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Abstract. We develop and analyze a class of efficient algorithms for un-
certainty quantification of nonlinear operator equations. The algorithms are
based on sparse Galerkin discretizations of tensorized linearizations at nominal
parameters. Specifically, for a class of abstract nonlinear, parametric opera-
tor equations J(α, u) = 0 for random parameters α with realizations in a
neighborhood of a nominal parameter α0. Under some structural assumptions
on the parameter dependence, by the implicit function theorem, J(α, u) = 0
admits locally unique solutions u = S(α) for all values α in some neighbor-
hood of α0. Random parameters α(ω) = α0 + r(ω), are shown to imply a
unique random solution u(ω) = S(α(ω)). We derive a multilinear, tensorized
operator equation for the deterministic computation of k-th order statistical
moments of the solution fluctuations u(ω) − S(α0), provided that statistical
moments of the random parameter perturbation r(ω) are known. We present
a sparse tensor Galerkin discretization for the tensorized first order perturba-
tion equation. We prove a shift theorem for the k-point correlation equation
in anisotropic smoothness scales and deduce that sparse tensor Galerkin dis-
cretizations of this equation converge in accuracy vs. complexity which equals,
up to logarithmic terms, that of the Galerkin discretization of a single instance
of the mean field problem. We illustrate the abstract theory for nonstationary
parabolic diffusion problems in random domains. We verify Fréchet differentia-
bility by means of shape calculus, and establish the Hadamard principle that
the first order, k-th moment equation is completely specified in terms of data
on the boundary of the nominal space-time cylinder. We perform boundary
reduction of this parabolic evolution problem and propose a novel sparse ten-
sor space-time Galerkin discretization. In conjunction with the sparse tensor
Galerkin approximation of the k-point correlation, it reduces the complexity of
the Galerkin discretization to O(N(logN)k−1) where N denotes the number
of degrees of freedom for a stationary problem on the boundary of the nominal
domain (rather than on the space-time cylinder), thereby generalizing [25] to
the boundary reduction of parabolic problems.

2010 Mathematics Subject Classification. Primary 65N30, 65J15.
Key words and phrases. Nonlinear operator equations, random parameters, deterministic
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2 ALEXEY CHERNOV AND CHRISTOPH SCHWAB

1. Introduction

We consider uncertainty quantification for abstract, parametric, nonlinear prob-
lems: given α ∈ Z, find u ∈ X such that

(1.1) J(α, u) = 0 in Y ′ .

Here X,Y, Z are Banach spaces, Y ′ is the dual of Y , u ∈ X is the unknown solution
and α ∈ Z represents the set of inputs (such as boundary conditions, operator
coefficients, shape of the physical domain of u, etc.). We allow the functional

(1.2) J :

{
Z ×X → Y ′

(α, u) $→ J(α, u)

to depend nonlinearly on both variables, but insist on it to satisfy structural as-
sumptions which render it locally, in a vicinity of a nominal parameter value α0 ∈ Z,
well-posed (these structural assumptions on (1.1) will be made precise later): there
exists a unique, “nominal” solution u0 ∈ X such that J(α0, u0) = 0 in Y ′.

Well-posedness of problem (1.1) implies moreover that changes in the problem
data in some (usually sufficiently small) open neighborhood U ⊂ Z of the nominal
parameter value α0 ∈ U lead to a corresponding small change of u0 ∈ X such that
(1.1) is satisfied. We denote the solution operator of (1.1) by S : U → X

(1.3) u = S(α) in X, α ∈ U

and assume that S is injective in U .
In many practical applications, the effective values of the problem parameters α

are not known precisely, but are known (or assumed) to be close to certain nominal
values α0 so that the fluctuation

r = α− α0 '= 0.

Uncertainty in the parameter values can be accounted for by probabilistic modelling
of the input’s fluctuation r = r(ω) = α − α0 as a random field with known law or
statistical moments. We show that if α(ω) = α0 + r(ω) belongs to U almost surely,
u = u(ω) becomes a well defined random field (cf. Lemma 4.1 below). One goal
of this work to present deterministic strategies towards the efficient, deterministic
computation of its statistics. Our approach is based on the (formal, at this stage)
first order Taylor expansion of J at the nominal values (α0, u0): if J(α, u) is twice
Fréchet differentiable at the nominal values (α0, u0), say, then for all (α, u) in a
vicinity of (α0, u0) holds

(1.4)
J(α, u) = J(α0, u0) + J ′

α(α0, u0)(α− α0) + J ′
u(α0, u0)(u− u0)

+O(‖α− α0‖2Z) +O(‖u− u0‖2X) .

Here, the differentials J ′
α(α0, u0) ∈ L(Z, Y ′) and J ′

u(α0, u0) ∈ L(X,Y ′) are bounded,
linear operators which are assumed to be known. Using (1.1) and neglecting the
second order remainders yields the first order perturbation equation

(1.5) 0 = J ′
α(α0, u0)(α− α0) + J ′

u(α0, u0)(u− u0) in Y ′ .

Well-posedness of (1.1) implies that the differential J ′
u(α, u) is boundedly invertible

in a vicinity of the nominal pair (α0, u0). Then

u− u0 = S(α)− S(α0) = −[J ′
u(α0, u0)]

−1J ′
α(α0, u0)(α− α0) +O(‖α− α0‖2Z)

= S′(α0)(α− α0) +O(‖α− α0‖2Z) .
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The aim of this paper is to develop fast, deterministic algorithms for the approx-
imate computation of the k-th statistical moment Mk[u − u0] (also referred to
as “k-point correlation function”) of the random solution u(ω) from known k-th
moment of the perturbation Mkr. Our algorithms will be based on trading ran-
domness for high dimensionality: rather sampling (1.1) for numerous realizations
of α, we derive an abstract, deterministic tensor equation for the k-point correla-
tion function of the system’s stochastic response: in Theorem 4.8 we prove that
Mk[u − u0] can be approximated by Mk[S′(α0)r], where S′(α0) ∈ L(Z,X) is the
Fréchet derivative of the solution operator (1.3) at α0. One main contribution of
the present paper are explicit bounds for the approximation error

(1.6) Ek = Mk[u− u0]−Mk[S′(α0)r].

The classical Implicit Function Theorem provides existence of a neighborhood U of
α0 such that S is differentiable in U . However, this classical result does not allow
to control the size of U . With this we obtain only asymptotic estimates for the
approximation error Ek when the size of U tends to zero.

In order to derive explicit non-asymptotic bounds for Ek we prove in the present
paper variants of the classical Local Implicit Function Theorem with an explicit
relation between the size of U and the size of the differentials of the nonlinear func-
tional J . These results are Newton-Kantorovich-type theorems with quantitative
control of the constants which may be of independent interest. The local Lipschitz
continuity of J ′

u, J
′
α and the local invertibility of J ′

u are the key properties allowing
to control the size of U . We provide a detailed regularity analysis for Mk[u − u0]
and Mk[S(α0)r].

If the magnitude of Ek is small P-a.s., we propose to compute Mk[S′(α0)r]
instead of Mk[u− u0], which is a simpler task, since S′(α0)r can be characterized
as a solution of a linear operator equation with a random right-hand side. We then
apply the tensorization technique [21, 24] to characterize Mk[S′(α0)r] as solution
of a tensorized deterministic operator equation.

Ultimately, the success of this approach depends, however, on our ability to effi-
ciently solve the tensorized, deterministic equation for the k-point correlation func-
tion. To this end, we extend and generalize the approach of [21] to the present set-
ting by imposing further assumptions on the “sensitivity operator”G0 = J ′

u(α0, u0).
We discuss this first in the particular case, whenX = Y are separable Hilbert spaces
and when G0 is coercive. As we showed in the linear case in [21], under additional
assumptions on G0 such as bounded invertibility on scales of smoothness spaces
{Xs}s≥0 ⊂ X and {Ys}s≥0 ⊂ Y

In Section 4, we consider random perturbations of the parameter α in (1.1) which
are formalized on a background probability space satisfying the Kolmogorov axioms
of probability: throughout, P shall denote a probability measure on the probability
space (Ω,A). By capitals B,X, Y, Z we shall denote separable Banach spaces of
functions. Solutions to parametric random boundary value problems will be sought
in Bochner spaces Lp(Ω,P;B) of p-summable, measurable mappings from (Ω,A)
to (B,B(B)) where B(B) denotes the sigma algebra of Borel sets on the separable
Banach space B.

The paper is organized as follows. We begin with a brief introduction to the
differential calculus in Banach spaces in Section 2. In Section 3 we study properties
of the implicit solution of (1.1) with a deterministic parameter α. In particular, we
obtain explicit bounds on the neighborhood U ) α0 where the solution operator
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u = S(α) is well defined and is Fréchet differentiable. The size of U depends
explicitly on smoothness properties of J and its Fréchet derivatives. In Section 4
we apply these results to (1.1) where α is a random field. In particular, we obtain
asymptotic and non-asymptotic bounds on the approximation error Ek from (1.6)
in the natural tensor product norms, see Theorem 4.6, Theorem 4.8. In Section 6
we illustrate the developed abstract techniques on sparse space-time tensor BEM
for instationary heat equation in random domains. In particular, we propose a
sparse tensor Galerkin scheme for the approximation of the k-point correlation of
the random solution at any point in the space-time cylinder with complexity of
log-linear order in N , the number of degrees of freedom on the nominal boundary.

2. Differential calculus in Banach spaces

In this section we recall definitions and results of differential calculus in Banach
spaces needed in what follows (see e.g. [2, 3, 15, 5]).

Suppose X,Y and Z are Banach spaces and U ⊂ Z is an open subset. We denote
C(U,X) the space of continuous (w.r.t. convergence in norm) maps U → X and
by L(Z,X) the space of linear continuous maps Z → X.

Definition 2.1. Let U be an open subset of Z and α ∈ U . A mapping F is called
Fréchet differentiable at α if there exists a linear continuous mapping A ∈ L(Z,X)
such that for

(2.1) R(r) = F (α+ r)− F (α)−A(r) there holds ‖R(r)‖X = o(‖r‖Z),
that is ‖R(r)‖X/‖r‖Z → 0 as ‖r‖Z → 0. If it exists, A is uniquely defined and is
called Fréchet derivative of F at α ∈ Z and denoted by F ′(α). The mapping F is
said to be Fréchet differentiable in U ⊂ Z if F is differentiable at all α ∈ U .

Consider a function J(·, u) for some fixed u ∈ X. Its differential with respect to
α at u is the Fréchet derivative J ′

α(α, u) ∈ L(Z, Y ′) at (α, u) with respect to α. It
is uniquely defined by the requirement

(2.2) ‖J(α+ r, u)− J(α, u)− J ′
α(α, u)r‖Y ′ = o(‖r‖Z).

for all r ∈ U in a neighborhood of 0 ∈ U .
We will also require the following differentiation rule for composite maps.

Lemma 2.2. (Chain rule) Let F : U → X be differentiable at α ∈ U and G : V →
Y be differentiable at u = F (α) ∈ V , where U and V are open subsets of Z and X
respectively. Then G ◦ F : U → Y is differentiable at α and there holds

(2.3) (G ◦ F )′(α)r = G′(u) [F ′(α)r] , with u = F (α).

Theorem 2.3. Suppose F ∈ C1(U,X) in an open, nonempty subset U ⊂ Z. As-
sume that α ∈ U and r ∈ Z such that [α,α+ r] ⊂ U . Then

(2.4) F (α+ r)− F (α) =

∫ 1

0
F ′(α+ rθ)r dθ.

The following classical result gives sufficient conditions for local solvability of the
equation (1.1), cf. [15, X.§2], [3, Ch. 3.1], [2, Ch. 2].

Theorem 2.4 (Local Implicit Function Theorem). Suppose X,Y, Z are Banach
spaces and W is an open neighborhood of (α0, u0) in Z×X. Suppose J(α0, u0) = 0
and



FIRST ORDER k-TH MOMENT FE ANALYSIS 5

(1) J ′
u(α, u) exists in W and J, J ′

u are continuous in (α0, u0)
(2) the “sensitivity operator” G0 := J ′

u(α0, u0) ∈ L(X,Y ′) admits a bounded
inverse Γ0 ∈ L(Y ′, X)

Then there exists neighborhoods U of α0 and V of u0 and a unique mapping S :
U → V , such that

a. S(α0) = u0

b. J(α, u) = 0 in Y ′ is equivalent to u = S(α) in X for any α ∈ U , i.e.

J(α, S(α)) = 0 holds in Y ′ for any α ∈ U .

c. S ∈ C(U,X) if (2) holds and if (1) is replaced with the stronger assumption:
(1a) J ∈ C(W,Y ′), J ′

u(α, u) exists in W and J ′
u is continuous in (α0, u0)

d. if (2) holds and if (1) is replaced with the stronger assumption
(1b) J ′

u(α, u), J
′
α(α, u) exist in W and J, J ′

α, J
′
u are continuous in (α0, u0)

then S is differentiable in α0 and there holds

(2.5) S′(α0) = −Γ0J
′
α(α0, u0) .

Slightly stronger assumptions on J are needed to ensure Lipschitz continuity of
S in U . In particular, we have the following theorem.

Theorem 2.5. Suppose the assumptions of Theorem 2.4 are satisfied and assume
that S : U → X is the solution operator of (1.1). Assume in addition that

(1’) J ∈ C1(W,Y ′)
(2’) the “sensitivity operator” G1 := J ′

u(α1, u1) ∈ L(X,Y ′) admits a bounded
inverse Γ1 ∈ L(Y ′, X) for any α1 ∈ U and u1 = S(α1).

Then S ∈ C1(U,X) and there holds

(2.6) S′(α1) = −Γ1J
′
α(α1, S(α1)) ∀α1 ∈ U.

In what follows we utilize the following notations for closed and open balls in
Banach spaces: for α ∈ Z and δ ≥ 0

(2.7) B(α0, δ) :=
{
α ∈ Z : ‖α− α0‖Z ≤ δ

}
, B̊(α0, δ) := B(α0, δ) \ ∂B(α0, δ) .

In our notation, we do not mention the Banach space Z explicitly, since it is always
clear from the context.

3. The size of neighborhoods

The assumptions of Theorem 2.4 and Theorem 2.5 are not sufficient to control
the size of the neighborhood U of around α0 where the solution operator S(α) is well
defined and differentiable. Revisiting the classical proofs of this result, for example
in [15, X.§2], [3, Ch. 3.1], allows to find a direct connection between the size of
U and smoothness properties of J . The following result shows that the additional
assumption of Lipschitz continuity of J ′

α and J ′
u at (α0, u0) is sufficient for existence

of S(α) for α ∈ U with quantitative bounds on the size of U . This result is inspired
by the Newton-Kantorovich Theorem in the form stated, for example, in [14, Ch.
XVIII], [26, Ch. 5].

Theorem 3.1. Suppose X,Y, Z are Banach spaces and W is an open neighborhood
of (α0, u0) ∈ Z ×X. Suppose J(α0, u0) = 0 and that

(1) J ∈ C(W,Y ′), J ′
α, J

′
u exist in W and are Lipschitz continuous in (α0, u0),
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(2) the “sensitivity operator” G0 := J ′
u(α0, u0) ∈ L(X,Y ′) has a bounded in-

verse Γ0 ∈ L(Y ′, X).

Define

(3.1) ξ0 := ‖Γ0J
′
α(α0, u0)‖Z→X

and η0 being the smallest constant satisfying

(3.2)
‖Γ0

{
J ′
α(α, u)− J ′

α(α0, u0)
}
‖Z→X

‖Γ0

{
J ′
u(α, u)− J ′

u(α0, u0)
}
‖X→X

}
≤ η0 (‖α− α0‖Z + ‖u− u0‖X)

for any (α, u) ∈ W . Let

(3.3) δ0 :=
1

2η0(1 + ξ0)
, ε0(δ) :=

1− δη0 −
√

1− 2δη0(1 + ξ0)

η0

and assume that δ < δ0 is so small that B(α0, δ) × B(u0, ε0(δ)) ⊂ W . Then the
following holds:

a. There exists a unique continuous mapping S : B(α0, δ) $→ B(u0, ε0(δ))
satisfying J(α, S(α)) = 0 for any α ∈ B(α0, δ) and for u0 = S(α0).

b. The mapping S satisfies

(3.4) ‖S(α)− S(α0)‖X ≤ M0‖α− α0‖Z ∀α ∈ B(α0, δ)

with Lipschitz constant M0 = 2ξ0 + 1.

Proof. Define a nonlinear map Aα : X → X by

(3.5) Aαu := u− Γ0J(α, u).

We show first that ∃ε > 0 such that (i) Aα is a contraction in B(u0, ε) and (ii)
maps B(u0, ε) into itself.

Define R(α, u) := J(α, u)− J ′
u(α0, u0)(u− u0). Then from (3.5)

Aαu = u0 − Γ0R(α, u)

and hence by linearity of Γ0

Aαu−Aαu1 = −Γ0(R(α, u)−R(α, u1)).

For the right-hand side we have by the definition of R and Theorem 2.3

Γ0(R(α, u)−R(α, u1)) = Γ0(J(α, u)− J(α, u1)− J ′
u(α0, u0)(u− u1))

=

∫ 1

0
Γ0

{
J ′
u(α, tu+ (1− t)u1)− J ′

u(α0, u0)

}
(u− u1) dt

Then

‖Aαu−Aαu1‖X
‖u− u1‖X

≤
∫ 1

0
η0

{
‖α− α0‖Z + t‖u− u0‖X + (1− t)‖u1 − u0‖X

}
dt

= η0

{
‖α− α0‖Z +

1

2
‖u− u0‖X +

1

2
‖u1 − u0‖X

}
=: K(3.6)

We have K < 1, i.e. Aα is a contraction for any α ∈ B(α0, δ) and u, u1 ∈ B(u0, ε),
provided that

(3.7) η0(δ + ε) < 1 ⇔ ε ≤ 1− η0δ

η0
.
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For proving (ii) we need to show

(3.8) ‖Aαu− u0‖X ≤ ε ∀u ∈ B(u0, ε).

Using (3.5) and (3.6) we have for any u ∈ B(u0, ε)

(3.9)

‖Aαu− u0‖X ≤ ‖Aαu−Aαu0‖X + ‖Aαu0 − u0‖X

≤ η0(δ +
ε

2
)ε+ ‖Γ0J(α, u0)‖X .

Recalling J(α0, u0) = 0 we estimate the last term via triangle inequality

‖Γ0J(α, u0)‖X ≤‖Γ0J
′
α(α0, u0)(α− α0)‖X

+‖Γ0

{
J(α, u0)− J(α0, u0)− J ′

α(α0, u0)(α− α0)
}
‖X

The first term in the hight-hand side is bounded by ξ0‖α−α0‖Z , the expression in
the norm in the last term equals to

∫ 1

0
Γ0

{
J ′
α(sα+ (1− s)α0, u0)− J ′

α(α0, u0)

}
(α− α0) ds .

This gives

‖Γ0J(α, u0)‖X ≤ ‖α− α0‖Z
(
ξ0 +

∫ 1

0
η0s‖α− α0‖Z ds

)

= ‖α− α0‖Z
(
ξ0 +

η0
2
‖α− α0‖Z

)
.

Denote δ := ‖α− α0‖, then (3.9) provides

(3.10) ‖Aαu− u0‖X ≤ η0(δ +
ε

2
)ε+ (ξ0 +

η0
2
δ)δ .

Therefore Aα maps B(u0, ε) into itself if right-hand side of (3.10) is bounded by ε,
i.e. the radii δ, ε > 0 satisfy

(3.11) η0(δ +
ε

2
)ε+ (ξ0 +

η0
2
δ)δ ≤ ε ⇔ ε̃2 − 2(1− δ̃)ε̃+ 2ξ0δ̃ + δ̃2 ≤ 0 .

Here δ̃ := η0δ, ε̃ := η0ε are the rescaled radii. Resolving (3.11) and using (3.7) we
find that ε̃ ∈ Uδ̃ := [ε̃−, ε̃+] ∩ (0, 1− δ̃) where

ε̃± = 1− δ̃ ±
√
D with D = (1− δ̃)2 − (2ξ0δ̃ + δ̃2) = 1− 2δ̃(1 + ξ0) .

Basic calculations show that Uδ ≡ [ε̃−, 1− δ̃) is nonempty as soon as D > 0, since
in this case ε̃− > 0 and

(3.12) δ̃ <
1

2(1 + ξ0)
<

1

2
.

Herewith we have proven that if δ̃ =: η0δ satisfies (3.12), i.e. if δ < δ0, α ∈ U :=
B(α0, δ) and if ε0(δ) := ε̃−/η0 then the mapping Aα from (3.5) is a contraction on
B(u0, ε0(δ)). Furthermore, (3.5) yields that Aα(u) is continuous for all (α, u) ∈ W ,
because J ∈ C(W,Y ′) and Γ0 is linear. Then the assumptions of [3, Corollary 3.1.4]
are satisfied and there exists a unique S ∈ C(U,X) satisfying J(α, S(α)) = 0 in U
and u0 = S(α0).



8 ALEXEY CHERNOV AND CHRISTOPH SCHWAB

Next, we prove the estimate (3.4). From the previous considerations, we know
in particular that α ∈ ∂B(α0, δ) implies S(α) ∈ B(u0, ε0(δ)), if δ < δ0. Then

(3.13) ‖S(α)− S(α0)‖X ≤ ε0(δ) =
1− δ̃ −

√
1− 2δ̃(1 + ξ0)

η0
≤ (2ξ0 + 1)δ̃

η0
.

Then (3.4) follows, since δ = ‖α− α0‖Z = δ̃/η0. !
This result does not provide computable quantitative bounds on the size of the

neighborhood of α0 in which S is differentiable. To obtain such bounds, we require
additional assumptions on J .

Theorem 3.2. Suppose that the assumptions of Theorem 3.1 are satisfied, that δ0,
ε0 are defined as in Theorem 3.1 and that S : B(α0, δ) → B(u0, ε0(δ)), δ < δ0 is
the solution operator. Assume in addition

(1’) J ∈ C1(W,Z) and J ′
α, J

′
u are Lipschitz continuous in W .

(2’) J ′
u(α1, u1) with u1 = S(α1) has a uniformly bounded inverse Γ1 : Y ′ → X

for any α1 in the open ball B̊(α0, δ0).

Define

(3.14) ξ := sup
α1∈B̊(α0,δ0)

‖Γ1J
′
α(α1, S(α1))‖Z→X

and η being the smallest constant satisfying

(3.15)
‖Γ1

{
J ′
α(α, u)− J ′

α(α1, u1)
}
‖Z→X

‖Γ1

{
J ′
u(α, u)− J ′

u(α1, u1)
}
‖X→X

}
≤ η (‖α− α1‖Z + ‖u− u1‖X) .

uniformly for any (α, u), (α1, u1) ∈ W . Let

(3.16) δ∗ :=
1

2η(1 + ξ)
, ε∗(δ) :=

1− δη −
√
1− 2δη(1 + ξ)

η

and assume that δ < δ∗/2 is small enough, such that B(α0, δ)×B(u0, ε∗(δ)) ⊂ W .
Then

(a) S is Lipschitz continuous in B(α0, δ), in particular for M := 2ξ + 1

(3.17) ‖S(α)− S(α1)‖X ≤ M‖α− α1‖Z ∀α,α1 ∈ B(α0, δ).

(b) S is differentiable in B(α0, δ) and

(3.18) S′(α1) = −Γ1J
′
α(α1, S(α1)) ∀α1 ∈ B(α0, δ).

(c) S′ in Lipschitz continuous in α0

(3.19) ‖S′(α)− S′(α0)‖Z→X ≤ K‖α− α0‖Z ∀α ∈ B(α0, δ)

with the Lipschitz constant K = 4η0(1 + ξ0)2.

Proof. (a) If we fix an arbitrary α1 ∈ B(α0, δ0), then assumptions of Theorem 3.1
are satisfied with α1 instead of α0. We resort to the uniform constants ξ, η and
obtain the estimate

(3.20) ‖S(α)− S(α1)‖X ≤ M‖α− α1‖Z ∀α1 ∈ B̊(α0, δ0), ∀α ∈ B̊(α1, δ∗).

with M = 2ξ + 1. Suppose α,α1 ∈ B(α0, δ) with δ < δ∗/2. Then α1 ∈ B̊(α0, δ0)
and α ∈ B̊(α1, δ∗), since

‖α1 − α0‖Z ≤ δ∗/2 < δ0 and ‖α− α1‖Z ≤ ‖α− α0‖Z + ‖α1 − α0‖Z ≤ 2δ < δ∗
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which together with (3.20) yields (3.17).
(b) We prove differentiability of S in B(α0, δ). To this end we fix an arbitrary

element α1 ∈ B(α0, δ) and define

(3.21) u1 := S(α1), Γ1 :=
[
J ′
u(α1, u1)

]−1
, Λ1 := −Γ1J

′
α(α1, u1).

Recall J(α1, u1) = 0 = J(α, u). Then we have for u := S(α)

‖S(α)− S(α1)− Λ1(α− α1)‖X = ‖Γ1

{
J ′
α(α1, u1)(α− α1)− J ′

u(α1, u1)(u− u1)
}
‖X

≤
∫ 1

0
‖Γ1

(
J ′
α(sα+ (1− s)α1, u)− J ′

α(α1, u1)
)
‖Z→X‖α− α1‖Z ds

+

∫ 1

0
‖Γ1

(
J ′
u(α1, tu+ (1− t)u1)− J ′

u(α1, u1)
)
‖X→X‖u− u1‖X dt

≤ η

{(
1

2
‖α− α1‖Z + ‖u− u1‖X

)
‖α− α1‖Z +

1

2
‖u− u1‖2X

}

≤ η

2
(1 +M)2‖α− α1‖2Z

by Lipschitz continuity of S in B(α0, δ), cf. (3.17). The right-hand side is O(‖α−
α1‖2Z), thus by Definition 2.1, S is differentiable in any α1 ∈ B(α0, δ) and S′(α1) ≡
Λ1.

(c) Finally, we prove that S′ is Lipschitz continuous in u0. Relation (3.18) is
equivalent to

J ′
u(α, S(α))S

′(α) + J ′
α(α, S(α)) = 0, ∀α ∈ B(α0, δ).

Then for u = S(α), u0 = S(α0) we have the identity

(J ′
u(α, u)− J ′

u(α0, u0))S
′(α) + J ′

u(α0, u0)(S
′(α)− S′(α0))

+J ′
α(α, u)− J ′

α(α0, u0) = 0.

This yields with Γ0 =
[
J ′
u(α0, u0)

]−1

‖S′(α)− S′(α0)‖Z→X ≤‖Γ0(J
′
u(α, u)− J ′

u(α0, u0))‖X→X‖S′(α)‖Z→X

+‖Γ0(J
′
α(α, u)− J ′

α(α0, u0))‖Z→X

≤ η0(‖α− α0‖Z + ‖S(α)− S(α0)‖X)(1 + ‖S′(α)‖Z→X)

≤ Θ‖α− α0‖Z
(
1 + ‖S′(α0)‖Z→X + ‖S′(α)− S′(α0)‖Z→X

)

with Θ = η0(M0 + 1) = 2η0(1 + ξ0) = 1/δ0. Assume α ∈ B(α0, δ), δ < δ∗/2. Then
Θ‖α− α0‖Z < δ∗/(2δ0) ≤ 1/2. This implies

‖S′(α)− S′(α0)‖Z→X ≤ 2Θ(1 + ξ0)‖α− α0‖Z .
The proof is complete. !

4. Random fields under nonlinear maps

In this section we study properties of random fields and their characteristics
under nonlinear maps and apply it to solution operators of the implicit nonlinear
equation (1.1). We prove the basic abstract results on measurability (Lemma 4.1)
and summability (Lemma 4.2) properties of random fields under nonlinear maps. In
combination with Theorem 2.4, this yields existence of the moments of the solution
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in a sufficiently small neighborhood U about the nominal parameter value α0, cf.
Theorem 4.6 and the asymptotic approximation result (4.16). Theorems 3.1 and 3.2
from the previous section allow to control the size of U . Based on this, we obtain
non-asymptotic approximation bounds in Theorem 4.8 which allows for α ∈ U a.s.
where U is not necessarily small. The key property here is Lipschitz continuity of
the solution operator, cf. Lemma 4.7.

We begin with basic definitions, see e.g. [8, 17, 16]. Let (Ω,A,P) be a probability
space where Ω is a sample space, A is a set of events being a σ-algebra over Ω,
and P is a probability measure. If (X,F) and (Y,G) are measurable spaces, a map
f : X → Y is called F-G-measurable, if f−1(G) ⊆ F . For a complete metric space
E, we shall denote by B(E) the Borel σ-algebra of E generated by all open subsets
of E. A mapping α : Ω → E is called a random variable if it is F-B(E)-measurable.
In this paper we are interested in random variables with values in Banach spaces.
From now we assume that X, Y and Z are Banach spaces.

Under the above notations we introduce the set of all A-measurable functions

(4.1) L0(Ω;Z) :=
{
α : Ω → Z : α is A-B(Z)-measurable

}

that is the set of all random variables Ω → Z. Suppose α ∈ L0(Ω, Z) and S : Z → X
is a general nonlinear map (in what follows, S shall be interpreted as solution
operator from Section 2). Sufficient conditions under which the composition S ◦ α
is a random variable, are given by the following classical result.

Lemma 4.1. Suppose X, Z are Banach spaces, α ∈ L0(Ω, Z) and S : Z → X.
The mapping u := S ◦ α : Ω → X is a random variable if S is Borel measurable,
that is B(Z)-B(X)-measurable. A sufficient condition is S ∈ C(α(Ω), X).

Proof. We prove the sufficient condition. As S is continuous, S−1(V ) is open in
α(Ω) for any V ∈ B(X), i.e. ∃U ∈ B(Z) : S−1(V ) = α(Ω) ∩ U . Then

(S ◦ α)−1(V ) = α−1(S−1(V )) = α−1(α(Ω) ∩ U) = α−1(U) ∈ A,

since α ∈ L0(Ω, Z) by assumption. !
A function α : Ω → Z is called P-almost surely separable valued if there exists a

P-null set N such that the image of its complement α(Ω \N) is separable. In order
to introduce a Bochner-Lebesgue integral we resort to a subspace of P-measurable
random variables, which can be equivalently defined by

(4.2) L0(Ω,P;Z) :=
{
α ∈ L0(Ω;Z) : α is P-almost surely separable valued

}
.

The space L0(Ω,P, Z) is also called a Bochner space of strongly measurable func-
tions. For a Banach space Z we define

(4.3) ‖α‖Lk(Ω,P;Z) :=






(∫

Ω
‖α(ω)‖kZ dP(ω)

)1/k

1 ≤ k < ∞

ess sup
ω∈Ω

‖α(ω)‖Z k = ∞

where E
[
·
]
:=

∫
Ω(·) dP(ω) with the integral denoting the Bochner-Lebesgue integral.

Then

(4.4) Lk(Ω,P;Z) :=
{
α ∈ L0(Ω,P;Z) : ‖α‖Lk(Ω,P;Z) < ∞

}
/N

where N =
{
α ∈ L0(Ω,P;Z) : α = 0 P-a.e.

}
. The Bochner-Lebesgue space

Lk(Ω,P;Z) is a Banach space with the norm (4.3).
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Throughout our analysis of random perturbations, we assume w.l.o.g. that the
nominal parameter value α0 ∈ U ⊂ Z in our linearization of the solution map S(α)
is the mean field of α(ω) or, equivalently, that the parameter fluctuation’s mean
field r(ω) = α(ω)− α0 vanishes.

Lemma 4.2. Suppose X, Z are Banach spaces, α ∈ Lk(Ω,P;Z) and that S : Z →
X is Lipschitz continuous at α0 ∈ Z: there exists an open neighborhood U ⊆ Z of
α0 and a constant M > 0, such that

(4.5) ‖S(α̃)− S(α0)‖X ≤ M‖α̃− α0‖Z ∀α̃ ∈ U.

Assume in addition that

(4.6) P{α ∈ U} = 1 .

Then u = S(α) ∈ Lk(Ω,P;X).

Proof. Suppose 1 ≤ k < ∞. Then

(4.7) ‖S(α)− S(α0)‖Lk(Ω,P;X) ≤ M‖α− α0‖Lk(Ω,P;Z) ∀α ∈ U P-a.e.
since ∫

Ω
‖S(α)− S(α0)‖kX dP(ω) ≤ Mk

∫

Ω
‖α− α0‖kZ dP(ω).

From (4.5) we infer that (4.7) holds also for k = ∞. !

In what follows we shall introduce and study properties of k-th statistical mo-
ments. For that it is convenient to introduce the following abbreviations for tensor
products.

Definition 4.3. For any two Banach spaces X,Y we denote by X ⊗ Y its tensor
product being a Banach space endowed with a reasonable cross-norm satisfying

(4.8) ‖u⊗ v‖X⊗Y = ‖u‖X‖v‖Y , ∀u ∈ X, v ∈ Y .

The k-fold tensor product X ⊗ · · · ⊗ X is defined by induction and is denoted by
X(k). Analogously for an element u ∈ X we define its k-fold product u(k) :=
u⊗ · · ·⊗u ∈ X(k) and a linear map A ∈ L(X,Y ) we define its k-fold tensor product
A(k) = A⊗ · · ·⊗A ∈ L(X(k), Y (k)).

Definition 4.4. Let k ≥ 1 be an integer. Then for α ∈ Lk(Ω,P;Z) its k-th
statistical moment is defined by

(4.9) Mkα = E
[
α(k)

]
=

∫

Ω
α(k) dP(ω) ∈ Z(k) .

Note that Mk is well defined as a mapping Lk(Ω,P;Z) → Z(k), since

(4.10) ‖Mkα‖Z(k) ≤ ‖α(k)‖L1(Ω,P;Z(k)) = ‖α‖kLk(Ω,P;Z).

Corollary 4.5. Suppose X,Y, Z are Banach spaces and W is a neighborhood of
(α0, u0) ∈ Z ×X. Let α ∈ L0(Ω;Z) be a random variable and consider a mapping
J is defined in (1.2). Suppose J(α0, u0) = 0 and

(1) J ∈ C(W,Y ′) and its differential J ′
u(α, u) ∈ L(X,Y ′) exist in W and are

continuous in (α0, u0).
(2) the “sensitivity operator” G0 := J ′

u(α0, u0) admits a bounded inverse Γ0 ∈
L(Y ′, X).
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Then there is a neighborhood U of α0 and a unique random variable u ∈ L0(Ω;X)
such that u = S(α) satisfies (1.1) if P

{
α(ω) ∈ U

}
= 1; and S(α0) = u0.

Suppose (1) is replaced with the stronger assumption:

(1’) J ∈ C(W,Y ′), J ′
α ∈ L(Z, Y ′), J ′

u ∈ L(X,Y ′) exist in W and are Lipschitz
continuous in (α0, u0)

Then

(a) U can be chosen as U = B(α0, δ), δ < δ0 with δ0 from Theorem 3.1.
(b) If P

{
‖α(ω) − α0‖Z ≤ δ

}
= 1, then α ∈ Lk(Ω,P;Z) and u ∈ Lk(Ω,P;X)

for any 1 ≤ k ≤ ∞.

Proof. Existence of a unique solution operator S ∈ C(U,X) follows from Theorem
2.4. Lemma 4.1 yields that u = S(α) is A-B(X)-measurable. Theorem 3.1 yields
(a). Assertion (b) follows from

‖α− α0‖Lk(Ω,P;Z) ≤ δ0, ‖u− u0‖Lk(Ω,P;X) ≤ Mδ0

guaranteed by (3.4) and Lemma 4.2. !
We see from Corollary 4.5 that u ∈ Lk(Ω,P;X) for any k, if J ′

α, J
′
u are Lipschitz

continuous at (α0, u0) and the random parameter α(ω) belongs P-a.s. to a suffi-
ciently small (bounded) neighborhood of α0 ∈ Z. This assumption is however of
limited use in practice. In particular, α can not be modeled as a Gaussian random
field taking arbitrary large values with small but positive probability. This difficulty
cannot be overcome in general due to the nonlinear nature of J , e.g. the implicit
equation (1.1) might be not uniquely solvable for certain values of α far from α0.
Fortunately, for some classes of J unbounded values of α can be allowed, as we
show in Lemma 4.7 below.

Considering models with such unbounded random parameters is possible if J is
linear and continuous [21, 24, 6]. In this case the solution operator S is linear and

(4.11) Mku = E
[
S(α)⊗ · · ·⊗ S(α)

]
= (S ⊗ · · ·⊗ S)Mkα .

In the linear case we obtain from (1.5)

(4.12) J ′
uu = −J ′

αα ⇐⇒ u = S(α) = S′α = −[J ′
u]

−1J ′
αα,

where S′, J ′
u, J

′
α do not depend on (α, u). If J ′

u is invertible, then α ∈ Lk(Ω,P;Z)
implies u ∈ Lk(Ω,P;X) and hence the k-point correlation function to first order,
Mku, is well-defined in X(k) by (4.10). In this case sparse tensor schemes can be
constructed for approximate numerical evaluation of S = −[J ′

u]
−1J ′

α , see [21, 24, 6].
In what follows we shall generalize this idea to a class of nonlinear problems via

local implicit problems of the type (1.1). The starting point is to rewrite (4.11) in
view of (4.12) in the form

(4.13) Mku = MkS′α = (S′ ⊗ · · ·⊗ S′)Mkα .

Here both S and S′ are linear operators, and S′ does not depend on the evaluation
point α0, see (2.1). If S is nonlinear, then S′ depends on the evaluation point α0

and (4.13) is not true anymore. However, S′(α0) ∈ L(Z,X) is still a bounded,
linear operator and the nonlinear version of (4.13) reads

(4.14) Mk[u− u0] ≈ Mk[S′(α0)(α− α0)] = (S′(α0)⊗ · · ·⊗ S′(α0))Mk[α− α0] .

In other words, Mk[S′(α0)(α − α0)] can be computed pursuing the same strategy
as in the linear case and requires only the knowledge of Mk[α − α0] and of a
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numerical procedure of approximate evaluation of the first variation at the nominal
pair (α0, u0),

S′(α0) = −
[
J ′
u(α0, u0)

]−1
J ′
α(α0, u0) = −Γ0J

′
α(α0, u0) .

Since the exact inverse Γ0 is usually not available, we interpret (4.14) as first order
tensorized operator equation for the k-th moment Mk[u− u0], i.e. we consider the
tensorized equation

(4.15) find Z(k) ∈ X(k) : G(k)
0 Z(k) = (−1)k[J ′

α(α0, u0)]
(k)Mk[α− α0]

where G0 = J ′
u(α0, u0). Based on (4.14), the solution Z(k) = Mk[S′(α0)(α − α0)]

of (4.15) should be a good approximation of Mk[u− u0]. By the definition of the
Fréchet derivative (2.1) we infer that the approximation must be good at least if
α belongs to a sufficiently small neighborhood of α0 as the following asymptotic
result shows.

Theorem 4.6. Suppose that the functional J and its derivatives satisfy the as-
sumptions of Theorem 3.2 and P

{
‖α(ω)− α0‖Z ≤ δ

}
= 1. Then

(4.16) ‖Mk[u− u0]−Mk[S′(α0)(α− α0)]‖X(k) = o(δk), δ → 0.

Proof. Due to Theorem 3.2, the solution operator S exist and is differentiable in
B(α0, δ) for δ < δ∗/2. According to (2.1) we have for u = S(α), u0 = S(α0) and
r = α− α0

u = u0 + S′(α0)r +R0(r), ‖R0(r)‖X = o(‖r‖Z).

Due to (4.9)

Mk[u− u0]−Mk[S′(α0)r] = E
[
(S′(α0)r +R0(r))

(k)
]
− E

[
(S′(α0)r)

(k)
]
.

Hence, by property of the cross-norm (4.8) and the binomial theorem

‖Mk[u− u0]−Mk[S′(α0)r]‖X(k) ≤ E
[ k∑

i=1

(
k

i

)
‖S′(α0)r‖k−i

X ‖R0(r)‖iZ
]

≤ E
[ k∑

i=1

(
k

i

)
‖S′(α0)‖k−i

Z→X‖r‖k−i
X ‖R0(r)‖iZ

]

≤ E
[
‖r‖kZ

] k∑

i=1

(
k

i

)
ξk−i
0 sup

‖r̃‖Z≤δ

(
‖R0(r̃)‖X

‖r̃‖Z

)i

.

If P
{
‖r(ω)‖Z ≤ δ

}
= 1 we have E

[
‖r‖kZ

]
≤ δk and

‖Mk[u− u0]−Mk[S′(α0)r]‖X(k)

δk
→ 0, δ → 0.

The proof is complete. !

The approximation (4.14) could be accurate even for large, possibly unbounded
values for α, provided such values occur with a small probability. For example, such
that the perturbation α − α0 is Lm-summable for m ≥ k sufficiently high. The
essential requirement here is local Lipschitz continuity of the Fréchet derivative of
the solution operator on the possibly unbounded set containing α0 in the sense of
(4.17). We give this result first for a nonlinear sufficiently smooth mapping F in
the following Lemma.
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Lemma 4.7. Suppose X,Z are Banach spaces, ∅ '= U ⊆ Z is open and α0 ∈ U .
Let F ∈ C1(U,X) be a nonlinear map for which F ′ is Lipschitz continuous at α0

in the following sense:

(4.17) ∃K > 0 : ‖F ′(α̃)− F ′(α0)‖Z→X ≤ K‖α̃− α0‖Z ∀α̃ ∈ U .

Assume that B := ‖F ′(α0)‖Z→X < ∞ and let α ∈ L0(Ω;Z) be a random field
satisfying P

{
α(ω) ∈ U

}
= 1.

(1) If α ∈ L2k(Ω,P;Z) for some k ∈ N, then

(4.18)
‖Mk

[
F (α)− F (α0)

]
−Mk

[
F ′(α0)(α− α0)

]
‖X(k)

≤
(
(B +K/2)k −Bk

)
max

m∈{k+1,...,2k}
‖α− α0‖mLm(Ω,P;Z) .

(2) If α ∈ Lk+1(Ω,P;Z) then

(4.19)

‖Mk
[
F (α)− F (α0)

]
−Mk

[
F ′(α0)(α− α0)

]
‖X(k)

≤ k

2
KBk−1

∗ ‖α− α0‖k+1
Lk+1(Ω,P;Z).

where B∗ := sup
α̃∈U

‖F ′(α̃)‖Z→X < ∞.

Proof. (1) Let r := α − α0 be a random increment such that r(ω) ∈ U − α0 P-
almost sure. In particular large realizations r(ω) are allowed, if U ⊆ Z is large. By
Theorem 2.3 we have in this case

F (α)− F (α0) =

∫ 1

0
F ′(α0 + rθ)r dθ.

This yields

Mk
[
F (α)− F (α0)

]
= E

[(∫ 1

0
F ′(α0 + r(ω)θ)r(ω) dθ

)(k) ]

= E
[ ∫

[0,1]k

k∏

i=1

F ′(α0 + r(ω)θi)r(ω) dθ1 . . . dθk

]
.

Thus

(4.20)

Mk
[
F (α)− F (α0)

]
−Mk

[
F ′(α0)r

]

= E
[ ∫

[0,1]k

{ k∏

i=1

F ′(α0 + r(ω)θi)r(ω)−
k∏

i=1

F ′(α0)r(ω)

}
dθ1 . . . dθk

]
.

For any fixed ω ∈ Ω and θ1, . . . , θk ∈ [0, 1] the term in the inner brackets equals to

k∑

j=1

( j−1∏

i=1

F ′(α0 + rθi)r

)(
F ′(α0 + rθj)r − F ′(α0)r

)( k∏

i=j+1

F ′(α0)r

)
=: ∆(ω).

Recalling definition of K,B we find ‖F ′(α̃)‖Z→X ≤ B+K‖α̃−α0‖Z for any α̃ ∈ U .
Thus we obtain by triangle inequality and by the definition (4.8) of the cross-norm

‖∆(ω)‖X(k) ≤ ‖r(ω)‖kX
k∑

j=1

( j−1∏

i=1

(B +Kθi‖r(ω)‖Z)
)(

Kθj‖r(ω)‖Z
)
Bk−j .(4.21)



FIRST ORDER k-TH MOMENT FE ANALYSIS 15

Inserting into (4.20) and integrating over θ1, . . . , θk we conclude

‖Mk
[
F (α)− F (α0)

]
−Mk

[
F ′(α0)r

]
‖X(k) ≤ E

[ ∫

[0,1]k
‖∆(ω)‖X(k) dθ1 . . . dθk

]
(4.22)

≤ E
[
‖r(ω)‖kZ

k∑

j=1

(
B +

K

2
‖r(ω)‖Z

)j−1K

2
‖r(ω)‖ZBk−j

]
.

By the binomial theorem the right-hand side equals to

= E
[
K

2
‖r(ω)‖k+1

Z

k∑

j=1

Bk−j
j−1∑

i=0

(
j − 1

i

)(
K

2
‖r(ω)‖Z

)i

Bj−i−1

]

=
k∑

j=1

j−1∑

i=0

(
j − 1

i

)(
K

2

)i+1

Bk−i−1E
[
‖r(ω)‖k+i+1

Z

]
.

In this expression only the binomial coefficient depends on j. Interchanging the
summation order we find for any numbers gi ∈ R

k∑

j=1

j−1∑

i=0

(
j − 1

i

)
gi =

k−1∑

j=0

j∑

i=0

(
j

i

)
gi =

k−1∑

i=0

k−1∑

j=i

(
j

i

)
gi =

k−1∑

i=0

(
k

i+ 1

)
gi.

Changing i+ 1 $→ i we obtain
(4.23)

‖Mk
[
F (α)− F (α0)

]
−Mk

[
F ′(α0)r

]
‖X(k) ≤

k∑

i=1

(
k

i

)(
K

2

)i

Bk−i‖r‖k+i
Lk+i(Ω,P;Z).

The right-hand side is finite if α ∈ L2k(Ω,P;Z) and admits the bound as in (4.18)
by the binomial theorem.

(2) The assertion (4.19) follows analogously. If F ′ is uniformly bounded, then
the estimate in (4.21) can be replaced by

‖∆(ω)‖X(k) ≤ kKθjB
k−1
∗ ‖r(ω)‖k+1

Z .

Inserting this in (4.22) yields (4.19). Note that the right-hand side in (4.19) is finite
if α ∈ Lk+1(Ω,P;Z), which is a weaker assumption as α ∈ L2k(Ω,P;Z) in (1). !

The following Theorem follows directly from Theorem 3.2 and Lemma 4.7.

Theorem 4.8. Suppose that the functional J and its derivatives satisfy the as-
sumptions of Theorem 3.2.

(1) If P{‖α(ω)− α0‖Z ≤ δ} = 1 then

(4.24)
‖Mk

[
S(α)− u0

]
−Mk

[
S′(α0)(α− α0)

]
‖X(k)

≤ δk((ξ0 + δK/2)k − ξk0 ) = O(δk+1).

(2) Suppose S′ satisfies the local Lipschitz condition

(4.25) ‖S′(α̃)− S′(α0)‖Z→X ≤ K‖α̃− α0‖Z ∀α̃ ∈ U,

where U ⊆ Z is an open (possibly large or unbounded) set. Assume that
α ∈ L0(Ω,P;Z) is a random field, such that P

{
α(ω) ∈ U

}
= 1.
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(a) If α ∈ L2k(Ω,P;Z), then

(4.26)

‖Mk
[
S(α)− u0

]
−Mk

[
S′(α0)(α− α0)

]
‖X(k)

≤ ((ξ0 +K/2)k − ξk0 ) max
m∈{k+1,...,2k}

‖α− α0‖mLm(Ω,P;Z).

(b) If α ∈ Lk+1(Ω,P;Z) and ξ∗ := sup
α̃∈U

‖S′(α̃)‖Z→X < ∞, then

(4.27)

‖Mk
[
S(α)− u0

]
−Mk

[
S′(α0)(α− α0)

]
‖X(k)

≤ k

2
Kξk−1

∗ ‖α− α0‖k+1
Lk+1(Ω,P;Z).

5. Sparse Tensor Galerkin Discretization

5.1. Formulation of k-moment equation. We address efficient sparse tensor
discretizations of the abstract first order k-th moment equation (4.15), that is

(5.1) G(k)
0 Z(k) = [−J ′

α(α0, u0)]
(k)Mkα in X(k) .

We recall that the solution Z(k) ∈ X(k) of (5.1) approximates Mku under smallness
assumptions on the fluctuation α− α0.

Throughout, we assume that X,Y, Z are reflexive Banach spaces and that the
sensitivity operator G0 ∈ L(X,Y ′) is boundedly invertible. This implies bounded

invertibility of G(k)
0 ∈ L(X(k), (Y (k))′). A necessary and sufficient condition for

bounded invertibility of G0 are the inf-sup conditions: there exists γ > 0 such that

(5.2) inf
0 *=v∈Y

sup
0 *=w∈X

〈v,G0w〉
‖v‖Y ‖w‖X

≥ γ, inf
0 *=w∈X

sup
0 *=v∈Y

〈v,G0w〉
‖v‖Y ‖w‖X

≥ γ.

Here and in what follows, 〈·, ·〉 denotes the Y ×Y ′ duality. To facilitate the discus-
sion, we associate with the sensitivity operator G0 the bilinear form

(5.3) g0(w, v) := 〈v,G0w〉 : X × Y → R .

Based on the general assumptions made so far, the form g0(·, ·) : X × Y $→ R is
continuous, and satisfies the inf-sup conditions (5.2). An immediate consequence of
(5.2) is the following quantification of well-posedness of the k-th moment equation
(4.15): with the stability constant γ > 0 from (5.2), it holds

(5.4)

inf
0 *=v∈Y (k)

sup
0 *=w∈X(k)

Y (k)〈v, [G0]
(k)w〉X(k)

‖v‖Y (k)‖w‖X(k)

≥ γk ,

inf
0 *=w∈X(k)

sup
0 *=v∈Y (k)

Y (k)〈v, [G0]
(k)

w
〉X(k)‖v‖Y (k)‖w‖X(k) ≥ γk .

This shows bounded invertibility of the tensorized operator G(k)
0 arising in the first

order k-th moment equation (4.15), however with condition which deteriorates ex-
ponentially with respect to the moment order k. We next address efficient discretiza-
tion of (4.15). To keep technicalities and exposition simple, we shall occasionally
impose the (restrictive) assumption of coercivity of G0:

(5.5) X = Y and ∃γ > 0 : ∀v ∈ X : g0(v, v) ≥ γ‖v‖2X .

Clearly, (5.5) implies (5.2) and (5.4). Note that X = Y does not imply G0 = G∗
0.
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5.2. Abstract Multilevel Galerkin Discretization. We present an abstract
Galerkin discretization of (5.1). We start with the case k = 1, and assume the
stability condition (5.2). The Galerkin discretization of (5.1) for k = 1 is based on
two dense, nested sequences

(5.6)
{
V X
$

}∞
$=0

⊂ X,
{
V Y
$

}∞
$=0

⊂ Y

of equal and finite dimension, i.e. N$ = dimV X
$ = dimV Y

$ < ∞ . In the elliptic
case (5.5), we have V X

$ = V Y
$ and we write V$ = V X

$ = V Y
$ .

We assume the discrete stability condition: there exists γ̄ > 0 and +0 ≥ 0 such
that for all + ≥ +0

(5.7) inf
0 *=v∈V Y

!

sup
0 *=w∈V X

!

〈v,G0w〉
‖v‖Y ‖w‖X

≥ γ̄ , inf
0 *=w∈V X

!

sup
0 *=v∈V Y

!

〈v,G0w〉
‖v‖Y ‖w‖X

≥ γ̄ .

Evidently, in the coercive case (5.5), the discrete stability conditions (5.7) hold with
+0 = 0 and with γ̄ = γ for any selection of subspaces V$.

The following result on the stability and the quasioptimality of Galerkin approx-
imations of (5.1) follows from the Lax-Milgram Lemma.

Proposition 5.1. Assume (5.2), (5.7). Then, for any L ≥ +0, and any k ≥ 1, the
tensorized k-linear Galerkin equations: find

Z(k)
L ∈ [V X

L ](k) ∀v ∈ [V Y
L ](k)

〈
v,G(k)

0 Z(k)
L

〉
= (−1)k

〈
v, [J ′

α(α0, u0)]
(k)Mkα

〉

admit a unique solution Z(k)
L ∈ [V X

L ](k) which converges quasioptimally to the unique
solution Z(k) ∈ X(k) of the first order, k-th moment equation (5.1). There holds

(5.8) ‖Z(k) − Z(k)
L ‖X(k) ≤

(
1 +

‖G0‖k

γ̄k

)
inf

wL∈[V X
L ](k)

‖Z(k) − wL‖X(k) .

Convergence rates can then be obtained in the usual fashion, once regularity of
Z(k) in (5.1) available. To state this in an abstract fashion, we embed X and Y ′

into two scales {Xs}s≥0 and {Y ′s}s≥0 of smoothness spaces of Besov type such that
(5.9)
X = X0 ⊃ X1 ⊃ X2 ⊃ ... ⊃ Xs ⊃ ... , Y ′ = Y ′0 ⊃ Y ′1 ⊃ Y ′2 ⊃ ... ⊃ Y ′s ⊃ ... .

Following [21, 24] we assume that the subspaces V X
$ admit the approximation prop-

erty: for u ∈ Xs and for every + ≥ 0 holds

(5.10) min
w!∈V X

!

‖u− w$‖X " Φ(N$, s)‖u‖Xs

where Φ(N, s) is a function tending monotonically to zero for every s > 0 (typically,
Φ(N, s) = N−s/d where s > 0 denotes a Sobolev resp. Besov smoothness order and
d ≥ 1 denotes the dimension of the computational domain in which the operator
G0 is defined).

Based on (5.10) and on the quasioptimality (5.8), convergence rates for the
approximation of Z(k) (and, by Theorem 4.6), also for Mk[u− u0].

To state the estimates, based on the smoothness scales (5.9), we introduce for

k ≥ 2 two families of tensorized smoothness scales: the “isotropic” scale [Xs](k)iso

and the “mixed” scale [Xs](k)mix as follows:

(5.11)
[Xs](k)iso := Xs ⊗X(k−1) ∩X ⊗Xs ⊗X(k−2) ∩ ... ∩X(k−1) ⊗Xs ,

[Xs](k)mix := Xs ⊗ ...(k − times)...⊗Xs .
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Then, for + ≥ +0 ≥ 0, a tensor product argument implies the convergence rate

(5.12) ‖Z(k) − Z(k)
L ‖X(k) ≤ CkΦ(NL, s)‖Z(k)‖

[Xs](k)
iso

where dim[V X
L ](k) = Nk

L, i.e. the full tensor product approximation of Z(k) con-
verges at the same rate for all k ≥ 1 (in particular, therefore, at the rate for the
mean field problem k = 1). However, the number of degrees of freedom used in
the full tensor approximation increases superlinearly with respect to NL for second
and higher order moments. In addition, the convergence estimates (5.12) require
only the “isotropic” regularity of order s of Z(k). However, the tensor structure of

the operator G(k)
0 implies, in fact, regularity of order s > 0 for Z(k) in the mixed

smoothness scales [Xs](k)mix.

Proposition 5.2. Assume (5.2) and that Γ0 := G−1
0 ∈ L(Y ′s, Xs) for some s > 0.

Then Γ(k)
0 = [G(k)

0 ]−1 ∈ L([Y ′s](k)mix, [X
s](k)mix) boundedly.

The mixed regularity Z(k) ∈ [Xs](k)mix is well known to allow for sparse tensor ap-
proximation at essentially the rate Φ(NL, s), however, from sparse tensor subspaces

V̂ X
L

(k) ⊂ [V X
L ](k) with substantially fewer degrees of freedom than dim([V X

L ](k)) =
Nk

L. Denoting for + ≥ 0 by

WX
$ = V X

$ \V X
$−1 , WY

$ = V Y
$ \V Y

$−1 ,

(with the convention that V X
−1 = V Y

−1 = ∅), the sparse tensor spaces V̂ X
L

(k), V̂ Y
L

(k)

are

(5.13) V̂ X
L

(k) :=
⊕

$1+...+$k≤L

k⊗

j=1

WX
$j , V̂ Y

L
(k) :=

⊕

$1+...+$k≤L

k⊗

j=1

WY
$j .

If N$ = dim(V X
$ ) = O(b$) for some basis b > 1 (in the context of multilevel or

wavelet methods considered below, b = 2d), it is easily verified that, as L → ∞,

(5.14) dim(V̂ X
L

(k)) = dim(V̂ Y
L

(k)) = O(NL(log(NL))
k−1) .

To harness the (generically available) additional regularity Z(k) ∈ [Xs](k)mix of the
solution of (5.1) and the superior approximation power of the sparse tensor prod-
uct spaces (5.13) in (nonadaptive) Galerkin approximation schemes, however, the
(fundamental) problem arises in the case X '= Y that the stability (5.7) in general
does not appear to imply a corresponding discrete inf-sup condition on the sparse

tensor product spaces V̂ X
L

(k), V̂ Y
L

(k). This stability problem does not appear in the
coercive case (5.5): there, coercivity and conformity of the Galerkin discretizations
are well-known to imply stability.

Theorem 5.3. Assume (5.2) and that G−1
0 ∈ L(Y ′s, Xs) for some s > 0. Assume

moreover that for k > 1 there exists L0 > 0 such that for all L ≥ L0 the tensorized

sensitivity operator G(k)
0 is stable on the pairs of sparse tensor product spaces V̂ X

L
(k),
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V̂ Y
L

(k), i.e. that there exists γ̄(k) > 0 such that

(5.15)

inf
0 *=v∈V̂ Y

L
(k)

sup
0 *=w∈V̂ X

L
(k)

〈v,G(k)
0 w〉

‖v‖Y (k)‖w‖X(k)

≥ γ̄(k) ,

inf
0 *=w∈V̂ X

L
(k)

sup
0 *=v∈V̂ Y

L
(k)

〈v,G(k)
0 w〉

‖v‖Y (k)‖w‖X(k)

≥ γ̄(k) .

Then the sparse tensor Galerkin approximations: find Ẑ(k)
L ∈ V̂ X

L
(k) such that for

all v ∈ V̂ Y
L

(k) holds
〈
v,G(k)

0 Ẑ(k)
L

〉
= (−1)k

〈
v, [J ′

α(α0, u0)]
(k)Mkα

〉

admits a unique solution Ẑ(k)
L ∈ V̂ X

L
(k). This solution converges quasioptimally,

i.e. ∥∥∥Z(k) − Ẑ(k)
L

∥∥∥
X(k)

" (γ̄(k))−1 inf
w∈V̂ X

L
(k)

∥∥∥Z(k) − w
∥∥∥
X(k)

" (γ̄(k))−1(logNL)
k−1
2 Φ(NL, s)

∥∥∥Z(k)
∥∥∥
[Xs](k)

mix

with the number of degrees of freedom bounded by (5.14).

In the remainder of this paper, we illustrate the foregoing abstract theory with an
example of the random solution to a nonstationary diffusion equation in a class of
stationary, smooth and bounded (this could be weakened) random domainsD ⊂ Rd,
d ≥ 2.

6. Nonstationary heat equation in random domain

A broad class of applications of the abstract theory which we developed in sec-
tions 2 - 5 consists of boundary value problems in random domains. Here, the
dependence of solutions on the domain is generically nonlinear, even for linear par-
tial differential equations. The sensitivity operator G0 = J ′

α(α0, u0) is the shape
derivative of the random solution evaluated at the nominal domain. The idea to
use shape derivatives in first order second moment calculus was first proposed and
developed in [12]. The rather well-developed shape calculus as presented e.g in [19]
(see also [13]) immediately yields broad classes of applications. By the Hadamard
formula (e.g. [19, Thm. 2.27]), if the only source of randomness resp. uncertainty
in the problem of interest is the shape of the domain D, the shape derivative (and,
hence, all linearizations of the sensitivity operator G0) takes the form of a linear
boundary value problem without source terms in the nominal domain D0. This,
and the necessity for sparse tensor spaces in the efficient Galerkin approximation
of k-point correlation functions mandate boundary integral equation reformulations
and their Galerkin discretization by multiresolution schemes on the boundary ∂D0

of the nominal domain. Such multiresoltion schemes have the additional advan-
tage that they allow for compression of the Galerkin discretization of G0 which,
in boundary integral formulations, is a nonlocal operator on ∂D0. For a station-
ary diffusion equation, this program was developed in [12]. Here, we extend this to
time-dependent diffusion in a random domain. We consider here only time indepen-
dent random perturbations of D0 (and thereby avoid having to introduce stochastic
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processes). We proceed along the lines of [12]: a) shape gradient and determination
of G0, b) boundary reduction of the first order perturbation problem and c) sparse
tensor Galerkin discretization of the boundary reduced problem.

6.1. Shape Calculus. As reference for the shape calculus, we follow [19, Chapter
3.4] and let D ⊂ Rd (d ≥ 2) denote a bounded domain with smooth boundary
∂D and with exterior unit normal vector field n, and with T > 0 a finite time
horizon, I = (0, T ) the time interval of interest, and denote by Q = D × I the
space-time cylinder. Of particular relevance in the following will be the “mantle”
Σ = ∂D × I of Q. In Q, we consider the linear, diffusion initial-boundary value
problem with either Dirichlet- or Neumann boundary conditions: given f ∈ L2(Q)
and y0 ∈ L2(D), find y = y(x, t) such that

(6.1)

∂y

∂t
−∆y = f in Q,

γ1y =
∂y

∂n
= 0 on Σ,

y(x, 0) = y0(x) in D.

Here and in what follows, γ1 denotes the (co)normal derivative on the boundary of
the nominal domain, ∂D.

The weak form of (6.1) is as follows: find y(t) ∈ H1(D) such that for all v ∈
H1(D) holds

(6.2)

∫

D

(
v
∂y

∂t
+∇y ·∇v

)
dx =

∫

D
fv dx a.e. t ∈ I,

y(0) = y0 in L2(D).

It is well-known that (6.2) admits a unique weak solution y ∈ W (I;H1(D)) where,
for any H1

0 (D) ⊆ H ⊆ H1(D), the Bochner space W (I;H) is given by

W (I;H) =

{
φ ∈ L2(I;H)

∣∣∣∣
∂φ

∂t
∈ L2(I;H ′)

}
.

Moreover, W (I;H) ⊂ C0(I;L2(D)) with continuous injection so that the initial
condition in (6.2) is well-defined.

Analogously, the Dirichlet problem reads: given f ∈ L2(Q) and w0 ∈ L2(D),
find w = w(x, t) such that

(6.3)

∂w

∂t
−∆w = f in Q,

γ0w = w
∣∣
Σ
= 0 on Σ,

w(x, 0) = w0(x) in D.

In weak form: find w(t) ∈ H1
0 (D) such that for all v ∈ H1

0 (D) holds

(6.4)

∫

D

(
v
∂w

∂t
+∇w ·∇v

)
dx =

∫

D
fvdx a.e. t ∈ I,

w(0) = w0 in L2(D).

Then (6.4) admits a unique weak solution y ∈ W (I;H1
0 (D)).
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To compute the shape derivatives of y and w, we use the speed method: we
transport the nominal domain D under a smooth flow and assume that the (de-
terministic) data f and y0 are given in all of Rd (rendering the diffusion prob-
lem meaningful on the perturbed domains). Specifically, for ε > 0 sufficiently
small, given a velocity field V ∈ C∞(Rd;Rd) and the one parameter family Ds =
Ts(V )(D) := {Ts(V )(x)|x ∈ D} of transported domains under the flow Ts(V ). For
ε > 0 sufficiently small, Ds is smoothly diffeomorphic to D = D0 under Ts(V ) for
s ∈ [0, ε).

As shown in [19, Lemma 3.7], the shape derivative y′ of the solution y to the
Neumann problem (6.1) with domain perturbation in direction V is the solution of
an instationary Neumann problem. With γ1 denoting the (distributional) conormal
derivative on Σ, it reads: find y′ such that
(6.5)

∂y′

∂t
−∆y′ = 0 in Q,

γ1y
′ = y′Σ[V · n] := γ0

(
−∂y

∂t
+ f

)
(V · n) + div∂D ((V · n)∇∂Dγ0y) on Σ,

y′(x, 0) = 0 in D.

Using [19, Proposition 2.68], we obtain the alternative representation

(6.6) y′Σ[V · n] = ∇∂D(V · n) ·∇∂Dγ0u− (V · n)∂
2y

∂n2
on Σ .

We remark that even for ∂D ∈ C∞ and smooth f and y0, this Cauchy data develops
a singularity at t = 0, unless f and y0 satisfy certain compatibility conditions at
{t = 0} ∩ ∂D.

Analogously, the shape derivative w′ of the solution w of the Dirichlet problem
(6.3) solves the following nonhomogeneous, instationary Dirichlet problem (see [19,
Lemma 3.9]):

(6.7)

∂w′

∂t
−∆w′ = 0 in Q,

γ0w
′ = w′

Σ[V · n] := −(V · n)γ1w on Σ,

w′(x, 0) = 0 in D.

As already observed by J. Hadamard [10], the Cauchy data y′Σ and w′
Σ for both

shape derivatives, (6.5) and (6.7), depends linearly only on the normal component
α = V · n of the perturbation field. Accordingly, we assume in what follows that
random domain perturbations are defined by a speed field V of the form V =
α(x,ω)n where n denotes the exterior unit normal to the smooth, nominal domain
D0 = D, and where the scalar function α is a smooth random field on ∂D with
mean zero and known two-point correlation function M2[α] = E[α(x, ·)⊗α(x′, ·)] :
∂D × ∂D $→ R. We also observe that both the Dirichlet and Neumann shape
derivative problems (6.5) and (6.7) have homogeneous source terms and initial
conditions.

6.2. Boundary Reduction. To develop optimal complexity Galerkin discretizations
for the k-point correlation functions, we reduce (6.5) and (6.7) in the space time
cylinder Q to first kind variational boundary integrodifferential equations on the
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lower dimensional cylinder ‘mantle’ Σ, following [7] (see also [1] and [4]). Denote

(6.8) E(t, x) := (4πt)−d/2 exp(−|x|2/4t)ϑ(t)

the fundamental solution of the heat operator. Here ϑ(t) = 1
2 (1 + sign(t)) de-

notes the Heaviside function. By κt0 we denote the time-reversal map given by
κt0v(t, x) := v(t0− t, x) . Then, for solutions u(x, t) of the homogeneous heat equa-
tion there holds the representation formula

(6.9) u = K0(γ1u)−K1(γ0u) in Q ,

where, for (t0, x0) ∈ Q the single layer heat potential K0 and the double layer heat
potential K1 is defined by

K0(ϕ)(t0, x0) := 〈ϕ, γ0κt0v〉 , K1(w)(t0, x0) := 〈γ1κt0v, w〉

with v(t, x) = E(t, x0−x). For the formulation of the variational boundary integral
equations, certain anisotropic Sobolev spaces on Σ = ∂D0 × I are required: for
r ≥ 0, we denote by

(6.10)
H̃r,r/2(Σ) := L2(I;Hr(∂D)) ∩ H̃r/2(I;L2(∂D))

> L2(I)⊗Hr(∂D) ∩ H̃r/2(I)⊗ L2(∂D)

where ⊗ denotes the usual tensor product of separable Hilbert spaces and where
H̃r(I) = {v ∈ Hr(I)|ṽ ∈ Hr(−∞, T )} with ṽ denoting the extension of v by zero
to the negative real axis. Note that for r < 1/2 holds H̃r(I) > Hr(I). The space
H̃r,r/2(Q) is defined analogously. To formulate the boundary integral equations,
we introduce for (x, t) ∈ Σ the weakly singular and the hypersingular boundary
integral operators:

(6.11)
(Sσ)(x, t) :=

∫ t

0

∫

∂D
σ(y, τ)(γ0,yE)(x− y, t− τ)dsydτ ,

(Hµ)(x, t) := −γ1,x

∫ t

0

∫

∂D
µ(y, τ)(γ1,yE)(x− y, t− τ)dsydτ .

Here, γ0,y denotes the trace operator taken with respect to the spatial variable
y, and γ1,x denotes the (co)-normal derivative operator taken with respect to the
spatial variable x. It is by now classical that the operators S and H in (6.11) are
continuous and boundedly invertible in anisotropic Sobolev spaces on Σ = ∂D0 × I
[7, Theorem 3.7, Theorem 4.16]. Specifically, it is shown there that the following
operators are bijective for every |s| < 1/2:

(6.12)
S : H̃−1/2+s,(−1/2+s)/2(Σ) → H̃1/2+s,(1/2+s)/2(Σ) ,
H : H̃1/2+s,(1/2+s)/2(Σ) → H̃−1/2+s,(−1/2+s)/2(Σ) .

The Sobolev range of bijectivity |s| < 1/2 can be enlarged to arbitrary s > 0 for
smooth ∂D ∈ C∞, according to [7, Proposition 4.3]. The boundary reduction of
the shape derivative problems (6.7), (6.5) is now straightforward (see [7, Corollary
3.16c), 3.17d)]): the unique variational solution w′ of the Dirichlet problem (6.7)
can be represented as

(6.13) w′ = K0ψ , where Sψ = w′
Σ[V · n] ,

and the unique solution of the Neumann problem as

(6.14) y′ = K1ζ , where Hζ = −y′Σ[V · n]
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with w′
Σ and y′Σ as in (6.7), (6.5) respectively. The unique solvability of the bound-

ary integral equations (6.13) and (6.14) is ensured by the following coercivity prop-
erties of the weakly singular boundary integral operator S and of the hypersingular
boundary integral operatorH (see [7, Corollary 3.13]): there exists a constant γ > 0
such that

(6.15) ∀ψ ∈ H−1/2,−1/4(Σ) : 〈ψ, Sψ〉 ≥ γ‖ψ‖2H−1/2,−1/4(Σ) ,

and, with 〈·, ·〉 denoting the corresponding duality pairings,

(6.16) ∀ζ ∈ H1/2,1/4(Σ) : 〈ζ, Hζ〉 ≥ γ‖ζ‖2H1/2,1/4(Σ) .

For a given, smooth velocity field V ∈ C∞(∂D0;R3), the unique solution w′ of the
Dirichlet problem (6.3) is given by w′ = K0ψ where the unknown surface density
ψ is the solution of the variational first kind boundary integral equation: find

(6.17) ψ ∈ H−1/2,−1/4(Σ) : 〈ψ̄, Sψ〉 = 〈ψ̄, w′
Σ[V · n]〉 ∀ψ̄ ∈ H−1/2,−1/4(Σ) .

By (6.15), the BIE (6.17) admits a unique solution for every w′
Σ[V ·n] ∈ H1/2,1/4(Σ).

Moreover, by [7] if w′
Σ[V ·n] ∈ H1/2+s/2,1/4+s/4(Σ) with s > 0 this solution belongs

to H−1/2+s/2,−1/4+s/4(Σ).
Analogously, the variational formulation of (6.14) reads: find

(6.18) ζ ∈ H1/2,1/4(Σ) : 〈ζ̄, Hζ〉 = −〈ζ̄, y′Σ[V · n]〉 ∀ζ̄ ∈ H1/2,1/4(Σ) .

By (6.16), for every y′Σ[V · n] ∈ H−1/2,−1/4(Σ), the BIE (6.18) admits a unique
solution ζ ∈ H1/2,1/4(Σ) and if y′Σ[V · n] ∈ H−1/2+s/2,−1/4+s/4(Σ) for s > 0 we
have ζ ∈ H1/2+s/2,1/4+s/4(Σ).

6.3. Sparse space-time Galerkin discretization. The coercivity (6.15) and
(6.16) of the first kind boundary integral operators S and H implies stability and
quasioptimality of Galerkin discretizations of the BIEs (6.17), (6.18) (e.g. [18]) for
any closed subspace Vh of V = H±1/2,±1/4(Σ). For brevity of exposition, we develop
the sparse tensor discretization only for the Galerkin BEM for the BIE (6.18) of
the Neumann problem (6.5). Analogous results (and proof) hold for BIE (6.17)
for the Dirichlet problem (6.7). To connect to the abstract Galerkin discretization
framework in Section 5.2, we note that here X = Y = V = H1/2,1/4(Σ) and, due
to the ellipticity (6.16), for any closed subspace Vh ⊂ H1/2,1/4(Σ), the Galerkin
equations

(6.19) ζh ∈ Vh : 〈ζ̄h, Hζh〉 = −〈ζ̄h, y′Σ[V · n]〉 ∀ζ̄h ∈ Vh .

are uniquely solvable and the Galerkin solutions ζh ∈ Vh are quasioptimal, i.e.

(6.20) ‖ζ − ζh‖H1/2,1/4(Σ) ≤ γ−1 inf
vh∈Vh

‖ζ − vh‖H1/2,1/4(Σ) .

Key to efficient Galerkin discretizations is therefore the proper choice of Vh. Owing
to the (Cartesian) product structure of ∂D×I, finite dimensional subspaces Vh can
be constructed from tensor products of hierarchic multilevel subspaces of piecewise
polynomials of degree p ≥ 1 which are continuous in case of V = H1/2,1/4(Σ) and
of degree q ≥ 0 which are possibly discontinuous in case of V = H−1/2,−1/4(Σ).
Our generic notation for these spaces is as follows:

V x
0 ⊂ V x

1 ⊂ ... ⊂ V x
$ ⊂ L2(∂D) , V t

0 ⊂ V t
1 ⊂ ... ⊂ V t

$ ⊂ L2(I)

Here, + denotes ‘level of mesh refinement’, and we have in mind piecewise polynomial
functions on uniformly refined meshes of widths 2−$x and 2−$t , respectively.
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Starting point for sparse space-time tensor Galerkin discretizations of the BIEs
(6.17) and in (6.18) are multilevel decompositions of the hierarchies {V x

$ }∞$=0 and
{V t

$ }∞$=0, respectively: for every level L ≥ 1, we have

(6.21) V x
L = W x

0 ⊕W x
1 ⊕ ...⊕W x

L , V t
L = W t

0 ⊕W t
1 ⊕ ...⊕W t

L

where we assume that we are explicitly given bases for the “detail” spaces W x
$ and

W t
$ (such bases are explicitly available, for example, in terms of hierarchic Finite

Element bases or in terms of spline-wavelet bases as e.g. developed in [4]).
We build the family {V̂$}∞$=0 ⊂ H1/2,1/4(Σ) of sparse tensor subspaces from the

hierarchies (6.21) by

(6.22) V̂L :=
⊕

$x+$t≤L

W x
$x ⊗W t

$t ⊂ V = H1/2,1/4(Σ) , L = 1, 2, ...

The corresponding (unique, by (6.16)) Galerkin solution of (6.19) with the sub-
space V̂L defined in (6.22) will be denoted by ζ̂L. By the quasioptimality (6.20)
and our regularity assumptions, the rate of convergence will be determined by the
consistency of the family {V̂$}$≥1 for smooth ζ, i.e. we assume

(6.23) ζ ∈ H1/2+s/2,1/4+s/4(∂D0 × I) for all s ≥ 0 .

In order to bound the convergence rates, we use that the anisotropic spaces (6.10)
are intersection spaces and, therefore, are equipped with the sum-norms

‖ζ − ζ̂L‖H1/2,1/4(Σ) > ‖ζ − ζ̂L‖H1/2,0
mix (Σ)

+ ‖ζ − ζ̂L‖H0,1/4
mix (Σ)

where the spaces Hs,t
mix(Σ) of “square integrable, mixed highest derivative” are as

in e.g. [11] defined by the tensor products: Hs,t
mix(Σ) := Hs(∂D0)⊗Ht(I). We may

therefore apply [11, Theorem 7.1] (with σ = 1, q1 = 1/2, q2 = 0, r1 = r2 = p + 1)
to obtain that for ζ ∈ Hs1,s2

mix (Σ) there exists a (quasi)interpolant ζ̂L ∈ V̂L such that
for every 1/2 < sx ≤ p+ 1, 1/4 < st ≤ p+ 1 holds

‖ζ − ζ̂L‖H1/2,0
mix (Σ)

" 2−Lmin{sx−1/2,st}‖ζ‖Hsx,st
mix (Σ)

and
‖ζ − ζ̂L‖H0,1/4

mix (Σ)
" 2−Lmin{sx,st−1/4}‖ζ‖Hsx,st

mix (Σ)

which implies that for 1/2 < sx ≤ p+ 1, 1/4 < st ≤ p+ 1

(6.24) ‖ζ − ζ̂L‖H1/2,1/4(Σ) " 2−Lmin{sx−1/2,st−1/4}‖ζ‖Hsx,st
mix (Σ) ,

while, for d = 3 ([11, Theorem 4.1]), as L → ∞ we have

(6.25) N̂L := dim(V̂L) " 2L(d−1) ,

i.e. the number of degrees of freedom of the sparse tensor product space V̂L on

Σ scales, as L → ∞, as O(h−(d−1)
x ), i.e. of a boundary element spaces on ∂D0

with uniform mesh of meshwidth hx (equation (6.25) remains valid also for d = 2,
with a logarithmic factor). We sum up these results in the (slightly conservative)
asymptotic bounds for the Galerkin discretization error

(6.26)
‖ζ − ζ̂L‖H1/2,1/4(Σ) " 2−L(p+1/2)‖ζ‖

H
p+1,p+3

4
mix (Σ)

" N̂−(p+1/2)/(d−1)
L ‖ζ‖

H3p+5
2
, 3
2
p+5

4 (Σ)

which is, again, the convergence rate afforded by a Galerkin boundary element
discretization of a hypersingular boundary integral equation on a domain D0 ⊂ Rd
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by continuous, piecewise polynomial boundary elements of degree p ≥ 1 on ∂D0.
Given the rather high smoothness of the heat kernel E(t, x) in (6.8), by choosing
wavelet bases for the detail spaces W x

$ and W t
$ in the decompositions (6.21) which

have a sufficiently high number of vanishing moments, the stiffness matrices of the
boundary integral operators H (and of S) can be compressed to O(N̂L) many non-
vanishing entries without compromising the convergence rate (6.26). In addition,
with the wavelets being Riesz bases in the spaces L2(I) and L2(∂D0), respectively,
and, properly scaled, also inH1/4(I) and inH1/2(∂D0), the matrices of the Galerkin
discretized operator S and H have condition numbers which are uniformly bounded
with respect to L, allowing for optimal complexity solvers. In particular, if

{φx
λ : λ ∈ ∇x} ⊂ H1/2(∂D0), {φt

µ : µ ∈ ∇t} ⊂ H1/4(I)

are collections of functions being normalized Riesz bases for L2(∂D0) and L2(I)
respectively, then the collection

(6.27)




(x, t) $→
φx
λ(x)φ

t
µ(t)√

‖φx
λ‖2H1/2(∂D0)

+ ‖φt
µ‖2H1/4(I)

: (λ, µ) ∈ ∇x ×∇t






is a Riesz basis for H1/2,1/4(Σ) (see, e.g. [9, 25, 23] for details).
Naturally, ζ̂L is only an approximate density on Σ. Information on the solution

inside the space-time cylinder Q must be extracted by inserting ζ̂L into the repre-
sentation formula (6.14); this, in fact, allows for superconvergent approximations of
u(x, t) as follows by an Aubin-Nitsche duality type argument for the Galerkin BIE
(6.18). (see [22] for details on this in the elliptic setting).

6.4. Sparse space-time Galerkin discretization for the k-th moment equa-
tion. Tensorization of (6.13), (6.14) yields

(6.28) Mk[w′] = K(k)
0 Mk[ψ] , where S(k)Mk[ψ] = (w′

Σ)
(k)Mk[V · n] ,

and

(6.29) Mk[y′] = K(k)
1 Mk[ζ] , where H(k)Mk[ζ] = (−y′Σ)

(k)Mk[V · n] .

As discussed in Section 5, the coercivity (6.15), (6.16) of the boundary integral
operators S and H implies well-posedness of (6.28) and (6.29) and stability and
quasioptimality of Galerkin discretizations of the k-th moment BIE. We again work
out the details for the Neumann problem (6.5) and (6.29). Analogous results also
hold for (6.7) and (6.28).

Suppose V̂L is a family of sparse tensor subspaces defined in (6.22). We introduce

(6.30) ̂̂VL
(k) :=

⊕

L1+...+Lk≤L

k⊗

j=1

ŴLj ⊂ V (k), V = H1/2,1/4(Σ)

with the “detail” spaces

(6.31) ŴLj := V̂Lj \ V̂Lj−1 =
⊕

$x+$t=Lj

W x
$x ⊗W t

$t .

Due to (6.16) the Galerkin equations

(6.32) ζ(k)L ∈ ̂̂VL
(k) : 〈v,H(k)ζ(k)L 〉 = (−1)k〈v, (y′Σ)(k)[V · n]〉 ∀v ∈ ̂̂VL

(k)
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are uniquely solvable and the Galerkin solutions ζ(k)L ∈ ̂̂VL
(k) are quasioptimal, i.e.

for d = 3 (6.26) yields
(6.33)

‖Mk[ζ]− ζ(k)L ‖[H1/2,1/4(Σ)](k) ≤ γ−k inf
vL∈̂̂VL

(k)

‖Mk[ζ]− vL‖[H1/2,1/4(Σ)](k)

" γ−kL
k−1
2 2−L(p+1/2)

∥∥Mk[ζ]
∥∥
[Hr,r/2(Σ)](k)

mix

where r = 3p+ 5
2 . As L → ∞, the cardinality of ̂̂VL

(k) scales as

dim(̂̂VL
(k)) ∼ log(N̂L)

k−1N̂L " Lk−12L(d−1),

i.e. (up to a logarithmic factor) as the cardinality of the boundary element space
on ∂D0 with the uniform meshwidth hx ∼ 2−L.

The approximation Y ′
L to Mk[y′] is defined via the representation formula

(6.34) Y ′
L := K(k)

1 ζ(k)L .

The mapping K1 : H1/2,1/4(Σ) → H̃1,1/2(Q) is continuous, thus

‖Mk[y′]− Y ′
L‖[H1,1/2(Q)](k)

mix
≤ ‖K1‖k‖Mk[ζ]− ζ(k)L ‖[H1/2,1/4(Σ)](k) .

Finally, we utilize (4.24) from Theorem 4.8 and obtain by the triangle inequality
the error estimate for the k-th moment:
(6.35)

‖Mk[
ys − y0

s
]− Y ′

L‖[H1,1/2(Q)](k)
mix

≤ ‖Mk[
ys − y0

s
]−Mk[y′]‖

[H1,1/2(Q)](k)
mix

+ ‖Mk[y′]− Y ′
L‖[H1,1/2(Q)](k)

mix

≤ (δ/s)k((ξ0 + δK/2)k − ξk0 ) + C‖K1‖L
k−1
2 2−L(p+1/2)

∥∥Mk[ζ]
∥∥
[Hr,r/2(Σ)](k)

mix

where ys is the exact solution of (6.1) in the perturbed spatial domain Ds =
Ts(V )(D), see Subsection 6.1. The constants ξ0, K and δ were explicitly defined in
Section 4 and depend on the size of the random boundary perturbation α.

Remark 6.1. The bound (6.35) tells that the level L of the Finite Element dis-

cretization ̂̂VL
(k) should balance the linearization error represented by the first term

in the right-hand side of (6.35) L = Lopt. For L > Lopt the linearization error
dominates the total error in (6.35) and further refinement will not provide a better
approximation of the k-th moment Mk[ys−y0

s ].

The linearization error depends on ξ0, K and δ. In the next subsection we
exemplify the abstract linearization error bounds by giving explicit values of these
constants for the parabolic model problem under consideration.

6.5. Bounds on the linearization error. We recall definitions (3.1), (3.19) and
Theorem 4.8(1) of the constants ξ0, K and δ. For the parabolic model problem
(6.1), the spaces X, Y , Z from Section 4 are given by

(6.36)
X := H̃1, 12 (Q, ∂

∂t −∆) :=
{
u ∈ H̃1, 12 (Q) | ( ∂

∂t −∆)u ∈ L2(Q)
}
,

Y := H̃1, 12 (Q), Z := Ck(Rd)
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with k ≥ 1 being sufficiently large. Note that {u ∈ W (I,H1(D))|u(x, 0) = 0} ⊂
H̃1, 12 (Q) by interpolation. In this setting we have

ξ0 = ‖Γ0J
′
α(α0, y0)‖Ck(Rd)→H1, 1

2 (Q)
= sup

α∈Ck(Rd)

‖y′0(α)‖H1, 1
2 (Q)

‖α‖Ck(Rd)

and

‖y′ − y′0‖Ck(Rd)→H1, 1
2 (Q)

≤ K‖α− α0‖Ck(Rd).

To avoid ambiguity we denote here by y′0 the solution of (6.5) in the nominal domain
D = D0 corresponding to the zero perturbation α0 = 0 whereas y′ the solution of
(6.5) on the perturbed domain Ds = Ts(V )(D) corresponding to the perturbation
parameter α. First, we derive an explicit bound for ξ0. By continuity of K1 and
coercivity (6.16) of H we obtain

‖y′‖H1,1/2(Q) ≤ ‖K1‖‖ζ‖H 1
2
, 1
4 (Σ)

≤ ‖K1‖
γ

‖y′Σ[α]‖H− 1
2
,− 1

4 (Σ)

and by (6.6)

‖y′Σ[α]‖H− 1
2
,− 1

4 (Σ)
≤ ‖α‖W 1,∞(∂D)

(
‖∇∂Dγ0y‖H− 1

2
,− 1

4 (Σ)
+

∥∥∂
2y

∂n2

∥∥
H− 1

2
,− 1

4 (Σ)

)
.

Thus

(6.37) ξ0 =
‖K1‖
γ

(
‖∇∂Dγ0y‖H− 1

2
,− 1

4 (Σ)
+
∥∥∂

2y

∂n2

∥∥
H− 1

2
,− 1

4 (Σ)

)

provided the nominal solution y is sufficiently regular.
Next, we identify the local Lipschitz constant K. If the second shape derivative

of y exists, then

K = sup
‖α‖Ck(Rd)≤δ

‖y′′(α)‖
Ck(Rd)×Ck(Rd)→H1, 1

2 (Q)
.

The second shape derivative of y′′ can be identified as a solution of the following
problem:

(6.38)

∂y′′

∂t
−∆y = 0 in Qs

∂y′′

∂n
= y′′Σ[V · n,W · n] on Σs

y′′(x, 0) = 0 in Ds

where

(6.39)
y′′Σ[α,β] = −αβ

∂3y

∂n3
+∇∂Dsβ ·∇∂Dsy

′[α]− β
∂2y′[α]

∂n2
s

+∇∂Dsα ·∇∂Dsy
′[β]− α

∂2y′[β]

∂n2
s

.

Similarly as above, we obtain

(6.40)

K =
‖K1‖
γ

(
‖∇∂Dsy

′[·]‖
Ck(Rd)→H− 1

2
,− 1

4 (Σ)

+
∥∥∂

2y′[·]
∂n2

s

∥∥
Ck(Rd)→H− 1

2
,− 1

4 (Σ)
+
∥∥∂

3y

∂n3
s

∥∥
H− 1

2
,− 1

4 (Σ)

)
.
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The value of k in (6.36) and (6.40) must be chosen so that the operator norms in
the right-hand side of (6.40) remain bounded. By (6.14) this task reduces to the
study of the mapping properties of non-classical boundary integral operators

∇∂DK1, and
∂2

∂n2
K1

which is beyond the scope of the present paper, see [7] for more details.

7. Concluding remarks

In this paper we provide the first order k-th moment analysis for nonlinear
operator equations with random data. In Section 3 we studied solvability of a
general nonlinear parametric equation in Banach spaces for varying parameters
and obtained precise estimates on the size of the neighborhoods where the solution
operator is well defined (Theorem 3.1, Theorem 3.2). These results are new and
provide a generalization of the classical Implicit Function Theorem.

In Section 4 this result has been applied to abstract nonlinear equations in Ba-
nach spaces with random parameters. We established precise non-asymptotic error
bounds with explicit constants for the magnitude of the linearization error for the
k-th moment equation (see Theorem 4.8 being a generalization of the asymptotic
estimate in Theorem 4.6).

In Section 5 we introduced an abstract multilevel Galerkin discretization for the
linearized k-th moment equations. As a result of Theorem 5.3, the k-th moment
equation in the k-fold product domain can be solved at essentially the same cost as
a single linearized problem in the original non-tensorized domain.

In Section 6 we applied the general methodology to model nonstationary non-
homogeneous parabolic equations in randomly perturbed domains. By means of
Shape Calculus for the underlying partial differential equations we obtain a for-
mulation for the shape derivative of the solution which does not contain source
terms. It can, therefore, be efficiently treated numerically via boundary reduction
to strongly positive first kind boundary integral equations on the boundary of the
space-time cylinder.

We introduce sparse tensor product Galerkin discretizations of these bound-
ary integral equations. Sparsity enters here on two levels: first, the space and
time discretizations are performed by sparse tensorization, thereby compressing
the Galerkin approximation unknown surface density to a format with complexity
equal to that of a boundary integral equation of a stationary problem.

Second, the hierarchic multilevel space-time tensor basis allows to exploit the
mixed regularity of the k-point correlations functions. This leads to a priori er-
ror estimates for the resulting nonstationary k-th moment equation which equal,
up to logarithmic terms, those for the mean field of a stationary diffusion prob-
lem on the boundary of the physical domain. In particular, we solve the second
moment problem for a three-dimensional nonstationary heat conduction, being an
eight-dimensional problem, with the same error versus number of unknowns as a
stationary diffusion problem in a two-dimensional domain. Finally, we derive a
bound for the total error (6.35) with explicit bounds for the linearization and the
discretization errors.

We solved the problems on the boundary of the space-time cylinder using bound-
ary reduction via first kind boundary integral equations. Their stability in parabolic
trace spaces is a result of the coercivity of the underlying integral operators. An
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alternative approach using boundary integral equations of the second kind is also
possible.
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