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ABSTRACT

Machine learning algorithms - in particular, those based on convolutional neural net-
works (CNNs) - have demonstrated remarkable promise in a number of medical image
analysis tasks, even rivalling accuracies of human experts in some cases. A key re-
quirement for good performance of these data-driven methods, however, is that their
training and test samples must belong to the same probability distribution. This premise
is often violated in medical imaging.

Training datasets often insufficiently represent image variations that may potentially
occur at test time. For instance, if the training dataset is collected from a small num-
ber of clinics, it may overly emphasize the acquisition protocols of those clinics. If
the trained algorithm is now used in a different hospital, the test images may be ac-
quired with a scanner from a different vendor, and with a different acquisition protocol.
Such test images, although potentially consisting of similar anatomical structures or
lesions as in the training images, often differ from training images in terms of contrast
and signal-to-noise ratio. This scenario, where the distribution of test samples differs
from that of the training samples, is referred to as a distribution shift (DS). (We use the
acronym DS to refer to both, the singular ’distribution shift’ and the plural ’distribution
shifts’, and call on the reader to infer the form based on the context.) The aforemen-
tioned example is one of acquisition-related DS. Other DS such as those stemming from
population differences (e.g. young v/s old) or disease effects (e.g. healthy v/s diseased)
are also equally pertinent in medical imaging. CNN-based methods, that work very well
on test samples from the training distribution, often exhibit remarkable performance
degradation when faced with DS.

In this thesis, we develop three approaches with increasing generality to improve ro-
bustness of CNN-based medical image analysis methods in the presence of acquisition-
related DS.

First, we develop a transfer learning approach for brain MRI segmentation across scan-
ners and imaging protocols. A segmentation CNN’s batch normalization parameters are
treated as distribution-specific, and tuned for each new test distribution using a small
number of labelled images. The rest of the parameters are considered as distribution-
agnostic; these are trained using the training dataset, and kept unchanged for test im-
ages.

Second, we consider a setting where (a) no labelled test images are available for transfer
learning, (b) even unlabelled images from the test distribution are unavailable at train-
ing time, and (c) the training dataset cannot be transported to the test site. In this set-
ting, we develop a test-time adaptation (TTA) method for medical image segmentation.
A shallow normalization module of the segmentation CNN is adapted specifically for
each test image. The adaptation relies on an implicit prior in the output space, which
is modeled using a denoising autoencoder. Such a prior model can be considered as
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a helper module, which encourages predicted segmentations that are similar to those
seen during training.

Third, we note that if the helper module for TTA is itself modeled using a CNN, it is also
likely to suffer from the DS problem. That is, the outputs of the helper module may be
unreliable when the distribution of its test inputs differs from that of its training inputs.
To this end, we employ field-of-experts (FoEs) to model the distribution in the output
space of the adaptable normalization module. FoEs model high-dimensional probabil-
ity distributions as a product of multiple low-dimensional distributions, and have im-
proved robustness to DS. We use the task CNN’s convolutional filters as the experts in
the FoE model, and extend the model with additional experts as projections onto prin-
cipal components of the task CNN’s last layer features. This method is task-agnostic as
the helper model is generically defined in the space of normalized images, rather than
in a task-specific output space.
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ZUSSAMMENFASSUNG

Algorithmen des maschinellen Lernens - insbesondere solche, die auf Faltungsneu-
ronalen Netzen (CNN) basieren - haben sich bei einer Reihe von Aufgaben der medi-
zinischen Bildanalyse als bemerkenswert vielversprechend erwiesen und können es
in einigen Fällen sogar mit der Genauigkeit menschlicher Experten aufnehmen. Ei-
ne wichtige Voraussetzung für eine gute Leistung dieser datengesteuerten Methoden
ist jedoch, dass ihre Trainings- und Teststichproben der gleichen Wahrscheinlichkeits-
verteilung angehören müssen. Diese Voraussetzung wird in der medizinischen Bildge-
bung häufig verletzt.

Trainingsdatensätze repräsentieren oft nur unzureichend Bildvariationen, die zum Zeit-
punkt der Prüfung auftreten können. Wenn der Trainingsdatensatz beispielsweise in
einer kleinen Anzahl von Kliniken gesammelt wurde, kann er die Aufnahmeprotokol-
le dieser Kliniken übermäßig betonen. Wenn der trainierte Algorithmus nun in einem
anderen Krankenhaus verwendet wird, werden die Testbilder möglicherweise mit ei-
nem Scanner eines anderen Herstellers und mit einem anderen Aufnahmeprotokoll
aufgenommen. Solche Testbilder enthalten zwar möglicherweise ähnliche anatomi-
sche Strukturen oder Läsionen wie die Trainingsbilder, unterscheiden sich aber häufig
in Bezug auf Kontrast und Signal-Rausch-Verhältnis von den Trainingsbildern. Dieses
Szenario, bei dem sich die Verteilung der Testproben von derjenigen der Trainingspro-
ben unterscheidet, wird als distribution shift (DS). (Wir verwenden das Akronym DS
sowohl für den Singular "Verteilungsverschiebungäls auch für den Plural "Verteilungs-
verschiebungenünd fordern den Leser auf, die Form aus dem Kontext abzuleiten.) Das
oben genannte Beispiel ist eines der akquisitationbezogenen DS. Andere DS, wie z. B.
solche, die sich aus Bevölkerungsunterschieden (z. B. jung vs. alt) oder Krankheitsaus-
wirkungen (z. B. gesund vs. krank) ergeben, sind in der medizinischen Bildgebung eben-
falls von Bedeutung. CNN-basierte Methoden, die bei Testproben aus der Trainingsver-
teilung sehr gut funktionieren, zeigen oft eine bemerkenswerte Leistungsverschlech-
terung, wenn sie mit DS konfrontiert werden.

In dieser Arbeit entwickeln wir drei Ansätze mit zunehmender Allgemeingültigkeit, zur
Verbesserung der Robustheit von CNN-basierten medizinischen Bildanalysemethoden
in Anwesenheit von akquisitationbezogenen DS.

Zunächst entwickeln wir einen Transfer-Learning-Ansatz für die MRT-Segmentierung
des Gehirns über verschiedene Scanner und Bildgebungsprotokolle hinweg. Die Pa-
rameter für die Stapelnormalisierung eines Segmentierungs-CNN werden als vertei-
lungsspezifisch behandelt und für jede neue Testverteilung anhand einer kleinen An-
zahl von markierten Bildern abgestimmt. Die übrigen Parameter werden als vertei-
lungsunabhängig betrachtet. Sie werden anhand des Trainingsdatensatzes trainiert und
für Testbilder unverändert beibehalten.
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Zweitens betrachten wir eine Situation, in der (a) keine beschrifteten Testbilder für das
Transferlernen zur Verfügung stehen, (b) selbst unbeschriftete Bilder aus der Testver-
teilung zum Trainingszeitpunkt nicht verfügbar sind und (c) der Trainingsdatensatz
nicht zum Testort transportiert werden kann. Vor diesem Hintergrund entwickeln wir
ein Test-Zeit-Anpassungsverfahren (TTA) für die Segmentierung medizinischer Bilder.
Ein flaches Normalisierungsmodul des Segmentierungs-CNN wird speziell für jedes
Testbild angepasst. Die Anpassung stützt sich auf einen impliziten Prior im Ausgabe-
raum, der mit einem Denoising-Autoencoder modelliert wird. Ein solches Prior-Modell
kann als Hilfsmodul betrachtet werden, das vorausgesagte Segmentierungen fördert,
die den beim Training gesehenen ähnlich sind.

Drittens ist anzumerken, dass das Hilfsmodul für TTA, wenn es selbst mit einem CNN
modelliert wird, wahrscheinlich auch unter dem DS-Problem leiden wird. Das heißt,
die Ausgaben des Hilfsmoduls können unzuverlässig sein, wenn die Verteilung der
Testeingaben von der Verteilung der Trainingseingaben abweicht. Zu diesem Zweck
verwenden wir Field-of-Experts (FoEs), um die Verteilung im Ausgaberaum des anpas-
sungsfähigen Normalisierungsmoduls zu modellieren. FoEs modellieren hochdimen-
sionale Wahrscheinlichkeitsverteilungen als ein Produkt mehrerer niedrigdimensio-
naler Verteilungen und haben eine verbesserte Robustheit gegenüber DS. Wir verwen-
den die Faltungsfilter des Aufgaben-CNN als Experten im FoE-Modell und erweitern
das Modell mit zusätzlichen Experten als Projektionen auf die Hauptkomponenten der
Merkmale der letzten Schicht des Aufgaben-CNN. Diese Methode ist aufgabenunabhän-
gig, da das Hilfsmodell generisch im Raum der normalisierten Bilder und nicht in einem
aufgabenspezifischen Ausgaberaum definiert ist.

iv



ACKNOWLEDGEMENTS

I thank Ender for giving me the opportunity to be a part of his outstanding group. I could
not have asked for a better PhD advisor. The things that he has taught me in the last five
years are too many to list. Most of all, he has shown by example, the importance of doing
theoretically sound as well as impactful research, of upholding scientific integrity, and
of keeping a fine balance of zooming in to the details and zooming out to the big picture.

I thank Christine, Christian, Krishna, Kerem, Xiaoran, Gustav, Anna, Ertunc, Kyriakos,
Georg, Jonatan, Meva, Sara and Alex for creating a friendly and supportive work envi-
ronment. Each of them brought a peculiar flair to the group, and my research journey
has been heavily enriched by intriguing discussions with each of them on many occa-
sions. I will fondly recall lunch conversations with Kerem and Anna. I apologize to all
my table-football partners, for they were invariably on the losing side.

In the larger CVL family, I had the pleasure of many a good conversation with Christos,
Danda, Samarth, Vaishakh, Bhaskar, Firat and Arun. I had the opportunity to interact
with and to supervise several brilliant master’s students for their semester or master
theses. From Lin, Silvan, Yigit, Nicolas, Pol, Carina, Simin, Hande, Max, Zhexin, Aris and
Dinos, I have learned as much, if not more than what I could teach them.

I thank Harry for resolving my IT issues, and Andreas and Krishna for helping me out
with my numerous GPU-related questions. It is safe to say that their contributions has-
tened my research by several weeks, if not months. I am also deeply in awe with the
efficiency of the CVL secretaries - Christina, Christine, Christina and Kristine. Their im-
mense work often occurs in the background but was surely responsible for concealing
my inabilities in handling administrative things.

Without Kruti, none of this would have been possible. She kept me grounded in my
highs and lifted me from numerous setbacks. I thank her for always being there for
me, for showing me that a world exists outside ETF E112 and for bearing with my mood
swings. Last, but foremost, I thank my parents for their unwavering support and for
teaching me to be content without being complacent.

v



vi



Contents

1 Introduction 1
1.1 Motivation for Algorithmic Analysis of Medical Images . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Common Tasks in Medical Image Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Methods for Medical Image Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Hand-crafted Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Data-Driven Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Robustness to Distribution Shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.1 The Distribution Shift Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.2 Distribution Shifts in Medical Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Layout of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Literature review 14
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Machine Learning Settings to Tackle Distribution Shifts . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Unsupervised Domain Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.4 Domain Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.5 Test-Time Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.6 Source-Free Domain Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.7 Post-Processing Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.8 Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Problems Related to Distribution Shift Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.1 Out-of-distribution Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.2 Model Performance Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.3 Adversarial Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Datasets 29
3.1 Datasets for Image segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Reasons for DS in the used Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.2 Prostate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.3 Heart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.4 Spine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1.5 Brain (Healthy structure segmentation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1.6 Brain (Cerebral White Matter Hyper-intensities) . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Datasets for Image registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

vii



4 A Transfer Learning Approach for Robust Medical Image Segmentation 39
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.1 Batch Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.2 Common CNN Architectures for Image Segmentation . . . . . . . . . . . . . . . . . . . . 41

4.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.1 Splitting Parameters into Distribution-Agnostic and Distribution-Specific . . . . . . . 42
4.3.2 Supervised Learning on Training Distributions . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.3 Estimating the Closest Training Distribution to the Given Test Distribution . . . . . . 42
4.3.4 Transfer Learning on the Given Test Distribution . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.5 Favourable Properties for Lifelong Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4.2 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4.3 Common Implementation Details for all Experiments . . . . . . . . . . . . . . . . . . . . 44
4.4.4 List of Experiments and Specific Implementation Details . . . . . . . . . . . . . . . . . 45
4.4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 A Test-Time Adaptation Approach for Robust Medical Image Segmentation 50
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2.1 Denoising Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3.1 Splitting Parameters into Image-Agnostic and Image-Specific . . . . . . . . . . . . . . 53
5.3.2 Supervised Learning on Training Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3.3 How to Drive Adaptation at Test-Time? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3.4 DAE Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3.5 Atlas initialization for TTA for large DS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3.6 Integrating 2D Segmentation CNN with 3D DAE . . . . . . . . . . . . . . . . . . . . . . . . 60

5.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.4.2 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.4.3 Common Implementation Details for all Experiments . . . . . . . . . . . . . . . . . . . . 63
5.4.4 List of Experiments and Specific Implementation Details . . . . . . . . . . . . . . . . . 64
5.4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 A Task-Agnostic Test-Time Adaptation Approach for Robust Medical Image Analysis 80
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2.1 Markov Random Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2.2 Field of Experts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3.1 Splitting Parameters into Image-Agnostic and Image-Specific . . . . . . . . . . . . . . 84
6.3.2 Supervised Learning on Training Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.3.3 FoE-CNN: A New Helper Model for TTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3.4 How to Drive TTA using the FoE-CNN Model? . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3.5 FoE-CNN-PCA: An Extended Helper Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

viii



6.3.6 How to Drive TTA using the FoE-CNN-PCA Model? . . . . . . . . . . . . . . . . . . . . . . 90
6.4 Image Segmentation Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.4.2 Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.4.3 Common Implementation Details for all Experiments . . . . . . . . . . . . . . . . . . . . 92
6.4.4 List of Experiments and Specific Implementation Details . . . . . . . . . . . . . . . . . 93
6.4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.5 Image Registration Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.5.2 Common Implementation Details for all Experiments . . . . . . . . . . . . . . . . . . . . 102
6.5.3 List of Experiments and Specific Implementation Details . . . . . . . . . . . . . . . . . 102
6.5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.6.1 Strengths of TTA-FoE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.6.2 Limitations of TTA-FoE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.6.3 Avenues for further exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.7.1 Matching Full FoE Distribution v/s Matching Individual Expert Distributions . . . . . 108
6.7.2 Incorporating Information from Different Training Images . . . . . . . . . . . . . . . . . 109
6.7.3 TTA-AE variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7 Discussion 111
7.0.1 Which parameter subset to adapt for the test distribution? . . . . . . . . . . . . . . . . . 111
7.0.2 DS due to population-based selection bias . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.0.3 DS due to task-specific selection biases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.0.4 Acquisition-related DS in image enhancement problems . . . . . . . . . . . . . . . . . . 116
7.0.5 DS due to imaging artifacts or presence of disease . . . . . . . . . . . . . . . . . . . . . . 117
7.0.6 DS robustness of density estimation models . . . . . . . . . . . . . . . . . . . . . . . . . . 117

ix



List of Figures

1.1 Examples of DS in the input space due to acquisition differences . . . . . . . . . . . . . . . . . 9
1.2 Example performance degradation due to acquisition-related DS . . . . . . . . . . . . . . . . . 10
1.3 Examples of DS in the input space due to bias with respect to anatomical variations . . . . . 11
1.4 Examples of DS in the input space due to bias with respect to corruption patterns . . . . . . 11

3.1 Image segmentation datasets - prostate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Image segmentation datasets - heart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Image segmentation datasets - spine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 Image segmentation datasets - brain (healthy anatomy) . . . . . . . . . . . . . . . . . . . . . . 37
3.5 Image segmentation datasets - brain (white matter hyperintensities) . . . . . . . . . . . . . . 37
3.6 Image registration datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 Representative CNN for image segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 TL-BN - Qualitative results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1 TTA-DAE - Proposed parameter split . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 TTA-DAE - Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3 TTA-DAE - Qualitative results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4 TTA-DAE - Comparison with DAE-based post-processing . . . . . . . . . . . . . . . . . . . . . . 75
5.5 TTA-DAE - Evolution of predicted segmentation during TTA iterations . . . . . . . . . . . . . . 75
5.6 TTA-DAE - Convergence behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.7 TTA-DAE - Correlation between supervised and TTA loss . . . . . . . . . . . . . . . . . . . . . . 76

6.1 TTA-FoE - Illustration of DS Problem in TTA Helper Models . . . . . . . . . . . . . . . . . . . . . 81
6.2 TTA-FoE - Illustration of Task Specific Experts of TTA-FoE-CNN Model . . . . . . . . . . . . . 85
6.3 TTA-FoE - Quantitative results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.4 TTA-FoE - Evolution of predicted segmentation during TTA iterations . . . . . . . . . . . . . . 99
6.5 TTA-FoE - KDE v/s Gaussian approximation of task-specific expert distributions . . . . . . . 100
6.6 TTA-FoE - Workflow for image registration experiments . . . . . . . . . . . . . . . . . . . . . . 101
6.7 TTA-FoE - Image registration datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.8 TTA-FoE - Subject-wise registration results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

x



List of Tables

1.1 Common tasks in medical image analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Distribution shifts relevant in medical imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Mathematical notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Machine learning settings for tackling distribution shifts . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Datasets - Regions to be segmented for different anatomies . . . . . . . . . . . . . . . . . . . . 30
3.2 Datasets - Acquisition institutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Datasets - Scanner and resolution differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Datasets (Spine) - Acquisition protocol details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 Datasets (WMH) - Acquisition protocol details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 TL-BN - Dataset details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 TL-BN - Quantitative results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 TL-BN - Analysis experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1 TTA-DAE - Dataset details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2 TTA-DAE - Quantitative results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3 TTA-DAE - Comparison with UDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.4 TTA-DAE - Ablation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.1 TTA-FoE - Dataset details (segmentation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.2 TTA-FoE - Quantitative results (segmentation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.3 TTA-FoE - KDE vs Gaussian approximation of FoE experts . . . . . . . . . . . . . . . . . . . . . 100
6.4 TTA-FoE - Effect of weighting parameter for the CNN and PCA experts . . . . . . . . . . . . . 101
6.5 TTA-FoE - Quantitative results (registration) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.6 TTA-AE - Hyper-parameter tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

xi





Chapter 1

Introduction

1.1 Motivation for Algorithmic Analysis of Medical
Images

A lot of medical images, not enough radiologists
Imaging plays an important role in several medical diagnoses, screenings as
well as interventions [1]↑. Indeed, from a technological standpoint, medical
imaging is one of the most important components of modern healthcare sys-
tems. This is reflected in the fast-increasing number of imaging exams con-
ducted in high-income countries. For instance, the number of Magnetic Res-
onance Imaging (MRI) exams in United States of America more than doubled
between the years 2000 and 2015 [2]↑. While such images possess a wealth of
information about the patient’s health, interpretation of the images is a com-
plex task [3]↑; experts undergo several years of specialized training [4]↑. Even
so, high variability exists in image interpretation by multiple experts [5]↑ [6]↑,
as well as by the same expert at different time-points [7]↑. Thus, potential ben-
efits of algorithmic image interpretation include (1) reducing the time spent
by an expert per image, (2) shortening the training duration of expert radi-
ologists, (3) reducing interpretation errors due to fatigue and (4) quantifying
interpretation uncertainty based on acquired signals.

Not enough images, not enough radiologists
On one hand, the number of image acquisitions balloons in high-income coun-
tries. On the other hand, due to economic inequity, more than half of the
planet’s population lacks access to even basic imaging modalities such as x-
rays and ultrasound [8]↑. Development of affordable imaging machines [9]↑,
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aided with automated interpretation algorithms and telemedicine [10]↑, has
the potential to improve global health immensely.

Humans are not good at some image analysis tasks
So far, we described how automation in image interpretation can assist hu-
man experts to reduce their workload and fasten the interpretation process.
For some image tasks such as aligning images (image registration), or as-
sembling pixel representation of images from acquired signals (image re-
construction), algorithms far exceed human performance. Automation may
also enable acquisition of low-quality images (with benefits such as reduced
acquisition time or harmful dosage given to the patient), followed by image
enhancement to obtain the same information as the corresponding high-
quality image. Further, if automated image interpretation is fast enough, it
can provide feedback for improving image acquisition in the patient-specific
manner, thus opening up the possibility of iterative acquisition and interpre-
tation.

Integration of data from different sources
Human experts typically combine information from multiple sources before
arriving at a clinical decision. These sources may include images from dif-
ferent modalities as well as non-imaging sensors. Within the realm of image
analysis, algorithms may be more adept that humans to systematically inte-
grate information from multiple imaging modalities.

What attributes should an useful image analysis tool have?
To meet the described spectrum of clinical needs, an useful image analysis
tool should ideally have the following attributes.

• Accuracy: It must either meet human performance at the task at hand, ex-
ceed it or entail a human-in-the-loop approach with clear time savings over
manual analysis. Error tolerance in medical applications is typically quite
low; the tool must pass strict regulatory hurdles before it is deemed suitable
for clinical use.

• Reliability: It must be able to perform the required analysis under varying
quality of the acquired images, and potentially also in the presence of imag-
ing artifacts. When it fails, it must do so in a predictable manner, and pro-
vide an indication of failure that would enable a human expert to override
the analysis.

• Speed: In time-sensitive applications (e.g. surgery), the analysis must be
done in a timely manner. On the other hand, speed may not necessarily be

2

https://www.frontiersin.org/articles/10.3389/fpubh.2014.00135/full


the most pressing concern in applications where there exists a delay be-
tween the image acquisition and the associated decision-making for other
reasons.

1.1.1 Common Tasks in Medical Image Analysis

Recognizing the value that automated image analysis can bring to the clin-
ics, the research field of medical image analysis was born in the late 1970s.
[11]↑, [12]↑provide excellent overviews of the initial progress in the field. Below,
we enlist clinical tasks have been widely identified as those that can benefit
from automation.

• Image segmentation [13]↑ [14]↑ [15]↑is the task of delineating anatomical or-
gans or other regions of interest (e.g. lesions). Often, the goal of image seg-
mentation is to measure the organ volume (e.g. to track growth over time)
or to locate it precisely (e.g. for therapy planning).

• Image registration [16]↑ [17]↑ [18]↑is the task of aligning two images. Typi-
cally, such alignment is sought between one of the following pairs: (1) two
images of the same patient, acquired at different time-points, (2) two im-
ages of the same patient, acquired using different imaging modalities (each
potentially highlighting different information about the patient’s health), (3)
an image of a patient and an atlas.

• Image classification [19]↑is the task of categorizing images into a discrete
number of classes; for instance, predicting whether an image consists of
diseased or healthy anatomy, or whether a tumour is benign or malignant.

• Image reconstruction [20]↑, [21]↑is the task of transforming acquired signals
(depending on the imaging modality) into interpretable spatial images, po-
tentially in the absence of exact analytical solutions.

Task Input Output
Segmentation Image Per-pixel labels
Registration Pair of images Deformation field

Classification Image Category
Reconstruction Acquired signals Spatial Image

Super-resolution Low-resolution image High-resolution image
Deblurring Blurred image Deblurred image
Denoising Noisy image Denoised image
Synthesis Image of one modality Image of another modality

Table 1.1: Common tasks in medical image analysis.
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• Image enhancement refers to the task of transforming low-quality images
into high-quality ones - for instance, by improving the image resolution [22]↑,
sharpness [23]↑or by removing artifacts [24]↑.

• Image synthesis [25]↑is the task of transforming images of one modality
into corresponding images of another modality; potentially, such a trans-
formation may help to reduce adverse side-effects of the acquisition pro-
cess of a particular modality.

1.2 Methods for Medical Image Analysis

A common framework for posing all the tasks described in Sec. 1.1.1 is that of
input-output transformations. The input and output entities corresponding
to different tasks are summarized in Table 1.1. The goal of image analysis
algorithms is to construct models that faithfully describe these input-output
relationships. Such models can be broadly categorized into two types: hand-
crafted and data-driven [26]↑, [27]↑.

1.2.1 Hand-crafted Models

Hand-crafted models leverage a-priori human understanding about the input-
output relationship to mathematically define the desired transformation up
to a small number of unknown parameters. Here, we describe a common
framework, showcasing the application of such models. In this framework,
a so-called energy function that depends on the input image, the predicted
output and the model parameters, is minimized. The energy consists of two
terms:

1. Compatibility of the input and the predicted output. This term is often re-
ferred to as data consistency, and its formulation is dictated by our un-
derstanding of the input-output relationship. Some examples: for MR im-
age reconstruction from undersampled measurements, the data consis-
tency term leverages knowledge of the noise distribution in the acquired
k-space data [28]↑; for image registration, it seeks to increase the similar-
ity between the aligned images [29]↑; for image segmentation, it imposes
realistic assumptions on the distribution of image intensities for pixels of
each organ [30]↑.

2. Plausibility either of the function mapping the input to the output, or of the
predicted output itself. This term is often referred to as regularization, and
its formulation is dictated by our understanding of plausible functions /
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outputs for the task at hand. Some examples: reconstructed images may
be sought to be sparse in a suitable representation [31]↑; deformation fields
defining image registration may be required to be diffeomorphic [32]↑; pre-
dicted segmentation maps may be encouraged to be spatially smooth [33]↑.

A large number of such methods have been developed, with encouraging re-
sults for several medical image analysis tasks. Thanks to the aforementioned
parameter optimization is done for each image, such methods tend to work
robustly across clinically pertinent changes in imaging protocol parameters.
On the other hand, the per-image optimization also makes them slow. Fur-
ther, the individual terms of the energy function have to be designed for each
task, and yet, such methods have managed to provide clinically desirable ac-
curacy only for a small number of tasks.

1.2.2 Data-Driven Models

In many tasks of interest, the input-output relationships of interest entail
complex physical processes, such that mathematical specification of model
families that capture such relationships is difficult. In such scenarios, data-
driven models seek to extract statistical correlations between inputs and out-
puts from example input-output pairs, which may be relatively easier to gen-
erate.

Supervised Learning via Empirical Risk Minimization
A common framework here is to specify the output as a parametric trans-
formation of the input. The parameters of the transformation are then ob-
tained by minimizing a suitable measure of discrepancy between the pre-
dicted and true outputs, thus leveraging the aforementioned input-output ex-
ample pairs. This process is known as empirical risk minimization (ERM)
[34]↑. The models are said to have been learned or trained from data. The
dataset used for training the models is referred to as the training dataset.

Two characteristics about data-driven supervised learning models are par-
ticularly noteworthy: 1. In this setup, the information about the input-output
correlations are condensed in the learned model after training. At test time,
the trained model parameters are typically fixed, and directly used for mak-
ing predictions (unlike the per-test-image optimization described in Sec. 1.2.1).
2. Theoretical results from statistical learning theory [35]↑provide performance
guarantees for the trained models, in terms of the complexity of the cho-
sen parametric model family and the number of data examples available for
training.1 However, such guarantees hold only as long as the training and test

1Such results are usually stated as probably approximately correct (PAC) conditions: the
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images are sampled from the same probability distribution. In other words,
unless additional techniques are employed, the trained models cannot be ex-
pected to generalize to out-of-distribution test images. The implications of
this behaviour are further expounded in Sec. 1.3.

Deep Learning
A large number of parametric model families have been developed for data-
driven supervised learning. Deep learning models are a particular category
among the proposed model families. Here, the parametric transformation is
modelled via deep neural networks - stacked linear transformations, inter-
laced with element-wise non-linearities. For data with grid-like data like im-
ages, the use of convolutions for parameter sharing within the linear trans-
formations has been shown to be highly effective [36]↑, [37]↑. Further, inno-
vations in the design of the interlacing non-linear functions [38]↑, stochastic
optimization algorithms [39]↑and the introduction of specific normalization
subroutines [40]↑have facilitated efficient training of deep convolution neu-
ral networks (CNNs). Finally, improved computational capabilities [41]↑and
availability of data have also played a crucial role in the success of deep learn-
ing approaches.

Due to these factors, CNN-based methods are the state-of-the-art in several
challenges [42]↑[43]↑[44]↑, often outperforming more traditional methods by
large margins in accuracy and applicability to multiple problems [45]↑[46]↑[47]↑.
Furthermore, as discussed in Sec. 1.1, human experts often exhibit substantial
variability in their interpretation of images [6]↑. For some tasks, anatomies
and imaging modalities, the performance of CNN-based methods is already
comparable to inter-expert variability [48]↑.

Spurred on by the promising performance of CNN-based analysis methods in
a large number of research studies, there have been initial attempts to inte-
grate them within the clinical workflow [49]↑[50]↑[51]↑↑.

probability that the prediction error is greater than a certain threshold is bounded from above
by a quantity that depends on the error threshold and a measure of complexity of the para-
metric model family. Recent successes in the setting when the model family is a deep neural
network are characterized by very low prediction errors, often even surpassing those guar-
anteed by theoretical bounds.
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1.3 Robustness to Distribution Shifts

1.3.1 The Distribution Shift Problem

An important prerequisite for the performance guarantees of all data-driven
models learned using supervised learning (and thus, for CNN models as well)
is that the probability distributions of training and test data should match
(Sec.1.2.2). When this condition is not met, the predictions of the learned
models are unreliable and may demonstrate substantial performance degra-
dation. In other words, while CNNs excel in expressing input-output map-
pings within the probability distribution corresponding to the training set,
they are notorious for responding unpredictably to out-of-distribution inputs
- that is, test images that are derived from a different probability distribu-
tion [52]↑. This is known as the distribution shift (DS) problem. (We use the
acronym DS to refer to both, the singular ’distribution shift’ and the plural ’dis-
tribution shifts’, and call on the reader to infer the form based on the context.)
DS occur due to a variety of reasons (Sec. 1.3.2), and are pervasive in clinical
practice. Therefore, tackling them suitably is crucial for large-scale adoption
of deep learning methods.

1.3.2 Distribution Shifts in Medical Imaging

Several types of DS are pertinent in medical imaging [53]↑. Depending on
the factors of the joint probability distribution of the inputs and outputs that
change or remain the same across training and test time, the relevant DS can
be grouped as described below and summarized in Table 1.2.

Shifted
distribution

P(X) P(Y) P(X|Y) P(Y|X)

Causes
Acquisition process
Selection bias (anatomical)
Selection bias (corruptions)

Label prevalence Label manifestation Annotation difference

Table 1.2: Distribution shifts relevant in medical imaging. X and Y indicate inputs and
outputs, respectively.

Shift in the conditional distribution of outputs given inputs
For tasks such as segmentation and classification, training datasets consist
of input-output pairs, where the task-specific outputs are annotated by do-
main experts (e.g. radiologists). Due to inherent ambiguity in the task, the
annotations made by different experts may vary [6]↑. If the performance of a
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learned model trained using annotations of one expert is evaluated based on
another expert’s annotations, the model may exhibit degraded performance.

Shift in the conditional distribution of inputs given outputs
Consider a classification task where an image must be classified as healthy
or diseased. If the disease in question manifests in a different way in the
test dataset, as compared to the training images, the trained model cannot
be expected to make correct predictions at test time.

Shift in the output distribution
Again, consider a classification task where an image must be classified as
healthy or diseased. If the proportion of healthy to diseased images in the
training and test datasets differ substantially, the biases learned in the trained
model may be potentially unsuitable for providing high prediction accuracy
at test time.

Shift in the input distribution
In tasks such as segmentation, registration and classification, the inputs to
the prediction model are images or pairs of images and outputs are task-
specific (Table 1.1). Other tasks such as reconstruction, super-resolution, de-
blurring, denoising can be considered as image enhancement tasks. Here, the
inputs are task-specific corrupted images and outputs are the corresponding
corruption-free images. In the former set of tasks, the input images are influ-
enced by two main factors - (1) the acquisition process and (2) the subject’s
anatomy. In the latter set, the input images are additionally also influenced
by (3) the type of corruptions (e.g. undersampling artifacts, type of resolution
sub-sampling or blurring kernel, noise distribution) observed during training.
Accordingly, the causes of shifts in the input distribution can be categorized
as follows. Shifts in the input distribution are also known as covariate shifts
in the machine learning literature.

1. Image acquisition process: The image acquisition process is the metaphor-
ical lens through which we observe the underlying subject anatomy. Dif-
ferent imaging modalities acquire information about anatomical structure
by exploiting different physical processes. This affects the contrasts be-
tween two anatomical structures of the same individual, seen in images
of different modalities. Indeed, it is possible that a certain imaging modal-
ity may starkly differentiate between two structures, which may appear
identical to another modality. Clearly, changing the imaging modality (e.g.
from CT to MRI) between training and test images represents a distinct DS.

Further, within the same modality, contrast between different tissues can
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Figure 1.1: Example images showing acquisition-related DS in the input space.
The two images on the left show are T1-weighted brain MRI slices from differ-
ent institutions, while the two images on the right are T2-weighted prostate
MRI slices from different institutions. Note that such DS manifest primarily
as contrast differences.

be substantially modified by varying the parameters of the acquisition pro-
tocol. For instance, in MRI, contrast variations may arise when protocol
parameters such as the field strength, resolution, flip angle, echo or repeti-
tion time, etc. are changed. In practice, such variations in protocol param-
eters may be necessitated to obtain the optimal information; as decided
in a case-specific manner by the clinical expert conducting the imaging
exam.

Even for standardized acquisition protocols, differences between training
and test images might still arise due to the usage of different scanners in
different acquisition centers. This can happen due to factors such as the
drift in scanner SNR over time [54]↑, gradient non-linearities [55]↑, among
others. This is further substantiated by the detection of site-specific sig-
nals in images even after intensity harmonization [56]↑.

Acquisition-related input DS manifest largely in the form of differences
in low-level intensity statistics and contrast changes between different
tissue types. Figure 1.1 shows example images of such DS, for different
anatomical regions. Evidently, CNNs trained for segmentation rely on such
low-level intensity characteristics, thereby demonstrating remarkably de-
graded performance when confronted with such variations at test time
[57]↑. Such lack of robustness of CNN-based methods to such input DS is
well-documented in the literature for a number of medical image analysis
tasks, as well as in different imaging modalities: lesion segmentation from
brain MRIs [58]↑, brain healthy tissue segmentation in MRIs [59]↑, cardiac
organ segmentation in MRIs [60]↑, sex classification in MRIs [56]↑, pneu-
monia classification from chest x-ray images [61]↑[62]↑[63]↑. An example
of such performance degradation is shown in Fig. 1.2.
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Figure 1.2: Example performance degradation due to acquisition-related DS. A
trained CNN provides accurate segmentations for test images from the train-
ing distribution, but inaccurate segmentations for test images from a differ-
ent institution.

2. Data selection bias in anatomical variations: This refers to the scenario
where the training dataset is not representative of all anatomical varia-
tions that may be encountered at test time. Some examples: the training
dataset is biased toward a particular demographic (e.g. age, gender [64]↑);
the training dataset contains healthy images but images of diseased pa-
tients are encountered at test time; the training dataset contains artifact-
free images but images with acquisition artifacts are encountered at test
time. Examples of such DS are shown in Fig. 1.3.

3. Data selection bias in corruption patterns: This scenario is particularly
relevant for image enhancement tasks. Here, the training dataset is often
retrospectively assembled by corrupting a set of enhanced images using
particular corruption patterns (e.g. undersampling patterns, sub-sampling
or deblurring kernels, additive noise, etc.). Examples of such differences
are shown in Fig. 1.4. Test images corresponding to different corruption
patterns than those simulated during training represent an input DS that
may hamper prediction performance.

1.4 Contributions

The goal of this thesis is to improve robustness of deep learning-based super-
vised learning methods for medical image analysis, with respect to acquisition-
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Figure 1.3: Example images DS in the input space due to bias with respect
to anatomical variations. The first two images show a selection bias from
healthy to diseased - that is, the training dataset consists of images (such as
the first one) from only healthy individuals, while an image with a tumour
(such as the second one) is encountered at test time. The last two images
(taken from [65]↑) show a selection bias with respect to age. The third image
is a template of ages 25-29, while the fourth image is a template for ages 85-
89.

Figure 1.4: Example images for the MRI reconstruction problem, showing DS
in the input space due to bias with respect to corruption patterns. From left
to right: a fully sampled MR image of the brain, followed by zero-filled recon-
structions of undersampled images with cartesian undersampling with fac-
tor 4, cartesian undersampling with factor 8 and radial undersampling with
factor 8.

related distribution shifts in their inputs. To this end, we have developed the
following methods.

[Contribution 1] A transfer learning approach for MRI segmentation

First, we developed a transfer learning method for segmentation of brain
MRIs from different scanners and protocols [66]↑. The main idea of this work
was to adapt a small number of parameters using a few labelled images at
each new distribution.
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Experiments showed that the proposed method improved performance on
the test distribution substantially, providing comparable results to an inde-
pendent CNN trained exclusively on a large dataset in the test distribution.
Further, the method also had desirable properties from a lifelong learning
perspective - performance on the original training distributions was preserved
even after model adaptation for the test distribution.

[Contribution 2] A test-time adaptation approach for MRI segmentation

Second, we considered the more practical setting where the test distribution
(e.g. hospital) is unknown at training time. As well, transfer of labelled data
from the training to the test site was disallowed in view of privacy or techni-
cal concerns. In this challenging setting, domain generalization (DG) is the
common approach in the field. To further improve the performance of DG
methods, we proposed one of the first test-time adaptation (TTA) works [67]↑.

In this work, we deviated from the standard training-testing binary, wherein
models are trained during a training phase, fixed thereafter, and directly used
to process test images. Instead, we argued, that in order to achieve robust-
ness to unseen variations at test-time, we must allow for model adaptation
for each test image. We drove such adaptation by requiring that the segmen-
tations predicted by the model be anatomically plausible. In other words, we
utilized an implicit prior in the output space (modelled by a denoising au-
toencoder). We formulated the segmentation model as a concatenation of
a shallow normalization module that was adapted for each test image, and
a deep convolutional neural network that segmented the normalized image.
We designed the normalization module such that adapting it allowed for con-
trast variations without substantial structural changes.

Experiments on three anatomies (brain, prostate and heart) demonstrated
the viability of TTA as a generic tool to improve segmentation performance
for completely unseen test distributions. For some test distributions, thanks
to the proposed per-test-image adaptation, TTA lead to even higher perfor-
mance than that of a CNN trained using supervised learning specifically for
that distribution. Further, analysis experiments showed that the design choice
of restricting the adaptable module to a shallow normalization sub-network
was crucial for good TTA performance.

[Contribution 3] A task-agnostic test-time adaptation approach

Third, we generalized the TTA approach described such that it could be used
for tackling DS for multiple tasks. This was done by driving the adaptation
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with a prior in the feature space, rather than one in the output space. Further,
we noted that the CNN-based priors suggested in [68]↑[67]↑may themselves
suffer from unreliable behaviour if faced with DS in their inputs. To overcome
this problem, we considered a field of experts prior formulation, where the
individual experts were modelled to be 1D marginal distributions of the CNN
features.

For image segmentation, extensive experimentation on datasets from 17 in-
stitutions for 5 tasks (prostate, heart, spine, healthy brain structures, white
matter hyperintensities in brain images) revealed that several recent TTA
methods provided comparable performance. However, the performance of
the FoE-based TTA was the most stable, indicating the FoE model’s better DS
robustness as compared to helper models used in other works. Further, the
method could also improve DS robustness for the task of image registration,
while several other methods in the literature could not be applied.

To summarize, we have developed methods with increasing generality to
tackle acquisition-related DS in supervised learning CNN models for medi-
cal image analysis.

1.5 Layout of the Thesis

The layout of the rest of the thesis is as follows. We present a review of re-
lated works in chapter 2. Following this, we describe the datasets used in
our experiments in chapter 3. This is followed by a description of our three
contributions in chapters 4, 5 and 6. Chapter 7 provides a discussion of our
contributions, their relationship with relevant methods in the literature and
an outlook for further work.
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Chapter 2

Literature review

2.1 Notation

Let X and Y be random variables denoting inputs and outputs, respectively.
Let us assume access to a labelled training dataset of paired inputs and out-
puts, DL

tr : {(xi, yi)| i = 1, 2, . . . Ntr}. Here, xi ∼ Ptr(X) are samples from the
training distribution of inputs and yi are corresponding ground truth outputs.

Let us consider methods where a deep convolutional neural network (CNN),
TΘ, is used to learn the mapping from X to Y , with Θ indicating the learnable
parameters of the CNN. The learning leverages DL

tr by employing a loss func-
tion Ltask in the empirical risk minimization framework (Sec. 1.2.2). Further,
other loss functions may be used to improve robustness with respect to distri-
bution shifts. Let us use a generic notation, Lreg , to indicate such losses used

Notation Description
X Input
Y Output

Ptr(X) Distribution of training inputs
Pts(X) Distribution of test inputs
DL
tr Labelled training dataset

DL
ts Labelled test dataset

DUL
ts Unlabelled test dataset

Ntr Number of training images
Nts Number of test images
TΘ Deep CNN model for the task

Ltask Supervised loss for the task
Lreg Generic regularization loss

Table 2.1: Mathematical notation.
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for regularization. We defer the introduction of method-specific notation to
the point where those methods are described in detail.

After training, the model is asked to make predictions from test inputs sam-
pled from either the training distribution, Ptr(X) or a different test distribu-
tion,Pts(X). In some settings, a labelled dataset may be available from the test
distribution, DL

ts: {(xi, yi)| i = 1, 2, . . . Nts}. In some other settings, a dataset
of only unlabelled inputs may be available from the test distribution, DUL

ts :
{(xi)| i = 1, 2, . . . Nts}. Both DL

ts and DUL
ts consist of input samples from the test

distribution, xi ∼ Pts(X).

A summary of the notation is given in Table 2.1.

Note that some terms that are used interchangeably in the distribution shift
robustness literature. First, the term ’domains’ is often used to indicate dis-
tributions. Second, the training distribution and test distribution are often
also referred to as source domain and target domain, respectively. Further, in
the context of acquisition-related distribution shifts in medical imaging, the
training distribution refers to the distribution of images from one or more
scanners or acquisition institutions, while a shifted test distribution refers to
that of images from another scanner or institution.

2.2 Machine Learning Settings to Tackle Distribu-
tion Shifts

Due to its high practical relevance, the DS problem (Sec. 1.3.1) has attracted
substantial attention in the research community. In particular, acquisition-
related DS have received the most scrutiny.

An axis along which these efforts can be categorized is that of data require-
ment - a criterion that is of high relevance for the following two reasons. (1)
Scarcity of annotated data is a well-recognized problem in medical image
analysis. Depending on the task, annotation can be cumbersome and time-
consuming. As well, experts who are qualified to provide such annotations
are typically highly strained for resources. (2) Sharing of medical data across
institutions is a non-trivial task that often requires regulatory and privacy
clearances.

In decreasing order of data requirements, methods in the DS literature can be
broadly categorized into the following 7 groups: supervised learning, transfer
learning, unsupervised domain adaptation, domain generalization, source-
free domain adaptation, test-time adaptation and unsupervised learning. Ta-
ble 2.2 provides a summary of the data requirement and the main algorithmic
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ideas of these categories, and a detailed literature review of all categories
follows. These settings are described in more detail in the following sub-
sections, and methods proposed in those settings are reviewed.

Setup Training Institution Test Institution

Data Algorithm Data Nts Algorithm

Supervised
Learning DL

tr minΘ Ltask(DL
tr) DL

ts Many minΘ Ltask(DL
ts)

Transfer
Learning DL

tr minΘ Ltask(DL
tr) DL

ts Few Init. at Θ∗
Tr, minΘ Ltask(DL

ts)

Unsupervised
Domain Adaptation - - DL

tr,DUL
ts Many minΘ Ltask(DL

tr) + Lreg(DL
tr,DUL

ts )

Domain
Generalization DL

tr minΘ Ltask(DL
tr) + Lreg(DL

tr) DUL
ts 1 -

Source-Free
Domain Adaptation DL

tr minΘ Ltask(DL
tr) + Lreg(DL

tr) DUL
ts Many Init. at Θ∗

Tr, minΘ Lreg(DUL
ts )

Test-Time
Adaptation DL

tr minΘ Ltask(DL
tr) + Lreg(DL

tr) DUL
ts 1 Init. at Θ∗

Tr, minΘ Lreg(DUL
ts )

Unsupervised
Learning - - DUL

ts 1 minΘ Lreg(DUL
ts )

Table 2.2: Machine learning settings for tackling distribution shifts.

2.2.1 Supervised Learning

From a technical point of view, the most straight-forward solution to the DS
problem is to avoid it - that is, to ensure that the training dataset encom-
passes all input variability likely to be encountered at test time. This can be
achieved in one of two ways: (1) by assembling a very large dataset, including
annotated images from a large number of acquisition sites or (2) by training
an independent model for each new scanner and protocol setting, using a la-
belled training dataset from that acquisition institution. Thus, in this setting
(described in the first row of Table 2.2), the onus of tackling the DS problem is
on the strength of the training dataset. Here, a model is trained for the task via
supervised learning in the training distribution, and directly used for making
predictions in the test distribution.

Difficulty in Creating Large Training Datasets
The task of assembling such large annotated datasets is difficult in medical
imaging due to two main reasons. First, as alluded to in Chapter 1, for most
tasks of interest, annotation of medical images requires a high level of exper-
tise. And the people who have such expertise are often highly strained for
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resources. Second, integrating datasets from different institutions necessi-
tates clearance of several privacy and regulatory hurdles. Despite these chal-
lenges, initial efforts are underway in this direction, and several relatively
large datasets have been created and publicly shared in recent years. These
include the UK-Biobank↑, Nightangle Open Science↑, the Fast MRI dataset [69]↑,
the BRATS dataset [70]↑ [71]↑, [72]↑, among others. Such large datasets may en-
able learning robust models of specific tasks for specific anatomies.

Possibility of Shifts beyond Large Datasets
Nevertheless, given the large number of tasks of interest, and the high degree
of variability within each task, it is unrealistic that such large datasets can
be created for all tasks of interest. Furthermore, even for the tasks for which
such datasets are available, it may be possible that further shifts in the input
distribution are encountered, beyond the variations that are covered in the
training dataset. Such a scenario is plausible due to the large number of imag-
ing parameters, and other causes of variations that are ubiquitous in medical
imaging, as well as introduction of new imaging modalities. This motivates
the development of methods to either adapt the learned models to new dis-
tributions in an efficient way, or to introduce additional training constraints
that ensure robust learning. An overview of these methods is provided in the
following sub-sections.

2.2.2 Transfer Learning

In the transfer learning (TL) setting (shown in the second row of Table 2.2),
a model is learned in a supervised manner using a large labelled dataset in
the training distribution, and further adapted using a small labelled dataset in
the test distribution of interest. The main intuitive assumption in this setting
is that the training and test distributions are closely related - therefore, the
corresponding optimal models for the two distributions would be close in the
model parameter space. Thus, the model learned in the training distribution
is deemed to provide a good starting point for supervised optimization with
a few labelled examples in the test distribution. To express this notion of
closeness, the adapted model for the test distribution is often said to have
been fine-tuned from the model learned on the training distribution.

Efforts in the TL setting have been proposed for several types of models, in-
cluding support vector machines (SVMs) [73]↑, thus demonstrating the rele-
vance of the DS problem beyond deep learning as well. In recent years, how-
ever, deep learning models have provided state-of-the-art results in a large
number of tasks, often substantially outperforming other types of models by
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high margins [42]↑ [43]↑, [44]↑. Accordingly, recent transfer learning litera-
ture [74]↑, [66]↑focuses on deep learning models, attempting to extend their
in-distribution performance to scenarios with shifted distributions as well.

Which Parameters to Update?
Modern CNNs often consist of a very high number of parameters. If all those
parameters are adapted during TL, the adapted model may potentially overfit
to the small labelled dataset in the test distribution. Consequently, an im-
portant design choice in TL is the answer to the question: "which parameters
should be fine-tuned using the small labelled dataset in the test distribution?"
To the best of our knowledge, the literature still lacks a principled solution to
this question. Indeed, [74]↑report that the optimal subset of parameters to be
updated may be dataset dependent. Common choices for this subset are a
few initial CNN layers, a few final CNN layers [75]↑or batch normalization pa-
rameters [66]↑. Recent work [76]↑proposes test-data-dependent strategies to
decide which model parameters should be updated during TL.

The question of creating two subsets of model parameters - sharing one sub-
set across training and test distributions and adapting the other subset for
either each new test distribution or each test image - is a recurring theme in
this thesis. We provide different answers to this question in different chap-
ters, depending on the considered setting, and provide justification for the
same in those chapters.

Intriguingly, it has also been widely reported that TL can also improve test
distribution performance, even when the training and test distributions dif-
fer substantially. In particular, several works use ImageNet [77]↑pre-trained
CNNs as a starting point for learning models for medical image analyses [78]↑.
In such works, all the CNN parameters are typically updated, owing to the
large shift between training and test distributions.

Links with Self-Supervised Representation Learning
The main goal in the TL setting is to achieve good performance in the test
distribution, using a small labelled dataset from that distribution. TL setting
leverages learning of a certain task on data from a training distribution to
achieve efficient learning on a shifted distribution on the same task. The
pre-trained model weights provide as a better initial point for optimization
in the test distribution, as compared to random weight initialization.

Another strategy to determine such good starting model parameter configu-
rations is to pre-train the model on test images themselves, but on another
pseudo-task. Such pseudo-tasks can be designed such that their training
data is readily available from the test images themselves - a strategy known
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as self-supervised learning. Common pre-training tasks include image re-
construction, image denoising, image inpainting [79]↑, among several oth-
ers. Yet another initialization strategy that has gained popularity recently
is that of contrastive learning [80]↑. Here, positive and negative pairs of im-
ages are formed, and the pre-training strategies requires representations of
positive image pairs to be similar to one another, while being dissimilar to
those of negative images. After pre-training with either of these strategies,
the model parameters are updated in a supervised fashion using the small
labelled dataset for the task of interest, as in TL.

Links with Continual / Lifelong Learning
Another machine learning setting that is closely related to TL is that of con-
tinual or lifelong learning (CL) [81]↑. Here, the objective is to stack learnings
of new tasks or of the same task in new distributions on top of one another,
such that later learnings can be done more efficiently by leveraging earlier
learnings. A common problem observed in lifelong learning in deep learning
models is that the training such models on new tasks / in new distributions
drastically deteriorates their performance on old tasks / in old distributions
- a problem known as catastrophic forgetting [82]↑.

Thus, CL approaches need to meet two requirements simultaneously: (a) effi-
cient learning in new distributions and (b) preservation of previously learned
knowledge, while carrying out model adaptation in new distributions. To sat-
isfy both these requirements simultaneously, two types of approaches have
been suggested: (1) Data from old training distributions is used jointly, dur-
ing model adaptation with data from new test distributions for either directly
[83]↑or via learned generative models [84]↑. (2) Importance weights for model
parameters [85]↑are determined to indicate relevance of the parameters for
previously learned distributions. Now, when the model is adapted for a new
distribution, parameters that are deemed to be highly important for previous
distributions are prevented from substantial change.

2.2.3 Unsupervised Domain Adaptation

Unsupervised domain adaptation (UDA) completely relieves the requirement
of annotating any images in the test distribution. Instead, unlabelled test
distribution images are utilized jointly with the labelled training distribution
dataset. A rich literature exists in this setting [86]↑, which can be broadly
classified into two major categories.

Distribution-Invariant Features
A common setup for solving function approximation tasks is by formulating
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the overall mapping, Y = TΘ(X), as a concatenation of two steps - by first
mapping the inputs to an appropriate representation, Z = Nϕ(X), and then
mapping the learned representation to the corresponding outputs, Y = Sθ(Z).
In this setup, a common approach followed by several UDA methods is to en-
courage absence of distribution-specific signals in the learned representa-
tion space, Z . A combination of two loss functions, Ltask and Lreg , is mini-
mized. Here, Ltask is a supervised learning loss that depends on the labelled
dataset from the training distribution. Lreg is a unsupervised loss that mea-
sures the discrepancy in the representations of images from the training and
test distributions. Different divergence measures Lreg have been proposed:
maximum mean discrepancy [87]↑, f-divergence via an adversarial frame-
work [88]↑, [89]↑.

Image-to-Image Translation
Another approach for UDA is to learn two mappings, similar to those described
above, in two independent steps. Such methods typically operate without
an intermediate distribution-invariant representation. Instead, a task model
is first learned to describe the input-output mapping for the training distri-
bution dataset. Next, when a test distribution is encountered, an image-to-
image translation model is learned to map the test images to corresponding
training images [90]↑. Predictions for the mapped images can then to be ob-
tained via the pre-trained task model.

In either of the two approaches described above, UDA requires the entire train-
ing distribution dataset to be present while carrying out model adaptation for
each new test distribution. This can potentially be a severe requirement in
medical imaging, where sharing datasets across institutions often requires
regulatory and privacy clearances.

Links with Semi-Supervised Learning
Semi-supervised Learning (SSL) is another machine learning setting for re-
ducing reliance on labelled datasets. Here, a small labelled dataset is used
together with a large set of unlabelled images from the training distribution
to achieve good task performance in the same distribution. Due to the well-
known difficulty of annotating large datasets in medical imaging, and the
relative ease of obtaining unlabelled images, SSL has attracted considerable
interest in the medical image analysis community [91]↑. UDA differs from this
setting in the following respects: (1) the labelled training dataset in UDA is
typically large and (2) the unlabelled images in UDA are from a shifted distri-
bution. Nevertheless, both settings have the common goal of utilizing unla-
belled images in conjunction with a labelled dataset, to achieve good perfor-
mance for test images akin to those in the unlabelled dataset. Indeed, recent
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works have pointed out that several strategies that have been proposed in the
SSL literature may be applicable in the UDA setting [92]↑.

2.2.4 Domain Generalization

Domain generalization (DG) seeks to learn robust input-output mappings us-
ing labelled datasets from one or more training distributions in such a way
that the learned mappings are also applicable to images from unseen test
distributions. As there is no adaptation step for each new test distribution,
the training distribution datasets are not required after the initial training. A
trained CNN is transported and used to perform inference without requiring
access to a labeled or unlabeled training set. This is advantageous consider-
ing the challenges in data sharing in medical imaging - as compared to shar-
ing the training dataset across institutions, it is much easier to transport a
trained CNN for usage with images from new test distributions. Thus, from
a practical point-of-view, DG is arguably most attractive among all settings
for tackling the DS problem discussed so far. Accordingly, this setting has at-
tracted considerable attention in the literature. The proposed works can be
broadly categorized into the following three categories.

Distribution-Invariant Features
Similar to UDA, the introduction of a distribution-invariant intermediate rep-
resentation is also a common DG approach. This approach assumes that
a model trained to extract invariant representations from training distribu-
tions will also extract similar features from unseen test distributions. Meth-
ods vary in the strategies to ensure distribution invariance. For instance,
[93]↑introduce a notion of distributional variance to quantify dissimilarity be-
tween distributions, and minimize the same. [94]↑achieve distribution invari-
ant features via a separate pre-training step, in which they train a multi-task
autoencoder that aims to discover a feature embedding from which all im-
ages of multiple training distributions can be reconstructed. [95]↑, [96]↑use
f-divergence minimization via an adversarial framework to promote distri-
bution invariance. If the distributions of interest are known to have com-
monalities in a particular aspect, such cues can be exploited for encouraging
distribution-invariance of extracted features. For instance, for extracting in-
variant representations in the face of acquisition-related DS, ideas from the
shape-appearance disentanglement literature [97]↑may be leveraged. Such
disentanglement is especially relevant as CNNs have been shown to have a
tendency to rely on texture-based representations [98]↑, while acquisition-
related DS robustness requires higher reliance of shape-based representa-
tions.
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A related DG approach is to encourage learning without dependence on dis-
tribution specific spurious correlations either by iteratively discarding highly
activated features on the training distribution data [99]↑or by employing causal
interventions [100]↑.

Data Augmentation
A related approach is to implicitly encourage distribution invariance by ex-
panding the training dataset to include plausible variations that may be en-
countered at test time. Methods vary in their procedures for generating sim-
ulated input-output pairs. These include applying heuristic transformations
on the available data [101]↑, exploiting knowledge about the data generation
process [102]↑, alternately searching for worst-case transformations under
the current task model and updating the task model to perform well on data
altered with such transformations [103]↑[104]↑, leveraging multiple training
distributions in order to simulate inputs from in-between distributions [105]↑,
using random-weighted convolutional filters [106]↑, using random-weighted
convolutional networks [100]↑, training with a fully-synthetic dataset of im-
ages representing a large degree of morphological, resolution and acquisition
parameter variation [107]↑, among many others.

Recent works suggest that the benefits of data augmentation can be explained
in a causality [108]↑framework. Specifically, data augmentation can be seen
as a tool for simulating interventional data [109]↑, [100]↑.

Meta Learning
Meta-learning based DG approaches [110]↑ [111]↑ [112]↑to simulate the DS prob-
lem during the training of the task model. This is done by having meta-train
and meta-test distributions during training and requiring that the gradient
updates for the meta-train distributions be such that the task loss is also min-
imized on the meta-test distributions. Like data augmentation, this approach
can also be seen to be implicitly encouraging the task to be learned via dis-
tribution invariant features.

Invariance / Equivariance to Transformation Groups
The three categories of DG methods described above are all primarily data-
driven. A model-based approach for achieving DS robustness is by build-
ing invariances or equivariances to specific transformations into the func-
tion class describing the input-output relationship. For instance, CNNs are
translation equivariant due to the convolution operator. Methods for achiev-
ing equivariance to further transformations, such as rotations have been pro-
posed [113]↑, [114]↑, [115]↑, [116]↑. Recently, Transformer-based architectures [117]↑,
[118]↑have empirically demonstrated improved DS robustness as compared to
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CNNs [119]↑.

Another approach for encouraging invariances (equivariances) to specific trans-
formations is via regularization losses that encourage such behaviour in the
local neighbourhood of the training dataset [120]↑, [121]↑. Specifically, such
methods encourage the directional derivative of the model to be small along
directions that correspond to known distribution shifts.

2.2.5 Test-Time Adaptation

DG methods described above substantially improve DS robustness in CNNs.
However, it is acknowledged in the literature that there still remains a gap to
the benchmark performance - that is, the performance achieved via super-
vised learning, using labelled images from the test distribution. Recognizing
this limitation, test-time adaptation (TTA) approaches argue for the need of
model adaptability to ensure robust performance in the face of unseen dis-
tribution shifts. With this motivation, TTA approaches use DG methods to
provide a fairly robust trained model, and further improve performance by
fine-tuning the model to specifically suit the test image at hand. Importantly,
the adaptation at test time is done using solely unlabelled test image, with-
out access to the training dataset. Works in this setting vary along two broad
axes - (a) which parameters are adapted at test time and (b) the loss function
that is used to drive the adaptation.

Which parameters to adapt at test time?
TTA methods typically modify only a small subset of model parameters at
test time. The main motivation for doing so is to retain benefits of the initial
supervised learning on labelled training distributions, and to rely on TTA to
provide relatively small corrections to account for the DS. Common choices
for the subset of model parameters that are adapted at test time include a
normalization module in the CNN’s initial layers [67]↑, [122]↑, batch normal-
ization parameters throughout the CNN [123]↑and a combination of shallow
adaptable modules at different layers in the CNN [68]↑. These choices are ei-
ther heuristically motivated or hand-crafted according to the DS at hand. For
instance, [67]↑argue that acquisition-related DS in medical imaging manifest
primarily as contrast changes, and therefore adapt a sub-network capable of
modeling such transformations. Recently, [124]↑propose a Bayesian approach
for TTA, where all model parameters are adapted at test time, but large devi-
ations from values learned on the training distribution are penalized.

How to adapt model parameters at test time?
In TTA, model parameters are adapted without access either to labels of the
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test image or to the training distribution dataset(s). Thus, an unsupervised
loss has to be defined, that depends only on the unlabelled test image(s) at
hand. Such a TTA loss should act as a good proxy for the supervised loss be-
tween the test image and its unavailable ground truth label. In particular, as
TTA is mainly achieved via gradient-based optimization, the gradients of the
TTA loss with respect to the adaptation parameters must well approximate
the corresponding gradients with respect to the supervised loss. Proposed
choices for the TTA loss include losses of a pre-trained self-supervised net-
works [67]↑, [68]↑, [122]↑, the entropy of predictions for the test image(s) [123]↑,
or task-specific self-supervised losses such as (i) k-space data consistency in
MRI reconstruction CNNs [125]↑ [126]↑, (ii) smoothness of predicted segmen-
tations [127]↑, (iii) cycle-consistency-based estimation of a correction filter to
transform low-resolution (LR) test images to resemble LR images seen dur-
ing training of super-resolution CNNs [128]↑or (iv) an estimator (Stein’s unbi-
ased risk estimator) of the true loss for known noise distributions in denois-
ing CNNs [129]↑.

Instead of using gradient-based optimization at test-time, [130]↑propose to
train via a meta-learning framework, a helper-model that takes test images
as inputs and outputs adapted task-model parameters. While previous meta-
learning-based DG approaches like [110]↑, [111]↑, [112]↑implicitly encourage learn-
ing via distribution-invariant features, this meta-learning based TTA approach
[130]↑allows the helper-model to output a different set of parameters partic-
ularly suited for the test image at hand. However, the helper model itself is
learned during training and fixed thereafter. Therefore, the performance of
this approaches relies on similarity between the test distributions seen dur-
ing training and the test distribution encountered at test time.

Adaptive Batch Normalization
Batch normalization [40]↑(BN) layers have attracted substantial attention in
the distribution shift literature, in multiple machine learning settings. [67]
adapt BN parameters in a transfer learning setting, using a small number of
labelled images from a test distribution. In the TTA setting, [131]↑, [132]↑propose
to use the statistics of the test image(s) in the BN layers of the task CNN. Here,
no learnable parameters of the task CNN are adapted; rather the mean and
variance stored in each batch normalization layer are replaced with those
of the given test image(s). Effectively, at each layer, this amounts to match-
ing the 1D Gaussian approximation of the marginal feature distribution of the
test image(s) with that of the entire training dataset. Such a strategy has been
shown to improve DS robustness in natural imaging datasets. On the other
hand, [133]↑point out that this method matches only the first two moments of
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the 1D distributions, and is thus prone to inaccuracies when the distributions
are substantially non-Gaussian.

TTA in Generative Models
Test-image-specific adaptation has also been considered in the context of
generative models. For instance, [134]↑propose to fine-tune density estima-
tion models (e.g. generative adversarial networks) for each test image, when
used in the Bayesian image enhancement framework. Further, [135]↑report
that CNNs trained from scratch to generate a given corrupted test image from
a random vector have a tendency to first generate the corresponding clean
image. This has been recently leveraged for dynamic cardiac MRI recon-
struction in [136]↑.

2.2.6 Source-Free Domain Adaptation

A closely related setting to TTA is that of source-free domain adaptation (SFDA)
[137]↑, [138]↑, [139]↑, [140]↑. TTA and SFDA differ in the number of test images
used for carrying out the model adaptation in the test distribution. The adap-
tation is done for each test image in TTA, while multiple images from the test
distribution are used simultaneously for model adaptation in SFDA. Apart
from this difference, both settings operate by answering the two questions
described in the previous sub-section - which parameters to adapt for the test
distribution, and how to drive such adaptation by accessing neither labels in
the test distribution nor the training dataset. While SFDA has the advantage
that multiple images from the test distribution may provide a regularization
effect on one another during adaptation, TTA may benefit from adapting pa-
rameters to get the best performance for each test image.

2.2.7 Post-Processing Methods

It has been suggested to post-process model predictions, to potentially re-
move errors due to DS in the inputs. In particular, for image segmentation,
such post-processing may be driven by a smoothness prior defined using
conditional random fields [141]↑, [142]↑, a prior based on denoising autoen-
coders [143]↑, or on generative adversarial networks [144]↑. While such post-
processing methods may improve plausibility of predictions, they lack a mech-
anism to ensure that the post-processed prediction is accurate for the given
input image.
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2.2.8 Unsupervised Learning

The DS problem exists because distributions of training and test images dif-
fer. One way to circumvent this problem entirely is to forgo a training step
altogether. Without this step, any reliance on distribution-specific signals
from a particular training distribution cannot arise. The most successful ap-
proaches in this category are based on probabilistic generative models [30]↑,
[145]↑, [146]↑. These methods rely on mechanistic models (Sec. 1.2) and pose
the problem in a Bayesian framework. For instance, for image segmenta-
tion, such methods infer the posterior probability of the unknown segmenta-
tion by specifying a prior model of the underlying tissue classes and a likeli-
hood model, potentially, describing the image formation process. A downside
of these approaches is that they have so far been largely restricted to prior
models encoding similarities in relatively small pixel neighbourhoods [30]↑,
[147]↑, [148]↑, [149]↑. Further, they are mainly used in neuroimaging applica-
tions where atlas-based approaches are reliable due to limited morphologi-
cal variation [150]↑, [151]↑. Recent works leverage a set of segmentations in or-
der to learn long-range spatial regularization priors through Markov random
fields with high-order clique potentials [152]↑, [153]↑as well as through varia-
tional auto-encoders [154]↑. Nevertheless, most of these methods involve de-
formable image registration as one of their pre-processing steps, thus making
it challenging to extend them to applications beyond neuroimaging.

2.3 Problems Related to Distribution Shift Robust-
ness

2.3.1 Out-of-distribution Detection

Out-of-Distribution (OOD) detection refers to flagging inputs derived from a
distribution that is shifted from a model’s training distribution. This enables
the model to acknowledge its inability to correctly process the given test in-
put. Such behaviour is more useful than confidently producing incorrect pre-
dictions.

On one hand, major causes of DS in medical imaging are largely known; thus,
the existence of such shifts in the input images is likely to be already known
when the predictions are made for test images. Nevertheless, OOD detection
may still be useful to detect to further shifts in the input distribution - for ex-
ample, due to imaging artifacts. Such detection can be potentially especially
useful in integrated acquisition-analysis systems.
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Here, we briefly summarize the main approaches proposed for the OOD de-
tection problem. Please refer to [155]↑for a detailed survey.

One of the main approaches of OOD detection methods is that of density es-
timation. Predominantly, such approaches learn a model of the training in-
put distribution, and flag test inputs in low density regions under this model
as OOD [156]↑. Alternatively, the learned generative model may be asked to
generate an image similar to the test image at hand; failure in doing so indi-
cates that the test image is OOD [157]↑. Methods vary in the type of model that
is chosen for the training input distribution. For instance, [158]↑fit Gaussian
distributions to the task CNN representations, [159]↑use normalizing flow-
based [160]↑generative models, [161]↑, [162]↑use energy-based unnormalized
probability models, while [163]↑use an ensemble of multiple generative mod-
els. [164]↑demonstrate that parametric density estimation models may as-
sign higher likelihood values to OOD samples than samples of the training
distribution. To circumvent this issue, [165]↑and [166]↑estimate low dimen-
sional marginal distributions of task-CNN projections non-parametrically, us-
ing kernel density estimation.

Other OOD approaches include usage of self-supervised tasks [167]↑, [168]↑,
learning OOD classifiers using example OOD inputs [169]↑, [170]↑, temperature
scaling of softmax outputs for tasks with categorical outputs [171]↑, among
others.

2.3.2 Model Performance Prediction

In the medical imaging literature, an alternative setting to OOD detection is
that of model performance prediction (MPP). Here, the goal is to estimate the
prediction accuracy of a trained model on test inputs, without access to the
corresponding ground truth labels. In other words, OOD detection refers to
detecting shifts in the input distribution, while MPP refers to detecting shifts
in either the output distribution or in the conditional distribution of the output
given an input.

The MPP setting has mostly been explored in the context of image segmenta-
tion. One strategy is to train a supervised segmentation prediction regressor
based on hand-crafted features from predicted segmentations [172]↑, [173]↑.
This idea was extended in [174]↑, where CNN was trained in a supervised
manner to predict segmentation accuracy. In a different approach known
as reverse classification accuracy prediction, [175]↑use the predicted labels
of a test image to train a new segmentation model, the accuracy of which
on labelled training examples is used as an estimate of the accuracy of the
test image’s predicted labels. Another MPP strategy is to obtain uncertainty

27

https://arxiv.org/pdf/2110.11334.pdf
https://arxiv.org/pdf/1806.04972.pdf
https://arxiv.org/pdf/2005.00031.pdf
https://proceedings.neurips.cc/paper/2018/file/abdeb6f575ac5c6676b747bca8d09cc2-Paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/Zisselman_Deep_Residual_Flow_for_Out_of_Distribution_Detection_CVPR_2020_paper.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9089305
http://proceedings.mlr.press/v48/zhai16.pdf
https://proceedings.neurips.cc/paper/2020/hash/f5496252609c43eb8a3d147ab9b9c006-Abstract.html
https://arxiv.org/pdf/1810.01392.pdf
https://arxiv.org/pdf/1810.09136.pdf
http://proceedings.mlr.press/v130/morningstar21a/morningstar21a.pdf
https://link.springer.com/chapter/10.1007/978-3-030-87735-4_9
https://arxiv.org/pdf/1906.12340.pdf
https://openreview.net/pdf?id=E5CpgfwHBoC
https://arxiv.org/pdf/1812.04606.pdf
https://arxiv.org/pdf/1711.09325.pdf
https://arxiv.org/pdf/1706.02690.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1640878
https://link.springer.com/content/pdf/10.1007/978-3-642-33415-3_65.pdf
https://ieeexplore.ieee.org/abstract/document/7805585
https://arxiv.org/abs/1702.03407


estimates, with the hypothesis that uncertain predictions are likely to be in-
correct [176]↑, [177]↑.

2.3.3 Adversarial Robustness

So far we have discussed degradation in model performance due to naturally
occurring shifts in the input distribution between training and test images.
Different from this, lack of adversarial robustness refers to the phenomenon
that performance degradation can be caused by specific, but imperceptible
manual changes in the input to a trained deep learning model. Methods for
determining such specific perturbations are known as adversarial attacks,
while those seeking to make models robust against such attacks are known
as adversarial defences. A large number of such attacks and defences have
been proposed in the computer vision literature [178]↑, as well as in the med-
ical imaging literature [179]↑. Further, [180]↑argue that lack of adversarial ro-
bustness creates peculiar fraud opportunities that need to be countered via
algorithmic as well as infrastructural defenses.
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Chapter 3

Datasets

We have developed three methods to tackle acquisition-related distribution
shifts in medical image analysis: (i) TL-BN: A transfer learning approach for
robust MRI segmentation (chapter 4), (ii) TTA-DAE: A test-time adaptation ap-
proach for robust MRI segmentation (chapter 5), and (iii) TTA-FoE: A task-
agnostic test-time adaptation approach for robust image analysis (chapter
6). All three methods were validated for the task of image segmentation. Our
task-agnostic method, TTA-FoE, was additionally evaluated for the task of
image registration as well. We describe the datasets used in our segmenta-
tion experiments in Sec. 3.1 and those used in our registration experiments
in Sec. 3.2.

Some of these datasets have been publicly available since many years, while
some other have been released in recent years. Consequently, different meth-
ods developed in the thesis were evaluated on different subsets of the de-
scribed datasets. The most recently developed method, TTA-FoE, was eval-
uated on the largest subset, consisting of data from 17 institutions. In that
chapter, we also present comparisons the two previously developed meth-
ods (TL-BN, TTA-DAE) for all the 17 datasets. However, several analysis and
ablation experiments were done for TL-BN or TTA-DAE on smaller number of
datasets. This information is provided in the corresponding chapters.

3.1 Datasets for Image segmentation

We considered five segmentation tasks - healthy structure segmentation
from four anatomies (prostate, heart, spine, brain), and abnormality segmen-
tation in one anatomy (brain). Table 3.1 lists the regions to be segmented for
images of different anatomies.
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3.1.1 Reasons for DS in the used Datasets

For each segmentation task, we used images acquired from multiple centers,
representing instances of acquisition-related DS. We treat images from each
center as samples from separate probability distributions. These distribu-
tions may differ due to the following reasons.

I. DS due to variations in population demographics
Table 3.2 lists the names of all the acquisition centers. For each segmentation
tasks, the acquisition centers are from different cities, and often from differ-
ent countries. This could result in potential populated-related distribution
shifts (DS), in addition to the acquisition-related DS emanating from scanner
and protocol differences.

II. Acquisition-related DS (hardware)
Table 3.3 summarizes the scanner-related differences in the datasets. In the
considered datasets, the centers use scanners of one of three vendors: Siemens,
Philips and General Electric (GE). Further, even within the same vendor, scan-
ner models and field strengths differ. Both these factors can result in hardware-
caused differences in the image statistics.

III. Acquisition-related DS (protocol parameters)
In several cases, there are variations in acquisition protocol parameters (e.g.
echo time, repetition time, flip angle, etc.) can be different across centers (e.g.
Table 3.4, Table 3.5). These variations further contribute to the DS between
centers.

IV. Acquisition-related DS (resolution)
Further, as shown in Table 3.3, the images for the same anatomy are often ac-

Anatomy # Labels Foreground labels
Prostate 2 Whole prostate gland

Heart 4
Left ventricle cavity, Right ventricle cavity,

Left ventricle myocardium
Spine 3 Spinal cord white matter, Spinal cord grey matter

Brain (Healthy) 15

Cerebellum gray matter, Cerebellum white matter,
Cerebral gray matter, Cerebral white matter,

Thalamus, Hippocampus, Amygdala, Ventricles, Caudate, Putamen,
Pallidum, Ventral diencephalon, Cerebrospinal fluid, Brain stem.

Brain (WMH) 2 White matter hyperintensities

Table 3.1: Regions to be segmented for different anatomies. The number of labels includes
all the listed foreground labels, plus one background label for all remaining pixels in the
image.
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quired with different in-plane and through-plane resolution at different cen-
ters. We re-sample the images to make their in-plane resolution consistent
across all centers for a particular anatomy. However, the re-sampling may
not necessarily resolve the differences in image statistics caused due to ac-
quisition at different resolutions. Thus, the resolution differences may also
contribute to the DS between centers.

Figures 3.1, 3.2, 3.3, 3.4 and 3.5 show example images from different datasets
for each anatomy. Visually, the DS manifests primarily as a contrast change.
Apart from the summaries provided in the Table 3.2 and Table 3.3, anatomy
specific additional information for the datasets is given in the following sub-
sections.

Dataset Center City Country Center ID
Prostate [181]↑[42]↑[182]↑

NCI-13 Radboud University Nijmegen Medical Centre Nijmegen Netherlands RUNMC
NCI-13 Boston Medical Center Boston USA BMC

PROMISE12 Haukeland University Hospital Bergen Norway HK
PROMISE12 Beth Israel Deaconess Medical Center Boston USA BIDMC
PROMISE12 University College London London England UCL
PROMISE12 Radboud University Nijmegen Medical Centre Nijmegen Netherlands RUNMC

USZ Universitaetspital Zuerich Zurich Switzerland USZ
Heart[183] ↑↑[43]↑[184]↑

M&Ms Cliınica Sagrada Familia Barcelona Spain CSF
M&Ms Universitaetsklinikum Hamburg-Eppendorf Hamburg Germany UHE
M&Ms Hospital Vall d’Hebron Barcelona Spain HVHD
ACDC University Hospital of Dijon Dijon France ACDC
RVSC Rouen University Hospital Rouen France RVSC

Spine [185]↑

SCGM University College London London England UCL
SCGM Polytechnique Montreal Montreal Canada PM
SCGM Universitaetspital Zuerich Zurich Switzerland USZ
SCGM Vanderbilt University Nashville USA VU

Brain (Healthy) [186]↑[187]↑↑↑↑[188]↑↑[IXI]↑

HCP Washington University St. Louis USA HCP
ABIDE The Adolphs Lab Pasadena USA AC
ABIDE Stanford University Stanford USA AS
ADNI Multiple scanners ↑ Multiple centers ↑ ADNI

IXI Multiple scanners ↑ London England IXI
Brain (White Matter Hyperintensities) [189]↑↑

WMH-17 University Medical Center Utrecht Netherlands UMC
WMH-17 National University Health System Singapore Singapore NUHS
WMH-17 VU University Medical Centre Amsterdam Netherlands VU

Table 3.2: Acquisition institutions of segmentation datasets.
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3.1.2 Prostate

Number of Institutions: We used transverse T2-weighted MR images from
two publicly available datasets: (i) National Cancer Institute (NCI-13) [181]↑,
(ii) PROMISE12 [42]↑and one private dataset: (iii) University hospital in Zurich
(USZ) [182]↑. The NCI and PROMISE12 datasets consist of images from dif-

Dataset Center ID Vendor Scanner Field (T)
In-plane

Resolution (mm2)
Through-plane

Resolution (mm)
Prostate [181]↑[42]↑[182]↑

NCI-13 RUNMC Siemens TIM 3 0.5 to 0.75 4.0

NCI-13 BMC Philips Achieva 1.5 0.4 3.0

Promise12 HK Siemens INA 1.5 0.625 3.6

Promise12 BIDMC GE INA 3 0.25 2.2 to 3.0

Promise12 UCL Siemens INA 1.5, 3 0.325 to 0.625 3.0 to 3.6

Promise12 RUNMC Siemens INA 3 0.5 to 0.75 3.6 to 4.0

Private USZ Siemens Skyra 3 0.5 to 0.75 3.6 to 4.0

Heart [183]↑↑[43]↑[184]↑

M&Ms CSF Philips Achieva 1.5 1.2 9.9

M&Ms UHE Philips Achieva 1.5 1.45 9.9

M&Ms HVDH Siemens Magnetom Avanto 1.5 1.32 9.2

ACDC ACDC Siemens Trio Tim 1.5, 3 1.34 to 1.68 5.0 to 10.0

RVSC RVSC Siemens Symphony Tim 1.5 0.75 to 1.6 7

Spine [185]↑

SCGM UCL Philips Achieva 3 0.5 5.0

SCGM PM Siemens TIM Trio 3 0.5 5.0

SCGM USZ Siemens Skyra 3 0.5 2.5

SCGM VU Philips Achieva 3 0.65 5.0

Brain T1w (Healthy structures) [186]↑[187]↑↑↑↑[188]↑↑

HCP HCP-T1 Siemens Skyra∗ 3 0.7 0.7

ADNI ADNI-T1 Multiple scanners ↑ 1.5, 3 1.0 1.0

ABIDE AC-T1 Siemens Magnetom TrioTim 3 1.0 1.0

ABIDE AS-T1 GE SIGNA 3 0.859 ∗ 1.5 0.859

Brain T2w (Healthy structures) [186]↑[IXI]↑

HCP HCP-T2 Siemens Skyra∗ 3 0.7 0.7

IXI IXI-T2 Multiple scanners ↑ 1.5 1.75 2.0

Brain (White Matter Hyperintensities) [189]↑↑

WMH-17 UMC Philips Achieva 3 0.96 ∗ 0.95 3.0

WMH-17 NUHS Siemens TrioTim 3 1.0 3.0

WMH-17 VU GE Signa HDxt 3 0.98 1.2

WMH-17 VU GE Signa HDxt 1.5 1.21 1.3

WMH-17 VU Philips Ingenuity 3 1.04 0.56

Table 3.3: Details of scanner and resolution differences of segmentation datasets. INA
stands for ’Information not available’. ∗ The hardware of the standard commercial Skyra
scanner was customized [186]↑.
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ferent acquisition centers. Images from the center RUNMC are included in
both the NCI and PROMISE12 datasets, with NCI-13 providing a higher num-
ber of images from this center. Therefore, we ignore this center’s data from
the PROMISE12 dataset. Thus, we have 6 distributions in the prostate seg-
mentation experiments.

Acquisition-related remarks about particular datasets: The NCI-13-RUNMC
and PROMISE12-UCL images were acquired without endo-rectal coils, while
the rest of the datasets were acquired with them [190]↑. For the USZ dataset,
the acquisition sequence parameters were in accordance with the interna-
tional prostate MR guidelines [191]↑. For the T2-weighted images considered
in our experiments, a turbo spin echo sequence was followed, with echo time
(TE) set to 93ms and repetition time (TR) set to 3500ms. For other datasets,
the acquisition protocol parameters are not summarized in the correspond-
ing papers, and may differ across images within the same dataset.

Label information: For the NCI-13 and USZ datasets, expert annotations are
available for the central gland (CG) and peripheral zone (PZ). For the PROMISE12
dataset, expert annotations are only available for the whole prostate gland
(CG + PZ). Fig. 3.1 shows example images from different prostate segmenta-
tion datasets.

3.1.3 Heart

Number of Institutions: For cardiac segmentation, we used the publicly avail-
able training data from the multi-centre, multi-vendor and multi-disease (M&Ms)
cardiac segmentation challenge [183]↑↑. This consists of labelled images from
3 centers. Additionally, we also used the Automated Cardiac Diagnosis Chal-
lenge (ACDC) dataset [43]↑and the right ventricle segmentation challenge (RVSC)
dataset [184]↑.

Acquisition-related remarks about particular datasets: The images are of
healthy individuals as well as subjects with different cardiovascular diseases
such as hypertrophic cardiomyopathy, dilated cardiomyopathy, coronary heart
disease, abnormal right ventricle, myocarditis and ischemic cardiomyopa-
thy.

Label information: For the M&Ms and ACDC datasets, expert annotations are
available for 3 regions: the left and right ventricle (LV and RV, respectively)
cavities and the LV myocardium. Further, these annotations are provided at
two time-points in the 4D cine images - at the end-diastolic (ED) and end-
systolic (ES) phases. We consider each 3D volume as one image - thus, we
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have two 2 images per subject. For the RVSC dataset, expert annotations are
provided for RV cavity and the RV myocardium. Fig. 3.2 shows example im-
ages from different heart segmentation datasets.

3.1.4 Spine

Number of Institutions: We used data from the spinal cord grey matter seg-
mentation challenge [185]↑, which provides multi-centre and multi-vendor
images acquired with distinct 3D gradient-echo sequences. Images are ac-
quired from 4 centers.

Acquisition-related remarks about particular datasets: The details of the ac-
quisition differences between the datasets are summarized in Table 3.4. Apart
from variations in the time parameters, two out of the four datasets were
acquired with accelerated MRI techniques. Potentially, the different recon-
struction algorithms can act as additional DS sources.

Center ID Pulse sequence TE (ms) TR (ms) Flip angle (◦) Acceleration
UCL 3D gradient echo 5 23 7 -
PM 2D spoiled gradient multi-echo 5.41, 12.56, 19.16∗ 539 35 2 (GRAPPA) [192]↑

USZ 3D multi-echo gradient-echo 19 44 11 -
VU 3D multi-echo gradient-echo 7.2, 16.1, 25∗ 700 28 2 (SENSE) [193]↑

Table 3.4: Acquisition protocol details for the spine datasets. ∗ Averaged offline to create a
single image with increased signal-to-noise ratio.

Label information: The regions to be segmented are the grey matter and white
matter in the spinal cord. Fig. 3.3 shows example images from different spine
segmentation datasets.

3.1.5 Brain (Healthy structure segmentation)

Number of Institutions: For brain segmentation, we used images from 4 pub-
licly available datasets: Human Connectome Project (HCP) [186]↑, Alzheimers
Disease Neuroimaging Initiative (ADNI) [188]↑↑, Information eXtraction from
Images (IXI) ↑and Autism Brain Imaging Data Exchange (ABIDE) [187]. In the
HCP dataset, both T1-weighted (HCP-T1) and T2-weighted (HCP-T2) images
are available for each subject. We consider these images are belonging to
two different distributions. The ABIDE dataset consists of T1-weighted im-
ages from several imaging sites. Of these, we randomly select two sites -
California institute of technology (AC-T1) and Stanford university (AS-T1).

Label information: While providing great imaging data in large quantities,
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unfortunately, these datasets do not provide manual segmentation labels.
Moreover, we are not aware of publicly available brain MRI datasets in large
quantities with manual segmentations of multiple subcortical structures. In
this situation, we employ the widely used FreeSurfer [194]↑tool to generate
pseudo ground truth segmentations for the healthy brain structures in all
the used datasets. FreeSurfer is a successful segmentation tool, that works
robustly across scanner and protocol variations. However, it has the down-
side of being excessively time expensive, taking as much as 10 hours on a
CPU for segmenting one 3D MR image, and specific to the brain. FreeSurfer
provides a large number of segmentation labels. We combine these labels
into the following 15 regions: background, cerebellum gray matter, cerebel-
lum white matter, cerebral gray matter, cerebral white matter, thalamus, hip-
pocampus, amygdala, ventricles, caudate, putamen, pallidum, ventral dien-
cephalon, cerebrospinal fluid and brain stem. Fig. 3.4 shows example images
from different brain healthy tissue segmentation datasets.

3.1.6 Brain (Cerebral White Matter Hyper-intensities)

Number of Institutions: We used data from the White Matter Hyper-intensities
(WMH) segmentation challenge[189]↑↑. It consists of data from three centers.
T1-weighted and FLAIR (fluid-attenuated inversion recovery) images are pro-
vided from each center.

Acquisition-related remarks about particular datasets: In our experiments,
we use the FLAIR images only. Images in the UMC and NUHS datasets were
acquired with a 2D FLAIR sequence in the transversal orientation, while those
in the VU datasets were acquired with 3D FLAIR sequences in sagittal orien-
tation. The details of the acquisition differences between the datasets which
are summarized in Table 3.5. In order to restrict the considered distribution
shift, we conducted experiments with the two datasets (UMC and NUHS) with
2D sequences only.

Center ID TE (ms) TR (ms) TI (ms)
UMC 125 11000 2800

NUHS 82 9000 2500

VU (3T, GE) 126 8000 2340

VU (3T, Philips) 279 4800 1650

VU (1.5T, GE) 117 6500 1987

Table 3.5: Acquisition protocol details for the WMH datasets.

Label information: White matter hyperintense (WMH) regions of presumed
vascular origin [195]↑are to be segmented. Fig. 3.5 shows example images
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from different brain white matter hyperintensities segmentation datasets.

Figure 3.1: Example images and ground truth segmentations from different
datasets for prostate segmentation. For the NCI-13 (RUNMC and BMC) and
USZ datasets, expert annotations are available for the central gland (light
blue) and peripheral zone (brown). For the PROMISE12 dataset (HK, BIDMC
and UCL), expert annotations are only available for the whole prostate gland
(brown), which includes the central as well as the peripheral zones.

Figure 3.2: Example images and ground truth segmentations from different
datasets for heart segmentation. For the ACDC and M&Ms (CSF, UHE, HVHD)
datasets, expert annotations are available for 3 regions: the left and right ven-
tricle (LV and RV, respectively) cavities and the LV myocardium. For the RVSC
dataset, expert annotations of only the RV cavity is shown, as this is only
common region with the other datasets.
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Figure 3.3: Example images and ground truth segmentations from different
datasets for spine segmentation.

Figure 3.4: Example images and ground truth segmentations from different
datasets for brain healthy tissue segmentation.

Figure 3.5: Example images and ground truth segmentations from different
datasets for brain white matter hyperintensities segmentation.
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3.2 Datasets for Image registration

We use images from T1w images from three datasets: HCP [186]↑, ABIDE (AS-
T1) [187]↑↑↑↑and OASIS [196]↑. The images are registered with the atlas provided
by [197]↑↑. Example slices of the subject images and the atlas are shown in
Fig. 3.6.

Figure 3.6: From left to right: a 2D slice from the atlas and example slices from
three datasets: HCP, ABIDE-STANFORD (AS) and OASIS.

38

https://www.sciencedirect.com/science/article/pii/S1053811913005351
https://pubmed.ncbi.nlm.nih.gov/23774715/
http://fcon_1000.projects.nitrc.org/indi/abide/scan_params/Caltech/anat.pdf
http://fcon_1000.projects.nitrc.org/indi/abide/scan_params/Stanford/anat.pdf
http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html
https://direct.mit.edu/jocn/article-abstract/19/9/1498/4427/
https://www.sciencedirect.com/science/article/pii/S1053811910010062
http://nist.mni.mcgill.ca/category/atlas/


Chapter 4

A Transfer Learning Approach for
Robust Medical Image
Segmentation

This chapter is based on the publication "A lifelong learning approach to brain
MR segmentation across scanners and protocols." [66]↑. Here, we address the
lack of robustness of convolutional neural networks (CNNs) to acquisition-
related distribution shifts (DS) in a transfer learning setting.

4.1 Introduction

The Transfer Learning Setting
As described in Sec. 2.2, transfer learning refers to fine-tuning parameters of
a trained model using a few labelled sampled from the test distribution.

Batch Normalization for Tackling Distribution Shifts
In the computer vision literature, several adaptations of batch normalization
(BN) layers [40]↑have been suggested for domain adaptation [198]↑, [199]↑and
multi-domain learning [200]↑, [201]↑for object recognition using CNNs. The
main idea in these works is to employ BN layers for distribution-specific scal-
ing to account for DS, while sharing the bulk of the CNN parameters to lever-
age the similarity between the distributions.

Summary of the Proposed Method
In this work, we extend such approaches for segmentation across MRI scan-
ning protocols. Our solution is a single CNN with shared convolutional filters
and distribution-specific BN layers, which can be tuned to new distributions
with 4 labelled volumetric images (2 for training and 2 for validation). We note
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that notwithstanding variations in image statistics due to inter-scanner dif-
ferences, a segmentation network would be confronted with images of the
same organ, acquired with the same imaging modality. Thus, it is reason-
able to postulate common characteristics between the distributions and con-
sequently, shared support in an appropriate representation space. Follow-
ing [200]↑, we hypothesize that such a representation space can be found by
using distribution-agnostic convolutional filters and that the inter-domain
differences can be handled by appropriate normalization via distribution-
specific BN modules. On one hand, the proposed approach is in line with pre-
vious domain adaptation works [199]↑. On the other hand, it also embodies the
normalization idea of conventional proposals for dealing with inter-scanner
variations [202]↑, [203]↑, [204]↑. Furthermore, the proposed approach is also
attractive from the perspective of lifelong learning [81]↑as well - performance
improvement for test distributions is achieved, while retaining performance
on the older domains whose training data may no longer be available.

Evaluation
The proposed method is evaluated for brain structure segmentation in MR
images. Experiments demonstrate that the method largely closes the gap to
the benchmark, which is training a dedicated CNN for each input distribu-
tion.

4.2 Background

4.2.1 Batch Normalization

BN was introduced in [40]↑to enable faster training of deep neural networks
by preventing saturated gradients. This is achieved via normalization of in-
puts before each non-linear activation layer. In a BN layer, each batch xB is
normalized as shown in Eqn. 4.1.

BN(xB) = γ × xB − µB√
σ2
B + ϵ

+ β (4.1)

During training, µB and σ2
B are the mean and variance of xB . At test time,

they are the estimated population mean and variance, as approximated by
a moving average over training batches. γ, β are learnable parameters that
allow the network to undo the normalization, if required. ϵ is a small additive
constant in the denominator for numerical stability.
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Figure 4.1: Representative CNN architecture for image segmentation. In the
proposed method, the convolutional layers (light blue) are shared across dis-
tributions, while the batch normalization layers (yellow) are specific to each
distribution.

4.2.2 Common CNN Architectures for Image Segmentation

A representative CNN architecture for image segmentation is shown in Fig. 4.1.
It is based on the widely used U-Net architecture [205]↑. The key idea of the
proposed method is to capture distribution-agnostic semantic information
via shared convolutional layers, and distribution-specific image statistics in
BN layers. Therefore, the method requires BN layers (Sec. 4.2.1) to be present
in the network architecture. In Fig. 4.1, a BN layer exists between every con-
volutional layer (except the last one) and the application of non-linear acti-
vation.

We emphasize, however, that the proposed method is agnostic to the specifics
of the chosen CNN architecture. In principle, it should be compatible with re-
cent architectural improvements, including dense connections [206]↑, atten-
tion modules [207]↑, transformers [118]↑, among others.
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4.3 Method

4.3.1 Splitting Parameters into Distribution-Agnostic and Distribution-
Specific

According to the notation introduced in Sec. 2.1, the segmentation CNN is TΘ.
It maps the input imagesX to predicted segmentations Y . Let us split the set
of all learnable parameters, Θ, into two subsets: (1) distribution-agnostic con-
volutional parameters, θ, and (2) distribution-specific batch normalization pa-
rameters, ϕ. Specifically, ϕ includes µB , σ2

B , γ and β of all the BN layers.

4.3.2 Supervised Learning on Training Distributions

We assume access to labelled training datasets DL
tr,1,DL

tr,2 · · · DL
tr,K from K

training distributions. Let ϕk be the distribution-specific parameters of train-
ing distribution k. During training, each batch consists of data from only one
distribution, with all training distributions covered successively. In a training
iteration when the batch consists of data from distribution k, the parameters
θ and ϕk are updated via stochastic gradient descent, while the parameters
ϕk′ for k′ ̸= k are frozen.

4.3.3 Estimating the Closest Training Distribution to the Given
Test Distribution

Consider a test distribution K + 1 with a small labelled dataset DL
ts,K+1. We

split this small dataset into two halves: one for training, DL
tr,K+1 and the other

for validation, DL
vl,K+1. We evaluate the performance of TΘ on DL

tr,K+1, using
each of the subsets ϕk , k = 1, 2, · · ·K one at a time. If ϕk∗ leads to the best
accuracy, we infer that among the already learned distributions, distribution
k∗ is the closest to given test distribution K + 1.

4.3.4 Transfer Learning on the Given Test Distribution

Keeping shared parameters θ fixed, an additional set of BN parameters ϕK+1

is initialized with ϕk∗ and fine-tuned using DL
tr,K+1 with standard stochastic

gradient descent minimization. The optimization is stopped when the per-
formance on the validation set DL

vl,K+1 stops improving. Now, the network
TΘ can segment data from all distributions k = 1, 2, . . . K,K + 1 using their
respective distribution-specific parameters, ϕk.
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4.3.5 Favourable Properties for Lifelong Learning

In the spirit of lifelong learning, the proposed approach allows learning on
new distributions with only a few labelled examples. This is enabled by uti-
lizing the knowledge obtained from learning on the old distributions, in the
form of the trained distribution-agnostic parameters.

The fact that the number of distribution-specific parameters is small comes
with two advantages. One, that they can be tuned for a new distribution by
training with a few labelled images quickly and with minimal risk of over-
fitting. Second, they can be saved for each distribution without significant
memory footprint.

Finally, catastrophic forgetting [82]↑is a key problem in lifelong learning. It
refers to drastic degradation in performance on previously learned distribu-
tions, when the model is adapted for shifted distributions. In the proposed
approach, this problem does not arise by construction, because of the explicit
separate modeling of shared and private parameters.

4.4 Experiments and Results

4.4.1 Datasets

We use images from 4 publicly available datasets: Human Connectome Project
(HCP) [186]↑, Alzheimers Disease Neuroimaging Initiative (ADNI) [188]↑↑, In-
formation eXtraction from Images (IXI)↑ and Autism Brain Imaging Data Ex-
change (ABIDE) [187]. HCP provides both T1-weighted and T2-weighted im-
ages. ADNI consists of T1-weighted images. From the ABIDE dataset, we use
T1-weighted images from the center AC. Finally, we use T2-weighted images
from the IXI dataset. (Please refer to Sec. 3.1 for a detailed description of the
differences between these datasets).

We treat each dataset as a distinct distribution. The IDs assigned to each dis-
tribution and the number of images available in each dataset are shown in
Table 4.1. We treat distributions k = 1, 2, 3 as initially available training distri-
butions, and k = 4, 5 as new test distributions that are encountered after the
initial training. As mentioned in Sec. 2.1, Ntr and Nts indicate the number of
training and test images. In this chapter, we introduce an additional variable,
N scratch
tr ; its meaning is explained in Sec. 4.4.4.

As mentioned Sec. 3.1, these datasets do not provide manual annotations;
the ground truth annotations are instead generated using FreeSurfer [194]↑.
FreeSurfer takes approximately 10 hours to generate the segmentation for

43

https://www.sciencedirect.com/science/article/pii/S1364661399012942
https://www.sciencedirect.com/science/article/pii/S1053811913005351
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2376747/
http://adni.loni.usc.edu/
http://brain-development.org/ixi-dataset/
https://pubmed.ncbi.nlm.nih.gov/22248573/


one volumetric image. Due to this constraint, we generated segmentations
for roughly 50 images for HCP and ADNI, even though those datasets con-
tain a much higher number of images. Nevertheless, we find that even with
around 30 images, a segmentation CNN can be trained to provide satisfactory
performance.

Distribution ID k Train / Test Center ID MR Modality Ntr Nscratch
tr Nts

1 Train HCP-T1 T1w 30 30 20
2 Train HCP-T2 T2w 30 30 20
3 Train ADNI-T1 T1w 30 30 20
4 Test ABIDE-AC-T1 T1w 4 30 20
5 Test IXI-T2 T2w 4 30 20

Table 4.1: Datasets for evaluation of the proposed transfer learning method.

4.4.2 Pre-processing

Image normalization
For each image volume, the intensities are normalized by dividing by their
98th percentile.

No other pre-processing steps were carried out for the experiments done in
this project. Later, we realized that the extent of distribution-specific effects
can be reduced by using a more extensive pre-processing pipeline. Thus, for
later projects, we additionally included steps such as bias field correction,
skull stripping (for brain imaging datasets) and spatial resolution matching.
Please see Sec. 5.4.2 and Sec. 6.4.2 for more details.

4.4.3 Common Implementation Details for all Experiments

Network architecture
While the domain-specific BN layers can be incorporated in any standard
CNN, we work with the widely used U-Net [205] architecture with minor al-
terations. Namely, our network has a reduced depth with three max-pooling
layers and a reduced number of kernels: 32,64,128,256 in the convolutional
blocks on the contracting path and 128,64,32 on the upscaling path. Also,
bilinear interpolation is preferred to deconvolutional layers for upscaling in
view of potential checkerboard artifacts [208].

Training details
The network is trained to minimize the dice loss [209] to reduce sensitivity
to imbalanced classes. The initial network trains in about 6 hours, while the
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domain-specific BN modules can be updated for a new domain in about 1 hour,
on a Nvidia Titan Xp GPU.

Evaluation Metric
Evaluation of segmentation accuracy is done via on Dice score, averaged over
all foreground labels and over Nts volumetric images from the appropriate
distribution (see Table 4.1).

4.4.4 List of Experiments and Specific Implementation Details

(I) Baseline and Benchmark
For each distribution, we train an independent segmentation CNN, using a
dataset of that distribution withN scratch

tr labelled images. For the training dis-
tributions (k = 1, 2, 3), the accuracy provided by the independent networks
serves as a baseline that the other CNNs with shared parameters must pre-
serve. For the test distributions distributions (k = 4, 5), the performance of the
independent networks is the benchmark that we seek to achieve via trans-
fer learning. For transfer learning, we use much fewer labelled samples (Ntr)
from the test distributions, and using the knowledge of the previously learned
distributions via the fixed shared parameters, θ.

(II) Transfer Learning by Adapting ϕ
We implement the proposed transfer learning approach in three steps: First,
we jointly train a CNN on training distributions (k = 1, 2, 3) with shared convo-
lutional parameters, θ, and distribution-specific batch normalization parame-
ters, ϕ. Second, given a new test distribution, we determine the closest train-
ing distribution, as described in Sec 4.3.3. Finally, the distribution-specific
parameters ϕ are initialized as those of the closest training distribution, and
fine-tuned for the test distribution, as described in Sec 4.3.4.

(III) Transfer Learning by Adapting ϕ, θ
In order to analyze the importance of the parameter splitting proposed in this
work, we investigate what happens if all the CNN parameters are updated for
each new test distribution. To test this, we first jointly train a CNN, with all
parameters shared, including those of the BN layers. In contrast to the train-
ing regime of described in Sec. 4.3.2, each training batch in this experiment
contains randomly chosen images from all training distributions. This en-
sures that the shared BN parameters can be tuned well for all training distri-
butions. For test distributions, we check if histogram equalization [210]↑can
ensure good performance with the shared CNN. Finally, we check if perfor-
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mance improvement on the test distributions can be obtained if all the CNN
parameters (θ, ϕ) are fine-tuned with Ntr images of the new distribution. In
this setting, we also check if the updated parameters can retain performance
on the initial training distributions.

4.4.5 Results

(I) Baseline and Benchmark
Quantitative results of baseline and benchmark experiments are shown in
top five rows of Table 4.2. Along with the average Dice score over all 14 fore-
ground labels, individual Dice scores of some important tissues are shown
as well. It can been observed that using labelled datasets from each distri-
bution, an independent CNN can provide highly accurate results for distribu-
tions, k = 1, 2, 3, 4. For k = 5, the segmentation performance of the individual
CNN is substantially lower than the other distributions. This may indicate
inherent segmentation ambiguity in this dataset.

Train θ ϕ Test Thal Hipp Amyg Ventr Caud Puta Pall AVG.

Baseline and Benchmark

1 θ1 ϕ1 1 0.92 0.86 0.85 0.90 0.90 0.89 0.75 0.87
2 θ2 ϕ2 2 0.91 0.84 0.84 0.89 0.89 0.88 0.74 0.85
3 θ3 ϕ3 3 0.91 0.87 0.81 0.94 0.86 0.88 0.85 0.88
4 θ4 ϕ4 4 0.92 0.88 0.85 0.93 0.91 0.90 0.85 0.89
5 θ5 ϕ5 5 0.88 0.79 0.77 0.80 0.79 0.82 0.79 0.81

Joint Learning of Distributions 1, 2, 3 with Distribution-Specific BN Parameters

1, 2, 3 θ123 ϕ1 1 0.91 0.85 0.84 0.89 0.89 0.88 0.73 0.86
1, 2, 3 θ123 ϕ2 2 0.91 0.85 0.84 0.89 0.88 0.87 0.75 0.86
1, 2, 3 θ123 ϕ3 3 0.91 0.87 0.82 0.94 0.87 0.88 0.85 0.88

Transfer Learning by Adapting ϕ for Distribution 4

1, 2, 3 θ123 ϕ1 4 0.62 0.29 0.22 0.17 0.68 0.58 0.46 0.43
1, 2, 3 θ123 ϕ2 4 0.16 0.00 0.00 0.00 0.04 0.02 0.00 0.03
1, 2, 3 θ123 ϕ3 4 0.72 0.27 0.31 0.55 0.57 0.52 0.30 0.46
1, 2, 3 θ123 ϕ3→4 4 0.88 0.83 0.77 0.91 0.88 0.85 0.77 0.84

Transfer Learning by Adapting ϕ for Distribution 5

1, 2, 3 θ123 ϕ1 5 0.00 0.02 0.06 0.01 0.00 0.00 0.00 0.01
1, 2, 3 θ123 ϕ2 5 0.35 0.12 0.27 0.23 0.41 0.28 0.37 0.29
1, 2, 3 θ123 ϕ3 5 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.01
1, 2, 3 θ123 ϕ2→5 5 0.77 0.69 0.69 0.76 0.67 0.71 0.71 0.72

Table 4.2: TL-BN Quantitative Results (DICE). As summarized in Table 4.1, the
distribution IDs 1, 2, 3, 4 and 5 stand for HCP-T1, HCP-T2, ADNI-T1, ABIDE-AC-
T1 and IXI-T2, respectively.
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(II) Transfer Learning by Adapting ϕ
Quantitative results of the proposed method are shown in the lower 11 rows
of Table 4.2. Firstly, it can be observed that a joint CNN trained with shared
convolutional parameters, but shared BN parameters provides the same per-
formance for the training distributions k = 1, 2, 3 as the independent CNNs
for each distribution.

For a new distribution k = 4, using the BN parameters ϕ3 leads to the best
performance. Thus, we infer that the training distribution k = 3 is the closest
to k = 4. Starting with ϕ3 and fine-tuning the BN parameters for k = 4, we
find that the Dice scores for all the structures improve dramatically and are
comparable to the benchmark performance of independent CNN trained ex-
clusively for k = 4. Furthermore, as the original ϕk for k=1,2,3 are saved, the
performance on the training distributions (k = 1, 2, 3) is identically preserved
even after the transfer learning procedure. Similar results can be seen for the
other new distribution, k = 5. In this case, the training distribution k = 2 is
the closest to k = 5.

The improvement in the segmentations for new distributions after fine-tuning
the BN parameters can also be observed qualitatively in Fig. 4.2.

(III) Transfer Learning by Adapting ϕ, θ
Quantitative results of this analysis experiment are shown in Table 4.3. First,
we observe that even with all shared parameters, a single CNN can learn to
segment images of multiple distributions, provided sufficient training data is
available from all the distributions at once. However, its performance severely
degrades for unseen distributions.

Histogram equalization (denoted by HE) to the closest distribution is unable
to improve performance significantly. As well, fine-tuning all the parame-
ters for the test distribution causes the CNN to catastrophically forget [82]↑the
learning of the training distributions - that is, the performance on the train-
ing distributions severely degrades.

4.5 Discussion

In this chapter, we presented a transfer learning approach for improving ro-
bustness of a segmentation CNN to acquisition-related distribution shifts in
medical imaging. The proposed method enables a segmentation CNN to be
trained on an initial set of scanners and imaging protocols, and further adapted
to new scanners or protocols with only a few labelled images and without de-
grading performance on the previous scanners. This was achieved by learn-
ing batch normalization parameters for each scanner, while sharing the con-
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Train θ ϕ Test Thal Hipp Amyg Ventr Caud Puta Pall AVG.

Joint Learning of Distributions 1, 2, 3 with no Distribution-Specific Parameters

1, 2, 3 θ123 ϕ123 1 0.91 0.85 0.82 0.89 0.88 0.88 0.75 0.85
1, 2, 3 θ123 ϕ123 1 0.89 0.84 0.82 0.88 0.86 0.86 0.70 0.83
1, 2, 3 θ123 ϕ123 1 0.91 0.85 0.79 0.94 0.86 0.87 0.83 0.86

Transfer Learning by Adapting θ, ϕ for Distribution 4

1, 2, 3 θ123 ϕ123 4 0.75 0.25 0.06 0.79 0.43 0.32 0.07 0.38
1, 2, 3 θ123 ϕ123 4 (HE) 0.64 0.43 0.18 0.75 0.63 0.58 0.30 0.50
1, 2, 3 θ123→4 ϕ123→4 4 0.91 0.86 0.74 0.92 0.89 0.86 0.79 0.85

Effect of Transfer Learning on Initial Training Distributions

1, 2, 3 θ123→4 ϕ123→4 1 0.87 0.81 0.77 0.87 0.86 0.72 0.67 0.80
1, 2, 3 θ123→4 ϕ123→4 2 0.67 0.42 0.51 0.11 0.64 0.40 0.41 0.45
1, 2, 3 θ123→4 ϕ123→4 3 0.80 0.76 0.65 0.75 0.73 0.72 0.77 0.74

Transfer Learning by Adapting θ, ϕ for Distribution 5

1, 2, 3 θ123 ϕ123 5 0.42 0.18 0.18 0.44 0.27 0.20 0.03 0.24
1, 2, 3 θ123 ϕ123 5 (HE) 0.29 0.14 0.16 0.44 0.26 0.29 0.01 0.23
1, 2, 3 θ123→5 ϕ123→5 5 0.86 0.78 0.76 0.80 0.76 0.80 0.74 0.79

Effect of Transfer Learning on Initial Training Distributions

1, 2, 3 θ123→5 ϕ123→5 1 0.27 0.02 0.17 0.00 0.05 0.00 0.00 0.08
1, 2, 3 θ123→5 ϕ123→5 2 0.57 0.57 0.56 0.74 0.66 0.52 0.53 0.59
1, 2, 3 θ123→5 ϕ123→5 3 0.15 0.03 0.16 0.01 0.11 0.04 0.00 0.07

Table 4.3: TL-BN Analysis Experiments (DICE). HE stands for histogram
equalization.

a b c d e

Figure 4.2: Qualitative results: (a) images from test distributions k, segmenta-
tions predicted by CNNs with parameters (b) θ123, ϕk∗ (baseline), (c) θ123, ϕk∗→k

(adapted via the proposed transfer learning), (d) θk , ϕk (benchmark) and (e)
ground truth annotations, with {k, k∗} as {4, 3} (top) and {5, 2} (bottom).
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volutional filters between all scanners. The method was evaluated on brain
imaging datasets acquired from 5 combinations of scanners and imaging
protocols.

While showing promising performance, the proposed method has the con-
straint of requiring an annotated dataset in the test distribution. In further
chapters, we develop methods to alleviate this requirement. Secondly, the
choice of adaptation parameters in this chapter was heuristically motivated.
We improve upon this choice in the following chapters by proposing differ-
ent adaptation subsets which are motivated by the domain knowledge of the
causes of acquisition-related distribution shifts.
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Chapter 5

A Test-Time Adaptation Approach
for Robust Medical Image
Segmentation

This chapter is based on the publication "Test-time adaptable neural net-
works for robust medical image segmentation." [67]↑. In this work, we tackle
the lack of robustness of convolutional neural networks (CNNs) to acquisition-
related distribution shifts (DS) in a test-time adaptation (TTA) setting. In con-
trast to transfer learning (chapter 4), TTA proposes to carry out model adap-
tation without requiring any labelled images from the test distribution.

5.1 Introduction

The TTA Setting
Standard supervised machine learning operates in a training-testing binary.
That is, a model is first trained in a supervised manner, using labelled data
from a training distribution. The model parameters are fixed thereafter, and
directly used to make predictions for inputs from a test distribution. This
leads to performance drop in the presence of DS. TTA deviates from such a
strict training-testing demarcation. It argues that in the absence of knowl-
edge about the shifted test distribution during training, it may be necessary
to introduce some adaptability into the model. This can potentially enable the
model to deal with images from the shifted distribution (for e.g., arising from
new scanners and / or protocols). Thus, instead of fixing the model parame-
ters after supervised learning on the training distribution, they are adapted to
suit each test image. The adapted parameters are used to make predictions
for that image.
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Comparison of TTA with UDA and DG
Unsupervised domain adaptation (UDA) is a widely used setting for resolv-
ing DS. It requires the entire training dataset to be present while carrying out
the adaptation for each new test distribution. We believe that this is a par-
ticularly stringent requirement in medical imaging, where sharing datasets
across institutions often requires regulatory and privacy clearances.

Domain Generalization (DG), another well-studied setting, requires the ac-
cess to the training dataset only for the initial training, and not during in-
ference. A trained model is transported to the test site and used to perform
inference, without requiring access to a labeled or unlabeled training set. This
is clearly advantageous considering the aforementioned challenges in data
sharing. As compared to sharing the training dataset across institutions, it
is much easier to transport a trained model for usage with images from new
test distributions. However, the lack of adaptation at test-time can lead to
performance degradation if the encountered test distribution differs from all
distributions seen during training.

TTA combines the advantages of UDA and DG. Like DG, TTA does not require
access to any sample other than the test sample at hand. Yet, like UDA, it
allows the model to be adapted to the test distribution before being used for
prediction.

TTA achieves this best-of-both-worlds scenario by condensing the the infor-
mation contained in the training dataset into a dedicated adaptation model.
Such a model is transferred to the test site, instead of transferring the train-
ing dataset itself. The model is then used for facilitating the adaptation for
each test image.

TTA for Robust Image Segmentation
We focus on the task of medical image segmentation. We design a segmen-
tation CNN as a concatenation of two sub-networks: (a) a relatively shallow
image normalization CNN, followed by (b) a deep CNN that segments the nor-
malized image. We train both these sub-networks jointly in a supervised
manner - using a training dataset, consisting of annotated images from the
training distributions (a particular scanner and protocol setting). Then, at test
time, we freeze the parameters of the deep segmentation sub-network, but
adapt the image normalization sub-network for each test image. The adapta-
tion is guided by an implicit prior on the predicted segmentation labels. More
specifically, the adaptation requires that the predicted segmentation be plau-
sible, according to the segmentations observed in the training dataset. For
dictating such plausibility, we employ denoising autoencoders (DAEs) [211]↑.
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Evaluation
We validate the proposed method on multi-center Magnetic Resonance Imag-
ing (MRI) datasets of three anatomies - brain, heart and prostate. The pro-
posed test-time adaptation consistently provides performance improvement,
demonstrating the promise and generality of the approach.

Salient Characteristics of the Proposed Method
To the best of our knowledge, this was the first work in the literature to pro-
pose TTA for tackling the cross-scanner robustness problem in CNN-based
medical image segmentation. We believe that the proposed inference time
adaptation strategy has the following benefits.

• A normalization sub-network is used to adapt to each test image specifi-
cally. Thus, the method does not rely on similarity of the test image to pre-
viously seen training samples, as is the case in the majority of the works in
the literature.

• The adaptable normalization sub-network is kept relatively shallow. This
prevents it from introducing substantial structural change in the input im-
age, while having sufficient flexibility to correct errors in the predict seg-
mentation.

• We freeze the majority of the overall parameters at their pre-trained values
(those of deep segmentation network). Thus, we retain the benefits of the
initial supervised training, potentially done with a large number of training
examples and, therefore, valuable for the segmentation task.

• The models used to drive the test-time adaptation, DAEs, can be very ex-
pressive. They can potentially exploit high-level cues such as context and
shape in order to suggest corrections in the predicted segmentation.

5.2 Background

5.2.1 Denoising Autoencoders

Denoising Autoencoders (DAEs) [211]↑are neural networks with an encoder-
decoder structure. They are trained to receive noisy / corrupted data as inputs
and to output noise-free / clean / denoised data. Thus, their training dataset
a set of pairs of corrupted and corresponding clean data points. Such a set
is generated by corrupting clean data points with a known corruption pro-
cess. A commonly used corruption process is one that adds Gaussian noise
to clean data points. Furthermore, a common loss function for training the
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DAE is the L2 distance between the DAE’s output and the known denoised
data point. In this setting, the gradient of the clean data’s probability density
function can be expressed in terms of the DAE’s reconstruction error [212]↑.

5.3 Method

5.3.1 Splitting Parameters into Image-Agnostic and Image-Specific

According to the notation introduced in Sec. 2.1, the segmentation CNN is TΘ.
It maps the input imagesX to predicted segmentationsY . We propose to train
TΘ in a supervised manner using labelled data from the training distribution,
and further adapt it for each test image.

The first design question in this approach is: which parameters to adapt at
test time? To answer this question, we note that DS due to changing imaging
protocols and scanners manifest in the form of differences in low-level inten-
sity statistics and contrast changes between different tissue types. Accord-
ingly, we posit that a relatively shallow image-specific normalization sub-
network might provide sufficient adaptability to obtain accurate segmenta-
tions within the relevant DS.

With this reasoning, we propose to formulate TΘ(X) as Sθ(Nϕ(X)) - a concate-
nation of two sub-networks. Nϕ is a shallow normalization CNN - it takes as
input the image to be segmented and outputs Xn = Nϕ(X), Xn being a nor-
malized image. Sθ is a deep segmentation CNN - it takes as input the nor-
malized image, and outputs the predicted segmentation, Y = Sθ(Xn). The
parameters ϕ are image-specific (adapted for each image), while the param-
eters θ are image-agnostic (shared across all training and test images). As
described in Sec. 5.3.2, both ϕ and θ are learned in a supervised manner using
a labelled dataset in the training distribution. Thereafter, θ are fixed, while ϕ
are adapted for each test image.

Architecture of the Normalization Sub-Network
We model Nϕ as a residual CNN. It processes the input image with nN convo-
lutional layers, each with kernel size kN and stride 1. We employ no spatial
down-sampling or up-sampling inNϕ and have it output the same number of
channels as the input image. The chosen architecture for Nϕ has the follow-
ing advantages.

• Sufficient flexibility to model contrast transformations: We hypothesize
that such an adaptable normalization module could enable an image-specific
intensity transformation in order to alter the test image’s contrast such that
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the pre-trained segmentation sub-network, Sθ(.), can accurately carry out
the segmentation.

• Insufficient flexibility to cause structural changes: We restrict the kernel
size (kN ) as well as the number of layers (nN ) to relatively small values. By
doing so, we aim to limit Nϕ to expressing intensity transformations that
are sufficient for modeling contrast changes, but insufficient for substan-
tially altering the image content by adding, removing or moving anatomical
structures.

• Retaining benefits of supervised learning by freezing majority of the param-
eters: An important benefit of our formulation is that it freezes the majority
of the overall parameters (those of the Sθ) at their pre-trained values. Thus,
the method can leverage benefits of supervised learning by utilizing Sθ at
its full capacity, as described in Sec. 5.3.2.

A representative schematic of the proposed parameter splitting is shown in
Fig. 5.1. If the convolution kernel size kN is set to 1, Nϕ is strictly restricted
to modeling intensity transformations without allowing for any structural
changes. In our experiments, however, setting kN to 1 led to training insta-
bilities. Thus, we set kN to 3, as described in Sec. 5.4.3. Further, note that the
proposed architecture of Nϕ is a design choice. An alternative choice could
be to model Nϕ as a parametric polynomial function of a certain degree. Fi-
nally, we emphasize that the proposed design of Nϕ is suitable for tackling
acquisition-related DS. For other types of DS, this design must be suitably
adapted. See chapter 7 for an elaborate discussion.

5.3.2 Supervised Learning on Training Distribution

We assume that we have access to a training datasetDL
tr : {(xi, yi)| i = 1, 2, . . . N},

where xi ∼ Ptr(X) are sample images from a training distribution and yi are
corresponding ground truth segmentations. The DL

tr can be composed of im-
ages coming from only one scanner and protocol setting or contain images
from multiple scanners and protocols. The proposed method is agnostic to
the formation ofDL

tr. In our experiments, in view of potential difficulties in an-
notating and aggregating data from multiple imaging centers, we restrict the
training distribution to a particular combination of imaging scanner and pro-
tocol setting. Given this annotated dataset, the goal is to provide an automatic
segmentation method that works for new images sampled from not only the
training distribution (Ptr(X)), but also unseen test distributions (Pts(X)).

We train TΘ(X) = Sθ(Nϕ(X)) using the labelled training dataset, DL
tr via empir-

ical risk minimization. Thus, the optimal parameters, {θ∗, ϕ∗}, are estimated
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Figure 5.1: The Proposed parameter split for TTA. A relatively shallow normal-
ization sub-network, Nϕ, is image-specific, while a deep normalized-image-
to-segmentation sub-network, Sθ , is shared across all training and test im-
ages. The proposed method is agnostic to the choice of Sθ - it can be chosen
to be any well-performing segmentation CNN from the literature. The non-
linear activation functions may potentially be differently chosen in Nϕ and
Sθ (indicated by different shades of red).

by minimizing a supervised loss function:

θ∗, ϕ∗ = argmin
θ,ϕ

∑
i

Ltask(Sθ(Nϕ(xi)), yi) (5.1)

where {xi, yi} are image-label pairs from DL
tr , the sum is over all such pairs

used for training and Ltask is a loss function that measures dissimilarity be-
tween the ground truth labels and predictions of the network.

In non-adaptable networks, the common application of CNNs for segmenta-
tion, once the optimal parameters are estimated, the segmentation for a new
image x is obtained as y∗ = Sθ∗(Nϕ∗(x)). In this work, we modify this proce-
dure by introducing an adaptation step at test time.

5.3.3 How to Drive Adaptation at Test-Time?

The optimization in Eq. 5.1 depends on the training dataset, and in partic-
ular, on the intensity statistics of the training images, xi ∼ Ptr(X). Thus, if
confronted with shifts in the input distribution at test time, the pre-trained
mapping Sθ∗(Nϕ∗(.)) may not be reliable. To address this, we propose to use
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Figure 5.2: Workflow of the proposed method: For each test image, Nϕ is
adapted such that the resulting segmentation is plausible, as gauged by a
DAE,Hψ∗ . The star superscript next to the parameters indicates that the mod-
els Sθ∗ and Dψ∗ are learned on the training distribution and fixed thereafter,
while the model Nϕ is adapted for each test image. X is the input image, Z
is the normalized image, YC is the predicted segmentation that potentially
may be corrupted due to the DS problem and Y is the denoised segmentation
outputted by the DAE. TTA is driven by adapting Nϕ to make YC like Y .

the pre-trained parameters as an initial estimate, further adapting them for
each test image. In order to implement this idea, the first design question was
which parameters to update at test-time? We answered this in Sec. 5.3.1. Now,
we turn to second important design question: how to drive the adaptation at
test time, without label information and with only the test image available?

Driving TTA by Increasing Plausibility of Predicted Segmentations
The main challenge in TTA is the lack of label information and additional im-
ages. The model only has access to the test image to which it should adapt.
In this scenario, we drive the adaptation by requiring that the predicted seg-
mentations be plausible, that is, similar to those seen in the training dataset.
The underlying assumption here is that the DS in question pertain only to
scanner and protocol changes, with the images otherwise containing simi-
lar structures, whether healthy or abnormal, as the training dataset.

Gauging Plausibility via Denoising Autoencoders
We use denoising autoencoders (DAEs) [211]↑to assess the similarity of a given
segmentation to those in the training dataset. The idea is that if the predicted
segmentation is implausible, the DAE will see it as a "noisy" segmentation
and "denoise" it to produce a corresponding plausible segmentation. The out-
put of the DAE can then be used as a pseudo-ground-truth segmentation to
drive the TTA. Crucially, DAEs can be highly expressive - they have the capac-
ity to leverage high-level cues, such as long-range spatial context and shape,
in order to suggest corrections in predicted segmentations.

TTA Workflow
The workflow of our test-time adaptation method is depicted in Fig. 5.2. We
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leverage the available ground truth segmentations in the training dataset,DL
tr ,

to train a DAE, Hψ∗ 1. Hψ∗ maps corrupted segmentations Yc (which are not
necessarily similar to those in the training dataset), to “denoised” segmenta-
tions Y (similar to those in the training dataset). The details of this training
are explained in Sec. 5.3.4. For the time being, let us assume that we have a
trained DAE,Hψ∗ . For a given test image x and a set of parameters for the nor-
malization sub-network, ϕ, we treat the segmentation predicted by Sθ∗(Nϕ(x))

as a “noisy” or “corrupted” segmentation. We pass this noisy segmentation
throughHψ∗ and obtain its denoised version. Now, we update the parameters
of Nϕ so as to pull the predicted segmentation closer to its denoised version:

ϕ̂ = argmin
ϕ

Ltask(yc, Hψ∗(yc)); yc = Sθ∗(Nϕ(x)), (5.2)

where Ltask is a similar loss to that in Equation 5.1. Eqn. 5.2 denotes the test-
time adaptation that we carry out for each test image x. This optimization is
done iteratively (using either gradient descent or a variant thereof).

Expected Evolution of Predicted Segmentations during TTA
For a test image that is not from the training distribution, the predicted seg-
mentation is likely to be corrupted at the beginning of TTA. For instance, it
may appear similar to the one shown on the bottom-right in Fig. 5.2. The DAE
takes this prediction as input and proposes a corrected segmentation, such as
the one shown on the bottom-left in Fig. 5.2. Now, the parameters ofNϕ are up-
dated so as to minimize the dissimilarity between the DAE input and output.
As TTA proceeds, the predicted segmentation, Sθ∗(Nϕ(x)), becomes increas-
ingly plausible, that is, similar to those in training dataset. Therefore, the DAE
input and output become similar, resulting in small loss values and conver-
gence of the TTA. Importantly, the adaptable normalization sub-network, Nϕ,
is relatively shallow and has a relatively small receptive field. Thus, the adap-
tation is free to change the contrast of the input image, but cannot introduce
large structure alterations.

TTA Model Selection Criterion
The optimization runs for a pre-specified number of iterations and the op-
timal image-specific parameters ϕ̂ are chosen as the ones that provide the
least dissimilarity between the DAE input yc and output Hψ∗(yc) during the it-
erations. We believe that this principled stopping criterion for TTA - rather
than running the optimization for an arbitrary number of iterations - is an
important characteristic of the proposed method.

The final segmentation is predicted as ŷ = Sθ∗(Nϕ̂(x)).
1We denote the DAE with H to indicate that it is a helper module that facilitates TTA. In

the next chapter, we discuss other possible helper modules.
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5.3.4 DAE Training

The DAE drives the proposed TTA, and is thus a key component of the pro-
posed method. We model it as a 3D CNN. This potentially allows for learn-
ing of information about relative locations of different anatomical structures
across volumetric segmentations as well as about their shapes in their en-
tirety.

In order to train such a DAE, we generate a training dataset of pairs (yi, yci),
with yi ∼ P (Y ) (available from DL

tr) and yci ∼ P (Yc|Y = yi;ω), a corruption
process that we define in order to generate corrupted segmentations Yc given
clean segmentations Y . With this dataset, we train the DAE to predict Y =

Hψ(Yc) by minimizing the following loss function to estimate the parameters
ψ∗:

ψ∗ = argmax
ψ

E[Ltask(Hψ(Yc), Y )] (5.3)

Here, the expectation is over the joint distribution P (Y, Yc) = P (Y )P (Yc|Y ).
Thus, we have

ψ∗ = argmin
ψ

∑
j

∑
i

Ltask(Hψ(ycij), yi) (5.4)

where the index j denotes different samples obtained from P (Yc|Y = zi;ω),
the outer sum is over the number of corrupted samples that we generate for
each ground truth label yi and Ltask is a loss function that computes dissimi-
larity between the clean ground truth labels and the predictions of the DAE.
As the DAE is trained in the space of segmentation labels, we use the same
Ltask as the one used for the initial supervised training (Eqn. 5.1) as well as for
the TTA (Eqn. 5.2).

Noising strategy
The main design choice for the DAE training described above is the noising
process, P (Yc|Y ;ω). This noising process is used to generate artificially de-
graded segmentations, simulating the inaccurate labels that the pre-trained
CNN (Sθ∗(Nϕ∗(.))) will likely predict when faced with input images from un-
seen test distributions. In this work, we follow a heuristic procedure for gen-
erating such noisy labels. We copy cubic patches from randomly chosen lo-
cations in the label image to other randomly chosen locations in the same
image. In each training iteration of the DAE and for each clean label, the num-
ber of such patches (n1) is sampled from an uniform distribution U(0, nmax1 ).
For each of these n1 patches, its size (n2) is sampled independently from an-
other uniform distribution U(0, nmax2 ). Thus, our noising process is defined by
hyper-parameters: ω : {nmax1 , nmax2 }. 2

2If the noising process is chosen to be one that adds Gaussian noise to its inputs and if
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5.3.5 Atlas initialization for TTA for large DS

DS robustness of the DAE
The DAE is used as a helper model to improve DS robustness of the segmen-
tation CNN. Yet, the DAE itself is also modelled by a CNN and is trained in a
self-supervised manner. Thus, the DAE could itself be vulnerable to DS in its
inputs. That is, if the segmentations that are fed as inputs to the DAE during
TTA are dissimilar to the DAE’s training inputs, the outputs of the DAE may
be unreliable.3

Assumption: DAE is robust to small DS
The DAE is immune to such unreliability so long as the probability distribu-
tion of the corrupted segmentations generated by our noising process (Sec.5.3.4)
approximates that of the predictions of the pre-trained task CNN (Sθ∗(Nϕ∗(.)))
in response to test distribution images. For DS pertaining to scanner changes
under the same imaging protocol, we assume that our noising process is able
to satisfy this requirement. Specifically, for a given test image x, the segmen-
tation predicted by the pre-trained task CNN as well as during the iterative
TTA is yc = Sθ∗(Nϕ(x)). Now, if x is acquired using the same imaging modality
and similar protocol as the training dataset images and has unknown ground
truth segmentation y, then we assume that yc can be seen as a corrupted seg-
mentation that is a sample from our noising process P (Yc|Y = y).

DAE is unreliable when faced with large DS
The DAE’s outputs can no longer be relied upon, however, when the training
and test distribution images are very different. This is the case, for instance,
when DS is caused via acquisition using different modalities or very different
protocols, such as using MR for one image and CT for the other or T1-weighted
MR for one and T2-weighted for the other. In such cases, the predictions of
the pre-trained task CNN can be highly corrupted and may not be captured
by the noising strategy described in Sec.5.3.4. Thus, the corresponding DAE
outputs may no longer be reliable for driving TTA.

Atlas-based work-around for such scenarios
the DAE is trained by minimizing the L2 loss (i.e if L(Hψ(ycij), yi) = ||Hψ(ycij) − yi||2), then
the gradient of the label prior, P (Y ), can be expressed in terms of the DAE reconstruction
error [212]↑. This allows for explicit prior maximization [213]↑. However, this result does not
generalize to different data corruption models, such as the noising strategy used in this work.
On the other hand, a simple noising model that adds Gaussian noise is unlikely to mimic the
inaccurate segmentations predicted by a pre-trained CNN in the face of acquisition-related
DS in medical imaging.

3Indeed, this characteristic of the proposed method is one of its weaknesses. We tackle
this weakness in the next chapter.

59

https://papers.nips.cc/paper/2017/hash/38913e1d6a7b94cb0f55994f679f5956-Abstract.html
https://www.sciencedirect.com/science/article/pii/S0925231221000990


To deal with large DS consisting of imaging protocol changes, we utilize an
affinely registered atlas,A, to first draw the predicted segmentations to a rea-
sonable starting point from where the DAE can take over. Specifically, instead
of directly carrying out the optimization as described in Eq. 5.2, we switch
between minimizing Ltask(yc, Hψ∗(yc)) and Ltask(yc, A), both with respect to ϕ.
Here, yc = Sθ∗(Nϕ(x)) are the predictions of task CNN at any point during the
iterative TTA.

Switching from the Atlas back to the DAE
We employ a threshold-based approach to decide when to switch from using
the Atlas to using the DAE predictions for driving TTA. If d(yc, Hψ∗(yc))/d(yc, A) ≥
α and d(yc, A) ≥ β, then we minimize Ltask(yc, Hψ∗(yc)). Else, we minimize
Ltask(yc, A). Here, d is a similarity measure between segmentations and α, β

are hyper-parameters. In our experiments, we use the Dice loss [209] as Ltask
and the Dice score as d, with Ltask = 1− d.

Justification for Threshold-based switching
The reasoning for the threshold-based switching is as follows: In the initial
steps of the TTA (when dealing with large DS), the predicted segmentations
will likely be extremely corrupted. Therefore, we would like to use the affinely
registered atlas for driving the adaptation. Once the predicted segmenta-
tions improve and can be considered as samples from our noising process,
we would like to switch to using the DAE outputs for driving the adaptation, as
it has more flexibility than an affinely registered atlas. Our threshold-based
switching procedure encodes two signals indicating improvement in the pre-
dicted segmentations: increased similarity between (1) DAE input and output
(note that when the predicted segmentation is plausible according to the DAE,
the DAE models an identity transformation) and (2) predicted segmentation
and the atlas.

5.3.6 Integrating 2D Segmentation CNN with 3D DAE

As noted in Sec. 5.3.4, we model the DAE as a 3D CNN in order to leverage
volumetric anatomical information. On the other hand, the CNN-based image
segmentation literature is dominated by 2D CNN designs, mainly because 3D
CNNs are hindered by memory issues and 2D CNNs already provide state-
of-the-art segmentation performance in many cases [214]↑. In order for the
proposed TTA method to be applicable to both 3D as well as 2D segmentation
CNNs, we propose the following strategy for using 2D segmentation CNNs
with our 3D DAE. In this case, the normalization sub-network, Nϕ, is also a 2D
CNN and we iteratively carry out the following two steps for T updates of the
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parameters of Nϕ for a given 3D test image:

1. Predict the current segmentation for the entire 3D test image, by passing it
through the 2D segmentation CNN in batches consisting of successive slices.
Following this, pass the 3D predicted segmentation though the trained DAE
to obtain its denoised version.

2. Initialize gradients with respect to ϕ to zero. Process the 3D test image in
2D batches consisting of successive slices as in step 1: For each batch, predict
its segmentation, compute loss between the prediction and the correspond-
ing batch of the denoised labels computed in step 1, and maintain a running
sum of gradients of the loss with respect to ϕ. At the end of all batches, aver-
age gradients over the number of batches and update ϕ.

For large DS (that is, those including a change in imaging protocol), we use
the threshold-based method described in Sec. 5.3.5 to determine whether to
use the atlas or the DAE outputs as target labels for driving the adaptation in
step 1. Furthermore, to save computation time, we update the denoised labels
for the adaptation, i.e. run step 1, after f runs of step 2, instead of after every
run.

5.4 Experiments and Results

5.4.1 Datasets

We validate the proposed method on multiple MRI datasets from three anatomies:
brain, heart and prostate. Here, we describe which subsets of the datasets
described in Sec. 3.1 were used for validation of the proposed method. Please
refer to Sec. 3.1 for a detailed description of the datasets.

Brain MRI
We use images from 2 publicly available datasets: Human Connectome Project
(HCP) [186]↑and Autism Brain Imaging Data Exchange (ABIDE) [187]↑↑↑↑. In the
HCP dataset, both T1w and T2w images are available for each subject, while
the ABIDE dataset consists of T1w images from several imaging sites. We use
the HCP-T1 dataset as the training distribution, and the ABIDE (AC-T1) and
HCP-T2 datasets as two independent test distributions. Being acquired with
same modality, but from a different scanner, AC-T1 is deemed to be a small
DS, while HCP-T2 is considered as a large DS.

Prostate MRI
We use the National Cancer Institute (NCI) dataset[181]↑as the training distri-
bution. In particular, among the two sub-datasets within the NCI dataset, we

61

https://www.sciencedirect.com/science/article/pii/S1053811913005351
https://pubmed.ncbi.nlm.nih.gov/23774715/
http://fcon_1000.projects.nitrc.org/indi/abide/scan_params/Caltech/anat.pdf
http://fcon_1000.projects.nitrc.org/indi/abide/scan_params/Stanford/anat.pdf
http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html
http://doi.org/10.7937/K9/TCIA.2015.zF0vlOPv


use images from RUNMC institution. We use two test distributions to eval-
uate the proposed method: (i) the PROMISE12 dataset [42]↑and (ii) a private
dataset from the University Hospital of Zurich (USZ) [182]↑. As described in
Sec. 3.1, the PROMISE12 dataset consists of images from 4 distributions. Dur-
ing the evaluation of this method, we ignored this distinction - instead con-
sidering the entire set of images as one test distribution. For the NCI and USZ
datasets, expert annotations are available for 3 labels for each image: back-
ground, central gland (CG) and peripheral zone (PZ), while the PROMISE12
dataset only provides expert annotations for the whole prostate gland (CG
+ PZ). Thus, we evaluate our predictions both for the whole gland as well as
separate CG and PZ segmentations, respectively, for the different datasets.

Cardiac MRI
We use the Automated Cardiac Diagnosis Challenge (ACDC) dataset [43]↑as
training distribution and the right ventricle segmentation challenge (RVSC)
dataset [184]↑as the test distribution. or the ACDC dataset, annotations are
available for LV (left ventricle) and RV (right ventricle) cavities and the LV my-
ocardium. For the RVSC dataset, annotations are provided for the RV caity
and the RV myocardium. Thus, we evaluate TTA performance based on RV
cavity segmentation, the only structure that is common in both datasets, set-
ting other predictions as background.

Table 5.1 shows our training, test and validation split (in terms of number of
3D images) for each dataset.

Anatomy Dataset Train / Test Ntr Nvl Nts

Brain HCP-T1 Train 20 5 20
Brain ABIDE-AC-T1 Test 10 5 20
Brain HCP-T2 Test 20 5 20

Prostate RUNMC Train 15 5 10
Prostate USZ Test 28 20 20
Prostate PROMISE12 Test 20 10 20

Heart ACDC Train 120 40 40
Heart RVSC Test 48 24 24

Table 5.1: Dataset details for the TTA-DAE experiments.

5.4.2 Pre-processing

We pre-process all images and segmentation labels with the following steps.

Bias Correction: Firstly, we remove any bias fields with the N4 algorithm [215].

Intensity Normalization: Secondly, we carry out 0 − 1 intensity normaliza-
tion per image as: xnormalized = (x − x1p)/(x

99
p − x1p), where xip denotes the ith
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percentile of the intensity values in the image volume, followed by clipping
the intensities at 0 and 1.

Skull Stripping: For the brain datasets, this is followed by skull stripping, set-
ting intensities of all non-brain voxels to 0.

Resolution matching: We train the segmentation CNN, TΘ. in 2D due to GPU
memory limitations, and to show applicability of the proposed method with
widely used 2D architectures in the segmentation literature. We rescale all
images to fixed pixel-size in the in-plane dimensions followed by cropping
and / or padding with zeros to match the image sizes to a fixed size for each
anatomy. The fixed pixel-sizes for the brain, prostate and cardiac datasets
are 0.7mm2, 0.625mm2 and 1.33mm2 respectively, while the fixed image size
is 256x256 for all anatomies. The ground truth labels of the training and val-
idation images are rescaled and cropped / padded in the same way as the
corresponding images. Test images are also rescaled and cropped / padded
before predicting their segmentations. The predicted segmentations, how-
ever, are rescaled back and evaluated in their original pixel-size to avoid any
experimental biases.

We use a 3D CNN to model the DAE, Hψ , as we believe that the incorpora-
tion of 3D organ structure can be vital for the DAE’s performance. We pre-
process the segmentation labels with rescaling and cropping / padding ap-
plied in all 3 dimensions. The fixed voxel-sizes are set to 2.8x0.7x0.7mm3,
2.5x0.625x0.625mm3 and 5.0x1.33x1.33mm3 for the brain, prostate and car-
diac datasets, respectively, while the fixed 3D image size is set to 64x256x256
for the brain images and 32x256x256 for the other two anatomies.

5.4.3 Common Implementation Details for all Experiments

Normalization Sub-Network, Nϕ, architecture
We implement the normalization sub-network,Nϕ, with nN = 3 convolutional
layers, with the respective number of output channels set to 16, 16 and 1, each
using kernels of size nk = 3. Keeping in mind the relatively small depth of
Nϕ, we equip it with an expressive activation function, act(x) = exp(−x2/σ2),
where the scale parameter σ is trainable and different for each output chan-
nel.

Segmentation Sub-Network, Sθ, architecture
For modeling the normalized-image-to-segmentation sub-network,Sθ , we use
an encoder-decoder architecture with skip connections across correspond-
ing depths, in spirit of the commonly used U-Net [205] architecture. Note that
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the proposed test-time adaptation strategy, the normalization sub-network
and the DAE are agnostic to the architecture of the normalized-image-to-
segmentation sub-network. Any architecture can be used instead of the U-
Net that we used. Batch normalization [40]↑and the ReLU activation func-
tion [216] are used in Sθ as well as Hψ. Bilinear upsampling is preferred to
deconvolutions in light of the potential checkerboard artifacts while using
the latter [208]↑.

Loss function, batch size, optimizer and learning rate
We use the Dice loss [209] as the loss functionLtask in four cases: (i) supervised
learning on the training distribution (Eqn. 5.1), (ii) DAE training (Eqn. 5.3), (iii)
test-time adaptation (Eqn. 5.2) and (iv) atlas-based switching for large DS (Sec.
5.3.5). The batch size is set to 16 for the 2D segmentation CNN training and the
test-time adaptation, and to 1 for the 3D DAE. We use the Adam optimizer [39]
with default parameters and a learning rate of 0.001.

Evaluation Metrics
We evaluate the predicted segmentations by comparing them with corre-
sponding ground truth segmentations using the Dice coefficient [217]↑and the
95th percentile of Hausdorff distance [218]↑. We report mean values of these
scores computed in 3D, across foreground labels, all test images and across 3
runs of each experiment.

5.4.4 List of Experiments and Specific Implementation Details

(I) Baseline
For each anatomy, we train a segmentation CNN on the training distribu-
tion, and evaluate its performance on test images from the training as well as
test distributions. We train TΘ for 50000 iterations and chose the best models
based on validation set performance. The performance of this CNN on the
test distributions provides a baseline performance for the problem.

(II) Benchmark
We train specialized segmentation CNNs for each test distribution, using a
separate training and validation set from that distribution. For the purposes
of this work, the performance of such specialized CNNs forms the benchmark
for the problem.

(III) Strong Baseline - Data Augmentation
In [101], data augmentation has been shown to be highly effective for improv-
ing cross-scanner robustness in medical image segmentation. Accordingly,
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we employ extensive data augmentations, consisting of geometric as well
as intensity transformations. The geometric transformations are applied to
both images as well as segmentations, while the intensity transformations
are applied only to the images. Each transformation is applied with a proba-
bility of 0.25 to each image in a training mini-batch.

Intensity Transformations: As intensity transformations, we use gamma trans-
formation (xaug = xc; c ∼ U(0.5, 2.0)), brightness changes (xaug = x+b; b ∼ U(0.0, 0.1))
and additive Gaussian noise (xijaug = xij + nij;nij ∼ N(0.0, 0.1), where the su-
perscript ij is used to indicate that the noise is added independently for each
pixel in the image).

Geometric Transformations: As geometric transformations, we use transla-
tion (∼ U(−10, 10)pixels), rotation (∼ U(−10, 10)degrees), scaling (∼ U(0.9, 1.1))
and random elastic deformations (obtained by generating random noise im-
ages between −1 and 1, smoothing them with a Gaussian filter with standard
deviation 20 and scaling them with a factor of 1000) [219]↑. For the cardiac
datasets, we observe that the images are acquired in different orientations,
so for this anatomy, we add to the set of geometric transformations: rotations
by multiple of 90 degrees and left-right and up-down flips.

As will be described in Sec. 5.4.5, such data augmentation provides substan-
tial performance improvement, and is effective across anatomies. Due to its
effectiveness, generality and ease of implementation, we treat this approach
as a strong baseline, that we aim to improve upon with the proposed test-time
adaptation.

(IV) Domain Generalization Methods
Several meta-learning based approaches [110]↑, [111]↑, [112]↑have been proposed
for tackling the domain generalization problem. The main idea of such meth-
ods is to simulate the distribution shift problem during the training of the seg-
mentation CNN. This is done by having meta-train and meta-test domains
during training and requiring that the gradient updates for the meta-train
distributions be such that the task loss is also minimized on the meta-test
distributions. As we only had access to a single training distribution, we
simulated meta-train and meta-test distributions by using different gamma
transformations in each batch of training. Additionally, we used all other data
augmentation transformations described in experiment (III).

(V) Post-Processing Methods
[143]↑propose post-processing the predicted segmentations with DAEs in or-
der to increase their plausibility. We use our trained DAEs in order to carry out
such post-processing on the segmentations predicted by the strong baseline.
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(VI) Test-Time Adaptation
For the proposed method, we first trained the segmentation network on the
training distribution along with data augmentation. Then, we adapted the
normalization sub-network, Nϕ, for each test image, according to the pro-
posed framework.

DAE, Hψ, architecture and training: We model the DAE, Hψ , as a 3D CNN with
an encoder-decoder architecture, as well as skip connections. We train the
DAE for 50000 iterations and chose the best models based on validation set
performance. We use data augmentation consisting of geometric transfor-
mations described in experiment (III), applied on the segmentations.

Noise Hyper-parameters for Generating DAE Training Data: We visually in-
spected the generated corrupted segmentations by using different noise hyper-
parameters. Based on this, we chose the maximum number of patches to
be copied, nmax1 = 200 and the maximum size of a patch, nmax2 = 20. Dur-
ing its training, we determined the best DAE model based on its denoising
performance on a corrupted validation dataset, which we generate by cor-
rupting each validation image 50 times with the noising process described
in Sec. 5.3.4.

Number of adaptation iterations: For TTA for each test image, we run the
inference-time optimization forT = 500gradient updates for the brain datasets
and for T = 7500 gradient updates for the other two anatomies (see Sec. 5.3.6,
step 2). (This discrepancy is due to the differences in the number of slices of
the datasets. In our implementation, each update of ϕ is performed with an
average gradient over 16 batches for the brain datasets and over 2 batches for
the prostate and cardiac datasets. To account for lower number of batches
for the latter, we use larger number of gradient update steps. Thus, effec-
tively, even with the different number of gradient updates, images from all
datasets observe roughly the same number of batches during the optimiza-
tion.) The denoised labels that are used to drive the optimization are updated
every f = 25 steps (see Sec. 5.3.6, step 1).

TTA Model Selection: During the update iterations, parameters that lead to
the highest Dice score between the DAE input and output are chosen as opti-
mal for a given test image.

’Fast’ TTA: Additionally, we run a separate ’fast’ version of our method, where
we carry out TTA with the aforementioned hyper-parameters for the first test
image of each TD. For subsequent images of that TD, we initialize the pa-
rameters of the normalization module with the optimal parameters obtained
for the first TD image. This provides a better starting point for the optimiza-
tion, so we run it for T = 100 gradient updates for the brain datasets and for
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T = 1500 gradient updates for the other anatomies. On a NVIDIA GeForce
GTX TITAN X GPU, the test time adaptation requires about 1 hour for the first
image of a particular TD and about 12 minutes for each image thereafter with
our experimental implementation, which could be further optimized for time
efficiency.

Hyper-parameters for atlas-based initial optimization for large DS: For the
brain datasets, the SD consists of T1w images, while the TD2 consists of T2w
images, both from the HCP dataset, but from different subjects. In this case,
we used the atlas based initial optimization described in Section 5.3.5. As the
images in the HCP dataset are already rigidly registered, we create an atlas
by converting the SD labels to one-hot representations and averaging them
voxel-wise. To decide when the optimization switches from being driven
by the atlas to the DAE, we use the thresholding-based method described in
Sec. 5.3.5, setting the hyper-parameters α = 1.0 and β = 0.25.

(VII) Unsupervised Domain Adaptation (UDA) Methods
UDA is widely proposed in the literature for tackling the domain shift prob-
lem. We compare the performance of the proposed TTA method with UDA
works. We note that UDA methods work in a more relaxed setting, where the
labelled training dataset is assumed to be available while adapting for each
new test distribution. Although it may be challenging to meet this require-
ment in practice due to privacy concerns, we carry out this experiment to
quantify the potential advantages of such approaches.

We conducted experiments with two representative UDA methods: 1) [88]↑,
where an adversarial loss is employed to incentivize invariance in the SD and
TD features, and 2) [90]↑, where a transformation network between the TD and
the SD is trained, and then the transformed images are passed through the
segmentation network.

Typically, UDA methods utilize a set of unlabelled images from the test dis-
tribution, DUL,tr

ts , for the adaptation, but use a separate set of test images from
the TD, DUL,ts

ts , for evaluation. However, as ground truth labels of DUL,tr
ts are not

utilized for the adaptation, we present evaluations for this set as well, which
was also proposed as a more suitable UDA setting in a recent work [220]↑. The
size of the image sets DUL,tr

ts and DUL,ts
ts was the same as specified in Table 5.1.

(VIII) Ablation Studies
We conducted several experiments to analyze the importance of the design
choices in the proposed method.

1. Fast TTA: We carried out a ’fast’ version of our method, where the optimal
normalization parameters, ϕ for the first test image of each test distribution
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were used for initialization in the TTA for subsequent images of that distri-
bution. After such improved initialization, the adaptation for subsequent im-
ages could be completed in fewer iterations, thus reducing the time required
for the adaptation.

2. Effect of adapting all parameters {θ, ϕ} for TTA: We studied the importance
of restricting the adaptation to just the normalization sub-network. That is,
we learned TΘ on the training distribution, along with data augmentation,
and adapted all its parameters, {ϕ, θ}, for each test image, according to the
proposed framework.

3. Expressiveness ofNϕ: We examined if the flexibility afforded by the adapt-
able normalization sub-network is sufficient for obtaining accurate segmen-
tations via TTA. To this end, we learned TΘ on the training distribution, along
with data augmentation, and then adaptedNϕ for each test image, driving the
TTA using the ground truth labels of the test image. This is an ablation study
that removed the DAE from the picture and asked the following question: if
an oracle were available to drive the TTA, can Nϕ be appropriately adapted to
follow the oracle? This experiment was not done for the PROMISE and the
RVSC datasets as the annotations for these datasets are for a different set of
organs / tissues as compared to the corresponding training datasets.

4. How does TTA compare to iterative post-processing?: We asked the ques-
tion: Is TTA required at all, or can the accuracy on test distributions be im-
proved by simply passing the predicted segmentation multiple times through
the DAE?

(IX) Convergence of TTA
As the convergence of TTA is not theoretically guaranteed, we empirically
test if the adaptation at test time converges or not. To do so, we run the TTA
for a large number of iterations, and track evolution of the segmentation per-
formance.

5.4.5 Results

From the list of experiments (Sec. 5.4.4), the results of experiments (I) through
(VI) are shown in Table 5.2.

(I) Baseline
The baseline results show substantial performance drop between the train-
ing and test distributions, showing the lack of robustness of CNNs to acquisition-
related distribution shifts.
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(II) Benchmark
Specialized CNNs for each test distribution provide substantially higher per-
formance than the baseline. This indicates that learning is not inherently
more difficult in the test distributions.

(III) Strong Baseline - Data Augmentation
A remarkable performance boost can be observed due to data augmentation,
for cases where the training and test distribution images are acquired with
the same imaging protocol, with different scanners. Nonetheless, there still
remains a gap with respect to the benchmark - training separately on each
test distribution. We refer to the training with data augmentation as a strong
baseline that we seek to improve upon with our test-time adaptation method.

(IV) Domain Generalization Methods
Like data augmentation, we observed that all meta-learning based domain
generalization approaches also substantially improved the performance over
the baseline, for cases where the training and test distributions consisted of
images acquired with the same imaging protocol, with differing scanners.
However, a gap to the benchmark still remains. This shows the difficulty
of learning distribution-invariant, task-performant models. We believe that
this also vindicates our hypothesis that test-time adaptation is necessary
for achieving good performance on test distributions that are unseen during
training.

(V) Post-Processing Methods
We observed that post-processing with the DAE brought about substantial im-
provements over strong baseline, especially for the prostate datasets. How-
ever, the DAE post-processing lead to performance degradation on the brain
datasets. We believe that this can be attributed to the fact that DAEs map
their inputs to a plausible segmentation, however, that segmentation may
not necessarily be tied to the test image. Furthermore, the post-processing
method did not work when the source and target domains are acquired with
different protocols or imaging modalities. In such cases, the pre-trained CNN
predicted highly corrupted segmentations, which cannot be seen as samples
from the DAE’s training input distribution. Therefore, post-processing with
the trained DAE could not improve the segmentation accuracy. This can be
seen for the brain datasets, when the test distribution, HCP-T2, consists of
T2w images, while the training distribution, HCP-T1, consists of T1w images.

(VI) Test-Time Adaptation
TTA provided substantial performance gains over competing methods across
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all datasets for brain and prostate anatomies. For the cardiac dataset, we ob-
served that the strong baseline already provided a fairly good segmentation.
The proposed method preserved this performance, but could not further im-
prove it.

The improvement in Dice scores with the proposed method as compared to
post-processing using the trained DAEs was statistically significant for 3 out
of the 5 test datasets (marked with * in the Table), as measured using a paired
Permutation test with 100000 permutations. For the other 2 test datasets, we
obtained similar results upon direct post-processing as with the TTA using
DAEs.

Qualitative results: Fig 5.3 also reveals similarly substantial improvements
over strong baseline, especially for the brain and prostate datasets. It can be
seen that TTA improved the predicted segmentation by, for instance, correct-
ing predictions that are contextually misplaced, completing organ shapes
and removing outliers.

Figure 5.3: Qualitative results. Rows show results from test distributions for
different anatomies. The first and second columns show test images and
their ground truth segmentation respectively. After this, from left to right,
normalized image and predicted segmentation pairs are shown for training
with baseline (supervised learning of training distribution), strong baseline
(supervised learning on training distribution with extensive data augmenta-
tion), proposed method (TTA using DAEs) and benchmark (supervised learn-
ing on test distribution).

(VII) Unsupervised Domain Adaptation Methods
Table 5.3 shows the results of our UDA experiments. Despite our persistent
efforts, application of the method by [88]↑to large domain changes (modal-
ity change) and of the method by [90]↑to small domain changes (scanner
changes within the same modality) led to poorer accuracies that the strong
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DICE Brain Prostate (whole) Prostate (sep.) Heart

Method
Center

HCP-T1 ABIDE-AC HCP-T2 RUNMC USZ PROMISE12 RUNMC USZ ACDC RVSC

Baseline and Benchmark

Baseline 0.85 0.59 0.11 0.84 0.59 0.61 0.72 0.54 0.82 0.67
Benchmark - 0.90 0.87 - 0.82 0.83 - 0.73 - 0.81

Strong Baseline - Data Augmentation

Baseline + DA [101]↑ 0.87 0.75 0.08 0.91 0.77 0.79 0.82 0.66 0.83 0.74

Other Domain Generalization Methods

MLDG [110]↑ 0.87 0.69 0.07 0.91 0.77 0.76 0.82 0.66 0.84 0.70
MASF [111]↑ 0.87 0.69 0.07 0.91 0.75 0.78 0.82 0.64 0.84 0.70

MLDGTS [112]↑ 0.88 0.73 0.07 0.91 0.71 0.76 0.82 0.61 0.83 0.36

Post-Processing Methods

Strong Baseline
+ Post-Proc. [143]↑ - 0.71 0.11 - 0.79 0.82 - 0.68 - 0.75

Proposed Method - TTA-DAE

Strong Baseline + TTA - 0.80∗ 0.73∗ - 0.79 0.86∗ - 0.68 - 0.74

Hausdorff Distance Brain Prostate (whole) Prostate (sep.) Heart

Method
Center

HCP-T1 ABIDE-AC HCP-T2 RUNMC USZ PROMISE12 RUNMC USZ ACDC RVSC

Baseline and Benchmark

Baseline 9.1 34.3 52.1 16.7 147.9 69.0 19.1 146.3 15.9 16.9
Benchmark - 1.4 2.3 - 21.9 14.3 - 22.4 - 3.5

Strong Baseline - Data Augmentation

Baseline + DA [101]↑ 2.1 18.0 55.8 3.6 55.8 26.9 5.3 53.3 6.2 13.9

Other Domain Generalization Methods

MLDG [110]↑ 2.5 21.2 52.3 2.5 43.5 32.3 4.7 42.8 7.7 22.5
MASF [111]↑ 2.1 18.5 57.9 5.6 90.2 45.8 6.6 87.3 6.2 15.9

MLDGTS [112]↑ 2.2 13.5 55.0 3.6 93.9 36.6 6.5 92.1 8.4 42.8

Post-Processing Methods

Strong Baseline
+ Post-Proc. [143]↑ - 13.2 53.6 - 38.9 14.3 - 38.5 - 9.5

Proposed Method - TTA-DAE

Strong Baseline + TTA - 10.1 21.5 - 28.1 9.5 - 31.4 - 15.3

Table 5.2: Quantitative Results: DICE in the top sub-table and 95th percentile Hausdorff
distance in the bottom sub-table. Mean results over all foreground labels, all test subjects
and over 3 experiment runs are shown. For the prostate datasets, results are shown for
whole gland segmentation (whole) as well as averaged over the central gland and periph-
eral zone (sep.). The rows show different training / adaptation strategies and are described
in the text. For the proposed method, the * next to Dice scores denotes statistical signifi-
cance over ’Strong Baseline + Post-Proc.’ (Permutation test with a threshold value of 0.01).

baseline. To the best of our knowledge, this observation is consistent with the
distribution shifts in the datasets presented in these works as well as other
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Anatomy Brain Prostate (whole) Heart

Method
Center

ABIDE-AC HCP-T2 USZ PROMISE12 RVSC

Baseline + DA [101]↑(Strong baseline) 0.75 0.08 0.78 0.79 0.74
UDA - Invariant features [88]↑ 0.80 0.08 0.79 0.80 0.75

UDA - Image-to-Image translation [90]↑ 0.64 0.81 0.69 0.75 0.17
TTA (Proposed) 0.80 0.73 0.79 0.86 0.74

Benchmark 0.90 0.87 0.82 0.83 0.81

Anatomy Brain Prostate (whole) Heart

Method
Center

ABIDE-AC HCP-T2 USZ PROMISE12 RVSC

Baseline + DA [101]↑(Strong baseline) 0.75 0.08 0.77 0.75 0.72
UDA - Invariant features [88]↑ 0.79 0.08 0.79 0.77 0.72

UDA - Image-to-Image translation [90]↑ 0.65 0.82 0.61 0.77 0.25
TTA (Proposed) - - - - -

Benchmark - - - - -

Table 5.3: Dice scores for comparison of the proposed method with unsupervised domain
adaptation (UDA) methods. The top sub-table shows results for the test dataset from the
test distribution, DUL,ts

ts , while the bottom sub-table shows results for the training dataset
from the test distribution, DUL,tr

ts . These results show that the proposed test-time adap-
tation method performs comparably with the best performing UDA methods, with the
additional critical benefit of not requiring the labelled training distribution dataset while
adapting for each new test distribution.

UDA works that follow similar ideas.

Remarkably, it can be seen that not using training distribution labelled dataset
does not hinder the TTA method; it achieves comparable results to the best
performing UDA methods, especially for the scanner change related DS. The
image-to-image translation method using cycleGAN [90] provided better per-
formance than TTA for the case with large DS (modality change), but lead to
poorer results than the baseline for smaller DS (scanner changes).

Comparing the two sub-tables in Table 5.3, we see that within the UDA meth-
ods, the performance gains for DUL,tr

ts are similar to that for DUL,ts
ts . Thus, using

the same images for adaptation as well as testing did not lead to additional
improvements in our experiments.

These results highlight that TTA can serve as a potent and more flexible al-
ternative to UDA methods, for both small and large DS.

(VIII) Ablation Studies
The results of our ablation studies are shown in Table 5.4, and described be-
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Anatomy Brain Prostate (whole) Prostate (sep.) Heart

Method
Center

HCP-T1 ABIDE-AC HCP-T2 RUNMC USZ PROMISE12 RUNMC USZ ACDC RVSC

Proposed Method - TTA-DAE

Adapt ϕ, using DAE - 0.80 0.73 - 0.79 0.86 - 0.68 - 0.74

Fast version of the proposed method

Adapt ϕ, using DAE - Fast - 0.80 0.73 - 0.79 0.84 - 0.68 - 0.75

Adapting all parameters for TTA

Adapt ϕ, θ, using DAE - 0.67 0.65 - 0.72 0.61 - 0.58 - 0.71

TTA using Ground Truth Labels

Adapt ϕ, using GT labels - 0.83 0.84 - 0.84 - - 0.77 - -

Iterative Post-Processing with DAE

10 passes through DAE - 0.63 0.11 - 0.79 0.83 - 0.69 - 0.73
100 passes through DAE - 0.53 0.10 - 0.79 0.82 - 0.67 - 0.69

Anatomy Brain Prostate (whole) Prostate (sep.) Heart

Method
Center

HCP-T1 ABIDE-AC HCP-T2 RUNMC USZ PROMISE12 RUNMC USZ ACDC RVSC

Proposed Method - TTA-DAE

Adapt ϕ, using DAE - 10.1 21.5 - 28.1 9.5 - 31.4 - 15.3

Fast version of the proposed method

Adapt ϕ, using DAE - Fast - 9.2 19.2 - 30.7 9.8 - 33.9 - 12.7

Adapting all parameters for TTA

Adapt ϕ, θ, using DAE - 5.0 13.7 - 15.5 16.1 - 22.2 - 4.8

TTA using Ground Truth Labels

Adapt ϕ, using GT labels - 6.1 3.9 - 35.2 - - 35.4 - -

Iterative Post-Processing with DAE

10 passes through DAE - 15.1 56.5 - 28.5 11.6 - 30.8 - 7.2
100 passes through DAE - 21.6 58.3 - 25.7 10.4 - 29.3 - 9.2

Table 5.4: Ablation Study: Upper sub-table shows DICE scores, and the lower one shows
95th percentile Hausdorff distance.

low.

1. ’Fast’ TTA: It can be seen that the TTA performance is immune to the change
in the initialization strategy. This demonstrates that the proposed adaptation
works in a stable manner for multiple test images, and is not dependent on a
’good’ first test image from a test distribution. In practice, the fast version is
more attractive due to the time saving.

2. Effect of adapting all parameters {θ, ϕ} for TTA: It can be seen that this lead
to a drop in segmentation accuracy in terms of Dice score, but improved the
Hausdorff distance (in all test distributions, except PROMISE12 for prostate).
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Qualitatively, we observed that the Dice scores deteriorated because the seg-
mentations while becoming more plausible, became inaccurate around the
edges. The Hausdorff distance, on the other hand, improved because the
added flexibility allowed outliers to be removed more effectively. Overall,
we believe that accurate segmentations around organ edges are more valu-
able than removing extreme outliers (which can be removed by other post-
processing steps, if required). Thus, we believe that this experiment show-
cases the importance of freeze a majority of the parameters at the values
obtained from the initial supervised learning.

3. Expressiveness of Nϕ: Naturally, using the ground truth labels for guiding
TTA led to improvements in accuracy in all cases, as compared to the strong
baseline. However, it is interesting to note that for the brain test distribu-
tion datasets, the resulting accuracies were inferior to the benchmark (that is,
training specialized CNNs separately for each test distribution). This shows
that despite TTA, some bias towards the training distribution may remain in
the normalized-image-to-segmentation CNN, Sθ.

4. How does TTA compare to iterative post-processing?: The results of this
experiment are shown in last two rows of Table 5.4 and in Fig. 5.4, for different
number of passes through the DAE. We observed that such a post-processing
approach could not improve segmentation accuracy as much as TTA. On the
contrary, for the brain datasets, where the segmentations are more compli-
cated than other anatomies due to the presence of multiple structures, the
post-processing with multiple DAE passes worsened the segmentation ac-
curacy. We believe that this might be because the DAE output, although gen-
erally plausible according the labels in the training distribution dataset, is
not necessarily tied to the input image in question. The proposed method
constrains the predicted segmentations to be tied to the input image by: (1)
freezing the deep sub-network, Sθ and (2) keeping the adaptable sub-network,
Nϕ, relatively shallow. Also, the limited flexibility for the adaptation guards
against potential errors of the DAE such as the one seen fourth column for
the brain dataset in Fig. 5.4.

(IX) Convergence of TTA
We find that the adaptation converges across the more than 100 test volu-
metric images across different anatomies and test distributions, and across
multiple runs of the experiments. Fig. 5.6 shows that TTA convergences reli-
ably for different test distributions.

Fig. 5.5 shows an example evolution during TTA iterations of (i) the normal-
ized images, (ii) the predicted segmentations and (iii) the denoised segmen-
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Figure 5.4: Multiple passes through the DAE do not suffice to improve seg-
mentation accuracy. From left to right: Initial prediction by the strong base-
line, followed by 1, 10 and 100 passes through the DAE, followed by the TTA
prediction and finally, the ground truth. Top and bottom rows show results
for the ABIDE-AC and USZ datasets, respectively, and the numbers below the
segmentations are the corresponding volumetric averaged foreground Dice
scores.

tations suggested by the DAE for improving segmentation performance.

Fig.5.7 shows the correlation between (a) the Dice between the predicted and
ground truth segmentation and (b) the Dice between the DAE input and DAE
outputs. It can been seen that these two Dice scores are correlated, thus jus-
tifying the choice of using the latter as the TTA model selection criterion (see
last paragraph of Sec. 5.3.3).

Figure 5.5: Evolution during TTA iterations of (i) the normalized images (top),
(ii) the predicted segmentations (middle) and (iii) the denoised segmenta-
tions suggested by the DAE for improving segmentation performance (bot-
tom).
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Figure 5.6: Convergence of TTA for different anatomies and test distributions:
ABIDE-AC (left), USZ (right). Mean and 0.1 * std. deviation over different test
subjects, of the Dice between the predicted and ground truth segmentation,
as a function of TTA iterations.

Figure 5.7: Correlation between (a) the Dice between the predicted and ground
truth segmentation and (b) the Dice between the DAE input and DAE outputs.
Each color represents TTA of a single test subject. For clarity, a few subjects
are shown in opaque colours, while others are faded. ABIDE-AC (left), USZ
(right).

5.5 Discussion

In this chapter, we proposed a test-time adaptation method for improving
robustness to acquisition-related DS in medical image segmentation. The
method consists of two main ideas. Firstly, we introduce an adaptable per-
image normalization module into a segmentation CNN. We believe that such
per-image adaptability may be crucial for developing robust analysis tools
that can be deployed in the clinic. Secondly, the proposed TTA is driven by
using denoising autoencoders, that incentivize plausible segmentation pre-
dictions. Experiments with multiple datasets and anatomies demonstrate
the promise and generality of the method, over other approaches such as data
augmentation, meta-learning and unsupervised domain adaptation. The pro-
posed method yields promising improvements while segmenting images from
completely unseen scanners and / or protocols.
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In the following paragraphs, we discuss some avenues that could be poten-
tially interesting for further improving TTA performance, and for ultimately
closing the gap to the benchmark - i.e. training a separate CNN for each test
distribution.

Noising strategy for DAE training
One of the main assumptions of our work is that the incorrect segmentations
predicted by a CNN for a test image from an unseen test distribution can be
considered to be from the training input distribution of the DAE. The validity
of this assumption is crucial for the output of the DAE to be reliable. In this
work, we chose a heuristic strategy for corrupting segmentation labels that
the DAE seeks to denoise. Thus, if the corrupted prediction for a certain test
image is not represented by the chosen heuristic strategy, the correspond-
ing DAE outputs may not be suitable for TTA for that test image.4 The DAE
performance can potentially be further improved if a strategy can be devised
to obtain noisy labels from the trained segmentation CNN. A potential way
of doing this might be to train the segmentation CNN on the training dis-
tribution without data augmentation, and then to use the predictions of this
CNN on intensity transformed training distribution images (for instance, via
gamma transformations) as noisy segmentations.

Capturing segmentation denoising uncertainty
A certain predicted corrupted segmentation could by generated from multi-
ple plausible clean segmentations. A common assumption in the DAE litera-
ture [221]↑is that a trained DAE provides samples from the posterior distribu-
tion over clean segmentations Y , given a corrupted segmentation Yc, P (Y |Yc).
However, this assumption may not necessarily hold as the DAE training pro-
cedure does not ensure this. Instead, the DAE is trained to output only one
clean segmentation rather than several possible denoised segmentations.
The performance of the DAE, and thus of the TTA, can be potentially further
improved by training the DAE to obtain such behaviour [222]↑.

Modeling the distribution of normalized images
We trained the overall segmentation CNN, Sθ(Nϕ(.)), with extensive data aug-
mentation and then adapted the normalization sub-network, Nϕ(.), for each
test image. We emphasize that the output of Nϕ(.) is an intermediate rep-
resentation Z , different from the input images X , even for images from the
training distribution(s). Thus, the proposed TTA is not expected to tune Nϕ(.)

such that it acts as a translator from the test to the training distribution. In-
4This concern is one of the main motivations for the alternative TTA method proposed in

the next chapter.
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stead, we expect TTA to tune Nϕ(.) such that is maps the given test image to
the distribution of normalized versions of the training distribution images.

This observation suggests an alternative strategy to drive TTA - by modelling
the distribution of the normalized training images, followed by asking the test
image to have a normalized representation that adheres the learned distribu-
tion. In a nutshell, this is the TTA strategy followed in the method described
in the next chapter.

Furthermore, we note that it may be possible to impose additional constraints
such that the normalized representation has desirable properties. For in-
stance, we observed in our analysis experiments that carrying out TTA even
with ground truth labels from the test distribution provides sub-optimal re-
sults as compared to the benchmark. This indicates the presence of distribution-
specific signals in the space of normalized images. To overcome this prob-
lem, domain generalization strategies may be employed to achieve distribu-
tion invariance in this space during the initial supervised learning on the
training distributions. Alternatively, specifically for MR images, it may be in-
teresting to incorporate methods for quantitative mapping of MR tissue pa-
rameters [223]↑to achieve such acquisition-independent representations in
the space of normalized images.

Affine registration for large domain shifts
The proposed atlas-based initialization for large DS was only evaluated with
brain images. Additionally, as both the training distribution (T1w) and test
distribution (T2w) images used from the HCP dataset were already rigidly
aligned, the affine registration step for atlas creation could be skipped. Such
affine registration would be required for other test distributions of brain im-
ages, as well as while applying the method to large DS in other anatomies.
The proposed method’s reliance on alignment with only linear transforma-
tions (rather that deformable registration) might facilitate applications in other
anatomies as well, but we leave this evaluation to future work.

Test-time adaptation in a Bayesian framework
A possible extension of our method might be to consider TTA of a supervised
CNN in the Bayesian framework, often used in unsupervised learning meth-
ods [30]↑. This would entail the use of an explicit prior model in the space of
segmentation labels, P (Z), as well as a likelihood model, P (X|Z), with TTA
being driven with the aim of maximizing the resulting posterior, P (Z|X).

Time required for test-time adaptation
The per-image flexibility offered by our method comes at the cost of the addi-
tional time required for such adaptation. After the first image of a particular
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scanner / protocol, the adaptation requires about 12 minutes for each 3D im-
age, with our experimental implementation. Despite potential for improve-
ment in terms of time efficiency, the proposed TTA does introduce an addi-
tional optimization routine for each test image and thereby compromises on
the fast-inference advantage of CNNs. Nonetheless, we believe that such a
time requirement is relatively modest and reasonable for general usage in
clinical practice.
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Chapter 6

A Task-Agnostic Test-Time
Adaptation Approach for Robust
Medical Image Analysis

This chapter is based on the publication "A field of experts prior for adapting
neural networks at test time" [224]↑. In this work, we extend the TTA approach
of Chapter 5 such that it can be generically applied to multiple tasks.

6.1 Introduction

Test-Time Adaptation (TTA) Recap
In TTA, the parameters of a previously trained CNN are adapted for each test
image. The subset of the parameters that get adapted per test image is a de-
sign choice. Noting that acquisition-related DS manifest as contrast varia-
tions, one approach is to design the CNN as a concatenation of a shallow,
image-specific contrast normalization CNN, z = Nϕ(x), followed by a deep
task CNN that is shared by all training and test images, y = Sθ(z). Here, x is
the input image, z is the normalized image, and y is the output (e.g. segmen-
tation, deformation field, enhanced image).

The image-specific parameters, ϕ, are adapted by requiring adherence to a
prior model, Hψ , either in the output space [67]↑or in the feature space [68]↑.
Hψ encourages similarity between outputs or features of the test image with
those of the training images. It is itself modelled using a CNN and trained in
a self-supervised manner - as a denoising autoencoder (DAE) in [67]↑and as
an autoencoder (AE) in [68]↑.

The DS problem in Hψ

In this work, we scrutinize the prior model, Hψ , which is a key component in
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Figure 6.1: An illustrative schematic of the DS problem in CNN-based helper
models. The figure is divided into 3 horizontal slabs (enclosed with dashed
boundaries). Slab B shows the mapping of the inputs (green) to the outputs
(purple), via the normalized features (blue). Slab A shows the training of prior
models (autoencoder (center) [68]↑, denoising autoencoder (right) [67]↑) to be
used for TTA: the AE is trained to auto-encode features of training images
and the DAE is trained to denoise corrupted outputs (from a specific corrup-
tion distribution indicated by the crescent). Finally, slab C shows the desir-
able behaviour (pink arrows) and potential failure cases (red arrows) when
the trained prior models are used to guide TTA.

tackling the DS problem via TTA. Consider what happens when TTA is used to
improve a CNN’s prediction accuracy in the presence of acquisition-related
DS. At the beginning of TTA iterations, the test features (outputs) are likely to
be dissimilar to the features (outputs) corresponding to the training images.
Indeed, this is symptomatic of the CNN’s poor performance on OOD images.
The main assumption of TTA methods like [67]↑, [68]↑is that Hψ is capable of
mapping such features (outputs) to ones that are similar to features (outputs)
observed during training.

We argue that, if Hψ is modelled with a CNN, it is likely to be vulnerable to
a DS problem of its own - that is, the outputs of Hψ may be unreliable when
its test inputs are from a different distribution as compared to its training
inputs. An illustrative schematic of this problem is shown in Fig. 6.1. AEs
in [68]↑, which are trained to auto-encode features of training images, are not
guaranteed to transform the features of test images to be like the features of
training images. Similarly, DAEs in [67]↑, trained to denoise corrupted out-
puts corresponding to a particular corruption distribution, may be unable to
denoise outputs with different corruption patterns.
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Lack of DS Robustness in Density Estimation Models
Although DAEs (for arbitrary corruption distributions) and AEs lack a strict
probabilistic underpinning, the aforementioned TTA approaches can be roughly
thought of as learning a probabilistic model of the training features (outputs),
and then increasing the likelihood of the test features (outputs) under the
trained model. We argue that even if CNN-based unsupervised density es-
timation models are used as the prior, they too are likely to suffer from the
DS problem [164]↑, [225]↑. For instance, one approach for TTA might be to
train variational autoencoders (VAEs) to model the distribution of features
of the training images, and to modify the test image’s features such that their
likelihood under the trained VAE increases. VAEs may even assign higher
likelihood values to OOD samples than samples from their training distribu-
tion [164]↑. Such behaviour may render them unsuitable for TTA.

Overview of the proposed method
In this work, we propose two main changes as compared to recent TTA works.

(1) Distribution Matching for TTA: Instead of driving TTA by minimizing the
reconstruction loss of the prior model, Hψ , we propose to match the distribu-
tion of 2D slices of a volumetric test image with the distribution of slices of
training images. The distribution matching is done in the space of the nor-
malized images, z.

(2) A Field-of-Experts Prior: Noting the lack of DS robustness in CNN-based
prior models for driving TTA, we posit that simpler prior models may (a) suf-
fice to improve task performance under the considered acquisition-related
DS, while (b) themselves being more robust to DS as compared to CNN-based
priors. With this motivation, we model the distribution of the normalized
training images, z, using a Field of Experts (FoEs) [226]↑formulation. FoEs
(described in more detail in Sec. 6.2) combine ideas of Markov random fields
(MRFs) [227]↑and Product of Experts (PoEs) [228]↑. FoEs enable modeling of
complex distributions as a product of several simpler distributions. The sim-
ple distributions are those of the outputs of so-called expert functions, which
are typically formulated as scalar functions of image patches. We propose to
use the task-specific filters learned in Sθ as the FoE experts (see Sec. 6.3.3 for
details). Further, we augment the FoE model with additional experts - projec-
tions onto principal components of patches in the last layer of Sθ (Sec. 6.3.5).

For TTA, we adapt the normalization moduleNϕ, so as to match the individual
expert distributions of the test and training images, for all experts in the FoE
model.

Summary of contributions To summarize, we consider the acquisition-related
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DS problem in CNN-based medical image analyses and make the following
contributions in this work: (1) we propose distribution matching for TTA, (2)
we model the distribution of normalized images, z, using a FoE model, with
the task-specific CNN filters acting as the expert functions, and (3) we aug-
ment the FoE model with PCA-based expert functions.

We support these technical contributions with an extensive validation on 5
image segmentation tasks, using data from 17 centers, and an image regis-
tration task, using data from 3 centers. To the best of our knowledge, this
is the first work in the literature that evaluates the TTA setting on such a
large variety of anatomies and tasks for medical image analysis. The re-
sults of these experiments help us organize the current TTA literature, in-
cluding the proposed method, along three axes. (1) Applicability to multiple
tasks: some of the existing TTA methods are task-dependent. The proposed
method relieves this constraint, and provides a general approach that can
used in multiple tasks. As compared to existing task-agnostic methods, the
proposed method provides similar performance for image registration and
superior performance for image segmentation. (2) Performance in segmen-
tation of anomalies: we find that DS robustness issue is particularly difficult
for lesion datasets. Here, all of the existing TTA methods either fail to improve
performance, and several methods even lead to performance degradation as
compared to the baseline. The proposed method provides substantial perfor-
mance gains in this challenging scenario. (3) Performance in segmentation
of healthy tissues: in this scenario, our experiments indicate that methods
specifically designed for handling distribution shifts in image segmentation
outperform more general TTA methods, including the proposed method.

6.2 Background

6.2.1 Markov Random Fields (MRFs)

MRFs [227]↑express a probability density function of an image, z, as an energy-
based model:

p(z) =
1

C
exp(−E(z)) (6.1)

where C is a normalization constant. The energy of the image is defined as the
sum of energies (potential functions) of all constituentRk×k patches (cliques),
zk :

E(z) =
∑
K

E(zk) (6.2)

83

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4767596


where K denotes the set of all k × k patches. Typically, the energy function
E(zk) is defined over relatively small patches and is hand-crafted - for in-
stance, to encode smoothness.

6.2.2 Field of Experts (FoEs)

FoEs [226]↑extend the MRF idea by learning the energy function from data.
Specifically, the energy of image patches, zk , is written in the Product-of-
Experts (PoE) framework [228]↑, [229]↑:

E(zk) = −
J∑
j=1

log p(fj(zk);αj) (6.3)

Substituting this into the MRF expressions shown in Sec. 6.2.1, the energy of
the total image, z, becomes

E(z) = −
∑
K

J∑
j=1

log p(fj(zk);αj) (6.4)

The corresponding probability density function of the image, z, becomes

p(z) =
1

C
∏
k∈K

J∏
j=1

p(fj(zk);αj) (6.5)

Here, fj : Rk×k → R are expert functions, and αj are parameters of the 1D
distributions of experts’ scalar outputs. The key idea in PoE and thus, FoE
models is that each expert models a particular low-dimensional aspect of
the high-dimensional data. Due to the product formulation, only data points
that are assigned high probability by all experts are likely under the model.
In [228]↑, [229]↑, [226]↑, fj and αj are learned using an algorithm known as con-
trastive divergence, such that images in a training dataset are assigned low
energy values, and all other points in the image space are assigned high en-
ergy values.

6.3 Method

6.3.1 Splitting Parameters into Image-Agnostic and Image-Specific

We follow the parameter splitting strategy that is proposed in the previous
method, TTA-DAE (chapter 5). Please refer to Sec. 5.3.1 for a detailed reasoning
behind this choice of parameter splitting. We provide a brief summary here.

An image, x, is passed through a shallow normalization module, Nϕ, which
outputs a normalized image, z. Nϕ consists of a few (2-4) convolutional layers
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with relatively small kernel size (1-3) and stride 1, and outputs z, which is a
feature with the same spatial dimensionality and the same number of chan-
nels as x. z is passed through a deep CNN, Sθ , which produces the output y. y
is formulated as per the task at hand - for instance, it can be a segmentation
mask, a deformation field, a super-resolved image, etc. Fig. 6.2 shows a rep-
resentative CNN architecture in this framework. We consider 2D CNNs, but
in principle, the method may be extended to 3D architectures as well.

6.3.2 Supervised Learning on Training Distribution

Similar to TTA-DAE (Sec. 5.3.2), we trainSθ andNϕ using labelled input-output
pairs from the training distribution. At test-time,Sθ is fixed, whileNϕ is adapted
for each test volumetric image.

Figure 6.2: Representative schematic of a test-time adaptable CNN. We follow
the same parameter splitting strategy as in TTA-DAE: A shallow normaliza-
tion sub-network, Nϕ, is image-specific and is adapted for each test image,
while a deep segmentation sub-network, Sθ segments the normalized image
Z and is shared by all training and test images. Each convolutional block inSθ
has the same architecture as the networks in Fig. 5.1 and Fig. 4.1, but is shown
in more detail here. Specifically, the notation fcl is shown, which represents
the function taking as input the normalized image Z , and outputting the cth

channel of the lth layer of Sθ.
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6.3.3 FoE-CNN: A New Helper Model for TTA

In this work, we drive TTA by matching the distribution in the space of nor-
malized images, z, of the given volumetric test image with that of the training
images. In this section, we describe our distribution modeling approach. In
Sec. 6.3.4, we describe how to match the modelled distributions.

Notation
Consider a representative architecture for Sθ shown in Fig. 6.2. The first con-
volutional block has been highlighted in the figure to exemplify the following
notation: We use fl: RNx×Ny → RNxl×Nyl×Cl to denote the function that takes
as input the normalized image z, and outputs the features of the lth convolu-
tional layer ofSθ. Further, we use fcl: RNx×Ny → RNxl×Nyl to denote the function
that takes as input z, and outputs the cth channel of the lth convolutional layer
of Sθ.

If kl is the receptive field at fcl with respect to z, each pixel in the output of fcl
can be seen as a 1D projection of a kl × kl patch of z, i.e., an expert function.

For ease of reading, we overload the notation fcl to indicate two things: (a) if
written as fcl(z), it indicates the function that takes as input z, and outputs
the cth channel of the lth convolutional layer of Sθ and (b) if written as fcl(zkl),
it indicates the function that takes as input an image patch of z of size kl× kl,
and outputs the corresponding pixel in the cth channel of the lth convolutional
layer of Sθ.

Distribution Modeling
We model the distribution of normalized images, z, using the FoE formulation
(Sec. 6.2.2) with the 3 modifications.

(i) Multiple patch sizes: Firstly, note that in the original FoE model, the en-
ergy function is defined in terms of input patches of a single patch size. We
consider multiple patch sizes to define the energy. Specifically, if Sθ consists
of L convolutional layers, we consider L patch sizes - namely, the receptive
fields of all the convolutional layers of Sθ.

E(z) =
L∑
l=1

∑
Kl

E((zkl)) (6.6)

where Kl denotes the set of all kl × kl patches.

(ii) Task-specific experts: Secondly, we define the energy function for each
patch size, using a separate PoE model. However, unlike [226]↑, we do not
learn the expert functions using contrastive divergence. Instead, we con-
struct a task-specific FoE model by using the functions fcl of Sθ as Cl experts
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to describe the energy of patches of z of size kl ∗ kl:

E(zkl) = −
Cl∑
c=1

log p(fcl(zkl ;αcl)) (6.7)

As previously noted, fcl(zkl) are individual pixels of the cth channel of the lth

convolutional layer of Sθ. Thus, p(fcl(zkl ;αcl)) is the 1D distribution of these
pixel values, and αcl are its parameters. Combining Eqns 6.7 and 6.6, and in-
serting the resulting energy function into the FoE formulation (Sec. 6.2.2), the
corresponding PDF of the normalized images can be written as:

p(z) =
1

C

L∏
l=1

Cl∏
c=1

∏
Kl

p(fcl(zkl)) (6.8)

Change of notation: For ease of reading, let us denote expert outputs, fcl(zkl),
by u and their distribution, p(fcl(zkl);αcl), by pcl(u;αcl). Also, note that the prod-
uct over kl ∗kl patches of Z is the product over the pixels of fcl. Thus, we have:

p(z) =
1

C

L∏
l=1

Cl∏
c=1

Nxl∗Nyl∏
i=1

pcl(ui;αcl) (6.9)

The functions learned in Sθ act as task-specific experts. We hypothesize that
matching the distributions of the outputs of such experts during TTA is likely
to be beneficial for improving the task performance for the test images.

(iii) Estimation of experts’ distributions: We approximate the expert distri-
butions, pcl(u;αcl), as 1D Gaussian distributions, with αcl = {µcl, σcl}:

pcl(u;αcl) = N (µcl, σcl)

µcl =
1
Nz

∑
z

1
Nxl∗Nyl

∑
i ui, σ

2
cl =

1
Nz

∑
z

1
Nxl∗Nyl

∑
i (ui − µcl)

2
(6.10)

Here, the outer sum,
∑

z , is over all samples of normalized images z, and the
inner sum,

∑
i, is over all pixels of the feature at the cth channel of the lth layer.

Eqn. 6.9 defines the complete field of CNN experts probability model (FoE-
CNN) of the normalized images, z, with the individual expert PDFs given ei-
ther by Eqn. 6.10.

In Sec. 6.4.4 (analysis experiments), we analyze the effect on TTA of mod-
elling pcl(u) using kernel density estimation (KDE). While this approach can
capture higher-order moments of the distributions, we observed that the re-
sulting PDFs were relatively similar to their Gaussian approximations. Thus,
for simplicity, we propose to use the Gaussian approximation in the method,
and show the effect of using KDE in the appendix.
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6.3.4 How to Drive TTA using the FoE-CNN Model?

We propose to use to the FoE-CNN model for TTA in the following setting:
at the training site (e.g. hospital), multiple labelled volumetric images are
available from the training distribution, but at the test site, we would like to
adapt the model for each volumetric test image separately. Therefore, we
consider subject-specific distributions ps(z) (Eqn. 6.9), consisting of subject-
specific 1D PDFs, pscl(u) (Eqn. 6.10). That is, after training Nϕ and Sθ using data
from the training distribution, we compute and save the 1D PDFs, pscl(u), for all
channels of all layers, for all training subjects. These are transferred to the
test site. A practical advantage here is that only summary statistics of the 1D
distributions are transferred - this provides benefits in terms of privacy and
memory requirements, as compared to transferring large CNN models or the
training distribution images themselves. Now, for TTA, we have to make the
following two design choices.

(i) Log-likelihood maximization v/s Distribution matching: Given a test sub-
ject t, there are two possible ways to carry out TTA. One option is to maximize
the log-likelihood of the normalized image corresponding to the test image,
under the FoE-CNN model computed for the training images. Further, since
the distribution of the training subjects are also modelled subject-wise, we
additionally take an expectation over the training subjects:

maxϕ Ep(s) [Ept(z) log p
s(z)] → maxϕ Ep(s) [Ept(z)

∑L
l=1

∑Cl

c=1

∑Nxl∗Nyl

i=1 log pscl(ui)]

(6.11)

We approximate the expectation with respect to pt(z) using randomly chosen
2D slices of the test subject’s volumetric image. A potential problem with this
TTA formulation may be that it attract all pixels ui towards the modes of pscl. To
circumvent this issue, we propose to model the distribution of the normalized
images corresponding to the 2D slices of the test subject, pt(z), also using the
FoE-CNN model (Eqn. 6.9). Now, a suitable divergence measure, D, between
this and the distributions of the training subjects can be minimized.

minϕ Ep(s) D(ps(z), pt(z)) (6.12)

However, the normalization constant C in Eqn. 6.9 is intractable to compute
and may be different for the two distributions. As well, commonly used di-
vergence measures (such as f-divergences) require integration over the en-
tire space over which the distributions are defined. Clearly, this is not pos-
sible for the high-dimensional normalized images, z. Therefore, for TTA, we
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match all the 1D expert distributions, pcl, for all channels of all layers. That is,
we minimize LFoE−CNN with respect to ϕ, where

LFoE−CNN = Ep(s)

[
1
L

∑L
l=1

1
Cl

∑Cl

c=1D(pscl(u), p
t
cl(u))

]
(6.13)

In particular, we minimize the KL-divergence between the individual 1D dis-
tributions for the training and test images. As the 1D PDFs are approximated
as Gaussians, the KL-divergence can be computed in closed form. Further,
for this choice of divergence measure, we show in Sec. 6.7.1 that minimizing
the objective in Eqn. 6.12 is equal to minimizing the one in Eqn. 6.13 plus log
of the normalization constant C for the test image.

(ii) Incorporating information from multiple training subjects: As mentioned
previously, we consider subject-specific distributions of the normalized im-
ages. This provides us with two options for carrying out distribution match-
ing for TTA: (a) minimize the divergence of the test subject’s distribution with
the expected distribution over all training subjects: minD(Ep(s)[p

s
cl(u)], p

t
cl(u)).

(b) minimize the expected divergence of the test subject’s distribution with
the distribution of each training subject: min Ep(s)[D(pscl(u), p

t
cl(u))]. For KL-

divergence, we show in Appendix 6.7.2 that two objectives are related as fol-
lows:

DKL

(
Ep(s)[p

s
cl(u)], p

t
cl(u)

)
=

− Ep(s)[DKL(p
s
cl(u), Ep(s)[p

s
cl(u)])] + Ep(s)[DKL(p

s
cl(u), p

t
cl(u))]

(6.14)

As the first term on the right-hand side of Eqn 6.14 does not depend on the test
image, TTA should, in principle, be equivalent for both ways of incorporating
information from multiple training subjects. However, computing (b) in prac-
tice requires only one monte-carlo (MC) approximation, while computing (a)
requires three MC approximations over the training subjects. Thus, the vari-
ance of (b) will be less than that of (a) [230]↑. With this reasoning, we choose
(b) over (a) in the proposed TTA objective (Eqn 6.13).

The proposed TTA approach presents a general distribution matching frame-
work, of which TTA methods that use test image(s) statistics in the BN layers
of a trained CNN [131]↑, [132]↑are specific instances. While the replacement of
batch normalization statistics is heuristically motivated in [131]↑, [132]↑, the 1D
feature distribution matching in the proposed TTA strategy emerges from a
principled framework. Further, as discussed in the following sub-section, the
proposed framework naturally extends to include 1D distribution matching
in the space of PCA loadings.
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6.3.5 FoE-CNN-PCA: An Extended Helper Model

We note that the task-specific experts, fcl, in the proposed probability model
(Eqn. 6.9) take as inputs patches of increasing patch sizes. The experts fcL
have the largest receptive field, kL, - thus, they model spatial correlations in
kL × kL patches. Depending on the architecture of Sθ , this may or may not
cover the entire spatial dimensionality of the normalized image z. We hy-
pothesize that considering spatial correlations in even larger image patches
may further improve the proposed TTA. Furthermore, even within the already
considered patch sizes, the task-specific experts derived from Sθ may not
necessarily capture all spatial correlations that are relevant for distinguish-
ing and improving the task performance when faced with acquisition-related
DS.

The FoE-CNN-PCA model
We consider additional expert functions that encode spatial correlations at
the layer with the largest receptive field. To do so, we use PCA [231]↑ [232]↑.
For all the training images, we extract the last layer features, fcL(z). Next, for
each channel of fcL(z), we extract r × r patches with stride d. We carry out
PCA of these patches and save the first G principal components. Now, for
each channel c, we compute the PCA coefficients, v, for all extracted patches
of all training images. The functions that output the PCA coefficients are con-
sidered the additional experts. We compute subject-wise 1D PDFs in each
principal dimension, pscg(v), where c = 1, 2, ...CL, g = 1, 2, ...G, s = 1, 2, ...ntr.

PCA of active patches
For the task of image segmentation, we noticed that the marginal distribu-
tions of the features fcL have two distinct modes - one corresponding to the
regions of interest, and one to "background" regions, which are not relevant
for the task at hand. In several segmentation applications, the background
consists of many more pixels than the foreground classes combined. In such
cases, PCA may be unable to find directions of variance within the foreground
regions, matching marginal distributions of which may be more useful for
TTA. To tackle this problem, we consider only active patches while doing
PCA. Active patches are defined as those whose central pixel’s predicted fore-
ground segmentation probability is greater than a threshold τ .

6.3.6 How to Drive TTA using the FoE-CNN-PCA Model?

The principal components computed on the training images, as well as the
expert PDFs of the principal coefficients are transferred to the test site. When
a test image tarrives, patches of its features, fcL(z), are extracted, active patches
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are retained and the saved principal components are used to compute the
corresponding expert PDFs, ptcg(v). The matching of the additional PCA co-
efficient PDFs is included in the TTA optimization. That is, we minimize
LFoE−CNN−PCA with respect to ϕ, where

LFoE−CNN−PCA =

Ep(s)

[
1
L

∑L
l=1

1
Cl

∑Cl

c=1DKL(p
s
cl(u), p

t
cl(u)) + λ 1

CL

∑CL

c=1
1
G

∑G
g=1DKL(p

s
cg(v), p

t
cg(v))

]
(6.15)

A hyperparameter, λ, is used to weigh the contribution of the PCA experts
with respect to the CNN ones.

We validated the proposed method for tackling the DS problem on two medi-
cal image analysis tasks - segmentation (Sec. 6.4) and atlas registration (Sec. 6.5).

6.4 Image Segmentation Experiments and Results

6.4.1 Datasets

We considered MRI segmentation for 5 anatomies (names of the segmented
foreground classes are shown brackets) - (i) T2w prostate (whole organ), (ii)
Cine cardiac (myocardium, left and right ventricles), (iii) T1w spine (spinal
cord grey matter), (iv) healthy T1w brain (cerebellum gray matter, cerebel-
lum white matter, cerebral gray matter, cerebral white matter, thalamus, hip-
pocampus, amygdala, ventricles, caudate, putamen, pallidum, ventral DC, CSF
and brain stem) and (v) diseased FLAIR brain (cerebral white matter hyper-
intensities). In total, we used data from 17 centers. Table 6.1 summarizes the
details of all datasets. Please refer to Sec. 3.1 for a detailed description.

For datasets where the total number of images was very small, splits were
created as indicated in Table 6.1, and average test scores are reported. The
dataset splits were designed in such a way that we had 10 test volumes from
each test distribution (except for the spine images, where the number of test
volumes was 9).

6.4.2 Pre-Processing

The same pre-processing pipeline was used, as described for TTA-DAE in
Sec. 5.4.2. That is, we (a) corrected bias fields from the images, (b) linearly
normalized their intensities to 0-1 range, (c) removed the skulls from brain
images, (d) rescaled the images to match their resolutions in the in-plane di-
rection: 0.625mm2, 1.33mm2, 0.25mm2, 0.7mm2 and 1.0mm2 for prostate, cardiac,
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Dataset Center Train / Test NI Ntr|Nvl|Nts

Prostate
NCI-13 RUNMC Train 30 15|5|10
NCI-13 BMC Test 30 15|5|10

Promise12 UCL Test 13 (6|2|5)x2
Promise12 HK Test 12 (5|2|5)x2
Promise12 BIDMC Test 12 (5|2|5)x2

Private USZ Test 68 48|10|10
Heart

M&Ms CSF Train 50 30|10|10
M&Ms UHE Test 25 10|5|10
M&Ms HVDH Test 75 55|10|10

Spinal Cord Grey Matter
SCGM PM Train 10 (5|2|3)x3
SCGM USZ Test 10 (5|2|3)x3
SCGM VU Test 10 (5|2|3)x3
SCGM UCL Test 10 (5|2|3)x3

Brain (Healthy)
HCP HCP-T1 Train 35 20|5|10

ABIDE ABIDE-AC-T1 Test 25 10|5|10
Brain (White Matter Hyperintensities)

WMH-17 UMC Train 20 (10|5|5)x2
WMH-17 NUHS Test 20 (10|5|5)x2

Table 6.1: Details of segmentation datasets for 5 anatomies. NI refers to the
total number of 3D images, and the last column refers to the training, valida-
tion and test split. For some datasets, the split is followed by x2 or x3. This
refers to the number of dataset splits that were done to get a reasonable num-
ber of test images in datasets with a low NI .

spine, brain and WMH respectively, and (e) cropped / padded zeros to have
the same in-plane image size: 200x200 for the spine images and 256x256 for
other anatomies. The evaluation for each test image was done in its original
resolution and size.

6.4.3 Common Implementation Details for all Experiments

Network Architectures: We used the same architecture for Nϕ and Sθ as in
TTA-DAE [67]↑. Nϕ consisted of 3 convolutional layers of kernel size 3, num-
ber of output channels 16, 16 and 1, and an expressive activation function
(act(x) = exp−(x2/σ2)) with a learnable scale σ for each channel. Sθ followed a
U-Net [205]↑like encoder-decoder structure with skip connections, and batch
normalization layers following each convolutional layer. The ReLU activation
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function was used in Sθ.

6.4.4 List of Experiments and Specific Implementation Details

For each anatomy, we used the institution in the first row (for that anatomy)
in Table 6.1 as the training distribution, and the remaining institutions as sep-
arate test distributions. In this setup, we carried out the following experi-
ments:

(I) Baseline
We trained a CNN (Nϕ + Sθ) using labelled images from the training distribu-
tion. The supervised training was done by minimizing the Dice loss [209]↑using
an Adam optimizer with a learning rate of 0.001 and a batch size of 16. The
optimization was run for 30000 iterations, and the model selection criterion
was the average Dice score on the validation dataset.

(II) Strong Baseline - Data Augmentation
Several domain generalization methods have been proposed to tackle acquisition-
related DS in medical image analysis. From our experiments in the previous
chapter, we found that stacked data augmentations [101]↑is an effective and
general DG approach. The implementation details were the same as in [67]↑:
for every image in a training batch, each transformation (translation, rota-
tion, scaling, elastic deformations, gamma contrast modification, additive
brightness and additive Gaussian noise) was applied with probability 0.25.
This functioned as a strong baseline, the performance of which we sought
to improve with the proposed TTA approach.

(III) Benchmark
The best performance on images from a test distribution can be achieved by
training a new model in a supervised manner, using a separate set of labelled
images from the test distribution. As some of the datasets contained only a
small number of images to start with, we instead used a transfer learning
benchmark - that is, the model trained on the training distribution (with data
augmentation) was fine-tuned using labelled images from the test distribu-
tion. The fine-tuning was done with the Adam optimizer for 5000 iterations,
with a learning rate of 0.0001 and batch size of 16. This model served as the
benchmark.

(IV) Test-Time Adaptation Methods
We compared the proposed approach (TTA-FoE-CNN-PCA) with three exist-
ing TTA works: TTA-Entropy-Min [123]↑, TTA-DAE [67]↑and TTA-AE [68]↑.
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Common details for all TTA methods: Using the ’strong baseline’ model as
the starting point, TTA was run for Ntta epochs for each test subject. In each
epoch, averaged gradients over batches of size btta were used to update the
network parameters with a learning rate of lrtta. Ntta was set to 200 for the
healthy brain dataset (due to its high through-plane size) and to 1000 for all
other datasets. btta was set to 8 for all datasets except SCGM, where it was set
to 2 as some images had less than 8 slices.

(IV.A) TTA-DAE [67]↑

A 3D denoising autoencoder was trained in the space of segmentation labels,
using the same corruption distribution as proposed in the original paper. Sim-
ilar to the original implementation, healthy brain segmentations were down-
sampled in the through-plane direction by a factor of 4, to overcome memory
issues. lrtta was set to 0.001.

(IV.B) TTA-EM [123]↑

The normalization module,Nϕ, was adapted for each test subject, with lrtta as
0.0001, to minimize the average pixel-wise entropy computed over all predic-
tion classes.

(IV.C) TTA-AE [68]↑

Instead of adapting Nϕ, adaptor modules Ax, A1, A2 and A3 were introduced
and adapted for each test subject as was done in the original article. We ex-
perimented with different settings of [68] so as to get the best results for the
datasets used in our experiments (Appendix 6.7.3). The architectures of the
adaptors were kept the same as proposed in [68]↑, with one change: the in-
stance normalization layers in AX were discarded as they lead to instabil-
ity during TTA. Two other changes were done to further improve the perfor-
mance and stability: (a) average gradients over all batches in a single TTA
epoch were used for the TTA updates (as described in Sec 3.5 in [67]↑) and
(b) the lrtta was set to 0.00001. Five 2D autoencoders (AEs) (with the same ar-
chitectures as in [68]↑) were trained and the weight of the orthogonality loss,
λorth, was set to 1.0, as done in [68]↑. We observed that driving the TTA using
losses from two AEs (at the input and output layers) provided better perfor-
mance than using all 5 AEs. With these modifications, TTA-AE worked in a
stable manner, without resorting to early stopping as done in [68].

(IV.D) TTA-FoE-CNN-PCA
At the end of the ’strong baseline’ training, the FoE-CNN model was con-
structed by computing 1D PDFs for all channels of all layers of Sθ , for each
training subject. For the chosen architecture ofSθ , this amounted to 704 chan-
nels. Any zero-padding done to the images in the pre-processing step was
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ignored while computing the expert PDFs. As the PDFs were approximated
as Gaussians, two parameters were stored per PDF.

For computing the additional expert PDFs of the FoE-CNN-PCA model, the
following steps were followed: (a) For all training images, features from the
last layer of Sθ were extracted (from here, a 1x1 convolutional layer provided
the segmentation logits). In the chosen architecture, these features were of
the same spatial dimensions as the images and hadCL = 16 channels. (b) For
each channel in these features, patches of size r× r = 16× 16 were extracted
with stride d = 8. (c) From these, only active patches (that is, patches whose
central pixel’s predicted foreground probability was greater than τ = 0.8) were
retained. As CNNs typically make high confidence predictions, this step is
likely to be insensitive to the exact value of τ . To obtain a comparable number
of active patches to other anatomies, the stride d was set to 2 for the WMH
images, where the foreground size was particularly small. (d) PCA was done
using the active patches of all training images, and the first G = 10 principal
directions were identified. (e) Finally, 1D PCA expert PDFs were computed
similar to the 1D CNN expert PDFs: for all channels of the last layer of Sθ , for
all principal directions, for each training subject. In total, we had CL × G =

160 PCA expert PDFs for each training subject. The hyperparameter, λ, was
empirically set to 0.1 (Sec. 6.4.5), and lrtta to 0.0001.

(V) Analysis Experiments

(V.A) Approximating Expert Distributions with KDEs rather than as Gaus-
sians
In the proposed method, we approximate the individual expert distributions
of the FoE model (Eqn. 6.9) as Gaussian distributions. As the expert distribu-
tions are in 1D, we also considered non-parametric estimation methods, such
as kernel density estimation (KDE) [233]↑ [234]↑ [235]↑. In general, KDEs have
the two important downsides. Firstly, the number of data points required
to get a reliable density estimate grows exponentially with dimensionality.
This is not a concern in low dimensions. Secondly, KDEs require access to
the training samples to evaluate the PDF at a given test sample. Again, in
low dimensions (e.g 1D), it may be feasible to evaluate and save the KDE over
the entire domain of interest when one has access to the training samples.
Thus, the training samples are no longer required at test time. Accordingly,
we compute

pcl(u) =
1
Nz

∑
z

1
Nxl∗Nyl

∑
i

1√
2π

exp (−α ||u− ui||22)) (6.16)

Being more expressive than Gaussians, KDEs can potentially capture higher-
order moments of the expert distributions - thus leading to more accurate
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distribution matching and better TTA performance.

Implementation-wise, when the 1D PDFs were estimated as Gaussians, the
KL-divergence could be computed in closed form. When KDEs are used, we
numerically compute the integral in the KL-divergences using Riemann sums.

(V.B) Effect of the weighting between the CNN and the PCA experts
The effect of the weighting parameter, λ, in Eqn. 6.15, was empirically ana-
lyzed for the 5 test distributions of the prostate segmentation experiment.

6.4.5 Results

The following points can be inferred from the quantitative results of our seg-
mentation experiments (Table 6.2).

(I) Baseline
The baseline demonstrates the DS problem. The difference between the Dice
scores on the training and test distributions is sometimes as high as 60 Dice
points; a model that provides almost perfect segmentations on the training
distribution can potentially provide completely un-usable segmentations on
images from a test distribution that corresponds to a different hospital.

(II) Strong Baseline
The strong baseline (data augmentation [101]↑) helps vastly. It is much more
robust to DS than the baseline - in some cases, the performance jump is as
high as 50 Dice points. These results corroborate numerous similar findings
in the current literature. Given the generality and effectiveness of the ap-
proach, we believe it is imperative that works studying DS robustness in CNN-
based medical image segmentation should include stacked data augmenta-
tion during training.

(III) Benchmark
A gap to the benchmark still remains - in most cases, heuristic data augmen-
tation falls short of rivalling the performance of supervised fine-tuning.

(IV.A) TTA-DAE
Among TTA methods, [67]↑provides the best performance for the most num-
ber of cases. However, it also leads to a drop of 5 and 8 Dice points from the
two spine datasets, and fails to improve performance for the WMH dataset.
For the latter case, we speculate that this reflects the inability of the DAE to
learn a reliable shape prior.

(IV.B) TTA-EM
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Method
Test

UCL HK BIDMC BMC USZ UHE HVHD USZ VU UCL AC NUHS

Prostate Cardiac Spine Brain WMH
Supervised Learning on Training Distribution

Baseline 0.50 0.68 0.29 0.28 0.67 0.86 0.38 0.61 0.82 0.79 0.69 0.00
Domain Generalization

Strong baseline [101]↑ 0.77 0.82 0.62 0.77 0.76 0.85 0.80 0.67 0.84 0.88 0.76 0.37
Test Time Adaptation

Entropy Min. [123]↑ 0.77 0.81 0.68△ 0.77 0.80▲ 0.85 0.80△ 0.67 0.84 0.88 0.81▲ 0.36▼

DAE [67]↑ 0.84▲ 0.84△ 0.75▲ 0.81△ 0.82▲ 0.87▲ 0.81 0.69 0.80▽ 0.80 0.82▲ 0.37
AE [68]↑ 0.78 0.83 0.51▽ 0.79 0.79 0.86▲ 0.80 0.69△ 0.84△ 0.88△ 0.78▲ 0.24▼

FoE-CNN [236]↑ 0.78 0.77▽ 0.64 0.76 0.76 0.86 0.82▲ 0.68 0.85△ 0.89△ 0.79▲ 0.24▼

FoE-CNN-PCA (Ours)↑ 0.79 0.81 0.73△ 0.75 0.78 0.85 0.82▲ 0.68 0.83▽ 0.88 0.79▲ 0.42▲

Transfer Learning
Benchmark 0.80 0.85 0.82 0.83 0.84 0.88 0.83 0.78 0.85 0.90 0.88 0.77

Table 6.2: Dice scores (averaged over all foreground labels and all test subjects) for the seg-
mentation test-distribution datasets. In each column, the highest Dice score among the TTA
methods has been highlighted. The Dice scores for test images from the training distribu-
tion are: (a) for the baseline: RUNMC 0.86, CSF: 0.82, PM: 0.88, HCP: 0.87, UMC: 0.71, (b) for the
strong baseline: RUNMC 0.91, CSF: 0.83, PM: 0.89, HCP: 0.87, UMC: 0.72. Results for the NUHS
dataset are mean values over 4 runs. Paired permutation tests were done to measure the sta-
tistical significance of the improvement or degradation caused by each TTA method over the
strong baseline. △ (▽) and ▲ (▼) indicate improvement (degradation) with p-value less than
0.05 and 0.01, respectively. The stricter significance test (p-value 0.01) was done to counter
the multiple comparison problem [237]↑.

Entropy minimization-based TTA [123]↑requires construction of no additional
models to capture the training distribution traits; yet, it provides performance
improvement in several cases. Also, unlike other works [140]↑, we do not ob-
serve the problem that the entropy minimization leads to all pixels being pre-
dicted as the same class. This might have been due to the limited adaptation
ability provided by Nϕ.

(IV.C) TTA-AE
Autoencoder-based TTA [68]↑provides performance improvement in several
cases. However, it also leads to a drop of 12 and 26 Dice points for the prostate
BIDMC and the WMH dataset, respectively.

(IV.D) TTA-FoE-CNN-PCA
The last two rows of Table 6.2 show the added benefit of the PCA experts to
the FoE model.

As compared to the strong baseline, the proposed FoE-CNN-PCA based TTA
improves performance for 7 and retains performance for 2 out of the 12 test
distributions. In particular, the proposed method shows promising perfor-
mance gains in cases where the competing methods falter substantially (e.g.
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prostate BIDMC and WMH). Further, for the 3 test distributions where the method
leads to a performance drop, the drop is relatively small: 3, 1 and 1 Dice points.
We claim that this illustrates the stability of the proposed TTA method and
validates our initial hypothesis - FoE-based TTA improves performance in
the face of acquisition-related DS in medical imaging, while itself being sub-
stantially more robust to the DS shift problem that other priors such as the
DAE [67]↑or the AE [68]↑may be vulnerable to.

Additionally, the proposed method provides the best performance for the task

Figure 6.3: Graphical comparison of TTA methods. Each of the three sub-
plots compares the performance of TTA-FoE-CNN-PCA with one competing
TTA method from the literature: TTA-DAE (top), TTA-EM (middle) and TTA-AE
(bottom). Additionally, the strong baseline and benchmark results are shown
in each subplot. All TTA methods perform similarly for most datasets - af-
ter carefully tuning hyper-parameters for each method. Yet, the proposed
TTA method is more stable (does not lead to drastic performance drop in any
dataset) and more general (provides performance improvement for the lesion
segmentation problem, while none of the existing methods manage to do so).
Brown boxes highlight such scenarios.
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of WMH segmentation - indicating its superiority in cases where CNN-based
helper modules such as DAEs [67]↑may be unable to learn appropriate shape
priors. Notably, all competing methods from the literature fail to improve DS
robustness for the lesion segmentation experiment; the proposed TTA-FoE-
CNN-PCA is the only approach that shows promising results in this challeng-
ing scenario. We claim that this demonstrates generality of the proposed
approach over previously existing methods. Fig. 6.4 shows the evolution of
the predicted segmentation for the WMH test subject, over the course of TTA-
FoE-CNN-PCA iterations. The prediction becomes better as the expert distri-
butions of the test image better overlap with the corresponding expert distri-
butions for training subjects.

A graphical comparison of the different TTA methods is shown in Fig. 6.3,
which visually corroborates the discussion above.

Figure 6.4: Evolution during TTA iterations (for WMH segmentation in a NUHS
test distribution subject) of (from top to bottom): (i) normalized images, (ii)
predicted segmentations, overlap between training and test distributions of
(iii) a CNN expert and (iv) a PCA expert. For the last two rows, the distribu-
tions corresponding to different training subjects are shown in blue, and that
corresponding to the test image is shown in red.

(V) Analysis Experiments

(V.A) Approximating Expert Distributions with KDEs rather than as Gaus-
sians
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Comparing the KDEs v/s Gaussian approximations (Fig. 6.5), we observed that
the actual distributions do not differ substantially from their Gaussian ap-
proximations. This is also reflected in the TTA results in Table 6.3 - perfor-
mance of the proposed method is very similar for both estimates of expert
distributions.

Figure 6.5: Comparison of KDEs v/s Gaussian approximations (correspond-
ing to a single prostate RUNMC training subject) for modeling the channel
PDFs of different layers of the trained segmentation network. l = 14 is the
last-but-one layer of the network. From here, a 1x1 convolution gives the
segmentation logits. In each layer (l), the channel (c) with the visually most-
non-gaussian KDE is chosen for visualization. With this choice, some non-
Gaussianity is observed in the initial and final layers, while the layers in the
middle of the segmentation CNN has highly Gaussian marginal distributions.

Method
Test

UCL HK BIDMC BMC USZ

TTA-FoE-CNN-PCA
Gaussian 0.79 0.81 0.75 0.75 0.78

KDE 0.79 0.81 0.74 0.76 0.78

Table 6.3: Effect of approximating 1D distributions of the FoE model with
Gaussians v/s kernel density estimation (KDE). Both approximations lead to
very similar TTA performance. Fig. 6.5 provides visual justification of this
observation - the 1D distributions of CNN as well as the PCA experts are suf-
ficiently well approximated with Gaussians.

(V.B) Effect of the weighting between the CNN and the PCA experts
Results of this hyper-parameter tuning are shown in Table 6.4. The intro-
duction of PCA experts with λ = 0.1 improves TTA performance for 4 of the
5 prostate datasets. However, increasing λ to 1.0 leads to performance de-
crease in 4 of the 5 datasets. Based on these results, we choose λ = 0.1 for all
datasets of all anatomies.
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Method
Test

UCL HK BIDMC BMC USZ

TTA-FoE-CNN
λ = 0.0 0.78 0.77 0.64 0.76 0.76

TTA-FoE-CNN-PCA
λ = 0.1 0.79 0.81 0.75 0.75 0.78
λ = 1.0 0.77 0.82 0.74 0.74 0.77

Table 6.4: Effect of the weighting parameter between the CNN and PCA ex-
perts in TTA-FoE-CNN-PCA. Based on these results, we choose λ = 0.1 for all
datasets of all anatomies.

6.5 Image Registration Experiments and Results

Next, we checked if the proposed method can tackle acquisition-related DS
in another task of high practical importance - registration of brain scans with
an atlas.

Registration CNN Setup: The registration CNN is set up as follows. (Ideally,
such registration would be done in 3D. However, to avoid memory issues in 3D
CNNs, we conduct experiments in a 2D setup. We believe that this still serves
as credible evidence of the method’s applicability in this task.) Let A be an
atlas and X be the image. Let As and Xs be the corresponding segmentation
labels. We treat A as the moving image and register it to x, the fixed image.
X is first passed through the normalization module, Nϕ, to obtain a normal-
ized image, Z . Z and A are concatenated and passed through a deep CNN,
Sθ , which outputs a velocity field V0. V0 is exponentiated via a squaring-and-
scaling layer [238]↑to obtain a diffeomorphic deformation field, Φ.

Figure 6.6: Setup of our registration experiments. Exp. denotes an squaring
and scaling exponentiation layer.

The Dice loss between the warped moving segmentation, As ⊙ Φ, and Xs is
used for training Nϕ and Sθ. The image-specific normalization module, Nϕ is
adapted, for each test image.
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6.5.1 Datasets

We used HCP [186]↑T1w images as those from the training distribution and
ABIDE-STANFORD (AS) [187]↑↑ and OASIS [196]↑as two test distributions. We
used the atlas provided by [197]↑↑. Example images are shown in Fig. 6.7.

Figure 6.7: From left to right: a 2D slice from the atlas and example slices from
three datasets: HCP, ABIDE-STANFORD (AS) and OASIS.

6.5.2 Common Implementation Details for all Experiments

All images were re-sampled to an isotropic 1 mm3 resolution. Upon visual
inspection, the axial slices of the atlas, the HCP and OASIS datasets were
roughly aligned in the through plane direction, while the AS volumes were
shifted by 10 slices. After accounting for this, we extracted the central 40 ax-
ial slices from all volumes. We used 3-label (background, white matter, grey
matter) Freesurfer [194] segmentations for HCP, AS and expert segmentations
for the atlas and OASIS.

6.5.3 List of Experiments and Specific Implementation Details

(I) Baseline, (II) Strong baseline and (III) Benchmark
Similar to Sec. 6.4.3, the baseline is supervised learning on the training distri-
bution, strong baseline is supervised learning with extensive data augmen-
tation [101]↑and benchmark is transfer learning (fine-tuning using on the test
distribution).

(IV) Test-Time Adaptation Methods
Among the TTA methods, we note that TTA-EM [123]↑and TTA-DAE [67]↑are
not applicable for the image registration experiments.

TTA-EM [123]↑can only be applied in cases where Sθ outputs a probability dis-
tribution over a fixed number of classes; it is unclear how to extend this for
regression problems.
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TTA-DAE [67]↑requires a denoising autoencoder to be trained with corruption
patterns that are expected at test time. Designing such corruptions for the
registration task is non-trivial.

Thus, we compare the proposed method TTA-FoE-CNN-PCA with TTA-AE [68]↑.
As with segmentation, we carry out TTA for the base network trained with
data augmentation (strong baseline).

6.5.4 Results

Quantitative results of our registration experiments are shown in Table 6.5.

(I) Baseline, (II) Strong baseline and (III) Benchmark
The baseline shows that the DS problem exists for the registration problem
as well. Further, data augmentation [101] provides substantial gains for regis-
tration - demonstrating the wide generality of this approach for tackling DS.
The strong baseline almost matches the benchmark performance for the OA-
SIS dataset, while a gap in performance exists for the ABIDE-STANFORD (AS)
dataset.

(IV) Test-Time Adaptation Methods
Both TTA-FoE-CNN-PCA and TTA-AE [68]↑improve the performance for the
AS dataset and retain it for the OASIS dataset. This shows the applicability of
both approaches to multiple tasks. We argue that such across-task applica-
bility is an important strength of the proposed method.

Fig. 6.8 shows subject-wise results for the AS dataset. Like for the segmenta-
tion experiments, it can be seen that both TTA methods perform similarly for
most subjects. For one subject, however, TTA-AE leads to performance degra-
dation as compared to even the baseline. Notably, such degradation does not
happen for any subject with the proposed method. This may be seen as fur-
ther evidence of the proposed method’s stability. We note, however, more ex-
perimentation may be required to validate this claim for the image registra-
tion task, and for other tasks.

6.6 Discussion

In this chapter, we proposed a task-agnostic TTA method, TTA-FoE, for im-
proving robustness to acquisition-related DS in medical image analysis. TTA-
FoE is motivated by the notion that per-image adaptability is crucial for de-
veloping robust medical image analysis tools, as introduced in the previous
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Method
Test

HCP AS OASIS

Baseline 0.847 0.751 0.864
Strong baseline [101]↑ 0.843 0.786 0.873

Benchmark - 0.821 0.883
TTA-DAE [67]↑ - N/A N/A
TTA-EM [123]↑ - N/A N/A
TTA-AE [68]↑ - 0.795 0.868

TTA-FoE-CNN-PCA - 0.795 0.870

Table 6.5: Dice scores (averaged over all foreground labels and all test sub-
jects) for the registration experiments. The two TTA methods that can be
applied to this task perform similarly well to one another, while the other two
TTA methods cannot be applied to the image registration task.

Figure 6.8: Dice scores for individual subjects of the AS dataset. Overall, both
TTA methods perform similarly well for most subjects. However, the brown
box highlights one subject, where TTA-AE leads to performance degradation
as compared to both the baseline as well as the strong baseline. Such degra-
dation does not occur with the proposed method.

chapter. It also follows the method of the previous chapter (TTA-DAE) in that
it adapts a shallow normalization sub-network for each test image.

The procedure to achieve the TTA in TTA-FoE improves upon that of TTA-DAE
in two respects. (1) TTA-FoE is carried out by matching distributions of the
test and training images in the output space of normalization sub-network.
The distributions in this space are modelled using a Field-of-Experts (FoE)
formulation. By relying on simpler distributions of a large number of task-
specific 1D projections of normalized images, the FoE model is less vulnera-
ble the DS robustness problem than CNN-based helper models that are used to
drive TTA in TTA-DAE [67]↑and TTA-AE [68]↑. The improved robustness of the
TTA helper model manifests as improved TTA stability - the proposed method
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provides performance gains in a stable manner, while existing methods in
the literature lead to performance degradation over the baseline in several
instances. (2) TTA-DAE relies on a denoising autoencoder in the output space,
training which might be non-trivial for dense prediction tasks other than seg-
mentation and infeasible for sparse predictions tasks such as classification.
The distribution matching procedure in TTA-FoE, on the other hand, is task-
agnostic. Thanks to the increased generality, the method could be used to
improve DS robustness for the tasks of image registration as well as image
segmentation.

In the following paragraphs, we discuss the strengths and limitations of TTA-
FoE as well as some of design choices, the reasoning for these choices and
avenues that could potentially further improve TTA-FoE performance.

6.6.1 Strengths of TTA-FoE

1. Lesion segmentation performance: All existing TTA methods failed to tackle
the DS robustness problem for lesion datasets. Furthermore, 3 out of the 4 ex-
isting methods lead to statistically significant performance degradation over
the strong baseline. In particular, TTA-DAE, which shows strong performance
for healthy tissue segmentation, fails to improve performance for lesions due
to the difficulty in learning appropriate shape priors. The proposed method
provided substantial as well as statistical significant performance improve-
ment in this challenging scenario.

2. Applicability to multiple tasks: Our experiments indicate that the pro-
posed method can, in principle, be applied to multiple tasks. Such generality
is an important asset; the DS problem is likely to occur in all medical image
analysis tasks.

3. Generalization of previous works: This work makes the novel contribution
of casting the marginal distribution matching idea in a Field-of-Experts for-
mulation. This observation allows us view several recent works [131]↑, [132]↑,
[239]↑, [236]↑as instances of our general framework, and enables us to build on
these works by introducing additional expert functions in the form of princi-
ple loadings of feature patches.

6.6.2 Limitations of TTA-FoE

1. Performance on healthy tissue segmentation is not as good as TTA-DAE:
Although the proposed method improves performance of the strong baseline
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in a large number of the test datasets, methods specifically designed for im-
age segmentation often outperform the more general method developed in
this work.

2. Matching the distribution of individual experts rather than the full FoE
distribution: An important relaxation in TTA-FoE is between Eqn. 6.12 and
Eqn. 6.13. Eqn. 6.12 seeks to match the full FoE distribution between test and
training images. However, this is not possible as the computation of the nor-
malization constant C is intractable. Thus, we instead carry out the relaxed
optimization, as shown in Eqn. 6.13 - minimizing divergence between the dis-
tributions of individual experts. It is unclear if the relaxed optimization is the-
oretically guaranteed to converge, or if the alignment of individual experts
may compete with one another. In practice, we observe the optimization to
converge for all the test images, across all test distributions and anatomical
regions. We believe that this behaviour could have been aided by the ini-
tial closeness of the individual expert distributions. Thus, the proposed TTA
method works well for small DS (due to changing scanners or acquisition pro-
tocol parameters within the same imaging modality), but may not be suitable
for large DS (for instance, across imaging modalities).

6.6.3 Avenues for further exploration

1. Choice of expert functions of the FoE Model: In initial product-of-experts
[228]↑, [229]↑and field-of-experts [226]↑works, the experts are parameterized
and learned from data, such that the probability model assigns high likeli-
hood values to the true data - for example, using algorithms such as con-
trastive divergence. Further, parameters of the expert PDFs are also learned
from data. In contrast, in this work, we used two types of experts - (1) the
task-specific convolutional filters learned in the segmentation or registra-
tion CNN and (2) projections onto principal components of patches in the last
layer of the segmentation or registration CNN. Thus, we used task-specific
experts, and only learned the parameters of the expert PDFs from data. In
other words, we aligned the test and training normalized images, in terms
of their projections that are the most relevant for the task CNN to perform
the task at hand. Such a task-specific probability model could be augmented
with learned experts, as proposed in earlier works [228]↑, [229]↑, [226]↑. The
extended model would potentially capture further projections of the normal-
ized images, apart from the task-specific projections considered in this work.
It is unclear if alignment along such directions between test and training im-
ages would further improve TTA performance; we defer this analysis to future
work.
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2. Choice of the divergence measure to be minimized for TTA: We minimize
the KL-divergence between expert distributions. Other divergence measures
may also be considered. For instance, in concurrent work, [236]↑minimize a
symmetric version of the KL divergence. Leveraging the low dimensionality
of the expert outputs, even divergence measures that cannot be computed in
closed form, may be easy to compute numerically.
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6.7 Appendix

6.7.1 Approximating KL-divergence minimization of the full FoE
model with KL-divergence minimization of individual ex-
pert distributions

We show this analysis for Product of Experts (PoEs). It also holds for FoEs,
which are a specific instance of the PoEs formulation. Consider PoE models
for the source and target domain normalized images.

ps(z) =
p̂s(z)

Cs
, Cs =

∫
z

p̂s(z)dz, p̂s(z) =
J∏
j=1

psj(uj), uj = fj(z)

pt(z) =
p̂t(z)

Ct
, Ct =

∫
z

p̂t(z)dz, p̂t(z) =
J∏
j=1

ptj(uj), uj = fj(z)

Here, we explicitly show the subscript j in variables u to indicate that dif-
ferent experts have different 1D co-domains. Now, consider KL-divergence
minimization between these distributions:

minϕ DKL(p
s(z), pt(z)) → minϕ

∫
z

ps(z) log
ps(z)

pt(z)
dz

→ minϕ

∫
z

p̂s(z)

Cs
log

Ct
Cs

p̂s(z)

p̂t(z)
dz

→ minϕ

∫
z

p̂s(z)

Cs
log

Ct
Cs
dz +

∫
z

p̂s(z)

Cs
p̂s(z)

p̂t(z)
dz

→ minϕ log
Ct
Cs

+

∫
z

p̂s(z)

Cs
p̂s(z)

p̂t(z)
dz

Note that during TTA, ϕ is fixed for computing the source-domain distribu-
tion, while is variable for computing the target-domain distribution. Thus,
ignoring the ’source-domain-only’ terms, the minimization can be stated as
follows:

→ minϕ log Ct +
∫
z

p̂s(z) log
p̂s(z)

p̂t(z)
dz

→ minϕ log Ct+∫
u1,u2,..uJ

∏J
j=1 p

s
j(uj) log

∏J
j=1 p

s
j(uj)∏J

j=1 p
t
j(uj)

du1du2...duJ

→ minϕ log Ct+∑J
j=1

∫
u1,u2,..uJ

∏J
j=1 p

s
j(uj) log

psj(uj)

ptj(uj)
du1du2...duJ

→ minϕ log Ct +
J∑
j=1

∫
uj

psj(uj) log
psj(uj)

ptj(uj)
duj
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As the normalization constant Ct is intractable, we ignore it in our optimiza-
tion:

≈ minϕ

J∑
j=1

∫
uj

psj(uj) log
psj(uj)

ptj(uj)
duj

→ minϕ

J∑
j=1

DKL(p
s
j(uj), p

t
j(uj))

6.7.2 How to incorporate information from multiple training
subjects?

Consider the KL-divergence between the expected distribution over all train-
ing subjects and the distribution of the test subject. For simplicity of notation,
let us consider only one 1D expert’s distribution.

DKL

(
Ep(s)[p

s(u)], pt(u)
)

=

∫
u

(∫
s

p(s)ps(u)ds
)
log

∫
s
p(s)ps(u)ds

pt(u)
du

=

∫
s

p(s)
(∫

u

ps(u) log

∫
s
p(s)ps(u)ds

pt(u)
du

)
ds

=

∫
s

p(s)
(∫

u

ps(u) log

∫
s
p(s)ps(u)ds

pt(u)

ps(u)

ps(u)
du

)
ds

=

∫
s

p(s)
(∫

u

ps(u) log

∫
s
p(s)ps(u)ds

ps(u)
du+

∫
u

ps(u) log
ps(u)

pt(u)
du

)
ds

=

∫
s

p(s)
(∫

u

ps(u) log
Ep(s)[p

s(u)]

ps(u)
du+

∫
u

ps(u) log
ps(u)

pt(u)
du

)
ds

= − Ep(s)[DKL(p
s(u), Ep(s)[p

s(u)])] + Ep(s)[DKL(p
s(u), pt(u))]

≤ Ep(s)[DKL(p
s(u), pt(u))]

6.7.3 TTA-AE variants

[68] propose a autoencoder-based method for TTA. We made some minor
changes in their method to get optimal results on the datasets used in our
experiments. We did this analysis for 5 prostate segmentation test distribu-
tions, and used the optimal settings for the other datasets.

Architecture: In the proposed method, the adaptable module,Nϕ is trained on
the training distribution and further adapted for each test image. In contrast,
[68] introduce 4 adaptors, Ax, A1, A2, A3, as different layers in the task CNN di-
rectly at test time. A1,A2,A3 are initialized to be identity mappers, whileAx is
randomly initialized. In our experiments, we found that the randomly initial-
izedAx (with the same architecture as in [68]) substantially altered the image
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intensities before any TTA iterations were done. Due to this, the Dice scores
at the start of TTA iterations dropped to almost 0, and could not be recovered
by the TTA. We could resolve this with the help of two changes to the architec-
ture ofAx: (i) Instead of initializing the convolutional weights with mean 0, we
initialize with mean as the inverse of number input channels and variance
as proposed in [240], (ii) we removed instance normalization layers from Ax.
The initial Dice scores (TTA epoch 0) were now reasonable (’Architecture’ in
Table 6.6), although much lower than the strong baseline. The TTA iterations
improve the results, but are unable to cross the strong baseline.

Optimization: We observed that the Dice scores fluctuated heavily across the
TTA iterations. After reducing the learning rate from 0.001 (used in [68]) to
0.00001 and using the gradient accumulation strategy proposed in [67], we ob-
served improved performance (’Optimization’ in Table 6.6). However, the Dice
scores initially improved and then dropped after about 100 epochs, for 3 of the
5 test distributions.

Loss: Plotting the evolution of the losses of the 5 AEs: one each at the input
AEx and the output layersAEy , and 3 at different features depths (AEF1,AEF2,
AEF3) in the task CNN, we observed that the accuracy of AEx and AEy cor-
related well with the Dice scores, while this was untrue for the feature-level
AEs. Thus, we carried out TTA driven only by AEx and AEy. In this setting,
TTA-AE provided performance improvement in a stable manner (’Loss’ in Ta-
ble 6.6). We used this setting for the experiments on the rest of the datasets.

Method
Test

UCL HK BIDMC BMC USZ

Domain Generalization
Strong baseline [101]↑ 0.77 0.82 0.62 0.78 0.77

TTA-AE [68]↑Variants
Modification in: Details

Architecture Removing instance normalization in Ax

TTA Epoch 0 0.76 0.71 0.48 0.67 0.57
TTA Epoch 10 0.56 0.73 0.51 0.50 0.76
Optimization Lower learning rate, gradient accumulation
TTA Epoch 0 0.76 0.71 0.48 0.67 0.57
TTA Epoch 10 0.78 0.74 0.50 0.71 0.65

TTA Epoch 100 0.77 0.83 0.56 0.78 0.78
TTA Epoch 1000 0.65 0.78 0.57 0.73 0.79

Loss Using AEs only at input & output layers
TTA Epoch 0 0.76 0.71 0.48 0.67 0.57
TTA Epoch 10 0.78 0.74 0.48 0.71 0.64

TTA Epoch 100 0.79 0.82 0.51 0.78 0.78
TTA Epoch 1000 0.78 0.83 0.50 0.79 0.79

Table 6.6: Performance of TTA-AE [68]↑variants.
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Chapter 7

Discussion

In this thesis, we developed three approaches to improve robustness of deep
learning methods for medical image analysis to acquisition-related distribu-
tion shifts in their inputs. Of these, one approach (chapter 4) was set in the
transfer learning setting, while the other two (chapters 5, 6) were set in the
test-time adaptation setting. In this chapter, we discuss the links between
the proposed approaches, how they relate to concurrent developments in the
literature and the potential for extending them to other types of DS than the
ones considered in this thesis.

7.0.1 Which parameter subset to adapt for the test distribu-
tion?

One way of grouping the machine learning settings for tackling DS (Sec. 2.2)
is as follows. The first category is of adaptation methods, consisting of Trans-
fer learning (TL) and Test-Time Adaptation (TTA). In these methods, an initial
model is trained using a labelled dataset from a training distribution(s), and
subsequently adapted to suit either an entire test distribution or individual
test images. The other category consists of Unsupervised Domain Adapta-
tion (UDA) and Domain Generalization (DG). Methods in this category do not
have separate training and adaptation steps. Instead, a model is trained from
scratch in such a way that it is suitable for the desired test images.

Among all methods in the first category, a running theme is to adapt a subset
of the model parameters for the test distribution, while sharing the remaining
parameters between the training and test distributions. Following the nota-
tion used in this thesis, the former and latter sets of parameters are denoted
by ϕ and θ, respectively, while Θ denotes the total set of all model parameters.

Reasons for sharing a bulk of the parameters across distributions: To the
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best of our knowledge, a principled approach for dividing Θ into θ and ϕ is yet
to be proposed. Instead, this choice is typically dictated by a-priori knowl-
edge of the task and DS in question. Usually, the number of parameters in the
shared subset θ is much larger than those in the adapted subset ϕ, due to the
following reasons. First, particularly for TL methods, the limited number of
parameters in ϕ is said to prevent overfitting to the small labelled dataset in
the test distribution [241]↑. Second, the large size of θ is motivated by transfer-
ring learning from the training to the test distribution, and assuming that the
training and test distributions are highly related. Even from so-called large
DS such as T1-weighted to T2-weighted MR images or CT to MRI, the DS can
primarily be modelled as contrast transformations, which can be expressed
via a relatively small number of parameters.

Parameter-splitting strategies in this thesis: All three methods developed in
this thesis belong to the category of adaptation methods, according to the
categorization mentioned here. For the TL method (chapter 4), we set ϕ to
the batch normalization parameters throughout the CNN, while for the two
TTA methods (chapters 5, 6), we set ϕ to be the parameters of a shallow nor-
malization sub-network situation in the front of the overall task CNN. The
choice in chapter 4 was motivated by previous works in the computer vision
literature [200]↑, [201]↑, while the choice in the TTA chapters 5, 6 was driven
by domain knowledge that acquisition-related DS manifest primarily as con-
trast changes. With a similar motivation, [100]↑use randomly weighted shal-
low CNNs to generate contrast augmentations for training robust CNNs.

Parameter splitting strategies in the literature: Other adaptation methods
employ different choices for ϕ. Among TL methods, [242]↑adapt all CNN pa-
rameters for the test distribution, while [243]↑use pre-trained initial CNN lay-
ers as feature extractors, and adapt a final classification layer for the test dis-
tribution. Among TTA methods, [68]↑set ϕ to be the parameters of so-called
adaptor modules, which are shallow CNNs situated at the front, as well as
at multiple intermediate layers of the task CNN. [123]↑set ϕ to be the batch
normalization parameters in all layers of the task CNN. We suspect that the
choice of ϕ may be connected to the choice to the loss used to drive TTA, as
well as the type of DS at hand. As an example, using a TTA helper model at
a certain depth in a task CNN (as done in [68]↑) necessitates ϕ to contain pa-
rameters of the task CNN of preceding layers only. Thus, different choices
of ϕ may be necessary for different TTA losses and for tackling different DS.
An understanding of these relationships is missing from the literature, to the
best of our knowledge, especially within the medical image analysis commu-
nity.
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Methodological approaches for selecting the parameter split: In the wider
computer vision literature, [241]↑provide an empirical analysis of the transfer-
ability of different CNN layers across tasks. Recent works [244]↑, [124]↑, [76]↑offer
more methodological approaches for answering this question. [124]↑propose
a Bayesian framework for TTA, which allows all model parameters to be adapted
for the test distribution, but vicinity to the optimal parameters for the train-
ing distribution is encouraged. [244]↑propose at a similar regularization strat-
egy for TL. Thus, the question of parameter splitting is circumvented in these
two approaches. [76]↑employ a separate routing CNN, which decides for each
training image from the test distribution, which layers of the task CNN should
be fine-tuned. Thus, in this transfer learning setup, the subset ϕ is different
for each training image of the test distribution.

7.0.2 DS due to population-based selection bias

What are the causes of such DS? We considered acquisition-related DS in
the methods developed in this thesis. Much of the DS robustness literature in
medical image analysis has also focused on such DS. However, several other
types of DS are also pertinent in medical imaging, even within the covariate
shift umbrella (that is, shifts in the input distribution) (see Sec. 1.3.2). One
of these shifts is due to population-based selection bias in the training data.
Common causes for such bias can be due to factors such as age (training dis-
tribution consists of images of adults, but the test image is of an infant or an
elderly person), sex, ethnicity, among others.

Difficulty in avoiding such DS: Such DS are also likely to cause performance
degradation in CNN-based analysis methods [245]↑. As well, preventing such
selection bias in the training dataset could be very difficult. That is, it is plau-
sible that collection of a large enough training dataset that encompasses all
population demographics may be infeasible.

How to drive TTA to tackle such DS?: We believe that the TTA setting could
be ideally suited to improve model performance when faced with DS caused
by selection biases in the training data. Let us consider two questions that
must be answered to implement TTA in this setting. The first question is how
to drive adaptation at test time, without access to a labelled dataset from the
test distribution. The question can likely be answered using similar helper
models as in chapters 5, 6 or as proposed in other works in the literature [68]↑,
[123] ↑. However, this hypothesis is yet to be validated in the literature, to the
best of our knowledge.

Design of the normalization sub-network: The second question is which pa-
rameters to adapt for TTA to tackle population-based DS. To answer this, we
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note that the role of the normalization sub-network,Nϕ, in our TTA approaches
(chapters 5, 6) was to map the given test image to a normalized image that is
similar to the normalized versions of training images. Once such a mapping
is achieved, the rest of the task CNN could map the normalized image to the
correct prediction. For acquisition-related DS, Nϕ was designed to be a shal-
low CNN with a small receptive field, and outputted an image with the same
dimensionality as the input image. This design choice enabled Nϕ to flexibly
model contrast transformations without introducing substantial structural
changes in the image. The design of this sub-network would have to be mod-
ified to tackle population-related DS. For tackling DS due to a selection bias
by age, for instance, Nϕ can potentially be designed to output a scale factor
or a diffeomorphic deformation field [238]↑to model age-related changes in
anatomical shapes. Furthermore, some DS may require adaptation in deeper
layers to account for effects of demographic variables on the semantic infor-
mation a CNN extracts for a given task. For DS for which it is unclear how
to design Nϕ, it may be interesting to adapt all the task CNN parameters at
test time and disincentivize large deviations from the training distribution
optimal parameters [244]↑, [124]↑.

A special example of population-based DS: Another scenario for population-
based DS could be when the training dataset consists of images of healthy
individuals, while the test image is from a diseased subject. In a practical
setting, such information may be unknown during image acquisition or au-
tomated analysis. We discuss this scenario separately in Sec. 7.0.5. In con-
trast, in this section, we considered population-based DS that are known to
exist at test time, and discussed the potential of TTA approaches to improve
robustness of analysis methods in their presence.

7.0.3 DS due to task-specific selection biases

What are the causes of such DS? A different type of selection bias than the
one discussed in Sec. 7.0.2 can occur in the case of image enhancement tasks,
such as image reconstruction from undersampled measurements, image super-
resolution, image denoising, among others. As described in Sec. 1.1.1, the goal
in such tasks is to obtain a mapping from corrupted images to enhanced,
corruption-free images. For such tasks, the training dataset is typically con-
structed in a self-supervised manner. That is, we have access to a set of en-
hanced images, and corresponding corrupted images are generated by fol-
lowing a known corruption process. Once the model is trained, it is fed with
new corrupted images and predicts the corresponding unknown enhanced
images. A DS in the model’s input distribution can occur if the self-supervised
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process generating the model’s training dataset does not adequately repre-
sent the corruptions observed at test time. Thus, the task-specific DS in im-
age enhancement problems are shifts in the input image’s corruption dis-
tribution. Furthermore, for some tasks, it may be feasible to acquire paired
corrupted and enhanced images to form the training dataset. In such cases,
depending on the variability covered in the training dataset, the likelihood of
observing task-specific DS at test time may be even higher.

Examples of task-specific DS: In MRI reconstruction from undersampled k-
space measurements, training and test measurements may differ in terms of
the type of undersampling masks [246]↑, [247]↑. For image super-resolution,
training and test sets may differ in the type of undersampling kernels [128]↑,
[248]↑. For image denoising, DS may arise due to difference in type of noise
in the input images [249]↑.

Difficulty in avoiding such DS: In some of these examples (e.g. MRI recon-
struction), the task specific factors of variations (e.g. undersampling mask)
can be classified as related to the acquisition protocol. Such factors have to
be treated differently than the generic acquisition-related DS that manifest
primarily as contrast changes and that were considered in the methods de-
veloped in this thesis. One solution to deal with task-specific DS may be care-
fully design self-supervised training datasets such that all plausible corrup-
tions are included. However, due to the high variability in medical imaging
acquisition protocols, it is difficult to completely rule out the possibility of
encountering new types of corruptions at test time.

TTA literature to tackle task-specific DS: One TTA approach is to transform
the test image with different corruption patterns to the corresponding cor-
rupted image with training-like corruptions. Following this approach, for im-
age super-resolution, cycle-consistency-based estimation of a correction fil-
ter has been proposed to transform low-resolution (LR) test images to resem-
ble LR images seen during training [128]↑.

Another TTA approach is to forgo reliance on training corruption patterns as
well as on paired clean-corrupted images in the test distribution. In these
works, learning takes place directly on a set of corrupted images. In the de-
noising literature, for instance, it has been proposed to achieve this by carry-
ing out unsupervised learning using noisy images only, without depending
on corresponding clean images. Specifically, in the Gaussian noise setting,
[129]↑estimate the distance between a given noisy and unknown clean im-
age, via Stein’s unbiased risk estimator [250]↑. The denoising CNN is trained
with this estimated loss. As such learning does not depend on noisy and
clean image pairs, it can be done either directly for the test images or can be
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used to drive TTA of a learned model to resolve performance degradation due
to lack of DS robustness.

Yet another approach that forgoes reliance on paired clean-corrupted images
is that of Bayesian image enhancement [251]↑, [157]↑. Here, a model of clean
images is learned, and corrupted images are transformed into images that
are clean according to the learned model. Owing to the absence of particular
types of corrupted images during training, these methods work well across
a wide spectrum of corruption patterns in the test images. However, such
methods may be susceptible to other types of DS, as elaborated in Sec. 7.0.6.

7.0.4 Acquisition-related DS in image enhancement problems

The causes for task-specific DS discussed in Sec. 7.0.3 are additional DS sources
for image enhancement tasks, along with the acquisition-related and population-
related DS discussed previously. Thus, even in cases where the training dataset
of image enhancement models covers corruptions types observed at test time,
the test images may still be from a shifted distribution in that they may be
acquired from a different scanner or using different acquisition protocol pa-
rameters.

TTA literature to tackle acquisition-related DS in image enhancement prob-
lems: As discussed before, acquisition-related DS has been extensively stud-
ied for several analysis tasks. The same is the case with image enhance-
ment tasks. Here, one common idea is to employ task-specific losses to drive
TTA to improve model performance when faced with DS. An example of such
task-specific losses is k-space data consistency in MRI reconstruction CNNs
[125]↑, [126]↑. For image super-resolution, [252]↑, [253]↑leverage the fact that
medical images are often acquired as 3D volumes, with high in-plane reso-
lution and low through-plane resolution, to generate ’low-resolution’-’high-
resolution’ training pairs directly from the test image at hand.

Can the normalization sub-network model only contrast changes?: For the
task-specific TTA losses described above, either all task CNN parameters [125]↑,
[126]↑, [252]↑or the parameters of a relatively deep feature extraction sub-network
[253]↑are adapted at test time. This choice is unlike the shallow normaliza-
tion module that is adapted for each test image in chapters 5, 6. This in-
dicates that increased flexibility may be required at test time for achieving
TTA in image enhancement tasks as compared to tasks such as segmenta-
tion, registration or classification that take enhanced images as inputs and
extract information from them. For the latter group of tasks, the input im-
ages from training and test distributions differ in terms of their acquisition
details; thus, a pixel-wise contrast transformation might suffice to map one to
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the other. On the other hand, in image enhancement tasks, such a pixel-wise
contrast transformation exists between the training and test distributions in
the output space, but may be insufficient to model the relationship between
the corresponding corrupted input images. Achieving stable TTA despite the
increased flexibility afforded at test time might potentially require introduc-
tion of regularization constraints [244]↑, [124]↑.

7.0.5 DS due to imaging artifacts or presence of disease

So far, we have DS due to causes that are known when an algorithm is asked
to analyze a test image. Accordingly, this knowledge could be leveraged to
dictate TTA design choices (design of adaptable module, TTA loss). A more
challenging scenario is one where a DS occurs due to causes that cannot
be predicted in advance. Examples of such DS are presence of imaging arti-
facts (for instance, due to patient motion during the image acquisition [254]↑)
or presence of anatomical anomalies that were not present in the training
dataset. In such cases, the algorithm should be able to detect such DS by itself,
and flag the test image without making a prediction for the task. Previous
work has considered supervised detection of motion artifacts [255]↑, [256]↑.
However, such approaches may be unable to detect artifacts beyond those
present during training. We believe that the out-of-distribution (OOD) detec-
tion setting (Sec. 2.3.1) is most relevant for such DS, while TTA is the most
relevant setting for DS that are already known to exist at prediction time.

7.0.6 DS robustness of density estimation models

We have considered the DS robustness problem in model trained via super-
vised learning. CNN-based density estimation models are also frequently
employed in medical image analysis methods. Specifically, they play a cen-
tral role in medical image enhancement tasks solved in a Bayesian frame-
work, where they are used to model the probability density of enhanced im-
ages. In this setting, both implicit (e.g. generative adversarial networks [257]↑)
as well as explicit (e.g. variational autoencoders [258]↑) density estimation
models can be used. In this section, we discuss the DS robustness of such
models, and ways to improve the same.

TTA of implicit density estimation models: In the former set of methods, the
latent code of the generator is optimized [259]↑, [260]↑to provide an image that,
when corrupted, is similar to the given corrupted image. This approach may
potentially suffer from the representation error issue - that is, even for im-
ages from the training distribution, there exists a discrepancy between the
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optimized and the true enhanced image [259]↑. To remedy this, TTA of the
generator weights along with the latent code has been suggested [134]↑, [261]↑.
Taking this to the extreme and showcasing an inherent model prior in neu-
ral networks, TTA of completely unlearned networks has also been proposed
[135]↑, [262]↑.

TTA of explicit density estimation models: Explicit density estimation mod-
els allow for iterative optimization directly in the image space [251]↑, [157]↑.
However, such models are unreliable when faced with acquisition-related
DS - that is, when the corrupted (undersampled / low-resolution, etc.) im-
age is acquired with different acquisition protocol parameters or from a dif-
ferent scanner as compared to the enhanced images used for training the
prior. TTA could be useful in such settings, but is unexplored in the litera-
ture to the best of our knowledge. Given access to enhanced images from the
test distribution, TTA can be achieved by maximizing their (approximate) log-
probability [263]↑, [264]↑. Similar to chapters 5, 6, a shallow sub-network could
be adapted for modeling the intensity transformation between the samples
from the training and test distributions.

TTA of density estimation models with access to only corrupted test images:
The more challenging setting is if TTA has to be done when only corrupted
versions of images from the test distribution are available. In this setting, it
could be interesting to incorporate ideas from the literature on learning from
corrupted data only [265]↑, [266]↑, [267]↑, [268]↑within the TTA framework.

An inherent DS in density estimation models: Additionally, we note that ex-
plicit density estimation models used for Bayesian image enhancement suf-
fer from an inherent DS issue, that exists even in the absence of any acquisition-
related DS. This is caused by the fact that such models are often trained only
using samples from the true distribution of enhanced images, without any
information regarding the corruptions to be corrected at test time. On one
hand, such models are general and can be used to remove different types of
corruptions. On the other hand, their behaviour at points that do not belong
to the true distribution may be unreliable [164]↑. To remedy this, it could be
helpful to introduce knowledge of expected corruptions while training the
prior models [225]↑, [269]↑. Usage of samples from simple corrupted distri-
butions (such as Gaussian noise) for training density models has been sug-
gested [270]↑, [271]↑. As well, unrolled optimization methods [272]↑implicitly
learn the gradient of log-prior-density at the corruptions observed during
training, but are restricted only to such corruptions. Supervised density es-
timation [225]↑, [269]↑could potentially combine the accuracy of supervised
methods with the generality of unsupervised ones.
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