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Abstract

Runtime monitoring (or runtime verification) is an approach to checking compliance of a system’s
execution with a specification (e.g., a temporal query). The system’s execution is logged into
a trace—a sequence of time-points, each consisting of a time-stamp and observed events. A
monitor is an algorithm that produces verdicts on the satisfaction of a temporal query on a trace.
This thesis develops new monitoring algorithms for expressive temporal query languages that are
more time- and space-efficient than the state-of-the-art and produce detailed verdicts.

An online monitor reads the trace forwards, one time-point after another. An offline monitor
processes the time-points in an arbitrary order. We propose a novel paradigm—multi-head
monitoring—that fills a middle-ground between online and offline monitoring. A multi-head
monitor uses multiple reading heads that read the trace forwards. We develop multi-head
monitors for metric temporal logic (MTL) and metric dynamic logic (MDL). Our monitors
improve upon the state-of-the-art by optimizing the time and space complexity while producing
a sequence of Boolean verdicts denoting the temporal query’s satisfaction at every time-point.
We have implemented our monitors, empirically confirmed that their performance improves upon
existing approaches, and formally verified the correctness of our monitors using the Isabelle/HOL
proof assistant.

MTL and MDL events cannot have parameters and queries cannot contain variables. Metric
first-order temporal logic (MFOTL) generalizes MTL with parametric events and first-order
variables ranging over an arbitrary domain. Hence, a monitor evaluates an MFOTL query at
every time-point to a relation representing the valuations of the free variables satisfying the
query. An online monitor for MFOTL had been developed in previous work and later formally
verified using Isabelle/HOL. The formally verified monitor is called VeriMon. In this thesis,
we optimize the time complexity of evaluating VeriMon’s Since and Until temporal operators.

Query evaluation for a proper subset of MFOTL queries can be efficiently implemented
using relational algebra operations. Alternatively, an arbitrary MFOTL query can be evaluated
using structures that represent arbitrary relations satisfying the subqueries of the query, e.g.,
automatic structures or binary decision diagrams. However, these alternative representations
have a negative impact on the performance of the resulting monitor. Hence, in this thesis we use
relational algebra operations to evaluate an arbitrary MFOTL query. We first investigate the
case of relational calculus (RC), i.e., MFOTL without temporal operators. We develop a novel
approach to RC query evaluation by translating an arbitrary RC query into a pair of relational
algebra normal form (RANF) queries that can be evaluated using relational algbra operations
on finite tables: one characterizes the original query’s relative safety (i.e., whether it evaluates
to a finite relation) and the other one is equivalent to the original query if the original query is
relatively safe. We implement our translation and empirically confirm that the performance of
evaluating the queries produced by our translation improves upon existing approaches to RC
query evaluation. Finally, we generalize our translation of RC queries to MFOTL queries. This
way, we obtain a monitor for an arbitrary MFOTL query that decides for every time-point if it
evaluates to a finite relation and computes the relation if it is finite.
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Zusammenfassung

Runtime Monitoring (oder Runtime Verifikation) ist ein Verfahren, um zu überprüfen, ob eine
Systemausführung eine Spezifikation (z.B. eine temporale Abfrage) erfüllt. Die Systemausführung
wird durch ein Trace—eine Folge von Zeitpunkten—dargestellt, die jeweils aus einem Zeitstempel
und beobachteten Events bestehen. Ein Monitor ist ein Algorithmus, der Verdikte über die
Erfüllung einer temporalen Abfrage bezüglich einem Trace berechnet. Diese Arbeit entwirft neue
Monitore für ausdrucksstarke Sprachen von temporalen Abfragen, die zeit- und platzeffizienter
als bestehende Ansätze sind und detailliertere Verdikte berechnen.

Ein Online-Monitor liest das Trace vorwärts, d.h. einen Zeitpunkt nach dem anderen. Ein
Offline-Monitor bearbeitet die Zeitpunkte in einer beliebigen Reihenfolge. Wir entwerfen ein
neues Paradigma—Mehrkopf-Monitoring—das zwischen Online- und Offline-Monitoring liegt.
Ein Mehrkopf-Monitor benutzt mehrere Leseköpfe, die das Trace lesen und sich dabei vorwärts
bewegen. Wir entwickeln Mehrkopf-Monitore für die metrische temporale Logik (MTL) und
metrische dynamische Logik (MDL). Unsere Monitore verbessern den Stand der Technik, indem
sie die Zeit- und Platzkomplexität optimieren und eine Folge von Booleschen Verdikten erzeugen,
die die Erfüllung der temporalen Abfrage zu jedem Zeitpunkt angeben. Wir haben unsere Mo-
nitore implementiert, ihre verbesserte Effizienz im Vergleich zu bestehenden Ansätzen empirisch
nachgewiesen und ihre Korrektheit mithilfe des Beweisassistenten Isabelle/HOL verifiziert.

Die Events in MTL und MDL dürfen keine Parameter haben und Abfragen dürfen keine
Variablen enthalten. Die metrische temporale Logik erster Stufe (MFOTL) erweitert MTL um pa-
rametrisierte Events, Variablen mit einem beliebigen Bereich und Quantoren. Des Weiteren wertet
ein Monitor eine MFOTL-Abfrage zu jedem Zeitpunkt in eine Relation aus, die die erfüllenden
Belegungen der freien Variablen der Abfrage enthält. Ein Online-Monitor für MFOTL wurde in
vorheriger Arbeit entwickelt und später mithilfe von Isabelle/HOL formal verifiziert. Der formal
verifizierte Monitor heisst VeriMon. In dieser Arbeit optimieren wir die Laufzeitkomplexität
der Auswertung von VeriMon’s Since und Until temporalen Operatoren.

Die Auswertung von Abfragen kann für eine echte Teilmenge von MFOTL-Abfragen effizi-
ent durch Operationen der relationalen Algebra (RA) umgesetzt werden. Alternativ kann eine
beliebige MFOTL-Abfrage mithilfe von Datenstrukturen ausgewertet werden, die eine belie-
bige erfüllende Relation für jede Teilabfrage darstellen können, z.B. automatische Strukturen
oder binäre Entscheidungsdiagramme. Diese alternativen Darstellungen haben allerdings einen
negativen Einfluss auf die Effizienz vom jeweiligen Monitor. In dieser Arbeit verwenden wir
deshalb Operationen der relationalen Algebra, um eine beliebige MFOTL-Abfrage auszuwerten.
Wir untersuchen zunächst den Fall vom Relationenkalkül (RC, aus dem Englischen relatio-
nal calculus), d.h. MFOTL ohne temporale Operatoren. Wir entwerfen ein neues Verfahren
zur Auswertung von beliebigen RC-Abfragen durch ihre Übersetzung in zwei RA Normalform
(RANF) Abfragen, die durch relationale Operationen auf endlichen Tabellen ausgewertet werden
können: die eine entscheidet die relative Sicherheit (aus dem Englischen relative safety) der
ursprünglichen Abfrage (d.h. ob sie zu einer endlichen Relation auszuwerten ist) und die andere
ist äquivalent zu der ursprünglichen Abfrage, wenn diese relativ sicher ist. Wir implementieren
unser Übersetzungsverfahren und weisen empirisch nach, dass unser Verfahren Abfragen liefert,
deren Auswertung effizienter ausführbar ist, als die Auswertung der ursprünglichen Abfragen
mit bestehenden Ansätzen zur Auswertung von RC-Abfragen. Schliesslich erweitern wir unser
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Übersetzungsverfahren von RC-Abfragen auf MFOTL-Abfragen. Somit erhalten wir einen Moni-
tor für eine beliebige MFOTL-Abfrage, der für jeden Zeitpunkt entscheidet, ob die erfüllende
Relation für diesen Zeitpunkt endlich ist und die Relation berechnet, wenn sie endlich ist.
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Chapter 1

Introduction

Complex (software) systems are ubiquitous nowadays and plenty of bugs regularly found in the
vast majority of such systems show that it is very difficult to make sure that these systems
behave according to their specification, i.e., to check their correctness. A traditional approach to
checking the correctness of systems is to perform extensive testing before the system is deployed
and then to monitor the system’s execution while the system is running. However, testing and
monitoring can never provide absolute guarantees on the system’s correctness because these
methods are inherently incomplete, i.e., they do not check every possible system behaviour.
Hence, critical systems have also been subject to formal verification of their correctness, e.g.,
by model-checking the system’s behaviour or by proving the system’s correctness using a proof
assistant. Although formal verification provides the highest level of trustworthiness, it is expensive
in terms of development cost. Hence, testing and monitoring are indispensable for systems where
the development cost of formal verifiction is not affordable.

1.1 Runtime Verification

Runtime monitoring (or runtime verification [5]) is an approach to checking compliance of a
system’s execution with a specification. Monitoring can be implemented as an interaction between
a human (having a specification in mind) and sensors measuring some parameters of the system.
If the specification can be formalized as a precise mathematical statement (a formal specification)
and if the system’s execution can be abstracted as a sequence of events, then the monitoring
task can be automated by executing a monitoring algorithm observing the sequence of events
produced by the system and computing verdicts on the compliance of the system’s execution
with the specification.

A diagram of the runtime monitoring architecture design is depicted in Figure 1.1. At the
top we have a running system that logs its execution into a trace—a sequence of time-points,
each consisting of a time-stamp and a set of observed events. On the left we have a specification
(a temporal query) formalizing the system’s intended behaviour. Both the specification and

system

trace

monitorspecification verdicts

logs

Figure 1.1. Runtime monitoring architecture.
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Input trace Output verdicts
@0 auth 3

@2 err 3

@2 3

@6 err 3

@10 err 3

@12 auth 7

@63 auth 3

Input trace Output verdicts
@0 auth 3

@2 err 3

@2 auth 3

@6 err 3

@10 err 3

@12 auth 3

@63 auth 3

Figure 1.2. Input traces and output verdicts for Example 1.1.

the trace are inputs of a monitor that produces verdicts attesting to the system’s execution’s
compliance with the specification.

Because a monitor is running in addition to the actual system (Figure 1.1), runtime monitoring
incurs a runtime cost. This thesis develops new monitoring algorithms for rich temporal query
languages that produce detailed verdicts and that are more time- and space-efficient than the
state-of-the-art (thus decreasing the runtime cost of monitoring).

Example 1.1. Consider an example of a monitoring specification for a system managing user
authentication. Many such systems follow a specification like: “A user should not be able
to authenticate after entering a wrong password three times within the last hour without
authenticating in between.” We suppose that the user authentication system logs its execution
into a trace of discrete time-points. Every time-point (one line) is characterized by a time-stamp
(prefixed by @) and a set of events that happened at that time-point. For a fixed user, we write
auth for the event “User authenticated” and err for the event “User entered a wrong password”.
The output of a monitor for the specification is a sequence of Boolean verdicts denoting whether
the specification is satisfied (3) or violated (7) at each time-point in the trace.

A pair of example traces are depicted in Figure 1.2. They consist of seven time-points each,
with time-stamps in seconds. A singleton set of events were observed at each time-point, except
for the third time-point of the trace on the left at which no event was observed (such a time-point
can still be logged, e.g., if the time-points are produced periodically or only events irrelevant for
the policy at hand had happened). There is a violation of the specification at the penultimate
time-point of the trace on the left at which an authentication auth was observed after three
wrong attempts to enter the passowrd err within the last 10 seconds, i.e., within the last minute.
There is no violation of the specification at the last time-point of the trace on the left because a
sufficient amount of time (61 seconds) has ellapsed since the first out of the three wrong attempts
to enter the password. There is no violation of the specification at any time-point of the trace on
the right in Figure 1.2 because the three wrong attempts to enter the password are interrupted
by a successful authentication.

The output verdicts could be produced by a human (e.g., the thesis author who produced
the verdicts in Figure 1.2) or by an ad-hoc program for this particular specification. A more
productive and less error-prone solution is offered by formalizing the specification in a suitable
specification language (Chapter 2) for a runtime monitor (Chapters 3, 4). A verified monitor
also gives the author of the thesis solid guarantees that he computed the verdicts in Figure 1.2
correctly. 2

In the following, we discuss the three main aspects of runtime monitoring considered in this
thesis due to their impact on efficiency, expressiveness, and trustworthiness:
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• mode of operation (e.g., online, offline, multi-head monitoring),

• specification language features (e.g., regular expressions, first-order queries),

• correctness (e.g., formal verification using proof assistants).

Mode of Operation Monitors can be classified by their mode of operation. An online monitor
reads the trace forwards, one time-point after another. In particular, the entire trace does not
have to be available when the monitor starts its computation. This means that an online monitor
can run parallel with the system. An offline monitor processes the time-points in an arbitrary
order, e.g., it could read the trace backwards. In particular, an offline monitor needs the entire
trace from the very beginning. This means that an offline monitor can only run after the system
finished its execution. The space requirements for online monitoring might grow linearly with
the number of incoming events because the monitor might have to buffer the incoming events.

To distinguish monitors that only require little working memory if they can read events
several times, we propose a novel paradigm—multi-head monitoring—that fills a middle-ground
between online and offline monitoring. A multi-head monitor uses multiple reading heads that
read the trace forwards and their number only depends on the specification, i.e., their number
does not depend on the observed events. Formally, one can view a multi-head monitor as a
multi-tape Turing machine that can read the trace on the input tape with multiple reading heads
that only move left-to-right on the input tape. The standard definition of space complexity for
multi-tape Turing machines carries over to multi-head monitors: The space complexity of a
multi-head monitor is the maximum number of cells on the working tapes (ignoring the read-only
input tape) ever used during the computation (i.e., the maximum amount of working memory
ever used by the monitor, ignoring the length of the read-only trace). A multi-head monitor
might read the trace at several positions, as usual in offline monitoring. However, as its reading
heads read the trace forwards, parts of the trace that were processed by all reading heads can
be discarded and new time-points can be appended at the end of the trace (before the reading
heads actually reach the end of the trace), as usual in online monitoring. This means that a
multi-head monitor can run parallel with the system. Finally, an online monitor can be seen as a
special case of a multi-head monitor that uses a single reading head.

Specification Language Features Time constraints in specifications can be expressed using
the discrete (natural numbers) or dense (real numbers) time domains. To combine several time
constraints (potentially over mutliple time domains), we generalize the notion of time to an
abstract time domain. Example instantiations of our abstract time domain include the discrete
(natural numbers) and dense (real numbers) time domains and direct and lexicographic products
of time domains. A product of time domains can be used to enforce several time constraints.

We conjecture that the specification from Example 1.1 can only be implemented by standard
temporal logic operators if the time domain is discrete. Still, the resulting formal specification
is huge. Regular expressions are a powerful tool to succinctly express patterns, such as that
from Example 1.1. Regular expressions can also help to comprehend a specification. Hence,
expressiveness, succinctness, and comprehensibility are the main benefits of regular expressions.

Example 1.1 implements a security specification for a single user. A typical system for
user authentication manages a collection of multiple users. In this setting, the specification
from Example 1.1 can be monitored by running a sequence of monitors, one for every user.
Alternatively, one can directly formulate the specification over multiple users by making the
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user a parameter of the specification. Formally, one formulates the specification as a first-order
query and the parameter becomes a first-order variable. The alternative approach is particularly
beneficial if the specification contains several first-order variables with complex dependencies
between them. However, first-order monitoring is a much harder computational task than
propositional monitoring. Instead of plain Boolean values, a first-order monitor must represent
and manipulate valuations of the variables (also called tuples) over an infinite domain.

A major challenge in first-order monitoring is to find a suitable representation and efficient
algorithms manipulating sets of tuples during temporal query evaluation. A table is a finite
set of tuples. Standard database management systems (e.g., PostgreSQL) use finite tables to
represent and efficiently manipulate finite sets of tuples using relational algebra operations.
Hence, they restrict the class of supported queries to those for which relational algebra operations
on finite tables are sufficient. These restrictions can be generalized to temporal queries. Then a
first-order monitor can also use relational algebra operations on finite tables to evaluate temporal
queries. Still, designing an efficient algorithm dealing with time constraints in a temporal query
is challenging. For example, a monitoring algorithm checking if an event was observed at least
one day ago and at most a week ago must efficiently maintain a sliding window over the trace.

Another challenging aspect is that a formalization closely following the natural language
specification could yield a query that is not supported by first-order monitors that use finite
tables to represent sets of tuples.

Example 1.2. Consider a shop in which brands (unary finite relation B of brands) sell products
(binary finite relation P relating brands and products) and products are reviewed by users with a
score (ternary finite relation S relating products, users, and scores). The relations B, P, and S
might be tables in a relational database. Alternatively, they might be obtained by evaluating
a temporal query over a sequence of events. We consider a brand suspicious if there is a user
and a score such that all the brand’s products were reviewed by that user with that score. A
first-order query computing all suspicious brands is

Qsusp := B(b) ∧ ∃u, s. ∀p. P(b, p) −→ S(p, u, s).

This formalization is close to the natural language definition of suspicious brands, but it is not
directly supported by first-order monitors that use finite tables to represent sets of tuples. 2

Instead of relying on finite tables to represent finite sets of tuples, arbitrary sets of tuples
can be represented and manipulated using automatic structures or binary decision diagrams.
However, these alternative representations negatively impact the resulting monitor’s performance.

Yet another option, ubiquitous in computer science, is to reduce our computational problem
to another one. In this case, we could translate a query that is not supported by an existing
first-order monitor into an equivalent query that is supported. This way, we could benefit from
the optimizations implemented in existing first-order monitors.

Example 1.3. Finding suspicious brands (Example 1.2) using relational algebra (RA) or SQL is a
challenge, which only the best students from an undergraduate database course could accomplish.
We give away an RA answer next (where − is the set difference operator and . is the anti-join):

πbrand((πuser ,score(S)× B)− πbrand,user ,score((πuser ,score(S)× P) . S)) ∪ (B− πbrand(P)).

The expressions πuser ,score(S) are called generators. They ensure that the left operands of the
anti-join and set difference operators include or have the same columns (i.e., are union-compatible)
as the corresponding right operands. 2
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Correctness The verdicts computed by a monitor are only trustworthy if the monitoring
algorithm and its implementation are correct. To increase their trustworthiness, we formalize our
monitors using the Isabelle/HOL proof assistant. To this end, we formulate precise definitions of
the monitoring algorithms, formulate their correctness as a mathematical statement, and write a
formal proof of the mathematical statement using the proof assistant. Proof assistants, e.g., Coq
and Isabelle/HOL, are tools that help humans write formal proofs of mathematical statements
and mechanically check these proofs. Isabelle/HOL also features a code generator producing
OCaml code from the precise definitions of the monitoring algorithms. A proof assistant only
accepts sound proofs that can be decomposed into small steps passing through a small and
well-understood kernel. Hence, the trusted code base is reduced to that kernel and the OCaml
compiler used to compile the extracted code. Numerous bugs have been found in unverified
software (including runtime verification software) through its formal verification using proof
assistants. This confirms that formal verification of monitoring algorithms is indispensable to
guarantee that our monitors can detect all violations and do not report any false positives.
Formally verified software can also be used as a testing oracle for software development, e.g., by
automatically generating many test cases and correctly solving them using formally verified code.

1.2 Related Work

We present related work divided into several areas.

1.2.1 Propositional Monitoring

Linear temporal logic (LTL) was introduced by Pnueli [58]. A formula is a specification formulated
in LTL or its extensions which we introduce later. An online monitor for past-only linear temporal
logic based on dynamic programming was developed by Havelund and Roşu [43]. Roşu and
Havelund [69, 70] also developed an offline monitor for future-only LTL based on dynamic
programming that traverses the trace backwards. Finkbeiner and Sipma [32] developed an offline
monitor for past and future LTL based on alternating automata. All these LTL monitors produce
a single Boolean verdict denoting the satisfaction of an LTL formula at the first time-point of
the trace.

Metric temporal logic (MTL), introduced by Koymans [47], extends LTL with metric (quan-
titative) time constraints. For instance, an LTL formula can express a simplified version of
the speficiation from Example 1.1: “A user should not be able to authenticate after entering
a wrong password.” An MTL formula can further restrict the time: “A user should not be
able to authenticate after entering a wrong password within the last hour.” The first online
monitor for metric temporal logic has been developed by Thati and Roşu [72]. It generalizes the
LTL monitor by Havelund and Roşu [43] based on dynamic programming. The MTL monitor
also produces a single Boolean verdict denoting the satisfaction of an LTL formula at the first
time-point of the trace. Its time complexity to process one time-point and its space complexity
do not depend on the number of time-points processed so far. Monitors with this highly desirable
property are called trace-length independent. However, the worst-case time and space complexity
is exponential in the number of subformulas of the MTL formula and the magnitude of time
constraints.

The trace-length independent monitors [32, 43, 69, 70, 72] produce a single Boolean verdict
for the first time-point of the trace. Basin et al. [7] generalize the online monitor by Thati and
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Roşu [72] to an online monitor Aerial that produces a verdict for every time-point. That is,
rather than outputting whether a trace violates a specification, Aerial outputs every position
where a violation occurs. This output provides more insight into why and when the property was
violated, but the associated computational problem is harder. Basin et al. [7] observe that an
online monitor for MTL with both past and future temporal operators producing a verdict for
every time-point cannot be trace-length independent. For example, Kane et al. [45] developed
an online MTL monitor EgMon that produces a verdict for every time-point, but EgMon is not
trace-length independent. Basin et al. [7] call a monitor event-rate independent if its space
complexity does not depend on the number of events in a fixed time unit. The notion can be
naturally generalized to time complexity. To develop an event-rate independent online monitor,
they design a monitor that might also compute verdicts relating the satisfaction of the query at
several time-points. This means that deriving a Boolean verdict for a time-point might amount
to resolving chains of equivalences between several time-points.

Aerial is actually only an almost event-rate independent monitor because it must still refer
to time-points and a time-point can only be represented in logarithmic space. We abstract over
this detail by assuming that time-points and time-stamps from the trace take constant space.
The time and space complexity of Aerial is worst-case exponential in the number of subqueries
and in the magnitude of time constraints.

The suboptimal performance of Aerial was also observed empirically and improved upon
by Ulus [75] who designed an online monitor Reelay for past-only MTL. However, Reelay’s
time and space complexity is still linear in the magnitude of time constraints. Moreover, time-
stamps are (implicitly) equal to time-points for Reelay (in particular, time-stamps are not even
part of Reelay’s input). Moosbrugger et al. [54] have developed an online monitor r2u2 for
MLTL [48]. However, r2u2 does not support specifications mixing past and future temporal
operators and time-stamps are (implicitly) equal to time-points (similarly to Reelay). Under
these assumptions, MLTL is as expressive as the standard MTL [48]. However, the translation
of an MTL formula might yield an equivalent MLTL formula of exponential size. The papers
presenting Reelay [75] and r2u2 [54] lack detailed complexity analysis.

Linear dynamic logic (LDL), introduced by De Giacomo and Vardi [36], extends LTL with
regular expressions. For instance, an LDL specification can express a simplified version of the
speficiation from Example 1.1: “A user should not be able to authenticate after entering a wrong
password three times without successfully authenticating in between.” In a subsequent work,
De Giacomo and Vardi [37] show how to monitor an LDL specification using finite automata
that accept a finite trace iff it satisfies the LDL specification (i.e., a single Boolean verdict for
the entire trace is produced). Metric dynamic logic, introduced by Basin et al. [12], extends
LDL with metric time constraints. An metric dynamic logic specification can express the original
specification from Example 1.1 including the time constraint of one hour. Basin et al. [12] also
extend their MTL monitor Aerial [7] to metric dynamic logic. In a subsequent work, Basin et
al. [6] adjust the dynamic modalities in metric dynamic logic (abbreviated here as MDLAerial)
and present their joint online monitor Aerial for MTL and MDLAerial.

1.2.2 Relational Calculus

Relational calculus (RC) is a database query language based on first-order logic. It is well-known
that satisfiability is undecidable for first-order logic (proved independently by Church [15] and
Turing [74]), i.e., given a first-order query (and an infinite domain), it is undecidable whether
there exists a structure satisfying the query. This impossibility result was also proved for first-
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order logic over finite domains by Trakhtenbrot [73]. Nevertheless, given a fixed structure and a
fixed (finite or infinite) domain, it is decidable if a first-order query is satisfied over the fixed
structure and the fixed domain [2].

Next we recall the fundamental notion of capturability. Kifer [46] calls a query class capturable
if there is an algorithm that, given a query in the class and a structure, enumerates the query’s
evaluation result, i.e., all tuples satisfying the query. Avron and Hirshfeld [3] observe that
Kifer’s notion is restricted because it requires every query in a capturable class to be domain
independent (a query is domain-independent if its evaluation result does not depend on the
underlying domain). Hence, they propose an alternative definition that we also use in this thesis:
A query class is capturable if there is an algorithm that, given a query in the class, a (finite or
infinite) domain, and a structure, determines whether the query’s evaluation result for the given
structure and domain is finite (such a query is relatively safe with respect to the structure and
domain) and enumerates the result in this case.

To measure the time and space complexity of query evaluation, Vardi [77] proposed two
measures of query complexity: Data complexity [77] is the complexity of recognizing if a tuple
satisfies a fixed query over a structure (database), as a function of the database size. Expression
complexity [77] is the complexity of recognizing if a tuple satisfies a query over a fixed structure,
as a function of the query size. Because queries are typically small and fixed while databases are
large, data complexity provides a reasonable measure of real-world query complexity.

We now present approaches to evaluating RC queries grouped into three categories.

Structure reduction. The classical approach to handling arbitrary RC queries is to evaluate
them under a finite structure [49]. The core question here is whether the evaluation produces the
same result as defined by the natural semantics, which typically considers infinite domains. Codd’s
theorem [21] affirmatively answers this question for domain-independent queries, restricting the
structure to the active domain, i.e., elements occurring in the query or database. Ailamazyan
et al. [2] show that RC is a capturable query class by extending the active domain with a few
additional elements, whose number depends only on the query, and evaluating the query over
this finite domain. Natural–active collapse results generalize Ailamazyan et al.’s [2] result to
extensions of RC with order relations by combining the structure reduction with a translation-
based approach [14]. Hull and Su [44] study several semantics of RC that guarantee the finiteness
of the query’s evaluation result. In particular, the “output-restricted unlimited interpretation”
only restricts the query’s evaluation result to tuples that only contain elements in the active
domain, but the quantified variables still range over the (finite or infinite) underlying domain.

Query translation. Another strategy is to translate a given query into one that can be
evaluated efficiently, e.g., using a sequence of relational algebra (RA) operations. Van Gelder
and Topor pioneered this approach [33, 34] for RC. A core component of their translation is
the choice of generators, which replace the active domain restrictions from structure reduction
approaches and thereby improve the time complexity. Extensions to scalar and complex function
symbols have also been studied [27,50]. All these approaches focus on syntactic classes of RC,
for which domain-independence is given, e.g., the evaluable queries [34, Definition 5.2].

Evaluation with infinite relations. Constraint databases [68] obviate the need for using
finite tables when evaluating queries and support extensions of RC with order relations. Yet
the efficiency of the quantifier elimination procedures employed by constraint databases cannot
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compare with the simple evaluation of a projection operation in RA. Similarly, automatic
structures [16] and binary decision diagrams [10, 17, 41, 42, 53] can represent the results of
arbitrary RC queries finitely, but struggle with large quantities of data.

1.2.3 First-Order Monitoring

Parametric trace slicing [18] is a technique to monitor a first-order property by running a
collection of propositional monitors, one for each partition of the parameters’ valuations. A
significant drawback of parametric trace slicing is the lack of quantifier alternation. Quantified
event automata [4] extend parametric trace slicing with quantifier alternation and quantified
variables ranging over elements observed in the trace. However, automata-based specifications
are often large and might be difficult to comprehend.

Basin et al. [10] proposed a logic-based first-order specification language—metric first-order
temporal logic (MFOTL). This declarative specification language can be seen as an extension
of relational calculus with metric temporal operators and features quantifier alternation with
quantified variables ranging over an arbitrary domain. Hence, MFOTL query evaluation inherits
the difficulties of RC query evaluation. In particular, it has to deal with potentially infinite sets
of tuples satisfying the MFOTL query or its subqueries.

Basin et al. [10] deal with infinite sets of satisfying tuples by developing two (online) monitors:
MonPoly-reg uses automatic structures to represent an arbitrary (finite or infinite) set of
tuples and MonPoly-fin (MonPoly for short) uses relational algebra operations on finite
tables to evaluate MFOTL queries from a syntactically restricted fragment of MFOTL. The
empirical evaluation clearly shows that MonPoly outperforms MonPoly-reg. On the other
hand, even with heuristics to rewrite arbitrary MFOTL queries to equivalent ones that can be
monitored by MonPoly, many queries fail to be monitorable by MonPoly. The monitors
MonPoly-reg and MonPoly produce a verdict for every time-point in the trace (unless no
verdict can be computed due to dependence on time-points beyond the finite input trace).

Schneider et al. [71] have formally verified the core of MonPoly (omitting optimizations)
using the Isabelle/HOL proof assistant. The formally verified monitoring algorithm is called
VeriMon. The formally verified algorithm has been optimized and extended to support regular
expressions and aggregations (MonPoly also supports aggregations, but not regular expressions)
in a subsequent work [8].

Havelund et al. [41, 42] deal with infinite sets of satisfying tuples by using binary decision
diagrams (BDDs) to represent an arbitrary (finite or infinite) set of tuples. They develop a
monitor that supports past-only metric first-order temporal logic, i.e., their monitor does not
support future temporal operators. Moreover, queries may not contain free variables and the
quantified variables sometimes only range over elements observed in the trace (e.g., if an equality
occurs in the query). Last but not least, every time-point carries exactly one event, i.e., there
cannot be concurrent events at a single time-point.

Havelund [40] has also extended first-order monitoring with recursive rules in which the
recursive predicates refer to the previous time-point. For instance, such recursive rules can be
used to express transitive closure over a sequence of events observed at various time-points. A
recent work by Zingg et al. [79] extends the formally verified algorithm VeriMon by generalizing
the recursive rules of Havelund [40]. The recursive predicates in VeriMon can refer to any
time-point that is strictly in the past (not just to the previous time-point).



1.3. Contributions 9

1.2.4 Stream runtime verification

Stream runtime verification (SRV) generalizes monitoring a single event stream to recursive
programs using multiple stream expressions. The stream-based specification language Lola [23]
extends propositional temporal logic specifications evaluating to Boolean verdicts with collecting
statistical information about the input streams. Given a sequence of input streams, a Lola
specification defines a sequence of output streams. The stream-based specification language
rtLola [29, 30] extends Lola with asynchronous streams, sliding window aggregations, and
parameterization. rtLola’s parameterization can be seen as a generalization of parametric
trace slicing [18] with the dynamic creation and termination of streams and the aggregation
of statistics over the instances of a stream template [29]. Hence, rtLola supports first-order
properties with implicit universal quantification on all variables (parameters). TeSSLa [22] and
Striver [38] are further examples of stream-based specification languages.

If a Lola specification does not have cyclic dependencies (i.e., it is well-formed), then the
output streams can be computed by a monitoring algorithm. Some Lola specifications can
be efficiently monitored in constant space, but this fragment is rather restricted: specifications
may only refer to a bounded number of future events and the bound must be fixed in advance.
Efficiently monitorable rtLola specifications are restricted even further: they must not contain
any references into the future. In contrast, monitors for temporal logic specifications can
efficiently evaluate specifications referring to an arbitrary number of future time-points. Note
that intervals of temporal logic operators only restrict time-stamps and there might be arbitrarily
many time-points with the same time-stamp.

To guarantee correctness of monitoring rtLola specifications, a verified translation of
rtLola specifications to Rust code was developed [31]. Manual translation of a desired property
into an rtLola specification might lead to faulty specifications. To discover faulty specifications,
a framework to formally prove guarantees on rtLola output streams was developed [25].

Most monitoring algorithms proceed by directly evaluating a given specification. Similarly to
optimizing compilers transforming the source code’s intermediate representation in a pipeline
of optimization steps, transformations of rtLola’s intermediate representation optimizing the
monitoring algorithm’s performance were developed [13].

1.3 Contributions

In the following, we give an overview of our contributions.

Semantics We generalize the notion of time in specification languages and redefine metric
dynamic logic, introduced in previous work and abbreviated here as MDLAerial, to make regular
expressions easier to write and comprehend.

Multi-Head Monitoring We develop multi-head monitors for two propositional specification
languages: metric temporal logic (MTL) and metric dynamic logic (MDL). Our monitors improve
upon the state-of-the-art by producing a sequence of Boolean verdicts denoting the query’s
satisfaction at every time-point in the order they appear in the trace and by optimizing the time
and space complexity. We have implemented our monitors, empirically confirmed that their
performance improves upon existing approaches, and formally verified the correctness of our
monitors using the Isabelle/HOL proof assistant.
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Monitoring Any MFOTL Query using Relational Algebra A proper subset of first-
order queries can be efficiently evaluated using relational algebra operations on finite tables. We
show that an arbitrary (temporal) first-order query can be evaluated using relational algebra
operations on finite tables.

We first investigate relational calculus (RC). We formally verify the approach by Ailamazyan
et al. [2] to evaluate an arbitrary RC query over a structure using relational algebra operations.
This approach uses the constants from the RC query and the structure and a few additional
elements to obtain a finite domain for evaluating the query. It shows that evaluating an arbitrary
RC query is feasible, but the actual performance is rather poor.

Hence, we propose a novel approach to RC query evaluation by translating an arbitrary RC
query into a pair of relational algebra normal form (RANF) queries that can be evaluated using
relational algebra operations on finite tables: one characterizes the original query’s relative safety
(i.e., whether it evaluates to a finite relation) and the other is equivalent to the original query if
the original query is relatively safe. We implement our translation and empirically confirm that
the performance of evaluating the queries produced by our translation improves upon existing
approaches to RC query evaluation.

Finally, we generalize our translation of RC queries to MFOTL queries. This way, we obtain
a monitor for an arbitrary MFOTL query that decides for every time-point if the corresponding
relation is finite and computes the relation if it is finite.

Optimizing Temporal Operators in First-Order Monitoring We optimize the time
complexity of evaluating VeriMon’s Since and Until temporal operators.

Publications

This thesis is built upon the following peer-reviewed conference publications.

[66] Martin Raszyk, David Basin, Dmitriy Traytel. From Nondeterministic to Multi-Head
Deterministic Finite-State Transducers. In 46th International Colloquium on Automata,
Languages and Programming (ICALP 2019), LIPIcs 132, pp. 127:1–127:14, Schloss Dagstuhl
– Leibniz-Zentrum für Informatik 2019.

[64] Martin Raszyk, David Basin, Srđan Krstić, Dmitriy Traytel. Multi-Head Monitoring of
Metric Temporal Logic. In 17th International Symposium on Automated Technology for
Verification and Analysis (ATVA 2019), LNCS 11781, pp. 151–170, Springer 2019.

[8] David Basin, Thibault Dardinier, Lukas Heimes, Srđan Krstić, Martin Raszyk, Joshua
Schneider, Dmitriy Traytel. A Formally Verified, Optimized Monitor for Metric First-Order
Dynamic Logic. In 10th International Joint Conference on Automated Reasoning (IJCAR
2020), LNCS 12166, pp. 432–453, Springer 2020.

[67] Martin Raszyk, David Basin, Dmitriy Traytel. Multi-head Monitoring of Metric Dynamic
Logic. In 18th International Symposium on Automated Technology for Verification and
Analysis (ATVA 2020), LNCS 12302, pp. 233–250, Springer 2020.

[65] Martin Raszyk, David Basin, Srđan Krstić, Dmitriy Traytel. Practical Relational Calculus
Query Evaluation. In 25th International Conference on Database Theory (ICDT 2022),
LIPICcs, Schloss Dagstuhl – Leibniz-Zentrum für Informatik 2022.
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Parts of the thesis have been formally verified using the Isabelle/HOL proof assistant and
the proofs have been published in the Archive of Formal Proofs (AFP). In the following, we list
the AFP entries and places in the thesis to which they refer:

Section 3.2 [63] Martin Raszyk: Multi-Head Monitoring of Metric Dynamic Logic.
Section 4.2.7 [61] Martin Raszyk: First-Order Query Evaluation.
Section 4.4 [24] Thibault Dardinier, Lukas Heimes, Martin Raszyk, Joshua Schneider,

Dmitriy Traytel: Formalization of an Optimized Monitoring Algorithm
for Metric First-Order Dynamic Logic with Aggregations.

Parts of the thesis have also been implemented as executable tools used for our empirical
evaluations. In the following, we list these tools and and places in the thesis to which they refer:

Section 3.2 [59] Martin Raszyk: Hydra.
Section 4.2 [60] Martin Raszyk: rc2sql.
Section 4.3 [62] Martin Raszyk: mfotl2ranf.
Section 4.4 [9] Thibault Dardinier, Lukas Heimes, Nicolas Kaletsch, Srđan Krstić,

Emanuele Marsicano, Martin Raszyk, Joshua Schneider, Dmitriy Traytel,
Sheila Zinggs: VeriMon.

1.4 Thesis outline
Finally, we outline the structure of the thesis.

Chapter 2 In this chapter, we introduce specification languages to formally describe the
intended system behaviour: metric temporal logic (MTL), metric dynamic logic (MDL), and
metric first-order temporal logic (MFOTL).

Chapter 3 In this chapter, we present our multi-head monitors for metric temporal logic [64]
and metric dynamic logic [66,67].

Chapter 4 In this chapter, we present our results on efficiently evaluating arbitrary (temporal)
first-order queries using relational algebra operations on finite tables [65]. In particular, we
present our optimizations of temporal operators in VeriMon [8].



12 Chapter 1. Introduction



Chapter 2

Specification Languages

In this chapter, we introduce specification languages that are used to formally describe the
intended system behaviour. A specification can be an input of a monitor in addition to a trace
that describes the observed system behaviour. Specification languages can be classified according
to various dimensions that have been investigated in a taxonomy by Falcone et al. [28]. In the
following, we summarize these dimensions and position our work with respect to them. We refer
to the taxonomy by Falcone et al. [28] for example specifications illustrating the classification.

Implicit and explicit specifications An implicit specification is a built-in specification
describing common properties of a well-understood intended system behaviour, e.g., (memory)
safety, concurrency, and (system) security. An explicit specification is a custom specification
provided by a user of a monitor. We focus on explicit specifications that give users more flexibility
to formalize the intended system behaviour. In general, the price for this flexibility is the quality
of the monitor’s output and the monitor’s time and space complexity. In our work, we develop
efficient monitors that provide detailed output.

Operational and declarative specifications An operational specification describes how the
monitor should check the behaviour of the target system, e.g., using a finite-state automaton. A
declarative specification describes what the monitor should check in the behaviour of the target
system, e.g., using a temporal logic formula. We focus on declarative specifications.

Time A specification can also express constraints over time. Such constraints refer either to
logical time or physical time. Logical time only constraints the relative ordering of events. An
example specification language relying purely on logical time is linear temporal logic (LTL) [58].
The relative ordering of events can be either total (e.g., in a single-threaded program) or partial
(e.g., in a distributed system). In our work, we consider the standard semantics of temporal logics
based on Kripke structures: the observed system behaviour is modeled by an infinite sequence of
sets of events. A set of events in the sequence is called a time-point and the events in the set
are considered to happen concurrently, i.e., the events at a single time-point are not ordered.
This semantics of events can also be viewed as a partial ordering of events that are grouped into
totally ordered groups of events. Within one such group (time-point), events are not relatively
ordered, i.e., they are considered to happen concurrently.

A specification can also refer to physical time of events. In this case, the target system must
associate a time-stamp with every event. Metric temporal logic (MTL) [47] extends LTL with
constraints on physical time. The taxonomy [28] distinguishes between discrete (e.g., natural
numbers) and dense (e.g., real numbers) physical time domains. We generalize these time domains
to an abstract time domain with associated algebraic properties.

13
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Modality The modality of a specification restricts constraints over logical time to past, current,
and future events. The simplest form of assertions supported by most programming languages
can only express properties of events that happen concurrently at the current time-point. A
temporal logic adds constraints over past or future events (or both). The various fragments
(e.g., past-only, future-only, and arbitrary) result in trade-offs in terms of expressiveness (what
properties can be expressed), conciseness (how succinctly a property can be expressed), and
performance (how efficient a property can be checked by a monitor). Our monitors support
all three modalities. To mitigate a negative impact on the performance, we propose a novel
monitoring paradigm—multi-head monitoring.

Data The target system may produce propositional events from a finite set of events (charac-
terized only by their name) or parameterized events (characterized by a name and a list of data
values, called parameters). A collection of parameterized events can be viewed as a database.
Consequently, a specification that refers to parameterized events can be viewed as a (temporal)
database query. Parameterized events substantially extend the class of properties that can be
checked, but they also make monitoring a substantially harder computational problem. In our
work, we consider both specifications that refer to propositional events as well as specifications
that refer to parameterized events.

Output A specification can be checked at a single position (time-point) in the trace or at every
time-point in the trace. The latter option provides more details about the system’s compliance
with the specification by distinguishing the time-points at which the specification is satisfied from
time-points at which the specification is not satisfied. On the other hand, the former option can
promote the performance of the monitor. In our work, we opt for the latter option and develop
monitors that compute Boolean verdicts (for propositional logics) and tuples of data values (for
first-order logics) for every time-point in the trace.

2.1 Time Domain
We generalize the discrete (e.g., natural numbers) and dense (e.g., real numbers) time domains used
in previous work to an abstract time domain T. Formally, T must form an additive commutative
monoid (T,+, 0), a partial order (T,≤), and a join-semilattice (T,t). The partial order must
be consistent with t and addition, i.e., a ≤ a t b, b ≤ a t b, (a ≤ c and b ≤ c) =⇒ a t b ≤ c,
b ≤ c =⇒ a+ b ≤ a+ c, for all a, b, c ∈ T. Moreover, we denote by Tfin a subset of time-stamps,
0 ∈ Tfin, Tfin ⊆ T, that are considered finite. Specifically, the subset Tfin must be closed under
addition. From the partial order (T,≤), we derive the strict partial order (T, <) as follows: τ < τ ′

if and only if τ ≤ τ ′ and not τ = τ ′. Then we assume that 0 < c =⇒ a < a+ c, for all a ∈ Tfin
and c ∈ T. Finally, we assume the existence of an order-preserving embedding ι of natural
numbers into finite time-stamps that are progressing by any finite amount of time, i.e., for every
i ∈ N we have ι(i) ∈ Tfin and for every ∆ ∈ Tfin there exists some j ∈ N such that ι(j) ≤ ι(i) + ∆
does not hold. For example, these assumptions are satisfied by both the discrete natural numbers
T = N ∪ {∞} extended with infinity and the dense real numbers T = R ∪ {−∞,+∞} extended
with infinity.

We call a time domain T total if it is totally ordered and no positive infinite time-stamp is
less than a positive finite time-stamp: a ≤ b holds for all a ∈ Tfin and b ∈ T − Tfin such that
0 ≤ a and 0 ≤ b. We call a time domain T strict if, for all a, b, c ∈ T, b < c =⇒ a+ b < a+ c
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holds. For example, the natural numbers T = N and the real numbers T = R are total and strict
time domains.

We can also combine two time domains T1 and T2 into a new time domain T1 × T2 that is
ordered by the product order, i.e., (τ1, τ2) ≤× (τ ′1, τ ′2) if and only if τ1 ≤1 τ

′
1 and τ2 ≤2 τ

′
2. If

T1 and T2 are total and strict time domains, then the new time domain T1 × T2 is a total and
strict time domain if it is ordered by the lexicographic order, i.e., (τ1, τ2) ≤× (τ ′1, τ ′2) if and only
if τ1 <1 τ

′
1 or (τ1 = τ ′1 and τ2 ≤2 τ

′
2).

Intervals We define the following four types of intervals over T, where a ∈ Tfin, b ∈ T, and
0 ≤ a ≤ b:

Type Notation Condition
closed [a, b]
open ]a, b[ b 6= 0
left-open ]a, b]
right-open [a, b[ b 6= 0

We denote the set of all (closed, open, left- and right-open) intervals as I. Given an interval
I ∈ I, we denote by right(I) its upper bound. Formally, we define right([a, b]) = right(]a, b[) =
right(]a, b]) = right([a, b[) = b. The lower bound left(I) could be defined analogously, but we do
not need this notion explicitly in the thesis. Given a pair of time-stamps τ, τ ′ ∈ T, τ ≤ τ ′, and an
interval I ∈ I, we say that the time-stamps τ and τ ′ satisfy the interval’s lower (memL(τ, τ ′, I))
and upper (memR(τ, τ ′, I)) bound condition, respectively, if

memL(τ, τ ′, [a, b]) iff τ + a ≤ τ ′, memR(τ, τ ′, [a, b]) iff τ ′ ≤ τ + b,
memL(τ, τ ′, ]a, b[) iff τ + a < τ ′, memR(τ, τ ′, ]a, b[) iff τ ′ < τ + b,
memL(τ, τ ′, ]a, b]) iff τ + a < τ ′, memR(τ, τ ′, ]a, b]) iff τ ′ ≤ τ + b,
memL(τ, τ ′, [a, b[) iff τ + a ≤ τ ′, memR(τ, τ ′, [a, b[) iff τ ′ < τ + b.

Given a pair of time-stamps τ, τ ′ ∈ T and an interval I ∈ I, we say that the time-stamps τ and τ ′
satisfy the interval condition (mem(τ, τ ′, I)) if they satisfy the interval’s lower and upper bound
conditions:

mem(τ, τ ′, I) iff memL(τ, τ ′, I) and memR(τ, τ ′, I).

We call an interval I full if mem(τ, τ ′, I) holds for all τ, τ ′ ∈ Tfin such that 0 ≤ τ ≤ τ ′. Given
a total time domain T, intervals I such that memL(0, 0, I) and right(I) /∈ Tfin are full intervals.
Note that a full interval might not be unique for a time domain with multiple time-stamps
b, c ∈ T− Tfin, 0 ≤ b, and 0 ≤ c.

For instance, for the time domain T = N of natural numbers, we have memL(τ, τ ′, [a, b])⇐⇒
a ≤ τ ′ − τ , memR(τ, τ ′, [a, b])⇐⇒ τ ′ − τ ≤ b, and mem(τ, τ ′, [a, b])⇐⇒ τ ′ − τ ∈ {n | a ≤ n ≤ b}.
For T = N, no full interval exists. For T = N ∪ {∞}, the interval [0,∞] is full.

Given an interval I ∈ I, we define dropL(I) to be an interval such that memL(τ, τ ′, dropL(I))
holds, for all τ ≤ τ ′, and memR(τ, τ ′, dropL(I))⇐⇒ memR(τ, τ ′, I) holds, for all τ, τ ′. Formally,
we define dropL([a, b]) = dropL(]a, b]) = [0, b] and dropL([a, b[) = dropL(]a, b[) = [0, b[.

Given an interval I ∈ I over a total time domain T whose lower bound is not 0 (inclusive),
i.e., not memL(0, 0, I), we define flipL(I) to be an interval such that memL(τ, τ ′, flipL(I)) holds,
for all τ ≤ τ ′, and memR(τ, τ ′, flipL(I))⇐⇒ not memL(τ, τ ′, I) holds, for all τ, τ ′. Formally, we
define flipL([a, b]) = flipL(]a, b]) = [0, b[ and flipL([a, b[) = flipL(]a, b[) = [0, b].
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(d1) d(t, t′) = 0⇐⇒ t = t′;
(d2) d(t, t′) = d(t′, t);
(d3) if t < t′ < t′′ then d(t, t′′) = d(t, t′) + d(t′, t′′) and d(t′′, t) = d(t′′, t′) + d(t′, t);
(∆1) δ + δ′ = δ′ + δ;
(∆2) (δ + δ′) + δ′′ = δ + (δ′ + δ′′);
(∆3) δ + 0 = δ = 0 + δ;
(∆4) (δ + δ′ = δ + δ′′ =⇒ δ′ = δ′′) and (δ + δ′′ = δ′ + δ′′ =⇒ δ = δ′);
(∆5) δ + δ′ = 0 =⇒ δ = 0 and δ′ = 0;
(∆6) ∃δ′′. (δ = δ′ + δ′′ or δ′ = δ + δ′′).

Figure 2.1. Conditions on a metric point structure.

Related Work: Metric Point Structure To abstractly model time, Koymans [47] intro-
duced the notion of a metric point structure.

Definition 2.1 ( [47, Definition 4.1]). A metric point structure is a two-sorted structure
(T,∆, <, d,+, 0) with signature < ⊆ T × T , d : T × T → ∆, + : ∆×∆→ ∆, 0 ∈ ∆ such that

(i) < is total,

(ii) d is surjective and satisfies (d1)–(d3),

(iii) (∆,+, 0) satisfies (∆1)–(∆6).

∆ and d are called the metric domain and the temporal distance function, respectively. Koy-
mans [47, Section 4] also derives a strict total order � on ∆ from the temporal distance function.
The conditions (d1)–(d3) and (∆1)–(∆6) are defined in [47, Section 4]. We summarize them in
Figure 2.1. Because Koymans assumes the strict precedence relation < on time-stamps to be
“transitive, irreflexive and comparable”, the precedence relation is actually a partial order.

We now provide a conversion of a metric point structure to our abstract time domain T. To
this end, we define T := ∆∪{∞}, where ∞ is a special value representing an infinite time-stamp,
we further define Tfin := ∆, we derive t from the strict total order � on ∆, and assume the
existence of an order-preserving embedding ι of natural numbers into ∆ such that the values
ι(i) are progressing by an arbitrary value x ∈ ∆, i.e., for every i ∈ N we have ι(i) ∈ ∆ and for
every x ∈ ∆ there exists some j ∈ N such that ι(j) ≤ ι(i) + x does not hold. The existence of
an order-preserving embedding ι is necessary to guarantee that there exists an infinite trace
such that the satisfaction of future temporal operators with conditions d(t, t′)� x only depends
on finitely many time-points of the trace. We map Koymans’ time-stamps t ∈ T in a trace to
d(t0, t) ∈ ∆ ⊆ T, where t0 is the initial time-stamp of the trace. Then the conditions d(t, t′)� x,
d(t, t′) = x, and d(t, t′)� x can be expressed by our interval conditions as shown in the following
lemmas.

Lemma 2.2 ( [63, metric_point_structure_lt_mem]). Let t0 be the initial time-stamp
of a trace and t, t′ be arbitrary two time-stamps in the trace such that t0 ≤ t ≤ t′. Let x ∈ ∆ be
such that 0� x. Then d(t, t′)� x⇐⇒ mem(d(t0, t), d(t0, t′), [0, x[).

Lemma 2.3 ( [63, metric_point_structure_eq_mem]). Let t0 be the initial time-stamp
of a trace and t, t′ be arbitrary two time-stamps in the trace such that t0 ≤ t ≤ t′. Let x ∈ ∆.
Then d(t, t′) = x⇐⇒ mem(d(t0, t), d(t0, t′), [x, x]).
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(ρ, i) |= p iff p ∈ Γi
(ρ, i) |= ¬φ iff not (ρ, i) |= φ
(ρ, i) |= φ ∨ ψ iff (ρ, i) |= φ or (ρ, i) |= ψ
(ρ, i) |=  I φ iff i > 0, mem(τi−1, τi, I), and (ρ, i− 1) |= φ
(ρ, i) |= #I φ iff mem(τi, τi+1, I) and (ρ, i+ 1) |= φ
(ρ, i) |= φ SI ψ iff j exists with j ≤ i, mem(τj , τi, I), (ρ, j) |= ψ, and (ρ, k) |= φ, for all j < k ≤ i
(ρ, i) |= φ UI ψ iff j exists with j ≥ i, mem(τi, τj , I), (ρ, j) |= ψ, and (ρ, k) |= φ, for all i ≤ k < j

Figure 2.2. Semantics of MTL.

Lemma 2.4 ( [63, metric_point_structure_gt_mem]). Let t0 be the initial time-stamp
of a trace and t, t′ be arbitrary two time-stamps in the trace such that t0 ≤ t ≤ t′. Let x ∈ ∆.
Then x� d(t, t′)⇐⇒ mem(d(t0, t), d(t0, t′), ]x,∞]).

On the other hand, because the strict order � on ∆ must be total by condition (∆6), we
cannot convert the product time domain on pairs of natural numbers T := N×N ordered by the
product order, i.e., (τ1, τ2) ≤× (τ ′1, τ ′2) if and only if τ1 ≤1 τ

′
1 and τ2 ≤2 τ

′
2, which is not total, to

a metric point structure with the natural choice ∆ ⊆ T = T. This means that a nontrivial ∆
and a nontrivial temporal distance function d would be needed in such a case. We could not
come up with any such ∆ and d. We thus conjecture that our abstract notion of time is more
general than Koymans’ metric point structures.

2.2 Propositional Temporal Logics
In this section, we formally define the syntax and semantics of MTL and MDL—an extension of
MTL with regular expressions [6]. We first formalize the observed system behaviour and then a
specification expressing the intended system behaviour. We assume that the observed system
behaviour is a finite prefix ρ<` = (ρi)i<` (called a trace) of an infinite stream ρ = 〈(Γi, τi)〉i∈N
over a finite set of atomic propositions Σ. The stream is an infinite sequence of time-points
i ∈ N, each consisting of a set of atomic propositions Γi ⊆ Σ and a time-stamp τi ∈ Tfin. The
time-stamps must be monotone (τi ≤ τi+1, for all i ∈ N) and progressing by an arbitrary finite
amount of time (for every i ∈ N and ∆ ∈ Tfin there exists some j ∈ N such that τj ≤ τi + ∆
does not hold). Consecutive time-points may carry the same time-stamp and there might be
time-stamps that no time-point carries.

The intended system behaviour can be expressed by an MTL formula. The syntax of MTL
formulas φ over a finite set of atomic propositions Σ is defined recursively:

φ ::= p | ¬φ | φ ∨ φ |  I φ | #I φ | φ SI φ | φ UI φ,

where p ∈ Σ and I ∈ I. This minimal syntax includes Boolean operators ¬ (not) and ∨ (or) and
the temporal operators  I (previous), SI (since), #I (next), and UI (until). We employ the usual
syntactic sugar for additional Boolean constants and operators true = p ∨ ¬p, false = ¬true,
φ∧ψ = ¬(¬φ∨¬ψ), and additional temporal operators �I φ = true SI φ (once), �I φ = ¬�I ¬φ
(historically), ♦I φ = true UI φ (eventually), and �I φ = ¬♦I ¬φ (always).

We define the standard point-based semantics of MTL in Figure 2.2. We refer to Basin et
al. [11] for a comprehensive comparison of alternative semantics. We remark that it might not be
possible to evaluate an MTL formula at a time-point of a trace without knowing its continuation,
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(ρ, i) |=Aerial 〈r|I iff j exists with j ≤ i, τi − τj ∈ I and (j, i) ∈ RAerial
ρ (r)

(ρ, i) |=Aerial |r〉I iff j exists with j ≥ i, τj − τi ∈ I and (i, j) ∈ RAerial
ρ (r)

(ρ, i) |= 〈r|I iff j exists with j ≤ i, mem(τj , τi, I) and (j, i+ 1) ∈ Rρ(r)
(ρ, i) |= |r〉I iff j exists with j ≥ i, mem(τi, τj , I) and (i, j + 1) ∈ Rρ(r)

RAerial
ρ (φ?) = {(i, i) | (ρ, i) |=Aerial φ} Rρ(φ?) = {(i, i) | (ρ, i) |= φ}
RAerial
ρ (?) = {(i, i+ 1) | i ∈ N} Rρ(φ) = {(i, i+ 1) | (ρ, i) |= φ}
RAerial
ρ (r + s) = RAerial

ρ (r) ∪RAerial
ρ (s) Rρ(r + s) = Rρ(r) ∪Rρ(s)

RAerial
ρ (r · s) = RAerial

ρ (r) · RAerial
ρ (s) Rρ(r · s) = Rρ(r) · Rρ(s)

RAerial
ρ (r∗) = RAerial

ρ (r)∗ Rρ(r∗) = Rρ(r)∗

Figure 2.3. Semantics of MDLAerial and MDL.

i.e., the infinite stream. For instance, the formula #I p cannot be evaluated at the last time-point
`− 1 of a trace ρ<` without the next time-point ` of the infinite stream, i.e., Γ` and τ`.

Basin et al. [6] introduced metric dynamic logic (refered to as MDLAerial in this work) as an
extension of MTL with regular expressions. The time domain of MDLAerial is fixed to the natural
numbers T = N. The syntax of MDLAerial formulas φ over a finite set of atomic propositions Σ
and MDLAerial regular expressions r is defined by mutual recursion:

φ ::= p | ¬φ | φ ∨ φ | 〈r|I | |r〉I and r ::= φ? | ? | r + r | r · r | r∗,

where p ∈ Σ and I ∈ I. This minimal syntax of MDLAerial formulas includes Boolean operators
and regular expression match operators. The future match operator |r〉I evaluated at a time-point
i expresses that there exists some future time-point j, i ≤ j, whose time-stamp τj satisfies
τj − τi ∈ I and the regular expression r matches at the time-points between i and j. The
past match operator 〈r|I expresses the dual property about past time-points. MDLAerial regular
expressions consist of MDLAerial formulas φ to characterize the matched time-points in the form
of lookaheads φ?. The MDLAerial regular expression ? always matches a time-point and advances
regular expression matching to the next time-point. The operators +, ·, and ∗ are the standard
alternation, concatenation, and (Kleene) star operators.

The point-based semantics of an MDLAerial formula φ on a stream ρ, (ρ, i) |=Aerial φ, and
MDLAerial regular expressions is defined by mutual recursion in Figure 2.3. We omit the cases
of atomic propositions and Boolean operators that are identical to MTL. The semantics of
an MDLAerial regular expression r on a stream ρ is a relation RAerial

ρ (r) ⊆ N × N, where
(i, j) ∈ RAerial

ρ (r) iff r matches the time-points between i (inclusive) and j (inclusive). We call
(i, j) ∈ RAerial

ρ (r) a match. A match of the form (i, i) is called empty.
It is possible to express MTL temporal operators by regular expressions. For instance, one

can express φ SI ψ by the regular expression ψ ·φ∗ matched backwards (and ignoring the interval
I for now). However, ψ · φ∗ is not an MDLAerial regular expression because the formulas ψ and φ
can only appear as lookaheads ψ? and φ? in MDLAerial regular expressions. Moreover, we need to
insert the MDLAerial regular expression ? into the gaps between the lookaheads and then obtain
the MDLAerial regular expression ψ? · (? · φ?)∗. Finally, taking the interval I into account, the
MTL formula φ SI ψ can be equivalently expressed by the MDLAerial formula 〈ψ? · (? · φ?)∗|I . We
introduce our definition of metric dynamic logic (refered to as MDL in this work) derived from
MDLAerial with the goal to avoid inserting ? into the gaps between the individual lookaheads. This
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makes it easier for a user to write MDL regular expressions (compared to MDLAerial). Moreover,
we conjecture that MDL regular expressions are asymptotically more succinct than equivalent
MDLAerial regular expressions. In more detail, for the following class of well-formed MDL regular
expressions ri, i ∈ N:

ri =
{
φ∗0 if i = 0,
(φi · ri−1)∗ if i > 0,

we could not derive smaller equivalent MDLAerial regular expressions than r̃i := embed′(rderive(ri))
(Figure 2.7) that are of quadratic size:

r̃i =
{

(φ0? · ?)∗ · φ0? if i = 0,
(φi? · ? · r̂i−1)∗ · (φi? + φi? · ? · ˜ri−1) if i > 0,

where

r̂i =
{

(φ0? · ?)∗ if i = 0,
(φi? · ? · r̂i−1)∗ if i > 0.

The MDL regular expressions r0, r1, r2 have the following simple form: (φ0)∗, (φ1 · (φ0)∗)∗, (φ2 ·
(φ1 · (φ0)∗)∗)∗ while the equivalent MDLAerial regular expressions r̃0, r̃1, r̃2 have the following form:
(φ0? · ?)∗ · φ0?, (φ1? · ? · (φ0? · ?)∗)∗ · (φ1? + φ1? · ? · (φ0? · ?)∗ · φ0?), (φ2? · ? · (φ1? · ? · (φ0? · ?)∗)∗)∗ ·
(φ2? + φ2? · ? · (φ1? · ? · (φ0? · ?)∗)∗ · (φ1? + φ1? · ? · (φ0? · ?)∗ · φ0?)).

We formally define the syntax of MDL formulas φ by extending the syntax of MTL formulas
with past and future regular expression match operators: 〈r|I and |r〉I and define the syntax of
MDL regular expressions r by mutual recursion:

r ::= φ? | φ | r + r | r · r | r∗.

We call an MDL formula φ a direct subformula of an MDL regular expression r if φ occurs in
r and φ is not a proper subformula of any other formula that occurs in r. We denote the set
of all direct subformulas of an MDL regular expression r as SF(r). Because MTL operators
can be evaluated more efficiently than the equivalent MDL regular expressions (using a general
algorithm for MDL regular expressions), we include MTL operators in MDL. We also generalize
T = N to an abstract domain T (Section 2.1).

We define the point-based semantics of MDL formulas φ, (ρ, i) |= φ, and MDL regular
expressions by mutual recursion in Figure 2.3. We omit the cases of atomic propositions and
Boolean and temporal operators that are identical to MTL. The semantics of an MDL regular
expression r on a stream ρ is a relation Rρ(r) ⊆ N×N, where (i, j) ∈ Rρ(r) iff r matches the
time-points between i (inclusive) and j (exclusive). We exclude the time-point j to conveniently
distinguish matches of MDL regular expressions like φ? that can be combined with subsequent
matches from the same time-point and matches of MDL regular expressions like φ that can be
combined with subsequent matches from the next time-point. For instance, the MDL regular
expression φ · ψ matches a pair of consecutive time-points if the formulas φ and ψ hold at
these time-points while φ? · ψ matches a single time-point if the formulas φ and ψ hold at that
time-point.

Unlike in MDLAerial, an empty match (i, i) ∈ Rρ(r∗) of the MDL regular expression r∗ does
not make the MDL formula 〈r|I or |r〉I satisfied at the time-point i if 0 ∈ I because the match
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not wfr(φ?),wfr(φ)
wfr(r + s)⇐⇒ wfr(r) and wfr(s)
wfr(r · s) ⇐⇒ wfr(s) and (not ε(s) or wfr(r))
wfr(r∗) ⇐⇒ wfr(r)

ε(φ?),not ε(φ)
ε(r + s)⇐⇒ ε(r) or ε(s)
ε(r · s) ⇐⇒ ε(r) and ε(s)
ε(r∗)

Figure 2.4. Well-formed and nullable regular expressions r.

must always include the time-point i (in particular, the match must be nonempty). This is
without loss of generality because such an empty match (i, i) ∈ Rρ(r∗) would make the formula
〈r|I or |r〉I trivially satisfied (if 0 ∈ I) or would not affect the satisfaction at all (if 0 /∈ I).

We use the same semantics Rρ(r) of regular expressions for both past and future regular
expression match operators. Our semantics Rρ(φ) = {(i, i + 1) | (ρ, i) |= φ} resembles the
semantics of linear dynamic logic (LDL) [36] which has only future modalities. The semantics of
past-time linear dynamic logic (PLDL) [35] which has only past modalities defines RPLDL

ρ (φ) =
{(i, i+ 1) | (ρ, i+ 1) |=PLDL φ}, where |=PLDL is the semantics of PLDL formulas. This effectively
means that a match (j, i) ∈ RPLDL

ρ (r) matches the time-points between j (exclusive) and i
(inclusive) which is convenient for the semantics of the match operator 〈〈r〉〉φ in PLDL:

(ρ, i) |=PLDL 〈〈r〉〉φ iff j exists with j ≤ i, (j, i) ∈ RPLDL
ρ (r), and (ρ, j) |=PLDL φ.

In MDL, we do not separate the formula φ from the regular expression r, i.e., we express the
PLDL formula 〈〈r〉〉φ by the MDL formula 〈φ · r|I with a regular expression φ · r. This allows us
to define the semantics of MDL regular expressions independently of their modality, i.e., whether
an MDL regular expression r is used in a past match formula 〈r|I or a future match formula |r〉I .

We call an MDL regular expression well-formed if all lookaheads refer to time-points matched
by the regular expression. Hence, a match (i, j) of a well-formed MDL regular expression r only
depends on the semantics of the MDL formulas φ contained in r at the time-points included in
the match, i.e., between time-points i (inclusive) and j (exclusive). For instance, the regular
expressions φ? · ψ is well-formed, but the regular expression ψ · φ? is not. Indeed, the regular
expression ψ · φ? has a match (i, i + 1) on ρ if and only if (ρ, i) |= ψ and (ρ, i + 1) |= φ, i.e.,
the match depends on the semantics of φ at the excluded time-point i+ 1. We write wfr(r) if
the regular expression r is well-formed. We call an MDL formula well-formed if all its regular
expressions are well-formed. We write wf(φ) if the formula φ is well-formed. To formally define
well-formed regular expressions, we say that an MDL regular expression r is nullable if it has
empty matches, e.g., φ? or r∗. We write ε(r) if the regular expression r is nullable. We formally
define well-formed and nullable regular expressions in Figure 2.4.

Given formulas φ and ψ, we could express the MTL operators  I φ as 〈φ · true|I , #I φ as
|true · φ〉I , φ SI ψ as 〈ψ · φ∗|I , and φ UI ψ as |φ∗ · ψ〉I . The provided well-formed MDL regular
expressions are equivalent to the MTL operators.

Example 2.5. Many systems for user authentication follow a specification like: “A user should
not be able to authenticate after entering a wrong password three times within the last hour
without authenticating in between.” For a fixed user, we write auth for the event “User au-
thenticated” and err for the event “User entered a wrong password”. This means we con-
sider the set Σ = {auth, err} of atomic propositions in this example. Then the MDL formula
¬〈err · (¬auth)∗ · err · (¬auth)∗ · err · (¬auth)∗ · auth|[0,3600] captures this specification: it is vio-
lated at time-points at which the user authenticated after entering a wrong password three times
in the last 3 600 seconds without an intermediate authentication.
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We can express this property in MTL by nesting three temporal operators, namely one strict
since operator for each err in the above MDL regular expression. The semantics of the strict
since operator φ ṠI ψ differs from the since operator φ SI ψ by requiring that the formula ψ must
hold at a time-point that is strictly before the time-point at which the (strict) since operator is
evaluated:

(ρ, i) |= φ ṠI ψ iff j exists with j < i, mem(τj , τi, I), (ρ, j) |= ψ, and (ρ, k) |= φ, for all j < k ≤ i

For T = N, the strict since operator φ Ṡ[a,b] ψ can be expressed by the following equivalent MTL
formulas:

φ Ṡ[a,b] ψ ≡


(φ ∧ [0,0] (φ S[0,0] ψ)) if a = 0, b = 0,
(φ ∧ [0,0] (φ S[0,0] ψ)) ∨ (φ S[1,b] ψ) if a = 0, b 6= 0,
φ S[a,b] ψ if a 6= 0.

Yet, it is unclear which intervals to use with the three strict since operators beyond the fact that
their upper bounds should sum up to 3 600. For T = N, a rather impractical solution exploits
the fact that there are only finitely many ways to split the upper bound 3 600 into a sum of three
upper bounds:

¬
∨

x1,x2,x3∈N
x1+x2+x3=3600

(
auth ∧

(
( ¬auth) Ṡ[0,x1]

(
err ∧

(
( ¬auth) Ṡ[0,x2]

(
err ∧

(
( ¬auth) Ṡ[0,x3] err

))))))

and constructs the disjunction of all possible splits which yields
(3603

3
)
≈ 8 · 109 disjuncts in this

case. For T = R, the previous solution no longer works and we conjecture that no equivalent
MTL formula exists. MDL remediates these difficulties regardless of the time domain. 2

Given a trace ρ<` (a finite prefix of an infinite stream ρ = 〈(Γi, τi)〉i∈N) and a well-formed
MDL formula φ, it might not be possible to check for every time-point j < ` if (ρ, j) |= φ, e.g.,
if φ contains future temporal operators #I or UI . Hence, we define the progress prog(φ, τ) of
a well-formed MDL formula φ on a monotone sequence of time-stamps τ to be the number of
time-points j, j < prog(φ, τ), for which it is possible to check if (ρ, j) |= φ when given, for all
k < |τ |, the time-points τk = τk and sets of events Γk. We formally define the function prog(φ, τ)
in Figure 2.20, following the definition of progress by Schneider et al. [71], and capture its core
property in the following lemma.

Lemma 2.6. Let φ be an MDL formula and τ be a monotone sequence of time-stamps. Then
(ρ, j) |= φ ⇐⇒ (ρ′, j) |= φ holds for all time-points j < prog(φ, τ) and for every two infinite
streams ρ = 〈(Γi, τi)〉i∈N and ρ′ = 〈(Γ′i, τ ′i)〉i∈N such that, for all k < |τ |, τk = τ ′k = τk and
Γk = Γ′k.

Note that Figure 2.5 does not necessarily provide the maximum possible value of prog(φ, τ)
for which Lemma 2.20 holds. For instance, if a formula φ is a tautology, then (ρ, j) |= φ holds for
all ρ and j. Hence, prog(φ, τ) could be arbitrarily high. Still, Figure 2.5 provides a lower bound
on the number of time-points j for which (ρ, j) |= φ can be definitely checked.

We assume that the intervals I of UI and |r〉I temporal operators are bounded, i.e., right(I) ∈
Tfin, because a monitor might not be able to produce a verdict for a formula with unbounded
future temporal operators on a (finite) trace. We call a formula bounded-future if the intervals
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input: A well-formed MDL formula φ and a monotone sequence τ of time-stamps.
output: The number of time-points j for which (ρ, j) |= φ can be checked given, for all

k < |τ |, the time-points τk = τk and sets of events Γk.
1 function prog(φ, τ) =
2 switch φ do
3 case ¬φ0 do return prog(φ0, τ);
4 case φ1 ∨ φ2 do return min{prog(φ1, τ), prog(φ2, τ)};
5 case  I φ0 do return min{|τ |, prog(φ0, τ) + 1};
6 case #I φ0 do
7 k := prog(φ0, τ);
8 if k = 0 then return 0;
9 else return k − 1;

10 case φ1 SI φ2 do return min{prog(φ1, τ), prog(φ2, τ)};
11 case φ1 UI φ2 do
12 if |τ | = 0 then return 0;
13 else
14 k := min{|τ | − 1, prog(φ1, τ), prog(φ2, τ)};
15 return min{j | 0 ≤ j ≤ k ∧memR(τ j , τk, I)};
16 case 〈r|I do return min{prog(ψ, τ) | ψ ∈ SF(r)};
17 case |r〉I do
18 if |τ | = 0 then return 0;
19 else
20 k := min{|τ | − 1,min{prog(ψ, τ) | ψ ∈ SF(r)}};
21 return min{j | 0 ≤ j ≤ k ∧memR(τ j , τk, I)};
22 otherwise do return |τ |;

Figure 2.5. The function prog(φ, τ).

of its UI and |r〉I temporal operators temporal operators are bounded. Still, the intervals of
the future temporal operators #I can be unbounded because these operators never refer to any
time-point beyond the next time-point. For instance, the formula ♦[0,∞] p, where p ∈ Σ is an
atomic proposition, is not bounded-future. This formula is satisfied at a time-point i ∈ N if the
atomic proposition p is satisfied at a later time-point j ∈ N, i ≤ j. Unless the monitor encounters
such a time-point j with p ∈ Γj , no Boolean verdict can ever be computed. We point out that
the semantics of such a formula is still well-defined with respect to an infinite stream. However,
a monitor can only process a finite prefix (trace) of such a stream.

We conclude this section by providing transformations between MDLAerial and MDL. These
transformations constructively show that MDLAerial formulas and well-formed MDL formulas are
equally expressive. Moreover, the transformations provide upper bounds on the size trade-offs
between MDLAerial and MDL. We formally define the transformation mdl2mdl(φ) of MDLAerial

formulas φ into well-formed MDL formulas by mutual recursion in Figure 2.6. We remark that
the size of the well-formed MDL formula mdl2mdl(φ) is asymptotically bounded by the size of the
MDLAerial formula φ. The correctness of the function mdl2mdl(φ) is expressed by the following
lemma.

Lemma 2.7 ( [63, mdlstar2mdl]). Let φ be an MDLAerial formula. Then mdl2mdl(φ) is a
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mdl2mdl(p) = p
mdl2mdl(¬φ) = ¬mdl2mdl(φ)
mdl2mdl(φ ∨ ψ) = mdl2mdl(φ) ∨mdl2mdl(ψ)
mdl2mdl(〈r|I) = 〈embed(r) · true|I
mdl2mdl(|r〉I) = |embed(r) · true〉I

embed(φ?) = mdl2mdl(φ)?
embed(?) = true
embed(r + s) = embed(r) + embed(s)
embed(r · s) = embed(r) · embed(s)
embed(r∗) = embed(r)∗

Figure 2.6. Transformation of MDLAerial formulas into well-formed MDL formulas.

mdl2mdl′(p) = p embed′(φ?) = mdl2mdl′(φ)?
mdl2mdl′(¬φ) = ¬mdl2mdl′(φ) embed′(φ) = mdl2mdl′(φ)? · ?
mdl2mdl′(φ ∨ ψ) = mdl2mdl′(φ) ∨mdl2mdl′(ψ) embed′(r + s) = embed′(r) + embed′(s)
mdl2mdl′(〈r|I) = 〈embed′(rderive(r))|I embed′(r · s) = embed′(r) · embed′(s)
mdl2mdl′(|r〉I) = |embed′(rderive(r))〉I embed′(r∗) = embed′(r)∗

rderive(φ?) = false?
rderive(φ) = φ?
rderive(r + s) = rderive(r) + rderive(s)

rderive(r · s) =
{

rderive(r) + (r · rderive(s)) if ε(s)
r · rderive(s) otherwise

rderive(r∗) = r∗ · rderive(r)

Figure 2.7. Transformation of well-formed MDL formulas into MDLAerial formulas.

well-formed MDL formula that is equivalent to φ. Formally, wf(mdl2mdl(φ)) holds and

(ρ, i) |= mdl2mdl(φ)⇐⇒ (ρ, i) |=Aerial φ.

Finally, we formally define the transformation mdl2mdl′(φ) of well-formed MDL formulas φ
into MDLAerial formulas by mutual recursion in Figure 2.7. We transform a well-formed MDL
regular expression r into an MDLAerial regular expression embed′(rderive(r)) by computing the
right derivative rderive(r) of r, analogously to computing the right derivate of an MDLAerial

regular expression [6, Section 7.1]. We point out that computing the right derivative of a regular
expression may result in an MDLAerial regular expression of quadratic size. Consequently, the
size of the MDLAerial formula mdl2mdl′(φ) is only asymptotically bounded by a square of the size
of the well-formed MDL formula φ. The correctness of the function mdl2mdl′(φ) is expressed by
the following lemma.

Lemma 2.8 ( [63, mdl2mdlstar]). Let φ be a well-formed MDL formula. Then mdl2mdl′(φ)
is an MDLAerial formula that is equivalent to φ. Formally,

(ρ, i) |=Aerial mdl2mdl′(φ)⇐⇒ (ρ, i) |= φ.

2.3 First-Order Logics

Parameterized events (characterized by a name and a list of data values) substantially extend
the class of properties that can be checked by a monitor. For instance, the specification from
Example 2.5 can be generalized from a fixed user to multiple users by parameterizing the events
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(S, α) 6|= false; (S, α) |= true;
(S, α) |= (x ≈ t) iff α(x) = α(t);
(S, α) |= r(t1, . . . , tι(r)) iff (α(t1), . . . , α(tι(r))) ∈ rS ;
(S, α) |= (¬Q) iff not (S, α) |= Q;
(S, α) |= (Q1 ∨Q2) iff (S, α) |= Q1 or (S, α) |= Q2;
(S, α) |= (Q1 ∧Q2) iff (S, α) |= Q1 and (S, α) |= Q2;
(S, α, i) |= (∃x.Q) iff (S, α[x 7→ d], i) |= Q, for some d ∈ D.

Figure 2.8. Semantics of RC.

auth and err by a user u: auth(u) and err(u). Then a monitor would compute a set of users
violating the specification for every time-point.

In this section, we introduce pure first-order logic, also known as relational calculus (RC), and
metric first-order temporal logic (MFOTL). An RC query is interpreted over a fixed structure
consisting of relations interpreting the predicate symbols in the query. Metric first-order temporal
logic can express properties about a sequence of structures that change over time.

2.3.1 Relational Calculus

We introduce the syntax and semantics of RC and define relevant classes of RC queries that
can be evaluated using relational algebra (RA) operations on finite tables. A signature σ is a
triple (C,R, ι), where C and R are disjoint finite sets of constant and predicate symbols, and
the function ι : R → N maps each predicate symbol r ∈ R to its arity ι(r). Let σ = (C,R, ι) be
a signature and V a countably infinite set of variables disjoint from C ∪ R. The syntax of RC
queries Q is defined recursively:

Q ::= false | true | x ≈ t | r(t1, . . . , tι(r)) | ¬Q | Q ∨Q | Q ∧Q | ∃x.Q.

Here, r ∈ R is a predicate symbol, t, t1, . . . , tι(r) ∈ V ∪ C are terms, and x ∈ V is a variable.
We write ∃~v.Q as a shorthand for ∃v1. . . .∃vk. Q and ∀~v.Q for ¬∃~v.¬Q, where ~v is a variable
sequence v1, . . . , vk. If k = 0, then both ∃~v.Q and ∀~v.Q denote the query Q. Quantifiers have
lower precedence than conjunctions and disjunctions, e.g., ∃x.Q1 ∧Q2 means ∃x. (Q1 ∧Q2). We
use ≈ to denote the equality of terms in RC to distinguish it from =, which denotes syntactic
object identity. We also write Q1 −→ Q2 for ¬Q1∨Q2. However, defining Q1∨Q2 as a shorthand
for ¬(¬Q1 ∧ ¬Q2) would complicate later definitions, e.g., the definition of safe-range queries.
We denote by fv(Q) the set of free variables in Q and by ~fv(Q) the sequence of free variables in
Q based on some fixed ordering of variables.

We define the subquery partial order v on queries recursively on the structure of RC queries,
e.g., Q2 is a subquery of the query Q1 ∧ ¬∃y.Q2. One can also view v as the (reflexive and
transitive) subterm relation on the datatype of RC queries. We denote by sub(Q) the set of
subqueries of an RC query Q.

A structure S over a signature (C,R, ι) consists of a non-empty domain D and interpretations
cS ∈ D and rS ⊆ Dι(r), for each c ∈ C and r ∈ R. We assume that all relations rS interpreting
the predicate symbols r ∈ R in a structure S are finite. Note that this assumption does not yield
a finite structure (in the sense of finite model theory [49]) since the domain D can still be infinite.

A (variable) assignment is a mapping α : V → D. We additionally extend α to constant
symbols c ∈ C by defining α(c) = cS . We write α[x 7→ d] for the assignment that maps x to d ∈ D
and is otherwise identical to α. We lift this notation to sequences ~x and ~d of pairwise distinct
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x ≈ x ≡ true, ¬false ≡ true, ¬true ≡ false,
Q ∧ false ≡ false, false ∧Q ≡ false, Q ∧ true ≡ Q, true ∧Q ≡ Q,
Q ∨ false ≡ Q, false ∨Q ≡ Q, Q ∨ true ≡ true, true ∨Q ≡ true,
∃x. false ≡ false, ∃x. true ≡ true.

Figure 2.9. Constant propagation rules.

variables and arbitrary domain elements of the same length. The semantics of RC queries Q for
a structure S and an assignment α, i.e., (S, α) |= Q, is defined in Figure 2.8.

Queries Q1 and Q2 over the same signature are equivalent, written Q1 ≡ Q2, if (S, α) |=
Q1 ⇐⇒ (S, α) |= Q2, for every S and α. Queries Q1 and Q2 over the same signature are
inf-equivalent, written Q1

∞≡ Q2, if (S, α) |= Q1 ⇐⇒ (S, α) |= Q2, for every structure S with an
infinite domain D and every α. Clearly, equivalent queries are also inf-equivalent. However, the
queries ∃x.¬x ≈ c and true are only inf-equivalent. Indeed, the query ∃x.¬x ≈ c does not hold
if the domain is D = {c}.

We write α |= Q for (S, α) |= Q if the structure S is fixed in the given context. For a fixed S,
only the assignments to Q’s free variables influence α |= Q, i.e., α |= Q is equivalent to α′ |= Q,
for every variable assignment α′ that agrees with α on fv(Q). A query Q with no free variables,
i.e., fv(Q) = ∅, is called closed. For closed queries Q, we write |= Q and say that Q holds, since
closed queries either hold for all variable assignments or for none of them. We call a finite
sequence ~d of domain elements d1, . . . dk ∈ D a tuple. Given an RC query Q and a structure S,
we denote the set of satisfying tuples for Q by

JQKS = {~d ∈ D|~fv(Q)| | (S, α[~fv(Q) 7→ ~d]) |= Q, for some assignment α}.

We omit S from JQKS if S is fixed in the given context. We call values from JQKS assigned to
x ∈ fv(Q) as Q’s column x.

The active domain adomS(Q) of an RC query Q and a structure S is a subset of the domain
D containing the interpretations cS of all constant symbols that occur in Q and the values in the
relations rS interpreting all predicate symbols that occur in Q. We omit S from adomS(Q) if S
is fixed in the given context. Since C and R are finite and all rS are finite relations of a finite
arity ι(r), the active domain adomS(Q) is a also finite set.

A query Q is domain-independent if JQKS1 = JQKS2 holds for every two structures S1
and S2 that agree on the interpretations of constants (cS1 = cS2) and predicate symbols
(rS1 = rS2), while their domains D1 and D2 may differ. Agreement on the interpretations
implies adomS1(Q) = adomS2(Q) ⊆ D1 ∩ D2. It is undecidable whether an RC query is domain-
independent [57,76].

Safe-range queries Before defining safe-range queries, we introduce some helper notions and
notation. We introduce constant propagation rules in Figure 2.9. We denote by cp(Q) the
query obtained from a query Q by exhaustively applying the rules in Figure 2.9. Note that
cp(Q) is either of the form false or true or contains neither false nor true as a subquery. The
following definitions introduce substitution of a variable by another variable and removing all
free occurrences of a free variable.
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gen(x, false, ∅);
gen(x,Q, {Q}) if ap(Q) andx ∈ fv(Q);
gen(x,¬¬Q,G) if gen(x,Q,G);
gen(x,¬(Q1 ∨Q2),G) if gen(x, (¬Q1) ∧ (¬Q2),G);
gen(x,¬(Q1 ∧Q2),G) if gen(x, (¬Q1) ∨ (¬Q2),G);
gen(x,Q1 ∨Q2,G1 ∪ G2) if gen(x,Q1,G1) and gen(x,Q2,G2);
gen(x,Q1 ∧Q2,G) if gen(x,Q1,G) or gen(x,Q2,G);
gen(x,Q ∧ x ≈ y,G[y 7→ x]) if gen(y,Q,G);
gen(x,Q ∧ y ≈ x,G[y 7→ x]) if gen(y,Q,G);
gen(x,∃y.Qy, ∃̃y.G) if x 6= y and gen(x,Qy,G).

Figure 2.10. The generated relation for RC.

Definition 2.9. The substitution of the form Q[x 7→ y] is the query cp(Q′) where Q′ is obtained
from a query Q by replacing all occurrences of the free variable x by the variable y, potentially
also renaming bound variables to avoid capture.

Definition 2.10. The substitution of the form Q[x/false] is the query cp(Q′) where Q′ is obtained
from a query Q by replacing with false every atomic predicate or equality containing the free
variable x, except for (x ≈ x) ≡ true.

Queries of the form r(t1, . . . , tι(r)) and x ≈ c are called atomic predicates. We define the
predicate ap(·) characterizing atomic predicates, i.e., ap(Q) is true iff Q is an atomic predicate.
Queries of the form ∃~v. r(t1, . . . , tι(r)) and ∃~v. x ≈ c are called quantified predicates. We denote
by ∃̃x.Q the query obtained by existentially quantifying a variable x from an RC query Q if x is
free in Q, i.e., ∃̃x.Q := ∃x.Q if x ∈ fv(Q) and ∃̃x.Q := Q otherwise. We use ∃̃x.Q (instead of
∃x.Q) when constructing an RC query to avoid introducing bound variables that do not occur
free in Q.

The class of safe-range queries [1] is a decidable subset of domain-independent RC queries. Its
definition is based on the notion of range-restricted variables of an RC query. A variable is called
range-restricted if “its possible values all lie within the active domain of the query” [1, Section 5.4].
Intuitively, atomic predicates restrict the possible values of a variable that occurs in them as a
term. An equality x ≈ y between variables can also extend the set of range-restricted variables
in a conjunction Q ∧ x ≈ y: If x or y is a range-restricted variable in Q, then both x and y
are range-restricted variables in Q ∧ x ≈ y. We formalize range-restricted variables using the
generated relation gen(x,Q,G), defined in Figure 2.10. Specifically, gen(x,Q,G) holds if x is a
range-restricted variable in Q and every satisfying assignment for Q satisfies some quantified
predicate, referred to as generator, from G.

Note that, unlike in a similar definition by Van Gelder and Topor [34, Figure 5] which defines
the rule gen(x,∃y.Qy,G) if x 6= y and gen(x,Qy,G), we modify the rule’s conclusion to existen-
tially quantify the bound variable y from all queries in G where y occurs: gen(x,∃y.Qy, ∃̃y.G).
Hence, gen(x,Q,G) implies fv(G) ⊆ fv(Q). We now formalize these relationships.

Lemma 2.11. Let Q be an RC query, x ∈ fv(Q), and G be a set of quantified predicates such
that gen(x,Q,G). Then (i) x ∈ fv(Qqp) and fv(Qqp) ⊆ fv(Q) hold for every Qqp ∈ G, (ii) for
every S and α such that (S, α) |= Q, there exists Qqp ∈ G such that (S, α) |= Qqp, and (iii)
Q[x/false] = false.
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genvgt(x,Q, {Q}) if ap(Q) andx ∈ fv(Q);
genvgt(x,¬¬Q,G) if genvgt(x,Q,G);
genvgt(x,¬(Q1 ∨Q2),G) if genvgt(x, (¬Q1) ∧ (¬Q2),G);
genvgt(x,¬(Q1 ∧Q2),G) if genvgt(x, (¬Q1) ∨ (¬Q2),G);
genvgt(x,¬∃y.Qy,G) if x 6= y and genvgt(x,¬Qy,G);
genvgt(x,Q1 ∨Q2,G1 ∪ G2) if genvgt(x,Q1,G1) and genvgt(x,Q2,G2);
genvgt(x,Q1 ∧Q2,G) if genvgt(x,Q1,G);
genvgt(x,Q1 ∧Q2,G) if genvgt(x,Q2,G);
genvgt(x,∃y.Qy,G) if x 6= y and genvgt(x,Qy,G);

convgt(x,Q, ∅) if x /∈ fv(Q);
convgt(x,Q, {Q}) if ap(Q) andx ∈ fv(Q);
convgt(x,¬¬Q,G) if convgt(x,Q,G);
convgt(x,¬(Q1 ∨Q2),G) if convgt(x, (¬Q1) and (¬Q2),G);
convgt(x,¬(Q1 ∧Q2),G) if convgt(x, (¬Q1) ∨ (¬Q2),G);
convgt(x,¬∃y.Qy,G) if x 6= y and convgt(x,¬Qy,G);
convgt(x,Q1 ∨Q2,G1 ∪ G2) if convgt(x,Q1,G1) and convgt(x,Q2,G2);
convgt(x,Q1 ∧Q2,G) if genvgt(x,Q1,G);
convgt(x,Q1 ∧Q2,G) if genvgt(x,Q2,G);
convgt(x,Q1 ∧Q2,G1 ∪ G2) if convgt(x,Q1,G1) and convgt(x,Q2,G2);
convgt(x,∃y.Qy,G) if x 6= y and convgt(x,Qy,G).

Figure 2.11. The relations genvgt(x,Q,G) and convgt(x,Q,G) [34, Figure 5].

Definition 2.12. We define gen(x,Q) to hold iff there exists a set G such that gen(x,Q,G). Let
nongens(Q) := {x ∈ fv(Q) | gen(x,Q) does not hold} be the set of free variables in an RC query Q
that are not range-restricted. A query Q has range-restricted free variables if every free variable
of Q is range-restricted, i.e., nongens(Q) = ∅. A query Q has range-restricted bound variables if
the bound variable y in every subquery ∃y.Qy of Q is range-restricted, i.e., gen(y,Qy) holds. A
query is safe-range if it has range-restricted free and range-restricted bound variables.

Evaluable and Allowed Queries The classes of evaluable queries [34, Definition 5.2] and
allowed queries [34, Definition 5.3] are decidable subsets of domain-independent RC queries.
Among queries with no repeated predicate symbols, the evaluable queries characterize exactly
the domain-independent queries [34, Theorem 10.5]. Every evaluable query can be translated to
an equivalent allowed query [34, Theorem 8.6] and every allowed query can be translated to an
equivalent RANF query [34, Theorem 9.6].

Definition 2.13. A query Q is called evaluable if

• every variable x ∈ fv(Q) satisfies genvgt(x,Q) and

• the bound variable y in every subquery ∃y.Qy of Q satisfies convgt(y,Qy).

A query Q is called allowed if

• every variable x ∈ fv(Q) satisfies genvgt(x,Q) and
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function measure(Q) =
switch Q do

case ¬Q′1 do return 2 ·measure(Q′);
case Q′1 ∨Q′2 do return 2 · (measure(Q′1) + measure(Q′2) + 1) ;
case Q′1 ∧Q′2 do return measure(Q′1) + measure(Q′2) + 1;
case ∃x.Qx do return 2 ·measure(Qx);
otherwise do return 1;

Figure 2.12. The measure measure(Q) on RC queries.

• the bound variable y in every subquery ∃y.Qy of Q satisfies genvgt(y,Qy),

where the relation genvgt(x,Q) is defined to hold iff there exists a set G such that genvgt(x,Q,G)
and the relation convgt(x,Q) is defined to hold iff there exists a set G such that convgt(x,Q,G),
respectively. The relations genvgt(x,Q,G) and convgt(x,Q,G) are defined in Figure 2.11.

We relate our definition of gen(x,Q,G) from Figure 2.10 and the definition of genvgt(x,Q,G) by
Van Gelder Topor [34] from Figure 2.11 in the following lemmas. We prove them by induction on
queries using the measure measure(Q), defined in Figure 2.12, that decreases for proper subqueries,
after pushing negation, and after distributing existential quantification over disjunction.

Lemma 2.14. Let x and y be free variables in a query Q such that genvgt(x,¬Q) and genvgt(y,Q)
hold. Then we get a contradiction.

Proof. The lemma is proved by induction on the query Q using the measure measure(Q) on
queries, which decreases in every case of the definition in Figure 2.11. 2

Lemma 2.15. Let Q be a query such that genvgt(y,Qy) holds for the bound variable y in every
subquery ∃y.Qy of Q. Suppose that genvgt(x,Q) holds for a free variable x ∈ fv(Q). Then
gen(x,Q) holds.

Proof. The lemma is proved by induction on the query Q using the measure measure(Q) on
queries, which decreases in every case of the definition in Figure 2.11.

Lemma 2.14 and the assumption that genvgt(y,Qy) holds for the bound variable y in every
subquery ∃y.Qy of Q imply that genvgt(x,Q) cannot be derived using the rule genvgt(x,¬∃y.Qy),
i.e., Q cannot be of the form ¬∃y.Qy. Every other case in the definition of genvgt(x,Q) has a
corresponding case in the definition of gen(x,Q). 2

Lemma 2.16. Let Q be an allowed query, i.e., genvgt(x,Q) holds for every free variable x ∈ fv(Q)
and genvgt(y,Qy) holds for the bound variable y in every subquery ∃y.Qy of Q. Then Q is a
safe-range query, i.e., gen(x,Q) holds for every free variable x ∈ fv(Q) and gen(y,Qy) holds for
the bound variable y in every subquery ∃y.Qy of Q.

Proof. The lemma is proved by applying Lemma 2.15 to every free variable of Q and to the
bound variable y in every subquery of Q of the form ∃y.Qy. 2

Lemma 2.16 shows that every allowed query is safe-range. But there exist safe-range queries
that are not allowed, e.g., B(x) ∧ x ≈ y.
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Safe-range RC

SRNF ENF

RANF

srnf(Q)

sr2ranf(Qsrnf , ∅)

enf(Q)

[27]

sr2ranf(Q)

Figure 2.13. Overview of query normal forms.

Relational Calculus Query Normal Forms In the following paragraphs, we introduce the
following RC query normal forms: safe-range normal form (SRNF), existential normal form
(ENF), and relational algebra normal form. The query normal forms are used to translate
a safe-range query to an equivalent relational algebra expression: a safe-range query is first
translated to an equivalent query in SRNF or ENF and then to an equivalent query in RANF
that can be directly mapped to a relational algebra expression. Note that a query normal form
(SRNF, ENF, and RANF) concerns the query’s structure rather than functional dependencies
between attributes in relations (e.g., as in 1NF, 2NF, 3NF).

The translation of safe-range queries in SRNF or ENF to equivalent RANF queries proceeds
by subquery rewriting using the following rules [1, Algorithm 5.4.7], [27, Lemma 7.8]:

Q ∧ (Q1 ∨Q2) ≡ (Q ∧Q1) ∨ (Q ∧Q2), (R1)
Q ∧ (∃x.Qx) ≡ (∃x.Q ∧Qx), (R2)
Q ∧ ¬Q′ ≡ Q ∧ ¬(Q ∧Q′). (R3)

Figure 2.13 shows an overview of the RC fragments and query normal forms (nodes) and the
functions to translate between them (edges). The dashed edge shows the translation of a safe-
range query to RANF we opt for in this thesis. It is the composition of the two translations from
safe-range RC to SRNF and from SRNF to RANF, respectively. For the sake of completeness,
we also present ENF and an example (Example 2.18) showing that using SRNF can be beneficial
over ENF in terms of the intermediate relation sizes when evaluating the resulting RANF query.

Safe-Range Normal Form A query Q is in safe-range normal form (SRNF) if the query
Q′ in every subquery ¬Q′ of Q is an atomic predicate, equality, or an existentially quantified
query [1]. Figure 2.14 defines the function srnf(Q) that yields a SRNF query equivalent to
a query Q. The function srnf(Q) proceeds by pushing negation [1, Section 5.4], distributing
existential quantifiers over disjunction [34, Rule (T9)], and dropping bound variables that never
occur [34, Definition 9.2]. We include the last two rules to optimize the intermediate relation sizes
when evaluating the equivalent RANF query after translating the SRNF query to RANF. The
termination of the function srnf(Q) follows using the measure measure(Q), defined in Figure 2.12.

A query might be safe-range, but not in safe-range normal form: e.g., the query P2(x, y) ∧
¬(P1(x)∧P1(y)). Moreover, a query might be in safe-range normal form, but not safe-range: e.g.,
the query ¬P1(x). Still, given a safe-range query Q, the function srnf(Q) yields an equivalent
safe-range query in safe-range normal form. We prove this fact in the following lemma that is
also used as a precondition for translating safe-range SRNF queries to RANF queries.

Lemma 2.17. Let Q be a safe-range query. Then srnf(Q) is a safe-range query in SRNF and
gen(x,¬Q′) does not hold for any variable x and subquery ¬Q′ of srnf(Q).
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input: An RC query Q.
output: A SRNF query Qsrnf such that Q ≡ Qsrnf , fv(Q) = fv(Qsrnf ).

1 function srnf(Q) =
2 switch Q do
3 case ¬Q′ do
4 switch Q′ do
5 case ¬Q′′ do return srnf(Q′′);
6 case Q1 ∨Q2 do return srnf((¬Q1) ∧ (¬Q2));
7 case Q1 ∧Q2 do return srnf((¬Q1) ∨ (¬Q2));
8 case ∃~v.Q~v do
9 if ~v ∩ fv(Q~v) = ∅ then return srnf(¬Q~v);

10 else
11 switch srnf(Q~v) do
12 case Q1 ∨Q2 do return srnf((¬∃~v.Q1) ∧ (¬∃~v.Q2));
13 otherwise do return ¬∃~v ∩ fv(Q~v). srnf(Q~v);
14 otherwise do return ¬srnf(Q′);
15 case Q1 ∨Q2 do return srnf(Q1) ∨ srnf(Q2);
16 case Q1 ∧Q2 do return srnf(Q1) ∧ srnf(Q2);
17 case ∃~v.Q~v do
18 switch srnf(Q~v) do
19 case Q1 ∨Q2 do return srnf((∃~v.Q1) ∨ (∃~v.Q2));
20 otherwise do return ∃~v ∩ fv(Q~v). srnf(Q~v);
21 otherwise do return Q;

Figure 2.14. Translation to SRNF.

Proof. The lemma is proved by induction on the query Q using the measure measure(Q) on
queries, which decreases in every recursive call of srnf(Q). Using Figure 2.10, gen(x,¬Q′) can
only hold if ¬Q′ has the form ¬¬Q′′, ¬(Q1 ∨ Q2), or ¬(Q1 ∧ Q2). The SRNF query srnf(Q)
cannot have a subquery ¬Q′ that has any such form. 2

Existential Normal Form Existential normal form (ENF) was introduced by Van Gelder
and Topor [34] to translate an allowed query (Definition 2.13) into an equivalent RANF query.
Given a safe-range query in ENF, the rules (R1)–(R3) can be applied to obtain an equivalent
RANF query [27, Lemma 7.8]. We remark that the rules (R1)–(R3) are not sufficient to yield an
equivalent RANF query for the original definition of ENF [34]. This issue has been identified
and fixed by Escobar-Molano et al. [27]. Unlike SRNF, a query in ENF can have a subquery of
the form ¬(Q1 ∧Q2), but no subquery of the form ¬Q1 ∨Q2 or Q1 ∨ ¬Q2. A function enf(Q)
that yields an ENF query equivalent to a query Q can be defined in terms of subquery rewriting
using the rules in [27, Figure 2]. Although applying the rules (R1)–(R3) to enf(Q) instead of
srnf(Q) may result in a RANF query with fewer subqueries, the intermediate relation sizes when
evaluating the resulting RANF query can be arbitrarily larger. We illustrate this in the following
example that is also included in our artifact [60]. We thus opt for using SRNF instead of ENF
for translating safe-range queries into RANF.

Example 2.18. The safe-range query Qenf := P2(x, y) ∧ ¬(P1(x) ∧ P1(y)) is in ENF and RANF,
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ranf(false); ranf(true);
ranf(Q) if ap(Q);
ranf(¬Q) if ranf(Q) and fv(Q) = ∅;
ranf(Q1 ∨Q2) if ranf(Q1) and ranf(Q2) and fv(Q1) = fv(Q2);
ranf(Q1 ∧Q2) if ranf(Q1) and ranf(Q2);
ranf(Q1 ∧ ¬Q2) if ranf(Q1) and ranf(Q2) and fv(Q2) ⊆ fv(Q1);
ranf(Q ∧ (x ≈ y)) if ranf(Q) and {x, y} ∩ fv(Q) 6= ∅;
ranf(Q ∧ ¬(x ≈ y)) if ranf(Q) and {x, y} ⊆ fv(Q);
ranf(∃x.Qx) if ranf(Qx) andx ∈ fv(Qx).

Figure 2.15. Characterization of RC queries in RANF.

but not SRNF. Applying the rule (R1) to srnf(Qenf ) yields the RANF query Qsrnf := (P2(x, y)∧
¬P1(x)) ∨ (P2(x, y) ∧ ¬P1(y)) that is equivalent to Qenf . The sizes of the intermediate relations
when evaluating these RANF queries over a structure S are 2 · |JP2(x, y)K|+ |JP1(x)K|+ |JP1(y)K|+
2 · |JP1(x) ∧ P1(y)K| + 2 · |JQenf K| and 2 · |JP2(x, y)K| + |JP1(x)K| + 2 · |JP2(x, y)K| + |JP1(y)K| +
2 · |JP2(x, y) ∧ ¬P1(x)K| + 2 · |JP2(x, y) ∧ ¬P1(y)K| + 2 · |JQsrnf K|, respectively. Note that the
intermediate relation sizes for Qenf can be arbitrarily larger if P1(x) ∧ P1(y) evaluates to a large
intermediate result, i.e., |JP1(x) ∧ P1(y)K| � |JP2(x, y)K|. In contrast, the intermediate relation
sizes for Qsrnf can only be larger by a constant factor. 2

Relational Algebra Normal Form Relational algebra normal form (RANF) [1, Section 5.4]
is a class of safe-range queries whose operators can be directly mapped to relational algebra
(RA) operators (e.g., natural joins and projections) and thus evaluated using relational algebra
operations. Figure 2.15 defines the predicate ranf(·) characterizing RC queries in RANF.

The translation [1, Algorithm 5.4.7] of safe-range queries in SRNF to equivalent RANF
queries proceeds by nondeterministically applying the rules (R1)–(R3) to subqueries that satisfy
additional conditions imposed to prevent unnecessary rule applications and to guarantee that the
rewriting terminates. The choices of subqueries and rules applied to them affects the intermediate
relation sizes when evaluating the resulting RANF query. Because enumerating all possible
RANF queries obtained by subquery rewriting is infeasible due to a combinatorial blow-up, we
define a recursive function with a restricted search space to translate a safe-range query in SRNF
to an equivalent RANF query. Our recursive function sr2ranf(Q,Q) propagates subsets of queries
Q throughout the recursion and these subsets can be locally optimized, e.g., by approximating
the intermediate relation sizes when evaluating the resulting RANF queries.

The function sr2ranf(Q,Q) = (Q̂,Q), defined in Figure 2.16, where sr2ranf stands for safe-
range to relational algebra normal form, takes a safe-range query Q∧∧Q∈QQ in SRNF and returns
a RANF query Q̂ such that Q ∧∧Q∈QQ ≡ Q̂ ∧∧Q∈QQ. To restrict variables in Q, the function
sr2ranf(Q,Q) conjoins a subset of queriesQ ⊆ Q toQ. Given a safe-range queryQ, we first convert
it into SRNF and set Q = ∅. Then we define sr2ranf(Q) := Q̂, where (Q̂,_) := sr2ranf(srnf(Q), ∅),
to be a RANF query Q̂ equivalent to Q. The termination of sr2ranf(Q,Q) follows from the
lexicographic measure (2 ·measure(Q) + eqneg(Q) + 2 ·∑Q∈Qmeasure(Q) + 2 · |Q|,measure(Q) +∑
Q∈Qmeasure(Q)), where measure(Q) is defined in Figure 2.12, eqneg(Q) := 1 if Q is an equality

between two variables or the negation of a query, and eqneg(Q) := 0 otherwise.
Next we describe the definition of sr2ranf(Q,Q), inspired by the rules (R1)–(R3) and [1,

Algorithm 5.4.7]. Note that no constant propagation (Figure 2.9 in Section 2.3.1) is needed
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input: A safe-range RC query Q ∧∧Q∈QQ such that gen(x,¬Q′) does not hold for any
variable x and subquery ¬Q′.

output: A RANF query Q̂ and a subset of queries Q ⊆ Q such that
Q ∧

∧
Q∈QQ ≡ Q̂ ∧

∧
Q∈QQ; for all S and α, (S, α) |= Q̂ =⇒ (S, α) |= ∧

Q∈QQ

holds; Q̂ = cp(Q̂); and fv(Q) ⊆ fv(Q̂) ⊆ fv(Q) ∪ fv(Q), unless Q̂ = false.
1 function sr2ranf(Q,Q) =
2 if ranf(Q) then return (cp(Q), ∅);
3 switch Q do
4 case x ≈ y do return sr2ranf(x ≈ y ∧∧Q∈QQ, ∅);
5 case ¬Q′ do
6 Q ← {Q ⊆ Q | (¬Q′) ∧∧Q∈QQ is safe-range};
7 if Q = ∅ then
8 (Q̂′,_) := sr2ranf(Q′, ∅);
9 return (cp(¬Q̂′), ∅);

10 else return sr2ranf((¬Q′) ∧∧Q∈QQ, ∅);
11 case Q1 ∨Q2 do
12 Q ← {Q ⊆ Q |

∨
Q′∈flat∨(Q)(Q′ ∧

∧
Q∈QQ) is safe-range};

13 foreach Q′ ∈ flat∨(Q) do (Q̂′,_) := sr2ranf(Q′ ∧∧Q∈QQ, ∅);
14 return (cp(∨Q′∈flat∨(Q) Q̂

′),Q);
15 case Q1 ∧Q2 do
16 Q− := {Q′ ∈ flat∧(Q) ∪Q | neg(Q′)}; Q+ := (flat∧(Q) ∪Q)−Q−;
17 Q≈ := {Q′ ∈ Q+ | eq(Q′)}; Q+ := Q+ −Q≈;
18 Q6≈ := {¬Q′ ∈ Q− | eq(Q′)}; Q− := Q− −Q 6≈;
19 foreach Q′ ∈ Q+ do (Q̂′,QQ′) := sr2ranf(Q′, (Q+ ∪Q≈)− {Q′}) ;
20 foreach ¬Q′ ∈ Q− do (Q̂′,_) := sr2ranf(Q′,Q+ ∪Q≈) ;
21 Q ← {Q ⊆ Q+ | Q+ ⊆

⋃
Q′∈Q(QQ′ ∪ {Q′})};

22 return (cp(sort∧(⋃Q′∈Q{Q̂′} ∪ Q≈ ∪⋃¬Q′∈Q−{¬Q̂′} ∪ Q 6≈)),⋃
Q′∈Q(QQ′ ∩Q));

23 case ∃~v.Q~v do
24 if fv(Q) ∩ ~v 6= ∅ then ~w ← {~w | |~w| = |~v| and ((fv(Q~v)− ~v) ∪ fv(Q)) ∩ ~w = ∅};
25 else ~w := ~v;
26 Q~w := Q~v[~v 7→ ~w];
27 Q ← {Q ⊆ Q | Q~w ∧

∧
Q∈QQ is safe-range};

28 (Q̂~w,_) := sr2ranf(Q~w ∧
∧
Q∈QQ, ∅);

29 return (cp(∃~w. Q̂~w),Q);
30 otherwise do return (cp(Q), ∅);

Figure 2.16. Translation of safe-range SRNF to RANF.

in [1, Algorithm 5.4.7], because the constants false and true are not in the textbook’s query
syntax [1, Section 5.3]. Because gen(x, false) holds and x /∈ fv(false), we need to perform constant
propagation to guarantee that every disjunct in a disjunction has the same set of free variables
(e.g., the query false∨B(x) must be translated to B(x) to be in RANF). We flatten the disjunction
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and conjunction using flat∨(·) and flat∧(·), respectively. Formally, the function flat⊕(Q), where
⊕ ∈ {∨,∧}, computes the following set of queries: flat⊕(Q) := flat⊕(Q1)∪flat⊕(Q2) ifQ = Q1⊕Q2
and flat⊕(Q) := {Q} otherwise. In the case of a conjunction Q∧, we first split the queries from
flat∧(Q∧) and Q into queries Q+ that do not have the form of a negation and queries Q− that
do. Then we take out equalities between two variables and negations of equalities between two
variables from the sets Q+ and Q−, respectively. To partition flat∧(Q∧) ∪ Q this way, we define
the predicates neg(Q) and eq(Q) characterizing equalities between two variables and negations,
respectively, i.e., neg(Q) is true iff Q has the form ¬Q′ and eq(Q) is true iff Q has the form
x ≈ y. Finally, the function sort∧(Q) converts a set of queries into a conjunction in RANF (in
particular, a left-associative conjunction). Note that the function sort∧(Q) must place the queries
x ≈ y so that either x or y is free in some preceding conjunct, e.g., B(x) ∧ x ≈ y ∧ y ≈ z is in
RANF, but B(x) ∧ y ≈ z ∧ x ≈ y is not. In the case of an existentially quantified query ∃~v.Q~v,
we rename the variables ~v to avoid clash of the free variables in the set of queries Q with the
bound variables ~v.

Query Cost To assess the time complexity of evaluating a RANF query Q, we define the
cost of Q over a structure S, denoted costS(Q), to be the sum of intermediate relation sizes
over all RANF subqueries of Q. Formally, costS(Q) := ∑

Q′vQ, ranf(Q′)

∣∣∣JQ′KS ∣∣∣ · |fv(Q′)|. This
corresponds to evaluating Q following its RANF structure using the RA operations for projection,
column duplication, selection, set union, binary join, and anti-join. The complexity of these
operations is linear in the combined input and output size (ignoring logarithmic factors due to
set operations). The output size (the number of tuples times the number of variables) is counted
in
∣∣∣JQ′KS ∣∣∣ · |fv(Q′)| and the input size is counted as the output size for the input subqueries.

Repeated subqueries are only considered once, which does not affect the asymptotics of query
cost. In practice, the evaluation results for common subqueries can be reused.

2.3.2 Metric First-Order Temporal Logic

We introduce the syntax and semantics of MFOTL and define relevant classes of MFOTL queries.
We obtain MFOTL by combining MTL and RC, i.e., first-order logic (FOL). Let (C,R, ι) be a
signature and V a countably infinite set of variables disjoint from C ∪ R. The syntax of MFOTL
queries Q is defined recursively:

Q ::= false | true | x ≈ t | r(t1, . . . , tι(r)) | ¬Q | Q ∨Q | Q ∧Q | ∃x.Q |
 I Q | #I Q | Q SI Q | Q UI Q.

Here, r ∈ R is a predicate symbol, t, t1, . . . , tι(r) ∈ V ∪ C are terms, x ∈ V is a variable, and I ∈ I
is an interval. We employ the usual syntactic sugar: �I Q = true SI Q (once), �I Q = ¬�I ¬Q
(historically), ♦I Q = true UI Q (eventually), and �I Q = ¬♦I ¬Q (always).

A temporal structure S̄ over a signature (C,R, ι) consists of a non-empty domain D, inter-
pretations cS̄ ∈ D, for each c ∈ C, and an infinite stream ρS̄ = 〈(Γi, τi)〉i∈N. We assume that
the observed system behaviour is a finite prefix ρS̄<` = (ρS̄i )i<` (called a trace) of the infinite
stream ρS̄ = 〈(Γi, τi)〉i∈N in a temporal structure S̄. The stream is an infinite sequence of
time-points i ∈ N, each consisting of a database Γi ⊆ R×D∗ and a time-stamp τi ∈ Tfin. The
database Γi contains named tuples of domain values (r, ~d), where r ∈ R and |~d| = ι(r), which
provide interpretations of the predicate symbols at the time-point i ∈ N. We make the same
assumptions on the time-stamps τi (e.g., monotonicity) as for MTL and MDL. Basin et al. [10]
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(S̄, α, i) 6|= false; (S̄, α, i) |= true;
(S̄, α, i) |= (x ≈ t) iff α(x) = α(t);
(S̄, α, i) |= r(t1, . . . , tι(r)) iff (r, (α(t1), . . . , α(tι(r)))) ∈ Γi;
(S̄, α, i) |= (¬Q) iff not (S̄, α, i) |= Q;
(S̄, α, i) |= (Q1 ∨Q2) iff (S̄, α, i) |= Q1 or (S̄, α, i) |= Q2;
(S̄, α, i) |= (Q1 ∧Q2) iff (S̄, α, i) |= Q1 and (S̄, α, i) |= Q2;
(S̄, α, i) |= (∃x.Q) iff (S̄, α[x 7→ d], i) |= Q, for some d ∈ D;
(S̄, α, i) |=  I Q iff i > 0 and mem(τi−1, τi, I) and (S̄, α, i− 1) |= Q;
(S̄, α, i) |= #I Q iff mem(τi, τi+1, I) and (S̄, α, i+ 1) |= Q;
(S̄, α, i) |= Q1 SI Q2 iff j exists with j ≤ i and mem(τj , τi, I) and (S̄, α, j) |= Q2 and

(S̄, α, k) |= Q1, for all j < k ≤ i;
(S̄, α, i) |= Q1 UI Q2 iff j exists with j ≥ i and mem(τi, τj , I) and (S̄, α, j) |= Q2 and

(S̄, α, k) |= Q1, for all i ≤ k < j.

Figure 2.17. Semantics of MFOTL.

gen(x, I Q, { I Qtqp | Qtqp ∈ G}) if gen(x,Q,G);
gen(x,#I Q, {#I Qtqp | Qtqp ∈ G}) if gen(x,Q,G);
gen(x,Q1 SI Q2, {�I Qtqp | Qtqp ∈ G}) if gen(x,Q2,G);
gen(x,Q1 UI Q2, {♦I Qtqp | Qtqp ∈ G}) if gen(x,Q2,G).

Figure 2.18. The temporal generated relation for MFOTL. The cases in the generated relation
for RC are omitted here.

define a temporal structure as a sequence of (first-order) structures with the same domains
and interpretations of constant symbols. Our definition of a temporal structure avoids these
assumptions.

The semantics of MFOTL queries Q for a temporal structure S̄ and a variable assignment α
at a time-point i ∈ N, i.e., (S̄, α, i) |= Q, is defined in Figure 2.17. Queries Q1 and Q2 over the
same signature are equivalent, written Q1 ≡ Q2, if (S̄, α, i) |= Q1 ⇐⇒ (S̄, α, i) |= Q2, for every S̄,
α, and i. Given an MFOTL query Q and a temporal structure S̄, we denote the set of satisfying
tuples for Q at a time-point i by

JQKS̄i = {~d ∈ D|~fv(Q)| | (S̄, α[~fv(Q) 7→ ~d], i) |= Q, for some assignment α}.

An MFOTL query Q is domain-independent if JQKS̄1
i = JQKS̄2

i holds for all time-points i ∈ N
and for every two temporal structures S̄1 and S̄2 that agree on the interpretations of constants
(cS̄1 = cS̄2) and predicate symbols (ρS̄1 = ρS̄2), while their domains D1 and D2 may differ. It is
undecidable whether an MFOTL query is domain-independent because it is undecidable whether
an RC query is domain-independent [57, 76] and MFOTL extends RC. We do not extend the
notion of the active domain from RC to MFOTL.

Safe-range MFOTL queries We introduce the following additional constant propagation
rules for MFOTL:

 I false ≡ false, #I false ≡ false, Q SI false ≡ false, Q UI false ≡ false.

We do not introduce any additional constant propagation rules for true and the left-hand sides
of SI and UI because such rules cannot yield constants (false or true) in general.
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ranf( I Q) if ranf(Q);
ranf(#I Q) if ranf(Q);
ranf(Q1 SI Q2) if ranf(Q1) and ranf(Q2) and fv(Q2) ⊆ fv(Q1);
ranf(¬Q1 SI Q2) if ranf(Q1) and ranf(Q2) and fv(Q2) ⊆ fv(Q1);
ranf(Q1 UI Q2) if ranf(Q1) and ranf(Q2) and fv(Q2) ⊆ fv(Q1);
ranf(¬Q1 UI Q2) if ranf(Q1) and ranf(Q2) and fv(Q2) ⊆ fv(Q1).

Figure 2.19. Characterization of MFOTL queries in RANF. The cases in the characterization
of RC queries in RANF are omitted here.

A temporal quantified predicate is an atomic predicate to which a sequence of unary temporal
operators  I , #I , �I , ♦I and existential quantifications ∃x. is applied in some order. Formally,
an atomic predicate is a temporal quantified predicate and if Qtqp is a temporal quantified
predicate, then  I Qtqp, #I Qtqp, �I Qtqp, ♦I Qtqp, and ∃x.Qtqp are temporal quantified
predicates, for every I ∈ I and x ∈ V. We extend the notion of range-restricted variables
to MFOTL and extend the generated relation gen(x,Q,G), defined for RC in Figure 2.10, to
temporal generated relation for MFOTL in Figure 2.18. The set G in gen(x,Q,G) for MFOTL is a
set of temporal quantified predicates. We also generalize Lemma 2.11 to MFOTL. Definition 2.12
of safe-range RC queries immediately extends to MFOTL.

Lemma 2.19. Let Q be an MFOTL query, x ∈ fv(Q), and G be a set of temporal quantified
predicates such that gen(x,Q,G). Then (i) x ∈ fv(Qtqp) and fv(Qtqp) ⊆ fv(Q) hold for every
Qtqp ∈ G, (ii) for every S̄, α, and i such that (S̄, α, i) |= Q, there exists Qtqp ∈ G such that
(S̄, α, i) |= Qtqp, and (iii) Q[x/false] = false.

Relational Algebra Normal Form Relational algebra normal form (RANF) for MFOTL
queries is a class of safe-range MFOTL queries that can be directly evaluated using relational
algebra operations. Figure 2.19 extends the predicate ranf(·) characterizing RC queries in RANF
to MFOTL queries. The cases of temporal operators in Figure 2.19 match the corresponding
cases in the definition of the monitorable fragment of MFOTL by Schneider et al. [71]. We omit
the cases Q≈ SI Q and Q≈ UI Q, Q≈ ∈ {x ≈ y,¬(x ≈ y)}, because these MFOTL queries can be
equivalently expressed as

Q≈ SI Q ⇐⇒
{
Q ∨ ((�I Q) ∧Q≈) if 0 ∈ I,
(�I Q) ∧Q≈ otherwise;

Q≈ UI Q ⇐⇒
{
Q ∨ ((♦I Q) ∧Q≈) if 0 ∈ I,
(♦I Q) ∧Q≈ otherwise;

and the RANF conditions would be derived from the equivalent formulations.

Progress Given a trace ρS̄<` (a finite prefix of a temporal structure S̄), a domain D, interpreta-
tions cS̄ of constant symbols c ∈ C, and an MFOTL query Q, it might not be possible to compute
JQKS̄j for all time-points j < `, e.g., if Q contains future temporal operators #I or UI . Hence, we
define the progress prog(Q, τ) of an MFOTL query Q on a monotone sequence of time-stamps τ
to be the number of time-points j, j < prog(Q, τ), for which it is possible to compute JQKS̄j when
given, for all k < |τ |, the time-points τk = τk and databases Γk of S̄, the domain D, and the
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input: An MFOTL query Q and a monotone sequence τ of time-stamps.
output: The number of time-points j for which JQKS̄j can be computed given, for all

k < |τ |, the time-points τk = τk and databases Γk of S̄, the domain D, and the
interpretations cS̄ of constant symbols c ∈ C.

1 function prog(Q, τ) =
2 switch Q do
3 case ∃x.Qx do return prog(Qx, τ);
4 . . .

Figure 2.20. The function prog(Q, τ).

interpretations cS̄ of constant symbols c ∈ C. We extend the function prog(φ, τ) on well-formed
MDL formulas, defined in Figure 2.5, to MFOTL queries in Figure 2.20 and capture its core
property in the following lemma.

Lemma 2.20. Let Q be an MFOTL query and τ be a monotone sequence of time-stamps. Then
JQKS̄1

j = JQKS̄2
j holds for all time-points j < prog(Q, τ) and for every two temporal structures S̄1

and S̄2 that agree on their domains (D1 = D2), on the interpretations of constants (cS̄1 = cS̄2),
and, for all k < |τ |, on the entries ρS̄1

k = ρS̄2
k of the infinite streams ρS̄1 and ρS̄2, where τk = τk.

We observe that the maximum possible value of prog(Q, τ) for which Lemma 2.20 holds is
not computable. To this end, we show that it is undecidable if such a maximum possible value of
prog(Q, τ) is zero: Given an arbitrary RC query Q, we first determine a variable x that does not
occur free in Q and a unary predicate symbol r that does not occur in Q. We then consider the
query (#[0,∞] r(x)) ∧ Q. If Q is not satisfiable, then

q
(#[0,∞] r(x)) ∧Q

yS̄
0 = ∅ holds for every

temporal structure S̄ and thus the maximum possible value of prog((#[0,∞] r(x)) ∧Q, τ), where
|τ | = 1, equals one. If Q is satisfiable, then

q
(#[0,∞] r(x)) ∧Q

yS̄
0 contains the tuples from JQKS̄0

extended by the values d for x satisfying r(x) at the next time-point 1, i.e., such that (r, d) ∈ Γ1.
Hence, the maximum possible value of prog((#[0,∞] r(x)) ∧ Q, τ), where |τ | = 1, equals zero.
Because it is undecidable if an arbitrary RC query Q is satisfiable, it is also undecidable if the
maximum possible value of prog(Q, τ) is zero.

Query Cost To assess the time complexity of evaluating an MFOTL query Q in RANF, we
define the temporal query cost of Q over a trace ρS̄<` (a finite prefix of a temporal structure S̄),
denoted as costS̄<`(Q), to be the sum of intermediate result sizes over all RANF subqueries Q′ of Q
and all time-points j < ` at which Q′ can be evaluated given the trace ρS̄<`. We approximate these
time-points j using the notion of progress: we consider the time-points j < prog(Q′, (τk)k<`),
where (τk)k<` is the monotone sequence of time-stamps from the trace ρS̄<`. Formally,

costS̄<`(Q) :=
∑

Q′vQ, ranf(Q′)
j<prog(Q′,(τk)k<`)

∣∣∣∣qQ′yS̄j
∣∣∣∣ · ∣∣fv(Q′)

∣∣.
This corresponds to evaluating Q by a monitoring algorithm following the query’s RANF structure
using the RA operations (e.g., natural joins and projections) for nontemporal operators and an
algorithm for evaluating temporal operators whose time complexity is linear in the combined
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input and output size of the tables satisfying the temporal operator and its arguments (ignoring
logarithmic factors due to set operations). Such an algorithm clearly exists for the temporal
operators  I and #I whose evaluation merely requires to shift the tables in time and we show a
suitable evaluation algorithm for the temporal operators SI and UI in Section 4.4.
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Chapter 3

Multi-Head Monitoring

3.1 Introduction

In this chapter, we develop multi-head monitoring algorithms for metric temporal logic (MTL)
and metric dynamic logic (MDL). We first describe how a multi-head monitor can be derived
from the online monitor by Basin et al. [7]. We turn their monitor into a nondeterministic finite
transducer and then simulate its nondeterministic computation deterministically with mutliple
reading heads. This preliminary multi-head monitor inspired the development of an optimized
multi-head monitor that we formally describe in the subsequent sections. We have implemented
the optimized multi-head monitor for MTL and MDL, empirically confirmed that its performance
improves upon existing approaches, and formally verified its correctness using the Isabelle/HOL
proof assistant.

A finite transducer is a finite-state machine that sequentially reads some input, updates its
state, and produces some output at every step. Let us suppose that the time-stamps (elements
τ ∈ T) in the trace are represented such that the interval condition for every pair of time-points
can be checked in constant space (e.g., if the time-stamps are natural numbers T = N, they can
be represented by the time-stamp differences between consecutive time-points). Then the online
monitor by Basin et al. [7] can be interpreted as a deterministic finite transducer for a fixed
formula that works as follows: Given a fixed formula, it maintains a buffer that stores a Boolean
expression for every time-point for which the monitor has not produced any verdict yet. The
Boolean expression is a propositional formula that represents the dependency of the verdict on
future time-points. At every step, the monitor updates the Boolean expressions in the buffer
and computes a Boolean expression for the current time-point. If the Boolean expression for
the current time-point is equivalent to a Boolean value, then the monitor outputs this Boolean
value as the Boolean verdict for the current time-point. Otherwise, it buffers the Boolean
expression for the current time-point. Finally, the monitor produces equivalence verdicts for
buffered time-points that have a matching time-point with an equivalent Boolean expression in
the buffer and Boolean verdicts for buffered time-points whose Boolean expressions are equivalent
to a Boolean value. The monitor also removes the entries for the time-points from the buffer
for which a (equivalence or Boolean) verdict was produced. An equivalence verdict denotes the
fact that the Boolean verdicts (to be determined later) for the time-points related by the verdict
are equal. This way, no pair of Boolean expressions are equivalent. For a fixed formula, there
are only finitely many possible Boolean expressions that are pairwise not equivalent. Hence, the
buffer has constant size (independent of the observed events) and the monitor is indeed a finite
transducer. We remark that a finite transducer cannot store a sequence number that refers to a
buffered time-point and thus we assume that the monitor refers to these time-points relatively
to the set of buffered time-points for which no verdict has been produced yet, e.g., as the first
buffered time-point, the second buffered time-point etc.

The deterministic finite transducer produces equivalence verdicts (in addition to Boolean
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verdicts) and it does not necessarily produce the verdicts in the order in which the corresponding
time-points appear in the trace. Hence, we turn the deterministic finite transducer into a
nondeterministic one that produces a sequence of Boolean verdicts for every time-point in
the order in which the time-points appear in the trace. The nondeterministic transducer
nondeterministically guesses and outputs a Boolean verdict for the current time-point even if
the Boolean expression for the current time-point is not equivalent to a Boolean value. The
guesses are always stored together with the Boolean expressions in the buffer and the output is
rejected if the monitor discovers an inconsistency (a Boolean expression becomes equivalent to
a Boolean value that does not match the guess or two Boolean expressions in the buffer with
distinct guesses become equivalent). Unfortunately, a nondeterministic finite transducer cannot
be directly implemented in a real-world system. Hence, we simulate a nondeterministic finite
transducer by a deterministic one that uses multiple reading heads to read the input. The core
of the simulation is the all-suffix regular matching problem, which is the problem of deciding
for each suffix of an input word whether it is accepted by a finite automaton. We show that
a multi-head deterministic finite transducer can solve this problem by maintaining a bounded
collection of automaton runs that yield unique states at the current position in the input word.
In the context of monitoring, we adapt this approach to our window data structure (Section 3.2.2)
for matching MDL regular expressions. In the context of finite transducers, we provide a detailed
description of the simulation in [66].

We replace the window data structure by custom data structures tailored to the MTL
operators to achieve a better time and space complexity for MTL. To analyze the time and
space complexity, we assume that time-points (natural numbers whose magnitude is at most
the trace length `) and time-stamps (elements τ ∈ T) can be manipulated in constant time and
stored in constant space. Then the time and space complexity of our monitors is linear in the
number of subformulas for MTL and exponential for MDL. In practice, however, formulas are
small, while traces are huge. It usually poses no problem for monitors to be exponential in the
number of subformulas, whereas a linear dependence on the event-rate or on the magnitude of
time constraints is prohibitive. Our monitors are event-rate independent and their time and
space complexity does not depend on the magnitude of time constraints, i.e., their time and
space complexity is interval-oblivious.

3.2 Multi-Head Monitoring Algorithm

A multi-head monitor uses multiple reading heads that read a trace forwards. In the following, let
us fix a trace ρ<` = 〈(Γi, τi)〉i<`. We model a reading head h over the trace ρ<` as an object from a
set H. The content of the trace ρ<` can be accessed via a function advh : H→ (H×T×P(Σ))∪{⊥}
applied iteratively to the reading head inith, inith ∈ H, positioned at the initial time-point of the
trace ρ<`. Given a reading head h, the function advh yields a special value ⊥, i.e., advh(h) = ⊥,
if the reading head h has reached the time-point `, i.e., the end of the (finite) trace, and no more
time-point can be provided. Otherwise, if the reading head h has reached the time-point i < `,
then advh(h) = (h′, τi,Γi), where h′ is the reading head advanced to the next time-point. We
also use a function readh : H→ T ∪ {⊥} to read the time-stamp of the same time-point several
times in a row without advancing the reading head. We use this interface (inith, advh, and readh)
in our monitoring algorithm to enforce that the monitoring algorithm is not reading time-points
arbitrarily, but using a (constant) number of reading heads that read the time-points forwards.

We model a multi-head monitor’s state for a formula φ over a trace ρ<` as an object from a
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set M. Given a formula φ, the function initm(φ) yields the initial state of our multi-head monitor
for the formula φ over the trace ρ<`. In particular, the function initm(φ) uses inith to get reading
heads positioned at the initial time-point of the trace ρ<`. The verdicts of our monitor can be
obtained via the function advm : M→ (M× T× B) ∪ {⊥} applied iteratively to the initial state
of the monitor initm(φ), initm(φ) ∈ M, where B = {tt,ff} are Boolean values. Given a state of
the monitor m, the function advm yields a special value ⊥, i.e., advm(m) = ⊥, if the monitor
cannot compute any verdict, e.g., because it would require further time-points beyond the end of
the (finite) trace. Otherwise, if the monitor has reached the state m from the initial state for
the formula φ after producing i verdicts, then advm(m) = (m′, τi, βi), where m′ is the next state
of the monitor and βi is equivalent to (ρ, i) |= φ. We remark that our multi-head monitor may
output ⊥ even if the trace implies a unique Boolean verdict for the formula, e.g., if the formula
is a tautology. Still, our monitor’s completeness theorem (Section 3.2.4) states that it outputs a
verdict for a time-point if the reading heads could read sufficiently many time-points afterwards.

In the following, we formally define the set of our multi-head monitor’s states M, we define
the function initm computing the initial state of the monitor for a formula φ, and the function
advm computing Boolean verdicts.

We present our multi-head monitor for MTL in Section 3.2.1, our window data structure
for matching MDL regular expressions in Section 3.2.2, our multi-head monitor for MDL in
Section 3.2.3, and our monitors’ correctness and complexity analyses in Sections 3.2.4 and 3.2.5,
respectively.

3.2.1 MTL Monitor

The set of our multi-head MTL monitor’s states is defined as the smallest set satisfying the
following:

M = {⊥} ∪
(Σ×H) ∪
({¬} ×M) ∪
({∨} ×M×M) ∪
({ I} ×M×H× ((T× B) ∪ {⊥})) ∪
({#I} ×M×H× (T ∪ {⊥})) ∪
({SI} ×M×M×H×N×N× (N ∪ {⊥})× (T ∪ {⊥})) ∪
({UI} ×H×M×M×H×N× ((T× B× B) ∪ {⊥})).

The first component of every monitor’s state (except ⊥) denotes the main operator of the
monitored formula or the atomic proposition p ∈ Σ to be monitored. The meaning of the
remaining components is explained in the following paragraphs. We remark that ⊥ is also a
state of the monitor used if a verdict can still be computed, but no proper next state of the
monitor can be computed (e.g., because the reading head reached the end of the trace).

We formally define the initialization function initm in Figure 3.1 and the function advm
advancing the monitor’s state and computing verdicts in Figure 3.2. The functions computing
verdicts for the MTL temporal operators  I φ0, #I φ0, φ1 SI φ2, and φ1 UI φ2 are defined
separately in Figure 3.3, 3.4, 3.5, and 3.6. They recursively evaluate advm for the submonitors.

Atomic Propositions and Boolean Operators For an atomic proposition p ∈ Σ, a sim-
ple one-head monitor with the state (p, h) reads the trace with a head h and computes the
corresponding Boolean verdicts by checking if p ∈ Γi (Figure 3.2).
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context: A reading head inith positioned at the initial time-point of a trace.
input: A bounded-future MTL formula φ.
output: The initial state initm(φ) ∈M of our multi-head monitor.

1 function initm(φ) =
2 switch φ do
3 case p do return (p, inith);
4 case ¬φ0 do return (¬, initm(φ0));
5 case φ1 ∨ φ2 do return (∨, initm(φ1), initm(φ2));
6 case  I φ0 do return ( I , initm(φ0), inith,⊥);
7 case #I φ0 do return (#I , initm(φ0), inith,⊥);
8 case φ1 SI φ2 do return (SI , initm(φ1), initm(φ2), inith, 0, 0,⊥,⊥);
9 case φ1 UI φ2 do return (UI , inith, initm(φ1), initm(φ2), inith, 0,⊥);

Figure 3.1. The initial state of our multi-head monitor initm(φ) for an MTL formula φ.

A monitor for a Boolean operator recursively consists of monitors for the subformulas of the
Boolean operator. The state (∨,m1,m2) of the monitor for a formula φ1 ∨ φ2 consists of two
submonitors for the subformulas φ1 and φ2. The submonitors for φ1 and φ2 are synchronous, i.e.,
the submonitors are evaluated in rounds producing verdicts for the same time-point. Analogously,
the state (¬,m0) of the monitor for a formula ¬φ0 consists of a single submonitor for the
subformula φ0. The verdicts for a Boolean operator are computed by applying the Boolean
operator to the verdicts computed recursively by the submonitors (Figure 3.2).

Previous and Next MTL Temporal Operators A monitor for a unary MTL temporal
operator  I φ0 (Figure 3.3) or #I φ0 (Figure 3.4) uses a submonitor for the subformula φ0 to
shift the sequence of Boolean values from the submonitor’s verdicts by a single time-point either
in the past or in the future while replacing the Boolean values by ff at time-points for which
the interval condition is not met. The state of the monitor consists of a submonitor m0 for the
subformula φ0 (used to compute the Boolean verdicts for φ0), a time-stamp (used to check the
interval condition from the semantics of the temporal operator), and a Boolean value from the
previous verdict (the Boolean value from the previous verdict is only needed for the  I operator).
Before reading the first verdict, the time-stamp and the Boolean value from the previous verdict
are initialized to ⊥. To be able to compute a verdict for  I φ0 or #I φ0 if the submonitor for
φ0 could not produce a verdict, but the interval condition is not met, the monitor for  I φ0
and #I φ0 uses an additional reading head h to check the interval condition independently of
the submonitor for φ0. Formally, the state for the  I operator is ( I ,m0, h, z), where z is the
time-stamp and Boolean value from the previous time-point (or ⊥ if there is no such time-point
yet), and ( I ,m0, h, τ̃0), where τ̃0 is the time-stamp from the previous time-point (or ⊥ if there
is no such time-point yet).

Since MTL Temporal Operator A monitor for the binary MTL temporal operator φ1 SI φ2
(Figure 3.5) uses two submonitors (for the subformulas φ1 and φ2) that are asynchronous, i.e., the
submonitors are not evaluated in rounds producing verdicts for the same time-point (as it was the
case for the binary Boolean operators). Formally, its state is (SI ,m1,m2, h, c1, c2, c̃

+
2 , τ̃

+
2 ). The

submonitor m1 for φ1 produces a verdict for the time-point i at which the monitor for φ1 SI φ2
produces a verdict. This way, the monitor for φ1 SI φ2 can maintain the number c1 of time-points
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context: A function advh : H→ (H× T× P(Σ)) ∪ {⊥} to read a time-point using a
reading head and advance the reading head, a function readh : H→ T ∪ {⊥} to
only read the time-stamp of a time-point using a reading head (without
advancing the reading head).

input: A state m ∈M of our multi-head monitor.
output: A tuple (m′, τ, β) or ⊥ if no verdict can be computed, where m′ ∈M is the

next state of our multi-head monitor and (τ, β) ∈ T× B is the Boolean verdict
for the current time-point.

1 function advm(m) =
2 switch m do
3 case (p, h) do
4 switch advh(h) do
5 case (h′, τ,Γ) do return ((p, h′), τ, p ∈ Γ);
6 case ⊥ do return ⊥;
7 case (¬,m0) do
8 switch advm(m0) do
9 case (m′0, τ, β) do return ((¬,m′0), τ, not β);

10 case ⊥ do return ⊥;
11 case (∨,m1,m2) do
12 switch advm(m1) do
13 case (m′1, τ1, β1) do
14 switch advm(m2) do
15 case (m′2,_, β2) do return ((∨,m′1,m′2), τ1, β1 or β2);
16 case ⊥ do return ⊥;
17 case ⊥ do return ⊥;
18 case ( I ,_,_,_) do return doPrev(advm,m);
19 case (#I ,_,_) do return doNext(advm,m);
20 case (SI ,_,_,_,_,_,_,_) do return doSince(advm,m);
21 case (UI ,_,_,_,_,_,_) do return doUntil(advm,m);
22 case ⊥ do return ⊥;

Figure 3.2. The function advm computing verdicts of our MTL multi-head monitor.
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context: A function advh : H→ (H× T× P(Σ)) ∪ {⊥} to read a time-point using a
reading head and advance the reading head, a function readh : H→ T ∪ {⊥} to
only read the time-stamp of a time-point using a reading head (without
advancing the reading head).

input: A state m ∈M of our multi-head monitor for  I φ and the function
advm : M→ (M× T× B) ∪ {⊥} computing verdicts for submonitors of m.

output: A tuple (m′, τ, β) or ⊥ if no verdict can be computed, where m′ ∈M is the
next state of our multi-head monitor and (τ, β) ∈ T× B is the Boolean verdict
for the current time-point.

1 function doPrev(advm, ( I ,m0, h, z)) =
2 switch advh(h) do
3 case (h′, τ,_) do
4 switch z do
5 case (τ0, β0) do β := β0 and mem(τ0, τ, I);
6 case ⊥ do β := ff;
7 switch advm(m0) do
8 case (m′0,_, β′) do return (( I ,m′0, h′, (τ, β′)), τ, β);
9 case ⊥ do return (⊥, τ, β);

10 case ⊥ do return ⊥;
Figure 3.3. The function doPrev(advm,m) computing verdicts for  I φ.

context: A function advh : H→ (H× T× P(Σ)) ∪ {⊥} to read a time-point using a
reading head and advance the reading head, a function readh : H→ T ∪ {⊥} to
only read the time-stamp of a time-point using a reading head (without
advancing the reading head).

input: A state m ∈M of our multi-head monitor for #I φ and the function
advm : M→ (M× T× B) ∪ {⊥} computing verdicts for submonitors of m.

output: A tuple (m′, τ, β) or ⊥ if no verdict can be computed, where m′ ∈M is the
next state of our multi-head monitor and (τ, β) ∈ T× B is the Boolean verdict
for the current time-point.

1 function doNext(advm, (#I ,m0, h, τ̃0)) =
2 switch advh(h) do
3 case (h′, τ,_) do
4 if τ̃0 = ⊥ then
5 switch advm(m0) do
6 case (m′0,_,_) do return doNext(advm, (#I ,m′0, h′, τ));
7 case ⊥ do return ⊥;
8 switch advm(m0) do
9 case (m′0,_, β) do return ((#I ,m′0, h′, τ)), τ̃0, β and mem(τ̃0, τ, I));

10 case ⊥ do
11 if mem(τ̃0, τ, I) then return ⊥;
12 else return (⊥, τ̃0,ff);
13 case ⊥ do return ⊥;

Figure 3.4. The function doNext(advm,m) computing verdicts for #I φ.



3.2. Multi-Head Monitoring Algorithm 45

context: A function advh : H→ (H× T× P(Σ)) ∪ {⊥} to read a time-point using a
reading head and advance the reading head, a function readh : H→ T ∪ {⊥} to
only read the time-stamp of a time-point using a reading head (without
advancing the reading head).

input: A state m ∈M of our multi-head monitor for φ1 SI φ2 and the function
advm : M→ (M× T× B) ∪ {⊥} computing verdicts for submonitors of m.

output: A tuple (m′, τ, β) or ⊥ if no verdict can be computed, where m′ ∈M is the
next state of our multi-head monitor and (τ, β) ∈ T× B is the Boolean verdict
for the current time-point.

1 function doSince(advm, (SI ,m1,m2, h, c1, c2, c̃
+
2 , τ̃

+
2 )) =

2 switch advm(m1) do
3 case (m′1, τ, β1) do
4 if β1 then c1 := c1 + 1;
5 else c1 := 0;
6 c2 := c2 + 1;
7 if c̃+

2 6= ⊥ then c̃+
2 := c̃+

2 + 1;
8 while c2 > 0 and memL(readh(h), τ, I) do
9 switch advh(h) do

10 case (h′,_,_) do h := h′;
11 switch advm(m2) do
12 case (m′2, τ2, β2) do
13 m2 := m′2;
14 if β2 then c̃+

2 := c2; τ̃+
2 := τ2;

15 case ⊥ do return ⊥;
16 c2 := c2 − 1;
17 β := c̃+

2 6= ⊥ and c̃+
2 − 1 ≤ c1 and memR(τ̃+

2 , τ, I);
18 return ((SI ,m′1,m2, h, c1, c2, c̃

+
2 , τ̃

+
2 ), τ, β);

19 case ⊥ do return ⊥;
Figure 3.5. The function doSince(advm,m) computing verdicts for φ1 SI φ2.
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context: A function advh : H→ (H× T× P(Σ)) ∪ {⊥} to read a time-point using a
reading head and advance the reading head, a function readh : H→ T ∪ {⊥} to
only read the time-stamp of a time-point using a reading head (without
advancing the reading head).

input: A state m ∈M of our multi-head monitor for φ1 UI φ2 and the function
advm : M→ (M× T× B) ∪ {⊥} computing verdicts for submonitors of m.

output: A tuple (m′, τ, β) or ⊥ if no verdict can be computed, where m′ ∈M is the
next state of our multi-head monitor and (τ, β) ∈ T× B is the Boolean verdict
for the current time-point.

1 function loopCondUntil(I, τ, h2, c, z) =
2 if c 6= 0 then
3 switch z do
4 case (τ ′, β1, β2) do
5 if (β2 and memL(τ, τ ′, I)) or not β1 then return ff;
6 switch readh(h2) do
7 case (τ ′,_) do return memR(τ, τ ′, I);
8 case ⊥ do return ff;
9 function doUntil(advm, (UI , h1,m1,m2, h2, c, z)) =

10 switch advh(h1) do
11 case (h′1, τ,_) do
12 while loopCondUntil(I, τ, h2, c, z) do
13 switch advm(m1) do
14 case (m′1,_, β) do m1 := m′1; β1 := β;
15 case ⊥ do return ⊥;
16 switch advm(m2) do
17 case (m′2,_, β) do m2 := m′2; β2 := β;
18 case ⊥ do return ⊥;
19 (h2, τ

′,_) := advh(h2);
20 c := c+ 1;
21 z := (τ ′, β1, β2);
22 if c = 0 then return ⊥;
23 else
24 switch z do
25 case (τ ′, β1, β2) do
26 if β2 and memL(τ, τ ′, I) then return

((UI , h′1,m1,m2, h2, c− 1, z), τ, tt);
27 else if not β1 then return ((UI , h′1,m1,m2, h2, c− 1, z), τ,ff);
28 else if readh(h2) = ⊥ then return ⊥;
29 else return ((UI , h′1,m1,m2, h2, c− 1, z), τ,ff);
30 case ⊥ do return ⊥;

Figure 3.6. The function doUntil(advm,m) computing verdicts for φ1 UI φ2.
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before (and including i) at which φ1 is satisfied. The submonitor m2 for φ2 is evaluated up until
the most recent time-point that satisfies the interval condition. To check the interval condition
independently of the submonitor for φ2, the monitor for φ1 SI φ2 uses an additional reading head
h. Furthermore, the monitor for φ1 SI φ2 maintains in constant space the most recent time-point
j satisfying φ2 and also satisfying the interval condition. This time-point j is represented by
its time-stamp τ̃+

2 and the difference c̃+
2 := i− j in the state, where τ̃+

2 = ⊥ and c̃+
2 = ⊥ if no

such time-point j exists. To be able to update c̃+
2 , the monitor for φ1 SI φ2 always maintains

the difference c2 between the number of verdicts produced by the submonitors for φ1 and φ2,
respectively. If the time-point i satisfies the interval condition (e.g., 0 ∈ I), then the submonitor
for φ2 is evaluated until it produces a verdict for the time-point i (in particular, the submonitor
for φ2 never overtakes the submonitor for φ1). To compute a Boolean verdict for φ1 SI φ2 at the
time-point i, the monitor checks that c̃+

2 6= ⊥ (otherwise no j from the semantics of φ1 SI φ2
exists), it also checks that φ1 holds since φ2 (the condition c̃+

2 − 1 ≤ c1, where c̃+
2 = i+ 1− j

holds on Line 17 in Figure 3.5), and it checks the interval condition (memR(τ̃+
2 , τ, I)).

Until MTL Temporal Operator A monitor (UI , h1,m1,m2, h2, c, z) for the binary MTL
temporal operator φ1 UI φ2 (Figure 3.6) uses two submonitors m1 and m2 for the subformulas
φ1 and φ2 and one additional reading head h1 that is used to obtain the time-stamp of the
time-point i at which a Boolean verdict for φ1 UI φ2 is computed. The submonitors for φ1 and
φ2 are synchronous, i.e., the submonitors are evaluated in rounds producing verdicts for the same
time-point, and ahead of the reading head h1. They are evaluated as long as the formula φ1 is
satisfied until a satisfaction of φ2 satisfying the interval bound is found (then φ1 UI φ2 is satisfied)
or a time-point beyond the interval bound is encountered (then φ1 UI φ2 is not satisfied). The
formula φ1 UI φ2 is not satisfied at the time-point i if φ1 does not hold at a time-point j ≥ i and
no satisfaction of φ2 satisfying the interval bounds has been found so far. To be able to compute
a verdict for φ1 UI φ2 if the submonitor for φ1 or φ2 could not produce a verdict, but the interval
condition is not met, the monitor for φ1 UI φ2 uses an additional reading head h2 to check the
interval condition independently of the submonitors for φ1 and φ2. Because the function advm
returns the next state of the monitor and applying advm to the next state of the monitor would
yield verdicts for the next time-point, the monitor for φ1 UI φ2 caches the most recent verdicts z
of the submonitors for φ1 and φ2. To know when the time-point i at which a Boolean verdict
for φ1 UI φ2 is computed reaches the time-point k at which the verdicts z were computed, the
monitor for φ1 UI φ2 also stores the number of time-points c between i and k. Note that z can
only be ⊥ if c = 0.

Example 3.1. Figure 3.7 shows our multi-head monitor’s state and the positions of its reading
heads while monitoring the formula φ := (a S[2,4] b) ∧ (a U[0,4] b) on the trace with time-stamps
0, 3, 4, 6, 8, 8, 14 and sets of events {a, b}, {a}, {a}, {a}, {a, b}, {a}, {b} after the monitor just
computed the Boolean verdict tt for the third time-point with time-stamp 4. The reading heads
are depicted as arrows. The submonitor m1 of S[2,4] as well as the reading head h1 of U[0,4] are
positioned at the next time-point for which the overall monitor is going to produce a verdict (the
fourth time-point with time-stamp 6). The reading head h and the submonitor m2 of S[2,4] are
positioned at the first time-point that does not satisfy the interval’s lower bound with respect
to the third time-point at which the S[2,4] is evaluated (second time-point with time-stamp 3
because 0 + 2 ≤ 4 holds, but 3 + 2 ≤ 4 does not hold anymore). The remaining entries of the
state for S[2,4] have the following values:
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(0, {a, b}) (3, {a}) (4, {a}) (6, {a}) (8, {a, b}) (8, {a}) (14, {b})

h b

m2

a

m1

S[2,4]

c1 = 3
c2 = 2
c̃+2 = 3
τ̃+2 = 0

h1 a

m1

b

m2

h2

U[0,4]

c = 2
z = (8, tt, tt)

∧

Figure 3.7. An example of our multi-head monitor’s state and the positions of its reading heads
for the formula φ := (a S[2,4] b) ∧ (a U[0,4] b).

• c1 = 3 because a is satisfied at the last three time-points (up to and including the third
time-point);

• c2 = 2 because there are 2 time-points between the positions of the submonitors m1 and
m2;

• c̃+
2 = 3 because there are 3 time-points between the most recent satisfaction of b within the
interval and the position of the submonitor m1;

• τ̃+
2 = 0 because the time-stamp of the most recent satisfaction of b within the interval (the
initial time-point of the trace) is 0.

Then the condition for the satisfaction of a S[2,4] b at the third time-point with time-stamp 4 is
c̃+

2 6= ⊥ and c̃+
2 − 1 ≤ c1 and memR(τ̃+

2 , τ, [2, 4]), where τ = 4. This condition is satisfied and
thus the multi-head monitor for a S[2,4] b yields the Boolean verdict tt.

The submonitors m1 and m2 as well as the reading head h2 of U[2,4] are at the next time-point
after a satisfaction of b within the interval at the fifth time-point with time-stamp 8. The
Boolean verdicts for a and b (both tt) at this time-point as well as the time-stamp 8 are cached
in z = (8, tt, tt). Because b is satisfied and the interval condition mem(4, 8, [2, 4]) is satisfied, the
multi-head monitor for a U[0,4] b yields the Boolean verdict tt. The value c = 2 represents the
number of time-points between h1 and h2 (m1 and m2 are positioned at the same time-point as
h2).

Finally, the multi-head monitor for the formula φ := (a S[2,4] b) ∧ (a U[0,4] b) combines the
two Boolean verdicts tt for the ∧ operator into the overall Boolean verdict tt. 2

3.2.2 Matching Regular Expressions

In this section, we focus on a fixed MDL regular expression r independently of whether r is used
in a past or future match formula and independently of the interval I of the match formula.
We first convert r into an automaton over the alphabet Bk, where k is the number of r’s direct
subformulas ψj , 1 ≤ j ≤ k, according to an arbitrary formula ordering, e.g., left-to-right with
respect to the first occurrence of the formula in the regular expression. For each time-point, the
automaton’s input symbol is constructed from k Boolean verdicts for r’s direct subformulas at
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Figure 3.8. Recursive conversion T of an MDL regular expression into the transition relation of
a nondeterministic automaton. The states that are eliminated by our implementation are marked
gray.

this time-point. To compute an input symbol b = (b1, . . . , bk), a multi-head submonitor is run
for each formula ψj , 1 ≤ j ≤ k, to determine bj ∈ B, i.e., k synchronous multi-head monitors are
run to compute b = (b1, . . . , bk).

A central component of our multi-head monitor for a match formula 〈r|I or |r〉I is a window
data structure for the MDL regular expression r that maintains a summary of the automaton
runs on a finite subword of the automaton’s input stream. The subword starts at a position i
(called window’s start) and ends at j (called window’s end), where i and j can be arbitrarily far
apart, but the window’s size does not depend on the difference j − i. The window data structure
uses a reading head over the trace and a sequence of submonitors for the direct subformulas of
r. They are used to update the time-stamps stored in the window data structure and compute
the input symbols for the automaton. We include the reading heads over the trace to obtain
the time-stamps at the window’s start and end although the verdicts of the submonitors yields
exactly these time-stamps: the regular expression r might have no direct subformulas (e.g.,
the regular expression true · true matching a pair of time-points) in which case there are no
submonitors and the monitoring algorithm evaluating the match operator needs these reading
heads to check the interval condition independently of the submonitors that might not be able
to compute a Boolean verdict. Hence, it makes no sense to distinguish whether r has a direct
subformula or not because the reading heads over the trace would be needed by the monitoring
algorithm evaluating the match operator anyway.

Converting an MDL regular expression to a nondeterministic automaton We first
convert an MDL regular expression r into a nondeterministic automaton with ε-transitions over
the alphabet Bk. There are three types of transitions in the nondeterministic automaton:

• ε-transitions that implement lookahead regular expressions ψ? and thus passing such an
ε-transition depends on the input symbol, we denote by them by the index j of the direct
subformula ψ = ψj in the input symbol of the automaton;

• ? transitions that consume an arbitrary input symbol;

• ε-transitions that implement nondeterministic choice that can be passed on an arbitrary
input symbol.
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q̃0 q̃1 q̃2 q̃3 q̃4 q̃5 q̃6 q̃f
ε 1 ?

ε

ε

ε 2 ?

q̃0 q̃1 q̃2 q̃5 q̃6 q̃f
ε 1

ε

?

2 ?

Figure 3.9. The ε-NFAs for p∗ · q, where p = ψ1 and q = ψ2, with the dashed rectangles showing
the ε-NFA for p = ψ1. The ε-NFA at the top is obtained by directly applying the construction
in Figure 3.8. The ε-NFA at the bottom is obtained by eliminitaing the states marked gray in
Figure 3.8.

To construct the transition relation of the nondeterministic automaton for an MDL regular
expression, we use Thompson’s standard construction mildly adapted to MDL regular expressions
and the three types of edges described before. A recursive function T on MDL regular expressions
that computes the transition relation of a regular expression together with an initial and accepting
state is defined in Figure 3.8. We remark that states whose outgoing transitions are only ε-
transitions implementing nondeterministic choice can be eliminated by redirecting all incoming
transitions to all the target states of the outgoing transitions. The states that are eliminated by
our implementation are marked gray in Figure 3.8.

Converting a nondeterministic automaton for MDL to a deterministic automaton
Because our window data structure requires a deterministic automaton, we determinize the ε-NFA
AN for an MDL regular expression using the subset construction. We label AN’s nondeterministic
states by q̃ and sets of nondeterministic states by Q̃. A difficulty arises from the ε-transitions
that implement lookahead regular expressions ψ? (labeled by the index j of the direct subformula
ψ = ψj in the input symbol of the automaton). We introduce two types of closures for a set of
states Q̃ to handle them:

• the ε?-closure that depends on the input symbol b is obtained by following ε-transitions
that implement lookahead regular expressions ψ? whose formulas are satisfied in b and by
following ε-transitions that implement nondeterministic choice;

• the ε-closure that is obtained by only following ε-transitions that implement nondeterministic
choice, indepedently of the input symbol.

The transition function δ(Q̃, b) first computes the ε?-closure Q̃ε?b of Q̃ with respect to the input
symbol b and then computes the set Q̃ε??b of states reachable from a state in Q̃ε?b by following
a single ?-transition, which consumes the input symbol b. In particular, the set Q̃ε??b is not
necessarily ε?-closed with respect to the next input symbol or ε-closed. When checking if a set
of states Q̃ is accepting, we first compute the ε-closure Q̃ε of Q̃ and then check if an accepting
state is in Q̃ε.
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To summarize, we convert an MDL regular expression r into a DFA AD = (Q,Bk, δ, q0, F ),
where

• Q is the set of AD’s states consisting of all subsets of the set of AN’s states;

• δ : Q× Bk → Q is the transition function;

• q0 is AD’s initial state, i.e., the singleton set consisting of AN’s initial state;

• F is the set of AD’s accepting states.

Example 3.2. Figure 3.9 shows the ε-NFA computed for the regular expression p∗ · q. 2

Given a pair of time-points (i, j), i ≤ j, we say that the DFA AD reaches a state q′ from a
state q on (i, j), denoted q ;(i,j) q

′, iff the state q′ is reached by running AD from the state q at
time-point i until time-point j. In particular, we have q ;(i,i) q, for all q and i. Furthermore, we
say that AD accepts from a state q on (i, j), denoted q ;(i,j) X, iff the state q′ reached by AD
from q on (i, j) is accepting, i.e., q′ ∈ F . We point out that the input symbol for the time-point j
is not needed to decide if q ;(i,j) q

′ holds and also to decide if q ;(i,j) X holds.

Window Data Structure The window data structure for an MDL regular expression r consists
of a pair of time-points (i, j), with i ≤ j, two functions s : Q → Q × ((T × N) ∪ {⊥}) ∪ {⊥}
and e : Q → T ∪ {⊥}, two reading heads h1 and h2 reading the trace, and two sequences of
submonitors m̄1 and m̄2 for the direct subformulas of r. The function s represents the runs of
AD from a given state at the window’s start by the state reached at the window’s end and the
last accepting time-point (along with the corresponding time-stamp) within the window, i.e., the
last time-point after which the run was in an accepting state (if such a time-point exists). The
function e yields the time-stamp of the latest time-point before the window’s start from which a
given state at the window’s end can be reached from the initial state. The reading head h1 and
the submonitors m̄1 are positioned at the window’s start (time-point i) while the reading head
h2 and the submonitors m̄2 are positioned at the window’s end (time-point j). The function
advms(m̄) : M∗ → (M∗ × B∗) ∪ {⊥} evaluates advm(m) for every m in m̄, and returns the next
states of the submonitors and the Boolean values assembled from their verdicts. If advm(m) = ⊥,
for some m in m̄, then advms(m̄) = ⊥.

Figure 3.10 visualizes the window data structure and the underlying automaton runs. The
window is comprised of the time-points i and j and the functions s and e represented by the
table on the left. The reading heads h1 and h2 and the submonitors m̄1 and m̄2 are also part of
the window, but they are left out in Figure 3.10 for the sake of simplicity. Figure 3.10 shows
AD’s runs justifying the table’s content. The individual runs are depicted by arrows from the
initial state q0. We use standard notation for accepting states, including the smaller circles,
which denote states whose name is irrelevant. We also use the following notation: dom(f) of a
partial function f : X → Y ∪ {⊥} denotes f ’s domain, i.e., dom(f) = {x ∈ X | f(x) 6= ⊥}.

The domain of s are all the states reached by running AD from the initial state q0 at a
time-point l ≤ i before the window’s start i until i (including the initial state itself obtained by
running from i to i). The value of s(q) = (q′, tstp) for a state q ∈ dom(s) is obtained by running
AD further from the state q at the window’s start i until the window’s end j to a state q′. For
example, the state r at the window’s end j is reached by running AD from the states o and p at
the window’s start i in Figure 3.10. Moreover, tstp represents the maximum accepting time-point
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Figure 3.10. The window data structure with start i and end j

l after i and strictly before j, i.e., the maximum l, i ≤ l < j such that q ;(i,l+1) X. Hence, we
have s(o) = (r,⊥) in Figure 3.10 because there is no such time-point l. In contrast, we have
s(p) = (r, (τl1 , l1)) because the run from p to r contains an accepting state after time-point l1
(which is the only accepting state in this run and thus also the maximum one). Similarly, we have
s(q0) = (p, (τl4 , l4)) because the time-point l4 is the maximum of the two accepting time-points
in the run from the initial state q0 at time-point i to the state p at time-point j.

The domain of e are all the states reached by running AD from the initial state q0 at a
time-point l strictly before the window’s start i until the window’s end j. The value of e(q) = τ
for a state q ∈ dom(e) is the time-stamp of the maximum time-point l from which q was reached
from the initial state q0. For example, e(p) = τi−1 in Figure 3.10 because p is reached by running
from q0 at time-point i− 1 until j. Note that p is also reached by running from i, but i is not
strictly before the window’s start and thus i is not considered.

Formally, a window satisfies the invariant window(i, j, s, e, h1, m̄1, h2, m̄2) if

• h1, m̄1 are at time-point i; h2, m̄2 are at time-point j;

• the domain of s, i.e., dom(s), are all states q such that q0 ;(l,i) q, for some l ≤ i;

• the domain of e, i.e., dom(e), are all states q such that q0 ;(l,j) q, for some l < i;

• for any q ∈ dom(s): s(q) = (q′, tstp), where q ;(i,j) q
′ and tstp = (τl, l) for the maximum

time-point l with i ≤ l < j and q ;(i,l+1) X, or tstp = ⊥ if no such l exists;

• for any q ∈ dom(e): e(q) = τ , where τ = τl is the time-stamp of the maximum time-point
l < i such that q0 ;(l,j) q.

Example 3.3. We now exemplify the window data structure by tracing its evolution through a
sequence of window updates, which we manually selected. In the actual monitor, the update
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Figure 3.11. The trace and windows for Example 3.3

sequence is derived from the time-stamps in the event stream and the match operator’s intervals.
A single update of the window data structure consists of advancing the window’s start or end by
one. We formally define the algorithms advs and adve that implement the window’s start and
end updates and their invariants later in this section.

Consider again the MDL regular expression r = p∗ ·q from Example 3.2 and the corresponding
ε-NFA in Figure 3.9. In this example, we use the ε-NFA at the bottom in Figure 3.9. Recall
that a deterministic state is a subset of the nondeterministic states. For instance, the initial
deterministic state is q0 = {q̃0}. We analyze the trace and the sequence of window updates given
in Figure 3.11. The window’s end is advanced twice and then the window’s start is advanced
once. Figure 3.11 depicts the window’s state after initialization (i = 0 and j = 0) and after each
update. The reading heads h1 and h2 and the submonitors m̄1 and m̄2 are left out in Figure 3.11.

At the beginning (i = 0 and j = 0), the domain of s contains only {q̃0} because no other
state could be reached from a previous time-point so far. We have s({q̃0}) = ({q̃0},⊥) because of
{q̃0};(0,0) {q̃0} and because there is no time-point l such that i = 0 ≤ l < 0 = j. The domain
of e stays empty until the window’s start advances because there is no time-point strictly before
the initial time-point.

We have s({q̃0}) = (Q̃0,⊥), where Q̃0 := {q̃0}. The ε?-closure of Q̃0 at time-point 0 is
Q̃ε?0 = {q̃0, q̃1, q̃2, q̃5, q̃6}. In particular, it contains both q̃2 and q̃6 because p as well as q are
satisfied at time-point 0 and thus the corresponding ε-transitions from q̃1 to q̃2 and from q̃5 to q̃6 can
be taken. To update s, we perform a transition from Q̃0 at time-point 0 by following ?-transitions
from Q̃ε?0 . This way, we arrive at the next state {q̃0, q̃f}. Because {q̃0, q̃f}ε = {q̃0, q̃1, q̃5, q̃f}
contains the accepting state q̃f , the state {q̃0, q̃f} is accepting. Hence, we add time-point 0 (along
with the corresponding time-stamp 10) to s({q̃0}).

We now have s({q̃0}) = (Q̃1,⊥), where Q̃1 := {q̃0, q̃f}. The ε?-closure of Q̃1 at time-point 1
is Q̃ε?1 = {q̃0, q̃1, q̃5, q̃6, q̃f}. In particular, it does not contain q̃2 because p is not satisfied at
time-point 1 and thus the corresponding ε-transition from q̃1 to q̃2 cannot be taken. On the
other hand, Q̃ε?1 contains q̃6 because q is satisfied at time-point 1 and thus the corresponding
ε-transition from q̃5 to q̃6 can be taken. To update the function s, we perform a transition from
Q̃1 at time-point 1 and arrive at the state {q̃f} because the only ?-transition from a state in Qε?1
is that from q̃6 to q̃f . Because {q̃f}ε = {q̃f}, the state {q̃f} is accepting and thus we update the
time-stamp to 20 and time-point to 1 in s({q̃0}).

We now advance the window’s start, i.e., update the window to (i, j) = (1, 2). To this end, we
set e({q̃f}) = 10 because from s({q̃0}) = ({q̃f}, (20, 1)) we derive that the state {q̃f} is reached
at the window’s end 2 starting from the initial deterministic state {q̃0} at time-point 0. Next, we
perform a transition (at time-point 0) from the only state {q̃0} in dom(s), which yields the state
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Q̃1. Since the maximum accepting time-point 1 is within the new window (1, 2), we keep it and
arrive at s(Q̃1) = ({q̃f}, (20, 1)). To compute s({q̃0}) for the initial deterministic state {q̃0}, we
perform two runs starting at time-point 1, one from {q̃0} and one from Q̃1, until the two states
in the runs collapse or the window’s end is reached. In this example, we carry out a single step
and the two states collapse into {q̃f} at time-point 2 (and the window’s end is reached as well).
Because time-point 1 in s(Q̃1) is strictly before the collapse at time-point 2, we cannot take it
for s({q̃0}). However, since {q̃0} is accepting at time-point 1, we have s({q̃0}) = ({}, (20, 1)). 2

Initialization and Update of the Window Data Structure The algorithms initw, advs,
and adve initializing and updating the window data structure are defined in Figure 3.12, 3.13,
and 3.14. The function adve may return ⊥ if the reading head h2 over the trace or the submonitors
m̄2 cannot compute their verdicts. The remaining functions are only evaluated if all reading
heads and submonitors can compute all their necessary verdicts.

The window is initialized to time-points (0, 0) using initw (Figure 3.12), which also establishes
the invariant.

Lemma 3.4. Let m̄ be a sequence of submonitors at the initial time-point. Then the invariant
window(initw(inith, m̄)) holds for the initial window.

The window (i, j, s, e, h1, m̄1, h2, m̄2) can be updated to time-points (i, j + 1) using the
function adve (Figure 3.14). The algorithm first reads the time-stamp τj and the input symbol
bj at the window’s end (lines 2–9). Then adve updates the function e (lines 10–17). The updated
domain of e is obtained by performing a transition at the window’s end from all states in the
original domain (line 13) and whenever two states q and q′ collapse into a single state qnew
after performing the transition, the function e associates qnew with the supremum of eold(q)
and eold(q′), using e(qnew) as an accumulator. This is because among the time-points l < i and
l′ < i such that q0 ;(l,j+1) qnew , τl = eold(q), and q0 ;(l′,j+1) qnew , τl′ = eold(q′), we have to
take e(qnew) = sup{τl, τl′}. Next adve updates the function s (lines 18–24). Its domain does
not change because the window’s start i remains the same. However, for any state q ∈ dom(s)
with s(q) = (q′, tstp), a transition is performed on the state q′ at the window’s end (extending
q ;(i,j) q

′ to q ;(i,j+1) q
′
new) and tstp is updated to (τj , j) if time-point j is accepting, i.e.,

q ;(i,j+1) X. Overall, adve preserves the window invariant.

Lemma 3.5. Assume that the invariant window(i, j, s, e, h1, m̄1, h2, m̄2) holds. Then the invari-
ant holds after advancing the window’s end, i.e., window(adve(i, j, s, e, h1, m̄1, h2, m̄2)).

To advance the window’s start, we must advance the domain of s and then compute s(q0)
at the new window’s start. We first generalize the part of the window invariant characterizing
s to take into account that s(q0) might not be computed yet. To this end, we define the
invariant svalid(i, i′, j, s) for s, which states that s is valid for the window (i′, j), but the domain
of s only contains states reached by running from a time-point before (and including) i. In
particular, window(i, j, s, e, h1, m̄1, h2, m̄2) implies svalid(i, i, j, s), but not vice-versa. Formally,
svalid(i, i′, j, s) holds if:

• dom(s) consists of all states q such that q0 ;(l,i′) q, for some l ≤ i;

• for any q ∈ dom(s): s(q) = (q′, tstp), where q ;(i′,j) q
′ and tstp = (τl, l) for the maximum

time-point l with i′ ≤ l < j and q ;(i′,l+1) X, or tstp = ⊥ if no such l exists.
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1 function initw(inith, m̄) =
2 s := (λq.⊥);
3 s(q0) := (q0,⊥);
4 e := (λq.⊥);
5 return (0, 0, s, e, inith, m̄, inith, m̄);

Figure 3.12. Initialize state

1 function
advs(i, j, s, e, h1, m̄1, h2, m̄2) =

2 (h′1, τi,_) := advh(h1);
3 (m̄′1, bi) := advms(m̄1);
4 (q′, tstp) = s(q0);
5 e(q′) = τi;
6 s := advd(s, i, τi, bi);
7 qcur := q0;
8 tstpcur := ⊥;
9 scur := s;

10 icur := i+ 1;
11 hcur := h′1;
12 m̄cur := m̄′1;
13 while icur < j and qcur 6∈ dom(scur)

do
14 (h′cur , τicur ,_) := advh(hcur);
15 (m̄′cur , b

icur ) := advms(m̄cur);
16 qcur := δ(qcur , b

icur );
17 if qcur ∈ F then
18 tstpcur := (τicur , icur);
19 scur := advd(scur , icur , τicur , b

icur );
20 icur := icur + 1;
21 hcur := h′cur ;
22 m̄cur := m̄′cur ;
23 if qcur ∈ dom(scur) then
24 (q′, tstp) = scur(qcur);
25 if tstp 6= ⊥ then
26 s(q0) := (q′, tstp);
27 else
28 s(q0) := (q′, tstpcur);
29 else
30 s(q0) := (qcur , tstpcur);
31 return (i+ 1, j, s, e, h′1, m̄′1, h2, m̄2);

Figure 3.13. Advance start

1 function
adve(i, j, s, e, h1, m̄1, h2, m̄2) =

2 switch advh(h2) do
3 case (h′, τ,_) do
4 h′2 := h′; τj := τ ;
5 case ⊥ do return ⊥;
6 switch advms(m̄2) do
7 case (m̄′, b) do
8 m̄′2 := m̄′; bj := b;
9 case ⊥ do return ⊥;

10 eold := e;
11 e := (λq.⊥);
12 for q ∈ dom(eold) do
13 qnew := δ(q, bj);
14 if qnew ∈ dom(e) then
15 e(qnew) := e(qnew) t eold(q);
16 else
17 e(qnew) := eold(q);
18 for q ∈ dom(s) do
19 (q′, tstp) = s(q);
20 q′new := δ(q′, bj);
21 if q′new ∈ F then
22 s(q) := (q′new , (τj , j));
23 else
24 s(q) := (q′new , tstp);
25 return (i, j + 1, s, e, h1, m̄1, h

′
2, m̄

′
2);

Figure 3.14. Advance end

1 function advd(s, i, τi, bi) =
2 sold := s;
3 s := (λq.⊥);
4 for q ∈ dom(sold) do
5 (q′, tstp) = sold(q);
6 qnew := δ(q, bi);
7 if tstp = (τi, i) then
8 s(qnew) := (q′,⊥);
9 else

10 s(qnew) := (q′, tstp);
11 return s;

Figure 3.15. Advance dom(s)
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The auxiliary function advd (Figure 3.15) updates s by advancing time-point i′ in the invariant
svalid(i, i′, j, s). To do so, it performs a transition from every state q ∈ dom(sold) at time-point
i′ to the new state qnew := δ(q, bi′), where bi′ is the input symbol at time-point i′, and resets the
latest accepting time-point to ⊥ if it refers to time-point i′, i.e., it is no longer valid at i′ + 1.
The function advd is used when advancing the domain of s from i to i+ 1 and when computing
s(q0). The correctness of the function advd is captured by the following lemma.

Lemma 3.6. Assume that the invariant svalid(i, i′, j, s) holds and i′ < j. Furthermore, let
(τi′ , bi

′) be the time-stamp and input symbol for the time-point i′. Then the invariant holds for
the updated function s, i.e.,

svalid(i, i′ + 1, j, advd(s, i′, τi′ , bi
′)).

The window (i, j, s, e, h1, m̄1, h2, m̄2) with i < j can be updated to the time-points (i+ 1, j)
using the function advs (Figure 3.13). This algorithm first reads the time-stamp τi and the input
symbol bi at the window’s end (lines 2–3). Then advs updates e (lines 4–5) to account for the
run q0 ;(i,j) q

′, where the state q′ is obtained from the function s (line 4), which always contains
the initial state q0 in its domain.

Next advs updates s (lines 6–30). First, the domain of s is advanced by advd (line 6). This
way, the invariant on s becomes svalid(i, i+ 1, j, s). However, svalid(i+ 1, i+ 1, j, s) is required
to establish window(i+ 1, j, s, e, h′1, m̄′1, h2, m̄2). Thus, it remains to compute the value of s(q0)
and update s accordingly. To this end, advs performs runs from q0 as well as from all states in
dom(s) until the current state qcur in the run from q0 collapses with the current state of the
run from a state q ∈ dom(s) or the window’s end is reached (lines 7–22). The run from q0 is
simulated by updating the current state qcur (initialized to q0 on line 7). The runs from all states
in dom(s) are simulated by updating a copy scur of the function s to advd(scur , icur , τicur , b

icur )
at the current time-point icur of the simulation. This way, scur satisfies svalid(i, icur , j, scur). In
particular, the function scur contains the state reached at the window’s end j and the latest
accepting time-point on (icur , j) for all states in its domain. To account for accepting time-points
on (i+ 1, icur), the algorithm also tracks the maximum accepting time-point l (represented by
the pair tstpcur = (τl, l) ∈ T× N) such that i+ 1 ≤ l < icur and q0 ;(i+1,l+1) X.

After the loop on lines 13–22 terminates, advs proceeds branching based on whether the
current state qcur collapsed with the current state of the run from a state q ∈ dom(s).

(1) If yes, then we have q0 ;(i+1,icur ) qcur and also q ;(i+1,icur ) qcur . Because the states are
deterministic, the two runs from q0 and q continue the same after icur . Hence, the run
from qcur at icur reaches the state q′ from scur(qcur) = (q′, tstp). If tstp 6= ⊥, then tstp
represents the latest accepting time-point following qcur at icur which is also the latest
accepting time-point time-point pair following q0 at i+ 1. On the other hand, if tstp = ⊥,
then there is no accepting time-point following qcur at icur . Hence, the latest accepting
time-point following q0 at i+ 1 is tstpcur .

(2) If the current state qcur did not collapse with the current state of the run from any state
q ∈ dom(s), then the window’s end must have been reached (due to the loop condition on
line 13). Then we have icur = j and thus s(q0) = (qcur , tstpcur).

Overall, advs preserves the window invariant.

Lemma 3.7. Assume that the invariant window(i, j, s, e, h1, m̄1, h2, m̄2) holds and i < j. Then
the invariant holds after advancing the window’s start, i.e., window(advs(i, j, s, e, h1, m̄1, h2, m̄2)).
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input: A formula 〈r|I , a window (i, j, s, e, h1, m̄1, h2, m̄2), a function advh to read a
time-point and advance the reading head, advh : H→ (H× T× P(Σ)) ∪ {⊥}, a
function readh to only read the time-stamp of a time-point using a reading head,
readh : H→ T ∪ {⊥}, the function advm computing verdicts for submonitors in
m̄1 and m̄2, advm : M→ (M× T× B) ∪ {⊥}.

output: A tuple (m′, τ, β), where m′ is the next state of our multi-head monitor,
m′ ∈M, and (τ, β) is the Boolean verdict for the next time-point,
(τ, β) ∈ T× B, or ⊥ if no verdict can be computed.

1 function doMatchP((〈r|I , (i, j, s, e, h1, m̄1, h2, m̄2))) =
2 switch readh(h2) do
3 case (τ ′,_) do τ := τ ′;
4 case ⊥ do return ⊥;
5 switch adve(i, j, s, e, h1, m̄1, h2, m̄2) do
6 case ⊥ do return ⊥;
7 otherwise do (i, j, s, e, h1, m̄1, h2, m̄2) := adve(i, j, s, e, h1, m̄1, h2, m̄2);
8 while i < j and memL(readh(h1), τ, I) do
9 (i, j, s, e, h1, m̄1, h2, m̄2) := advs(i, j, s, e, h1, m̄1, h2, m̄2);

10 β := (∃q ∈ dom(e) ∩ F. memR(e(q), τ, I));
11 return ((〈r|I , (i, j, s, e, h1, m̄1, h2, m̄2)), τ, β);

Figure 3.16. The function evalP computing verdicts for 〈r|I .

3.2.3 MDL Monitor

Past Match MDL Temporal Operator A monitor (〈r|I , w) for a past temporal match
formula 〈r|I consists of a window data structure w for the MDL regular expression r. To compute
a Boolean verdict at time-point j for 〈r|I , we check if there exists a match of the MDL regular
expression r from a past time-point l, l ≤ j, until time-point j such that mem(τl, τj , I), i.e.,
memL(τl, τj , I) and memR(τl, τj , I).

Our multi-head monitor maintains a window w on (i, j) such that the invariant window(w)
holds and memL(τl, τj , I), for all l < i, i.e., all time-points l strictly before the window’s start i
satisfy the lower bound from the interval condition. To compute a Boolean verdict at a time-point
j with τ := τj , the monitor advances the window’s end j to j′ := j + 1 (so that matches until
and including j are considered) and then repeatedly advances the window’s start so that the
time-points l that are strictly before the window’s start (l < i) are exactly those that satisfy the
lower bound from the interval condition, i.e., the monitor advances the window’s start i to the
maximum i, i ≤ j′, such that memL(τl, τ, I), for all l < i.

Then we seek to find a past match from a time-point l strictly before the window’s start i, l < i,
i.e., satisfying the lower bound from the interval condition, that also satisfies the upper bound
from the interval condition, i.e., memR(τl, τ, I). Using window(i, j′, s, e, h1, m̄1, h2, m̄2), this
amounts to checking whether there exists some accepting q ∈ dom(e) such that memR(e(q), τ, I).
The maximality of i implies that no candidate time-point for the beginning of a past match is
missed. Formally, we define the algorithm for past match operator 〈r|I in Figure 3.16.

Future Match MDL Temporal Operator A monitor (|r〉I , w) for a future match formula
|r〉I consists of a window data structure w for the MDL regular expression r. To compute a
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input: A formula |r〉I , a window (i, j, s, e, h1, m̄1, h2, m̄2), a function advh to read a
time-point and advance the reading head, advh : H→ (H× T× P(Σ)) ∪ {⊥}, a
function readh to only read the time-stamp of a time-point using a reading head,
readh : H→ T ∪ {⊥}, the function advm computing verdicts for submonitors in
m̄1 and m̄2, advm : M→ (M× T× B) ∪ {⊥}.

output: A tuple (m′, τ, β), where m′ is the next state of our multi-head monitor,
m′ ∈M, and (τ, β) is the Boolean verdict for the next time-point,
(τ, β) ∈ T× B, or ⊥ if no verdict can be computed.

1 function loopCondMatchF(I, τ, h2) =
2 switch readh(h2) do
3 case (τ ′,_) do return memR(τ, τ ′, I);
4 case ⊥ do return ff;
5 function doMatchF((|r〉I , (i, j, s, e, h1, m̄1, h2, m̄2))) =
6 switch readh(h1) do
7 case (τ ′,_) do τ := τ ′;
8 case ⊥ do return ⊥;
9 while loopCondMatchF(I, τ, h2) do

10 switch adve(i, j, s, e, h1, m̄1, h2, m̄2) do
11 case ⊥ do return ⊥;
12 otherwise do (i, j, s, e, h1, m̄1, h2, m̄2) := adve(i, j, s, e, h1, m̄1, h2, m̄2);
13 if readh(h2) = ⊥ then return ⊥;
14 (q′, tstp) = s(q0);
15 switch tstp do
16 case (τi′ , i′) do return β := memL(τ, τi′ , I);
17 case ⊥ do β := ff;
18 return ((|r〉I , advs(i, j, s, e, h1, m̄1, h2, m̄2)), τ, β);

Figure 3.17. The function evalF computing verdicts for |r〉I .

Boolean verdict at time-point i for |r〉I , we check if there exists a match of the MDL regular
expression r from time-point i until a future time-point l, l ≥ i, such that mem(τi, τl, I), i.e.,
memL(τi, τl, I) and memR(τi, τl, I).

Our multi-head monitor maintains a window w on (i, j) such that the invariant window(w)
holds and memR(τi, τl, I), for all i ≤ l < j, i.e., all time-points strictly before the window’s end j
satisfy the upper bound from the interval condition. To compute a Boolean verdict at time-point
i, the monitor repeatedly advances the window’s end so that the time-points l that are strictly
before the window’s end (i ≤ l < j) are exactly those that satisfy the upper bound from the
interval condition, i.e., the monitor advances the window’s end j to the maximum j such that
memR(τi, τl, I), for all i ≤ l < j.

Then the invariant window(i, j′, s, e, h1, m̄1, h2, m̄2) implies that q0 ∈ dom(s) and that the
latest accepting time-point within the window is stored in s(q0) = (q′, tstp). Note that the latest
acceping time-point within the window satisfies the upper bound from the interval condition
(according to the condition for advacing window’s end). It remains to check tstp 6= ⊥ (i.e., if
an accepting time-point within the window exists) and if yes, whether the time-stamp τi′ of
the latest accepting time-point i′ within the window satisfies the lower bound from the interval
condition, i.e., memL(τi, τi′ , I).



3.2. Multi-Head Monitoring Algorithm 59

function initm(φ) =
switch φ do

case 〈r|I do
{φ1, . . . , φk} := SF(r);
m̄ := (initm(φi))ki=1;
return (〈r|I , initw(inith, m̄));

case |r〉I do
{φ1, . . . , φk} := SF(r);
m̄ := (initm(φi))ki=1;
return (|r〉I , initw(inith, m̄));

. . .
function advm(m) =

switch m do
case (〈r|I , w) do return doMatchP((〈r|I , w));
case (|r〉I , w) do return doMatchF((|r〉I , w));
. . .

Figure 3.18. Extension of initm(φ) and advm(ρ<`) to MDL.

Formally, we define the algorithm for future match operator |r〉I in Figure 3.17.

Integration into Multi-Head Monitor We integrate the window data structure and the
functions doMatchP and doMatchF, defined in Figure 3.16 and Figure 3.17, respectively, into
our multi-head monitor by extending the set of our multi-head monitor’s states, defined at the
beginning of Section 3.2.1, with the cases of temporal match operators:

M = ({〈r|I} × {w | w is a window data structure}) ∪
({|r〉I} × {w | w is a window data structure}) ∪ . . . ,

and by extending the functions initm and advm with the cases of temporal match operators as
shown in Figure 3.18. In the function initm(φ), m̄ = (initm(φi))ki=1 is a sequence of initial states
of the submonitors for the direct subformulas SF(r) = {φ1, . . . , φk}, k ∈ N, of the MDL regular
expression r.

3.2.4 Correctness

The soundness and completeness of our multi-head monitor follows by induction on well-formed
MDL formulas using an invariant wfm : {φ | φ is a well-formed MDL formula} × N ×M → B
characterizing states of the monitor. We have wfm(φ, i,m) = tt if m is a valid state of our
monitor for the formula φ at time-point i. The definition of the invariant wfm formalizes the
description of our monitor presented so far. In Section 2.2, we defined MDL as an extension of
MTL with MDL regular expressions r and the corresponding regular expression match formulas
〈r|I and |r〉I . Hence, the correctness of our multi-head monitor on MTL formulas follows from its
correctness on MDL formulas. The initial state of the monitor initm(φ) satisfies the invariant,
wfm(φ, 0, initm(φ)), for every formula φ, and advm preserves the invariant wfm while advancing
the time-point and computing Boolean verdicts.
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time(p) = ` · ct
time(¬φ) = time(φ) + ` · ct
time(φ ∨ ψ) = time(φ) + time(ψ) + ` · ct
time( I φ) = time(#I φ) = time(φ) + ` · ct
time(φ1 SI φ2) = time(φ1 UI φ2) = time(φ) + time(ψ) + ` · ct
time(〈r|I) = time(|r〉I) = (3 + 8|r|) · 64|r| · ` · ct + (2 + 8|r|) ·∑φ∈SF(r) time(φ)

Figure 3.19. The recursive function time(φ).

space(p) = cs
space(¬φ) = space(φ) + cs
space(φ ∨ ψ) = space(φ) + space(ψ) + cs
space( I φ) = space(#I φ) = space(φ) + cs
space(φ1 SI φ2) = space(φ1 UI φ2) = space(φ) + space(ψ) + cs
space(〈r|I) = space(|r〉I) = (1 + 64|r|) · cs + 3 ·∑φ∈SF(r) space(φ)

Figure 3.20. The recursive function space(φ).

Soundness The soundness theorem states that all verdicts produced by the our multi-head
monitor are correct according to the semantics of MDL (that also includes the semantics of
MTL).

Theorem 3.8 ( [63, vydra_sound]). Let φ be a well-formed bounded-future MDL formula,
n ∈ N, and m our multi-head monitor’s state, m ∈ M, obtained by applying advm to initm(φ)
n-times. Let advm(m) = (m′, (τ, β)). Then, (i) τ = τn and (ii) β if and only if (ρ, n) � φ.

The soundness theorem has been formally proved using the Isabelle/HOL proof assistant [63].

Completeness Because a trivial monitoring algorithm that never produces a verdict (e.g.,
advm(m) = ⊥, for every m ∈ M) is also sound, we have to guarantee that our monitoring
algorithm actually produces some verdicts. We capture this in a completeness theorem. The
completeness theorem states that the monitor outputs a verdict for a time-point if the reading
heads over the trace could read sufficiently many time-points afterwards. Quantitatively, the
monitor is guaranteed to compute a verdict for time-point n, n ∈ N, if the reading heads over
the trace could read a (monotone) sequence of time-stamps τ and n < prog(φ, τ).

Theorem 3.9 ( [63, vydra_complete]). Let φ be a well-formed bounded-future MDL formula
and let n ∈ N be a time-point. Suppose that applying advh to inith iteratively yields a sequence of
time-stamps τ . If n < prog(φ, τ), then advm can be successfully applied to initm(φ) n-times and
yields a monitor’s state m, m ∈M, such that advm(m) = (m′, (τ, β)), for some m′ ∈M, τ ∈ T,
and β ∈ B.

The completeness theorem has been formally proved using the Isabelle/HOL proof assistant [63].

3.2.5 Complexity Analysis

To analyze the time and space complexity of our multi-head monitor, we assume that time-points
(natural numbers whose magnitude is at most the trace length `) and time-stamps (elements
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||p|| = 1
||¬φ|| = ||φ||+ 1
||φ ∨ ψ|| = max{||φ||, ||ψ||}+ 1
|| I φ|| = ||#I φ|| = ||φ||+ 1
||φ1 SI φ2|| = ||φ1 UI φ2|| = max{||φ||, ||ψ||}+ 1
||〈r|I || = |||r〉I || = maxφ∈SF(r){||φ||}+ 10 · |r|+ 1

Figure 3.21. The recursive function ||φ||.

|p| = 1
|¬φ| = |φ|+ 1
|φ ∨ ψ| = |φ|+ |ψ|+ 1
| I φ| = |#I φ| = |φ|+ 1
|φ1 SI φ2| = |φ1 UI φ2| = |φ|+ |ψ|+ 1
|〈r|I | = ||r〉I | = (∑φ∈SF(r) |φ|) + |r|+ 1

Figure 3.22. The recursive function |φ|.

τ ∈ T) can be manipulated in constant time and stored in constant space. Moreover, we assume
that the set of atomic propositions Σ is fixed and thus its size |Σ| is constant.

Let a trace ρ<` of a trace length ` be fixed. Because the time complexity of computing
individual verdicts using our multi-head monitor may vary, we analyze the total time complexity
of computing all verdicts on the fixed trace ρ<` of trace length `, i.e., evaluating advm starting
from initm(φ) until we get ⊥, and report the amortized time complexity per time-point (obtained
by dividing the total time complexity on the trace ρ<` by `). We define the recursive functions
time(φ) and space(φ) on MDL formulas φ (Figure 3.19 and Figure 3.20) that bound the total time
and space complexity, respectively, of computing all verdicts for φ on the trace ρ<`. Then we
derive an upper bound on the functions time(φ) and space(φ) to get a more intuitive upper bound
on the complexity of our monitor in terms of the measure ||φ|| on MDL formulas φ (Figure 3.21).
Finally, we define the measure |φ| (Figure 3.22) that simply counts the number of subformulas
and subexpressions of MDL regular expressions in an MDL formula φ. We use the measure |φ| to
derive an altenrative upper bound on the complexity of our monitor. The relationships between
time, space, and the measures || · || and | · | are expressed by the following lemma, where ct and
cs are sufficiently large constants independent of the trace ρ<`, its length `, and the formula φ.

Lemma 3.10. The following upper bounds hold for an MTL formula φ:

time(φ) ≤ ||φ|| · ` · ct
space(φ) ≤ ||φ|| · cs.

The following upper bounds hold for an MDL formula φ:

time(φ) ≤ 3||φ|| · ` · ct
space(φ) ≤ 3||φ|| · cs
||φ|| ≤ 10 · |φ|.

MTL Monitor’s Complexity We observe that the state of our multi-head monitorm ∈M for
an MTL formula φ consists of |φ| submonitors for the subformulas of φ and its space complexity
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is at most |φ| · cs, where cs is a sufficiently large constant. We can prove this observation for the
initial state of our multi-head monitor initm(φ) by induction over φ and for the state advm(m)
after computing a verdict by induction over m.

The time complexity of computing initm(φ) is at most |φ| · ct, where ct is a sufficiently large
constant, because initm(φ) is a simple recursive function on φ. On the trace ρ<` of trace length `,
the function advm can be evaluated at most `-times before it yields ⊥. This can be proved by
induction over `. To bound the time complexity of the loops in the functions doSince(advm,m)
and doUntil(advm,m), we observe that advm(m2) is evaluated within each loop iteration. Hence,
the total number of loop iterations is bounded by `. It follows that the total time complexity of
evaluating advm starting from initm(φ) until we get ⊥ on the trace ρ<` is bounded by time(φ).
Given an MTL formula φ, time(φ) can be bounded by |φ| · ` · ct.

Finally, we summarize the amortized time and space complexity of our multi-head MTL
monitor in the following theorem.

Theorem 3.11. The amortized time complexity of computing the verdicts for an MTL formula
φ is at most |φ| · ct. The space complexity of representing the multi-head monitor’s state and
computing the verdicts for an MTL formula φ is at most |φ| · cs.

MDL Monitor’s Complexity Because an MDL monitor extends an MTL monitor with the
window data structure for the temporal match operators, we focus on analyzing the time and
space complexity of the window data structure.

Given an MDL regular expression r, we define |r| to be the number of all subexpressions of r
(including r, but not regular expressions occurring in direct subformulas of r). By induction on
MDL regular expressions r, we observe that the number of states in the ε-NFA AN computed by
the function T (Figure 3.8) for r is at most 3 · |r| (every subexpression adds at most 3 states to
the ε-NFA AN). Because the set of DFA’s states Q consists of all subsets of the set of NFA’s
states, we derive |Q| ≤ 23·|r| = 8|r|. We also observe that a window data structure consists of a
constant number of time-points and reading heads over the trace, taking up at most cs space,
functions s, e associating each AD’s state with at most one AD’s state and a constant number of
time-points and time-stamps, taking up at most |Q|2 · cs space, and 2 submonitors for each direct
subformula of r, taking up at most 2 ·∑φ∈SF(r) space(φ) space. When advacing the window’s
start, one more collection of submonitors for the direct subformulas of r is created (Line 12 in
Figure 3.13). Hence, using |Q| ≤ 8|r|, the space complexity of the window data structure and the
functions advacing the window’s start and end is at most (1 + 64|r|) · cs + 3 ·∑φ∈SF(r) space(φ).

Next we analyze the time complexity of initializing and updating the window data structure
for an MDL regular expression r. The window data structure can be initialized in time |Q| · ct.
To advance the window’s end, the function adve has to update, for every AD’s state, a couple of
AD’s states, time-points, and time-stamps, and evaluate the submonitors advms(m̄1), with one
submonitor for every φ ∈ SF(r). Hence, the total time complexity of advancing the window’s
end on the trace ρ<` is at most |Q|2 · ` · ct +∑

φ∈SF(r) time(φ).
We now analyze the time complexity of advancing the window’s start. Let cwhile denote

the total number of iterations of the loop in Lines 13–22 in Figure 3.13. Because an iteration
of the loop for a specific value of icur is only performed if qcur 6∈ dom(scur) and we have
qcur ∈ dom(scur) next time a loop iteration for icur is performed (in a subsequent evaluation
of advs), a loop iteration for a specific value of icur is performed at most |Q|-times in total.
Because icur < j and j ≤ `, the total number of loop iterations is at most cwhile ≤ ` · |Q|.
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Hence, the total time complexity of advancing the window’s start on the trace ρ<` is at most
(1 + |Q|) · |Q|2 · ` · ct + (1 + |Q|) ·∑φ∈SF(r) time(φ).

We observe that evaluating doMatchP or doMatchF until we get ⊥ consists of advancing the
window’s start and end according to the time-stamps in the trace and computing the verdicts
based on the window data structure. Overall, the total time complexity of evaluating doMatchP
or doMatchF until we get ⊥ is at most

|Q|2 · ` · ct +
∑

φ∈SF(r)
time(φ) + (1 + |Q|) · |Q|2 · ` · ct + (1 + |Q|) ·

∑
φ∈SF(r)

time(φ) + |Q| · ` · ct.

Using |Q| ≤ 8|r|, this is at most

(3 + 8|r|) · 64|r| · ` · ct + (2 + 8|r|) ·
∑

φ∈SF(r)
time(φ).

Given an MDL formula φ, the time complexity of computing all verdicts on the trace ρ<` is at
most time(φ) which can be further bounded by 3||φ|| · ` · ct. The space complexity of computing all
verdicts on the trace ρ<` is at most space(φ) which can be further bounded by 3||φ|| · cs. Finally,
we summarize the amortized time and space complexity of our multi-head MDL monitor in the
following theorem.

Theorem 3.12. The amortized time complexity of computing the verdicts for an MDL formula
φ is at most 3||φ|| · ct which is further at most 310·|φ| · ct. The space complexity of representing
the multi-head monitor’s state and computing the verdicts for the formula φ is at most 3||φ|| · cs
which is further at most 310·|φ| · cs.

We remark that the upper bounds in Theorem 3.12 are worst-case upper bounds. Our
empirical evaluation (Section 3.3) confirms that our multi-head monitor can handle 100 000
time-points in less than one second on average.

3.3 Implementation and Evaluation

We have implemented our multi-head monitor in a tool called Hydra [59], consisting of a
few thousand lines of C++ code. Our implementation mirrors the structure of the multi-head
monitor presented here and consists of C++ classes for monitoring atomic propositions, Boolean
operators, MTL temporal operators, and MDL temporal match operators.

In addition, we have exported verified OCaml code from our Isabelle/HOL formalization
and augmented this verified code with unverified OCaml and C code for parsing the formula
and trace file and outputting verdicts. We call the resulting tool Vydra [59]. We have used
Vydra to successfully test the correctness of Hydra on thousands of pseudo-random formulas
and traces.

We empirically evaluate the time and space complexity of Hydra and Vydra by answering
the following four research questions:

RQ1: How do Hydra and Vydra scale with respect to the magnitude of time constaints?

RQ2: How do Hydra and Vydra scale with respect to the number of subformulas and subex-
pressions in a formula?
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RQ3: How do Hydra and Vydra perform on inputs that trigger worst-case space complexity for
online monitors?

RQ4: How do Hydra and Vydra perform compared to the state-of-the-art monitoring tools?

To answer these research questions, we conduct average-case and worst-case experiments
measuring the time and space usage of Hydra, Vydra, and state-of-the-art tools supporting
MTL temporal operators and having an available implementation: Aerial [6], MonPoly [10],
VeriMon [8], and Reelay [75]. Aerial offers several modes of operation and several represen-
tations of Boolean expressions. We use the Global mode of Aerial because this mode yields
the best space complexity guarantees on formulas with large interval bounds and traces with
high event rate and the alternative Local mode is “only marginally better” than the Global
mode in the empirical evaluation [6]. We use the “direct representation” (expr) of Boolean
expressions in Aerial because expr is the fastest representation in the empirical evaluation [6].
We do not include r2u2 [54] in our empirical evaluation because its implementation computes
incorrect verdicts for some formulas, e.g., for the formula �[2,2] a0 on the trace ({a0}, ∅, ∅), where
we omit the time-stamps because r2u2 requires time-stamps to be equal to time-points. RQ4 is
commonly addressed by both average-case and worst-case experiments. Our empirical evaluation
can be reproduced using a publicly available artifact [60].

Experimental Setup We run our experiments on an Intel Core i5-4200U CPU computer
with 8 GB RAM. We measure the tools’ total execution time and maximal writeable memory
usage with a custom tool that performs two repetitions of each run. The tool measures the
total execution time in one repetition and reads the /proc directory in a loop to determine the
maximal writeable memory usage in another repetition. Having thoroughly tested the tools’
outputs separately, we discard any output during the experiments to minimize the impact of IO
on performance. Each unfilled data point in our plots shows the median for the tool invocations
with the same input parameters. Each filled data point shows the median over a collection of the
tool’s data points with the same x-coordinate. We include trend lines over the filled data points
in all plots. The space usage is not plotted if an execution times out because the tool could have
used more space if it did not time out. Note that the y-axis is always plotted in the logarithmic
scale. Consequently, an exponential growth of a quantity looks linear and a polynomial growth
looks logarithmic in the plots.

Optimizations Hydra implements some optimizations that were omitted from our presenta-
tion. Because the function e in the window data structure (i, j, s, e, h1, m̄1, h2, m̄2) is not needed
to evaluate the future match operator |r〉I , it is omitted in our implementation of the monitor’s
state for |r〉I . Moreover, the monitor’s state buffers the time-stamps τk and input symbols bk
for O(|r|) time-points k following the window’s start i. Hence, the submonitors m̄cur for the
direct subformulas of r do not have to be evaluated on Line 15 in Figure 3.13 as long as at most
O(|r|) iterations of the loop on Lines 13–22 have been performed. For instance, this is always
the case with regular expressions not containing the Kleene star, for which the current state
qcur in Figure 3.13 is equal to the empty state qcur = {} after at most O(|r|) loop iterations and
the empty state q = {} is always part of the domain of the function s in our implementation.
Similarly, the submonitors m̄1 do not have to be evaluated as long as the number of time-points in
the window j− i is at most O(|r|). Note that our optimizations of time complexity do not impact
the space complexity upper bounds in Theorem 3.12 asymptotically because there are always at
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most 3|φ| monitor state instances (since the window data structure uses up to 3 submonitors for
each direct subformula of the regular expression) and the additional space usage overhead is thus
at most O(3|φ| · |φ|).

Traces for Average-case Experiments The average-case traces with T = N (the time-
stamps are natural numbers) are produced by a pseudorandom trace generator, for a predefined
length `, event rate er , i.e., the number of time-points with the same time-stamp, and a maximum
time-stamp difference ∆ between consecutive time-points. The time-stamp differences between
segments of er time-points with the same time-stamp are distributed uniformly in {1, . . . , ∆}.
The set of atomic propositions Γi at a time-point i is generated as follows: (i) independently
with probability 1 − 1

er , an atomic proposition p0, . . . , p3 is included in Γi; (ii) independently
with probability 1

2 , an atomic proposition p4, . . . , p15 is included in Γi.

Formulas for Average-case Experiments The average-case formulas φ are produced by
mutually recursive pseudorandom formula and regular expression generators, for a predefined
number of subformulas and subexpressions |φ| and a maximum interval bound bmax. A well-
formed MDL formula φ with k := |φ|, k ≥ 1, is generated as follows: (i) if k = 1, then φ = p, for an
atomic proposition p ∈ {p0, . . . , p15} that is chosen uniformly at random; (ii) if k = 2, a top-level
operator op ∈ {¬, I ,#I } is chosen uniformly at random; (iii) if k ≥ 3, a top-level operator
op ∈ {¬,∧,∨, I ,#I ,SI ,UI , 〈·|I , |·〉I} is chosen uniformly at random. If the top-level operator op
is a temporal operator with an interval I, then I is generated as follows: (i) with probability 1

4 ,
I = [0, 0]; (ii) with probability 1

4 , I = [0, b], where b ∈ {0, . . . , bmax} ∪ {∞} is chosen uniformly at
random; (iii) with probability 1

2 , I = [a, b], where a ∈ {0, . . . , bmax} and b ∈ {l, . . . , bmax} ∪ {∞}
are chosen uniformly at random. We only allow b =∞ for past temporal operators  I ,SI , 〈·|I .
Finally, if the top-level operator op ∈ {¬, I ,#I } is a unary operator, a pseudorandom
subformula ψ with |ψ| = k− 1 is generated recursively; if op ∈ {∧,∨,SI ,UI} is a binary operator,
two pseudorandom subformulas ψ1, ψ2 with |ψ1| = k1 and |ψ2| = k − 1 − k1 are generated
recursively, where k1 ∈ {1, . . . , k − 2} is chosen uniformly at random; and if op ∈ {〈·|I , |·〉I} is
a temporal match operator, an MDL regular expression r with (∑ψ∈SF(r) |ψ|) + |r| = k − 1 is
generated recursively. A regular expression r with k := (∑ψ∈SF(r) |ψ|) + |r|, k ≥ 2, is generated
as follows: (i) if k = 2, then r = ψ, for a formula ψ; (ii) if k ∈ {3, 4}, then we choose uniformly
between r = ψ, for a formula ψ, and r = s∗, for an MDL regular expression s; (iii) if k ≥ 5, then
we choose uniformly between r = ψ, for a formula ψ, r = s1 · s2, r = s1 + s2, and r = s∗, for MDL
regular expressions s1, s2, s. Finally, if r = ψ, for a formula ψ, then ψ is generated recursively
with |ψ| = k − 1; if r = s1 · s2 or r = s1 + s2, for MDL regular expressions s1, s2, then s1, s2 are
generated recursively with (∑ψ∈SF(s1) |ψ|) + |r| = k1 and (∑ψ∈SF(s2) |ψ|) + |r| = k− 1−k1, where
k1 ∈ {2, . . . , k − 3} is chosen uniformly at random; if r = s∗, for an MDL regular expression s,
then s is generated recursively with (∑ψ∈SF(s) |ψ|) + |r| = k − 1.

Pseudorandom MTL formulas are obtained by ruling out the temporal match operators
op ∈ {〈·|I , |·〉I} when choosing a top-level operator. Past-only MTL formulas are obtained by
additionally ruling out the future MTL operators op ∈ {#I ,UI} when choosing a top-level
operator. Equivalent MDLAerial formulas are obtained by applying the function mdl2mdl′(φ)
to well-formed MDL formulas φ produced by our pseudorandom formula generator. In our
empirical evaluation, we have exported verified OCaml code for the function mdl2mdl′(φ) from
our Isabelle/HOL formalization and augmented this verified code with unverified OCaml code
for parsing the MDL formula and outputting the MDLAerial formula.
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Configuration pMTL MTL MDL
Formulas past-only MTL MTL MDL
Formula size |φ| 25 25 25
Max. interval bounds bmax 1 000 1 000 100
Trace length ` 100 000 2 000 2 000
Event rate er 1 2 2
Max. time-stamp difference ∆ 1 100 100

Figure 3.23. Summary of configurations for the experiment “Large Intervals”.
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Figure 3.24. Evaluation results for the average-case experiments “Large Intervals”.
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Figure 3.25. Evaluation results for the experiment RL.

3.3.1 RQ1: Large Intervals

In this section, we answer RQ1 by validating that the time and space complexity of Hydra
and Vydra do not depend on the magnitude of time constraints, i.e., that their complexity is
interval-oblivious. To this end, we generate a trace of a fixed length and a formula φ of a fixed
size. Then we scale the interval bounds of φ’s temporal operators by a scaling factor (2–20). In
this experiment, we use three configurations whose individual parameters are summarized in
Figure 3.23.

We also perform an experiment (abbreviated RL) using formulas and traces described by
Ulus [75]. The MTL formulas DELAY(n) are of the form: DELAY(n) = p S[n,n] q, where p and q
are atomic propositions. A trace, parameterized by n ∈ N, for the experiment RL is constructed
with p being always true and q being true at every other time-point. The trace length of RL
traces is ` = 100 000 and their time-stamps are equal to time-points.

We now state our expectations on the tools’ behaviour. Aerial is based on dynamic
programming over interval-shifted formulas [6], i.e., formulas whose intervals are shifted down
by offsets up to the interval bounds. Hence, Aerial is not interval-oblivious in either time or
space complexity. Reelay stores collections of intervals when evaluating temporal operators and
implements an optimization merging overlapping intervals. Nevertheless, this optimization fails
in the worst-case. Hence, we Reelay is not interval-oblivious in either time or space complexity.
MonPoly is not interval-oblivious in either time or space complexity. Finally, VeriMon is only
interval-oblivious in time complexity for MTL, but not for MDL and also not in space complexity.

Figure 3.24 and Figure 3.25 contain the evaluation results for the average-case experiments
and the experiment RL, respectively. The evaluation results confirm our expectations: Hydra
and Vydra are interval-oblivious in both time and space complexity while the other tools are not
interval-oblivious. The space complexity of MonPoly and Reelay is plausibly interval-oblivious
according to the actual space usage of these tools in our empirical evaluation. However, we
confirmed that their time complexity is not interval-oblivious. Because all tools are deterministic
algorithms that always halt, their space complexity cannot be constant if the time complexity
is growing (otherwise the same state would be encountered twice during the computation and
the tool could not halt). Hence, the space complexity of MonPoly and Reelay cannot be
interval-oblivious. Overall, we observe that Hydra outperforms all other tools benchmarked in
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our experiments. Finally, note that the y-axis is logarithmic and thus a constant offset towards
the y-axis corresponds to changing the order of magnitude.

3.3.2 RQ2: Large Formulas

In this section, we answer RQ2 by benchmarking Hydra and Vydra on formulas of increasing
size. To this end, we generate a trace of a fixed length and formulas φ of increasing size
|φ| ∈ {6, 17, . . . , 50}. In this experiment, we use three configurations whose individual parameters
are summarized in Figure 3.26.

Figure 3.27 summarizes the evaluation results. The experiments show that Hydra can handle
large formulas efficiently. In more detail, it can monitor a formula φ with |φ| = 50 on 100 000
time-points in less than one second on average. Overall, we observe that Hydra outperforms all
other tools benchmarked in our experiments except Reelay. However, Reelay only supports
past-only MTL formulas and traces in which time-stamps are equal to time-points.

3.3.3 Special Cases

To answer RQ3 and RQ4, we conduct two more experiments on worst-case formulas for online
monitoring and worst-case regular expressions for MDLAerial.

Worst-case Formulas for Online Monitoring We consider a family of MTL formulas
〈Φn〉n∈N that exhibit worst-case space complexity of online monitoring even when restricted to
produce a single Boolean verdict for the first time-point. The formula Φn is defined over the set
of atomic propositions Σn = {p1, . . . , pn, e}:

Φn = #[1,1] (¬e U[0,0] (¬e ∧∧ni=1(pi ⇒ �[0,0] (e⇒ pi)) ∧
∧n
i=1(¬pi ⇒ �[0,0] (e⇒ ¬pi)))).

The family of traces, for a fixed n ∈ N, on which the space complexity of online monitoring for Φn

becomes at least 2n bits looks as follows: the first time-point has a time-stamp τ0 and an empty
set of atomic propositions Γ0 = ∅. Then for each subset X ∈ X ⊆ 2Σn−{e} of atomic propositions
without e, we add a time-point i with the atomic propositions Γi = X and the time-stamp τ0 + 1.
Next, for some X ⊆ Σn − {e}, we add a time-point i with the atomic propositions Γi = X ∪ {e}
and the time-stamp τ0 + 1. Finally, we add a time-point with an empty set of atomic propositions
and the time-stamp τ0 + 3, so that the trace uniquely determines the Boolean verdict for the
first time-point.

Intuitively, for an online monitor to decide if Φn is satisfied at the first time-point of a trace
from the family of traces, it must remember the exact subset X to check if the set X of atomic
propositions, which eventually appear with the atomic proposition e, belongs to X . As there are
22n different sets X , we derive a lower bound of 2n bits to store X .

We remark that the top-level operator Next in the formula Φn is used to make the formula
trivially false on the worst-case traces described above at all time-points but the first one (recall
that all evaluated monitors produce a sequence of Boolean verdicts at each position in the trace).

To benchmark monitoring Φn, for increasing n ∈ N, we use traces of a fixed length obtained
by concatenating worst-case traces with an increasing base time-stamp τ0 into a single trace of
a fixed length (independent of n). This way, we benchmark the time complexity to process a
time-point rather than the time complexity to process an increasing number of time-points. We
benchmark monitoring Φn using the tools Hydra, Vydra, Aerial, VeriMon supporting MTL
with future temporal operators.
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Configuration pMTL MTL MDL
Formulas past-only MTL MTL MDL
Max. interval bounds bmax 50 50 50
Trace length ` 100 000 100 000 1 000
Event rate er 1 10 10
Max. time-stamp difference ∆ 1 4 4

Figure 3.26. Summary of configurations for the experiment “Large Formulas”.
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Figure 3.27. Evaluation results for the experiment “Large Formulas”.
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Figure 3.28 summarizes the evaluation results. We observe that Hydra’s and Vydra’s time
complexity is polynomial, whereas Aerial’s and VeriMon’s time complexity is exponential.
(Recall that all y-axes are in logarithmic scale.)

Worst-case Regular Expressions for MDLAerial Finally, we carry out a benchmark on the
MDL regular expressions from Section 2.2, for which we conjecture that the equivalent MDLAerial

regular expressions are of quadratic size. The well-formed MDL regular expressions ri, i ∈ N,
are defined as:

ri =
{
φ∗0 if i = 0,
(φi · ri−1)∗ if i > 0.

The MDL regular expressions ri have the following simple form: (φ0)∗, (φ1 · (φ0)∗)∗, (φ2 ·
(φ1 · (φ0)∗)∗)∗, . . . and the equivalent MDLAerial regular expressions r̃i := embed′(rderive(ri))
of quadratic size are obtained using the functions defined in Figure 2.7 (Section 2.2).

In this experiment, we benchmark the MDL formulas 〈ri|[0,0] and |ri〉[0,0] and the equivalent
MDLAerial formulas 〈r̃i|[0,0] and |r̃i〉[0,0] on a pseudorandom trace of a fixed length and high
event-rate, where every atomic proposition pi is included in the set of atomic propositions Γi at
a time-point i independently with probability 1

2 . We choose the direct subformulas of the MDL
regular expressions as follows: φi := pi, where pi ∈ Σ are atomic propositions.

Figure 3.28 summarizes the evaluation results. We observe that Hydra significantly outper-
forms all other tools in terms of time complexity, but Hydra’s space usage temporarily exceeds
Aerial’s space usage. This is because Hydra stores all deterministic states of the automaton
for the MDL regular expressions ri ever encountered during monitoring. On the other hand,
Aerial does not buffer any Boolean expressions for the MDLAerial formulas 〈r̃i|[0,0] and |r̃i〉[0,0]
and thus its space usage is linear in their size, i.e., quadratic in |ri|.
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Figure 3.28. Evaluation results for the worst-case experiments.
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Chapter 4

First-Order Monitoring

4.1 Introduction

Propositional temporal specification languages can express properties about a finite (a priori
fixed) set of events. In this setting, we proposed a multi-head monitoring algorithm (Chapter 3)
that can efficiently handle an arbitrary specification formulated in metric dynamic logic—a
propositional temporal logic. In particular, there are no restrictions on the use of negation and
other logical operators. On the other hand, fixing a set of events for a system a priori might
be infeasible: Consider, for instance, a system managing user authentication, where new user
accounts can be created while the system is running. And even if the system did not permit
to create new accounts, enumerating a large number of users in a specification explicitly might
be tedious and error-prone. Hence, a more flexible solution is to only fix a small set of event
types and let the actual events be parameterized by data values, e.g., the users of the system.
A monitor for a parameterized property decides if the property holds for the individual values
of the parameters, i.e., the monitor computes a set of the parameter valuations satisfying the
property (violations can also be computed as satisfactions of the property’s negation).

We first consider the case of parameterized properties without temporal operators that can
also be interpreted as database queries, with a well-established theory and practice. To benefit
from this theory and its efficient implementations in the form of standard database management
systems (e.g., PostgreSQL), the parameterized property must be expressed in a database query
language which typically imposes several restrictions on the shape of the query. For instance,
the database query language SQL restricts the use of negation in queries to make sure that
(potentially multiple) ways of evaluating an SQL query can be automatically derived from
its syntactic structure. Consequently, we could easily express the query from Example 1.2 in
relational calculus, but not in SQL.

Codd’s theorem states that all domain-independent queries of the relational calculus can be
expressed in relational algebra (RA) [21]. Yet, the proof of Codd’s theorem does not address the
efficiency of evaluating the resulting RA expression. Moreover, it does not cover queries that
are not domain-independent in general, but that could still be evaluated using RA over specific
database instances with additional properties. An example of such a query is a variation of the
query from Example 1.3:

Qsusp
user := B(b) ∧ ∃s. ∀p. P(b, p) −→ S(p, u, s).

This query might be relevant for a shop in which brands (unary finite relation B of brands) sell
products (binary finite relation P relating brands and products) and products are reviewed by
users with a score (ternary finite relation S relating products, users, and scores). It is satisfied
by all brands and users for which there exists a score that the user assigned to all the brand’s
products. If a brand has no product, then every user satisfies this condition and the query is
satisfied by an infinite set of tuples. However, if every brand has at least one product, then the

73
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query is only satisfied by a finite number of tuples that can be computed by the following RA
expression (where − is the set difference operator and . is the anti-join):

πbrand,user((πuser ,score(S)× B)− πbrand,user ,score((πuser ,score(S)× P) . S)).

Van Gelder and Topor [33,34] present a translation from a decidable class of domain-independent
RC queries, called evaluable, to RA expressions with the goal of improving the performance
of evaluating the resulting RA expression. Still, they do not cover queries like Qsusp

user and the
performance of evaluating the RA expression produced by their translation can also be further
improved.

RC Query Translation In this thesis, we translate arbitrary RC queries to RA expressions
under the assumption of an infinite domain. To deal with queries that are domain-dependent,
our translation produces two RA expressions, instead of a single equivalent one. The first RA
expression characterizes the original RC query’s relative safety, the decidable question of whether
the query evaluates to a finite relation for a given database, which can be the case even for a
domain-dependent query, e.g., Qsusp

user . If the original query is relatively safe on a given database,
i.e., produces some finite result, then the second RA expression evaluates to the same finite
result. Taken together, the two RA expressions solve the query capturability problem [3]: they
allow us to enumerate the original RC query’s finite evaluation result, or to learn that it would
be infinite using RA operations on the unmodified database.

MFOTL Query Translation Next we generalize our translation of RC queries to all MFOTL
queries, i.e., first-order queries with temporal operators. Our translation improves upon the
translation by Basin et al. [10] who describe a heurestic to bring a given MFOTL query to RANF.
Their heuristic is incomplete, i.e., it fails to translate many MFOTL queries to equivalent queries
in RANF. This issue also prevented Havelund et al. [42] from using MonPoly [10] on a query
formalizing data races in a concurrent system.

Unlike for RC, where we produce a pair of RA expressions, we translate an MFOTL query Q
into a single MFOTL query in RANF that can be evaluated at every time-point by state-of-the-art
first-order monitoring algorithms, e.g., VeriMon [8] and MonPoly [10]. This single MFOTL
query uses a fresh variable f /∈ fv(Q) to signal if the evaluation result at a time-point is infinite.
If it is infinite, then the RANF query is satisfied by a single tuple with a special value cinf of
the variable f . Otherwise, the RANF query is satisfied by the same set of tuples as Q, with
each tuple extended with another special value cfin of the variable f . The advantage of having a
pair of queries is that the finiteness check is decoupled from the computation of the finite set of
satisfying tuples. However, for MFOTL, one would need to run two monitors for the two queries
and synchronize their results at the individual time-points.

MFOTL Query Evaluation Once we have an MFOTL query in RANF, we can evaluate it by
following its syntactic structure using operations on finite tables. To optimize this evaluation, we
propose, implement, and formally verify [24] using the Isabelle/HOL proof assistant an efficient
algorithm for the temporal operators SI and UI whose total time complexity for processing a
sequence of time-points depends linearly on the number of these time-points and on the total
number of tuples in the input relations for the arguments of the temporal operators. In contrast,
MonPoly’s time complexity can be quadratic in the number of processed time-points in the
worst-case.
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Chapter Outline Our translation of an RC query to two RA expressions proceeds in several
steps. We presented standard algorithms for translating an arbitrary safe-range RC query
to an equivalent RANF query that can be directly mapped to an equivalent RA expression
in Section 2.3.1. In this section, we focus on translating an RC query to two safe-range RC
queries (Section 4.2). Afterwards, we generalize our translation of RC queries to MFOTL queries
(Section 4.3). Finally, we present our optimized monitoring algorithm for the temporal operators
SI and UI (Section 4.4). We also carry out empirical evaluations of our translations of RC
(Section 4.2.7) and MFOTL (Section 4.3.2) queries as well as our optimized monitoring algorithm
for SI and UI (Section 4.4.3). For RC queries, we also provide a theoretical complexity analysis
(Section 4.2.4) and develop a method called Data Golf that produces hard database instances
used to evaluate pseudorandom RC queries (Section 4.2.5).

4.2 Relational Calculus Query Translation
Our approach to evaluating an arbitrary RC query Q over a fixed structure S with an infinite
domain D proceeds by translating Q into a pair of safe-range queries (Qfin , Qinf ) such that

(fv) fv(Qfin) = fv(Q) unless Qfin is syntactically equal to false; fv(Qinf ) = ∅;

(eval) JQK is an infinite set if Qinf holds; otherwise JQK = JQfinK is a finite set.

Since the queries Qfin and Qinf are safe-range, they are domain-independent and thus JQfinK
is a finite set of tuples. In particular, JQK is a finite set of tuples if Qinf does not hold. Our
translation generalizes Hull and Su’s case distinction that restricts bound variables [44] to restrict
all variables. Moreover, we use Van Gelder and Topor’s idea to replace the active domain by a
smaller set (generator) specific to each variable [34] while further improving the generators.

4.2.1 Restricting One Variable

Let x be a free variable in a query Q̃ with range-restricted bound variables. This assumption
on Q̃ will be established by translating an arbitrary query Q bottom-up (Section 4.2.2). In this
section, we develop a translation of Q̃ into an equivalent query Q̃′ that satisfies the following:

• Q̃′ has range-restricted bound variables;

• Q̃′ is a disjunction and x is range-restricted in all but the last disjunct.

The disjunct in which x is not range-restricted has a special form that is central to our translation:
it is the conjunction of a query in which x does not occur and a query that is satisfied by infinitely
many values of x. From the case distinction “for the corresponding variable: in or out of adom,
and equality or inequality to other ‘previous’ variables if out of adom” [44], we translate Q̃ into
the following equivalent query:

Q̃ ≡ (Q̃ ∧ x ∈ adom(Q̃)) ∨∨y∈fv(Q̃)−{x} (Q̃[x 7→ y] ∧ x ≈ y) ∨
(Q̃[x/false] ∧ ¬(x ∈ adom(Q̃) ∨∨y∈fv(Q̃)−{x} x ≈ y)).

Here, x ∈ adom(Q̃) stands for an RC query with a single free variable x that is satisfied by an
assignment α if and only if α(x) ∈ adomS(Q̃). The translation distinguishes the following three
cases for a fixed assignment α:
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• if α(x) ∈ adomS(Q̃) holds, then we do not alter the query Q̃;

• if x ≈ y holds for some free variable y ∈ fv(Q̃)− {x}, then x can be replaced by y in Q̃;

• otherwise, Q̃ is equivalent to Q̃[x/false], i.e., all atomic predicates with a free occurrence
of x can be replaced by false (because α(x) /∈ adomS(Q̃)), all equalities x ≈ y and y ≈ x
for y ∈ fv(Q̃) − {x} can be replaced by false (because α(x) 6= α(y)), and all equalities
x ≈ z for a bound variable z can be replaced by false (because α(x) /∈ adomS(Q̃) and z
is range-restricted in its subquery ∃z.Qz, by assumption, i.e., gen(z,Qz) holds and thus,
for all α′, we have α′ |= ∃z.Qz if and only if there exists d ∈ adomS(Qz) ⊆ adomS(Q̃) such
that α′[z 7→ d] |= Qz).

Note that ∃~fv(Q)−{x}. Q is the query in which all free variables of Q except x are existentially
quantified. Given a set of quantified predicates G, we write ∃~α.G for ∨Qqp∈G ∃~α.Qqp. To avoid
enumerating the entire active domain adomS(Q) of the query Q and a structure S, Van Gelder
and Topor [34] replace the condition x ∈ adom(Q) in their translation by ∃~fv(G)− {x}.G, where
the generator set G is a subset of atomic predicates. Because their translation [34] must yield an
equivalent query (for every finite or infinite domain), G must satisfy, for all α,

α |= ¬∃~fv(G)− {x}.G =⇒ (α |= Q⇐⇒ α |= Q[x/false]) (vgt1) and
α |= Q[x/false] =⇒ α |= ∀x.Q (vgt2).

Note that (vgt2) does not hold for the query Q := ¬B(x) and thus a generator set G of atomic
predicates satisfying (vgt2) only exists for a proper subset of all RC queries. In contrast,
we only require that G satisfies (vgt1) in our translation. To this end, we define a covered
relation cov(x,Q,G) (in contrast to Van Gelder and Topor’s constrained relation convgt(x,Q,G)
defined in Figure 2.11) such that, for every variable x and query Q̃ with range-restricted bound
variables, there exists at least one set G such that cov(x, Q̃,G) and (vgt1) holds. Figure 4.1
shows the definition of this relation. Unlike the generator set G in gen(x,Q,G), the cover set G in
cov(x,Q,G) may also contain equalities between two variables. Hence, we define a function qps(G)
that collects all generators, i.e., quantified predicates, and a function eqs(x,G) that collects all
variables y distinct from x occurring in equalities of the form x ≈ y. We use qps∨(G) to denote
the query ∨Qqp∈qps(G) Qqp. We state the soundness and completeness of the relation cov(x,Q,G)
in the next lemma, which follows by induction on the derivation of cov(x, Q̃,G).
Lemma 4.1. Let Q̃ be a query with range-restricted bound variables, x ∈ fv(Q̃). Then there
exists a set G of quantified predicates and equalities such that cov(x, Q̃,G) holds and, for any
such G and all α,

α |= ¬(qps∨(G) ∨∨y∈eqs(x,G) x ≈ y) =⇒ (α |= Q̃⇐⇒ α |= Q̃[x/false]).

Finally, to preserve the dependencies between the variable x and the remaining free variables
of Q occurring in the quantified predicates from qps(G), we do not project qps(G) on the single
variable x, i.e., we restrict x by qps∨(G) instead of ∃~fv(Q)− {x}. qps(G). From Lemma 4.1, we
derive our optimized translation characterized by the following lemma.
Lemma 4.2. Let Q̃ be a query with range-restricted bound variables, x ∈ fv(Q̃), and G be a
set of quantified predicates and equalities such that cov(x, Q̃,G) holds. Then x ∈ fv(Qqp) and
fv(Qqp) ⊆ fv(Q̃), for every Qqp ∈ qps(G), and

Q̃ ≡ (Q̃ ∧ qps∨(G)) ∨∨y∈eqs(x,G) (Q̃[x 7→ y] ∧ x ≈ y) ∨
(Q̃[x/false] ∧ ¬(qps∨(G) ∨∨y∈eqs(x,G) x ≈ y)). (�)
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cov(x, x ≈ x, ∅);
cov(x,Q, ∅) if x /∈ fv(Q);
cov(x, x ≈ y, {x ≈ y}) if x 6= y;
cov(x, y ≈ x, {x ≈ y}) if x 6= y;
cov(x,Q, {Q}) if ap(Q) and x ∈ fv(Q);
cov(x,¬Q,G) if cov(x,Q,G);
cov(x,Q1 ∨Q2,G1 ∪ G2) if cov(x,Q1,G1) and cov(x,Q2,G2);
cov(x,Q1 ∨Q2,G) if cov(x,Q1,G) and Q1[x/false] = true;
cov(x,Q1 ∨Q2,G) if cov(x,Q2,G) and Q2[x/false] = true;
cov(x,Q1 ∧Q2,G1 ∪ G2) if cov(x,Q1,G1) and cov(x,Q2,G2);
cov(x,Q1 ∧Q2,G) if cov(x,Q1,G) and Q1[x/false] = false;
cov(x,Q1 ∧Q2,G) if cov(x,Q2,G) and Q2[x/false] = false;
cov(x,∃y.Qy, ∃̃y.G) if x 6= y and cov(x,Qy,G) and (x ≈ y) /∈ G;
cov(x,∃y.Qy, ∃̃y. (G − {x ≈ y}) ∪ Gy[y 7→ x]) if x 6= y and cov(x,Qy,G) and gen(y,Qy,Gy).

Figure 4.1. The covered relation.

Note that x is not guaranteed to be range-restricted in (�)’s last disjunct. However, it occurs
only in the negation of a disjunction of quantified predicates with a free occurrence of x and
equalities of the form x ≈ y. We will show how to handle such occurrences in Sections 4.2.2
and 4.2.3. Moreover, the negation of the disjunction can be omitted if (vgt2) holds.

4.2.2 Restricting Bound Variables

Let x be a free variable in a query Q̃ with range-restricted bound variables. Suppose that
the variable x is not range-restricted, i.e., gen(x, Q̃) does not hold. To translate ∃x. Q̃ into an
inf-equivalent query with range-restricted bound variables (∃x. Q̃ does not have range-restricted
bound variables precisely because x is not range-restricted in Q̃), we first apply (�) to Q̃ and
distribute the existential quantifier binding x over disjunction. Next we observe that

∃x. (Q̃[x 7→ y] ∧ x ≈ y) ≡ Q̃[x 7→ y] ∧ ∃x. (x ≈ y) ≡ Q̃[x 7→ y],

where the first equivalence follows because x does not occur free in Q̃[x 7→ y] and the second
equivalence follows from the straightforward validity of ∃x. (x ≈ y). Moreover, we observe that

∃x. (Q̃[x/false] ∧ ¬(qps∨(G) ∨∨y∈eqs(x,G) x ≈ y)) ∞≡ Q̃[x/false]

because x is not free in Q̃[x/false] and there exists a value d for x in the infinite domain D such
that x 6= y holds for all finitely many y ∈ eqs(x,G) and d is not among the finitely many values
interpreting the quantified predicates in qps(G). Altogether, we obtain the following lemma.

Lemma 4.3. Let Q̃ be a query with range-restricted bound variables, x ∈ fv(Q̃), and G be a set
of quantified predicates and equalities such that cov(x, Q̃,G) holds. Then

∃x. Q̃ ∞≡ (∃x. Q̃ ∧ qps∨(G)) ∨∨y∈eqs(x,G) (Q̃[x 7→ y]) ∨ Q̃[x/false]. (�∃)

Our approach for restricting all bound variables recursively applies Lemma 4.3. Because the
set G such that cov(x,Q,G) holds is not necessarily unique, we introduce the following (general)
notation. We denote the non-deterministic choice of an object X from a non-empty set X as
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input: An RC query Q.
output: A query Q̃ with range-restricted bound variables such that Q ∞≡ Q̃.

1 function fixbound(Q, x) = {Qfix ∈ Q | x ∈ nongens(Qfix)};
2 function rb(Q) =
3 switch Q do
4 case ¬Q′ do return ¬rb(Q′);
5 case Q′1 ∨Q′2 do return rb(Q′1) ∨ rb(Q′2);
6 case Q′1 ∧Q′2 do return rb(Q′1) ∧ rb(Q′2);
7 case ∃x.Qx do
8 Q := flat∨(rb(Qx));
9 while fixbound(Q, x) 6= ∅ do

10 Qfix ← fixbound(Q, x);
11 G ← {G | cov(x,Qfix ,G)};
12 Q := (Q− {Qfix}) ∪ {Qfix ∧ qps∨(G)} ∪⋃y∈eqs(x,G){Qfix [x 7→ y]} ∪

{Qfix [x/false]};
13 return

∨
Q̃∈Q ∃̃x. Q̃;

14 otherwise do return Q;
Figure 4.2. Restricting bound variables.

X ← X . We define the recursive function rb(Q) in Figure 4.2, where rb stands for range-restrict
bound (variables). The function converts an arbitrary RC query Q into an inf-equivalent query
with range-restricted bound variables. We proceed by describing the case ∃x.Qx. First, rb(Qx)
is recursively applied on Line 8 to establish the precondition of Lemma 4.3 that the translated
query has range-restricted bound variables. Because existential quantification distributes over
disjunction, we flatten disjunction in rb(Qx) and process the individual disjuncts independently.
We apply (�∃) to every disjunct Qfix in which the variable x is not already range-restricted. For
every Q′fix added to Q after applying (�∃) to Qfix the variable x is either range-restricted or does
not occur in Q′fix , i.e., x /∈ nongens(Q′fix). This entails the termination of the loop on Lines 9–12.

Example 4.4. Consider the query Qsusp
user := B(b) ∧ ∃s. ∀p. P(b, p) −→ S(p, u, s) from Section 4.1.

Restricting its bound variables yields the query

rb(Qsusp
user) = B(b) ∧ ((∃s. (¬∃p.P(b, p) ∧ ¬S(p, u, s)) ∧ (∃p. S(p, u, s))) ∨ (¬∃p.P(b, p))).

The bound variable p is already range-restricted in Qsusp
user and thus only s must be restricted.

Applying (�) to restrict s in ¬∃p.P(b, p) ∧ ¬S(p, u, s), then existentially quantifying s, and
distributing the existential over disjunction yields the first disjunct in rb(Qsusp

user) above and
∃s. (¬∃p.P(b, p))∧¬(∃p. S(p, u, s)) as the second disjunct. Because there exists some value in the
infinite domain D that does not belong to the finite interpretation of the atomic predicate S(p, u, s),
the query ∃s.¬(∃p.S(p, u, s)) is a tautology over D. Hence, ∃s. (¬∃p.P(b, p)) ∧ ¬(∃p.S(p, u, s))
is inf-equivalent to ¬∃p.P(b, p), i.e., the second disjunct in rb(Qsusp

user). This reasoning justifies
applying (�∃) to restrict s in ∃s.¬∃p.P(b, p) ∧ ¬S(p, u, s). 2

4.2.3 Restricting Free Variables

Given an arbitrary query Q, we translate the inf-equivalent query rb(Q) with range-restricted
bound variables into a pair of safe-range queries (Qfin , Qinf ) such that our translation’s main
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input: An RC query Q.
output: Safe-range query pair (Qfin , Qinf ) for which (fv) and (eval) hold.

1 function fixfree(Qfin) = {(Qfix , Q
≈) ∈ Qfin | nongens(Qfix) 6= ∅};

2 function inf(Qfin , Q) = {(Q6∞, Q≈) ∈ Qfin | disjointvars(Q6∞, Q≈) 6= ∅ ∨
fv(Q 6∞ ∧Q≈) 6= fv(Q)};

3 function split(Q) =
4 Qfin := {(rb(Q), true)};Qinf := ∅;
5 while fixfree(Qfin) 6= ∅ do
6 (Qfix , Q

≈)← fixfree(Qfin);
7 x← nongens(Qfix);
8 G ← {G | cov(x,Qfix ,G)};
9 Qfin := (Qfin − {(Qfix , Q

≈)}) ∪ {(Qfix ∧ qps∨(G), Q≈)} ∪⋃
y∈eqs(x,G){(Qfix [x 7→ y], Q≈ ∧ x ≈ y)};

10 Qinf := Qinf ∪ {Qfix [x/false]};
11 while inf(Qfin , Q) 6= ∅ do
12 (Q 6∞, Q≈)← inf(Qfin , Q);
13 Qfin := Qfin − {(Q6∞, Q≈)};
14 Qinf := Qinf ∪ {Q6∞ ∧Q≈};
15 return (∨(Q 6∞,Q≈)∈Qfin

(Q6∞ ∧Q≈), rb(∨Q∞∈Qinf
∃~fv(Q∞). Q∞));

Figure 4.3. Restricting free variables.

properties fv and eval hold. Our translation is based on the following lemma.

Lemma 4.5. Let a structure S with an infinite domain D be fixed. Let x be a free variable
in a query Q̃ with range-restricted bound variables and let cov(x, Q̃,G) for a set of quantified
predicates and equalities G. If Q̃[x/false] is not satisfied by any tuple, then

q
Q̃

y
=

r
(Q̃ ∧ qps∨(G)) ∨∨y∈eqs(x,G) (Q̃[x 7→ y] ∧ x ≈ y)

z
. (�)

If Q̃[x/false] is satisfied by some tuple, then
q
Q̃

y
is an infinite set.

Proof. If Q̃[x/false] is not satisfied by any tuple, then (�) follows from (�). If Q̃[x/false] is
satisfied by some tuple, then the last disjunct in (�) applied to Q̃ is satisfied by infinitely many
tuples obtained by assigning x some value from the infinite domain D such that x 6= y holds for
all finitely many y ∈ eqs(x,G) and x does not appear among the finitely many values interpreting
the quantified predicates from qps(G). 2

We remark that
q
Q̃

y
might be an infinite set of tuples even if Q̃[x/false] is never satisfied,

for some x. This is because Q̃[y/false] might be satisfied by some tuple, for some y, in which
case Lemma 4.5 (for y) implies that

q
Q̃

y
is an infinite set of tuples. Still, (�) can be applied to

Q̃ for x resulting in a query satisfied by the same infinite set of tuples.
Our approach is implemented by the function split(Q) defined in Figure 4.3. In the following,

we describe this function and informally justify its correctness, formalized by the input/output
specification. In split(Q), we represent the queries Qfin and Qinf using a set Qfin of query pairs
and a set Qinf of queries such that

Qfin := ∨
(Q 6∞,Q≈)∈Qfin

(Q6∞ ∧Q≈), Qinf := ∨
Q∞∈Qinf

∃~fv(Q∞). Q∞,
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and, for every (Q 6∞, Q≈) ∈ Qfin, Q≈ is a conjunction of equalities. As long as there exists
some (Qfix , Q

≈) ∈ Qfin such that nongens(Qfix) 6= ∅, we apply (�) to Qfix and add the query
Qfix [x/false] to Qinf . We remark that if we applied (�) to the entire disjunct Qfix ∧Q≈, the loop
on Lines 5–10 might not terminate. Note that, for every (Q′fix , Q

′≈) added to Qfin after applying
(�) to Qfix , nongens(Q′fix) is a proper subset of nongens(Qfix). This entails the termination of the
loop on Lines 5–10. Finally, if JQfixK is an infinite set of tuples, then JQfix ∧Q≈K is an infinite
set of tuples, too. This is because the equalities in Q≈ merely duplicate columns of the query
Qfix . Hence, it indeed suffices to apply (�) to Qfix instead of Qfix ∧Q≈.

After the loop on Lines 5–10 in Figure 4.3 terminates, for every (Q6∞, Q≈) ∈ Qfin , Q 6∞ is a
safe-range query and Q≈ is a conjunction of equalities such that fv(Q6∞ ∧Q≈) = fv(Q). However,
the query Q6∞∧Q≈ does not have to be safe-range, e.g., if Q6∞ := B(x) and Q≈ := (x ≈ y∧u ≈ v).
Given a set of equalities Q≈, let classes(Q≈) be the set of equivalence classes of free variables
fv(Q≈) with respect to Q≈. For instance, classes({x ≈ y, y ≈ z, u ≈ v}) = {{x, y, z}, {u, v}}. Let
disjointvars(Q6∞, Q≈) := ⋃

V ∈classes(flat∧(Q≈)),V ∩fv(Q6∞)=∅ V be the set of all variables in equivalence
classes from classes(flat∧(Q≈)) that are disjoint from Q 6∞’s free variables. Then, Q6∞ ∧ Q≈ is
safe-range if and only if disjointvars(Q6∞, Q≈) = ∅ (recall the definition of safe-range).

Now if disjointvars(Q6∞, Q≈) 6= ∅ and Q6∞ ∧Q≈ is satisfied by some tuple, then JQ 6∞ ∧Q≈K is
an infinite set of tuples because all equivalence classes of variables in disjointvars(Q6∞, Q≈) 6= ∅
can be assigned arbitrary values from the infinite domain D. In our example with Q6∞ :=
B(x) and Q≈ := (x ≈ y ∧ u ≈ v), we have disjointvars(Q6∞, Q≈) = {u, v} 6= ∅. Moreover, if
fv(Q6∞ ∧Q≈) 6= fv(Q) and Q6∞ ∧Q≈ is satisfied by some tuple, then this tuple can be extended
to infinitely many tuples over fv(Q) by choosing arbitrary values from the infinite domain D
for the variables in the non-empty set fv(Q)− fv(Q6∞ ∧Q≈). Hence, for every (Q6∞, Q≈) ∈ Qfin
with disjointvars(Q 6∞, Q≈) 6= ∅ or fv(Q 6∞ ∧Q≈) 6= fv(Q), we remove (Q 6∞, Q≈) from Qfin and add
Q6∞ ∧Q≈ to Qinf . Note that we only remove pairs from Qfin, hence, the loop on Lines 11–14
terminates. Afterwards, the query Qfin is safe-range. However, the query Qinf does not have
to be safe-range. Indeed, every query Q∞ ∈ Qinf has range-restricted bound variables, but not
all the free variables of Q∞ need be range-restricted and thus the query ∃~fv(Q∞). Q∞ does not
have to be safe-range. But the query Qinf is closed and thus the inf-equivalent query rb(Qinf )
with range-restricted bound variables is safe-range.

Lemma 4.6. Let Q be an RC query and split(Q) = (Qfin , Qinf ). Then the queries Qfin and Qinf
are safe-range; fv(Qfin) = fv(Q) unless Qfin is syntactically equal to false; and fv(Qinf ) = ∅.

Lemma 4.7. Let a structure S with an infinite domain D be fixed. Let Q be an RC query and
split(Q) = (Qfin , Qinf ). If |= Qinf , then JQK is an infinite set. Otherwise, then JQK = JQfinK is a
finite set.

By Lemma 4.6, Qfin is a safe-range (and thus also domain-independent) query. Hence, for a
fixed structure S, the tuples in JQfinK only contain elements in the active domain adom(Qfin),
i.e., JQfinK = JQfinK ∩ adom(Qfin)|fv(Qfin)|. Our translation does not introduce new constants in
Qfin and thus adom(Qfin) ⊆ adom(Q). Hence, by Lemma 4.7, if 6|= Qinf , then JQfinK is equal to
the “output-restricted unlimited interpretation” [44] of Q, i.e., JQfinK = JQK ∩ adom(Q)|fv(Q)|. In
contrast, if |= Qinf , then JQfinK = JQK ∩ adom(Q)|fv(Q)| does not necessarily hold. For instance,
for Q := ¬B(x), our translation yields split(Q) = (false, true). In this case, we have Qinf = true
and thus |= Qinf because ¬B(x) is satisfied by infinitely many tuples over an infinite domain.
However, if B(x) is never satisfied, then JQfinK = ∅ is not equal to JQK ∩ adom(Q)|fv(Q)|.
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Example 4.8. Consider the query Q := B(x) ∨ P(x, y). The variable y is not range-restricted in
Q and thus split(Q) restricts y by a conjunction of Q with P(x, y). However, if Q[y/false] = B(x)
is satisfied by some tuple, then JQK contains infinitely many tuples. Hence, split(Q) = ((B(x) ∨
P(x, y)) ∧ P(x, y),∃x.B(x)). Because Qfin = (B(x) ∨ P(x, y)) ∧ P(x, y) is only used if 6|= Qinf , i.e.,
if B(x) is never satisfied, we could simplify Qfin to P(x, y). However, our translation does not
implement such heuristic simplifications. 2

Example 4.9. Consider the query Q := B(x) ∧ u ≈ v. The variables u and v are not range-
restricted in Q and thus split(Q) chooses one of these variables (e.g., u) and restricts it by
splitting Q into Q6∞ = B(x) and Q≈ = u ≈ v. Now, all variables are range-restricted in Q6∞, but
the variables in Q 6∞ and Q≈ are disjoint. Hence, JQK contains infinitely many tuples whenever
Q6∞ is satisfied by some tuple. In contrast, JQK = ∅ if Q 6∞ is never satisfied. Hence, we have
split(Q) = (false, ∃x.B(x)). 2

Example 4.10. Consider the query Qsusp
user := B(b) ∧ ∃s. ∀p. P(b, p) −→ S(p, u, s) from Section 4.1.

Restricting its bound variables yields the query rb(Qsusp
user) = B(b)∧((∃s. (¬∃p.P(b, p)∧¬S(p, u, s))∧

(∃p. S(p, u, s))) ∨ (¬∃p.P(b, p))) derived in Example 4.4. Splitting Qsusp
user yields

split(Qsusp
user) = (rb(Qsusp

user) ∧ (∃s, p.S(p, u, s)),∃b.B(b) ∧ ¬∃p.P(b, p)).

To understand split(Qsusp
user), we apply (�) to rb(Qsusp

user) for the free variable u:

rb(Qsusp
user) ≡ (rb(Qsusp

user) ∧ (∃s, p.S(p, u, s))) ∨ (B(b) ∧ (¬∃p.P(b, p)) ∧ ¬∃s, p.S(p, u, s)).

If the subquery B(b) ∧ (¬∃p.P(b, p)) from the second disjunct is satisfied for some b, then Qsusp
user

is satisfied by infinitely many values for u from the infinite domain D that do not belong to
the finite interpretation of S(p, u, s) and thus satisfy the subquery ¬∃s, p.S(p, u, s). Hence,
JQsusp

userK
S = Jrb(Qsusp

user)KS is an infinite set of tuples whenever B(b) ∧ ¬∃p.P(b, p) is satisfied for
some b. In contrast, if B(b) ∧ ¬∃p.P(b, p) is not satisfied for any b, then Qsusp

user is equivalent to
rb(Qsusp

user) ∧ (∃s, p.S(p, u, s)) obtained also by applying (�) to Qsusp
user for the free variable u. 2

Definition 4.11. Let Q be a query and split(Q) = (Qfin , Qinf ). Let Q̂fin := sr2ranf(Qfin) and
Q̂inf := sr2ranf(Qinf ) be the equivalent RANF queries. We define rw(Q) := (Q̂fin , Q̂inf ).

4.2.4 Complexity Analysis

In this section, we analyze the time complexity of capturing a query Q, i.e., checking if JQK is
finite and enumerating JQK if it is finite. To bound the asymptotic time complexity of capturing
a fixed query Q, we ignore the (constant) time complexity of computing rw(Q) = (Q̂fin , Q̂inf )
and focus on the time complexity of evaluating the RANF queries Q̂fin and Q̂inf , i.e., the query
cost of Q̂fin and Q̂inf . Without loss of generality, we assume that the input query Q has pairwise
distinct (free and bound) variables to derive a set of quantified predicates from Q’s atomic
predicates and formulate our time complexity bound. Still, the RANF queries Q̂fin and Q̂inf
computed by our translation do not have to have pairwise distinct (free and bound) variables.

Let av(Q) be the set of all (free and bound) variables in a query Q. We define the relation .Q
on av(Q) such that x .Q y iff the scope of an occurrence of x ∈ av(Q) is contained in the scope
of an occurrence of y ∈ av(Q). Formally, we define x .Q y iff y ∈ fv(Q) or ∃x.Qx v ∃y.Qy v Q
for some Qx and Qy. Note that .Q is a preorder on all variables and a partial order on the
bound variables for every query with pairwise distinct (free and bound) variables.
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Let aps(Q) be the set of all atomic predicates in a query Q. We denote by qps(Q) the set
of quantified predicates obtained from aps(Q) by performing the variable substitution x 7→ y,
where x and y are related by equalities in Q and x .Q y, and existentially quantifying from a
quantified predicate Qqp the innermost bound variable x in Q that is free in Qqp. Let eqs∗(Q) be
the transitive closure of equalities occurring in Q. Formally, we define qps(Q) by:

• Qap ∈ qps(Q) if Qap ∈ aps(Q);

• Qqp[x 7→ y] ∈ qps(Q) if Qqp ∈ qps(Q), (x, y) ∈ eqs∗(Q), and x .Q y;

• ∃x.Qqp ∈ qps(Q) if Qqp ∈ qps(Q), x ∈ fv(Qqp)− fv(Q), and x .Q y for all y ∈ fv(Qqp).
When restricting a variable by a disjunction of quantified predicates qps∨(G) for some G, we only
introduce quantified predicates Qqp ∈ qps(Q).

We bound the time complexity of capturing Q by considering subsets Qqps of quantified
predicates qps(Q) that are minimal in the sense that every quantified predicate in Qqps contains
a unique free variable that is not free in any other quantified predicate in Qqps. Formally, we
define minimal(Qqps) := ∀Qqp ∈ Qqps. fv(Qqps − {Qqp}) 6= fv(Qqps). Every minimal subset Qqps
of quantified predicates qps(Q) contributes the product of the numbers of tuples satisfying each
quantified predicate Qqp ∈ Qqps to the overall bound (that product is an upper bound on the
number of tuples satisfying the join over all Qqp ∈ Qqps). Similarly to Ngo et al. [55], we use the
notation Õ(·) to hide logarithmic factors incurred by set operations.
Theorem 4.12. Let Q be a fixed RC query with pairwise distinct (free and bound) variables.
The time complexity of capturing Q, i.e., checking if JQK is finite and enumerating JQK if it is
finite, is in Õ

(∑
Qqps⊆qps(Q),minimal(Qqps)

∏
Qqp∈Qqps |JQqpK|

)
.

We prove Theorem 4.12 at the end of this section. Before proving the theorem, we present a
few examples. Examples 4.13 and 4.14 show that the time complexity from Theorem 4.12 cannot
be achieved by the translation of Van Gelder and Topor [34] or over finite domains. Example 4.15
shows how equalities affect the bound in Theorem 4.12.
Example 4.13. Consider the query Q := B(b) ∧ ∃u, s.¬∃p.P(b, p) ∧ ¬S(p, u, s), equivalent to
Qsusp from Example 1.2. Then aps(Q) = {B(b),P(b, p),S(p, u, s)} and qps(Q) = {B(b),P(b, p),
∃p.P(b, p),S(p, u, s),∃p.S(p, u, s),∃s, p.S(p, u, s),∃u, s, p.S(p, u, s)}. The translated query Qvgt
by Van Gelder and Topor [34] restricts the variables r and s by ∃s, p. S(p, u, s) and ∃u, p. S(p, u, s),
respectively. For an interpretation of B by {(c′) | c′ ∈ {1, . . . ,m}}, P by {(c′, c′) | c′ ∈ {1, . . . ,m}},
and S by {(c, c′, c′) | c ∈ {1, . . . , n}, c′ ∈ {1, . . . ,m}}, n,m ∈ N, computing the join of P(b, p),
∃s, p. S(p, u, s), and ∃u, p. S(p, u, s), which is a Cartesian product, results in a time complexity in
Ω(n ·m2) for Qvgt . In contrast, Theorem 4.12 yields an asymptotically better time complexity in
Õ(n+m+ n ·m) for our translation:

Õ(|JB(b)K|+ |JP(b, p)K|+ |JS(p, u, s)K|+ (|JB(b)K|+ |JP(b, p)K|) · |JS(p, u, s)K|). 2

Example 4.14. The query ¬S(x, y, z) is satisfied by a finite set of tuples over a finite domain D
(as is every query over a finite domain). For an interpretation of S by {(c, c, c) | c ∈ D}, the
equality |D| = |JS(x, y, z)K| holds and the number of satisfying tuples is

|J¬S(x, y, z)K| = |D|3 − |JS(x, y, z)K| = |JS(x, y, z)K|3 − |JS(x, y, z)K| ∈ Ω(|JS(x, y, z)K|3),
which exceeds the bound Õ(|JS(x, y, z)K|) of Theorem 4.12. Hence, our infinite domain assumption
is crucial for achieving the better complexity bound. 2
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Example 4.15. Consider the following query over the infinite domain D = N of natural numbers:

Q := ∀u. (u ≈ 0 ∨ u ≈ 1 ∨ u ≈ 2) −→
(∃v.B(v) ∧ (u ≈ 0 −→ x ≈ v) ∧ (u ≈ 1 −→ y ≈ v) ∧ (u ≈ 2 −→ z ≈ v)).

Note that this query is equivalent to Q ≡ B(x) ∧ B(y) ∧ B(z) and thus it is satisfied by a finite
set of tuples of size |JB(x)K| · |JB(y)K| · |JB(z)K| = |JB(x)K|3. The set of atomic predicates of Q
is aps(Q) = {B(v)} and it must be closed under the equalities occurring in Q to yield a valid
bound in Theorem 4.12. In this case, qps(Q) = {B(v),∃v.B(v),B(x),B(y),B(z)} and the bound
in Theorem 4.12 is |JB(v)K| · |JB(x)K| · |JB(y)K| · |JB(z)K| = |JB(x)K|4. In particular, this bound is
not tight, but it still reflects the complexity of evaluating the RANF queries produced by our
translation as our translation does not derive the equivalence Q ≡ B(x) ∧ B(y) ∧ B(z). 2

Guard Query Given a RANF query Q̂, we define a guard query guard(Q̂) that is implied by
Q̂, i.e., guard(Q̂) can be used to over-approximate the set of satisfying tuples for Q̂. We use
this over-approximation in our proof of Theorem 4.12 and also in our algorithm for monitoring
safe-range MFOTL queries (Section 4.3). The guard query guard(Q̂) has a simple structure: it is
the disjunction of conjunctions of quantified predicates and equalities.

We now define the set of quantified predicates qps(Q) occurring in the guard query guard(Q).
For an atomic predicate Qap ∈ aps(Q), let BQ(Qap) be the set of sequences of bound variables for
all occurrences of Qap in Q. For example, let Qex := ((∃z. (∃y, z.P3(x, y, z))∧P2(y, z))∧P1(z))∨
P3(x, y, z). Then aps(Qex) = {P1(z),P2(y, z),P3(x, y, z)} and BQex (P3(x, y, z)) = {[y, z], [ ]},
where [ ] denotes the empty sequence corresponding to the occurrence of P3(x, y, z) in Qex for
which the variables x, y, z are all free in Qex . Note that the variable z in the other occurrence of
P3(x, y, z) in Qex is bound to the innermost quantifier. Hence, neither [z, y] nor [z, y, z] are in
BQex (P3(x, y, z)). Furthermore, let qps(Q) be the set of the quantified predicates obtained by exis-
tentially quantifying sequences of bound variables in BQ′(Qap) from the atomic predicates Qap ∈
aps(Q′) in all subqueries Q′ of Q. Formally, qps(Q) := ⋃

Q′vQ,Qap∈aps(Q′){∃~v.Qap | ~v ∈ BQ′(Qap)}.
For instance, qps(Qex) = {P3(x, y, z), ∃z.P3(x, y, z),∃yz.P3(x, y, z),P2(y, z), ∃z.P2(y, z),P1(z)}.

Let a structure S be fixed. We observe that every tuple satisfying a RANF query Q̂ belongs
to the set of tuples satisfying the join over some minimal subset Qqps ⊆ qps(Q̂) of quantified
predicates and also satisfying equalities duplicating some columns from Qqps. Hence, we define
the guard query guard(Q̂) as follows:

guard(Q̂) :=
∨

Qqps⊆qps(Q̂),minimal(Qqps),
Q≈⊆{x≈y|x∈fv(Qqps)∧y∈fv(Q̂)},

fv(Qqps)∪fv(Q≈)=fv(Q̂)

 ∧
Qqp∈Qqps

Qqp ∧
∧

Q≈∈Q≈
Q≈

.

Note that {x ≈ y | x ∈ V ∧ y ∈ V ′} denotes the set of all equalities x ≈ y between variables
x ∈ V and y ∈ V ′. We express the correctness of the guard query in the following lemma.

Lemma 4.16. Let Q̂ be a RANF query. Then, for all variable assignments α,

α |= Q̂ =⇒ α |= guard(Q̂)

holds. Moreover, fv(guard(Q̂)) = fv(Q̂) unless guard(Q̂) = false. Hence,
r
Q̂

z
satisfies

r
Q̂

z
⊆

r
guard(Q̂)

z
.
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Proof. The statement is proved by well-founded induction over the inductive definition of
ranf(Q̂). 2

Proof of Theorem 4.12 A crucial property of our translation that is central for the proof
of Theorem 4.12 is a relationship between the quantified predicates qps(Q̂) for a RANF query
Q̂ produced by our translation and the original query Q. The relationship is formalized in the
following lemma.

Lemma 4.17. Let Q be an RC query with pairwise distinct (free and bound) variables and let
rw(Q) = (Q̂fin , Q̂inf ). Let Q̂ ∈ {Q̂fin , Q̂inf }. Then qps(Q̂) ⊆ qps(Q).

Proof. Let split(Q) = (Qfin , Qinf ). We observe that aps(Qfin) ⊆ qps(Q), eqs∗(Qfin) ⊆ eqs∗(Q),
.Qfin⊆.Q, aps(Qinf ) ⊆ qps(Q), eqs∗(Qinf ) ⊆ eqs∗(Q), and .Qinf⊆.Q. Hence, qps(Qfin) ⊆
qps(Q) and qps(Qinf ) ⊆ qps(Q).

Next we observe that qps(Q′) ⊆ qps(Q′) for every query Q′. Finally, we show that qps(Q̂fin) ⊆
qps(Qfin) and qps(Q̂inf ) ⊆ qps(Qinf ). We observe that Bcp(Q′)(Qap) ⊆ BQ′(Qap), Bsrnf(Q′)(Qap) ⊆
BQ′(Qap), and then qps(cp(Q′)) ⊆ qps(Q′), qps(srnf(Q′)) ⊆ qps(Q′), for every query Q′.

Suppose that Q′ ∧∧Q∈QQ is a safe-range query in which no variable occurs both free and
bound, no bound variables shadow each other, i.e., there are no subqueries ∃x.Qx v Q′x and
∃x.Q′x v Q′ ∧

∧
Q∈QQ, and every two subqueries ∃x.Qx v Q1 and ∃x.Q′x v Q2 such that

Q1 ∧ Q2 v Q′ ∧
∧
Q∈QQ have the property that ∃x.Qx or ∃x.Q′x is a quantified predicate.

Then the free variables in ∧Q∈QQ never clash with the bound variables in Q′, i.e., Line 24
in Figure 2.16 is never executed. Next we observe that Bsr2ranf(Q′,Q)(Qap) ⊆ BQ′∧∧

Q∈QQ
(Qap)

and then qps(sr2ranf(Q′,Q)) ⊆ qps(Q′ ∧∧Q∈QQ). Because Qfin, Qinf have the properties
from the beginning of this paragraph and qps(srnf(Q′)) ⊆ qps(Q′), for every query Q′, we get
qps(Q̂fin) = qps(sr2ranf(Qfin)) ⊆ qps(Qfin) and qps(Q̂inf ) = qps(sr2ranf(Qinf )) ⊆ qps(Qinf ). 2

Recall Example 4.13. The query ∃u, p.S(p, u, s) is in qps(Qvgt), but not in qps(Q). Hence,
qps(Qvgt) ⊆ qps(Q), i.e., an analogue of Lemma 4.17 for Van Gelder and Topor’s translation,
does not hold.

We now derive a bound on
∣∣∣rQ̂′z∣∣∣, for an arbitrary RANF subquery Q̂′ v Q̂, Q̂ ∈ {Q̂fin , Q̂inf }.

Lemma 4.18. Let Q be an RC query with pairwise distinct (free and bound) variables and let
rw(Q) = (Q̂fin , Q̂inf ). Let Q̂′ v Q̂ be a RANF subquery of Q̂ ∈ {Q̂fin , Q̂inf }. Then∣∣∣rQ̂′z∣∣∣ ≤ ∑

Qqps⊆qps(Q),minimal(Qqps)
2|av(Q̂)| ·

∏
Qqp∈Qqps

|JQqpK|.

Proof. Applying Lemma 4.16 to the RANF query Q̂′ yields

r
Q̂′

z
⊆

r
guard(Q̂′)

z
=

⋃
Qqps⊆qps(Q̂′),minimal(Qqps),

Q≈⊆{x≈y|x∈fv(Qqps)∧y∈fv(Q̂′)},
fv(Qqps)∪fv(Q≈)=fv(Q̂′)

u

v
∧

Qqp∈Qqps

Qqp ∧
∧

Q≈∈Q≈
Q≈

}

~.

We observe that
∣∣∣r∧Qqp∈Qqps Qqp ∧

∧
Q≈∈Q≈ Q

≈
z∣∣∣ ≤ ∣∣∣r∧Qqp∈Qqps Qqp

z∣∣∣ ≤ ∏Qqp∈Qqps |JQqpK| where
the first inequality follows from the fact that equalities Q≈ ∈ Q≈ can only restrict a set of



4.2. Relational Calculus Query Translation 85

tuples and duplicate columns. Because Q̂′ is a subquery of Q̂, it follows that qps(Q̂′) ⊆ qps(Q̂).
Lemma 4.17 yields qps(Q̂) ⊆ qps(Q). Hence, we derive qps(Q̂′) ⊆ qps(Q).

The number of equalities in {x ≈ y | x ∈ fv(Qqps) ∧ y ∈ fv(Q̂′)} is at most

|fv(Qqps)| ·
∣∣∣fv(Q̂′)

∣∣∣ ≤ ∣∣∣fv(Q̂′)
∣∣∣2 ≤ ∣∣∣av(Q̂)

∣∣∣2,
where the first inequality holds because fv(Qqps) ∪ fv(Q≈) = fv(Q̂′) and thus fv(Qqps) ⊆ fv(Q̂′)
and the second inequality holds because the variables in a subquery Q̂′ of Q̂ are included in the
set of all variables in Q̂. Hence, the number of subsets Q≈ ⊆ {x ≈ y | x ∈ fv(Qqps) ∧ y ∈ fv(Q̂′)}
is at most 2|av(Q̂)|2 . 2

Next we bound the query cost of a RANF query Q̂ ∈ {Q̂fin , Q̂inf } over the structure S.

Lemma 4.19. Let Q be an RC query with pairwise distinct (free and bound) variables and let
rw(Q) = (Q̂fin , Q̂inf ). Let Q̂ ∈ {Q̂fin , Q̂inf }. Then

costS(Q̂) ≤
∣∣∣sub(Q̂)

∣∣∣ · ∣∣∣av(Q̂)
∣∣∣ · 2|av(Q̂)| ·

∑
Qqps⊆qps(Q),minimal(Qqps)

∏
Qqp∈Qqps |JQqpK|.

Proof. Recall that
∣∣∣sub(Q̂)

∣∣∣ denotes the number of subqueries of the query Q̂ and thus bounds
the number of RANF subqueries Q̂′ of the query Q̂. For every subquery Q̂′ of Q̂, we first use
the fact that

∣∣∣fv(Q̂′)
∣∣∣ ≤ ∣∣∣av(Q̂)

∣∣∣ to bound
∣∣∣rQ̂′z∣∣∣ · ∣∣∣fv(Q̂′)

∣∣∣ ≤ ∣∣∣rQ̂′z∣∣∣ · ∣∣∣av(Q̂)
∣∣∣. Then we use the

estimation of
∣∣∣rQ̂′z∣∣∣ by Lemma 4.18. 2

Finally, we prove Theorem 4.12.

Proof (Theorem 4.12). We derive Theorem 4.12 from Lemma 4.19 and the fact that the quantities∣∣∣sub(Q̂)
∣∣∣, ∣∣∣av(Q̂)

∣∣∣, and 2|av(Q̂)|2 only depend on the query Q and thus they do not contribute to
the asymptotic time complexity of capturing a fixed query Q. 2

4.2.5 Data Golf

In this section, we devise the Data Golf benchmark for generating structures used in our empirical
evaluation (Section 4.2.6). Given an RC query, we seek a structure that results in a nontrivial
evaluation result for the overall query and for all its subqueries. Intuitively, the resulting structure
makes query evaluation potentially more challenging compared to the case where some subquery
results in a trivial (e.g., empty) evaluation result. More specifically, Data Golf has two objectives.
The first resembles the regex golf game’s objective [26] (hence the name) and aims to find a
structure on which the result of a given query contains a given positive set of tuples and does
not contain any tuples from another given negative set. The second objective is to ensure that
all the query’s subqueries evaluate to a non-trivial result.

Formally, given a query Q and two sets of tuples T + and T − over a fixed domain D,
representing assignments of av(Q) and satisfying further assumptions on their values, Data
Golf produces a structure S (represented as a partial mapping from predicate symbols to their
interpretations) such that the projections of tuples in T + (T −) to ~fv(Q) are in JQK (disjoint from
JQK) and |JQ′K| and |J¬Q′K| contain at least min{

∣∣T +∣∣, |T −|} tuples, for every Q′ v Q. To be
able to produce such a structure S, we make the following assumptions on Q:
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input: An RC query Q satisfying con, cst, var, rep, a sequence of pairwise distinct
variables ~v, av(Q) ⊆ ~v, sets of tuples T +

~v and T −~v over ~v such that all values of
variables from av(Q) in these tuples are pairwise distinct (also across tuples)
except that, in every tuple in T +

~v (T −~v ), the variables in V+ (V−) have the same
value (which is different across tuples), where dg≈(Q, γ) = (V+,V−), γ ∈ {0, 1}.

output: A structure S such that T +
~v [~fv(Q)] ⊆ JQK, T −~v [~fv(Q)] ∩ JQK = ∅, and |JQ′K| and

|J¬Q′K| contain at least min{
∣∣∣T +
~v

∣∣∣, ∣∣∣T −~v ∣∣∣} tuples, for every Q′ v Q.

1 function dg≈(Q, γ) =
2 switch Q do
3 case r(t1, . . . , tι(r)) do return (∅, ∅);
4 case x ≈ y do return ({x, y}, ∅);
5 case ¬Q′ do
6 (V+,V−) := dg≈(Q′, γ);
7 return (V−,V+);
8 case Q′1 ∨Q′2 or Q′1 ∧Q′2 do
9 (V+

1 ,V
−
1 ) := dg≈(Q′1, γ);

10 (V+
2 ,V

−
2 ) := dg≈(Q′2, γ);

11 if γ = 0 then return (V+
1 ∪ V

+
2 ,V

−
1 ∪ V

−
2 );

12 else if Q = Q′1 ∨Q′2 then return (V+
1 ∪ V

−
2 ,V

−
1 ∪ V

−
2 );

13 else if Q = Q′1 ∧Q′2 then return (V+
1 ∪ V

+
2 ,V

+
1 ∪ V

−
2 );

14 case ∃y.Qy do return dg≈(Qy, γ);
15 function dg(Q,~v, T +

~v , T
−
~v , γ) =

16 switch Q do
17 case r(t1, . . . , tι(r)) do return {rS 7→ T +

~v [t1, . . . , tι(r)]};
18 case x ≈ y do return ∅;
19 case ¬Q′ do return dg(Q′, ~v, T −~v , T

+
~v , γ);

20 case Q′1 ∨Q′2 or Q′1 ∧Q′2 do
21 (V+

1 ,V
−
1 ) := dg≈(Q′1, γ); (V+

2 ,V
−
2 ) := dg≈(Q′2, γ);

22 if γ = 0 then (V1,V2) := (V+
1 ∪ V

−
2 ,V

−
1 ∪ V

+
2 );

23 else if Q = Q′1 ∧Q′2 then (V1,V2) := (V−1 ∪ V−2 ,V−1 ∪ V+
2 );

24 else if Q = Q′1 ∨Q′2 then (V1,V2) := (V+
1 ∪ V

+
2 ,V

−
1 ∪ V

+
2 );

25 (T 1
~v , T 2

~v )← {(T 1
~v , T 2

~v ) |
∣∣T 1
~v

∣∣ =
∣∣T 2
~v

∣∣ = min{
∣∣∣T +
~v

∣∣∣, ∣∣∣T −~v ∣∣∣}, all values in tuples in
T +
~v , T

−
~v , T

1
~v , T 2

~v are pairwise distinct (also across tuples) except that,
in every tuple in T 1

~v (T 2
~v ), the variables in V1 (V2) have the same value

(which is different across tuples)};
26 if γ = 0 then return

dg(Q′1, ~v, T +
~v ∪ T

1
~v , T

−
~v ∪ T

2
~v , γ) ∪ dg(Q′2, ~v, T +

~v ∪ T
2
~v , T

−
~v ∪ T

1
~v , γ);

27 else if Q = Q′1 ∨Q′2 then return
dg(Q′1, ~v, T +

~v ∪ T
1
~v , T

−
~v ∪ T

2
~v , γ) ∪ dg(Q′2, ~v, T 1

~v ∪ T 2
~v , T

−
~v ∪ T

+
~v , γ);

28 else if Q = Q′1 ∧Q′2 then return
dg(Q′1, ~v, T +

~v ∪ T
−
~v , T

1
~v ∪ T 2

~v , γ) ∪ dg(Q′2, ~v, T +
~v ∪ T

2
~v , T

−
~v ∪ T

1
~v , γ);

29 case ∃y.Qy do return dg(Qy, ~v, T +
~v , T

−
~v , γ);

Figure 4.4. Computing the Data Golf structure.
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con the bound variable y in every subquery ∃y.Qy of Q satisfies convgt(y,Qy,G) (Figure 2.11)
for some set G such that eqs(y,G) = ∅ and, for every Qqp ∈ G, {y} ( fv(Qqp) holds; this
avoids subqueries like ∃y.¬P2(x, y) and ∃y. (P2(x, y) ∨ P1(y));

cst Q contains no subquery of the form x ≈ c, which is satisfied by exactly one tuple;

var Q contains no closed subqueries, e.g., P1(42), because a closed subquery is either satisfied
by all possible tuples or no tuple at all; and

rep Q contains no repeated predicate symbols and no equalities x ≈ y in Q share a variable;
this avoids subqueries like P1(x) ∧ ¬P1(x) and x ≈ y ∧ ¬x ≈ y.

Given a sequence of pairwise distinct variables ~v and a tuple ~d of the same length, we may
interpret the tuple ~d as a tuple over ~v, denoted as ~d(~v). Given a sequence t1, . . . , tk ∈ ~v ∪ C of
terms, we denote by ~d(~v)[t1, . . . , tk] the tuple obtained by evaluating the terms t1, . . . , tk over
~d(~v). Formally, we define ~d(~v)[t1, . . . , tk] := (d′i)ki=1, where d′i = ~dj if ti = ~vj and d′i = ti if ti ∈ C.
We lift this notion to sets of tuples over ~v in the standard way.

Data Golf is formalized by the function dg(Q,~v, T +
~v , T

−
~v , γ), defined in Figure 4.4, where ~v is

a sequence of pairwise distinct variables containing all variables in Q, i.e., av(Q) ⊆ ~v, T +
~v and T −~v

are sets of tuples over ~v, and γ ∈ {0, 1} is a strategy. In the case of a conjunction or a disjunction,
we add disjoint sets T 1

~v , T 2
~v of tuples over ~v to T +

~v , T −~v so that the intermediate results for the
subqueries are neither equal nor disjoint. We implement two strategies (parameter γ) to choose
these sets T 1

~v , T 2
~v . To reflect Q’s equalities in the sets T +

~v and T −~v , given a strategy γ, we define
the function dg≈(Q, γ) = (V+,V−) that computes two sets of variables V+ and V− whose values
must be equal in every tuple in T +

~v and T −~v , respectively. The values of the remaining variables
(~v − V+ and ~v − V−, respectively) must be pairwise distinct and also different from the value of
the variables in V+ and V−, respectively.

Finally, we justify why a Data Golf structure S computed by dg(Q,~v, T +
~v , T

−
~v , γ) satisfies

T +
~v [~fv(Q)] ⊆ JQK and T −~v [~fv(Q)]∩ JQK = ∅. We proceed by induction on the query Q. Because of

rep, the Data Golf structures for the subqueries Q1, Q2 of a binary query Q1 ∨Q2 or Q1 ∧Q2
can be combined using the union operator. The only case that does not follow immediately is
that T −~v [~fv(Q)] ∩ JQK = ∅ for a query Q of the form ∃y.Qy. We prove this case by contradiction.
Without loss of generality we assume that ~fv(Qy) = ~fv(Q) · y. Suppose that ~d ∈ T −~v [~fv(Q)] and
~d ∈ JQK. Because ~d ∈ T −~v [~fv(Q)], there exists some d such that ~d · d ∈ T −~v [~fv(Qy)]. Because
~d ∈ JQK, there exists some d′ such that ~d · d′ ∈ JQyK. By the induction hypothesis, ~d · d /∈ JQyK
and ~d · d′ /∈ T −~v [~fv(Qy)]. Because convgt(y,Qy,G) holds for some G satisfying con, the query Qy
is equivalent to (Qy ∧ qps∨(G)) ∨ Qy[y/⊥]. We have ~d · d′ ∈ JQyK. If the tuple ~d · d′ satisfies
Qy[y/⊥], then ~d · d ∈ JQyK (contradiction) because the variable y does not occur in the query
Qy[y/⊥] and thus its assignment in ~d · d′ can be arbitrarily changed. Otherwise, the tuple ~d · d′
satisfies some quantified predicate Qqp ∈ qps(G) and (con) implies {y} ( fv(Qqp). Hence, the
tuples ~d · d and ~d · d′ agree on the assignment of a variable x ∈ fv(Qqp)−{y}. Let T +

~v and T −~v be
the sets in the recursive call of dg on the atomic predicate from Qqp. Because ~d · d ∈ T −~v [~fv(Qy)]
and T −~v [~fv(Qy)] ⊆ T

+
~v [~fv(Qy)]∪T

−
~v [~fv(Qy)], the tuple ~d ·d is in T +

~v [~fv(Qy)]∪T
−
~v [~fv(Qy)]. Because

~d · d′ satisfies the quantified predicate Qqp, the tuple ~d · d′ is in T +
~v [~fv(Qy)]. Next we observe

that the assignments of every variable (in particular, x) in the tuples from the sets T +
~v , T

−
~v

are pairwise distinct (there can only be equal values of variables within one tuple). Because
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the tuples ~d · d and ~d · d′ agree on the assignment of x, they must be equal, i.e., ~d · d = ~d · d′
(contradiction).

The sets T +
~v , T −~v only grow in dg’s recursion and the properties con, cst, var, rep imply

that Q has no closed subquery. Hence, T +
~v [~fv(Q)] ⊆ JQK and T −~v [~fv(Q)] ∩ JQK = ∅ imply that

|JQ′K| and |J¬Q′K| contain at least min{
∣∣∣T +
~v

∣∣∣, ∣∣∣T −~v ∣∣∣} tuples, for every Q′ v Q.

Example 4.20. Consider the query Q := ¬∃y.P2(x, y) ∧ ¬P3(x, y, z). This query Q satisfies the
assumptions con, cst, var, rep. In particular, convgt(y,P2(x, y) ∧ ¬P3(x, y, z),G) holds for
G = {P2(x, y)} with {y} ( fv(P2(x, y)). We choose ~v = (x, z, y), T +

~v = {(0, 4, 8), (2, 6, 10)},
and T −~v = {(12, 16, 20), (14, 18, 22)}. The function dg(Q,~v, T +

~v , T
−
~v , γ) first flips T +

~v and
T −~v because Q’s main operator is negation. For conjunction (a binary operator), two addi-
tional sets of tuples are computed: T 1

~v = {(24, 28, 32), (26, 30, 34)} and T 2
~v = {(36, 40, 44),

(38, 42, 46)}. Depending on the strategy (γ = 0 or γ = 1), one of the following struc-
tures is computed: S0 = {P2 7→ {(12, 20), (14, 22), (24, 32), (26, 34)},P3 7→ T +

xyz}, or S1 =
{P2 7→ {(12, 20), (14, 22), (0, 8), (2, 10)},P3 7→ T +

xyz}, where T +
xyz = {(0, 8, 4), (2, 10, 6), (24, 32, 28),

(26, 34, 30)}.
The query P1(x) ∧ Q is satisfied by the finite set of tuples T +

~v [x, z] under the structure
S1 ∪ {P1 7→ {(0), (2)}} obtained by extending S1 (γ = 1). In contrast, the same query P1(x) ∧Q
is satisfied by an infinite set of tuples including T +

~v [x, z] and disjoint from T −~v [x, z] under the
structure S0 ∪ {P1 7→ {(0), (2)}} obtained by extending S0 (γ = 0). 2

4.2.6 Implementation

We have implemented our translation rc2sql consisting of roughly 1000 lines of OCaml code [60].
Overall, the translation is defined as

RC2SQL(Q) := (Q′fin , Q
′
inf )

where

Q′fin := ranf2sql(optcnt(Qfin)),
Q′inf := ranf2sql(optcnt(Qinf )),

(Qfin , Qinf ) := rw(Q).

The function rw(·) is defined in Section 4.2.4 as a composition of the functions split(·) and
sr2ranf(·) functions, defined in Sections 4.2.3 and 2.3.1, respectively.

Although our translation satisfies the worst-case complexity bound (Theorem 4.12), we further
improve its average-case complexity by implementing the following optimizations:

• We use a sample structure of constant size, called a training database, to estimate the query
cost when resolving the nondeterministic choices in our algorithms. All our experiments used
a Data Golf structure with

∣∣T +∣∣ = |T −| = 2 as the training database. Still, our translation
satisfies the correctness and worst-case complexity claims (Section 4.2.3 and 4.2.4) for every
choice of the training database.

• We use the function optcnt optimizing RANF subqueries of the form ∃~y.Q+ ∧
∧k
i=1 ¬Q−i

using the count aggregation operator. Inspired by Claußen et al. [20], we compare the
number of assignments of ~y that satisfy Q+ and ∨ki=1(Q+ ∧Q−i ), respectively.
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• To compute an SQL query from a RANF query, we define the function ranf2sql(·). We first
obtain an equivalent RA expression using the standard approach [1] but adjusting the case
of closed queries [19]. To translate RA expressions into SQL, we reuse a publicly available
RA interpreter radb [78]. We modify its implementation to improve the performance of
the resulting SQL query. We map the anti-join operator Q̂1 . Q̂2 to a more efficient LEFT
JOIN, if fv(Q̂2) ( fv(Q̂1), and we perform common subquery elimination.

Nondeterministic Choices To resolve the nondeterministic choices in our algorithms, we
suppose that the algorithms have access to a training database T of constant size. The training
database is used to compare the cost of queries over the actual database and thus it should
preserve the relative ordering of queries by their cost over the actual database as much as possible.
Still, our translation satisfies the correctness and worst-case complexity claims (Section 4.2.3
and 4.2.4) for every choice of the training database. The training databases used in our empirical
evaluation are obtained using the function dg (Section 4.2.5) with

∣∣T +∣∣ = |T −| = 2. Because of
its constant size, the complexity of evaluating a query over the training database is constant
and does not impact the asymptotic time complexity of evaluating the query over the actual
database using our translation. There are three types of nondeterministic choices to be resolved
in our algorithms:

• Choosing some X ∈ X in a while-loop. As the while-loops always update X with X :=
(X − {X}) ∪ f(X) for some f , the order in which the elements of X are chosen does not
matter.

• Choosing a subset of queries Q ⊆ Q in the function sr2ranf(Q,Q). Because sr2ranf(Q,Q)
yields a RANF query, we enumerate all minimal subsets (a subset Q ⊆ Q is minimal if
there exists no proper subset Q′ ( Q that could be used instead of Q) and choose one that
minimizes the query cost of the RANF query.

• Choosing a variable x ∈ V and a set G such that cov(x, Q̃,G), where Q̃ is a query with
range-restricted bound variables and V ⊆ fv(Q̃) is a subset of its free variables. Observe
that the measure measure(Q) on queries, defined in Figure 2.12, decreases for the queries in
the premises of the rules for gen(x, Q̃,G) and cov(x, Q̃,G), defined in Figure 2.10 and 4.1.
Hence, deriving gen(x, Q̃,G) and cov(x, Q̃,G) either succeeds or gets stuck after at most
measure(Q̃) steps. In particular, we can enumerate all sets G such that cov(x, Q̃,G) holds.
Because we derive one additional query Q̃[x 7→ y] for every y ∈ eqs(x,G) and a single
query Q̃∧ qps∨(G), we choose x ∈ V and G minimizing |eqs(x,G)| as the first objective and∑
Qqp∈qps(G) costT (Qqp) as the second objective. Our particular choice of G with cov(x, Q̃,G)

is merely a heuristic and does not provide any additional guarantees compared to every
other choice of G with cov(x, Q̃,G).

Optimization using Count Aggregations In this section, we introduce count aggregations
and describe a generalization of Claußen et al. [20]’s approach to evaluate RANF queries using
count aggregations. Consider the query

Qx ∧ ¬∃y. (Qx ∧Qy ∧ ¬Qxy),

where fv(Qx) = {x}, fv(Qy) = {y}, and fv(Qxy) = {x, y}. This query is obtained by applying our
translation to the query Qx∧∀y. (Qy −→ Qxy). The cost of the translated query is dominated by
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the cost of the Cartesian product Qx ∧Qy. Consider the subquery Q′ := ∃y. (Qx ∧Qy ∧ ¬Qxy).
A assignment α satisfies Q′ iff α satisfies Qx and there exists a value d such that α[y 7→ d]
satisfies Qy, but not Qxy, i.e., the number of values d such that α[y 7→ d] satisfies Qy is not
equal to the number of values d such that α[y 7→ d] satisfies both Qy and Qxy. An alternative
evaluation of Q′ evaluates the queries Qx, Qy, Qy ∧Qxy and computes the numbers of values d
such that α[y 7→ d] satisfies Qy and Qy ∧Qxy, respectively, i.e., computes count aggregations.
These count aggregations are then used to filter assignments α satisfying Qx to get assignments
α satisfying Q′. The asymptotic time complexity of the alternative evaluation never exceeds
that of the evaluation computing the Cartesian product Qx ∧Qy and asymptotically improves if
|JQxK|+ |JQyK|+ |JQxyK| � |JQx ∧QyK|. Furthermore, we observe that a assignment α satisfies
Qx ∧ ¬Q′ if α satisfies Qx, but not Q′, i.e., the number of values d such that α[y 7→ d] satisfies
Qy is equal to the number of values d such that α[y 7→ d] satisfies Qy ∧Qxy.

Next we introduce the syntax and semantics of count aggregations. We extend RC’s syntax by
[CNT~v.Q~v](c), where Q is a query, c is a variable representing the result of the count aggregation,
and ~v is a sequence of variables that are bound by the aggregation operator. The semantics of
the count aggregation is defined as follows:

(S, α) |= [CNT~v.Q~v](c) iff (M = ∅ −→ fv(Q) ⊆ ~v) andα(c) = |M |,

where M = {~d ∈ D|~v| | (S, α[~v 7→ ~d]) |= Q}. We use the condition M = ∅ −→ fv(Q) ⊆ ~v instead
ofM 6= ∅ to set c to a zero count if the groupM is empty and there are no group-by variables (like
in SQL). The set of free variables in a count aggregation is fv([CNT~v.Q~v](c)) = (fv(Q)−~v)∪{c}.
Finally, we extend the definition of ranf(Q) with the case of a count aggregation:

ranf([CNT~v.Q~v](c)) iff ranf(Q) and~v ⊆ fv(Q) and c /∈ fv(Q).

We formulate translations introducing count aggregations in the following two lemmas.

Lemma 4.21. Let ∃~v.Q~v ∧
∧
Q∈Q ¬Q, Q 6= ∅, be a RANF query. Let c, c′ be fresh variables

that do not occur in fv(Q~v). Then

(∃~v.Q~v ∧
∧
Q∈Q ¬Q)≡ ((∃~v.Q~v) ∧

∧
Q∈Q ¬(∃~v.Q~v ∧Q)) ∨

(∃c, c′. [CNT~v.Q~v](c) ∧
[CNT~v.

∨
Q∈Q(Q~v ∧Q)](c′) ∧ ¬(c = c′)).

(#)

Moreover, the right-hand side of (#) is in RANF.

Lemma 4.22. Let Q̂∧¬∃~v.Q~v∧
∧
Q∈Q ¬Q, Q 6= ∅, be a RANF query. Let c, c′ be fresh variables

that do not occur in fv(Q̂) ∪ fv(Q~v). Then

(Q̂ ∧ ¬∃~v.Q~v ∧
∧
Q∈Q ¬Q)≡ (Q̂ ∧ ¬(∃~v.Q~v)) ∨

(∃c, c′. Q̂ ∧ [CNT~v.Q~v](c) ∧
[CNT~v.

∨
Q∈Q(Q~v ∧Q)](c′) ∧ (c = c′)).

(##)

Moreover, the right-hand side of (##) is in RANF.

Note that the query cost does not decrease after applying the translation (#) or (##) because
of the subquery [CNT~v.Q~v](c) in which Q~v is evaluated before the count aggregation is computed.
For the query ∃y. ((Qx ∧Qy) ∧ ¬Qxy) from before, we would compute [CNT y.Qx ∧Qy](c), i.e.,
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we would not (yet) avoid computing the Cartesian product Qx ∧Qy. However, we could reduce
the scope of the bound variable y by further translating

[CNT y.Qx ∧Qy](c) ≡ Qx ∧ [CNT y.Qy](c).

This technique called mini-scoping can be applied to a count aggregation [CNT~v.Q~v](c) if the
aggregated query Q~v is a conjunction that can be split into two RANF conjuncts and the
variables ~v do not occur free in one of the conjuncts (that conjunct can be pulled out of the
count aggregation). Mini-scoping can be analogously applied to queries of the form ∃~v.Q~v.

Moreover, we can split a count aggregation over a conjunction Q~v ∧ Q′~v into a product of
count aggregations if the conjunction can be split into two RANF conjuncts with disjoint sets of
bound variables, i.e., ~v ∩ fv(Q~v) ∩ fv(Q′~v) = ∅:

[CNT~v.Q~v ∧Q′~v](c) ≡ (∃c1, c2. [CNT~v ∩ fv(Q~v). Q~v](c1) ∧
[CNT~v ∩ fv(Q′~v). Q′~v](c2) ∧
c = c1 · c2).

Here c1, c2 are fresh variables that do not occur in fv(Q~v)∪ fv(Q′~v)∪ {c}. Note that mini-scoping
is only a heuristic and it can both improve and harm the time complexity of query evaluation.
We implement the translations from Lemmas 4.21 and 4.22 and mini-scoping in a function called
optcnt(·). Given a RANF query Q̂, optcnt(Q̂) is an equivalent RANF query after introducing
count aggregations and performing mini-scoping. The function optcnt(Q̂) uses a training database
to decide how to apply the translations from Lemmas 4.21 and 4.22 and mini-scoping. More
specifically, the function optcnt(Q̂) tries several possibilities and chooses one that minimizes the
query cost of the resulting RANF query.

Example 4.23. We show how we introduce count aggregations into the RANF query

Q̂ := Qx ∧ ¬∃y. (Qx ∧Qy ∧ ¬Qxy).

After applying the translation (##) and mini-scoping to this query, we obtain the following
equivalent RANF query:

optcnt(Q̂) := (Qx ∧ ¬(Qx ∧ ∃y.Qy)) ∨
(∃c, c′. Qx ∧ [CNT y.Qy](c) ∧

[CNT y.Qy ∧Qxy](c′) ∧ (c = c′)). 2

Translating RANF to SQL Our translation of a RANF query into SQL has two steps: we
first translate the query to an equivalent RA expression, which we then translate to SQL using a
publicly available RA interpreter radb [78].

We define the function ranf2ra(Q̂) translating RANF queries Q̂ into equivalent RA expressions
ranf2ra(Q̂). The translation is based on Algorithm 5.4.8 by Abiteboul et al. [1], which we modify
as follows. We adjust the way closed RC queries are handled. Chomicki and Toman [19] observed
that closed RC queries cannot be handled by SQL, since SQL allows neither empty projections
nor 0-ary relations. They propose to use a unary auxiliary predicate A ∈ R whose interpretation
AS = {t} always contains exactly one tuple t. Every closed query ∃x.Qx is then translated into
∃x.A(t) ∧ Qx with an auxiliary free variable t. Every other closed query Q̂ is translated into
A(t) ∧ Q̂, e.g., B(42) is translated into A(t) ∧ B(42). We also use the auxiliary predicate A to
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translate queries of the form x ≈ c and c ≈ x because the single tuple (t) in AS can be mapped to
any constant c. Finally, we extend [1, Algorithm 5.4.8] with queries of the form [CNT~v.Q~v](c).

The radb interpreter, abbreviated here by the function ra2sql(·), translates a RA expression
into SQL, by simply mapping the RA operators into their SQL counterparts. The function ra2sql(·)
is primitive recursive on RA expressions. We modify radb to further improve performance of
the query evaluation as follows.

A RANF query Q1 ∧ ¬Q2, where ranf(Q1), ranf(Q2), and fv(Q2) ( fv(Q1) is translated into
RA expression ranf2ra(Q1) . ranf2ra(Q2), where . denotes the anti-join operator and ranf2ra(Q1),
ranf2ra(Q2) are the equivalent relational algebra expressions for Q1, Q2, respectively. The
radb interpreter only supports the anti-join operator ranf2ra(Q1) . ranf2ra(Q2) expressed as
ranf2ra(Q1) − (ranf2ra(Q1) ./ ranf2ra(Q2)), where − denotes the set difference operator and
./ denotes the natural join. Alternatively, the anti-join operator can be directly mapped to
LEFT JOIN in SQL. We generalize radb to use LEFT JOIN since it performs better in our empirical
evaluation [60].

The radb interpreter introduces a separate SQL subquery in a WITH clause for every subex-
pression in the RA expression. We extend radb to additionally perform common subquery
elimination, i.e., to merge syntactically equal subqueries. Common subquery elimination is also
assumed in our query cost (Section 2.3.1).

Finally, the function ranf2sql(Q̂) (Figure 2.13) is defined as ranf2sql(Q̂) := ra2sql(ranf2ra(Q̂)),
i.e., as a composition of the two translations from RANF to RA and from RA to SQL.

4.2.7 Empirical Evaluation

We empirically assess the time complexity of evaluating the queries produced by our translation
rc2sql by answering the following three research questions:

RQ1: How does rc2sql perform compared to the state-of-the-art?

RQ2: How does rc2sql scale on large databases?

RQ3: How does rc2sql perform on real-world databases?

To answer RQ1, we compare rc2sql with the translation by Van Gelder and Topor [34] (vgt),
our formally verified implementation [61] of the algorithm by Ailamazyan et al. [2] that uses an
extended active domain as the generators, and the ddd [52,53], ldd [17], and MonPoly-reg [10]
tools that support direct RC query evaluation using binary decision diagrams. We could not find
a publicly available implementation of Van Gelder and Topor’s translation. Therefore, the tool
vgt for evaluable RC queries is derived from our implementation by modifying the function rb(·)
in Figure 4.2 to use the relation convgt(x,Q,G) (Figure 2.11) instead of cov(x,Q,G) (Figure 4.1)
and to use the generator ∃~fv(Q) − {x}. qps∨(G) instead of qps∨(G). Evaluable queries Q are
always translated into (Qfin ,⊥) by rw(·) because all of Q’s free variables are range-restricted. We
also consider translation variants that omit the count aggregation optimization optcnt(·), marked
with a minus (−).

SQL queries computed by the translations are evaluated using the PostgreSQL database
engine. We have also used the MySQL database engine but omit its timings from our evaluation
after discovering that it computed incorrect results for some queries. This issue was reported
and subsequently confirmed by MySQL developers. We run our experiments on an Intel Core
i5-4200U CPU computer with 8 GB RAM. The relations in PostgreSQL are recreated before
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each invocation to prevent optimizations based on caching recent query evaluation results. We
provide all our experiments in an easily reproducible and publicly available artifact [60].

To answer RQ2, we use Data Golf structures S of growing size. We control the size of the
Data Golf structure S in our experiments using a parameter n =

∣∣T +∣∣ = |T −|. Because the sets
T + and T − grow in the recursion on subqueries, relations in a Data Golf structure typically
have even more than n tuples.

In the Small, Medium, and Large experiments, we generate ten pseudorandom queries
with a fixed size 14 and Data Golf structures S (strategy γ = 1). The queries satisfy the Data
Golf assumptions along with a few additional ones: the queries are in SRNF, but they are not
safe-range, every bound variable actually occurs in its scope, disjunction only appears at the
top-level, and only pairwise distinct variables appear as terms in predicates. The queries have 2
free variables and every subquery has at most 4 free variables. The values of the parameter n for
Data Golf structures are summarized in Figure 4.5.

The Infinite experiment consists of five pseudorandom queries Q that are not evaluable and
rw(Q) = (Qfin , Qinf ), where Qinf 6= ⊥. Specifically, the queries are of the form Q1∧∀x, y. Q2 −→
Q3, where Q1, Q2, and Q3 are either atomic predicates or equalities. We choose the queries so
that the number of their satisfying tuples is not too high, e.g., quadratic in the parameter n,
because no tool can possibly enumerate so many tuples within the timeout. For each query Q,
we compare the performance of our tool to tools that directly evaluate Q on structures generated
by the two Data Golf strategies (parameter γ), which trigger infinite or finite evaluation results
on the considered queries. For infinite results, our tool outputs this fact (by evaluating Qinf ),
whereas the other tools also output a finite representation of the infinite result. For finite results,
all tools produce the same output.

Figure 4.5 shows the empirical evaluation results for the experiments Small, Medium,
Large, and Infinite. All entries are execution times in seconds, TO is a timeout, and RE is a
runtime error. In the experiments Small, Medium, and Large, the columns correspond to ten
unique pseudorandom queries (the same queries are used in all the three experiments). In the
Infinite experiment, we use five unique pseudorandom queries and two Data Golf strategies.
The time it takes for our translation rc2sql to translate each query is shown in the first line
for the experiments Small and Infinite because the queries in the experiments Medium and
Large are the same as in Small. The remaining lines show evaluation times with the lowest
time for a query typeset in bold. We omit the rows for tools that time out or crash on all
queries of an experiment, e.g., Ailamazyan et al. [2]. We conclude that our translation rc2sql
significantly outperforms all other tools on all queries (except vgt on the second query, but
rc2sql still outperforms vgt) and scales well to higher values of n, i.e., larger relations in the
Data Golf structures, on all queries.

To answer RQ3, we also use real-world structures obtained from the Amazon review dataset [56]
and evaluate the tools on the queries Qsusp and Qsusp

user from the introduction and on the more
challenging query Qsusp

text := B(b) ∧ ∃u, s, t. ∀p. P(b, p) −→ S(p, u, s) ∨ T(p, u, t) with an additional
relation T that relates user’s review text (variable t) to a product. The query Qsusp

text computes all
brands for which there is a user, a score, and a review text such that all the brand’s products
were reviewed by that user with that score or by that user with that text. We use both Data
Golf structures (strategy γ = 1) and real-world structures obtained from the Amazon review
dataset [56]. The real-world relations P, S, and T are obtained by projecting the respective tables
from the Amazon review dataset for some chosen product categories (abbreviated GC and MI
in Figure 4.6) and the relation B contains all brands from P that have at least three products.



94 Chapter 4. First-Order Monitoring

Experiment Small, Evaluable pseudorandom queries Q, |sub(Q)| = 14, n = 500:
rc2sql(Q) 1.30 0.00 0.20 0.00 0.00 0.00 0.00 0.10 0.00 0.00

rc2sql 0.30 0.30 0.30 0.30 0.30 0.30 0.20 0.30 0.30 0.30
rc2sql− 0.30 0.20 0.30 0.20 0.30 0.30 0.20 0.20 0.30 0.30
vgt 2.60 0.30 3.00 2.30 3.20 16.80 4.40 2.60 29.30 9.10
vgt− 35.70 21.90 37.70 22.90 TO 13.20 7.00 4.70 TO 19.00
ddd 5.10 3.20 7.80 RE 1.70 5.70 8.30 3.30 25.80 8.40
ldd 59.10 25.20 72.20 23.50 16.70 44.40 22.70 30.20 276.30 49.20
MonPoly-reg 60.80 22.00 56.70 19.90 19.40 61.90 20.50 41.50 200.00 47.20

Experiment Medium, Evaluable pseudorandom queries Q, |sub(Q)| = 14, n = 20000:
rc2sql 4.10 2.00 3.90 2.10 2.10 2.10 0.90 1.60 4.50 1.70
rc2sql− 2.80 1.40 2.60 1.30 1.30 1.80 0.90 1.30 4.00 1.70
vgt 5.40 1.80 5.50 3.80 5.00 TO TO 4.40 TO TO
vgt− TO TO TO TO TO TO TO TO TO TO

Experiment Large, Evaluable pseudorandom queries Q, |sub(Q)| = 14, tool = rc2sql:
n = 40000 8.00 4.00 8.00 4.20 4.00 4.10 1.60 3.10 8.80 3.60
n = 80000 16.30 8.30 16.30 8.50 7.90 8.50 3.20 6.30 18.90 7.20
n = 120000 26.20 12.40 23.40 13.00 12.20 12.60 4.90 10.00 32.60 10.20

Experiment Infinite, Non-evaluable pseudorandom queries Q, |sub(Q)| = 7, n = 4000:
Infinite results (γ = 0) Finite results (γ = 1)

rc2sql(Q) 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.10 0.00
rc2sql 0.80 0.80 0.80 0.80 0.80 0.90 2.40 1.10 1.10 2.20
rc2sql− 0.50 0.50 0.50 0.50 0.50 0.60 TO 1.60 0.70 TO
ddd 45.00 122.90 45.20 81.20 114.10 44.50 96.30 45.00 83.30 101.00
ldd TO TO TO TO TO TO TO TO TO TO
MonPoly-reg TO TO TO TO TO TO TO TO TO TO

Figure 4.5. Experiments Small, Medium, Large, and Infinite. We use the following
abbreviations: TO = Timeout of 300s, RE = Runtime Error.

Because the tool by Ailamazyan et al., ddd, ldd, and MonPoly-reg only support integer data,
we injectively remap the string and floating-point values from the Amazon review dataset to
integers.

Figure 4.6 shows the empirical evaluation results: the time it takes for our translation rc2sql
to translate each query is shown in the first line and the execution times on Data Golf structures
(top) and on structures derived from the real-world dataset for two specific product categories
(bottom) are shown in the remaining lines. We remark that vgt cannot handle the query Qsusp

user
as it is not evaluable [34]. Our translation rc2sql significantly outperforms all other tools
(except vgt on Qsusp, but rc2sql still outperforms vgt) on both Data Golf and real-world
structures. vgt− translates Qsusp into a RANF query with a higher query cost than rc2sql−.
However, the optimization optcnt(·) manages to rectify this inefficiency and thus vgt exhibits a
comparable performance as rc2sql. Specifically, the factor of 80× in query cost between vgt−
and rc2sql− improves to 1.1× in query cost between vgt and rc2sql on a Data Golf structure
with n = 20 [60]. vgt does not finish evaluating the query Qsusp

text on GC and MI datasets within
10 minutes, unlike rc2sql.
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Query Qsusp Qsusp
user Qsusp

text
Param. n 103 104 103 104 103 104

rc2sql(Q) 0.00 s 0.00 s 0.60 s
rc2sql 2.50 2.50 3.10 3.60 6.00 7.40
rc2sql− 61.80 TO 62.20 TO 545.60 TO
vgt 3.10 2.90 − − TO TO
vgt− TO TO − − TO TO
ddd 5.80 TO 5.60 TO 25.60 TO
ldd 33.30 TO 33.90 TO 216.10 TO
MonPoly-reg 44.50 TO 45.10 TO 164.40 TO

Dataset GC MI GC MI GC MI
rc2sql 2.90 16.20 4.20 21.40 8.90 91.30
rc2sql− 273.90 TO 270.10 TO TO TO
vgt 3.50 18.90 − − TO TO
vgt− TO TO − − TO TO
ddd 93.30 TO 90.10 TO 178.50 TO
ldd TO TO TO TO TO TO
MonPoly-reg TO TO TO TO TO TO

Figure 4.6. Experiment with the queries Qsusp, Qsusp
user , Qsusp

text . We use the following abbreviations:
GC = Gift Cards dataset, MI = Musical Instruments dataset, TO = Timeout of 600s.

4.3 MFOTL Query Translation

In this section, we generalize our translation of RC queries from Section 4.2 to all MFOTL
queries, implement the translation for MFOTL queries, and empirically evaluate the performance
of monitoring MFOTL queries using our translation compared to alternative approaches. We
develop a translation that takes an arbitrary MFOTL query and produces a pair of MFOTL
queries in RANF: one characterizes the original query’s relative safety and the other one is
equivalent to the original query if the original query is relatively safe. Then we combine these
two queries into a single query. This way, we obtain a monitor for an arbitrary MFOTL query
that decides for every time-point if it evaluates to a finite relation and computes the relation if it
is finite.

We assume that all MFOTL queries are bounded-future, i.e., the intervals I of their UI
operators satisfy right(I) ∈ Tfin. Because we apply the function flipL(I), defined in Section 2.1,
to intervals of MFOTL temporal operators, we assume that the time domain T is total in this
section. This means that intervals I such that memL(0, 0, I) and right(I) /∈ Tfin are full intervals.

4.3.1 Generalizing Relational Calculus Query Translation

To obtain a translation for MFOTL queries, we add the cases in Figure 4.7 to the definition of
the relation cov(x,Q,G) (Figure 4.1). Here, õp Q′, op ∈ { I ,#I ,�I ,♦I}, stands for op Q′ if Q′
is a temporal quantified predicate and for Q′ if Q′ is an equality between two variables. This
way, the set G such that cov(x,Q,G) consists of temporal quantified predicates and equalities
between variables.

Next we extend the definition of the function rb(Q), which restricts bound variables in a
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cov(x, I Q, { ̃I Q′ | Q′ ∈ G}) if cov(x,Q,G);
cov(x,#I Q, {#̃I Q′ | Q′ ∈ G}) if cov(x,Q,G);
cov(x,Q1 SI Q2, {�̃I Q′ | Q′ ∈ G1 ∪ G2}) if cov(x,Q1,G1) and cov(x,Q2,G2);
cov(x,Q1 SI Q2, {�̃I Q′ | Q′ ∈ G}) if cov(x,Q2,G) and Q2[x/false] = false;
cov(x,Q1 UI Q2, {♦̃I Q′ | Q′ ∈ G1 ∪ G2}) if cov(x,Q1,G1) and cov(x,Q2,G2);
cov(x,Q1 UI Q2, {♦̃I Q′ | Q′ ∈ G}) if cov(x,Q2,G) and Q2[x/false] = false;

Figure 4.7. Additional cases for MFOTL queries in the definition of the relation cov(x,Q,G).

query Q (Figure 4.2), to include cases for MFOTL temporal operators. We call a query Q
S-restricted if the subqueries Q′1 (or Q′′1 if Q′1 = ¬Q′′1) and Q′2 in every subquery Q′1 SI Q′2
of Q with right(I) /∈ Tfin are safe-range MFOTL queries and fv(Q′1) ⊆ fv(Q′2). Because the
query (¬Q1) SI Q2 is in RANF if Q1 and Q2 are in RANF and fv(Q1) ⊆ fv(Q2) (although ¬Q1
might not be in RANF), we distinguish the case when the left-hand side of the SI operator is a
negation. For the sake of a subsequent translation to a bounded-future MFOTL query in RANF,
the translated query rb(Q) is S-restricted. We extend the function rb(Q) to MFOTL queries
in Figure 4.8. The cases of RC operators are unchanged and the cases of MFOTL temporal
operators except for Q′1 SI Q′2 with right(I) /∈ Tfin proceed by simple recursion.

When encoutering a subquery Q′1 SI Q′2 with right(I) /∈ Tfin, we first recursively compute
rb(Q′1) and rb(Q′2) to obtain S-restricted queries with range-restricted bound variables. If
memL(0, 0, I), then we have a SI operator with a full interval I (because right(I) /∈ Tfin). If
not memL(0, 0, I), then we further translate the SI operator using the following equivalence:

Q1 SI Q2 ≡ (�I true) ∧ ¬�flipL(I) (¬Q1 ∨ ¬ dropL(I) (Q1 SdropL(I) Q2)).

Afterwards, we only have two SI operators with right(I) /∈ Tfin: �I true, which is already in RANF,
and Q1 SdropL(I) Q2, whose interval dropL(I) is full. As long as Q1 SI Q2 (or Q1 SdropL(I) Q2,
respectively) is not S-restricted, we apply the translation formalized in the following lemma.
Given a set of temporal quantified predicates and equalities G, tqps(G) denotes the subset of G
containing all temporal quantified predicates in G and eqs(x,G) denotes all variables y distinct
from the variable x occurring in equalities of the form x ≈ y in G. Let tqps∨(G) denote the query∨
Qtqp∈tqps(G) Qtqp and let tqps∨�I (G) denote the query ∨Qtqp∈tqps(G) �I Qtqp.

Lemma 4.24. Let Q1 and Q2 be MFOTL queries with range-restricted bound variables, let I ∈ I
be a full interval, let x ∈ fv(Q1)∪fv(Q2), and let G1 and G2 be sets of temporal quantified predicates
and equalities such that cov(x,Q1,G1) and cov(x,Q2,G2) hold. Let G := G2 if Q2[x/false] = false
and G := G1 ∪ G2 otherwise. Let Q′1 := Q1 ∧ tqps∨�I (G) if x ∈ fv(Q1) and not gen(x,Q1) and
Q′1 := Q1 otherwise. Let f be a function mapping MFOTL queries to MFOTL queries such that
(i) f(Q) = Q for all Q, or (ii) f(Q) = ¬Q for all Q. Then

f(Q1) SI Q2 ≡ (∧y∈eqs(x,G) (¬x ≈ y) ∧ f(Q′1) SI (Q2 ∧ tqps∨�I (G))) ∨
(∧y∈eqs(x,G) (¬x ≈ y) ∧ f(Q′1) SI (f(Q1) ∧ tqps∨(G) ∧
 I ((¬tqps∨�I (G)) ∧ (f(Q1) SI Q2)[x/false]))) ∨

(∧y∈eqs(x,G) (¬x ≈ y) ∧ (¬tqps∨�I (G)) ∧ (f(Q1) SI Q2)[x/false]) ∨∨
y∈eqs(x,G) ((f(Q1) SI Q2)[x 7→ y] ∧ x ≈ y).

(�FO)

Let i be the time-point at which Q1 SI Q2 is evaluated (under a fixed temporal structure S̄
and a fixed assignment α). Let j be the past time-point at which Q2 might be satisfied. The
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input: A bounded-future MFOTL query Q.
output: A bounded-future S-restricted MFOTL query Q̃ with range-restricted bound

variables such that Q ∞≡ Q̃.
1 function rbSince(Q1, I, Q2, f) =
2 if nongens(Q1) ∪ nongens(Q2) = ∅ and fv(Q1) ⊆ fv(Q2) then
3 return f(Q1) SI Q2;
4 else
5 x← nongens(Q1) ∪ nongens(Q2) ∪ (fv(Q1)− fv(Q2));
6 G1 ← {G1 | cov(x,Q1,G1)}; G2 ← {G2 | cov(x,Q2,G2)};
7 if Q2[x/false] = false then G := G2;
8 else G := G1 ∪ G2;
9 I ′ := dropL(I);

10 if x ∈ fv(Q1) and not gen(x,Q1) then Q′1 := Q1 ∧ tqps∨�I′ (G);
11 else Q′1 := Q1;

12

Q̃ := rb((∧y∈eqs(x,G) (¬x ≈ y) ∧ f(Q′1) SI′ (Q2 ∧ tqps∨�I′ (G))) ∨
(∧y∈eqs(x,G) (¬x ≈ y) ∧ f(Q′1) SI′ (f(Q1) ∧ tqps∨(G) ∧
 I′ ((¬tqps∨�I′ (G)) ∧ (f(Q1) SI′ Q2)[x/false]))) ∨

(∧y∈eqs(x,G) (¬x ≈ y) ∧ (¬tqps∨�I′ (G)) ∧ (f(Q1) SI′ Q2)[x/false]) ∨∨
y∈eqs(x,G) ((f(Q1) SI′ Q2)[x 7→ y] ∧ x ≈ y));

13 if memL(0, 0, I) then return Q̃;
14 else return (�I true) ∧ ¬�flipL(I) (¬f(Q1) ∨ ¬ I′ Q̃);
15 function rb(Q) =
16 switch Q do
17 case  I Q′ do return  I rb(Q′);
18 case #I Q′ do return #I rb(Q′);
19 case Q′1 SI Q′2 do
20 if right(I) ∈ Tfin then return rb(Q′1) SI rb(Q′2);
21 else
22 switch rb(Q′1) do
23 case ¬Q′′1 do return rbSince(Q′′1, I, rb(Q′2), (λQ.¬Q));
24 otherwise do return rbSince(rb(Q′1), I, rb(Q′2), (λQ.Q));
25 case Q′1 UI Q′2 do return rb(Q′1) UI rb(Q′2);
26 . . .

Figure 4.8. Extension of rb(Q) to MFOTL queries.
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translation (�FO) proceeds by a case distinction if x ≈ y holds for some y ∈ eqs(x,G) (the last
line) or not (all remaining lines). The case distinction further proceeds based on whether

• tqps∨(G) holds at some time-point k ≤ j, then tqps∨�I (G) holds at all time-points between
j and i (first disjunct);

• tqps∨(G) holds at some time-point k > j, but does not hold before, then tqps∨�I (G) holds
at all time-points between k and i, but not strictly before k (second disjunct);

• tqps∨(G) holds at no time-point before and including i (third disjunct).

We apply Lemma 4.24 with (ii) f(Q) = ¬Q if the subquery Q1 of Q1 SI Q2 has the form
Q1 = ¬Q′1 for some Q′1. Otherwise, we apply Lemma 4.24 with (i) f(Q) = Q. After applying the
translation (�FO) in the function rb(Q), the lexicographic measure (fv(Q1)∪fv(Q2), nongens(Q1)∪
nongens(Q2)∪(fv(Q1)−fv(Q2))) decreases for each of the four SI operators of the form f(Q1) SI Q2
after applying (�FO):

• f(Q′1) SI (Q2 ∧ tqps∨�I (G)): no new free variables, all variables that were range-restricted
are still range-restricted, x is range-restricted or does not occur, all variables that occur in
Q′1, but not in Q2 ∧ tqps∨�I (G), are also in fv(Q1)− fv(Q2), and x occurs at the left-hand
side and right-hand side;

• f(Q′1) SI (f(Q1) ∧ tqps∨(G) ∧  I ((¬tqps∨�I (G)) ∧ (f(Q1) SI Q2)[x/false])): no new free
variables, all variables that were range-restricted are still range-restricted, x is range-
restricted or does not occur, and the free variables of the left-hand side are a subset of the
free variables of the right-hand side;

• (f(Q1) SI Q2)[x/false]: the set of all free variables shrinks;

• (f(Q1) SI Q2)[x 7→ y]: the set of all free variables shrinks.

Hence, the function rb(Q) applying (�FO) exhaustively terminates.
The function split(Q) = (Qfin , Qinf ), defined in Figure 4.3, immediately extends to MFOTL.

Moreover, the queries Qfin and Qinf are S-restricted. Indeed, if Q1 SI Q2 is S-restricted, then Q2
is safe-range and fv(Q1) ⊆ fv(Q2). Then (Q1 SI Q2)[x 7→ y] is clearly S-restricted. If x ∈ fv(Q2),
then (Q1 SI Q2)[x/false] = false because Q2 is safe-range. Otherwise, Q2[x/false] = Q2 and
(Q1 SI Q2)[x/false] is S-restricted. Lemmas 4.1, 4.2, 4.3 immediately extend to MFOTL. The
remaining lemmas on RC query translation are generalized to MFOTL in a straightforward way
as follows:

Lemma 4.25. Let a temporal structure S̄ with an infinite domain D and a time-point i be fixed.
Let x be a free variable in a query Q̃ with range-restricted bound variables and let cov(x, Q̃,G)
for a set of temporal quantified predicates and equalities G. If Q̃[x/false] is not satisfied by any
tuple at the time-point i, then

q
Q̃

y
=

r
(Q̃ ∧ tqps∨(G)) ∨∨y∈eqs(x,G) (Q̃[x 7→ y] ∧ x ≈ y)

z
.

If Q̃[x/false] is satisfied by some tuple, then
q
Q̃

y
is an infinite set.
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function srnf(Q) =
switch Q do

case  I Q′ do return  I srnf(Q′);
case #I Q′ do return #I srnf(Q′);
case Q′1 SI Q′2 do

switch Q′1 do
case ¬Q′′1 do return (¬srnf(Q′′1)) SI srnf(Q′2);
otherwise do return srnf(Q′1) SI srnf(Q′2);

case Q′1 UI Q′2 do
switch Q′1 do

case ¬Q′′1 do return (¬srnf(Q′′1)) UI srnf(Q′2);
otherwise do return srnf(Q′1) UI srnf(Q′2);

. . .
Figure 4.9. Extension of srnf(Q) to MFOTL queries.

function measure(Q) =
switch Q do

case  I Q′ do return measure(Q′);
case #I Q′ do return measure(Q′);
case Q′1 SI Q′2 do

if Q′1 = true then return measure(Q′2);
else return 1 + measure(Q′1) + measure(Q′2);

case Q′1 UI Q′2 do
if Q′1 = true then return measure(Q′2);
else return 1 + measure(Q′1) + measure(Q′2);

. . .
Figure 4.10. Extension of measure(Q) to MFOTL.

Lemma 4.26. Let Q be a bounded-future MFOTL query and split(Q) = (Qfin , Qinf ). Then the
queries Qfin and Qinf are bounded-future, S-restricted, and safe-range; fv(Qfin) = fv(Q) unless
Qfin is syntactically equal to false; and fv(Qinf ) = ∅.

Lemma 4.27. Let a temporal structure S̄ with an infinite domain D and a time-point i be fixed.
Let Q be an MFOTL query and split(Q) = (Qfin , Qinf ). If i |= Qinf , then JQKS̄i is an infinite set.
Otherwise, JQK = JQfinK is a finite set.

It remains to extend the functions srnf(Q) (Figure 2.14) and sr2ranf(Q,Q) (Figure 2.16) to
MFOTL. We extend srnf(Q) to MFOTL in Figure 4.9 by simple recursion on MFOTL temporal
operators. Note that we do not push negation if the left-hand side of SI or UI operators is
a negation. This is because in general we could not distribute the SI or UI operator over its
left-hand side, e.g., if the left-hand side is a disjunction. The termination of the function srnf(Q)
follows using the lexicographic measure (measure(Q), tdepth(Q)), where measure(Q) is defined in
Figure 2.12 and extended to MFOTL in Figure 4.10 and tdepth(Q) is defined in Figure 4.11. We
also generalize Lemma 2.17 to MFOTL.
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function tdepth(Q) =
switch Q do

case ¬Q′ do return tdepth(Q′);
case Q′1 ∨Q′2 do return max{tdepth(Q′1), tdepth(Q′2)};
case Q′1 ∧Q′2 do return max{tdepth(Q′1), tdepth(Q′2)};
case ∃x.Qx do return tdepth(Qx);
case  I Q′ do return 1 + tdepth(Q′);
case #I Q′ do return 1 + tdepth(Q′);
case Q′1 SI Q′2 do return 1 + max{tdepth(Q′1), tdepth(Q′2)};
case Q′1 UI Q′2 do return 1 + max{tdepth(Q′1), tdepth(Q′2)};
otherwise do return 1;

Figure 4.11. The measure tdepth(Q) on MFOTL queries.

Lemma 4.28. Let Q be a bounded-future S-restricted safe-range MFOTL query. Then srnf(Q)
is a bounded-future S-restricted safe-range MFOTL query in SRNF such that gen(x,¬Q′) does
not hold for any variable x and subquery ¬Q′ of srnf(Q).

We extend sr2ranf(Q,Q) to MFOTL in Figure 4.12. The operators S¬I and U¬I are defined
as: Q1 S¬I Q2 := (¬Q1) S¬I Q2 and Q1 U¬I Q2 := (¬Q1) U¬I Q2. The termination of sr2ranf(Q,Q)
follows from the lexicographic measure (2 ·measure(Q)+eqneg(Q)+2 ·∑Q∈Qmeasure(Q)+2 · |Q|,
measure(Q) + ∑

Q∈Qmeasure(Q), tdepth(Q)), where measure(Q) is defined in Figure 2.12 and
extended to MFOTL in Figure 4.10, tdepth(Q) is defined in Figure 4.11, and eqneg(Q) := 1 if Q
is an equality between two variables or the negation of a query, and eqneg(Q) := 0 otherwise.
Suppose that we translate a temporal operator op and this operator is evaluated at a time-point
i. When moving across op, we extend the queries from Q with a temporal operator covering
the time-point i from any time-point that is relevant for op’s satisfaction, e.g., we use  I for
#I and vice-versa, we use ♦dropL(I) for SI , and we use �dropL(I) for UI . If right(I) /∈ Tfin for SI ,
then ♦dropL(I) would introduce an unbounded UI into the translated query. Hence, we cannot
propagate any query from Q to the subqueries of SI with right(I) /∈ Tfin. This is possible because
SI is S-restricted. For the temporal operators SI and UI , sr2ranf(Q,Q) cannot return any subset
Q ⊆ Q of queries, where {♦dropL(I) Q | Q ∈ Q} or {�dropL(I) Q | Q ∈ Q} was propagated to the
subqueries, because we cannot guarantee that the queries from Q are satisfied at the time-point i
at which SI or UI is evaluated. Note that none of the conditions “Q′1∧Q′2∧

∧
Q∈QQ is safe-range”

and “Q′2 ∧
∧
Q∈QQ is safe-range” in doBin implies the other one. For instance, if Q′1 := ¬B(x),

Q′2 := B(y), and Q = ∅, then only Q′2 ∧
∧
Q∈QQ is safe-range and if Q′1 := B(y), Q′2 := ¬B(y),

and Q = ∅, then only Q′1 ∧Q′2 ∧
∧
Q∈QQ is safe-range.

Finally, sr2ranf(Q) := Q̂, where (Q̂,_) := sr2ranf(srnf(Q), ∅), yields an MFOTL query Q̂ in
RANF that is equivalent to Q and Definition 4.3 immediately extends to MFOTL.

4.3.2 Implementation and Empirical Evaluation

Implementation We have extended our translation rc2sql for RC queries (Section 4.2.6) to
the translation mfotl2ranf [62] for MFOTL queries. Overall, the translation is defined as

MFOTL2RANF(Q) := (Qinf ∧ (f ≈ cinf) ∧
∧
x∈fv(Q) x ≈ cinf) ∨ ((¬Qinf ) ∧ (f ≈ cfin) ∧Qfin),



4.3. MFOTL Query Translation 101

input: A bounded-future S-restricted safe-range MFOTL query Q ∧∧Q∈QQ such that
gen(x,¬Q′) does not hold for any variable x and subquery ¬Q′.

output: A bounded-future MFOTL query Q̂ in RANF and a subset Q ⊆ Q such that
Q ∧

∧
Q∈QQ ≡ Q̂ ∧

∧
Q∈QQ; (S̄, α, i) |= Q̂ =⇒ (S̄, α, i) |= ∧

Q∈QQ holds for all
S̄, α, i; Q̂ = cp(Q̂); and fv(Q) ⊆ fv(Q̂) ⊆ fv(Q) ∪ fv(Q), unless Q̂ = false.

function doBin(Q1, op1, Q2,Q, op2, op3) =
Q ← {Q ⊆ Q | Q1 ∧Q2 ∧

∧
Q∈QQ is safe-range, Q2 ∧

∧
Q∈QQ is safe-range,

and fv(Q1) ⊆ fv(Q2 ∧
∧
Q∈QQ)};

if not ranf(Q1) then
if Q1 ∧

∧
Q∈QQ is safe-range then

(Q′1,_)← {sr2ranf(Q1 ∧
∧
Q∈Q op2 Q, ∅),

sr2ranf(Q1 ∧ (op3 Q2) ∧∧Q∈Q op2 Q, ∅)};
else (Q′1,_) := sr2ranf(Q1 ∧ (op3 Q2) ∧∧Q∈Q op2 Q, ∅);

(Q′2,_) := sr2ranf(Q2 ∧
∧
Q∈Q op2 Q, ∅);

return (cp(Q′1 op1 Q
′
2), ∅);

function sr2ranfSince(Q1, op1, I, Q2,Q) =
if right(I) ∈ Tfin then return doBin(Q1, op1, Q2,Q,♦dropL(I),�dropL(I));
else

(Q′1,_) := sr2ranf(Q1, ∅);
(Q′2,_) := sr2ranf(Q2, ∅);
return (cp(Q′1 op1 Q

′
2), ∅)

function sr2ranf(Q,Q) =
if ranf(Q) then return (cp(Q), ∅);
switch Q do

case  I Q′ do
(Q′,Q) := sr2ranf(Q′, {#I Q | Q ∈ Q});
return (cp( I Q′), {Q | #I Q ∈ Q});

case #I Q′ do
(Q′,Q) := sr2ranf(Q′, { I Q | Q ∈ Q});
return (cp(#I Q′), {Q |  I Q ∈ Q});

case Q′1 SI Q′2 do
switch Q′1 do

case ¬Q′′1 do return sr2ranfSince(Q′′1,S¬I , I, Q′2,Q);
otherwise do return sr2ranfSince(Q′1,SI , I, Q′2,Q);

case Q′1 UI Q′2 do
switch Q′1 do

case ¬Q′′1 do return doBin(Q′′1,U¬I , Q′2,Q,�dropL(I),♦dropL(I));
otherwise do return doBin(Q′1,UI , Q′2,Q,�dropL(I),♦dropL(I));

. . .
Figure 4.12. Extension of sr2ranf(Q,Q) to MFOTL queries.
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where (Qfin , Qinf ) := rw(Q); f /∈ fv(Q) is a fresh variable signaling if the result is infinite (f ≈ cinf);
and cfin, cinf ∈ D are arbitrary constants (preferably cfin 6= cinf so that the value of the variable
f uniquely expresses if the query Q evaluates to an infinite result). In our implementation, we
use cfin = 0 and cinf = 1. Unlike rc2sql, which produces a pair of SQL queries, the translation
mfotl2ranf produces a single MFOTL query in RANF that can be evaluated at every time-point
by state-of-the-art first-order monitoring algorithms, e.g., VeriMon [8] and MonPoly [10].

As in rc2sql, we improve the average-case complexity of evaluating the MFOTL query
MFOTL2RANF(Q) by implementing the following optimization: We use a sample trace of constant
length with databases Γk of constant size, called a training trace, to estimate the temporal query
cost when resolving the nondeterministic choices in our algorithms. The training trace is used
to compare the temporal query cost over the actual observed trace and thus it should preserve
the relative ordering of queries by their temporal query cost over the actual observed trace
as much as possible. Still, our translation satisfies the correctness claims (Section 4.3.1) for
every choice of the training trace. Because the temporal query cost of a query Q with a low
progress prog(Q, τ) could be low simply because there are only a few time-points at which Q can
be evaluated on the given training trace, we always maximize prog(Q, τ) as the first objective
and costS̄<`(Q) as the second objective. When choosing a variable x ∈ V and a set G such that
cov(x,Q,G), we maximize the minimal progress of a query Q ∈ G, i.e., we maximize the quantity
minQ∈G{prog(Q, τ)}, as the first objective. Then we proceed analogously to rc2sql: minimizing
|eqs(x,G)| as the second objective and minimizing ∑Qqp∈qps(G) costT (Qqp) as the third objective.

Empirical Evaluation We empirically evaluate our translation’s performance on MFOTL
queries by answering the following two research questions:

RQ1: How does mfotl2ranf perform compared to the state-of-the-art?

RQ2: How does mfotl2ranf scale with respect to the trace length?

To answer RQ1, we compare the time complexity of evaluating the query MFOTL2RANF(Q),
produced by our translation, with the time complexity of evaluating the original MFOTL query
Q using state-of-the-art tools supporting MFOTL temporal operators and having an available
implementation: DejaVu [41,42] and MonPoly-reg [10]. We use CppMon [39], VeriMon [8],
and MonPoly [10] to evaluate the MFOTL query MFOTL2RANF(Q) in RANF. In the following,
we refer to the tools CppMon, VeriMon, and MonPoly as MFOTL monitors. Our empirical
evaluation can be reproduced using a publicly available artifact [62]. The experimental setup is
as described in Section 3.3.

To answer RQ2, we generate traces of increasing trace length that doubles in every step.
Then we measure evaluation times on these traces of increasing trace length and compute the
ratios of evaluation times between consecutive trace lengths. The ratios are useful to assess the
asymptotics of the evaluation times.

Queries We use the Datarace query from Havelund et al. [42] capturing data races: “A data
race occurs when two threads access (read or write) the same shared variable simultaneously,
and at least one of the threads writes to the variable. The property states that in this case
there must exist a lock, which both threads hold whenever they access the variable.” Formally, it
is expressed by the following MFOTL query, where I ∈ I is an interval, the atomic predicates
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read(t, x) and write(t, x) express that the thread t reads (writes to) a shared variable x, and the
atomic predicates acq(t, l) and rel(t, l) express that the thread t acquires (releases) a lock l:
DataraceI� := ∀t1, t2, x. ((�I (read(t1, x) ∨ write(t1, x))) ∧ (�I write(t2, x))) −→

∃l. (�I ((read(t1, x) ∨ write(t1, x)) −→ ((¬rel(t1, l)) SI acq(t1, l)))) ∧
(�I ((read(t2, x) ∨ write(t2, x)) −→ ((¬rel(t2, l)) SI acq(t2, l))))

The MFOTL query DataraceI� is not in RANF and MonPoly’s heurestics [10] fail to bring
it into RANF. Hence, Havelund et al. [42] could not use MonPoly to evaluate DataraceI�.
We use the MFOTL monitors on the MFOTL query MFOTL2RANF(DataraceI�) in RANF
produced by our translation. We also use the MFOTL monitors on the MFOTL query

̂Datarace
I

� := ¬∃t1, t2, x. (�I A(t1, x)) ∧ (�I write(t2, x)) ∧ ¬(∃l.H(t1, x, l) ∧H(t2, x, l)),
where we use the following abbreviations:

A(t, x) := read(t, x) ∨ write(t, x),
L(t, l) := (¬rel(t, l)) SI acq(t, l),
G(t, x, l) := A(t, x) ∧ L(t, l) ∧ ¬ I (�I A(t, x)),
H(t, x, l) := (¬(A(t, x) ∧ (�I G(t, x, l)) ∧ ¬L(t, l))) SI G(t, x, l).

The query G(t, x, l) is satisfied when a thread t accesses (reads or writes to) a variable x for
the first time and holds a lock l at that time. The query H(t, x, l) is satisfied by threads t that
accessed x at some past time-point and expresses that the thread t holds the lock l whenever
it accesses the variable x (since t accessed x for the first time). The subquery (�I G(t, x, l)) in
H(t, x, l) is only used to bring H(t, x, l) into RANF without changing the semantics of H(t, x, l).
The query ̂Datarace

I

� is in RANF and equivalent to DataraceI� for full intervals I. However,
̂Datarace

I

� is not necessarily equivalent to DataraceI� if I is not full, e.g., if I = [0, 100] for the
time domain T = R of real numbers, a thread t accesses a variable x at every time-point, and the
time-stamp differences between consecutive time-points are less than 100. In that case, G(t, x, l)
only holds at the very first time-point and we could not come up with an alternative definition of
G(t, x, l) such that G(t, x, l) holds at the time-point when the thread t accesses the variable x for
the first time within the interval I and holds the lock l. Still, our translation produces an MFOTL
query MFOTL2RANF(DataraceI�) in RANF that is equivalent to f ≈ cfin ∧DataraceI� for an
arbitrary interval I (Qinf is equivalent to false because DataraceI� is a closed query and thus it
cannot be satisfied by infinitely many tuples).

The query DataraceI� could be violated at a time-point i after a data race although no data
race actually happened at the time-point i. Hence, we also consider the queries DataraceI

and ̂Datarace
I
obtained from DataraceI� and ̂Datarace

I

� by replacing (�I (read(t1, x) ∨
write(t1, x)))∧(�I write(t2, x)) with (read(t1, x)∧�I write(t2, x))∨(write(t1, x)∧�I (read(t2, x)∨
write(t2, x))). Then the queries DataraceI and ̂Datarace

I
are only satisfied at time-points at

which a datarace actually happened.
We also conduct a benchmark on the query BlindWriteI expressing that a thread t writes

to a variable x without having read the variable x while holding a lock l:
BlindWriteI := ¬∃t, x, l. write(t, x) ∧ ((¬(read(t, x) ∨ rel(t, l))) SI acq(t, l)).

Finally, we conduct a benchmark on the query NeedlessReadI expressing that a thread t
writes to a variable x and subsequently reads the variable x while holding a lock l:
NeedlessReadI := ¬∃t, x, l. write(t, x) ∧ ((¬rel(t, l)) UI read(t, x)) ∧ ((¬rel(t, l)) SI acq(t, l)).
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Traces We use the traces from Havelund et al. [42] and also generate our own pseudorandom
traces. Every time-point always carries a single event in these traces. A trace from Havelund
et al. [42] consists of a sequence of blocks of time-points. Given a number of locks nlock and
a number of variables nvar, the time-points within a block contain events for a single thread t:
acq(t, 1), acq(t, 2), . . . , acq(t, nlock), rel(t, nlock), rel(t, nlock − 1), . . . , rel(t, 2), read(t, 1),write(t, 1),
read(t, 2),write(t, 2), . . . , read(t, nvar),write(t, nvar), rel(t, 1). At the end of the trace, there are
five time-points with the following events: acq(1, 1), read(1,−1), rel(1, 1), acq(2, 2),write(2,−1).

Given a fixed trace length `, a number of threads nth, a number of locks nlock, and a number
of variables nvar, we generate a single event at every time-point in our pseudorandom traces. We
first choose a pseudorandom function lock : {0, . . . , nvar− 1} → {0, . . . , nlock− 1} assigning a lock
to every variable. Then we choose the event at a time-point i ∈ {0, . . . , `− 1} with time-stamp i
uniformly between the following possibilities (if at least one event satisfying the corresponding
condition exists):

• acq(t, l), where t ∈ {0, . . . , nth − 1} and l ∈ {0, . . . , nlock − 1} are chosen uniformly at
random so that no thread holds lock l;

• acq(t, l), where t ∈ {0, . . . , nth − 1} and l ∈ {0, . . . , nlock − 1} are chosen uniformly at
random so that no thread holds lock l;

• rel(t, l), where t ∈ {0, . . . , nth−1} and l ∈ {0, . . . , nlock−1} are chosen uniformly at random
so that thread t holds lock l;

• read(t, x), where t ∈ {0, . . . , nth − 1} and x ∈ {0, . . . , nlock − 1} are chosen uniformly at
random so that thread t holds lock lock(x);

• read(t, x), where t ∈ {0, . . . , nth − 1} and x ∈ {0, . . . , nlock − 1} are chosen uniformly at
random so that thread t holds some lock l, but t does not hold lock lock(x);

• write(t, x), where t ∈ {0, . . . , nth − 1} and x ∈ {0, . . . , nlock − 1} are chosen uniformly at
random so that thread t holds lock lock(x);

• write(t, x), where t ∈ {0, . . . , nth − 1} and x ∈ {0, . . . , nlock − 1} are chosen uniformly at
random so that thread t holds some lock l, but t does not hold lock lock(x).

The case acq(t, l) is deliberately listed twice so that it is more likely for the threads to acquire
new locks rather than release them.

Evaluation Results We use our pseudorandom trace with trace length ` = 20 and nth =
nlock = nvar = 20 as the training trace. We do not include the translation time in the evaluation
time on the actual traces because the query MFOTL2RANF(Q) is only computed once for every
possible trace and computing the translated query MFOTL2RANF(Q) takes less than 0.1 seconds
on all queries Q used in our empirical evaluation. We also do not include DejaVu’s compilation
time in the evaluation time. We noticed that MonPoly-reg crashes on ̂Datarace

I

�/DataraceI�
as well as on ̂Datarace

I
/DataraceI and produces incorrect results on BlindWriteI . Hence,

we only use MonPoly-reg on NeedlessReadI .
Table 4.1 contains evaluation times for the query Datarace[0,∞]

� on the traces from the
original experiment by Havelund et al. [42]. DejaVu outperforms MFOTL monitors significantly
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` = 10 005 100 005 1 050 005
̂Datarace

[0,∞]
�

CppMon 673.40 s TO TO
ratio
VeriMon TO TO TO
ratio
MonPoly TO TO TO
ratio
DejaVu TO TO TO
ratio

Datarace[0,∞]
�

DejaVu 1.24 s 3.14 s 9.59 s
ratio 2.53× 3.05×

Table 4.1. The queries ̂Datarace
[0,∞]
� /Datarace[0,∞]

� and traces from Havelund et al. [42] The
abbreviation TO denotes a timeout of 900 seconds. The ratios are computed between consecutive
trace lengths in the table.

even when using the MFOTL monitors on the manually translated query ̂Datarace
[0,∞]
� . This is

because binary decision diagrams (BDDs) used in DejaVu are able to compress the intermediate
results for the subqueries very well given the particular structure of the original traces by
Havelund et al. [42]. Still, despite the particular trace structure, DejaVu times out on the
manually translated query ̂Datarace

[0,∞]
� .

Table 4.2 contains evaluation times for the query Datarace[0,∞]
� on our pseudorandom traces

with ` = nth = nlock = nvar. This time, CppMon outperforms DejaVu when using CppMon
on the manually translated query ̂Datarace

[0,∞]
� . After reordering the quantifiers in the query

Datarace[0,∞]
� so that the variable x comes first, DejaVu (denoted as DejaVuπ in Table 4.2)

runs faster than DejaVu on the original query Datarace[0,∞]
� . Still, CppMon on the manually

translated query ̂Datarace
[0,∞]
� outperforms DejaVuπ and has better asymptotics.

Table 4.3 contains evaluation times for the query Datarace[0,∞] on our pseudorandom traces
with ` = nth = nlock = nvar. Compared to the query Datarace[0,∞]

� , CppMon and VeriMon
have better asymptotics of their evaluation times on the query MFOTL2RANF(Datarace[0,∞]).
Otherwise, the evaluation results in Table 4.3 are similar to the evaluation results in Table 4.2.

Table 4.4 contains evaluation times for the query Datarace[0,`/10] on our pseudorandom
traces with ` = nth = nlock = nvar. This time, we only use the query produced automatically by
our translation mfotl2ranf because ̂Datarace

[0,∞]
does not generalize to proper metric time

constraints. MFOTL monitors significantly outperform DejaVu (reordering the quantifies in
the query does not help DejaVu in this case).

Table 4.5 contains evaluation times for the query BlindWrite[0,∞] on our pseudorandom
traces with ` = nth = nlock = nvar. DejaVu significantly outperforms MFOTL monitors and
DejaVu’s evaluation times also have better asymptotics than MFOTL monitors’ evaluation
times. On the other hand, DejaVu has a significantly worse performance for a different order
of the quantifiers (DejaVuπ in Table 4.5). We conjecture that a better representation of sets
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` = 250 500 1 000 2 000 4 000 8 000 16 000
̂Datarace

[0,∞]
�

CppMon 0.00 s 0.20 s 0.80 s 3.50 s 13.90 s 64.50 s 276.70 s
ratio 4.00× 4.38× 3.97× 4.64× 4.29×
VeriMon 1.30 s 5.90 s 24.10 s 106.60 s 443.40 s TO TO
ratio 4.54× 4.08× 4.42× 4.16×
MonPoly 0.10 s 0.90 s 6.60 s 55.10 s 436.80 s TO TO
ratio 9.00× 7.33× 8.35× 7.93×
DejaVu TO TO TO TO TO TO TO
ratio

Datarace[0,∞]
�

CppMon 1.00 s 8.30 s 87.00 s 828.70 s TO TO TO
ratio 8.30× 10.48× 9.53×
VeriMon 10.60 s 69.70 s 469.90 s TO TO TO TO
ratio 6.58× 6.74×
MonPoly 4.00 s 34.60 s 365.10 s TO TO TO TO
ratio 8.65× 10.55×
DejaVu 0.39 s 1.84 s 18.18 s 174.13 s TO TO TO
ratio 4.75× 9.89× 9.58×
DejaVuπ 0.23 s 0.40 s 0.65 s 0.99 s 13.47 s 124.38 s 724.60 s
ratio 1.77× 1.62× 1.52× 13.65× 9.23× 5.83×

Table 4.2. The queries ̂Datarace
[0,∞]
� /Datarace[0,∞]

� and our pseudorandom traces. The
abbreviation TO denotes a timeout of 900 seconds. The ratios are computed between consecutive
trace lengths in the table.

in VeriMon would significantly improves its performance: currently a query like acq(t, l) ∧
(�[0,∞] read(t, x)) is evaluated by grouping together tuples with the same value for t and computing
Cartesian products between matching groups of the two subqueries with the same value for t.
Maintaining the groups (also known as database index) throughout monitoring might significantly
improve VeriMon’s performance on this query and also other queries.

Table 4.6 contains evaluation times for the queries BlindWrite[0,`/10]/BlindWrite[`/10,∞]

with proper metric time constraints on our pseudorandom traces with ` = nth = nlock =
nvar. Similarly to the query Datarace[0,`/10] with metric time constraints, MFOTL monitors
significantly outperform DejaVu (reordering the quantifies in the query does not help DejaVu
in this case).

Finally, Table 4.7 contains evaluation times for the query NeedlessRead[0,`/10] with a
bounded future temporal operator on our pseudorandom traces with ` = nth = nlock = nvar. De-
jaVu only supports past temporal operators and thus it cannot be used on NeedlessRead[0,`/10].
Although NeedlessRead[0,`/10] is the only MFOTL query (among those benchmarked in this
section) on which MonPoly-reg can be successfully executed, MFOTL monitors significantly
outperform MonPoly-reg.

Overall, we conclude that using MFOTL monitors on the query MFOTL2RANF(Q) produced
by our translation yields a significantly better performance compared to the state-of-the-art on
MFOTL queries with proper metric time constraints or future temporal operators. For past-
only MFOTL queries with unbounded temporal operators (I = [0,∞]), further optimizations



4.3. MFOTL Query Translation 107

` = 250 500 1 000 2 000 4 000 8 000 16 000
̂Datarace

[0,∞]

CppMon 0.00 s 0.10 s 0.70 s 3.00 s 12.10 s 57.00 s 240.30 s
ratio 7.00× 4.29× 4.03× 4.71× 4.22×
VeriMon 1.00 s 4.10 s 16.40 s 71.60 s 291.60 s TO TO
ratio 4.10× 4.00× 4.37× 4.07×
MonPoly 0.00 s 0.60 s 4.30 s 36.70 s 292.10 s TO TO
ratio 7.17× 8.53× 7.96×
DejaVu TO TO TO TO TO TO TO
ratio

Datarace[0,∞]

CppMon 0.10 s 0.70 s 3.10 s 13.50 s 55.20 s 238.50 s TO
ratio 7.00× 4.43× 4.35× 4.09× 4.32×
VeriMon 2.70 s 9.10 s 38.60 s 158.80 s 693.80 s TO TO
ratio 3.37× 4.24× 4.11× 4.37×
MonPoly 0.10 s 0.80 s 6.40 s 49.00 s 376.20 s TO TO
ratio 8.00× 8.00× 7.66× 7.68×
DejaVu 0.30 s 1.27 s 10.76 s 104.93 s TO TO TO
ratio 4.26× 8.45× 9.75×
DejaVuπ 0.21 s 0.30 s 0.54 s 0.82 s 2.03 s 70.65 s 446.05 s
ratio 1.46× 1.80× 1.52× 2.46× 34.82× 6.31×

Table 4.3. The queries ̂Datarace
[0,∞]

/Datarace[0,∞] and our pseudorandom traces. The
abbreviation TO denotes a timeout of 900 seconds. The ratios are computed between consecutive
trace lengths in the table.

` = 250 500 1 000 2 000 4 000 8 000
CppMon 0.00 s 0.10 s 0.60 s 2.40 s 10.70 s 47.40 s
ratio 6.00× 4.00× 4.46× 4.43×
VeriMon 1.00 s 3.90 s 14.60 s 53.70 s 227.30 s TO
ratio 3.90× 3.74× 3.68× 4.23×
MonPoly 0.00 s 0.20 s 1.20 s 7.30 s 52.40 s 442.00 s
ratio 6.00× 6.08× 7.18× 8.44×
DejaVu 1.11 s 7.28 s 158.33 s TO TO TO
ratio 6.59× 21.75×

Table 4.4. The query Datarace[0,`/10] and our pseudorandom traces. The abbreviation TO
denotes a timeout of 900 seconds. The ratios are computed between consecutive trace lengths in
the table.
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` = 4 000 8 000 16 000 32 000
CppMon 2.50 s 10.40 s 42.70 s 171.30 s
ratio 4.16× 4.11× 4.01×
VeriMon 6.00 s 27.50 s 125.00 s 598.90 s
ratio 4.58× 4.55× 4.79×
MonPoly 0.20 s 1.00 s 4.30 s 20.60 s
ratio 5.00× 4.30× 4.79×
DejaVu 0.76 s 1.12 s 1.85 s 2.84 s
ratio 1.46× 1.66× 1.54×
DejaVuπ 2.07 s 6.29 s 23.14 s 227.32 s
ratio 3.04× 3.68× 9.83×

Table 4.5. The query BlindWrite[0,∞] and our pseudorandom traces. The abbreviation TO
denotes a timeout of 900 seconds. The ratios are computed between consecutive trace lengths in
the table.

` = 250 500 1 000 2 000 4 000 8 000 16 000
BlindWrite[0,`/10]

CppMon 0.00 s 0.00 s 0.00 s 0.10 s 0.60 s 2.70 s 11.10 s
ratio 6.00× 4.50× 4.11×
VeriMon 0.00 s 0.10 s 0.20 s 0.50 s 1.20 s 3.60 s 12.00 s
ratio 2.00× 2.50× 2.40× 3.00× 3.33×
MonPoly 0.00 s 0.00 s 0.00 s 0.00 s 0.10 s 0.60 s 2.70 s
ratio 6.00× 4.50×
DejaVu 0.44 s 1.04 s 24.50 s 324.33 s TO TO TO
ratio 2.39× 23.58× 13.24×

BlindWrite[`/10,∞]

CppMon 0.10 s 0.30 s 1.50 s 6.40 s 26.30 s 120.00 s 771.80 s
ratio 3.00× 5.00× 4.27× 4.11× 4.56× 6.43×
VeriMon 1.70 s 5.90 s 27.40 s 119.20 s 524.10 s TO TO
ratio 3.47× 4.64× 4.35× 4.40×
MonPoly 0.00 s 0.20 s 1.10 s 6.50 s 41.20 s 329.40 s TO
ratio 5.50× 5.91× 6.34× 8.00×
DejaVu 0.47 s 2.08 s 27.96 s 352.46 s TO TO TO
ratio 4.42× 13.42× 12.60×
DejaVuπ 0.71 s 2.81 s 29.90 s TO TO TO TO
ratio 3.96× 10.64×

Table 4.6. The queries BlindWrite[0,`/10]/BlindWrite[`/10,∞] and our pseudorandom traces.
The abbreviation TO denotes a timeout of 900 seconds. The ratios are computed between
consecutive trace lengths in the table.
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` = 4 000 8 000 16 000 32 000
CppMon 1.00 s 4.50 s 20.70 s 101.30 s
ratio 4.50× 4.60× 4.89×
VeriMon 10.50 s 53.20 s 244.80 s TO
ratio 5.07× 4.60×
MonPoly 0.90 s 4.50 s 24.10 s 140.60 s
ratio 5.00× 5.36× 5.83×
MonPoly-reg 716.90 s TO TO TO
ratio

Table 4.7. The query NeedlessRead[0,`/10] and our pseudorandom traces. The abbreviation
TO denotes a timeout of 900 seconds. The ratios are computed between consecutive trace lengths
in the table.

in MFOTL monitors’ representation of sets is needed to improve their performance, but the
asymptotics of VeriMon’s evaluation times for increasing trace length suggest that using
our translation mfotl2ranf and further optimized MFOTL monitors might yield a better
performance compared to the state-of-the-art.

4.4 MFOTL Temporal Operator Evaluation

In this section, we present algorithms for efficiently evaluating the MFOTL temporal operators
Since (SI) and Until (UI). The algorithm for SI consists of the functions initS : A → MS and
advS : MS × T× P(D∗)× P(D∗)→MS × P(D∗) that initialize and update a state m ∈MS for
evaluating SI . The initialization function initS takes fixed arguments args ∈ A of SI (e.g., the
interval I and the free variables of subqueries) as input and yields a state for evaluating SI .
We assume that the free variables of Q1 are a subset of the free variables of Q2 in Q1 SI Q2.
The update function advS takes a state, a time-stamp of a time-point i, and two sets of tuples
satisfying the subqueries Q1 and Q2 of Q1 SI Q2 at the time-point i, and yields an updated state
and a set of tuples satisfying Q1 SI Q2 at the time-point i.

The algorithm for UI consists of the functions initU : A→MU and advU : MU × T×P(D∗)×
P(D∗) → MU × P(D∗)∗ that initialize and update a state m ∈ MU for evaluating UI . The
functions initU and advU for UI are analogous to the corresponding functions for SI , but while
advS always yields a single set of tuples satisfying Q1 SI Q2 at the most recent time-point i, advU
yields a sequence of sets of tuples satisfying Q1 UI Q2 at a sequence of consecutive time-points
for which Q1 UI Q2 could be evaluated. This is because the set of tuples satisfying Q1 UI Q2
at a time-point i might depend on the sets of tuples satisfying the subqueries Q1 and Q2 at
future time-points after i. Hence, the evaluation must be delayed until those sets of tuples are
computed. But once they are received, sets of tuples satisfying Q1 UI Q2 at potentially multiple
consecutive time-points can be computed.

We have implemented the functions initS (initU, respectively) and advS (advU, respectively)
in VeriMon [9] using the Isabelle/HOL proof assistant [24] and thus their correctness is
formally verified. Our implementation of the functions initS (initU, respectively) and advS (advU,
respectively) improves upon the implementation of similar functions in MonPoly [10] and
their formalization in VeriMon− [71] whose worst-case time complexity at a single time-point
i depends on the total number of time-points processed so far. In contrast, the total time
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data_in list of T× P((D)∗)
data_prev list of T× P((D)∗)
tuple_in (D)∗ → T ∪ {⊥}
tuple_since (D)∗ → T ∪ {⊥}
result P((D)∗)

Figure 4.13. The types of selected components in the optimized state for SI .

complexity of advS (advU, respectively) to process i time-points is just linear in the total number
of tuples in the two input sets of tuples at these i time-points. Hence, the amortized time
complexity of advS (advU, respectively) at a single time-point i does not depend on the total
number of time-points processed so far. The space complexity of advS (advU, respectively) is
linear in the total number of tuples in the two input sets of tuples processed so far. The time
and space complexity of initS (initU, respectively) is constant.

4.4.1 Since Operator

We first describe the evaluation of Q1 SI Q2 in VeriMon−. Suppose that the most recent
time-point is i with time-stamp τ . The monitor’s state for Q1 SI Q2 consists of a list of sets
of tuples Tτ ′ along with time-stamps τ ′ such that the tuples satisfy Q2 at a time-point j with
the time-stamp τ ′ and they satisfy Q1 at all time-points k such that j < k ≤ i. Note that
VeriMon−’s state also contains sets Tτ ′ of satisfying tuples for time-stamps τ ′ that are not yet
in the interval, i.e., mem(τ ′, τ, I) does not hold. VeriMon−’s state is updated for every new
time-point with time-stamp τ ′′ for which we already know the two input tables RQ1 and RQ2 for
the subqueries Q1 and Q2. The update consists of the following three steps:

(1) remove tables that fall out of the interval with respect to the new time-stamp τ ′′;

(2) evaluate the conjunction of each remaining table with RQ1 using a relational join; and

(3) add the new tuples from RQ2 , either by inserting them into the most recent table Tτ (if
τ ′′ = τ) or by adding a new table Tτ ′′ (otherwise).

Finally, we take the union of all tables within the interval (i.e., tables Tτ ′ such that mem(τ ′, τ ′′, I)
holds) to obtain the set of tuples satisfying Q1 S[a,b] Q2. As the collections of these tables often
overlap between consecutive evaluation steps (invokations of advS), recomputing the union from
scratch at every time-point is inefficient. Hence, we design an optimized state that represents
the information in VeriMon−’s state such that its update and evaluation can be performed
more efficiently. In our optimized state, we partition the list of tables Tτ ′ into a list data_prev
for time-stamps that are not yet in the interval and a list data_in for time-stamps that are
already in the interval. The optimized state also contains a mapping tuple_in that assigns to
each tuple occurring in some table Tτ ′ in the interval (i.e., in data_in) the latest time-stamp τ↑
in the interval (i.e., such that mem(τ↑, τ, I) holds) for which this tuple occurs in the respective
table Tτ↑ . Finally, the optimized state contains a mapping tuple_since that assigns to each tuple
occurring in some table Tτ ′ in data_in or data_prev the earliest time-stamp τ↓ for which this
tuple occurs in the respective table Tτ↓ . The types of selected components in the optmized state
for SI are summarized in Figure 4.13.

For the sake of performance, we further implement the following adjustments: We split each
table Tτ ′ for a time-stamp τ ′ with multiple time-points into a list of tables, one for each time-point.
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(Overall, data_prev and data_in are still lists of tables and the corresponding time-stamps that
might not be pairwise distinct.) We do not remove any tuples from the lists data_in and
data_prev because their length can be as high as the number of time-points processed so far and
traversing them might be expensive. Instead, we delete tuples from the two mappings tuple_in
and tuple_since. Finally, we update tuples in tuple_since lazily, i.e., only at defined garbage
collection points such that the mapping tuple_since may even contain tuples and time-stamps
τ ′ from some table Tτ ′ that has already fallen out of the interval (i.e., memR(τ ′, τ, I) does not
hold). To determine the garbage collection points, the optimized state stores the time-stamp of
the last time-point at which garbage collection was performed (or 0 if no garbage collection has
been performed so far) and the time-stamp of the most recent time-point. Garbage collection is
performed whenever these two time-points do not satisfy the interval’s upper bound condition.

The function initS initializes the optimized state to consist of empty lists and empty mappings.
The function advS updates the optimized state implementing the steps (1)–(3) outlined above:

(1)* we drop tables from data_in that fall out of the interval based on the newly received
time-stamp τ ′′; we remove these tuples also from tuple_in if their latest occurrence (which
is stored in this mapping) in data_in has fallen out of the interval; we move tables that
newly enter the interval from data_prev to data_in, and update the tuples from these
moved tables in tuple_in to the most recent time-stamp τ↑ for which they now occur in the
interval, but only if tuple_since maps such a tuple to a time-stamp τ↓ such that τ↓ ≤ τ↑
(otherwise the tuple is actually not in the corresponding table Tτ↑);

(2)* we delete the tuples that are not matched by any tuple in the given table RQ1 from the
mappings tuple_since and tuple_in; to efficiently determine the tuples to be deleted, we
additionally store the tuples (over the free variables of Q2) in the domains of the mappings
tuple_since and tuple_in grouped by their projections to the free variables of Q1, where
fv(Q1) ⊆ fv(Q2);

(3)* we append the new table RQ2 to data_prev (or directly data_in if mem(τ ′′, τ ′′, I) holds),
add the tuples from RQ2 that were not in tuple_since to that mapping (with value τ ′′),
and, if mem(τ ′′, τ ′′, I), update the tuples from RQ2 in the mapping tuple_in to the current
time-stamp τ ′′.

This way, advS has computed the updated optimized state and it only remains to compute the set
of tuples satisfying Q1 UI Q2. To this end, VeriMon− would compute the union of tables Tτ ′
with time-stamp τ ′ in the interval. In our optimized state, this union corresponds to the domain
of the mapping tuple_in. We actually store the domain of the mapping tuple_in separately as a
set of tuples result in our optimized state to avoid traversing the mapping tuple_in from scratch
to fetch its domain. Crucially, and unlike in VeriMon−’s state, the join operation does not
change the tables Tτ ′ , i.e., data_in and data_prev, in our optimized state. This functionality is
implemented more efficiently by filtering the two mappings tuple_since and tuple_in.

Example 4.29. Figure 4.14 shows how the optimized state for the query P (x) S[2,4] Q(x) is
updated. In total, four time-points are processed. The first two columns show the time-stamp
and database for each time-point. The last four columns show the optimized state after the step
named in the third column. The satisfactions {}, {}, {b, c}, {a} computed by advS can be read
off directly from the domain of the mapping tuple_in after each time-point’s last step (3)*. We
omit steps that do not change the state.
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time-stamp database step data_prev data_in tuple_in tuple_since
initS [ ] [ ] {} {}

1 {Q(a), Q(b),
Q(c)}

(3)* [(1, {a, b, c})] [ ] {} {a 7→ 1, b 7→ 1,
c 7→ 1}

2 {P (b), P (c)} (2)* [(1, {a, b, c})] [ ] {} {b 7→ 1, c 7→ 1}
(3)* [(1, {a, b, c}),

(2, {})]
[ ] {} {b 7→ 1, c 7→ 1}

3 {P (b), P (c),
Q(a), Q(b)}

(1)* [(2, {})] [(1, {a, b, c})] {b 7→ 1,
c 7→ 1}

{b 7→ 1, c 7→ 1}

(3)* [(2, {}),
(3, {a, b})]

[(1, {a, b, c})] {b 7→ 1,
c 7→ 1}

{a 7→ 3, b 7→ 1,
c 7→ 1}

7 {P (a)} (1)* [ ] [(3, {a, b})] {a 7→ 3,
b 7→ 3}

{a 7→ 3, b 7→ 1,
c 7→ 1}

(2)* [ ] [(3, {a, b})] {a 7→ 3} {a 7→ 3}
(3)* [(7, {})] [(3, {a, b})] {a 7→ 3} {a 7→ 3}

Figure 4.14. An example of updating the optimized state for the query P (x) S[2,4] Q(x).

The first row shows the initial state. For the first time-point, the steps (1)* with time-stamp
1 and (2)* with the empty table {} (as there are no P events) do not change the initial state. In
step (3)*, the table {a, b, c} with the parameters of the Q events is appended to data_prev (as
mem(1, 1, [2, 4]) does not hold) and its elements are added to tuple_since.

For the second time-point, the step (1)* with time-stamp 2 has again no effect: data_prev’s
first entry is not moved to data_in as the initial time-point with time-stamp 1 is not in the
interval yet (mem(1, 2, [2, 4]) does not hold). There is also nothing to drop in data_in which is
empty. In step (2)* with the table {b, c} containing the parameters of the P events, the entry a
is deleted from tuple_since, but not from data_prev. In step (3)*, the empty table {} (as there
are no Q events at the second time-point) is appended to data_prev.

For the third time-point with time-stamp 3, we move data_prev’s first entry to data_in in
step (1)* because the initial time-point with time-stamp 1 is now in the interval (mem(1, 3, [2, 4])
holds). The tuples b, c of that entry are added to tuple_in because tuple_since maps them to a
time-stamp that is at most 1. Note that a is not added because it is not contained in tuple_since.
Because the second time-point with time-stamp 2 is not yet in the interval (mem(2, 3, [2, 4]) does
not hold), the second entry in data_prev is not moved to data_in yet. Step (2)* with the table
{b, c} does not change the state because the domain of the mappings tuple_in and tuple_since
only contains elements from this table {b, c}. In step (3)*, the table {a, b} with the parameters
of the Q events is appended to data_prev. Now, a is added to tuple_since because it was not
contained in the mapping, but b is already contained in tuple_since and thus its value is not
updated.

When the fourth time-point with time-stamp 7 is processed, the first two time-stamps fall out
of the interval and their corresponding entries in data_prev and data_in are discarded in step
(1)*. The tuples from these entries are also discarded from tuple_in because they are mapped to
time-stamps that are not in the interval anymore, but not from tuple_since because tuple_since
is updated lazily. As before, the last table {a, b} in data_prev is moved to data_in and its
elements are added to tuple_in. As the time from the last garbage collection (or the start of
monitoring) has progressed by more than the upper bound of the interval [2, 4], garbage collection



4.4. MFOTL Temporal Operator Evaluation 113

ts N→ T ∪ {⊥}
tables list of P((D)∗)× (T +N)
a1 (D)∗ → N ∪ {⊥}
a2 list of (D)∗ → (T +N) ∪ {⊥}
result P((D)∗)

Figure 4.15. The types of selected components in the optimized state for UI .

is performed in step (2)*, which removes the key c from tuple_since. The join operation in step
(2)* further removes b from tuple_in and tuple_since (as it is not contained in the table {a} of
parameters of the P events). Finally, the empty table {} with the parameters of the Q events is
appended to data_prev in step (3)*. 2

4.4.2 Until Operator

We first describe the evaluation of Q1 UI Q2 in VeriMon−. Suppose that the most recent
time-point is i with time-stamp τ . The monitor’s state for Q1 UI Q2 consists of a list of entries
for every time-point j ≤ i with time-stamp τ ′ such that memR(τ ′, τ, I) holds, i.e., there is an
entry for every time-point j ≤ i at which the satisfaction of Q1 UI Q2 might still be influenced
by time-points strictly beyond i (that we have not received yet). For every such time-point j ≤ i,
VeriMon− stores its time-stamp τ ′, the set of tuples T1 satisfying Q1 at all time-points k such
that j ≤ k ≤ i, and the set of tuples T2 satisfying Q1 UI Q2 at the time-point j given only the
time-points up to i. VeriMon−’s state is evaluated and updated for every new time-point with
time-stamp τ ′′ for which we already know the two input tables RQ1 and RQ2 for the subqueries
Q1 and Q2. The evaluation and update consist of the following four steps:

(1) for every time-point j with time-stamp τ ′ such that memR(τ ′, τ ′′, I) does not hold (i.e.,
neither the new time-point nor any time-point afterwards can potentially influence the
satisfaction of Q1 UI Q2 at the time-point j), we return the set of tuples T2 as the set of
tuples satisfying Q1 UI Q2 at the time-point j and drop the corresponding entry from the
monitor’s state;

(2) for every time-point j with time-stamp τ ′ such that memL(τ ′, τ ′′, I) holds, we use a relational
join to compute the conjunction of RQ2 with the set of tuples T1 satisfying Q1 and add the
resulting tuples to the set of tuples T2 satisfying Q1 UI Q2 at the time-point j;

(3) for every time-point j with a corresponding entry in the monitor’s state, we update the set
of tuples T1 satisfying Q1 by computing its conjunction with RQ1 using a relational join;

(4) we create a new entry for the new time-point with time-stamp τ ′′, with the table RQ1 as
T1 and, if mem(τ ′′, τ ′′, I), with the table RQ2 as T2, and otherwise with the empty table ∅
as T2.

In VeriMon, we use an optimized state that represents the information in VeriMon−’s state
such that its evaluation and update can be performed more efficiently. We represent the tables T1
by a single mapping a1 of tuples satisfying Q1 to the minimum time-point j such that the tuples
satisfy Q1 at all time-points k such that j ≤ k ≤ i. We represent the tables T2 by a list a2 of
mappings a2 of tuples satisfying Q1 UI Q2 to the maximum time-point k ≤ i (or its time-stamp if
memL(0, 0, I) does not hold) at which they still satisfy Q1 UdropL(I) Q2 (note that the interval I’s
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lower bound condition is ignored). The optimized state also contains the time-point tp := i+ 1,
a list tss of time-stamps at time-points for which the set of tuples satisfying Q1 UI Q2 could not
be computed yet, the number len of such time-points, and a mapping ts of time-points for which
the set of tuples satisfying Q1 UI Q2 could not be computed yet to their time-stamps (that also
occur in the list tss). The state contains both tss and ts to account for different access pattern
to the time-stamps.

The function initS initializes the optimized state to consist of empty lists, empty sets, and
empty mappings (initS also sets tp := 0). The function advS evaluates and updates the optimized
state for a new time-point tp = i+ 1 with time-stamp τ ′′ implementing the steps (1)–(4) outlined
above:

(1)* for every time-point j with time-stamp τ ′ such that memR(τ ′, τ ′′, I) does not hold, we
successively return the keys of the mapping a2 for the time-point j as the set of tuples
satisfying Q1 UI Q2 at the time-point j, drop the keys from the mapping a2 that are
assigned the time-point j (if memL(0, 0, I) holds) or that would not satisfy the interval I’s
lower bound condition at the next time-point j + 1 (if memL(0, 0, I) does not hold), and
merge the mapping a2 with the mapping a2 for the next time-point j + 1 (if the list a2
contains such a mapping);

(2)* for every tuple in RQ2 , we use the mapping a1 to determine the earliest time-point j such
that Q1 is satisfied at all time-points k such that j ≤ k ≤ i and, if memL(ts(j), τ ′′, I) holds,
we assign the new time-point tp (or its time-stamp τ ′′ if memL(0, 0, I) does not hold) to
this tuple in the mapping a2 at the time-point j;

(3)* we drop all tuples from the mapping a1 that are not in the set RQ1 and add all tuples in
the set RQ1 that are not in the mapping a1 to the mapping a1 (with values tp);

(4)* we create a new mapping a2 for the new time-point tp and, if mem(τ ′′, τ ′′, I), add all tuples
in RQ2 as its keys (with values tp or τ ′′).

In step (1)*, for every time-point j with time-stamp τ ′ such that memR(τ ′, τ ′′, I) does not
hold, we successively return the keys of the mapping a2 for that time-point j. To efficiently
determine these keys, the optimized state stores them explicitly as a set result. To efficiently
determine the keys from this mapping a2 to be dropped when combining the mapping a2 for the
time-point j with the mapping a2 for the next time-point j+1, the optimized state also maintains
a list tables of input tables RQ2 (with their corresponding time-points, if memL(0, 0, I) holds, or
time-stamps, if memL(0, 0, I) does not hold) because the tuples are dropped from the mappings
a2 in this order. The types of selected components in the optmized state for UI are summarized
in Figure 4.15. Values that are either time-points (if memL(0, 0, I) holds) or time-stamps (if
memL(0, 0, I) does not hold) are represented by the sum type T +N. The lists in Figure 4.15
are actually implemented as queues or mappings (of positions to the values in the list) to be able
to perform lookups efficiently.

Example 4.30. Figure 4.16 shows how the optimized state for the query P (x) U[2,4] Q(x) is
updated. For the sake of simplicity, we do not show all components of the optimized state. In
total, four time-points are processed. The first two columns show the time-stamp and database
for each time-point. The third column contains an evaluation step. The next three columns
show selected components of the optimized state after the step named in the third column. The
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time-stamp database step ts a1 a2 done
initS {} {} [ ]

1 {P (a)} (3)* {} {a 7→ 0} [ ]
(4)* {0 7→ 1} {a 7→ 0} [{}]

2 {P (a), P (b)} (3)* {0 7→ 1} {a 7→ 0, b 7→ 1} [{}]
(4)* {0 7→ 1,

1 7→ 2}
{a 7→ 0, b 7→ 1} [{}, {}]

3 {P (b), Q(a)} (2)* {0 7→ 1,
1 7→ 2}

{a 7→ 0, b 7→ 1} [{a 7→ 3}, {}]

(3)* {0 7→ 1,
1 7→ 2}

{b 7→ 1} [{a 7→ 3}, {}]

(4)* {0 7→ 1,
1 7→ 2,
2 7→ 3}

{b 7→ 1} [{a 7→ 3}, {}, {}]

7 {Q(b)} (1)* {2 7→ 3} {b 7→ 1} [{}] [{a}, {}]
(2)* {2 7→ 3} {b 7→ 1} [{b 7→ 7}]
(4)* {2 7→ 3,

3 7→ 7}
{b 7→ 1} [{b 7→ 7}, {}]

Figure 4.16. An example of updating the optimized state for the query P (x) U[2,4] Q(x).

satisfactions {a}, {} computed by advU are listed in the last column done after each time-point’s
step (1)*. We omit steps that do not change the state.

The first row shows the initial state. For the first time-point, the steps (1)* and (2)* do
not change the initial state. In step (3)*, the table {a} with the parameters of the P events is
added to the mapping a1 with values 0 corresponding to the current time-point 0. In step (4)*,
the time-stamp 1 of the current time-point is added to the mapping ts of time-points to their
time-stamps and a new mapping a2 (without any keys because mem(1, 1, [2, 4]) does not hold) is
added to the list of mappings a2.

For the second time-point, the steps (1)* and (2)* again do not change the state. In step
(3)*, the table {a, b} with the parameters of the P events is added to the mapping a1 with values
1 corresponding to the current time-point 1. The tuple a with value 0 is not updated in the
mapping a1 because it was already contained in it. In step (4)*, the time-stamp 2 of the current
time-point is added to the mapping ts of time-points to their time-stamps and a new empty
mapping a2 is added to the list of mappings a2.

For the third time-point, in step (2)*, we use the mapping a1 to determine that the tuple a
with a corresponding Q event in the database satisfies the left-hand side of the Until operator
since the time-point 0. Because memL(ts(0), 3, [2, 4]) holds, we add a with value 3 corresponding
to the time-stamp (because memL(0, 0, [2, 4]) does not hold) of the current time-point to the
mapping a2 for the time-point 0 (the first entry in the list of mappings a2). In step (3)*, the
tuple a is dropped from the mapping a1 because it has no corresponding P event in the current
database. In step (4)*, the time-stamp 3 of the current time-point is added to the mapping ts of
time-points to their time-stamps and a new empty mapping a2 is added to the list of mappings
a2.

For the fourth time-point, in step (1)*, evaluation results for the query P (x) U[2,4] Q(x) at
the first two time-points are produced (because memR(1, 7, [2, 4]) and memR(2, 7, [2, 4]) do not
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Name Query
Once q(x, y) ∧ (�I r(x, y))
Since q(x, y) ∧ (s(x) SI r(x, y))
NotSince q(x, y) ∧ (¬s(x) SI r(x, y))
Eventually q(x, y) ∧ (♦I r(x, y))
Until q(x, y) ∧ (s(x) UI r(x, y))
NotUntil q(x, y) ∧ (¬s(x) UI r(x, y))

Figure 4.17. MFOTL queries for benchmarking MFOTL temporal operator evaluation.

hold). The set {a} of satisfactions at the first time-point is obtained directly from the keys of
the mapping a2 for the first time-point. Then this mapping {a 7→ 3} is combined with the empty
mapping a2 for the second time-point. Because the lower bound condition memL(2, 3, [2, 4]) does
not hold for the second time-point with time-stamp ts(1) = 2 and the third time-point with
time-stamp 3 from the mapping {a 7→ 3}, we get an empty mapping a2 for the second time-point.
Consequently, the set of satisfactions at the second time-point is empty and combining the
empty mapping a2 for the second and third time-point yields an empty mapping a2 for the
third time-point. In step (2)*, we use the mapping a1 to determine that the tuple b with a
corresponding Q event in the database satisfies the left-hand side of the Until operator since the
time-point 1. Because the list a2 contains no a2 for the time-point 1 and memL(ts(2), 7, [2, 4])
holds for the first time-point 2 with time-stamp 3 in the mapping ts and the current time-point
with time-stamp 7, we add b with value 7 corresponding to the time-stamp of the current
time-point to the mapping a2 for the time-point 2 (the first entry in the list a2). In step (4)*,
the time-stamp 7 of the current time-point is added to the mapping ts of time-points to their
time-stamps and a new empty mapping a2 is added to the list of mappings a2. 2

4.4.3 Implementation and Evaluation

We have integrated our optimized state and update and evaluation functions for the Since and
Until temporal operators into VeriMon and exported verified OCaml code from VeriMon’s
formalization using Isabelle/HOL. VeriMon reuses MonPoly’s unverified OCaml code for
parsing the query and trace file and outputting verdicts. Several optimizations of VeriMon’s
algorithm for evaluating the Since and Until temporal operators have been implemented and
formally verified in Isabelle/HOL by Emanuele Marsicano [51].

We empirically evaluate the time and space complexity of VeriMon’s Since and Until
temporal operators by answering the following two research questions:

RQ1: How does VeriMon scale with respect to the event rate?

RQ2: How does VeriMon scale with respect to the magnitude of time constaints?

To answer these research questions, we conduct a series of experiments measuring the time
and space usage of VeriMon and the state-of-the-art tool MonPoly [10]. We also include
CppMon [39] in our empirical evaluation because it is supposed to implement VeriMon’s
algorithm in C++. Our empirical evaluation can be reproduced using a publicly available
artifact [62]. The experimental setup is as described in Section 3.3.
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Queries Our implementation of the algorithms for efficiently evaluating SI and UI also supports
queries of the form (¬Q1) SI Q2 and (¬Q1) UI Q2, where Q1 and Q2 are MFOTL queries in
RANF with finite sets of tuples satisfying Q1 and Q2 at every time-point. Figure 4.17 lists the
MFOTL queries used in our experiments. We use the interval I = [10, 20] to answer RQ1 and
I = [n, 2 · n], where n is a parameter, to answer RQ2.

The subquery q(x, y) is used to check if the temporal operator is satisfied by a fixed tuple
(x, y). The traces in our experiments contain exactly one tuple at every time-point that satisfies
q(x, y). This way, the overall query’s output at a time-point is limited to at most a single tuple.
If the subquery q(x, y) was omitted, the monitor would have to output all tuples satisfying the
temporal operator. In that case, the time complexity of evaluating VeriMon’s Since and Until
temporal operators would be dominated by the time complexity of outputting all their satisfying
tuples.

Traces Given a fixed trace length ` and a query Q, we generate a trace with O(`) events in
total such that the temporal operator is satisfied by as many tuples as there are time-points
within its interval (up to a constant factor) and the overall query is satisfied at a constant
fraction of all time-points. To this end, we generate the following events at every time-point
i ∈ {0, . . . , `− 1}:

• one event r(x, y), where

x ∈
{
{0, . . . , 9} if Q ∈ {Since,Until},
{0, . . . , `− 1} otherwise,

and y ∈ {0, . . . , `− 1} are chosen uniformly at random;

• if Q ∈ {Since,Until}, events s(x), for all x satisfying r(x, y) at some past (future, respec-
tively) time-point, independently with probability 1− 1

` ;

• if Q ∈ {NotSince,NotUntil}, one event s(x), where we randomly choose between (i) x
satisfying r(x, y) at some past (future, respectively) time-point chosen uniformly at random,
(ii) x ∈ {0, . . . , `− 1} chosen uniformly at random;

• one event q(x, y), where we randomly choose between (i) x, y satisfying r(x, y) at some
past (future, respectively) time-point within the interval I chosen uniformly at random (if
at least one such time-point exists), (ii) x, y ∈ {0, . . . , `− 1} chosen uniformly at random.

We use consecutive time-stamps 0, 1, . . . with the same time-stamp for every block of er
consecutive time-points with the same time-stamp.

Increasing Event Rate We now answer RQ1 by validating that the time complexity of
evaluating VeriMon’s Since and Until temporal operators is event-rate independent. To this
end, we increase the event rate er ∈ {20, . . . , 200}. We use a fixed trace length ` = 20 000.

Figure 4.18 contains the evaluation results for the six queries Once, Since, NotSince, Eventually,
Until, and NotUntil when increasing the event rate. We omit the space usage because we expect
the space usage of all tools to depend on the event rate. The evaluation results confirm that
the time complexity of evaluating VeriMon’s Since and Until temporal operators is event-
rate independent. In contrast, the time complexity of evaluating MonPoly’s Since and Until
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temporal operators depends on the event-rate except for the two queries Once and Eventually
whose evaluation is optimized in MonPoly and MonPoly also performs significantly better
in those cases. CppMon’s time complexity of evaluating Since and Until temporal operators
depends on the event rate for all the six queries. This shows that CppMon does not faithfully
implement all VeriMon’s optimizations.

Increasing Interval Bounds We now answer RQ2 by validating that the time complexity of
evaluating VeriMon’s Since and Until temporal operators does not depend on the magnitude of
time constraints, i.e., that its time complexity is interval-oblivious. To this end, we increase the
parameter n ∈ {200, . . . , 2 000} inducing the interval bounds I = [n, 2 · n]. We use a fixed trace
length ` = 20 000 and event rate er = 1.

Figure 4.19 contains the evaluation results for the six queries Once, Since, NotSince, Eventually,
Until, and NotUntil when increasing the parameter n and thus the interval bounds. We omit the
space usage because we expect the space usage of all tools to depend on the interval bounds.
The evaluation results confirm that the time complexity of evaluating VeriMon’s Since and
Until temporal operators is interval-oblivious. In contrast, the time complexity of evaluating
MonPoly’s (and CppMon’s) Since and Until temporal operators depends on the interval bounds
for all the six queries.
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Figure 4.18. Evaluation results for increasing event rate.
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Figure 4.19. Evaluation results for increasing interval bounds.



Chapter 5

Conclusion

We conclude this thesis with a summary of our main results and outline possible directions for
future work.

5.1 Summary

We proposed multi-head monitoring as a novel approach to analyzing traces. A multi-head
monitor reads an input trace simultaneously at multiple positions and its reading heads move
asynchronously. Hence, multi-head monitoring fills a middle-ground between online and offline
monitoring. We developed, implemented, and formally verified the correctness of multi-head
monitors for metric temporal logic (MTL) and metric dynamic logic (MDL). Our multi-head
monitors for MTL and MDL support time-stamps from an abstract time domain satisfying certain
algebraic properties. Instances of the abstract time domain include natural and real numbers
as well as products of them ordered either by the direct product order or lexicographically.
Our monitors are the first event-rate independent monitors for MTL and MDL that produce a
stream of Boolean verdicts. This is a significant improvement over the event-rate independent
monitor Aerial in terms of the monitor’s interface: Boolean verdicts are much easier for humans
to understand than Aerial’s non-standard equivalence verdicts. Additionally, our monitor is
interval-oblivious: The constants occurring in the formula’s metric constraints have no impact on
the monitor’s time- and memory consumption. To our knowledge, this property is unprecedented
for monitors for metric specification languages in the point-based setting.

Metric first-order temporal logic (MFOTL) generalizes MTL with parametric events and
first-order variables ranging over an arbitrary domain. This makes MFOTL queries substantially
more expressive than MTL queries. VeriMon is an online monitor for MFOTL developed by
formally verifying a monitoring algorithm for MFOTL from previous work. We optimized the
time complexity of evaluating VeriMon’s Since and Until MFOTL temporal operators so that
the amortized time complexity to process a new time-point is linear in the size of the input
relations for the subqueries, but event-rate independent and interval-oblivous.

We bridge the gap between declarative first-order logic queries and procedural (and efficient)
relational algebra normal form (RANF) query evaluation by developing and implementing a novel
approach to relational calculus (RC) and MFOTL query evaluation over an infinite domain via
translation to RANF queries that can be evaluated using relational algebra operations on finite
tables. We translate an arbitrary RC query into a pair of RANF queries: one characterizes the
original query’s relative safety (i.e., whether it evaluates to a finite relation) and the other one is
equivalent to the original query if the original query is relatively safe. We translate an arbitrary
MFOTL query into a single RANF query that can be evaluated at a sequence of time-points by a
single instance of a monitoring algorithm (e.g., VeriMon) using relational algebra operations on
finite tables. This way, the monitor decides for an arbitrary MFOTL query and every time-point
if the query evaluates to a finite relation at that time-point and computes the relation if it is finite.
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5.2 Future Work
In the following, we identify and outline possible directions for follow-up projects.

Multi-Head Monitoring for First-Order Logics We developed multi-head monitors for
propositional temporal logics, namely MTL and MDL. Generalizing these multi-head monitors
to first-order temporal logics, i.e., MFOTL and MFODL [8] (combining MFOTL and MDL),
is an interesting direction for future work. We conjecture that a generalization is feasible for
past-only MFOTL (i.e., MFOTL without future temporal operators) queries in RANF because
the movement pattern of the multi-head monitor’s reading heads for past-only MTL does not
depend on the content of the databases in the trace. Instead of a Boolean value, the generalized
multi-head monitor would return a finite set of tuples satisfying the first-order temporal query.
The resulting multi-head monitor for past-only MFOTL queries in RANF could have both time
and space complexity depending linearly on the amount of data in the trace, but event-rate
independent and interval-oblivious. Currently, the MFOTL monitor described in Section 4.4 only
achieves this objective for the time complexity, but not the space complexity. For MFOTL and
MFODL with future temporal operators, the number of reading heads used by a generalization of
our multi-head monitors for MTL and MDL would likely depend on the content of the databases
in the trace. This would defeat the core idea of a multi-head finite transducer using only a
bounded number of reading heads that does not depend on the input word (the input trace in
the case of monitoring). Still, it might be feasible to generalize our multi-head monitor to a
monitor for MFOTL and MFODL queries in RANF with future temporal operators whose space
complexity depends linearly on the amount of data in the trace, but is event-rate independent
and interval-oblivious.

Extending RC Query Translation We defined RC as a first-order query language with
equality. Integrating additional features into our base language could be an interesting direction
for future work. Such features include order relations (inequalities), bag semantics, or aggregations
(count, sum, minimum, etc.). We conjecture that it is impossible to derive a computable query
translation deciding relative safety for a query language with a total order relation and count
aggregation simultaneously. Our conjecture is based on a reduction from the undecidable Hilbert’s
tenth problem of Diophantine equations’ solvability (i.e., whether a multivariate polynomial
with integer coefficients has integer solutions) to the relative safety of RC queries with integer
inequalities and count aggregations. The reduction proceeds as follows:

• for every variable x, perform a case distinction whether its value is negative (x = −x′, for
some positive integer x′), zero (x = 0), or positive (x = x′, for some positive integer x′),
and substitute x by −x′, 0, or x′, respectively;

• write the equation (with positive integer variables) so that all coefficients of its left-hand
side and right-hand side are positive, e.g., write 3x− 2y + xy = 0 as 3x+ xy = 2y;

• express every term of the form c · z1 · · · zk, where c is a positive integer coefficient and
z1, . . . , zk are positive integer variables, as

[CNT z′0, z′1, . . . , z′k. 0 ≤ z′0 < c ∧ 0 ≤ z′1 < z1 ∧ · · · ∧ 0 ≤ z′k < zk](t),

where t is a fresh variable introduced for the term c · z1 · · · zk;
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• express every sum t1 + t2, where t1 and t2 are positive integer variables, as

[CNT t′1, t′2. (0 ≤ t′1 < t1 ∧ t′2 = t2) ∨ (t′1 = t1 ∧ 0 ≤ t′2 < t2)](t),

where t is a fresh variable introduced for the sum t1 + t2;

• define the RC query Q∧ as the conjunction of the above count aggregations, an equality
tl = tr between the variables tl and tr representing the sum of the equation’s left-hand side
and right-hand side;

• define the resulting RC query of the reduction as (∃~fv(Q∧). Q∧)∧w ≥ 0, where w is a fresh
variable; this RC query is relatively safe if and only if the equation has no solution.

Still, the relative safery of RC queries with a total order relation over integers or real numbers is
decidable by using difference decision diagrams (DDD) [53] or linear decision diagrams (LDD) [17].
We also conjecture that our query translation for RC queries can be extended to RC with count
aggregation (without any order relation).

Efficient Table Representations in Monitoring Algorithms MFOTL monitors Mon-
Poly and VeriMon, which use relational algebra operations on finite tables, use balanced
binary search trees to represent the tables (sets of satisfying tuples) during query evaluation.
The tuples in the search trees are ordered lexicographically for a fixed variable order derived
from the syntactic structure of the query. DejaVu also uses a fixed variable order in the binary
decision diagrams representing sets of satisfying tuples. However, for a query like

(q1(x, y) ∧ � r1(x, z)) ∨ (q2(y, z) ∧ � r2(y, x)) ∨ (q3(z, x) ∧ � r3(z, y)),

no fixed variable order for the entire query yields optimal performance. Indeed, the first variable
in the fixed variable order to efficiently evaluate each of the three disjuncts should be x, y,
and z, respectively. To control the variable order in the tables for the individual parts of a
query without changing the built-in set representations (in OCaml or Isabelle/HOL), we propose
to group the sets of tuples according to their projections to a subset of variables. In other
words, we replace simple tables by database indices. Formally, a database index has the type
(D)∗ → P((D)∗) ∪ {⊥}, i.e., it is a mapping of tuples (the projections of the actual tuples to a
subset of variables) to subsets of the actual set of tuples. We have already used such mappings
in VeriMon’s optimized state for the Since operator (step (2)* in Section 4.4.1). Hence, the
next step is to use the mappings for all sets of satisfying tuples during query evaluation and
also determine the actual subsets of variables to which the tuples are projected. For the Since
operator Q1 SI Q2, which must satisfy fv(Q1) ⊆ fv(Q2), the evaluation benefits from projecting
on fv(Q1). It seems challenging to generalize this (local) decision for the Since operator to all
operators so that the overall query evaluation (globally) benefits from the choices of variable
subsets for the database indices.

Verifying RC and MFOTL Query Translation We have formally verified the correctness
of the multi-head monitors for MTL and MDL (Section 3.2) as well as the correctness of VeriMon
(Section 4.4)—the monitor for MFOTL—using the Isabelle/HOL proof assistant. The query
translation for arbitrary RC and MFOTL queries has been implemented in the tools rc2sql and
mfotl2ranf using the functional programming language OCaml without a formal verification
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of their correctness. The correctness of rc2sql has been extensively tested against the formally
verified approach to query evaluation by Ailamazyan et al. [61] using small Data Golf structures
(Section 4.2.5). The correctness of mfotl2ranf has only been tested on the examples from
Section 4.3.2. Hence, formalizing the correctness proofs for our query traslation in a proof
assistant would significantly increase the translation’s trustworthiness.

Query Progress of MFOTL Query Translation The progress (Section 2.3.2) of the query
MFOTL2RANF(Q) produced by our translation can be lower (i.e., worse) than the progress of
the original MFOTL query Q. This means that an MFOTL monitor might not be able to
evaluate the query MFOTL2RANF(Q) at all time-points at which the original query Q could be
potentially evaluated using a more optimized translation. As an example, we can consider the
query Q := q(x, y) ∧ ¬�[0,100] ¬r(x, y) that is translated to the query

Q′ := MFOTL2RANF(Q) = (q(x, y) ∧ ¬(�[0,100] ((♦[0,100] q(x, y)) ∧ ¬r(x, y))) ∧__inf = 0)

by our translation, where __inf is a special variable indicating if the set of satisfying tuples is
infinite at a time-point (which cannot be the case for the query Q and thus we have the conjunct
__inf = 0 in Q′). For example, given the sequence of time-stamps τ := [0, 10, 20, 101], the
original query Q could be evaluated (e.g., using DejaVu) at all four time-points over a trace
with four time-points and the time-stamps τ . Formally, we have prog(Q, τ) = 4. However, the
translated RANF query Q′ can only be evaluated at the first time-point by MFOTL monitors,
e.g., VeriMon, that only evaluate prog(Q′, τ) = 1 time-point of a trace with the time-stamps τ .

We leave it as an open question if an arbitrary MFOTL query Q can be translated to
a single RANF query Q′ that is equivalent to MFOTL2RANF(Q) and additionally satisfies
prog(Q′, τ) ≥ prog(Q, τ) for every sequence τ of time-stamps, i.e., the progress for Q′ can only
improve.
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