = g0e−αt + (1 − e−αt)θ (2.3)

and the variance in g(t) if we were to repeat the random evolutionary
process many times (Butler and King, 2004):

Var[g(t)] =
σ2

2α
(1 − e−2αt) (2.4)

g evolves independently in descendent lineages after a divergence event
in the phylogeny. The covariance between g(t) in a lineage i at time ti and
another lineage j at time tj, Cov

(
gi(ti), gj(tj)

)
, increases with the amount of

time between t0 and the divergence of the two lineages, t0(ij), and decreases
with the total amount of time the lineages evolve independently, dij (Butler
and King, 2004):

Cov
(

gi(ti), gj(tj)
)
=

σ2

2α
[e−αdij(1 − e−2αt0(ij))] (2.5)

Next, we recall that ϵ is the non-heritable part of the trait. ϵ is modeled as a
Gaussian random variable that is time- and phylogeny-independent. The
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expectation of ϵ is zero, meaning non-heritable effects are equally likely to
raise or lower the trait from the pathogen-determined level. The parameter
σ2

ϵ measures the between-host variance of the non-heritable effect.

E(ϵ) = 0

Var(ϵ) = σ2
ϵ

(2.6)

Finally, broad-sense trait heritability can be calculated as the fraction of
total trait variance that is heritable:

H2
t =

Var[g(t)]
Var[g(t)] + Var(ϵ)

=
σ2

2α (1 − e−2αt)
σ2

2α (1 − e−2αt) + σ2
ϵ

(2.7)

Teasing apart pathogen and non-pathogen effects on a trait

Given the assumptions of the POUMM, we can estimate a heritable pathogen
effect on a trait and a corresponding non-heritable, host and environmental
effect. Here, we derive a maximum-likelihood estimate for these values for
individuals in a GWAS cohort, given measured trait values and a pathogen
phylogeny linking the infecting strains.

Let g(t) be a vector of g values, one for each individual in the cohort. t are
the sampling times of each individual relative to the root of the phylogeny.
To simplify notation, we omit the t from here on. g is a realization of
a Gaussian random vector G ∼ N

(
µOU , ΣOU

)
. The expectation µOU is

defined by equation 2.3, the diagonal elements of the covariance matrix
ΣOU are defined by equation 2.4, and the off-diagonal elements of ΣOU by
equation 2.5. Similarly, let ϵ be a vector of the non-heritable part of the
trait for each individual. ϵ is a realization of a Gaussian random vector
E ∼ N

(
0, ΣE

)
, where ΣE is a diagonal matrix with diagonal elements equal

to σ2
ϵ .

Considering that G and E are independent random vectors and that their
realizations g and ϵ must sum together to equal the observed trait values z,
we can write the following proportionality for the joint probability density
of g and ϵ:

f
(
g, ϵ

)
∝ N

(
g;µG, ΣG

)
(2.8)

where the expected value of g and the covariance matrix ΣG are defined
as:
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Exp(g) = µG = ΣG
(
Σ−1

OUµOU + Σ−1
E z

)
(2.9)

ΣG =
(
Σ−1

OU + Σ−1
E

)−1 (2.10)

Proof.

f
(
g, ϵ

)
= f

(
g| ϵ

)
× f

(
ϵ
)

= f
(
g
)
× f

(
ϵ
)

= N
(
g; µOU , ΣOU

)
×N

(
ϵ; 0, ΣE

)
= N

(
g; µOU , ΣOU

)
×N

(
z − g; 0, ΣE

)
= N

(
g; µOU , ΣOU

)
×N

(
g; z, ΣE

)
(2.11)

Equations 2.9 and 2.10 follow from eq. 2.11 and eq. 371, p. 42, section
8.1.8 “Product of Gaussian densities” in (Petersen and Pedersen, 2012).

Importantly, equation 2.9 is the maximum likelihood estimate for g, the
pathogen effect on the trait, taking into account all available information -
measured trait values, the pathogen phylogeny, and inferred POUMM
parameters. This estimator is an inverse-variance weighted average of
measured trait (z) and information from the POUMM evolutionary model
(µOU). In other words, g will be closer to the measured trait value if the
trait is not very heritable. If the trait is highly heritable, g will be closer to
the expected value under the POUMM, i.e. take more information from the
phylogenetic relationships between infecting strains.

Given the estimator we just derived for g, we can now estimate ϵ, the
trait value without pathogen effects:

ϵ̂ = z − Exp(g) (2.12)

We will use this value to try to improve upon standard GWAS methods
in infectious disease.

A POUMM-based GWAS framework for infectious disease

We propose to improve standard GWAS for infectious diseases by estimating
and removing trait variability due to pathogen effects. Our new framework
is as follows:

1. Sample paired host genotypes, pathogen genome sequences, and trait
values from a cohort.
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2. Construct a pathogen phylogeny using the pathogen genome se-
quences.

3. Estimate the parameters of the POUMM based on the trait values
and the pathogen phylogeny. This can be done with the R package
POUMM (Mitov and Stadler, 2017).

4. Generate maximum-likelihood estimates for the pathogen and corre-
sponding non-pathogen effects on the trait using equations 2.9 and
2.12.

5. Perform GWAS with only the non-pathogen effects on the trait as the
response variable.

2.2 results

Simulation study

To test the theoretical best-case performance of our method, we simulated
data under the POUMM and applied our framework to the simulated data.
We parameterized our simulation scheme with the time-scale and other
parameters of an HIV-1 outbreak in mind, with spVL as the trait of interest.

We first simulated a phylogeny of 500 tips with exponentially distributed
branch lengths and mean root-to-tip time of 0.14 substitutions per site
per year as in Hodcroft et al. (2014). Then, we simulated pathogen trait
values g along this phylogeny using the POUMM package in R (Mitov and
Stadler, 2017). This part of the simulation is illustrated in Figure 2.1A. For
the simulation, we considered a range of pathogen heritability parameter
values H2, from 15 to 75%, and a range of selection strength parameters
values α, from 0.1 to 60 time−1. The intensity of stochastic fluctuations
parameter σ was determined based on H2 and α (a re-arrangement of
equation 2.4, equation given in Table 2.2). As shown in Figure 2.8, higher α
values correspond to higher σ values to maintain constant H2 under this
parameterization. For each H2 and α value considered in the simulation,
we recorded the simulated pathogen part of the trait value for each tip in
the phylogeny.

We paired each tip’s simulated pathogen trait value with a simulated host
trait value. Simulated hosts had 20 genome positions. We sampled alleles
(0, 1, or 2) for each position from a binomial distribution with probability
0.13. 10 random positions had an effect size of 0.2 on the trait and 10 had
an effect size of -0.2. This part of the simulation is illustrated in Figure
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2.1B. Our parameterization produced roughly normally distributed host
trait values centered at zero with variance equal to 25% of the total trait
variance, which we constrained to 0.73 based on the variance in log spVL
values measured by Mitov and Stadler (2018). We used 25% host heritability
for spVL based on McLaren et al. (2015).

Finally, we sampled an additional random environmental effect for each
tip from a normal distribution centered at zero, as illustrated in Figure
2.1C. The variance of this distribution was scaled based on the pathogen
heritability of the trait, from zero (no effect) in the scenario with 75%
pathogen heritability and 25% host heritability to 0.44 in the scenario with
15% pathogen heritability and 25% host heritability. Figure 2.9 provides a
more detailed schematic of this simulation framework and Table 2.2 gives
the value or expression for each parameter.
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Figure 2.1: A high-level schematic of our phylogenetic Ornstein-Uhlenbeck
mixed model (POUMM)-based simulation framework in the context
of HIV-1 set-point viral load (spVL). (A) shows how the viral effects
on spVL evolve along the viral phylogeny according to an Ornstein-
Uhlenbeck process. (B) shows how human host genetic effects are the
sum of independent effects from several causal variants. Each variant
can be present in 0, 1, or 2 copies. Half the variants have a positive
effect of size δ and half have a negative effect of size δ. (C) shows
how other environmental effects are independently drawn from a
Gaussian distribution centered at zero. These three effects sum to the
trait value for each simulated individual.

Estimator accuracy

First, we evaluated how well our method estimated the additive host genetic
effects from the simulated data. Additive host genetic effects represent an
ideal (albeit unattainable) baseline for infectious disease GWAS. Figure 2.2A
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shows that our method incorporating phylogenetic information can more
accurately estimate these value compared to the trait value. To ensure a fair
comparison, we scaled trait values to have the same mean, zero, as host
genetic effects so as not to bias the root mean squared error (RMSE) by a
constant factor. As shown in the supplemental material, we can calculate the
expected RMSE using the scaled trait value across scenarios in our simula-
tion scheme because the variance in the trait due to pathogen genetic effects
and environmental effects is fixed. Thus, we expect the RMSE using the
scaled trait value to be 0.74 across all simulation scenarios. By incorporating
phylogenetic information, we can improve upon this error in scenarios
where the trait is highly heritable, under low selection pressure, and with
relatively moderate stochastic fluctuations compared to outbreak duration.
Figure 2.3 gives some intuition for how this correction works by contrast-
ing simulated scenarios with high and low heritability and low selection
strength/ low stochastic fluctuations. Depending on these parameters, trait
values are more or less phylogenetically correlated (see also Figure 2.4) and
the phylogeny is more or less useful for accurately estimating the heritable
pathogen and corresponding non-heritable, non-pathogen part of the trait
values.
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Figure 2.2: Results from the simulation study. We simulated host, pathogen,
and environmental effects on a trait under the phylogenetic Ornstein-
Uhlenbeck mixed model (POUMM) with different heritability (H2; y-
axis) and selection strength (α; x-axis) parameters. For each simulated
dataset, we applied our method to estimate the non-pathogen effects
and performed GWAS with these values. (A) shows the root mean
squared error (RMSE) of our estimator (left) compared to un-corrected
trait values, scaled by their mean (right) under each simulated evolu-
tionary scenario. The RMSE is with reference to the true (simulated)
host part of the trait values. Thus, more accurate estimates (lower
RMSE) mean the trait value used for GWAS will be closer to the true
host part of the trait value. (B) shows how genome-wide association
study (GWAS) power can improve given the true, simulated non-
pathogen effect on spVL (left) and using our estimate for this value
(middle) compared to using the scaled trait value (right). Each tile’s
color corresponds to the average value across 20 simulated datasets
of 500 samples. The points highlight specific heritability and selection
strength values from the A. thaliana-X. arboricola quantitative disease
resistance (QDR) analysis, HIV-1 spVL analysis, and four simulated
scenarios that are presented in more detail in Figure 2.4.
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Theoretical GWAS improvement

Next, we characterized the evolutionary scenarios under which our frame-
work can actually improve GWAS power. We used the true positive rate
(TPR) to evaluate the fraction of simulated causal host genetic variants we
could recover as being significantly associated with the trait. We performed
three different GWAS for each simulated dataset: the first represents an
ideal in which we can exactly know and remove pathogen effects from trait
values, the second is using our method to estimate this value and remove
it, and the third represents a standard GWAS using the scaled trait value.
Figure 2.2B shows that our framework can improve the TPR in simulated
scenarios where selection strength < 10 time−1 and heritability > 45%. If
we were able to perfectly estimate and remove pathogen effects from a trait,
the TPR would increase across all values of selection strength so long as
the trait is more than marginally heritable. We estimate approximately 25%
to be the heritability threshold above which GWAS power is negatively
impacted by pathogen effects. In summary, we show that it is theoretically
possible to improve GWAS power for heritable infectious disease traits
by estimating and removing pathogen effects using information from the
pathogen phylogeny.
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Figure 2.3: Simulated data from two evolutionary scenarios where a phyloge-
netic correction to trait values improves genome-wide association
study (GWAS) power (right side) and where it does not (left side).
These examples correspond to two of the unfilled points in Figure 2.2.
(A) and (B) show total trait values for 12 randomly selected tips from
the simulated phylogeny with pathogen heritability H2 of 15 and 75%,
respectively. Depending on the pathogen heritability, trait values are
more or less correlated at clustered tips. (C) compares our method’s
estimate for the non-pathogen part of trait values (y-axis) with true
simulated host trait values (x-axis) with pathogen heritability of 15

and 75%. The solid line is the y=x line. Selection strength α was fixed
to 0.1 time −1 for both scenarios and all other parameters were fixed
as in the full simulation study.
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Figure 2.4: Correlations between trait values in pairs of tips in four simulated
scenarios. These examples correspond to the four unfilled points in
Figure 2.2. Correlations are calculated for pairs of tips binned by
phylogenetic distance (into deciles) across the 20 replicate simulations
for each of the four evolutionary scenarios. Trait values are only
noticeably correlated for closely clustered tips under the scenario
with high pathogen heritability H2 and low selection strength α/ low
stochastic fluctuations σ (upper left facet).

Application to HIV-1 set-point viral load

We applied our framework to empirical data from two different host-
pathogen systems with different experimental setups (Figure 2.5). First,
we used data collected by the Swiss HIV Cohort Study (SHCS) from 1,493

individuals in Switzerland infected with HIV-1 subtype B between 1994 and
2018. The SHCS provided viral load measurements, pol gene sequences,
and human genotype data for these individuals. We followed the method
outlined above to estimate the pathogen and non-pathogen effects on spVL
for the cohort from these data. Figure 2.10 shows the calculated (total) spVL
values, which vary between approximately 1 and 6 log copies/mL in the
cohort. We estimated spVL heritability in this cohort to be 45% (95% highest
posterior density, HPD, 24 - 67%) and selection strength to be 58 time−1

(95% HPD 19 - 95) (Figure 2.11, Table 2.3). To put these values into the
context of our simulation study, they are shown as points on Figure 2.2.
The highest expected correlation in trait values between any two tips in
the HIV-1 phylogeny under the POUMM was 0.45. However, Figure 2.12
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shows that this trait is not obviously phylogenetically structured in the
cohort in general, despite high heritability. Finally, Figure 2.13 shows that
the estimated non-pathogen effects on spVL correlate quite strongly with
total spVL.
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Figure 2.5: A high-level schematic of the experimental setup for the two ap-
plication datasets. For (A) HIV-1 set-point viral load (spVL) in the
Swiss HIV Cohort Study, data are paired viral and human genotypes
and associated spVL measurements. We fit the phylogenetic Ornstein-
Uhlenbeck mixed model (POUMM) to the viral phylogeny and spVL
values associated with each infected individual (z1, z2, ..., z1493). For
(B) A. thaliana-X. arboricola quantitative disease resistance (QDR) from
(Wang et al., 2018), data are bacterial and plant genotypes with QDR
measurements for all possible combinations of pathogen and host
plant strains. We fit the POUMM to the bacterial phylogeny and mean
QDR calculated for each pathogen strain across all the hosts plant
types (z̄1, z̄2, ..., z̄22).

We compared our proposed GWAS framework with a more standard
approach by performing two different GWAS on the same SHCS human
genotypes. We retained 1,392 individuals of European ancestry for the
GWAS. In the (i) “GWAS with standard trait value” we used the total
trait value, calculated spVL values, as the GWAS response variable. In
the (ii) “GWAS with estimated non-pathogen part of trait” we used our
estimates for the non-pathogen effects on spVL. Figure 2.6A shows that
results are qualitatively similar between the two GWAS. Q-Q plots show
the distribution of p-values are very similar as well (Figure 2.14). Figure
2.6B shows how the strength of association changed for some variants in
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the MHC and CCR5 regions. Taking into account phylogenetic information
slightly decreased association strength for most variants in the CCR5 region.
Association strength increased for some variants in the MHC, for example,
SNP rs9265880 had the greatest increase in significance in the MHC region,
from a p-value of 3.5 × 10−07 to 7.7 × 10−09. However, the top-associated
variants in the MHC and CCR5 regions were consistent regardless of the
GWAS response variable used (Table 2.4). Finally, Table 2.1 shows how
our GWAS results compare for the two top-associated SNPs identified
by McLaren et al. (2015), who performed the largest standard GWAS for
HIV spVL to date. Effect sizes are smaller with a phylogenetic correction
and p-values are slightly increased. We repeated the analysis using three
different approximate maximum-likelihood phylogenies and these results
were consistent (see Materials and Methods; Table 2.5). In summary, there
are no clear patterns that point to new regions of association in the human
genome with spVL when we take into account the pathogen phylogeny.
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Figure 2.6: Results from comparative genome-wide association studies (GWAS)
on HIV-1 set-point viral load (spVL) data. (A) shows association
p-values for the same host variants from the Swiss HIV cohort in
GWAS with two different response variables. On the left, we used un-
modified (total) spVL values. On the right, we used our estimates for
the non-pathogen effects on spVL. The alternating shades correspond
to different chromosomes. (B) compares the strength of association
for variants in the CCR5 and MHC regions between the two GWAS
(positions 45.4 - 47Mb on chromosome 3 and 29.5 - 33.5Mb on chro-
mosome 6 for the CCR5 and MHC, respectively). Base positions are
with reference to genome build GRCh37. The color of each point
represents the difference in -log10 p-value between the two GWAS.
Red means taking into account phylogenetic information decreased
the strength of association and blue means it increased it. The dashed
lines show genome-wide significance at p = 5 × 10−8.
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Table 2.1: Top association results from McLaren et al. (2015) compared to results
from this study. Results from this study are for host variants from
the SHCS in GWAS with two different response variables. “Standard
trait value” means we used the unmodified (total) spVL value and
“Estimated non-pathogen part of trait” means we used our estimates
for the non-pathogen effects on spVL.

McLaren
et al.

Standard
trait value

Estimated non-pathogen
part of trait

Region Variant p-value Effect
size

p-value Effect
size

p-value

MHC rs594402612.0 ×
10−83

-0.4 3.3 ×
10−11

-0.22 2.6 ×
10−10

CCR5 rs1015164 1.5 ×
10−19

0.15 7.5 ×
10−7

0.078 8.5 ×
10−6

Application to the A. thaliana-X. arboricola pathosystem

Next, we applied our method to data collected from the A. thaliana-X.
arboricola pathosystem by Wang et al. (2018). Wang et al. (2018) performed
a fully-crossed experiment in which they infected genetically diverse A.
thaliana accessions with genetically diverse strains of the phytopathogenic
bacteria X. arboricola. They scored quantitative disease resistance (QDR) on
a scale of zero (resistant) to 4 (susceptible) for up to four infected leaves for
three replicates of each A. thaliana-X. arboricola pairing. Our method requires
a single trait value per pathogen strain, so we used mean QDR calculated for
each pathogen strain across all the host A. thaliana types (Figure 2.5B). Figure
2.15A shows the inferred X. arboricola pathogen phylogeny annotated with
the mean QDR trait value used for each strain. Mean QDR was generally
low, varying between 0.11 for strain NL_P126 and 0.78 for strain FOR_F21.
Fitting the POUMM yielded very low selection strength α and intensity of
stochastic fluctuations σ parameter estimates (posterior mean 0.03 with 95%
HPD 0.0 - 0.05 and 0.03 with 95% HPD 0.0 - 0.06, respectively; Table 2.6).
These values deviated significantly from the respective priors (Figure 2.16).
Heritability, on the other hand, was quite uncertain (posterior mean 0.33

with 95% HPD 0.0 - 0.77; Table 2.6). The posterior mean selection strength
and heritability values are also shown in the context of the simulation study
as points on Figure 2.2.
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Given the posterior mean estimates for the POUMM parameters, expected
correlation in trait values between tips were very low (maximum value 3.2×
10−12 compared to maximum value of 0.45 in the HIV-1 spVL application).
Thus, the phylogeny is not very informative for a trait value correction.
Indeed, the estimated pathogen part of the QDR trait calculated by our
method is simply a scaling of the total QDR trait value (Figure 2.17). We
anyways selected 22 random host-pathogen strain pairings to perform a
comparative GWAS analogous to that for HIV-1 spVL, where each host
is infected with a single pathogen strain. In the first GWAS, we used the
specific QDR measurement for each selected host-pathogen pairing. I.e.,
with reference to Figure 2.5, we selected z11 for the first sample, z23 for the
second sample, and so on. In the second GWAS, we used our estimates for
the non-pathogen effects on QDR for each pairing. Since our method did not
utilize phylogenetic information in this case, the estimated non-pathogen
part of the trait is simply the specific QDR for each selected host-pathogen
pairing, minus mean QDR for the respective pathogen strain, calculated
across all the host A. thaliana types. I.e., with reference to Figure 2.5, we
used a scaled version of z11 − z̄1 for the first sample, z23 − z̄2 for the first
sample, and so on. Figure 2.7 shows that results are qualitatively similar
between the two GWAS, with a slight decrease in association strength for
the top-associated variants. Q-Q plots show the distribution of p-values are
also very similar (Figure 2.18). In the first, standard GWAS, one A. thaliana
loci just exceeds the threshold for significant association after correction for
multiple testing. In the second, corrected GWAS, no A. thaliana variants are
significantly associated with QDR to X. arboricola.
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Figure 2.7: Results from comparative genome-wide association studies (GWAS)
on A. thaliana quantitative disease resistance (QDR) to X. arbori-
cola. The two facets show association p-values for the same host A.
thaliana variants in GWAS with two different response variables. On
the left, we used unmodified (total) QDR values for each of the 22

selected host-pathogen pairings on which these results are based.
On the right, we used our estimates for the non-pathogen effects on
QDR for these samples. In this case, estimated non-pathogen effects
are the specific QDR for each selected host-pathogen pairing, minus
mean QDR for the respective pathogen strain, calculated across all the
host A. thaliana types. The alternating shades correspond to different
chromosomes. The dashed lines show significance at significance level
0.05 with a Bonferroni correction for multiple testing.

2.3 discussion

In this paper, we presented a new phylogeny-aware GWAS framework to
correct for heritable pathogen effects on infectious disease traits. By using
information from the pathogen phylogeny, we show that it is possible to
improve GWAS power to detect host genetic variants associated with a
disease trait. This improved power is envisioned to contribute to a better
understanding of which host factors are broadly protective against a disease
versus which increase susceptibility or disease severity.

The main novelty of our approach is to estimate parameters governing
the evolutionary dynamics of a trait in the pathogen population and use
these estimates to correct infectious disease trait values prior to performing
GWAS, thereby estimating and removing pathogen effects. In simulations,
we show that when trait heritability due to shared pathogen ancestry
amongst infection partners is greater than approximately 25%, GWAS
power to detect host genetic variants associated with the same trait is
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reduced. Our method can correct for this effect in certain evolutionary
scenarios by using information from the full pathogen phylogeny. Based
on our simulation results, our method is anticipated to be very useful for
disease traits that are highly heritable from donor to recipient and maintain
a high correlation between sampled individuals. In simulations, we showed
this is the case when pathogen heritability is high, selection strength is low,
and trait values are not subject to strong stochastic fluctuations. In summary,
cohort-level, phylogenetically structured differences in the measured trait
value are necessary for our approach to outperform state of the art methods.

We applied this model to two different host-pathogen systems where
paired host and pathogen genetic data was generated alongside a measure
of pathogen virulence. First, we fit the POUMM to set-point viral load data
from individuals living with HIV in Switzerland. We estimated HIV-1 spVL
heritability to be 45% (95% HPD 24 - 67%) in this cohort. Compared to
previous studies, this estimate is at the higher end (see Mitov and Stadler
(2018) and references therein). Also using the POUMM, Bertels et al. (2018)
estimated a spVL heritability of 29% (N = 2014, CI 12 - 46%) from the
same cohort and Blanquart et al. (2017) estimated 31% (N = 2028, CI 15

- 43%) from a pan-European cohort. We note that our sample size (N =
1493 individuals) is smaller than in these other studies. This might be
because we restricted samples based on having pol gene sequences with at
least 750 non-ambiguous bases. Our aim was to reconstruct a high-quality
phylogeny, since the POUMM does not account for phylogenetic uncertainty
and the POUMM parameter estimates are key to our downstream trait-
correction method. Finally, the inferred selection strength parameter (α =
58 substitutions−1 with 95% HPD 19 - 95) was also higher compared to
other studies (Table 2.8), though the wide uncertainty interval encompasses
these prior estimates. So although our heritability and selection strength
estimates are rather high compared to prior studies, the confidence intervals
largely overlap the intervals of other studies and we note that estimating
these parameters per se was not our primary focus.

For comparison, we also fit the POUMM to quantitative disease resistance
measurements from A. thaliana infected with the phytopathogenic bacteria
X. arboricola. We are able to compare inferred parameters across these two
systems (in particular the selection strength parameter, which is in per-time
units) because both the HIV-1 and X. arboricola phylogenies analyzed have
branch lengths in units of substitutions. We estimated X. arboricola virulence
heritability to be 33% (95% HPD 0 - 77%). Wang et al. (2018) originally
estimated a QDR heritability of 44% in this dataset, falling within the wide
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range of our estimate. We note that Wang et al. (2018) used a linear mixed
model in which the experimental unit is QDR scored on individual leaves,
whereas our estimate is based on much coarser binning of QDR scores into
a mean score across all leaves on all host accessions and all replicates (N
= 22). Furthermore, the QDR score trait values were not truly continuous
(scores were measured on an integer scale from 0 to 4). Thus, these data
partially violate the assumptions of the POUMM. We estimate very low
selection strength for virulence in X. arboricola. As Wang et al. (2018) explain,
X. arboricola strains with differing virulence can co-inhabit populations of
A. thaliana. This might also point to low selection on X. arboricola virulence.
Furthermore, expected correlation in virulence between related strains of X.
arboricola was smaller than for HIV-1.

Given our estimates for trait heritability and selection strength on HIV-1
spVL and A. thaliana QDR to X. arboricola, our simulation results reveal that
we cannot expect a significant improvement in GWAS power for these sys-
tems (Figure 2.2). Indeed, while certain pairs of samples in the HIV-1 cohort
were expected to have phylogenetically correlated spvL values (maximum
expected correlation between any two samples was 0.45), the overall effect
on GWAS is small. For HIV-1 spVL, our phylogenetic correction slightly
decreases p-values for variants in CCR5 and slightly decreases some and
increases other p-values for variants in the MHC (Figure 2.6B). Simulations
show we shouldn’t expect a net p-value decrease, but our simulations
represent an ideal scenario since we simulate under the POUMM. For the
empirical data, un-modeled evolutionary pressures like drug treatment and
host-specific HLA alleles might cause the reduced p-values. However, the
overall picture is consistent between the two GWAS (Figure 2.6A). For A.
thaliana QDR to X. arboricola, the trait value correction does not utilize phylo-
genetic information because phylogenetic correlations between samples are
too weak (maximum expected correlation between strains was 3.2 × 10−12).
We anyways corrected QDR trait values based on average QDR for each
pathogen strain across the full range of host types. Results show slight
decrease in p-values for the most-associated variants in this application
as well, but the overall picture is consistent with previous GWAS results
from Wang et al. (2018). That study found no significant A. thaliana variants
associated with QDR using a linear mixed model jointly accounting for host
genetic effects, pathogen genetic effects, and interaction effects. As with
HIV-1 spVL, our results do not challenge this previous finding. Therefore,
we conclude that GWAS for host determinants of HIV-1 subtype B spVL and
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A. thaliana determinants of QDR to X. arboricola are robust to our correction
for pathogen effects.

Our method has several limitations. When POUMM parameter estimates
are highly uncertain, correcting trait values based on posterior mean or
maximum likelihood parameter estimates neglects this uncertainty. Then,
as in the A. thaliana-X. arboricola application, fitting the POUMM may
reveal that expected phylogenetic correlations between samples are not
strong enough to justify using our method to correct trait values in a
GWAS. In this case, one may wish to use a linear mixed model as in Wang
et al. (2018), where the pathogen effect is co-estimated as a random effect.
The expected correlation structure estimated under the POUMM could be
used for the covariance of the random effect, taking the phylogeny into
account differently but still utilizing information from the evolutionary
model. Finally, as we show here, our method is not anticipated to be useful
in certain evolutionary scenarios. For instance, traits like antimicrobial
resistance may be under strong selection pressure and be highly heritable. In
these instances, our simulations do not point to a large improvement when
adding our pre-processing step. In any case, such traits might violate the
POUMM assumption that trait values vary as a random walk in continuous
space if they are caused by few mutations of strong affect, meaning our
approach would not apply. In this situation, one would rather account for
antimicrobial resistance as a covariate in the GWAS association model.

The primary advantage of our approach is that it is complementary
to previously developed methods for infectious disease GWAS. First, it
provides additional information on the evolutionary dynamics of the trait
in the pathogen population. Then, it is a convenient pre-processing step for
GWAS because it simply produces a corrected response variable for GWAS
association tests. In cases where a correction can be estimated and applied
using our method, the corrected trait values are envisioned to be used in
any of the previously developed GWAS models for the actual association
testing (we used a linear model approach implemented in PLINK (Chang
et al., 2015), though a more advanced method would be to use a linear
mixed model with host ancestry as a random effect). Further, additional
model complexity can be added to the GWAS association tests. For instance,
our method does not account for co-infection, which might add additional
variance to trait values and decrease GWAS power. In this case, one could
add co-infection status as a covariate in the GWAS association test to
account for this variable.
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Our method relies on the freely available R package POUMM (Mitov and
Stadler, 2017), which scales to trees of up to 10,000 tips (Mitov and Stadler,
2019). All code for the simulations and HIV spVL analysis presented in
this study is available on the project GitHub at https://github.com/cevo-
public/POUMM-GWAS. Future applications of our method might investi-
gate other clinically significant disease traits and outcomes that are affected
by both host and pathogen genetic factors, for instance Hepatitis B Virus-
related hepatocellular carcinoma (An et al., 2018), Hepatitis C treatment
success (Ansari et al., 2017), and susceptibility to or severity of certain
bacterial infections, e.g. Messina et al. (2016); Donnenberg et al. (2015). Tran-
scriptomic data has also previously been modeled as an evolving phenotype
using an Ornstein-Uhlenbeck model (Rohlfs et al., 2014). Thus, one could
also estimate pathogen effects on host gene expression.

In summary, we present a coherent infectious disease GWAS framework
that takes the pathogen phylogeny into account when searching for host
determinants of a disease trait. We further show that the pathogen phy-
logeny only has an impact on the GWAS outputs if heritability of the trait
amongst infection partners is > 25%. For the systems studied here, spVL
in individuals living with HIV and QDR for X. arboricola infections in A.
thaliana, the phylogenetic correction does not change GWAS results. Our
findings indicate previously published GWAS results for these systems
are not biased by shared evolutionary history amongst infecting pathogen
strains.

2.4 materials and methods

Simulation model

Whenever possible, we tried to parameterize our simulation model using
empirical data on the spVL trait. We set the total variance in spVL to
0.73 log copies2 mL−2 based on UK cohort data (Mitov and Stadler, 2018).
Other studies have estimated slightly lower values though (Table 2.7). After
allotting 25% of this variance to a host part of spVL h based on results by
McLaren et al. (2015), we partitioned the remaining variance between a viral
part g and an environmental part e in different ratios to assess estimator
performance across a range of spVL heritabilities. h was simulated as the
sum of contributions from 20 causal host genetic variants, 10 of which
had an effect size of 0.2 log copies mL−1 and 10 of which had an effect
size of -0.2 log copies mL−1. Host genetic variants were generated from
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a binomial distribution with probability p calculated such that h had the
appropriate variance (see Table 2.2). We generated a random viral phylogeny
with branch lengths on the same time scale as a previously inferred UK
cohort HIV tree (Hodcroft et al., 2014) using the R package ape (Paradis
and Schliep, 2018). g was simulated by running an OU process along the
phylogeny using the R package POUMM (Mitov and Stadler, 2017) and
sampling values at the tips. For the OU parameters θ and g0 we used 4.5 log
copies mL−1 based on previous estimates of mean spVL (Table 2.7). This
is similar to values previously inferred for HIV (Table 2.8). To assess our
estimator’s performance under a range of evolutionary scenarios, we co-
varied the heritability H2 and selection strength α parameters. The intensity
of random fluctuations σ was determined based on these parameters (Table
2.2, Figure 2.8). Finally, the environmental part of spVL e was generated
from a normal distribution with mean zero. For a full graphical model
representation of the simulation scheme, see Figure 2.9.

We performed GWAS on the simulated data using a linear association
model as implemented in the “lm” function in R. For each simulated
dataset, we performed three association tests: (i) using the true (simulated)
non-pathogen part of the trait (host + environmental parts), (ii) using the
estimated non-pathogen part of the trait according to the method presented
in this paper, and (iii) using the total trait value, scaled by its mean. We
assessed the significance of each associations at a significance level of 0.05

with a Bonferroni correction for multiple testing. For our main results
(Figure 2.2) we simulated 20 truly associated variants, as described above.
To also check the false positive rate (FPR), we re-ran the simulations with
an additional 80 non-associated variants. Across all the association tests
in this second simulation setup (7 H2 levels × 10 α levels × 100 variants
× 20 replicates per scenario = 140,000 association tests), FPR was 0.0005

using the true (simulated) non-pathogen part of the trait, 0.0005 using the
estimated non-pathogen part of the trait, and 0.0006 using the scaled total
trait value. These rates are comparable to the expected FPR of 0.0005 at
significance level 0.05 corrected for 100 tests. Given the stricter correction
for multiple testing in this second simulation setup, the TPR decreased
significantly across all three GWAS response variables used.

Swiss HIV-1 data

Human genotypes, viral load measurements, and HIV-1 pol gene sequences
from HIV-1 positive individuals were all collected in the context of other
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studies by the Swiss HIV Cohort Study (SHCS) (www.shcs.ch, (Schoeni-
Affolter et al., 2010; Scherrer et al., 2021)). All participants were HIV-
1–infected individuals 16 years or older and written informed consent
was obtained from all cohort participants. The anonymized data were made
available for this study after the study proposal was approved by the SHCS.

For phylogenetic inference, we retained sequences from 1,493 individ-
uals with non-recombinant subtype B pol gene sequences of at least 750

characters and paired RNA measurements allowing for calculation of spVL,
as well as 5 randomly chosen subtype A sequences as an outgroup. We
used MUSCLE version 3.8.31 (Edgar, 2004) to align the pol sequences with
–maxiters 3 and otherwise default settings. We trimmed the alignment to
1505 characters to standardize sequence lengths. We used IQ-TREE version
1.6.9 (Nguyen et al., 2014) to construct an approximate maximum likelihood
tree with -m GTR+F+R4 for a general time reversible substitution model
with empirical base frequencies and four free substitution rate categories.
Otherwise, we used the default IQ-TREE settings. After rooting the tree
based on the subtype A samples, we removed the outgroup. Viral subtype
was determined by the SHCS using the REGA HIV subtyping tool version
2.0 (de Oliveira et al., 2005). We calculated spVL as the arithmetic mean of
viral RNA measurements made prior to the start of antiretroviral treatment.
For a comparison of several different filtering methods, see Figure 2.10.

For GWAS, we retained data from 1,392 of the 1,493 SHCS individuals
with European ancestry who were not closely related to other individuals
in the cohort (Table 2.9). These were 227 females and 1165 males. Ancestry
was determined by plotting individuals along the three primary axes of
genotypic variation from a combined dataset of SHCS samples and HapMap
populations (Figure 2.19). Kinship was evaluated using PLINK version 2.3
(Chang et al., 2015); we used the –king-cutoff option to exclude one from
each pair of individuals with a kinship coefficient > 0.09375. Initial host
genotyping quality control and imputation were done as in Thorball et al.
(2021). Subsequent genotyping quality control was performed using PLINK
version 2.3 (Chang et al., 2015). We used the options –maf 0.01, –geno 0.01,
and –hwe 0.00005 to remove variants with minor allele frequency less than
0.01, missing call rate greater than 0.05, or Hardy-Weinberg equilibrium
exact test p-value less than 5x10

−5. After quality filtering, approximately
6.2 million genetic variants from the 1,392 individuals were retained for
GWAS (Table 2.10).
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A. thaliana-X. arboricola data

A. thaliana and X. arboricola genotyping and quantitative disease resistance
(QDR) measurements were generated by Wang et al. (2018) and are described
in detail in that publication. Briefly, Wang et al. (2018) infected different
A. thaliana host accessions with different X. arboricola pathogen strains in
a fully-crossed experimental design. They infected up to 4 leaves on each
of three biological replicates for each host-pathogen pairing. Then, they
scored QDR for each leaf on a scale of 0 (resistant) to 4 (susceptible). We
downloaded the genotype matrix with allele dosage of 33,610 SNPs for the
22 X. arboricola pathogen strains generated by Wang et al. (2018) from their
supplemental material. We additionally downloaded a VCF file with allele
dosage of 12,883,854 SNPs for the different A. thaliana accessions from the
1001 Genomes project (Alonso-Blanco et al., 2016). QDR measurements were
provided directly by the Wang et al. (2018) authors.

For phylogenetic inference, we used the “dist.gene” and “nj” functions
from the ape package in R to construct a pairwise genetic distance matrix
and then a neighbor-joining tree from the X. arboricola pathogen genotype
matrix. The inferred tree topology (Figure 2.15) closely matches the hier-
archical clustering presented in Wang et al. (2018), which was generated
using the unweighted pair group method with arithmetic mean (UPGMA).
Compared to UPGMA, the neighbor-joining method we used relaxes the
assumptions of a strict molecular clock and sampling all at the same time-
point. For the trait value to fit the POUMM, we calculated mean QDR across
all leaves infected on all hosts for each X. arboricola strain (see Figure 2.5B)
We used PLINK version 2.0 to select bi-allelic variants from the VCF file
using option –max-alleles 2. We then used options –maf 0.1 and –max-maf
0.9 to remove variants with minor allele frequencies less than 0.1 as in Wang
et al. (2018). After filtering, approximately 1.1 million genetic variants from
A. thaliana were retained for GWAS (Table 2.11).

POUMM parameter inference

We used the R package POUMM version 2.1.6 (Mitov and Stadler, 2017)
to infer the POUMM parameters g0, α, θ, σ, and σe from the HIV-1 and
X. arboricola phylogenies and associated spVL and QDR trait values. The
Bayesian inference method implemented in this package requires speci-
fication of a prior distribution for each parameter. For HIV-1 spVL, we
used the same, broad prior distributions as in (Mitov and Stadler, 2018),



38 a phylogeny-aware gwas framework

namely: g0 ∼ N (4.5, 3), α ∼ Exp(0.02), θ ∼ N (4.5, 3), H2
t̄ ∼ U (0, 1), and

σ2
e ∼ Exp(0.02). For X. arboricola QDR, we modified the g0 and θ priors

to match the empirical mean and standard deviation of QDR trait values
in the dataset: g0 ∼ N (0.4, 0.2) and θ ∼ N (0.4, 0.2). We ran two MCMC
chains for 4x10

6 samples each with a target sample acceptance rate of 0.01

and a thinning interval of 1000 for both analyses. The first 2x10
5 samples of

each chain were used for automatic adjustment of the MCMC proposal dis-
tribution. Figures 2.11 and 2.16 show the posterior distributions for inferred
parameters for HIV-1 spVL and X. arboricola QDR, respectively. Tables 2.3
and 2.6 give the posterior mean values used for subsequent calculations.

Phylogenetic trait correction

We estimated the pathogen and non-pathogen effects on HIV-1 spVL in hu-
mans and X. arboricola mean QDR in A. thaliana using the method described
in this paper. For each individual, we estimated the pathogen part of the trait
value using equation 2.9 and the corresponding non-pathogen part using
equation 2.12. This is implemented in the function “POUMM:::gPOUMM”
in the R package POUMM. In the HIV-1 case, each sample corresponds
to one HIV-1 strain with one spVL value. In the X. arboricola case, each
sample corresponds to one X. arboricola strain and the mean QDR score for
that strain across all host types (see Figure 2.5). To calculate the expected
correlation in trait values between tips in the pathogen phylogeny, we used
the function “covVTipsGivenTreePOUMM” in the same package. For the
POUMM parameters α, σ, θ, and σe, we used the posterior mean estimates
generated as described above. All the code used to implement the method
is available at https://github.com/cevo-public/POUMM-GWAS.

Association testing

We performed two comparative GWAS for each system, using the same host
genotype data across the two GWAS. For the first “GWAS with standard
trait value” we used the total (uncorrected) trait values (z) as the response
variable for association testing, replicating a standard GWAS set-up. For
the second “GWAS with estimated non-pathogen part of trait” we replaced
total trait values with the estimated non-pathogen component of the trait (ϵ̂)
as the response variable. Association testing was performed using a linear
association model in PLINK version 2.3 and 2.0, respectively (Chang et al.,
2015) with the top 5 principle components of host genetic variation included

https://github.com/cevo-public/POUMM-GWAS
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as covariates. For the HIV-1 spVL GWAS, we additionally included sex as a
covariate. The sex and principle components covariates were included to
reduce residual variance and control for confounding from host population
structure, respectively.

Phylogenetic uncertainty

Our method assumes the phylogeny accurately reflects the evolutionary
relationships between pathogen strains. Previously, Hodcroft et al. (2014)
observed HIV spVL heritability estimates based on pol gene sequences were
robust to including or not including resistance-associated codons. Our anal-
ysis includes these codons. For the HIV application, we additionally tested
the sensitivity of the inference to phylogenetic uncertainty. We inferred
the phylogeny again, this time using the IQ-TREE option -wt to output all
locally optimal trees. We fit the POUMM to two randomly selected trees
from this set and repeated the trait correction and association testing steps
using these trees and the corresponding POUMM parameter estimates.

Data availability

The simulated data underlying this article can be re-generated using the
code available on the project GitHub at https://github.com/cevo-public/
POUMM-GWAS. The HIV pathogen genome sequences, clinical data, and hu-
man genotypes cannot be shared publicly due to the privacy of individuals
who participated in the cohort study. The data may be shared on reason-
able request to the Swiss HIV Cohort Study at http://www.shcs.ch. The
X. arboricola pathogen genotypes are available in the supplemental mate-
rial of Wang et al. (2018), the A. thaliana host genotypes are available at
https://1001genomes.org/, and the A. thaliana-X. arboricola QDR measure-
ments are available on request to the authors of Wang et al. (2018).
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2.5 supplemental material

Expected results from simulations

Here we show the root mean square error (RMSE) of the scaled trait value
for each individual, zi − z̄ as an estimate for the host part of the trait for
each individual, hi, should be ≈ 0.74 in our simulation scheme. First we
write the expression for the RMSE:

RMSE =

√
∑N

i (zi − z̄ − hi)2

N
(2.13)

Note that under our simulation setup, zi − z̄ differs from hi due to the
individual pathogen effect gi and environmental effect ei. So the term inside
the square root equals the combined variance of these two effects:

RMSE =
√

σ2
g + σ2

e (2.14)

We can calculate the variance due to these two effects because the total
variance in spVL σ2

z , and the fraction of the total variance due to host
genetic effects, σ2

h , are fixed parameters in our simulation scheme.

σ2
h + σ2

g + σ2
e = σ2

z

0.25 ∗ σ2
z + σ2

g + σ2
e = σ2

z

σ2
g + σ2

e = 0.75 ∗ σ2
z

σ2
g + σ2

e = 0.75 ∗ 0.73

σ2
g + σ2

e = 0.55

(2.15)

Therefore, we can expect the RMSE for zi − z̄ as an estimate for hi to be
around

√
0.55 ≈ 0.74.
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Figure 2.8: Relationship between the selection strength parameter α and the
intensity of stochastic evolutionary fluctuations parameter σ at two
different heritability (H2) values in the simulation scheme. σ was
determined as a function of α and H2 under the POUMM (function
given in Table 2.2).
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Figure 2.9: A graphical model representation of our simulation scheme, follow-
ing the recommendations in (Höhna et al., 2014). Variables in solid
squares are constants, with parameters varied from simulation to sim-
ulation highlighted in red. Variables in solid circles are realizations
of random variables and variables in dashed circles are a function of
other variables. Arrows show dependencies and the dashed square
represents repetition. (A) shows how the variance in the simulated
environmental effect σ2

e is smaller if the master pathogen heritability
value H2

t̄ is higher and vice-versa. (B) shows the OU parameters and
the pathogen phylogeny, which generate the Gaussian-distributed
pathogen effects. The OU parameters θ and g0 are fixed, whereas
σ is a deterministic function of the variance in the pathogen effect
and the value of α. In other words, we use σ to maintain the desired
pathogen heritability while varying α. (C) shows how host genotypes
are drawn to generate host effects. The host genotype matrix G con-
tains the number of copies (0, 1, or 2) for each of M causal variants
with effect size δ. We assume half the variants have a positive effect
and half have a negative effect. The allele frequency p for the causal
variants set so that we achieve the desired variance in the host effects.
(D) shows that the environmental effect is drawn from a Gaussian
distribution with mean zero and variance as determined in part (A).
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Figure 2.10: A comparison of different ways to calculate spVL based on viral
load measurements provided by the SHCS. The stricter filtering
excludes all measurements possibly < 6 months after infection and
after treatment or AIDS, whereas the more lenient filtering excludes
only measurements after treatment. We used the lenient filter, mean
measurement values because these correlate well with the values
from the stricter filter but allow us to retain many more individuals
from the cohort for our study.

Figure 2.11: Posterior distributions compared to the prior for POUMM param-
eter estimates based on HIV-1 spVL data from the SHCS. We ran
two different MCMC chains to ensure the estimates converged.
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Figure 2.12: Inferred HIV-1 pol gene phylogeny with tips colored by (A) calcu-
lated spVL, (B) estimated non-pathogen effects on spVL and (C)
estimated pathogen effects on spVL.

Figure 2.13: A comparison of measured (calculated) spVL values versus our
estimated non-pathogen effect on spVL for each SHCS cohort
member used in the study. The histograms show the marginal
distribution of each value across the individuals.



50 bibliography

Figure 2.14: Quartile-quartile plots from HIV-1 spVL association tests. The
dashed green line shows the y = x line.

Figure 2.15: Inferred X. arboricola phylogeny with tips colored by (A) calcu-
lated QDR, (B) estimated non-pathogen effects on QDR and (C)
estimated pathogen effects on QDR.
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Figure 2.16: Posterior distributions compared to the prior for POUMM param-
eter estimates based on A. thaliana-X. arboricola data. We ran two
different MCMC chains to ensure the estimates converged.

Figure 2.17: A comparison of measured (calculated) mean QDR values across
all A. thaliana accession pairings and replicates versus our esti-
mated non-pathogen effect on mean QDR for each X. arboricola
pathogen strain. The histograms show the marginal distribution of
each value across the strains. The Pearson correlation coefficient is 1.
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Figure 2.18: Quartile-quartile plots from A. thaliana-X. arboricola QDR associ-
ation tests. The dashed blue line shows the y = x line.

Figure 2.19: SHCS individuals and HapMap3 individuals plotted along the
top three principle components of genetic variation. Points with
black borders are within the thresholds used to select individuals of
likely European ancestry.
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Table 2.2: Simulation model parameters. For a full graphical model representa-
tion of the simulation scheme, including how these parameters are
related, see Figure 2.9.

Variable Expression Definition

σ2
z 0.73 log copies2/mL2 Total spVL variance

H2
h 0.25 Host heritability of spVL

H2
t̄ varied Pathogen heritability of spVL at t̄

σ2
h σ2

h = 0.25 ∗ σ2
z Variance in host part of spVL

σ2
g(t̄) σ2

g(t̄) = H2
t̄ ∗ σ2

z Variance in pathogen part of spVL at
t̄

σ2
e σ2

e = σ2
z − σ2

g − σ2
h Variance in environmental part of

spVL

t̄ 0.14 substitutions site−1 yr−1 Mean root-tip time in pathogen phy-
logeny

g g ∼ Norm(µOU , ΣOU) Pathogen part of spVL for all individ-
uals

θ 4.5 log copies/mL Optimal spVL value

g0 4.5 log copies/mL g at the root of the phylogeny

α varied Selection strength of OU process

σ σ =

√
2ασ2

g (t̄)
1−exp(−2αt̄) Time-unit standard deviation of OU

process

Ψ branch lengths ∼ Exp(t̄) Pathogen phylogeny

hi hi = δ ∑
j=M/2
j=1 Gij −

δ ∑
j=M
j=M/2 Gij

Host part of spVL for individual i

GN×M Gij ∼ Binom(2, p) ∀i ∈
1...N, ∀j ∈ 1...M

Host genotype matrix

p p = 1
2 −

√
1
4 − H2

h σ2
z

2δ2 M Host variant allele frequency

δ 0.2 Host variant effect size

M 20 Number of causal host variants

ei ei ∼ Norm(0, σ2
e )

Environmental part of spVL
for individual i

N 500 Number of simulated samples
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Table 2.3: POUMM parameter estimates for spVL based on SHCS data. HPD =
Highest posterior density.

Parameter Posterior mean 95% HPD

g0 4.23 (1.72, 6.71)

θ 4.47 (4.37, 4.58)

σ 5.25 (2.37, 7.9)

α 57.65 (19.49, 95.2)

σϵ 0.54 (0.43, 0.65)

H2
t̄ 0.45 (0.24, 0.67)
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Table 2.4: Effect size and p-values from the top most strongly associated variants
in the CCR5 and MCR regions from each of the two GWAS performed
in our study. “Standard” means the GWAS with standard spVL trait
values and “Corrected” means the GWAS with the estimated non-
pathogen part of the trait. Entries above the dividing line are the
top-associated variants from the “Standard” GWAS and entries below
the dividing line are the top-associated variants from the “Corrected”
GWAS. Many entries overlap between the two.

RegionPosition Variant Stand-
ard
effect
size

Standard p-
value

Corr-
ected
effect
size

Corrected
p-value

CCR5 46531144 rs9845968 -0.16 5.6 × 10−9 -0.083 1.2 × 10−7

CCR5 46537849 rs867620 -0.16 3.2 × 10−9 -0.085 6 × 10−8

CCR5 46539864 rs11130092 -0.16 1.1 × 10−9 -0.087 2.6 × 10−8

CCR5 46540932 rs10865942 -0.16 8.4 × 10−9 -0.081 4 × 10−7

CCR5 46541147 rs7430431 -0.17 9.2 × 10−10 -0.088 2.3 × 10−8

MHC 31274380 rs9264942 -0.21 4.5 × 10−13 -0.12 3.7 × 10−13

MHC 31321919 rs1055821 -0.33 9.4 × 10−13 -0.19 1.4 × 10−12

MHC 31380034 rs112243036 -0.32 9.9 × 10−16 -0.17 3.7 × 10−14

MHC 31391401 rs4418214 -0.34 2.4 × 10−14 -0.18 2.5 × 10−12

MHC 31400137 rs138130755 -0.46 1 × 10−12 -0.26 2.6 × 10−12

MHC 31400705 rs138117378 -0.46 1 × 10−12 -0.26 2.6 × 10−12

MHC 31402358 rs148792134 -0.46 1 × 10−12 -0.26 2.6 × 10−12

MHC 31409677 rs140991764 -0.46 1 × 10−12 -0.26 2.6 × 10−12

CCR5 46531144 rs9845968 -0.16 5.6 × 10−9 -0.083 1.2 × 10−7

CCR5 46537849 rs867620 -0.16 3.2 × 10−9 -0.085 6 × 10−8

CCR5 46539864 rs11130092 -0.16 1.1 × 10−9 -0.087 2.6 × 10−8

CCR5 46541147 rs7430431 -0.17 9.2 × 10−10 -0.088 2.3 × 10−8

CCR5 46556835 rs6808142 0.15 8.3 × 10−8
0.082 3.3 × 10−7

MHC 31274380 rs9264942 -0.21 4.5 × 10−13 -0.12 3.7 × 10−13

MHC 31321919 rs1055821 -0.33 9.4 × 10−13 -0.19 1.4 × 10−12

MHC 31367874 rs111281598 -0.37 1.5 × 10−12 -0.22 2.1 × 10−12

MHC 31376266 rs73400361 -0.37 1.4 × 10−12 -0.22 2.1 × 10−12

MHC 31380034 rs112243036 -0.32 9.9 × 10−16 -0.17 3.7 × 10−14
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Table 2.5: Results comparison using three different approximate maximum likeli-
hood HIV-1 phylogenies (see Materials and Methods).

Estimated
non-pathogen

part of trait
main tree

Estimated
non-pathogen

part of trait
tree 2

Estimated
non-pathogen

part of trait
tree 3

Variant Effect
size

p-value Effect
size

p-value Effect
size

p-value

rs59440261 -0.22 2.6 ×
10−10

-0.22 1.5 ×
10−10

-0.24 1.4 ×
10−10

rs1015164 0.078 8.5 ×
10−6

0.076 9.5 ×
10−6

0.083 9 × 10−6

Table 2.6: POUMM parameter estimates for QDR based on A. thaliana-X. arboricola
data. HPD = Highest posterior density.

Parameter Posterior mean 95% HPD

g0 0.40 (0.01, 0.78)

θ 0.39 (0.30, 0.49)

σ 0.03 (0.0, 0.06)

α 0.03 (0.0, 0.05)

σϵ 0.18 (0.08, 0.27)

H2
t̄ 0.33 (0.0, 0.77)
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Table 2.7: Summary statistics for log spVL in previously sampled populations.
z̄ is average spVL (log copies/mL) and σ2

z is variance in measured
spVL ( log copies2/mL2). Values from (Blanquart et al., 2017; Mitov
and Stadler, 2018) are empirical; values from (Bonhoeffer et al., 2015)
were estimated by fitting a normal distribution to the data.

Measurement Value Reference

z̄ ≈ 4.5 (Mitov and Stadler, 2018)

z̄ 4.4 (Blanquart et al., 2017)

z̄ ≈ 4.5 (Bonhoeffer et al., 2015)

σ2
z 0.73 (Mitov and Stadler, 2018)

σ2
z 0.50 (Blanquart et al., 2017)

σ2
z ≈ 0.5 (Bonhoeffer et al., 2015)
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Table 2.8: POUMM parameter estimates for spVL from previous studies.

Parameter Value (Uncertainty) Reference Notes

g0 5.54 (4.04 - 7.25) (Mitov and Stadler,
2018)

8,483 UK HIV cohort
individuals, pol tree

θ 4.45 (4.41 - 4.49) (Mitov and Stadler,
2018)

θ 4.0 (1.6 - 4.)) (Bertels et al., 2018) 3,036 SHCS individ-
uals, pol tree

θ 4.1 (3.5 - 4.9) (Blanquart et al.,
2017)

1,581 subtype B indi-
viduals from Europe,
whole genome tree

α 28.78 (16.64 - 46.93) (Mitov and Stadler,
2018)

α 32.7 (0.03 - 57.6) (Bertels et al., 2018)

α 7.6 (1.2 - 10) (Blanquart et al.,
2017)

**limited α to ≤ 10

σ 2.97 (1.95 - 4.37) (Mitov and Stadler,
2018)

σ 1.3 (0.66 -1.87) (Blanquart et al.,
2017)

σe 0.77 (0.73, 0.8) (Mitov and Stadler,
2018)

σe 0.61 (0.54, 0.65) (Blanquart et al.,
2017)

Table 2.9: Number of samples for HIV-1 spVL GWAS after sequential filtering
steps.

Sample filter Number of samples remaining

Subtype B pol sequences 1516

With paired spVL measurement 1516

> 750 characters in sequence 1493

Individual is of European ancestry 1396

Kinship coefficient > 0.09375 1392
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Table 2.10: Number of variants for HIV-1 spVL GWAS after sequential filtering
steps.

Variant filter Number of variants remaining

Raw data 76979521

Missing genotype rate > 0.05 11590002

Hardy-Weinburg exact test p-value <
5 × 10−5

11589246

Minor allele frequency < 0.01 6228626

Table 2.11: Number of variants for A. thaliana QDR GWAS after sequential fil-
tering steps. The last entry lists variants without GWAS p-values
because PLINK assessed the correlation between predictor variables
(the variant and the top 5 principle components of host genetic varia-
tion are predictors) to be too strong. This did not occur in the HIV-1
spVL GWAS.

Variant filter Number of variants remaining

Raw data 12883854

Bi-allelic variants 11769920

Minor allele frequency < 0.1 1743952

NA p-value (too-high covariate corre-
lation)

1070541
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This chapter is published as:
Sarah A. Nadeau, Timothy G. Vaughan, Jérémie Scire, Jana S. Huisman,

and Tanja Stadler (2021). The origin and early spread of SARS-CoV-2 in
Europe. Proceedings of the National Academy of Sciences of the United States of
America, 118(9). https://doi.org/10.1073/PNAS.2012008118

abstract

The investigation of migratory patterns during the SARS-CoV-2 pandemic
before border closures in Europe is a crucial first step towards an in-depth
evaluation of border closure policies. Here we analyze viral genome se-
quences using a phylodynamic model with geographic structure to estimate
the origin and spread of SARS-CoV-2 in Europe prior to border closures.
Based on SARS-CoV-2 genomes, we reconstruct a partial transmission tree
of the early pandemic, including inferences of the geographic location of
ancestral lineages and the number of migration events into and between Eu-
ropean regions. We find that the predominant lineage spreading in Europe
has a most recent common ancestor in Italy and was probably seeded by a
transmission event in either Hubei or Germany. We do not find evidence for
preferential migration paths from Hubei into different European regions
or from each European region to the others. Sustained local transmission
is first evident in Italy and then shortly thereafter in the other European
regions considered. Before the first border closures in Europe, we estimate
that the rate of occurrence of new cases from within-country transmission
was within the bounds of the estimated rate of new cases from migration.
In summary, our analysis offers a view on the early state of the epidemic
in Europe and on migration patterns of the virus before border closures.
This information will enable further study of the necessity and timeliness
of border closures.
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3.1 introduction

In response to the pandemic potential of the SARS-CoV-2 virus, many
nations closed their borders in order to curb the virus’ spread (Connor,
2020). These closures incurred high economic and social costs. To weigh
the relative costs and benefits of border closures, it will be important to
understand the efficacy of these policies. At the early stages of an outbreak,
border closures can delay a pathogen’s arrival, thereby giving countries
additional time to prepare (WHO, 2020b). However, the success of this
strategy depends on timely implementation and a good knowledge of
where the pathogen is already circulating. To evaluate the efficacy of border
closures in limiting the spread of SARS-CoV-2, it is important to reconstruct
the timeline of the early international spread of the virus, before such
policies were implemented.

In this analysis, we aim to estimate the early patterns of SARS-CoV-2
transmission into and across Europe. We also address the more specific
question of where the predominant SARS-CoV-2 lineage circulating in
Europe originated. We hope that by addressing these questions we can
inform further analysis of the efficacy of border closures as a strategy to
combat SARS-CoV-2.

The SARS-CoV-2 virus was identified as the cause of an epidemic in
Wuhan, China in late 2019 (Wu et al., 2020). The epidemic in Wuhan was
reported to the WHO on 31 Dec. 2019 and within one month, SARS-CoV-2
was confirmed to have spread to 19 additional countries (WHO, 2020a). By
the end of February 2020, the virus was detected in all WHO regions (WHO,
2020c). By late spring 2020, several lineages of the SARS-CoV-2 virus were
circulating across the globe. The intermixing of these lineages in different
countries and regions suggests that the virus has been transmitted across
borders many times (Nextstrain, 2020d).

Here we focus on estimating the early introductions of SARS-CoV-2 into
Europe and the virus’ migration across European borders. Through na-
tional surveillance efforts, the first COVID-19 cases in Europe were detected
in France on 24 Jan. 2020 and in Germany on 28 Jan. 2020 (Spiteri et al.,
2020; Robert Koch Institute, 2020). Of the 47 cases detected in Europe by
21 Feb. 2020, 14 were infected in China, 14 were linked to the initial cases
in Germany, 7 were linked to the initial cases in France, and 12 were of
unknown origin (Spiteri et al., 2020). In addition to the unknown sources of
transmission, some early introductions may not have been detected. This is
especially probable given that a significant proportion of infected individu-
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als are likely to be asymptomatic (Mizumoto et al., 2020). In summary, it is
difficult to draw firm conclusions about the source, number, and timing of
SARS-CoV-2 introductions into Europe based on confirmed case data alone.

Viral genomes are an important secondary source of information on
outbreak dynamics. If viruses acquire mutations on the same timescale as
an outbreak, these mutations can provide information about past trans-
mission events. Phylodynamic methods couple a model of viral evolution
describing the mutational process to an epidemiological model describing
the transmission process. By fitting the combined model to viral genomes
sampled from a cohort of infected individuals, we can infer the evolutionary
and epidemiological model parameters. Here we fit a phylodynamic model
with geographic structure to SARS-CoV-2 genomes from Hubei, China and
19 European countries before the first borders were closed in these regions.
We co-infer the transmission tree linking these sequences, the geographic
location of ancestral lineages, migration rates of infected individuals be-
tween regions, the effective reproductive number, and the proportion of
no-longer infectious cases sequenced in each region.

In addition to these inferences, we specifically focus on estimating the
geographic origin of the predominant SARS-CoV-2 lineage in Europe. This
lineage is defined by a characteristic amino acid substitution at position 314

in the ORF1b gene from proline to leucine and was provisionally named
the “A2a” lineage by the Nextstrain team, later renamed to 20A. In the
more dynamic, tree-based “pangolin” nomenclature suggested by (Rambaut
et al., 2020), this lineage corresponds to the “B.1” lineage described as “a
large lineage that roughly corresponds to the large outbreak in Italy, and
has since seeded many different countries” (Áine O’Toole, 2020). As of
Apr. 1, 2020, two-thirds of the SARS-CoV-2 sequences collected in Europe
belonged to this lineage and just 10% of sequences from the lineage were
collected outside Europe (data from (GISAID, 2020), lineages assigned using
(Nextstrain, 2020e)). Here, we use the name A2a to refer to the group of
SARS-CoV-2 viruses defined by the ORF1b:P314L mutation.

The origin of the A2a lineage was initially controversial, with conflicting
reports in the academic and media press (Bedford, 2020; Zehender et al.,
2020; Forster et al., 2020; Mavian et al., 2020a). Its characteristic ORF1b
mutation was found in some of the earliest confirmed COVID-19 cases in
Italy, Switzerland, Germany, Finland, Mexico, and Brazil in late February
(Bedford, 2020; Zehender et al., 2020). Intriguingly, a late-January sample
from a cluster of infections in Bavaria, Germany linked to business travel
from Shanghai, China (Böhmer et al., 2020; Rothe et al., 2020) shares a
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mutation at site 614 in the S gene with the A2a lineage, but does not
have the A2a lineage-defining ORF1b mutation. This German sample is
part of a smaller clade that is closely related to the larger clade of A2a
sequences and which was originally designated the “A2” lineage but was
later included in the larger 19A (Nextstrain nomenclature) or B (pangolin
nomenclature) lineage (Nextstrain, 2020d). As a result, it was hypothesized
that a German transmission cluster may have seeded the larger European
outbreak (Bedford, 2020; Zehender et al., 2020; Forster et al., 2020). However,
it was quickly pointed out that incomplete and biased sampling must
be taken into account before this hypothesis can be rigorously addressed
(Zehender et al., 2020; Mavian et al., 2020a; Bedford, 2020).

Phylodynamic models with geographic structure aim to account for such
biases. Firstly, parameter estimates are generated by integrating over a
distribution of potential phylogenies, which acknowledges that we cannot
reconstruct the true transmission tree with certainty. Secondly, sampling
parameters are allowed to differ between regions, which acknowledges
that testing and sequencing resources vary across regions. Here, we fit a
phylodynamic model with geographic structure to full-length SARS-CoV-2
genomes collected before 8 Mar. 2020 to (i) estimate the early patterns of
SARS-CoV-2 spread into and across Europe, (ii) weigh genomic evidence
for competing hypotheses about the geographic origin of the predominant
A2a lineage in Europe, (iii) report on the epidemiological parameters, and
(iv) compare the rate of new cases arising from within-region transmission
versus migration during the early epidemic.

3.2 results

Testing assumptions about source and sink locations

We assume that during the time span considered, the outbreak in Hubei and
the different European outbreaks were only sources and not sinks for SARS-
CoV-2 globally. The first assumption follows from the fact that Hubei is the
location of the pandemic origin (see Materials and Methods for additional
rationale). To test our second assumption that Europe was primarily a
source and not a sink of infections before 8 Mar. 2020, we analyzed A2a
sequences collected from different global regions on or before that date. We
aggregated sequences into five demes: Africa, Asia Oceania, Europe, North
America, and South Central America (Table 3.6), and then fit the multi-type
birth-death model described in the Materials and Methods to these data.



3.2 results 65

The most recent common ancestor of the global set of A2a sequences was
inferred to be in Europe with 95% posterior probability (Figure 3.7). The
posterior distributions for the migration rates into Europe closely matched
the prior, thus the data contains little information on these rates (Figure 3.8).
However, in the analyzed dataset, zero introduction events were inferred
from other parts of the world into Europe, while in total 24 migration events
were inferred from Europe to other parts of the world (Table 3.8).

Inference results

SARS-CoV-2 transmission into and across Europe

For our main analysis we focused on estimating patterns of SARS-CoV-
2 transmission into and across Europe. Based on the particular set of
sequences analyzed, we infer that SARS-CoV-2 was introduced from Hubei
into France, Germany, Italy and other European countries approximately 2-
4 times each before 8 Mar. 2020 (Table 3.1). The largest number of estimated
introductions was 18 from Italy to other European countries. Importantly,
these estimates reflect only introductions occurring in the transmission
history of the analyzed cases, not the full epidemic. In contrast, the inferred
migration rate parameters should describe more general patterns of spread
between regions. The sequence data were informative for inferring some,
but not all, migration rates. We highlight here only the rates for which
the data is the most informative; see Figure 3.3 for a full comparison of
posterior and prior distributions. The highest migration rate was inferred to
be from Italy into other European countries, with a median rate of 3.7/year.
The lowest migration rate was from Italy to Germany, with a median rate
of 0.43/year. We can translate these rates into the probability of an infected
individual migrating using the fact that migration is modelled as a Poisson
process. I.e., we infer it is 10 times more likely that an infected individual
travelled from Italy to a country in the “other European” deme than to
Germany. However, we note that the magnitude of the rates may be skewed
by a bias towards genome sampling among recently returned travelers.
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Table 3.1: Median inferred number of introductions from each source deme to
each sink deme along the transmission tree linking analyzed cases.
Hubei is assumed to be a source only. Values in brackets are the upper
and lower bound of the 95% highest posterior density interval for these
estimates.

Source / sink France Germany Italy other Euro-
pean

Hubei 3: [0, 6] 4: [1, 6] 2: [0, 6] 4: [0, 8]

France - 0: [0, 1] 0: [0, 3] 2: [0, 4]

Germany 0: [0, 2] - 1: [0, 3] 1: [0, 4]

Italy 6: [1, 9] 1: [0, 4] - 18: [6, 34]

other Euro-
pean

2: [0, 6] 1: [0, 4] 1: [0, 4] -

A2a lineage origin

The maximum clade credibility tree in Figure 3.1 summarizes the posterior
sample of transmission trees linking analyzed sequences. The A2a lineage
sequences form a clear clade with posterior probability of 1. The most
recent common ancestor of the analyzed A2a sequences is estimated to be
in Italy with 89% posterior probability. In contrast, the location of the most
recent common ancestor between this clade and the A2 Shanghai-linked
German sequence is less certain. This ancestor is inferred to have been in
either Germany (45% posterior probability), Hubei (30%), or Italy (23%). It
is very improbable that this ancestor was in France or another European
country (2% posterior probability). Using a lower prior for migration rates
(results shown in Figure 3.11), Hubei is more likely to be the location of
this ancestor than Germany (62% posterior probability for Hubei, 16% for
Germany).
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Figure 3.1: Maximum clade credibility tree. The clade of A2a sequences an-
alyzed is highlighted with dashed branches. The values above the
branches are the posterior clade probabilities and the pale red bars
show the 95% highest posterior density interval for node ages. The
pie charts at nodes show posterior probability for the ancestor being
located in each deme (note that we assumed the root of the tree was
in Hubei with probability 1). The deme for each tip is the deme in
which the sequence was collected, irrespective of travel history. Tips
are annotated with GISAID accession identifier.
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Epidemiological parameters

Several epidemiologically relevant parameters were co-inferred along with
the transmission tree. Firstly, we report on the reproductive number in
the different demes, which varied from 1.2 to 1.9 in Hubei to 2.5 to 3.5 in
France (Figure 3.4A). Secondly, we report on the prevalence of no-longer
infectious cases in each deme as of the collection date of the last analyzed
sequence. This quantity can be back-calculated from the estimated sampling
proportion (prevalence = sequences analyzed / sampling proportion). We
note that both the sampling proportion and prevalence estimates have large
credible intervals (Figures 3.4B,C). Of the European demes analyzed, the
outbreak in Germany was estimated to be smaller in early March (150 to
485 cumulative cases) than the outbreaks in France (709 to 2,185 cases) and
other European countries (719 to 1,782 cases), while the outbreak in Italy
was the largest (2,600 to 4,923 cases).

Comparing rates of migration and within-region transmission

Figure 3.2 compares the rate at which we estimate new cases to arise in
each region from migration versus from within-region transmission. The
estimated rates of new cases from migration and within-region transmission
are represented here as point estimates 5 days before the date of case
confirmation, which assumes a 5-day delay between infection and onward
transmission or migration (the choice of 5 days is motivated by serial
interval estimates for SARS-CoV-2 (Ali et al., 2020)). We emphasize that
we do not consider any non-European regions beyond Hubei; therefore,
transmission from Hubei to a not-included location and then to Europe is
considered to be migration directly from Hubei to Europe under our model.



3.2 results 69

Hubei France Germany Italy other
European

M
ig

ra
tio

n
W

ith
in

−
re

gi
on

tr
an

sm
is

si
on

Ja
n−

20
Ja

n−
27

F
eb

−
03

F
eb

−
10

F
eb

−
17

F
eb

−
24

M
ar

−
02

Ja
n−

20
Ja

n−
27

F
eb

−
03

F
eb

−
10

F
eb

−
17

F
eb

−
24

M
ar

−
02

Ja
n−

20
Ja

n−
27

F
eb

−
03

F
eb

−
10

F
eb

−
17

F
eb

−
24

M
ar

−
02

Ja
n−

20
Ja

n−
27

F
eb

−
03

F
eb

−
10

F
eb

−
17

F
eb

−
24

M
ar

−
02

Ja
n−

20
Ja

n−
27

F
eb

−
03

F
eb

−
10

F
eb

−
17

F
eb

−
24

M
ar

−
02

0

2000

4000

6000

8000

0

50000

100000

150000

200000

250000

R
ate of new

 cases

Hubei France Germany Italy other European

Figure 3.2: Estimated rate of new cases arising from migration compared with
the estimated rate of new cases arising from within-region transmis-
sion. For each day, we multiplied the (smoothed) number of newly
confirmed cases in each source region by the posterior sample of
migration rates from source to sink. The median of these rates is show
in the “Migration” row. We also multiplied the (smoothed) number of
newly confirmed cases in each sink region by the posterior sample of
transmission rates for the region. The median of these rates is shown
in the “Within-region transmission” row. Grey shaded regions indi-
cate dates on which new cases were reported in each region. Dates
are lagged 5 days to account for a 5-day delay between infection
and migration or onward transmission and daily case counts were
smoothed by taking a rolling 7-day average. Case data comes from
(for Systems Science and at Johns Hopkins University, 2020).

Beginning with the first day on which we have case data from Hubei, we
estimate a substantial risk of infected individuals migrating from Hubei
into European regions. Throughout late January to mid-February 2020,
cases were sporadically detected in each European region, each of which is
associated with a risk of subsequent within-region transmission. Sustained
within-region transmission is first evident in Italy in mid-February. Shortly
thereafter, sustained within-region transmission occurred in other European
countries, in France, and in Germany. By 8 Mar. 2020, the estimated rate
of occurrence of new cases from within-region transmission is within or
exceeds the estimated bounds on the rate of new cases from migration for
each region considered (Figure 3.9A). We obtain the same qualitative result
in our sensitivity analysis using a very different prior on the migration
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rate (Figure 3.9B). We note that the rates in Figure 3.2 are underestimates
of the rates of new cases arising due to migration or transmission due to
the underreporting in the confirmed case data. However, assuming that
the amount of underreporting is comparable across regions, we can indeed
compare the rates. Finally, we report support for a decrease in migration
rates from the Hubei deme into European demes at the date of the lockdown
of Wuhan (Figure 3.3). We infer that migration decreased by 40% (95% HPD
0% - 87%). Again, we note that the migration rate out of Hubei is not
necessarily specific to Hubei, since we do not consider possible migration
paths through other non-European locations.

3.3 discussion

We inferred the early spread of the SARS-CoV-2 virus into and across
Europe as well as the geographic origin of the predominant A2a lineage
spreading in Europe. To do this, we applied a previously published phylo-
dynamic model to analyze publicly available viral genome sequences from
the epidemic origin in Hubei, China and from the earliest detected and
largest European outbreaks before 8 Mar. 2020. After performing Bayesian
inference, we (i) report on inferred patterns of SARS-CoV-2 spread into and
across Europe, (ii) compare posterior probabilities for several hypotheses
on the origin of the A2a lineage, (iii) report on epidemiological parameters,
and (iv) compare the timeline of new cases resulting from migration versus
within-region transmission in Europe before borders were closed.

Genome sequence data indicates that prior to 8 Mar. 2020, SARS-CoV-
2 was introduced from Hubei province into France, Germany, Italy and
other European countries at least 2-4 times each (Table 3.1). These esti-
mates, which are based on genome sequence data and thus do not rely on
having line list data for individual migration cases, provide a complemen-
tary account of introduction events compared to line list data (Sun et al.,
2020) and phylogenetic inferences combining genome sequence and line
list data (Gámbaro et al., 2020; Díez-Fuertes et al., 2020; du Plessis et al.,
2021; Munnink et al., 2020; Stefanelli et al., 2020; Walker et al., 2020). The
introduction events we report here are inferred to have occurred along
the transmission tree specific to the analyzed sequence set and are not
attributable to individual cases. In comparison, line list data (Spiteri et al.,
2020; Sun et al., 2020) attributes introduction events to individual cases but
cannot reconstruct previous, unobserved introductions. Since we analyze
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only a fraction of all cases, we expect our estimates to be a lower bound on
the true number of introductions.

Ideally, we want to go beyond counting migration events amongst the
analyzed sequences and investigate general dynamics. To do this, we would
interpret inferred migration rates as representing more general patterns
of SARS-CoV-2 spread. However, the sequence data was only informative
for inferring some of these rates (Figure 3.3). In regions with few lineages
circulating during the period considered, there is little signal for the amount
of outward migration. We observe information about the per-individual
migration rate from Italy to other European countries (Figure 3.3). However,
we do not find evidence for preferential migration paths from Hubei into
different European regions or from each European region to the others,
although we cannot exclude this possibility.

We estimate that the A2a viruses spreading in Europe by 8 Mar. 2020

had a common ancestor in Italy sometime between mid-January and early-
February 2020 (Figure 3.1). In contrast, at the time of this paper’s original
submission Nextstrain placed this ancestor in the U.K. with 100% confidence
(Nextstrain, 2020c). This Nextstrain result may have been an artefact of
disproportionately high sequencing effort in the U.K. since biased sampling
violates the assumptions of the “mugration” method employed (Sagulenko
and Neher, 2017). We additionally report that the A2a lineage was most
likely carried from Hubei to Italy or from Hubei to Italy via Germany.
Both transmission routes have substantial posterior probability under our
main model assumptions (Figure 3.1). Assuming a lower migration rate
prior, transmission from Hubei to Italy instead of a route via Germany
to Italy becomes the more likely scenario (Figure 3.11). Addressing the
same question, recently-developed phylodynamic methods accounting for
under-sampling and utilizing travel information from line list data have
provided even stronger evidence for independent introductions from China
into Germany and Italy instead of a route via Germany to Italy (Worobey
et al., 2020).

Although it is not the main focus of our analysis, we also report on
epidemiological parameters of the early outbreaks considered. Estimates for
the reproductive number fall roughly within the range of previous estimates
(Liu et al., 2020), though we mention a particular caveat with respect to the
reproductive number in Hubei below. Unsurprisingly, prevalence estimates
in early March generally exceed confirmed case counts by a factor of 1-3
(Figure 3.4). Our inferences of epidemiological parameters support the idea
that the early reproductive number in different outbreaks is difficult to
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estimate precisely, but not hugely variable, and that there is substantial
under-reporting in line list data (Stringhini et al., 2020).

Finally, we estimated the rate of new cases arising from migration com-
pared with the rate of new cases arising from within-region transmission
in the regions analyzed. The magnitudes of these rates are quite uncertain
due to uncertainty in the inferred migration and transmission rates (Figure
3.9) and under-reporting in case counts, which we implicitly assume to
be constant in time and between demes. However, the temporal trends
suggested by these data are still compelling and robust towards different
prior assumptions. We see that under sustained risk of case migration from
abroad, isolated cases were confirmed throughout Europe beginning in late
January 2020 but did not immediately cause large outbreaks. Shortly after
the first evidence of sustained within-region transmission in Italy, outbreaks
in the rest of Europe also took hold (Figure 3.2).

Our results based on the multi-type birth-death model take into account
phylogenetic uncertainty and sampling biases between demes, which are
two major concerns in genomic analyses of SARS-CoV-2 (Mavian et al.,
2020a). Indeed, wide confidence intervals around internal nodes in the
maximum clade credibility tree and low clade support near the tips (Figure
3.1) indicate a high degree of phylogenetic uncertainty. Therefore, it is
important that the parameter estimates we report result from integrating
over a distribution of potential phylogenies with different geographic lo-
cations assigned to ancestral lineages. In comparison, some initial studies
that estimated international SARS-CoV-2 spread constructed a median-
joining network instead of a phylogeny to account for this uncertainty
(Forster et al., 2020; Skums et al., 2020). In this approach, identical sequences
are collapsed to single nodes and edges represent mutational differences.
This disregards information from relative sampling times and means that
ancestor-descendent relationships are highly dependent on the choice of the
network root (Sánchez-Pacheco et al., 2020; Kong et al., 2016). Unaccounted-
for sampling biases in these analyses may also yield spurious results for the
geographic origin of lineages (Chookajorn, 2020; Mavian et al., 2020b). Our
analysis, which relies on a mechanistic model of migration and between-
deme sampling differences, should be robust to such biases.

Despite the advantages of the multi-type birth-death model just men-
tioned, there are also several unique caveats to consider. The birth-death
model assumes uniform-at-random sampling from the total infected popu-
lation in each deme. However, particularly in the early stages of outbreaks,
infected individuals were identified by health ministries via contact tracing
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(Spiteri et al., 2020). Non-random sampling may be one possible expla-
nation for why we infer markedly different transmission rates in China
when analyzing cases from within Hubei (as in this analysis) as opposed
to cases exposed in Hubei but sequenced elsewhere (as in our previous
analysis (Vaughan et al., 2020)). Furthermore, the multi-type birth-death
model assumes that parameters are constant through time and homoge-
nous within demes. As a result, our inferences based on province-, country-,
and continent-level demes are only coarse approximations of the true, het-
erogeneous epidemic dynamics occurring at a local level. Due to these
limitations, we focus on estimating and interpreting particular events along
the transmission tree of the analyzed sequences (e.g. Table 3.1, Figure 3.1)
and advise caution when interpreting inferred migration rates (e.g. Figure
3.3).

We expect that our results will be useful in parameterizing more spe-
cialized models aimed to understand the efficacy of border closures as
a means to fight pandemic disease. So far, such analyses have primarily
used line list data and information on travel networks to estimate SARS-
CoV-2 migration patterns (Linka et al., 2020; Chinazzi et al., 2020; Wells
et al., 2020). Here we present independent estimates of migration patterns
based on genome sequence data. By combining case count data and our
estimates for migration and transmission rates, we provide a timeline of
early SARS-CoV-2 introduction and spread before border closures were
implemented. Despite migration risk from outside Europe being on the
same order of magnitude as later migration risk from Italy, we only observe
sustained outbreaks in other European regions after the onset of sustained
within-region transmission in Italy. Finally, before the first border closures
in Europe, we estimate the risk of new cases arising from within-region
transmission to be within or exceeding the estimated range for the risk of
new migration cases.

3.4 materials and methods

Model

We fit a simplified version of the multi-type birth-death model described
in (Scire et al., 2020). Under this model, beginning with a single infected
host in a single geographic region (deme), the virus can be transmitted
from one host to another (a birth event), die out due to host recovery
or death (a death event), be sequenced (a sampling event, assumed to
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correspond to a death event), or migrate from one deme to another (a
migration event). The birth, death, and sampling processes are assumed to
occur at deme-specific rates that are constant through time. Importantly,
this model aims to capture heterogeneity in epidemiological parameters
(birth and death rates) and sequencing effort (sampling proportion) among
demes. Additionally, there is a unique migration rate from each deme to
each other deme. All migration rates are assumed to be constant through
time except for migration out of Hubei. In our main analysis, migration out
of Hubei is assumed to be constant before and after the date of lockdown
on 23 Jan. 2020 and is assumed to decrease by a constant factor at the date
of lockdown. This factor is a parameter of the model and is also inferred
based on the genome sequence data. Finally, we used a version of the model
parameterized in terms of the effective reproductive number, which allows
us to additionally infer this epidemiologically relevant quantity for each
deme.

Dataset

We analyzed SARS-CoV-2 genome sequences from five different demes:
Hubei province in China, France, Germany, Italy, and a composite deme of
other European countries (“other European”). All sequences were accessed
from GISAID (GISAID, 2020) and a full table of sequence identifiers is
available in the online supporting information at https://doi.org/10.

1073/pnas.201200811. To represent the pandemic origin, we randomly
chose 10 sequences from Hubei collected on or before the lockdown of
Wuhan city on 23 Jan. 2020. To investigate the earliest outbreaks in Europe,
we considered all available sequences collected in France, Germany, and
Italy on or before the lockdown of the Lombardy region of Italy on 8 Mar.
2020. These countries had the first detected (France and Germany) and the
largest (Italy) early outbreaks in Europe (WHO, 2020a; Spiteri et al., 2020). By
limiting sampling to before regional lockdowns and border closures went
into effect, we hope to (i) satisfy model assumptions that epidemiological
and migration parameters are constant through time, and (ii) get a picture
of the early, unimpeded spread of SARS-CoV-2 within Europe. To represent
the pool of SARS-CoV-2 circulating in other European countries during
this time, we randomly down-sampled sequences from other countries to
the cumulative number of confirmed COVID-19 deaths in each country
by 8 Mar. 2020 plus one (Table 3.4). We used this quantity as a proxy
value roughly proportional to the outbreak size in each country. Table 3.2

https://doi.org/10.1073/pnas.201200811
https://doi.org/10.1073/pnas.201200811
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characterizes the sequences analyzed from each deme for the main analysis.
As a sensitivity analysis, we repeated the analysis while down-sampling
based on confirmed death data from 28 Mar. 2020, considering that deaths
occur with a delay after transmission. This yielded a slightly larger sequence
set for analysis. For this analysis, we also did not consider a change in
migration rates out of Hubei at 23 Jan. 2020 (results in supplement).

Table 3.2: Analyzed sequence information. Location is the location of sample
collection, as recorded in the Nextstrain metadata (Nextstrain, 2020e).
Date is the date of sample collection, as given on GISAID (GISAID,
2020). No. = number; Seq. = sequence.

Deme No.
seqs.

Locations represented First seq.
date

Last seq.
date

Hubei 10 Hubei province, China 26.12.2019 18.01.2020

France 66 France 23.01.2020 08.03.2020

Germany 15 Germany 28.01.2020 03.03.2020

Italy 13 Italy 29.01.2020 04.03.2020

Other Euro-
pean

41 Spain (18), Netherlands
(4), United Kingdom (4),
Switzerland (3), Belgium
(1), Czech Republic (1),
Denmark (1), Finland (1),
Iceland (1), Ireland (1), Lux-
embourg (1), Norway (1),
Poland (1), Portugal (1), Slo-
vakia (1), Sweden (1)

07.02.2020 08.03.2020

Alignment generation

We prepared a sequence alignment from data publicly available on GISAID
(GISAID, 2020) on 1 Apr. 2020 using the Nextstrain pipeline for SARS-CoV-2
(Nextstrain, 2020e). Short sequences (< 25,000 bases), sequences without
fully specified collection dates, and sequences in the Nextstrain exclude
list (Nextstrain, 2020a) (duplicate sequences from the same case, or with
suspicious amounts of nucleotide divergence) were excluded. We aligned
selected sequences to reference genome GenBank accession MN908947. To
eliminate sites identified by the Nextstrain team as prone to sequencing
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errors (Nextstrain, 2020b), we masked the first 130 and final 50 sites from
the alignment, as well as sites 18,529, 29,849, 29,851, and 29,853.

Testing assumptions about source and sink locations

We assume that during the time span considered, (i) once a strain was
in Europe, the strain could have been transmitted from Europe to other
global regions, but subsequent re-introductions of this strain did not oc-
cur. Similarly, we assume (ii) strains were not re-introduced into Hubei.
These assumptions allow us to ignore sequences from outside of Hubei and
Europe. To justify assumption (ii), we argue there was not sufficient time
between the pandemic origin in Hubei and Jan. 23, 2020 for a significant
amount SARS-CoV-2 export, transmission outside-Hubei, and subsequent
re-introduction into Hubei. Furthermore, confirmed case data shows that
Hubei province was the epicenter of the SARS-CoV-2 pandemic until this
time, with comparatively less transmission occurring outside of the province
than within it (WHO, 2020a). To justify assumption (i), we tested whether
there was evidence for significant migration into European demes by run-
ning a separate analysis on A2a SARS-CoV-2 sampled from all global
regions (results in supplement).

Parameter inference

For inferences, we used the implementation of the multi-type birth-death
model in the bdmm package (Scire et al., 2020; Kühnert et al., 2016) in the
BEAST2 software (Bouckaert et al., 2019). Since this is a parameter-rich
model, we fixed some parameters to improve the identifiability of others.
The values for fixed parameters, priors for estimated parameters, and the
rationale behind these decisions are given in Table 3.3. We ran four MCMC
chains to approximate the posterior distribution of the model parameters.
The first 10% of samples from each chain were discarded as burn-in before
samples from the chains were pooled. We used Tracer (Rambaut et al., 2018)
to assess the convergence and confirm that ESS was > 200 for all parameters.
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Table 3.3: Values and priors for the parameters of the multi-type birth-death
model. Confirmed case data for Hubei came from Statista (Statista,
2020), for Germany, France, and Italy from the World Health Orga-
nization (WHO, 2020a), and for other European countries from the
European Center for Disease Control (ECDC, 2020). The number of an-
alyzed sequences divided by the number of confirmed cases provides
an upper bound to the sampling proportion since confirmed cases are
only a fraction of total cases. No. = number; approx. = approximately;
IQR = inter-quartile range, LogN = Lognormal, Unif = Uniform.

Parameter Value or Prior Rationale

Nucleotide substitu-
tion model

HKY + Γ Unequal transition/transversion
rates, unequal base frequencies, rate
heterogeneity among sites

Clock rate 0.0008 Approx. 24 mutations/year
(Nextstrain, 2020e)

Death rate 36.5 year−1 Period between infection and becom-
ing un-infectious assumed exponen-
tially distributed with a mean of 10

days

Sampling start time 23 Dec. 2019 Just before date of first sample

Sampling end time
(Hubei only)

23 Jan. 2019 Only included sequences collected
until lockdown

Location of origin Hubei Putative pandemic origin

Reproductive number LogN(0.8, 0.5) Median 2.2, 95% IQR 0.8 - 5.9

Migration rates LogN(0, 1) Median time until travel is 1 year, 95%
IQR 51 days - 7.1 years

Migration rate de-
crease from Hubei at
lockdown

Unif(0, 1) Migration out of the Hubei deme is
expected to decrease after lockdown

Time of origin LogN(-1, 0.2) Median 26 Oct., 95% IQR 22 Aug. - 8

Dec. 2019

Sampling proportion Upper bounds based on confirmed
cases:

Hubei Unif(0, 0.15) 10/66 cases on 18 Jan. 2020

France Unif(0, 0.093) 66/706 cases on 8 Mar. 2020

Germany Unif(0, 0.10) 15/157 cases on 3 Mar. 2020

Italy Unif(0, 0.005) 13/2,502 cases on 4 Mar. 2020

other European Unif(0, 0.057) 41/712 cases on 8 Mar. 2020
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Comparing rates of migration and within-region transmission

To weigh the significance of cases from migration versus within-region
transmission during the early epidemic, we compare the rate at which new
cases migrate into a region (= per-individual migration rate x case count
in source region) to the rate at which new cases arise from within-region
transmission (= transmission rate x case count in sink region). When signal
in the sequence data is low, e.g. for some migration rates, our prior assump-
tions determine the magnitude of these rates. To assess the sensitivity of our
main conclusions to the prior, we additionally analyzed the same sequences
using a lower migration rate prior (Figure 3.9B). We note that the migration
and transmission rates are assumed to be constant through time for this
analysis, with the exception of the decrease in migration out of Hubei at 23

Jan. 2020. Thus, the temporal trends depend largely on the confirmed case
data, which we take from the Johns Hopkins Center for Systems Science
and Engineering (for Systems Science and at Johns Hopkins University,
2020).
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Figure 3.3: Posterior distributions for migration rates (yellow for rates out of
Hubei before 23 Jan. 2020 and rates between non-Hubei demes,
purple for rates out of Hubei after 23 Jan. 2020) compared to the
prior distribution (grey).
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Figure 3.4: Posterior distributions for inferred parameters in the main analy-
sis. (A) reproductive number, (B) sampling proportion, and (C) the
number of no-longer infectious cases on the date of the last analyzed
sequence (dates in facet titles) for each region. The dashed lines in (B)
show the upper bound of the uniform sampling proportion prior for
each region and in (C) the number of confirmed cases on the date of
the last analyzed sample. The solid grey lines show the 95% highest
posterior density interval and the median for each posterior.
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Figure 3.5: Posterior distributions (yellow) for migration rates compared to the
prior distribution (grey) in the analysis with down-sampling based
on death data from 28 Mar. 2020.
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A.

 
B. 

 
C. 

 
 

Figure 3.6: Posterior distributions for inferred parameters in the analysis with
down-sampling based on death data from 28 Mar. 2020. (A) repro-
ductive number, (B) sampling proportion, and (C) the number of
no-longer infectious cases on the date of the last analyzed sequence
(dates in facet titles) for each region. The dashed lines in (B) show
the upper bound of the uniform sampling proportion prior for each
region and in (C) the number of confirmed cases on the date of the
last analyzed sample. The solid grey lines show the 95% highest
posterior density interval and the median for each posterior.
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Figure 3.7: Ancestral location inference results for the sensitivity analysis with
sequences from the A2a clade from all global regions. The pie chart
on the left shows the posterior probabilities for the location of the
most recent common ancestor of the analyzed sequences. The tree
on the right is the maximum clade credibility tree. The values above
the branches are posterior clade probabilities. The pie charts at nodes
show the posterior probability of the node being in each deme. The
deme for each tip is the region in which the sequence was collected
(irrespective of travel history). Tips are annotated with the country in
which the sequence was collected.
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Figure 3.8: Posterior distributions (yellow) for migration rates compared to the
prior distribution (grey) for the analysis with sequences from the
A2a clade from all global regions.
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Figure 3.9: Estimated rate of new cases from migration compared with the
rate of new cases from within-region transmission (A) using the
migration rate prior as in the main analysis and (B) using a lower
migration rate prior: Lognormal(-2.29, 1.25). Under the lower prior,
median time until travel is 10 years and the 95% IQR is 1.3 days - 78

years. For each day, we multiplied the (smoothed) number of newly
confirmed cases in each source region by the posterior sample of
migration rates from source to sink. The upper and lower bounds
of the 95% HPD interval and the median of these rates are show in
the top three rows. We also multiplied the (smoothed) number of
newly confirmed cases in each sink region by the posterior sample
of transmission rates for the region. The median of these rates is
shown in the bottom row, with error bars showing the upper and
lower bounds of the 95% HPD interval. Dates are lagged 5 days
to account for a 5-day delay between infection and migration or
onward transmission and daily case counts were smoothed by taking
a rolling 7-day average. Case data comes from (for Systems Science
and at Johns Hopkins University, 2020). IQR = inter-quartile range;
HPD = highest posterior density.
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Figure 3.10: Posterior distributions (yellow for rates out of Hubei before 23
Jan. 2020 and rates between non-Hubei demes, purple for rates
out of Hubei after 23 Jan. 2020) compared to the prior distribution
(grey) using the same sequences as in the main analysis with a
lower migration rate prior: Lognormal(-2.29, 1.25).



92 bibliography

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

EPI_ISL_402121
EPI_ISL_402125

EPI_ISL_402130

EPI_ISL_406596
EPI_ISL_406716

EPI_ISL_406717

EPI_ISL_406798

EPI_ISL_406800

EPI_ISL_406862

EPI_ISL_408430

EPI_ISL_408431
EPI_ISL_410486

EPI_ISL_410546

EPI_ISL_411951

EPI_ISL_411957

EPI_ISL_412980

EPI_ISL_412981

EPI_ISL_413488

EPI_ISL_414496

EPI_ISL_414497

EPI_ISL_414498

EPI_ISL_414499

EPI_ISL_414504

EPI_ISL_414505

EPI_ISL_414506

EPI_ISL_414508

EPI_ISL_414509

EPI_ISL_414520

EPI_ISL_414521

EPI_ISL_414574

EPI_ISL_414598

EPI_ISL_414623

EPI_ISL_415143
EPI_ISL_415149

EPI_ISL_416483

EPI_ISL_416485

EPI_ISL_416488

EPI_ISL_416503
EPI_ISL_416507

EPI_ISL_417205

EPI_ISL_417206

EPI_ISL_417335

EPI_ISL_417432

EPI_ISL_417489

EPI_ISL_417880

EPI_ISL_417979

EPI_ISL_417981

EPI_ISL_418243

EPI_ISL_418245
EPI_ISL_418246

EPI_ISL_418248

EPI_ISL_418249

EPI_ISL_418252

EPI_ISL_412912

EPI_ISL_412973
EPI_ISL_413489

EPI_ISL_413593

EPI_ISL_414021

EPI_ISL_414446

EPI_ISL_414461

EPI_ISL_414470

EPI_ISL_414477

EPI_ISL_414495

EPI_ISL_414507

EPI_ISL_414524

EPI_ISL_414564

EPI_ISL_414624

EPI_ISL_414625

EPI_ISL_414626

EPI_ISL_414627

EPI_ISL_414629

EPI_ISL_414630

EPI_ISL_414631

EPI_ISL_414632

EPI_ISL_414633

EPI_ISL_414634

EPI_ISL_414635
EPI_ISL_414636

EPI_ISL_414637

EPI_ISL_414638

EPI_ISL_414642

EPI_ISL_415646

EPI_ISL_415649

EPI_ISL_415650

EPI_ISL_415651

EPI_ISL_415652

EPI_ISL_415653

EPI_ISL_415698

EPI_ISL_415704

EPI_ISL_416475

EPI_ISL_416493

EPI_ISL_416494

EPI_ISL_416502

EPI_ISL_416504

EPI_ISL_416505

EPI_ISL_416506

EPI_ISL_416508

EPI_ISL_416509

EPI_ISL_416510

EPI_ISL_416511

EPI_ISL_416512

EPI_ISL_416513

EPI_ISL_416746

EPI_ISL_416747

EPI_ISL_416748

EPI_ISL_416749

EPI_ISL_416750

EPI_ISL_416751

EPI_ISL_416752

EPI_ISL_416753

EPI_ISL_416754
EPI_ISL_416756

EPI_ISL_416757

EPI_ISL_416758

EPI_ISL_417007

EPI_ISL_417234

EPI_ISL_417333

EPI_ISL_417334

EPI_ISL_417336

EPI_ISL_417337

EPI_ISL_417338

EPI_ISL_417339

EPI_ISL_417340

EPI_ISL_417418

EPI_ISL_417419

EPI_ISL_417421

EPI_ISL_417423
EPI_ISL_417445

EPI_ISL_417447

EPI_ISL_417491

EPI_ISL_417684

EPI_ISL_417921

EPI_ISL_417922

EPI_ISL_417923

EPI_ISL_418011

EPI_ISL_418218

EPI_ISL_418219

EPI_ISL_418220

EPI_ISL_418221

EPI_ISL_418222

EPI_ISL_418223

EPI_ISL_418224

EPI_ISL_418225

EPI_ISL_418247
EPI_ISL_418251

1

0.08

0.01

0

0

0
0

0.04

0

0.02 0.5

0.03
0.01

0.16 0.2

0.3

0.34
0.22

1
0.34

0.32
1 0.26

1

1

0.02

1

0.43

1
1

0.27
0.02

0.07

0.03
0.15

0.11

0.05

0.35
0.31

1 1

1

0.29

1
1

0.53

0.23
0.040.11

0.04 0.15

0.03

1

1

0

0

0

1

0.27
0.03

0.09

0.030.11

0.99
0.02

0.05

0.11

0.030.09

0
0.03 1

0.01 0.07

0

0
0.03

1 0.78

0.03 0.99

0

0
0.010.03

1

0.99

0

0

0
0.03

0.99 0.35

00.03

0
0
0.04

0.04

0.010.06

0.03

0

0
00.04

0
0
0

0.98

0.04

0.02

0.66
1

0.17
0.030.12

0.070.14

0.65 0.42

0

0.03

0.99 0.69

1

0.23

0.01

0
0
0.04 1

0.04 1

0.99

0

0
0.010.05

0.07

0
0.010.05

1

Dec−01 Jan−01 Feb−01 Mar−01

● ● ● ● ●Hubei France Italy Germany other European

Figure 3.11: Maximum clade credibility tree using the same sequences as in
the main analysis with a lower migration rate prior: Lognormal(-
2.29, 1.25). The clade of A2a sequences analyzed is highlighted with
dashed branches. The values above the branches are the posterior
clade probabilities and the pale red bars show the 95% highest
posterior density interval for node ages. The pie charts at internal
nodes show the posterior probability that the ancestor was located in
each deme (note that we assumed the root of the tree was in Hubei
with probability 1). The deme for each tip is the deme in which
the sequence was collected, irrespective of travel history. Tips are
annotated with GISAID accession identifiers.
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Table 3.4: Sequence information for the “other European” deme in
the main analysis. Case and death data are from the
Johns Hopkins Center for Systems Science and Engineering
(https://github.com/CSSEGISandData/COVID-19). The number
of sequences collected refers to the number of genome sequences
available on GISAID (https://www.gisaid.org/). No. = number, Seqs.
= sequences.

Country No. seqs. in-
cluded

No. con-
firmed
deaths as of
8 Mar. 2020

No. con-
firmed
cases as of
8 Mar. 2020

No. seqs.
before
down-
sampling

Spain 18 17 673 26

Netherlands 4 3 265 107

United Kingdom 4 3 273 172

Switzerland 3 2 337 49

Belgium 1 0 200 46

Czech Republic 1 0 31 1

Denmark 1 0 35 9

Finland 1 0 23 13

Iceland 1 0 50 54

Ireland 1 0 19 9

Luxembourg 1 0 3 1

Norway 1 0 176 8

Poland 1 0 11 1

Portugal 1 0 30 19

Slovakia 1 0 3 4

Sweden 1 0 203 1
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Table 3.5: Sequence information for the “other European” deme in the sensitivity
analysis with down-sampling based on death data from 28 Mar. 2020.
Case and death data are from the Johns Hopkins Center for Systems Sci-
ence and Engineering (https://github.com/CSSEGISandData/COVID-
19). The number of sequences collected refers to the number of genome
sequences available on GISAID (https://www.gisaid.org/). No. = num-
ber, Seqs. = sequences.

Country No. seqs. in-
cluded

No. con-
firmed
deaths as
of 28 Mar.
2020

No. con-
firmed
cases as
of 28 Mar.
2020

No. seqs.
before
down-
sampling

Spain 26 5982 73235 26

United Kingdom 11 1021 17312 172

Netherlands 7 640 9819 107

Belgium 5 353 9134 46

Switzerland 4 264 14076 49

Denmark 2 65 2366 9

Portugal 2 100 5170 19

Czech Republic 1 11 2631 1

Finland 1 9 1167 13

Iceland 1 2 963 54

Ireland 1 36 2415 9

Luxembourg 1 18 1831 1

Norway 1 23 4015 8

Poland 1 18 1638 1

Slovakia 1 0 292 4

Sweden 1 105 3447 1
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Table 3.6: Sequence information for the sensitivity analysis with sequences from
the A2a clade from all global regions. Location is the location of sample
collection, as recorded in the Nextstrain metadata (previously available
at https://github.com/nextstrain/ncov, as of publication the metadata
is available for download from GISAID, https://www.gisaid.org/).
Date is the date of sample collection, as given on GISAID. No. =
number; Seq. = sequence.

Deme No.
seqs.

Locations First seq.
date

Last seq.
date

Africa 8 Nigeria (1), South Africa
(1), Senegal (4), Algeria (2)

27.02.2020 08.03.2020

Asia & Ocea-
nia

8 Taiwan (1), Vietnam (3),
Georgia (1), New Zealand
(2), Australia (1)

02.03.2020 08.03.2020

Europe 60 Belgium (1), Czech Repub-
lic (1), Denmark (1), Fin-
land (1), France (20), Ger-
many (1), Iceland (1), Ire-
land (1), Italy (12), Lux-
embourg (1), Netherlands
(4), Norway (1), Portu-
gal (1), Slovakia (1), Spain
(6), Switzerland (3), United
Kingdom (4)

20.02.2020 08.03.2020

North Amer-
ica

11 Mexico (1), USA (3),
Canada (7)

27.02.2020 08.03.2020

South & Cen-
tral America

16 Brazil (13), Chile (1),
Panama (1), Colombia (1)

25.02.2020 06.03.2020
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Table 3.7: Sequence information for the European deme in the sensitivity analysis
with sequences from the A2a clade from all global regions. Confirmed
case and death data are from the Johns Hopkins Center for Systems Sci-
ence and Engineering (https://github.com/CSSEGISandData/COVID-
19). The number of sequences collected refers to the number of genome
sequences available on GISAID (https://www.gisaid.org/). No. = num-
ber, Seqs. = sequences.

Country No. seqs. in-
cluded

No. con-
firmed
deaths as of
8 Mar. 2020

No. con-
firmed
cases as of
8 Mar. 2020

No. A2a
seqs. before
down-
sampling

Belgium 1 0 200 40

Czech Republic 1 0 31 1

Denmark 1 0 35 9

Finland 1 0 23 8

France 20 19 1126 58

Germany 1 0 1040 2

Iceland 1 0 50 53

Ireland 1 0 19 8

Italy 12 366 7375 12

Luxembourg 1 0 3 1

Netherlands 4 3 265 64

Norway 1 0 176 1

Portugal 1 0 30 19

Slovakia 1 0 3 3

Spain 6 17 673 6

Switzerland 3 2 337 48

United Kingdom 4 3 273 101
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Table 3.8: Median inferred number of introductions from each deme to each
other deme amongst the analyzed cases in the analysis with sequences
from the A2a clade from all global regions. Values in brackets are the
upper and lower bound of the 95% highest posterior density interval.

Source / sink Africa Asia &
Oceania

Europe North
Amer-
ica

South &
Central
Amer-
ica

Africa - 0: [0, 1] 0: [0, 1] 0: [0, 1] 0: [0, 1]

Asia & Oceania 1: [0, 3] - 0: [0, 2] 3: [0, 8] 3: [0, 6]

Europe 3: [0, 5] 5: [0, 9] - 8: [2, 14] 8: [3, 13]

North America 0: [0, 2] 0: [0, 2] 0: [0, 1] - 0: [0, 3]

South & Central Amer-
ica

0: [0, 1] 0: [0, 1] 0: [0, 1] 0: [0, 1] -
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abstract

The SARS-CoV-2 pandemic led to a huge increase in global pathogen
genome sequencing efforts, and the resulting data are becoming increasingly
important to detect variants of concern, monitor outbreaks, and quantify
transmission dynamics. However, this rapid up-scaling in data generation
brought with it many IT infrastructure challenges. In this paper, we report
about developing an improved system for genomic epidemiology. We (i)
highlight key challenges that were exacerbated by the pandemic situation,
(ii) provide data infrastructure design principles to address them, and (iii)
give an implementation example developed by the Swiss SARS-CoV-2 Se-
quencing Consortium (S3C) in response to the COVID-19 pandemic. Finally,
we discuss remaining challenges to data infrastructure for genomic epi-
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demiology. Improving these infrastructures will help better detect, monitor,
and respond to future public health threats.
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4.1 introduction

An increasingly important tool to help fight pathogenic diseases is genomic
epidemiology. The analysis of pathogen genome sequences allows us to
learn about pathogen evolution and epidemic or endemic transmission dy-
namics (Kraemer et al., 2019; Grenfell et al., 2004). However, the SARS-CoV-2
pandemic has highlighted a growing disparity between global sequencing
data generation capacities and analysis capacities (Black et al., 2020). As
Hodcroft et al. (2021) underscores, we seem to be drowning in data rather
than swimming in information.

Genome sequence data are becoming increasingly important for epidemic
response, as highlighted during the SARS-CoV-2 pandemic. In December
2019, when an unknown respiratory disease was identified in Wuhan, China,
the first whole genome sequence from the causal virus helped classify the
new human pathogen SARS-CoV-2 (Wu et al., 2020) and establish its likely
origins (Andersen et al., 2020). Then, comparison of mutational differences
in genomes collected from different regions helped distinguish imported
cases from community transmission (Worobey et al., 2020). Next, genome
surveillance efforts identified more transmissible variants of concern, e.g.
the alpha variant (World Health Organization, 2021) in the UK in late
2020 (Volz et al., 2021). Finally, phylogenetic and phylodynamic methods
use genome sequence data to quantify epidemic dynamics, including the
reproductive number, transmission routes, effects of public health measures,
and the role of super-spreading (Nadeau et al., 2021; du Plessis et al., 2021;
Miller et al., 2020). Thus, pathogen genome sequence data is instrumental
for disease detection, outbreak tracking, and quantifying transmission
dynamics.

The wealth and geographic distribution of available genomic data under-
lying these and other analyses indicates many groups around the world
have developed their own infrastructures for genomic epidemiology. So far,
several large national initiatives have published descriptions of their techni-
cal infrastructures. In particular, Nicholls et al. (2021); Matthews et al. (2018);
Egli et al. (2019) describe UK-, Canadian- and Swiss-specific infrastructures
that enable linking of genome sequence data with associated metadata
and integrate data from multiple regional contributors. Other examples
are available as code bases, for instance that of the Spanish SARS-CoV-
2 Sequencing Consortium (Spanish SARS-CoV-2 sequencing consortium,
2022).
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Despite these successes, developing a data infrastructure for genome-
based surveillance and genomic epidemiology remains a challenge (Black
et al., 2020; Bernasconi et al., 2021). In the COVID-19 pandemic, bioinfor-
matics capacity has proven to be a key bottleneck in pandemic response
(Hodcroft et al., 2021). This is particularly true in countries without a well-
supported national initiative, or in the period before such an initiative is
established. As the US-focused report Committee on Data Needs to Mon-
itor Evolution of SARS-CoV-2 et al. (2020) highlights, a key priority for
pandemic preparedness is to improve upon existing systems to integrate
clinical and genomic data and better coordinate between different public
health stakeholders. In this paper, we share lessons learned in the Swiss
SARS-CoV-2 Sequencing Consortium (S3C) pertaining to three challenges
that were particularly exacerbated by the COVID-19 pandemic: unstable
data sources, rapid development of new tools, and the need for timely
reporting. We outline design principles to address these challenges and
describe our implementation of a relational database and containerized
microservices as an example. Finally, we highlight remaining challenges in
data management for genomic epidemiology.

The S3C began generating and analyzing SARS-CoV-2 genome sequences
in March 2020. The Consortium started as a partnership between two aca-
demic groups, an associated academic sequencing facility, and a large Swiss
medical diagnostics company (S3C, 2021). Since then, S3C has partnered
with three core sequencing facilities in Switzerland to sequence over 44,000

samples from companies, hospitals, and research institutions. These data
are made available on GISAID (Elbe and Buckland-Merrett, 2017) and the
European Nucleotide Archive. To meet the demands of a growing genomic
surveillance program in Switzerland, S3C benefited from early data infras-
tructure design choices that enabled rapid extension to new data sources,
types, and users.

In the following sections we describe major implementation challenges for
data infrastructure in light of the pandemic and outline design principles to
address them. In particular, we discuss S3C’s implementation of a relational
database and microservices-based approach as an example fulfilling these
design criteria using open source tools. Finally, we consider remaining
challenges in data infrastructure for genomic epidemiology that must be
met to improve future public health response to pathogenic diseases.
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4.2 unstable data sources

Emerging public health threats bring great uncertainties, including in data
availability and formats. The basic data necessary for genomic surveillance
are pathogen genome sequences and minimal patient metadata, e.g., sample
collection date and location. Coupling these data and analyzing them in
aggregate allows public health officials to track transmission and moni-
tor key mutations. However, the format of these data may shift over the
course of an outbreak, and new data may become available. For example,
accommodating genomic restructuring by the pathogen itself (e.g., by inser-
tion, deletion, recombination, or reassortment), annotating samples with
the presence or absence of newly discovered key mutations, and newly
available or re-formatted metadata all represent shifts in the basic data
required for effective genomic surveillance. Furthermore, it might not be
possible to define a fixed and sensible file format for data exchange in the
early stages of outbreak response due to time pressure.

Recommendation: ensure clean data

Unreliable and shifting source data can quickly lead to messy data with,
for example, missing values and different spellings of the same entity.
Ideally, infrastructure developers will work with data submitters to develop
a standardized data dictionary with clearly defined permitted values for
each variable. However, it is also essential to strictly validate data upon
import as a double-check. It should also be anticipated that changes and
corrections to the data will be necessary over time. Therefore, data should
be maintained in a non-redundant form so that changes to one attribute
can be easily made without the danger of causing inconsistencies. Data
relations should be tracked so that the effect of changes to one attribute
on others are easy to identify. Data types should be strictly enforced so
that changes to data formats are rapidly detected and mistakes are not
incorporated. Finally, it should be easy to define custom data types and
add attributes as new data is made available.

Example: relational database

Relational database management systems provide a good way to fulfill
these design criteria. In a relational database management system, data are
stored in a collection of tables, also known as the “relational format”. Each



104 addressing the bioinformatics bottleneck

table is independent from the others, but they may be linked (related) via
shared keys, i.e. information common to two or more tables. This allows us
to formulate complex queries by joining different tables together.

A relational database approach helps keep data clean in the face of un-
stable data sources. Each table’s columns have fixed data types and it is
possible to define custom types with a limited set of allowed values. For-
eign keys, CHECK constraints and triggers allow definitions of arbitrarily
complex validations. Invalid entries are rejected upon import so we know
when corrections are necessary. This is especially important in the S3C,
since we accept partially human-edited Excel files and non-documented
output data from PCR machines as input. Non-redundancy between tables
makes it easier to correct mistakes in these data when they arise. Finally,
new and corrected data is simultaneously available to all database users.

Several relational database management systems are available. The S3C
uses PostgreSQL1, which is freely available and open-source. In our imple-
mentation, we have three core database tables, one each for tests (samples),
plates of RNA extracts, and SARS-CoV-2 genome sequences (Figure 4.1).
The test table contains sample metadata from the originating laboratory,
the plate table tracks where each plate was sent for sequencing and when,
and the sequence table stores the assembled SARS-CoV-2 whole-genome
sequence and associated quality control statistics. Finally, a mapping table
links the respective keys from each table. These tables represent the core of
our database, though we have added other tables through time to accom-
modate new data. For example, we store the identifiers assigned by public
databases and additional sample metadata provided by the Swiss Federal
Office for Public Health (FOPH).

4.3 new tools

State-of-the art computational tools are also likely to change or are even
being newly developed over the course of a public health response. This is
exemplified in the COVID-19 pandemic by evolving nomenclature systems.
Lineage assignment tools were frequently updated to keep up with nomen-
clature changes as new lineages arose. For example, the popular pangolin
software for assigning SARS-CoV-2 genome sequences to global lineages
has 75 releases since its development in April 2020 (O’Toole et al., 2021).

1 https://www.postgresql.org/

https://www.postgresql.org/
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Sample No.    Plate No.    Well   Seq. No.
1            A1     1

1            A2     2

1            A3     3

1            B1     4

test_plate_sequence_mapping

Seq. No.   Sequence

4

3

2

1 TCTTTG
ACTTCG
TCTTCG
NNTTCG

sequence

Plate No.  Seq. lab
1         GFB

2         GFB

3         FGCZ

4         H2030

plate

Sample No.  City

Basel

Basel

Zurich

test

FASTA

Figure 4.1: An illustration of how three key entities – tests, plates, and se-
quences – are stored in database tables and the mapping table that
links the information from each.

Recommendation: modular analysis workflows

Analysis workflows should be modular, rather than monolithic pipelines.
It should be easy to update one component or swap it out for a different
tool without having to re-run a full suite of analysis programs on the
entire cohort. This modular structure allows individual components to be
adapted or re-used for other pathogens or other projects. For use cases
where software version tracking is especially important, workflow and
software versions can be stored alongside the data in the database.

Example: containerized microservices

A microservices approach separates different tasks performed by different
tools into loosely-coupled programs that operate autonomously, each per-
forming a single, well-defined task. For the S3C, we implemented a growing
set of microservices that import, export, and process data by adding or
extracting data from the database (Figure 4.2). The microservices each
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Database

Lineage
assigner

Data
exporterSequence

importer

Figure 4.2: Containerized microservices operate autonomously to add or extract
data from the database.

have their own code base, and, depending on the task, they are written in
different languages.

We used a containerization technology to deploy these microservices.
This packages software applications together with their dependencies into
single units, called containers. For example, a Pango lineage assigner re-
quires the pangolin tool (O’Toole et al., 2021), a Nextclade importer needs
Nextclade (Aksamentov et al., 2021), and the metadata importer has to
mount a network folder. The services can be written in different program-
ming languages, perhaps even different versions of the same language to
accommodate different dependencies.

Most services act only upon missing data. For example, we have a
Nextclade importer service that runs the Nextclade program and imports
resulting quality scores and mutations. This service queries the database ev-
ery ten minutes and looks for entries in the sequence table where Nextclade
quality scores were previously unpopulated. Other services avoid redun-
dancy by maintaining a database table that stores a state, e.g. filenames
which have already been processed and should not be re-imported. For
example, our metadata importer service operates in this way.

The containerized microservices allow fast adoption of new or updated
tools. Since they are packaged and deployed independently, they can be
started or stopped without impacting other services. The containerization
further serves to isolate each tool and remove dependency conflicts between
tools. Finally, since services only act upon missing data or when a state is
changed, we avoid redundant computation. Another complementary ap-
proach to achieving analysis modularity would be to use scientific workflow
systems, such as Snakemake (Mölder et al., 2021) or Nextflow (Di Tommaso
et al., 2017). These systems can be used together with containerization tech-
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nologies and further simplify tracking of component software versions and
workflow revisions used to generate output files.

4.4 timely reporting

Timely reporting is crucial for an evidence-based public health response.
Turn-around times for SARS-CoV-2 sequences to be made available on
GISAID vary from a few days to a few weeks post-sampling, or more.
Sample transport logistics, sequencing capacities, bioinformatics analysis,
and report preparation all contribute to this turn-around time. Here, we
focus on how to ensure rapid final reporting, as this is the aspect data
managers have the most influence on.

Recommendation: Multiple levels of querying

A data management system needs to support rapid, ad-hoc querying in
addition to generation of regular, stable reports. The prior is necessary for
early outbreak detection and detection of new variants of concern, while the
latter is essential for longer-term monitoring. Ideally, the system should be
able to expose an application programming interface (API) for safe public
data sharing.

Example: Database queries

Relational database systems support querying in several ways, fulfilling
the above design criteria. One way to interact with data in a relational
database is by directly using structured query language (SQL), which is
a high-level and declarative language specifically designed for efficient
querying. In SQL, the user describes (declares) what data should be added
or retrieved, but not exactly how. The language then works behind-the-
scenes to optimize the necessary computations and return the desired
information (Figure 4.3). SQL is widely used by data analysts and does
not require prior programming experience. Graphical user interfaces, for
example DataGrip2, allow users to manually add or modify data and submit
queries. For those who are programmers, popular languages like R and
python have packages like dplyr and pandas that enable reading data from
a database directly into data frames.

2 https://www.jetbrains.com/datagrip/

https://www.jetbrains.com/datagrip/
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select t.sample_no, t.city, p.plate, p.well
from
   test t
   join plate p on t.sample_no = p.sample_no
   join sequence s on p.plate = s.plate and p.well = s.well
   join mutation m on s.sequence_id = m.sequence_id
where
   m.mutation = 'S:N501Y';

Sample No.  City     Plate     Well

100         Basel    1         A1

101         Zurich   1         A2

101         Zurich   1         B1

Figure 4.3: A SQL query that finds the samples with the S:N501Y mutation.

For recurring queries, for instance for regular reporting, the database
enables easy aggregation and reporting using “views”. These are derived
tables that aggregate data from existing tables according to a query. For re-
porting purposes, we created a number of views, for instance a billing view
that contains the number of sequenced and submitted samples per week
and a surveillance view that aggregates per-sample lineage assignment and
mutation information for the Swiss FOPH. These views are automatically
updated with the correction or addition of data. We also have a microservice
that exports the mutation information view on a daily basis to a drop-point
for the Swiss FOPH.

Finally, for monitoring purposes, a relational database can also serve as
the back-end to dashboards or websites. We offer two public-facing websites
to interact with sequencing and case data stored in our database. One is a
dashboard focused on Swiss case data3 and the other enables monitoring
of global SARS-CoV-2 variants4 (Chen et al., 2021).

4.5 discussion

The COVID-19 pandemic has underscored both the utility of genomic
epidemiology for public health response and remaining challenges in sup-
porting related data infrastructure. Here we highlighted three challenges

3 https://ibz-shiny.ethz.ch/covidDashboard/?_inputs_&tab=%22ts%22

4 https://cov-spectrum.org

https://ibz-shiny.ethz.ch/covidDashboard/?_inputs_&tab=%22ts%22
https://cov-spectrum.org
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that were exacerbated by the rapidly changing pandemic situation: unstable
data sources, rapid development of new tools, and the need for timely
reporting. Then, we outlined general design principles to address these
challenges. As an example, we describe the S3C’s implementation of a
relational database and containerized microservices.

These design choices directly enabled genome-based outbreak detection,
monitoring, and public health response in the Swiss SARS-CoV-2 epidemic.
Even before a new variant could be reliably called by lineage classification
tools, we could quickly query Swiss data for mutations characterizing
variants of concern. This enabled us to detect the first instances of the Beta,
Gamma, and Delta variants in Switzerland. Our database also enabled us
to quickly develop two public-facing websites for epidemic monitoring.
Finally, we collaborate with the Swiss FOPH as members of the Swiss
National COVID-19 Science Task Force5 to link genome sequences to patient
metadata. Lineage assignment and mutation data are passed back to the
FOPH to support the health authorities in their pandemic response.

Many labs around the world have developed a data infrastructure for
genomic epidemiology over the course of the COVID-19 pandemic. In
fact, there are over 4000 unique submitting labs in the GISAID EpiCoV
database as of January 2022. Unfortunately, a paucity of published examples
makes it difficult to compare the strengths and weaknesses of various
implementations in light of the challenges outlined by Black et al. (2020);
Bernasconi et al. (2021) and highlighted here. The largest pathogen genome
sequencing consortium in the world is that of COG-UK. Like S3C, they
use a relational database. On top of it, they developed an API and a web
interface for the collaborators to submit and retrieve data (Nicholls et al.,
2021). In comparison, we did not define a fixed metadata or sequence data
format but adapted to the data provided by collaborators. Our aim was to
reduce overhead for our collaborators. However, as data inputs stabilize,
a future improvement would be to develop a more robust procedure for
defining formats and updating data. An improved technical interface for
data upload and correction by sequence submitters like that of COG-UK
would also help.

There are also larger outstanding challenges to developing data infrastruc-
tures for genomic epidemiology. First, genome sequencing efforts are highly
skewed towards high-income countries. In an interconnected world, local
variants and fast epidemic spread are of global concern no matter where
they arise. Expanding the technical and personnel resources for genome se-

5 https://sciencetaskforce.ch

https://sciencetaskforce.ch
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quencing and data management in low and middle-income countries would
enable a better, more coordinated public health response. Second, mistakes
are common - from sequencing errors introducing spurious mutations, to
sample contamination, to metadata errors. SARS-CoV-2 sequences and their
metadata are regularly modified or deleted from public repositories. While
some amount of mistakes are inevitable, better tools for tracking of changes
to sequence data and their metadata would make correcting mistakes easier
and promote reproducible science and transparency. Finally, we need robust
infrastructures for safe linking of patient metadata with genome data. It
can be a challenge to establish standardized, anonymized identifiers at the
relevant scale for national sequencing projects, particularly in countries
with decentralized health care services. Strong partnerships with govern-
ment health ministries will help here, with metadata like vaccination and
hospitalization status being provided to ensure actionable results for public
health response.

In conclusion, generating pathogen genome sequence data and linking
it to case-level metadata facilitates a rapid, evidence-based public health
response to evolving infectious pathogens. Effective and timely generation
of these data in rapidly changing situations relies on robust and agile data
infrastructures, and improvements in the area should be a priority for
pandemic preparedness.
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abstract

Genome sequences from evolving infectious pathogens allow quantifica-
tion of case introductions and local transmission dynamics. We sequenced
11,357 SARS-CoV-2 genomes from Switzerland in 2020 - the 6th largest
effort globally. Using a representative subset of these data, we estimated
viral introductions to Switzerland and their persistence over the course of
2020. We contrast these estimates with simple null models representing
the absence of certain public health measures. We show that Switzerland’s
border closures de-coupled case introductions from incidence in neigh-
boring countries. Under a simple model, we estimate a 94% reduction in
introductions during Switzerland’s strictest border closures. Furthermore,
the Swiss 2020 partial lockdown roughly halved the time for sampled in-
troductions to die out. Finally, we quantified local transmission dynamics
once introductions into Switzerland occurred, using a novel phylodynamic
model. We find that transmission slowed 35 - 63% upon outbreak detection
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in summer 2020, but not in fall. This finding may indicate successful contact
tracing over summer before overburdening in fall. The study highlights the
added value of genome sequencing data for understanding transmission
dynamics.

5.1 introduction

SARS-CoV-2 genomes were collected at an unprecedented scale in 2020

(Munnink et al., 2021) and have been extensively used to characterize trans-
mission dynamics, in particular because genetic data contains information
on the epidemiological relationships between cases. These genomic data
enable the reconstruction of introductions and downstream transmission
chains in the absence of contact tracing data (Kraemer et al., 2019). Where
contact tracing data is available, this approach has been verified and has
additionally helped with linking unassigned individuals to known trans-
mission chains (Rockett et al., 2020; Douglas et al., 2021).

Several methods have been successfully used to reconstruct transmis-
sion dynamics at the onset of the COVID-19 pandemic using genetic data.
Phylogenetic approaches reconstruct pathogen phylogenies and calculate
relevant statistics from them without fitting any further explicit models.
For example, phylogenetic reconstructions were used to show that reduced
lineage size and diversity coincided with national lockdowns during the
early Irish and English epidemics (Mallon et al., 2020; du Plessis et al., 2021).
In Switzerland, Stange et al. (2021) linked regional super-spreading events to
a dominant lineage in the city of Basel using a phylogenetic reconstruction.
Phylodynamic studies, on the other hand, assume the phylogeny arises
from an underlying model of transmission between hosts, possibly includ-
ing additional complexities like migration of hosts between regions. This
assumption enables estimation of population-level transmission dynamics
from pathogen genome data. For example, Miller et al. (2020); Geoghegan
et al. (2020); Müller et al. (2021) showed that public health measures reduced
SARS-CoV-2 transmission rates in Israel, New Zealand, and Washington
State, USA.

New models and careful considerations of potential biases are required to
quantify the effects of different public health measures in different regions.
Here, we developed an analysis framework to quantify the association be-
tween the implementation and lifting of major public health interventions,
such as border closures, lockdown measures, and contact tracing - three
front-line tools in the fight against COVID-19 in 2020 - on transmission
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dynamics. Our framework uses a two-step process that carefully combines
phylogenetic and phylodynamic methods to address potential sampling
biases and phylogenetic uncertainty. Within the Swiss SARS-CoV-2 Sequenc-
ing Consortium (S3C; (S3C, 2021)) we sequenced 11,357 Swiss SARS-CoV-2
genomes until 1 December 2020. After combining these genomes with addi-
tional data available on GISAID (Bogner et al., 2006) and down-sampling
to control for biases in sampling efforts over time and among geographic
regions, we were left with 5,520 Swiss SARS-CoV-2 genomes, representing
up to 5% of weekly confirmed cases in Switzerland. We use these genomes
to characterize transmission dynamics in Switzerland until the emergence
and widespread dissemination of more transmissible variants of concern,
starting in December 2020 (World Health Organization, 2020). Our frame-
work allows us to identify a clear effect of border closures and the spring
2020 partial lockdown on the rate of new introductions to Switzerland
and their persistence. Furthermore, we were able to quantify the degree to
which local transmission slowed upon outbreak detection. We find that this
effect was strongest during summer 2020, when cases were low and contact
tracing efforts likely more effective. To demonstrate the broader applicabil-
ity of our analysis framework, we additionally analyzed data from New
Zealand, where quarantine measures were stricter and local transmission
was extremely limited throughout 2020. In New Zealand, we quantify a
stronger transmission slowdown after outbreak detection, consistent with
contact tracing there being highly effective.

5.2 results

Introductions and their persistence shed light on the effects of border closure and
lockdown

First, we identified putatively independent introductions of SARS-CoV-2
into Switzerland and estimated their persistence. To do this, we selected
SARS-CoV-2 genome sequences corresponding to up to 5% of confirmed
cases each week, stratified to be geographically representative when pos-
sible (Figure 5.4). We divided these sequences by Pango lineage, as these
lineages should represent monophyletic clades in the global SARS-CoV-2
phylogeny (Rambaut et al., 2020). Because of the hierarchical nature of
Pango lineages, we aggregated lineages dominated by Swiss sequences into
their respective parent lineages, allowing us to assume each analyzed lin-
eage originated outside Switzerland (Table 5.1). To provide global context,
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we additionally selected the most genetically similar sequences from abroad
for each lineage. We then constructed an approximate maximum-likelihood
phylogeny for each such lineage of Swiss and genetically similar foreign
sequences. We subsequently identified putatively independent introduc-
tions into Switzerland from these phylogenies, while allowing for a fixed
number of export events. Importantly, we identified two plausible sets of
introductions into Switzerland resulting from two different assumptions
about the ordering of transmission events at polytomies with both Swiss
and non-Swiss descendants. The set of “few” introductions was generated
assuming the majority of polytomic lineages are from within-Switzerland
transmission, whereas the set of “many” introductions was generated as-
suming the majority are new introductions. Sensitivity analyses show these
two polytomy assumptions capture most of the uncertainty in the size and
number of introductions amongst analyzed sequences (Supplementary text
S1; Figure 5.5). Using additional data on which cases were from managed
isolation and quarantine facilities in New Zealand versus identified in the
community, we show that, as expected, the “many introductions” polytomy
assumption is more realistic when the probability of infection abroad is high
compared to the probability of locally acquired infection (Supplementary
text S2). Throughout, we report uncertainty based on the difference between
the few and many introductions sets.

We estimate that the analyzed sequences originate from between 557

(few) and 2284 (many) introductions into Switzerland. These introductions
are roughly power law-distributed in size (Figure 5.6), with the 10 largest
introductions accounting for 16 to 30% of sampled genomes. Introductions
that yielded more than one sampled Swiss case in our dataset tended to be
geographically constrained. Between 64% (few) and 92% (many) of sampled
transmission chains (introductions with >1 sample) were sampled in only
1-2 of the 26 Swiss cantons (Figure 5.7A). As expected, larger introductions
were sampled in more cantons (Figure 5.7B; Pearson’s R between intro-
duction size and number of cantons is 0.86 for many introductions, 0.75

for few introductions). From a down-sampling analysis, we observe that
if we were to include more sequences, we would identify more introduc-
tions (Figure 5.5C). Therefore, the analyzed genomes do not represent all
introductions into Switzerland but, given the samples are spatio-temporally
representative, are a representative subset of introductions. Due to incom-
plete sampling, each sampled introduction contains only a subset of all
cases in the full transmission chain.
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Since we sampled sequences proportionally to confirmed cases through
time (Figure 5.4A; R2 between number of confirmed cases and number of an-
alyzed Swiss sequences each week 0.72), we can assume that trends through
time in the number and persistence of introductions are representative of
the underlying dynamics. Figure 1A shows the number of newly sampled
introductions identified each week from our dataset, which peaked the
week of 15 March under both polytomy assumptions. Switzerland closed
its external borders to Italy 13 March 2020 and with the rest of the world
shortly thereafter (Bradley, 2020). To disentangle the effect of the border
closures versus local control measures, we back-calculated the expected
number of total (both sampled and unsampled) introductions each week
under a birth-death skyline model (Stadler et al., 2013). This calculation
corrects for the probability that an introduction went extinct or remained
unsampled each week until the end of the sampling period, given estimates
of the sampling proportion and the time-varying effective reproductive
number Re in Switzerland. Then, we develop a simple null model that as-
sumes that prior to 13 March 2020, total introductions are a linear function
of case counts in Switzerland’s largest neighboring countries (Italy, France,
Germany, and Austria). Here we are assuming incidence in travelers to
Switzerland follows incidence in the general community in these countries.
Figure 1C shows this model fit to total introduction estimates generated
based on each polytomy assumption and model projections (dashed lines)
from 13 March through the partial re-opening of Switzerland’s European
borders on 15 June 2020 (Bradley, 2020). In the following, we report uncer-
tainty based on the 95% HPD upper and lower bound estimates for Re used
to estimate total introductions. Uncertainty in travel patterns is discussed
later. Compared to the null model, we estimate a reduction of 7,000 (few
introductions; uncertainty 4,500 - 11,000) or 79,000 case introductions (many
introductions; uncertainty 41,000 - 130,000). Despite the high uncertainty in
the absolute number of introductions averted depending on the polytomy
assumption and the precise value of Re in Switzerland, we estimate a con-
sistent percentage-wise reduction of 94.1% (few introductions; uncertainty
85.9 - 97.8%) or 94.2% (many introductions; uncertainty 86.2 - 97.9%). We
note that total European case counts peaked later than in Switzerland’s
neighboring countries while our analysis only considers neighboring coun-
tries. Thus, the period of high import pressure may have extended longer
than we assume, depending on where most introductions were coming
from (Figure 5.8). However, our focus on neighboring countries is supported
by travel statistics. For instance, neighboring countries comprise 99% of
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cross-border working permits granted by Switzerland for the first quarter
of 2020 (approximately 330,000 individuals). These countries also account
for 36% of registered arrivals at Swiss hotels in January and February 2020

(approximately 450,000 individuals) (FSO, 2020). Thus, we assume introduc-
tion dynamics are largely driven by these neighboring countries. However,
our estimates of the precise reduction in imported cases depend strongly
on this assumption.

New introductions cannot sustain an epidemic unless they persist in
the local population. Our analysis suggests several introductions were
quite persistent in Switzerland, including one that may have persisted
across our entire sampling period (Figure 5.9). On average, introductions
persisted 5 days (many introductions; standard deviation 16 days) to 34

days (few introductions; standard deviation 53 days) from the oldest to
the most-recent sample of each introduced lineage in our dataset. Lineage
persistence until last sampling was lower during the partial lockdown (17

March - 27 April; Figures 1B and D) compared to summer 2020. While only
0.5 - 8% of introductions in April were sampled for at least 60 days, this
fraction increased to 12 - 52% in September, just before a large fall wave
in Switzerland. We also developed a simple null model to assess whether
the spring 2020 lockdown measures and associated behavioral changes
affected the persistence of introduced lineages. Here, our null model is
that persistence, measured as the time until introductions circulating each
day are last sampled, does not change through time. We assume this delay
distribution always equals the median persistence calculated over the spring
period (until 15 June). Figure 1D contrasts this null model assumption
with empirical persistence calculated from each day under each polytomy
assumption. The distribution does indeed vary through time, deviating
from the null model. We estimate median persistence of introductions at
the start of the lockdown is less than or around the median calculated
over the whole spring and rises to above this null model threshold in the
post-lockdown period. Quantitatively, introductions persisted roughly twice
as long until last being sampled at a post-lockdown peak around 10 June
compared to at the lockdown start (Figure 1D). We note that under the few
introductions assumption, persistence estimates are upper-bounded by the
end of our sampling period, so the increase in persistence may also be an
underestimate (Figure 1D).
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Figure 5.1: Genome-based estimates of SARS-CoV-2 introductions into Switzer-
land and their persistence. (A) shows the number of newly sampled
introductions identified each week and (B) shows the fraction of
newly sampled introductions each month that persist for at least
60 days from the oldest to the most-recent sample. This persistence
measure is only defined until September because we only consid-
ers sequences obtained until 1 December 2020. Orange and green
correspond to estimates generated under the few and many intro-
ductions polytomy assumptions, respectively. (C) and (D) focus on
dynamics around the Swiss border closure and partial lockdown
periods, which are highlighted with shaded rectangles. (C) shows
estimated total introductions (solid lines) compared to a null model
(dashed lines) where total introductions are a linear function of case
numbers in Switzerland’s neighboring countries. The null model is fit
to the points prior to the border closure, values after that are projec-
tions. Uncertainty bounds for total introductions (error bars) and null
model predictions (colored shaded areas) are based on the 95% upper
and lower HPD bounds for Re when estimating total introductions.
Uncertainty in travel patterns is not shown, see Figure 5.8. (D) shows
the distribution of ongoing persistence for introductions circulating
each day (solid lines), compared to a null model (dashed lines) where
persistence is constant through time (equal to the median calculated
until 15 June). Solid lines are median time to last sampling amongst
introductions newly sampled or still ongoing each day. The shaded
areas show the interquartile range of this persistence distribution.
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Phylodynamic model indicates summer introductions slowed after detection

Next, we investigated local transmission dynamics once SARS-CoV-2 lin-
eages were introduced to Switzerland in more detail. To do this, we quan-
tified time-varying transmission dynamics in Switzerland in a Bayesian
phylodynamic framework. As a base model, we used the birth-death model
with serial sampling originally described in (Stadler, 2010). We modified the
model to condition on the previously identified few or many introductions
sets, i.e., sequences from each introduction have an independent origin. In
a nutshell, the model assumes that once lineages are introduced, they are
(i) transmitted between hosts, according to a time-varying transmission
rate which is the same across all introductions; (ii) die out upon recov-
ery/death of the host, according to a constant becoming-uninfectious rate;
and (iii) yield genome samples with a time-varying sampling proportion
which is the same across all introductions. We assume individuals who
test positive adhere to self-isolation regulations, so sampling corresponds
to a death event for the viral lineage. Under this parameterization, Re is a
function of the transmission rate, becoming-uninfectious rate, and sampling
proportion.

We developed a novel extension to this methodology by adding a trans-
mission rate “damping” factor, as shown in Figure 2. The transmission rate
is allowed to decrease by a multiplicative damping factor two days after an
introduction is first sampled. We use a spike-and-slab prior on this factor to
include the possibility of no transmission slowdown. We allow this damping
factor to vary between spring, summer, and fall 2020 - periods characterized
by very different case numbers and testing regimes in Switzerland (Figure
3A; (of Public Health, 2020)). Using this model, we aim to test whether con-
tact tracing efforts in Switzerland slowed transmission once introductions
were detected. We reason that test-trace-isolate can only slow transmission
from shortly after the first case of an introduction tests positive but not
beforehand, as beforehand the introduction was circulating cryptically. The
two-day delay aims to account for the time between an individual giving a
sample (i.e., being swabbed) and having their contacts notified. Specifically,
this delay consists of the time to RT-PCR results, which was generally below
24 hours in Swiss diagnostic laboratories (Marquis et al., 2021), plus the
time for contact tracers to reach contacts or an individual to receive and
input their positive test code to the SwissCovid contact tracing app. We fit
the phylodynamic model in several configurations: conditioning on either
the many or few introductions set, using a bounded or an unbounded sam-
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pling proportion prior (see Supplementary text S3), and with or without a
transmission damping factor.

Across these model configurations, we recover roughly the same trends in
Re as estimates based on confirmed case numbers beginning with the first
analyzed sequence from 27 February (Figure 5.10B). Compared to confirmed
case-based estimates, we estimate a sharper decline in Re coinciding with
lockdown measures. Depending on the polytomy assumption, we estimate
Re was 2.2 (many introductions; 95% HPD 1.5 - 2.9) or 3.5 (few introductions;
95% HPD 2.9 - 4.2) in the week of 9 March. Re fell to 0.3 (many introductions;
95% HPD 0.2 - 0.4) or 0.4 (few introductions; 95% HPD 0.2 - 0.6) in the
week of 16 March 2020 (posterior median estimates with no damping factor
and an unbounded sampling proportion prior). With a bounded sampling
proportion, peak Re estimates are slightly higher (Figure 5.10). Results in
fall 2020 are highly dependent on the sampling proportion prior, where Re
estimates better match confirmed case-based estimates when the sampling
proportion is treated as a fitting parameter (i.e., with an unbounded prior,
resulting in unrealistic estimates of the sampling proportion; see Figure
5.10A).
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Figure 5.2: Illustration of how transmission rate damping is modeled. (A)
shows a background Swiss-wide time-varying effective reproductive
number Re before any damping. Here we show the median posterior
result from the model applied to the many introductions data as an
illustration. In each of the colored areas (green = spring, orange =
summer, and purple = fall), a different damping factor is proposed.
The black boxes in (A) highlight the spread of two real introductions
(B) and (C) generated under the many introductions polytomy as-
sumption. The genome data sampled from these introductions are
shown as red dots in (B) and (C). The appropriate damping factor
on Re is applied to each introduction 2 days after the first genome
sample (dashed lines). We used 0.6 for the summer damping factor
and 0.9 for fall for this illustration. The likelihood of the genome
sequence data at the tips of the phylogenies is calculated given the
“applied” Re specific to each introduction (B and C, bottom).

From the model fit with a damping factor, we estimate a 35% (few
introductions; 95% HPD 29 - 41) - 63% (many introductions; 95% HPD
56 - 70) slowdown in transmission after introductions are first sampled in
summer 2020 (posterior median estimates with an unbounded sampling
proportion prior). In comparison, there is little support for a slowdown
effect upon the first sampling during fall 2020 (Figure 3). These results
are qualitatively robust to bounding the sampling proportion prior (Figure
5.11). In contrast, damping factor estimates in spring 2020 are inconsistent,
depending on the polytomy assumption. Low genomic diversity in SARS-
CoV-2 during this period causes high phylogenetic uncertainty ((Morel
et al., 2021); see also the differences in several selected introductions in
Figure 5.12). This results in quite different estimates for the damping
factor depending on the polytomy assumption used. In summary, we
report a summer 2020 “slowdown” dynamic in SARS-CoV-2 transmission
in Switzerland, where transmission slows after the first genome in a new
introduction is sampled. This slowdown is not observed in fall 2020.
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Figure 5.3: Phylodynamic estimates for the transmission damping factor in
Switzerland and New Zealand compared to case numbers. Case
numbers in (A) Switzerland and (B) New Zealand during 2020 are
shown as a 7-day rolling average of daily new confirmed cases (ECDC,
2020). (C) and (D) show estimates for if and how much transmission
rates were dampened after introductions were sampled during dif-
ferent time periods in (C) Switzerland and (D) New Zealand. The
inference was done twice, once conditioning on introductions iden-
tified assuming many introductions (light gray) and once assuming
few introductions (dark gray). Thus, the difference between estimates
in light and dark gray are due to phylogenetic uncertainty. Results
shown are from the model with an unbounded sampling proportion
prior, results with a bounded sampling proportion prior are similar
(Figure 5.11).

New Zealand data shows slowdown effect is not Switzerland-specific

While Switzerland is centrally located in Europe and well-connected to
other countries, especially those in the (normally) barrier-free Schengen
zone, New Zealand is a relatively isolated island nation. Additionally,
New Zealand aimed to eradicate SARS-CoV-2 throughout 2020 using strong
measures, such as keeping its borders closed and enforcing strict quarantine-
on-arrival (New Zealand Government, 2020), while Switzerland partially
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reopened its borders to Europe on 15 June. We applied the same analy-
sis framework for introduction estimation and phylodynamic inference
to SARS-CoV-2 sequences from New Zealand as a comparison to our
Switzerland-specific results. For the phylodynamic analysis, we estimated
independent damping factors before and after an epidemic breakpoint in
mid-May 2020 when local transmission was briefly eradicated (Geoghegan
et al., 2020, 2021). Case numbers were subsequently held at lower levels
through December 2020 (Figure 3B, (Geoghegan et al., 2021)).

From the model fit with a damping factor, we estimate transmission
damping in New Zealand before and after 15 May to be comparable with
or stronger than in Switzerland during summer and fall 2020 (Figure 3D),
regardless of the polytomy assumption used. Thus, the existence of a
transmission damping effect is not specific to Switzerland. From the model
fit without a damping factor, our estimates for the sampling proportion and
Re are inconsistent. In particular, the sampling proportion is estimated to be
unrealistically high when conditioning on the many introductions data set.
However, including the damping factor in the model reconciles estimates
based on each polytomy assumption, yielding more realistic estimates for
the sampling proportion and pre-damping Re (Figure 5.13).

5.3 discussion

We quantify the change in cross-border and local transmission dynamics
with the introduction or lifting of major public health measures in Switzer-
land based on genome sequence data. First, we quantify the reduction
in case introductions during the period of Switzerland’s strictest border
closures. Travel from Italy was tightly restricted beginning 13 March and
with the rest of the world beginning 16 March 2020. These measures were
partially lifted on 15 June, when Switzerland re-opened to European coun-
tries in the Schengen zone (Bradley, 2020). We used phylogenetic estimates
for the number and timing of viral introductions into Switzerland to show
that newly sampled introductions peaked during the week of 15 March,
coinciding with the implementation of border closures. Due to many iden-
tical or near-identical SARS-CoV-2 lineages circulating widely in Europe
during spring 2020, the total number of introductions to Switzerland is
highly uncertain. We considered two extreme cases, encompassing most of
the phylogenetic uncertainty in the size and number of introductions. We
additionally corrected these estimates based on the time-varying probabil-
ity that an introduction went unsampled. After disentangling the effect of
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border closures and local control measures in this way, we show that border
closures de-coupled introduction dynamics from case counts in neighboring
countries. Compared to a simple null model assuming that the incidence in
travelers corresponds to the incidence in Switzerland’s neighboring coun-
tries, we quantify a 94% reduction in case imports from 13 March - 15 June.
While the de-coupling of case introductions and incidence in neighboring
countries is clear, our estimates for precisely how many and what fraction
of introductions were averted are subject to several strong assumptions,
namely that incidence in travelers is the same as the average in the different
source populations, and that the majority of imported cases would have
come from Switzerland’s neighboring countries. Finally, we note that the
fraction of polytomic lineages that were independent introductions likely
decreased throughout spring 2020 as local incidence rose, travel declined,
and the probability of locally acquired infection rose (Supplemental text
S2). We expect the truth to lie somewhere between the estimates generated
under our two polytomy assumptions.

Second, we quantify the reduction in local transmission during Switzer-
land’s partial lockdown in spring 2020 compared to the pre- and post-
lockdown time period. A suite of lockdown measures, including closure
of schools, non-essential shops, restaurants, and entertainment and leisure
establishments was introduced on 17 March 2020. Many non-essential shops
re-opened on 27 April, before schools and most other shops reopened on
11 May (The Swiss Federal Council, 2020). We estimate that sampled intro-
ductions circulating on 17 March persisted only about half as long until
last sampling as in mid-June. We also estimate that only 0.5 - 8% of newly
sampled introductions in April persisted more than 60 days until last being
sampled, compared to 12 - 52% in September. These findings agree with pre-
vious findings (Ladoy et al., 2021), which demonstrated a reduction in the
number of transmission clusters and the risk of transmission within clusters
in the Canton of Vaud, Switzerland after the implementation of lockdown
measures. Finally, we obtained genome-based estimates for the time-varying
effective reproductive number Re in 2020 from our phylodynamic model.
We estimate that Re dropped from 2.2 - 3.5 the week of 9 March to 0.3 - 0.4
the week of 16 March, coinciding with lockdown measures. Two models
fit to hospitalization and death (Lemaitre et al., 2020) and confirmed case
(Huisman et al., 2021) data in Switzerland gave similar or slightly lower
pre-lockdown Re estimates of 2.1 - 3.8 and 1.6 - 1.9, respectively, and similar
or slightly higher post-lockdown Re estimates of 0.3 - 0.6 and 0.6 - 0.8 after
29 March, respectively. Our phylodynamic estimates, which account for an
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influx of introduced cases, suggest a sharper reduction in Re coinciding
with the Swiss lockdown than these estimates based on epidemiological
data. This could be due to accounting for imported cases or the case-count
smoothing used by Lemaitre et al. (2020); Huisman et al. (2021).

Finally, we quantified a summertime “slowdown” dynamic in Switzer-
land in which introductions initially spread faster, then slowed 35 - 63%.
This dynamic was not observable in fall 2020 in Switzerland. A plausible
explanation of this dynamic is a successful test-trace-isolate implementa-
tion that roughly halved transmissions once an introduction was identified
during summer 2020 in Switzerland. We cannot make a statement about
the relative speed of transmission chains pre- and post- first sampling in
spring 2020. This is because many lineages are ambiguous as to whether
they were imported and died out quickly, or resulted in extensive, ongoing
local transmission. Therefore, conditioning the birth-death phylodynamic
model on few or many introductions during this period yields very different
results. For the damping factor analysis, we make the strong assumption
that transmission in all lineages descending from an introduction slows
simultaneously 2 days after the first genome sample belonging to the in-
troduction is collected. This may be justified if efficient informal backward
contact tracing occurred or if individuals in sister lineages were identified
around the same time but their samples were not sequenced or not included
in our analysis. Then, there are other possible explanatory factors at play.
First, travelers returning to Switzerland during summer 2020 have been
implicated in transmitting more than non-travelers (Hodcroft et al., 2021).
Thus, a passive transmission slowdown might have happened as introduced
lineages moved into the non-traveler population. We would expect travelers
in fall to have similar contact networks as those in summer, but we do not
quantify a transmission slowdown in Switzerland in fall. This coincides
with high case numbers during a fall wave, when Swiss contact tracing was
reported to be overburdened (SWI, 2020). Second, contacts of positive cases
are likely tested more intensely, potentially yielding “bursts” of samples
around the first detected cases that subsequently disappear. If so, we can
still interpret the slowdown dynamic as evidence that test-trace-isolate
implementation was working, but it is difficult to determine precisely by
how much transmission actually slowed.

International comparisons also lend perspective to the transmission slow-
down effect we quantify from Swiss genome data. Using the same analysis
framework, we quantified a significant slowdown effect in New Zealand
during two different time periods. Thus, this slowdown effect is not unique



5.4 materials and methods 129

to Switzerland in summer 2020. Importantly, Douglas et al. (2021) showed
- using genome sequence data - that New Zealand contact tracing was
highly effective in identifying SARS-CoV-2 infection clusters. Then, Fetzer
and Graeber (2021) exploited an accidental, partial breakdown of English
contact tracing to show that normal contact tracing in early fall 2020 re-
duced transmissions by 63% in the 6 weeks following a positive case. This
measure is within the range of our estimates for a transmission slowdown
in Switzerland in summer 2020.

Together, our results quantify the reduction of case importation and
local transmission in Switzerland during the spring 2020 partial lockdown
and partial border closure periods. Further, we provide genome-based
quantification of a summertime transmission slowdown in Switzerland
that may be linked to successful contact tracing efforts. This slowdown
is not observed in fall when contact tracing efforts were overwhelmed in
Switzerland but is observed in data from New Zealand in 2020. We have
shown that our inference framework is straightforward to apply to different
datasets and produces quantitative estimates that we envision can help
policy-makers weigh general and specific measures against the respective
burdens they impose.

5.4 materials and methods

Genomic surveillance by the Swiss SARS-CoV-2 Sequencing Consortium in 2020

Altogether 11,357 SARS-CoV-2 genome sequences sampled in Switzer-
land during 2020 were generated by the Swiss SARS-CoV-2 Sequencing
Consortium (S3C, 2021). This sequencing effort represents the majority
(79%) of Swiss SARS-CoV-2 genome sequences collected in 2020 and rep-
resents the 6th largest contribution of SARS-CoV-2 sequences globally
in 2020 (Table 5.2, based on data available on GISAID as of June 2022

(https://www.gisaid.org/; (Bogner et al., 2006)). Here, we briefly describe
how these samples were generated.

RNA extracts from qPCR-positive patient nasal or oropharyngeal swabs
were provided by Viollier AG, a Swiss medical diagnostics company. RNA
was extracted using either the Abbott m2000sp or Seegene STARMag 96x4

Universal Cartridge kits. Extracts were then transferred to the Genomics
Facility Basel or the Functional Genomics Center Zurich for whole-genome
sequencing. Both centers used the ARTIC v3 primer scheme (ARTIC Net-
work, 2020) to generate tiled, approximately 400bp-long amplicons. Li-

https://www.gisaid.org/
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brary preparation was done with the New England Biolabs (NEB) library
preparation kit. Libraries were sequenced on Illumina MiSeq or NovaSeq
machines, resulting in 2 × 251 basepair reads. Bioinformatics processing
was performed using V-pipe (Posada-Céspedes et al., 2021), including read
trimming and filtering with PRINSEQ (Schmieder and Edwards, 2011),
alignment to GenBank accession MN908947 (Wu et al., 2020) with bwa (Li
and Durbin, 2009), and consensus base calling. Positions with <5x coverage
were masked, positions with >5% and >2 reads supporting a minor base
were called with IUPAC ambiguity codes, and positions with >50% reads
supporting a deletion were called as a deletion. We rejected samples with
<20,000 non-N bases. The consensus sequences are available in the Global
Initiative on Sharing Avian Influenza Data (GISAID) repository (Bogner
et al., 2006)) under submitting lab “Department of Biosystems Science and
Engineering, ETH Zürich”.

Dataset construction and sampling procedure

From all sequences available on GISAID (accessed 31 May 2021), we filtered
the collection date to on or before 1 December 2020, removed non-human
sequences, and sequences <27,000 bases long. We also filtered sequences
flagged by the Nextclade tool (Aksamentov et al., 2021) for suspiciously
clustered SNPs (QC SNP clusters status metric not “good”; >= 6 mutations
in 100 bases), too many private mutations (QC private mutations status
metric not “good”; >= 10 mutations from the nearest tree node), or overall
bad quality (Nextclade QC overall status “bad”). We aligned sequences to
the reference genome MN908947.3 using MAFFT (38). Finally, we followed
the Nextstrain pipeline’s recommendation to mask the first 100 and last
50 sites of the alignment (Nextstrain, 2020b) since the start and end of
SARS-CoV-2 sequences are prone to sequencing errors (De Maio et al.,
2020).

From all available Swiss sequences, we sampled up to 5% of confirmed
case counts in each Swiss canton each week until 1 December 2020. Con-
firmed case data was provided by the Swiss Federal Office of Public Health
(now available on https://www.covid19.admin.ch) (Figure 5.4). At the time
of data access, cases were only attributed at the cantonal level beginning
in mid-May. Before then, we sampled randomly from across Switzerland.
Where not enough sequences were available from a canton in a week,
we used all available sequences. To reduce the size of the alignments for
phylogenetic analysis, we divided the focal Swiss set into Pango lineages

https://www.covid19.admin.ch
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(Rambaut et al., 2020), similar to Müller et al. (2021). Lineages composed
of >50% Swiss sequences were aggregated into their parent lineage(s) un-
til <= 50% were Swiss. This aims to ensure that each analyzed lineage
originated outside of Switzerland. Table 5.1 lists the analyzed aggregated
lineages and the number of sequences per lineage.

We then added the most genetically similar sequences from abroad to
each lineage alignment to add a global context. This aims to help distin-
guish between SARS-CoV-2 variants unique to Switzerland (likely within-
Switzerland transmission) and variants also circulating abroad (possibly
recent introductions or exports). We considered all non-Swiss sequences
from each lineage available on GISAID that pass the quality filtering steps
detailed above and applied the Nextstrain priority script (Nextstrain, 2020b)
to rank these sequences by their genetic similarity to Swiss sequences in
each lineage alignment. Briefly, the priority script ranks a set of foreign con-
text sequences by the Hamming distance to their nearest neighbor within a
set of focal sequences. Context sequences are further penalized for having
high numbers of masked positions or for being more distant neighbors of
the same focal sequence. We selected twice as many context sequences as
focal Swiss sequences for each analyzed lineage alignment. Our results are
based on a final set of 5,520 focal sequences from Switzerland and 11,009

genetically similar sequences from abroad, which were divided into 148

lineage alignments (Table 5.1).

Phylogenetic analysis

We estimated an approximate maximum likelihood phylogeny for each
lineage alignment using IQ-TREE (Nguyen et al., 2014) under an HKY
substitution model (Hasegawa et al., 1985) with empirical base frequencies
and four gamma rate categories to account for site-to-site heterogeneity
(Yang, 1994). We added one of the earliest collected SARS-CoV-2 genomes
Wuhan/WH01/2019 (GISAID strain EPI_ISL_406798, GenBank accession
MT019529.1) as an outgroup for rooting to each alignment and estimated
branch lengths in calendar time units using least-squares dating (LSD) (To
et al., 2016) implemented in IQ-TREE. We used a strict molecular clock
and a minimum mutation rate of 8 × 10−4 substitutions per site per year
(s/s/y), based on estimates by Nextstrain (45). We constrained the most-
recent common ancestor to be between 15 November and 24 December
2019, also based on estimates by Nextstrain (Nextstrain, 2020a), and set
the minimum branch length to zero. Sequences that violated the strict
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clock assumption (Z-score threshold > 3) were removed and near-zero
length branches (< 1.7 × 10−5 substitutions per site) were collapsed into
polytomies, reflecting the fact that the sequence data alone is not sufficient
to resolve the ordering of these transmission events. Given the root date
constraints, the mutation rate conformed to the lower bound of 8 × 10−4

with extremely narrow confidence intervals. After removal of sequences
violating the strict clock assumption, 5,452 sequences remained across all
lineage trees.

Identifying introductions

We identified putative Swiss transmission chains (collections of two or more
genome sequences resulting from within-Switzerland transmissions) from
each lineage tree while allowing for a fixed number of export events. We
used the following criteria applied on a recursive tip-to-root tree traversal:
at least two Swiss sequences are part of a clade in the tree and the subtree
spanned by these Swiss sequences is monophyletic upon removing (a) up to
three export events where (b) only one export event may occur along each
internal branch. Exports are clades containing non-Swiss sequences. We
chose a conservative value for (b) while still allowing some exports and note
that the number of inferred transmission chains is robust to different values
for (a) given (b) (Figure 5.5A). We assume the identified transmission chains
and remaining singleton Swiss sequences each represent an independent
introduction into Switzerland.

We repeated this procedure twice for each lineage tree, making different
assumptions upon reaching a polytomy where non-Swiss descendent(s) of
the polytomy would cause the proposed introduction to violate criterion
(a). First, we split all Swiss clades descending from the polytomy into
independent introductions. The second time, we aggregated descendent
Swiss clades, going in descending size order, into a single introduction. If
in doing this we reached criterion (a), we continued aggregating descen-
dants into a second introduction, and so on. The above procedures are
heuristic, but analogous to the ACCTRAN (accelerated transformations)
and DELTRAN (delayed transformations) methods for assigning charac-
ter transformations when multiple scenarios are equally parsimonious
(Miyakawa and Narushima, 2004). In summary, we identify introductions
twice, generating estimates that represent two plausible sets of many and
few introductions at polytomies, where sequence data is not informative
about the order of the branching events.
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Uncertainty in identifying introductions

We evaluated the effect of several variables on the number and size of
identified introductions, as discussed in Supplementary text S1. We found
that our two different polytomy assumptions are sufficient to capture most
of the uncertainty in the number and size of introductions due to the specific
heuristic criteria used to identify introductions from a phylogenetic tree
(Figure 5.5A). As expected, increasing the ratio of foreign context to focal
Swiss sequences analyzed identifies more, smaller introductions compared
to a lower ratio. However, our two different polytomy assumptions at a 2:1
ratio are again sufficient to capture most of this uncertainty (Figure 5.5B).

Quantifying the reduction of introductions during the time of border closures

Prior to fitting our null model for introductions through time, we back-
calculated the total number of introductions each week expected under
a birth-death skyline model, as described in the section “Phylodynamic
analysis” below. Under this model, one can calculate the probability x(t)
that a new introduction at time t would have no sampled descendants
by 1 December 2020. This formula is given in Stadler et al. (2013). We
used weekly time bins, taking the median and 95% HPD upper and lower
bounds for Re from our phylogenetic analysis (see below), a constant
sampling proportion of 5% based on our known sampling scheme, and a
constant become-uninfectious rate of 36.5 per year, which corresponds to an
average of 10 days to becoming uninfectious (roughly in line with estimates
provided by the Swiss Federal Office of Public Health (Swiss Federal Office
of Public Health, 2020)). We divided the number of sampled introductions
each week by 1 - x(t), the probability an introduction at the start of the
week would yield a sampled descendant by 1 December 2020. This yields
an estimate for the total number of introductions each week (both sampled
and unsampled), while accounting for varying local transmission dynamics.

Then, we assumed a simple null model in which introductions are a linear
function of case counts in Switzerland’s largest neighboring countries: Italy,
France, Germany, and Austria. We used a 7-day rolling average of case count
data from the European Centre for Disease Prevention and Control (ECDC)
(ECDC, 2020). Further, we considered up to 18 days delay between the
actual introduction event and an introduction being sampled. This is based
on the 8-day lag from importation to first local transmission estimated by
du Plessis et al. (2021) in the U.K. and a 10-day infectious period. We back-



134 swiss measures associated with reduced sars-cov-2 transmission

calculated total introductions as described above for each plausible delay
value using either the median or 95% upper or lower HPD Re estimate from
our phylodynamic analysis (see below). We fit the model independently
to each of these weekly estimates up to 13 March. We selected the delay
yielding the best model fit (lowest root mean squared error using the
median Re estimate) for each set of few or many introductions. These
were 4 and 5 days, respectively. Finally, we projected introductions after
13 March using the fitted model coefficients and ongoing case counts in
the surrounding countries. We did not fit the model to data after border
closures were partially lifted because travel behavior was still affected by
risk of infection, risk of new restrictions being introduced, and ongoing
stay-at-home guidance. This is apparent in data collected by the Swiss
Tourism Federation, which demonstrates a marked drop in overnight stays
by foreign residents in Switzerland from approximately 6.3 million in the
winter season November 2019 - April 2020 to 3.1 million in the summer
season May - October 2020 (STV-FST, 2020). As a sensitivity analysis, we
also fit the model using confirmed cases in all non-Swiss European countries
as defined in the ECDC’s case count data (ECDC, 2020) (Figure 5.8).

Quantifying the reduction of persistence of introductions during the lockdown

We developed a second simple null model to test whether the Swiss partial
lockdown from 17 March to 27 April 2020 coincided with a change in the
persistence of introductions. This null model assumes that in the absence of
measures, introductions circulating on any given day persist equally long.
In other words, introductions die out (are no longer sampled) according
to a delay distribution that is constant through time. For each date, we
calculated the time from that date to the last sample for each introduction
persisting on that date. Singleton introductions are trivially assumed to
persist for 1 day. Then, we report the median and interquartile range of this
delay distribution from each date.

Phylodynamic analysis

After identifying introductions, we performed phylodynamic inference on
them using the BDSKY (birth-death skyline) method (Stadler et al., 2013) in
BEAST2 (Bouckaert et al., 2019). To avoid model mis-specification due to the
more transmissible alpha variant, we analyzed data only until 1 December
2020. We also pruned introductions to only include genomes generated
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by the S3C, as these were explicitly surveillance samples. This left 4,136

genome sequences for phylodynamic analysis. The phylodynamic inference
relies on two main models: a nucleotide substitution model describing
an evolutionary process and a population dynamics model describing a
transmission and sampling process. For the nucleotide substitution model,
we assumed an HKY (Hasegawa et al., 1985) model with four Gamma
rate categories to account for site-to-site rate heterogeneity (Yang, 1994).
We used the default priors for kappa and the scale factor of the Gamma
distribution. We assumed a strict clock with the clock rate fixed to 8 × 10−4

s/s/y, as estimated by (Nextstrain, 2020a).
For the population dynamics model, we used BDSKY (Stadler et al., 2013).

In BDSKY, the identified introductions are the result of a birth-death with
sampling process parameterized by an effective reproductive number, a
becoming-uninfectious rate, and a sampling proportion. As in (Müller et al.,
2021), we inferred these population dynamical parameters jointly from
the different introductions. More concretely, each introduction is assumed
to result from an independent birth-death process having its own origin
time, but sharing all other parameters with the processes associated with
the other introductions. We applied a uniform prior on the time of origin
for each introduction, between 15 February and the oldest sample in the
introduction. This constrains introductions to have an origin no earlier than
15 February, excluding the possibility of introductions and subsequent local
transmission before the date the first confirmed Swiss case was reported
infected abroad in Italy (Keystone-SDA, 2020). After 15 February, our prior
expectation is a uniform rate of introductions through time. We fixed the
become-uninfectious rate to 36.5 per year, as above. We allowed Re to vary
week-to-week, with an Ornstein-Uhlenbeck smoothing prior applied to the
logarithm of this parameter. The stationary distribution is LogNormal(0.8,
0.5) and we applied an Exp(1) hyperprior on the relaxation parameter of
the process. This prior constrains Re to a wide range of reasonable values
(95% range 0.8 - 5.9) and penalizes large changes in Re from week-to-
week. Finally, we allowed the sampling proportion to vary when Swiss
testing or genome sampling regimes changed significantly (Table 5.3). For
our main analysis, we applied a broad LogUniform(10−4, 1) prior on the
sampling proportion, since we do not know how many individuals were
truly infected. Alternatively, we also tried a LogUniform(10−4, 0.05) prior
since we upper-bounded our sampling to 5% of confirmed cases each week
(Supplementary text S3).
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Finally, we added an additional transmission damping factor to the model.
This factor is a multiplicative damping of Re applied to each introduction
from 2 days after the oldest to the most-recent sampling date in the intro-
duction. Since we hypothesized contact tracing was not functioning as well
during periods of high case numbers, we estimated a separate damping
factor for each of three periods: before 15 June 2020 (spring), 15 June to 30

September 2020 (summer), and 30 September to 1 December 2020 (fall). We
used the same uninformative spike and slab prior for the damping factor
in each period, with an inclusion probability of 0.5 and a uniform prior
between 0 and 1, if included.

For each phylodynamic model configuration (bounded and unbounded
sampling proportion prior, with and without the contact tracing damping
factor) and set of introductions (many and few), we ran five independent
MCMC chains. We discarded the first 10% of each chain as burn-in and
combined the remaining samples across the five chains. We evaluated the
effective sample size (ESS) using Tracer (Rambaut et al., 2018) and verified
that the ESS was at least 100 for all inferred parameters.

New Zealand analysis

Genome sequence selection was done as for the Swiss analysis, except that
we down-sampled available sequences from GISAID to 40% of confirmed
case counts each week rather than 5% and we used national case count
numbers rather than stratified by region. Phylogenetic analysis was per-
formed as for the Swiss data. The phylodynamic analysis was also the same,
except that we assumed a constant sampling proportion through time and
for the bounded sampling proportion prior we used a LogUniform(10−4,
0.4) prior to match the down-sampling scheme.
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5.5 supplemental material

Supplementary text

S1: Sensitivity analyses for identifying introductions

Here we describe different sensitivity analyses we performed for the defini-
tion of an introduction.

Criteria for identifying introductions. First, we assessed the sensitivity of
identified introductions to the precise heuristic definition of an introduction.
We began with the same lineage-specific phylogenetic trees generated for
the main analysis. Then, we re-identified introductions from these trees
while varying (a) the maximum number of export events allowed from each
introduction and (b) the maximum number of consecutive export events
allowed to occur along each single internal branch. Figure 5.5A shows that
increasing (a) yields fewer, larger introductions. Increasing (b) for each level
of (a) has a negligible effect. However, the greatest differences come from
the different assumptions about how to resolve polytomies before applying
these heuristics. Increasing (a) from 1 to 4 yields approximately 25% fewer
introductions, while resolving polytomies such that Swiss descendants
cluster together yields approximately 75% fewer introductions (Figure
5.5A). We chose to present results using an introduction definition based
on (a) a maximum of three exported lineages and (b) a maximum one
consecutive export on each internal branch. This allows for some exports
from Swiss introductions but not arbitrarily many. We rely on our different
polytomy assumptions to capture most of the uncertainty in the number
and size of introductions.

Ratio of foreign context to focal Swiss sequences analyzed. Next, we assessed
the sensitivity of identified introductions to the sequence set analyzed. We
re-sampled sequences to analyze three times, each time taking a number
of Swiss sequences corresponding to up to 5% of confirmed cases each
week. Then we sampled foreign context sequences at a 1:1, 2:1, and 3:1 ratio
to the Swiss sequences. Figure 5.5B shows that as we add foreign context
sequences, we identify more numerous, smaller introductions. However,
the greatest differences come from the different assumptions about how to
resolve polytomies (few vs. many introductions), not the ratio of foreign
context to focal Swiss sequences. Therefore, we chose to present results
using the 2:1 ratio to balance speed (smaller dataset = faster tree search
convergence) and information content (larger dataset = more introductions
represented).
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Number of focal Swiss sequences analyzed. Finally, we assessed whether
the number of identified introductions saturates as we add more Swiss
sequences. To do this, we sub-sampled the Swiss genome sequences used
in our main analysis to 20, 40, 60, and 80% of the full set of sequences
analyzed, pruning the not-included Swiss sequences from the phylogenetic
trees generated for the main analysis. Then, we calculated the number of
introductions we would have identified on the pruned trees. We performed
the random sub-sampling and pruning 50 times for each sub-sampling level.
Figure 5.5C shows that as we approach the number of Swiss sequences
used in the main analysis, we do not reach saturation. Therefore, if we were
to include even more sequences, we would identify more introductions.

S2: New Zealand validation data

For New Zealand, the sequence submitters provided additional information
on which samples were from cases in managed isolation and quarantine
(MIQ) facilities versus the broader community. This allows us to partially
evaluate our introduction identification methods. 117 of the 1234 analyzed
focal sequences in the New Zealand analysis originated from MIQ facilities.
63 (54%) of these were singletons under the “many introductions” polytomy
assumption versus 37 (32%) under the “few introductions” assumption.
44 (38%) or 37 (32%) were plausible within-MIQ outbreaks. These were
identified as introductions with cases all from a single region and all
MIQ. They may represent groups of individuals quarantining together or
infected in the same source location. These outbreaks included, on average, 3

samples spanning 5 days (many introductions) or 2 samples spanning 9 days
(few introductions). The remaining 10 (9%) or 43 (37%) of MIQ sequences
were in introductions including community cases or including cases in
multiple MIQ facilities in different regions, which we deem unrealistic.
These results support that the “many introductions” polytomy assumption
is more realistic when the probability of infection abroad is high compared
to the probability of locally acquired infection.

S3: Sensitivity analyses for phylodynamic modeling

Here we describe a sensitivity analysis and some example intermediate
outputs from our phylodynamic analysis.

Sampling proportion prior. We repeated our analyses using two differ-
ent priors on the sampling proportion. The first, unbounded prior was
LogUniform(10−4, 1). This broad prior allows the sampling proportion to
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assume any value. The second, bounded prior was LogUniform(10−4, 0.05).
This narrower prior is motivated by our 5% down-sampling based on con-
firmed case numbers. Figure 5.10A shows that in Switzerland, the estimated
sampling proportion in late fall 2020 varies greatly depending on the prior.
The rise in prevalence of lineage B.1.177 during this period (Hodcroft et al.,
2020), representing a drop in SARS-CoV-2 diversity in Switzerland, might
explain why the inference under the broader sampling prior estimates a
proportion corresponding to fewer individuals than we know were infected
during this time. Figure 5.10B shows that the effective reproductive number
estimates in fall 2020 for Switzerland more closely match estimates based
on confirmed case data when the sampling proportion is treated as a fitting
parameter, i.e., under the first, broad prior. Therefore, we report results un-
der this prior in the main text. In Figure 5.11A, we show that the damping
factor results are qualitatively similar between the two sampling proportion
priors. For the New Zealand analysis, Re estimates are not affected by
bounding the sampling proportion or not (Figure 5.13).

Logged trees. Finally, we visually inspected phylogenetic trees for a few
introductions. These trees were sampled and logged by the Markov chains in
the phylodynamic analyses. Note that the damping factor results are jointly
inferred from all the branching events across introductions in each time
period. For each set of model assumptions and each month, we inspected
maximum clade credibility summary trees for the 50th and 95th percentile
largest introductions that were first sampled that month and eventually
yielded >2 samples. Figure 5.12 shows as an example summary trees for
these introductions from one of the MCMC chains in the phylodynamic
analysis for Switzerland with damping factors and an unbounded sampling
proportion prior.
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Figure 5.4: Number of analyzed sequences compared to confirmed case counts
each week for (A) all of Switzerland and (B) stratified by canton
after the week of 18 May 2020, when case count data is also stratified
by canton. The best-fit line in (A) has an R2 value of 0.72. Week 0

corresponds to the start of sampling with the first sequence from
Switzerland collected on 24 February 2020. Facet names in (B) are
standard abbreviations for Swiss cantons.
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Figure 5.5: Sensitivity analyses showing how summary statistics on the num-
ber and size of identified Swiss introductions change depending
on the definition of an introduction. See Supplementary text S1 for
details of the sensitivity analyses. (A) shows sensitivity to the heuris-
tic thresholds used to define an introduction based on the lineage
phylogenies, (B) shows sensitivity to the ratio of foreign context to
focal sequences analyzed, and (C) shows sensitivity to the number
of focal sequences analyzed. All statistics were generated under two
different polytomy assumptions giving rise to either few or many
introductions. Boxplots in (A) and (B) are for 3 randomly drawn
datasets, boxplots in (C) are for 50 random sub-samples from the
same dataset. Shaded yellow rectangles highlight values used for the
main analysis.
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Figure 5.6: Size distribution of estimated Swiss introductions.
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Figure 5.7: Geographic distribution of Swiss introductions estimated under
each polytomy assumption. (A) shows that most transmission chains
were sampled in only one or two cantons. (B) shows that larger
introductions were sampled in more Swiss cantons. Points show the
mean number of cantons and error bars show the standard deviation
in the number of cantons. Labels given the number of introductions
in each size bin under each polytomy assumption.
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Figure 5.8: Sensitivity analysis for modeling Swiss introductions. Estimated to-
tal introductions i.e., introductions scaled to account for time-varying
sampling proportion (solid lines) are compared to a null model
(dashed lines) where total introductions are a linear function of case
numbers in all non-Swiss European countries, as defined in the Eu-
ropean Centre for Disease Control (ECDC)’s case count data (ECDC,
2020). The null model is fit to the points prior to the border closure
on 13 March (highlighted with shaded rectangle), values after that are
a model prediction. Uncertainty bounds for total introductions (error
bars) and null model predictions (colored shaded areas) are based on
the 95% upper and lower HPD bounds for Re when estimating total
introductions. The orange and green colors correspond to estimates
generated under our few and many introductions polytomy assump-
tions, respectively.
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Figure 5.9: Heatmap of the number of newly sampled introductions in Switzer-
land each month (diagonal entries) and the number continuing to
persist into each following month (off-diagonal entries). Introduc-
tions are counted once in the month they are first sampled (“Month
of first sampling”) and one every following month (“Month of on-
going sampling”) until the date of the latest sample. Estimates were
generated under two different polytomy assumptions giving rise to
either few or many introductions. Ranges are: few-many.
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Figure 5.10: Phylodynamic estimates for (A) the sampling proportion and (B)
the time-varying effective reproductive number Re in Switzerland.
The dashed line in (A) shows the sampling proportion prior’s upper
bound, if applicable. Re estimates in (B) are overlaid with estimates
based on confirmed case count data (Huisman et al., 2021) in gray.
Additionally, Re estimates from the models with a damping factor
(pink) are the “baseline” Re before introduction-specific damping
(i.e., before application of a damping factor once introductions are
older than 2-days post sampling).
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Figure 5.11: Phylodynamic estimates for the damping factor in (A) Switzerland
and (B) New Zealand in different time periods, conditioned on in-
troductions estimated under two different polytomy assumptions
giving rise to either few or many introductions.
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Figure 5.12: A selection of maximum clade credibility summary trees from one
of the MCMC chains in the phylodynamic analysis for Switzerland
with damping factors and an unbounded sampling proportion
prior. Here we show the 50th and 95th percentile introduction by
size each month Mar - Nov 2020. Months are abbreviated by their
number. (A) shows trees from the analysis conditioned on many
introductions and (B) conditioned on few introductions. The three
different color regions represent the spring (green), summer (orange)
and fall (blue) periods. Vertical dashed lines show when the damping
factor applies for each introduction - two days after the first sample
date. Red bars show the 95% highest posterior density uncertainty
in node dates.
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Figure 5.13: Phylodynamic estimates for (A) the sampling proportion and
(B) the time-varying effective reproductive number Re in New
Zealand. The dashed line in (A) shows the sampling proportion
priors upper bound, if applicable. Re estimates in (B) are overlaid
with estimates based on confirmed case count data (28) in gray.
Additionally, Re estimates from the models with a damping factor
(pink) are the “baseline” Re before introduction-specific damping
(i.e. before application of a damping factor once introductions are
older than 2-days post sampling).
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Table 5.1: Summary of Pango lineages analyzed. If more than 50% of the samples
from a lineage in the full, quality-filtered dataset were Swiss, we
aggregated them into the parent lineage. The percentage of Swiss
samples in the final, aggregated lineage sets are given in column
“% lineage Swiss”. Lineage aliases were also aggregated with their
extended-form names. A separate phylogeny was constructed for each
lineage analyzed.

Lineage
analyzed No. Swiss

samples
analyzed

Lineages
aggregated %

lineage
Swiss

B.1.160 1347 B.1.160, B.1.160.10, B.1.160.11,
B.1.160.12, B.1.160.14, B.1.160.15,

B.1.160.16, AB, B.1.160.19,
B.1.160.20, B.1.160.22, B.1.160.26,
B.1.160.29, B.1.160.30, B.1.160.31,

B.1.160.32, B.1.160.9,
B.1.160.16.1, AB.1

19.00

B.1.177 1260 B.1.177, B.1.177.23, B.1.177.28,
B.1.177.43, B.1.177.44, B.1.177.71

4.80

B.1 930 B.1, B.1.214.2 2.20

B.1.1 655 B.1.1, B.1.1.144, B.1.1.327,
B.1.1.39, AQ, B.1.1.524

3.10

B.1.221 176 B.1.221 8.10

B.1.1.70 108 B.1.1.70, AP 15.00

B.1.416.1 105 B.1.416.1 45.00

B.1.258 101 B.1.258 4.40

B.1.367 60 B.1.367 10.00

B.1.236 59 B.1.236 33.00

B.1.1.1.35 53 B.1.1.1.35, C.35 13.00

B.1.36.1 47 B.1.36.1 35.00

B.1.128 31 B.1.128 3.30

B.1.93 31 B.1.93 3.30

B.1.1.277 27 B.1.1.277, K 5.80
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B.1.1.47 24 B.1.1.47 32.00

B.1.1.269 19 B.1.1.269 5.00

B.1.1.1.36 16 B.1.1.1.36, C.36, B.1.1.1.36.2,
C.36.2

9.30

B.1.1.10 16 B.1.1.10, L 2.70

B.1.1.7 16 B.1.1.7, Q 0.85

B.1.1.1 15 B.1.1.1, C, B.1.1.1.5, C.5 0.86

B.1.1.189 15 B.1.1.189 12.00

B.1.146 15 B.1.146 30.00

B.1.1.232 14 B.1.1.232, AK 3.10

B 11 B 0.44

B.1.1.153 11 B.1.1.153 6.50

B.1.1.305 11 B.1.1.305, AF, B.1.1.305.1, AF.1 8.40

B.1.1.372 11 B.1.1.372 0.95

B.1.177.75 11 B.1.177.75 12.00

B.1.177.77 11 B.1.177.77 6.10

B.1.1.200.1 10 B.1.1.200.1, AN.1 33.00

B.1.147 10 B.1.147 0.84

B.1.177.81 10 B.1.177.81 1.80

B.1.1.37 9 B.1.1.37 0.42

B.1.177.33 8 B.1.177.33 4.50

B.1.36 8 B.1.36 0.80

B.1.509 8 B.1.509 2.30

B.1.1.433 7 B.1.1.433 7.80

B.1.1.521 7 B.1.1.521 19.00

B.1.36.17 7 B.1.36.17 1.20

B.1.8 7 B.1.8 1.80

B.1.91 7 B.1.91 1.60

B.1.177.51 6 B.1.177.51 20.00

B.1.258.17 6 B.1.258.17 1.40

B.1.467 6 B.1.467 33.00

B.1.1.242 5 B.1.1.242 35.00



160 bibliography

B.1.1.58 5 B.1.1.58 14.00

B.1.177.83 5 B.1.177.83 7.80

B.1.177.85 5 B.1.177.85 11.00

B.1.535 5 B.1.535 0.59

B.40 5 B.40 0.23

B.1.1.218 4 B.1.1.218 5.20

B.1.1.241 4 B.1.1.241, AH 4.20

B.1.1.428 4 B.1.1.428 50.00

B.1.1.464 4 B.1.1.464, AW 1.20

B.1.258.14 4 B.1.258.14 11.00

B.1.356 4 B.1.356 0.82

A 3 A 0.15

B.1.1.170 3 B.1.1.170 2.60

B.1.1.231.1 3 B.1.1.231.1, AL.1 0.34

B.1.1.297 3 B.1.1.297, AG 1.90

B.1.1.317 3 B.1.1.317, AS 2.10

B.1.1.371 3 B.1.1.371 6.20

B.1.177.52 3 B.1.177.52, Y 2.80

B.1.177.53 3 B.1.177.53, W 3.60

B.1.389 3 B.1.389 1.50

B.1.474 3 B.1.474 14.00

B.1.480 3 B.1.480 4.30

B.1.9.5 3 B.1.9.5 11.00

B.11 3 B.11 1.80

B.3 3 B.3 0.37

A.2 2 A.2 0.22

B.1.1.219 2 B.1.1.219 1.60

B.1.1.243 2 B.1.1.243 4.20

B.1.1.33 2 B.1.1.33, N 0.11

B.1.1.44 2 B.1.1.44 0.58

B.1.1.50 2 B.1.1.50 1.20

B.1.160.28 2 B.1.160.28 1.40
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B.1.177.15 2 B.1.177.15, AA 0.21

B.1.177.32 2 B.1.177.32 1.10

B.1.177.53.1 2 B.1.177.53.1, W.1 7.70

B.1.177.55 2 B.1.177.55 0.87

B.1.177.60 2 B.1.177.60, U 2.50

B.1.177.62 2 B.1.177.62 6.20

B.1.177.80 2 B.1.177.80 17.00

B.1.177.82 2 B.1.177.82 0.63

B.1.177.86 2 B.1.177.86 2.10

B.1.218 2 B.1.218 6.50

B.1.408 2 B.1.408 3.50

B.1.416 2 B.1.416 0.94

B.1.523 2 B.1.523 0.88

B.1.9.4 2 B.1.9.4 12.00

B.28 2 B.28 0.57

B.4 2 B.4 0.54

B.58 2 B.58 2.20

B.59 2 B.59 1.30

A.5 1 A.5 0.21

B.1.1.1.30 1 B.1.1.1.30, C.30 0.19

B.1.1.142 1 B.1.1.142 6.00

B.1.1.145 1 B.1.1.145 4.50

B.1.1.198 1 B.1.1.198 0.18

B.1.1.221 1 B.1.1.221 1.20

B.1.1.266 1 B.1.1.266 4.90

B.1.1.28 1 B.1.1.28, P 0.07

B.1.1.294 1 B.1.1.294, M 0.28

B.1.1.294.2 1 B.1.1.294.2, M.2 50.00

B.1.1.315 1 B.1.1.315, AD 1.40

B.1.1.331 1 B.1.1.331 2.40

B.1.1.336 1 B.1.1.336 7.10

B.1.1.355 1 B.1.1.355 2.50



162 bibliography

B.1.1.369 1 B.1.1.369 0.05

B.1.1.406 1 B.1.1.406 3.10

B.1.1.409 1 B.1.1.409 0.83

B.1.1.519 1 B.1.1.519 2.60

B.1.1.71 1 B.1.1.71 1.30

B.1.12 1 B.1.12 0.89

B.1.127 1 B.1.127 0.53

B.1.149 1 B.1.149 2.70

B.1.177.31 1 B.1.177.31 50.00

B.1.177.50.1 1 B.1.177.50.1, Z.1 0.50

B.1.177.53.3 1 B.1.177.53.3, W.3 0.65

B.1.177.6 1 B.1.177.6 0.19

B.1.177.7 1 B.1.177.7 0.03

B.1.177.72 1 B.1.177.72 1.80

B.1.2 1 B.1.2 0.01

B.1.213 1 B.1.213 4.20

B.1.220 1 B.1.220 1.20

B.1.221.1 1 B.1.221.1 0.34

B.1.229 1 B.1.229 1.10

B.1.258.4 1 B.1.258.4 0.46

B.1.258.7 1 B.1.258.7 0.27

B.1.258.9 1 B.1.258.9 0.65

B.1.36.22 1 B.1.36.22 0.24

B.1.36.24 1 B.1.36.24 4.50

B.1.36.35 1 B.1.36.35 2.10

B.1.397 1 B.1.397 0.86

B.1.398 1 B.1.398 1.40

B.1.400 1 B.1.400 0.10

B.1.406 1 B.1.406 1.90

B.1.415 1 B.1.415 1.40

B.1.513 1 B.1.513 1.40

B.1.520 1 B.1.520 0.10
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B.1.540 1 B.1.540 1.60

B.1.88.1 1 B.1.88.1 0.60

B.39 1 B.39 0.26

B.55 1 B.55 0.55

B.6 1 B.6 0.14

None 1 None 1.00
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Table 5.2: Top 20 largest SARS-CoV-2 sequencing data contributors to GISAID in
2020 by submitting lab.

Submitting lab Countries rep-
resented (ISO
codes)

Number of
sequences

Wellcome Sanger Institute for the COVID-19

Genomics UK (COG-UK) Consortium
GBR 96441

COVID-19 Genomics UK (COG-UK) Consor-
tium

GBR 71371

Albertsen Lab, Department of Chemistry and
Bioscience, Aalborg University, Denmark

DNK 27936

Houston Methodist Hospital USA 27409

Pathogen Genomics Center, National Insti-
tute of Infectious Diseases

JPN; MMR 19708

Department of Biosystems Science and Engi-
neering, ETH Zürich

CHE 11357

MDU-PHL AUS; TLS 10459

TGen North USA 9491

Wyoming Public Health Laboratory USA 9172

Aalborg University DNK 8439

SeqCOVID-SPAIN consortium/IBV(CSIC) ESP 8279

Chan-Zuckerberg Biohub USA 7803

BCCDC Public Health Laboratory CAN 7646

Laboratoire de santé publique du Québec CAN 6914

Andersen lab at Scripps Research JOR; MEX; USA 6258

Utah Public Health Laboratory USA 5925

MEPHI, Aix Marseille University FRA 5617

Respiratory Virus Unit, Microbiology Ser-
vices Colindale, Public Health England

GBR; UKR 5142

deCODE genetics ISL 5005

Erasmus Medical Center BEL; BHR; LUX;
NLD; SUR

4594
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Table 5.3: Sampling proportion change-points for the phylodynamic analysis on
Swiss data. The sampling proportion was modeled as a piecewise-
constant function in time, with the following change-points motivated
by major shifts in the testing regime or genome sequencing intensity
in Switzerland.

Start date Description

23 April 2020 All symptomatic individuals can get tested

25 June 2020 Government pays for tests for symptomatic individu-
als

14 September 2020 Genome sequencing << 5% of confirmed cases

28 September 2020 Number of tests conducted and % positivity dramati-
cally increase, genome sequencing also increases

19 October 2020 Genome sequencing << 5% of confirmed cases again

11 November 2020 Genome sequencing increases again





6
S U M M A RY

Ten years after the release of the first human genome in 2003, the overall
impact of genome sequencing on diagnostics, therapeutics, and public
health was rated as modest (Nature, 2010). Now, approximately twenty
years later, the successes and failures of the genomic revolution are still
being tallied. In this thesis, I refined and applied phylogeny-based methods
to learn about infectious disease pathology and transmission dynamics.
In this final section, I will try to put these projects into perspective. I
will highlight where we were able to push the envelope to generate new
public-health relevant information and where we stumbled on remaining
hurdles. Lowering or eliminating these hurdles will be key to generating
translational impact from pathogen genome sequencing going forward.

In the human GWAS field, a current focus is on generating high-quality
phenotype data from increasingly large cohorts in order to increase power
to detect rare human genetic variants or variants of small effect (Uffelmann
et al., 2021). In Chapter 2, we took a different approach by combining
host and pathogen sequencing to improve host GWAS for infectious dis-
ease. Namely, we estimated and then removed correlations due to shared
pathogen ancestry from trait values prior to GWAS using host genomes. In
our two applications, to HIV-1 set-point viral load in humans and quan-
titative disease resistance to X. arboricola in A. thaliana, we find that host
GWAS is robust to a correction for pathogen effects, supporting prior GWAS
results. I envision this work’s impact will be twofold. First, we publicized
the phylogenetic Ornstein-Uhlenbeck mixed model to the human and plant
GWAS fields. I anticipate this model will be useful in understanding the
genetic basis and evolutionary dynamics of important traits in other host-
pathogen systems. Second, we highlighted that host GWAS can miss true
host genomic associations if pathogen effects are significantly heritable
from infection partner to infection partner. I anticipate future host GWAS in
infectious disease will be aware of this problem and use either our method
or another of the methods highlighted in our discussion to account for
pathogen effects to ensure GWAS results are robust.

In phylogenetic and phylodynamic applications to infectious diseases,
novel insights are being driven by more comprehensive sampling, incorpo-
ration of different data types, and more bespoke models (Featherstone et al.,

167
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2022). In Chapters 3 and 5, we capitalized on global sequencing efforts, case
count data, and the flexible BEAST2 phylodynamic inference framework
to study SARS-CoV-2 transmission during the early COVID-19 pandemic.
First, we showed that border closures in Europe came too late to delay the
onset of local transmission at the start of the pandemic. Then, we generated
estimates, albeit with large uncertainty, for the effect of border closures on
limiting case introductions, the effect of lockdown on reducing the effective
reproductive number and the persistence of introduced viral lineages, and,
finally, the potential effect of contact tracing on reducing onward transmis-
sion in the 2020 Swiss epidemic. The first project’s impact derived from its
timeliness - as a publicly-funded scientist, I was proud we could contribute
to the ongoing public discourse in 2020 about travel restrictions to combat
COVID-19. The second project progressed much slower, as we poured time
and energy into refining our sampling scheme, improving data integration,
and extending our phylodynamic model to analyze large genomic datasets
and answer specific hypotheses. In parallel, other groups worldwide hacked
away at similar challenges for real-time genomic epidemiology (Attwood
et al., 2022). While our primary goal was always to inform the public and
government discourse on appropriate pandemic control measures, due to
the slower progress of this project I think its most significant impact is in
the lessons learned for the next emerging infectious disease threat.

One lesson, which pertains to all the chapters of this thesis, is that there is
huge room for improvement in standardizing, linking, and sharing genome
sequence data. In chapter 4, we describe how we were successful in generat-
ing large amounts of genome sequence data for SARS-CoV-2 in Switzerland
thanks to collaborations with private diagnostics companies. We were also
able to link these data to case-based data thanks to a collaboration with the
Swiss Federal Office of Public Health. However, there were large delays in
generating and sharing these data. Even as we were analyzing incoming
data, we were still working to solidify and extend collaborations, develop
robust procedures for materials and data transfer, and build a flexible infras-
tructure for data processing and storage, largely from scratch. Furthermore,
we are only able to publicly share the sampling date and coarse geographic
location for each sequence, as we lack a legal framework for sharing other
data like patient age, sex, and vaccination status. This seems to be a common
problem, as for Chapter 2 it was difficult to find appropriate datasets to test
our method, which requires linked pathogen, host, and phenotype data.
Thankfully, initiatives like BeYond-COVID1 are working to ensure progress

1 https://by-covid.eu/about/

https://by-covid.eu/about/
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made during the pandemic in generating, linking, and sharing pathogen
genome sequence data is not lost. Funding agencies are being made aware
of this challenge and are called to support solutions (Committee on Data
Needs to Monitor Evolution of SARS-CoV-2 et al., 2020). A particularly
promising approach, in my opinion, is the expansion of scientific staff roles
at academic research institutions to aid in knowledge retention and facilitate
longer-term collaborations across academia and public health.

A second lesson that I anticipate will continue to occupy us over the
coming years is the importance of validation for phylogenetic and phylo-
dynamic studies. As demonstrated in Chapters 3 and 5, pathogen genome
sequences contain valuable information on transmission dynamics like case
imports versus local transmission. This information is extremely important
for inferring transmission histories and evaluating public health measures,
especially in the absence of linked data on case exposure. However, observa-
tional studies such as ours must be carefully interpreted. We did our best to
consider sampling biases, identifiability issues, and the inadequacy of our
models to incorporate all the heterogeneity in real-life transmission dynam-
ics, but these factors still lead us to draw cautious conclusions. Efforts to
integrate additional case-based data in phylodynamic models (Andréoletti
et al., 2022; Lemey et al., 2020), the involvement of modelers early on in
genome sampling scheme design, and the availability of seroprevalence
information and other epidemiological data to inform priors should help
further mitigate these limitations. Beyond these efforts, I think it would be
particularly interesting to explore more creative validation strategies. We
focused on evaluating non-pharmaceutical interventions to combat COVID-
19. Why not implement trials for these interventions analogous to clinical
trial validation for the safety and efficacy of vaccines? One could imagine
case/control studies for travel restrictions or mock contact-tracing exper-
iments, for example, that include monitoring of the physical and mental
health of participants. These follow-up data could complement first-line
observational studies performed in the midst of the pandemic public health
emergency.

Abraham Maslow said “I suppose it is tempting, if the only tool you have
is a hammer, to treat everything as if it were a nail.“ In this thesis, I fo-
cused on a powerful tool for generating epidemiological insights - pathogen
genome sequencing coupled with phylogenetic reconstruction. I applied
this tool to identifying host genetic risk factors for infectious disease, quan-
tifying epidemic transmission dynamics, and evaluating pandemic control
measures. However, the biological complexities of infectious diseases mean
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that genome sequencing is not a panacea for combatting them. Thus, I think
it will be important moving forward to reach back into the public health
toolbox to combine phylogeny-based approaches with other methods and
other data sources. Coordinated serological and pathogen genome sampling
schemes, integration of travel history or contact tracing data in phyloge-
netic reconstruction, and side-by-side modeling contrasting phylodynamic
inferences with other mathematical epidemiolgical modeling approaches
are examples of how genome-based and non-genome-based data and meth-
ods can complement one another. In conclusion, I see a growing role for
pathogen phylogenies in public health - with key advancements coming
from better integration with other data and methods.
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