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Abstract

Heterogeneous systems on chip (HeSoCs) combine general-purpose,
feature-rich multi-core host processors with domain-specific program-
mable many-core accelerators (PMCAs) to unite versatility with energy
efficiency and peak performance. By virtue of their heterogeneity,
HeSoCs hold the promise of increasing performance and energy efficiency
compared to homogeneous multiprocessors, because applications can
be executed on hardware that is designed for them. However, this
heterogeneity also increases system complexity substantially.

The challenges in designing efficient and effective HeSoCs are
manifold: On the hardware level, accelerator architectures need to
be co-optimized with a memory architecture that enables efficient
communication and synchronization within the PMCA and with the
host. On the other end of the spectrum, algorithms need to be tailored
to a given HeSoC without burdening application programmers with
architectural intricacies. Between these two poles, many differences
between host and PMCAs – such as the instruction set architecture
(general-purpose, operating-system-capable vs. domain-specific, bare-
metal), architectural width (64 bit vs. 32 bit), memory organization and
coherence (hardware-managed coherent caches vs. software-managed
scratchpad memories), and addressing scheme (virtual memory vs.
physical addresses) – need to be overcome. While leading companies
continue to advance their products, academic research on HeSoCs lags
behind. A key reason is that simulators model HeSoCs to a limited
degree at best, mainly because models of key components are too
inaccurate or entirely missing, and because accurate full-stack simulation
is prohibitively slow. A research platform that implements a working
prototype, on the other hand, would enable efficient, collaborative,
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and accurate research on HeSoCs that can compete with the pace of
industry.

This thesis presents the first research platform for HeSoCs where
all components, from accelerator cores to application programming
interface, are available under permissive open-source licenses. We begin
by identifying the hardware and software components that are required
in HeSoCs and by designing a representative hardware and software
architecture. We then design, implement, and evaluate four critical
HeSoC components that have not been discussed in research at the
level required for an open-source implementation: First, we present a
modular, topology-agnostic, high-performance on-chip communication
platform, which adheres to a state-of-the-art industry-standard protocol.
We show that the platform can be used to build high-bandwidth (e.g.,
2.5 GHz and 1024 bit data width) end-to-end communication fabrics
with high degrees of concurrency (e.g., up to 256 independent concurrent
transactions). Second, we present a modular and efficient solution
for implementing atomic memory operations in highly-scalable many-
core processors, which demonstrates near-optimal linear throughput
scaling for various synthetic and real-world workloads and requires only
0.5 kGE per core. Third, we present a hardware-software solution for
shared virtual memory that avoids the majority of translation lookaside
buffer misses with prefetching, supports parallel burst transfers without
additional buffers, and can be scaled with the workload and number
of parallel processors. Our work improves accelerator performance for
memory-intensive kernels by up to 4×. Fourth, we present a software
toolchain for mixed-data-model heterogeneous compilation and OpenMP
offloading. Our work enables transparent memory sharing between
a 64-bit host processor and a 32-bit accelerator at overheads below
0.7 % compared to 32-bit-only execution. Finally, we combine our
contributions to a research platform for state-of-the-art HeSoCs and
demonstrate its performance and flexibility in multiple case studies.



Zusammenfassung

Heterogene Ein-Chip-Systeme (HeSoCs) kombinieren universell einsetz-
bare, funktionsreiche, mehrkernige Hauptprozessoren mit anwendungs-
spezifischen, programmierbaren, vielkernigen Rechenbeschleunigern
(PMCAs), um Vielseitigkeit mit Energieeffizienz und Rechenleistung
zu vereinen. Durch ihre Hetorogeneität versprechen HeSoCs höhere
Rechenleistung und Energieeffizienz gegenüber homogenen Mehrkern-
prozessoren, weil Anwendungen auf Rechenwerken ausgeführt werden
können, die speziell für sie entwickelt wurden. Diese Heterogeneität
erhöht die Systemkomplexität jedoch beträchtlich.

Die Herausforderungen bei der Entwicklung effizienter und effektiver
HeSoCs sind vielschichtig: Auf der Schicht der Rechenwerke müssen
Beschleunigerarchitekturen zusammen mit der Speicherarchitektur opti-
miert werden, um eine effiziente Kommunikation und Synchronisation
innerhalb des PMCA sowie zwischen PMCA und Hauptprozessor zu
ermöglichen. Am anderen Ende des Spektrums, auf der Schicht der
Anwendungen, müssen Algorithmen auf HeSoCs angepasst werden, ohne
dass sich Anwendungsentwickler mit den Details der Rechnerarchitektur
auskennen. Auch zwischen jener untersten und obersten Schicht müssen
viele Unterschiede zwischen Hauptprozessor und PMCA überbrückt
werden. Genannt seien hierbei die Befehlssatzarchitektur (ISA), die
architekturielle Breite (64 bit vs. 32 bit), die Speicherorganisation und
-kohärenz (hardwareverwaltete, kohärente Zwischenspeicher stehen
softwareverwalteten Blockspeichern gegenüber) und das Adressiermodell
(virtualisierter Speicher steht physikalischen Adressen gegenüber). Füh-
rende Unternehmen entwickeln ihre HeSoC-Produkte stetig weiter, aber
die Wissenschaft hinkt auf diesem Gebiet hinterher. Ein wichtiger Grund
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dafür ist, dass HeSoCs nur bedingt simuliert werden können, da Modelle
von Schlüsselbausteinen zu ungenau sind oder ganz fehlen und weil die
präzise Simulation aller Schichten zu langsam für die Praxis ist. Im
Gegensatz zu Simulationen würde eine Forschungsplattform, die einen
funktionierenden Prototypen implementiert, effiziente, kollaborative und
präzise Forschung an HeSoCs erlauben, die mit der Industrie mithalten
kann.

Diese Dissertation stellt die erste Forschungsplattform für HeSoCs
vor, die alle Komponenten, von Rechenbeschleunigerkernen bis zur
Anwendungsentwicklungsschnittstelle, quelloffen und unter liberalen
Lizenzen verfügbar macht. Dazu bestimmen wir zunächst die Hard- und
Softwarekomponenten, die für einen HeSoC notwendig sind, und ent-
wickeln damit eine Referenzarchitektur. Dann entwickeln, implementie-
ren und evaluieren wir vier zentrale Komponenten eines HeSoC, die von
der Wissenschaft zuvor noch nicht detailiert beschrieben wurden. Erstens
stellen wir eine modulare, topologieunabhängige, hochleistungsfähige
chipinterne Kommunikationsplatform vor, die ein industrieweit eingesetz-
tes Protokoll befolgt, das dem neusten Stand der Technik entspricht. Wir
zeigen, dass diese Platform geeignet ist um breitbandige (z.B. 2.5 GHz
und 1024 bit Datenbreite) Kommunikationsnetze zu konstruieren, die
viele parallele Ende-zu-Ende Verbindungen unterstützen (z.B. bis zu
256 unabhängige gleichzeitige Transaktionen). Zweitens stellen wir
eine modulare und effiziente Lösung zur Implementierung unteilbarer
Speicheroperationen in hochskalierbaren Vielkernprozessoren vor und
zeigen, dass diese Lösung in verschiedenen synthetischen und realen
Anwendungsszenarios nahezu optimal linear skaliert und nur 0.5 kGE
pro Kern gross ist. Drittens stellen wir eine Hardware-Software-Lösung
für gemeinsam genutzten virtuell adressierten Speicher vor, welche
die Mehrheit der translation lookaside buffer (TLB) Fehlzugriffe mit
Vorabzugriffen vermeidet, parallele Sammeltransfers ohne zusätzliche
Zwischenspeicher unterstützt und mit der Auslastung und der Anzahl
Kerne skaliert. Unsere Lösung verbessert die Ausführungsgeschwindig-
keit des Rechenbeschleunigers um bis zu Faktor 4 bei speicherintensiven
Anwendungen. Viertens stellen eine Softwarewerkzeugkette für die
heterogene Kompilierung mit gemischten Datenmodellen und OpenMP-
Auslagerung vor. Unsere Lösung ermöglicht transparent die gemeinsame
Speichernutzung zwischen einem 64-bit Hauptprozessor und einem 32-bit
Rechenbeschleuniger und dies bei einer zusätzlichen Laufzeit von lediglich
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0.7 % verglichen mit der isolierten 32-bit Ausführung. Zum Schluss
kombinieren wir die vier Komponenten zu einer Forschungsplattform
für HeSoCs, die dem Stand der Technik entsprechen, und zeigen die
Geschwindigkeit und Flexibilität der Plattform in mehreren Fallstudien.
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Chapter 1

Introduction

Heterogeneous computers aim to combine general-purpose computing
with domain-specific, efficient processing capabilities [Hor14; Zah19; DTH20].

Such computers co-integrate a versatile multi-core host processor
with specialized programmable many-core accelerators (PMCAs). In
the case of heterogeneous systems on chip (HeSoCs), the different
components are part of the same integrated circuit (IC) (also called
“chip”). By virtue of their heterogeneity, heterogeneous computers
promise increased performance and energy efficiency compared to
homogeneous multiprocessors, because applications can be executed on
hardware that is designed specifically for them.

The architectural template this thesis focuses on is shown in Fig. 1.1.
A general-purpose host central processing unit (CPU) is coupled to
one or multiple PMCAs via an interconnect over which they share
the off-chip main memory (and input/output (I/O) peripherals). The
host CPU consists of one or more general-purpose application class
processing cores and has a memory hierarchy of virtually-addressed
caches. The host CPU is thus capable of running a full-featured operating
system (OS). The PMCAs consist of many minimal, domain-specific
processing elements (PEs), which can be grouped in clusters, and have a
memory hierarchy of physically-addressed, software-managed scratchpad
memories (SPMs). Each PMCA may additionally be attached to an
off-chip SPM managed by that PMCA. A bridge to the host allows the

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Hardware architecture template for heterogeneous systems
on chip (HeSoCs) that this thesis focuses on. Components with a dashed
border are optional.

PMCAs to share the main memory, and optionally some of the caches,
with the host.

Programmable many-core accelerators are thus an essential com-
ponent of a heterogeneous computer. PMCAs today exist in many
different types and architectures, ranging from compute-optimized and
general-purpose graphics processing units (GPUs) for data centers and
high-performance computing (HPC) [CG20; Bly20; AMD20a] or embedded
systems [AMD20b], over artificial intelligence (AI) or machine learning
(ML) processors [Ouy+20; BV20; JHL20; Nor+20; Lia+19], vision processing
units (VPUs) [Int20a] and digital signal processors (DSPs) [Tex19c; Cod13],

to multiprocessors with a full-featured instruction set architecture (ISA)
and domain-specific ISA extensions [Ros+17; ZSB20; Kal20].

Heterogeneous computing is by no means a purely hypothetical
concept. On the contrary, heterogeneous computers – and HeSoCs in
particular – are gaining increased commercial importance. Leading
companies have introduced successful products and continue to push
the technological boundaries. Products today range from internet
of things (IoT) and wearable devices [Fla+18; Ter19; Ros+21] over mo-
bile phones [Fru20b; Fru20a], tablets, and notebooks [ABW20; Fru20c] to
automotive and industrial embedded systems [Ban+19; Nvi20a; Nvi20b]
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and warehouse-scale computing [Fun20; Hew21; Ran+21]. Redefining what
computers can do with a given space, power, or energy budget, hetero-
geneous computing has the potential to change – hopefully positively
– our lives in many ways, from work [CW15] and science [Kli20] over
medical care [SBL15; Kur+16; ZHA19] and travel [Ban+19] to augmented
reality [Liu+18] and leisure [Pat+15].

1.1 Challenges in Heterogeneous Comput-
ing

The challenges in designing heterogeneous computers and in making
use of their conceptually immense potential are manifold.

From Hardware . . .

On the hardware level, the ISA and microarchitecture of the PEs as
well as the architecture of an entire accelerator have to be optimized
for the target application domain. Three aspects can be highlighted:

First, the fundamental operations of an application domain define
the instructions and the PE microarchitecture. For example, for many
algorithms in the linear algebra and ML domain, multiply-accumulate
operations (MACs) are fundamental [Sze+17]. Such fundamental opera-
tions change relatively infrequently.

Second, the data types and the memory access patterns around
fundamental operations change much more rapidly than the fundamental
operations themselves. With the advent of reduced- and trans-precision
processing, modern accelerators in the linear algebra and ML domains
have to support a wide range of precision and be able to increase
performance as precision decreases – ideally for an arbitrary mix of
data types that changes dynamically during execution [CV20; Mac+21].

Third, the parallel memory access patterns exhibited by an algorithm
have a major influence on the memory and interconnect architecture of
an accelerator. While there are fundamental patterns (such as tiling
in various dimensions and stencils with various shapes and strides),
those are multifaceted and change frequently as new algorithms in
an application domain are developed [CSS11; Jan+11]. For these three
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aspects (and potentially many more), a trade-off between versatility
and specialization needs to be struck in the design of every accelerator.

Next, accelerators have to be increasingly scalable, meaning the
same fundamental architecture should be replicable from one instance
to hundreds and the performance should ideally scale linearly with the
number of PEs. While large parts of many algorithms are pleasingly
parallel, any serial parts of a program limit the speed-up by paralleliza-
tion [Amd67; HM08; HS11]. Atomic memory operations provide means to
implement concurrent algorithms without serial parts, yet their scalable
implementation in a parallel processor is not a solved problem [SBH15].

Finally, accelerators need to be co-optimized with the memory
hierarchy and the interconnects of the host processor to enable efficient
data sharing and communication with the host. For instance, accel-
erators might feature a software-managed memory hierarchy whereas
host processors typically feature multiple levels of hardware-managed
caches [Ban+02]. This difference results in very different on-chip commu-
nication paradigms and protocols. Address spaces and addressing modes
frequently also differ between accelerators and host: The host is typically
a 64-bit processor that runs an OS, which manages virtual address
spaces that are private to each application [SGG18]. For accelerators, on
the other hand, 32 bit are typically sufficient to address local memory,
and physical addressing simplifies hardware and maximizes performance
per area [Vog+15; Hao+17]. All these aspects lead to a huge design space
for PMCAs, and questions on the granularity and the combination or
separation of accelerators for economical reasons add another layer of
complexity on top [LL03].

. . . to Algorithms and Applications . . .

On the other end of the spectrum, algorithms and applications have
to make optimal use of the available diverse hardware. This involves
answering questions about task partitioning (what constitutes a unit of
work), task mapping (what to execute where), task scheduling (what to
execute when), and communication and synchronization (how to tile
data and process it in parallel) [Sin+13; Tre18; Hua+21]. Those questions
typically form complex optimization problems – some of which have
already been shown to be NP-complete [Bea+02; Bea+19] – and every
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combination of algorithm and heterogeneous hardware potentially has a
different optimal solution [Yan+10; Mor+14; LW17].

. . . and Many Layers Between

Between the two poles of hardware and algorithms, programming
models, frameworks, runtime environments, and compiler toolchains
strive to achieve high programmability and performance portability. On
the lowest level, each programmable accelerator needs a compiler that
generates optimized machine code from a low-level standardized language
such as C or Fortran. Above that, standardized parallel programming
models and runtime environments – such as OpenMP [Omp3] and
OpenCL [SGS10] – allow the use of parallel compute resources without
being deeply familiar with the underlying hardware. Such programming
models are increasingly also developed for heterogeneous computing,
where a part of a program can be specified to execute on an accelerator
without having to define how exactly this offload from host to accelerator
happens [Omp5.1; Khr21b; OpenACC3.1]. However, even such heterogeneous
and parallel programming models cannot completely eliminate the need
to modify and specialize application code for each target architecture.
Higher-level frameworks, such as data-centric programming [Ben+19],

aim to solve this problem by decoupling the description of an algorithm
from its specialization to perform well on a target architecture. This
decoupling can also help the aforementioned optimizers to automatically
map algorithms to heterogeneous hardware.

Closing the loop to hardware, hardware-software co-design aims
to specify, synthesize, optimize, and verify hardware and software
together [De +02]. The concept has existed for a long time before the
advent of heterogeneous computing and to date has not seen widespread
adoption, presumably due to requiring deep changes to workflows, teams,
and tools throughout the industry. However, in face of the challenges
of heterogeneous computing, hardware-software co-design is currently
reappearing in design methodologies [Tin+20] and compilers [Lat+21a;

Lat+21b].

Of these manifold challenges, many, if not all, will have to be solved
to bring the full potential of heterogeneous computing to bear. This
requires revisiting the entire computing stack [Zah17].
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1.2 The Need for an Open-Source Research
Platform

A full-stack heterogeneous research platform makes revisiting the
entire computing stack possible in the first place: Only a platform
that integrates all essential components of a heterogeneous computer
allows reproducible and falsifiable research on all components and
their interfaces and interactions. This contrasts with the traditional
‘two-pronged’ approach, where hardware components are developed and
evaluated in isolation [Che+15; Joh+11] and their impact on system-level
performance is estimated through models and simulators [Bor+13; Li+09].

Compared to a heterogeneous research platform, the two-pronged
approach has three significant drawbacks: First, interactions between
host, accelerators, the memory hierarchy, and I/O devices are complex
to model accurately, making simulations orders of magnitude slower
than running prototypes. Second, even full-system simulators such
as gem5 [Bin+11] model HeSoCs to a limited degree only [But+16]. For
example, models of system-level interconnects or memory management
units (MMUs), which dynamically influence the path from accelerators to
different levels of the memory hierarchy, are missing. Third, simulations
are based on assumptions. Contrary to results obtained from a working
prototype, simulated results require authors to justify and reviewers to
validate the underlying assumptions. Simulators that are not precisely
calibrated and accuracy-validated against the simulated system are
generally too inaccurate to provide significant results, and full-system
simulators are particularly unreliable [AS19]. A research platform that
serves as a working prototype, on the other hand, enables reproducible,
falsifiable, efficient, and collaborative research and development. To
perform system-level research using standard benchmarks and real-world
applications, the platform must include a software stack that includes an
application programming interface and a complete compiler toolchain.

Existing research platforms do not meet these requirements in
their entirety. Many provide a custom accelerator on programmable
logic [Gra16; KHG20], and some even couple the accelerator to a host
processor that runs an OS [Man+20; Bal+20a], but none come with all
required hardware and software components. We defer a full discussion
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of related work to § 7.3, when we have a full understanding of the
challenges and components of a heterogeneous research platform.

1.3 Challenges of an Open-Source Research
Platform

The main challenge in creating an open-source research platform for
heterogeneous computing can be stated simply as: for many of the
problems in designing and using heterogeneous computers (described
in § 1.1), a solution has to be found, and that solution has to be
incorporated into an open-source implementation. Those solutions
do not have to be optimal. In fact, solutions that are not highly
specialized and rigid but rather come as a framework that can be
flexibly parametrized, modified, and extended are preferable. For this
reason, it also makes sense to not innovate and optimize on every
frontier but rather use existing standards and specifications wherever
possible. Adhering to established standards increases compatibility and
makes the platform relevant for more users. This is easier in fields with
a vibrant open-source community, such as the RISC-V ISA, than in
fields dominated by commercial oligopolies, such as intellectual property
modules (IPs) for on-chip communication.

A second major challenge is verification. A research platform
certainly does not have to be a product of commercial maturity, but it
should allow its users to focus on answering research questions without
being inhibited by faults in the platform. The complexity of this
challenge stems from the deep interdependencies between all components.
Consider a heterogeneous research platform that supports two different
host processors and three different PMCA architectures. That platform
will have five different compiler backends1, six different heterogeneous
toolchains2, and six different runtime software stacks2 (besides many
other components). A change in any accelerator architecture can require
re-validation of its compiler backend, two heterogeneous toolchains, and
two runtime software stacks – ideally with all applications that the
platform supports. The fact that many hardware components can be

1One for each host and one for each PMCA.
2One for each combination of host and PMCA.
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parametrized and the value of many parameters has to be propagated
throughout the software stack adds an additional layer of complexity.
Adhering to standards clearly helps tackling this challenge, too, but
standards at the implementation level are often prohibitively restrictive
when exploring novel concepts in a research setting. However, our
contributions to the verification challenge are mainly of an engineering
nature, and although many thoughts and much effort went into verifica-
tion, this thesis focuses on scientific contributions towards the design
and use challenges.

1.4 Contributions and Publications

The focus of this thesis is to create an open-source research platform
for HeSoCs. This includes the design and implementation of its main
components, where they were not available in literature or as open-source
implementation. Thereby, this thesis addresses the main challenge
described in § 1.3 and many of the challenges described in § 1.1.

The key contributions of this thesis can be summarized as follows:

1. We present a modular, topology-agnostic, performance-scalable
on-chip communication platform for a state-of-the-art, industry-
standard protocol. The platform includes all components required
for end-to-end on-chip communication; from DMA engines over
network switches and converters to memory controllers and a last-
level cache). This is the first3 such platform described in literature,
and it comes with an open-source implementation. We show that
our platform can be used to build high-bandwidth (e.g., 2.5 GHz
and 1024 bit full-duplex data width) on-chip communication
fabrics or can scale to 1024 cores on a die, providing 32 TB/s
cross-sectional bandwidth at only 24 ns round-trip latency between
any two cores.

2. We present a modular, scalable, and flexible solution to implement
atomic memory operations in multiprocessors with software-
managed memory hierarchies. This is the first3 such solution

3 All ‘first’ and ‘novel’ statements in this section refer to the time of publication
of the corresponding article and are to the best of our knowledge.
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described in literature, and it comes with an open-source imple-
mentation. We show that our solution scales linearly in area
with the number of cores (only 0.5 kGE per core, measured in
22 nm FDSOI) and allows the throughput of important concurrent
algorithms to scale linearly with the number of cores until the
memory bandwidth is saturated.

3. We present an efficient solution for sharing virtual memory between
host and PMCAs in HeSoCs. Our solution includes three novel3
concepts. Applied together, those concepts allow our solution
to improve PMCA performance for memory-intensive kernels by
up to 4 and by up to 60 % for irregular and regular memory
access patterns, respectively, compared to the previous state of
the art [Vog+17].

4. We present the first3 mixed-data-model compiler, supporting
arbitrary address widths on host and PMCA. To hide the inherent
complexity and enable high programmer productivity, the compiler
supports transparent offloading on top of OpenMP. Our evaluation
on a 64+32-bit HeSoC shows that memory can be shared between
host and PMCA without programmer intervention at overheads
below 0.7 % compared to 32-bit-only execution, enabling mixed-
data-model heterogeneous computers to execute at near-native
performance.

5. We present the first3 full-stack research platform for HeSoCs,
including the aforementioned contributions as components. We
study four current research topics in heterogeneous computing
and provide quantitative insights on the level of applications,
toolchains, system architecture, and accelerator architecture, and
we make the platform available to the community under permissive
open-source licenses.

The content of this thesis and the main contributions have been
published as follows (all peer-reviewed):

[Kur+17] A. Kurth, P. Vogel, A. Capotondi, A. Marongiu, and L. Benini,
“HERO: Heterogeneous embedded research platform for exploring
RISC-V manycore accelerators on FPGA”, in Proceedings of the
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1st Workshop on Computer Architecture Research with RISC-V,
CARRV ’17, Boston, MA, USA, October 2017.

[Kur+18a] A. Kurth, P. Vogel, A. Marongiu, and L. Benini, “Scalable and
efficient virtual memory sharing in heterogeneous SoCs with TLB
prefetching and MMU-aware DMA engine”, in Proceedings of
the 36th IEEE International Conference on Computer Design,
ICCD ’18, Orlando, FL, USA, October 2018.

[Kur+18b] A. Kurth, A. Capotondi, P. Vogel, L. Benini, and A. Marongiu,
“HERO: An open-source research platform for HW/SW explo-
ration of heterogeneous manycore systems”, in Proceedings of the
2nd Workshop on AutotuniNg and aDaptivity AppRoaches for
Energy Efficient HPC Systems, ANDARE ’18, Limassol, Cyprus,
November 2018.

[Kur+20a] A. Kurth, S. Riedel, F. Zaruba, T. Hoefler, and L. Benini,
“ATUNs: Modular and scalable support for atomic operations
in a shared memory multiprocessor”, in Proceedings of the 57th
ACM/IEEE Design Automation Conference, DAC ’20, June 2020.
Best Paper Nominee (6/228). HiPEAC Paper Award.

[Kur+20b] A. Kurth, K. Wolters, B. Forsberg, A. Capotondi, A. Marongiu,
T. Grosser, and L. Benini, “Mixed-data-model heterogeneous
compilation and OpenMP offloading”, in Proceedings of the 29th
ACM International Conference on Compiler Construction, CC ’20,
San Diego, CA, USA, February 2020.

[Kur+22] A. Kurth, W. Rönninger, T. Benz, M. Cavalcante, F. Schuiki,
F. Zaruba, and L. Benini, “An open-source platform for high-
performance non-coherent on-chip communication”, in IEEE
Transactions on Computers, vol. 71, no. 8, pp. 1794-1809, August
2022.

[KFB22] A. Kurth, B. Forsberg, and L. Benini, “HEROv2: Full-stack
open-source research platform for heterogeneous computing”, in
IEEE Transactions on Parallel and Distributed Systems, July 2022
(early access).

The author has further contributed to related research projects,
which are not directly covered in this thesis, while working towards his
degree. The results have been published as follows (all peer-reviewed):
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[Vog+17] P. Vogel, A. Kurth, J. Weinbuch, A. Marongiu, and L. Benini,
“Efficient virtual memory sharing via on-accelerator page table
walking in heterogeneous embedded SoCs”, in ACM Transactions
on Embedded Computing Systems, September 2017.

[Di +19] S. Di Girolamo, K. Taranov, A. Kurth, M. Schaffner, T. Schnei-
der, J. Beránek, M. Besta, L. Benini, D. Roweth, and T. Hoefler,
“Network-accelerated non-contiguous memory transfers”, in Pro-
ceedings of the 2019 ACM International Conference for High
Performance Computing, Network, Storage and Analysis, SC ’19,
Denver, CO, USA, November 2019.

[Cav+20] M. Cavalcante, A. Kurth, F. Schuiki, and L. Benini, “Design
of an open-source bridge between non-coherent burst-based and
coherent cache-line-based memory systems”, in Proceedings of
the 17th ACM International Conference on Computing Frontiers,
CF ’20, May 2020.

[For+20] B. Forsberg, M. Mattheeuws, A. Kurth, A. Marongiu, and
L. Benini, “A synergistic approach to predictable compilation and
scheduling on commodity multi-cores”, in Proceedings of the 21st
ACM SIGPLAN/SIGBED Conference on Languages, Compilers,
and Tools for Embedded Systems, LCTES ’20, June 2020.

[Sch+20] F. Schuiki, A. Kurth, T. Grosser, and L. Benini, “LLHD: A
multi-level intermediate representation for hardware description
languages”, in Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’20,
June 2020. HiPEAC Paper Award.

[Mat+21] M. Mattheeuws, B. Forsberg, A. Kurth, and L. Benini, “Analyz-
ing memory interference of FPGA accelerators on multicore hosts
in heterogeneous reconfigurable SoCs”, in Proceedings of the 2021
IEEE/ACM Design, Automation and Test in Europe Conference,
DATE ’21, March 2021.

[Di +21] S. Di Girolamo, A. Kurth, A. Calotoiu, T. Benz, T. Schneider,
J. Beránek, L. Benini, and T. Hoefler, “A RISC-V in-network
accelerator for flexible high-performance low-power packet process-
ing”, in Proceedings of the 48th IEEE/ACM Annual International
Symposium on Computer Architecture, ISCA ’21, June 2021.
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Figure 1.2: Structure of this thesis. Each numbered element stands
for one chapter. The darker the fill of an element, the more it relates
to hardware, and the lighter the more to software. Chapters 3 to 6
describe components that are mostly independent of each another.

1.5 Outline

The remainder of this thesis is organized as shown in Fig. 1.2. Chapter 2
introduces the architecture of our heterogeneous research platform, gives
an overview of its components, presents a first prototype implementation,
and discusses its limitations. Chapters 3 to 6 then resolve those
limitations through contributions to four important components of
heterogeneous computing. Those chapters are sorted by their focus on
hardware or software; Chapter 3 focuses exclusively on hardware and
Chapter 6 focuses almost exclusively on software. Chapter 3 presents a
modular, topology-agnostic, high-performance on-chip communication
platform with components to build and link subnetworks with cus-
tomizable bandwidth and concurrency properties. Chapter 4 presents
a modular solution to implement atomic memory operations, called
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Atomic Unit (ATUN), which can be placed flexibly at different levels
in the memory hierarchy. Chapter 5 presents a solution for virtual
memory sharing that avoids the majority of translation lookaside buffer
(TLB) misses with prefetching, supports parallel direct memory access
(DMA) transfers without additional buffers, and can be scaled with the
workload and number of parallel processors. Chapter 6 presents a mixed-
data-model heterogeneous compiler including transparent offloading
with OpenMP. The components described in Chapters 3 to 6 are mostly
independent of each another, so those chapters could be read in any
order. Chapter 7 presents a full-stack open-source research platform for
state-of-the-art heterogeneous computing. This platform includes all
components presented in previous chapters and discusses and evaluates
their system-level integration. The chapter studies four current research
topics in heterogeneous computing and provide quantitative insights on
the level of applications, toolchains, system architecture, and accelerator
architecture. The chapter also proposes and evaluates a novel solution
to one of the most pressing problems in heterogeneous computing: how
to relieve the programmer of the burden of specializing an algorithm to
the memory hierarchy of an accelerator. Chapter 8 concludes the thesis
and gives an outlook on the opportunities and challenges ahead.





Chapter 2

Architecture and
Components of a
Heterogeneous Research
Platform

This chapter introduces the hardware and software architecture of our
heterogeneous research platform, gives an overview of its components,
presents a first prototype implementation, and discusses its limitations.

2.1 Hardware Architecture

The hardware architecture of a heterogeneous research platform must
be as flexible – that is, not only parametrizable but also modifiable and
extensible – as possible. However, the hardware should also adhere to
existing industry standards whenever possible, to maximize the surface
of compatibility and make the platform relevant for many users. The
Zynq family of systems on chip (SoCs) by Xilinx [Xil16] combines a
hard-macro ARM Cortex-A host CPU with a field-programmable gate
array (FPGA) (also called “programmable logic (PL)”) on a single die.
This combination of an industry-standard host and its memory hierarchy

15
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and memory controllers with an FPGA, on which custom PMCAs can be
implemented, offers an ideal starting ground for a research platform on
HeSoCs. The idea of combining an industry-standard host implemented
as hard macro with custom PMCAs implemented on an FPGA is not
limited to Zynq-like SoCs, however. Product development platforms
such as the Juno ARM Development Platform (Juno ADP) implement a
Cortex-A host CPU and a low-latency chip-to-chip interface, which can
be connected to an FPGA on a separate IC. This separation over two
ICs allows more silicon area for the hard-macro host and the soft-macro
PMCA.

Using FPGAs to implement the PMCAs has more advantages than
just reprogrammability. First, many come with physical layer (PHY)
and media access control layer IPs that are not available for research and
development ICs that will not directly results in a commercial tape-out.
Examples include off-chip memories such as double data rate (DDR)
dynamic random-access memory (DRAM) and High Bandwidth Memory
(HBM) or Ethernet. Second, vendor-provided debug and trace solutions
make it relatively simple to inspect signals on an FPGA just as one
would in register-transfer level (RTL) simulation. Third, FPGA vendors
make many on-chip IPs available at no extra charge with their devices.
Of particular interest for implementing HeSoCs are IPs for standard
on-chip communication protocols such as Advanced eXtensible Interface
(AXI). Those vendor-provided IPs are not open-source, but the liberal
license of the AXI specification allows open-source implementations.
Thus, IPs provided by the FPGA vendor can be used for a first prototype
and later replaced with an open-source implementation that allows full
design transparency and modifiability.

2.1.1 PMCA ISA and Architecture

An important design aspect of the PMCA is its ISA, because it is the
interface between software and hardware and ultimately determines
their usability and performance in the system. The RISC-V ISA [Wat16]

has built considerable momentum in the community [Cel+15; Gau+17;

Zim+16] because it is an open standard and designed in a modular way: a
small set of base instructions is accompanied by standard extensions and
can be further extended through custom instructions [Kan16]. This allows
computer architects to implement the extensions suitable for their target
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application. Moreover, the ISA is suitable for various types of processors
from tiny microcontrollers [Tra+16] to high-performance super-scalar
out-of-order cores [Cel18], because it does not specify implementation
properties. Combined, these characteristics make RISC-V an interesting
candidate for specialized PMCAs.

There are many different PMCA architectures, such as Kalray
MPPA [Din+13], KiloCore [Boh+17], STHORM [Mel+12], Epiphany [Olo16],

and PULP [Ros+14b]. PULP (short for Parallel Ultra Low Power platform)
is an architectural template for scalable, energy-efficient processing that
combines an explicitly-managed memory hierarchy, ISA extensions and
compiler support for specialized DSP instructions, and energy-efficient
cores operating in parallel to meet processing performance requirements.
PULP is a silicon-proven [Gau+17], open [Tra+16] architecture implement-
ing the RISC-V ISA, and it can cover a wide range of performance
requirements by scaling the number of cores or adding domain-specific
extensions. Thus, it is well suited to serve as a baseline PMCA in
research on HeSoCs.

2.1.2 Heterogeneous Architecture

The hardware architecture of our first-generation heterogeneous research
platform (HEROv1), which is shown in Fig. 2.1, is a result of the
aforementioned design choices (a hard-macro host combined with soft-
macro PMCAs on an FPGA, RISC-V as PMCA ISA, and PULP
clusters as PMCA template). The host consists of ARM Cortex-A
cores attached to a coherent interconnect. Each core includes private
hardware-managed caches and an MMU. The host shares main memory
with the PMCAs through the system interconnect, which is coherent
to the caches of the host. To overcome scalability limitations, the
PMCA features a cluster-based design and relies on multi-banked,
software-managed SPM and DMA engines instead of data caches. The
32-bit RISC-V PEs within a cluster primarily operate on data present in
the cluster-local L1 SPM to which they connect through a low-latency
logarithmic interconnect. The PEs use the cluster-internal DMA engine
to copy data between the local L1 SPM and remote SPMs or shared
main memory. Transactions to main memory pass through a hybrid
input/output memory management unit (IOMMU), implemented by
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Figure 2.1: Hardware architecture of HEROv1.

the Remapping Address Block (RAB) [Vog+15], which performs virtual-
to-physical address translation based on the entries of an internal table,
similar to the MMUs of the host CPU cores. This lightweight hardware
block is manged in software directly on the PMCA [Vog+17]. The host
and the PMCA can thus efficiently share virtual address pointers. This
enables shared virtual memory (SVM), which substantially eases overall
system programmability and enables efficient sharing of linked data
structures in the first place. The hybrid IOMMU is connected as an
I/O-coherent device on the system interconnect, which allows the PMCA
to access the shared main memory, optionally also coherently with the
caches of the host.

2.1.3 PMCA Configurability

The PMCA is highly configurable. Table 2.1 gives an overview of the
most important among the supported synthesis parameters. Besides
the number of clusters and the number of PEs and SPM banks per
cluster, the 32-bit RISC-V PEs themselves can be configured to trade off
hardware resources and computing performance. The single-precision
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Component Options

#Clusters 1, 2, 4, 8
#PEs per cluster 2, 4, 8
floating-point unit (FPU) Private, shared, off
Integer DSP unit, divider, multiplier Private, shared

L1 SPMs #banks 4, 8, 16
L1 SPMs size [KiB] 32, 64, 128, 256
L2 SPM size [KiB] 32, 64, 128, 256
Instruction cache design Single- or multi-ported
Instruction cache size [KiB] 2, 4, 8
Instruction cache # banks 2, 4, 8

RAB L1 TLB size 4, 8, 16, 32, 64
RAB L2 TLB size 0, 256, 512, 1024, 2048
RAB L2 TLB associativity 16, 32, 64
RAB L2 TLB # banks 1, 2, 4, 8

Bold and underlined values refer to implementations discussed in
§ 2.3.1.

Table 2.1: Configuration options for HEROv1’s PULP PMCA.

FPU can be private, shared among multiple PEs within a cluster, or
completely disabled. Similarly, the integer DSP extension unit, the
divider, and the multiplier can be private or shared. In addition, different
designs for the shared instruction cache (e.g., single- or multi-ported)
can be selected. The RAB is also configurable: the number of TLB
entries and levels as well as the architecture of the second-level TLB
can be adjusted.

2.2 Software Architecture
The software architecture of a heterogeneous research platform must
be designed for first-class integration of PMCAs. Ideally, application
software would be portable over different HeSoC designs and optimized
by the toolchain to exploit the hardware architecture of a specific
design. The software architecture also plays a crucial role to exploit the
computational synergy between PMCAs and host: it must be designed
to enable efficent data sharing between components with vastly different
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memory architectures, as caches and virtual memory in the host contrast
with physically-addressed, software-managed SPMs in PMCAs.

As for the programming framework, OpenMP [DM98] has been estab-
lished as the de-facto standard programming framework for homogeneous
shared memory parallel programming. It is very effective at expressing
single program multiple data (SPMD) loop-level parallelism through
compiler directives, but it was originally not designed for heterogeneous
computing. Extensions to the OpenMP standard were proposed by
academia [Dur+11; Mar+15] and by the industry [Mit+14]. The synthesis
of these works has been incarnated into OpenMP 4.0 [Omp4.0]. Since
that version, OpenMP allows to offload work from a host processor
to a PMCA through the target directive, which is already being used
to program GPUs in HPC [MMG16]. This makes OpenMP a suitable
candidate for a unified programming interface of HeSoCs.

Efficient data sharing between host and PMCAs is crucial in HeSoCs.
However, OpenMP just knows copy-based offloading, where the host
copies data from virtually-addressed, cached host memory to physically-
adressed SPMs in a PMCA. This puts a daunting task on application
developers: they need to deal with cache flushes, virtual-to-physical
address translation, and DMA transfers of properly-sized data tiles.
Beyond violating programmability requirements, those operations are
very costly, make PMCAs highly dependent on the host, and often kill
performance [Cho+16]. In contrast, SVM enables to share data by simply
passing a pointer from host to a PMCA. This works when PMCAs
can access the shared main memory coherently with the caches of the
host (e.g., through an Accelerator Coherency Port (ACP) [Xil16] or as
I/O-coherent slave node (SN-I) in Coherent Hub Interface (CHI) [CHI-D])
and have a IOMMU to translate virtual addresses at run time. IOMMUs
that support large numbers of parallel accesses common for PMCAs
were long available only at prohibitive hardware costs, but recently
developed hybrid IOMMUs [Vog+17] have changed this.

The software stack of HEROv1, which is shown in Fig. 2.2, solves
the described system-level challenges of programmability and data
sharing, and it enables fast and easy-to-use heterogeneous programming.
Its components seamlessly integrate the PMCA into the host system
and allow for transparent accelerator programming using the OpenMP
programming interface and SVM hardware capability. In single-source
heterogeneous programming, execution of an application starts on
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Figure 2.2: Software architecture of HEROv1.

the host, and computations can be offloaded to a PMCA simply by
encapsulating a code segment into an OpenMP target region. The
actual offload from the host is then taken care of by the OpenMP
runtime environment (RTE) and afterwards by the lower levels of the
software stack that is deployed on the PMCA.

2.2.1 Heterogeneous Cross Compilation

To allow the host OpenMP RTE to perform an offload to the PMCA,
the target code region must be outlined by the host compiler, compiled
by the PMCA-specific target compiler, linked against PMCA-specific
libraries, and embedded into the final host fat binary. HEROv1’s
toolchain is based on the GNU GCC 7 compiler, which already supports
the outlining of OpenMP target regions for Heterogeneous System
Architecture (HSA), Nvidia PTX, and Intel Xeon Phi devices. At
the end of interprocedural analysis (IPA), the GCC intermediate
representation (IR) of all offloaded functions is streamed out into a
link-time optimization (LTO) object. When the linker is executed, its
LTO Wrapper enables link-time recompilation if at least one object file
contains LTO sections. HEROv1’s GNU GCC extends the offloading
capability of the compiler to RISC-V-based accelerators. To enable
such new devices, we extended the LTO Wrapper to execute a new
mkoffload for HEROv1 that (i) invokes the specific ISA backend for
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the PMCA (in this case RISC-V), (ii) statically links the target-specific
libraries (including the OpenMP runtime library), (iii) fills the Offload
Table, which stores all target hooks for the outlined functions in the
host binary, and (iv) packs everything into an Offload Image that is
loaded to the PMCA at run time.

2.2.2 Heterogeneous OpenMP Runtime

The GNU OpenMP library, libgomp, supports plugins to bind target-
specific implementations of runtime functions to its generic application
programming interface (API). HEROv1’s customized GNU GCC
includes two libgomp plugins for the PMCA to implement two different
offloading schemes: copy-based and zero-copy with SVM. In copy-based
offloads, all shared data is copied to a contiguous, unpaged, uncached
memory region and the PMCA is given the physical address into that
region. In SVM-based offloads, the PMCA accesses host virtual addresses
through a hybrid IOMMU and instrumented load/store operations (see
§ 2.2.3).

The first time a target code region is going to be executed, the host
OpenMP runtime loads the dynamic shared object (DSO) containing
the binary of all offloaded functions together with the accelerator-side
OpenMP runtime onto the target PMCA. For every target code region
with copy-based semantics, the host OpenMP runtime copies the shared
data to contiguous memory, passes a physical address to the PMCA,
and copies data back after the PMCA has finished executing. For
every target code region with SVM-based offload semantics, the host
OpenMP runtime simply passes virtual addresses to the shared data to
the PMCA. All these host-to-PMCA interactions go through the host
runtime library (see § 2.2.4).

2.2.3 Compiler Support for Hybrid-MMU-Based
SVM

With a hybrid IOMMU, loads and stores to SVM by PEs in the
PMCA can fail if the accessed virtual address misses in the TLB. As
this semantic deviates from standard load and store, the compiler
instruments [Vog+15] accesses to SVM with an additional read of a
register, through which a PE is informed whether its last SVM access
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was successful. The compiler transforms memory accesses inside a
target code region based on the data sharing context: During the
OpenMP expansion pass, the compiler annotates all shared variables as
candidates for instrumentation. In a static single assignment (SSA) pass,
it traverses use-def chains to determine which uses of the annotated
variables need to be instrumented. Scalar variables can then directly
be instrumented, while pointer variables require an additional escape
analysis to determine when and how a pointer dereference is propagated
to instrument accesses through the propagated value.

2.2.4 Host Runtime Library and Linux Driver

The host RTE library interfaces the host-side OpenMP runtime with the
Linux driver. In addition, it reserves all virtual addresses overlapping
with the physical address map of the PMCA. This is required as any
access of the PMCA to a shared variable located at such an address
would not be routed to SVM but instead to its internal SPMs or
memory-mapped registers. The driver handles low-level tasks such as
interrupt handling, synchronization between PMCA and host, host
cache maintenance, operation of the system-level DMA engine (e.g., to
offload the PMCA binary), and initially setting up the hybrid IOMMU
to give the PMCA access to the page table of the heterogeneous
user-space application. The PMCA is accessed by the RTE library as a
memory-mapped device, which allows for low-latency host-to-PMCA
communication.

2.2.5 PMCA Virtual Memory Management Library

Having access to the page table of the heterogeneous user-space applica-
tion, the PMCA can operate its virtual memory hardware autonomously.
A virtual memory management (VMM) library [Vog+17] on the PMCA
abstracts away differences between host architectures and IOMMU
configurations and provides a uniform API to explicitly map pages and
handle TLB misses. When a core accesses virtual memory through the
hybrid IOMMU, the corresponding address translation may be missing
in the TLB. In this case, the core that caused the miss goes to sleep
and the miss is added to a queue in the L1 SPM. To handle a miss, the
VMM library dequeues it, translates its virtual address to a physical
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one by walking the page table of the host user-space process, selects a
TLB entry to replace and configures it accordingly, and wakes up the
core that caused the miss. The VMM library is compatible with any
host architecture supported by the Linux kernel.

2.3 Prototype Platform and Evaluation

In this section, we describe the two carrier platforms of HEROv1 (§ 2.3.1)
and evaluate the design choices for our heterogenous research platform.
In § 2.3.2 we explore the scaling of parallel execution and memory
hierarchy usage and the limitation of the on-chip network. In § 2.3.3,
we show the impact of SVM on the total PMCA run time. Finally, in
§ 2.3.4, we evaluate the speedup through offloading from a dual-core
ARM host to an eight-core PMCA.

2.3.1 Carrier Platforms

HEROv1 has been implemented on two different carrier platforms.

Juno ARM Development Platform (Juno ADP) The Juno ADP
features an ARMv8-based, multi-cluster host CPU (two A57 and four
A53 cores), a Mali-T624 GPU, and 8 GiB of DDR3L DRAM. In addition,
the SoC offers a low-latency AXI chip-to-chip interface (TLX-400)
connecting to a Xilinx Virtex FPGA, through which 4 to 8 PMCA
clusters on the FPGA can access the shared DRAM coherently with the
caches of the host. The ARMv8 host CPU runs 64-bit Linaro Linux 4.5
with a 64-bit root filesystem (both aarch64-linux-gnu) generated using
the OpenEmbedded build system. We have configured the root filesystem
to have multilib support, such that the host can also execute 32-bit
binaries (arm-linux-gnueabihf) in ARMv7 mode, which guarantees
compatibility of data and pointer types between the host and the 32-bit
PMCA architecture in heterogeneous applications.1

1This compatibility could also be achieved by running the application binary
in ILP32 mode, which would allow the host to use ARMv8-specific CPU features.
However, the support for ILP32 is still experimental in Linaro.
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Xilinx Zynq ZC706 Evaluation Kit (ZC706) The Xilinx Zynq-
7045 SoC found on the ZC706 combines an ARMv7, dual-core A9 host
CPU with a Kintex FPGA on a single IC. The two subsystems are
connected through a set of low-latency AXI interfaces and share 1 GiB
of DDR3 DRAM. Using the ACP, the single PMCA cluster instantiated
in the FPGA can also coherently access data from the data caches of
the host. The main advantages of the ZC706 is higher availability and
better affordability compared to the Juno ADP. The 32-bit ARMv7
host CPU runs Xilinx Linux 3.18 with a root filesystem generated using
Buildroot.

Juno ADP ZC706

All Clusters

LUT 936 k 76 % 128 k 59%
FF 450 k 18% 43 k 10%
DSP 384 18 % 48 5%
BRAM 1152 89 % 384 70 %

Top Level and
Host Interface

LUT 70 k 6 % 24 k 11 %
FF 61 k 2% 26 k 6%
DSP 0 0% 0 0 %
BRAM 75 6 % 71 13 %

Table 2.2: PMCA FPGA resource utilization

FPGA resource utilization The FPGA resource utilization of the
PMCA on the two carrier platforms in terms of lookup table (LUT)
slices, flip-flops (FFs), DSP slices, and block random access memory
(BRAM) cells is shown in Table 2.2. The table lists both the absolute and
the relative usage of the clusters and the top-level module containing
also the host interfaces. The configuration parameters selected for
implementation are highlighted as bold and underlined text in Table 2.1
for the Juno ADP and the ZC706, respectively. The clusters dominate
resource usage: 8 clusters on the Juno ADP and 1 cluster on the
ZC706 account for more than 90 % and 80 % of the total resource usage,
respectively. While LUT and DSP slices scale linearly from the single
cluster on the ZC706 to the 8 clusters on the Juno ADP, BRAMs
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and FFs behave differently due to different instruction cache designs:
the larger, single-ported cache on the Juno ADP uses more FFs and
less BRAMs per cluster than the multi-ported cache on the ZC706.
Neither configuration includes FPUs, and the integer data path alone
uses relatively little DSP slices, even though it supports multiplication
and division. The top-level configuration is identical for both platforms,
with the exception of the different interfaces to the host and the number
of clusters, which enlarges the registered SoC bus. On both platforms,
the available LUTs and BRAMs are the limiting factors. The PMCA
can be clocked at 31 MHz and 57 MHz on the Juno ADP and the ZC706,
respectively. The difference is due to the denser utilization of the Juno
ADP and the fact that the Virtex FPGA of the Juno ADP consists of
multiple dies connected through stacked silicon interconnects.

2.3.2 Case Study: Parallel Speedup Analysis

To demonstrate the parallel execution and data transfer capabilities
of the PMCA, we use a matrix-matrix multiplication benchmark on
the Juno ADP. The computations for calculating the product of two
matrices, C = AB, are distributed over the clusters by tiling A and C
row-wise. Each cluster iterates over its rows and parallelizes each row
block-wise over its cores: it transfers a row of A and a column of B
from the DRAM to its local L1 SPM banks, computes the resulting row
of C into its L1 SPM, and transfers the resulting row to the DRAM.

The speedup achieved when parallelizing the workload over multiple
clusters is shown in Fig. 2.3. In the baseline (leftmost bar), a single
cluster performs the work. The bars to the right of the baseline are
for two, four, six, and eight clusters. Parallelizing execution over two,
four, and six clusters leads to ideal speedups compared to the baseline.
For eight clusters, the interconnect between the clusters becomes the
bottleneck to data transfers and limits the speedup to ca. 5 % below
the ideal value. In the evaluated implementation, the interconnect is a
bus, which provides low latency but no scalable bandwidth. A different
on-chip network topology would scale better in bandwidth and could
thus, depending on the target workload, reduce the overall execution
time by supporting parallel data transfers for even more PEs. However,
the used network IPs do not support different topologies or concurrency
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Figure 2.3: Overall execution speedup by parallelizing matrix-matrix
multiplication on the PMCA implemented on the Juno ADP.

and bandwidth configurations. This also highlights the need for a more
flexible, high-performance on-chip communication framework.

2.3.3 Case Study: Virtual Memory Performance
Analysis

SVM support in the PMCA is essential for efficient data sharing between
host and the PMCA: Without SVM, data must be copied to and from a
dedicated, physically-contiguous, uncached memory section before and
after accelerator execution, respectively. This copy operation depends
on the data structure and may be very complex; e.g., the values of
all pointers in a linked data structure must be changed. With SVM,
offloading simply means passing a pointer.

The run time of different benchmarks executed on the PMCA of
the Juno ADP with (orange, right bar in a pair) and without SVM
(blue, left bar in a pair) is shown in Fig. 2.4. The run time is broken
down into offload time, i.e., the time it takes the host to offload the
computation and prepare the data for the PMCA, and the actual kernel
execution time on the PMCA. All times are normalized to the total
run time without SVM. PageRank (a) is a well-known algorithm for
analyzing the connectivity of graphs and is used, e.g., for ranking web
sites. It is based on a linked data structure, which makes copy-based
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Figure 2.4: Offload and kernel execution time for different benchmarks
with and without SVM support on the Juno ADP.
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offloading expensive because the host must modify many pointers. With
SVM, virtual addresses must be translated at run time. This causes
a run time overhead if translations are not in the TLB of the RAB.
Nonetheless, the offload time of copy-based SM dominates, and SVM
reduces the run time by nearly 60 %. Random Hough Forests (b)
consist of multiple binary decision trees and are used, e.g., for image
classification. The trees have a very large memory footprint, but only a
part of them is accessed, depending on the input data. With SVM, the
PMCA can readily access the entire trees by performing the necessary
address translations at run time. With copy-based SM, the trees must
be made available to the PMCA in their entirety before classification
can start. This leads to a lot of data being copied by the host that
is never accessed by the PMCA. SVM reduces the run time by more
than 60 %. MemCopy (c) simply copies a large array into the PMCA
and back to memory. This benchmark is representative of streaming
applications that require the PMCA to perform only little work. With
copy-based SM, letting the host copy data to and from the physically
contiguous, uncached memory to prepare the offload clearly dominates
the run time. In contrast, the PMCA benefits from high-bandwidth
DMA transfers. SVM removes the need for data copying by the host,
reducing the total run time by more than 95 %. The matrix-matrix
multiplication benchmark (d) involves three matrices stored in
arrays, thus shows the same basic behavior as MemCopy. However,
as the PMCA performs computations while traversing the data, the
copy-based offload becomes a lesser part of the total run time. In this
case, SVM reduces the total run time by nearly 80 %.

2.3.4 Case Study: Heterogeneous Speedup Analysis

We evaluated the speedup through offloading from the dual-core ARM
host CPU to the eight-core RISC-V PMCA on the ZC706 implemen-
tation with two benchmarks from different application domains that
frequently demand acceleration: matrix-matrix multiplication for signal
processing and the Advanced Encryption Standard (AES) block cipher
for cryptography. Both benchmarks are written in a single source file,
in which we annotate the benchmark kernel with different OpenMP
directives to show the performance difference of each variant. We
measure the run time of each execution variant on the host using
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clock_gettime(CLOCK_MONOTONIC_RAW). The measurements contain all
parts of an offload, including synchronization and transfer of data and
parameters between host and PMCA. Static data on host and PMCA
are initialized at the start of the benchmark application, before the first
measurement.

Matrix-Matrix Multiplication In this benchmark, two square
matrices a and b are multiplied into square matrix c. Each matrix has
128 by 128 32-bit elements and thus takes 64 KiB of memory. The C
code for the application kernel is

for (unsigned i = 0; i < 128; i++) {

for (unsigned j = 0; j < 128; j++) {

unsigned sum = 0;

for (unsigned k = 0; k < 128; k++) {

sum += a[128 * i + k] * b[128 * k + j];

}

c[128 * i + j] = sum;

}

}

Figure 2.5: Performance of different matrix-matrix multiplication
implementations on the ZC706, relative to a baseline using the dual-core
ARM host CPU.
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Fig. 2.5 shows the performance of different implementations, relative
to the baseline (leftmost, blue bar) in which the dual-core ARM CPU
runs the kernel code annotated with

#pragma omp parallel for firstprivate(a, b, c) collapse(2)

That is, the multiplication is parallelized over the rows of a. Offloading
the kernel to the PMCA is as simple as annotating the kernel code with

#pragma omp target map(to: a, b) map(from: c)

The PMCA then directly accesses each word of any matrix through
pointers to SVM. However, as the PMCA does not feature caches,
performance drops drastically (second, red bar). Since the PMCA is
designed to operate on its local SPM, the first optimization is to allocate
buffers in SPM before the loop and to insert DMA transfers into the
loop. With this, the performance improves to what a single PE can
handle (third, orange bar). The kernel is now compute-bound and can
be parallelized with the same annotation used to parallelize the ARM
code. With this, 7 PEs process the multiplication in parallel – when
using SVM, one PE is statically allocated to manage the hybrid MMU in
this implementation – leading to a net performance improvement of 6.4 .
Compared to a bare-metal, hand-tuned C implementation, where 8 PEs
operate on buffers in SPM and DMA transfers run between SPMs and
physically-addressed shared memory (rightmost, gray bar), the run-time
overhead is only 7 %. Compared to the dual-core ARM implementation,
on the other hand, the speed-up is 47 %, even though the PMCA on
the FPGA runs at only 50 MHz. For a HeSoC IC, frequencies of 2 GHz
and 800 MHz for host and PMCA, respectively, would be more realistic.
In that case, this kernel would not saturate the memory bandwidth
(even of the Z-7045, which is around 300 MB/s), and offloading it to
the PMCA could bring a speed-up of ca 9 .

AES Block Cipher We use a popular, small C implementation [kok18]

of the AES block cipher to encrypt 1024 different ciphertexts, each 128 B
long, with 128-bit keys in CBC mode. The C code for the application
kernel is

for (unsigned i = 0; i < 1024; i++) {

AES_CBC_encrypt_buffer(ctx[i], buf[i], 128);

}
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where ctx are AES contexts containing initialization vectors and keys
and buf are the buffers that contain the plaintext before encryption
and the ciphertext after encryption.

Figure 2.6: Performance of different AES implementations on the ZC706,
relative to a baseline using the dual-core ARM host CPU.

Fig. 2.6 shows the performance of different implementations, relative
to the baseline (leftmost, blue bar) in which the dual-core ARM CPU
runs the kernel code annotated with

#pragma omp parallel for firstprivate(ctx, buf)

The second, dark red bar shows the offload to the PMCA with

#pragma omp target map(tofrom: ctx, buf)

The PMCA now operates on the shared main memory and the caches
of the host instead of its SPM. Thus, the next step is to allocate buffers
in SPM and control the DMA engine inside the loop to transfer data
while computations are running (third, orange bar). As the AES block
cipher performs mostly byte-wise operations that map much worse to
the basic RISC-V (RV32IM) ISA than to the more complex ARMv7-A
ISA, performance is still relatively low. Since the full ISA of the PMCA
is exposed, however, we can tune the code to leverage the extensions it
offers: The RI5CY PEs [Gau+17] in this PMCA implement instructions
that interpret the four bytes in a 32-bit word as elements of a byte
vector, instructions to pack and unpack bytes from and into words, and
instructions to shuffle and rotate bytes within a word. Such operations
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are at the heart of a block cipher, and using them massively improves
performance (fourth, light green bar). We finally use the aforementioned
omp parallel for annotation to parallelize encryption among 7 PEs,
speeding up execution by 5.9 (fifth, dark green bar). With the PMCA
running at 50 MHz on the FPGA, this is a modest 11 % faster than the
dual-core ARM host. In a HeSoC IC, with host and PMCA running at
2 GHz and 800 MHz, respectively, the application would not saturate
memory bandwidth, and offloading it to the PMCA could bring a
speed-up of ca. 6.8 . Even more remarkably, the SVM-based offload is
90 % faster than a bare-metal implementation where all 8 PEs compute
and DMA transfers run between SPM and physically-addressed shared
memory (rightmost, gray bar). The reason is that when SVM is not
used, the host must gather buffers from application virtual memory
into a dedicated, physically-addressed, uncached memory region before
the offload and scatter the buffers back after the offload, and the host
is very inefficient at doing this.

In summary, these results show (i) that HEROv1 has the potential to
effectively exploit both the standard ARM ISA and a specialized RISC-V
ISA, bringing the acceleration potential of parallel, domain-specific
PMCAs to bear, and (ii) that HEROv1’s hardware and software enable
host and PMCA to efficiently share data at a minimal programming
effort and with a performance impact that ranges from slightly negative
to significantly positive compared to copy-based memory sharing.

2.4 Related Work

HEROv1 extends the principle of prototyping computer architectures on
FPGAs to HeSoCs. In the FPGA Architecture Model Execution (FAME)
taxonomy [Tan+10a], HEROv1 is a Direct FAME system, meaning it
implements the target architecture with a one-to-one correspondence
in clock cycles on an FPGA. More sophisticated FAME levels de-
couple timing and functionality, exchange structural equivalence for
modeling abstractions, and share FPGA resources in time between
components of the target architecture to increase model flexibility and
emulation throughput. An example of a sophisticated FAME system is
RAMP Gold [Tan+10b], which is designed for the rapid early-design-space
exploration of manycore systems. It is cycle-accurate and comparable in
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throughput to HEROv1, but requires the development of a behavioral
model that is not directly used in the silicon implementation. In contrast
to highly sophisticated FAME systems, HEROv1 is not designed for
early-stage design explorations but for the evaluation, advancement, and
extension of a proven PMCA template and for studying the integration
of PMCAs in a HeSoC. By staying as close to the silicon implementation
as possible, co-development and maintenance of separate models are
avoided. Commercial Direct FAME systems, such as Cadence Palladium
and MentorGraphics Veloce, are targeted at the verification of entire ICs.
To reach the required capacity, they employ custom logic simulation
engines and highly intrusive tracing systems in addition to FPGAs.
They come with proprietary tools and protective licenses at very high
costs, which bars the vast majority of the research community from
using them.

The Flexible Architecture Research Machine (FARM) [Ogu+10]

is a system for prototyping custom hardware implemented on an
FPGA that is connected to an AMD multiprocessor. Both FARM
and HEROv1 provide a cache-coherent link to the host processor and
data transfer (or DMA) engines. While FARM leaves the task of
implementing an accelerator from scratch and integrating it with the
system to the researcher, HEROv1 comes with a RISC-V manycore
implementation, a heterogeneous toolchain, and tools to allow efficient
hardware and software research using standard benchmarks and real-
world applications.

Intel uses FPGAs to prototype heterogeneous – in their definition
two sets of cores of the same ISA but different power-performance design
points – architectures [Wan+10; Chi+12]. They combine a Xeon [Wan+10]

and an Atom [Chi+12] CPU with an FPGA on which they implement up
to four “very old” [Chi+12] Pentium 4 cores. While an evaluation platform
with a Xeon and an Atom CPU (both hard-macro) was shared with
selected academic partners, the reconfigurable, FPGA-based prototypes
remain restricted to Intel [Chi+12]. HEROv1, on the other hand, is
openly available, implements a modern RISC-V manycore on an FPGA,
and uses the extended concept of heterogeneity with different ISAs.

HEROv1 is more than a PMCA implemented on an FPGA, but its
PMCA implementation is nonetheless related to the following recent
works: OpenPiton [Bal+16] is the first open-source, multithreaded
manycore processor and is available in FPGA implementations for
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prototyping. Our PMCA implementation on the FPGA differs from
that of OpenPiton in two ways: First, our PMCA implements the
RISC-V ISA, which has recently gained a lot of momentum. Second, it
allows evaluation on the FPGA with more cores: we currently support
up to 64 cores compared to OpenPiton’s maximum of 4 cores (both
on a Xilinx Virtex, albeit of different size). GRVI Phalanx [Gra16] is
an array of clusters of RISC-V cores interconnected by a network on
chip (NoC). Cores, clusters, and the NoC are optimized for FPGAs and
utilize FPGA blocks very efficiently, allowing to implement hundreds
of RV32I cores on a mid-range FPGA. While FPGAs are the design
target of GRVI Phalanx, HEROv1 uses FPGAs as a prototyping target
to support a wide range of implementation targets and architectural
exploration. Moreover, GRVI Phalanx is programmed bare-metal,
whereas the PMCA on HEROv1 comes with a runtime that supports
well-established programming paradigms such as OpenMP including
seamless accelerator integration. lowRISC [Bra+14] has a work-in-progress
open-source SoC implementing the RISC-V ISA. Its goal is to lower
the barrier of entry to producing custom silicon by establishing an
ecosystem of IPs around RISC-V cores. In contrast, HEROv1 aims to
facilitate exploration on all layers of software and hardware in HeSoCs
by implementing a modifiable, working full-stack prototype accompanied
by tools for validation and evaluation of novel concepts.

Computing acceleration through accelerator offloading started to
gain more traction with the advent of programmable GPUs. Since a
few years, nearly all GPU models – ranging from embedded, mid-end
IP cores [Arm17b] up to high-end, data-center acceleration boards [Nvi17]

– can serve as a target for offloading application kernels from the host.
However, implementing and optimizing a heterogeneous application
for GPU-based systems is not a trivial task. Typically, the offloadable
kernels must be implemented in separate source files using lower-level
programming languages such as OpenCL or CUDA and are compiled
online before offloading. This not only requires special compilers
decoupled from the host toolchain, but it also means more programming
effort and prevents fine-grained kernel offloading. These problems can
be somewhat alleviated by heterogeneous toolchains with open-source
OpenMP [FBM18; Mar+16] or OpenACC [Rey+12] GPU front ends. However,
such front ends can only generate intermediate code and still require to
invoke proprietary GPU compilers. The ISA of the accelerator is closed
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and internal functions remain inaccessible for the developer. There
is, e.g., no DMA engine exposed to overlap computations with data
transfers. To achieve such behavior for hiding main memory latency,
DMA transfers must either be explicitly emulated using regular loads
and stores [FBM18], or the kernel must inherently offer very high degrees
of data-level parallelism. In addition, GPU drivers and RTE libraries
are completely closed for most devices [Arm17b; Nvi17]. In contrast, the
host side of HEROv1 is partially and its PMCA is fully open-source
starting from the RTE libraries down to the actual hardware. This
gives the developer the possibility to optimally leverage the available
hardware and exploit the full potential of the PMCA platform with a
fully-integrated toolchain.

Heterogeneous compilers have also been implemented by others,
both in research [CM17; CMB18; MCB16] and commercially [Int18]. [CM17]

implemented an OpenMP plugin for GCC 5 to offload to OpenRISC-
based PMCAs. While the ISA in that work is also exposed to the
toolchain, OpenRISC was not designed with domain-specific extensions
in mind. In contrast, HEROv1’s software stack and toolchain are
capable of fully leveraging custom extensions of the RISC-V ISA, as
shown by our experimental evaluation. Intel is offering OpenMP-based
programming of its Xeon Phi accelerators [Int18]. Although both the
Intel host CPU and the Xeon Phi accelerator implement the x86 ISA,
thy differ in (vendor-defined) extensions. While GCC can be used to
offload to Xeon Phi, the offloaded LTO itself must be generated with
the proprietary Intel C compiler to make use of all vector extensions.
Similar to GPUs, the accelerator ISA is thus not directly accessible to
developers, barring them from exploiting all accelerator features in their
libraries. In HEROv1, in contrast, RISC-V-based PEs can be extended
with domain-specific instructions fully exposed to library developers
through an end-to-end open software stack.

2.5 Summary and Limitations

We presented the hardware and software architecture of our heteroge-
neous research platform, which unites a hard-macro ARM Cortex-A
host processor with a modifiable RISC-V-based PMCA implemented
on an FPGA. The software stack of the platform simplifes porting
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of standard benchmarks and real-world applications, thereby enabling
system-level research and efficient data sharing between host and PMCA
at a low programming effort. We presented a prototype implementation
that allowed us to study the parallel speedup over multiple PMCA
clusters, the performance of the virtual memory subsystem, and the
speedup of offloading from the host to the PMCA.

This first version of our heterogeneous research platform has serious
limitations, however: First, the on-chip network of the PMCA is
composed of FPGA-proprietary IPs that cannot be modified or simple
open-source IPs that are very limited in configurability (for instance, they
have a fixed data width). This means it is not yet possible to construct
heterogeneous on-chip networks that are found in state-of-the-art
HeSoCs. Second, atomic memory operations, which are paramount for
scaling concurrent algorithms to a high number of threads, are entirely
missing. (Only the test-and-set operation, which has a consensus
number of only two, is supported on the L1 memory of the PMCA.)
Third, the DMA engine can only access virtual addresses that are
guaranteed not to miss in the shared TLB (e.g., by locking TLB entries),
and the performance of the virtual memory subsystem is limited by a
single miss handling thread and lack of any prefetching. Fourth, the
heterogeneous compiler enforces the same data model (and thus the same
width of pointers and addresses) for host and PMCAs. Additionally,
PMCA-custom instructions can be used by library developers but not
directly by application programmers. Both are fundamental limitations
of the used compiler that will require a profound change of technology.

Those limitations will be resolved in the subsequent chapters, after
which we can present and evaluate a state-of-the-art research platform.





Chapter 3

High-Performance
Non-Coherent On-Chip
Communication

On-chip networks are the primary means of communication inside
modern multi- and many-core processing SoCs [Jer+17; DT03; BD06; KC18].

As the number of cores, the heterogeneity of components, and the on-
and off-chip bandwidth continue to grow to meet ever higher application
demands, on-chip networks continue to gain importance. Decades
of research on on-chip networks were instrumental for breakthroughs
in scalability of homogeneous shared-memory multiprocessors, and a
continuation of this research is necessary to realize the full potential of
many-core accelerators and accelerator-rich heterogeneous SoCs.

Ideally, SoC designers could compose on-chip networks from a plat-
form of components according to the requirements of their application.
The central design goals of such a platform are:

(G1) Elementary, modular components that can implement any topology
and that separate concerns such as routing and buffering.

(G2) Parametrizable components (e.g., data width, transaction concur-
rency) to cover a large design space.

39
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(G3) Bridging components to connect heterogeneous SoC elements (e.g.,
GPU SMs, DMA engines, and domain-specific accelerators) and
their subnetworks, each with unique, application-driven latency
and bandwidth requirements.

(G4) Compliance with an industry-standard protocol for extensibility,
third-party compatibility, and verifiability.

(G5) Detailed characterization of the complexity and trade-offs of the
components in terms of performance vs. cost (area, power) to
guide design and optimization efforts.

Commercial offerings that meet (parts of) these goals exist from
multiple vendors (details in § 3.4), but their microarchitecture, com-
plexity, and performance are well-guarded trade secrets. Research has
also worked toward those goals (details in § 3.4), but, to the best
of our knowledge, an end-to-end platform for non-coherent on-chip
communication that meets the needs of heterogeneous SoCs has not
been presented yet in open literature and is not available as open-source
hardware.

In this chapter, we fill this gap with these contributions:

1. We present a modular, topology-agnostic (G1), high-performance
on-chip communication platform of parametrizable components (G2)
for a state-of-the-art, industry-standard protocol (G4) (§ 3.1).
The components include bridges and converters to link subnet-
works with different bandwidth and concurrency properties (G3).
We publish the modules of our platform, implemented in industry-
standard SystemVerilog, under a permissive open-source license
for research and industrial usage.

2. We discuss microarchitectural trade-offs and timing/area charac-
teristics of the modules in our platform (G5), both theoretical-
ly/asymptotically and with topographical synthesis results (§ 3.2).
We show that our modules can be composed to build high-
bandwidth (e.g., 2.5 GHz and 1024 bit data width), end-to-end
on-chip communication fabrics (e.g., DMA engine to memory
controller), with high degrees of concurrency (e.g., up to 256
independent concurrent transactions) and flexibility (e.g., 64-bit
subnetworks).
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3. We design and implement (post-P&R) a state-of-the-art many-core
machine learning training (MLT) accelerator in a modern 22 nm
technology (§ 3.3), where our communication fabric scales to 1024
cores on a die, which deliver more than 2 Tdpflop/s, providing
32 TB/s cross-sectional bandwidth at only 24 ns round-trip latency
between any two cores.

We focus on non-coherent on-chip communication for two main reasons:
First, coherent on-chip communication in homogeneous many-core
processors has been studied extensively (see § 3.4 for an overview).
Second, many complex heterogeneous SoCs (e.g., mobile application
SoCs [Qua20], high-speed networking SoCs [Whe19]) and massively parallel
data processing architectures (e.g., general-purpose graphics processing
units (GPGPUs) [Smi20]) are not or only partially cache-coherent.

This chapter is organized as follows: We present the architecture
of our on-chip communication platform in § 3.1 and characterize its
performance and complexity in § 3.2. We then use our platform to design,
implement, and evaluate the communication fabric of a state-of-the-art
many-core MLT accelerator in § 3.3. Finally, we compare with related
work in § 3.4 and conclude in § 3.5.

3.1 Architecture

Current on-chip communication is centered around the premise of
high-bandwidth point-to-point data transfers. To fulfill this premise
despite increasing point-to-point latency, three central traits of current
on-chip communication protocols are: burst-based transactions, multiple
outstanding transactions, and transaction reordering. Our design targets
these central traits in general, so the concepts we present potentially
apply to a wide range of modern on-chip protocols. More tangibly, we
adhere to the latest revision (5) of the AMBA AXI [AXI-F.b]. AXI is one
of the industry-dominant protocols and the only protocol with an open,
royalty-free specification and a widespread adoption in current systems
designed by many different companies. Other protocols with similar
properties are discussed in § 3.4.
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Terminology and Protocol Essentials

A module is a distinct functional unit that has at least one on-chip
network port. A port is a collection of input and output signals of
a module. A port can be either a master port, on which the module
initiates transactions, or a slave port, on which the module responds to
transactions. One module can have multiple slave and master ports. We
collectively call the five independently-handshaked channels connecting
a master port to a slave port a bundle. Each channel consists of
multiple isodirectional payload signals and two signals for bi-directional
flow control. A beat is the data transferred on one channel upon one
handshake; it is the smallest unit of communication. We focus on
valid -ready flow control, where the channel master drives the valid
signal and the payload signals and the channel slave drives the ready
signal (but other flow control schemes, e.g., credit-based, are possible).
A handshake occurs when valid and ready are high on a rising clock
edge.

There are two essential rules in valid -ready flow control:

(F1) Stability Rule: Once valid is high, valid and the payload must
not change until the handshake occurs.

(F2) Acyclicity Rule: The channel slave may depend on valid to be
high before setting ready high, but the channel master may not
depend on ready to be high before setting valid high.

Each transaction has a direction (read or write): A write transaction
starts with one beat on the write command channel followed by one or
multiple beats on the write data channel and ends with a single beat
on the write response channel. A read transaction starts with one beat
on the read command channel and ends with one or the last of multiple
beats on the read response channel. A transaction is outstanding in the
time interval starting with the handshake of the command beat and
ending with the handshake of the (last) response beat. Each transaction
has a numeric ID.

IDs define the order of transactions and beats according to the
following rules:

(O1) Inter-Transaction Ordering: Any two transactions in the same
direction and ID are ordered.
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Figure 3.1: Transaction ID and ordering example. Three read
commands are issued; the first and last have the same ID, the one
between has a different ID. This situation might occur, e.g., if the
transactions are issued by different masters. The first response beat
is for the first command. After that follow both response beats for
the second command. This interleaving of response beats is allowed
because the first two commands have different IDs, so their responses
may be interleaved. Then follows the second response beat for the
first command. The response beat for the last command comes at the
end, because it must not come before the last response beat of the first
command (which has the same ID).

(O2) Response Ordering: Any two responses with the same direction
and ID must be in the same order as their commands.

(O3) Write Beat Ordering: Write data beats do not have an ID and
are therefore always ordered.

An example of IDs and their ordering is shown in Fig. 3.1.
An overview of the modules in our on-chip communication platform

is given in Table 3.1. In this section, we discuss their microarchitecture
and design trade-offs, from elementary components through all essential
interconnecting modules to endpoints of increasing complexity.

3.1.1 Elementary Components: Network (De)Muxes

Our network multiplexers and demultiplexers are the elementary com-
ponents that join multiple ports to one and split one port into multiple,
respectively. In doing so, they must adhere to the relations between the
channels and to the ordering rules (O1–3). They are obviously used to
build network junctions (e.g., crossbars), but they can be reused far
beyond that because they implement a central part of the communication
protocol. In fact, these elementary components are essential for almost
all modules of our platform and can be used to design custom endpoints
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Category Module Section

Elementary
Components

Network Multiplexer 3.1.1
Network Demultiplexer 3.1.1

Network
Junctions

Crossbar 3.1.2
Crosspoint 3.1.2

Concurrency
Control

ID Remapper 3.1.3
ID Serializer 3.1.3

Data Width
Converters

Data Upsizer 3.1.4
Data Downsizer 3.1.4

Clock Domain Crossing Clock Domain Crossing 3.1.5

Data Movement DMA Engine 3.1.6

On-Chip Memory
Endpoints

Simplex Memory Controller 3.1.7
Duplex Memory Controller 3.1.7
Last Level Cache 3.1.8

Table 3.1: Overview of the modules in our on-chip communication
platform.
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Figure 3.2: Architecture of our network multiplexer, drawn with two
slave ports (at the top). Here and in Fig. 3.3, ‘Channel (De)mux’ refer
to logic (de)multiplexers with additional handshake logic for one channel.
In all later figures, ‘Mux’ refers to the entire module in Fig. 3.2 and
‘Demux’ refers to the entire module in Fig. 3.3.

without having to deal with all protocol intricacies. Each of our network
(de)multiplexers contains simple logic (de)multiplexers, but it also
contains other components to implement the protocol. In the remainder
of this article, ‘(de)multiplexer’ refers to a network (de)multiplexer
unless explicitly preceded by ‘logic’.

Network Multiplexer

The multiplexer, which connects multiple slave ports to one master
port, consists of multiplexing components for the forward channels and
demultiplexing components for the backward channels. The complexity
lies in demultiplexing the backward channels, because the multiplexer
needs the information to which output a beat on a backward channel
must be routed. Multiplexing the command channels simply requires
the selection of a valid beat, with the restriction that a selection must
be stable once made (F1).

Our multiplexer architecture is shown in Fig. 3.2. We first prepend
the ID of each command beat with the number of the slave port. We then
select among beats on the command channels with round-robin (RR)
arbitration trees. For writes, the decision is forwarded through a first-in
first-out buffer (FIFO) to a multiplexer for the write data beats, which
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is sufficient due to (O3). As commands out of our multiplexer carry the
input port information in the most significant bits (MSBs) of their ID,
routing responses is as simple as demultiplexing based on the MSBs and
then truncating the ID to the original width. Another key advantage is
that transactions with the same ID from any two different slave ports
remain independent, so (O1) does not restrict communication through
our multiplexer. Note that channel demultiplexing means the payload
is the same for all demux outputs and only the handshake signals are
(de)multiplexed.

Alternative multiplexer architectures could do without extending
the ID, for example by allowing only transactions with different IDs
concurrently or by remapping IDs internally. However, the former
restricts communication, and the latter significantly increases the
complexity of the multiplexer. Nonetheless, some network modules
grow exponentially in complexity with the ID width. We have a
modular solution to this challenge with the ID width converters discussed
in § 3.1.3.

Network Demultiplexer

The demultiplexer, which connects one slave port to multiple master
ports, is more complex than the multiplexer due to the ordering
rules: When the demultiplexer gets two commands with the same
ID and direction (O1) that go to two different master ports, it must
deliver the corresponding responses in the same order (O2). After
the demultiplexer, however, transactions on different master ports
are independent, so the demultiplexer cannot rely on the order of
downstream responses to fulfill (O2).

Our demultiplexer architecture, shown in Fig. 3.3, solves this by
enforcing that all concurrent transactions with the same direction and
ID target the same master port. For example, when a write with ID A
targets master port 0, it is only forwarded if no writes with ID A to
master ports other than 0 have outstanding responses; otherwise, the
write must wait. To track this information, the demultiplexer contains
one counter and one index register per ID and direction. Commands that
fulfill the aforementioned requirement increase the counter; the (last)
response decreases the counter. A channel register between the write
command channel and the demultiplexer of the write data channel stores
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Figure 3.3: Architecture of our network demultiplexer, drawn with
two master ports (at the bottom).

the master port index of an ongoing write burst while the command
channel is independently handshaked (F1). Write commands and
data bursts are sent in lockstep due to (O3); without this restriction,
the write command and data channels could deadlock downstream.
The multiple read and write response channels are joined through a
round-robin arbitration tree.

Alternative demultiplexer architectures could do without requiring
all concurrent transactions with the same direction and ID to target the
same master port, for example by remapping IDs internally. However,
this significantly increases the complexity of the demultiplexer, which
would have to reorder responses internally to fulfill (O2). Instead
of introducing this complexity, we let a master use different IDs for
different endpoints if it can handle out-of-order responses.

Compared with a 1-to-N crossbar, the demultiplexer has a funda-
mental advantage concerning how transactions are routed: With the
crossbar, the address of a transaction determines to which master port it
is routed. With the demultiplexer, the select inputs (one for reads, one
for writes) determine to which master port a transaction is routed. This
means a module instantiating the demultiplexer can freely decide which
submodule handles a transaction. That decision does not even have to
be based on the properties of the transaction but could, for example, be
a function of the state of the module. This difference implies that the



48 CHAPTER 3. ON-CHIP COMMUNICATION

Figure 3.4: Architecture of our crossbar, drawn with two slave and
three master ports. Each fat arrow represents a bundle, with the arrow
head pointing in the direction of the command channels. Components
with dashed outline are optional.

demultiplexer is a more universal elementary component than a 1-to-N
crossbar.

Logic demultiplexers are so universally used in digital circuits that
our network demultiplexer may seem like a trivial sequel. However,
as the architecture depicted in Fig. 3.3 and described in this section
shows, our demultiplexer handles crucial and complex parts of the
protocol ((O1–3), (F1)). Thus, even though our demultiplexer simply
takes a select signal to route transactions, it unburdens user modules
from dealing with intricacies of the protocol while it enables them to
arbitrarily route transactions to submodules or ports.

3.1.2 Network Junctions: Crossbars and Crosspoints
Crossbar

The elementary components in § 3.1.1 can be combined to form a
fully-connected crossbar, shown in Fig. 3.4, where each slave port has a
dedicated connection to each master port.

At each slave port, two address decoders (one for reads, one for
writes) drive the selection signals of a demultiplexer. In the standard
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configuration, all slave ports use the same addresses for one master
port, but different configurations would be possible. There are two
alternatives for handling transactions to an address that is not defined
in a decoder. First, one master port can be defined as default port. This
is useful, for example, in a hierarchical topology where each downlink
has a specific range of addresses and any address outside the downlink
addresses is sent to higher hierarchy levels through the uplink. Second,
one can instantiate an error slave, which terminates all transactions
with protocol-compliant error responses. These two alternatives can be
selected per slave port with a synthesis parameter.

Optional pipeline registers can be inserted on all or some of the five
channels of each internal bundle. These registers cut all combinational
signals (including handshake signals), thereby adding a cycle of latency
per channel and pipelining the crossbar so its critical path is no longer
than that of the demultiplexer or multiplexer. These pipeline registers
can be added without risking deadlocks, but this is not trivial: Of the
four Coffman conditions [CES71], (1) Mutual Exclusion is fulfilled on the
write data channel after the multiplexer, (2) Hold and Wait is fulfilled as
each pipeline register must hold its value once filled, (3) No Preemption
is fulfilled by (O3) on the write data channel, and (4) Circular Wait
would be fulfilled by round-robin arbitration of write command and data
beats. However, the demultiplexer breaks condition (4) by restricting
write commands to be issued in lockstep with write data bursts (i.e.,
the next write command is only issued after the previous write data
burst has completed), thereby preventing deadlocks despite pipeline
registers, which introduce condition (2).

Crosspoint

As the multiplexers in the crossbar expand the ID width, the master
ports of the crossbar have a wider ID than the slave ports. This prevents
the direct use of our crossbar as nodes in a regular on-chip network
where each node (also called “router” or “switch”) has isomorphous slave
and master ports. To solve this problem, we introduce a crosspoint.

Our crosspoint, shown in Fig. 3.5, has three additional properties
over the crossbar that make it better suited for composing arbitary
regular on-chip topologies. First, it contains a crossbar that is not
necessarily fully connected: The connection between any slave and
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Figure 3.5: Architecture of our crosspoint, drawn with four slave and
master ports. Each arrow represents a bundle, with the arrow head
pointing in the direction of the command channels. The input queues
are optional.
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master port can be omitted with a synthesis parameter. This is useful
to prevent routing loops when a module has both a master and a slave
port into the crosspoint, and it minimizes the physical resources on
links that would be unused. All flow and arbitration control logic of
the crosspoint is inside the crossbar. Second, the crosspoint contains
an ID remapper (§ 3.1.3) on each master port, which reduces the ID
width to that of the slave ports. Thus, the slave and master ports of
each crosspoint are isomorphous. Third, an input queue of configurable
depth can be enabled for each slave port to reduce backpressure in mesh
topologies.

3.1.3 Concurrent Transactions: ID Width Converters

The ID of transactions is central to their ordering (O1–2). Essen-
tially, the commands and responses of any two transactions can be
independently reordered if they have different IDs. This makes a high
number of possible IDs attractive to prevent bottlenecks due to ordering
constraints. However, tracking a high number of IDs is complex for
network components (e.g., demultiplexer § 3.1.1 and 3.2.1).

ID width converters are the on-chip network designer’s instrument to
balance the number of independent concurrent transactions vs. circuit
complexity. We focus on reducing the ID width (as extending it is trivial).
There are two first-order parameters for ID reduction: the width of IDs
at the output, O, and the maximum number of unique IDs at the input,
U . The relation between O and U determines whether all transactions
that were independent at the input remain independent at the output:
If U ≤ 2O, every unique ID at the input can be represented by a
unique ID at the output, therefore retaining transaction independence.
This means the sparsely used input ID space can be ‘compressed’ to
a narrower, densely used output ID space by remapping IDs (§ 3.1.3).
If U > 2O, there are not enough output IDs to represent all U unique
IDs. This means some transactions with originally different IDs will
have to be mapped to the same ID, thereby serializing them (§ 3.1.3).

ID Remapper

Our ID remapper, shown in Fig. 3.6, remaps IDs with one table per
direction. The table has as many entries as there are unique input IDs,
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Figure 3.6: Architecture of our ID remapper, drawn with up to four
unique concurrent IDs (per direction).

and it is indexed by the output ID. Each table entry has two fields:
the input ID and a counter that records how many transactions with
the same ID are in flight. The counter is incremented on command
handshakes and decremented on (last) response handshakes. The
mapping from input to output IDs is injective. Obtaining the input ID
from an output ID (to remap responses) is as simple as indexing the
table. Determining the output ID for an input ID (to remap commands)
requires a comparison of the input ID to all IDs in the table. If the
table currently contains an entry for the input ID, the same output ID
must be used (O1). If the table does not currently contain an entry for
the input ID, the output ID is the index of the next free table entry.

Alternative ID remapper architectures could feature an additional
table indexed by input IDs to look output IDs up. However, under the
assumption of the remapper that the input ID space is sparse, such an
additional table would be mostly empty. Therefore, it would be a poor
usage of hardware resources and we omit it at the cost of a longer ID
translation path, which could be pipelined.

ID Serializer

If the number of unique IDs at the input of the ID width converter,
U , exceeds the number of available IDs at the output, 2O, both the
input and the output ID space are densely used. In this case, it is not
possible to retain the uniqueness of all IDs during conversion, and we
call the transformation that imposes additional ordering serialization.
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Figure 3.7: Architecture of our ID serializer, drawn with four master
port IDs (per direction).

Serialized transactions still have concurrently outstanding commands,
but they are now required to be handled in-order.

Our ID serializer, shown in Fig. 3.7, transforms IDs with one FIFO
per direction and master port ID. At the slave port of the serializer,
a demultiplexer assigns commands to one of the FIFO submodules
through a combinational function f of the transaction ID (e.g., the
ID modulo the number of master port IDs). The demultiplexer is a
reduced configuration of our network demultiplexer (§ 3.1.1) without
ID counters because f assigns identical IDs to the same master port
(and thus the same output ID (O1)). In each FIFO submodule, the
ID of a command is pushed into a FIFO and then truncated to zero.
This FIFO reflects the transaction ID in responses (O2), and the last
response of a transaction pops from the FIFO. After the FIFOs, an
instance of our network multiplexer (§ 3.1.1) assigns each transaction
the index of its FIFO and merges the commands to the single master
port of the ID serializer.

Alternative ID serializer architectures could use one memory where
one linked list per master port ID is stored for ID reflection. This would
allow to dynamically grow queues in memory rather than statically
provisioning hardware resources to accommodate a fixed maximum of
transactions per master port ID. However, pushing and popping IDs
from this memory is on the critical path of the serializer, so we prefer
the architecture with multiple FIFOs.
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3.1.4 Data Width Converters
The data width of network components depends on their bandwidth
requirements. For instance, the master port of a high-performance DMA
engine might have 512 bit data width while that of a 64-bit processor
core typically has 64 bit. This extends to subnetworks, e.g., separate
networks for the DMA engine and the cores. However, as subnetworks
with different data widths are joined, e.g., at endpoints such as memories,
data width converters (DWCs) are required to convert between data
widths. DWCs can be either upsizers, converting from narrow to wide,
or downsizers, converting from wide to narrow. Although similar in
purpose, up- and downsizer are not fully symmetric. In fact, the upsizer
has higher performance requirements than the downsizer, since it must
utilize the higher-bandwidth network as much as possible to minimize
the impact on other components on the high-bandwidth network.

Data Upsizer

A data upsizer has a narrow slave port of data width DN and a wider
master port of data width DW. In the simplest operating mode, pass-
through, the upsizer does lane selection on read responses (Fig. 3.8a),
selecting a slice of a wide incoming word, and lane steering on write
data, aligning narrow incoming data into the wider outgoing word
(Fig. 3.8b). In pass-through mode, the upsizer does not change the
number of bytes transferred in each beat. This can be required by
transaction attributes (e.g., to device memory). In terms of performance,
however, this underutilizes the high-bandwidth network, which inherits
the throughput of its low-bandwidth counterpart. Utilization can be
increased by reshaping incoming bursts with many narrow beats into
bursts with fewer wide beats: several narrow write data beats are packed
into one wide beat, and one wide read response beat is serialized into
several narrow beats.

Our data upsizer, shown in Fig. 3.8c, is capable of upsizing between
interfaces of any data width. It is composed by two modules, read and
write upsizers, that perform lane selection and steering, besides deciding
whether to upsize the transaction based on its properties. Due to (O3),
only one write upsizer is needed, containing a buffer of width DW to
perform data packing. On the read response channel, the data upsizer
handles a certain number of outstanding read transactions in parallel.



3.1. ARCHITECTURE 55

Figure 3.8: Architecture of our data width converters (DWCs). (a)
Data selection in the read response and (b) data steering in the write
data channel of the upsizer. (c) Upsizer, drawn with two outstanding
read transactions. (d) Downsizer.
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Figure 3.9: Architecture of our clock domain crossing (CDC). Each
channel goes through a CDC FIFO, which has two Gray-coded counters.

Each incoming read transaction is assigned an idle read upsizer, unless
there is an active upsizer handling a transaction with the same ID. For
that case, we ensure (O1) by enforcing that incoming transactions with
the same ID are handled by the same read upsizer. Each read upsizer
has a DW buffer to hold incoming beats. This avoids blocking the wide
read response channel during serialization.

Data Downsizer

A data downsizer has a wide slave port of data width DW and a
narrower master port of data width DN. In the simplest operating
mode, pass-through, the downsizer does steering on the read data
channel and selection on the write data channel, symmetrical to the
base operations of the data upsizer. Our downsizer, shown in Fig. 3.8d,
differs from the upsizer in two key points: First, the downsizer has lower
performance requirements than the data upsizer, since it connects to a
lower-bandwidth subnetwork, e.g., peripherals. This means it does not
need to support multiple outstanding reads. Second, when downsizing,
the downsizer converts few wide beats into multiple narrow beats. It
is possible that the resulting burst is longer than the longest buffer
allowed by the protocol. In this case, the downsizer needs to break the
incoming burst into a sequence of bursts. To handle this corner case,
among others, the control logic of the read and write downsizers is more
complex than those in the upsizer.
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3.1.5 Clock Domain Crossing

A on-chip network can span multiple clock domains, yet all our modules
have a single clock input1 – except one: the clock domain crossing
(CDC) has two clock inputs, one to which all signals of its slave port
are synchronous and one for its master port. The CDC can be placed
between any two modules in different clock domains. This enables the
creation of independently-clocked subnetworks as well as the connection
to endpoints that provide their own clock. In our CDC, shown in Fig. 3.9,
each channel goes through a CDC FIFO, which has two Gray-coded
counters: one for pushing the FIFO in one clock domain and one for
popping from the FIFO in the other clock domain. The implementation
follows well-established CDC principles [App+07; Cum08; SLB10].

3.1.6 Data Movement: DMA Engine

Transferring large amounts of data at high bandwidth requires dedicated
components for data movement called direct memory access (DMA)
engines. Our DMA architecture is designed to be modular, dividing
the unit into two parts: a system-specific frontend and a backend
implementing the data movement within the on-chip interconnect.
We define a simple, yet well-defined interface uniting both parts: a
one-dimensional and contiguous memory block of arbitrary length,
source, and destination address, called 1D transfer. We chose this
interface abstraction because 1D transfers map very well to burst-based
transactions. More complex transfers, such as multi-dimensional or
strided accesses, are decomposed by the frontend into 1D transfers. As
the frontend is highly system-specific, we will not discuss it.

In the backend, the burst reshaper, shown in Fig. 3.10a, divides the
arbitrary-length 1D transfers into protocol-compliant bursts (adhering
to, e.g., address boundaries and maximum number of beats). On arrival
of a new 1D transfer, the burst converter loads length, source address,
and destination address into internal registers. The burst boundaries
process determines the number of bytes that can be requested in the
next burst. With this, the burst reshaper calculates the address of

1For modules with a single clock input, we do not draw the clock input and
clock wires to all sequential cells in the block diagram in order to not overcrowd the
diagram.
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Figure 3.10: Architecture of our DMA engine. (a) Burst reshaper.
(b) Data mover. (c) Data path, drawn for 64 bit data width.
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the next burst and the remaining bytes left in the 1D transfer. Each
protocol-compliant burst is then translated by the data mover unit,
shown in Fig. 3.10b, into a read and a write command as well as a
read and a write data job. The commands are issued as beats on the
command channels. The data jobs are forwarded to the data path. The
data path, shown in Fig. 3.10c, receives read data beats, realigns the
data to compensate for different byte offsets between the read and write
data streams, and issues write data beats. The data path consists of
two independent processes. The read process is realigns and buffers
incoming data. If a burst starts on an unaligned address, some leading
bytes (“head”) in the first beat are invalid and are masked. Similarly, a
burst may end on an unaligned address, in which case some trailing
bytes in the last beat (“tail”) need to be masked. The write process
drains data from the buffer as soon as it is available and masks it
according to the destination address offset with the strobe signal of the
write data channel.

3.1.7 On-Chip Memory Controllers

On-chip memories are an important class of endpoints for on-chip
network transactions. In this section, we describe two memory con-
trollers through which standard single-port static random access memory
(SRAM) macros can be connected to the on-chip network.

Simplex Memory Controller

The architecture of our simplex on-chip memory controller is shown in
Fig. 3.11. Simplex in this context means that the controller in each clock
cycle can either read or write memory, as is natural for a single-port
SRAM. The memory controller first translates read commands and
write commands plus write data into memory commands. An arbiter
then forwards either a read or a write memory command per clock cycle.
This arbiter optionally takes quality of service (QoS) attributes of a
command into account and can prioritize write beats, which cannot
be interleaved due to (O3), over read beats. A stream fork unit splits
address and data, which go to the memory interface, and meta data
(e.g., the transaction ID), which are used by the memory controller
to form responses in the network protocol. A converter translates the
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Figure 3.11: Architecture of our simplex on-chip memory controller,
with the on-chip network slave port at the top and the memory master
port at the bottom. The memory master port has the same data width
as the network slave port.

address and data stream into memory interface signals (with stream
flow control on the command and no handshaking on the response path).
The memory responses are then joined with meta data to form read or
write responses, which are finally issued on the corresponding network
response channel.

The simplex memory controller cannot achieve the full bidirectional
bandwidth of the duplex on-chip network interface, which has separate
channels for read and write data. The duplex memory controller removes
this limitation.

Duplex Memory Controller

The architecture of our duplex memory controller is shown in Fig. 3.12.
To saturate the read and write data channels of the on-chip network
simultaneously (thus duplex ), this memory controller has at least two
independent memory master ports as well as one simplex controller for
writes and one for reads. A network demultiplexer statically routes
all writes through the left controller and all reads through the right
controller. The unused resources inside both simplex controllers are
optimized away during synthesis. A logarithmic memory interconnect
then routes each command to one of the memory master ports, which
are address-interleaved.
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Figure 3.12: Architecture of our duplex on-chip memory controller
with four address-interleaved memory master ports.

The duplex memory controller can fully saturate both the read and
the write data channel of the on-chip network in the absence of conflicts
on the memory ports. However, irregular traffic (e.g., misaligned
addresses, mixed wide and narrow beats) can give rise to a significant
conflict rate. To reduce conflicts, the banking factor (i.e., the number
of memory master ports per network slave port) can be increased to
any integer higher than 2 (at the cost of more wide and shallow SRAM
macros when the memory capacity is to remain constant).

3.1.8 Last Level Cache

In contrast to the on-chip memory controllers of § 3.1.7, where the
memory content is fully managed by software (so-called SPMs), a cache
provides on-chip memory that is fully hardware-managed. As this
chapter focuses on non-coherent on-chip communication, we present
a non-coherent last level cache (LLC). The purpose of this LLC is to
reduce the latency and bandwidth between its slave (ingress) port and
its master (refill) port. This is very useful, for example, in front of an
off-chip memory controller, which has a much higher latency and lower
bandwidth than on-chip memory.

Our LLC’s set associativity, number of cache lines, and number of
cache blocks per cache line are synthesis parameters, giving system
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Figure 3.13: Architecture of our last level cache (LLC).

designers complete control over the physical size and shape of the cache.
The LLC uses a write-back, read-and-write-allocate data policy with
pseudo-random eviction. The cache supports concurrent read and write
accesses as well as eviction and refill operations. Reads are interleaved
while adhering to (O1–2). Transactions that hit in the cache can
bypass earlier transactions that missed in the cache and are currently
being serviced (i.e., eviction and refill) as far as permitted by (O1).

As not all applications benefit from a hardware-managed cache,
our LLC can be reconfigured at runtime to partially or fully become a
software-managed SPM. This option is available at the granularity of
individual cache sets. It is possible to use the entire data memory of our
LLC as SPM. In that case, all accesses outside the address range of the
SPM bypass the hit/miss logic of the LLC and are directly forwarded to
the master port. This bypass is also used for non-cacheable transactions.
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The architecture of our LLC is shown in Fig. 3.13. Like most
components in our platform, the LLC is implemented with the stream-
based control scheme that is natural to on-chip communication. The
main idea is to start from the command and write data beats at the
slave port, then transform, split, and merge them into descriptors that
flow through the cache and give rise to new commands (for evictions
and refills) and eventually to read and write responses. Starting at the
slave port, commands are decoded by address and memory attributes
and either sent to the bypass or into the core of the LLC. A command
beat enters the cache over the command splitting units. These units
split the command into descriptors, each of which targets exactly one
cache line, and determine whether the access targets a cache set or an
SPM region. Afterwards, the descriptors are arbitrated together with
flush descriptors into a common pipeline. The descriptors then enter
the hit-miss detection unit. Descriptors flagged as SPM simply flow
through this unit, whereas all other descriptors perform a lookup inside
the tag storage. The comparison and eviction unit determines the exact
cache line and set of the descriptor. Additionally, this unit determines
whether the descriptor gives rise to a refill or eviction. Descriptors that
miss in the cache are sent to the eviction and refill pipeline, whereas
descriptors that hit bypass this pipeline, which reduces their access
latency.

Data consistency and ordering rules (O1–3) are enforced by two
units: The index and miss counters prevent that a descriptor that
hits overtakes another descriptor with the same ID that missed and
is currently being served. The line lock allows only one descriptor to
operate on a cache line and set at a time, which prevents data corruption
that could occur from descriptors evicting a cache line used by another
descriptor.

The data SRAMs are manipulated by four units: the eviction and
refill units, which update the state of the data prior to a requested
operation, and the read and write units, which perform the actual cache
operation. All four units are connected over a logarithmic memory
interconnect to the data SRAMs. The data width of the data channels
and the SRAM data ports correspond to the cache block width. This
setup allows all four units to concurrently have one descriptor each
active on the data, thereby using the maximum available bandwidth of
the slave and the master port of the LLC.
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3.2 Implementation Results

This section provides quantitative and asymptotic complexity results
for our network modules. These results are essential for architects
to assess the feasibility and strike trade-offs in the design of on-chip
networks. Our findings are summarized in § 3.2.9. Until there, this
section discusses implementation results to derive the findings.

We implement the modules presented in § 3.1 in GlobalFoundries’
22 nm fully-depleted silicon-on-insulator (GF22FDX) technology, using
a ten-metal stack and eight track SLVT/LVT flip-well standard cells
characterized at typical conditions (0.8 V, 25 °C). We synthesize with
Synopsys DesignCompiler 2019.12 using topographical mode, so physical
place-and-route constraints, dimensions, and delays are taken into
account. For the isolated implementation of the modules, each input is
driven by a D-FF, and each output drives a D-FF. Unless we vary it
in the evaluation, we set the address and data width to 64 bit and the
slave port ID width to 6 bit. Before undergoing synthesis, all modules
have been verified for protocol compliance in RTL simulation under
extensive directed and constrained random verification tests.

3.2.1 Elementary Components: Network (De)Muxes

Network Multiplexer

The critical path of the multiplexer goes through from a slave port
command channel through the arbitration tree on its handshake signals
and the multiplexers on its payload signals to a master port command
channel. For S slave ports, it scales with O (logS) due to the logarithmic
depth of the arbitration tree and the multiplexers. The area scales
O (S) due to the linear area of the arbitration tree and the multiplexers.
The area is further linear in the ID width and the maximum number of
write transactions due to the FIFO between write command and data
channel, but this part is usually negligible. Fig. 3.14 shows the area
and timing characteristics of our multiplexer: for 2 to 32 slave ports,
the critical path increases logarithmically from 190 to 270 ps, and the
area increases linearly from 2 to 30 kGE.
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Figure 3.14: Minimum clock period and corresponding area of our
network multiplexer in GF22FDX for 2 to 32 slave ports and 6 ID
bits.

Network Demultiplexer

The critical path of the demultiplexer goes from a command channel at
the slave port through ID lookup to a command channel on one of the
master ports. It scales with O (M) as the channel demultiplexers grow
linearly in area with the master ports and topographical synthesis takes
the distance increase into account. The area scales with O (M) due to
the linear area of the arbitration trees and the channel demultiplexers.
The ID width I is critical for the demultiplexer: the area scales with
O
(
2I
)

due to the exponential number of counters (one for every possible
ID), and the critical path scales with O (I) because every ID bit adds
a multiplexer level in the indexing logic of the counters. Fig. 3.15
shows the area and timing characteristics of our demultiplexer: For
2 to 32 master ports and 6 ID bits (Fig. 3.15a), the critical path
increases linearly from 330 to 430 ps, and the area increases linearly
from 22 to 38 kGE. The curve is non-monotonic mainly in two points,
where the synthesizer selects disproportionately strong and large buffers
to reach the target frequency. For 4 master ports and 2 to 8 ID bits
(Fig. 3.15b), the critical path increases linearly from 250 to 400 ps,
and the area increases exponentially from 5 to 95 kGE. Depending on
the ID width, the critical path can be significantly longer than in the
multiplexer, so the demultiplexer will be the critical stage in a pipelined
network junction.
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Figure 3.15: Minimum clock period and corresponding area of our
network demultiplexer in GF22FDX: (a) with 2 to 32 master ports
and 6 ID bits, and (b) with 4 master ports and 2 to 8 ID bits.
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Figure 3.16: Minimum clock period and corresponding area of our
crossbar with 4 slave ports, fully connected and unpipelined, in
GF22FDX: (a) with 2 to 8 master ports, 4 slave ports and 6 ID
bits, and (b) with 4 master ports and 2 to 8 ID bits at the slave port.

3.2.2 Network Junctions: Crossbars and Crosspoints

Crossbar

For a fully-connected crossbar with S slave ports, M master ports and I
bits at the slave port, the critical path is dominated by the demultiplexer,
thus scales with O (M + I). The area is the sum of the area of the
S demultiplexers and M multiplexers plus a small overhead for each
slave port for address decoding and the error slave (when instantiated).
The area thus scales with O

(
MS + 2IS

)
. Fig. 3.16 shows the area

and timing characteristics of a fully-connected, unpipelined instance
of our crossbar: For 4 slave ports, 2 to 8 master ports and 6 ID bits
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Figure 3.17: Minimum clock period and corresponding area of our
crosspoint with 4 slave ports, fully connected and pipelined, in
GF22FDX: (a) with 2 to 8 master ports, 4 slave ports and 6 ID
bits, and (b) with 4 master ports and 2 to 8 ID bits at the ports.

(Fig. 3.16a), the critical path increases linearly from 400 to 450 ps, and
the area increases linearly from 111 to 156 kGE. As was the case for the
demultiplexer (§ 3.2.1), the ID width of the slave ports has significant
impact on the critical path and area of the crossbar. For 4 master and
4 slave ports and 2 to 8 ID bits (Fig. 3.16b), the critical path increases
linearly from 340 to 460 ps, and the area increases exponentially from
42 to 390 kGE.

Crosspoint

The critical path of a fully pipelined crosspoint goes from the internal
pipeline register of a master port into the table of an ID remapper. For
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M master ports (Fig. 3.17a), it scales with O (M) from 610 to 630 ns as
topographical synthesis takes the area increase into account. The area
also scales with O (M) but much more significantly from 243 to 587 kGE
as the crossbar and the number of ID remappers scale linearly. Regarding
the ID width I, the crosspoint is dominated by the demultiplexer: For
2 to 8 ID bits in a 4× 4 configuration (Fig. 3.17b), the area scales with
O
(
2I
)

from 127 to 1181 kGE and the critical path scales with O (I)
from 290 to 800 ps.

3.2.3 Concurrent Transactions: ID Width Converters

ID Remapper

The critical path of our ID remapper goes from the input ID through
the ID equality comparators in in the table, through a leading-zero
counter (LZC) to determine the matching or the first free output ID,
into a table counter entry. For an input ID width of I, up to U
concurrent unique IDs (per direction), and up to T transactions per
ID, it scales with O (log I + logU + log T ). The area is dominated by
the tables, which have U entries with I + log2 T bit each. Additionally,
the LZCs have an area of O (U logU). The total area thus scales
with O (U(I + log T + logU)). Fig. 3.18 shows the area and timing
characteristics of our ID remapper: For U = 1 to 64 concurrent unique
IDs and T = 8 transactions per ID (Fig. 3.18a), the critical path
increases logarithmically from 200 to 520 ps until U = 48 and then
linearly to 640 ps for U = 64 as path delays due to the linearly growing
table start to dominate. The area increases linearly from 1 to 41 kGE.
The highest (rightmost) configuration can remap up to 512 transactions
in both directions with up to 64 unique IDs concurrently, but the area
and critical path costs are quite high. In comparison, for U = 16
concurrent unique IDs and T = 1 to 32 transactions per ID (Fig. 3.18b),
the critical path increases logarithmically from 300 to 440 ps, and the
area increases logarithmically from 7 to 16 kGE. Thus, the highest
(rightmost) configuration can also remap up to 512 transactions but
with only up to 16 unique IDs concurrently, at a 2.6× lower area and
1.5× shorter critical path.



70 CHAPTER 3. ON-CHIP COMMUNICATION

Figure 3.18: Minimum clock period and corresponding area of our ID
remapper in GF22FDX: (a) for 1 to 64 concurrent unique IDs and 8
transactions per ID, and (b) for 16 concurrent unique IDs and 1 to 32
transactions per ID.
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Figure 3.19: Minimum clock period and corresponding area of our
ID serializer in GF22FDX: (a) for 1 to 32 IDs at the master port
and 8 transactions per master port ID, and (b) for 4 IDs and 1 to 32
transactions per ID at the master port.
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ID Serializer

The critical path of the ID serializer goes through the demultiplexer, the
push side of the ID FIFO, and the arbitration tree in the multiplexer.
For UM IDs at the master port and T transactions per master port ID, it
scales with O (logUM + log T ). The area scales with O (UM + T ) due to
the linear area of all components in either UM or T . Fig. 3.19 shows the
area and timing characteristics of our serializer: For UM = 1 to 32 IDs at
the master port and T = 8 transactions per master port ID (Fig. 3.19a),
the critical path increases logarithmically from 195 to 410 ps, and the
area increases linearly from 2 to 109 kGE. Clearly, compressing a
densely used ID space is expensive in terms of area. This cost can be
reduced by fixing UM at a low value and varying T : For UM = 4 IDs
and T = 1 to 32 transactions per ID at the master port (Fig. 3.19b),
the critical path increases logarithmic from 245 to 280 ps, and the area
increases linearly from 15 to 51 kGE. 128 concurrent transactions (in
both directions) could therefore be serialized with UM = 4, T = 32 at
1.28× less area and 1.29× shorter critical path.

3.2.4 Data Width Converters
For our data downsizer between a wide slave port of width DW and
a narrow master port of width DN, the critical path goes through
the data selection and steering logic, scaling logarithmically with the
downsize ratio O (log (DW/DN)). The area is O (DNDW), the first term
accounting for the multiplexing logic for data selection and steering,
and the second accounting for the registers that hold a wide beat for
data packing on the write data channel. Fig. 3.20a (left side) shows
the area and timing characteristics of our downsizer: for a slave port
of width 64 bits and a master port of width 8 to 32 bits, the critical
path decreases with increasing width of the master port (and decreasing
downsize ratio), from 390 to 365 ps, while the area grows linearly from
23 to 25 kGE.

For the data upsizer between a narrow slave port of width DN and a
wide master port of width DW, the critical path goes through the data
selection logic and the round-robin arbiter, scaling linearly with the
number of read upsizers R and logarithmically with the upsize ratio,
O (R log (DW/DN)). The area of the upsizer scales with O (RDNDW),
compounding the effect of the multiplexing logic for data selection and
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Figure 3.20: Minimum clock period and corresponding area of: (a) our
data downsizer and upsizer, considering a slave port data width
of 64 bit and a master port data width from 8 to 512 bit, and (b) our
data upsizer, considering a slave port data width of 64 bit, a master
port data width of 128 bit, and 1 to 8 read upsizers.

steering, DN, and of the R DW-bit registers holding wide beats for data
serialization on the read data channel. Fig. 3.20a (right side) shows the
area and timing characteristics of our upsizer: for a slave port of width
64 bits and a master port of width 128 to 512 bits, the critical path
increases with the increasing upsize ratio, from 380 to 405 ps, while the
area increases from 27 to 35 kGE. Fig. 3.20b shows the area and timing
characteristics of the data upsizer from 64 to 128 bits, for 1 to 8 read
upsizers. These have an important effect on the area and critical path
of the upsizer. The critical path of the upsizer increases linearly from
380 to 485 ps, while the area increases from 27 to 59 kGE.
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Figure 3.21: Minimum clock period and corresponding area in GF22FDX
of (a) our DMA engine for 16 to 1024 bit data width, and (b) our
simplex on-chip memory controller for 8 to 1024 bit data width.

3.2.5 Clock Domain Crossing
The area of the CDC scales linearly with the address, data, and ID
widths. For 64 bit address and data width, 6 bit ID width, and a slave
port clock frequency of 1 GHz, the CDC area is 27 kGE for master port
clock frequencies from 0.1 to 2 GHz. Above that, the area increases
exponentially but only up to 31 kGE for 5.5 GHz at the master port.

3.2.6 Data Streaming: DMA Engine
The area of the DMA engine scales with O (D), where D is the data
width, due to the linearly growing alignment buffer. The critical
path is dominated by the barrel shifter, which scales with O (logD).
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For 16 to 1024 bit data width (Fig. 3.21), the critical path increases
logarithmically from 290 to 400 ps and the area increases linearly from
25 to 141 kGE. As the DMA engine uses the same ID for all transactions,
the ID width affects neither area nor critical path.

3.2.7 On-Chip Memory Controllers

Simplex Memory Controller

For a simplex on-chip memory controller with a data width of D, the
critical path is constant and found between the command slave channels
and the memory master port. The critical path does not depend on
D as the transformation of commands does not depend on the data
width. Fig. 3.21b shows the area and timing characteristics: The area
scales linearly with O (D) from 13 to 53 kGE; this linear dependency
is caused by the dominant read response buffers needed for response
path decoupling. The critical path remains roughly constant around
290 ps. The ID width has no impact on the critical path, as the simplex
controller handles all commands in order and only buffers the ID for
the response. The area scales with O (I) due to these buffers.

Duplex Memory Controller

The critical path of the duplex controller goes from the slave port
command channels through the demultiplexer, one simplex memory
controller, and the logarithmic memory interconnect to a memory
command port. For a data width of D and B memory master ports,
it scales with O (logD). The area is composed of the demultiplexer,
the two simplex memory controllers, and the logarithmic interconnect,
and thus scales with O (B +D). Fig. 3.22 shows the area and timing
characteristics of our duplex memory controller: For D = 8 to 1024
bit data width and B = 2 memory master ports (Fig. 3.22a), the
critical path increases logarithmically from 280 to 330 ps, and the area
increases linearly from 20 to 175 kGE. For D = 64 bit data width
and B = 2 to 8 memory master ports (Fig. 3.22b), the critical path
stays constant around 300 ps and the area scales with O (B) from
28 to 34 kGE. Regarding the ID width I, the complexity is defined by
the demultiplexer.
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Figure 3.22: Minimum clock period and corresponding area of
our duplex on-chip memory controller in GF22FDX: (a) for
8 to 1024 bit data width and two memory master ports, and (b) for
64 bit data width and 1 to 8 memory master ports.
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Figure 3.23: Minimum clock period and corresponding area of our last
level cache in GF22FDX, with a set associativity of 4, 16 blocks per
cache line, 8 B per block, and 64 bit addresses, (a) evaluated in isolation
without SRAM and (b) evaluated together with SRAM.

3.2.8 Last Level Cache

We evaluate our LLC with a set associativity of 4, 16 blocks per cache
line, and 8 B per block, and we vary the cache size through the number
of cache lines L. Area and critical path of a cache are commonly
dominated by its SRAM macros, but it is essential that the control
logic adds only minimal overhead.

The control logic remains constant in area when increasing the cache
size with L, as shown in Fig. 3.23a. Changing the ID width I would
scale the area with O

(
2I
)

due to the ID counters instantiated in the
bypass multiplexer and the counters in the hit-miss unit. However, this
is a secondary effect as those counters are relatively small compared to



78 CHAPTER 3. ON-CHIP COMMUNICATION

Critical Path Area

Multiplexer O (logS) O (S)
Demultiplexer O (M + I) O

(
M + 2I

)
Crossbar O (M + I) O

(
MS + 2IS

)
Crosspoint O (M + I) O

(
M + 2I

)
ID Remapper O (log I + logU + log T ) O (U(I + log T + logU))
ID Serializer O (logUM + log T ) O (UM + T )
Data Upsizer O (R log (DW/DN)) O (RDWDN)
Data Downsizer O (log (DW/DN)) O (DWDN)
DMA Engine O (logD) O (D)
Simplex Mem. Ctrl. O (1) O (D)
Duplex Mem. Ctrl. O (logD + logB + I) O

(
D +B + 2I

)
Last Level Cache O (logL) O

(
L+ 2I

)
Legend: M = number of master ports; S = number of slave ports. D = data width;
DW = data width of the wide interface; DN = data width of the narrow interface;
I = ID width; U = concurrent unique IDs; UM = concurrent unique IDs at the
master port; T = concurrent transactions per ID. B = number of memory master
ports. R = number of read upsizers. L = number of cache lines.

Table 3.2: Overview of the complexity of our network modules.

the remainder of the cache. The critical path is inside the tag lookup
unit, starting at the tag memory, going through the tag comparators,
and ending again in the tag memory. No logic on the critical path of
the control unit changes with the number of cache lines L, therefore it
is constant in L.

The LLC including the SRAM macros is characterized in Fig. 3.23b.
Compared to the area of the control logic alone (Fig. 3.23a), the
SRAM macros occupy 8 to 64 times more area for a cache size of
64 to 1024 KiB. Thus, the area occupied for control logic is below 10 %
already at 128 KiB, and becomes marginal at larger sizes. The delay of
the tag memory dominates the critical path of the design: as it increases
logarithmically with the number of cache lines L, so does the critical
path of the LLC.
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3.2.9 Complexity Overview and Summary

An overview of the asymptotic complexity of our network modules
is shown in Table 3.2. The critical path of all modules scales at
worst linearly in their parameters, for most modules and parameters
even logarithmically. As the absolute results of the minimum clock
period show, the critical path of all modules remains below 500 ps
post-topographical-synthesis in the large design space we evaluated.
This shows our modules are suited for a wide range of target frequencies
and bandwidths, up to 2 GHz. When even higher frequencies are
required, most modules can be parametrized to have a critical path
below 330 ps, which would allow to clock them up to 3 GHz. The area
of most modules scales linearly in their parameters, with the notable
exception of the ID width, which causes an exponential growth of the
demultiplexer and all modules containing it. As the absolute results show,
most modules fit a few tens of kGE when not pushed to the highest
possible clock frequency and parametrization. Even more complex
modules, such as a 4×4 crossbar with up to 256 independent concurrent
transactions, fit in a modest 100 kGE when clocked at 2.5 GHz.

Power is another important aspect of on-chip networks. This chapter
focuses on architecture, performance, and area, but our platform
supports all state-of-the-art power optimization techniques (e.g., architec-
tural power gating). Even for complex and high-performance instances
such as the mentioned 100 kGE crossbar, the power consumption is
in the order of just 35 mW under full load at 2.5 GHz, which would
typically be less than 10 % of the power consumed by processor cores
operating at a similar frequency; for instance, an ARM Cortex-A72 in
a 16 nm FinFET technology at 2.5 GHz consumes around 1 W [Fru16].

While module-wise results are important to show the complexity
and trade-offs in the microarchitecture of our on-chip communication
platform, they of course cannot show the full picture of a real on-chip
network. In the next section, we analyze a full on-chip network.

3.3 Full-System Case Study

In this section, we design, implement, and evaluate the on-chip network
of a many-core floating-point accelerator, using the modules presented in
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Figure 3.24: Conceptual floorplan of one Manticore [ZSB20] chiplet die.

this chapter. We use the technology and synthesis flow described in § 3.2
and additionally implement the networks with Cadence Innovus 19.1.

The Manticore architecture [ZSB20] is a state-of-the-art manycore
processor for high-performance, high-efficiency, data-parallel floating-
point computing. A Manticore accelerator consists of four chiplet dies
on an interposer. Each chiplet, shown in Fig. 3.24, contains 1024
cores grouped in 128 clusters, one 8 GiB HBM2E controller and PHY,
27 MiB L2 memory, one Peripheral Component Interconnect Express
(PCIe) 5.0 x16 controller and PHY, and three die-to-die link (D2D)
PHYs to the other chiplets. Each cluster contains eight small 32-bit
integer RISC-V cores, each controlling a large double-precision FPU,
and 128 KiB L1 memory organized in 32 SRAM banks. As primary
means for moving data into and out of L1, each cluster contains two
of our DMA engines (§ 3.1.6, one for reads and one for writes), which
are attached to the L1 memory and control a 512-bit-wide master port.
DMA engines in other clusters can access the L1 memory through an
additional 512-bit-wide slave port. Each cluster has a 64-bit master port
to let its cores access external memory and a 64-bit slave port to let
cores in other clusters access its L1 memory. Four clusters form an L1
quadrant, four L1 quadrants form an L2 quadrant, four L2 quadrants
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Figure 3.25: Manticore’s on-chip network. Each arrow represents a
bundle, with the arrow head pointing in the direction of the command
channels. Fat arrows mean 512 bit data width, thin arrows 64 bit.
Numbers above arrows indicate maximum transaction concurrency in
the form unique IDs / transactions per ID / total transactions per
bundle (reads and writes separate).

form an L3 quadrant, and two L3 quadrants form a chiplet. Manticore
has been introduced in [ZSB20] without disclosing its on-chip network. In
the remainder of this section, we describe the design, implementation,
and performance of Manticore’s on-chip network.

3.3.1 Network Design

Manticore’s on-chip network is designed with four main goals: (D1) High
bandwidth between units within the same quadrant for effective local
data sharing. (D2) High bandwidth between the chiplet-level I/Os
(i.e., HBM2E, PCIe, D2D) and any cluster for effective data input
and output. (D3) Low latency between any two cores for efficient
concurrency. (D4) Minimal interference between the wide bursts of
the DMA engine and the word-wise accesses of the cores for maximum
network utilization. The network, shown in Fig. 3.25, has the following
properties to meet these goals: (1) Physically separate networks for
traffic by DMA engines and cores to meet (D4). (2) Tree topology to
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meet (D2–3). (3) Fully-connected crossbars within each quadrant to
meet (D1). (4) The same data width and frequency for each bundle
throughout the DMA network, to meet (D2). The clock frequency of
the entire network and all its endpoints (i.e., cores, DMA engines, L2
memory controllers, and HBM2E controller) is 1 GHz. The data width
of the DMA network is set to 512 bit, which corresponds to one of the
four ports into the HBM2E controller. Therefore, saturating the full
HBM2E bandwidth requires concurrent transactions from only four
DMA engines in different L2 quadrants. The data width of the core
network is set to 64 bit, which is native for the load/store unit of a core.

The concurrency of transactions is another important aspect of
the network design. The numbers above an arrow in Fig. 3.25 define
the number of concurrent unique IDs, transactions per ID, and total
transactions per bundle (reads and writes separate), respectively. ID
width converters are placed in the network where required to reduce the
ID width. Starting at the cluster, each DMA engine is in-order (thus has
a single ID) and can have up to 8 outstanding transactions ➊. Transac-
tions by the 8 cores in the cluster are independent, and each core can
have at most 1 outstanding transaction ➋. The L1 network maintains
the independence of all DMA and core transactions, and the number of
unique IDs expands accordingly, as do the total transactions ➌. The
L2 network maintains the independence of DMA transactions but limits
their total below the sum of the incoming ports with ID remappers ➍.
The reason is that the maximum roundtrip latency at this level is 60
cycles, so a higher number of concurrent transactions would not increase
bandwidth or utilization. The concurrency on downlinks is generally
constrained with ID remappers to match that of an uplink into the
lower network, e.g., ➎. This means each network level can handle
transactions from the uplink slave port in the same way as transactions
from downlink slave ports.

3.3.2 Network Microarchitecture and Implementa-
tion

The microarchitecture and physical dimensions of one L1 and L3 network
are shown in Fig. 3.26. (The L2 network is very similar to the L1 and
omitted for brevity.) For the L1 network, the downlink ports are in the
left third of each cluster, close to the cluster’s memory and internal
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Figure 3.26: Microarchitecture and dimensions of Manticore’s on-chip
network. (a) L1 network. (b) L3 network. Only select connections are
drawn for reasons of lucidity.

interconnect, and the uplink port is in the middle of the narrow side.
For the L2 and L3 network, the downlink ports are at one quarter of
the wide side (determined by the lower network level), and the uplink
port is in the middle of the narrow side. To isolate the timing closure
of individual network levels, we cut all paths at the uplink ports ➏.
Correspondingly, all downlink inputs are driven by FFs and all downlink
outputs drive FFs. There are two central challenges in the physical
implementation of the networks. First, the extremely wide aspect ratio:
while one wide dimension is determined by the side length quadrant, the
other dimension should be as narrow as possible to minimize the area
of the network. Second, routing and wire congestion: each of the five
interfaces has ca. 3300 separate wires, and each network level is fully
connected. Routing the wires of a single interface horizontally occupies
a height of ca. 100 µm on all three metal layers available for inter-cell
horizontal routing. To mitigate congestion, the crossbar, with its fanout
of wires between demultiplexers and multiplexers, should be placed and
routed as compact as possible ➐. The crossbar nonetheless incurs a
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Unit L1 L2 L3
Entire
Network

Clock Frequency [GHz] 1.00 1.00 1.00 1.00
Routing Density* [%] 59.6 49.6 45.7 —
Area per Inst. [mm2] 0.41 1.40 2.99 30.43
Power per Inst. [mW] 8.1 12.8 17.2 396.0
# Insts. per Chiplet 32 8 2 1
Area per Chiplet [mm2] 13.21 11.23 5.98 30.43
Area per Chiplet† [%] 9.05 7.69 4.10 20.84
Area per Core+FPU [µm2] 12 900 10 970 5840 29 710
Power per Chiplet [mW] 259.2 102.4 34.4 396.0

*Routing density along wider dimension (i.e., where routing is denser).
†Relative to chiplet area without I/O controllers and PHYs.

Table 3.3: Implementation results of Manticore’s on-chip network.

significant combinational delay. To accommodate this despite the long
distances due to the extreme aspect ratio, we insert registers around
the crossbar ➑. In contrast to pipelining inside the crossbar, much
fewer registers are required, which again benefits the compact layout
of the crossbar. In the L3 network (Fig. 3.26b), pairs of L2 networks
share one port on the HBM2E controller. Cores on the narrow network
access the wide HBM ports through data width converters. Because
the HBM2E controller is located on the left side of the chiplet, the left
L3 network simply feeds two connections from the right L3 network
through pipeline registers to the controller ➒. ID remappers are used
to reduce ID widths according to the concurrency design ➓.

The implementation results of Manticore’s on-chip network are listed
in Table 3.3. We have been able to close timing and design rule checking
(DRC) of the entire network after place and route at 1 GHz. For this,
we first loosely constrained the narrow dimension to determine the
required number of pipeline registers around the crossbar, then we
reduced the narrow dimension until the design could no longer be routed
without failing timing or DRC. As the high routing densities show,
the area of each network level is mainly determined by the available
routing channels. The total area of the network is 30.43 mm2, which
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Figure Unit Convolution Fully
base stacked pipe’d Connected

Op. Intensity [dpflop/B] 2.2 15.9 15.9 7.9
HBM BW [GB/s] 262* 98 6 222
L3 Agg. BW [GB/s] 262 98 6 222
L2 Agg. BW [GB/s] 262 98 25 222
L1 Agg. BW [GB/s] 262 98 98 222
Performance [Gdpflop/s] 571 1638† 1638† 1638†

*Of which 256GB/s are on the read channel, which is its maximum.
†This corresponds to an FPU utilization of ca. 80 %, which is the
maximum all 8 FPUs in a cluster can sustain for real kernels.

Table 3.4: Performance of Manticore for different NN layer implementa-
tions.

is 20.84 % of the chiplet area without I/O controllers and PHYs. Put
differently, Manticore’s entire high-bandwidth, low-latency, hierarchical
on-chip network requires 29 710 µm2 per core. This is merely about the
same area as one core (without any cache) and FPU, which are highly
area-efficient. The total power of the network is 396 mW, which means
only 0.4 mW per core (or less than 5 % extra power per core).

3.3.3 Network Performance
We characterize the performance of two fundamental neural network
(NN) layers based on RTL simulations and analytical calculations, with
a focus on the impact of the on-chip network. The two layers, a convolu-
tional layer and a fully-connected layer, together account for 95 to 99 %
of the floating-point operations (FLOPs) in MLT. The following is
a condensed description of the NN implementation on Manticore, a
comprehensive description is available as online supplement 2.

A convolutional NN layer transforms a 3D input volume (aka “feature
map”) to a 3D output volume through convolutions with filter kernels.
More precisely, each input volume with dimensions WI ×WI ×DI is
padded with P zeros in the spatial dimensions (resulting in (WI +2P )×

2https://arxiv.org/pdf/2104.08009.pdf

https://arxiv.org/pdf/2104.08009.pdf
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(WI + 2P )) and then convolved with K filter kernels with dimension
F ×F ×DI in a stride S to produce an output volume with dimensions
WO ×WO × DO, where WO = (WI + 2P − F )/S + 1 and DO = K.
We set WI = 32, DI = 128, K = 128, F = 3, P = 1, and S = 1.
Therefore, WO = 32 and DO = 128. In the baseline implementation,
each cluster computes one depth slice (aka “channel”) of the output
volume (of dimensions WO×WO) at a time. As the entire input volume
does not fit into the local memory of a cluster, the cluster loads a stack
of depth slices of the input volume at a time. Thus, each cluster needs
to load the entire input volume once per output depth slice. As the first
result column in Table 3.4 shows, this implies a very low operational
intensity and entails that performance is bound by the HBM memory
bandwidth. One strategy to alleviate this is to let each cluster compute
a stack of depth slices of the output volume. As the input depth slices
can be reused for multiple output depth slices, this reduces the amount
of data transferred per computation. For a stack of 8 output depth
slices (second column), the operational intensity is sufficiently high that
the performance becomes compute-bound. To save even more off-chip
bandwidth without sacrificing performance, the hierarchical network can
be used to form a processing pipeline where clusters obtain their input
depth slice from another cluster instead of off-chip memory. The third
column shows that when all 16 clusters within one L2 quadrant form
such a pipeline, the off-chip memory traffic can be massively reduced
while performance is maintained. Traffic is also reduced on the L2 and
L3 networks because data, once it is in the local memory of a cluster, is
mainly transferred through the L1 networks.

A fully-connected NN layer transforms an input volume with dimen-
sions WI×WI×DI to an output volume with dimensions 1×1×DO. As
any fully-connected layer can be represented as convolutional layer, we
stick to the introduced notation and operations and set WI = 32,
DI = 128, K = 128, F = 32, P = 0, and S = 1. Therefore,
WO = 1 and DO = 128. As each filter parameter is used only once per
input-output volume pair, fully-connected layers are usually implemented
by transforming a batch of B input volumes to a batch of B output
volumes; we use B = 32. Our implementation parallelizes the input
depth slices over the clusters. Before the parallel section, each cluster
allocates a private output volume and initializes it to zero. In the
parallel section, the cluster first loads the entire batch of one depth
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slice of the input volume and then loops over the output depth slices.
Within that loop, the cluster loads the filter parameters for the current
pair of input and output depth slices and then enters an inner loop over
the batch. Within the inner loop, the cluster multiplies the input depth
slice of a batch element with the loaded filter parameters element-wise
and then accumulates all products to a single value, which it adds
to the output element for the current output depth slice and batch
element. After the parallel section, the private output volumes of all
clusters are reduced by summation to a single output volume, which
contains the contributions of all input depth slices. As the last column
in Table 3.4 shows, this implementation is compute-bound. There is
no communication between the clusters in the parallel region because
there is no data common to any two clusters. As such, the hierarchy of
the network is not exploited, but the high bandwidth between HBM
and any cluster is: it allows reaching compute-boundedness already
for a batch size of 32. Larger batch sizes further reduce the off-chip
bandwidth.

3.4 Related Work

NoC topologies, routing algorithms, flow control schemes, and router
architectures have been subject to a vast amount of research (see [PD10;

FB10; Jer+17; KC18; DT03; BD06] for detailed reviews). Important conclusions
from this research are that the optimal on-chip network topology highly
depends on the target application and computer architecture, and that
routing strategies and flow control schemes are intertwined with the
communication protocol, which all connected modules need to adhere to.
Thus, we do not try to innovate in this field. Rather, the modules in our
platform allow to build an on-chip network with arbitrary topology that
adheres to a state-of-the-art, industry-standard protocol, following the
paradigm put forward by application-specific NoC research efforts (see
[CF16] for an up-to-date survey). Additionally, our elementary modules
allow to design custom network modules, including custom endpoints
such as caches and memory controllers, without having to deal with
all protocol intricacies. To the best of our knowledge, our work is the
first on-chip communication platform that offers elementary modules
smaller than crossbars or switches.
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Non-coherent on-chip communication is central for heterogeneous,
accelerator-rich SoCs [GMC18b]. Protocols similar to AMBA AXI5 [AXI-

F.b], which our platform directly supports, are IBM’s CoreConnect [IBM07],

Silicore’s Wishbone [Sil10], Accellera’s Open Core Protocol (OCP) [Acc13],

and SiFive’s TileLink Uncached Heavyweight (TL-UH) [SiF19]. They
all, like AXI, are royalty-free standards. CoreConnect, Wishbone, and
OCP provide a subset of the features of AXI5, and while they had been
used in the past, they are nowadays not nearly as widely used as AXI.
TL-UH, like AXI5, supports burst transactions, multiple outstanding
transactions, and transaction reordering and uses valid-ready flow
control. TL-UH has stricter forward progress requirements than AXI5,
which our modules could also fulfill. While the specifications define
interfaces and protocols for on-chip communication, they do not describe
the architecture of network modules implementing them; that is an
important contribution of our work. The OpenSoC Fabric [Fat+16] is an
open-source implementation of a custom non-coherent protocol, with an
interface to AXI-Lite in development. AXI-Lite does not support bursts
or transaction reordering and is therefore not suited for high-performance
communication. The ESP project [GMC18a] provides an open-source
implementation of a 2D-mesh NoC with a custom protocol. Similarly, the
non-coherent BaseJump Manycore Accelerator Network, which has first
been used in the Celerity chip [Dav+18], adheres to a custom protocol
and is designed for 2D-mesh networks. In contrast, our platform
is topology-agnostic and adheres to an industry-standard protocol.
An overview of on- and off-chip interconnects for NN accelerators is
presented in [Nab+20]. They highlight the need for non-mesh topologies
in NN accelerators, to which we contribute with our case study and
topology-independent platform.

Commercial IP offerings for AXI exist from multiple vendors, and
we compare with them in Table 3.5. Our work is the only one (1)
whose architecture is fully disclosed in literature, (2) whose RTL code is
open-source and modifiable, enabling, e.g., the exploration of arbitration
algorithms with certain guarantees inside standard-compliant networks,
and (3) whose area and timing (AT) characteristics may be disclosed not
only on FPGAs. Despite its research origin, the implementation behind
this work powers on-chip communication of an increasing number of
application-specific integrated circuits (ASICs) (e.g., [ZSB20; Zar+19]).
From a technical perspective, our work is the only one that offers
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Table 3.5: Commercial IP offerings for AXI compared with this chapter.
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elementary modules (i.e., network (de)multiplexers) that can be used to
build custom AXI-compliant IP modules without having to deal with all
intricacies of the protocol, instead of only crossbars as finest-granularity
modules. Additionally, our work supports all standard-defined data
widths, supports the highest number of concurrent transactions, and
comes with communication modules such as ID width converters, a
DMA engine, on-chip memory controllers, and a last-level cache, which
are licensed separately or not available at all from commercial vendors.

Cache-coherent on-chip communication protocols currently in use
include Intel’s UltraPath Interconnect [Mul17], AMD’s scalable data
fabric [Bur+19], IBM’s Power9 on-chip interconnect [Sad+17], AMBA
AXI Coherency Extensions (ACE) [AXI-F.b], AMBA5 CHI [CHI-D], and
TileLink Cached (TL-C) [SiF19]. ACE and TL-C are extensions of AXI
and TL-UH, respectively. As such, our platform could be extended
for coherent communication by adding channels, transactions, and
properties defined by these specifications. Under the ordering rules
(O1–3), coherence transactions cannot use the existing channels of
regular transactions: In coherent communication, a regular transaction
can entail coherence transactions, which must complete before the regular
transaction can complete. Guaranteeing this would require different
ordering rules. The other protocols are standalone specifications
with very different properties. For instance, we refer to [Cav+20] for
an open-source bridge for connecting to CHI from AXI. With such a
bridge, our platform can connect to a coherent system interconnect if
needed, possibly extending to multiple chips. Coherency in on-chip
networks has been studied extensively in research, e.g., [EPS06; EPL08;

APJ09]. A prominent system example is SCORPIO [Day+14], where
a coherent mesh NoC interconnects 36 homogeneous cores on a die.
Their work focuses on the NoC and router architecture for a coherent
homogeneous multi-core, while we design an end-to-end non-coherent
on-chip communication platform suitable for heterogeneous many-cores.
Generators for cache-coherent on-chip networks have been presented
in multiple works: Open2C [But+18] contains a library of modules for
coherent networks written in Chisel. Like us, they present an LLC,
which is separated from a coherence directory. In their 512 KiB L2
cache, the area overhead of control logic and buffers is 38%, whereas
an identical parametrization of our LLC has only 3 % overhead. The
Rocket chip generator [Asa+16] constructs SoCs written in Chisel, and the
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coherent NoC adheres to TL-C. OpenPiton [Bal+16] generates tile-based
manycore processors with a 2D mesh coherent NoC. One tile has an
area of 1.17 mm2 when targeting IBM’s 32 nm SOI process at 1 GHz.
Of the tile area, 22.3 % are occupied by 32 KiB of distributed L2 cache
and directory controller and 2.7 % by the 5× 5 NoC router. Accounting
for one full technology node difference, the equivalent area in GF22FDX
would be ca. 660 kGE and 80 kGE for 32 KiB L2 cache and the NoC
router, respectively. The control logic of their L2 cache is ca. 3.3 times
larger than that of our LLC, which could be due to the cache directory.
Their 5 × 5 NoC router (without any virtual channels) is about the
same size as a 5 × 5 configuration of our crosspoint (with up to 16
reorderable IDs). Open2C and OpenPiton implement a custom protocol,
which complicates connectivity with third-party modules, whereas we
adhere to an industry-dominant protocol. The modules in our work are
implemented in synthesizable SystemVerilog, so they could be integrated
into a higher-level generator as well.

3.5 Summary
This first fully open-source3 platform for high-performance on-chip
communication enables the construction of heterogeneous many-core
and accelerator-rich SoCs independent of proprietary on-chip networks
IPs. The platform advances the technical state of the art through
two main contributions: First, network (de)multiplexers as elementary
components make the design and verification of custom network modules
substantially easier. Second, an end-to-end palette of modules from a
DMA engine to on-chip memory controllers, including data and ID width
converters, as well as the widest range of data widths and concurrent
transactions enables new designs. For example, we designed and
implemented a state-of-the art 1024-core MLT accelerator in a modern
22 nm technology, where our communication fabric provides 32 TB/s
cross-sectional bandwidth at only 24 ns round-trip latency between any
two cores. Future work enabled by our platform includes design space
exploration and optimization of on-chip networks, networks designed
for stringent application constraints (e.g., arbitration guarantees for

3SystemVerilog source code available under a permissive open-source license at
https://github.com/pulp-platform/axi.

https://github.com/pulp-platform/axi
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real-time execution), and co-integrated cache-coherent and non-coherent
networks.



Chapter 4

Modular and Scalable
Support for Atomic
Operations in a Shared
Memory Multiprocessor

Atomic memory operations (AMOs) are ubiquitous in modern concurrent
algorithms. Many of them, such as compare-and-swap, fetch-and-add,
and LR/SC, can be used to implement lock- and wait-free algorithms and
data structures with strong progress guarantees [HS11]. Theoretically,
lock-free algorithms allow an arbitrary number of threads to share
a resource without the need for serial execution on a lock. This is
paramount for scaling algorithms to a high number of threads, because
even very short intervals during which threads are serialized drastically
limit the potential speedup (Amdahl’s Law) [HM08].

Even though most ISAs today define AMOs (e.g., x86 [Int19b],

ARMv8 [Arm19b], RISC-V [Wat+11]), their scalable implementation is not a
solved problem: First, implementation in commercial processors is a well-
guarded secret, thus there is a knowledge gap on the challenges and trade-
offs of implementing AMOs. Second, the subsystem for executing AMOs
is presumably tightly coupled to the processor architecture and the

93
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memory hierarchy. Thus, techniques developed for one multiprocessor
architecture do not readily apply to other architectures. Finally, AMOs
on modern multiprocessors have been shown to scale poorly to large
numbers of threads [SBH15; ELF11].

In this chapter, we fill the knowledge gap and present an open-source
hardware module to implement AMOs at any level in the memory
hierarchy. The proposed architecture decouples the execution of AMOs
and conditional-store-based primivites from locking shared resources as
much as possible. This allows our solution to scale the throughput of
AMOs linearly until the target memory saturates.

Our module is designed for modern on-chip communication protocols
(OCCPs) and ISAs in general, but for concreteness we describe an
implementation compliant with the open, modular RISC-V ISA [Wat+11]

(§ 4.1.1) and the industry-standard AXI OCCP [Arm17a] (§ 4.1.2). We
describe how our module integrates into a memory hierarchy in § 4.2,
give an overview of its design in § 4.2.1, describe the microarchitecture
of its two stages in § 4.2.2 and 4.2.3, and discuss its liveness guarantees
in § 4.2.4. We evaluate our system on a cycle-accurate FPGA prototype
(§ 4.3.1), where 32 cores share a second-level scratchpad memory, and
find (§ 4.3.3) that:

1. The throughput of AMOs scales linearly with the number of
cores until the on-chip memory is saturated with and without
contention;

2. The latency of an AMO is only 25 % higher than a regular load
from that memory and under contention increases linearly with
10 cycles per core;

3. The throughput of important concurrent algorithms scales linearly
with the number of cores until the memory bandwidth is saturated.

We furthermore synthesize our design for a 22 nm FDSOI technology
for a variable number of cores in the system and find that its area
increases linearly at only 0.5 kGE per core and its longest path scales
logarithmically with the number of cores (§ 4.3.4). We compare to
related work in § 4.4 and conclude in § 4.5.
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4.1 Background

We briefly describe RISC-V’s semantics for atomics and its memory
consistency model (§ 4.1.1) as well as modern on-chip communication
at the example of AXI (§ 4.1.2).

4.1.1 RISC-V ISA

RISC-V [Wat+11] is an open ISA and its flexibility and modularity make
it ideally suited for this chapter. We follow the RISC-V terminology and
call a processor component core if it contains an independent instruction
fetch unit. One core might support multiple hardware threads (harts)
through multithreading.

RISC-V’s ‘A’ extension specifies two different types of atomic
instructions: the LR/SC pair and AMOs. A load-reserved (LR) loads
a word and simultaneously places a reservation for the hart on the
read memory location. This reservation does not prevent other harts
from reserving the same location or from reading or writing to the
same location, but any modification of a memory location clears all
reservations to that location. The store-conditional (SC) instruction
stores a word at a memory location if the hart has a valid reservation
and returns a value indicating whether the store succeeded. Together,
the LR/SC pair can be used to implement atomic read-modify-write
(RMW) operations.

Atomic memory operations (AMOs) implement a fixed set of atomic
RMW operations, which match those of the C11/C++11 atomic
operations library, facilitating its fast implementation. The operations
are swap, add, bitwise and, or, and xor, and signed and unsigned min
and max on 32- and 64-bit words (the latter only on 64-bit processors).

RISC-V’s memory model is built around release consistency [Gha+90].

Each hart executes its instructions so that they appear in program
order as seen from the executing hart. Memory instructions from other
harts, however, may be observed in a different order. This so-called
RISC-V Weak Memory Order (RVWMO) gives computer architects the
flexibility to design scalable and high-performance systems but burdens
software developers with inserting explicit memory instructions where
required – although RVWMO and AMOs were designed to implement
the C11/C++11 memory model efficiently. RISC-V optionally defines
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a stronger total store ordering (TSO) memory model. Our work can
accommodate both RVWMO and RVTSO.

4.1.2 Modern On-Chip Communication and AXI

Modern on-chip communication is centered around the premise of
high-bandwidth point-to-point data transfers. To fulfill this premise
despite increasing point-to-point latencies, three central traits of modern
on-chip communication protocols are: burst-based transactions, multiple
outstanding transactions, and transaction reordering. Our design targets
these central traits in general, so the concepts we present potentially
apply to a wide range of modern on-chip protocols. More tangibly, we
adhere to the latest revision (5) of the AMBA Advanced eXtensible In-
terface (AXI) [Arm17a]. AXI is one of the industry-dominant OCCPs and
the only OCCP with an open specification and a widespread adoption in
current real-life systems designed by many different companies. Other
modern major commercial OCCPs with similar properties include Intel’s
Ultra Path Interconnect [Mul17], AMD’s scalable data fabric [Bur+19],

and IBM’s Power9 on-chip interconnect [Sad+17].

AXI separates communication into two directions (read and write),
into channels for commands, data, and responses, and into transfer
items called ‘beats’. A transaction starts with a command followed
by one or multiple data beats and ends with a single response (on a
write) or the last of multiple responses (on a multi-beat read). Each
transaction is initiated by a master, targets an addressed slave, and can
involve multiple interconnecting components.

Exclusive accesses in AXI are very close to the semantics of LR/SC
in RISC-V. The basic mechanism is that a master issues an exclusive
read (LR in RISC-V) to an address and some (unrestricted) time later
an exclusive write (SC) to the same address. The exclusive write
then succeeds if no other master has written to that address since the
exclusive read and fails otherwise. Only successful exclusive writes
modify the memory.

Atomic transactions, which are write transactions with an added
atomic opcode, were added in AXI5. There are four types of atomic
transactions: store, load, swap, and compare. An atomic swap uncon-
ditionally replaces the memory value at an address with the provided
data value and returns the original value; an atomic compare replaces
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the value in memory only if it matches a second provided data value.
Atomic loads and stores unconditionally apply one of eight operations
(add, clear, exclusive or, set, and signed and unsigned minimum and
maximum) on the memory and a provided value. Atomic loads return
the original memory value; atomic stores return a response without data.
Although specified independently, the atomic transaction operations of
AXI5 are a superset of the AMOs of RISC-V: the atomic add, and,
or, xor, and signed and unsigned max, and min instructions can be
mapped to atomic loads (or atomic stores if the destination register is
x0) and the swap instruction to an atomic swap.

4.2 Design and Architecture
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Figure 4.1: Implementing AMOs with the ATUN (red horizontal bar) in a
memory hierarchy based on scratchpad memories (SPMs).

We describe the design and microarchitecture of our ATomic UNit
(ATUN) hardware module. Fig. 4.1 shows how the ATUN can be placed
in front of any memory that has an AXI-like OCCP interface, giving
system designers many options on where in the memory hierarchy to
resolve AMOs and LR/SCs.
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4.2.1 Design Overview
Our ATUN is composed of two stages: the AMO stage, which serves the
OCCP slave interface, and the LR/SC stage, which controls the master
interface (left ports of Fig. 4.2). The AMO stage (§ 4.2.3) resolves AMOs
in its arithmetic logic unit (ALU) and uses the atomicity guarantee
provided by the subsequent LR/SC stage to guarantee the single-copy
atomicity of each AMO. The LR/SC stage (§ 4.2.2) guarantees the
atomicity of an LR/SC pair for any reorderable downstream memory
interface.

4.2.2 LR/SC Stage
The LR/SC stage guarantees the single-copy atomicity of LR/SC pairs as
long as it “owns” the entire downstream memory – i.e., no transactions
can reach the downstream memory without being observed by the
LR/SC stage – but the downstream memory (e.g., an off-chip memory
controller) is free to reorder transactions as defined by the OCCP’s
memory semantics.

The LR/SC stage will always only emit transactions that are non-
exclusive. Downstream modules unconditionally execute all writes
and have full freedom of reordering transactions (as allowed by the
OCCP specification), which is essential for memory controllers and other
off-chip links to achieve high bandwidth. The LR/SC stage considers
these reordering options and fails an exclusive store if a contending
write could be reordered before the exclusive store. A central feature
of the LR/SC stage is that it does not lock the write channel during
exclusive accesses.

The LR/SC stage, shown in Fig. 4.2, is composed of a reservation
table and control FSMs for the OCCP channels, which interact through
command queues. Read and write transactions are fully independent.
The algorithm to process them is essentially as follows: Every read
request is forwarded in the same clock cycle and, if it is exclusive and no
write to the same address is in-flight downstream, places a reservation.
If both a read and a write request to the same address region are
at the upstream interface simultaneously, the write is stalled for one
clock cycle to order the effect of reads and writes on reservations. To
maintain the single-copy atomicity of LR/SC, a write is also stalled
if an address-overlapping exclusive write is in-flight downstream. In
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Figure 4.2: Microarchitecture of the LR/SC stage.

all other cases, a write request is forwarded in the same clock cycle.
Exclusive write requests are forwarded if and only if the reservation
table holds a reservation for the targeted memory range and the hart
identified by the transaction ID. Each forwarded write request clears
all reservations to overlapping address ranges. Our design supports any
order of LR/SCs from the connected harts, and all harts can reserve
any address in the attached memory at any time. When placed before
a cache, the LR/SC stage relies on the existing coherence protocol to
guarantee atomicity and snoops the coherence channel for invalidations,
upon which it clears matching reservations. If there are caches before
the ATUN, they, upon an AMO must invalidate the affected cache line
and forward the AMO.

The reservation table is at the core of the LR/SC stage. Each hart is
identified by a unique OCCP transaction ID, and since the reservations
by different harts must be independent, the reservation table contains
one entry per hart. While a cache-like structure with less entries than
harts would be attractive to save area, doing so adds dependencies
between reservations from different harts, which can lead to livelocks
and deadlocks. The table is indexed by the ID and stores the start
address and size of an exclusive access.

The reservation table has two interfaces: The first interface checks
if a hart holds a reservation for an address and optionally clears all
reservations that have a range that match the address. The second
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interface sets the entry for a hart to an address and size. In the worst
case (overlapping reservations for all harts and a write to an address
in the intersection), the entire table has to be read and written before
a request can be granted. As latency is crucial for the LR/SC stage
(discussed in § 4.3.3), the table is implemented as an array of flip-flops
so that all entries can be compared and modified in parallel.

4.2.3 AMO Stage
The AMO stage executes AMOs by leveraging the atomicity guarantee
of the LR/SC stage. In a nutshell, each AMO is translated into the
following transactions: First, a read is issued and the returned data is
fed to the internal ALU together with the operand. After the ALU has
computed the result, a write is issued to store it back to the memory.
Once the write response asserts that the operation is complete, both a
write response and a read response, containing the previous memory
value, are sent to the issuer of the AMO.

Downstream Transactions

Figure 4.3: Flow diagram of AMO with fast path (blue, left) and slow path
(red, right).

As the OCCP does not have to order read with respect to write
transactions, a read issued by the AMO stage can overtake a write to
the same address that passed the AMO stage before it issued the read.
In this case, the write would violate the single-copy atomicity of an
AMO. The LR/SC stage solves this problem for SCs, and instead of
replicating the logic, the AMO stage uses the guaranteed atomicity
of a successful SC to ensure the atomicity of an AMO. As illustrated
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in Fig. 4.3, as a first step on the fast path, an LR is issued to resolve
an AMO. Upon receiving the data and calculating the result, an SC
is used to write it back to the memory. If the SC was successful, the
LR/SC stage guarantees the atomicity of the LR/SC pair and the AMO
stage can send the responses for the AMO. This sequence is called the
fast path, as it executes the AMO immediately with the assumption
that it will succeed. However, an SC on the fast path might fail due to
conflicting writes by non-AMOs downstream, but an AMO must never
fail. Therefore, if the SC fails and does not update the memory, the
AMO stage executes the slow path.

The slow path only occurs when a program updates a memory
location both with regular writes and AMOs (which is not data race
free). This special case is usually not worth optimizing for, and our
implementation minimizes hardware spent on it: First, the AMO
stage completely drains the downstream write channel to eliminate
the possibility of a conflicting write transaction in flight. Second, the
AMO stage stalls not only conflicting but all new write requests until
the AMO has executed, because it does not keep track of the target
addresses of writes in flight and there are no ordering guarantees on
writes. Finally, the AMO stage uses a regular read followed by a regular
write transaction to execute the AMO.

Microarchitecture

As shown in Fig. 4.4, the microarchitecture consists of controllers for
the OCCP channels and an execution unit to compute AMOs. In
the absence of AMOs, the AMO stage is transparent for incoming
transactions. When handling an AMO, the AMO stage injects reads
and writes between regular transactions with priority. This not only
reduces the latency of single AMOs but also increases the throughput
of AMOs, as this microarchitecture processes AMOs sequentially. This
microarchitecture was designed for low latency and low area, but
architectural extensions that feature multiple parallel execution units,
pipeline the fetching and writeback of operands, and/or can fuse AMOs
to the same address are possible.
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Figure 4.4: Microarchitecture of the AMO stage.

starvation-free livelock-free deadlock-free

AMO ✓ (D) ✓ (B) ✓ (A)

LR/SC ✓ (E) ✓ (C) ✓ (A)

Table 4.1: Liveness properties guaranteed by our ATUN.

4.2.4 Liveness Guarantees

Three liveness properties are essential to guarantee progress in multi-
master communication: freedom from starvation, from livelocks, and
from deadlocks. OCCPs stipulate rules to make any two transactions
free from livelocks and deadlocks, and arbitrators are commonly required
to be starvation free. Under these assumptions on downstream and
upstream, our ATUN guarantees the liveness properties listed in Table 4.1
as follows: (A) Both AMOs and LR/SCs are free from deadlocks because
each AMO, LR, and SC individually completes within a bounded
number of cycles and, once completed, does not preclude any other
instruction from progressing. (B) AMOs are entirely free from livelocks
because they are executed in the order they enter the AMO stage,
resulting in unconditional progress among all AMOs. (C) LR/SCs are
free from livelocks because one among multiple contending LR/SC
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pairs always succeeds. (D) AMOs are starvation-free because they are
unconditionally executed in the order they enter the AMO stage within
a bounded number of cycles. (E) The execution of LR/SC pairs is free
from starvation, but their success is only guaranteed to be starvation-free
for disjoint addresses because any such pairs do not change the success
of each another. While it is possible to write programs based on LR/SC
that prevent one hart from ever succeeding an SC (or that deadlock
or livelock the program), such liveness violations do not extend to
other programs or even system components and thus do not impair the
liveness guarantees of our ATUN.

4.3 Evaluation

We built a multicore architecture (§ 4.3.1) to evaluate multiple variants
of four benchmarks representing a wide range of loads on our ATUN,
and we characterize throughput and contention (§ 4.3.3) in cycle-
accurate execution on an FPGA. Finally, we characterize the hardware
complexity in a 22 nm technology (§ 4.3.4).

4.3.1 Evaluated Architecture
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Figure 4.5: Architecture of the evaluated system, where one instance of our
ATUN is in front of the L2 SPM shared by four clusters each composed of
eight RISC-V cores.
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Fig. 4.5 shows an overview of the multicore architecture that we
assembled to evaluate our ATUN. 32 cores organized in 4 clusters share
a L2 SPM through a fully-connected-crossbar interconnect. In front
of the L2, one ATUN handles atomic and exclusive memory accesses.
We focused our evaluation on this case to show the benefits and limits
of our proposed approach where many harts share one ATUN. All
cores within a cluster share a multi-banked L1 SPM, which is used by
the benchmarks to store core-private data. Each core implements one
RISC-V in-order hart.

We implemented the evaluation architecture on a field-programmable
gate array (FPGA) to be able to measure throughput and contention
in benchmarks cycle-accurately. For measurements inside the memory
hierarchy, we inserted hardware performance monitors that do not
interfere with execution into our system. We measured the number
of cycles on the cycle-accurate FPGA implementation and scaled
throughput and latency numbers (§ 4.3.3) to the frequency achieved by
the ASIC implementation (§ 4.3.4).

4.3.2 Terminology: Atomic Locality

We call a set A of atomic variables local to a set of harts H during
a time interval T if there exists no hart outside H that accesses any
variable in A during T . Let H consist of all harts executing a workload,
then during some interval T , the atomic locality of that workload is
|H|/|A|. A high atomic locality is neither “good” nor “bad”: For highest
performance, the memory to which the ATUN is connected should be
able to simultaneously hold all variables in A, implying moderate values
of atomic locality are “good”. If the atomic locality is too high, however,
it becomes “bad” as the probability of conflicts in the shared ATUN
increases.

4.3.3 Throughput and Contention

We selected four different benchmarks to evaluate our ATUN under
a wide range of loads. In all benchmarks, contention is maximized
by programming all harts to execute the specified atomic operations
without interruption. The execution time of the slowest hart is used as
the total system execution time.
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Synthetic Maximum Contention

For maximum contention, a variable number of harts execute a single
(write or AMO) or two (LR and SC) memory operations to the L2
memory without interruption in a loop. All writes and AMOs target the
same memory location. All LR/SCs go to different memory locations so
that every SC is successful and leads to a write. We use this to find the
upper bound on the throughput and the lower bound on the latency as
a function of harts under maximum contention.
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Figure 4.6: Throughput of writes, LR/SC pairs, and AMOs as a function of
harts under maximum contention.

The throughput of writes, LR/SC pairs, and AMOs under maximum
contention on the evaluated architecture is shown in Fig. 4.6. Even
though the memory is clocked at 1 GHz, the memory controller can
only accept a read or write every second clock cycle, leading to a peak
throughput of 500 MOp/s. The write curve forms the roofline for the
evaluated architecture. Both writes and LR/SC pairs scale linearly up
to 12 harts, and LR/SC pairs achieve exactly half the throughput of
writes because one LR/SC pair is composed of two memory operations.
The current implementation of our ATUN requires 10 cycles to resolve
one AMO if the memory controller can accept a read or write only
every second cycle: 2 cycles forth and 2 cycles back for the read, one
for the computation of the AMO, four cycles for the write, and one
to accept the next AMO. Therefore, it can process one AMO every
tenth cycle, which is five times lower than writes only. Nonetheless, the
evaluated architecture can sustain a throughput that is half the roofline
for LR/SCs, which is optimal when all SCs are successful (as in this
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benchmark), and a fifth of the roofline for AMOs even under maximum
contention, which is a synthetic worst-case scenario.

Lock-Free Memory Allocator

We implemented the lock-free buddy allocator proposed in [Mar+18].

Memory is allocated in chunks of discrete sizes and managed by a binary
tree, whose nodes are atomic variables. We implemented the algorithm
once with AMOs and once with some AMOs replaced by LR/SC-based
atomic read-modify-writes to maximize throughput. This algorithm
requires modifying several different shared variables atomically, so it
represents algorithms with low atomic locality.
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Figure 4.7: Throughput (left scale, filled markers) and utilization of the
memory interface (right scale, empty markers) as a function of harts for two
variants of the lock-free memory allocator, which has low atomic locality.

The throughput of the lock-free allocator is shown in Fig. 4.7. The
AMOs-only variant scales linearly up to ca. 20 cores. Beyond, the ATUN
saturates as it can handle one AMO every 10 cycles. The second variant
combines AMOs and LR/SC. This leads to a balanced utilization of
the ATUN and the memory, saturating both for the maximum number
of harts.

Lock- or Wait-Free Concurrent Queue

As a representative of algorithms with high atomic locality, we imple-
mented the concurrent queue algorithm proposed in [YM16]. Only two
atomic variables, the head index and tail index, arbitrate the access to
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the shared queue. We implemented two variants of the algorithm: in
one we use AMOs to atomically modify the head and tail index, in the
other we use LR/SC pairs for that purpose. As the variant with AMOs
is wait-free whereas the variant with LR/SCs is only lock-free, we use
this to compare the throughput of the two operation types and the cost
of the higher progress guarantee.
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Figure 4.8: Throughput (left scale, filled markers) and utilization of memory
interface (right scale, empty markers) as a function of harts for two variants
of the concurrent queue, which has high atomic locality.

The throughput of both variants is shown in Fig. 4.8. Remarkably,
the throughput of the variant with the stronger progress guarantee
(AMO) is consistently higher. The reason is that this concurrent queue
has a very high atomic locality with only two atomic variables. In
such cases, the success rate of LR/SC pairs quickly degrades and limits
the throughput of the LR/SC variant whereas AMOs always succeed.
The algorithm reads from L2 memory not only with AMOs, and the
combined throughput of reads limits the AMO variant.

Parallel Histogram

The histogram benchmark is representative for algorithms with data-
dependent atomic access patterns. The shared target histogram is
allocated with B bins in the L2 memory. Each hart reads values from
an array in the L1 memory of its cluster and atomically increments
the bin to which the value belongs. We implemented two variants,
one that uses LR/SC and one that uses an AMO add for atomically
modifying the shared variable, to be able to compare the effectiveness
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of LR/SC to AMOs in this scenario. In order to focus on L2 contention,
we deliberately do not accumulate in the shared L1 and then update
the L2 in batches.
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Figure 4.9: Throughput of the histogram benchmark as a function of harts
for different atomic localities.

The throughput of AMOs and LR/SCs in the histogram benchmark
is shown in Fig. 4.9. As the current implementation of the AMO
stage processes all AMOs in series, the locality does not influence the
throughput. For LR/SCs, however, it is of major importance, because
their success depends on the number of shared variables accessed.
This benchmark shows the locality of AMOs required for LR/SC to
outperform AMOs under maximum contention. With the likelihood
of collisions decreasing when more bins are used, the LR/SC version
reaches the maximum possible throughput on the evaluated system at
250 MOp/s.

Summary

In most cases, the throughput of AMOs through the ATUN scales
linearly until the memory at which the ATUN executes AMOs saturates.
When the throughput of AMOs saturates before the memory bandwidth
is reached, this is due to the AMO stage processing one AMO every 10
cycles, and further microarchitectural improvements could alleviate this
bottleneck. Whether to use AMOs or LR/SCs to implement an atomic
operation depends mainly on the atomic locality.
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Figure 4.10: Hardware complexity of our ATUN as a function of the maximum
number of concurrent harts. The dashed line is y = 0.7x to show the linear
growth of the reservation table at 0.5 kGE per hart.

4.3.4 22nm FDSOI Hardware Complexity
We synthesized our ATUN for a target frequency of 1 GHz on Global-
Foundries’ 22 nm FDSOI. Fig. 4.10 shows the hardware complexity in
number of gates of one instance of our ATUN as a function of the number
of harts for which it can track reservations. Overall, the complexity
increases linearly with the number harts—both axes are log scale—at
only 0.5 kGE (100 µm2 in 22 nm) per hart. The complexity is dominated
by the reservation table, which causes the linear asymptote. The OCCP
interface grows logarithmically with the number of harts (to encode
additional hart IDs), and the state and command queues as well as the
entire AMO stage remain constant.

The longest path through our ATUN (ca. 1050 ps) involves the
unpipelined ALU in the AMO stage, and it does not increase with the
number of harts. Few paths grow logarithmically with the number of
harts, e.g., at the interfaces of the reservation table, but they do not
become critical for the evaluated number of harts. In summary, the
hardware implementation of our ATUN is ideally suited to scale to a
large number of harts at a very low hardware cost per hart.

4.4 Related Work
To the best of our knowledge, our work is the first to introduce
the concept of decoupling reservations for exclusive memory accesses
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and execution of AMOs. As a result, for the first time memory
hierarchy designers can decide at which memory level AMOs are resolved.
Additionally, our work is the first to describe the microarchitecture of a
hardware module that is designed to be shared by multiple harts to
resolve atomic memory accesses and evaluate its performance scalability
and hardware complexity. As AMO resolution is deeply embedded into
the memory subsystem in related work, a quantitative comparison is
very complex and we focus on a qualitative comparison.

Executing atomic fetch-and-ϕ operations close to the memory has
already been proposed in early multiprocessors [Got+83], and our work
extends this concept to LR/SCs and modern on-chip communication
with transaction reordering. Combining networks have been proposed
to scale fetch-and-ϕ to many parallel requestors [Got+83; Tze92; LS94], and
while our current ATUN cannot directly be integrated into network
nodes, extending our work in this direction potentially allows to scale
the throughput beyond the bandwidth of the target memory.

The x86 ISA [Int19a; Int19b] specifies AMOs that are different from
those of RISC-V, and these operations seem to be resolved at the L1
cache of each core [SBH15]. However, there is no public information
available on how write buffer, L1 cache, and pipeline stages interact
to resolve AMOs. The poor performance of RMWs in x86 is partially
caused by TSO requirements, and works such as [Raj+13] that relax
those are orthogonal to our work. ARM [Arm19b] specifies similar AMOs
as RISC-V and their AXI and ACE [Arm17a] protocols allow remote
AMOs, but there is no public information available on the options for
resolving atomic memory operations in an ARM-based multiprocessor.

Two instances of open-source, many-core capable multiprocessors are
OpenPiton [Bal+16] and Rocket chip [Asa+16]. In OpenPiton, each core has
a private L1 and L1.5 cache, and all cores share a common (distributed)
L2, at which AMOs are executed. In contrast to the ATUN, AMO
execution is embedded into the cache and does not include uncached or
off-chip accesses. The multicore Rocket chip [Asa+16] uses a coherent
TileLink-C interconnect [SiF18] similar to ACE. AMOs to the peripheral
space are forwarded on the bus while atomics on main memory are
resolved in the processor’s L1 data cache by using the cache coherency
protocol to obtain a unique copy of a cache line. This seems similar
to the close coupling of resolving atomics between core and L1 on x86
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architectures. In contrast, our ATUN could resolve AMOs at the last
level cache.

GPGPUs are another important class of parallel processors, known
in particular for scaling performance to a large number of threads.
AMOs on memory shared by more than one SIMT unit, however, were
long avoided by programmers of GPGPUs because their lock-based
implementation [Gom+13] used to destroy just that performance scaling
both on AMD [ELF11] and NVIDIA [Adi14] GPGPUs, and researchers
proposed architectural changes to improve this [FL13]. Indeed, the latest
GPGPUs generations significantly improved the performance scaling of
atomic instructions by adding microarchitectural support for executing
them on shared memory [De +19; Jia+18]. Nonetheless, atomic updates
and synchronization remain a limiting factor in many HPC applications
and the demand for faster atomics persists [HTE17].

4.5 Summary

We propose the concept of modular ATomic UNits (ATUNs), which
decouple the execution of AMOs and conditional-store-based primitives
from locking shared resources in the common case. ATUNs can
implement AMOs at different levels of the memory hierarchy in manycore
processors. We designed and implemented an ATUN that supports
RISC-V’s AMOs and memory model on standard OCCP interfaces
(AXI specifically). We demonstrated the performance of our ATUN
on a cycle-accurate FPGA prototype with 32 cores. We evaluated
the hardware complexity of our design in 22 nm FDSOI and find that
its area scales linearly at only 0.5 kGE per hart and its combinatorial
delay scales logarithmically. Our ATUN has been integrated into
the application-class open-source Ariane [ZB19] RISC-V core, which
successfully runs Linux, where atomics play a vital role.

We expect that our work lays the foundation for further research on
modular microarchitectures and optimizations of ATUNs. As explained
throughout the architecture and evaluation sections, no single ATUN
microarchitecture can perfectly match the wide range of multiprocessor
architectures and domain-specific concurrent workloads. To foster
future work on this topic, we release our ATUN implementation, which
is written in industry-standard SystemVerilog, under a permissive
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open-source license at https://github.com/pulp-platform/axi_riscv_
atomics.

https://github.com/pulp-platform/axi_riscv_atomics
https://github.com/pulp-platform/axi_riscv_atomics


Chapter 5

Scalable and Efficient
Virtual Memory Sharing
with TLB Prefetching and
MMU-Aware DMA Engine

In HeSoCs, a general-purpose multicore CPU, the host, is co-integrated
with PMCAs on a single die. This design holds the promise of combining
the versatility of the host CPU with the energy efficiency and computing
performance of the highly parallel accelerators.

One of the major difficulties in programming HeSoCs is having to
explicitly manage the multi-level, non-uniform memory system. On
the host, coherent caches and virtual addresses make the memory
hierarchy completely transparent to the application programmer. On
the PMCA, however, SPMs are often preferred to hardware-managed
caches for the implementation of on-chip memory hierarchies. SPMs are
physically addressed and data transfers to and from them are controlled
by software, preferably using DMA transfers.

To alleviate this difficulty and to enable sharing of linked data
structures, the Heterogeneous System Architecture Foundation [HSA12]

pushed an architectural model where host and PMCAs communicate

113
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via coherent SVM. For coherency with the host data caches, most SoCs
today offer accelerators access to coherent interconnects [Stu+15; Goo13].

For the translation of virtual addresses, there are two main approaches:
In the all-hardware approach followed by many embedded SoC vendors,
a full-fledged IOMMU translates addresses autonomously [PHB14; ARM16].

It is comprised of a TLB, parallel hardware page table walkers (PTWs),
transaction and data buffers, and coherent page table caches. The
alternative is a hybrid hardware-software design, which consists of a
TLB controlled by software (e.g., by a kernel driver on the host [LAC14;

VMB17] or directly by the accelerator [Vog+17]). We subsequently refer to
the former class of IOMMUs as conventional and to the second class
as hybrid. While conventional IOMMUs have the advantage of being
transparent to the PMCAs and of offering the minimal latency for
handling an isolated TLB miss, they have three significant drawbacks:

First, parallel, interleaved accesses by PMCAs to independent virtual
addresses require parallel PTWs. While the number of parallel accesses
is a time-variant run-time property of programs executed by the PMCAs,
the number of PTWs is a fixed design parameter in conventional
IOMMUs. To accommodate a wide range of parallel workloads, the
number of parallel hardware PTWs must be overprovisioned, wasting
hardware resources in most use cases.

Second, enabling DMA engines to access SVM in conventional
IOMMUs requires a data buffer in the IOMMU to absorb write bursts
to addresses that miss in the TLB. This buffer requires a significant
amount of memory: it must have at least the size of the largest DMA
burst, and is usually even larger because no more SVM accesses (by
any master, not just the missing DMA engine) can be processed once
(and as long as) that buffer is full.

Third, a conventional IOMMU manages its TLB purely reactively:
new entries are set up only after a TLB miss. While some IOM-
MUs [Ves+16; ARM16] can speculate on future memory accesses based on
past access patterns, doing so is very inaccurate for nonlinear, interleaved
access patterns and negatively affects performance [Ves+16]. Misses can
thus occur frequently, and high-performance conventional IOMMUs
include coherent data caches for page table entries [ARM16] to reduce the
latency of handling a TLB miss. If the TLB was managed by software
threads in the PMCA instead (as in hybrid IOMMUs), it would be
possible for those threads to set up TLB entries ahead of time based on
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run-time information inside the PMCA. Research on data caches [RS99;

ABC03] has long shown that prefetchers that know the running program
and its status can be far more accurate than those that can only see a
stream of memory addresses.

The hybrid design, on the other hand, theoretically does not have
these drawbacks. However, the state-of-the-art implementation [Vog+17]

features only a single PTW thread, only supports DMA bursts that
are guaranteed not to miss (e.g., by locking the corresponding TLB
entries), and does not perform any prefetching.

In this chapter, we resolve these limitations. To the best of our
knowledge, this chapter is the first to:

1. implement accurate, compiler-generated prefetching for a shared
TLB (§ 5.3.1), which significantly reduces the rate of TLB misses,

2. offer a flexible number of parallel TLB miss handlers (§ 5.3.2),
which keeps the miss handling latency constant for scalable parallel
workloads, and

3. offer shared virtual memory accessible by DMA transfers without
additional buffers (§ 5.3.3).

Compared to the state-of-the-art hybrid IOMMU [Vog+17], our
contributions improve the PMCA performance for memory-intensive
kernels by up to 4× and by up to 60 % for irregular and regular memory
access patterns, respectively (§ 5.4.3). Compared to using data buffers
to absorb bursts from DMA engines, our solution requires two orders of
magnitude less memory (§ 5.4.4) and scales better, as it only stalls the
missing DMA engine.

5.1 Related Work

The vast majority of commercial systems today features conventional
IOMMUs [ARM16; Int15; Kor+14; Xil17] to completely abstract the SVM
implementation from the PMCAs. While simple to use, that approach
is limited in scalability (handling parallel misses and absorbing burst
transfers) and efficiency (reactive TLB management).
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Parallel TLB miss handling and page table walking The fixed
number of shared hardware PTWs puts an upper bound on the scalability
of conventional IOMMUs to parallel accelerators. A recent study [Ves+16]

has shown that an integrated GPU with 8 parallel compute units (CUs)
quickly saturates the miss handling capabilities of an IOMMU with 16
hardware PTWs, after which the GPU’s performance becomes bounded
by TLB miss handling latency. To avoid this, the current proposal for
address translation on GPUs [PHW14; PHB14] is to add one MMU before
the L1 cache in every CU. Each such CU MMU has its private TLB and
either has its own PTW [PHB14] or shares a highly-threaded PTW [PHW14].

As this approach adds a significant amount of hardware, its parameters
(e.g., TLB size, number of PTWs) must be carefully balanced at hardware
design time to neither present a bottleneck for SVM-heavy applications
nor reduce the compute-per-area ratio for applications that use SVM
in a lighter way. The miss handling throughput of hybrid IOMMUs,
where page table walks are performed by software threads, on the other
hand, can be scaled at run time by scheduling PTWs when required.
However, efficiently managing a TLB shared by many parallel PEs and
notifying individual PE with low latency about handled misses is not
trivial. For this reason, current hybrid SVM solutions [Vog+17; LAC14]

only feature a single PTW thread. In this chapter, we show how to
efficiently manage a shared TLB with multiple software PTW threads.

Handling bursts missing in the TLB The buffers in conventional
IOMMUs that absorb write bursts missing in the TLB [ARM16] are
another limiting factor for accelerators based on DMA transfers: When
(and as long as) the limit on outstanding misses is reached, the IOMMU
cannot translate any further transactions, even if they would hit. This
creates backpressure from the IOMMU slave port to the connected
master ports, stalling each master port on its next SVM access. Hybrid
IOMMUs, on the other hand, signal the TLB miss back to the master
and drop the transaction [VMB17]. This allows to handle misses on a
shared TLB in a much more scalable way: instead of creating congestion
on shared resources (e.g., buffers in the IOMMU, interconnect), the
transaction that missed stays in the source memory, keeping shared
resources clear for other accesses. To support this, the DMA engine
must be able to keep track of bursts that missed and reissue them when
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the miss has been handled. In this chapter, we introduce a lightweight
hardware extension that adds this feature for a standard DMA engine.

Reducing TLB misses through prefetching Reducing the number
of TLB misses is another effective way to reduce the run time overhead
of SVM, orthogonal to reducing the miss handling latency. There are
two independent strategies to achieve this: The first is to increase the
capacity of the TLB, for which both conventional and hybrid IOMMUs
feature multi-level TLBs [ARM16; VMB17]. The second is to ensure the
timelineness of TLB entries, e.g. through prefetching. Prefetching for
shared TLBs is not yet well-understood: Some conventional IOMMUs
feature a very simple prefetcher, which adds two subsequent pages
to the TLB in case of a miss to the first [ARM16]. However, this
prefetcher is deactivated by default because it harms performance in
most cases [ARM16]. Prefetching is also supported by the PCIe Address
Translation Services [PCI09], but a recent study [Ves+16] examined a
benchmark with low locality, found that having a GPU prefetch eight
contiguous pages degrades performance by up to 3×, and concluded
that research on application-aware prefetching is required. In this
chapter, we design and implement accurate prefetching for a shared
TLB, which significantly reduces the rate of TLB misses. We focus on
linked data structures (LDSes), which are the predominant source of
scattered memory accesses in many programs. Our design is inspired
by the following prefetchers for data caches.

Prefetchers that get information about the running program from
software [RS99; LM99; KDS00; ABC03; GB06; EMP09; Lee+09; Son+09] are
far more effective than heuristic hardware units [CJG02; Col+02] for
LDSes: Heuristic hardware prefetchers for LDSes identify pointers as
they are loaded from memory, prefetch their content before they are
dereferenced, and store it in a separate pointer cache [Col+02] or in
the data cache of the processor [CJG02]. All pointers identified by the
heuristic hardware are prefetched recursively, which leads to a low
prefetch accuracy, consequently polluting the cache and decreasing
performance in many cases. To improve prefetch accuracy, the hardware
prefetcher in hybrid hardware/software prefetchers [EMP09; ABC03] is
controlled by software, e.g., from the main processor through special
instructions to identify useful prefetches [EMP09] or by running a separate
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prefetching program [ABC03]. Prefetch code can be written manually by
a developer [RS99; GB06] or generated automatically by a compiler [KDS00;

LM99; Lee+09; Son+09], through static or dynamic profiling or both.
Compilers can accurately identify pointers and prioritize their prefetching
according to dependencies. Once prefetchers for LDSes are accurate,
their effectiveness is limited by memory latency, as prefetch targets in
LDSes depend on earlier pointer dereferences. As a dedicated hardware
prefetcher co-located with the processor has the same memory latency
as the processor itself, pure software prefetchers have been explored
instead [GB06; LM99; Lee+09; Son+09]. Prefetches inserted inline with the
actual program code [LM99], however, are limited to targets that are
known when that line of code is executed. Otherwise, the actual program
has to be stalled while the pointers leading to the prefetch target are
followed. A promising alternative is to run an additional prefetching
thread on the same multithreaded processor core [Luk01; GB06] or on
another core in the same processor [Lee+09; Son+09]. Another important
advantage of these separate prefetcher threads is that their throughput
can be scaled to the demands of the application at compile-time
or at run-time or both, especially for the high degree of parallelism
offered by PMCAs. A key difficulty of software prefetches executed
by another thread is the timeliness of the prefetches, which is why
prefetching threads have primarily been explored for coarse-grained
prefetching [Son+09; Lee+09].

While there are a number of works using heuristic hardware units
for TLB prefetching [SDS00; KS02; LBM13], this chapter (to the best of our
knowledge) is the first to use compiler-generated software threads for
TLB prefetching. For the first time, this allows to accurately prefetch
TLB entries for LDSes. Compared to the related compiler-generated
software prefetchers, our solution is novel in how it issues fine-grained,
timely prefetches into a shared resource (the TLB) in a scalable way
without causing negative interference.

5.2 Target Architecture Template

The heterogeneous system targeted in this chapter combines two archi-
tecturally different processors in a single chip. As shown in Fig. 5.1,
the HeSoC is composed of a general-purpose multi-core CPU (the host)
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Figure 5.1: Template of the target architecture.

and a domain-specific PMCA. The host CPU features a cache-coherent
memory hierarchy, runs a full-fledged operating system, and manages
inputs and outputs of the HeSoC. The PMCA complements the host
by offering high computational performance and efficiency for specific
application domains.

The PMCA we consider uses a multi-cluster design [Mel+12; Kal14]

to enable architectural scaling. In each cluster [Ros+17], multiple PEs
share an L1 data SPM and an L1 instruction cache [Loi+18], both
multi-banked (twice as many banks as PEs), through a low-latency
logarithmic interconnect [Loi+15]. Multiple clusters are attached to the
main network of the PMCA, through which they share an L2 SPM.

The off-chip main DRAM is physically shared by the host and the
PMCA. To exploit data locality, both host and PMCA keep the most
frequently accessed data in fast, local storage of their internal memory
hierarchy. While the host relies on hardware-managed caches, the PMCA
uses multi-channel, high-bandwidth DMA engines and double-buffering
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schemes to overlap data movement with computation on data in the
L1 SPMs. The widely-adopted AXI protocol is used between host and
PMCA and on the network in the PMCA.

The IOMMU allows the PMCA to share the virtual memory space
of an application running on the host. It is a hybrid design [VMB17],

consisting of a TLB of configurable size completely managed by software
running on the PMCA. The TLB is fully associative and processes
look-ups within a single clock cycle. In case of a TLB miss, the IOMMU
stores the metadata in a hardware queue, responds with an error, drops
the transaction, and processes the next one. In case of a TLB hit, the
IOMMU translates the virtual address to a physical one, forwards the
transaction through the master port, and processes the next transaction.

One PE of the PMCA manages the TLB in the IOMMU. Upon a
TLB miss, it reads the metadata of the missing transaction from the
hardware queue in the IOMMU, walks the page table of the offloaded
process, replaces an older TLB entry with the new translation, and
notifies the PE that encountered the miss, which then retries the memory
access. As the memory access latency in page table walks dominates the
miss handling latency, this software PTW has about the same latency
as a dedicated hardware PTW [Vog+17].

PEs within a cluster execute in a SPMD fashion and share a multi-
ported, multi-banked instruction cache [Loi+15]. They can exchange
data with low latency and low congestion through the L1 data memory,
which also offers an atomic test-and-set read-modify-write operation. A
dedicated event unit within the cluster supports interrupts, barriers,
and software-triggered events for low-overhead synchronization.

Each cluster includes a DMA engine optimized both in through-
put and area for transfers from or to the cluster’s tightly-coupled
SPMs [Ros+14a]. It supports up to 16 outstanding AXI bursts with
only minimal internal buffers thanks to the low-latency connection to
the SPMs. Each PE has a private command interface on the DMA
engine, which allows multiple PEs to simultaneously enqueue DMA
transfers without the need for synchronization. The control unit of
the DMA engine internally arbitrates between the per-PE command
interfaces. PEs can enqueue coarse-grained transfer commands (up to
64 KiB), which are split up by the control unit into fine-grained bursts
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(up to 2 KiB) to meet alignment requirements and to facilitate time-
multiplexing of downstream AXI resources. As soon as a coarse-grained
transfer is complete, the DMA engine notifies the PE via the event unit.

5.3 Implementation
In this section, we detail our compiler-generated TLB prefetchers, which
significantly reduce the rate of TLB misses (§ 5.3.1), our scalable
multi-threaded TLB miss handlers, which keep the TLB miss handling
latency constant for scalable parallel workloads (§ 5.3.2), and our
hybrid-IOMMU-capable DMA engine, which can handle TLB misses
without additional data buffers (§ 5.3.3).

5.3.1 Helper Thread Prefetching
As TLB miss handlers are dominated by memory latency, frequent TLB
misses inevitably entail a large run time overhead. As a consequence,
managing the TLB solely by reacting on misses is not sufficient. Instead,
TLB entries could be set up ahead of the instant they are used in a
prefetching manner.

The following observations motivate our prefetcher design:

• It shall not rely solely on run-time information (e.g., memory
content, memory access patterns). This is the black-box approach
taken by hardware prefetchers, which is not accurate for LDSes.

• It shall not rely solely on compile-time information (e.g., al-
gorithms, data structures) because this neglects all dynamic
information (e.g., data-dependent memory accesses, delays due to
interference) required for timely prefetches.

• It shall be portable across applications. While software prefetches
can be inserted manually, doing so effectively requires in-depth
knowledge of the target platform and laborious analysis of the
application. Prefetch insertion shall be fully automatic, not
burdening developers.

• It shall exploit the cluster architecture of the PMCA, where
tightly-coupled L1 SPM allows to share the state of PEs with low
latency and little interference.
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Worker Thread (WT)
#pragma omp parallel for
for (unsigned i=0; i<N; ++i) {
  wt_state[thread_id] = i;

  
  elem_t e = elems[i];
  
  
  process(&e);
  elems[i] = e;
}
_omp_for_nnn_complete = true;

Prefetching Helper Thread (PHT)
while (!_omp_for_nnn_complete) {
  for (unsigned i_wt=0;
       i_wt<N_WTS; ++i) {
    

    target = wt_state[i_wt];
    
    
    prefetch(&elems[target]);
  }
}
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Figure 5.2: The concept of prefetching with closely-coupled helper
threads using the example of a very simple parallel for loop.

• Its prefetching throughput shall be scalable at compile-time
(because different programs have different memory access patterns
and intensities) and at run-time (due to phase-based program
behavior [She+03]).

Combined, these considerations led us to the concept of prefetching
with closely-coupled helper threads shown in Fig. 5.2. Our execution
model assumes that part of the PEs in a PMCA cluster are statically
allocated to executing the original application workload. The workload
is distributed among as many Worker Threads (WTs) according to the
semantics of parallel programming models such as OpenMP [Mar+15].

The remaining PEs in the cluster are statically allocated to execute
Prefetching Helper Threads (PHTs), which our compiler automatically
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generates by stripping down the code of the WTs: The idea is to remove
all statements that do not access SVM and do not determine the address
or the occurrence of an SVM access, and to replace SVM accesses in
the remaining code with a call to a prefetch method. Additionally,
the compiler inserts store instructions to the L1 SPM into the WT to
share its state of execution and load instructions into the PHT to read
the execution state. The prefetch method does not modify the TLB
itself; rather, it checks if a page is currently in the TLB and, if it is not,
informs the standard TLB miss handlers (through the queue of TLB
misses) that a TLB entry must be set up ahead of the moment when a
worker thread actually requires the data on a page. Prefetching TLB
accesses are described in more detail in § 5.3.1.

Prefetches are issued conditionally on the current position of the
WT relative to the current position of the PHT. For example, a fixed
window wherein prefetches are issued can be defined: Assume wk is the
position of WT k in a parallel loop and d and D are the minimum and
maximum prefetching distances, respectively. Then the PHT has to
make sure that the position of its next prefetch for WT k, pk, fulfills
wk+d ≤ pk ≤ wk+D. If pk > wk+D, then the PHT is ahead of WT k
by more than the maximum prefetching distance and the PHT will not
issue a prefetch. If pk < wk + d, then the PHT is behind the minimum
prefetching distance and the PHT will set pk to a position inside the
window. When pk is inside the window, the PHT will prefetch at pk
and then increment pk.

Compiler Algorithm to Generate PHTs

The compiler algorithm to generate a PHT from the code for a WT
comprises two stages: The first stage recursively traverses the abstract
syntax tree (AST) of the body compound of the WT. In a forward pass,
a data dependency graph (DDG) for each SVM variable (i.e., a variable
that dereferences a pointer to SVM, possibly through other variables
and pointers) is constructed. In a backward pass, memory accesses to
DDG leaf nodes are rewritten as prefetches and all statements that
are not in the DDG of an SVM variable are removed. The second
stage recursively traverses the modified AST and prunes redundant
prefetches.
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The forward pass is recursively invoked on an AST node and scope
tuple, where the scope is a list of variables together with their DDG. It
creates the PHT for the given AST node by constructing a DDG for each
SVM variable and invoking the backward pass afterwards. The forward
pass essentially distinguishes two classes of AST nodes: Declarations
extend the scope of the subsequent nodes, and assignments modify the
DDG of their left-hand side variable. Compounds establish a local
scope, within which the children of the compound are first modified
in forward order by the forward pass, then in backward order by the
backward pass.

The backward pass is also invoked on an AST node and scope
tuple. Based on the DDG of each variable, it rewrites dereferences
of SVM pointers that are leaf nodes into prefetches and removes all
statements that are not in the DDG of an SVM variable. It distinguishes
three classes of AST nodes: Conditionals and loops add a control
flow dependency to variables they reference. Declarations remove the
declared DDG node from the scope (since the variable is undeclared
before the declaration). Finally, assignments are either replaced by
prefetches, left intact, or dropped completely, based on whether their
left- and right-hand sides contain SVM variables.

Hardware Requirements

A prefetch load or store is slightly different from a regular memory access:
upon a hit in the TLB, a prefetch transaction must not be forwarded
downstream the memory hierarchy but instead be directly replied by
the IOMMU as hit (with don’t-care data in case of a load, since data
returned by prefetch loads is ignored). A prefetch that misses in the TLB
is not different from a regular miss to the hybrid IOMMU: it responds
with a miss and drops the transaction. Conventional IOMMUs cannot
support prefetches, since they lack the possibility to drop transactions
and the masters using them lack the support for reacting to miss
responses. Whether a load or store is a prefetch can be determined by
a single bit sent with the request. Our implementation uses one bit in
the AXI user field.
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5.3.2 Multi-Threaded TLB Miss Handling

In the original implementation of the hybrid IOMMU we are using, TLB
misses (only metadata) were enqueued by the IOMMU in a hardware
queue [Vog+17]. This leftover from conventional IOMMUs presented a
centralized bottleneck not required by the design, so we removed it and
instead let PEs add an entry to a software queue located in the L1 data
memory of their cluster upon a TLB miss. This atomic queue supports
multiple parallel consumers and producers, and we implemented the
atomicity with one enqueue mutex and one dequeue mutex based on
the test-and-set functionality of the L1 memory.

For algorithms that make heavy use of SVM (especially those
processing LDSes), a single miss handling thread (MHT) cannot cope
with the rate at which WTs enqueue misses. In this case, the rate at
which TLB misses are handled becomes the bottleneck. As an MHT
is dominated by memory latency of the page table walking steps, the
way to increase the miss handling rate is to let multiple MHTs work on
different pages in parallel.

Two aspects are central for the design of the parallel MHTs: (1)
given the sequence of misses in the queue, which MHT handles which
miss, and (2) which MHT modifies which TLB entry.

For distributing misses among the MHTs, the simplest approach
would be to let each MHT dequeue a miss, walk the page table,
reconfigure a TLB entry, and wake up the PE that enqueued the
miss. However, as two subsequent misses frequently go to the same page
due to data locality (for an individual PE, e.g., with DMA bursts, but
also for multiple PEs with shared data), this approach is not effective:
Whenever a MHT dequeues a miss to a page that another MHT is
already working on, it wastes run time and memory bandwidth on a
redundant page table walk, and it wastes TLB capacity by setting up a
redundant entry. Ideally, each MHT would dequeue all misses on the
same page, walk the page table, and then wake up all PEs waiting for
that page. However, this would require each MHT to traverse the entire
miss queue (which can contain dozens of entries), locking both mutexes
while it rearranges the queue without the misses to that page. This can
take hundreds of clock cycles, during which no other PE can enqueue
or dequeue misses.
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Neither wasteful redundant miss handling nor making the miss queue
a sequential bottleneck are acceptable, and our design avoids both: The
MHTs share their state, i.e., which page each MHT is currently working
on and which PEs it is going to wake up, through one word per MHT
in the L1 data memory. When MHT A dequeues a miss, it first checks
if another MHT is already working on the same page. If so, A tells
the other MHT to also wake up the PE that caused the miss A just
dequeued and dequeues another miss. If no other MHT works on the
same page, A performs a prefetch memory access to the page to check
whether the page has not been mapped since the miss. If the prefetch
misses, A sets its state to that page and walks the page table. When
A is done, it reads its state (which may have been updated in the
meantime by other MHTs) and wakes up all assigned PEs.

Modifying a TLB entry takes two writes because virtual and physical
page frame number together are longer than one data word. To avoid
inconsistencies, the MHTs must thus ensure mutual exclusion when
modifying a TLB entry. Any two different TLB slots are indepedent,
though, so an MHT should not preclude another from simultaneously
modifying a different slot. As both TLB levels are highly associative,
MHTs have multiple options for the placement of each TLB entry. To
make effective use of associativity, the MHTs should agree upon one
replacement order per set. These three requirements can be met by
using one atomic counter per TLB set, located in memory shared by all
MHTs, which determines the index of the entry to be replaced next in
a set. An MHT determines the set number from the virtual page frame
number, increments the atomic counter of that set, and modifies the
entry at the index returned by the counter. If the number of MHTs is
comparable to the number of entries per set, the MHT must additionally
lock the entry it modifies.

5.3.3 Hybrid-IOMMU-Capable DMA Engine

A hybrid IOMMU requires all masters that use it to be capable of
tolerating TLB misses and keep track of which transactions missed. The
DMA engine, however, was originally not designed to deal with error
responses in a recoverable way and reported a transfer as complete as
soon as it had received the final read or write response of the last burst,
regardless of whether all bursts were successful or not. Thus, when a PE
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saw the completion of a transfer it started, it had no way to tell whether
all data read or written were valid at the destination. To guarantee
data integrity, all TLB entries required for the completion of a transfer
(which can touch up to 17 4 KiB pages) had to be locked before the
transfer could be programmed to the DMA engine and unlocked after it
had completed. As the TLB is shared by multiple clusters, this limited
the number of DMA transfers that could be enqueued at a given time
and substantially reduced the effective data transfer bandwidth.

If the DMA engine can keep track of bursts that missed in the
TLB and restart them after the miss has been handled, DMA transfers
through the hybrid IOMMU can be much more efficient and scalable:
An AXI burst may not cross a page, so each burst requires exactly one
TLB entry at the instant its request arrives at the IOMMU. Requests of
consecutive bursts can arrive back-to-back at the IOMMU, so multiple
TLB entries need to be present only for a short time interval for an
entire transfer spanning multiple pages to succeed.

To make the DMA engine compatible with the hybrid IOMMU,
we designed and implemented a retirement buffer that keeps track of
in-flight bursts. An entry in the buffer contains all metadata required
to uniquely identify and reissue a burst: cluster-external and -internal
address, length, AXI ID, DMA transfer ID, and whether it was a read
or a write. When the AXI interface of the DMA engine sends a request,
it adds a new entry to the retirement buffer, and when it receives the
final response of a burst, it reports the success or failure of the burst
with the responded AXI ID to the retirement buffer.

The retirement buffer must keep the order in which bursts were
issued (because AXI bursts with the same ID are ordered) and must
be able to complete bursts with different AXI IDs in any order. For
these reasons, the retirement buffer can not be a simple FIFO queue.
An alternative would be to have one FIFO queue per AXI ID, but
this would waste hardware since every queue would need to have the
capacity to store the maximum number of in-flight transfers.

Instead, our retirement buffer is a linked list implemented in hardware
as shown in Fig. 5.3: The list entries are stored in a small register file
that has as many words as the maximum number of in-flight transfers.
Every word is wide enough to store the burst metadata mentioned
above, the state of the entry (free, in-flight, failed, peeked, reissuable),
and the index of the next burst entry. Additionally, the retirement
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Figure 5.3: Organization of the burst retirement buffer.

buffer stores the index of the head, where order-preserving peek and
pop operations start, and of the tail, where a new in-flight transfer gets
enqueued.

The retirement buffer has three main interfaces: one to the AXI
transfer unit of the DMA, one to the internal control unit of the DMA,
and one to the PE control interface of the DMA. From the transfer
unit, the retirement buffer receives commands to add a new in-flight
transaction at the tail of the queue, to free a successful transaction, or
to mark a transaction as failed. In the latter two cases, the buffer is
traversed from the head, modifying the first non-free transaction that
matches the given AXI ID.

To the DMA control unit, the retirement buffer reports the current
number of in-flight and failed bursts and provides the metadata of the
next reissuable burst. When at least one burst has failed, the control
unit stops issuing new bursts from its queue and waits for all in-flight
bursts to complete. Once there are no more in-flight bursts, the control
unit reissues bursts as soon as they are reissuable until there are no
more failed (and in-flight) bursts. As soon as this is the case, the control
unit resumes regular operation by issuing bursts from its queue.

From the PE control interface, the cluster-external address of the
first (ordered by request, not response) burst with state ‘failed’ can be
read and bursts can be marked as reissuable. For this, a PE reads a
DMA register to get the failing external address (or 0 if there is none).
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Upon such a read, the retirement buffer marks all ‘failed’ bursts with
the same page frame number as ‘peeked’ (so that the same page is not
reported twice). Meanwhile, the PE determines the missing physical
address and adds it to the TLB. When it is done, it writes the handled
virtual address to the same DMA register, upon which the retirement
buffer marks all ‘failed’ or ‘peeked’ bursts with the same page frame
number as ‘reissuable’. Bursts are then reissued by the control unit in
the order of their original requests.

5.4 Results

In this section, we evaluate the performance of our SVM system
implemented on an evaluation platform (§ 5.4.1) under various conditions
(§ 5.4.2) to demonstrate its significant improvements over the state of
the art and identify its limits (§ 5.4.3). Additionally, we discuss how
our hybrid-IOMMU-capable DMA engine can save a vast amount of
hardware buffers compared to conventional IOMMUs and standard
DMA engines (§ 5.4.4).

5.4.1 Evaluation Platform

Our evaluation platform is based on the Xilinx Zynq-7045 SoC, which
features a dual-core ARM Cortex-A9 CPU, which we use as host
processor, and programmable logic, which we use to implement the
cluster-based PMCA described in § 5.2. The PEs within a cluster share
8 KiB L1 instruction cache and 256 KiB tightly-coupled L1 data SPM,
both split into 16 banks. Ideally, every PE can access one 32-bit word
in the L1 SPM per cycle. Every cluster features a multi-channel DMA
engine that is parametrized to have up to 8 AXI read or write bursts in
flight at any time, enabling fast movement of data between L1 and L2
memory or shared DRAM. The PMCA is attached to the host as a
memory-mapped device, interfaced through a kernel-level driver and
a user-space runtime. The host and the PMCA share 1 GiB of DDR3
DRAM. The hybrid IOMMU features a two-level TLB: The L1 TLB
features 32 entries, is fully associative, and translates addresses within a
single cycle. The L2 TLB features 256 entries, is 8-way set associative,
and translates addresses within up to 6 cycles. The IOMMU connects
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the PMCA to the ACP of the Zynq, allowing the PMCA to access the
shared main memory coherent to the data caches of the host.

This platform enables us to study and evaluate the system-level
integration of a PMCA in a HeSoC. Thus, we did not optimize the
PMCA for implementation on the FPGA; the FPGA should be seen as
an emulator instead of a fully-optimized accelerator. We adjusted the
clock frequencies of the different components to obtain ratios similar to
a real HeSoC with host and PMCA running at 2133 MHz and 500 MHz,
respectively. The DDR3 DRAM is clocked at 533 MHz. Measuring
an actual implementation rather than simulating models ensures all
aspects and parameters of the evaluated system—including those we did
not elaborate in detail in this chapter or might have overlooked—are
correctly represented in the results.

5.4.2 Benchmark Description
To evaluate the performance of our SVM system under various conditions
including identifying its limits, we have used two entirely different,
configurable benchmark applications. They were obtained by extracting
critical phases from real-world applications suitable for implementation
on a HeSoC, and by parametrizing them over a large parameter space.
They exhibit main-memory access patterns representative for various
application domains.

Pointer Chasing (PC) This benchmark operates on graphs, stored
as vertices linked by pointers. It is representative for wide variety of
pointer-chasing applications from the graph processing domain [Guo+14].

Prominent examples include breadth-first or shortest path searching,
clustering, and PageRank. Due to the irregular and data-dependent
access pattern to shared memory and low locality between references,
PC represents a worst-case scenario for a virtual memory subsystem.
However, SVM is crucial to allow implementations of PC applications at
reasonable effort and performance, because offloading a PC application
to an accelerator without SVM requires modifying all pointers in a
graph. In the benchmark, the host builds up a graph and stores its
vertices in a single array in main memory. Every vertex holds the
number of successors, a pointer to an array of successor vertex pointers,
and a configurable amount of payload data. At the offload, the host
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passes a pointer to the vertex array and the number of vertices to
the PMCA. On the PMCA, all WTs share the work of traversing the
vertex array. For each vertex, a WT reads the number of successors and
copies the payload data and successor pointers to a buffer in L1 SPM
using DMA transfers. The WT then performs a configurable number
of computation cycles on the payload and writes the payload to all
successors in shared main memory again using DMA transfers.

Stream Processing (SP) This benchmark operates on a sequence of
data, transferred from and to main memory in regularly strided blocks.
It is representative for applications that work on streams of data, and
examples range from simple one-dimensional filtering of audio data, over
two- and three-dimensional image and video filters, to tensor operations
in neural networks. In the benchmark, the host allocates one buffer
of configurable size for both input and output (to maximize locality)
and then passes the pointer to the buffer and the dimensions of the
data blocks to the PMCA. On the PMCA, the WTs share the work of
performing a configurable number of computation cycles on each block.
Both input and output block are double-buffered in L1 SPM, so that
compute and data transfer always overlap.

5.4.3 Benchmark Results

In the following plots, we compare the performance of our implementa-
tion and the prior state of the art (SoA) to an ideal IOMMU, which
translates every address within a single cycle—an unbiased, although
practically unreachable baseline. The SoA implementation is from
[Vog+17], extended to multiple threads on the PMCA. For the relative
performance on the y-axis, higher values are better. We evaluate
different operational intensities on the x-axis by changing the number
of computation cycles per data as described above. The operational
intensity of an actual program depends both on the algorithm and
the hardware executing it, and this sweep over a range of intensities
characterizes our SVM implementation for a given memory access
pattern but independent of a very specific program and processing
architecture.
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Figure 5.4: Pointer Chasing (PC) results for different operational
intensities.



5.4. RESULTS 133

Pointer Chasing (PC) Fig. 5.4 shows the performance of PC
normalized to an ideal IOMMU over different operational intensities
in cycles per byte. For example, a single-precision floating-point
implementation of the PageRank algorithm has an operational intensity
of 1.2 cycle/B given a FPU with a divider and around 10 cycle/B for a
reduced-precision fixed-point implementations if no FPU is available.

In the prior SoA, the DMA engine cannot handle TLB misses, so
the software must ensure the TLB entries used by a DMA transfer
are not replaced while that transfer is running. This locking is the
bottleneck of the SoA implementation (first curve in legend order), and
limits its performance to less than 50 % below 10 cycle/B. For very high
operational intensities, the implementation becomes compute-bound
and approaches ideal performance. Our hybrid-IOMMU-compatible
DMA engine (‘vDMA’, all other curves) removes that bottleneck. The
second curve is limited by the miss handling throughput of the single
MHT for low operational intensities. Replacing one of the WT with
another MHT (third curve) resolves this bottleneck. This is effective for
low operational intensities, but the missing WT reduces performance
in the compute-bound limit. Adding another MHT (not drawn) does
not further improve performance because two MHTs are sufficient to
handle the misses caused by six WTs. Instead, we replace one of the
WTs by a PHT (fourth curve), which causes TLB entries to be set up
ahead of the instant the WTs need them. This is very effective in the
memory-bound case, increasing performance by another 20 to 30 %.
The fourth curve is now prefetch-limited: the single PHT cannot always
prefetch early enough, because the PHT itself needs to dereference
pointers to determine prefetch targets. Any dereference that causes
a TLB miss will block the PHT until the miss is resolved. Thus,
replacing another WT with an MHT helps increasing performance in
memory-bound cases by an additional 20 %.

Depending on the operational intensity, one of the configurations
is optimal. However, as MHTs and PHTs can be inserted in software,
e.g., at compile time based on profiling runs or even at run time for
largely varying operational intensities, our work significantly improves
performance for all operational intensities by making optimal use of
PEs. The last curve shows the overall optimum configuration. For
crucial operational intensities around 1 cycle/B, our work improves
performance by 4 x compared to the SoA. For common intensities
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Figure 5.5: Stream Processing (SP) results for different operational
intensities.

(arguably below 10 cycle/B), our work improves the SoA performance
by at least 50 %.

Stream Processing (SP) Fig. 5.5 shows the performance of SP
normalized to an ideal IOMMU over different operational intensities.
For example, a one-dimensional FIR filter with N coefficients requires
N/2 MACs per transferred data word (each word transferred once in,
once out), and a matrix-matrix multiplication requires 1 MAC per
transferred data word for large matrices. Assuming MACs on the data
format are natively supported by the PMCA, the PMCA may compute
tens, hundreds, or even thousands of MACs per cycle, depending on the
number and architecture of its parallel PEs. Thus, stream processing
kernel-architecture combinations may be found anywhere on the x-axis
of Fig. 5.5.
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In the prior SoA (first curve in legend order), a WT setting up a
DMA transfer ensures that no TLB misses occur during the transfer by
explicitly setting up TLB entries and locking them during the transfer.
For memory-bound kernels, this is slightly more performant than
handling misses by the hybrid-IOMMU-compatible DMA engine (second
curve), because the latter stalls on every miss. (If that performance
difference was larger, TLB entries could be set up in advance also for
the vDMA. In contrast to the prior SoA, where locks on TLB entries
had to be coded manually to avoid deadlocks, instructions for setting up
TLB entries in advance for the vDMA can be inserted automatically at
compile time.) For a range of more compute-intensive kernels, however,
this locking is the bottleneck of the SoA implementation, and removing
it improves performance by up to 35 %. When only few cycles are
executed per transferred byte, performance is dominated by the memory
latency in handling TLB misses. Adding another MHT (not drawn) does
not change this, because only the input data stream requires one new
page at a time. Instead, we replace one of the WTs with a PHT (third
curve), which increases performance by 20 to 40 % in the memory-bound
case. This configuration is limited by the throughput of the MHT, and
because the PHT causes more than one page to be outstanding in
the miss queue, there is now work for another MHT. Indeed, adding
another MHT (fourth curve) increases performance by another 40 %,
up to the point where it limited by the throughput of the PHT in the
memory-bound case and by the five WTs in the compute-bound case.
Adding another PHT might increase performance even further, but the
current PHT generation algorithm does not support distributing the
prefetches for a single memory access stream among two PHTs.

The last curve shows the overall optimum of all configurations of
our work. Our work improves performance compared to the SoA by up
to 60 % for memory-intense kernels, and reduces the overhead compared
to an ideal IOMMU to below 25 % for any operational intensity. Our
work also reduces the operational intensity at which that overhead is
below 10 % to ca. 4 cycle/B. As the optimal configuration again can
be selected at compile time or even changed at run time, our work
significantly improves performance over the full spectrum of operational
intensities also for very regular memory access patterns by replacing
WTs with MHTs or PHTs when it improves overall performance.
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5.4.4 Hardware Requirements of Hybrid-IOMMU-
Capable DMA

Making the DMA engine compatible with the hybrid IOMMU not only
improves performance compared to the SoA, it also dramatically reduces
the amount of memory required to buffer DMA bursts that miss in
the TLB. Our DMA engine is parametrized to have up to 8 AXI read
or write bursts in flight at any time. Each burst can transfer up to
2 KiB. The total maximum amount of data in flight is 16 KiB, and a
buffer of this size would be required to enable other masters to continue
accessing SVM in the worst case scenario where 8 write bursts miss
in the TLB. The retirement buffer in our DMA engine stores just the
metadata of each burst: 32 bit for the virtual start address, 16 bit for
the local start address, 3 bit for the ID, 8 bit for the length of the burst,
and 3 bit for the status of the burst; less than 8B in total. Thus, the
retirement buffer requires just 64 B for the same TLB miss tolerance as
the 16 KiB data buffer—a factor 256 less.

5.5 Summary
In this chapter, we presented and evaluated our scalable and efficient
SVM solution for HeSoCs. It is based on a hybrid IOMMU and advances
the state of the art in three important ways: First, compiler-generated
PHTs proactively fill the TLB to minimize the rate of TLB misses.
Second, a variable number of parallel PHTs handle TLB misses to
scale the miss handling throughput with the demand. Third, a hybrid-
IOMMU-capable DMA engine supports parallel burst DMA transfers to
SVM without additional buffers. Compared to the state of the art, our
work improves PMCA performance for memory-intensive kernels by up
to 4× for irregular and by up to 60 % for regular memory access patterns.
Compared to using data buffers to absorb bursts from DMA engines in
a conventional IOMMU, our solution requires two orders of magnitude
less memory and scales better, as it only stalls the missing DMA engine.
In the future, we plan to explore compiler-generated PHTs for kernels
that mandate speculative prefetching, improve per-thread miss handling
throughput by supporting out-of-order page table walking, and avoid
stalling the entire DMA on a TLB miss while maintaining memory
order guarantees.



Chapter 6

Mixed-Data-Model
Heterogeneous
Compilation and OpenMP
Offloading

Heterogeneous computers unite high versatility with high performance
and energy efficiency by combining a general-purpose host processor
with domain-specific PMCAs. The host manages input and output data
as well as the application memory and offloads tasks that are highly
parallel and/or domain-specific to one or multiple suitable accelerators
[Nvi14; DKR18]. Due to the complexity of programming these systems,
significant effort has been spent on developing programming models
that retain high programmer productivity. A common way is to abstract
the complexity through code annotations, indicating which code is to
be offloaded, providing one unified code base. One de-facto standard
programming model is OpenMP [MMG16].

OpenMP 4.0+ [Omp4.0] enables work to be offloaded from host
to accelerators with the target directive and has been adopted for
GPUs [Ant+16] and PMCAs in general [Mar+15]. Data is shared by
copying from the application memory, which is managed by the host,
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to the local memory of the accelerator before the offload and back after
the offload.

Application memory is growing rapidly: today 64-bit addresses
are sufficient to handle data of hundreds of petabytes distributed over
multiple nodes [Vaz+18], but when multiple exabytes of data need to be
addressed, 128-bit host processors will be required to manage application
memory. Accelerators, on the other hand, are designed to work mainly
on data in their local memory, which inherently grows at a lower rate
than total application memory. The same trend can be observed in
heterogeneous SoCs, where 64-bit hosts are common today, although
accelerator memory is within the 32-bit addressable range [Cot+15].

This growing disproportion raises the question whether there is a
fundamental need for accelerators to increase their data width solely
to share pointers with the host. For each accelerator core, doubling
the data width at least doubles the size of most of its components
– the frontend, the register file, the ALU (where the multiplier even
grows quadratically), the load/store unit (LSU), and most internal
buffers [ZB19]. Furthermore, it usually doubles the longest combinatorial
path, requiring at least one additional pipeline stage to prevent a
reduction of the maximum frequency. For every executed accelerator
instruction that does not fully exploit the wider data path (doubling
single instruction multiple data (SIMD) parallelism), performance per
area and efficiency of the accelerator effectively decreases. As with
most other properties of accelerators [HP17], it is thus desirable to design
the data width to match the needs of the target domain. To achieve
this in the long term, as the application memory continues to grow,
mixed-data-width systems are required.

The challenge in mixed-data-width systems is to transform offloaded
pointers and types that have a data-model-dependent size from wide host
values to narrower accelerator values while preserving their semantics
and incurring as little run-time overhead as possible. While this could be
done manually, doing so is error-prone and requires to rewrite existing
libraries and applications. Therefore, heterogeneous compilers need
to support multiple data models to bridge the disproportionate data
widths in heterogeneous systems. However, to date, no heterogeneous
compiler practically supports accelerators with a data model that differs
from that of the host. Additionally, minimal hardware support to let



6.1. BACKGROUND 139

accelerators access addresses outside their native data width has not
been explored.

Contributions. In this chapter, we address these challenges. To our
knowledge, this chapter is the first to:

1. Design and implement a mixed-data-model (64+32-bit) heteroge-
neous compiler, including full support for OpenMP offloading.

2. Discuss the challenges and options for implementing mixed-data-
model compilation in current versions of the two main compilers,
GCC and LLVM.

3. Discuss novel hardware options for extended addressing and
implement and evaluate a minimal, non-intrusive option that
does not require modification of any core or ISA.

Outline. This chapter is structured as follows: After introducing the
relevant background concepts in § 6.1, we explore the solution space to
mixed-data-model OpenMP offloading in § 6.2, present our compiler
solution in § 6.3, and describe the minimal accelerator hardware support
for extended addresses in § 6.4. We show that our solution allows a
32-bit accelerator to transparently share memory with a 64-bit host at
overheads below 0.7 % on PolyBench-ACC kernels in § 6.5. We compare
to related work in § 6.6 and conclude in § 6.7.

6.1 Background
In this section, we introduce the heterogeneous compute and memory
architecture targeted by this chapter (§ 6.1.1), OpenMP (§ 6.1.2), and
data models (§ 6.1.3), and we discuss the state-of-the-art in offloading
(§ 6.1.4) and heterogeneous compilation (§ 6.1.5).

6.1.1 Target Architecture

Fig. 6.1 shows the architectural template of heterogeneous computers
we target in this chapter. The general-purpose host CPU is coupled
to one or multiple PMCAs via an interconnect over which they share
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Figure 6.1: Architectural template of heterogeneous computers targeted
by this chapter.
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the external main memory and I/O peripherals, such as the network
interface controller (NIC). The host CPU consists of one or more
general-purpose application-class processing cores and has a memory
hierarchy of virtually-addressed caches. The PMCAs consist of many
minimal, domain-specific PEs, potentially grouped in clusters, have a
memory hierarchy of physically-addressed, software-managed SPMs,
and include an IOMMU to share the virtual memory space with the
host. Host and PMCAs may implement different ISAs. There are many
examples of such architectures in products ranging from HPC [Nvi14;

Jou+17] over high-performance SoCs [DKR18] to low-power SoCs [Fru18;

Tex19a] as well as in research [Cho+16; GH16; Kur+17; VMB18].

6.1.2 OpenMP and Offloading

OpenMP [Omp4.0] defines a target-agnostic API based on preprocessor
directives that are translated by the compiler into calls to RTL functions.
Since version 4.0, OpenMP supports offloading of computation to
accelerators with the target directive and data sharing through the
map directive. The target directive determines which code is compiled
for the host, the accelerator, or both. GCC and LLVM implement
this heterogeneous compilation in very different ways (§ 6.1.5), and we
focus on how this impacts handling different data widths of host and
accelerator.

The map clause of the target directive specifies data to be shared for
each offloaded kernel. OpenMP’s data sharing model is copy-based: The
host copies data from its virtual memory space to a physically-contiguous
memory section, which accelerators can access without participating
in the virtual memory system of the host. This restricts map to data
structures that do not contain pointers. However, extensions for SVM
have been proposed and implemented [Mar+15; Vog+17; Kur+18a]. That
generalized variant of map effectively reduces offloading to passing
pointers to shared data to the accelerator.

Such true pointer sharing is essential for three aspects: First, it
eliminates one level of copying (from the host to the device memory space
(still DRAM) and back). Second, it allows the accelerator to transfer only
the data it requires directly to its closest memory level. Third, it enables
offloading of pointer-based data structures. OpenMP 5.0 introduced the
required directive with the associated unified_shared_memory clause,
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Data model Width (in bits) of
int long pointers

ILP32 32 32 32
LLP64 32 32 64
LP64 32 64 64

Table 6.1: 32- and 64-bit data models common today.

which provides these pointer sharing semantics and makes map clauses
on target constructs optional.

Our work supports both data-copy and pointer-passing offloading.
When only copy-based offloading is required, simpler solutions could
be found because the physically-contiguous memory section of the
accelerator must inherently be addressable by the 32-bit accelerator.

6.1.3 Data Models
A data model defines the width of pointers and integer types that
have a platform-dependent width. Table 6.1 lists 32- and 64-bit data
models common today. In this chapter, we focus on pointers and discuss
the challenges of offloading from a host with one data model to an
accelerator with another in § 6.2.

6.1.4 Accelerator Address Space Restricted Offload-
ing

There are already computers where accelerators have a narrower address
width than the host [Red+18; Fru18; Jou+18; Cho+16]. To share addresses
between host and accelerators on such computers without compiler
support, different fallback options are being used. All these options
restrict the address space of user-space applications on the host while
keeping the OS in the native address space. First, host applications
could be compiled for a different ISA that has a smaller address width but
is compatible with the host ISA. For example, 64-bit ARMv8-A cores
are user-space compatible with the 32-bit ARMv7-A ISA [Arm19a] and
RV64 cores optionally implement an RV32 mode [Wat+19]. However, this
is not possible for all ISAs. Second, host applications could be compiled
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for a different data model that has a smaller address width. For example,
Intel introduced x32 for x86-64 [LAG11]. A major drawback of this option
is that it requires changes to the compiler, the standard library, and the
kernel, which are relatively complex to maintain for the limited benefits it
offers [Lut18]. Third, some OSes, such as Linux, support restricting stack
and heap addresses to a subset of the address space [Ker10]. However,
none of these fallback options allow host applications to use the full
64-bit address space, so they do not solve the problem we address.

6.1.5 Heterogeneous Compilation: State of the Art

host ELFhetero-
geneous
source

front-
end

host IR host IR host assembly

device assembly

optimizer back-
end

back-
end linker

linker

device bin

triggers

opti-
mizer

Figure 6.2: GCC implementation of OpenMP offloading. Red parts
pertain to host compilation (top), blue parts pertain to accelerator/de-
vice compilaton (bottom). For device compilation, only a subset of
optimization passes get executed.

GCC separates host and accelerator compiler to compile an ap-
plication with OpenMP offloading, as shown in Fig. 6.2. The host
compiler drives the compilation of a heterogeneous application and first
lowers the source code to the GIMPLE IR. When the host compiler
finds a target section, it creates a new outlined function. Next, in the
expansion phase, the host compiler replaces OpenMP directives with
calls to functions in the host libgomp RTL. Finally, after optimizing
the GIMPLE IR and as part of LTO, the device compiler is invoked to
transform GIMPLE IR to accelerator machine code [CM17].

In contrast to GCC, LLVM can natively compile for different targets
and implements heterogeneous compilation as two separate compilations,
as shown in Fig. 6.3. The necessary infrastructure was first presented
in [Ant+16], the key feature being that the device compilation is largely
independent from the host compilation, except for two points. First, the
host compiler is responsible for annotating the parts of the source code
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Figure 6.3: LLVM implementation of OpenMP offloading. Red
parts pertain to host compilation (top), blue parts pertain to
accelerator/device compilaton (bottom).

that are visible to the accelerator, and forwards this information to the
device toolchain. Importantly, this is done before the host has assumed
any data model upon the code. Second, the host link action depends on
the completion of the accelerator compilation, such that the accelerator
code can be linked into a fat host executable and linkable format (ELF)
file. We will discuss the impact of the different approaches of GCC and
LLVM in § 6.3.1.

6.2 Mixed-Data-Model Offloading
The central problem in mixed-data-model offloading is to overcome the
difference in the width of pointers between host and accelerator. As a
practical example, consider sharing 64-bit pointers from an LP64 host
with an ILP32 device. The device’s ILP32 data model defines pointers
to be 32 bit wide, so host pointers cannot be used as function arguments
on the device. The device ISA defines memory access instructions on
32-bit registers (and potentially immediates), but provides no way to
access 64-bit addresses. Thus, even though data values wider than 32
bit can be shared with 32-bit devices, they cannot be used as pointers
or, from a lower-level perspective, as memory addresses.

To access addresses wider than the native width, the device needs
to provide minimal hardware support, which the compiler can use
through builtin functions. We will describe the hardware implementation
of these functions in § 6.4; but for now we assume there are two
runtime functions the wide-address load wide_load(uint64_t wideaddr)
and the wide-address store wide_store(uint64_t wideaddr) that take
fixed-width integers (e.g., uint64_t in C), wide enough to represent the
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host pointers, as arguments and perform the load from or store to the
given address.

6.2.1 Mixed-Data-Model OpenMP Offloading
To use host pointers as arguments to the extended load and store
functions, they need to be converted to fixed-width integers in all
OpenMP target code and the map clause. In C, this could be achieved
by replacing all host pointer types with uintN_t and all reading or
writing dereferences with calls to the load or store function, respectively.
In C++, this could be achieved by defining a class that wraps a host
pointer and overloading its dereference and assignment operator. When
this transformation is left to the programmer, it is highly intrusive
and requires changes to applications and libraries, which opposes
the goal of transparent offloading. Moreover, this transformation is
incompatible with copy-based OpenMP offloading for arrays because
the array dimensions are stripped from the map argument.

The concept of passing host pointers as fixed-width integers and
replacing their use in device code with calls to functions is nonetheless
valid, but the transformation has to be performed by the compiler.

6.3 Mixed-Data-Model Compilation
In this section, we discuss options to implement mixed-data-model
compilation based on the concept presented in § 6.2 in GCC and LLVM.

6.3.1 Feasibility in GCC and LLVM
GCC lowers the source code of host and accelerator to the same IR,
which is determined by the host compiler (details in § 6.1.5). This
implies that the data model of the host must be used also for the device,
and since GCC treats all pointers uniform in this respect, that the
data model of the host defines the width of all pointers. Unless GCC’s
approach to heterogeneous compilation is changed fundamentally and the
GIMPLE IR can represent pointers of different width, mixed-data-model
compilation is infeasible in GCC.

LLVM, on the other hand, separates compilation for host and
accelerator as much as possible (details in § 6.1.5) including the use
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of multiple device-specific IR modules. Also, LLVM supports different
address spaces, each of which can have its own width, and allows to
assign pointers to address spaces. Address spaces are defined in the
data layout string, and each heterogeneous target architecture can
define its own data layout. This makes LLVM a natural choice for our
mixed-data-model compiler.

6.3.2 Front-end or Optimizer?

The first question to address is where to implement the transformation
of pointers. The choice is between front-end or optimizer, because by
the time the code reaches the back-end, it has to be reduced to types
and operations that the target supports natively. In the front-end, the
transformation would traverse the AST of the application. It would
identify each host pointer that is offloaded to the device, replace its type
with a fixed-width one, and replace its use with a function call. The main
drawbacks of this option are that matching all relevant patterns in the
AST is difficult and that it has to be implemented specifically for each
language that is to be supported. In the optimizer, the transformation
would operate on the IR of the compiler. LLVM’s IR is in SSA form,
which allows for use-def chain traversals that are natural for replacing a
pointer and all its uses. Also, the IR format is independent of the source
language, so this option can be generalized to any language supported
by the compiler. For these reasons, we implement our mixed-data-model
compiler through optimizer passes.

6.3.3 Our Mixed-Data-Model Compiler in LLVM

To keep track of which pointers address values in the host and the
accelerator memory, we assign them to separate host and accelerator
address spaces (ASes). We refer to the accelerator AS as device AS to
be aligned with common terminology. The generic AS defines the AS
of pointers that are not explicitly assigned to an AS.

As shown in Fig. 6.4, we extend the compiler mid-end for the
accelerator with two passes. The first pass assigns pointers from the
generic AS to the host or the device AS. The second pass converts
host pointers to fixed-width integers used to call the wide_load() and
wide_store() builtin functions.
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Figure 6.4: Flow chart of the extended (dark blocks) device compiler
mid-end / optimizer passes.

Choosing the generic address space

As host and device compilation are separate in LLVM, the compiler
assigns the native AS as the generic AS for compilation. However, using
the native accelerator AS as generic AS leads to problems when the
device also has to handle wider-than-native pointers: dereferencing a
host pointer that is not assigned to the host AS on the device uses
only the lower bytes of the address, which results in an illegal memory
accesses. To ensure correctness, the compiler must guarantee that
each pointer is assigned to an AS that is wide enough to cover the full
addressable memory.

Compiler assignment of pointers to an AS is simple in many cases,
e.g., pointers used in OpenMP offloading (map clause) are always in
the host AS. In full generality, however, use-def chains can trace to a
load from memory, where potential aliases make the identification of all
possible values, and thus the decision between host and device AS, a
difficult problem. To avoid this pitfall, we argue that the native device
AS is no longer a suitable generic AS when considering mixed-data-width
compilation.

We therefore switch to using the host AS as generic AS also on
the device. As host pointers are assumed to be wider than accelerator
pointers, the host AS is a superset of the device AS. This gives
trivial guarantees for correctness as the generic AS is wide enough to
represent any pointer. Having the fundamental correctness guarantees,
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the compiler can optimize for performance by assigning pointers to the
device AS when it is guaranteed to preserve correctness.

For this reason, we use the host AS as generic AS and optimize as
many pointers as possible into the device AS.

Assigning pointers to the device address space

Our solution for assigning pointers to address spaces has two stages.
First, we introduce a __device qualifier and let Clang expand that
to an __attribute(address_space) corresponding to the device AS,
which propagates the AS assignment to the IR. The intention of this
qualifier is that developers of accelerator libraries (e.g., device stdlib and
OpenMP RTL) use it on pointer arguments and return values to give
the compiler anchor points for device pointers. For instance, a malloc
in accelerator SPM will return a device pointer, and data transfers to
the local accelerator SPM will take a device pointer as dst argument.
All stack allocations in the device code are automatically in the device
AS. The second step is to propagate the AS from the anchor points
during compilation, such that the burden is not put on the programmer.

Figure 6.5: Assign pointers to device AS if possible.

The AS assignments are propagated through pointers that only have
dependencies to the known anchor points. For all pointers passed directly
through use-def chains, LLVM does this implicitly. For pointers passed
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via memory (e.g., explicitly in C as pass-by-reference, when invoking
OpenMP kernels, or due to a transformation), the AddressSpaceAssigner
pass, shown in Fig. 6.5, ensures that the AS is properly propagated.
We subsequently call the pointer stored in memory inner pointer and
the pointer to it outer pointer. That is, the outer pointer is used to
pass the inner pointer via memory. AddressSpaceAssigner first adds
all stack-allocated outer pointers that store an inner pointer to the
EntryP trs set (lines 1 to 8). On lines 9 to 14, the pass checks if each
outer pointer P ∈ EntryP trs only ever holds device-AS inner pointers
(Fig. 6.6). If it does, it replaces the generic-AS inner pointer in P with a
device-AS inner pointer in a new outer pointer NewP , and recursively
replaces all uses of P with NewP (Fig. 6.7).

HoldsOnlyDeviceASPointer in Fig. 6.6 determines whether an outer
pointer P always holds a device-AS inner pointer. For this, the pass
matches all uses of P against conditions known to not change the AS of
the inner pointer. The list of conditions constitutes the bulk of Fig. 6.6,
but may not be complete. Since this is an optimization pass, the gist is
to preserve correctness: If the conditions in the algorithm do not ensure
that a pointer cannot be assigned a value outside the device AS, the
AS migration is aborted on line 22. Additional conditions that preserve
correctness could be added to further improve the optimization, but
their omission does not compromise the correctness of Fig. 6.6.

ReplacePtr in Fig. 6.7 replaces each use of a pointer OP with a new
pointer NP . We use it on line 12 of Fig. 6.5 to replace host-AS pointers
with device-AS pointers. For each instruction U that depends on the old
pointer OP , the algorithm first checks whether the use of OP in U can
be replaced with the given new pointer NP (line 3). Such a replacement
is not possible, e.g., if U is a call to an external function: Because
LLVM IR is strongly typed – including ASes – the AS of every use of
the argument within the external function would have to be changed,
which is not possible if the function is not visible to the compiler. In
this case, ReplacePtr casts the resulting pointer back to the original AS
(lines 9 to 10), to remain compatible. If OP can be replaced (lines 4
to 7), U is cloned into NU , which uses the new pointer NP instead
of OP . For dereference chains, ReplacePtr needs to replace the entire
chain with the new AS. Due to strong typing, instructions that return
pointers have their type changed when the AS is modified. This is
detected on line 5 and triggers a recursive call on line 6. The base case
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Figure 6.6: Determine whether an outer pointer P always holds an
inner pointer in the device AS.
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Figure 6.7: Replace all uses of a pointer.

occurs when the type of NU is the same as the type for U , i.e., the
instruction returns a non-pointer value. Once OP has been replaced in
all uses, the original pointer OP is replaced by NP on line 13.

Following the AS assignment, the bulk of built-in optimization
passes (e.g., canonicalization and loop optimizations) are executed on
the resulting IR.

Legalizing accesses to host pointers

Before the late built-in optimizations, our second pass utilizes the
AS assignments to legalize pointers before the IR is passed on to
the back-end. Legalization is the process of converting generic IR
types and operations to target-specific ones supported by the back-
end. As all major ISAs today treat pointers like integers in terms of
operations and register storage, pointers are just fixed-width integers
in the back-end. The LLVM back-end can legalize operations on
wider-than-native integers to multiple native instructions on multiple
native registers. However, it can not generically legalize memory accesses
to wider-than-native addresses.

This problem is solved by our HostPointerLegalizer pass, shown in
Fig. 6.8, by utilizing the assigned address spaces. Wide host pointer
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Figure 6.8: Legalizing accesses to host pointers.



6.4. HW SUPPORT FOR EXTENDED ADDRESSING 153

accesses are legalized by replacing them with calls to builtin functions
wide_load() and wide_store() (as introduced in § 6.2, and to be defined
in § 6.4), by replacing the wide pointers with fixed-width integer types
that the back-end can already legalize. Specifically, the pass does the
following for every module in device code. On lines 6 and 13, it replaces
all loads from the host AS with calls to the wide_load function and all
stores to the host AS with wide_store calls. Note that memory can
additionally be accessed through intrinsic functions (e.g., memcpy), and
the device RTL needs to provide implementations of these functions
that can work with host-AS arguments. Finally, on line 23, the pass
resolves AS casts from device to host AS by zero extension and from
host to device AS by truncation of the source address. This truncation
is lossless as Fig. 6.6 ensured that the pointer only ever holds inner
pointers in the device AS.

Once pointers are legalized, late built-in optimizations (e.g., target
specialization) can be applied before the IR is passed on to the target-
specific back-end. Importantly, the inline pass is executed at this
stage, to minimize the performance impact of the wide_load() and
wide_store() functions.

6.4 HW Support for Extended Addressing
In the previous sections we left the wide_load() and wide_store()
functions, which implement address-extended loads and stores, as black
boxes. We will now define them. There are several options to implement
this functionality in the underlying hardware. In this section, we
present three options with decreasing degrees of intrusiveness, listed in
Table 6.2, and implement the least intrusive option to show the generality
of our solution and to upper-bound its overhead. For generality and
because 64-bit addresses also induce a considerable amount of 64-bit
data accesses, the examples discuss loading and storing 64-bit values.
The reduction of the examples to 32-bit (and smaller) values with 64-bit
addresses is trivial.

6.4.1 Additional, Wider Load & Store Instructions
The most intrusive option is to extend the ISA with custom load and
store instructions that operate on paired registers. For example, a 32-bit
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Option Requires mod. Instrs. Cycles
ISA Core

Wider loads & stores Y Y 1 L + 1
Adding CSRs N Y 4 L + L′ + 2
Mem.-mapped ext. reg. N N 6 L + L′ + 4

Table 6.2: Alternatives for accessing memory addresses wider than
the data width of a core. The two right-most columns quantify
the instructions and number of cycles of each alternative for loading
(storing) a 64-bit value from (to) a 64-bit address with a 32-bit core.
L is the latency of the first (or only) memory access, L′ the latency
of the subsequent access with an offset of 4 on the same base address.
Modifications to the ISA also require modifications to the compiler
backend.

ISA could be extended with instructions such as ldd x0, 0(x2) to load
from x3 (upper 32 address bits) and x2 (lower 32 address bits) into
the registers x1 (upper 32 data bits) and x0 (lower 32 address bits).
Assuming a standard register file (RF) with two read and one write
ports, each such load and store would take one extra cycle on top of the
latency of the memory access, because the wider load needs to write
the upper half of data to the RF and the wider store needs to read the
upper half of address and data from the RF. Thus, this ISA extension
allows a 32-bit core to access 64-bit addresses with one instruction and
L+1 cycles, where L is the latency of the access. The compiler backend
would need to be modified to know the double-register semantics of
such instructions. This option requires logic to decode the additional
instructions and a state register to control the address extension within
the core but no additional register to hold the address extension.

6.4.2 Additional Control and Status Registers (CSRs)

As extending the ISA might not be possible, a less intrusive option is to
add control and status registers (CSRs) to hold the part of an address
that does not fit into registers. For example, one 32-bit CSR, which the
LSU uses as upper 32 address bits, allows a 32-bit core to access 64-bit
addresses. If the CSR is defined to clear on the next memory access
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and disable interrupts until the memory access (to prevent the address
extension from corrupting memory accesses in interrupts), a 32-bit core
can load a 64-bit value from a 64-bit address with the following four
standard RISC-V1 instructions:

csrrw x0, csr_addr_ext, x3 // set upper half of address
// and disable interrupts

lw x0, 0(x2) // load lower half of data
// and reenable interrupts

csrrw x0, csr_addr_ext, x3 // set upper half of address
// and disable interrupts

lw x1, 4(x2) // load upper half of data
// and reenable interrupts

where pre- and post-conditions on the registers are as in the last
paragraph. The instructions setting the address extension CSR take
one cycle each. The first lw might miss in the cache (latency L), while
the second lw with an offset of four bytes to the same base address
almost certainly hits (latency L′). Thus, this solution allows a 32-bit
core with one additional 32-bit CSR to access a 64-bit address with 4
standard instructions and L+ L′ + 2 cycles.

6.4.3 Memory-Mapped External Register
The least intrusive option is to place an address extension register right
outside the core and map it to the I/O address space of the core. For
example, one 32-bit external register that extends the 32-bit address
provided by the LSU of that core allows to access 64-bit addresses from
an unmodified 32-bit core. Like the CSR, this register is defined to
clear on the next memory access. A load with the same semantics as in
the other examples can be performed with the following six standard
RISC-V instructions:

csrrci x4, csr_status, 3 // disable interrupts
sw x3, 0(mem_addr_ext) // set upper (sic!) half of address
lw x0, 0(x2) // load lower half of data
sw x3, 0(mem_addr_ext) // set upper half of address
lw x1, 4(x2) // load upper half of data
csrrw x0, csr_status, x4 // reenable interrupts

1Similar constructs are possible in other ISAs, we use RISC-V as a concrete
example.
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Like a CSR, a register directly after the core can generally be accessed in
one cycle. Thus, this solution allows an entirely unmodified 32-bit core
to access a 64-bit address with 6 standard instructions and L+ L′ + 4
cycles. The required extra hardware is one 32-bit register outside the
core.

We implement this last option as it is the most generic and puts an
upper bound on the overhead of our solution.

6.5 Evaluation

We show that our solution enables OpenMP offloading across data model
boundaries with an average run-time overhead below 0.7 % compared
to offloading restricted, native-accelerator-width addresses over a wide
range of benchmarks.

6.5.1 Methodology

We implement our compiler in LLVM 8.0.0 [LLV19], and we use a
custom version of the open-source HERO heterogeneous research plat-
form [Kur+17; Kur+18b] to implement extended addressing as described in
§ 6.4.3. We use a 64-bit RISC-V Ariane core [ZB19] as host and a cluster
from the PULP project [Ros+14b] with 8 32-bit RISC-V PEs [Gau+17],

one DMA engine, and 256 KiB of L1 SPM in 16 banks that the PEs
can access in a single cycle, as PMCA. Each PE has a memory-mapped
external 32-bit register to extend addresses to 64 bits. All hardware
is implemented in synthesizable hardware description language (HDL)
and benchmarks are measured in cycle-accurate hardware simulation
using Questa 10.7b [Men19].

We evaluate the seven kernels listed in Table 6.3. From the
Polybench/ACC benchmark suite [Gra+12], 2mm, 3mm, atax, bicg, and gemm
are linear algebra kernels, conv2d is part of the “stencil” domain, and
covar is part of the “datamining” domain. Together, these commonly
accelerated kernels span a wide range of memory access patterns and
operational intensities. All matrices are stored in row-major arrays.
Data is copied to and from accelerator L1 SPM with the DMA engine at
the beginning and end of each offload phase, respectively. Computations
of the accelerator thus exclusively use the L1 SPM. The accelerator PEs
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Kernel Parallelized computation Complexity
space comput.

2mm Ci,j =
∑N

k=1 αAi,kBk,j O
(
N2

)
O

(
N3

)
3mm E = 2mm(A,B) → F = 2mm(C,D)

→ G = 2mm(E,F )
O

(
N2

)
O

(
N3

)
atax Bi =

∑N
j=1 Ai,jXj

→ Yi =
∑N

j=1 Aj,iBj

O
(
N2

)
O

(
N2

)
bicg Qi =

∑N
j=1 Ai,jPj

→ Sj =
∑N

i=1 RiAi,j

O
(
N2

)
O

(
N2

)
conv2d Bi,j =

∑(1,1)

(k,l)=(−1,−1) ck,lAi+k,j+l O
(
N2

)
O

(
N2

)
covar Ej = α

∑M
i=1 Di,j ; Di,j −= Ej ;

Si,j = Sj,i =
∑N

k=1 Dk,iDk,j

O
(
N2

)
O

(
N3

)
gemm Ci,j = β

(∑N
k=1 αAi,kBk,j

)
O

(
N2

)
O

(
N3

)
Table 6.3: Evaluated kernels. Subscripts denote indices, uppercase
letters are variables, and lowercase letters are constants. Arrows (→)
denote consecutive offloads. Semicolons (;) denote consecutive parallel
phases within the same offload.

execute the computation in the second column of Table 6.3 in parallel.
3mm, atax, and bicg are composed of consecutive offloads, denoted by
arrows (→) in the table, all other kernels consist of a single offload. All
benchmarks are compiled with -O3 but no specific optimization flags.

We measure the run time of each kernel in accelerator clock cycles,
starting before the first DMA transfer of input data and stopping
after the last DMA transfer of output data. In the baseline, the
accelerator works exclusively with 32-bit addresses, i.e., the benchmarks
are compiled for a 32-bit host and accelerator. We compare two
implementations, where the benchmarks are compiled for a 64-bit
host and a 32-bit accelerator with 64-bit generic AS, to the baseline:
First, to analyze the performance impact of handling 64-bit pointers
within the kernels on the 32-bit accelerator, we do not run the AS
assignment pass. In other words, all accesses require 64-bit extension
and take L+ L′ + 4 cycles, as described in § 6.4.3. Second, to analyze
the efficiency of our solution, we run our full compiler including the AS
assignment pass.
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6.5.2 Benchmark Results

As the performance-critical part of each benchmark operates exclusively
on device memory, which can be addressed with 32-bit pointers, our
hypothesis is that the run-time overhead of our mixed-data-model
compiler converges to zero with increasing data sizes. The evaluation
is focused on small data sizes to analyze the effect on fine-grained
offloading and the rate of convergence.

Fig. 6.9 shows the execution time of all benchmarks and both
implementations relative to the baseline, where the accelerator works
exclusively with native 32-bit addresses. For each benchmark, four bars
represent different data sizes; for example, size 8 means that all matrices
in a benchmark are 8× 8 and vectors have length 8.

In the left part, where the accelerator has to work with 64-bit
addresses also for local memory, the run time is multiplied by a factor
of 1.4 to 5.8. For 3mm, 2mm, gemm, and covar, the relative run time
converges to more than 4×. Those three kernels are dominated by
computations and thus also by local memory accesses by the PEs using
wide_load/store, and each access to a 32-bit word in L1 now takes 4
instead of 1 cycle. In addition, the wide_* memory accesses leave the
compiler less freedom for scheduling memory accesses: it is currently
not possible to define ordering constraints related to 64-bit addresses
in a 32-bit compiler, so the order of every wide_* with respect to any
other memory access needs to be preserved. The overhead is less
pronounced for the other kernels, which are more balanced between
data transfers through the DMA engine and memory accesses by the
PEs. Nonetheless, the run-time overhead of using a 64-bit AS as generic
AS for the device is clearly prohibitive, constituting the need for our
AS assignment compiler pass.

In the right part of Fig. 6.9, where our compiler pass assigns as
many device pointers to the 32-bit device AS as possible, the situation
is completely different. Even for very small data sets (8× 8 matrices
and 8× 1 vectors), the run-time overhead never exceeds 22 %. Even
more importantly, the overhead rapidly converges to zero for all kernels,
and already is below 0.7 % on average for still small data sets of size
64. This demonstrates the effectiveness of our AS assignment pass
and proves that our compiler enables mixed-data-model offloading with
negligible overheads in run time.
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6.6 Related Work

To our knowledge, no computer today supports sharing data in the full
host address space with accelerators that have a shorter data width.
The concept of passing pointers as fixed-width integers (see § 6.2) could
apply to such computers as well, given minimal hardware support for
extended addressing (see § 6.4). However, we know no related work that
includes these contributions (and consequently neither the compiler
in § 6.3). In this section, we discuss how related works implement
offloading by avoiding mixed data models.

Existing heterogeneous computers with mixed-width components
(e.g., [Fru18; Red+18; Jou+18; Cho+16; Kur+17]) do not support OpenMP
offloading or restrict the address space of offloaded applications to that
of the accelerator (see § 6.1.4).

Most GPGPUs used today in heterogeneous computers can natively
access 64-bit addresses [AMD18; Nvi19a]. GPGPUs, which implement
double-precision floating-point arithmetics in hardware and are designed
for SIMD (and SIMT) parallelism, naturally have a wide data path,
so 64-bit addressing comes at very little additional cost. This also
applies to CPU+GPU SoCs; for example, Nvidia’s Tegra today fully
supports offloading in 64-bit applications [Nvi16], although earlier versions
restricted the address space of offloaded applications to 32 bit [Nvi15].

Many works address OpenMP offloading from 64-bit hosts to 64-bit
GPUs with LLVM [Ant+16; Ber+17; Öze+18].

DSPs are an important class of accelerators that benefit much
less from a 64-bit data path because they usually operate on sensor
data, which does not exceed 32 bit in precision (although DSPs are
also designed for SIMD parallelism). Today, even high-end DSPs are
32-bit machines [Tex19c] and the SoCs they are used in feature 32-bit
host processors [Tex19a], even for driver assistance systems that include
graphics accelerators [Tex19b]. Many of these fully-32-bit DSP SoCs
support OpenMP offloading [Sto+13; Mit+14]. Other DSPs [Cod15; Cad18;

Fru18] and DSP-like accelerators [Oh17; Cut16] that feature 32-bit very
long instruction word (VLIW) ISAs are typically programmed through
application-specific libraries such as OpenCV [Pul+12] and OpenVX [Khr19].

Provided a minimal OpenMP device RTL and support for the ISA in
LLVM, our work could enable to use these accelerators as OpenMP
offload targets in modern SoCs with 64-bit host processors.
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Address spaces are also used in CUDA [Coo12] to define the memory
location of functions and variables. Clang compiles CUDA code with
address specifiers such as __device__ to addrspace attributes in LLVM
IR. In contrast to our work, no two CUDA address spaces overlap,
so they are not used for accessing host memory from the device (or
vice-versa) [Nvi19b]. Address spaces in LLVM can further define pointers
to be non-integral, which has been used to implement “fat” pointers
with hardware support for memory protection [Woo+14; Chi15].

OpenACC [CJ17] is a heterogeneous programming alternative to
OpenMP. Its data model [Wol+17] is more generic than that of OpenMP
but also supports accelerator-private memory. In Clang, OpenACC
is being implemented by translating to OpenMP [DLV18], so our work
naturally extends to OpenACC as far as implemented in Clang.

Different approaches enable automatic offloading to GPUs. Graphite-
OpenCL [RAS10] first proposed static offloading of parallel loops to GPUs,
relying on polyhedral analysis techniques to identify suitable subpro-
grams. In the context of LLVM, several approaches use Polly [GGL12] as
a foundation for automatic accelerator mapping. Examples are Kernel-
Gen [Mik+14] which introduced a device focused approach only falling back
to the host system if unavoidable, Damschen et al.’s approach [Dam+15]

using a sophisticated client-server approach to orchestrate computations
on Xeon Phi systems, and Polly-ACC [GH16] that introduces cross-kernel
analysis to reduce overall data movement. To our understanding, all
approaches target 64-bit devices and do not address offloading to devices
with a data width that differs from that of the host. As our proposed
concept for mixed-data-model compilation and offloading is not restricted
to OpenMP but relies on generic IR analysis and transformations, it
could apply to OpenCL and related frameworks as well.

Extended addressing has been implemented in processors for different
purposes. In x86’s Physical Address Extension (PAE) [Sha98], page table
entries are 64-bit but the (virtual) addresses used by processors remain
32 bit. Using address translation to access a wider host address space
from accelerators is theoretically possible, but maintaining a virtual
address space that is different from that of the host is not trivial, so
we prefer simple address extension. Similar to the first of our address
extension options, [VT14] extended a 32-bit ISA with 64-bit load and store
instructions and added a special-purpose register for address extension
(whereas our first option does not require additional registers). They
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observe that SPEC CPU2006 uses less than 4 GiB memory and thus
use 32-bit load/store instructions whenever possible. The authors have
recently integrated that work into a proposed composite ISA [VBT19],

which includes a 32-bit instruction subset. The focus of our work, in
contrast, is to enable the first-class integration of 32-bit accelerators in
a 64-bit addressed computer, and we design and implement compiler
optimizations to do this in prevalent heterogeneous programming models
and without restrictions or assumptions on the used memory space.

6.7 Summary
Our work extends prevalent programming models for heterogeneous
computers (e.g., OpenMP, OpenACC) to computers with mixed data
widths (e.g., 64-bit host and 32-bit accelerator) for the first time. We
presented the general concept of mixed-data-model offloading in § 6.2
and designed and implemented an LLVM-based compiler to implement
our solution fully transparently to the programmer in § 6.3. We discussed
hardware support for extended addressing in § 6.4 and implemented the
least intrusive variant to show the generality of our solution and upper-
bound its overhead. Results on benchmarks from the PolyBench-ACC
suite show that a 32-bit accelerator can transparently share memory
with a 64-bit host at an average overhead below 0.7 % compared to
32-bit-only execution, enabling mixed-data-model systems to execute at
near-native performance.



Chapter 7

A State-of-the-Art
Open-Source
Heterogeneous Research
Platform

Heterogeneous integrated computing systems aim to combine general-
purpose computing with domain-specific, efficient processing capabili-
ties [Hor14; Zah17; DTH20]. Such computers integrate a general-purpose
host processor with specialized programmable many-core accelerators
(e.g., [DKR18; Ban+19; ABW20]). These systems are very complex and many
challenges remain to be overcome to realize their full potential [HP19].

Central questions over the full stack of computing, from application pro-
gramming over compilers and runtime libraries down to the accelerator
microarchitecture, include: How to partition tasks between host and
different accelerators? How to express that partitioning in programming
languages, optimize it in the toolchain, or both? How to manage
data sharing across host and accelerator, share address spaces and
overcome the differences between cache-coherent memory subsystems,
typically found on the host, and their non-coherent counterparts, which

163
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are typically found in accelerators? Which types and combinations of
accelerators are optimal for a given domain?

Research on heterogeneous systems traditionally follows a double-
track approach, where accelerators are developed in isolation [Reu+20;

Gui+19], and their impact on system-level performance is estimated
through analytical models and simulators [Uba+12; Pow+15]. Compared to
using a prototype heterogeneous system, this approach has significant
drawbacks: First, interactions between host, accelerators, the memory
hierarchy, and peripherals are complex to model accurately, making
accurate simulation orders of magnitude slower than running prototypes.
Second, even full-system simulators model heterogeneous computers
to a limited degree only [But+16]. For example, models of system-level
interconnects or system memory management units (SMMUs), are
missing or highly abstract and imprecise. Third, simulators that are not
precisely calibrated and accuracy-validated against the simulated system
are generally too inaccurate to provide reliable results, and full-system
simulators are particularly unreliable [AS19]. A research platform that
serves as a working prototype, on the other hand, enables collaborative
and accurate architectural analysis and optimization [Lee+16]. To per-
form system-level research using standard benchmarks and real-world
applications, the platform must additionally provide a software stack
that includes an application programming interface and a complete
compiler toolchain.

Existing research platforms do not meet these requirements in
their entirety. Many provide a custom accelerator on programmable
logic [Gra16; KHG20], and some even couple the accelerator to a host proces-
sor that runs an operating system [Man+20; Bal+20a]. HEROv1 [Kur+18c]

provides software stack and compiler that enable the evaluation of
real-world applications on a mixed-ISA computer, but it fundamentally
restricts host and accelerator to use the same data model (e.g., 32-bit).
Additionally, HEROv1’s on-chip network and memory subsystem are
restricted to simple architectures that cannot meet the demands of
modern heterogeneous computers.

In this chapter, we make three main contributions:

1. We resolve the mentioned limitations and present HEROv2, an
open-source research platform where an application-class 64-bit
host can seamlessly share data with a 32-bit parallel programmable



7.1. PLATFORM 165

accelerator. The latter is implemented on programmable logic
and based on permissively licensed open-source RTL1 components.
The hardware components can be freely extended and modified
and include a high-performance end-to-end on-chip network that
can be fully customized to meet the memory demands of the
accelerator and target application (§ 7.1.1). The platform also
includes a complete heterogeneous compiler based on LLVM, which
allows single-source single-binary development of heterogeneous
applications with OpenMP 4.5 offloading (§ 7.1.2). The runtime
libraries on the accelerator and driver on the host enable this
offloading with little overhead (§ 7.1.3). A unified heterogeneous
API enables productive programming while providing fine-grained
control where necessary (§ 7.1.4). The complete software stack
and tools are open source under a permissive license.

2. We demonstrate the capabilities of HEROv2 by using it to study
four current research topics in heterogeneous computing and
provide quantitative insights on the level of applications (§ 7.2.1),
toolchains (§ 7.2.2), system architecture (§ 7.2.3), and accelerator
architecture (§ 7.2.4).

3. We also leverage HEROv2 to design and evaluate a novel solution
to one of the most pressing problems in heterogeneous computing:
how to relieve the programmer of the burden of specializing an
algorithm to the memory hierarchy of the accelerator (§ 7.2.2).

Section 2 describes HEROv2’s hardware and software platform. Section
3 focuses on case studies. Furthermore, we compare with related work
in § 7.3 and conclude in § 7.4.

7.1 Platform
HEROv2 consists of a complete heterogeneous hardware architec-
ture (§ 7.1.1) as well as an end-to-end software stack including a toolchain
and compilers (§ 7.1.2), operating system and runtime libraries (§ 7.1.3),
and an application programming interface (§ 7.1.4).

1RTL = register-transfer level. We use the industry-standard SystemVerilog
hardware description language.
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Figure 7.1: HEROv2’s hardware architecture, which combines a general-
purpose host processor (in the upper left corner) with a domain-specific
programmable many-core accelerator (on the right side) so that data in
main memory can be shared effectively (in the lower left corner).

7.1.1 Hardware Architecture
HEROv2’s hardware architecture combines a general-purpose CPU
running a full OS with a domain-specific programmable multi- or
many-core accelerator. Fig. 7.1 gives an overview of the components
and their connections. As many hardware components as possible are
implemented on an FPGA (also called programmable logic) to make
them configurable, modifiable, and extendable. All hardware modules
mapped on the FPGA are available in synthesizable RTL logic under
a permissive open-source license, which makes them fully analyzable
and freely extensible and reusable. The vast majority of hardware
components are silicon-proven, meaning they have been and will be
used in ASIC tapeouts in many modern silicon technologies.

The host CPU is a hard-macro 64-bit ARMv8 Cortex-A multi-core
on Xilinx’ Zynq UltraScale+ family FPGAs or a soft-macro 64-bit
RISC-V core (CVA6 architecture [ZB19]) on any UltraScale+ family
FPGA. The general design principle of the host core is to maximize
performance per area or power on mostly sequential workloads with a
complex control flow. Each host core features a private L1 instruction
cache, L1 data cache, and a MMU. All host cores are attached to a
coherent interconnect and share an L2 data and instruction cache.

Host and accelerator share a main memory on a different die (such
as HBM) or in a different package (such as DRAM) through the system
interconnect, which can be coherent to the caches of the host. The
memory hierarchy of the accelerator consists of software-managed SPMs.
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To copy data into and out of the SPMs, the accelerator features DMA
engines. To share the virtual address space of an application running on
the host, each accelerator features a hybrid IOMMU (such as [Vog+17]).
This IOMMU consists mainly of a TLB, which translates virtual user-
space application addresses to physical memory addresses and supports
a high degree of concurrency (e.g., tens of outstanding transactions from
different masters). The TLB is managed by the accelerator itself, which
handles TLB misses by walking the application page table managed
by the host and filling the corresponding entries into the TLB. The
IOMMU is called hybrid because it is managed in software, which
allows the accelerator to efficiently share virtual address pointers with
a minimum amount of hardware (e.g., for buffers).

The accelerator is composed of many minimal 32-bit RISC-V cores,
which are organized into clusters of 4 to 16 cores for scalability. Different
RISC-V core architectures are supported (see Table 7.1), and conse-
quentially the specific ISA of the accelerator varies, but all accelerator
cores support at least the RV32IMA ISA. The focus of the accelerator
core architecture is to maximize the performance per area or power
on computation-heavy workloads with a simple control flow. For this
reason, the cores feature a single-issue in-order pipeline with 1 to 4
stages. To accelerate floating-point workloads, each core can be extended
with a FPU, which is highly parametrizable: depending on the needs
of the application, it can execute one double-precision (fp64) MAC,
one or two single-precision (fp32) MACs, two to four half-precision
(fp16) MACs, or four to eight quarter-precision (fp8) MACs in one
clock cycle [Mac+21]. The optimal data width of an accelerator is one
of multiple properties that depend on the target domain: for every
executed accelerator instruction that does not exploit the full data
width, its performance per area and per energy are suboptimal. As 32
bits suffice for many application domains, we expect 32-bit accelerator
cores to remain useful.

To accelerate workloads that heavily rely on functions outside
common integer or floating-point operations, the cores support custom
bit-manipulation instructions, and the cluster can additionally be
extended with fixed-function hardware processing engines [CSB18]. To
maximize the utilization of the compute units, each accelerator core
supports custom instructions to repeat a sequence of instructions
multiple times without branches (so-called hardware loops) as well
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as custom instructions to implicitly increment the memory address on
a load or store. Together, the custom instructions form the Xpulpv2
RISC-V ISA extension [Gau+17].

Within each accelerator cluster, the cores have single-cycle access
to a multi-banked, tightly-coupled L1 data SPM. A default banking
factor of two allows any core to access any bank in any cycle with
a low probability of contention for most applications. The cores can
additionally access memory outside of the own cluster, including shared
main memory, with a latency between a few (to other clusters) to
hundreds of cycles (to main memory, depending on on-chip network and
memory controller). A custom control and status register (CSR) allows
each 32-bit core to load from and store to any 64-bit address [Kur+20b,

§ 5]. This CSR extends the native 32-bit address by 32 upper bit and is
set automatically by the compiler (see § 7.1.2).

The cores fetch their instructions from an L1 instruction cache,
which is shared by all cores in one cluster. To reduce the pressure on the
shared instruction cache during loops, each core additionally contains
an L0 instruction cache holding up to eight compressed instructions.

Finally, each accelerator cluster features a DMA engine, which can
address the full 64-bit memory space, supports unified virtual memory
through the hybrid IOMMU [Kur+18d], can transfer up to 1024 bit per
clock cycle in and out of the cluster (full duplex), and can have tens
of transactions, each consisting of tens of data beats, outstanding at
any time. This DMA engine allows to transfer data in high-bandwidth
bursts while the accelerator cores compute on data in local memory. If
an application allows issuing sufficiently many or long bursts, the DMA
engine allows tolerating a latency of hundreds of cycles between main
memory and accelerator, which is crucial to support the ongoing trend
of deeper and non-uniform memory hierarchies.

Multiple accelerator clusters are interconnected with two non-coherent
networks implementing the industry-standard AXI protocol: a wide one
for high-bandwidth DMA transfers and a narrow one for low-latency
accesses by cores [Kur+22]. A high-bandwidth on-chip SRAM controller
connects the L2 SPM, which is shared by all clusters, to the accelerator
interconnect. The hybrid IOMMU connects the accelerator to the
host. The IOMMU is either directly attached to a non-coherent system
interconnect or via a bridge [Cav+20] as I/O-coherent request node to a
coherent system interconnect. To program and control the accelerator
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from the host, it is additionally connected as I/O-coherent slave node
to the system interconnect.

Such RISC-V-based MIMD/MPMD-capable accelerators can be seen
as a functional superset of accelerators with a more specialized ISA and
execution model (e.g., PTX or RDNA and SIMD/SIMT for GPGPUs).
While this RISC-V accelerator might not reach the performance of a
state-of-the-art commercial accelerator, it enables the community to
develop solutions for many problems that are not exclusively caused by
the performance of a specific accelerator. Internally, any company can
replace the RTL code of the provided RISC-V accelerator with their
proprietary code to obtain cycle-accurate results of their product within
a heterogeneous system without having to disclose any trade secrets.

7.1.2 Toolchain and Compilers

HEROv2’s heterogeneous hardware requires toolchain support to enable
the development of applications for the platform in an efficient and
productive way. HEROv2 provides such a heterogeneous toolchain,
based on LLVM 122, which provides efficient support for heterogeneous
compilation based on OpenMP. This enables the seamless co-integration
of compute-focused accelerator kernels and control-focused host code
into a unified application, including target-specific compilation and
optimizations. Additionally, the different data widths of the system
(64-bit host and 32-bit accelerator) are supported by LLVM’s address
space implementation, which provides the compiler with the means to
express pointers of varying width. An overview of HEROv2’s toolchain
is shown in Fig. 7.2.

The toolchain flow starts by compiling OpenMP-annotated het-
erogeneous source code, as shown at the left of the figure. OpenMP
describes heterogeneity and parallelism through #pragmas and leaves
the transformation to parallel code to the compiler. Annotating a piece
of code with #pragma omp target directs the toolchain to compile the
code both for the host3 and the accelerator. We refer to these regions

2We periodically update to the latest LLVM version. The effort for an update is
usually on the order of a week for a full-time engineer.

3By OpenMP’s specification, the runtime decides during execution time if a
target region is executed on the host or the accelerator, but in the case of HEROv2,
the latter is always the case.
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Figure 7.2: Overview of HEROv2’s heterogeneous toolchain and
compilers.

as target regions. The respective host and device toolchains are thereby
invoked by the Clang driver, as shown in Fig. 7.2, which transform the
source code into an object file for each architecture. The Clang driver
triggers the device linker for the device object file, creating a RISC-V
ELF file, whereafter the host linker is triggered. The host linker first
links the host object files into an ELF file and then embeds the device
ELF as an object inside the host ELF, creating a FAT binary. This
allows the OpenMP runtime to load the device ELF into accelerator
memory at runtime.

HEROv2 uses an off-the-shelf LLVM-based 64-bit toolchain for the
host and a custom LLVM-based 32-bit RISC-V toolchain for the device.
Both toolchains are marked in Fig. 7.2, where the components that
include customizations are highlighted in blue tones, and aim to provide
interoperability between host and accelerators, ease of programming,
and support for ISA extensions.

Interoperability between Host and Accelerators

Pointers in C/C++, as well as in the LLVM IR, have a fixed width: the
data width of the target processor. A 32-bit data width of an accelerator
therefore implies that 64-bit pointers from the host will be truncated.
To allow 64-bit host pointers to be correctly represented, an additional
64-bit address space is defined in HEROv2’s accelerator compiler. We
refer to the two address spaces as the 32-bit native address space and
the 64-bit host address space. Address space support is a built-in LLVM
feature, and has been previously used, e.g., to separate pointers to
global and shared memory in CUDA. In such cases, however, pointers
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are annotated by the programmer, e.g., __shared__ in CUDA, and all
pointers typically have the same width.

To address mixed-data-width compilation in HEROv2, the Clang
frontend has been extended to generate LLVM IR with automatically
assigned address spaces. We adopt the techniques of [Kur+20b], where
OpenMP offloading entry points are used to infer that pointers passed to
a device kernel from the host are 64-bit wide. The uses of such pointers
are then tracked throughout the application, such that any pointer that
cannot be guaranteed to never hold a 64-bit host address is promoted
to the host address space. Any pointer that is guaranteed to only hold
32-bit pointers is kept in the native address space. Additional control is
handed to the programmer through __device pointer decorations, to
enforce a pointer to belong to the native address space, if the compiler
could not guarantee it to be correct. As part of machine code generation,
any data types and operations that are not natively supported by the
underlying hardware and/or application binary interface (ABI) must
be legalized. As pointer semantics are dropped in LLVM backends
(i.e., pointers are treated as integers), the backend is able to implicitly
legalize arithmetic operations on 64-bit pointers. However, the backend
does not support the legalization of wider-than-native load and store
operations. HEROv2’s RISC-V compiler has therefore been extended
with a custom host pointer legalizer pass right before the optimized
code is passed to the RISC-V backend for machine code generation.
This pass identifies all load and store operations on addresses in the
host address space and implements them using the address extension
CSR.

Ease of Programming and Code Portability

An important aspect for code portability and ease of programming
is the automatic optimization of code for the memory hierarchy of a
computer. HEROv2’s accelerators use software-managed SPMs, which
are refilled using DMA engines. This means software must explicitly
orchestrate any data movements between shared main memory and
fast local memory. As OpenMP does not provide any mechanisms to
tile data structures and move tiles with DMA transfers, programmers
need to manually rewrite their code to perform well on SPM-based
accelerators. HEROv2’s DMA API is unified over all accelerators, but
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the initial tiling of an application is nonetheless a significant effort and
reduces code portability outside HEROv2.

To reduce this effort and improve code portability, HEROv2’s device
compiler provides an optional AutoDMA plugin that automatically
analyzes source code to identify memory regions that are suitable
for staging through SPMs and transforms the code to automatically
program the DMA engine without any programmer intervention. The
AutoDMA plugin is also able to perform loop tiling to extract segments
of code whose memory footprint is small enough to fit in the local
memory. The AutoDMA plugin is an extension of HePREM [FBM20],

originally envisioned for transforming real-time GPU code to be less
sensitive to memory interference. This was achieved by transforming
GPU kernels into a series of load, execute, and store phases, with
explicit synchronization points between them. These three phases are
well aligned with accelerators based on software-managed SPMs. In
contrast to HePREM, which targets DMA-less GPU systems, AutoDMA
generates DMA API calls instead of moving data using load and store
instructions. Additionally, synchronization has been minimized to
improve performance. The resulting AutoDMA plugin provides an
optional way to achieve performance on HEROv2 without the need for
manual tiling and DMA management code.

Support for ISA Extensions

The device compiler backend of HEROv2 has been extended to support
the Xpulpv2 ISA extension [Gau+17]. This includes the automatic detec-
tion and insertion of hardware loop instructions, automatic optimization
to generate post-increment load and store instructions, as well as
pattern matching to emit multiply-accumulate instructions, outlined
in § 7.1.1. To the best of our knowledge, this is the first time custom
instructions have been implemented for RISC-V in LLVM, and a
full-system performance evaluation is shown in the case study in § 7.2.4.

In summary, HEROv2’s heterogeneous toolchain provides a de-
facto standard and heterogeneous-by-design programming model via
OpenMP, which is fully supported by its LLVM-based compiler. This
provides seamless, end-to-end single-source-to-heterogeneous-binary
compilation. The device compiler has been significantly extended to
support performance, ease of programming, and code portability: first,
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through the minimization of expensive wider-than-native load and store
operations in a mixed data-model setting; second, through the support
for automatic tiling and DMA management through AutoDMA; and
third, through automatic code generation targeting the performance-
oriented ISA extensions supported by the underlying hardware.

7.1.3 Runtime Libraries and Operating System Sup-
port

HEROv2’s runtime software stack is designed to seamlessly integrate the
accelerators into the OS running on the host and allow for transparent
accelerator programming with OpenMP 4.5 offloading [Omp4.5] and
unified virtual memory compliant with HSA specifications [Hwu16]. An
overview of the runtime stack is shown in Fig. 7.3. This section discusses
the layers below the API, which is discussed separately in § 7.1.4.

Figure 7.3: HEROv2’s runtime stack, which seamlessly integrates
accelerators (with their runtime stack on the right) into the OS
running on the host (runtime stack on the left) to enable heterogeneous
applications with transparent offloading of accelerated kernels (at the
top).
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A heterogeneous application starts executing on the host. When
the host encounters a #pragma omp target directive, it offloads the code
within the target region to the specified (or default) accelerator (called
device in OpenMP terminology). To this end, the host OpenMP runtime
library invokes the device-specific runtime plugin. The plugin passes a
pointer to the offloaded code and data to a hardware mailbox in the
device, thereby starting execution on the device. The first core of the
first cluster of the device runs an offload manager. It is woken by an
interrupt from the hardware mailbox and starts executing the offloaded
function. All data items inside the map clause become available to the
device: When unified virtual memory is enabled, pointers are passed
unmodified, no data is copied, and the device is given read-only access
to the user-space page table of the application on the host. Otherwise,
the host copies data to a physically contiguous memory region in main
memory and changes the pointers before passing them to the device.
By design, offloading does not copy data to the SPMs of the device.
There are two main reasons for this: First, HEROv2’s accelerator model
aims at accelerating kernels that take at least ten thousand cycles to
execute. Thus, the offloading model is relatively coarse grained and the
mapped data in its entirety in general does not fit into the local memory
of the device. Second, OpenMP’s map clauses cannot express tiling, yet
flexible tiling is essential for efficient execution on device-local memory.

Inside the offloaded region, execution starts on the first core of the
first cluster. When that core encounters a #pragma omp teams directive,
it forks execution to multiple clusters, and the cluster master core (i.e.,
the first core of each cluster) starts executing the region. When a
cluster master core encounters a #pragma omp parallel directive, it
forks execution to multiple cores of its cluster. Inside parallel regions,
all OpenMP worksharing, datasharing, and synchronization constructs
are available, allowing for effective parallel programming following
OpenMP’s standard paradigm. The OpenMP device runtime library
implements the functions emitted by the OpenMP code generation pass
of the compiler (whose function names start with __kmpc_) by calling
into the accelerator-specific hardware abstraction library (HAL).

The VMM library allows the accelerator to share the virtual address
space of a user-space application running on the host (concept of
[Vog+17]). After the host has set up entries in the IOMMU that allow the
accelerator to access the page table, the VMM library provides functions
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to translate any valid virtual address to a physical address and set up a
corresponding translation entry in the hybrid IOMMU. Application
programmers usually do not notice this: The compiler generates the
correct instructions for accessing pointers outside the native (32-bit
physical) address space of the accelerator. In the common case, such
accesses hit in the TLB of the IOMMU and incur an overhead of only
three cycles per remote memory access [Kur+20b]. When an access misses
in the TLB, the core either invokes the VMM library itself to add an
entry to the IOMMU, or it lets a dedicated core handle the misses. The
latter is preferable for pointer-based applications, and miss handling
can be configured per offload through custom options to the target
region. The implementation of the VMM library is specific to the virtual
memory system of the host (e.g., ARM VMSAv8-64 or RISC-V Sv39 or
Sv48).

The HAL on the accelerator provides functions for forking parallel
execution, identifying and synchronizing cores, putting cores to sleep
and waking them up, controlling the DMA engine, and communicating
between clusters and with the host through the mailbox. The HAL
is implemented using low-level hardware-specific primitives, such as
writing memory-mapped registers and setting bits in CSRs.

The OS device driver and the accompanying user-space accelerator
library on the host implement the accelerator-specific functionality for
offloading to and communicating with the accelerator from the host.
This includes identifying the accelerator in the device tree, resetting,
initializing, and programming it, and making the page table of the
user-space process readable for the accelerator.

In summary, HEROv2’s modular runtime stack supports different
hosts and accelerators while reusing large parts of the code base,
combining flexibility with accelerator-specific specialization. On the
accelerator, all runtime libraries are linked into the offloaded application,
and LTO minimizes the overhead of the multiple layers. On the host,
system calls are required to trigger and conclude an offload, but the
overhead of that is negligible due to HEROv2’s coarse-grained offloading
model.
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7.1.4 Application Programming Interface

The application level is the most important from the perspective
of end users and application developers. HEROv2’s toolchain and
runtime software provide the means to make effective use of accelerators,
but without a properly designed API applications on heterogeneous
computers remain too complex to program in most cases. Porting an
application to make efficient use of the software-managed memory of an
accelerator involves tiling data and scheduling data transfers, which
are difficult tasks in general. An API alone cannot solve this problem,
but it can make the work of the application programmer portable
over different accelerators and substantially easier by abstracting the
intricacies of the hardware away. The design goal is to provide an
interface that is unified over all supported accelerators together with an
implementation that is optimized and verified for each accelerator
individually. HEROv2’s API complements the OpenMP API for
offloading and parallel programming (§ 7.1.3) and the accelerator-specific
compiler (§ 7.1.2), which optimizes the compute part of an application
for the target accelerator.

HEROv2’s API has three main categories of functionality: memory
management for the different SPM levels, data transfers between SPMs
and main memory, and performance measurements. All functions are
thread-safe and can thus be used inside and outside parallel regions.

To manage the heap memory of the accelerator, there are three
functions for each SPM level: hero_lN_capacity returns the amount
of currently available heap memory at SPM level N . This function
is often used at the beginning of a tiling region to calculate the tile
sizes. hero_lN_malloc and hero_lN_free implement POSIX’ memory
allocation and freeing functions [POSIX.1-2017] for SPM level N . The
implementation uses a deterministic constant-complexity memory allo-
cator [Her14; Kir20], ensures mutual exclusion among all affected cores
(e.g., within the same cluster for L1 SPM) through RISC-V atomic
operations, and can detect heap overflows with a canary mechanism.
The alignment and minimum allocation granule is 8B.

To transfer data between SPMs and main memory, HEROv2 provides
multiple functions with the semantics of POSIX’ memcpy [POSIX.1-2017].

Those functions are organized in three dimensions: direction (device-
to-host or host-to-device), synchronicity (blocking or asynchronous),
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and transfer dimensionality (1D, 2D, etc.). The direction has to be
distinguished in the function signature because pointers and addresses
in the host-managed main memory are of a different width and address
space than device-internal pointers: in hero_memcpy_host2dev_* func-
tions, the src pointer is in the host address space and the dst pointer in
the device address space, and vice-versa for the hero_memcpy_dev2host_*
functions.

The synchronicity distinguishes functions that return as soon as
the DMA engine has been programmed (with _async suffix) or after
all data has been transferred (without suffix). The asynchronous
functions allow to start a DMA transfer and then work on different
data while the DMA engine completes the transfer. Those functions
return a unique transfer identifier, which has to be passed to the
hero_memcpy_wait function to guarantee transfer completion before the
data can be used. Multi-dimensional transfers allow to scatter and
gather non-contiguous data with a single function call. For instance,
the hero_memcpy2d_* functions copy N sequences of B bytes from src
to dst and apply a different address offset to src and dst after each
sequence. This scatter-gather functionality is essential for tiling (e.g.,
to gather the rows of a tile of a 2D matrix from main memory into
a dense SPM buffer before computation and scatter them back after
computation). Whenever the DMA engine supports multi-dimensional
transfers, they are executed directly by the DMA hardware; otherwise,
they are implemented in software.

To measure the performance of applications and their execution
on hardware, HEROv2 provides functions that provide a uniform
interface to different hardware performance monitors and counters.
The functions are mainly designed for hardware counters to which an
event is assigned dynamically, which is common in modern processors.
The available events range from monotonic clock cycles over memory
accesses and stalls to memory and interconnect contention and utilization
metrics. The hero_perf_alloc function allocates a counter for a given
event and resets that counter. If the event is not supported by the
hardware or the hardware counters are exhausted, the function returns
an error. At the start of a program section to be investigated, a call to
hero_perf_continue_all starts all allocated counters, and at the end of
that section, hero_perf_pause_all stops them. Those two functions ex-
ecute with the minimal latency and overhead supported by the hardware
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(often as a single inlined CSR write instruction), allowing for precise,
fine-grained, and minimally intrusive performance measurements, which
are crucial for identifying bottlenecks and systematic optimization.

7.2 Evaluation

Configuration Aurora Blizzard Cyclone

Host ISA ARMv8.0-A RV64GC
Host Core Arch. Cortex-A53 CVA6 [ZB19]

Host # Cores 4 1
Accel. ISA RV32IMAFCXpulpv2 RV32IMAFDXssrXfrepXsdma
Accel. Core Arch CV32E40P [Gau+17] Snitch [Zar+20]

Accel. # Cores 8 32
Main Mem. Cap. 4 GiB DDR4 8 GiB HBM2E
Main Mem. BW up to 19.2GB/s up to 460 GB/s
Carrier Silicon Xilinx ZU9EG Xilinx VU37P
Carrier Freq. 50 MHz 25 MHz
Status mature in development

Table 7.1: Current target platforms and configurations of HEROv2.

In this section, we evaluate the most mature configuration of HEROv2:
As host, it features an industry-standard quad-core 64-bit ARMv8
Cortex-A53 processor with 32 KiB L1 instruction and 32 KiB L1 data
cache per core and an 1 MiB L2 cache shared by all four cores, im-
plemented as hard macro and clocked at 1.2 GHz. As PMCA, it
features an octa-core 32-bit RISC-V floating-point accelerator (OpenHW
CV32E40P core architecture) with 128 KiB L1 SPM and support for
custom instructions (RV32IMAFCXpulpv2), implemented as soft-macro in
the PL. Host and PMCA are connected through a lightweight IOMMU,
which allows the PMCA to share the host’s virtual memory space
and which is implemented as soft-macro in PL, to a shared DRAM
controller. The shared main memory consists of 4 GiB DDR4 DRAM,
which provides up to 19.2GB/s of bandwidth.

The implementation of PMCA and IOMMU on the PL of a Xilinx
Zynq UltraScale+ ZU9EG SoC achieves a clock frequency of 50 MHz
(without any FPGA-specific optimizations). The frequency is mainly
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limited by paths from the request output of the LSU of an accelerator
core through the cluster interconnect to the arbitrator of a memory bank
and back to grant input of the LSU of another core. Among the available
PL resources, the configurable logic blocks (CLBs) are the limiting
factor with 98.1 % utilization, of which 87.7 % are used by the PMCA
and 10.4 % by the IOMMU. Within the PMCA, the cores (each of which
includes an FPU), dominate with 38.4 % of the total CLBs. 24.2 % of
the block RAM tiles and 2.9 % of the DSP slices are used. We used
Xilinx Vivado 2019.2 with the Alternate Routability synthesis strategy
and the Congestion–Spread Logic–Low implementation strategy.

Variants of HEROv2 with alternative host processors and PM-
CAs are in development, and an overview of current configurations
of HEROv2 and their status is shown in Table 7.1. The Blizzard
configuration shares the host and the carrier silicon with the Aurora
configuration evaluated here but features an octa-core RISC-V MLT
accelerator (RV32IMAFDXssrXfrepXsdma) with variable precision support
for 8 to 64 bit floating-point numbers. The Cyclone configuration targets
a larger carrier silicon, on which a multi-cluster configuration of the
MLT accelerator fits together with a 64-bit RISC-V host CPU. This
configuration will not only offer higher accelerator performance but also
an open-source soft-macro host CPU, which contrasts with the “black
box” hard-macro Cortex-A53 host CPU of Aurora and Blizzard.

The evaluated applications and kernels, listed in Table 7.2, represent
a wide range of accelerator workloads. From the Polybench/ACC
benchmark suite [Gra+12], 2mm, 3mm, atax, bicg, and gemm are linear
algebra kernels, conv2d is part of the “stencil” domain, and covar is part
of the “datamining” domain. Together, these commonly accelerated
kernels span a wide range of memory acess patterns and operational
intensities. Additionally, darknet is an end-to-end real-time object
detection application that implements the YOLO convolutional neural
network (CNN) [Red+16]. The data for all applications resides in host-
managed shared DRAM. 3mm, atax, bicg, and darknet (one layer at a
time) are composed of consecutive offloads, denoted by arrows (→) in
the table; all other kernels consist of a single offload. All benchmarks are
compiled with -O3 but no specific optimization flags. We take the time
stamps of each accelerated application on the host, and it thus includes
all data transfers and synchronization between host and accelerator. To
measure the accelerator cycles during parts of the application in isolation
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Kernel Accelerated computation Complexity O ()

space comput.

2mm Ci,j =
∑N

k=1 αAi,kBk,j
N2

N=1024⇒ 12MiB
N3

3mm E = 2mm(A,B) → F = 2mm(C,D)
→ G = 2mm(E,F )

N2

N=1024⇒ 36MiB
N3

atax Bi =
∑N

j=1 Ai,jXj

→ Yi =
∑N

j=1 Aj,iBj

N2

N=4000⇒ 61MiB
N2

bicg Qi =
∑N

j=1 Ai,jPj

→ Sj =
∑N

i=1 RiAi,j

N2

N=4000⇒ 61MiB
N2

conv2d Bi,j =
∑(1,1)

(k,l)=(−1,−1)
ck,lAi+k,j+l

N2

N=2050⇒ 16MiB
N2

covar Ej = α
∑M

i=1 Di,j ; Di,j −= Ej ;
Si,j = Sj,i =

∑N
k=1 Dk,iDk,j

N2

N=1000⇒ 4MiB
N3

darknet Ci,j =
∑N

k=1 αAi,kBk,j
N2

34MiB
N3

gemm Ci,j = β
(∑N

k=1 αAi,kBk,j

)
N2

N=1024⇒ 12MiB
N3

Table 7.2: Evaluated kernels and applications. Subscripts denote
indices, uppercase letters are variables, and lowercase letters are
constants. Arrows (→) denote consecutive offloads. Semicolons (;)
denote consecutive computations within the same offload.

(e.g., only computation), we use the hardware performance counter API
described in § 7.1.4. In all case studies, the accuracy of all results is
fully maintained and verified. In all experiments, the host CPU runs
Linux 4.19.0 on a root file system generated with Buildroot 2019.02.1,
and we compile applications with LLVM 9.0.0 (extended as described
in § 7.1.2).

7.2.1 Application-Level Case Study
We begin with a case study on the application level. For each of the
applications introduced above, we want to answer the following questions:
How should the local memory of the accelerator be partitioned and data
transfers organized so that the run time is dominated by computations on
local memory? What is the speed-up compared to letting the accelerator
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load and store data directly from off-chip main memory? How should
the application be parallelized over the cores in the accelerator, and
what is the speed-up from parallelization?
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Figure 7.4: Speed-up of execution on local memory with handwritten
DMA transfers compared to execution on external main memory. Single
accelerator thread.

The first two questions hold the key for making effective use of
any accelerator with software-managed local memory. To answer them,
we divide input and output data into tiles. Assuming all data have
the same dimensionality D, the side length of one tile is given by
S = ⌊(L/N)1/D⌋, where N is the number of data elements (such as
different vectors or matrices) and L is the capacity of the L1 for user
data in number of words. With the evaluated accelerator architecture
and runtime, L = 28Ki single-precision (i.e., 4 B) words can be stored
in L1. Tiling an algorithm is a non-trivial problem to which there is
no general solution. We describe the tiling of one algorithm in the
following to give an intuition, and we make the source code of all
benchmarks available for full transparency and reproducibility (see link
in conclusion).

For the convolutional layers in darknet, which are implemented as
matrix-matrix multiplications, the tile side length of the two input
matrices A and B and the output matrix C is S = 97. We loop over the
tiles of A and transfer the current tile to L1. Within that loop, we loop
over the tiles of B corresponding to the current horizontal dimension of
A and transfer the corresponding tile of B and C in, perform the tiled
matrix-matrix multiplication, and transfer the resulting tile of C out.
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The other arithmetic kernels are implemented in an analogous manner.
As the left-hand scale in Fig. 7.4 shows, this reduces the run time
compared to loading and storing directly from off-chip main memory by
5.3 for darknet specifically and by 4.3 on average4. While this scheme
does not exploit double buffering and the nonblocking DMA transfers
that the platform is capable of, the share of cycles spent on DMA
transfers is negligible (max: 1.9 %, average: 0.2 %), as the right-hand
scale of Fig. 7.4 shows.

Every application lends itself differently to tiling and DMA transfers:
In applications with high spatial locality, in particular when computation
accesses data in the same sequence as it is stored in memory and it
does so for large consecutive arrays, the DMA engine can transfer long
continuous data bursts. This is particularly common in linear algebra
and CNN kernels: the kernels with the highest speed-up in Fig. 7.4 are
all from those domains.

In applications with low spatial locality or divergent access patterns,
DMA transfers are substantially shorter and thus offer lower speed-up.
Nonetheless, the DMA engine’s capability for gather-scatter transfers
and many outstanding requests offers a speed-up of more than 4 even
with low spatial locality. Temporal locality, on the other hand, has an
even bigger impact: For some applications, tiling necessitates that each
data element is loaded multiple times because local memory is not large
enough to hold all data elements between two use instants. covar is an
example of such an application, where each element of the data matrix
has to be loaded twice (once during mean calculation and once while
computing the covariance matrix). This reload factor of two reduces
the speed-up by DMA transfers by almost 2 to only 2.2 .

The third question – how an application should be parallelized
– holds the key for making effective use of any parallel accelerator.
HEROv2’s OpenMP runtime library enables to answer this question
efficiently by experimentation: For the computation on one tile, we
simply annotate the outermost computational loop with #pragma omp
for to distribute its execution over the cores of the accelerator. As
the left bar for each application in Fig. 7.5 shows, this reduces the
computation cycles by 6.5 to 7.1 (average: 6.9 ) on an 8-core cluster.

4Whenever we discuss the average of normalized numbers, we mean the geometric
mean (denoted geomean in the figures), as reasoned in [FW86].
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Figure 7.5: Speed-up of execution with 8 accelerator threads compared
to execution with 1 accelerator thread. Execution on local memory
with handwritten DMA transfers.

Even higher speed-ups by parallelization could be achieved by optimizing
the loop schedule and stride, but we set that aside because it is sensitive
to data size. The overall application speed-up by parallelization, shown
by the middle bar for each application, is between 5.9 to 7.1 (average:
6.7 ). The right bar shows why the computation-only speed-up cannot
be achieved for the overall application: The DMA transfers are not sped
up by parallelization, so their share on the total cycles increases by the
overall speed-up factor. Due to Amdahl’s law, this limits the overall
speed-up achievable by parallelization. On average, 1.6 % of cycles
spent on DMA transfers result in a modest decrease from 6.9 to 6.7 .
However, for some applications, such as bicg, 11.9 % of cycles spent on
DMA transfers reduce the parallelization speed-up from 7.1 to 6.4 .
This may justify a more complex double-buffered implementation of an
application.

This benchmark analysis shows how HEROv2’s full-stack hardware
and software allows to rapidly explore and optimize the accelerated per-
formance of domain-relevant applications on a heterogeneous computer
prototype: The high emulation throughput allows to study realistic
problem sizes, and the complete software stack allows to adapt and
tune real-world applications and representative kernels with reasonable
effort and make informed optimization decisions. Furthermore, the fully
open hardware implementation allows tracing and profiling hardware,
as well as optimizing it.
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7.2.2 Runtime-Level and Toolchain Case Study
Tiling an algorithm for efficient execution on accelerator-local memory is
not only an intellectual effort but also requires extra code to be written,
verified, and maintained. HEROv2’s API is designed to simplify this
task for device-specific operations such as DMA transfers, which can be
executed with a single function call, and fork-join parallelism, which
is available through the standardized OpenMP pragmas that call into
the runtime library. However, the part of tiling that is specific to each
algorithm cannot be substantially simplified by a runtime library.

conv2d gemm 2mm bicg 3mm atax darknet covar geomean
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Figure 7.6: Code complexity with handwritten tiling and DMA transfers
compared to the unmodified code of each application. The light red
bars show McCabe’s cyclomatic complexity and the dark red bars show
lines of code without comments.

The code complexity increase by handwritten tiling and DMA
transfers compared to unmodified code is shown in Fig. 7.6 for each
application. We used the CCCC tool5 [Lit01] on the accelerated part of
each application and extracted two of its results: (1) The lines of code
(without comments), which can be an indication for the effort of writing
and reading a piece of code. (2) McCabe’s cyclomatic complexity, which
counts the number of linearly independent paths through a piece of
code, and which can be an indication for the effort of understanding
and verifying a piece of code. The results show three coarse categories
of applications: First, the six applications on the left are tiled in a

5https://sourceforge.net/projects/cccc

https://sourceforge.net/projects/cccc
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single dimension, which is a modest effort: the lines of code increase
by 1.7 to 2.5 and the cyclomatic complexity increases by 1.3 to 1.5 .
On average, the lines of code overhead by 1D tiling is 2 and the
cyclomatic complexity increase is 1.4 . Second, darknet with its CNN
layers is implemented with two-dimensional tiling and DMA transfers.
2D tiling substantially increases both the cyclomatic complexity (3.7 )
and the lines of code (3.4 ). Third, covar is also implemented with 2D
tiling, but the implementation is additionally split over two separate
iterations through the entire data. This means the ca. 3 lines of code
overhead by 2D tiling incurs twice, leading to a total 6.3 lines of code
overhead, while the cyclomatic complexity increases by the same factor
as for darknet. In summary, the additional effort and maintenance
cost for tiling an algorithm ranges from modest (1.7 LOC, 1.5 cyclo.
compl.) to very high (6.3 LOC, 4.0 cyclo. compl.) and is certainly
not negligible on average (2.6 LOC, 1.8 cyclo. compl.).

OpenMP assumes a cache-based memory hierarchy, leading to
low performance on SPM-based memory hierarchies if a program is
not manually tiled. To save these substantial manual tiling efforts,
an optimal solution would be if the toolchain could automatically
transform the untiled algorithm code to manage the memory hierarchy.
The AutoDMA feature, introduced in § 7.1.2, brings this to HEROv2.
Effectively, this means that the software-managed memory hierarchy of
HEROv2 can be programmed as easily as a cache-based system.

The speed-up of compiler-generated and handwritten tiled code over
unmodified OpenMP code is shown in Fig. 7.7. While the handwritten
tiled code has a significantly higher complexity than the unmodified
OpenMP code, as shown in Fig. 7.6, compiler-generated tiling requires
zero code changes. The benchmarks in Fig. 7.7 can be divided into
two categories: For covar and atax, the speed-up achieved by the
compiler is marginal. For all other benchmarks, the speed-up achieved
by the compiler is comparable to that of handwritten code. The
benchmarks in the latter category feature large segments of contiguous
memory accesses (spatial locality), and achieve on average 85 % of
the speed-up of handwritten code. The remaining 15 % come from
leveraging programmer insights (i.e., information not expressed in the
code) to reduce the number of reconfigurations of the DMA engine: The
handwritten code transfers multiple rows of matrices at once, possible
by the understanding that the first element of row N + 1 is next in
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memory to the last element of row N . The compiler was not able to
reconstruct this information, due to array-to-pointer decay in which
the dimensions of data structures are lost. Without this information,
the compiler considers multiple rows as non-contiguous and initiates a
new DMA burst for each row, which adds an overhead compared to the
single DMA burst in the handwritten code. Nonetheless, AutoDMA
provides a speed-up of up to 4.4 without any code changes. Expert
programmers still have the option to turn this feature off and implement
tiling manually to extract the last tens of percent of performance.

For two benchmarks (covar and atax), the compiler-generated code
cannot compete with the handwritten code. This can also be attributed
to memory access patterns: a significant part of memory accesses are
performed column-wise, i.e., in non-contiguous blocks. This effect is
aggravated by the tile shape selected by the compiler, which inadvertently
maximizes the number of column-wise accesses per tile, rather than
contiguous row-wise accesses. This is due to the loop ordering of the
benchmarks, which the AutoDMA feature does not rewrite6. Spatial

6Tools that reorder loops, such as polyhedral analyses and transforma-
tions [GGL12], could be used to preprocess the code, or the benchmarks could
be manually rewritten using classical spatial locality optimizations.
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locality is also important for performance on cache-based systems, but
the issue is aggravated on HEROv2 where the DMA engine in this case
is used to transfer individual words. As such, it is an extreme case of
the overhead discussed for the previous category, where the compiler
could not find sufficiently large chunks of contiguous memory. Despite
these problems, the performance with AutoDMA is on-par to up to
20 % higher than the OpenMP baseline, due to the high bandwidth of
the DMA engine.

In summary, for programs with high spatial locality, HEROv2’s
AutoDMA feature provides performance comparable to handwritten
code, without the need for explicit tiling and DMA transfers. This
reduces the execution time of unmodified OpenMP programs by up to
4.4 on software-managed memory hierarchies, achieving 85 % of the
speed-up of handwritten code. This makes software-manged memory
hierarchies as easy to program as their hardware-cache-based counter-
parts. Similarly to hardware-managed caches, AutoDMA provides no
significant improvements for programs with low spatial locality.

HEROv2 is a unique platform to analyze, develop, and optimize
such compiler and runtime techniques, because it allows executing
real applications and reference benchmarks on the actual RTL logic
of a heterogeneous SoC, and because all its hardware and software
components are open-source and permissively licensed.

7.2.3 System Architecture-Level Case Study

Our third case study examines the impact of an architectural design
decision: How does the data width of the accelerator into the shared
interconnect and main memory influence the performance of accelerated
applications? To answer this question, we customize the on-chip network
of the accelerator once to half the data width (32 bit) and once to twice
the data width (128 bit) and remeasure our applications.

Fig. 7.8 shows the speed-up (for values > 1) or slow-down (for values
< 1) for an accelerator on-chip network data width of 32 bit (left three
bars of each application) and 128 bit (right three bars) compared to
64 bit. The leftmost bar in each group of three bars compares the cycles
spent on DMA transfers: For most applications, halving the data width
of the on-chip network results in a speed-up of 0.5 , and doubling the
data width results in a speed-up of 2 , as expected. The exception,
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however, is darknet, with 0.6 for half the data width and 1.5 for
double the data width. covar and darknet are the only applications
to use two-dimensional DMA transfers, which are composed of many
relatively short bursts. This transfer pattern does not fully saturate
the given on-chip network, which results in lower speed-ups for wider
data widths. That is an important insight for optimizing the on-chip
network if DMA performance was critial for application performance.
However, as we know from the application-level case study (§ 7.2.1),
DMA transfers only account for at most 11.9 % (average: 1.6 %) of the
application cycles. The majority of cycles is spent in computations, and
the middle of each three bars compares the cycles spent on computations:
Surprisingly, the data width of the on-chip network also has a significant
impact on them. For 32 bit, the fetch bandwidth of instructions into the
cache is halved, which leads to more instruction fetch stall cycles and
reduces computational performance. For 128 bit, the fetch bandwidth
for instructions could be doubled, but the instruction cache can only
fetch at most 64 bit per cycle, so that has no impact. To accommodate
the wider memory interface of the DMA engine, the tightly-coupled
data memory (TCDM) interconnect in the accelerator cluster has to be
changed from 14× 16 to 18× 32. This configuration causes on average
14 % more contention on the TCDM despite the higher number of banks.
A careful realignment of the cores on the TCDM interconnect could
alleviate this, but the gist is that a wider accelerator on-chip network
does not automatically increase performance. In fact, as the rightmost
bar of each application shows, application performance decreases by 10 %
on average if the design of the cluster is not simultaneously adapted.

Such insights from fully measured application executions are central
for making substantiated decisions on the system architecture and for
prioritizing engineering efforts. The closer the measured prototype is to
the final design, the higher the quality of the measurements. Effects such
as those discussed in this section would be extremely difficult to model
with a simulator, as they depend on fine-grained interaction between
several hardware components. Capturing this interaction quantitatively
with non-cycle-accurate architectural simulation is a very intricate and
error-prone task. Thus, an application-programmable heterogeneous
research platform with a complete hardware and software stack, such as
HEROv2, is a key enabler for architecture-level performance exploration.
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7.2.4 Accelerator ISA-Level Case Study

Specialized instructions are an important part of many domain-specific
accelerators. They are often designed and evaluated in an instruction
set simulation (ISS) or in RTL simulations. The drawback of ISS is
that it is inaccurate as performance model because it does not capture
microarchitectural effects. RTL simulation models the microarchitecture
accurately, but it is only feasible for small data set and does not take
communication outside the accelerator, which influences the memory
subsystem and thereby the execution of the accelerated kernel, into
account. Thus, a heterogeneous research platform is required to quantify
the impact of specialized accelerator ISA extensions in heterogeneous
computing with real-world data sets.

In this case study, we answer the question “How much do instructions
from the Xpulpv2 ISA extension speed up execution of heterogeneous
applications compared to the standard rv32imafc ISA?”. As described
in § 7.1.2, we have extended the RISC-V LLVM backend to automati-
cally emit Xpulpv2 instructions during machine code generation. The
evaluated kernels process data at full precision (i.e., 32-bit integers or
floats) and therefore cannot make use of the quarter- or half-precision
packed SIMD instructions, which would offer a significant speed-up for
reduced-precision processing.

The speed-up of the Xpulpv2 ISA extension over the standard RISC-V
RV32IMAFC ISA is shown in Fig. 7.9. We measure the total accelerator
cycles with handwritten DMA transfers and 8 accelerator threads. As
the first bar of each application shows, simply enabling Xpulpv2 provides
a speed-up of 1.5 on average. Starting with gemm as an example,
we find that the compiler replaces the inner two compute loops by
hardware loops. This is optimal, as there is only hardware for two
loops. The body of the innermost loop is halved from 10 instructions
(2 loads, 4 additions, 2 multiplications, 1 store, and 1 branch) to 5
instructions (2 post-increment loads, 1 multiplication, 1 MAC, and 1
store), while the bodies of the outer levels stay mostly identical. Apart
from the store, which could be hoisted out of the innermost loop by a
memory-to-register optimization pass, the innermost loop is optimal7,
and it is also optimally scheduled. The resulting speed-up of 2.5

7For gemm, the multiplication by α could be hoisted out of the innermost loop for
all data types where multiplication is distributive over addition. However, this is an
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Figure 7.9: Speed-up of execution with custom instructions (Xpulpv2)
compared to the standard RISC-V (RV32IMAFC) ISA. Execution on local
memory with handwritten DMA transfers and 8 accelerator threads.
For each application, the first bar shows the speed-up by Xpulpv2
instructions without manual register promotion, the second bar by
Xpulpv2 instructions with manual register promotion, and the third bar
by implementing the innermost loop with inline assembly instructions
(including manual register promotion and Xpulpv2 instructions).

can be attributed to halving the instructions within the innermost
loop (ca. 2 speed-up) and hardware loops as well as less instructions
in the outer loops (ca. 0.5 speed-up). Manually hoisting the store
out of the innermost loop significantly improves performance further.
Again looking at gemm, this reduces the innermost loop from 5 to 4
instructions, and the resulting relative speed-up of 1.28 is aligned
with the reduction in instructions. The same findings hold for 3mm
and 2mm, and a comparison with an inline assembly implementation
of the innermost loop reveals that the instructions generated by the
compiler perform on-par or better than the expert-written instructions.
However, some benchmarks behave quite differently: For conv2d, atax,
and bicg, the Xpulpv2 ISA extension provides only between 10 to 50 %
of speed-up – both with compiler-generated instructions and with an
expert-written inner loop body. There are two main reasons for this:
First, the kernels are not as well suited for post-increment memory

algebraic transformation and does not apply to all data types (such as floats), so
we do not consider it.
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accesses as the matrix-matrix multiplication kernels. For atax, the
increment of one of the two loads in the innermost loop is too large
to be used in post-increment. For conv2d, the 2D (3 × 3) loads in
the innermost loop leave some opportunities for post-increment loads,
but they are complex to exploit. Even the expert-written instructions,
which use as many post-increment accesses as possible, do not bring a
significant speed-up. Second, hardware loops are not inferred for the
innermost loops. This could be because the innermost loop iterates
over the rows in a tile, and the number of rows changes depending
on the tile index. This does not fundamentally preclude the use of
hardware loops, however, so it is a current compiler limitation. Finally,
covar sees a very high speed-up with Xpulpv2, but only with manual
memory-to-register promotion. This simple change in the code enables
the compiler to infer a hardware loop. The instructions generated by
the compiler substantially outperform the expert-written inner loop,
due to better scheduling.

In summary, the Xpulpv2 ISA extension has the potential to signifi-
cantly accelerate all kernels we evaluated, mainly through post-increment
memory accesses and hardware loops. Especially the latter are not
trivial for the compiler to generate in all cases, however, which currently
leads to speed-ups between 1.1 to 3.5 (average: 2.1 ). While the impact
of changes to the accelerator ISA could also be studied in isolation
(e.g., in RTL simulation), evaluating within a heterogeneous prototype
system (such as HEROv2) produces more representative results, because
the balance and interaction between memory transfers from and to the
shared main memory and computation are taken into account, and
because a prototype running at tens of MHz makes it feasible to work
with real-scale data sets.

7.3 Related Work

Emulation systems on FPGAs or custom programmable logic are widely
used to get cycle-accurate results at a clock frequency of multiple
MHz and turn-around times of few hours to days. In the FAME
taxonomy [Tan+10a], HEROv2 is a Direct FAME system, which are
characterized by implementing the target system with a one-to-one
correspondence in clock cycles on an FPGA. Commercial Direct FAME
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systems include Cadence Palladium [Cad21], Siemens Veloce Strato [Sie21],

and Synopsys ZeBu [Syn21]. Those systems are capable of emulating
up to 20 billion ASIC gate equivalents (GEs) at up to 10 MHz and
can cost millions of USD. HEROv2 can scale over multiple FPGAs
with chip-to-chip FPGA Mezzanine Card (FMC) connections, which
are supported by all of HEROv2’s carrier silicon. Depending on the
design, the system interconnect, the accelerator interconnect, or both
can extend over multiple FPGAs through FMC and QSFP+ connections.
HEROv2’s currently largest carrier silicon, Xilinx’ VCU128, offers ca.
40 million ASIC GEs and can communicate with other FPGAs at more
than 650 Gbit/s. Depending on FPGA and configuration, HEROv2’s
clock frequency is between 20 to 100 MHz.

FPGA-based computer system emulators are common in industry
and research. The following recent works are comparable with ours
(see Table 7.3 for an overview and [Ang+14] for a broader survey of
older approaches up to 2014): OpenPiton [Bal+16] is an open-source
many-core research framework that can be implemented on an FPGA.
It comes with a cache-coherent on-chip network and by now supports
four different processor cores [Bal+20b; Bal+20a], among them CVA6
also supported by HEROv2. The most recent version of OpenPiton
optionally includes an open-source GPGPU or Nvidia’s deep learning
accelerator (NVDLA), which can be programmed from Linux running
on the processor cores. This recent developments allow using OpenPiton
for research on heterogeneous computing, which is HEROv2’s focus, but
the full hardware-software stack integration of accelerators, from API to
accelerator-specific compiler backend, remains HEROv2’s distinguishing
feature. MEG [Zha+20] is a system emulation infrastructure for near-
data processing implemented on an FPGA. It features four 64-bit
RISC-V Boom cores as host processor and a near-memory accelerator
whose architecture and ISA are not specified. Like HEROv2, MEG
features a Linux-booting host processor and is implemented on a VU37P,
but unlike HEROv2, the focus is on near-memory accelerators that
seem to have a fixed function, as accelerator programming, memory
hierarchy, data transfers, and communication with the host are not
discussed. DART [Wan+14] accelerates the simulation of on-chip networks
by mapping them onto an FPGA. It provides programmability by
decoupling the simulator architecture from the architecture of the
simulated on-chip network. Similarly, DuCNoC [KAH18] maps on-chip
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networks to the PL of a Zynq-7000 SoC. Like HEROv2, the on-chip
network is highly configurable and modeled cycle-accurately at 10 MHz
and more in DART and DuCNoC, but unlike HEROv2, the remainder
of the computer system remains in a higher-level simulator that injects
traffic into the on-chip network. Prasad et. al. [PPT21] improve on DART
by specializing the microarchitecture of on-chip network components to
the target FPGA architecture, which reduces the required hardware
resources by 70 % and the average packet latency by 20 %. In contrast,
HEROv2’s components are not specialized to FPGAs, which means
they consume more hardware resources than minimally required but
also that they match an ASIC implementation cycle-by-cycle.

FireSim [Kar+18; Kar+20] extends FPGA-based emulation to Ama-
zon EC2 F1, a public cloud FPGA platform. On the FPGA of each in-
stance, FireSim allows instantiating modules from the Chipyard [Ami+20]

ecosystem (e.g., the 64-bit RISC-V Rocket core, a L2 cache, a NIC,
and fixed-function accelerators such as the Hwacha vector processor).
Multiple instances are connected over the datacenter network and C++
simulation models to emulate datacenter clusters with multiple server
nodes. Like HEROv2, FireSim comes with an OS-capable multi-core
CPU, but unlike HEROv2, the focus is on datacenter clusters and
networking instead of heterogeneous computing with different ISAs, data
models, execution models, and memory subsystems. Centrifuge [Hua+19]

extends FireSim with a flow that generates heterogeneous SoCs con-
taining user-defined high-level synthesis (HLS) accelerators together
with a Linux driver for them. In contrast, accelerators in HEROv2 can
be interfaced with user-space libraries or in heterogeneous OpenMP
applications, but the accelerator software is not auto-generated.

Research platforms that combine HW and SW components are
less common. OpenESP [Man+20; Gir+21] is a research platform for
heterogeneous SoC design. It provides a methodology and components
to integrate processors (among them CVA6 also supported by HEROv2)
and HLS-generated accelerators with a 2D-mesh on-chip network. Like
in HEROv2, the accelerators have a DMA engine and can share virtual
addresses with a processor through an IOMMU and a Linux driver.
Unlike in HEROv2, accelerators are not programmable with a full-
featured standard ISA, and there is thus no OpenMP offloading support
and no heterogeneous API, runtime libraries, and toolchain that span
across host processors and accelerators. HEROv1 [Kur+17; Kur+18c] does
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provide the components that enable the evaluation of heterogeneous
applications on a mixed-ISA computer, but its toolchain is fundamentally
limited to 32-bit hosts and accelerators [Kur+20b]. Additionally, it has
no API that unifies programming over multiple accelerators; it features
one host and one accelerator architecture, and hardware and software
are tailored to those instead of being modular; and its on-chip network
is limited to simple configurations (e.g., fixed 64-bit data width) and
topologies (e.g., central crossbar), which do not meet the demands of
modern heterogeneous computers.

Accelerators have been designed specifically for FPGAs. GRVI Pha-
lanx [Gra16] is a 32-bit RISC-V soft processor array that scales to more
than 1000 cores on a Xilinx VU9P FPGA. 2GRVI Phalanx [Gra19]

extends that to more than 1000 64-bit RISC-V cores on a Xilinx VU37P.
The DRAGON architecture [AYB21] is a 64-bit custom-ISA cluster-based
multiprocessor that scales to 144 cores on a Xilinx VU37P. In contrast,
the accelerator in HEROv2 is not specialized for FPGAs but has identical
RTL code as for ASIC tapeouts. Its components, from cores [Gau+17;

ZB19] over the accelerator cluster [Ros+17] to the on-chip communication
fabric [Kur+22] have been taped out in multiple ASICs. An open-source
GPGPU, such as MIAOW [Bal+15], could be added as an accelerator to
HEROv2. Enabling full support for OpenMP offloading, as is supported
by LLVM for CUDA-based GPUs, would require developing an LLVM
backend and offloading plugin for that GPU. In the HPC domain, IBM’s
A2 core, which powers the Blue Gene/Q supercomputers, has been
released open-source as OpenPOWER A2I/A2O cores8. These cores
could be used in HEROv2 as host or accelerator. Linux and LLVM
support the Power ISA, so extending HEROv2 to support them would
require integrating the A2 core into the hardware system (compliant with
its memory interface) and software stack (e.g., writing an accelerator
driver and runtime library).

Programming models targeting heterogeneous computing are man-
ifold, and we refer to [MV15] for an overview. In OpenCL [Khr21b],

an application on the host submits separately-written kernels to be
executed on an accelerator to a command queue. OpenCL is imperative,
meaning application programmers have to explicitly call functions to
create buffers, transfer data, and start execution on an accelerator.

8https://github.com/openpower-cores/a2i

https://github.com/openpower-cores/a2i
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SYCL [Khr21a] extends OpenCL by enabling single-source heterogeneous
programming and C++ AMP [Mic18] by relieving the programmers from
explicit data transfers between host and device. oneAPI Data Parallel
C++ (DPC++) [Int20b] builds on SYCL to define functions that can be
offloaded to devices, and an open-source LLVM implementation is in
development. OpenMP, supported natively by HEROv2, is declarative,
meaning application programmers describe what they want to do
(e.g., offload a code section with data to an accelerator) while the
compiler and runtime libraries take care of how those actions happen.
OpenACC [OpenACC3.1] goes even further: its directives describe the
properties of a program (e.g., a parallel loop with independent iterations),
and the toolchain and runtime libraries specialize the program to an
accelerator. In Clang, OpenACC is implemented by translation to
OpenMP. Through this, HEROv2 also supports OpenACC. Fortran,
which is relevant in HPC [Loh10], could in the future be supported
through LLVM’s Flang project, which aims to support offloading by
the end of 2022 [Cha21]. HEROv2’s open-source LLVM-based toolchain
will enable the community to construct complementary and alternative
heterogeneous computing software stacks, while building on a solid open
infrastructure.

Heterogeneous compilers have also been implemented by others. Intel
offers an OpenMP offloading compiler for its Xeon Phi accelerators [Int18],

which differ from the host CPU by accelerator-specific extensions. Those
extensions are only available through the proprietary Intel compiler,
whereas HEROv2’s full toolchain is open source. Research works on
GCC [CMB18] were the first to provide an open-source heterogeneous
OpenMP toolchain, but GCC’s offloading compilation is fundamentally
limited to the same data model (e.g., 32-bit) for host and accelera-
tors [Kur+20b]. Mixed-data-model heterogeneous compilation has been
pioneered recently [Kur+20b] with Clang/LLVM, and HEROv2 integrates
that work into its toolchain.

7.4 Summary
HEROv2 is a full-stack open-source9 research platform for state-of-
the-art heterogeneous computing: HEROv2 provides all hardware and

9https://github.com/pulp-platform/hero

https://github.com/pulp-platform/hero
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software required to develop, compile, and run single-source, single-
binary heterogeneous applications and seamlessly offload and share data
from an application-class 64-bit host to a programmable 32-bit parallel
accelerator. Thus, HEROv2 enables effective and accurate research from
applications and algorithms down to microarchitecture. Additionally,
HEROv2 comes with a novel AutoDMA compiler plugin, which provides
a solution to one of the most pressing problems of accelerators with
software-managed memories: without any code changes, AutoDMA
tiles loops and infers DMA transfers, which leads to a speed-up of up
to 4.4 without any code changes and in most cases is only 15 % slower
than a handwritten implementation, which requires 2.6 more code.

HEROv2 enables research in various domains, and we know of
ongoing projects that use HEROv2 in high-performance computing, real-
time processing, in-network processing, transprecision accelerators, and
parallel programming. We expect future work to evolve in the directions
of larger scale-out accelerators, mixed and finer-grained coherency
domains, and novel virtualization and communication technologies. We
are also working on a tape-out in a modern silicon technology.



Chapter 8

Conclusions

This thesis presented the first open-source research platform for HeSoCs.
Our heterogeneous research platform, HERO, integrates all essential
components of a HeSoC – from 32-bit accelerator cores capable of sharing
a 64-bit virtual address space with the host, over on-chip network IPs
and heterogeneous compiler toolchains, to operating system support and
a unified application programming interface. HERO thereby enables
revisiting the entire computing stack, which is seen as a prerequisite
to solve the many open challenges keeping us from exploiting the full
potential of heterogeneous computing [Zah17].

This thesis additionally advances the state of the art and public
knowledge on four main components of HeSoCs: on-chip communication,
atomic memory operations, virtual memory sharing, and heterogeneous
compilation and offloading. The remainder of this chapter summarizes
the main results of this thesis and identifies unsolved challenges and
opportunities for future work.

8.1 Main Results
On-Chip Communication

On-chip communication infrastructure is a central component of modern
SoCs, and it continues to gain importance as the number of cores, the
heterogeneity of components, and the on-chip and off-chip bandwidth

199
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continue to grow. Decades of research on on-chip networks enabled cache-
coherent shared-memory multiprocessors. However, communication
fabrics that meet the needs of heterogeneous many-core and accelerator-
rich SoCs, which are not (or only partially) coherent, are a much less
mature research area.

To fill this knowledge gap, we presented our platform for high-
performance on-chip communication, which enables the construction
of heterogeneous many-core and accelerator-rich SoCs independent of
closed-source on-chip network IPs. Our work advances the state of the
art through two main contributions: First, network (de)multiplexers
as elementary components make the design and verification of custom
network modules substantially easier. Second, an end-to-end palette of
modules from a DMA engine to on-chip memory controllers, including
data and ID width converters, as well as the widest range of data widths
and concurrent transactions, enables new designs.

We characterized the absolute and the asymptotic complexity of
all of our network modules for the most important parameters (such
as data width, number of IDs, number of ports, and number of con-
current transactions). The critical path of all modules scales at worst
linearly in their parameters, for most modules and parameters even
only logarithmically. As the absolute results of the minimum clock
period show, the critical path of all modules remains below 500 ps
post-topographical-synthesis in a modern 22 nm FDSOI technology in
the large design space that we evaluated. This shows our modules
are suited for a wide range of target frequencies and bandwidths, up
to 2 to 3 GHz. The area of most modules scales linearly in their
parameters, with the notable exception of the ID width, which causes
an exponential growth of the demultiplexer and all modules containing
it. As the absolute results show, most modules fit within a few tens
of kGE when not pushed to the highest possible clock frequency and
parametrization. Even more complex modules, such as a 4× 4 crossbar
with up to 256 independent concurrent transactions, fit in a modest
100 kGE when clocked at 2.5 GHz. Finally, we used our platform to
design and implement a state-of-the-art 1024-core MLT accelerator in
a 22 nm FDSOI technology, where our communication fabric provides
32 TB/s cross-sectional bandwidth at only 24 ns round-trip latency
between any two cores.
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Atomic Memory Operations

Atomic memory operations (AMOs) are ubiquitous in modern concurrent
algorithms, but their scalable implementation is not a solved problem:
First, their implementation in commercial processors is a well-guarded
secret; thus there is a knowledge gap on the challenges and trade-offs
of implementing AMOs. Second, the subsystem for executing AMOs
is presumably tightly coupled to the processor architecture and the
memory hierarchy. Finally, AMOs on modern multiprocessors have
been shown to scale poorly to large numbers of threads [SBH15; ELF11].

To resolve those limitations and fill the knowledge gap, we presented
our ATomic UNit (ATUN), an open-source hardware module, to imple-
ment AMOs at any level in the memory hierarchy. Our work advances
the state of the art through two main contributions: First, the ATUN
gives system designers and even application and library programmers
full control over where in a software-managed memory hierarchy AMOs
should be resolved. This enables keeping shared data at its original
location while PEs send AMOs to the memory holding the data, where
the AMOs are executed locally. Second, the ATUN decouples the
execution of AMOs and conditional-store-based primitives from locking
shared resources as much as possible. This allows our solution to scale
the throughput of AMOs linearly until the target memory saturates.

We evaluated our ATUN on a cycle-accurate FPGA prototype,
where 32 hardware threads (harts) share a second-level SPM, and
determined the scalability and performance of individual operations
and entire concurrent algorithms. First, the throughput of AMOs
scales linearly with the number of harts until the on-chip memory
is saturated. This holds with and without contention. Second, the
latency of an AMO is only 25 % higher than a regular load from that
memory. Under contention, the latency increases linearly with 10 cycles
per concurrently accessing core. Third, the throughput of important
concurrent algorithms scales linearly with the number of harts until the
memory bandwidth is saturated. We synthesized our ATUN for a 22 nm
FDSOI technology for a variable number of harts in the system and find
that its area increases linearly at only 0.5 kGE per core and its longest
path scales logarithmically with the number of harts. The longest path
through our ATUN does not increase with the number of harts. A few
paths grow logarithmically with the number of harts, but they do not
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become critical for the evaluated maximum of 128 harts. This makes
the our ATUN well suited to scale to a large number of harts at a very
low hardware cost per hart. This is a major step towards solving the
problem of scalable AMOs in software-managed memory hierarchies.

Shared Virtual Memory

Shared virtual memory (SVM) is key in HeSoCs, both for programmabil-
ity and to avoid data duplication. However, SVM can incur a significant
execution time overhead when TLB entries are missing. Moreover,
allowing DMA burst transfers to write SVM traditionally requires
hardware buffers to absorb transfers that miss in the TLB. These
buffers have to be overprovisioned for the maximum burst size, wasting
precious on-chip memory, and stall all SVM accesses once they are full,
hence hampering the scalability of parallel accelerators.

To resolve those limitations, we presented our SVM solution that
avoids the majority of TLB misses with prefetching, supports parallel
burst DMA transfers without additional buffers, and can be scaled with
the workload and number of parallel processors. Our solution is based
on three novel concepts: First, to minimize the rate of TLB misses,
the TLB is proactively filled by compiler-generated prefetch helper
threads, which use run-time information to issue timely prefetches.
Second, to reduce the latency of TLB misses, misses are handled by a
variable number of parallel miss handling threads. Third, to support
parallel burst DMA transfers to SVM without additional buffers, we
add lightweight hardware to a standard DMA engine (less than 10 %
extra module area) to react to TLB misses.

Our evaluation shows that, compared to the prior state of the
art [Vog+17], our work improves the PMCA performance by up to 4 for
irregular memory access patterns and by up to 60 % for regular memory
access patterns. Compared to using hardware buffers to absorb bursts
from DMA engines in a conventional IOMMU, our solution requires
two orders of magnitude less memory and scales better, as it only stalls
the DMA engine that caused a TLB miss.

Heterogeneous Compilation and Offloading

The optimal address width of host and PMCAs continues to diverge:
While the host manages ever more application memory, PMCAs are
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designed to work mainly on their local memory. Today, 64-bit hosts are
common, but only few PMCAs (especially among those integrated in
HeSoCs) exceed 32-bit addressable local memory, a difference expected
to increase with 128-bit hosts in the exascale era. Managing this
discrepancy requires support for multiple data models in heterogeneous
compilers. So far, compiler support for multiple data models has not
been explored, which hinders the programmability of mixed-data-model
HeSoCs and inhibits their adoption.

To resolve this limitation, we designed and implemented the first
mixed-data-model compiler, supporting arbitrary address widths on
host and PMCA. To hide the inherent complexity and to enable
high programmer productivity, our LLVM-based compiler supports
transparent offloading on top of OpenMP. This includes four main
contributions: First, we showed that unless GCC fundamentally changes
its approach to heterogeneous compilation and representing pointers of
different widths in its IR, mixed-data-model compilation is infeasible in
GCC. Second, we showed that LLVM’s separation of address spaces with
different data layouts enables mixed-data-model compilation. Third,
we presented and implemented algorithms to assign pointers to the
native device address space. Fourth, we designed and implemented a
legalization pass that allows a 32-bit core to access 64-bit addresses with
minimal hardware support and without any programmer intervention.

Our evaluation on a 64+32-bit HeSoC shows that memory can be
transparently shared between host and PMCA at overheads below 0.7 %
compared to 32-bit-only execution. Since the overhead primarily occurs
for setup sequences, where a PMCA must access 64-bit addresses, it is
amortized and becomes negligible for real-scale data sets, where local
memory is primarily accessed. Our solution thus enables mixed-data-
model computers to execute at near-native performance.

Open-Source Heterogeneous Research Platform

Realizing the full potential of heterogeneous computers still requires
solving many challenges. A research platform that serves as a prototype
is an effective way to work on these challenges, but none existed for the
current generation of heterogeneous computers prior to this thesis.

To fill this gap, we presented HERO, our FPGA-based research
platform that combines PMCAs composed of 32-bit RISC-V cores with
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application-class 64-bit host processors. HERO allows to seamlessly
share data between host and PMCA and comes with an open-source
high-performance on-chip network, a unified heterogeneous program-
ming interface, and a mixed-data-model and mixed-ISA heterogeneous
compiler based on LLVM. HERO additionally includes a novel solution
to one of the most pressing problems in heterogeneous computing: how
to relieve the programmer of the burden of specializing an algorithm to
the memory hierarchy of the PMCA.

We evaluated HERO in four case studies from the application level
over toolchain and system architecture down to PMCA microarchi-
tecture, and we showed how HERO enables effective research and
development on the full stack of heterogeneous computing. For instance,
the compiler, through a novel AutoDMA pass, can tile loops and infer
data transfers to and from the PMCA, which leads to a speed-up of
up to 4.4 compared to the original program and in most cases is only
15 % slower than a handwritten implementation, which requires 2.6
more lines of code.

8.2 Outlook

This thesis focused on the creation of an open-source research platform
for HeSoCs, along with the design and implementation of central HeSoC
components that were not described in literature before. We expect
that this lays the foundation for a lot of research on heterogeneous
computing in the future. In fact, that work has only just begun. The
following are a few leads to guide potential future developments.

Bring HERO to Silicon. A central limitation of the FPGA-based
HERO is that it cannot directly be used to measure power and energy
consumption. This is because the circuit on the FPGA is equivalent to
that on a custom-made IC in terms of cycle-by-cycle behavior but not in
terms of logic cells and their connections. Bringing HERO to silicon in
a custom-made IC would allow these measurements. Additionally, there
is a gap in maximum clock frequency between components implemented
as hard macro and those implemented on an FPGA. Having both host
and PMCAs as hard macros in an IC allows direct comparisons without
having to compensate for the clock frequency difference.
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Explore Chiplet-Based Heterogeneous Computing. Chiplets are
widely seen as a solution for increasing performance despite the slowing
of Moore’s Law scaling [Moo19]. Besides providing more transistors,
chiplets additionally have the potential to increase the heterogeneity of
system-in-a-package (SiP) computers: different PMCAs from multiple
vendors, each on its own chiplet, could be integrated together with
various kinds of memory technology chiplets in a single package. This
creates new design and optimization opportunities and challenges. To
tackle them, HERO could be extended over multiple FPGAs and to
chiplet carrier boards with high-speed transceivers.

Achieve Performance Portability. Getting an algorithm to per-
form well on a heterogeneous computer still requires a lot of manual
work and knowledge on each combination of algorithm and computer.
Incorporating most of that work and knowledge into automated processes
would ideally enable each algorithm to exploit the full potential of every
computer. HERO can be used for developments on compilers [Lat+21a],

programming models [Omp5.1], and higher-level frameworks [Ben+19] to
reach that goal.

Find the Boundaries of Heterogeneity. The boundaries of het-
erogeneity in computing are still mostly uncharted territory. For
instance, how does the principle of diminishing marginal utility apply
to accelerator nesting? For example, does it make sense to add a
fixed-function discrete wavelet transform (DWT) unit to a cluster in a
PMCA that is dedicated to image signal processing, or should more PEs
be added to the cluster instead? Using optimization frameworks [Mor+14],

agile hardware development methodologies [Lee+16], compiler-based
hardware-software co-design [Lat+21b], or all of them together with HERO
to rapidly evaluate realistic prototypes could bring a breakthrough on
these questions.
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Acronyms

ABI application binary interface.

ACE AXI Coherency Extensions.

ACP Accelerator Coherency Port.

AES Advanced Encryption Standard.

AI artificial intelligence.

ALU arithmetic logic unit.

AMO atomic memory operation.

API application programming interface.

AS address space.

ASIC application-specific integrated circuit.

AST abstract syntax tree.

AT area and timing.

ATUN ATomic UNit.

AXI Advanced eXtensible Interface.
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BRAM block random access memory.

CDC clock domain crossing.

CHI Coherent Hub Interface.

CLB configurable logic block.

CNN convolutional neural network.

CPU central processing unit.

CSR control and status register.

CU compute unit.

D2D die-to-die link.

DDG data dependency graph.

DDR double data rate.

DMA direct memory access.

DRAM dynamic random-access memory.

DRC design rule checking.

DSO dynamic shared object.

DSP digital signal processor.

DWC data width converter.

DWT discrete wavelet transform.

ELF executable and linkable format.

FAME FPGA Architecture Model Execution.

FDSOI fully depleted silicon on insulator.

FF flip-flop.
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FIFO first-in first-out buffer.

FLOP floating-point operation.

FMC FPGA Mezzanine Card.

FPGA field-programmable gate array.

FPU floating-point unit.

FSM finite state machine.

GE gate equivalent.

GF22FDX GlobalFoundries’ 22 nm fully-depleted silicon-on-insulator.

GPGPU general-purpose graphics processing unit.

GPU graphics processing unit.

HAL hardware abstraction library.

hart hardware thread.

HBM High Bandwidth Memory.

HDL hardware description language.

HeSoC heterogeneous system on chip.

HLS high-level synthesis.

HPC high-performance computing.

HSA Heterogeneous System Architecture.

I/O input/output.

IC integrated circuit.

IOMMU input/output memory management unit.

IoT internet of things.
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IP intellectual property module.

IPA interprocedural analysis.

IR intermediate representation.

ISA instruction set architecture.

ISS instruction set simulation.

Juno ADP Juno ARM Development Platform.

LDS linked data structure.

LLC last level cache.

LR load-reserved.

LSU load/store unit.

LTO link-time optimization.

LUT lookup table.

LZC leading-zero counter.

MAC multiply-accumulate operation.

MHT miss handling thread.

ML machine learning.

MLT machine learning training.

MMU memory management unit.

MSB most significant bit.

NIC network interface controller.

NN neural network.

NoC network on chip.
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OCCP on-chip communication protocol.

OS operating system.

PCIe Peripheral Component Interconnect Express.

PE processing element.

PHT Prefetching Helper Thread.

PHY physical layer.

PL programmable logic.

PMCA programmable many-core accelerator.

PTW page table walker.

QoS quality of service.

RAB Remapping Address Block.

RF register file.

RMW read-modify-write.

RTE runtime environment.

RTL register-transfer level.

RVTSO RISC-V Total Store Order.

RVWMO RISC-V Weak Memory Order.

SC store-conditional.

SIMD single instruction multiple data.

SIMT single instruction multiple threads.

SiP system-in-a-package.

SMMU system memory management unit.



212 Acronyms

SoA state of the art.

SoC system on chip.

SOI silicon on insulator.

SPM scratchpad memory.

SPMD single program multiple data.

SRAM static random access memory.

SSA static single assignment.

SVM shared virtual memory.

TCDM tightly-coupled data memory.

TLB translation lookaside buffer.

TSO total store ordering.

VLIW very long instruction word.

VMM virtual memory management.

VPU vision processing unit.

WT Worker Thread.
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