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ABSTRACT 
 
This paper presents a modeling approach for predicting the shake-table response of a rocking and sliding column. A three-
dimensional finite element (FE) model was developed and validated statistically against experimental results, which 
involved testing the column under a set of 115 bidirectional ground motions. The free-standing body had a circular cross-
section and was allowed to slide and rock in all directions. Both the rocking body and the shake table were modeled using 
elastic elements. The contact surface was simulated using Coulomb friction for the tangential behavior and stiff contact 
for the normal direction. Friction was the main energy dissipation mechanism. Rocking is characterized as a chaotic and 
unpredictable problem, with experiments being non-repeatable. Therefore, this study employs a statistical approach to 
validate the numerical results. This is achieved by using the cumulative distribution function (CDF) for the main response 
quantity (i.e., maximum displacement at the top of the column) instead of comparing the numerical and experimental 
results one by one for each test (deterministic comparison). It was proved that the model performs poorly in the 
deterministic validation but demonstrates satisfying agreement with the experimental results when validated statistically. 
Important modeling parameters, such as the solution time step and the value of the integrated numerical damping, were 
elucidated through an extensive sensitivity analysis, employing non-linear time-history analyses. It was shown that a 
small change of the value of these parameters leads to a different individual rocking oscillation but only marginally 
influences the statistical response. 
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INTRODUCTION 
 

Rocking structures are the ones that uplift when they are subjected to dynamic excitation. Uplifting occurs 
when the ratio of the acceleration of the excitation (üg) divided by the gravity acceleration (g) is larger than 
the slenderness of the block (tanα), provided that the friction coefficient at the base is high enough to prevent 
sliding (Fig. 1). This uplifting effect acts as a fuse, limiting the inertial forces transmitted to the superstructure. 
After uplift, a rocking oscillator demonstrates negative stiffness, making the description of such systems 
significantly different from the well-known elastic single-degree-of-freedom systems. 

 
Figure 1. Geometric properties of a rocking block. 

 



The first analytical study of this phenomenon is dated back to 1885 (Makris, 2014). However, contemporary 
research of rocking structures started after 1963, when Housner published his seminal paper entitled “The 
behavior of inverted pendulum structures during earthquakes” where two main properties of the rocking 
structures were elucidated: i) out of two geometrically similar rocking blocks (same α) the larger one (larger 
R) can survive an excitation which will topple the smaller one; ii) ground motions containing pulses with 
longer period have a higher overturning potential (Housner, 1963). The rocking oscillator has been used to 
describe the dynamic behavior of free-standing equipment (Konstantinidis and Makris, 2009, 2010; Di Sarno 
et al., 2019; D’Angela et al., 2021; Linde et al., 2020), masonry structures (Stefanou et al., 2011; DeJong, 
2012; Tondelli et al., 2016; Casapulla et al., 2017; Kalliontzis & Schultz, 2017; Kalliontzis et al., 2020a, 2020b; 
Mehrotra & DeJong, 2018; Mouzakis et al., 2002) and monumental structures (Funari et al., 2020; 
Papantonopoulos et al., 2002; Vassiliou and Makris, 2012, Drosos and Anastasopoulos, 2014; Konstantinidis 
and Makris, 2005 ). Rocking oscillators could be used as kinematic isolation bearings in bridges or buildings. 
Such kinematic bearings were implemented in the former USSR and New Zealand. In buildings, to limit the 
inertial forces transmitted to the superstructure, either a soft-rocking-story (Bantilas et al., 2020; Bachmann et 
al., 2017, 2019; Dar et al., 2018) or an uplifting wall could be used (Makris and Aghagholizadeh, 2017; Di 
Egidio et al., 2020). In bridges, kinematic bearings could be used as rocking piers (Makris and Vassiliou, 2013, 
2014; Dimitrakopoulos and Giouvanidis, 2015; Giouvanidis and Dimitrakopoulos, 2017b; Thomaidis et al., 
2020, 2022; Giouvanidis and Dong, 2020; Kashani et al., 2018; Thiers-Moggia and Málaga-Chuquitaype, 
2020; Xie et al., 2019; Zhang et al. 2019). The combination of rocking structures with external dampers, 
restraining tendons or inerters was suggested in (Makris and Vassiliou, 2015; Vassiliou and Makris, 2015; 
Makris and Aghagholizadeh, 2019; Pan and Málaga-Chuquitaype, 2020; Thiers-Moggia and Málaga-
Chuquitaype 2019, 2020) . The influence of the flexibility of the rocking body was also studied, both 
analytically and experimentally (Acikgoz and DeJong, 2012; Vassiliou et al., 2014, 2015; Truniger et al. 2015). 

The negative stiffness of the rocking oscillator makes it significantly different from the conventional single-
degree-of-freedom (SDOF) oscillator, hence, many assumptions commonly used in the seismic design and 
analysis of SDOF oscillators cannot be applicable to rocking oscillators (DeJong and Dimitrakopoulos, 2014; 
Dimitrakopoulos and Paraskeva, 2015; Dimitrakopoulos and DeJong, 2012; Dimitrakopoulos and 
Giouvanidis, 2015; Giouvanidis and Dimitrakopoulos, 2017a, 2018; Kazantzi et al., 2021; Lachanas and 
Vamvatsikos, 2021; Makris and Konstantinidis, 2003; Makris and Zhang, 2001; Zhang and Makis, 2001; 
Reggiani Manzo and Vassiliou, 2020, 2021). 

The analytical model proposed by Housner describes the planar rocking response of a rigid body when 
subjected to one-directional excitation. However, under realistic conditions, rocking structures are subjected 
to bidirectional excitation (or three-directional when the vertical acceleration is considered) (Chatzis & Smith, 
2012a, 2012b; Mathey et al., 2016; Vassiliou et al., 2017; Vassiliou, 2018, Konstantinidis and Makris, 2007; 
Zulli et al., 2012, Bachmann et al., 2019). Under these conditions, an unanchored body may rock, uplift, 
translate with the ground, and/or wobble. When it is not restrained, it may also slide out of its initial position 
(Bao & Konstantinidis, 2020).  

This study aims at developing a practical three-dimensional finite element model for predicting the response 
of free-standing cylindrical rocking columns. The accuracy of the proposed model is assessed by statistically 
comparing numerical and experimental results. The experimental results comprise 115 shake table tests, using 
a slender steel column with circular cross-section. The large number of shake-table tests allows for such a 
statistical validation procedure. The specimen was subjected to two-dimensional excitation and was free to 
slide, rock and wobble in all directions. As the column is free to slide and wobble out of its initial position, its 
dynamic response is qualitatively similar to free-standing internal building components. 
 

THE STATISTICAL VALIDATION APPROACH 
 

Rocking is often characterized as “chaotic”, in the sense that the experimental response of a rocking oscillator 
to a single ground motion is oftentimes non-predictable and non-repeatable. Therefore, validating numerical 
models in a deterministic way is impossible, since no experimental test can be used as a benchmark for the 
comparison with the numerical model.  

Bachmann et al. (2017) and Del Guidice et al. (2020, 2021a, 2021b) claimed that validating a numerical model 
using a single ground motion is a sufficient but not a necessary validation procedure. The seismic response is 



inherently stochastic since the excitation is stochastic. Therefore, a statistical (and not a deterministic, one-by-
one) validation of the numerical model is proposed, which compares the statistical distributions of the main 
response quantities of the model and the experiments. This procedure requires an experimental benchmark 
dataset, where the same (or identical) specimens are excited by an ensemble of spectrally-compatible ground 
motions. Subsequently, a numerical model is used to create the corresponding numerical dataset, using the 
same ensemble of excitations. The validity of the numerical model is assessed by comparing the Cumulative 
Distribution Function (CDF) of these two datasets for the same response quantity (i.e., maximum displacement 
at the top). This validation test is weaker (and easier to pass), yet adequate for earthquake engineering 
applications. It is worth mentioning that Yim, Chopra and Penzien where the first ones to state that rocking 
should be studied in the statistical sense (Yim et al., 1980). 

Both the Finite Element (FEM) and the Discrete Element (DEM) method was used in the past for the 
description of the rocking problem (Agalianos et al., 2017; Thomaidis et al., 2018; Pappas et al., 2017; Sieber 
et al., 2020). A recent blind prediction contest organized by ETH Zurich, the University of Bristol and the 
Pacific Earthquake Engineering Research (PEER) Center, shed light on the efficiency of numerical models 
and the adopted numerical parameters used for modeling a rocking podium structure (Vassiliou et al., 2020). 
Unlike the tests discussed in this paper, the tests of the blind prediction contest concerned a rocking podium 
structure that was restrained not to slide or wobble out of its original position. Thirteen contestants participated, 
using FEM, DEM, and analytical rigid-body models (Zhong & Christopoulos, 2020; Malomo et al., 2020). 
The main outcomes of the blind prediction were that: i) There is no basis for recommending FEM or DEM to 
model the response of wobbling structures since the accuracy of these models depends on the calibration of 
the model and the corresponding modeling assumptions; ii) Using Rayleigh damping to model energy 
dissipation in rocking structures is both inaccurate and inconsistent to the physical problem; iii) The winning 
participants accurately captured the Cumulative Distribution Function of the maxima of the responses to each 
set of excitations, but their accuracy in predicting the response to each individual ground motion was 
significantly lower. 
 

EXPERIMENTAL BENCHMARK DATASET 
 

The numerical model proposed in the present study was validated using an experimental benchmark dataset, 
which is described in detail in (Vassiliou et al., 2021), and also briefly presented in this section for reasons of 
completeness. The experimental campaign was designed at ETH Zurich and performed at EQUALS Lab, 
University of Bristol (Fig. 2). A total of 115 shake table tests of cylindrical and rectangular free-standing 
rocking bodies was conducted, with the specimens being free to slide and rock in all directions. The results of 
these experiments were selected as a benchmark database to assess the efficiency of the numerical model since 
they include a large number of spectrally-compatible ground motions applied on the same rocking specimens. 
The rocking specimens were not chosen to represent specific free-standing rocking equipment but a class of 
free-standing rocking bodies. They were designed to remain elastic after each test, so they could be excited 
with a large number of earthquake excitations to create a database suitable for statistical validation. The 
specimens were made of round, hollow steel pipes with different dimensions and slenderness (Fig. 2). The 
rocking response was induced by a bi-directional dynamic excitation using a shake table. The applied ground 
motions were synthesized using a spectral version of the Rezaeian and Der Kiureghian stochastic ground 
motion model (Rezaeian & Der Kiureghian, 2008; Broccardo & Dabaghi, 2017). The 1989 Loma Prieta UCSC 
Lick Observatory ground motion record was used as a seed ground motion to generate an ensemble of 115 
ground motions. The ground motions were time-scaled (i.e., the frequency of ground motions increased by 2) 
without changing the amplitude. Therefore, in the prototype scale, the columns are 4 times larger. Out of the 
3 cylindrical specimens tested in (Vassiliou et al. 2020), the most slender was selected to be modeled in the 
present numerical study. 

 

NUMERICAL METHODOLOGY 
 

The general-purpose finite element software ABAQUS (Abaqus, 2019) was utilized. The model comprised the 
cylindrical rocking body, the flat moving base (which simulates the shake table), interface elements between 
the two aforementioned parts and a rectangular cap plate on top of the column.  The interface elements were 
stiff in the normal direction, allowing no penetration between the rocking column and the base. The lateral 



response of the interface elements was governed by Coulomb friction, with a friction coefficient of μ = 0.3 
(Katsamakas and Vassiliou, 2021, 2022). The translational motion along the z axis and all rotational motions 
of the base were fixed. The base moved parallel to x and y axis, applying the ground motion (Fig. 3).  

The rocking body was separated into two parts with different mesh sizes (Fig. 3). The lower part of the rocking 
column had an inform mesh of 5 mm, equal to the thickness of the wall of the hollow section. The elements of 
the mesh of the upper part of the rocking body had dimensions of 5x15x15 mm. The lower and the upper part 
were connected with a tie constraint, meaning that they move and rotate as one body. The mesh of the base 
was compatible with the one of the columns close to the contact area and became coarser away from it. This 
mesh configuration is considered adequate to avoid mesh-related errors and was also proved as time-efficient. 
8-node (brick) finite elements were used both for the rocking column and for the flat base. Both the column 
and the base were modeled with an elastic material since the stresses developed during testing were 
significantly lower than the yielding point. The modulus of elasticity was set to E = 200 GPa and the Poisson’s 
ratio to ν = 0.3. The displacement of the specimen was monitored with a reference point at the top of the 
column. An implicit integration scheme was utilized. The proposed numerical model considers one main 
damping mechanism; friction, which is considered through the friction coefficient. Rayleigh damping is set to 
zero since this energy dissipation mechanism is inconsistent with the physical problem and could make the 
model inaccurate (Vassiliou et al., 2020). The two critical numerical parameters that affect the accuracy of the 
model were the solution time step (dt) and the numerical energy dissipation included in the solution algorithm 
(αHHT) (Hilber et al., 1977). To shed light into the influence of these values on the proposed numerical model, 
an extensive sensitivity analysis was performed employing non-linear time-history analyses.  

 

 
Figure 2. Left; Free-standing rocking column specimens on the shake table at EQUALS lab, University of 
Bristol, Right; Schematic representation of the rocking column (dimensions are in meters).  

 

 
Figure 3. Description of the developed numerical model. 
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Regarding the solution time step (dt), the following values were considered in the sensitivity analysis; 0.02, 
10-3, 10-4 seconds, following the conclusions of (Vassiliou et al. 2017). For the numerical energy dissipation 
included in the solution algorithm (αHHT) the following values were considered; 0, -0.05, -0.1, -0.2, -0.333. The 
αHHT parameter controls damping of the solution algorithm by damping-out the high-frequency components of 
the computed response without markedly affecting the low-frequency response components. Therefore, the 
αHHT parameter only affects the numerical response in higher vibration modes. The αHHT parameter follows the 
Hilber-Hughes-Taylor numerical dissipation for time integration algorithms (Hilber et al., 1977). According 
to the documentation of the software, αHHT = 0 gives zero dissipation, whereas αHHT = -0.333 gives maximum 
dissipation. The other values of αHHT correspond to in-between cases of moderate energy dissipation. 
 

RESULTS 
 

Deterministic comparison 
 
When the numerical results are compared to each other one by one, the influence of the time step (dt) and the 
energy dissipation included in the solution algorithm (αHHT) is significant (Fig. 4). Even though correlation 
between the results of the various models can be observed, no clear trend emerges. A modification of dt or 
αHHT leads to a different maximum displacement (umax), and, oftentimes, to a prediction of overturn, that is not 
predicted by the other group of analyses. Decreasing the time step (dt) leads to a significant increase in the 
solution time. Increasing αHHT (i.e. less numerical damping) leads to a small increase in the solution time. Based 
on the above, the numerical model with dt = 10-3 s and αHHT = -0.2 was selected and compared with the 
experimental results. A relatively loose correlation is observed, with the corresponding correlation coefficient 
being equal to R=0.49 (assuming that overturn is set to a displacement of 250 mm).  
 

 
Figure 4. Deterministic comparison of the numerical results. Top-left, Top-right, Bottom-left; Comparison 
of the numerical results for different dt and αHHT values; Bottom-right; Comparison between experimental 
and numerical results for dt = 10-3 s and αHHT = -0.2. 
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Most importantly, the numerical model is oftentimes unable to predict overturning. It is noted that, based on 
this one-by-one comparison of the experimental and the numerical results, the numerical model seems 
inaccurate but is not biased since it does not systematically under- or over-predict the response.  
 
Statistical comparison 
 
When the numerical results are statistically assessed using the cumulative distribution function (CDF), clear 
trends emerge (Fig. 5). This is in agreement to the conclusions of Yim, Chopra and Penzien, who observed 
similar trends for the planar rocking response (Yim et al., 1980). The influence of the time step (dt) is moderate 
and becomes insignificant when it is smaller than 10-3 seconds. Therefore, the use of a time step equal to, or 
smaller than dt = 10-3 seconds is suggested for this specific system. With the time step being small enough, the 
influence of the selected value of αHHT becomes marginal and practically insignificant. Similarly to the 
deterministic comparison, the numerical model with dt = 10-3 s and αHHT = -0.2 was selected and compared 
with the experimental results. The CDF of the numerical model is closely correlated to the experimental one, 
with the numerical always being inside the 95% CI of the experimental. The probability of overturning of the 
rocking body is equal to 1 minus the value of the last point of the CDF. For the specific rocking body under 
the considered group of ground motions, the numerical model gives a probability of overturning equal to 
43.5%, whereas the experimental results give 44.4%. Hence, the numerical model accurately predicts the 
statistical response of the cylindrical column.  
 
 

 
Figure 5. Statistical comparison of the numerical results. Top-left, Top-right, Bottom-left; Comparison of 
the numerical results for different dt and αHHT values; Bottom-right; Comparison between experimental and 
numerical results for dt = 10-3 s and αHHT = -0.2. 
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CONCLUSIONS 
 
The presented numerical model simulates the response of a slender, free-standing cylindrical column. The 
column was free to slide and rock in all directions, whereas the cylindrical cross-section led to significant 
wobbling. A three-dimensional numerical model was developed, aiming at predicting the experimentally 
observed response, in terms of maximum displacement at the top of the column (umax).  
The main energy dissipation mechanism of the numerical model was interfacial friction (between the rocking 
body and the base), which was explicitly considered in the numerical model. The value of the solution time 
step (dt) and of the numerical damping of the solution algorithm (αHHT) were varied numerically and their 
influence was assessed with a large number of non-linear time-history analyses. These parameters significantly 
influence the deterministic response of the model; however, their influence on the statistical response is 
marginal and statistically insignificant. It was shown that the solution time step should be smaller than (or 
equal to) dt = 10-3. If so, the value of αHHT does not affect significantly the statistical response. Based on the 
above, the following set of parameters was selected; dt = 10-3 and αHHT = 0.2. When compared to the 
experimental results, the model performs poorly based on its ability to predict the maximum to an individual 
ground motion. However, it performs well when it is evaluated based on its ability to predict the CDF of the 
maxima of the responses to a set of ground motions. The experimental and the numerical CDF curves were 
closely correlated, with the numerical always being inside the 95% CI of the experimental.  
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