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ABSTRACT: 

 

A challenging aspect of developing deep learning-based models for extracting building footprints from very high resolution (< 0.1 

m) aerial imagery is the amount of details contained within the images. The use of convolutional neural networks (CNNs) to tackle 

semantic image segmentation has been shown to outperform conventional computer vision and machine learning approaches in 

various applications. Here, we investigated the performances of two different CNN architectures, U-Net and LinkNet by 

implementing them on various backbones and by using a number of building footprint vectors in a part of Turkey for training. The 

dataset includes red-green-blue (RGB) true orthophotos and normalized digital surface model (nDSM) data. The performances of the 

implemented methods were assessed comparatively by using the RGB data only and the RGB + nDSM. The results show that by 

adding nDSM as the fourth band to the RGB, the accuracy values obtained from the RGB only results were improved by 3.27% and 

5.90% expressed in F1-Score and Jaccard (IoU) values, respectively. The highest accuracy reflected by the F1-Score of the 

validation data was 97.31%, while the F1-Score of the test data that was excluded from the model training was 96.14%. A 

vectorization process using the GDAL and Douglas-Peucker simplification algorithm was also performed to obtain the building 

footprints as polygons. 

 

 

                                                                 
*  Corresponding author 

 

1. INTRODUCTION 

Buildings are key structures in cities. Building-related 

information is used in various applications, such as urban 

planning, cadastral surveying and registration, natural hazard 

assessments (Biljecki et al., 2015) and 3D city modelling (Halaa 

and Kada, 2010). Remotely sensed imagery can be segmented 

or classified semantically (by pixel level) to provide useful 

information in land cover mapping, object detection, change 

detection, and land-use analysis. Semantic image segmentation 

is an active and challenging research topic. One of the main 

challenges in this area is the continuously increasing resolutions 

of remotely sensed imagery. Despite the ability to collect small 

details, the very high resolution (VHR) causes difficulties in the 

semantic segmentation process, especially by contributing to 

greater class imbalance and larger variances between the classes 

and also within classes (Wang et al., 2016).  

 

In many photogrammetric and remote sensing applications, 

automatic semantic labelling of urban areas is key to developing 

and updating a geographic database, monitoring changes in land 

cover, and extracting information about themes. Computer 

hardware and sensor technology advancements in recent years 

have enabled high-resolution samples to be analyzed so that 

objects such as roof tiles, cars, buildings, and individual 

branches of trees can be distinguished from each other. A 

conventional machine learning (ML) classification method 

typically relies on spectral, spatial, and other handcrafted 

features for prediction. This structure is sensitive to the expert 

knowledge of the region, which limits the ability to generalize 

their findings (Zhao et al., 2021). 

 

Currently, deep convolutional neural networks (DCNNs) are 

often preferred for semantic image segmentation, whether in 

remote sensing or the other areas of image analysis (Marmanis 

et al., 2018). These networks not only classify pixels and 

determine their content, but also predict the structures of spatial 

objects. DCNNs can detect, segment or classify a wide range of 

objects on the ground and predict their spatial extent, including 

buildings, roads and junctions, trees, or building roof types 

(Buyukdemircioglu et al., 2021). 

 

Semantic image segmentation usually focuses on two- 

dimensional (2D) data. However, with the rapid developments 

in acquiring and analyzing 3D data, it has become possible to 

use the elevation as a new dimension in addition to the optical 

information, which are mostly composed of red-green-blue 

(RGB) band. Various types of elevation information, such as 

depth maps, Digital Elevation Models (DEMs), or normalized 

digital surface models (nDSM), etc., are available in different 

applications. The use of elevation often improves the semantic 

segmentation results with added 2.5D or 3D information (Qin et 

al., 2016). 

 

Most building extraction algorithms use only RGB imagery to 

extract spectral information about buildings (Li et al., 2019). 

Fusing aerial images with nDSMs could help to overcome some 

of the limitations (shadows, bad light, clouds, etc.) of aerial 
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images since nDSMs contain the height information of 

buildings. Our study attempts to develop a framework for the 

fusion of nDSMs and RGB data to improve the accuracy of 

building outline (footprint) estimation using VHR (0.1 m GSD) 

data.  

 

The General Directorate of Land Registry and Cadastre 

(GDLRC) of Turkey has initiated the acquisition of VHR 

photogrammetric data in all city centres throughout the country, 

which encompass more than 11 million buildings. Manual 

digitization of building footprints by photogrammetry operators 

using VHR imagery requires a vast amount of time and is 

costly. Here, we aim to improve the building extraction 

performance based on the generated workflow through the 

fusion of data from VHR true orthophotos and nDSMs. The 

segmented building footprints were converted into vectors as a 

result. For this purpose, we have created a new building dataset 

for Izmir, Turkey with true orthophotos, DSMs, digital terrain 

models (DTMs), and ground truth as building vectors provided 

by the GDLRC, Turkey.In this study, the performances of two 

popular deep learning (DL) architectures, i.e., U-Net 

(Ronneberger et al., 2015) and LinkNet (Chaurasia and 

Culurciello, 2017), with different backbones were assessed 

comparatively. The results show that the additional height 

information improved the overall segmentation quality for 

building footprint extraction, and provided significant increase 

in the prediction accuracy.  

 

The remaining of the paper is organized as follows: In Section 

2, a brief overview of the recent work on building extraction 

with DL is given. In Section 3, the developed methodology is 

explained and discussed. The datasets used for the 

investigations and the data pre-processing steps are also 

explained in this section together with the implementation 

details. Section 4 summarizes the experimental results for both 

segmentation and vectorization. The discussion, conclusions 

and recommendations are presented in Section 5.  

 

2. RELATED WORK 

The semantic segmentation of Earth Observation (EO) data has 

been an active research topic in remote sensing and 

photogrammetry for many years (Audebert et al., 2016). When 

analysing EO data on an urban scale, the manual process of 

extracting building footprints is found extremely time 

consuming and expensive. The DL method involves a class of 

techniques in ML, in which models based on multiple layers of 

processing, such as neural networks (NNs), learn to represent 

data differently with various abstraction levels (LeCun et al., 

2015). Typically, NNs and their weights are trained through 

supervised learning. Weights and biases are learned by training. 

For analysing images and detecting and interpreting patterns, 

convolutional neural networks are mainly used. A CNN is 

composed of a number of convolutional layers, which consist of 

filters that perform feature and thereby pattern extraction. 

Although conventional building extraction methods are still 

used in many applications, the DL and specifically CNNs have 

revolutionized this task. The results exhibited in several studies 

have demonstrated significant improvements, from image 

orientation to surface reconstruction, scene classification and 

object detection, as well as object tracking and recognition in 

image sequences (Heipke and Rottensteiner, 2020). Here, we 

summarize to most recent studies on DCNNs. 

 

Marmanis et al. (2018) have developed DCNN models that 

explicitly represent and extract the boundaries between several 

semantic classes and segment high-resolution aerial images. In 

their study, a wide range of semantic segmentation 

architectures, including the use of class boundaries, multi-scale 

processing, and multi-network ensembles, was analyzed. The 

DCNN model performed 95.2% F1-score for the “Building” 

class as best result in ISPRS Vaihingen benchmark dataset. Yi 

et al. (2019) have developed a novel end-to-end DCNN called 

DeepResU-Net that effectively performs urban building 

segmentation at pixel scale from VHR imagery and generates 

accurate results. When compared to the U-Net, DeepResU-Net 

increased the F1 score, Kappa coefficient, and overall accuracy 

(OA) by 3.52%, 4.67%, and 1.72%, respectively. Jiwani et. al. 

(2021) have proposed a novel approach for extracting building 

footprints from three-channel RGB satellite imagery by using a 

modified DeepLabV3+ module with a dilated Res-Net 

backbone. Through three public benchmark datasets, their 

method performed state-of-the-art results that produced better-

quality visuals regardless of the satellite resolution, scale, and 

urban density with 92.6%, 96.3% and 83.4% F1-Scores, 

respectively.Li et al. (2021) combined U-Net, Cascade R-CNN, 

and Cascade CNN deep learning models for extracting building 

footprint polygons from VHR aerial imagery. They compared 

model accuracy with semantic segmentation models on a pixel-

by-pixel basis and generated building footprint polygons that 

are close to the reference data in terms of edges, vertices, and 

shapes with 92.6% precision, 91.4% recall, and a confidence of 

85.1% in the WHU building dataset, respectively. Kada and 

Kuramin (2021) used PointNet++ and KPConv for classifying 

building roofs along with other classes from airborne laser 

scanning (ALS) data with IoU score of 0.948. 

 

Combining different types of data sources and spectral bands is 

another widely used approach for semantic segmentation tasks 

with DL. In addition to RGB, the traditional way to provide 

additional information to a NN is performed through data 

stacking. This involves feeding the network a four-band input 

instead of a three-band input, while keeping the rest of the 

network structure unchanged. FuseNet developed by Hazirbas 

et al. (2017) fusion approach, by stacking the depth information 

with the RGB information and training the NN accordingly, the 

authors argued that it did not fully capitalize the depth 

information. Sun et al. (2021) combined true orthophotos with 

0.25 m resolution and nDSMs for automated building outline 

extraction in a frame field learning model. By adding the 3D 

information from the nDSM, the accuracy and regularity were 

improved. On the composite image test set, the average 

Intersection over Union (IoU) value was 70%. When compared 

to 58% IoU value obtained from the RGB images only, it was 

demonstrated that incorporating the nDSM has improved the 

IoU by 12%. 

 

By using fully convolutional networks (FCNs), Bittner et al. 

(2018) were able to combine spectral and height information 

(RGB, nDSMs and PAN images) from different sources and 

segment buildings in complex urban areas, thereby 

automatically creating building masks with full pixel resolution 

with 85.5% OA. Based on a CNN and recurrent NN (RNN) 

architecture, Zhao et al. (2021) developed a new approach for 

building outline extraction in vector format that takes advantage 

of a CNN for image feature extraction, and a RNN for decoding 

polygon vertices for generating regularized outlines for 

buildings. This was accomplished through a workflow that 

combined traditional feature extraction, semantic segmentation, 

vectorization, and shape refinement into one end-to-end DL 

architecture. They have made several improvements following 

PolyMapper's (Li et al., 2019) work, including improvements to 
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the backbone, detection, and recurrence modules. Another 

approach developed by Xu et al. (2018) combined DL and 

guided filtering for extracting urban districts from VHR aerial 

imagery. Using their proposed method, the segmentation 

accuracy was improved by 0.43% and 2.94% for the ISPRS 

Potsdam and Vaihingen datasets, respectively. 

 

3. STUDY AREA AND THE METHODOLOGY 

3.1 Dataset 

Our experiments were performed in a study area with a size of 

4.12 km2 and 13,269 buildings over Selcuk town in Izmir 

Province, Turkey. The dataset consists of four data types; i.e., 

true orthophotos (RGB), DSMs and DTMs in raster format with 

0.1 m spatial resolution, and building footprint vectors. The 

data were produced from aerial images taken with 80% forward 

and 60% sidelap by the GDLRC. The DTMs were produced 

semi-automatically in a regular grid spacing and all buildings, 

street furniture, vegetation, etc. were removed. Also, the heights 

of the objects such as bridges and viaducts were reduced to the 

terrain level. In order to produce the nDSM, the DTM was 

subtracted from the DSM. The building footprint vectors, which 

consists of buildings and structures larger than 10 m2 were 

manually delineated from stereo images by photogrammetry 

operators. 

 

The dataset was split into three parts to be used for training 

(80%), testing (10%), and validation (10%) tasks with a grid 

approach. The test grid involved a high variety of buildings 

(2,185 buildings in total). The validation data was selected 

randomly using the scikit-learn library. An overview of the 

study area with building footprints used for training and test is 

shown in Figure 1. The buildings in the test region (the green 

square in Figure 1) were not employed in the model training 

stage. 

 

 
 

Figure 1. An overview of the study area with the building 

footprints (red), test area (green), and training and validation 

data shown on the true orthophoto. 

3.2 Data pre-processing 

A number of pre-processing steps were applied to produce the 

input features for the DL method. The manually delineated 

building footprint vectors were employed to create the ground 

truth mask. This building footprints were converted to raster 

format by assigning the pixel values inside the buildings as "1" 

and outside as "0". The raster data was transformed into non-

overlapping tiles with a size of 256 x 256 pixels to be utilized in 

the DL models, i.e., the U-Net and the LinkNet architectures. 

The georeferencing information was stored as a Tiff world file 

(.tfw). A sample tile with the RGB true orthophoto, the building 

footprint, nDSM and the mask layer is shown in Figure 2. 

 

  
                       (a)                                               (b) 

 

  
                       (c)                                               (d) 

                                                    

Figure 2. A sample tile from the study area: (a) RGB true 

orthophoto, (b) building footprint vector, (c), nDSM, and (d) 

building mask. 

 

3.3 Application of the DL Methods 

In order to perform a viable comparison and to obtain best 

possible accuracy with the data, we performed several 

experiments using different DL architectures and backbones. In 

addition, we used two different the input data (RGB and RGB-

nDSM). For this purpose, the U-Net and LinkNet, which are 

well known for their success in image segmentation, were 

combined with different backbones (ResNet-18, ResNet-50 and 

SeResNet-18) and trained separately. The model training step 

was performed from scratch using the study dataset, thus no 

pre-trained weights were used. There are a few parameters that 

should be tweaked as part of the learning process, including 

initial learning rates, batch size, number of epochs, and other 

factors, such as the loss function, optimization algorithm, 

metrics, and data augmentation. The model training parameters 

for the U-Net and the LinkNet architectures are summarized in 

Table 1. 

 

 

 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-2-2022-211-2022 | © Author(s) 2022. CC BY 4.0 License.

 
213



 

Parameter U-Net LinkNet 

Backbone ResNet-18, ResNet50, SeResNet-18 

Weight Initialization Pre-trained 

Learning Rate 0.001 (Default) 

Optimizer Adam 

Metrics F1-Score 

Loss Function BCE-Dice Loss 

Number of Epochs 100 

Data Augmentation None 

Activation Function Sigmoid 

Batch Size 16 

Input Size 
256 x 256 x 3 (True Ortho only) 

256 x 256 x 4 (True Ortho + nDSM) 

 

 Table 1. Model training parameters 

 

In this study, the experiments were conducted using the Adam 

optimizer, which iteratively updates the weights of networks. A 

big difference between various optimizers is the implementation 

of the learning rate and the update frequency of the parameters 

(weights). The learning rate of Adam is determined by the 

parameter that is maintained within a network. These rates are 

separately adjusted throughout the learning process. The 

training was executed with a default learning rate of 0.001, and 

sigmoid function was used for activation in classification layer.  

 

In the model training process, different numbers of epochs were 

investigated to obtain the optimum value for training. A training 

epoch represents a cycle through the entire training dataset. 

Since the highest accuracies were obtained with up to 100 

epochs in many models and there was no further improvement 

at larger values, a fixed-value of 100 epochs were selected for 

training. After each epoch, the model was evaluated using the 

validation data. When the accuracy tends to decrease in the 

validation dataset, i.e., the begin of the rise of the loss, then the 

training process could be forced to stop earlier. As the models 

were not overfitted during training, the early stopping function 

was disabled.  

 

Batch size is another important parameter that specifies the 

number of samples (images) which will be propagated along the 

network. Different batch sizes (4, 8, 16) were used during the 

model training, and a batch size of 16 was chosen optimal since 

it provided the highest performance. F1-score was used as 

accuracy metric and the Binary cross entropy (BCE)-Dice was 

used as loss function. The F1-score is the harmonic mean of 

precision and recall that gives an accurate measure of incorrect 

classifications. The BCE-Dice loss is typically used for 

segmentation. Using both approaches allows some diversity in 

the loss while still benefiting from the stability of BCE.  

 

Using the data augmentation techniques, a model could be 

prevented from overfitting by modifying the images, such as 

changing the pixel values, or applying geometric 

transformations, such as flipping, scaling, and rotation. As part 

of this study, no data augmentation was used. Another common 

solution is to use pre-trained model weights that have been 

trained with large datasets and fine-tuning. As part of this study, 

neither pre-trained weights nor fine tuning was used, and the 

model was trained from scratch using the generated data set. 

The implementation and training of the models were performed 

using the Tensorflow 2.5 in Python 3.8 environment on a 

workstation with 32GB RAM and GeForce GTX 1080 GPU. 

An overview of the DL framework is given in Figure 3. 

 

 
 

Figure 3. An overview of the workflow for building extraction and vectorization with the help of DL methods. 
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4. RESULTS 

In this Section, results obtained from the two data sources, i.e., 

true orthophotos (RGB only) and the nDSM as additional 

information to the RGB, are provided in the following 

subheadings. The vectorization results are also presented and 

discussed. 

 

4.1 True Orthophoto Results 

The results obtained from models trained with the RGB images 

only are provided in Table 2. In terms of the F1-score and loss 

values, U-Net + SeResNet-18 achieved the highest accuracy 

with 0.987 and 0.025, respectively. The LinkNet + ResNet-18 

provided the accuracy on the validation data with an F1-Score 

of 0.949. As can be seen from the Table, although the 

differences obtained from the models are very small, it appears 

that U-Net + ResNet-18 provided the highest F1-Score and 

Jaccard score on the test data with 0.928 and 0.867, 

respectively. Based on the visual analysis of the segmentation 

results, the U-Net and LinkNet have similar quality. However, 

the segmented output of LinkNet generally comprises 

unorganized and less homogeneous predictions compared to U-

Net results. In addition, U-Net has proven success in separating 

structures in small areas. Trees covering the building roofs 

caused incorrect predictions in almost all architectures. The U-

Net performed better in predicting small gaps between or in the 

middle of some roofs. In general, shadows were the greatest 

challenge for segmentation quality in all models. Shaded areas 

that belong to the building class are often mis-classified as non-

buildings. A large portion of the lower performance in both 

networks could be attributed to the lack of pre-trained weights, 

which could be investigated in future studies. The results 

obtained from the different models in a part of the study area are 

given in Figure 4 for visual assessment of the predictions. 

 

Model 
Best Epoch 

Result 
F1-Score Loss 

Validation 

F1-Score 

Validation 

Loss 

Test F1-

Score 

Test Jaccard 

(IoU) Score 

U-Net + ResNet-18 78 0.981 0.037 0.949 0.157 0.929 0.867 

U-Net + ResNet-50 96 0.986 0.027 0.949 0.174 0.897 0.814 

U-Net + SeResNet-18 83 0.987 0.025 0.947 0.184 0.918 0.849 

LinkNet + ResNet-18 94 0.984 0.030 0.950 0.163 0.924 0.858 

LinkNet + ResNet-50 67 0.975 0.050 0.947 0.154 0.927 0.865 

LinkNet + SeResNet-18 88 0.986 0.026 0.945 0.189 0.908 0.832 

Table 2. The performance results obtained from the true orthophotos (image only results). 

 

 

Figure 4. An overview of the RGB only predictions for the test area: (a) True orthophoto, (b) Ground truth, (c) U-Net+ResNet-18, 

(d) U-Net+ResNet-50, (e) U-Net+SeResNet-18, (f) LinkNet+ResNet-18, (g) LinkNet+ResNet-50 and (h) LinkNet+SeResnet-18 
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4.2 True Orthophoto + nDSM Results 

The results obtained from the true orthophoto and the nDSM 

are presented in Table 3 for the implemented architectures. 

When compared with the results given in Table 2, the use of 

height information led to a significant increase in F1 and 

Jaccard scores. In terms of the F1-score and loss and validation 

F1-Scores, the U-Net with ResNet-50 backbone achieved the 

best results with 0.987, 0.023 and 0.973 respectively. Linknet + 

ResNet-50 achieved the best F1-Score and Jaccard score on the 

test data with 0.961 and 0.926, respectively. The validation F1-

Score was improved by 2.3% when the nDSM data was 

combined with the RGB information. In addition, the validation 

loss was decreased from 0.154 to 0.073. When the F1-Score and 

the Jaccard scores of the test data are considered, both scores 

were improved significantly over the RGB only results by 

3.27% and 5.90%, respectively. The visual inspection also 

shows that all models performed better with the height 

information added by providing smoother, homogenous, and 

structured outputs (e.g., see Figure 5). The boundary 

representation is also less fuzzy when the height information is 

added. It was also observed that the U-Net provided a higher 

segmentation quality with complex buildings. 

 

 

Model 
Best Epoch 

Result 
F1-Score Loss 

Validation 

F1-Score 

Validation 

Loss 

Test F1-

Score 

Test Jaccard 

(IoU) Score 

U-Net + ResNet-18 93 0.982 0.034 0.972 0.073 0.958 0.919 

U-Net + ResNet-50 95 0.987 0.023 0.973 0.086 0.960 0.924 

U-Net + SeResNet-18 84 0.983 0.032 0.972 0.080 0.958 0.920 

LinkNet + ResNet-18 93 0.985 0.028 0.972 0.086 0.958 0.919 

LinkNet + ResNet-50 89 0.986 0.027 0.973 0.079 0.961 0.926 

LinkNet + SeResNet-18 95 0.987 0.025 0.971 0.093 0.960 0.925 

 

Table 3. The prediction performance results of the true orthophoto + nDSM. 

 

Figure 5. An overview of the RGB + nDSM predictions for the test area: (a) True orthophoto, (b) Ground truth, (c) U-Net+ResNet-

18, (d) U-Net+ResNet-50, (e) U-Net+SeResNet-18, (f) LinkNet+ResNet-18, (g) LinkNet+ResNet-50 and (h) LinkNet+SeResnet-18 

 

 

4.3 Vectorization 

The vectorization process was performed using the GDAL 

(2021) library. The simplification of vector data was performed 

by applying the Douglas-Peucker (Visvalingam and Whyatt, 

1990) line simplification algorithm to the vector data generated 

after the vectorization. As part of the Douglas-Peucker 

algorithm, it was necessary to define a tolerance value, which 

refers to the distance between the initial and the output 

geometries. The value was determined iteratively to minimize 

the average area changes of the geometries in the vector data. A 

part of the generated building footprints in vector format from 

the test area is shown in Figure 6. The tolerance values used for 

the prediction results of the different architectures and the 

average change values obtained from the study area are 

presented in Table 4. 
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5. CONCLUSIONS AND FUTURE WORK 

The main objective of this study was to assess the performances 

of two different DL architectures, i.e., the U-Net and the 

LinkNet, implemented on various backbones for building roof 

segmentation from VHR aerial true orthophotos and nDSM. 

The results were provided for two different scenarios, such as 

RGB only and RGB + nDSM. The models were trained using 

building footprints manually delineated by photogrammetry 

operators. The data was provided by the GDLRC of Turkey. 

 

The results showed that by adding the nDSM as the fourth band 

to the RGB data, the accuracy increased significantly. By using 

RGB only, the best F1-score and Jaccard (IoU) score were 

obtained from the U-Net + ResNet-18 model with values of 

0.929 and 0.867, respectively. With the addition of nDSM, the 

highest accuracy results were achieved from the LinkNet + 

ResNet-50 model with F1-score and Jaccard score values of 

0.961 and 0.926, respectively. These results indicate an 

accuracy improvement of 3.2% and 5.9% for F1-score and 

Jaccard on the test data, respectively.  

 

Based on the visual inspection, it was observed that false 

predictions were caused by the roofs covered by trees, areas in 

the shade, and areas between close buildings. We plan to 

increase the amount of training data by adding buildings from 

different provinces and training further DL architectures. The 

hyperparameters can also be analyzed in more detail in future 

studies. By using our approach, we can effectively generate and 

update building footprints and reduce the manual efforts carried 

out by the mapping agencies. The codes and model training log 

of the study are available under this GitHub page: 

https://github.com/buyukdemircioglu/building_footprint_extract

ion. 

 

Model Data Tolerance 

Value 

Mean 

Difference 

U-Net + ResNet-

18 
True Orthophoto 0.25 0.014 m² 

U-Net + ResNet-

50 
True Orthophoto 0.20 0.006 m² 

U-Net + 

SeResNet-18 
True Orthophoto 0.30 0.004 m² 

LinkNet + 

ResNet-18 
True Orthophoto 0.25 0.008 m² 

LinkNet + 

ResNet-50 
True Orthophoto 0.30 0.006 m² 

LinkNet + 

SeResNet-18 
True Orthophoto 0.20 0.009 m² 

U-Net + ResNet-

18 

True Ortho + 

nDSM 
0.25 0.015 m² 

U-Net + ResNet-

50 

True Ortho + 

nDSM 
0.25 0.046 m² 

U-Net + 

SeResNet-18 

True Ortho + 

nDSM 
0.20 0.009 m² 

LinkNet + 

ResNet-18 

True Ortho + 

nDSM 
0.25 0.011 m² 

LinkNet + 

ResNet-50 

True Ortho + 

nDSM 
0.25 0.015 m² 

LinkNet + 

SeResNet-18 

True Ortho + 

nDSM 
0.15 0.025 m² 

 

Table 4. Tolerance values used in the vectorization process and 

the mean difference values obtained from the predictions of the 

DL methods.  

 
 

Figure 6. A close view of generated building footprints from 

the test area. 
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