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ABSTRACT

Motivation: Cancer development is driven by the accumulation of

advantageous mutations and subsequent clonal expansion of cells

harbouring these mutations, but the order in which mutations occur

remains poorly understood. Advances in genome sequencing and the

soon-arriving flood of cancer genome data produced by large cancer

sequencing consortia hold the promise to elucidate cancer progres-

sion. However, new computational methods are needed to analyse

these large datasets.

Results: We present a Bayesian inference scheme for Conjunctive

Bayesian Networks, a probabilistic graphical model in which mutations

accumulate according to partial order constraints and cancer geno-

types are observed subject to measurement noise. We develop an

efficient MCMC sampling scheme specifically designed to overcome

local optima induced by dependency structures. We demonstrate the

performance advantage of our sampler over traditional approaches on

simulated data and show the advantages of adopting a Bayesian per-

spective when reanalyzing cancer datasets and comparing our results

to previous maximum-likelihood-based approaches.

Availability: An R package including the sampler and examples is

available at http://www.cbg.ethz.ch/software/bayes-cbn.
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1 INTRODUCTION

Cancer progression is an evolutionary process characterized

by the accumulation of somatic mutations, including single-

nucleotide variants, copy number alterations and changes of

DNA methylation. Cells with advantageous mutations that

confer a proliferative fitness advantage will eventually dominate

the cancerous tissue due to clonal expansion.

Mutations in a number of genes are recurrent and it is there-

fore believed that they are essential for the development of spe-

cific cancer types. Mutations of those genes and the functional

changes they induce are often referred to as the hallmarks of

cancer (Hanahan and Weinberg, 2011). The development and

fixation of certain mutations in the tumour cell population

seem to depend on the presence of other mutations (Fearon

and Vogelstein, 1990), but, in general, the order of occurrence

of mutations is poorly understood.

Recent advances in genome sequencing enable large-scale

consortia such as The Cancer Genome Atlas (TCGA) or the

International Cancer Genome Consortium (ICGC) to produce
genomic and epigenomic profiles of cancer samples for a medium

number of patients on the order of hundreds. For example, The
Cancer Genome Atlas Research Network (2011) recently pub-

lished exome sequencing, copy number variation, gene expres-

sion and DNA methylation data for over 300 ovarian cancer
patients.
Over the course of the last decade, researchers have applied

probabilistic modelling in order to identify the dependency struc-

ture of driver mutations for various cancer types. The models
include oncogenetic trees (Desper et al., 1999, 2000; von Heydeb-

reck et al., 2004; Jiang et al., 2000; Szabo and Boucher, 2002),
mixtures of oncogenetic trees (Beerenwinkel et al., 2004; Rah-

nenführer et al., 2005; Yin et al., 2006), probabilistic network

models (Hjelm et al., 2006; Radmacher et al., 2001) and Con-
junctive Bayesian Networks (CBN) (Beerenwinkel and Sullivant,

2009; Beerenwinkel et al., 2007; Gerstung et al., 2009). All these
models are based on cross-sectional data where genotyping has

been performed once on a cancer tissue sample per patient after

diagnosis. CBNs jointly model a partial temporal order for the
mutation accumulation process and the probabilities of acquiring

these mutations based on this cross-sectional data. In contrast to
ordinary Bayesian networks, CBNs assign probabilities of zero

to genotypes that are not compatible with the partial temporal

order modelled by the CBN.
Inference of CBNs is usually done by maximum-likelihood

(ML) estimation. Learning the structure of a CBN from
observed data is difficult in the presence of observation error

and simulated annealing has been used for this task, but assess-
ing the confidence of the estimates is problematic. It has been

proposed to derive confidence values from the change in likeli-

hood when removing edges or from bootstrapping the data and
refitting the model. However, these approaches have several cav-

eats. (i) There is no a priori optimal strategy for parametrization
of the simulated annealing scheme; (ii) proper convergence ana-

lysis (i.e. stopping) of the simulated annealing algorithm is diffi-

cult and (iii) confidence assessment of discrete structure estimates
based on bootstrapping is difficult to interpret. Assessing the

confidence of the graph component of probabilistic cancer pro-
gression models is particularly important, because the structure

of the graph is interpreted as the set of possible mutational path-

ways. The concern about stability has been reinforced by
ML-based simulation studies of mixture models of oncogeentic

trees that have shown that the structure of these models can be*To whom correspondence should be addressed.
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estimated reliably only for fairly simple structures (Bogojeska

et al., 2008).
Adopting a Bayesian perspective, one can get access to the full

posterior distribution over all CBN models and hence the uncer-

tainty of their inference and their intrinsic variability. However,

application of standard structure sampling schemes is impractical

for Bayesian networks as they suffer from very slow mixing and

convergence (Giudici and Castelo, 2003; Madigan and York,

1995). Introduction of more sophisticated versions of the basic

structure space move types, including a ‘reverse edge’ move, has

been demonstrated to improve mixing and convergence

(Grzegorczyk and Husmeier, 2008). However, the ‘reverse edge’

move cannot be expected to result in the same improvements for

CBNs, because CBNs are specialized Bayesian networks with the

property that each directed acyclic graph (DAG) defines

a unique set of distributions, i.e. a unique equivalence class.

For example, unlike for general Bayesian networks, the graphs

A! B and B! A do not define equivalent CBNs. Reversing an

edge is therefore a much more severe alteration in a CBN.
In Section 2, we derive the model and describe an MCMC

algorithm designed to overcome local optima induced by de-

pendency structures. We validate the sampler on simulated

data, compare our proposed algorithm to a more basic standard

structure move-based sampler and finally reanalyze real-world

cancer datasets in Section 3.

2 METHODS

2.1 Model

Let us consider a set of n driver loci, for example, genes, chromosome

arms, CpG islands or other more complex entities such as pathways. We

measure the genotype of m tumour samples from different patients. A

binary random variable Zj indicates whether locus j is mutated (Zj¼ 1) or

not (Zj¼ 0). The binary random vector Z¼ (Z1,. . .,Zn) encodes the geno-

type, i.e. the state of all driver loci. Since measuring the mutation state of

a gene is an error-prone process due to, for example, measurement noise

or erroneous interpretation of genetic changes, we consider the observed

genotype of a cancer sample as a separate binary random vector

X¼ (X1,. . .,Xn).

We assume that mutations accumulate according to a partial order

‘a’, where l a k means that locus l has to be mutated before a mutation

at k can be manifested in a tumour. If l is a direct predecessor of k, then

we call this relationship a cover relation. We define the parent set of l as

the set of all loci directly preceding l in the partial order. Locus l will

mutate with probability �l, only if all parents have been mutated before.

We say that a genotype Z is compatible with the poset a if (Zl,Zk) 6¼ (0,1)

for all poset relations l a k. The exit set of a genotype Z, denoted Exit

(Z), is the set of all loci that are not mutated yet but whose parent sets

have been fully mutated. The (Discrete Time) Conjunctive Bayesian

Network (Beerenwinkel et al., 2007) is defined as

PrðZ j�; �Þ ¼
Y

fk :Zk¼1g

�k
Y

k2ExitðZÞ

ð1� �kÞ; ð1Þ

if Z is compatible with a and zero otherwise.

To account for measurement noise or misinterpretation of genetic

changes and to avoid the deterministic impact of incompatible observa-

tions, we model observation errors by a simple Bernoulli process with

parameter ", the error probability, that is assumed independent and iden-

tical across sites. The probability of observing genotype X given the true

genotype Z is

PrðX j Z; "Þ ¼ "d ðX;ZÞð1� "Þn�d ðX;ZÞ; ð2Þ

where d(X,Z) is the Hamming distance between X and Z.

Cancer progression and measurement are assumed to be independent

and the marginal probability of X is

PrðX j�; �; "Þ ¼
X
Z

PrðX j Z; "ÞPrðZ j�; �Þ; ð3Þ

where the sum runs over all genotypes compatible with the partial order

a. The marginal likelihood of the mmeasured genotypes, denoted D, can

then be written as

PrðD j�; �; "Þ ¼
Y
X2D

X
Z

PrðX j Z; "ÞPrðZ j�; �Þ: ð4Þ

Since cancer progression and genotype measurement are assumed to be

independent, applying Bayes’ theorem we obtain

Prð�; �; " j DÞ / PrðD j�; �; "ÞPrð�; �ÞPrð"Þ ð5Þ

as the joint posterior distribution of model structure (partial order), mu-

tation probabilities and error probability. We further assume the prior

independence Pr(a,�)¼Pr(�)Pr(a) and that mutation probabilities are

independent of network structure. Then, the posterior becomes

Prð�; �; " j DÞ /
Y
X2D

X
Z

h
PrðX j Z; "Þ

� PrðZ j�; �Þ
iYn
k¼1

Prð�kÞPrð�ÞPrð"Þ:

ð6Þ

For �k, we choose a non-informative Beta prior with both shape par-

ameters set to 10�5 . We use an improper uniform prior for the network

structure, Pr(a)¼ 1. The error process parameter " reflects a trade-off

between little to no structure in the case of a too small " and arbitrary

structures in case of a too high " as most of the genotype variability is

explained by the error process. We use " �Beta (5,30) as error prior.

2.2 Sampler

We adopt a ‘random scan Metropolis–Hastings within Gibbs’ sampling

scheme to sample from the posterior distribution. We use eight different

move types for the construction of a hybrid sampler (Tierney, 1994) to

explore the joint discrete structure and continuous parameter space of

CBNs.

Each move type defines a specific neighbourhood around any point in

the state space. All move types except ‘relocate theta’ and ‘reincarnation’

are designed such that the neighbourhoods they are considering for any

point in the state space are disjoint. As relocate theta and reincarnation

are both symmetric move types (see below) their overlap does not com-

promise the Metropolis–Hastings ratio.

The acceptance probability � of a proposal sample, denoted by ‘*’, is

� ¼ min

(
1;

Prðð�; �; "Þ� j DÞ

Prð�; �; " j DÞ
�

�
MSPðð�; �; "Þ�Þ

MSPðð�; �; "ÞÞ

TPðð�; �; "Þjð�; �; "Þ�Þ

TPðð�; �; "Þ�jð�; �; "ÞÞ

)
;

ð7Þ

where MSP stands for move selection probability. In each iteration, a

move type is randomly selected with probability proportional to its MSP,

and then a point in the move type neighbourhood of the current sample is

selected. The neighbourhoods are equally weighted for all but the reincar-

nation move, as discussed below. TP stands for the transition probability

(density) from the current sample to the proposal sample given that a

certain move was selected.

All moves, except the relocate theta and the ‘event exchange’ move, are

combined with a double relocate theta move. In the following para-

graphs, the move types are explained in detail.
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2.2.1 Relocate theta The mutation probability of a random node

is set to a new value which is sampled from a uniform distribution be-

tween 0 and 1. As the proposal value does not depend on the current

value one can easily see that this move type is symmetric, i.e.

P((a,�,")*|(a,�,"))¼P((a,�,")|(a,�,")*). Symmetry of move types is de-

sirable as the Hastings factor in Equation (7) becomes one and does not

need to be computed. Additionally, the usage of a uniform proposal

distribution is advantageous as structural modifications of the CBN usu-

ally require a substantial change of the mutation probabilities. The de-

fault move selection probability is 0.5.

2.2.2 Relocate epsilon The error probability " is set to a new value.

The new value is sampled from Beta(2,20). As in the relocate theta move,

the proposal value does not depend on the current value and hence the

move is symmetric. The default move selection probability is 0.1.

2.2.3 New cover relation A random cover relation that which is

not resulting in an invalid poset, is inserted (Fig. 1A). Edges that result in

an invalid poset are either causing cycles, are redundant edges or render

an existing edge redundant. A redundant edge in the poset is one that is

present in the transitive closure but not a cover relation. This move type is

asymmetric, hence the transition probability and the reverse transition

probability which is the transition probability of the corresponding

‘delete cover relation’ move have to be computed. This is done by com-

plete enumeration. The default move selection probability is 0.2.

2.2.4 Delete cover relation A random edge is removed from the set

of cover relations. This move is the asymmetric reverse move to the ‘new

cover relation’ move. The default move selection probability is 0.1.

The moves described so far are standard moves for structure sampling

of Bayesian networks and are sufficient for ergodicity. Moves that alter

the set of cover relations can induce severe alterations on the according

transitive closures. On the other hand, small changes in the transitive

closure can require a number of cover relation moves. This is a source

of local optima and can compromise convergence and mixing of the

MCMC scheme. Therefore, we introduce four new moves types, two of

which operate directly on the transitive closure.

2.2.5 New transitive closure relation A random valid edge is in-

serted into the transitive closure of the poset (Fig. 1C). The set of valid

new edges is computed as follows. The transitive closure of the poset is

computed, all new edges in the transitive closure that do not trigger

additional edges in the transitive closure other than the inserted one

and cause at least three changed edges in the corresponding poset are

valid. With the last condition, an overlap with the reincarnation move

neighbourhood (see below) is avoided. This move type and its reverse

counterpart ‘delete transitive closure relation’ are both asymmetric and

their transition probabilities have to be computed. This is again done by

enumeration. The default move selection probability is 0.01.

2.2.6 Delete transitive closure relation The set of valid edges to

delete is computed as following (Fig. 1C). The transitive closure of the

poset is computed, all edges in the transitive closure which can be deleted

without corrupting the transitive closure integrity and causing at least

three changed edges in the corresponding poset are valid. The default

move selection probability is 0.01.

2.2.7 Event exchange The positions of two random nodes in the

network topology are exchanged (Fig. 1B). The mutation probabilities of

those two nodes are relocated as in the relocate theta move. This move

type is symmetric. The default move selection probability is 0.03 .

2.2.8 Reincarnation A delete cover relation move is followed by a

new cover relation move (Fig. 1D). This move type is symmetric, which

can be seen as follows. The transition probability of this move can be

decomposed into the product of the transition probability of the initial

delete cover relation move and the following ‘new cover relation’ move.

As both, the current and the final proposal poset have the same number

of edges it is easily seen that both delete cover relation moves (proposal

and reverse) have the same transition probability. The following

‘new cover relation’ moves extend the same intermediate poset and

hence have an identical neighbourhood and thus identical transition

probability. The default move selection probability of the reincarnation

move is 0.05.

2.3 Implementation and convergence analysis

We have developed an R package for Bayesian CBNs using the move

types described above. The MCMC scheme is implemented in C for

performance reasons. As the chains are independent of each other they

are ideal candidates for parallelization.

The convergence analysis we use is based on the comparison of sam-

ples from multiple chains (Gelman, 2004). This analysis conducts a com-

parison of the intra- and inter-chain variance for a series of MCMC

samples on a parameter-by-parameter basis. It results in a scale-reduction

factor R̂ for each parameter that reflects the potential reduction of

the scale of the current distribution of the parameter of interest if the

A

C

D

B

Fig. 1. Move types used for sampling the structure space. (A) New/Delete

cover relation exemplified between Nodes 2 and 3. (B) Event exchange

move, performed on Nodes 2 and 3. (C) New/delete transitive closure

relation. The center graph shows the transitive closure; the dotted

edge between Nodes 2 and 3 is the one which is deleted/inserted.

(D) Reincarnation move. The center graph is the intermediate poset.
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simulation was continued indefinitely. Once the maximum R̂ over all

parameters is51.1, we sample another round and use the samples derived

from this final round for producing summary statistics.

We use methods implemented in the CODA package for convergence

analysis of the continuous parameters �k and " and the log-posterior

(Plummer et al., 2006). As the mutation probabilities as well as the

log-posterior are highly dependent on the underlying dependency struc-

ture, we use their convergence as proxies for the convergence of the

structure.

3 RESULTS

First, we demonstrate the behaviour of our sampling scheme on

simulated data. We then show the performance increase of our

sampler over a standard structure move sampler. Finally, we

reanalyze real-world cancer datasets in order to demonstrate

the increase of interpretability.

3.1 Simulation study

We simulated N 2 f100,400,800} measured genotypes from one

network with 10 nodes and no edges, and another one with 8

edges displayed in Figure 2, assuming an error probability " 2
f0.01,0.1} (Table 1).
Four chains were simulated and monitored for convergence.

We thinned out our samples by keeping every 20th sample and

produced 25 000 samples per chain and round, i.e. each sampling

round consisted of 500 000 iterations per chain. The initial mu-

tation probabilities for each chain were randomly chosen be-

tween 0 and 1, the initial error probability was set to 0.05 and

the initial poset was set to the empty poset.
Having access to the posterior distribution of the CBNs allows

characterization of some properties of these models. Recovery of

the structure with confidence first of all depends on the structure

itself and the error probability. No structure, i.e. no edges or a

high-error probability result in a flat posterior CBN distribution

(Fig. 4). Furthermore, the amount of data used for inference is

critical (Fig. 4). Nodes that are located in lower parts of the

hierarchy and have one or more predecessors with a low muta-

tion probability, also tend to have a flat posterior over their

structural dependencies and mutation probabilities. The further

down, a node is in the hierarchy, the higher the variance of the

posterior mutation probability (Fig. 3A). Uncertainty in the

structural environment of a node correlates with uncertainty in

the estimation of the mutation probability.

The posterior marginal edge probabilities for the dataset,
where an empty poset was used for simulation, ranged between
0 and �0.6 with the bulk being around 0.3 (Fig. 4 bottom right).

These numbers are similar for higher genotype numbers N.
In order to obtain quasi-independent samples, further thinning

is necessary as autocorrelation is still present. For example, in

the N¼ 100 and "¼ 0.01 run, the lag-10 values for �4 and �9 are
0.07 and 0.05, respectively, while the lag-10 values for " and the
log-posterior are 0.67 and 0.69, respectively. The lag-1000 values

for " and the log-posterior are 0.007 and 0.05, respectively. The
optimal thinning factor depends on the parameter of interest.

Parameters with high-posterior variance show less autocorrel-
ation than parameters with low posterior variance or the struc-
ture itself where we use the autocorrelation of the log-posterior

(the worst autocorrelation of all quantities) as proxy.

3.2 Performance increase over sampler with standard

structure moves

We evaluated the performance increase of the sampling scheme
including the new move types new transitive closure relation,
delete transitive closure relation, event exchange and reincarna-

tion by comparing it to the basic sampler using only standard
structure moves. We changed the move selection probabilities as

follows. The relocate theta MSP stays at 0.5, the new cover re-
lation MSP is set to 0.25, the delete cover relation is set to MSP
0.15 and the relocate epsilon MSP stays at 0.1. Everything else is

left identical to our proposed sampling scheme.
We simulated data with the same setup as in Section 3.1 and

tried to estimate the CBNs without using the new move types.

The samplers completed different numbers of rounds within
5 days of running. Only one of the six standard-move runs con-

verged within those 5 days, and this took 12 rounds of sampling.
The runs with the newly introduced moves usually converged
within two rounds, with the exception of one run, where it

took five rounds (Table 1).

3.3 Application to real-world cancer data

We have analysed two cancer datasets. The first one consists of
251 renal cell carcinoma (RCC) cases, which have been analyzed
by comparative genome hybridization (CGH), a method that

detects chromosomal gains and losses (Jiang et al., 2000).
Previous analyses of this dataset by Jiang et al. (2000) training

Table 1. Summary of simulation runs for the poset displayed in Figure 2

Rounds to convergence

" N New Standard

0.1 100 1 12

0.1 400 1 426 (n.c.)

0.1 800 2 421 (n.c.)

0.01 100 1 455 (n.c.)

0.01 400 1 428 (n.c.)

0.01 800 5 431 (n.c.)

One round of sampling consists of 500 000 iterations per chain. (n.c.¼not con-

verged). Details of the run from the fourth row are found in Figure 3.Fig. 2. Poset used for generating data in the simulation study.
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mutagenetic trees and by Gerstung et al. (2009) using ML esti-

mation of Continuous Time CBNs resulted in a large disagree-

ment between these two methods. We therefore reanalyzed this

dataset and computed the marginal edge probabilities (Fig. 5A).

Only three edges had posterior probabilities40.5, namely þ17q

a þ17p (posterior 0.82), �4qaþ17q (0.73) and �4qa�6q
(0.55). Furthermore, it is probable that �4q precedes �13q

either directly or indirectly, because the marginal probability of

this relation is 0.46, and for the relations �4qa�6qa�13q, we
found the posterior probabilities 0.55 (as stated above) and 0.41,

respectively. All four relationships have been identified by the

two previous methods as either direct or indirect. However, both

methods claim a number of additional dependencies which we

found to have 50.5 posterior probability or they claim direct

dependencies, as in the case with �4q and �13q, where there

might only be an indirect one or vice versa.
The second dataset we analyzed consists of 67 glioblastoma

samples (Parsons et al., 2008), in which 16 cancer genes have

been DNA sequenced. Following Gerstung et al. (2011), we map-

ped mutated genes measured by sequencing to functional path-

ways, as defined by Jones et al. (2008), to infer order constraints

on the level of pathways rather than genes. We did not filter out

the secondary type cases as was done by Gerstung et al. (2011).

We identified eight cover relations with a posterior marginal

edge probability40.5 (Fig. 5B). Again, for some relations, it is

unclear if they are indirect or direct dependencies. Therefore, we

computed the marginal probabilities of all relations in the tran-

sitive closures of the posets (Fig. 5C). For example, the relation

stating that mutation of the TGF-� signalling pathway precedes

mutation in the DNA damage control pathway has a posterior

probability of 0.7. However, it is probably not a direct relation,

but is mediated by either the Hedgehog signalling pathway or the

JNK pathway.

4 DISCUSSION

In this work, we have presented a novel Bayesian inference

scheme for CBNs, a probabilistic-graphical model of cancer pro-

gression that can be estimated from cross-sectional noisy geno-

type observations. We have developed an efficient MCMC

sampling algorithm using a set of moves specifically designed

to overcome local optima of dependency structures.

The priors we used in our Bayesian approach are either

non-informative or flat. Alternative priors can be used if one

wants to introduce more prior biological knowledge, for ex-

ample, about mutation probabilities, genotype calling errors

A B

Fig. 3. Summary of sampled CBNs based on simulated data with N¼ 100 cases and error probability "¼ 0.01 . (A) Top two rows present kernel density

estimators for all mutation/error probabilities are shown. The dashed bar marks the mutation/error probabilities used for generating the data. The last

density plot shows a kernel density estimator for the unnormalized log-posterior. Bottom two rows present trace plots of all mutation, error probabilities

and the log-posterior for one of the four chains. Samples used for the trace plots are from the final sampling round. (B) The mode of the poset

distribution and the posets with the second and third highest frequencies in the MCMC samples are show on the right.
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for specific experimental setups or certain order relations that

have been found independently.

For practical purposes, our method is currently capable of

handling up to � 15 loci on a standard PC, where the actual

run time depends critically on the number of compatible geno-

types which are marginalized out Equation (3). Thus, the more

closely the partial order dependency structure resembles a linear

order, the smaller is the set of compatible genotypes and the

faster can the marginal probability of the observed data be com-

puted. In order to reduce the potentially large number of cancer

driver mutations, one may apply filtering techniques based, for

example, on marginal frequencies, on pairwise correlations or on

more sophisticated methods for separating driver from passenger

mutations. There is increasing evidence that rather than gene-

wise, cancer progression may be more appropriately described on

the level of functional pathways. The exact definition of these

pathways is ongoing research, but initial studies suggest a small

number of cancer-specific pathways on the order of a dozen

(Hanahan and Weinberg, 2011; Jones et al., 2008).
The new move types introduced here can be applied to vari-

ations of the CBN model, including the Continuous Time CBN

(Beerenwinkel and Sullivant, 2009), which models waiting times

of mutations and the Isotonic CBN (I-CBN) (Beerenwinkel

et al., 2011), which models monotonic progression along a con-

tinuous phenotype. We expect that the new move types we added

for dealing with local optima of CBNs, especially the moves

operating on the transitive closure, may also be useful for

other types of Bayesian networks where the directions of all

edges can be unambiguously assigned.
Bayesian CBNs are more appropriate for predictive usage than

their ML counterparts, since one can reliably assess the confi-

dence of the inferred dependencies as well as the associated mu-

tation probabilities. Drug development and treatment strategies

that aim at blocking or hindering cancer progression by targeting

certain mutation dependencies may benefit from increased inter-

pretability of confidence assessments. For example, cancer geno-

types are used for survival prediction and CBNs have been shown

to significantly boost the performance of these predictions

(Gerstung et al., 2009; Rahnenführer et al., 2005). The reason

Fig. 4. Marginal cover relation posterior probabilities based on simulated

data from various runs. The incoming nodes on the Y-axis depend on the

outgoing nodes on the X-axis.

A B C

Fig. 5. (A) Marginal cover relation posterior probabilities of renal cell carcinoma CGH data. (B) Marginal cover relation posterior probabilities of

glioblastoma genotypes mapped to functional pathways. (C) Marginal posterior probabilities of transitive closure relations from glioblastoma genotypes

mapped to functional pathways.
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for this improvement is that in predictions for individual patients,
strength is borrowed from common features of cancer progression
(such as order constraints) that can be learned by CBNs. Using
the Bayesian CBN approach introduced here, one can account for

model uncertainty in such predictions, for example, using
Bayesian estimation of the Cox model.
With international consortia such as TCGA or ICGC produ-

cing more and more whole cancer genome screens as well as
next-generation sequencing moving into clinical diagnostics, the
need for reliable and predictive modelling of genetic progression

is growing. We anticipate that our sampling scheme will help to
further advance the understanding of cancer progression.
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