
ETH Library

Refining Key Establishment

Conference Paper

Author(s):
Sprenger, Christoph; Basin, David

Publication date:
2012

Permanent link:
https://doi.org/10.3929/ethz-a-007593074

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
https://doi.org/10.1109/CSF.2012.21

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-007593074
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1109/CSF.2012.21
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Refining Key Establishment

Christoph Sprenger and David Basin
Institute of Information Security, ETH Zurich

Email: {sprenger,basin}@inf.ethz.ch

Abstract—We use refinement to systematically develop a
family of key establishment protocols using a theorem prover.
Our development spans four levels of abstraction: abstract
security properties, message-less guard protocols, protocols
communicating over channels with security properties, and
protocols secure with respect to a Dolev-Yao intruder. The
protocols we develop are Needham-Schroeder Shared Key, the
core of Kerberos 4 and 5, and Denning Sacco, and include
realistic features such as key confirmation, replay caches, and
encrypted tickets. Our development highlights that message-
less guard protocols provide a fundamental abstraction for
bridging the gap between security properties and message-
based protocol descriptions. It also shows that the refinement
approach presented in [1] can be applied, with minor adaption,
to families of key establishment protocols and that it scales to
protocols of nontrivial size and complexity.

I. INTRODUCTION

The fact that the development of even simple security
protocols is error prone motivates the use of formal methods
to ensure their security. The past decade has witnessed
significant progress in post-hoc verification methods for
protocol security based on model checking and theorem
proving such as [2]–[5]. However, methods for developing
security protocols lag behind and protocol design remains
more an art than a science.

In our view, a development method should be systematic
and hierarchical, meaning that the development is decom-
posed into smaller steps that are easy to understand. These
steps should span well-defined abstraction levels leading
the developer from the requirements down to cryptographic
protocols. The resulting protocols should be secure in
well-established attacker models and such claims should
ideally be supported by machine-checked formal proofs.
Stepwise refinement provides such a hierarchical devel-
opment method. However, most existing refinement-based
approaches to developing security protocols [6]–[11] fall
short of at least one of these desiderata.

We have recently proposed a method for developing
security protocols by stepwise refinement so that they are
correct by construction [1]. The method consists of a four-
level refinement strategy, summarized in Table I, which
allows the developer to build models that incrementally
incorporate the system requirements and environment as-
sumptions. Each model constitutes an idealized functionality
for subsequent refinements. Safety properties, once proved
for a model, are preserved by further refinements. These

level name features
L0 security properties global, protocol-independent
L1 guard protocols roles, local store, no messages
L2 channel protocols security channels, intruder
L3 crypto protocols crypto, Dolev-Yao intruder

Table I
REFINEMENT LEVELS

include (reachability-based) secrecy and authentication. We
embedded this method in the theorem prover Isabelle/HOL
and previously used it to derive some basic unilateral entity
authentication protocols and a simplified Otway-Rees key
transport protocol without key confirmation.

In this paper, we show how to systematically develop an
entire family of key transport protocols. This family consists
of the Needham-Schroeder Shared-key protocol (NSSK), the
core of Kerberos 4 and Kerberos 5, and the Denning-Sacco
protocol. Compared to the protocols developed in [1], these
protocols are significantly more complex in size and message
structure and exhibit a number of additional features and
security properties such as the use of timestamps, replay
protection caches, encrypted tickets (double encryption),
dynamically created communication channels, key confirma-
tion, key freshness, and key recentness.

A central and novel feature of our approach is the use
of guard protocols (L1) as an intermediate abstraction link-
ing security properties (L0) and message-based protocols
(L2-3). Guard protocols enable the straightforward abstract
realization of security goals by adding security guards as
necessary conditions for the execution of certain protocol
steps. Different kinds of security guards ensure the preser-
vation of different properties such as secrecy, authentication,
and recentness. For example, key secrecy means that only
authorized agents may know a key. Accordingly, steps of
guard protocols where an agent A learns a key K contain
a guard requiring that A is authorized to know K. For
authentication, there are guards ensuring that the local state
of an agent (partially) agrees with the state of another agent.

The security guards for secrecy and authentication com-
municate with other agents by accessing their local stores.
This abstraction simplifies proofs, but is not directly im-
plementable in a distributed setting. Hence, we implement
these guards at Level 2 by receiving messages on channels
with intrinsic security properties. The associated refinement
proof naturally gives rise to invariants stating that the
receiving of channel messages implies the security guards

they implement. These invariants precisely state the security
properties guaranteed by the messages. For example, a
message containing a key K received on a confidential
channel to agent A may implement a guard authorizing A
to learn K. The corresponding invariant guarantees that A is
authorized to learn K from this message.

Our contributions are threefold. First, we show how to
develop an entire family of key transport protocols from
requirements down to protocols that are secure against a
standard Dolev-Yao intruder. We model realistic features that
are often abstracted away, such as replay prevention caches
for timestamped messages to achieve strong properties like
injective authentication. We have formalized all models and
proofs in this paper in the Isabelle/HOL theorem prover.1
Our formalization includes a new infrastructure with gen-
eral Isabelle/HOL theories for protocol runs, fresh values,
and channels with security properties. This supersedes the
protocol-specific embeddings of these concepts in [1].

Second, our development provides evidence that guard
protocols constitute a fundamental abstraction that bridges
the gap between security properties and standard message-
based protocol descriptions. In other approaches, the guar-
antees about protocol messages given by the invariants men-
tioned above and the associated reasoning are usually stated
informally (if at all). By formalizing them, our approach
fosters clear protocol designs and abstract, simple security
proofs. Moreover, in message-based protocol descriptions,
secrecy and authentication are often not clearly separated
(e.g., when using a secure channel providing both proper-
ties) or are interdependent (e.g., due to a layered use of
cryptographic keys and operations). This appears to be a
major source of complexity and errors and makes security
protocols hard to design and understand. In contrast, guard
protocols realize secrecy and authentication properties ab-
stractly, independently, and in a straightforward way. These
features of guard protocols facilitate the formal development
of secure protocols and underscore the central role they can
play in property-driven design approaches.

Third, our development shows that our method scales
to protocols of realistic complexity. We only need one
extension: to model key confirmation at Level 2, we have
added dynamically created channels to our modeling in-
frastructure. The protocols in our development share both
structure and properties as the graph of refinements of our
development indicates (see Figure 3). Property preservation
through refinements avoids proof duplication and fosters
well-structured proofs.

II. PRELIMINARIES

A. Isabelle/HOL and notation
Isabelle is a generic, tactic-based theorem prover. We

have used Isabelle’s implementation of higher-order logic,
1Our entire development including the infrastructure theories is available

at http://people.inf.ethz.ch/csprenge/csf12.

Isabelle/HOL [12], for our development. To enhance read-
ability, we will use standard mathematical notation where
possible and blur the distinction between types and sets.

We use two definitional equalities: ⌘ for terms and ,
for types. We define partial functions by A * B , A ! B?,
where B? , B]?. The term f (x 7! y) denotes the function
that behaves like f , except it maps x to y. For a function or
binary relation R✓A⇥B and set X ✓A, we define the image
of X under R by R(X) ⌘ {y 2 B | 9x 2 X . (x,y) 2 R}. The
inductive type of lists is defined by [A], [] | A# [A], where []
is the empty list and a#l is the list formed by prefixing the el-
ement a2A to the list l 2 [A]. We write [1,2,3] for 1#2#3#[].
We define multisets over A by multiset(A),A!N. For m2
multiset(A), the term m(e) denotes the multiplicity of e in m.
Record types may be defined, e.g., point , (| x 2 N, y 2 N |)
with elements like r ⌘ (| x = 1,y = 2 |) and projections r.x and
r.y. The term r(| x := 3 |) denotes r, where x is updated to 3,
i.e., (| x = 3,y = 2 |). The type cpoint , point +(| c 2 color |)
extends point with a color field. For record types T and
U including fields F , we define PF ⌘ {(r,s) 2 T ⇥U |V

x2F r.x = s.x}. If U has exactly the fields F , the function
pF : T !U projects T to U .

B. Specifications and refinement

A development by refinement starts from a set of system
requirements and environment assumptions. We then con-
struct a series of models resulting in a system that fulfills the
requirements provided it runs in an environment satisfying
the assumptions. We summarize our refinement theory that
we developed in Isabelle/HOL. It is inspired by [13], [14].

Our models are specifications of the form S = (T,obs),
where T = (S,S0,!) is a transition system and obs : S ! O
is an observation function. The state space S is a record
type, i.e., a set of tuples of state variables, S0 ✓ S are the
initial states, and the transition relation ! is a finite union of
parametrized relations, called events. Events have the form

evt(x) = {(s,s0) | G(x,s) ^ s0.v := f (x,s)},

where ·̄ denotes vectors. G(x,s) is a conjunction of guards
and s0.v := f (x,s) is an action with update functions f . The
guards depend on the parameters x and the current state
s and determine when the event is enabled. The action is
syntactic sugar denoting the relation s0 = s(| v := f (x,s) |),
i.e., the simultaneous assignment of values f (x,s) to the
variables v in state s, yielding state s0.

Example 1. Consider an abstract file transfer protocol spec-
ification S f ⌘ ((S f ,S f ,! f), id), where S f , (| f 2 file |) with
file , I ! D for a finite index set I and a set of data blocks
D and ! f ⌘ xferf . The event xferf ⌘ {(s,s0) | s0. f := g}
transfers a given file g in one shot to f . All states are possible
initial states and the entire state is observable, i.e., O f = S f
and the observation function is the identity.

Our notion of refinement is based on standard simula-
tion [15]. We say Sc = (Tc,obsc) refines Sa = (Ta,obsa)
using the simulation relation R ✓ Sa ⇥Sc and the mediator
function p : Oc ! Oa, written Sc vR,p Sa, if the following
three conditions are met. (1) Each concrete initial state is
related to some abstract initial state, i.e., Sc,0 ✓ R(Sa,0).
(2) For each concrete event evtc(x) (with guards Gc, state
variables v, and update functions fc) we identify an abstract
event evta(z) (with guards Ga, state variables u, and update
functions fa) simulating it, i.e., R;evtc(x) ✓ evta(w(x));R,
where ‘;’ is relational composition and w(x) are the wit-
nesses that construct parameters for evta from those of evtc.
This condition decomposes into two proof obligations, called
guard strengthening and action refinement, both under the
premises (s, t) 2 R and Gc(x, t).

• Ga(w(x),s) (GRD)
•
�
s(|u := fa(w(x),s) |), t(| v := fc(x, t) |)

�
2 R (ACT)

Guard strengthening requires that if the concrete event is
enabled then so is the abstract one. Action refinement
expresses that the two states resulting from the execution
of the abstract and concrete actions are again related by R.

We assume that all models include a special event skip
(the identity relation), used to simulate new concrete events.
Finally, (3) R respects observations mediated by p , i.e.,
obsa(s) = p(obsc(t)) for all (s, t) 2 R. We say Sc refines
Sa using p , written Sc vp Sa, if Sc vR,p Sa for some R.

We consider two types of invariants: internal ones are
supersets of reach(S), the set of states reachable from
initial states, and external ones are supersets of oreach(S)⌘
obs(reach(S)). We use internal invariants to strengthen sim-
ulation relations in refinement proofs. The following result
implies that requirements and assumptions, once established
as external invariants, are preserved by subsequent refine-
ments. This does not generally hold for internal invariants.

Proposition 2. Suppose S2 vp S1 and J ✓ S1. Then we have
1) oreach(S1)✓ J implies p(oreach(S2))✓ J and
2) S3 vr S2 implies S3 vp�r S1.

The observation functions allow us to relate specifications
with completely different state spaces. The mediator func-
tion enables the addition of details to observations during
refinement. Proposition 2 guarantees a well-defined notion
of property preservation for series of refinements.

Example 3. We define a “protocol” implementing the
file transfer specification S f by Sp ⌘ ((Sp,Sp,0,!p),obsp),
where Sp , S f + (|b 2 I * D |) extends the state S f with
a buffer b. The set Sp,0 consists of initial states of the
form (| f = f0,b = /0 |) for some f0 2 file and the empty
buffer. The protocol non-deterministically transfers blocks
of the file g into the buffer b from where it is assigned
to f , once the transfer is complete. The transition relation
!p⌘ xferp [

S
i2I blk(i) is the union of two events:

blk(i)⌘ {(s,s0) | i 2 I ^ s0.b := s.b(i 7! g(i))}

and xferp ⌘ {(s,s0) | dom(b) = I^ s0. f := s.b}. The observa-
tion function obsp ⌘ p f projects the state Sp to S f .

Let us try to establish a refinement between Sp and
S f , using the simulation relation R ⌘ P f , i.e., the inverse
of the projection p f : Sp ! S f , and the identity mediator
function p ⌘ id. We focus on point (2), where we must
show that blk(i) refines skip and that xferp refines xferf .
The guard strengthening (GRD) proof obligation is trivial
in both cases, since the abstract guards are true. The
action refinement (ACT) proof obligation for blk(i) and
skip (the identity relation) requires showing (s, t 0) 2 P f
for t 0 = t(|b := t.b(i 7! g(i)) |), assuming (s, t) 2 P f and
i 2 I. This holds trivially, since t 0. f = t. f = s. f . In the
action refinement for xferp and xferf , we must show that
(s(| f := g |), t(| f := s.b |)) 2 P f assuming (s, t) 2 P f and
dom(b) = I. To prove this, we need additional information
about the relation between b and g, expressed as the internal
invariant Ip ⌘ {s 2 Sp | 8i 2 dom(b). s.b(i) = g(i)} of Sp. We
establish this invariant separately and use it to strengthen the
simulation relation to R ⌘ P f \ (S f ⇥ Ip).

In further refinements, one could develop a more re-
alistic implementation, for example, by eliminating non-
determinism and by modeling a communication medium.

III. SECURITY PROTOCOL REFINEMENT

We present a framework to support security protocol
development by refinement based on the four-level refine-
ment strategy presented in [1] (cf. Table I). In particular,
we introduce infrastructure for the modeling and reasoning
about protocol runs, fresh values, and channels with secu-
rity properties, which replaces respective protocol-specific
embeddings in [1]. Later we instantiate this framework for
concrete protocol developments.

A. General setup
We define a type agent of agents. We assume a subset bad

of dishonest agents, whose complement is the set of honest
agents, an honest server S /2 bad, and an intruder i 2 bad
with access to all dishonest agents’ long-term keys.

We also need a mechanism to generate fresh nonces and
keys. We assume a type rid of identifiers that we will use
to uniquely identify protocol runs at Levels 1 to 3. From
this type, we derive the data type of freshness identifiers
as fresh ,mkf(rid,N), which has a single constructor mkf.
We write mkf(R, i) as R$i. This setup allows us to derive an
arbitrary number of unique freshness identifiers from each
protocol run identifier. We define the types of nonces and
keys as follows.

nonce , fresh key , sesK(fresh) | ltK(ltk)

Nonces and session keys both use freshness identifiers. The
type of long-term keys, ltk, is left unspecified at this point.

Finally, we define the type atom of atomic messages as
the disjoint sum of the types of agents, nonces, keys, and

numbers. We use numbers as timestamps. We will usually
omit constructors from atomic messages and use a notational
convention instead. In particular, we use A,B,C for agents,
N,Na,Nb for nonces, K,Kab for session keys, and T,Ta,Ts
for timestamps.

Many protocols assume a setup of long-term keys, which
is established out-of-band before the protocol starts. We
model this by assuming an abstract (uninterpreted) key setup
keySetup ✓ key⇥ agent defining the initial key knowledge
of each agent. The definitions of this relation and the type
ltk are deferred to Level 3 (Section III-E), since they are
protocol-dependent, e.g., a protocol may use a PKI or a
shared-key setup. The set of statically corrupted keys is
derived from the key setup as the keys initially known by
dishonest agents: corrKey ⌘ keySetup�1(bad).

B. Security properties (Level 0)

We present abstract, protocol-independent models of se-
crecy and authentication and we formalize and prove their
relevant properties as external invariants. Each protocol
development starts with the formalization of its security
requirements. This is achieved by appropriately instantiating
these Level 0 models. We will later show that our guard pro-
tocol models at Level 1 refine these instantiated models, thus
establishing the respective requirements (by Proposition 2).

Secrecy : We introduce two state variables, kn and az,
both relations between data (of polymorphic type d) and
agents, where (d,A)2 s.kn means that agent A knows data d
in state s, and (d,A) 2 s.az means that agent A is authorized
to know data d in state s. The entire state is observable.

Ss0(d), (| kn 2 P(d ⇥agent), az 2 P(d ⇥agent) |)
Secrecy can be expressed as the property stating that all

knowledge is authorized.
secrecy ⌘ {s | s.kn ✓ s.az}

We allow any state satisfying this property as an initial state.
The model s0 has one event for secret generation and one

for secret learning. The former is parametrized by the data
d, an agent A, and the intended group G of agents sharing d.

gens0(d,A,G)⌘ {(s,s0) |
d /2 dom(s.kn) ^ A 2 G^
s0.kn := s.kn [{(d,A)}^
s0.az := s.az [{(d,B) | B 2 G _ G\bad 6= /0}}

The guards require that d is fresh and that A belongs to the
group G. The first action adds the pair (d,A) to the knowl-
edge in s.kn. The second action updates the authorization
relation with {d}⇥G if all agents in G are honest and with
{d}⇥ agent otherwise. That is, if the group G contains a
dishonest member, there is no point in restricting access to d.

In the secret-learning event, an agent B learns the secret d,
provided that B is authorized to learn d.

learns0(d,B)⌘ {(s,s0) |
(d,B) 2 s.az ^ s0.kn := s.kn [{(d,B)}}

From a secrecy perspective, it is irrelevant from whom B
learns d. Authentication aspects will be covered separately.
The model s0 as defined clearly preserves secrecy.

Proposition 4. oreach(s0)✓ secrecy.

Authentication : We formulate two models, a0n and a0i,
that represent a minimal, extensional variant of Lowe’s
injective and non-injective agreement using signals, which
indicate particular stages of each role’s progress (e.g., termi-
nation) [16]. The state record has a single field: an initially
empty multiset of signals, sigs. The entire state is observable.

signal(d), Running(list(agent)⇥d)
| Commit(list(agent)⇥d)

Sa0(d), (| sigs 2 multiset(signal(d)) |)
There are two signals: Running(h,d) and Commit(h,d),
where h is a list of agents and d is data of polymorphic
type d instantiated later. The agreement on the data d is, by
convention, between the first two agents in h and assumes
the honesty of all agents in h.

Non-injective agreement states that if the agents in h are
honest and there is a Commit(h,d) signal (thought to be
raised by the first agent in h), then there is a matching
Running(h,d) signal (raised by the second agent in h).

niagreea0n ⌘ {s | 8h,d. h\bad = /0^
s.sigs(Commit(h,d))> 0 ! s.sigs(Running(h,d))> 0}

Injective agreement strengthens this by requiring that the
number of Commit(h,d) signals is not greater than the
number of matching Running(h,d) signals.

iagreea0i ⌘ {s | 8h,d. h\bad = /0
! s.sigs(Commit(h,d)) s.sigs(Running(h,d))}

The models a0n and a0i each have two events,
running(h,d) and commit(h,d), which add the corre-
sponding signal to the multiset s.sigs. A guard in each
commit(h,d) event ensures that adding a Commit(h,d) sig-
nal to s.sigs preserves the respective property above. The
guard in commita0n(h,d) requires the existence of a running
signal if the agents in h are honest. In commita0i(h,d), this
is strengthened as follows.

h\bad = /0 ! s.sigs(Commit(h,d))< s.sigs(Running(h,d))

It is easy to see that a0i refines a0n.

Proposition 5. We have that (i) oreach(a0n) ✓ niagreea0n,
(ii) oreach(a0i)✓ iagreea0i, and (iii) a0i vid,id a0n.

C. Guard protocols (Level 1)
We introduce protocol roles and runs. A run is a thread

that is executed by some agent in a given role. Each
run has a local memory holding state information. At this
abstract level, runs communicate by reading each other’s
memory. We call such protocols guard protocols. At Level 2,
we will refine this abstract but unrealistic memory-reading
communication by introducing message passing over com-
munication channels.

Guard protocols have at least one state variable runs,
which is a partial function mapping run identifiers (of type
rid) to a run’s local store. This local store consists of the
executed role, a pair of protocol participants, and a frame
recording role-specific information. Our setup is designed
for two-party protocols with an initiator (the first agent),
a responder (the second agent), and possibly an additional
fixed server S. This could easily be generalized to handle
an arbitrary number of roles. The frame is a list of atomic
messages that the run acquires during its execution.

role , Init | Resp | Serv
frame , [atom]
runsT , rid * role⇥agent ⇥agent ⇥ frame

S1 , (| runs 2 runsT |)
Here, we have schematically defined the state of a Level 1
protocol by the record type S1. In concrete models, this state
may contain additional variables. We assume that (at least)
the variable runs is observable, i.e., part of the observation.
All later refinements inherit the variable runs, but may add
atoms to the run’s frames.

Each event executes a protocol step of a run by an agent
in a particular role. The sequencing of events within a role
is determined by local guards reading a run’s local store.
For example, the guard runs(R) = (Init,A,B, [Nb]) expresses
that the event executes a step of the run R, which is owned
by agent A playing the initiator role, talks to the responder
B, and has recorded a nonce Nb in its frame. An event’s
action typically extends the run frame with additional atomic
messages, thereby marking the run’s progress. We call a run
completed if there is no event that extends its frame.

Agents communicate by reading their peers’ memories.
This is achieved by non-local guards that refer to another
run’s store. Such guards compare local and remote values
and read new remote values that may be used in local
state updates. We have two kinds of non-local guards:
authorization guards for secrecy and authentication guards
for agreements. Authorization guards prevent unauthorized
agents from learning secrets. We will explain the shape of
these guards below. An authentication guard for a given list
of agents h and data d (cf. Section III-B) executed by a run R
requires the existence of a run R0 executing a different role
from R and agreeing with R on data d, provided the agents
in h are honest. For example, the following guard in an event
of run R requires that there is a responder run R0 by B with A
that agrees with R on Na, provided both A and B are honest.

B /2 bad ^A /2 bad !9R0. runs(R0) = (Resp,B,A, [Na])

Since authorization and authentication guards are related to
security properties, we also call them security guards. There
are also local security guards, e.g., which check the validity
of timestamps to achieve recentness.

We establish the secrecy and authentication properties
of our guard protocol models by refining appropriately

channel type dot notation channel message

insecure A ! B : M Insec(A,B,M)

secure (static) A•!•B : M Secure(A,B,M)

authentic (dynamic) A•K!B : M dAuth(K,M)

Table II
CHANNEL NOTATION AND MESSAGES (SELECTION)

instantiated secrecy and authentication models from Sec-
tion III-B. In each case, we establish a data refinement
by reconstructing the abstract state (i.e., knowledge and
authorization relations or signals) from the concrete one (i.e.,
the runs) and by identifying a pair of concrete events that
refine the abstract ones (i.e., secret generation/learning and
running/commit, respectively).

We establish secrecy by refining the model s0. We there-
fore define relations knC(r) and azC(r), which reconstruct
the knowledge and authorization relations, kn and az, of s0
from the runs r 2 runsT . The simulation relation Rs01 is p�1

s01,
where ps01 is the mediator function defined as follows.

ps01(t)⌘ (| kn = knC(t.runs),az = azC(t.runs) |)

We can now explain how authorization guards are stated
in terms of azC: we use the expression (d,A) 2 azC(t.runs)
to check whether an agent A is allowed to access data d.

We similarly refine a0i and a0n by reconstructing a signal
multiset from the concrete runs. The simulation relation Ra01
is p�1

a01, where the mediator function pa01 is defined by

pa01(t)⌘ (| sigs = sigsC(t.runs) |).

In general, for an agreement of agent A in role R with
B in role S on data d with respect to agents h = [A,B, . . .],
the multiset sigsC(t.runs) contains a Commit(h,d) signal for
each run of A in role R where the data d is known and one
Running(h,d) signal for each run of B in role S knowing d.

These are general patterns for establishing secrecy and
authentication properties. Only the definitions of knC, azC,
and sigsC depend on the protocol.

D. Channel protocols (Level 2)

We model protocols using communication channels with
associated security properties. For informal use, we adopt the
notation of [17] (Table II). We write A ! B for an insecure
channel from agent A to agent B. The “: M” indicates that
the message M is sent on the channel. A static secure
channel A•!•B provides confidentiality to A (only B can
read messages) and authenticity to B (only A can send
messages). On a dynamic authentic channel A•K!B : M, A
can authentically transmit messages to B provided they both
know the key K. Such channels are created by dynamically
generated (session) keys. We omit other channel types that
are not needed here.

We formalize the channel messages that can be transmit-
ted by a data type chmsg, with constructors for static and
dynamic channels. The first parameter of these constructors
specifies the set of security properties as a combination of
authenticity (auth) and confidentiality (confid). The actual
payload message is a list of atomic messages.

security , P({auth,confid})

chmsg , StatCh(security,agent,agent, [atom])
| DynCh(security,key, [atom])

Static channel messages name the sender and the receiver.
In dynamic channel messages, names are replaced by a
key, which determines access to the respective channel.
Therefore, the agent names in the informal dot notation
for dynamic channels (e.g., in A•K!B) only serve as an
indication of the intended communication partners.

For practical use, we employ abbreviations such as those
given in the third column of Table II. For example, we define

Secure(A,B,M)⌘ StatCh({auth,conf},A,B,M)

and call this a secure message from A for B. We also say that
M is sent to B on a secure channel. We introduce analogous
notions for the other channel messages.

Based on the security attributes of channel messages
we define the intruder’s capabilities for eavesdropping (or
extracting) payload messages and faking channel messages.
We formalize these capabilities as two functions

extrT : P(chmsg)! P(atom)
fakeT,U : P(chmsg)! P(chmsg)

where the parameter T ✓ atom specifies the intruder’s
initial knowledge and the parameter U denotes a set of
run identifiers. These functions are defined by the rules in
Figures 1 and 2. These rules state that the intruder can
eavesdrop messages on non-confidential (i.e., insecure and
authentic) channels and fake messages on non-authentic (i.e.,
insecure and confidential) channels. Moreover, the intruder
can eavesdrop messages on confidential channels and fake
messages on authentic channels, if these channels have
a dishonest starting or ending point (static case) or the
associated key K is known to the intruder (dynamic case).

The condition K 2 rkey(U) in the third rule in Figure 2
restricts the intruder to using a key in

rkey(U)⌘ sesK({R$i | R 2U ^ i 2 N})

to fake a non-authentic dynamic message. Below, we will
use U = dom(s.runs) to preserve the invariant that all
identifiers R$i for R /2 dom(s.runs) are indeed fresh.

Channel protocols extend the state of the guard protocol
they refine with a variable chan denoting a set of channel
messages.

S2 , S1 +(| chan 2 P(chmsg) |)

·
T ✓ extrT (H)

StatCh(c,A,B,M) 2 H confid /2 c_A 2 bad _B 2 bad
M ✓ extrT (H)

DynCh(c,K,M) 2 H confid /2 c_K 2 extrT (H)

M ✓ extrT (H)

Figure 1. Rules defining extractable atoms

·
H ✓ fakeT,U (H)

M ✓ extrT (H) auth /2 c_A 2 bad _B 2 bad
StatCh(c,A,B,M) 2 fakeT,U(H)

M ✓ extrT (H) (auth /2 c^K 2 rkey(U))_K 2 extrT (H)

DynCh(c,K,M) 2 fakeT,U (H)

Figure 2. Rules defining fakeable channel messages

The protocol events use guards of the form M 2 s.chan
to receive a channel message M. These guards replace the
non-local security guards in the guard protocols, which
directly read other runs’ local stores. Sending a message M
is achieved by an action of the form s0.chan := s.chan[{M}.

Channel protocols include an intruder event, which closes
the set of channel messages under fakeable messages.

fake2 ⌘ {(s,s0) | s0.chan := fakeik0,dom(s.runs)(s.chan)}

Here, we work with the initial knowledge ik0 consisting of
the sets of all agents, corrupted keys, and numbers.

ik0 ⌘ agent] corrKey]N

The refinement of the abstract Level 1 model is typically
by superposition, that is, the simulation relation is based
on the canonical projection p12 : S2 ! S1. The event fake2
refines skip, since it only modifies the channel messages.

E. Cryptographic protocols (Level 3)
We model concrete protocols and the Dolev-Yao intruder

using a standard theory of cryptographic messages due
to Paulson [18]. The type of messages, msg, is defined
inductively from agents A 2 agent, nonces N 2 nonce, keys
K 2 key, pairs hM1,M2i, and encryptions/signatures {|M |}K .

For this paper, we define the set of long-term keys by ltk,
shrK(agent). The term shr(A) ⌘ ltK(shrK(A)) denotes the
symmetric key that A shares with the server S. We also define
keySetup ⌘ {(shr(A),C) |C = A_C = S} and can therefore
prove that corrKey = shr(bad).

To formalize protocol properties and the intruder, we use
the standard closure operators parts, analz, and synth on
sets of messages. The term parts(H) closes H under sub-
messages (i.e., subterms of messages), analz(H) closes H
under submessages accessible by projection and decryption

using the keys in H, and synth(H) closes H under message
compositions.

Cryptographic protocols replace the channel messages
chan with a variable IK (for intruder knowledge) denoting
a set of cryptographic messages. Hence, like channel proto-
cols, they extend the state S1 of the refined guard protocol.

S3 , S1 +(| IK 2 P(msg) |)

Initially, the set IK contains the intruder’s initial knowledge,
e.g., the long-term keys of all bad agents, corrKey.

Protocol events receive messages by using guards of the
form M 2 s.IK and send messages by actions of the form
s0.IK := s.IK [{M}. The Dolev-Yao intruder can generate
and send messages from the set synth(analz(s.IK)).

fake3 ⌘ {(s,s0) | s0.IK := synth(analz(s.IK))}

The refinement of channel protocols by cryptographic
ones is parametrized with a protocol-dependent message
abstraction function absMsg : P(msg)!P(chmsg). Given
such a function, the simulation relation R23 is defined as the
intersection of the following four relations.

Rmsgs
23 ⌘ {(s, t) | absMsg(parts(t.IK))✓ s.chan}

Rkey
23 ⌘ {(s, t) | analz(t.IK)\nonce ✓ extrik0(s.chan)}

Rnon
23 ⌘ {(s, t) | analz(t.IK)\ key ✓ extrik0(s.chan)}

Rpres
23 ⌘ Pruns

The relation Rmsgs
23 expresses that the abstractions of

concrete message parts in t.IK are contained in the channel
variable s.chan. The relations Rkey

23 and Rnon
23 state that the

abstract intruder knows at least the nonces and keys that the
concrete intruder also knows. Finally, the relation Rpres

23 states
that the variable runs is preserved, i.e., it has the same value
in the abstract and concrete model. In concrete applications,
this relation may include other preserved variables.

IV. REQUIREMENTS AND ASSUMPTIONS

Our informal requirements and assumptions for (server-
based) key transport protocols follow below. The first three
requirements are mandatory and must be satisfied by all
protocols we consider. The last three requirements are op-
tional. We will formalize these requirements in subsequent
sections.
Requirement R1 (Key distribution). The server generates

and distributes a fresh session key to an initiator and a
responder.

Requirement R2 (Key secrecy). Only authorized agents
may learn a session key, unless one of them is dishonest
whereby other agents may also learn it.

The next two requirements cover authentication proper-
ties, which we will formalize in Section VI as injective or
non-injective agreements.
Requirement R3 (Server authentication). The initiator

and the responder each authenticate the server on the
session key and possibly on additional data.

Requirement R4 (Key confirmation). The initiator and
the responder authenticate each other on the session key
and possibly on additional data, thereby confirming to
each other their knowledge of the key.

Two additional (and independent) requirements concern
the freshness and recentness of the session key. A key is
fresh if it is only used in a single session and is recent if its
lifetime does not exceed a specified limit.
Requirement R5 (Key freshness). The initiator and re-

sponder obtain assurance that the session key is fresh.
Requirement R6 (Key recentness). The initiator and re-

sponder obtain assurance that the session key is recent.
We assume a standard Dolev-Yao intruder that we iden-

tify as usual with the communication network. Moreover,
we make two assumptions about agent corruption and the
cryptographic setup.
Assumption A1 (Dolev-Yao intruder). The intruder con-

trols the network. He receives all messages sent and
he can build (synth) and send messages composed from
parts obtained by decomposing (analz) received mes-
sages using the cryptographic keys he knows.

Assumption A2 (Static corruption). An arbitrary fixed
subset of agents is corrupted, whereby their long-term
keys are exposed to the intruder.

Assumption A3 (Cryptographic setup). The requisite
cryptographic keys are distributed prior to protocol
execution.

V. DEVELOPMENT OVERVIEW

We concretize our refinement strategy for deriving differ-
ent server-based key establishment protocols: the Needham-
Schroeder Shared-Key (NSSK) protocol [19], the Denning-
Sacco protocol [20], and core versions of Kerberos 4 [21]
and Kerberos 5 [22]. Figure 3 summarizes our development:
each node represents a model and each arc m ! m0 repre-
sents a refinement m vp m0 for a given mediator function
p (not shown). The superscripts refer to the requirements
established, where i and r denote the initiator and responder.

At Level 0, we have the abstract models of secrecy
(s0) and authentication (a0i, a0n) from Section III-B. At
Level 1, our first guard protocol, kt1, abstractly models
server-based secret key transport (R1, R2). It refines the
secrecy model s0 and is an ancestor of all key transport
protocols that we have derived. The model kt1 provides
no guarantee of the session key’s authenticity, freshness, or
recentness. Hence, we refine kt1 into further guard protocols
that establish authentication properties (R3, R4) and use
freshness identifiers [23], namely, nonces or timestamps, to
prevent replays and guarantee key freshness and recentness
(R5, R6). We do this in two stages.

In the first stage, we refine kt1 into two different models
that realize server authentication (R3). In the first model,
kt1in, the initiator injectively agrees with the server on the





















 





 





 





Figure 3. Refinement graph

protocol model R1 R2 R3 R4 R5 R6

NSSK nssk3 X X i/n i/i X -

Kerberos 4 krb3iv X X i/n n/i X X
Kerberos 5 krb3v X X i/n n/i X X
Denning-S. ds3 X X n/n - - X

Table III
L3 MODELS AND THEIR PROPERTIES

session key, while the responder non-injectively agrees with
the server. The injective agreement and secrecy entail key
freshness (R5) for the initiator. In the second model, kt1nn,
both initiator and responder achieve non-injective agree-
ments with the server. The “additional data” agreed upon is a
parameter in these models. We establish each authentication
property by refining an L0 model, a0n or a0i, using a
different mediator function. This explains the existence of
multiple paths between some models in Figure 3.

In the second stage, we refine the model kt1in into nssk1
and krb1 and establish key confirmation (R4). We achieve
this by adding protocol steps and proving mutual agreement
between the initiator and the responder on the key and other
data. In nssk1, these agreements are injective due to the use
of nonces. In krb1, we use timestamps to ensure key recent-
ness (R6). A replay prevention cache allows the responder
to obtain an injective agreement with the initiator. Key
freshness (R5) for the responder relies on both authentication
and secrecy properties. Finally, we also refine the model
kt1nn into ds1 using timestamps to obtain key recentness.
At this point, all requirements are established. The remaining
two levels realize the environment assumptions (A1)-(A3),
making the protocol fit for execution in a hostile distributed
environment.

At Level 2, we construct the three channel-based models
nssk2, krb2, and ds2, where the roles exchange channel

messages instead of reading each other’s memory. The
server distributes the session key on static secure channels
to the initiator and the responder and key confirmation is
realized in nssk2 and krb2 using dynamic authentic channels
protected by the session key.

At Level 3, we replace the channel messages by crypto-
graphic messages on an insecure channel. We implement the
static secure channels by symmetric encryption with long-
term keys and the dynamic authentic channels by encryption
with the session key. The models at this level differ in
their handling of the ciphertext containing the responder’s
session key (called a ticket). In nssk3d, ds3d, and krb3d,
the server sends the ticket directly to the responder. In
the other models, the communication topology changes: the
server sends the ticket to the initiator who forwards it to the
responder. While in krb3v the ticket is sent alongside the
ciphertext containing the initiator’s session key, it appears
inside the ciphertext in the models nssk3, ds3, and krb3iv.

Table III summarizes the requirements achieved by the
final protocols. In the columns for the authentication re-
quirements R3 and R4, ‘i’ means injective and ‘n’ means
non-injective agreement. The slash separates initiator and
responder guarantees. The models with names ending in ‘d’
achieve the same properties as their listed siblings.

Based on the modeling and reasoning framework and the
infrastructure from Section III, in the following sections we
develop concrete models at each abstraction level. We focus
on the models typeset in boldface in Figure 3 leading to the
core versions of Kerberos. Figure 4 provides an overview
of most refinements between these models and the related
propositions. We have not included the refinements of the
authentication models a0n and a0i by the models kt1in
and krb1 (Propositions 7 and 10). These exhibit a structure
similar to the refinement of s0 by kt1 (cf. Section III-C).
We have also omitted the refinement of krb2 into core
Kerberos 4 (krb3iv) stated in Proposition 13 as it is similar
to the refinement into core Kerberos 5 (krb3v). This figure is
primarily intended as a reference for the reader, but we will
return to it in Section IX-C, where we discuss the security
guarantees that the refinements yield for the final models at
Level 3.

VI. SECURITY PROPERTIES (L0)
We start our development by formalizing the security

requirements. We formalize each secrecy and authentication
requirement as an instance of the corresponding Level-0
model from Section III-B. We will later show that our guard
protocol models (L1) refine these instantiated models, thus
establishing the respective requirements (by Proposition 2).
We will formalize key freshness and key recentness as
invariants of Level 1 protocols and therefore discuss these
later (Section VII).

Secrecy: The instantiation of the polymorphic type of
data of the model s0 to keys provides an abstract model of

Ss0Ss0 , (| kn,az |)
id

Proposition 6

Skt1

ps01

Skt1 , (| runs |)
([Kab], [Kab], [])

p�1
s01 (*)

id

Proposition 8

Skt1

p1in1

Skt1in , Skt1
([. . . ,Ts], [. . . ,Ts], [Na,Ts])

p�1
1in1

id

Proposition 9

Skrb1

p11

Skrb1 , Skt1in +(| clk,cch |)
([. . . ,Ta], [. . . ,Ta,END], [. . .])

p�1
11

id

Proposition 11

Skrb1

id

Skrb2 , Skrb1 +(| chan |)
([. . .], [. . .], [. . .])

Pruns,clk,cch (*)

pruns,clk,cch

Proposition 12

Skrb1

id

Skrb3v , Skrb1 +(| IK |)
([. . .], [. . .], [. . .])

R23 (*)

pruns,clk,cch

Figure 4. Details of refinements in the Kerberos development: state spaces
(without variable types) and simulation relations (left), observations and
mediator functions (right), and observation functions (left-to-right arrows).
Triples of the form (i,r,s) describe the frames of completed initiator,
responder, and server runs, where . . . stands for the fields inherited from the
model above. A star (*) means that the related refinement proof requires
invariants to strengthen the simulation relation.

key distribution and key secrecy. Refining this model will
establish the requirements R1 and R2.

Authentication: We formalize the requirements R3 and
R4. For this purpose, we must specify the data to be
agreed upon. We use authentication graphs to represent this
information visually. Figure 5 displays the authentication
graph of the Kerberos protocols. In these graphs, there is
one node for each protocol role. Each node is labeled by
an agent name (in the given role), possibly followed by
a list of freshness identifiers generated during the role’s
execution. For example, the server S generates the session
key Kab and a timestamp Ts, and the initiator generates a
nonce Na and a timestamp Ta. Each arrow specifies one
agreement property by defining the parameters h and d
for the running and commit events of models a0n or a0i.
The arrow endpoints define the agents h, whose honesty is
assumed, and the tuples labeling the arrows specify the data
d to be agreed upon between these agents. Note that for the
current development, we do not need to assume the honesty
of agents other than the participants in the agreement. An
arrow tail indicates an injective agreement. The boldface

 



 












Figure 5. Authentication graph for Kerberos

 
 

Figure 6. Basic secret key distribution (kt1)

labels indicate the requirements that are established for the
agent near the arrow head. For example, the arrow from S to
B labeled by (Kab,A,Ts) means that the responder B non-
injectively agrees with the server on (Kab,A,Ts), assuming
the honesty of S and B (R3). The arrow from A to B labeled
by (Kab,Ts,Ta) means that B injectively agrees with A on
Kab, Ts, and Ta, assuming the honesty of A and B (R4).

To prove that an L1 model establishes an agreement
of role R with role S, we identify an event of role R
that refines the commit event and an event of role S that
refines the running event. All other events must refine skip.
Each agreement requires a different mapping of the protocol
events to the running and commit events and therefore
requires a separate refinement of the model a0i or a0n
(cf. Figure 3).

VII. GUARD PROTOCOLS (L1)
In our server-based key transport protocols, there are three

roles: a key-generating server and key-receiving initiators
and responders. The state records runtime information about
the execution of these roles as described in Section III-C.

Skt1 , (| runs 2 runsT |)

Initially, the runs map is empty. The entire state is observ-
able, i.e., the observation function is the identity.

A. Secret key distribution
A sequence chart of our first abstract key transport proto-

col model, kt1, appears in Figure 6. This model establishes
R1 and R2 as follows. The server S generates the session
key Kab, which is indicated by the role label S : Kab. The
initiator A and the responder B then secretly acquire this key
and record it in their run frames, which is represented by
arrows from S to A and B labeled by Kab. These arrows do
not represent the communication of messages, since there
are no messages or channels at this stage.

Before presenting the events of the specification kt1,
we discuss the simulation relation used in the refinement

of model s0, which establishes session key secrecy. As
described in Section III-C, we define relations knC(r) and
azC(r), which reconstruct s0’s knowledge and authorization
relations from the runs r 2 runsT .

We define the relation knC(r) by four rules. We give two
examples describing the initiator and server’s session key
knowledge. There is a similar rule for the responder.

r(Ra) = (Init,A,B,K#ns)
(K,A) 2 knC(r)

r(Rs) = (Serv,A,B,ns)
(sesK(Rs$sk),S) 2 knC(r)

Here, Rs$sk is the fresh value used by the server run Rs
for the session key and sk is an arbitrary natural number
constant. An additional rule states that the initial key setup is
contained in the knowledge relation, i.e., keySetup✓ knC(r).

The following rule defines who is authorized to learn a
session key that the server S generated for A and B, namely
A, B, and S if A and B are honest and everyone otherwise.

r(Rs) = (Serv,A,B,ns) C 2 {A,B,S}_A 2 bad _B 2 bad
(sesK(Rs$sk),C) 2 azC(r)

(1)
Two additional rules state that keySetup ✓ azC(r) and that
anyone is authorized to learn corrupted keys.

The specification kt1 has five events, each modeling a
protocol step. The first event creates a new run Ra of
initiator A with responder B by updating runs with (Ra 7!
(Init,A,B, [])). The second event creates a responder run
analogously. These two events refine skip. In the third event,
we generate a new server run Rs with associated fresh
session key Kab. This event refines gens0(Kab,S, [S,A,B]).

step3kt1(Rs,A,B,Kab)⌘ {(s,s0) | -- S,refines gens0
Rs /2 dom(s.runs)^ -- fresh server run

Kab = sesK(Rs$sk)^ -- session key

s0.runs := s.runs(Rs 7! (Serv,A,B, []))}
The final two events model the confidential acquisition of
the session key by the initiator and the responder. They both
refine the event learns0. In Step 5, the responder B acquires
the session key Kab in its run Rb.

step5kt1(Rb,A,B,Kab)⌘ {(s,s0) | -- B,refine learns0
s.runs(Rb) = (Resp,A,B, []) ^ -- B’s run

(Kab,B)2 azC(s.runs)^ -- check authorization

s0.runs := s.runs(Rb 7! (Resp,A,B, [Kab]))}
The first guard requires that Rb identifies a run of responder
B with initiator A, where B has not yet received a key. The
action updates the responder run with the session key Kab.
The initiator’s step4kt1 is analogous.

The second guard is an authorization guard requiring
that B is authorized to learn Kab. There are two cases
according to the definition of azC. The first case, described
by rule (1), corresponds to reading a (session) key Kab
from the server, who determined the authorization to access
the key. Note that there is no guarantee that the key was
generated for B. In the second case, Kab is a static key,
which may be corrupted. For now, there are no further

 









Figure 7. Adding server authentication (kt1in)

constraints on Kab. The authorization guard is sufficient
to preserve the secrecy of Kab. In Section VII-B, we will
establish authentication properties to ensure that honest
agents only accept session keys generated for them and
shared with the intended partner.

Instantiating the simulation relation Rs01 from Sec-
tion III-C with the relations azC(r) and knC(r) defined
above, we show that the model kt1 refines the secrecy model
s0. The guard strengthening proof in the refinement of the
event gens0 by step3kt1 requires an invariant, keykt1, stating
that no fresh key K is in the domain of either knC(s.runs)
or azC(s.runs).

Proposition 6. Let R0
s01 ⌘ Rs01 \ (Ss0 ⇥ keykt1). Then we

have reach(kt1)✓ keykt1 and kt1 vR0
s01,ps01

s0.

Since the abstract variables kn and az are observable and
reconstructable from the concrete state, the secrecy invariant
for s0 (Proposition 4) is inherited by kt1 (Proposition 2),
which thus realizes secret key distribution (R1, R2).

B. Server authentication
We now refine the model kt1 into kt1in and establish

agreements of the initiator and the responder with the server
on the session key and additional data. The additional data is
a parameter of kt1in. However, for the sake of the presenta-
tion, we will focus our attention on the instantiation of kt1in
for the Kerberos development. The models kt1 and kt1in
have identical state spaces, but in kt1in we introduce nonces
and timestamps, which are part of the data included in the
agreement and recorded in the run frames of the different
roles. The observation function is the identity. Figure 7
shows a sequence chart for this model. The labels below
the arrows denote agreements and an arrow tail indicates an
injective agreement as specified in Figure 5. Na is a nonce
generated by A and Ts is a freshness identifier generated
by S that we will later refine into a timestamp (i.e., a clock
reading). The initiator A achieves (R3) by an injective agree-
ment with the server on (Kab,B,Na,Ts) and the responder B
establishes (R3) by a non-injective agreement with the server
on (Kab,A,Ts). The model kt1in refines kt1, a0i, and a0n
(cf. Figures 3 and 4). We establish key freshness (R5) for
the initiator as an invariant (cf. Appendix B for the similar
responder case).

We obtain the model kt1in by modifying kt1 in two ways.
First, we introduce new event parameters and corresponding
state updates to reflect that both partners of the agreement
know the data being agreed upon. In the server’s Step 3,
we add a nonce Na and the freshness identifier Ts to the

parameters and record these in the run frame, i.e., the runs
are updated with Rs 7! (Serv,A,B, [Na,Ts]). Neither Na nor
Ts are constrained by any guards. In the responder’s Step 5,
we add the parameter Ts and update the runs with Rb 7!
(Resp,A,B, [Kab,Ts]) and similarly in the initiator’s Step 4.

Second, we realize the agreements described above by
adding authentication guards to the key-receiving Steps 4
and 5. These guards may either be added directly to the
respective events or discovered during the refinement proof
of the commit event of the model a0n or a0i. Here, we
describe guard discovery.

For the refinement of a0n, we therefore first define the
function sigCrs, which reconstructs signal multisets from
protocol runs, and use it to obtain the mediator function prs

a01
and simulation relation Rrs

a01, as described in Section III-C.
The multiset sigsCrs(r) ⌘ mr contains a Commit signal for
each completed responder run. We formalize this as follows.

mr(Commit([B,S],(Kab,A,Ts)))⌘ |RR|
where RR ⌘ {Rb | 9nl. r(Rb) = (Resp,A,B,Kab#Ts#nl)}

Similarly, completed server runs give rise to Running sig-
nals. Since the session key Kab is derived from the (unique)
server run identifier Rs, a simpler definition suffices.

mr(Running([B,S],(Kab,A,Ts)))⌘
if 9Rs,Na,nl. (Kab = sesK(Rs$sk)

^ r(Rs) = (Serv,A,B,Na#Ts#nl)) then 1 else 0

The existential quantifications on nl account for extensions
to the run frames with additional atomic messages in later
refinements. Finally, we set mr(x)⌘ 0 at all other points x.

Next, we prove that the server’s event step3kt1in refines
the abstract event runninga0n([B,S],(Kab,A,Ts)) and that the
responder’s event step5kt1in refines the abstract a0n event
commita0n([B,S],(Kab,A,Ts)). The remaining events refine
skip. In the proof of guard refinement (GRD) for step5kt1in,
we get stuck in a proof state that directly suggests the
following authentication guard for this event.

B /2 bad !9Rs,Na,nl. (Kab = sesK(Rs$sk)
^ s.runs(Rs) = (Serv,A,B,Na#Ts#nl)) (2)

This guard guarantees to an honest B that there is a server in
a state counting as a matching Running([B,S],(Kab,A,Ts))
signal. After adding this guard, the proof succeeds.

For the refinement of a0i, we discover the au-
thentication guard for step4kt1in(Ra,A,B,Na,Kab,Ts) in
a similar manner in the proof that this event refines
commita0i([A,S],(Kab,B,Na,Ts)).

A /2 bad !9Rs,nl. (Kab = sesK(Rs$sk)
^ s.runs(Rs) = (Serv,A,B,Na#Ts#nl)) (3)

Compared to (2), the absence of the existential quantifi-
cation on Na reflects that this agreement includes Na.

Proposition 7. We have kt1in vp is
a01

a0i for the initiator and
kt1in vprs

a01
a0n for the responder.

 













Figure 8. Adding key confirmation (krb1)

Finally, it is easy to see that kt1in refines kt1. The mediator
function p1in1 removes the nonce Na and the timestamp Ts
from server run frames and Ts from initiator and responder
run frames, therefore only keeping the session key Kab.

Proposition 8. kt1in vp�1
1in1,p1in1

kt1.

C. Key confirmation
We next extend the model kt1in to an abstract model

of Kerberos (Figure 8), which achieves key confirmation
(R4), key freshness for the responder (R5), and key re-
centness (R6). In order to model timestamps and their
expiration, we explicitly introduce a (discrete-time) global
clock. For key recentness, the initiator and responder check
the validity of a timestamp Ts that the server associates
with the session key Kab. For key confirmation, the initiator
and responder mutually agree on the session key Kab, its
associated timestamp Ts, and an initiator timestamp Ta
(cf. Figure 5). The responder caches keys Kab and times-
tamps Ta to obtain an injective agreement with the initiator.
We assume arbitrary fixed lifetimes Ls and La for server and
initiator timestamps. Note that the sequence chart in Figure 8
contains all agreements specified in Figure 5 and (partially)
orders them causally.

We extend the state of kt1 with two additional variables,
reflecting the elements discussed above.

Skrb1 , Skt1+(| clk 2 time, cch 2 P(agent ⇥ key⇥ time) |)
The variable clk models the discrete-time clock. We intro-
duce an associated tick(T) event that increments the clock
by T time units. All other events are assumed to take
no time and hence do not modify the clock. The variable
cch represents a cache storing triples (B,Kab,Ta) consisting
of an agent name B, a session key Kab, and an initiator
timestamp Ta. For replay protection, a responder B checks
the cache before accepting a key Kab with timestamp Ta.
A new purge(B) event removes from B’s cache the entries
whose timestamps Ta have expired and thus are no longer
valid, which is the case when s.clk � Ta+La.

The events for Steps 1 to 5 of the model krb1 are derived
from the corresponding kt1in events, possibly adding guards
and actions. In Step 3, we turn Ts into a timestamp by adding
the guard Ts = s.clk.

In the initiator’s Step 4, we add the initiator’s timestamp
Ta as a parameter and record it in the frame, and we
introduce two time-related guards.

step4krb1(Ra,A,B,Na,Kab,Ts,Ta)⌘ {(s,s0) | -- by A
... -- guards of step4kt1in (omitted)

Ta = s.clk^ -- get timestamp

s.clk < Ts+Ls^ -- chk validity of Ts
s0.runs := s.runs(Ra 7! (Init,A,B, [Kab,Ts,Ta]))}

The first guard generates a timestamp Ta. The second guard
ensures the validity of the server timestamp Ts.

In the responder’s Step 5, we also add Ta as a parameter
and record it in the frame. Furthermore, we introduce four
new guards and a new action.

step5krb1(Rb,A,B,Kab,Ts,Ta)⌘ {(s,s0) | -- by B
... -- guards of step5kt1in (omitted)

(A /2 bad ^B /2 bad ! -- agree with A
9Ra,nl. s.runs(Ra) = (Init,A,B,Kab#Ts#Ta#nl))^

(B,Kab,Ta) /2 s.cch^ -- replay protection

s.clk < Ta+La^ -- chk validity of Ta
s.clk < Ts+Ls^ -- chk validity of Ts
s0.cch := s.cch[{(B,Kab,Ta)} -- cache update

s0.runs := s.runs(Rb 7! (Resp,A,B, [Kab,Ts,Ta]))}
The first guard ensures agreement with the initiator on the
data (Kab,Ts,Ta). The second guard achieves injectivity
for the responder by checking that B has not previously
seen Kab with timestamp Ta. The last two guards ensure
recentness by checking the validity of Ta and Ts. The new
action adds (B,Kab,Ta) to the cache to avoid future replays.

Finally, we add a new Step 6 to the initiator, which uses an
authentication guard to achieve agreement with a responder
run Rb on Kab, Ts, and Ta. We add an arbitrary value END
to the frame to mark the initiator run’s termination.

step6krb1(Ra,A,B,Na,Kab,Ts,Ta)⌘ {(s,s0) | -- by A
s.runs(Ra) = (Init,A,B, [Kab,Ts,Ta])^
-- for agreement with B on (Kab,Ts,Ta)
A /2 bad ^B /2 bad !
(9Rb. s.runs(Rb) = (Resp,A,B, [Kab,Ts,Ta]))

s0.runs := s.runs(Ra 7! (Init,A,B, [Kab,Ts,Ta,END])) }
The mediator function p11 in the refinement of kt1in

by krb1 drops the timestamps Ta and the termination
marker END from initiator and responder frames.

Proposition 9. krb1 vp�1
11 ,p11

kt1in.

The mediators p ir
a01 and pri

a01 and associated simulation
relations for refining a0i and a0n are defined analogously to
Section VII-B. The authentication guards can be defined or
discovered as described in that section. The replay cache
guarantees injective agreement with the initiator to the
responder, while the initiator obtains only a non-injective
agreement with the responder. The proof of injectivity in
the refinement of commita0i by step5krb1 requires an invariant
stating that a responder B knowing a key Kab and a times-
tamp Ta has an entry (B,Kab,Ta) in the replay cache during
Ta’s validity. Appendix A provides some proof details.

 

 







Figure 9. Channel-based Kerberos protocol (krb2)

Proposition 10. (i) krb1 vp ir
a01

a0n for the initiator and (ii)
krb1 vpri

a01
a0i for the responder.

Finally, in Appendix B, we formalize key freshness (R5)
for the responder and sketch the proof that it is an invariant
of krb1.

VIII. CHANNEL PROTOCOLS (L2)

As described in Section III-D, at Level 2, we extend the
state with a field chan for the set of channel messages of
type chmsg. All fields except chan are observable, i.e., the
observation function pruns,clk,cch projects Skrb2 to Skrb1.

Skrb2 , Skrb1 + (| chan 2 P(chmsg) |)

For the refinement of krb1, we use the simulation relation
R12 ⌘ Pruns,clk,cch with the identity mediator function. In the
protocol events, we add message-receiving guards, which
replace the authorization and authentication guards from
Level 1 (if any), and actions for sending channel messages.
Local guards remain the same. Moreover, we introduce an
active intruder as described in Section III-D. The intruder’s
fake event refines skip, as it only modifies chan, while all
other events refine their counterparts in the model krb1.

The channel-based refinement krb2 of krb1 is shown in
Figure 9. The protocol is now started by the initiator sending
A,B together with his nonce Na to the server. The server
uses static secure channels to send the session key Kab, the
name B, the timestamp Ts, and the nonce Na to the initiator A
and Kab,A,Ts to the responder B. The responder B obtains
key confirmation from A by receiving A,Ta on a dynamic
authentic channel protected by the session key Kab (and
similarly for A’s guarantee in the other direction). No
confidentiality is required in the key confirmation phase.

As example events, we describe the changes in Steps 3
and 5. In the server’s Step 3, we add an additional guard for
receiving message M1 and an action for sending messages
M2a and M2b.

Insec([A,B,Na]) 2 s.chan -- receive M1

s0.chan := s.chan[{Secure(S,A, [Kab,B,Ts,Na]),
Secure(S,B, [Kab,A,Ts])}

In Step 5, the responder B receives message M2b from
the server and M3 from the initiator A and sends message

 












Figure 10. Cryptographic core Kerberos protocols

M4. Here, the message-receiving guards replace the previous
authorization and authentication guards.

Secure(S,B, [Kab,A,Ts]) 2 s.chan
dAuth(Kab, [A,Ta]) 2 s.chan
s0.chan := s.chan[{dAuth(Kab, [Ta])}
The refinement proof requires additional invariants. Many

of these are directly suggested by the guard strengthening
proof obligations stating that the message-receiving guards
(L2) imply the security guards (L1). This is one of the
main benefits of using guard protocols as a link between
the properties and the message-based protocols. Appendix C
contains a proof sketch of guard strengthening for Step 5.

Proposition 11. Let Ikrb2 be the intersection of the in-
variants of krb2 and let R0

12 ⌘ R12 \ (Skrb1 ⇥ Ikrb2). Then
reach(krb2)✓ Ikrb2 and krb2 vR0

12,id
krb1.

IX. CRYPTOGRAPHIC PROTOCOLS (L3)

As described in Section III-E, in our setup at Level 3,
each agent A shares a long-term symmetric key shr(A) with
the server S. We concretize the initial key setup relation by
defining keySetup ⌘ {(shr(A),C) | C = A_C = S}, thereby
establishing (A3). In the state, we replace the set of channel
messages, chan, by a set of cryptographic messages, IK (for
intruder knowledge). All fields except IK are observable. Ini-
tially, IK holds the corrupted long-term keys, i.e., shr(bad).

Skrb3v , Skrb1 + (| IK 2 P(msg) |)

The simulation relation R23 with krb2 is defined as
the intersection of the relations Rmsgs

23 , Rkey
23 , and Rnon

23 ,
from Section III-E with Pruns,clk,cch. The relation Rmsgs

23 is
parametrized by the protocol-dependent message abstraction
function absMsg 2 P(msg) ! P(chmsg), which we will
instantiate to the Kerberos protocols below.

Moreover, by refining the channel-based intruder into a
standard Dolev-Yao intruder, as described in Section III-E,
we establish (A1). In the protocol events, we replace the
channel messages by cryptographic ones. In general, there
are alternative realizations using different cryptographic op-
erations.

Figure 10 shows the core of Kerberos 4 [21] and Ker-
beros 5 [22]. We implement the static secure channels
by encryption with the long-term keys and we refine the
dynamic authentic channels into encryptions with session
keys. (In the Dolev-Yao model, symmetric encryption also
provides authenticity.)

We also modify the communication topology of the
channel-based model: The initiator now relays the respon-
der’s ticket from the server. While in Kerberos 5 the ticket
is sent alongside the ciphertext containing the initiator’s
session key, it appears inside the ciphertext in Kerberos 4.
We now present our models of Kerberos 5 and Kerberos 4,
krb3v and krb3iv.

A. Kerberos 5 protocol (L3)
We focus on the refinement of Steps 3–5, which reflect

the modified communication topology. In Step 3, the server
sends the message M2 by adding it to IK. This message
consists of a pair of ciphertexts and replaces the messages
M2a and M2b in krb2. In Step 4, the initiator A receives
M2 and forwards its second component along with the
authenticator {|A,Ta |}Kab, which proves that A knows Kab.

h{|Kab,B,Ts,Na |}shr(A),Xi 2 s.IK -- recv M2

s0.IK := s.IK [{ h{|A,Ta |}Kab,Xi} -- send M3

The responder receives the two-component message M3 in
Step 5 and sends back the confirmation message M4.

h{|A,Ta |}Kab,{|Kab,A,Ts |}shr(B)i 2 s.IK -- recv M3

s0.IK := s.IK [{{|Ta |}Kab } -- send M4

The definition of the message abstraction function,
absMsg, is straightforward. It abstracts the components of
messages M2 and M3 separately. For instance, here are the
rules defining the abstraction of tickets and authenticators.

{|K,A,T |}shr(B)2 H
Secure(S,B, [K,A,T]) 2 absMsg(H)

{|A,T |}K2 H
dAuth(K, [A,T]) 2 absMsg(H)

The refinement proof requires only four simple additional
invariants: Two concern key definedness and two state that
the long-term keys the intruder knows are exactly those of
the dishonest agents (A2). We have already established all
other relevant properties on higher levels of abstraction.

Proposition 12. Let Ikrb3v be the intersection of the invari-
ants of krb3v and let Rv

23 ⌘ R23 \ (Skrb2 ⇥ Ikrb3v). Then we
have reach(krb3v)✓ Ikrb3v and krb3v vRv

23,id krb2.

B. The Kerberos 4 protocol (L3)
In the core Kerberos 4 protocol, the responder’s ticket

is encrypted inside the initiator’s message from the server.
Hence, message M2 is modified as follows.

M20. S! A : {|Kab,B,Ts,Na,{|Kab,A,Ts |}shr(B) |}shr(A)

The changes in the model are straightforward. Moreover, the
simulation relation, R0

23, is the same as R23 above except
for a minor change in the message abstraction function: the
cryptographic form of message M2a, {|K,A,T,N,X |}shr(A),
now includes a message variable X for the ticket.

The refinement proof for krb3iv requires additional in-
variants. One of these describes the ticket’s shape and the
encrypted key K in message M2 sent to an honest initiator A.

ticketkrb3iv ⌘ {s | 8A,B,N,K,X .
{|K,B,T,N,X |}shr(A)2 parts(s.IK) ^ A /2 bad !

X = {|K,A,T |}shr(B)^K /2 ran(shr)}
Another invariant expresses that the addition of session keys
to the intruder’s knowledge does not reveal additional keys.

sessKkrb3iv ⌘ {s | 8KS,K. KS ✓ key\ ran(shr)!
(K 2 analz(KS[s.IK)$ K 2 KS_K 2 analz(s.IK))}

A similar invariant states that the intruder cannot derive new
nonces by learning new session keys. We then prove:

Proposition 13. Let Ikrb3iv be the intersection of the in-
variants of krb3iv and let Riv

23 ⌘ R0
23 \ (Skrb2 ⇥ Ikrb3iv). Then

reach(krb3iv)✓ Ikrb3iv and krb3iv vRiv
23,id

krb2.

C. Overall security guarantees at Level 3
Having gone through a number of refinements, the reader

may wonder at this point what is the precise relationship
between the secrecy and authentication properties proved
as invariants at Level 0 and the final models at Level 3.
The answer is given by Proposition 2, which states that
refinement is transitive and that external invariants (such
as the secrecy and agreement invariants of s0, a0n, and
a0i) are preserved along refinements. The mediator function
translates the observations from concrete to abstract models.

As an example, consider the series of refinements in
Figure 4: we have refined the secrecy model s0 in five
steps into the core Kerberos 5 model (krb3v). The composed
mediator function along the right-hand side of this figure
is ps01 � p1in1 � p11. The first part, p1in1 � p11, projects the
state of the model krb3v with fields runs, clk, cch, and
IK to the state of the model kt1, which has only the
runs variable. Moreover, using the notation of Figure 4,
the frames of the initiator, responder, and server runs are
projected from ([Kab,Ts,Ta], [Kab,Ts,Ta,END], [Na,Ts]) to
([Kab], [Kab], []), thereby removing everything but the ses-
sion key Kab.

The second part, the mediator function ps01 (defined in
Section VII-A), transforms this minimal state information
to the knowledge and authorization relations kn and az of
the model s0. Hence, using Proposition 2, the following
overall secrecy result can be derived as a combination of
Propositions 4, 6, 8, 9, 11, and 12.

Corollary 14. (ps01 �p1in1 �p11)(oreach(krb3v))✓ secrecy.

In a similar way, we can express the authentication results
directly as properties of krb3v (cf. Figure 5). The initiator’s

injective agreement with the server on (Kab,B,Na,Ts) and
his non-injective agreement on (Kab,Ts,Ta) with the respon-
der are summarized in the following corollary.

Corollary 15. For the initiator, we have
1) (p is

a01 �p1in1 �p11)(oreach(krb3v))✓ iagree, and
2) (p ir

a01 �p11)(oreach(krb3v))✓ niagree.

We complete the picture by stating the authentication
guarantees for the responder with the server and with the
initiator.

Corollary 16. For the initiator, we have
1) (prs

a01 �p1in1 �p11)(oreach(krb3v))✓ niagree, and
2) (pri

a01 �p11)(oreach(krb3v))✓ iagree.

Summarizing, given a security property P proved as an
external invariant of a model S (e.g., at Level 0) and a
series of refinements of S into a model S0 (e.g., at Level 3)
with composed mediator function p , Proposition 2 yields
the guarantee p(oreach(S0)) ✓ P for S0, i.e., p transforms
the set of concrete observations of S0 to a set of abstract
observations satisfying P.

X. RELATED WORK

There have been other proposals for developing security
protocols by refinement using different formalisms such
as the B method [7], its combination with CSP [6], I/O
automata [8], and abstract state machines (ASMs) [9]. None
of these continue their refinements to the level of a full
Dolev-Yao intruder. Either they only consider an intruder
that is passive [8], defined ad-hoc [6], [9], or similar to our
Level 2 intruder [7]. This makes a comparison of their results
with standard protocol models difficult. Moreover, none
provides a uniform and systematic development method
such as our four-level refinement strategy and most of them
develop individual protocols rather than entire families.

Mödersheim and Viganò [24] propose a compositional ap-
proach where protocol specifications may combine channel
messages and cryptographic messages. Channel messages
can later be replaced by protocols realizing their properties.
Their objective is to identify the weakest condition that
allows protocols to securely implement channels. In con-
trast, we use refinement to transform channel protocols into
concrete cryptographic protocols.

Abadi et al. [25] define a high-level process language with
constructs for secure channels and compile it into a low-
level language with cryptographic messages. They show a
full abstraction result for their translation.

Datta et al. [11] use protocol templates with messages
containing function variables to specify and prove properties
of protocol classes. Refinement here means instantiating
function variables and discharging the associated assump-
tions. Pavlovic et al. [10], [26] similarly refine protocols by
transforming messages and propose specialized formalisms
for establishing secrecy and authentication properties. In

[10], they also derive core Kerberos 4 and 5 and NSSK.
These refinements do not involve fundamental changes of the
abstraction level since one instantiates abstract operations on
messages.

Several other researchers have analyzed Kerberos. Bella
and Riccobene [9] develop Kerberos 4 in three refinements
using ASMs. They use a non-standard attacker model and
prove mostly liveness properties (e.g., all runs reach a spe-
cific state) instead of secrecy and authentication properties.
Bella and Paulson model BAN Kerberos [27], Kerberos 4
[28], and Kerberos 5 [29] including session key compromise
using the inductive approach [18]. However, they do not
model a replay cache and can only prove non-injective
agreements.

Butler et al. [30], [31] construct detailed models of
Kerberos 5 using multiset rewriting. These models include
cross-realm authentication and other realistic features such
as options, flags, and error handling. They manually con-
struct their models and proofs in several “refinements” to
keep them manageable. However, their notion of refinement
is informal.

Simulation-based security [32], [33] can be seen as a
paradigm for specifying idealized functionalities and refining
them into protocols using a form of secure emulation. De-
laune et al. [34] propose a symbolic version of this paradigm
and apply it to the Needham-Schroeder-Lowe protocol.

XI. CONCLUSIONS

Our development provides strong evidence that refinement
supports the systematic understanding and development of
families of protocols. It also shows that our development
strategy and tools scale to realistic protocols with non-trivial
features.

A central part of this work has been the development
and exploitation of guard protocols, which form the bridge
between security properties and channel protocols, i.e., from
the “what” to the “how”. Security guards realize properties
abstractly. Moreover, they substantially simplify proof con-
struction. They give rise to invariants in a canonical way
during refinement, thereby simplifying invariant discovery.
Moreover, the simulation relations used are either fixed (a
projection at L1-L2) or systematically derived (e.g., abstrac-
tion of runs to signals at L0-L1 and cryptographic to channel
messages at L2-L3).

We ultimately envision tool-based development where en-
gineers can choose standard properties and follow high-level
recipes for building guard, channel, and crypto protocols,
with tools checking their steps along the way. To achieve
this, we will work into two directions. First, we want to
extend the range of protocols that can be modeled and
reasoned about. For example, we plan to add support for
Diffie-Hellman key agreement, compromising adversaries,
and more complex properties such as perfect forward se-
crecy, possibly along the lines of [35]. Second, we would like

to automate development based on our strategy. It should be
possible to derive protocol models directly from high-level
descriptions such as the authentication graphs of Figure 5
and sequence charts of Figures 6–8. Moreover, with suitable
infrastructure it should be feasible to automatically generate
and (as far as possible) prove invariants and simulations,
given their strong regularity.

ACKNOWLEDGEMENTS

This work is partially supported by the EU FP7-ICT-
2009.1.4 Project No. 256980, NESSoS: Network of Ex-
cellence on Engineering Secure Future Internet Software
Services and Systems. We would also like to thank Ivano
Somaini for developing parts of the Isabelle/HOL theories
and Martin Vechev, Vincent Jugé, Son Thai Hoang, Eugen
Zălinescu, Binh Thanh Nguyen, and Ognjen Maric for their
helpful comments on earlier drafts.

REFERENCES

[1] C. Sprenger and D. Basin, “Developing security protocols by
refinement,” in Proc. 17th ACM Conference on Computer and
Communications Security (CCS), 2010, pp. 361–374.

[2] A. Armando et al., “The AVISPA tool for the automated
validation of internet security protocols and applications,” in
Proc. Computer Aided Verification (CAV 2005), ser. Lecture
Notes in Computer Science. Springer, 2005, vol. 3576, pp.
281–285.

[3] D. Basin, S. Mödersheim, and L. Viganò, “OFMC: A sym-
bolic model checker for security protocols,” International
Journal of Information Security, vol. 4, no. 3, pp. 181–208,
June 2005.

[4] C. J. F. Cremers, “The Scyther tool: Verification, falsification,
and analysis of security protocols,” in Proc. Computer Aided
Verification (CAV 2008), ser. Lecture Notes in Computer
Science, vol. 5123. Springer, 2008, pp. 414–418.

[5] E. Cohen, “First-order verification of cryptographic proto-
cols,” Journal of Computer Security, vol. 11, no. 2, pp. 189–
216, 2003.

[6] M. J. Butler, “On the use of data refinement in the develop-
ment of secure communications systems,” Formal Aspects of
Computing, vol. 14, no. 1, pp. 2–34, 2002.

[7] P. Bieber and N. Boulahia-Cuppens, “Formal development of
authentication protocols,” in Proc. Sixth BCS-FACS Refine-
ment Workshop, 1994.

[8] N. A. Lynch, “I/O automaton models and proofs for shared-
key communication systems,” in Proc. 12th IEEE Computer
Security Foundations Workshop (CSFW), 1999, pp. 14–29.

[9] G. Bella and E. Riccobene, “Formal analysis of the Kerberos
authentication system,” Journal of Universal Computer Sci-
ence, vol. 3, no. 12, pp. 1337–1381, 1997.

[10] I. Cervesato, C. Meadows, and D. Pavlovic, “An encapsulated
authentication logic for reasoning about key distribution pro-
tocols,” in Proc. 18th IEEE Computer Security Foundations
Workshop (CSFW), 2005, pp. 48–61.

[11] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic, “A deriva-
tion system and compositionl logic for security protocols,”
Journal of Computer Security, vol. 13, pp. 423–482, 2005.

[12] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL –
A Proof Assistant for Higher-Order Logic, ser. Lecture Notes
in Computer Science. Springer, 2002, vol. 2283.

[13] J.-R. Abrial, Modeling in Event-B: System and Software
Engineering. Cambridge University Press, 2010.

[14] M. Abadi and L. Lamport, “The existence of refinement
mappings,” Theoretical Computer Science, vol. 82, no. 2, pp.
253–284, 1991.

[15] R. Milner, “An algebraic definition of simulation between
programs,” in Proc. 2nd international joint conference on
Artificial intelligence (IJCAI), 1971, pp. 481–489.

[16] G. Lowe, “A hierarchy of authentication specifications,” in
Proc. 10th IEEE Computer Security Foundations Workshop
(CSFW), 1997, pp. 31–43.

[17] U. M. Maurer and P. E. Schmid, “A calculus for secure chan-
nel establishment in open networks,” in Proc. 9th European
Symposium on Research in Computer Security (ESORICS),
1994, pp. 175–192.

[18] L. Paulson, “The inductive approach to verifying crypto-
graphic protocols,” Journal of Computer Security, vol. 6, pp.
85–128, 1998.

[19] R. Needham and M. D. Schroeder, “Using encryption for
authentication in large data networks of computers,” Com-
munications of the ACM, vol. 21, no. 12, pp. 993–999, 1978.

[20] D. E. Denning and G. M. Sacco, “Timestamps in key distribu-
tion protocols,” Communications of the ACM, vol. 24, no. 8,
pp. 533–536, 1981.

[21] J. G. Steiner, B. C. Neuman, and J. I. Schiller, “Kerberos: An
authentication service for open network systems,” in Winter
1988 Usenix Conference, Feb. 1988.

[22] B. C. Neuman and T. Ts’o, “Kerberos: An authentication
service for computer networks,” IEEE Communications Mag-
azine, vol. 32, no. 9, pp. 33–38, 1994.

[23] L. Gong, “Variations on the themes of message freshness and
replay,” in Proc. 6th IEEE Computer Security Foundations
Workshop (CSFW), 1993, pp. 131–136.

[24] S. Mödersheim and L. Viganò, “Secure pseudonymous chan-
nels,” in Proc. 14th European Symposium on Research in
Computer Security (ESORICS), ser. Lecture Notes in Com-
puter Science, vol. 5789. Springer, 2009, pp. 337–354.

[25] M. Abadi, C. Fournet, and G. Gonthier, “Secure implementa-
tion of channel abstractions,” Information and Computation,
vol. 174, no. 1, pp. 37–83, 2002.

[26] D. Pavlovic and C. Meadows, “Deriving secrecy in key
establishment protocols,” in Proc. 11th European Symposium
on Research in Computer Security (ESORICS), 2006, pp.
384–403.

[27] G. Bella and L. C. Paulson, “Mechanising BAN Kerberos by
the inductive method,” in Proc. Computer Aided Verification
(CAV ’98), ser. Lecture Notes in Computer Science, vol. 1427.
Springer, 1998, pp. 416–427.

[28] ——, “Kerberos version 4: Inductive analysis of the secrecy
goals,” in Proc. 5th European Symposium on Research in
Computer Security (ESORICS), 1998, pp. 361–375.

[29] G. Bella, Formal Correctness of Security Protocols, ser.
Information Security and Cryptography. Springer, 2007.

[30] F. Butler, I. Cervesato, A. D. Jaggard, A. Scedrov, and
C. Walstad, “Formal analysis of Kerberos 5,” Theoretical
Computer Science, vol. 367, pp. 57–87, November 2006.

[31] F. Butler, I. Cervesato, A. D. Jaggard, and A. Scedrov, “A
formal analysis of some properties of Kerberos 5 using MSR,”
in Proc. 15th IEEE Computer Security Foundations Workshop
(CSFW), 2002, pp. 175–.

[32] R. Canetti, “Universally composable security: A new
paradigm for cryptographic protocols,” in Proc. 42nd IEEE
Symposium on Foundations of Computer Science (FOCS),
2001, pp. 136–145.

[33] M. Backes, B. Pfitzmann, and M. Waidner, “The reactive
simulatability (RSIM) framework for asynchronous systems,”
Information and Computation, vol. 205, no. 12, pp. 1685–
1720, 2007.

[34] S. Delaune, S. Kremer, and O. Pereira, “Simulation based
security in the applied pi calculus,” in Proc. Foundations
of Software Technology and Theoretical Computer Science
(FSTTCS), 2009, pp. 169–180.

[35] D. A. Basin and C. J. F. Cremers, “Modeling and analyzing
security in the presence of compromising adversaries,” in
Proc. 15th European Symposium on Research in Computer
Security (ESORICS), ser. Lecture Notes in Computer Science,
vol. 6345. Springer, 2010, pp. 340–356.

APPENDIX

A. Step 5 in Proposition 10(ii) (L1)
We sketch the proof of guard strengthening in the refine-

ment of the abstract event commita0i([B,A],(Kab,Ts,Ta)) by
the concrete step5krb1(Rb,A,B,Kab,Ts,Ta) of the responder
B, which is part of the proof that establishes the responder’s
injective agreement with the initiator. We define the function
sigC(r)⌘ mr that reconstructs the abstract signals from the
runs r, where mr is defined as follows.

mr(Running([B,A],(Kab,Ts,Ta)))⌘ cI
mr(Commit([B,A],(Kab,Ts,Ta)))⌘ cR

Here, cI and cR are the following cardinalities:

cI ⌘ |{Ra | 9nl. r(Ra) = (Init,A,B,Kab#Ts#Ta#nl)}|
cR ⌘ |{Rb | 9nl. r(Rb) = (Resp,A,B,Kab#Ts#Ta#nl)}|

For the remaining cases, we set mr(x) ⌘ 0. The guard
strengthening proof obligation requires that we prove

cR < cI (4)

assuming that A and B are honest and that the guards of
step5krb1 are satisfied. Since we use a cache to prevent a re-
sponder B from accepting the same key Kab and timestamp
Ta multiple times, there cannot be any prior execution of
Step 5 with these parameters. We therefore strengthen the
subgoal (4) to the conjunction of the following two subgoals.

cI > 0 (5)
cR = 0 (6)

Subgoal (5) follows from the authentication guard for
step5krb1. Subgoal (6) requires that there is no responder
run Rb0 and list nl0 corresponding to a commit signal, i.e.,

s.runs(Rb0) = (Resp,A,B,Kab#Ts#Ta#nl0). (7)

We prove this by contradiction using an invariant stating
that (7) and the validity of Ta (i.e., s.clk < Ta+La) entail
the existence of a cache entry (B,Kab,Ta)2 s.cch. This entry
was added in a previous execution of Step 5 by run Rb0 and
is not yet purged from the cache, since the timestamp Ta is
still valid. Hence, by assuming (7) and noting that s.clk <
Ta+La and the replay check (B,Kab,Ta) /2 s.cch are guards
of Step 5, we use the invariant to derive a contradiction.
This concludes the proof that the guards of the step5krb1
event imply the guard of commita0i.

B. Responder’s Key Freshness (L1)

Key freshness for the responder in krb1 expresses that a
session key K appearing in a run of a responder B with an
initiator A uniquely identifies that run, if A and B are honest.

rfreshkrb1 ⌘ {s | 8Rb,Rb0,A,A0,B,B0,K,Ts,Ts0,Ta,Ta0.
s.runs(Rb) = (Resp,A, B, [K,Ts, Ta])^
s.runs(Rb0) = (Resp,A0,B0, [K,Ts0,Ta0])^
B /2 bad ^ A /2 bad ! Rb = Rb0 }

We have proved that this is an external invariant of krb1.

Proposition 17. oreach(krb1)✓ rfreshkrb1.

All cases except for the critical Step 5 by the responder are
proved automatically. For the case of Step 5, the proof relies
on most other invariants proved for krb1 or inherited from
its ancestors. Secrecy and the responder’s agreement with
the server are used to exclude the cases where the initiator
A0 or the responder B0 in the run R0 is dishonest. Otherwise,
we use the agreement with the initiator to reduce the proof
to the initiator’s key freshness (proved for kt1in).

C. Step 5 in Proposition 11 (L2)

The guard strengthening proof obligation for Step 5
requires that the guards for receiving M2b and M3 in the
responder B’s step5krb2 imply the following three non-local
security guards of step5krb1: the authorization guard

(Kab,B) 2 azC(s.runs), (8)

the server authentication guard

B /2 bad !9Rs,Na. Kab = sesK(Rs$sk)^
s.runs(Rs) = (Serv,A,B, [Na,Ts]), (9)

and the initiator authentication guard

A /2 bad ^B /2 bad !9Ra,nl.
s.runs(Ra) = (Init,A,B,Kab#Ts#Ta#nl). (10)

The following invariant directly arises from the proof
obligation expressing the strengthening of the server authen-
tication guard (9). It expresses the guarantee that an honest
B gets about the server’s state from receiving message M2b.

M2b+krb2 ⌘ {s | 8Kab,A,B,Ts.
Secure(S,B, [Kab,A,Ts]) 2 s.chan ^ B /2 bad !
9Rs,Na.

Kab = Rs$sk ^ s.runs(Rs) = (Serv,A,B, [Na,Ts])}
A related invariant, M2b�krb2, describes the case where B is
dishonest. In this case, Kab is either a corrupted key or a
session key generated by the server for some dishonest agent.
These two invariants suffice to derive the strengthening of
the authorization guard (8).

The strengthening of the initiator authentication
guard (10) corresponds to the following proof obligation.
It describes the authentication guarantee that the responder
B gets about the initiator’s state from receiving messages
M2b and M3: A knows Kab, Ts, and Ta in an initiator run
Na, provided that A and B are honest.

Secure(S,B, [Kab,A,Ts]) 2 s.chan^
dAuth(Kab, [A,Ta]) 2 s.chan^
A /2 bad ^ B /2 bad !
9Ra,nl. s.runs(Ra) = (Init,A,B,Kab#Ts#Ta#nl)

(11)

When trying to prove that this is an invariant, we get
stuck in a proof state that suggests replacing the honesty of
A and B by the secrecy of Kab. This enabled the successful
completion of the proof.

M3krb2 ⌘ {s | 8Kab,A,B,Ts,Ta.
Secure(S,B, [Kab,A,Ts]) 2 s.chan^
dAuth(Kab, [A,Ta]) 2 s.chan^
Kab /2 ikk(s.chan)!
9Ra,nl. s.runs(Ra) = (Init,A,B,Kab#Ts#Ta#nl)}

To establish the required guard strengthening (11) using
the invariant M3krb2, it suffices to show that its first premise
(i.e., Secure(S,B, [Kab,A,Ts]) 2 s.chan) and third premise
(i.e., the honesty of A and B) imply Kab /2 ikk(s.chan). This
follows from the invariant M2b+krb2 above and the following
invariant, which guarantees to the server that the intruder
never learns a session key generated for honest agents.

ikkSvkrb2 ⌘ {s | 8Rs,A,B,nl.
s.runs(Rs) = (Serv,A,B,nl)^A /2 bad ^B /2 bad !
sesK(Rs$sk) /2 ikk(s.chan)}

This completes our sketch of the refinement proof of
step5krb1 by step5krb1.

