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Abstract

Within the scope of our recent approach for Efficient Unsupervised Constitutive Law Identification and Discovery (EUCLID),
e propose an unsupervised Bayesian learning framework for discovery of parsimonious and interpretable constitutive laws
ith quantifiable uncertainties. As in deterministic EUCLID, we do not resort to stress data, but only to realistically measurable

ull-field displacement and global reaction force data; as opposed to calibration of an a priori assumed model, we start with a
onstitutive model ansatz based on a large catalog of candidate functional features; we leverage domain knowledge by including
eatures based on existing, both physics-based and phenomenological, constitutive models. In the new Bayesian-EUCLID
pproach, we use a hierarchical Bayesian model with sparsity-promoting priors and Monte Carlo sampling to efficiently solve
he parsimonious model selection task and discover physically consistent constitutive equations in the form of multivariate

ulti-modal probabilistic distributions. We demonstrate and validate the ability to accurately and efficiently recover isotropic
nd anisotropic hyperelastic models like the Neo-Hookean, Isihara, Gent–Thomas, Arruda–Boyce, Ogden, and Holzapfel models
n both elastostatics and elastodynamics. The discovered constitutive models are reliable under both epistemic uncertainties —
.e. uncertainties on the true features of the constitutive catalog – and aleatoric uncertainties – which arise from the noise in
he displacement field data, and are automatically estimated by the hierarchical Bayesian model.

2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
http://creativecommons.org/licenses/by-nc-nd/4.0/).

eywords: Constitutive modeling; Unsupervised learning; Uncertainty quantification; Hyperelasticity; Bayesian learning; Data-driven discovery

1. Introduction

Owing to the empirical nature of constitutive/material models, data-driven methods (and more recently, their
ybridization with integration of physics knowledge) are rapidly pushing the boundaries where classical modeling
ethods have fallen short. In general, the state-of-the-art approaches either surrogate or completely bypass
aterial models [1]. Surrogating material models involve learning a mapping between strains and stresses using

echniques ranging from piece-wise interpolation [2,3] to Gaussian process regression [4,5] and artificial neural
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networks [6–16]; the latter are particularly attractive because of their ability to efficiently and accurately learn from
large and high-dimensional data. In contrast, the model-free data-driven approach [17–24] bypasses constitutive
relations by mapping a material point’s deformation to an appropriate stress state (subject to compatibility
constraints) directly from a large dataset of stress–strain pairs. Recent approaches [25,26] also proposed adding
data-driven corrections to the existing constitutive models. A common challenge in both approaches is the lack of
interpretability, as they either substitute the constitutive model with a black-box or bypass it, thereby precluding
any physical understanding of the material behavior. Interpretability or a physical intuition of the material model is
critical to identifying where the model fails and can aid better design and use of materials such as composites [27].
Recent works have began addressing this issue [28,29].

In addition to lacking interpretability, both approaches of surrogating and bypassing material models in data-
riven constitutive modeling are rooted in a supervised learning setting and require a large number of strain–stress
airs. This presents a two-fold limitation, especially in the context of experimental data. (i) Probing the entire high-
imensional strain–stress space with viable mechanical tests, e.g., uni-/bi-axial tensile or bending tests is infeasible.
ii) Stress tensors cannot be measured experimentally (force measurements are only boundary-averaged projections
f stress tensors), which is prohibitive to learning full tensorial constitutive models. While exhaustive and tensorial
tress–strain data can be artificially generated using multiscale simulations [30,31], the computational cost associated
o the generation of large datasets for complex material systems is currently still prohibitive. It is thus important to
e able to learn the material behavior directly from data that are realistically available through mechanical testing.

Full-field displacement data, e.g. obtained from digital image correlation (DIC), combined with applied force data
rom load cells, have been the mainstay of modern material model calibration [32]. This is traditionally performed
ia the finite element model updating (FEMU) [33] or virtual fields method (VFM) [34]. While FEMU requires
terative optimization of model parameters until simulated and measured displacement fields match, VFM solves for
he unknown material parameters directly by satisfying the weak form of momentum balance with measured full-
eld displacement data. In the model-free data-driven realm, recent works [35–37] have demonstrated estimation of
tress fields from full-field displacement data. In the model-based realm, physics-informed neural networks (PINNs)
nd their variations have shown promising results — by first learning the forward solution, i.e., displacement fields,
o the mechanical boundary value problem as a function of the material parameters and then estimating the unknown
arameters via gradient-based optimization [38–41]. However, all the aforementioned methods (including FEMU,
FM, and PINNs) are limited to a priori assumed constitutive models (e.g., with known deformation modes) with
nly a few unknown parameters. Such a restricted model ansatz is applicable only to specific materials and stress
tates, and cannot be generalized beyond the calibration/test data.

In light of the above challenges, previous work [1] by some of the authors and independently by Wang et al.
42] presented a method to neither surrogate nor bypass, but rather automatically discover interpretable constitutive
odels of hyperelastic materials from full-field displacement data and global reaction forces. More recently, the

pproach was extended to plasticity [43] and denoted as Efficient Unsupervised Constitutive Law Identification and
iscovery (EUCLID). EUCLID is based on sparse regression — originally developed for automated discovery of
hysical laws in nonlinear dynamic systems [44,45]. It formulates the constitutive model as parameterized sum
f a large catalog of candidate functional features chosen based on physical knowledge and decades of prior
henomenological modeling experience. The problem is posed as a parsimonious model selection task, thereby
inimizing the bias of pre-assumed models with limited expressability (in, e.g., FEMU, VFM, PINNs). Importantly,
UCLID is unsupervised, i.e., it does not use stress labels but only realistically measurable full-field displacement
ata and global reaction forces. The lack of stress labels for model discovery is bypassed by leveraging the physical
onstraint that the displacement fields must satisfy linear momentum conservation.

In this paper, we bring EUCLID to the next level by developing a Bayesian paradigm for automated discovery
f hyperelastic constitutive laws with quantifiable uncertainties. The approach remains unsupervised, i.e. it requires
nly full-field displacement and global reaction force data. The physical constraint of linear momentum conservation
eads to a residual which defines the likelihood. We use a hierarchical Bayesian model with sparsity-promoting spike-
lab priors [46] and Monte Carlo sampling to efficiently solve the parsimonious model selection task and discover
onstitutive models in the form of multivariate multi-modal posterior probability distributions. Fig. 1 summarizes
2
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Fig. 1. Schematic of Bayesian-EUCLID for unsupervised discovery of hyperelastic constitutive laws with uncertainties. (a) A large library
of constitutive features (inspired from physics-based and phenomenological models) is chosen for the hyperelastic strain energy density. (b)
Sparsity-promoting spike-slab priors are placed on the material parameters to induce bias towards parsimonious constitutive models. (c) The
likelihood of the observed data (consisting of displacement data – including accelerations, if available – and reaction forces) is unsupervised
and based on satisfying the physical constraint of linear momentum balance. Conditioned on the prior, the force residuals are modeled using
a Gaussian likelihood. (d) Using Bayes’ rule and Gibbs sampling, physically admissible, interpretable, and parsimonious constitutive models
are discovered in the form of multi-modal posterior distributions with quantifiable epistemic and aleatoric uncertainties.

the schematic of the method. The discovered constitutive models are reliable under both epistemic uncertainties,
i.e. uncertainties on the true features of the constitutive model catalog, and aleatoric uncertainties, i.e. those due
to noise in the displacement field data [47] which is automatically estimated by the hierarchical Bayesian model.
In addition to the multi-modal solutions and uncertainty quantification, Bayesian-EUCLID provides an increase in
computational speed and data efficiency (in terms of the amount of data required) of two orders of magnitude in
comparison to deterministic EUCLID [1]. The current work also extends the previous method to (i) anisotropic
hyperelasticity as well as (ii) elastodynamics; the latter also leveraging inertial data for model discovery. For the
cope of the current work, we assume the anisotropy to be in-plane with a priori known directions. This assumption is
ecessary as the 2-D nature of the DIC displacement data does not allow for accurate characterization of out-of-plane
nisotropy.

In the following, we present the new unsupervised Bayesian learning framework in Section 2. Section 3 presents
everal benchmarks based on well-known physical and phenomenological constitutive models, before Section 4
oncludes the study. A pseudo-code is included in Appendix B to enable a better understanding of the numerical

mplementation.

3
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2. BayesIan-EUCLID: unsupervised discovery of hyperelastic constitutive laws with uncertainties

2.1. Available data

Consider a two-dimensional domain with reference configuration Ω ∈ R2 (with boundary ∂Ω ) subjected to
isplacement-controlled loading1 on ∂Ωu ⊆ ∂Ω . The domain geometry and the boundary conditions are designed
o generate diverse and heterogeneous strain states upon loading (see Section 3.1). Under quasi-static loading, the
bserved data consist of snapshots of displacement measurements {ua,t

∈ R2
: a = 1, . . . , nn; t = 1, . . . , nt }

obtained via, e.g., DIC) at nn reference points X = {Xa
∈ Ω : a = 1, . . . , nn} and nt time steps. We also consider

xperiments with dynamic loading, wherein the point-wise acceleration data may be inferred from the displacement
istory via the second-order central difference as

üa,t
=

ua,t+δt
− 2ua,t

+ ua,t−δt

(δt)2 + O
(
(δt)2) . (1)

Here, δt ≪ 1 is the temporal resolution of the DIC. Note that the temporal resolution of the data snapshots
i.e., t = 1, . . . , nt ) is assumed to be significantly coarser than the DIC frame rate. The observed data also consist
f reaction force measurements {Rβ,t

: β = 1, . . . , nβ; t = 1, . . . , nt } from nβ load cells at some boundary
egments. Note that a reaction force is a boundary-aggregate measurement; the point-wise traction distribution on
displacement-constrained boundary is practically immeasurable and therefore, not considered to be known here.

n addition, the number of reaction force measurements is far smaller than the number of points for which the
isplacement is tracked, i.e., nβ ≪ nn (which further adds to the challenge of unavailable stress labels). Assuming
he domain Ω is homogeneous and hyperelastic, the inverse problem is to determine a constitutive model that best
ts the observed data. It is noteworthy that the aforementioned problem involves inferring the constitutive model of

he material only from realistically available data, unlike supervised learning approaches which use experimentally
naccessible stress tensors to learn/bypass the material model. For the scope of this work, we consider a two-
imensional plane strain setting, while noting that the proposed method may be extended to three-dimensions with
ppropriate techniques (e.g., Digital Volume Correlation). Specific details pertaining to data generation are presented
n Section 3.1.

.2. Field approximations from point-wise data

We mesh the reference domain with linear triangular finite elements using the point set X . The point-wise
isplacements are then interpolated as

ut (X) =
nn∑

a=1

N a(X)ua,t , (2)

here N a
: Ω → R denotes the shape function associated with the ath node. The deformation gradient field is then

pproximated as

Ft (X) = I +
nn∑

a=1

ua,t
⊗∇N a(X), (3)

here ∇(·) = ∂(·)/∂ X denotes gradient in reference coordinates. Note that ∇N a(X) is constant within each element
ue to the use of linear shape functions. For the sake of brevity, we drop the superscript (·)t in the subsequent
iscussion while tacitly implying that the formulation applies to snapshots at every time step.

.3. Constitutive model library

The constitutive response of hyperelastic materials derives from a strain energy density W (F) such that the first
iola–Kirchhoff stress tensor is given by P(F) = ∂W/∂ F. The strain energy density must satisfy certain constraints
or physical admissibility and to guarantee the existence of minimizers [48–50]. The coercivity condition requires

1 In mechanical testing under load-controlled conditions, reaction forces are replaced by the known applied loads.
4
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W (F) to become infinite when the material undergoes infinitely large deformation or compression to close to zero
volume, i.e.,

W (F) ≥ c1

(
∥F∥p

+ ∥Cof(F)∥q
+ det (F)r

)
+ c0 ∀ F ∈ GL+(3) (4)

with constants c0, c1 > 0, p ≥ 2, q ≥ p/(p − 1), r > 1, and

W (F)→+∞ for det(F)→ 0+. (5)

Here, Cof(·) and det(·) denote the cofactor and determinant, respectively, whereas GL+(3) indicates the set of
invertible second-order tensors with positive determinant. A further requirement on W (F) is quasiconvexity [48,50]
w.r.t. F, i.e.,∫

B
W (F̄+∇w) dV ≥ W (F̄)

∫
B

dV ∀ B ⊂ R3, F̄ ∈ GL+(3), w ∈ C∞0 (B) (i.e., w = 0 on ∂B). (6)

owever, due to the analytical/computational intractability of the quasiconvexity condition [51,52], this is usually
eplaced by that of polyconvexity (the latter implies the former) which automatically guarantees material stability
see [50,53] for a detailed discussion on polyconvexity). W (F) is polyconvex if and only if there exists a convex
unction P : R3×3

× R3×3
× R→ R (in general non-unique) such that

W (F) = P(F, CofF, det F). (7)

n addition, the stress must vanish at the reference configuration, i.e., P(F = I) = 0. The constitutive model
must also satisfy objectivity, i.e., W (F) = W (RF) ∀R ∈ SO(3). Reformulating the strain energy density as W (C)
(where C = FT F denotes the right Cauchy–Green deformation tensor) satisfies the objectivity condition identically
but may violate the polyconvexity condition as the off-diagonal terms of C are non-convex in F [8]. To this end,
it is common practice to model the strain energy density as a function of invariants of C that are convex in F.
Following arguments of Spencer [54] on material symmetry, the energy density for anisotropic hyperelastic materials
with fiber directions {a1, a2, . . . } is expressed in terms of both isotropic and anisotropic strain invariants (the latter
corresponding to each fiber direction) as

W (C, {a1, a2, . . . }) ≡ W
(

I1, I2, I3, J4, J5, J6, J7, . . .

)
, (8)

where

Isotropic invariants: I1(C) = tr(C), I2(C) =
1
2

[
tr(C)2

− tr (C2)
]
, I3(C) = det(C)

Anisotropic invariants (fiber 1): J4(C, a1) = a1 · C · a1, J5(C, a1) = a1 · C2
· a1

Anisotropic invariants (fiber 2): J6(C, a1) = a2 · C · a2, J7(C, a2) = a2 · C2
· a2

...
...

. (9)

ithout loss of generality, the remainder of this work concerns two fiber directions2; however, the framework can
e extended to more fiber families. Additionally, only J4 and J6 terms are considered in modeling the energy density
f the anisotropic material [56]. This is because J4 and J6, being square of the stretches projected in the direction
f the fibers, offer a more intuitive basis to model the energy density function.

The objective of the inverse problem is to identify an appropriate strain energy density function from the observed
ata (displacement field and reaction force measurements). We consider the following ansatz:

W (I1, I2, I3, J4, J6) = Q(I1, I2, I3, J4, J6) · θ , (10)

here Q : R5
→ Rn f denotes a large library of n f isotropic and anisotropic features. Here, θ ∈ Rn f

+ is a vector of
ositive scalar coefficients representing unknown material parameters to be estimated. If the features are coercive
nd polyconvex, the positivity constraint on the entries of θ automatically ensures that W (F) is also coercive and
olyconvex. The feature library can contain essentially any mathematical function of the input strain invariants; we

2 An anisotropic hyperelastic material with arbitrary number of symmetrical distributed fiber directions can be equivalently modeled with
two mutually perpendicular fiber families of appropriate stiffnesses [55].
5
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derive inspiration from existing phenomenological and physics-based models (see [57,58] for detailed reviews). For
the scope of this work, we consider compressible hyperelasticity with the following feature library:

Q(I1, I2, I3, J4, J6) =
[
( Ĩ1 − 3)i ( Ĩ2 − 3) j−i

: i ∈ {0, . . . , j} and j ∈ {1, . . . , NMR}
]T  

Generalized Mooney–Rivlin features

⊕
[
(J − 1)2i

: i ∈ {1, . . . , Nvol}
]T  

Volumetric energy features

⊕ [log( Ĩ2/3)]  
logarithmic feature

⊕ AB( Ĩ1)  
Arruda–Boyce feature

⊕

[
OGi ( Ĩ1, J ) : i ∈ {1, . . . , NOgden}

]
  

Ogden features

⊕

[
( J̃4 − 1)i

: i ∈ {2, . . . , Naniso}

]
⊕

[
( J̃6 − 1)i

: i ∈ {2, . . . , Naniso}

]
  

Anisotropy features

,

(11)

here Ĩ1 = J−2/3 I1, Ĩ2 = J−4/3 I2, J = det(F) = I 1/2
3 , J̃4 = J−2/3 J4, and J̃6 = J−2/3 J6 are the invariants of the

nimodular3 Cauchy–Green deformation tensor C̃ = J−2/3C . The chosen feature library automatically satisfies the
onditions of objectivity, stress-free reference configuration, coercivity, and polyconvexity (with only one exception
iscussed below). In the following, we explain the different types of features in the library.

• The generalized Mooney–Rivlin features consist of monomials based on the strain invariants and are a superset
of several well-known models such as Neo-Hookean [60], Isihara [61], Haines–Wilson [62], Biderman [63],
and many more. Note that the terms containing ( Ĩ2−3) j−i with ( j−i) ≥ 1 do not satisfy polyconvexity [49,50].
However, they are commonly used in many material models [58,61,62] and do not exhibit problems due to
physical inadmissibility in practical deformation ranges. Thus, these functions are also included in the feature
library.
• The logarithmic term is inspired by the classical Gent-Thomas model [64].
• The Arruda–Boyce [65] feature, based on statistical mechanics of polymeric chains, is given by

AB( Ĩ1) = 10
√

Nc

[
βcλc +

√
Nc log

(
βc

sinh(βc)

)]
− cAB with βc = L−1

(
λc
√

Nc

)
, (12)

where λc =

√
Ĩ1/3 represents the stretch in the polymeric chains arranged along the diagonals of a cubic

representative volume element; Nc denotes the number of elements in the polymeric chain with
√

Nc being
a measure of maximum possible chain elongation. Without loss of generality, Nc is chosen to be 28 for the
scope of this work. L−1 denotes the inverse Langevin function which in this work is numerically approximated
as [66]

L−1(x) =

{
1.31 tan(1.59x)+ 0.91x for |x | < 0.841,

(sgn(x)− x)−1 for 0.841 ≤ |x | < 1,
(13)

where sgn(·) denotes the signum function. The factor ‘10’ is pre-multiplied to ensure that the coefficient of
the Arruda–Boyce feature has the same order of magnitude as the other features. The constant cAB = 15.16 is
set such that the feature vanishes at F = I , i.e., AB|F=I = 0. The Arruda–Boyce model also encompasses its
simpler approximation — the Gent model [67] (including the limited chain stretching behavior phenomena),
hence we do not include the latter in the feature library.
• The Ogden features [68] are given by

OGi ( Ĩ1, J ) =
2
αi

(
λ̃

αi
1 + λ̃

αi
2 + λ̃

αi
3

)
with λ̃k = J−1/3λk, k = 1, 2, 3, (14)

where λ1, λ2, λ3 denote the principal stretches and αi denotes the exponent corresponding to the i th Ogden
feature. In plane strain, the Ogden features can be reformulated purely in terms of Ĩ1 and J . Using the

3 The unimodular anisotropic invariants used here may give rise to non-physical effects under certain deformations [59]. However, the
Bayesian-EUCLID framework is agnostic to the choice of features.
6
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characteristic polynomial of C whose eigenvalues are the squares of the principal stretches, it can be shown
that

λ̃1, λ̃2 =

⎛⎜⎜⎝
(

Ĩ1 − J−
2
3

)
±

√(
Ĩ1 − J−

2
3

)2
− 4J

2
3

2

⎞⎟⎟⎠
1/2

and λ̃3 = J−1/3. (15)

Given that the feature coefficients in θ are positive, αi ≥ 1 automatically ensures polyconvexity and
coercivity [49,68,69]. The choice of {αi , i = 1, . . . , NOgden} is part of feature engineering and can be decided
both with or without consideration of the physics of the material.
• The anisotropic features – similar to isotropic generalized Mooney–Rivlin features – are based on monomials

of J4 and J6 [42]. Although polynomial terms up to fourth order are considered here for illustrative purposes,
higher order terms can be used to obtain a more accurate surrogate for complicated anisotropic models like
the Holzapfel model [56]. For the scope of this work, we assume that the true fiber directions a1 and a2 are
known a priori. For example, in the Holzapfel model benchmark in Section 3, a1 = (cos(30◦), sin(30◦), 0)T

and a2 = (cos(30◦),− sin(30◦), 0)T are known, i.e., the fibers are assumed to be oriented at ±30◦. The feature
library does not include the linear (J4 − 1) and (J6 − 1) terms, as these energy features do not have zero
derivatives for F = I , and thus induce non-zero stresses in the reference configuration.
• While the previous features account for the deviatoric deformations, the volumetric features – given by

monomials of (J − 1) – are used to account for the energy due to volumetric deformations.

Compared to the previous work by Flaschel et al. [1] and Wang et al. [42], the library includes a more diverse
et of features beyond isotropic and polynomial features; the positivity constraint on θ ensures that all solutions
ound are automatically physically admissible. We note that the method is not limited to the feature library chosen
ere and can be extended to include any additional features based on prior knowledge about the material system.

.4. Model prior with parsimony bias

It is not desirable to have all the n f features active in the constitutive model for two reasons. (i) A model
hat utilizes many features is overly complex and, consequently, likely to overfit the observed data and show poor
eneralization (analogous to fitting a high-degree polynomial to very few data points). (ii) The degree of physical
nterpretability decreases as the model becomes too complex (tending towards black-box models). To address
hese issues, the idea of parsimony is adopted as a regularization for model learning, and for inducing physical
nterpretability as bias [45,70].

In this light, we pose the inverse problem of identifying the constitutive response as a model selection task —
he objective is not only to estimate θ but also the appropriate subset of features leading to an optimal compromise
etween accuracy and parsimony. A brute-force approach is not feasible as the number of unique families of possible
onstitutive models is (2n f − 1), which increases exponentially with number of features n f . The problem has been
lassically addressed via sparse regression [45] – which is based on iterative minimization of an objective function in
non-probabilistic setting with lasso, ridge, or similar parsimony-inducing regularization. The resulting discovered

onstitutive models are of deterministic nature [1,42].
In this work, we replace deterministic sparse regression with a probabilistic framework able to simultaneously

erform model selection and uncertainty quantification. We use a modification of the hierarchical Bayesian model
ith discontinuous spike-slab priors [71] introduced by Nayek et al. [46] (albeit in a supervised setting) and
escribed as follows; see Fig. 2 for schematic. Spike-slab priors and their variants have a strong peak (i.e., spike) at
ero and extremely shallow tails (i.e., slab). A random variable may be sampled from either the spike or slab part
f the distribution. When the random variable is sampled from the slab, it can take large values with uniform-like
istribution. However, due to the strong peak, the random variable is more likely to be sampled from the spike
i.e., to be zero-valued) – representing our bias towards parsimonious solutions.4 A schematic of the spike-slab
riors is shown in Fig. 1b.

4 While other priors such as horseshoe [72] and Laplacian [73] also promote sparsity, discontinuous spike-slab priors have been shown
to be more robust and efficient in finding parsimonious solutions [46].
7
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Fig. 2. Schematic of the hierarchical spike-slab Bayesian model (adapted from [46]). The orange circles represent the random variables
or which the prior distributions are prescribed. The green diamonds denote known hyperparameters. The observations (displacements,
ccelerations, and reaction forces) and conservation of linear momentum are embedded in A and b which are used to estimate the posterior

probabilities for the unknown random variables.

To set up the discontinuous spike-slab priors on the solution vector θ , we introduce a random indicator variable
z ∈ [0, 1]n f and auxiliary random variables νs ≥ 0 and σ 2

≥ 0 such that

p(θi | zi , νs, σ
2) =

{
pspike(θi ) = δ(θi ) for zi = 0
pslab(θi | νs, σ

2) = N+(0, νsσ
2) for zi = 1,

i = 1, . . . , n f . (16)

When zi = 0, the i th corresponding feature is deactivated (i.e., θi = 0) and the probability density of that feature
is given by a Dirac delta (spike) centered at zero. If zi = 1, then the corresponding feature is activated and θi is
sampled from a truncated normal distribution [74] N+ with zero mean and variance of νsσ

2 (slab). The truncated
normal distribution is derived from a normal distribution where the samples are restricted to non-negative values
only, i.e., θi ≥ 0 (necessary to satisfy physical admissibility; see Section 2.3). With the prior assumption that the
components of θ are independent and identically distributed (i.i.d.), the joint prior distribution of θ is written as

p (θ | z, νs, σ
2) = pslab (θ r | νs, σ

2)
∏

i :zi=0

pspike (θi ) with pslab (θ r | νs, σ
2) = N+ (0, σ 2νs I r ), (17)

here θ r ∈ Rr
+

is a reduced vector consisting of only slab/active components of θ and I r denotes the r × r identity
atrix. We use the algorithm by Botev [74] for sampling from the multivariate truncated normal distribution. All

eatures (activated or not) are modeled as an i.i.d. Bernoulli trial with probability p0 ∈ [0, 1], i.e.,

zi | p0 ∼ Bern(p0). (18)

This represents the prior belief that each feature is activated with a probability of p0. The prior probability
distributions for the variables νs , σ 2, and p0 are modeled as

νs ∼ IG(aν, bν) (Inverse gamma distribution)

σ 2 ∼ IG(aσ , bσ ) (Inverse gamma distribution)
p0 ∼ Beta(ap, bp) (Beta distribution),

(19)

where (aν, bν), (aσ , bσ ), and (ap, bp) are the respective parameters of the hyper-priors. Note that while both νs and
σ 2 scale the variance of the slab, σ 2 also scales the variance of the likelihood as discussed in the following section.
For both νs and σ 2, the prior is modeled with an inverse gamma distribution since it is an analytically tractable

conjugate prior for the unknown variance of a normal distribution. Similarly, the beta distribution is chosen as an

8
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informative prior for p0 because it is analytically conjugate to itself for a Bernoulli likelihood — as is the case in
18).

.5. Physics-constrained and unsupervised likelihood

To obtain the posterior probabilistic estimates of the material model (characterized by θ ), we consider the
‘likelihood’ of the observed data (which include the displacement, acceleration and reaction force data) satisfying
physical laws — in this case, the conservation of linear momentum. The weak form of the linear momentum balance
is given by∫

Ω

P : ∇v dV −
∫

∂Ωt

t̂ · v dS +
∫
Ω

ρ0ü · v dV = 0 ∀ admissible v, (20)

where t̂ denotes the traction acting on ∂Ωt = ∂Ω \ ∂Ωu and ρ0 is the density in the reference configuration. Note
that the boundary tractions on ∂Ωt are zero for displacement-controlled loading but non-zero otherwise. The stress
tensor is given in indicial notation by

Pi j =
∂W (F)
∂ Fi j

=
∂ QT (I1, I2, I3, J4, J6)

∂ Fi j
θ , (21)

ere we use automatic differentiation [75] to compute the feature derivatives in ∂ QT /∂ Fi j . The test function v is
any sufficiently regular function that vanishes on the Dirichlet boundary ∂Ωu . Formulating the problem in the weak
form mitigates the high noise sensitivity introduced via double spatial derivatives in the collocation or strong form
of linear momentum balance [1].

Let D = {(a, i) : a = 1, . . . , nn; i = 1, 2} denote the set of all nodal degrees of freedom in the discretized
eference domain. D is further split into two subsets: Dfree

⊂ D and Dfix
= D \ Dfree consisting of free and fixed

(via Dirichlet constraints) degrees of freedoms. Using the same shape functions as displacements, we approximate
the test functions (Bubnov–Galerkin approximation) as

vi (X) =
nn∑

a=1

N a(X)va
i , with va

i = 0 if (a, i) ∈ Dfix (22)

or admissibility. Substituting this into (20) together with (2) yields
nn∑

a=1

va
i

[∫
Ω

(
∂ QT

∂ Fi j
θ

)
∇ j N a(X) dV −

∫
∂Ωt

t̂i N a(X) dS +
nn∑

b=1

üb
i

∫
Ω

ρ0 N a(X)N b(X) dV

]
= 0. (23)

The above equation is true for all arbitrary admissible test functions if and only if∫
Ω

(
∂ QT

∂ Fi j
θ

)
∇ j N a(X) dV −

∫
∂Ωt

t̂i N a(X) dS+
nn∑

b=1

üb
i

∫
Ω

ρ0 N a(X)N b(X) dV  
consistent mass matrix

= 0 ∀ (a, i) ∈ Dfree.

(24)

The consistent mass matrix (as indicated above) is approximated with the lumped nodal mass given by

Mab
=

{
ma if a = b
0 otherwise

with ma
=

∫
Ω

ρ0 N a(X) dV . (25)

herefore, (24) reduces to

F int,a
i (θ )− Fext,a

i + Fm,a
i = 0 ∀ (a, i) ∈ Dfree, (26)

here

F int,a
i (θ ) =

∫
Ω

(
∂ QT

∂ Fi j
θ

)
∇ j N a(X) dV  , Fext,a

i =

∫
∂Ωt

t̂i N a(X) dS  , and Fm,a
i = ma üa

i   (27)
internal/constitutive force external force inertial force

9
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are interpreted as internal/constitutive, external, and inertial forces, respectively, acting on the degree of freedom
denoted by (a, i). Note that the inertial forces vanish for quasi-static loading. The force balance in (26) represents
a linear system of equations for the unknown material parameters θ , which can be assembled in the form

Afreeθ = bfree with Afree
∈ R|Dfree

|×n f and bfree
∈ R|Dfree

|. (28)

or computational efficiency, we randomly subsample nfree < |Dfree
| degrees of freedom from (28) such that

Afree
∈ Rnfree×n f and bfree

∈ Rnfree .
Additionally, the reaction forces are known at nβ Dirichlet boundaries. For β = 1, . . . , nβ , let Dfix,β

⊆ Dfix (with
fix,β
∩ Dfix,β ′

= ∅ for β ̸= β ′) denote the subset of degrees of freedom for which the sum of reaction forces Rβ

s known. Each observed reaction force must balance the aggregated internal and inertial forces, i.e.,∑
(a,i)∈Dfix,β

(
F int,a

i (θ )+ Fm,a
i

)
=

∑
(a,i)∈Dfix,β

Fext,a
i = Rβ, ∀ β = 1, . . . , nβ, (29)

hich can further be assembled into the form

Afixθ = bfix with Afix
∈ Rnβ×n f and bfix

∈ Rnβ . (30)

Recall that we dropped the superscript (·)t for the sake of brevity while implying that the above formulation
pplies to snapshots at every time step. The force balance constraints (26) and (30) across all t = 1, . . . , nt snapshots
re concatenated into a joint system of equations as

Aθ = b with A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Afree,1

...

Afree,nt

λr Afix,1

...

λr Afix,nt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
and b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

bfree,1

...

bfree,nt

λr bfix,1

...

λr bfix,nt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (31)

here λr > 0 is a hyperparameter that controls the relative importance between the force balance of the free and
xed degrees of freedom. The choice of all the hyperparameters is reported and discussed in Appendix A.

The term b is directly related to the nodal accelerations and the measured reaction forces, which may have
ncertainties. Additionally, observational noises in the nodal displacements give rise to commensurate uncertainties
n A. Thus, (31) is better written as

b = Aθ + ε, (32)

here ε is the residual of the momentum balance equations and is indicative of the uncertainty in the observations as
ell as of model inadequacies. Given a constitutive model (represented by θ ) sampled from the prior (Section 2.4)

nd the observed data (now in the form of A and b), we place an i.i.d. normal distribution likelihood on the residual
s

b | θ , σ 2, A ∼ N (Aθ , σ 2 I N ), (33)

here I N denotes the N × N identity matrix with N =
(
nfree + nβ

)
nt .

.6. Model discovery via posterior estimation

The next step in the Bayesian learning process is to evaluate the joint posterior probability distribution for the
andom variables in the hierarchical model, i.e., {θ , z, p0, νs, σ

2
}, given the observed data and momentum balance

onstraints embodied by A and b. Using Bayes’ theorem, the posterior is given by

p(θ , z, p0, νs, σ
2
| A, b) ∝ p(b | θ , z, p0, νs, σ

2, A)  
physics-constrained likelihood

p(θ , z, p0, νs, σ
2)  

spike-slab model prior

. (34)

Note that the model prior is independent of the observed data in A and hence, its conditioning on A has been
removed. Analytical sampling from (34) directly is difficult due to the presence of the spike-slab priors and requires
10
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the use of Markov Chain Monte Carlo (MCMC) methods. For the purpose of this work, we use a Gibbs sampler [76]
to empirically estimate the model posterior distribution. The Gibbs sampling procedure requires knowledge of the
conditional posterior distributions for all the random variables. Nayek et al. [46] derived analytical expressions for
all the conditional posterior distributions which we briefly summarize here.

• Conditional posterior distribution of θ :

θ r | z, p0, νs, σ
2, A, b ∼ N+(µ, σ 2Σ ), with Σ =

(
AT

r Ar + ν−1
s I r

)−1
and µ = Σ AT

r b.

(35)

Ar ∈ RN×sz is obtained by concatenating the columns {i = 1, . . . , n f } of A for which zi = 1; the distribution
only (but jointly) applies to the corresponding active features, i.e., θ r . I r is the sz × sz identity matrix where
sz =

∑n f
i=1 zi denotes the number of active features. If zi = 0, the corresponding θi is set to zero. Note

that Nayek et al. [46] did not consider any constraint on the values of θ , in which case the above conditional
posterior is given by an unconstrained multivariate normal distribution. In the context of our work, the positivity
constraint on θ replaces the same with a constrained multivariate normal distribution N+ (see [74] for sampling
methodology) without affecting the remaining distributions.
• Conditional posterior distribution of σ 2:

σ 2
| θ , z, p0, νs, A, b ∼ IG

(
aσ +

N
2

, bσ +
1
2

(
bT b− µTΣ−1µ

))
(36)

• Conditional posterior distribution of νs :

νs | θ , z, p0, σ
2, A, b ∼ IG

(
aν +

sz

2
, bν +

θT
r θ r

2σ 2

)
(37)

• Conditional posterior distribution of p0:

p0 | θ , z, νs, σ
2, A, b ∼ Beta

(
ap + sz, bp + n f − sz

)
(38)

• Conditional posterior distribution of z (component-wise):

zi | θ , z−i , p0, νs, σ
2 A, b ∼ Bern(ξi ) with ξi = p0

[
p0 +

p(b | zi = 0, z−i , νs, A)
p(b | zi = 1, z−i , νs, A)

(1− p0)
]−1

.

(39)

Note that the components of z are sampled in random order at each step of the Gibbs sampler. z−i denotes the
reduced vector z without the i th component, i.e., without zi . The marginal likelihood p(b | z, νs, A), obtained
by integrating out θ and σ 2 in the likelihood (33), is given by

p(b | z, νs, A) =
Γ (aσ + 0.5N )
(2π )N/2(νs)sz/2

(bσ )aσ

Γ (aσ )

[
det

((
AT

r Ar + ν−1
s I r

)−1
)]1/2

[
bσ + 0.5bT

(
I N − Ar

(
AT

r Ar + ν−1
s I r

)−1 AT
r

)
b
]aσ+0.5N (40)

where Γ (·) denotes the Gamma function.

he Gibbs sampler repeatedly and successively samples each variable in {θ , z, p0, νs, σ
2
} using the respective

onditional posterior distributions (35)–(39). This produces the following Markov chain of length NG :

θ (0)
→ σ 2(0)

→ ν(0)
s → p(0)

0 → z(0)
→ . . . · · · → θ (NG )

→ σ 2(NG )
→ ν(NG )

s → p(NG )
0 → z(NG ), (41)

hich empirically approximates the joint posterior distribution p(θ , z, p0, νs, σ
2
| A, b). Note that the Markov chain

states are only recorded after discarding the first Nburn burn-in samples to avoid the effects of a bad starting point.
For the same reason, we also generate Nchains independent Markov chains (each with different starting points selected
randomly) which are concatenated after discarding the burn-in states. A pseudo-code for MCMC sampling of the
posterior probability distribution is described in Appendix B.
11
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Fig. 3. Geometry of a single quadrant of a plate with a central hole used in the data generation simulations. Also shown are the boundary
conditions for the virtual experiment. In the quasi-static case (no accelerations), for every load step, the displacements are incremented by
a value of ϕ along x2 direction and ϕ/2 along the x1 direction. In the dynamic case (with accelerations), the displacement increment rate
is ϕ̇ along the x2 direction and ϕ̇/2 along the x1 direction. All dimensions are consistent in units with respect to the other parameters. All
lengths and displacements are normalized with respect to the side length of the undeformed specimen.

The average activity of the i th feature (i = 1, . . . , n f ) of the energy density function library is defined as

zavg
i =

1
NG × Nchains

NG×Nchains∑
k=1

z(k)
i , (42)

where z(k)
i ∈ {0, 1} is the activity of the i th feature in the k th sample of the Markov chain. Note that the average

activity is a marginalization over the variables in the joint posterior distribution. Therefore, zavg
i = 1 and zavg

i = 0
imply that the corresponding feature is always active or inactive, respectively; whereas any value between zero and
one implies that the joint distribution is likely multi-modal with the corresponding feature being both active and
inactive in different modes.

3. Benchmarks

3.1. Data generation

For the scope of this work, we use the finite element method (FEM) to generate synthetic data which would
otherwise be obtained from DIC experiments. For benchmarking, we consider the same mechanical testing as that
of Flaschel et al. [1] where a hyperelastic square specimen with a finite-sized hole is deformed under displacement-
controlled asymmetric biaxial tension (see Fig. 3 for schematic). This testing configuration subjects the material to a
sufficiently diverse range of localized strain states necessary for discovering a generalizable constitutive model. Due
to two-fold symmetry in the problem, only a quarter of the plate is simulated, with appropriate boundary conditions
to enforce the symmetry. For the scope of the current work dealing with only in-plane behavior of the material,
we assume plane strain conditions. The data is simulated using linear triangular elements. Both static and dynamic
simulations are performed. For the static simulations, as shown in Fig. 3, the boundary displacements are prescribed
by the loading parameter ϕ for Lstatic consecutive load steps. For the dynamic simulations, the boundary velocities
re prescribed by the constant loading rate ϕ̇ with time step size δt ≪ 1 for Ldynamic consecutive steps and explicit

time integration. A total of nt equispaced snapshots consisting of nodal displacements, nodal accelerations (only
or the dynamic case with nt ≪ Ldynamic), and four boundary reaction forces (normal to the top, bottom, left, and
ight boundaries of the specimen) are recorded. The accelerations are inferred from the displacement fields using
he central difference scheme (1) (see Section 2.1). All parameters related to the data generation are summarized
n Appendix A.

To emulate real measurements, artificial noise is added to the displacement data. The noise level realistically

epends on the imaging setup and pixel accuracy and is independent of the applied displacements. Therefore,

12
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we apply the same absolute noise level (noise floor) to all the nodal displacement data irrespective of the local
displacement field. The synthetically generated nodal displacements are noised as

ua,t
i = ufem,a,t

i + unoise,a,t
i with unoise,a,t

i ∼ N (0, σ 2
u ) ∀ (a, i) ∈ D, t ∈ {1, . . . , nt }. (43)

ufem,a,t
i denotes the i th displacement component at node a as generated from the FEM simulation to which the

noise unoise,a,t
i (sampled from the i.i.d. Gaussian distribution with zero mean and σu standard deviation) is added.

To demonstrate the efficacy of the proposed Bayesian learning framework, we study two different noise levels
(normalized with the specimen length):

• low noise: σu = 10−4

• high noise: σu = 10−3

which are representative of modern DIC setups [77,78]. In the current work, for illustrative purposes, we assume
uncorrelated Gaussian noise in the displacements. To account for spatio-temporally correlated noise or non-Gaussian
noise that may be encountered while imaging [79], the likelihood (33) must accordingly be adapted to represent non-
Gaussian multivariate distributions. Following the benchmarks of Flaschel et al. [1], we also spatially denoise each
displacement field snapshot using Kernel Ridge Regression (KRR), as would be done in the case of experimental
measurements. Further details regarding the noise and denoise protocols can be found in [1]. Note that σu represents
the displacement noise and is different from σ which represents the noise in satisfying the momentum balance
likelihood (33).

The following material models are used for benchmarking the Bayesian constitutive model discovery.

1. Neo-Hookean solid:

W (F) = 0.5( Ĩ1 − 3)+ 1.5(J − 1)2. (44)

2. Isihara solid [61]:

W (F) = 0.5( Ĩ1 − 3)+ ( Ĩ2 − 3)+ ( Ĩ1 − 3)2
+ 1.5(J − 1)2. (45)

3. Gent–Thomas model [64]:

W (F) = 0.5( Ĩ1 − 3)+ ( Ĩ1 − 3)2
+ log( Ĩ2/3)+ 1.5(J − 1)2. (46)

4. Haines–Wilson model [62]:

W (F) = 0.5( Ĩ1 − 3)+ ( Ĩ2 − 3)+ 0.7( Ĩ1 − 3)( Ĩ2 − 3)+ 0.2( Ĩ1 − 3)3
+ 1.5(J − 1)2. (47)

5. Arruda–Boyce model [65]:

W (F) = 0.25AB( Ĩ1)+ 1.5(J − 1)2, (48)

with AB given by (12).
6. Ogden model [68] with 1 term:

W (F) = 0.65 OG1( Ĩ1, J )+ 1.5(J − 1)2, (49)

where OG1 is given by (14) with α1 = 1.3.
7. Ogden model with 3 terms:

W (F) = 0.4 OG1( Ĩ1, J )+ 0.0012 OG2( Ĩ1, J )+ 0.1 OG3( Ĩ1, J )+ 1.5(J − 1)2, (50)

where OG1, OG2, OG3 are given by (14) with α1 = 1.3, α2 = 5, and α3 = 2, respectively.
8. Anisotropic Holzapfel model [56] with two fiber families at +30◦ and −30◦ orientations:

W (F) = 0.5( Ĩ1 − 3)+ (J − 1)2
+

k1h

2k2h

[
exp

(
k2h( J̃4 − 1)2

)
+ exp

(
k2h( J̃6 − 1)2

)
− 2

]
(51)

with the fiber directions a1 = (cos(30◦), sin(30◦), 0)T , a2 = (cos(30◦),− sin(30◦), 0)T and constants
k1h = 0.9, k2h = 0.8. We highlight that the Holzapfel model is specifically chosen to test the generalization
capability of the proposed framework since its characteristic features are not available in the chosen feature
library.

ll the aforementioned models are assumed to have weak compressibility by adding quadratic volumetric penalty

erms to the energy density.

13
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Fig. 4. Geometry of a plate with two asymmetric elliptical holes used for validating the model obtained from Bayesian-EUCLID in a FEM
setting. Also shown are the boundary conditions for the virtual experiment. The plate is quasi-statically stretched along the vertical direction
as indicated by the load parameter ϕ. All lengths and displacements are normalized with respect to the side length of the undeformed
specimen.

3.2. Model discovery with quasi-static data

The subsequent results are based on quasi-static data with the feature library listed in Table 1. When explicitly
stated, certain features in the library will be excluded intentionally to test the generalization capability of the
proposed method. All protocols and parameters pertaining to the Bayesian learning are presented in Appendix A.

The model discovery results on the eight benchmarks (44)–(51) – for both low noise (σu = 10−4) and high
noise (σu = 10−3) cases are summarized in Figs. 5–12. In each figure, the violin plot (top-left) shows the marginal
posterior distribution (along the vertical axis) for each component of θ using the Markov chain (41). The features
are labeled according to the indices defined in Table 1. Each of the overlaid gray lines represents a coefficient
vector θ sampled from the joint posterior distribution. Together, they complement the information conveyed by the
accompanying violin plots, which present the posterior distribution for each component of θ . Darker regions in
the line plot arise when many samples from the MCMC chain possess similar values for the coefficient vector θ ,
and thus indicate the most probable values for θ . The features present in the true model are highlighted in cyan
background, with red horizontal dashes denoting the true value of the coefficients in θ . The activity plot (bottom
left) shows the average posterior activity of each feature, where the height of the i th bar equals zavg

i (see (42). For
each sample from the MCMC chain, we compute the strain energy density

W (k)(F) = QT θ (k), k = 1, . . . , (NG × Nchains) (52)

along six different deformation paths parameterized by γ ∈ [0, 1] as

FUT(γ ) =
[

1+ γ 0
0 1

]
, FUC(γ ) =

[ 1
1+γ

0
0 1

]
, FBT(γ ) =

[
1+ γ 0

0 1+ γ

]
,

FBC(γ ) =

[
1

1+γ
0

0 1
1+γ

]
, FSS(γ ) =

[
1 γ

0 1

]
, FPS(γ ) =

[
1+ γ 0

0 1
1+γ

]
.

(53)

he deformation paths correspond to uniaxial tension (UT), uniaxial compression (UC), biaxial tension (BT), biaxial
ompression (BC), simple shear (SS), and pure shear (PS), respectively. To visualize the accuracy of the discovered
odels, the true energy density (denoted by the red line) is plotted alongside the mean (denoted by the black line)

nd 95% percentile bounds (shaded gray), i.e., the region between the 2.5 and 97.5 percentile samples across the
hain of energy densities for each deformation gradient. The percentile bounds represent the uncertainty in the
nergy density prediction. To quantify the prediction accuracy, the coefficient of determination (denoted by R2)
etween the mean of the predicted energy densities and the true energy density is also shown for each deformation
14
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Fig. 5. Model discovery with the hidden Neo-Hookean benchmark model (44) using quasi-statics data for different noise levels. (a) Marginal
posterior distribution of the material parameters θ indicated via violin plots. The features are labeled according to the indices defined in

able 1. (b) Average activity of each feature in the posterior distribution. (c)–(h) Strain energy density along the different deformation paths
n (53) for the (true) hidden model and the discovered models sampled from the MCMC chain; see Section 3.2 for details. (For interpretation
f the references to color in this figure legend, the reader is referred to the web version of this article.)

ath. As a general definition, given two series of true and predicted values – ytrue and ypred, respectively, R2 as a
measure for goodness of fit is computed as

R2
= 1−

∑
i (ytrue, i − ypred, i)2∑

i (ytrue, i − ytrue)2 (54)

here R2
= 1 denotes that the predictive model perfectly matches the true values, while R2

≤ 0 corresponds to

he predictive model being worse than or equivalent to constantly predicting the mean of the true values.
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Fig. 6. Model discovery with the hidden Isihara benchmark model (45) using quasi-statics data for different noise levels. (a) Marginal
posterior distribution of the material parameters θ indicated via violin plots. The features are labeled according to the indices defined in

able 1. (b) Average activity of each feature in the posterior distribution. (c)–(h) Strain energy density along the different deformation paths
n (53) for the (true) hidden model and the discovered models sampled from the MCMC chain; see Section 3.2 for details. (For interpretation
f the references to color in this figure legend, the reader is referred to the web version of this article.)

.2.1. Model accuracy and aleatoric uncertainties
For all the benchmarks, the energy density along the six deformation paths is predicted with high accuracy

indicated by good R2 scores) and confidence, the latter being specifically indicated by the narrow percentile
ounds containing the true energy density. As expected, the R2 scores and percentile bounds are lower and wider,
espectively, for the high noise case than for the low noise case. Across all benchmarks, the approach correctly
nd interpretably detects the presence/absence of anisotropy in the all the constitutive models. In the anisotropic
olzapfel benchmark (Fig. 12), both isotropic and anisotropic features are correctly identified, the latter given by

ourth-order polynomial terms as approximation to the true exponential Holzapfel features in (51) (not included in

he feature library).
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Fig. 7. Model discovery with the hidden Gent-Thomas benchmark model (46) using quasi-statics data for different noise levels. (a) Marginal
posterior distribution of the material parameters θ indicated via violin plots. The features are labeled according to the indices defined in

able 1. (b) Average activity of each feature in the posterior distribution. (c)–(h) Strain energy density along the different deformation paths
n (53) for the (true) hidden model and the discovered models sampled from the MCMC chain; see Section 3.2 for details. (For interpretation
f the references to color in this figure legend, the reader is referred to the web version of this article.)

The data used for model discovery are based on a single test consisting of asymmetric biaxial tension of the
pecimen. Consequently, the loading mainly activates the tensile strain states, while the shear strains are only
ctivated indirectly due to and in proximity of the hole in the specimen. This is automatically reflected by the
ayesian learning in the energy density predictions in the form of lower uncertainty (narrower percentile bounds;
igher R2 scores) along uni-/bi-axial tension and compression deformation paths vs. high uncertainty (wider
ercentile bounds; lower R2 scores) along simple and pure shear deformation paths.5 The hierarchical Bayesian

5 The specimen shape may be designed to optimally activate a diverse range of strain states which will further increase the confidence
and accuracy of the predictions. However, this is beyond the scope of the current work.
17
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Fig. 8. Model discovery with the hidden Haines-Wilson benchmark model (47) using quasi-statics data for different noise levels. (a) Marginal
posterior distribution of the material parameters θ indicated via violin plots. The features are labeled according to the indices defined in

able 1. (b) Average activity of each feature in the posterior distribution. (c)–(h) Strain energy density along the different deformation paths
n (53) for the (true) hidden model and the discovered models sampled from the MCMC chain; see Section 3.2 for details. (For interpretation
f the references to color in this figure legend, the reader is referred to the web version of this article.)

pproach enables the automatic estimation of the aleatoric uncertainty (arising due to random noise in the observed
ata) by placing a hyper-prior on the likelihood variance σ 2. Note that σ 2 is the variance in satisfying the physics-
ased constraint of momentum balance, and is different from the displacement field noise variance σ 2

u . However,
oth are correlated – specifically, σ 2 increases with σ 2

u – as evident from the marginal posterior distribution of σ 2

see Fig. D.23 and the accompanying discussion in Appendix D).
To further test the generalization accuracy of the discovered models to unseen strain states, we deploy them in

he FEM simulation of a complex specimen different from the one used for model discovery. For this purpose,
e consider the uniaxial tensile loading of a square plate with two asymmetric elliptical holes (see Fig. 4 for
eometry and boundary conditions) and under plane strain. The simulation uses a mesh of triangular elements with
18



A. Joshi, P. Thakolkaran, Y. Zheng et al. Computer Methods in Applied Mechanics and Engineering 398 (2022) 115225

T
i
o

s

Fig. 9. Model discovery with the hidden Arruda-Boyce benchmark model (48) using quasi-statics data for different noise levels. (a) Marginal
posterior distribution of the material parameters θ indicated via violin plots. The features are labeled according to the indices defined in

able 1. (b) Average activity of each feature in the posterior distribution. (c)–(h) Strain energy density along the different deformation paths
n (53) for the (true) hidden model and the discovered models sampled from the MCMC chain; see Section 3.2 for details. (For interpretation
f the references to color in this figure legend, the reader is referred to the web version of this article.)

ingle quadrature points and a total of 4908 nodes. The specimen is quasi-statically extended up to ϕ = 1 in 10
equi-spaced loadsteps. The FEM simulations employing the mean of the predicted strain energy models discovered
by the Bayesian-EUCLID framework are validated against the ground-truth model by comparing the values of the
strain invariants at all quadrature points of the mesh. Figs. 13 and 14 present the FEM-based validation results for
the Holzapfel benchmark (51) for the low and high noise cases, respectively. The R2 scores indicate the mismatch in
the strain distribution across the specimen with respect to the ground-truth simulation. In the ideal case of R2

= 1,
each point in the plot of the element-wise predicted and ground-truth strain invariants must lie on a straight line
with unit slope and zero intercept. As expected, we obtain a good match in the low noise case, while considerable
errors are present for the high noise case.
19
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Fig. 10. Model discovery with the hidden Ogden benchmark model (49) using quasi-statics data for different noise levels. (a) Marginal
osterior distribution of the material parameters θ indicated via violin plots. The features are labeled according to the indices defined in
able 1. (b) Average activity of each feature in the posterior distribution. (c)–(h) Strain energy density along the different deformation paths

n (53) for the (true) hidden model and the discovered models sampled from the MCMC chain; see Section 3.2 for details. (For interpretation
f the references to color in this figure legend, the reader is referred to the web version of this article.)

.2.2. Model parsimony
The discovered models in all the benchmarks are parsimonious — containing a combination of only a few

erms, as indicated by the zero average activity and/or zero-centered Dirac-delta-type marginal posterior distribution
f several features. In general, the parsimony is lower for the high noise case, which is expected as, under
ncreasing uncertainty, overfitting becomes more likely and the effect of any regularization weakens (in this case,
arsimony acts as a regularization [70] via the spike-slab prior). The results shown in Figs. 5–12 clearly indicate
hat the Bayesian-EUCLID framework is able to detect the presence/absence of anisotropy and identify the relevant
olumetric and deviatoric features. Although the number of possible models is exceedingly large (around 226 for
6 features in the library), enforcement of parsimony enables the method to discover the simplest possible model
20
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Fig. 11. Model discovery with the hidden 3-term Ogden benchmark model (50) using quasi-statics data for different noise levels. (a) Marginal
osterior distribution of the material parameters θ indicated via violin plots. The features are labeled according to the indices defined in
able 1. (b) Average activity of each feature in the posterior distribution. (c)–(h) Strain energy density along the different deformation paths

n (53) for the (true) hidden model and the discovered models sampled from the MCMC chain; see Section 3.2 for details. (For interpretation
f the references to color in this figure legend, the reader is referred to the web version of this article.)

hat captures the material’s behavior. This ability to select and discover relevant material models distinguishes the
UCLID framework from other approaches that seek to characterize materials by assuming energy models a priori.

.2.3. Model multi-modality
The marginal posterior distributions of the active features are multi-modal, indicating that alternative constitutive

odels different from the ground truth are also discovered. E.g., in the Neo-Hookean benchmark (Fig. 5), three
ominant models are discovered where the features: ( Ĩ1 − 3) (Neo-Hookean feature with index: 1), AB (Arruda–

Boyce feature with index: 17), and OG3 (Ogden feature with index: 20) are primarily active with mutual exclusivity.
The same features are also activated mutually exclusively in the Arruda–Boyce benchmark (Fig. 9). In addition,
21
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Fig. 12. Model discovery with the hidden anisotropic Holzapfel benchmark model (51) using quasi-statics data for different noise levels. (a)
Marginal posterior distribution of the material parameters θ indicated via violin plots. The features are labeled according to the indices defined
in Table 1. (b) Average activity of each feature in the posterior distribution. (c)–(h) Strain energy density along the different deformation
paths in (53) for the (true) hidden model and the discovered models sampled from the MCMC chain; see Section 3.2 for details. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

the average activities are also informative of the likelihood of each mode/model. Although the predicted feature
coefficients for the alternative models are different from the ground truth, the good agreement between the predicted
and true energy densities across all the benchmarks suggests that the alternative models are indeed capable of
accurately explaining the observed data and, in general, representing the true constitutive response of the material.

The multi-modality is attributed to two main sources. (i) Given the observed data, two or more features may
have high correlation. In the limit when two features are exactly equal, infinitely many solutions are admissible.
The high feature correlations combined with noisy and limited data give rise to multi-modal solutions, as observed

in the following representative examples.

22
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Fig. 13. Quasi-static validation for the hidden Holzapfel benchmark model Eq. (51) – comparing simulation results from the ground-truth
model and the mean of the energy density models predicted using the low-noise (σu = 10−4) displacement data. (a) Deformed geometry
at ϕ = 1 obtained using the mean of the predicted models. (b) Predicted vs. true strain invariant ( Ĩ1 − 3) across all quadrature points and
loadsteps. (c) Predicted vs. true strain invariant (J − 1)2 across all quadrature points and loadsteps.

Fig. 14. Quasi-static validation for the hidden Holzapfel benchmark model Eq. (51) – comparing simulation results from the ground-truth
model and the mean of the energy density models predicted using the high-noise (σu = 10−3) displacement data. (a) Deformed geometry
at ϕ = 1 obtained using the mean of the predicted models. (b) Predicted vs. true strain invariant ( Ĩ1 − 3) across all quadrature points and
loadsteps. (c) Predicted vs. true strain invariant (J − 1)2 across all quadrature points and loadsteps.

Table 1
List of features used in the library Q.

Index no. Feature Index no. Feature

1 ( Ĩ1 − 3) 14 ( Ĩ2 − 3)4

2 ( Ĩ2 − 3) 15 (J − 1)2

3 ( Ĩ1 − 3)2 16 log( Ĩ2/3)
4 ( Ĩ1 − 3)( Ĩ2 − 3) 17 AB( Ĩ1)
5 ( Ĩ2 − 3)2 18 OG1( Ĩ1, J )
6 ( Ĩ1 − 3)3 19 OG2( Ĩ1, J )
7 ( Ĩ1 − 3)2( Ĩ2 − 3) 20 OG3( Ĩ1, J )
8 ( Ĩ1 − 3)( Ĩ2 − 3)2 21 ( J̃4 − 1)2

9 ( Ĩ2 − 3)3 22 ( J̃4 − 1)3

10 ( Ĩ1 − 3)4 23 ( J̃4 − 1)4

11 ( Ĩ1 − 3)3( Ĩ2 − 3) 24 ( J̃6 − 1)2

12 ( Ĩ1 − 3)2( Ĩ2 − 3)2 25 ( J̃6 − 1)3

13 ( Ĩ1 − 3)( Ĩ2 − 3)3 26 ( J̃6 − 1)4
23
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Fig. 15. Model discovery with the hidden Arruda-Boyce benchmark model (48) using quasi-statics data and suppressed true features for
different noise levels. (a) Marginal posterior distribution of the material parameters θ indicated via violin plots. The features are labeled
according to the indices defined in Table 1. (b) Average activity of each feature in the posterior distribution. (c)–(h) Strain energy density
along the different deformation paths in (53) for the (true) hidden model and the discovered models sampled from the MCMC chain; see
Section 3.2 for details.

• The Neo-Hookean feature is a linearization of the Ogden and Arruda–Boyce features. Therefore, all of them
are highly correlated for small deformations, which leads to multi-modality in Figs. 5 and 9.
• In the Isihara and Haines–Wilson benchmarks (Figs. 6 and 8), the true generalized Mooney–Rivlin polynomial

features are highly correlated, which also leads to highly multi-modal solutions.

(ii) In the current set of benchmarks with n f = 26, the number of unique combinations of the features, hence the
number of possible unique models, is more than 67 million. Such a big model space is inherently likely to admit
more than one model that can satisfy the small amount of observed data, especially in the unsupervised setting
where the stress labels are absent. Therefore, it is important to consider all the modes/models until new data are
24
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Fig. 16. Model discovery with the hidden 3-term Ogden benchmark model (50) using quasi-statics data and suppressed true features for
different noise levels. (a) Marginal posterior distribution of the material parameters θ indicated via violin plots. The features are labeled
according to the indices defined in Table 1. (b) Average activity of each feature in the posterior distribution. (c)–(h) Strain energy density
along the different deformation paths in (53) for the (true) hidden model and the discovered models sampled from the MCMC chain; see
Section 3.2 for details.

available to further refine the model estimate. The new data may come from specially designed specimen geometries
with diverse strain distributions that minimize the feature correlations or be obtained from labeled stress–strain pairs
via simpler uni-/bi-axial tension/compression, bending or torsion tests.

3.2.4. Model generalization under epistemic uncertainties
Epistemic uncertainties arise due to the lack of knowledge about the best model [47]. In the context of this

work, this translates into missing prior knowledge in the creation of the feature library Q. Specifically, the model

discovery should be generalizable even when true features are missing in the library. To this end, we intentionally
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Fig. 17. Model discovery with the hidden Haines-Wilson benchmark model (47) using dynamics data for different noise levels. (a) Marginal
osterior distribution of the material parameters θ indicated via violin plots. The features are labeled according to the indices defined in
able 1. (b) Average activity of each feature in the posterior distribution. (c)–(h) Strain energy density along the different deformation paths

n (53) for the (true) hidden model and the discovered models sampled from the MCMC chain; see Section 3.2 for details.

uppress certain true features in the feature library of Table 1 and test the generalization capability of the discovered
onstitutive models. We consider two cases:

1. Arruda–Boyce benchmark (48) with the true Arruda–Boyce feature (index 17 in Table 1) suppressed,
2. 3-term Ogden benchmark (50) with the true Ogden features (indices 18, 19, and 20 in Table 1) suppressed.

he corresponding model discovery results are summarized in Figs. 15 and 16 with the suppressed features
ighlighted in red background in both the marginal posterior and average activity plots. In the first case, the
eo-Hookean and Ogden features automatically become active to compensate for the missing Arruda–Boyce

eature. In the second case, the missing Ogden features are replaced by the Neo-Hookean, Gent–Thomas, and
rruda–Boyce features. In both cases, the predicted energy densities are accurate with highly confident percentile
26
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Fig. 18. Model discovery with the hidden Ogden benchmark model (49) using dynamics data for different noise levels. (a) Marginal
posterior distribution of the material parameters θ indicated via violin plots. The features are labeled according to the indices defined in

able 1. (b) Average activity of each feature in the posterior distribution. (c)–(h) Strain energy density along the different deformation paths
n (53) for the (true) hidden model and the discovered models sampled from the MCMC chain; see Section 3.2 for details.

ounds, which demonstrates the robustness of the proposed method under epistemic uncertainties. Additionally, the
olzapfel benchmark (51) is another evidence of the generalization capability in the case of anisotropy, as the true

nisotropic Holzapfel features are not part of the feature library in (11) and Table 1. In Appendix C, we further test
he generalization capability of the Bayesian-EUCLID framework under epistemic uncertainties such as incorrect
ssumptions about the fiber directions or the absence of anisotropy features in the feature library.

Compared to the deterministic method of Flaschel et al. [1], the proposed Bayesian method not only enables
ulti-modal solutions and uncertainty quantification, but also provides significantly higher data and computational

fficiency. The Bayesian method only requires nfree = 100 data points per snapshot and computing time on the

order of 10-20 min on a single average modern processor. In contrast, the previous method by Flaschel et al. [1]
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Fig. 19. Model discovery with the hidden anisotropic Holzapfel benchmark model (51) using dynamics data for different noise levels. (a)
arginal posterior distribution of the material parameters θ indicated via violin plots. The features are labeled according to the indices defined

n Table 1. (b) Average activity of each feature in the posterior distribution. (c)–(h) Strain energy density along the different deformation
aths in (53) for the (true) hidden model and the discovered models sampled from the MCMC chain; see Section 3.2 for details.

equired nfree ∼ 126, 000 data points (approximately 63,000 nodes with two degrees of freedom each) per snapshot
nd computing time on the order of 10 min with 200 parallel processors for similar accuracy. The speedup is partly
nabled by the probabilistic framework, that looks at the entire solution space altogether, and partly by automatically
nforcing physical admissibility a priori as opposed to iteratively searching for models that empirically satisfy
onvexity (by checking monotonicity of energy density on some deformation paths).

.3. Model discovery with dynamic data

The model discovery results with the dynamic data (which include the inertial forces) are summarized in

igs. 17–19. For the sake of brevity, a representative selection of Haines–Wilson (47), Ogden (49), and (anisotropic)
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Holzapfel (51) benchmarks are presented. Similar observations with respect to accuracy, uncertainty, parsimony,
multi-modality, and generalization can be made as in the quasi-static case.

4. Conclusion

We developed Bayesian-EUCLID — a Bayesian framework for discovering interpretable and parsimonious
yperelastic constitutive models with quantifiable uncertainties in an unsupervised setting, i.e., without using any
tress data and using only realistically obtainable displacement fields and global reaction force data. As opposed
o calibrating an a priori assumed parametric model, we use a large library of interpretable features inspired
rom several physics-based as well as phenomenological constitutive models, which leverage domain knowledge
ccumulated over the past decades. To ensure parsimony and circumvent the lack of stress labels, the hierarchical
ayesian learning approach adopts a sparsity-inducing spike-slab prior and a physics-constrained unsupervised

ikelihood based on conservation of linear momentum in the weak form. The efficacy of the Bayesian framework
s tested on several benchmarks based on isotropic and anisotropic material models under quasi-static/dynamic
oading, wherein the data is generated artificially with noise levels representative of contemporary DIC setups. The
iscovered constitutive models – obtained as multi-modal posterior probability distributions – accurately surrogate
he true constitutive response with high confidence. Aleatoric uncertainties are automatically accounted for by
ierarchically placing hyperpriors on the noise-related variables in the Bayesian model. The discovered models
how good generalization under epistemic uncertainties (i.e., when the true features are unknown a priori and thus

missing from the adopted feature library) and automatically satisfy physical constraints via specially chosen model
priors and features. The interpretability of the approach enabled separately identifying the volumetric, deviatoric and
direction-dependent (anisotropic) behavior of the material from a single experiment. Future work will include the
extension to inelasticity as well as experimental validation, which will also entail adapting the EUCLID framework
to work with a plane-stress assumption.
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Appendix A. Protocols for data generation and benchmarks

Table A.2 lists all the parameters used for the data generation and Bayesian learning. A consistent system of
units for lengths, time and mass are used – with each normalized based on the specimen side length, rate of loading,
and material density. To generate realistic data artificially using FEM, we use a high-resolution mesh with 63,601
nodes — the same one used by Flaschel et al. [1]. The noisy displacement data are also denoised using KRR
following the same protocols. However, to demonstrate data efficiency of the proposed method, we project the
denoised displacement field onto a coarser mesh with only nn = 1, 441 nodes (each with two degrees of freedom).
In the dynamic case, to avoid the computational expense of running a fine mesh for a very large number time steps,
we use the coarser mesh with nn = 1, 441 nodes to generate the data. For further data efficiency, we randomly
sub-sample nfree = 100 free degrees of freedom per snapshot for the Bayesian likelihood computation in both the
quasi-static and dynamic cases (see discussion in Section 2.5).

The parameter λr is set to ensure similar importance to force balance at free and fixed degrees of freedom in
(31). For consistency, we choose λr to be equivalent to that used by Flaschel et al. [1] (with the latter having a

ifferent definition of λ ).
r
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Table A.2
Summary of parameters used for data generation and benchmarks of Bayesian-EUCLID.

Parameter Notation Value

Quasi-static data generation:
Number of nodes in mesh for FEM-based data generation – 63,601
Number of nodes in data available for model discovery nn 1441
Number of reaction force constraints nβ 4
Number of data snapshots nt 5
Number of time steps Lstatic 5
Loading parameter ϕ {0.1× l : l = 1, . . . , Lstatic}

Dynamic data generation:
Number of nodes in mesh for FEM-based data generation – 1441
Number of nodes in data available for model discovery nn 1441
Number of reaction force constraints nβ 4
Material density ρ 1
Number of data snapshots nt 5
Number of time steps Ldynamic 50 000
Loading rate for dynamic data ϕ̇ 0.1
Step size for explicit time integration in FEM δt 0.0002

Feature library:
Number of features in library Q (see (11) and Table 1) n f 26
Highest degree among Mooney–Rivlin polynomial features NMR 4
Number of volumetric features Nvol 1
Number of Ogden features NOgden 3
Highest degree among anisotropic polynomial features Naniso 4

Bayesian learning:
Number of free degrees of freedom randomly sampled per snapshot nfree 100
Weight parameter for reaction force balance λr 10
Hyperparameters for random variable νs (aν , bν ) (0.5, 0.5)
Hyperparameters for random variable p0 (ap, bp) (0.1, 5.0)
Hyperparameters for random variable σ 2 (aσ , bσ ) (1.0, 1.0)
Number of burn-in samples per MCMC chain Nburn 250
Length of each MCMC chain after discarding the burn-in samples NG 750
Number of independent MCMC chains Nchains 4

Appendix B. Pseudo-code for posterior distribution sampling

A pseudo-code for MCMC sampling of the posterior probability distribution (34) is presented in Algorithm 1.

ppendix C. Performance under uncertainties related to anisotropy and high displacement noise

This section deals with evaluating the performance of the Bayesian-EUCLID framework under epistemic uncer-
ainties related to anisotropy, i.e., due to selection of an incorrect/deficient library, and under severe displacement
oise. For this purpose, we perform the FEM-based validation simulations on the hidden Holzapfel benchmark
odel specified by (51) with fibers along α1, α2 = ±30◦ directions. The results of the simulations employing the
ean of predicted models are compared to those with the ground-truth Holzapfel model. Other details regarding

he simulations are discussed in Section 3.2.1. Figs. C.20, C.21, and C.22 present the validation results in the form
f prediction accuracy of strain invariants across the specimen using:

(i) low-noise (σu = 10−4) displacement data with incorrectly assumed anisotropy directions: α1, α2 = ±45◦

(true directions are α1, α2 = ±30◦) in the feature library (11),
(ii) low-noise (σu = 10−4) displacement data with anisotropic features not included in the feature library (11),

and
(iii) high-noise (σu = 10−3) displacement data without denoising.

he R2 scores shown in Figs. C.20 and C.21, being considerably less than 1, indicate that these predicted models
erform poorly when compared to the model predicted with correctly assumed anisotropy features (see Fig. 13).
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Algorithm 1 MCMC sampling of the posterior probability distribution (34)

1: Input: observed displacement, acceleration and reaction force data (see Section 2.1)
2: for t = 1, . . . , nt do
3: Randomly sample (without replacement) nfree free degrees of freedom from the t th data snapshot
4: Assemble Afree,t

∈ Rnfree×n f and bfree,t
∈ Rnfree (see Section 2.5) at the above degrees of freedom

5: Assemble Afix,t
∈ Rnβ×n f and bfix,t

∈ Rnβ (see Section 2.5) for all the reaction forces
6: end for
7: Assemble A and b as indicated in (31)
8: for k = 1, . . . , Nchains do ▷ creating multiple chains.
9: Initialize an empty chain of size (Nburn + NG): Ck

10: Initialize: θ1 ∼ U(0.95, 1.05), θ−1 = 0 ▷ U denotes uniform distribution
11: Initialize: σ 2

∼ U(0.95, 1.05)
12: Initialize: νs ∼ U(0.95, 1.05)
13: Initialize: p0 ∼ U(0.095, 0.105)
14: Initialize: z1 ∼ Bern(0.5), z−1 = 0 ▷ Bern(0.5) denotes Bernoulli trial with equally likely outcomes
15: for q = 1, . . . , (Nburn + NG) do ▷ beginning Gibbs sampling
16: θ ← θ sampled using (35)
17: σ 2

← σ 2 sampled using (36)
18: νs ← νs sampled using (37)
19: p0 ← p0 sampled using (38)
20: order← Perm

(
[1, . . . , n f ]

)
▷ Perm(·) denote random permutation of an array

21: for j = 1, . . . , n f do
22: i ← order[ j]
23: zi ← zi sampled using (39)
24: end for
25: Record updated states in the chain: Ck[q]← {θ , σ 2, νs, p0, z}
26: end for
27: Discard first Nburn samples of the chain: Ck ← Ck[(Nburn + 1) : (Nburn + NG)]
28: end for
29: Return: Concatenation of all chains, C1 ⌢ C2 ⌢ · · ·⌢ CNchains ▷ ⌢ denotes concatenation of sequences

Although not attempted in this work, it is therefore possible to iterate over different assumed angles (directions) to
discover the in-plane material’s anisotropy direction by maximizing the R2 score for the plots. Comparing Figs. 14
and C.22 indicates that the displacement noise levels of σu = 10−3 (without denoising) are enough to induce
spurious model predictions and that denoising the displacement data prior to learning the material model notably
improves the prediction accuracy.

Appendix D. Correlation between the physics-constrained likelihood variance σ 2 and displacement noise
variance σ 2

u

Fig. D.23 shows the distribution of the variance σ 2 in the MCMC chain for the Ogden model (49) benchmark
with quasi-static data. To demonstrate the correlation between σ and σu , the following cases are considered:

(i) σu = 0,
(ii) σu = 10−4 with denoising,

(iii) σu = 10−3 with denoising,
(iv) σu = 10−4 without denoising,
(v) σu = 10−3 without denoising.

Both the average value and spread of σ 2 are the smallest for the noiseless data and increase with σu . Additionally, σ 2

reduces significantly with the denoising of the displacement data, which also corroborates the observations regarding
the effects of denoising presented in Appendix C.
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q

Fig. C.20. Quasi-static validation for the hidden Holzapfel benchmark model (51) – comparing simulation results from the ground-truth
model and the mean of the energy density models predicted using the low-noise (σu = 10−4) displacement data and assuming incorrect
anisotropy directions α1, α2 = ±45◦ in the feature library (true directions are α1, α2 = ±30◦). (a) Deformed geometry at ϕ = 1 obtained
using the mean of the predicted models. (b) Predicted vs. true strain invariant ( Ĩ1−3) across all quadrature points and loadsteps. (c) Predicted
vs. true strain invariant (J − 1)2 across all quadrature points and loadsteps.

Fig. C.21. Quasi-static validation for the hidden Holzapfel benchmark model (51) – comparing simulation results from the ground-truth
model and the mean of the energy density models predicted using the low-noise (σu = 10−4) displacement data and anisotropic features
excluded from the feature library. (a) Deformed geometry at ϕ = 1 obtained using the mean of the predicted models. (b) Predicted vs. true
strain invariant ( Ĩ1− 3) across all quadrature points and loadsteps. (c) Predicted vs. true strain invariant (J − 1)2 across all quadrature points
and loadsteps.

Fig. C.22. Quasi-static validation for the hidden Holzapfel benchmark model (51) – comparing simulation results from the ground-truth
model and the mean of the energy density models predicted using the high-noise (σu = 10−3) displacement data without any denoising. (a)
Deformed geometry at ϕ = 1 obtained using the mean of the predicted models. (b) Predicted vs. true strain invariant ( Ĩ1 − 3) across all

uadrature points and loadsteps. (c) Predicted vs. true strain invariant (J − 1)2 across all quadrature points and loadsteps.
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Fig. D.23. Distribution of the variance σ 2 for the Ogden benchmark (49) using quasi-static data with varying levels of σu and with/without
denoising of displacement data.
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