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Abstract. Some bacteria are among the most active ice nu-
clei found in nature due to the ice nucleation active proteins
on their surface, which serve as active sites for ice nucle-
ation. Their potential impact on clouds and precipitation is
not well known and needs to be investigated. Bacteria as a
new aerosol species were introduced into the global climate
model (GCM) ECHAM5-HAM. The inclusion of bacteria
acting as ice nuclei in a GCM leads to only minor changes
in cloud formation and precipitation on a global level, how-
ever, changes in the liquid water path and ice water path
are simulated, specifically in the boreal regions where tun-
dra and forests act as sources of bacteria. Although bacteria
contribute to heterogeneous freezing, their impact is reduced
by their low numbers compared to other heterogeneous IN.
This result confirms the outcome of several previous studies.

1 Introduction

Primary biological aerosol particles (PBAP, also called
bioaerosols) are airborne particles that are either alive, carry
living organisms or are released by them (Ariya and Amyot,
2004). A prominent example of PBAP are bacteria, on which
we focus our research.

The presence of bacteria in the troposphere and even in the
stratosphere has long been established by a variety of aero-
biological research (Wainwright et al., 2003; Morris et al.,
2011). Most of that research has however focused on issues
related to health hazards, while ignoring their impacts on
cloud formation and the hydrological cycle.

Bacteria have been shown in laboratory studies to be effi-
cient ice nuclei (IN) and it has been suggested from differ-
ent sides that bacteria which act as IN or cloud condensation
nuclei (CCN) in the atmosphere could impact the global dis-

tribution of clouds and precipitation (Schnell and Vali, 1972,
1973; Yankofsky et al., 1981a,b; Levin and Yankofsky, 1988;
Sands et al., 1982; Bauer et al., 2003; Diehl et al., 2006; Mor-
ris et al., 2004, 2011; Sun and Ariya, 2006).

Bacteria are ubiquitous and can enter the atmosphere as
aerosol particles from almost all surfaces (Jones and Harri-
son, 2004). Once in the air, they can be carried upward by
vertical updraughts. They have relatively long atmospheric
residence times on the order of several days (Morris et al.,
2011). They can be transported by wind over long distances
(Bovallius et al., 1978b; Prospero et al., 2005) before be-
ing removed by wet scavenging (either in-cloud or below-
cloud), or by dry deposition onto surfaces.Burrows et al.
(2009b) summarised that mean concentrations in ambient air
are likely to be at least 1× 104 cells m−3 over land, while
concentrations over ocean may be two to three orders of mag-
nitude lower than over land and were therefore excluded in
this study.

It is estimated that on a global average in the lower
troposphere or near the surface, 25 % of the total mass
concentration of atmospheric aerosols is provided by pri-
mary bioaerosols (Jaenicke et al., 2007). Over biomes with
high vegetation density such as the Amazon rainforest,
bioaerosols account for as much as 74 % of the total aerosol
mass concentration near the surface (Graham et al., 2003),
with fungal spores contributing 30–50 % (Matthias-Maser
and Jaenicke, 1995). Even in marine air masses, the contribu-
tion of bioaerosols by both number concentration and volume
amounts to 10–20 % (Gruber et al., 1998) for particles with a
radius> 0.2µm.

The highest number concentration of bacteria in
the atmosphere is reached during summer, as this
is the season with most abundant vegetation cover-
age that provides a habitat for leaf-dwelling bacteria
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(Amato et al., 2007; Tong and Lighthart, 2000). Bacteria
which act as IN are gram-negative, which means that they
have an outer membrane containing lipopolysaccharide
chains on which lipoproteins are attached (Brock et al.,
2000). Their surface area is therefore substantially enlarged
and provides more potential active sites where ice nucleation
is expected to take place.

In particular,Pseudomonassp. is a bacterial strain which is
an excellent CCN/IN. It is commonly associated with plants
as a pathogen living on the leaf surface. Its ice nucleation ac-
tivity is conferred by a single gene (inaZ) that encodes the
outer membrane InaZ protein. Individual InaZ proteins can-
not serve as IN, but form large, homogeneous aggregates that
collectively orient water molecules into a conformation mim-
icking the crystalline structure of ice, thereby catalysing ice
formation (Baertlein et al., 1992). It has also been shown that
there are ice nucleation active fungi (Pouleur et al., 1992;
Iannone et al., 2011) and pollen (Diehl et al., 2001, 2002;
von Blohn et al., 2005), though they initiate freezing at colder
temperatures than bacteria do.

Aircraft observations from the campaign Ice in Clouds Ex-
periment – Layer-clouds (ICE-L) conducted in Wyoming in
2007 showed that biological particles were present in the
residual material from heterogeneously nucleated ice crys-
tals (Pratt et al., 2009). Furthermore, biological ice nuclei
were found to be present in concentrations of up to about
500 particles per litre of freshly fallen snow water equivalent
(Christner et al., 2008).

Ice nucleation active bacteria can catalyse the immer-
sion freezing of supercooled water at temperatures as warm
as −2◦C due to the ice nucleation activating protein InaZ
(Schnell and Vali, 1972; Maki et al., 1974; Yankofsky et al.,
1981b; Möhler et al., 2008). Šantl Temkiv et al.(2009) found
12 % of bacteria in rain samples to be IN active. A recent con-
tribution to the 11th General Meeting of the American Soci-
ety for Microbiology by Alex Michaud from Montana State
University, showed that the ice in the center of hail stones
contained up to 1000 bacteria cells per millilitre of melted
hail (Michaud et al., 2011).

Diehl et al.(2006) andDiehl and Wurzler(2004) provide
parametrisations for the contact and immersion freezing ef-
ficiencies of bacteria that can be used together with those
for other bioaerosols, mineral dust and soot. Based on the
experimental data fromLevin and Yankofsky(1983), Diehl
and Wurzler(2004) andDiehl et al.(2006), Fig. 1 shows the
fraction of frozen droplets with a radius of 10 µm for differ-
ent temperatures and IN. Please note that the onset of freez-
ing is depending also on the droplet size. Ice formation due
to contact freezing starts at similar temperatures for bacteria
and montmorillonite mineral dust particles, but then proceeds
most rapidly for bacteria. For the case of immersion freezing,
bacteria initiate freezing at approximately 10◦C higher tem-
peratures than mineral dust (montmorillonite and kaolinite)
does. As bacteria nucleate ice already at such high temper-
atures, the ice particles forming on them have the longest

Fig. 1. Contact freezing frozen fractions (full lines) and immersion
freezing frozen fractions (dashed lines) for a droplet radius of 10 µm
of bacteria (red), montmorillonite (green) and kaolinite (blue); from
experimental data. Adapted fromLohmann and Diehl(2006).

possible time to grow in a cloud and the best chance to grow
to precipitation sizes, which makes them interesting to inves-
tigate.

The interactions between aerosols and mixed-phase clouds
are still uncertain, as reviewed byLohmann and Feichter
(2005). Recently there have been various modelling stud-
ies on potential impacts from biological aerosols on clouds,
which have reached different conclusions (Grützun al., 2008;
Phillips et al., 2009; Ariya et al., 2009; Burrows et al., 2009a;
Diehl and Wurzler, 2010; Hoose et al., 2010a,b; Sun et al.,
2010). While Hoose et al.(2010a) andHoose et al.(2010b)
do not find any significant impact of bioaerosols on clouds
and precipitation, e.g.Phillips et al.(2009) state that cloud
properties are altered by boosted bacterial concentrations.
They agree however, that no impact is observed with realistic
bacterial concentrations.

The overall aim of the present study is to examine the in-
fluence of bacteria on microphysical properties of stratiform
clouds and precipitation on a global scale. In the following
section, the global climate model and experimental design
are described. Results from sensitivity tests are shown and
discussed in the subsequent section.

2 Model setup

ECHAM5 is the fifth generation atmospheric general cir-
culation model (GCM) that evolved from the model of the
European Centre for Medium Range Weather Forecasting
(ECMWF) and was further developed at the Max-Planck In-
stitute for Meteorology (Roeckner et al., 2003). The model
solves prognostic equations for vorticity, divergence, temper-
ature and surface pressure using spherical harmonics with
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Table 1.Simulations.

Simulation Description

CTL Control simulation. Bacteria are not IN active.
BT1 Bacteria best-estimate emissionsBurrows et al.(2009b), 1 % of bacteria IN active
BT10 Bacteria best-estimate emissionsBurrows et al.(2009b), 10 % of bacteria IN active
BT100 Bacteria best-estimate emissionsBurrows et al.(2009b), 100 % of bacteria IN active
100BT100 Same as BT100 but with a hundredfold increase of bacteria emissions

triangular truncation. Water vapour, cloud liquid water and
ice, as well as trace components, are transported using a
semi-Lagrangian scheme (Lin and Rood, 1996) on a Gaus-
sian grid. Prognostic equations for cloud water and ice fol-
low Lohmann et al.(2007). The model includes the cirrus
scheme ofKärcher and Lohmann(2002). Convective clouds
and transport are based on the mass-flux scheme ofTiedtke
(1989) with modifications followingNordeng(1994). The
solar radiation scheme has 6 spectral bands (Cagnazzo et al.,
2007) and the infrared has 16 spectral bands (Mlawer et al.,
1997; Morcrette et al., 1998).

The GCM is coupled to the Hamburg Aerosol Model
(HAM), which is described in detail byStier et al.(2005) and
most recently adapted byLohmann and Hoose(2009). The
aerosols are represented by seven log-normal modes, 4 inter-
nally mixed/soluble modes (nucleation (NS), Aitken (KS),
accumulation (AS), and coarse (CS)) and 3 insoluble modes
(Aitken (KI), accumulation (AI), and coarse (CI)). The me-
dian radius for each mode is calculated from the aerosol mass
and number concentration in each mode. Aerosol mass and
number are transferred from the insoluble to the internally
mixed modes by the condensation of sulphuric acid and or-
ganic vapours, and coagulation with soluble aerosols.

The natural emissions of sea salt, dust, and dimethyl sul-
phate (DMS) from the oceans are calculated on-line, based
on the meteorology of the model. Emissions for all other
aerosol species are taken from the AEROCOM emission in-
ventory, and are representative for the year 2000 (Dentener
et al., 2006). The aerosol emissions and the removal pro-
cesses of wet scavenging, sedimentation, and dry deposition
are described in detail in Stier et al. (2005).

All results presented in this study are from simulations
which have been integrated for one year, following a three
months spin-up period. All simulations are nudged to the
ECMWF ERA40 reanalysis data for the year 2000 (Sim-
mons and Gibson, 2000), to minimise differences in dynam-
ics between the different simulations. The nudging technique
is described byTimmreck and Schulz(2004). The spectral
resolution of all simulations is T42 which corresponds to
2.8125◦ × 2.8125◦ horizontally, with 19 vertical levels from
the surface up to 10 hPa and a 30-min time step. All simula-
tions conducted in this study are summarised in Table1.

2.1 Bacteria in ECHAM5-HAM

Bacteria in general and those with ice nucleating abilities in
particular are commonly found on plant leaves (Lindemann
et al., 1982; Hirano and Upper, 2000). Their concentration
depends on the ecosystem they stem from.

The emission fluxF of bacteria is calculated in ECHAM5
according to

F =

5∑
i=1

fiFi (1)

with Fi being the bacterial number emission flux [m−2s−1]
over a particular ecosystem,fi denoting the fractional cov-
erage of a gridbox with a certain plant functional type, and
i standing for crops, grass, shrubs, forests and land ice. The
fractions of the different ecosystems are obtained from the
corresponding plant functional type area fractions of the JS-
BACH dynamic vegetation model (Raddatz et al., 2007).
Burrows et al.(2009c) provided the observed near surface
bacteria fluxes (593 m−2s−1 over crops, 1123 m−2s−1 over
grassland, 8 m−2s−1 over ice, 520 m−2s−1 over shrubs, and
303 m−2s−1 over forests), which were weighted by the area
fraction of the respective ecosystems in the gridbox (fi).

Due to the limited available data on emissions of bac-
teria in the air, the ecosystem types available in JSBACH
which are based on the Olson World Ecosystems dataset (Ol-
son, 1992) were lumped into the aforementioned five groups.
Cropsand land iceare ecosystem types on their own,grass
is comprised by C3 and C4 grasslands, whileshrubscon-
tains both raingreen and deciduous shrubs. Theforestcate-
gory is made of tropical broadleaf evergreen and deciduous
trees, temperate broadleaf evergreen and deciduous trees, as
well as coniferous evergreen and deciduous trees. This is of
course a very crude assumption, but unfortunately, there are
currently no better data available.

In order for bacteria to be incorporated into HAM (Stier
et al., 2005) the number of aerosol modes was increased from
7 to 9 – adding an insoluble and soluble/mixed bioaerosol
mode, that so far only contains bacteria as a new aerosol
species (see Table2). Bacteria are emitted initially in the in-
soluble bioaerosol mode, as IN active bacteria are assumed to
be hydrophobic because these bacteria live primarily on solid
surfaces on plant leaves, but also on stones, human skin, etc.
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Table 2. The modal structure of HAM with its aerosol species:
sulphate (SO4), black carbon (BC), organic carbon (OC), sea salt
(SS), mineral dust (DU) and bacteria (BCT). The radius range of
the aerosol particles in the respective mode is given byr.

Modes Size range [µm] mixed/soluble insoluble

Nucleation r ≤ 0.005 SO4
Aitken 0.005< r ≤ 0.05 SO4, BC, OC BC, OC
Accumulation 0.05< r ≤ 0.5 SO4, BC, OC, SS, DU DU
Coarse 0.5< r ≤ 1 SO4, BC, OC, SS, DU DU
Bioaerosol 1< r SO4, BC, OC, SS, DU, BCT DU, BCT

(McNamara et al., 1997). They can be transfered to the mixed
mode by coating with H2SO4 and organic vapours, coagula-
tion with sulphate, black carbon and organic carbon. Bacteria
are additionally allowed to coagulate with dust, which has
been observed for Saharan dust sampled over the Mediter-
ranean and the Atlantic (Griffin, 2007; Kellog and Griffin,
2006).

The soluble accumulation and soluble coarse modes do not
coagulate despite being soluble modes (Vignati et al., 2004)
because the timescale for their coagulation is much longer
than the timescale for coagulation between the Aitken and
the accumulation mode. The same holds true for the coagu-
lation between the insoluble accumulation and coarse modes.
For the case of bioaerosols, they were allowed to coagulate
with each other and with dust, as has been observed (e.g.Kel-
log and Griffin, 2006). Additionally, they coagulate with the
soluble nucleation and soluble Aitken modes, mimicking the
behaviour of dust.

The parametrisation for contact freezing of bacteria stems
from Diehl et al.(2006) and that for immersion freezing from
Diehl and Wurzler(2004). Deposition nucleation on bacteria
is not considered, because observational data are missing for
that process. Note that deposition freezing is also neglected
for mineral dust, as it generally takes place at lower temper-
atures than the other heterogeneous freezing processes and is
thought to be negligible in mixed-phase clouds.

Contact freezing is implemented into ECHAM according
to Hoose et al.(2008) as follows:

Qfrz,cnt ≡ −
dNl

dt
|frz,cnt = Dap4πrlNa,cntNl (2)

Qfrz,cnt is the freezing rate via contact nucleation,Nl
the concentration of liquid droplets,Dap the size-dependent
Brownian aerosol diffusivity,rl the volume-mean dropet ra-
dius andNa,cnt the number of contact nuclei. The latter is
calculated as:

Na,cnt =
∑
x

Max(1,Min(0, (−ax(T − 273.15K) − bx)))

×
Ncnt,x

Naer,insol
(Nl + Ni) (3)

with x standing for montmorillonite mineral dust particles or
bacteria.Ni is the ice crystal number concentration,Naer,insol

the total insoluble aerosol number concentration andNcnt,x a
number concentration of the maximum available contact ice
nuclei of materialx. The parametersax andbx (see Table3)
are related to the aerosol’s effectiveness to act as ice nuclei
in the contact freezing mode as determined byDiehl et al.
(2006). T is the temperature in K.

The immersion freezing parametrisation byDiehl and
Wurzler(2004) describes the immersion freezing rate as:

Qfrz,imm ≡ −
dNl

dt
|frz,imm = Na,immexp(273.15K− T )

dT

dt

ρql

ρl
for

dT

dt
< 0 (4)

ρ is the air density,ρl the liquid water density andql the
cloud water mixing ratio.Na,imm is the number of immersion
nuclei, which is related to a measured effectivenesscx (see
Table3, weighted by the number of potential ice nuclei of the
respective materialx (this time denoting black carbon, mont-
morillonite and bacteria) and normalised by the total number
of particles larger than 35 nm in radius (activation thresh-
old according toLin and Leaitch(1997) as implemented in
ECHAM5-HAM by Lohmann et al., 2007).

Na,imm =

∑
s

cx

Nimm,x

N>35nm
aer,tot

(5)

The parametrisation for bacteria relies on data fromLevin
and Yankofsky(1983) who investigated the IN properties of
the bacterial strain M1 (Yankofsky et al., 1981b). However,
the reliability of these results is questionable, as the control
freezing experiment conducted with purified water induced
freezing at−14◦C instead of at−35◦C, leading to the con-
clusion that the droplet generator used in those experiments
might have been contaminated with ice nucleation inducing
material. This is further supported by the fact, that when the
same instrument as in the studies byPitter and Pruppacher
(1973) was used, their control experiments with pure wa-
ter lead to the expected onset of homogeneous freezing at
−35◦C. Additionally, the number of IN per bacterial cell is
unknown.

As there were no data available about shortwave and long-
wave radiative properties of bacteria, but they have a similar
refractive index as sea salt (Wyatt, 1970; Ebert et al., 2002),
the identical data as for sea salt (Fenn et al., 1981) were as-
sumed for the optical properties of bacteria. The standard de-
viation of the bacterial distribution was set to 2, equal to that
of dust. The mean mass scavenging coefficient for bacteria
scavenged by rain was set to 1 kgm−2 and to 5×10−3 kgm−2

for bacteria scavenged by snow, as estimated fromSeinfeld
and Pandis(2006). Those are the same scavenging ratios as
for dust. The mass of a bacterium in ECHAM was set to
the average value 1−15 kg and its average density was cal-
culated as being 1.2 gcm−3 from data available inBaron and
Willeke (2001) andHinds(1999). These values lead to a me-
dian diameter for bacteria of 2.5 µm. The size range of the
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Table 3. Parametersax andbx for contact freezing (Diehl et al.,
2006) and parametercx for immersion freezing (Diehl and Wurzler,
2004) of black carbon (BC), montmorillonite (MON) and bacteria
(BCT).

x ax (K−1) bx cx (m−3)

BC – – 0.00291
MON 0.1014 0.3277 32.3
BCT 0.2641 0.7423 6 190 000

Table 4. Global bacteria emissions and burden calculated with
ECHAM5 compared to the model results byBurrows et al.(2009a),
Jacobson and Streets(2009) andHoose et al.(2010b).

Emissions Burden Source
[Tg yr−1] [Tg]

2.58 0.03 ECHAM5 best estimate bacteria emissions
258 2.82 ECHAM5 hundredfold bacteria emissions
0.4–1.8 0.0087 Burrows et al.(2009a)
28.1 n/a Jacobson and Streets(2009)
0.75 0.0043 Hoose et al.(2010b)

most common bacteria lies between 0.5 and 5 µm in diame-
ter (Brock et al., 2000). While Hoose et al.(2010b) assume a
diameter of 1 µm in their calculations, our estimate is higher
and similar to that ofBurrows et al.(2009a) and represents
an aggregate of several cells, as commonly found in the air
(Lighthart, 1997). A sensitivity study was conducted, with a
bacteria diameter of 1 µm. However, this led to virtually no
changes in our model output.

3 Results and discussion

In the reference simulation (CTL) bacteria act only as pas-
sive tracer, i.e. bacteria are emitted and transported around
the globe, but have no effects on the radiation budget, cloud
microphysics and precipitation. In all the other simulations
(cf. Table1) bacteria are allowed to act as IN. In the simu-
lations BT1, BT10 and BT100 bacteria best estimate emis-
sions fromBurrows et al.(2009c) are used and the frac-
tion of bacteria acting as IN is varied from 1 % to 10 % and
100 %, respectively. The simulation 100BT100 represents an
extreme case where all bacteria are assumed to be IN active,
and their emission flux is increased by a factor of 100. This
factor of 100 is plausible for natural fluctuations of bacteria
emissions due to seasonality, vegetation periods and micro-
climatic effects. Additionally, there is good reason to assume
that the measured number of bacteria vastly underestimates
the species diversity and quantity. This has been thoroughly
discussed by many biology and biodiversity papers. To state
an example, according toHorner-Devine et al.(2004) only
less than 1 % of the existing bacteria species have been de-
scribed to date and according toFahlgren et al.(2010), less

Table 5.Modelled global means of emissions and deposition of bac-
teria.

BT10 BT10 100BT100
Dust Bacteria Bacteria
[kgm−2s−1] [kgm−2s−1] [kgm−2s−1]

Emission 4.55× 10−11 5.49× 10−13 5.49× 10−11

Dry Deposition 2.35× 10−11 1.70× 10−13 1.56× 10−11

Wet Deposition 2.19× 10−11 3.80× 10−13 3.93× 10−11

Total Deposition 4.55× 10−11 5.49× 10−13 5.49× 10−11

than 1 % of bacteria sampled are viable, therefore leading
to an underestimation of the real bacteria concentration in
the atmosphere.Phillips et al.(2009) also conducted simu-
lations with bacteria numbers boosted up by two orders of
magnitude in their research. Additionally, this allows us to
investigate what would happen if their number concentration
was assumed to be on the same order of magnitude as that of
mineral dust aerosols.

The annual zonal mean vertical profiles of dust and bac-
teria number concentrations, as depicted in Fig.2 show that
there is transport of bacteria to the middle and upper tropo-
sphere. However, their number in the troposphere is two to
three orders of magnitude lower than that of dust. By increas-
ing bacteria emission a hundredfold, their number concentra-
tions become comparable to those of dust, with average val-
ues of 1 cm−3. As can be seen from mixing ratios in Fig.3,
bacteria remain in the insoluble mode at high northern lati-
tudes where there is less soluble materials to coagulate with,
but are transferred into the soluble mode in regions where
there are prominent anthropogenic emissions present.

The bacteria emissions and burdens as calculated with
ECHAM are summarised in Table4. The emissions are in
the same order of magnitude but clearly exceed the upper end
of the range of values calculated byBurrows et al.(2009a),
they are higher than those shown byHoose et al.(2010b) but
lower than those ofJacobson and Streets(2009). The bur-
den as well as the life-time of the bacteria in the atmosphere
(4.2 days) is similar toBurrows et al.(2009a), suggesting a
weaker removal of bacteria compared to results obtained by
Hoose et al.(2010b). A hundredfold increase in emissions
leads to a hundredfold increase of the bacterial burden as
well.

The results from the BT10 simulation in Fig.4 show the
emission, deposition and burden of bacteria as compared to
dust. It is evident from Fig. 3d that the bacteria are trans-
ported over quite large distances. Their deposition is larger
over areas with plenty of vegetation and high precipitation,
e.g. the Amazon, the Congo basin, or South-East Asia. The
bacteria burden is large over North-West Africa in a region
with high emissions from the grasslands in a relatively dry
climate.

As can be seen in Table5, the emitted and deposited num-
bers of bacteria are two orders of magnitude smaller than

www.atmos-chem-phys.net/12/8645/2012/ Atmos. Chem. Phys., 12, 8645–8661, 2012
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Fig. 2. Modelled (CTL and 100BT100, see Table1 for description) annual zonal mean vertical profiles of dust and bacteria mass [gm−3]
and number concentrations in [cm−3].

Fig. 3. Modelled (BT1, see Table1 for description) annual zonal mean vertical profiles of bacteria soluble (BS) and insoluble (BI) number
mixing ratios [kg−1].

those of mineral dust. The simulation 100BT100 was there-
fore included in a sensitivity study in order to investigate the
impact bacteria might have if they were as numerous as dust.
While dust is deposited equally through dry and wet deposi-
tion, the primary pathway for removal of bacteria is via wet
deposition. This is due to the fact that bacteria nucleate more
readily than dust and due to their low density some bacteria
can be lighter than large dust particles. Furthermore, dust is
emitted primarily in dry regions where there is very little pre-

cipitation and thus wet deposition, while the opposite is true
for bacteria.

The simulated bacterial number concentrations were com-
pared to observations at various locations in Fig.5. In order
to compare the model values with observations, the model
values were interpolated to the location of the measurements
and divided by a factor 100 in order to account for only 1 %
of bacteria being viable (Fahlgren et al., 2010), as is the case
in observations. The comparability of point measurements

Atmos. Chem. Phys., 12, 8645–8661, 2012 www.atmos-chem-phys.net/12/8645/2012/
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Fig. 4. Modelled (BT10, see Table1 for description) global annual means of emission, deposition and burden of bacteria and mineral dust.
(a) dust emission [g m−2 yr−1] (b) bacteria emission [g m−2 yr−1] (c) dust deposition [g m−2 yr−1] (d) bacteria deposition [g m−2 yr−1]
(e)dust burden [g m−2] (f) bacteria burden [g m−2].

to global model data with grid sizes of 2.8◦
× 2.8◦ is, how-

ever, limited. The standard deviation of the observational
data is rather large, as the measurement methods differ for
each location and the variability of bacteria concentrations
is high. The model greatly underestimates both the mean
observed bacteria concentrations and the variability in the
bacteria concentrations. Standardised long-term observations
with world-wide coverage are necessary for a more precise
model evaluation. Such observations would help by provid-
ing a uniform database stemming from fixed measurement
methods and thus reducing the errors. The representation of
natural variability in a model could also be improved by a
dynamic bacteria emission scheme or detailed observations

distinguishing for example between different forest biomes.
However, it is necessary to keep in mind that a GCM can
never capture the exact natural variability of any quantity, no
matter the detail of the emission data set, as each gridbox
represents an average over several hundred kilometers.

Bacteria produce ice faster and earlier than dust, as can
be seen from Fig.1, shifting the ice nucleation from on
dust to nucleation on bacteria. At the same time, there
are much fewer bacteria than mineral dust aerosols avail-
able as IN. Consequently, the changes from CTL to BT1,
BT10 and BT100 in the cloud droplet number concentration
(CDNC), ice crystal number concentration (ICNC), precipi-
tation, cloud cover, relative humidity, short-wave (SCF) and

www.atmos-chem-phys.net/12/8645/2012/ Atmos. Chem. Phys., 12, 8645–8661, 2012
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Fig. 5. Simulated bacteria concentrations at ground level, divided
by factor 100 in order to account for viable bacteria, compared to
observations. Observations are averages over different time periods,
and the simulated data were interpolated to the measurement loca-
tion. The bars indicate the standard deviation for all measurements
at one location. Observations are taken fromBauer et al.(2002),
Bovallius et al.(1978a), Bovallius et al.(1978b), Borodulin et al.
(2005), Chen et al.(2001), DiGiorgio et al. (1996), Fang et al.
(2007), Kelly and Pady(1954), Lindemann et al.(1982), Mouli
et al. (2005), Negrin et al.(2007), Pastuszka et al.(2000), Rosas
et al.(1994), Rüden et al.(1978), Schlesinger et al.(2006), Shaffer
and Lighthart(1997), Tilley et al. (2001), andVlodavets and Mats
(1958).

long-wave cloud forcing (LCF), as well as the aerosol opti-
cal depth (AOD) remain small (cf. Table6). However, one
can see from the vertical profile in Fig.6 and the vertically
integrated difference in Fig.7 that this is partly the result of
averaging.

As Figs.8 and9 show, bacteria and mineral dust are simi-
larly important for contact freezing. As the role of black car-
bon in contact freezing is not known yet, it only acts as im-
mersion nuclei in ECHAM5. The contribution of black car-
bon to freezing is negligible. Both in contact and immersion
freezing, bacteria initiate freezing at lower altitudes and thus
at higher temperatures than mineral dust.

Mineral dust plays as stronger role for the immersion
freezing in the BT1 simulation (Fig.8). The influence of
bacteria is limited to the equator and high northern latitudes
where there are abundant bacteria sources from vegetation.
Dust is the dominating freezing agent in the Southern Hemi-
sphere, where there is less vegetation as a source for bacte-
ria, but more dust sources with the Australian and Atacama
deserts. In the BT10 simulation results as shown in Fig.9
bacteria dominate the immersion freezing.

Bacteria contribute to total freezing more strongly than
dust, especially in the immersion mode, while in contact
mode they are more or less comparable. Again, we see an im-
pact in northern latitudes and for immersion freezing around

the lowest levels where freezing occurs. This confirms our
hypothesis that the reason we see only small changes in cloud
properties in simulations with and without bacteria (apart
from high northern latitudes), is not that bacteria do not con-
tribute to freezing, but that they largely replace dust particles
acting as ice nuclei.

Nevertheless, the changes in IWP and LWP remain small,
as can be seen from Fig.7 and Table6. Although bacteria
contribute to heterogeneous freezing, their impact is reduced
by their low numbers compared to other heterogeneous IN.
While we reach the same conclusion asHoose et al.(2010b)
with CAM-Oslo (i.e. tiny effect overall), we reach it for
different reasons. It seems that the cloud microphysics in
ECHAM5 is such that because there is already mineral dust
acting as IN, the effect of adding bacteria as IN is minor (as
measured by changes in precipitation, LWP, IWP, radiation
etc.).

There is a slight reduction in LWC and increase in IWC,
which is expected, as bacteria are efficient IN. The IWC is
slightly higher in the heterogeneous freezing regime, while
the LWC is slightly lower, as can be seen in Fig.6. The area
of large changes in IWC in the Arctic in Fig.6 is due to the
fact that temperatures there are in the range of mixed-phase
clouds (0◦C to−35◦C) for large parts of the year even at the
surface, so the bacteria do not have to be transported high up
into the atmosphere to have an impact in this region. Around
the Arctic circle there are vast areas of tundra and boreal
forests which are providing relatively high bacteria concen-
trations to the Arctic, which is also evident in the zonal mean
bacteria concentration in Fig.2.

We consider the simulation BT10 to be the best esti-
mate, according to observations byŠantl Temkiv et al.(2009)
which found 12 % of bacteria in rain samples to be IN active.
Even in this simulation, the change in LWP and IWP is small
but non-negligible and a feature consistent throughout the
simulations. As expected, the IWP increases while the LWP
decreases due to the earlier onset of the Bergeron-Findeisen
process, if bacteria are available as additional IN. As evi-
dent from Fig.7, the change is especially pronounced on the
northern hemisphere, where forests contribute to higher bac-
teria concentrations. The LWP reduction is most prominent
in the storm-tracks due to more efficient precipitation for-
mation. Overall the signal is consistent for different bacteria
concentrations and IN activities.

Looking at global maps of LWP and IWP in Figs.10 and
11, respectively, LWP is generally lower over the continents,
and especially over North America and Asia. Corresponding
to the LWP decrease the IWP is increased over continents,
specifically in the Arctic and over South America, where
forests act as sources of bacteria.

For the extreme assumption of a 100-fold increase in
bacteria emissions in the 100BT100 simulation, a consid-
erable change can be observed (cf. Table6). There is a
7 % reduction in LWP between the 100BT100 and CTL
case (cf. Fig.7). As a result there is also significantly less

Atmos. Chem. Phys., 12, 8645–8661, 2012 www.atmos-chem-phys.net/12/8645/2012/



A. Sesartic et al.: Bacteria in ECHAM5-HAM 8653

Table 6.Yearly average values for the simulations CTL, BT1, BT10 and BT100 compared to observations (OBS). The table displays liquid
water path (LWP), ice water path (IWP), total cloud cover (TCC), the vertically integrated cloud droplet number concentration (CDNC) and
ice crystal number concentration (ICNC), total precipitation (P ), shortwave cloud forcing (SCF), longwave cloud forcing (LCF), radiation
budget at the top of the atmosphereFnet and aerosol optical depth (AOD). See Table1 for the description of the simulation acronyms. Global
averaged annual estimates and zonal mean estimated observational data are taken from the Global Precipitation Climatology Project (GPCP)
for total precipitationPtot (Huffman et al., 1997; Adler et al., 2003). LWP stem from satellite (SSM/I) retrievals byWentz(1997), Greenwald
et al.(1993) andWeng and Grody(1994). IWP is derived from the International Satellite Cloud Climatology Project ISCCP data (Storelvmo
et al., 2008). Cloud droplet number concentrationNl retrievals fromHan et al.(1998) is available for 50◦ N to 50◦ S. Shortwave and longwave
cloud forcing (SCF and LCF) are deduced fromKiehl and Trenberth(1997). The data of aerosol optical depth AOD are provided bySchulz
et al.(2006) and S. Kinne (personal communication, 2008). Cloud cover observations are derived from observations of ISCCP (Rossow and
Schiffer, 1999), surface observations collected byHahn et al.(1995) and satellite observations estimated byStubenrauch and Kinne(2009).

ECHAM5.5- CTL BT1 BT10 BT100 100BT100 OBS

LWP [g m−2] 56.61 56.24 56.09 55.78 52.80 48–83
IWP [g m−2] 6.965 6.976 6.990 7.007 7.019 29
TCC [%] 60.14 60.16 60.21 60.18 60.12 65–75
CDNC [1010 m−2] 3.415 3.397 3.401 3.403 3.192 4
ICNC [1010 m−2] 0.124 0.123 0.122 0.121 0.096 –
P [mm day−1] 2.839 2.840 2.840 2.841 2.856 2.74
SCF [W m−2] −48.81 −48.76 −48.77 −48.71 −47.16 −47 to−50
LCF [W m−2] 26.33 26.33 26.33 26.29 25.75 2–30
AOD 0.117 0.117 0.117 0.117 0.187 0.15–0.18

solar radiation reflected back to space by clouds (1SCF =
1.65 Wm2). This change in cloud radiative forcing is almost
exactly the same as the entire increase in the greenhouse
effect due to anthropogenic CO2 since pre-industrial times
(Forster et al., 2007). There is also more longwave radiation
escaping to space (1LCF = 0.58 Wm2) because of the re-
duced number of ice crystals so that the net change is slightly
more than 1 Wm2, which is still a rather strong effect. Addi-
tionally, bacteria have an enormous effect on the AOD in the
100BT100 simulation, leading to a 59 % increase by direct
reflection of solar radiation.

4 Conclusions

Bacteria as a new aerosol particle mode were introduced into
ECHAM5-HAM and their emissions, transport and impact
on clouds and precipitation were investigated.

It was shown that bacteria can successfully be transported
to the middle and upper troposphere, however, their number
concentration is two to three orders of magnitude lower than
that of dust. The bacteria emissions and burdens calculated
with ECHAM are comparable to those in previous studies
and it could be shown that they are successfully transported
over large distances. Comparison with the few available ob-
servations shows that the modelled emission fluxes are on
the same order of magnitude as the observations. While the
mean observed bacteria concentrations are captured by the
model, the model greatly underestimates the variability in
the bacteria concentrations if the results are scaled to re-
flect only viable bacteria. Standardised long-term observa-
tions with world-wide coverage are necessary for a more pre-

cise model evaluation. Hereby they need to distinguish more
precisely between different biomes especially between trop-
ical, temperate and boreal forests. A dynamic bacteria emis-
sion scheme depending on the vegetation properties would
also help to improve the representation of natural variability
in the models.

Concerning their microphysical properties, the changes
compared to a no-bacteria reference simulation are minor.
The reason for this is not that bacteria do not contribute to
freezing, but that they largely replace dust particles acting as
ice nuclei. Changes in the liquid water path and ice water
path can be observed, specifically in the boreal regions of the
Arctic circle where tundra and forests act as sources of bacte-
ria. Those changes are small but non-negligible and a feature
consistent throughout the simulations.

A sensitivity study with the extreme assumption of a 100-
fold increase in bacteria emissions leads to a 7 % reduction
in the LWP as compared to the reference case. Consequently,
there is also less solar radiation reflected back to space by
clouds leading to a cloud radiative forcing which corresponds
nearly to the increase in the greenhouse effect due to anthro-
pogenic CO2 since pre-industrial times. At this point we do
not know enough about bacteria emissions to rule out that
simulation as unrealistic. However, to the best of our current
knowledge, the influence of bacteria on the global climate
appears small.

More observational data about bacterial emissions and
deposition, as well as in-situ measurements inside clouds
and vertical profiles of bacteria concentration are needed
for a better comparison of model results with observations.
Past measurements of ambient bacterial concentrations have
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Fig. 6.Modelled annual zonal mean vertical profiles of the difference between the simulations with 10 % of bacteria acting as IN (simulation
BT10) and no bacteria acting as IN (simulation CTL), for the ice water content (IWC), ice crystal number concentration (ICNC), liquid water
content (LWC) and cloud droplet number concentration (CDNC).

Fig. 7. Modelled annual zonal mean vertically integrated difference between the simulations with 1 % of bacteria acting as IN (simulation
BT1, black line), 10 % of bacteria acting as IN (simulation BT10, red line), 100 % of bacteria acting as IN (simulation BT100, green line),
100 % of hundredfold bacteria acting as IN (simulation 100BT100, blue line) and no bacteria acting as IN (simulation CTL), for the ice water
path (IWP) and liquid water path (LWP), respectively.
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Fig. 8.Modelled annual zonal mean latitude vs. pressure cross sections of the percentage fraction of the different freezing mechanisms from
simulation BT1 for bacteria, mineral dust and black carbon. Please note the different scale for black carbon.

www.atmos-chem-phys.net/12/8645/2012/ Atmos. Chem. Phys., 12, 8645–8661, 2012



8656 A. Sesartic et al.: Bacteria in ECHAM5-HAM

Fig. 9.Modelled annual zonal mean latitude vs. pressure cross sections of the percentage fraction of the different freezing mechanisms from
simulation BT10 for bacteria, mineral dust and black carbon. Please note the different scale for black carbon.
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Fig. 10.Modelled annual global mean liquid water path (LWP), and the difference between BT10 and CTL.

Fig. 11.Modelled annual global mean ice water path (IWP), and the difference between BT10 and CTL.

focused on point sources, thus neglecting many ecosystems,
especially the less accessible and remote ones (e.g. tropical
rainforests, wetlands, deserts, tundra). Especially the forests
include a variety of diverse ecosystems and it would be
meaningful to distinguish the various forest types in a fu-
ture study. In order to get a consistent picture of bioaerosol
sources, all biomes need to be considered in the observa-
tions. Likewise, only few measurements have been made
over oceans. As oceans cover a large area of our planet it
is important to clarify if biological particle fluxes from ma-
rine sources make a significant contribution to the high IN
concentrations observed in these regions as stated bySchnell
and Vali (1976) andBigg et al.(2004). Long-term observa-
tions of bioaerosols with a world wide coverage could help
to bridge this gap.

There are currently several uncertainties constraining the
modelling of the impact of bacteria on climate and precipi-
tation, for example their exact emissions, size distributions,
ice nucleation active fractions etc. Additional data is also
needed on the impact of coating and ageing on the bacte-

rial IN-ability, as well as some fundamental data on density,
aerodynamic diameter and refractive index of the bacteria.

Global modelling results suggest that bioaerosols have
only a minor impact on the Earth’s climate, but might show
regional effects. Further modelling research should therefore
focus on regional and local effects of bioaerosols, especially
in highly vegetated regions, like tropical forests, as a poten-
tial impact of bacteria on local climate might be expected.
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