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Abstract

Earth deformation can occur as a result of numerous causes and has the potential of far-reaching
effects on society, infrastructure, and our natural surroundings. Forecasting its occurrence is crucial
for deciding on preventive measures and increasing our understanding of the phenomenon. Using
machine learning, or more specifically multilayer perceptrons, to predict earth deformation based
on Interferometric Synthetic Aperture Radar (InSAR) time series, could be a promising approach
to facilitate these efforts. On a data set focused on a former mining area around the German city of
Saarbrücken, the multilayer perceptron, consisting of eight layers, denotes an average improvement
of 41% for 12-day and 80% for 60-day predictions compared to a baseline approach using quadratic
regression. In addition to the recorded improvements, findings suggest a higher noise resistance
and flexibility level than the used baseline approach. While the results are promising, the approach
does not tap its full potential, leaving room for further research and improvement.
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1 Introduction

Earth deformation poses an ever present hazard to humans and their environment. Causes are nu-
merous: volcanic activities, tectonic movements, post-glacial rebound, or changes in groundwater
levels. Whilst some of them are results of natural processes, others are of anthropogenic nature.
As part of hazard management in urban planning and risk management for already existing in-
frastructure, monitoring and predicting earth deformation is a crucial step towards building safer
surroundings. Not only that, it also provides vital information to strengthen and further increase
our understanding of the planet and the ecosystem that we live in.

Over the course of the past decades, technological advancements made it possible to measure earth
deformation from space using radar technology [1], namely using InSAR. With the launch of the
European Space Agency’s Sentinel 1A satellite in the spring of 2014 ([2]), monitoring data of the
earths surface became available in near real time frequency with a high spatial resolution, allowing
for millimeter scale monitoring even in the remotest of areas [3]. This fact provides InSAR with
an immense advantage in terms of costs and efficiency compared to traditional geodetic surveying
techniques [4]. In the past, research efforts were largely focused on improving the processing method
[5] of InSAR data. Expert knowledge and traditional methods are thus largely still required to
predict earth deformation based such data. Using machine learning approaches poses an attractive
alternative to the already established methods. It is a relatively new field and yet advances are
rapid [6]. Research efforts are focused on various types of neural networks, such as: convolutional
neural networks (CNN), multi-layer perceptrons (MLP), or recurrent neural networks (RNN) [3],
[7]–[10]. This thesis aims to construct a neural network using MLP for the purpose of predicting
earth deformation based on InSAR data and assess its applicability for this exact purpose.

The data set, focused around the German town of Saarbrücken, was processed and provided by
the Karlsruhe Institute of Technology (KIT) in Germany, as part of a larger data set containing
the upper Rhine Graben area, spanning numerous western and central European countries, such
as Germany, France, and Switzerland. Over the course of the past 16 years, old mining shafts were
continuously flooded, resulting in earth deformations. These deformation trends were recognized in
the estimated mean line-of-sight velocities at KIT, thus prompting the interest in predicting future
behavior. In this work MLPs are applied as an approach to predict said future behavior specifically
for area centered around Saarbrücken, exploring their efficiency and therefore suitability for this
application.

This thesis is structured to first present a brief overview of the InSAR technology. This part is
followed by a more elaborate insight into the data set, its structure, and the challenges that are
thereby imposed on the model. Subsequently, the exact approach and heuristics used are presented
in chapter 3. Chapter 4 deals with the model that was developed and its predictions. Followed
by a discussion of the results presented in the previous chapter and conclusions that can be drawn
from the case at hand.
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2 Data Set

2.1 Interferometric Synthetic Aperture Radar

InSAR systems use electromagnetic wave signals to determine the range to a back-scattering ob-
ject. Said signals consist of two observable parameter: amplitude and phase. Whilst the ampli-
tude largely depends on the distance and back-scattering properties of the object such as surface
roughness, the phase changes continuously as the wave travels through the air. A full waveform
corresponds to a change in phase from −π to π. The difference in phase is linked to the distance
to the object via the following equation:

2d =
φ

2π
· λ+N · λ+ ε (2.1)

where

φ Phase

d Range between radar and point on the ground

λ Wavelength

N Number of full wave-forms passed

ε Noise.

The phase difference between two InSAR acquisitions (illustrated in figure 1), usually referred to
as master and slave acquisition, can be determined very accurately [12], yielding in cm to mm
accuracies for line-of-sight (LOS) displacements measured in the L-, C-, and/or X-band [13].

Figure 1: Principle master-slave acquisition in deformation analysis [11]

6



Attribute Shape Unit Description

lat 218637x1 Degrees east Latitudes of all points
lon 218637x1 Degrees north Longitudes of all points
disp 218637x112 Millimeters Line-of-sight displacements

Table 1: Detailed view of data attributes given in the data set

2.2 Description of the Data Set

The data set at hand was provided by the Karlsruhe Institute of Technology (KIT) in Germany.
The radar images were taken by the European Space Agency’s (ESA) Sentinel 1A radar satellite,
which carries a C-band SAR system [2]. Its repeat cycle spans a time period of 12 days, totaling
113 scenes from November 27th, 2015 to February 22nd, 2020. The images were taken on the
descending orbit 139 [14]. The data was processed at KIT using the free software package SNAP
(Sentinel Application Platfrom, ESA) to form the interferograms. The Stanford Method for Per-
sistent Scatterers [15] was used to detect permanent scatterers (PS) and the Toolbox for Reducing
Atmospheric InSAR Noise [16] to reduce atmospheric effects. A detailed description of how the
data was processed can be found in the corresponding publication by Mazroob Semnan et al. [17].
The resulting data thus contains corrected LOS displacement for 218, 637 detected PS.

The data set used in this thesis is a subset of what is shown in figure 2 with focus on the Saarland
area. Said region is notably visible in figure 2 with its high mean velocity in line-of-sight direction
just to the east of the French city of Metz. Said subset contains 113 scenes for each of the 218, 637
PS. These 113 scenes result in 112 line-of-sight displacements as seen in table 1. This is due to
the fact that one scene is used as the master day. All displacement values are relative to what was

Figure 2: Mean LOS velocities for orbit dsc139 of the Sentinel 1A satellite from November 27, 2015
to February 22, 2020 [14]
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Figure 3: Visual in which period of time data was acquired and what the repeat cycle was at that
time

measured for the master scene. Though, it could technically be chosen arbitrarily, the choice of
master scene fell on the 69th epoch, which corresponds to an approximate center position for all
epochs. Figure 3 shows the course of all acquisitions over time. Notably, there is a period of 84
days in the second half of 2016 where no data was acquired. Apart from that, the data was largely
acquired with a repeat cycle of 12 days. There could be a number of reasons for the occasional
change in the repeat cycles, such as: the data could not be read by SNAP, problems during the
coregistration process, the orbit data was not available, or the ERA5 data was not available.

2.3 Focus Region

As mentioned in section 2.2, the data set used in this thesis consists of a subset of the data shown
in figure 2, focusing on the area around the German city of Saarbrücken, covering territory in both
Germany and France, called the Lorraine-Saar basin. The area was famously known to be a hotspot
for coal mining, with mining dating back to the nineteenth century. On the French side, mining
works were stopped in 2004. By 2006, the process of flooding the mines was initiated. Mining
shafts were progressively flooded, creating mine water reservoirs [18].

Comparing figures 4 and 5 using the border between France and Germany for alignment, it is
clearly visible that the locations of the flooded mines match with parts of the extreme mean line-
of-sight velocities observed around latitude 49◦10′N . Groundwater influx and outflow are known
causes for earth deformations, due to changing soil moisture, resulting in a shrinkage or expansion
of the grounds volume. In the case of flooding old mining shafts, deformations can be amplified by
potentially collapsing tunnels.

8



Figure 4: Mean line-of-sight (LOS) velocity for
the data set at hand [14]

Figure 5: Mining in the Lorraine-Saar basin [18]
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3 Methodology

In this chapter the methodology applied to the prediction problem is discussed in further detail.

3.1 Multilayer Perceptron

Neural networks are a highly effective approach in forecasting [19]. A type of neural network
is the feed-forward neural network, also known as MLP, where its name is actually a misnomer,
since multilayer perceptrons consist of multiple layers containing perceptrons and not, as the name
suggests, of perceptrons made up of multiple layers. The basic structure of MPLs can be seen as a
series of functional transformation of M linear combinations:

aj =

D∑
i=1

w
(1)
ji xi + w

(1)
j0 (3.1)

where j = 1, . . . ,M . D denotes the total number of input variables. Parameters wji describe
weights whereas wj0 describes the bias for the j-th linear combination. These parameters are
adaptive and will be changed during the training process to minimize the prediction error, or more
specifically the validation loss. The superscript (1) in equation 3.1 refers to the first layer of the
MLP. Each quantity aj , called activations, is then being transformed using an activation function,
resulting in the transformed output quantity zj :

zj = h (aj) (3.2)

Finding the ideal activation function is difficult and often done by the means of trail and error
processes. Activation functions h(·) can differ from layer to layer [21]. Important to note is that
they have to be differentiable. Additionally, when adding multiple hidden layers, all but the last
one should be chosen to be nonlinear. Commonly used for this purpose is the hyperbolic tangent
function (tanh). Other popular activation functions include for example the Rectified Linear Unit
(ReLU ), which is limited to positive values [20]. This fact makes it unsuitable for this purpose, since
deformations are expected to be positive and negative. Therefore, tanh is used in all models. The

Figure 6: MLP with 4 inputs x1, . . . , x4, 3 outputs y1, . . . , y3, and a single hidden layer (blue) [20]
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output layer uses a linear activation. The reason for this choice is that at this stage the weighted
sums should not be changed anymore, since the output is only to be projected to the right length
and no further adjusted are to be made [22].

In this work, all networks are implemented in Python using the TensorFlow API [23]. Based on
the underlying assumption that the entire input influences its output, Keras Dense Layers are used
in a sequential build. This provides full connectivity between two consecutive layers, allowing for
all inputs to influence all linear combinations of subsequent layers, since each neuron of a previous
layer is then connected to all neurons of said subsequent layer [24]. Figure 6 is an exemplary setup
of an MLP with four inputs and three outputs using a single hidden layer. The arrows represent
the contribution of each input to a neuron (black dots). For fully connected layers, each input
has an arrow leading to all subsequent neurons, where they then are combined linearly (aj in
equation 3.1) and eventually transformed as a whole using the corresponding activation function,
resulting in zj as given in equation3.2. Adding the number one to each layer serves the purpose
of incorporating biases. These bias features are multiplied with their respective weights, which are
trained to optimize the bias’ influence on the output.

3.2 Prediction Problem and Feature Structure

To use the MLP-based approach on the given data, it has to be uniformly spaced in time. For this
purpose a linear interpolation is performed on the time domain for each individual time series in the
data set. This underlies the assumption that a linear interpolation has the least skewing effect on
the overall trend of each time series. Visually analyzing the raw data allows for the assumption that
for a significant amount of time series linear behavior is in fact accurate, therefore least influencing
the time series inherent course. Naturally, for time series where this assumption does not hold up,
linear interpolation disturbs the underlying behavior. Though, the effects are likely to be minimal,
since only short periods of time have to be interpolated.

3.2.1 Types of Prediction Problems

There are various types of prediction problems, each of them requiring a different feature structure,
the simplest of them being the one-to-one prediction. For this type, a single observation is used
to predict a single step ahead. This concept can also be applied with an arbitrary number of
observations used to make an arbitrary number of predictions, which is the equivalent of the most
general case: the many-to-many prediction. Common terms used for the various types of prediction
problems are:

• one-to-one

• many-to-one

• one-to-many

• many-to-many

The many-to-many problem, being the most general one, is primarily pursued in this thesis. Al-
lowing to use the maximum level of information to predict multiple steps into the future. The one
of the most pressing aspects to consider is the exact number of observations going into the model.
This number depends on two factors: the nature of the physical phenomenon to be modeled and
the maximal length of a single sample to still result in a reasonable total number of samples per
PS for the model to be trained on. The latter is most likely to be the limiting factor in this study.
This is due to the fact that with a total number of 130 epochs, there is only a limited number of
samples to be constructed to have reasonable sizes for the train, validation, and test set. The goal
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is to have as many and as accurate predictions as possible. The exact setup will have to be tested
empirically.

3.2.2 Feature Structure

The data set contains a total number of 218, 637 time series of length 130. Each of them is then
split into smaller sequences. Assuming the sequences are split for a model which uses 3 inputs to
predict 2 steps ahead, each time series is split as shown in figure 7, where x corresponds to the
input feature vector and y to the output feature vector. The numbers in the boxes in figure 7
represent indices. Windows of sizes 2 and 3 are pushed along the time series cropping out samples
of the respective lengths. This is done for all time series stacking their input and output features
to form the final input and output vector. The total number of features is thus dependent on the
prediction type. Due to the fact that the time series are rather short, the limiting factor for the
prediction model is the number of samples per time series and not the total number of samples.
Particularly challenging is the balancing act between having long input features for more accurate
predictions and still having enough samples to properly train, validate, and test the model. This
will be discussed in section 3.3.2 in more detail.

3.3 Training Process

As for any prediction problem, first the number of prediction steps has to be determined. Naturally,
one is interested in the most accurate prediction. For long-term phenomena such as earth defor-
mation, this requires to consider a larger number of empirical data to be fed into the prediction
model. Choosing too high of an output length, would therefore result in a small number of samples
per time series, hindering the model from learning a specific time series’ typical behavior. Since
a long-term phenomenon is investigated, the focus lies on prioritizing the input length over the
output length. Therefore, a reasonable choice of output length is 5, which corresponds to 60 days.

Before the network can be trained, a few assumptions have to be made. Using MPLs, features
cannot be linked to one another based on their locations and still be trained on all data points at
once. Though, one could train for each point individually, due to the time series’ short length, the
data sample would not be large enough to result in a robust output. To account for this, all points
are treated equally regardless of their geographic locations. This in turn means that a prediction

Figure 7: Splitting a time series into input and output vectors of length 3 and 2 respectively
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made by the model is based on the average behavior shown by the time series in the data set.
Naturally, this is not ideal, especially for regions where larger rates of change are expected. For
those regions, the prediction is expected to not follow the observations to their maxima, seeming
like a smoothed version of the observations.

3.3.1 Loss Function

The mean absolute error (MAE in 3.3) is used as loss function. The choice here is between a
typical regression loss such as the MAE and a loss function that also considers the error relative
to the observed changes such as the symmetric Mean Absolute Percentage Error (sMAPE in 3.4).
Incorporating linkages to changes can be beneficial, since a predictions accuracy of 1mm sounds
might sound convenient, if the actual overall trend is less than that, the prediction is meaningless.
On the other hand, the sMAPE has the big shortcoming that it becomes unstable when both the
observations and prediction are close to zero. Plus, the sMAPE will automatically hit its upper-
bound whenever the input feature is equal to zero [25]. Conclusively, for this application, the
disadvantages of the sMAPE outweigh its advantages and therefore leaving the MAE to be the
measure of choice.

MAE =

∑n
i=1 |yi − xi|

n
(3.3) sMAPE =

100%

n

n∑
i=1

|yi − xi|
(|yi|+ |xi|) /2

(3.4)

3.3.2 Training, Validation, and Testing

The given data totals 130 epochs after interpolation. 26 of them are left aside for independent
testing, corresponding to 20% of all epochs. The other 104 time steps are used to create samples to
be fed into the model. To determine the validation set, a built in feature from Keras’ fit function
is used, namely the validation split. This parameter is set to 0.1, meaning 10% of samples are used
for validation. Samples are shuffled randomly to select a validation set, allowing to circumvent
potential effects due to spatial correlations between points and over-fitting. Additional over-fitting
protection is provided by the “EarlyStopping” callback function provided by Keras. This callback
function monitors the validation loss. If it does not decrease for a set patience level, the training
process is stopped and the best weights are restored. The mentioned patience level is set to 30
epochs for this application [24].

Due to the high number of samples, in the case of a 7-to-5 prediction the number of input samples
totals around 21 million samples, other validation techniques, such as cross-validation, would be
very time-consuming. As a rule of thump: cross-validation increases the computation time by a
factor of 5 to 10 [20]. Therefore, cross-validation is not applied in the approach pursued in this
thesis.

3.3.3 Hyperparameter Optimization

At the core of building a neural network lies its hyperparameter optimization. Various strategies
can be applied. A well-performing setup is strongly dependent on the data set’s unique properties
and therefore has to be adapted in each individual case. For this thesis, a structured trial and error
approach was designed to proceed effectively. To increase efficiency, a batch size of 65, 536 is chosen.
This means that 65, 536 samples are run through the model before the parameters are changed.
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This rather large number speeds up the training process and allows for a higher number of different
network configurations to be tested. At the end of the hyperparameter-training phase the batch
size is to be decreased as long as it increases the model performance, resulting in a decorrelation
of the input samples.

In a first step the focus lies on the network architecture, meaning the input length, the number
of layers, as well as the numbers of neurons per layer. Each setup is to be tested for different
input lengths, trying to find the best performing construct. The starting point is chosen to be
very simple. From there, the model complexity is increased continuously as long as it increases
the model’s performance. As it can be concluded from various publications ([26]–[28]), a promising
guideline, which is also used in this thesis, is to focus on powers of two and multiples of 15 as
numbers of neurons per layer. These layers are then added sequentially and in symmetrical order.
E.g., a model is to be chosen using a three-layer setup including the following sizes: 4, 8, and
16 neurons. The network setup would then result to be: 4-8-16-8-4-5, with 5 being the size of
the output layer. All of these layers use the hyperbolic tangent function as an activation function.
Lastly, a layer with the same size as the output it added. This layer uses a linear activation function,
since at this point the weighted sums should not be changed anymore.

After running each setup for various input lengths, the performance of each individual model is
assessed using two separate methods. The first one is the minimum validation loss, which is to
be minimized. The second influencing factor is the plotted learning curve. It shows the training
and validation loss. Using a visual comparison, as shown in figures 8, its course is contrasted to
exemplary plots of phenomena, such as over- and underfitting, that can typically occur during the
process of optimizing hyperparameters. Combining the strengths of both methods gives ground to
a good premise to select the best-performing model at each level of complexity. After concluding
the network architecture optimizing process, the batch size is decreased to decorrelate the samples
and optimize the performance.

Figure 8: Examples of positive and negative learning behavior’s results reflected in the learning
curve [20]
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The optimizer Adam used in all model setups. The Adam algorithm using stochastic gradient
descent was first introduced by Diederik P. Kingma and Jimmy Ba. Their definition is the following:
“a method for efficient stochastic optimization that only requires first-order gradients with little
memory requirement” [29]. The stochastic gradient descent (SGD) allows working with large data
sets and a high number of parameters, since SGD only uses mini-batches to estimate gradients and
only first order derivatives of the parameters are to be computed. Both of these properties are
inherently found in the data set at hand and to be expected respectively.

Lastly, the learning rate is adapted. Here again, the same concept as for finding a well-performing
network architecture is applied. Starting from the default learning rate, it is changed in the in-
creasing and decreasing direction as long as it improves the model’s performance. As described
before, the learning curve and minimum validation loss are assessed to decide, whether this process
is repeated or the minimal validation loss for the configuration at hand is found.
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4 Results

In the following, the results of constructing the neural network and the subsequent analyses are
presented. Starting with the final model, then the model’s performance based on various metrics
is assessed and lastly the comparison to a quadratic regression model contrasts its performance to
the baseline approach.

4.1 Model Selection

In the subsequent sections, the derivation of the final model is shown in a step-wise manner in
accordance with the methods proposed in section 3.3.

4.1.1 Layer Setup

The final model consists of five hidden layers of sizes 45-60-75-60-45, with the numbers representing
the number of neurons in each layer. Therefore, the numbers of neurons are multiples of 15. The
guideline to pursue multiples of 15 and powers of two was dropped at a lower complexity level,
after simpler models using multiples of 15 out-performed such using powers of 2 as illustrated in
figure 9. The model consisting of hidden layers of sizes 16-32-64-32-16 with input length 8, totaling
5, 493 trainable parameters, is outperformed by the model using sizes 15-30-45-30-15. The latter
model was tested for the smallest minimum validation loss at an input length of 10. As clearly
visible in figure 9, at 3, 965 parameters it requires significantly fewer parameters than the model
using powers of 2.

In the following, model complexities were solely increased using multiples of 15. Said network con-
stellations are summarized in table 2. The table consists of the models shown in fig 9. Additionally,
the last few models that were run, after the premise of using power was dropped down, are listed
as well. For each setup only the, in terms of validation loss, best-performing input length out of
the ones that were tested, is displayed in the table. The last three setups that were run are of layer
sizes 8-30-45-60-45-30, 10-60-75-60-5, and the best-performing 8-45-60-75-60-45-5. Even though the

Figure 9: Comparison of models using powers of 2 versus multiples of 15. Layer setups from
LTR: 10-30-45-30-5, 10-30-45-30-15-5, 8-16-32-16-8-5, 8-45-60-45-5. Detailed information on them
is found in table 2.
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Model Summary Parameters Min. Val. Loss [mm] Epochs Trained

9-30-45-30-5 3, 230 1.5019 435
10-15-30-45-30-15-5 3, 965 1.4988 658
8-16-32-64-32-16-5 5, 493 1.4997 393

8-45-60-45-5 6, 140 1.4969 479
8-30-45-60-45-30 8, 705 1.4937 440
10-60-75-60-5 10, 100 1.4938 488

8-45-60-75-60-45-5 15, 275 1.4935 328

Table 2: Detailed information on models run while optimizing the layer setup. Numbers under
Model Summary list the number of neurons per layer, the first one being the input layer and the
last one the output layer. All batch size are set to 65, 536

.

number of parameters was almost doubled from the 8-30-45-60-45-30 model to the 8-45-60-75-60-
45-5, the minimal validation exhibits only a slight decrease. The constellation of hidden layers of
form 45-60-75-60-45 was the last one to be tested. It also represents the model with the highest
level of complexity, containing eight layers and a total number of 15, 275 parameters. To summarize
the search for a well-performing layer setup, the best-performing model found uses an input length
of 8 and hidden layers of sizes 45-60-75-60-45, achieving a validation loss 1.4935mm.

4.1.2 Batch Size

As described in section 3.3.3, the batch size is to be decreased as long reducing this hyperparameter
decreases the validation loss. Following up on the previous section, the batch size for the model
of topology 8-45-60-75-60-45-5 is reduced from 65, 536 to 4, 096. Each reduction step represents
a division by 2. As shown in figure 10, a continuous decrease is recorded as the batch size is
decreased. This behavior lasts up until batch size 8, 192 where it shows a dip, before increasing
again in validation loss for batch size 4, 096. For this dip at batch size 8, 192 the model’s validation
loss denotes 1.4890mm averaged over all five prediction steps.

Figure 10: The minimal validation loss of the model with layer sizes 8-45-60-75-60-45-5 for different
batch sizes
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Learning Rate Validation Loss [mm] Optimizer

0.0005 1.4921 Adam
0.001 1.4890 Adam
0.0015 1.4914 Adam
0.002 1.4917 Adam

Table 3: Optimizing the learning rate for the model of topology 8-45-60-75-60-45-5

In addition to the lower validation loss, the model using a batch size of 8, 192 also shows a better
learning behavior by the standards of figure 8. The learning curves for batch sizes 8, 192 and
4, 096 are shown in figure 11 and 12 respectively. The model with batch size 8, 192 displays a,
by comparison, smooth downwards trend for both the validation and the training loss, eventually
stabilizing at around 1.49mm for the training loss. The validation loss shows similar behavior
as for its overall trend, but with rapid but small fluctuations, ultimately reaching a minimum of
1.4890mm. The model using a batch size of 4, 096 exhibits similar behavior for the training loss. For
the validation loss on the other hand, the graph oscillates heavily, leading to larger discrepancies
between the validation and training loss at certain epochs. The epochs affected by these larger
discrepancies show no apparent pattern.

4.1.3 Learning Rate

Lastly, again continuing at the grounds of the results of the previous section, where the batch size
was optimized, different learning rates are compared based on their respective validation losses.
The results are depicted in table 3. As displayed there, the default learning rate of 0.001 achieves
the lowest learning rate with 1.4890mm, remaining at the level of the in the previous section deemed
lowest validation loss.

This step concluded the hyperparameter optimization. The resulting model is a prediction model
of sort 8-in-5-out. That is to say, it takes an input of length 8 and makes five predictions, one for
each step length. The final layer setup and hyperparameter setting are summarized in table 4.

Figure 11: History of the training and valida-
tion loss for the 8-45-60-75-60-45-5 model with
batch size 8, 192

Figure 12: History of the training and valida-
tion loss for the 8-45-60-75-60-45-5 model with
batch size 4, 096
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Layer Setup Input Length Output Length Optimizer Learning Rate Batch Size

8-45-60-75-60-45-5 8 5 Adam 0.001 8, 192

Table 4: Layer setup and hyperparameter setting of the selected model

Step Length Set Mean [mm] Median [mm] σ [
√
mm] Min. [mm] Max [mm]

1 Entire 1.3081 1.2553 0.4945 0.0493 5.3525
5 Entire 1.6053 1.5324 0.6063 0.0898 5.7272
1 Test 1.4864 1.3231 0.7691 0.0453 12.5778
5 Test 1.7789 1.5598 0.9721 0.0454 12.4636

Table 5: Statistics on the distribution of MAEs for various step lengths. Entire stands for predic-
tions on all time series in the entire data set using all their full lengths, Test for only the test set

4.2 Deformation Predictions

In the following sections, the selected model’s (as summarized in table 4) performance is assessed by
the means of various metrics. First these metrics are applied globally, to examine the overall quality
of the predictions. Subsequently, individual time series are assess to highlight certain properties
and characteristics.

4.2.1 Mean Absolute Error

The histograms in figures 13 and 14 depict histograms of the MAEs for step lengths 1 and 5 for
predictions that were made based on the entire data set. The MAEs are computed for each time
series and step length. Evaluating the histogram for step length 1, it displays a right-tailed behavior
with a mean value of 1.3091mm and a standard deviation (σ) of 0.4945

√
mm. Detailed statistics

on the histograms found in figures 13 and 14 are listed in table 5. Comparing the two step length
visually, a more distinct right-tailed behavior for the higher step length becomes apparent, which
is reflected in its standard deviation, found in table 5, as an increase of 0.1118

√
mm. Additionally,

the mean value has increased to 1.6053mm. As a consequence the MAEs of more than 2mm have
gained significantly in frequency.

Contrasting the results illustrated in the previous paragraph to the unseen data of the test set
a notable drop in performance is recorded. As stated in table 5, both step length show similar
increases for their respective mean values of approximately 0.17mm. The MAEs of predictions

Figure 13: Distribution of MAEs for predictions of step length 1 on all time series in the data set
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Figure 14: Distribution of MAEs for predictions of step length 5 on all time series in the data set

Figure 15: Spatial distribution of MAEs for the length 1 on all times series in the data set

on the test set also show increases in terms of their standard deviations. They total to σ1,test =
0.7691mm for a step length of 1 on the test set and σ5,test = 0.9721mm for a step length of
5. Comparing the increases, both measures experienced, compared to their counter-parts on the
entire data set, increases of ∆σ1 = 0.2747

√
mm for step length 1 and ∆σ5 = 0.3658

√
mm for step

length 5 respectively.

However, the median values for settings shown in table 5 is lower than the mean value. For the
predictions made based on the test set the discrepancies are larger, being maximal for step length
5 with a difference of 0.2191mm.

The spatial distribution of the MAEs shown in figure 13 is illustrated in figure 15. The MAEs are
split into 6 classes as shown in the legend to the right side of the map. The data points are visualized
based on their MAE in an increasing fashion, therefore visually focusing on higher valued MAEs.
Outliers, meaning classes 5 and 6 with MAEs of more than 4mm, are spatially clearly separated
from each other. Values of class 5 (3− 4mm) are recorded primarily, but not exclusively, for build
environments such as Saarbrücken (49.23◦N 7.01◦E) or Saarlouis (49.32◦N 7.50◦E).
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4.2.2 Residuals

Another measure to asses the models performance and validity is the distribution of residuals.
Figure 16 shows the distributions for step lengths 1 and 5 for all time series using their full number
of time steps. The mean value for step length 1 is marginally larger with a value of 0.0068mm than
the mean value for the longer step length of 5, which corresponds to 0.0060. Step length 1 shows
a standard deviation of 2.1308

√
mm and step length 5 of 2.2887

√
mm.

4.2.3 Symmetric Mean Absolute Percentage Error

First introduced in equation 3.4 in section 3.3.1, the sMAPE measures the symmetric mean absolute
percentage error. Compared to the MAE it also incorporates changes between time steps. Its
symmetry around zero expands its range from 0 to 200, compared to the 0 to 100 for the asymmetric
version. For predictions of step length 1 on the the entire length of all time series in the data set,
the sMAPE represents 103.5% and for the maximal step length of 5: 128.5%. The distribution
of the sMAPE values are displayed in figures 17 and 18. Comparing their distributions to the
distributions of the MAEs in figures 13 and 14 oppositional behavior is observed.

4.2.4 Smoothness

Predictions only add information if the predicted change exceeds the noise level, otherwise the
noise level and not the actual trend is predicted. For the data set at hand, the noise level is
unknown. Nevertheless, smoothness is computed against a linear form to assess whether a time
series shows rapid changes between epochs possibly later impacting the predictions. Higher orders
are not pursued, due to the unknown noise level being amplified for higher orders. The distribution
of smoothness in terms of absolute values of second order derivatives is illustrated in figure 19. A
value of 0 is the equivalent of perfectly linear time series. A lower value for this measure therefor
means smoother behavior for this context. Evaluating the distribution in figure 19 suggests that a
very large majority of the given time series deviates strongly from linear behavior.

Figure 16: Distributions of residuals for 1- and 5-step predictions on the entire data set
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Figure 17: Distribution of the sMAPE for 1-step predictions on the entire data set

Figure 18: Distribution of the sMAPE for 5-step predictions on the entire data set

Figure 19: Distribution of second order derivatives for all time series to indicate smoothness
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Index MAE [mm] MAE Test [mm] sMAPE [%] Smoothness

51, 179 5.3525 6.6655 143.31 12.4191
94, 809 0.0556 0.0598 16.80 0.0498

Table 6: Statistics on TS51179 and TS94809 for 1-step predictions

4.2.5 Individual Time Series

Lastly, after focusing on the overall performance in the previous parts of this chapter, individual
time series are visualized and assessed. For illustration purposes two time series are selected.
One where, based on the MAE, the quality of the prediction is high compared to the others
(TS94809) and one where it is comparably low (TS51179). An overview over the selected time
series’ performance for 1-step predictions is given in table 6, summarizing different measures: the
MAE for the entire data set, the MAE for the test set, sMAPE for the entire data set, and
smoothness as discussed in section 4.2.4 is given in table.

TS51179 is visualized in figures 20 and 21, where the vertical red line represents the split between
the training and test set. The measured time series oscillates rapidly, as its smoothness indicator
in table 6 suggested. Both the 1-step-predictions and 5-step-predictions resemble a smoothened
version of the observed time series. This effect appears more distinctive for the longer step length.
Another distinct feature, appearing in both time series but being more prominent in TS51179’s
1-step-prediction, is the at times delayed prediction minima and/or maxima. This is clearly visible
in said visualization with the maximum measured at approximately epoch 60, but by the model
predicted for approximately one epoch later. A similar behavior is shown around epoch 102 for a
local minimum. When following the courses of the measured time series and the predicted values,
many more of these artifacts stand out.

The second time series that is investigated more thoroughly in this section is TS94809 visualized in
figures 22 and 23. As suggested by its smoothness value, it indeed follows a smoother pattern, even
though its overall trend is nonlinear. The in the previous paragraph discussed delays also occur for
this time series. They are most prominent around epochs 105 to 125 for the one-step-prediction.
Furthermore, spikes are observed in the predicted time series, e.g. around epoch 30 for the 1-step-
prediction. These spikes appear to follow decreases or increases in the input data to which the
model overreacts by predicting to much change. A last very distinctive feature is observed for the
5-step-prediction. Even though the prediction quality is lower compared to the one-step-prediction,
as also observed when assessing the overall performance, a large portion of the MAE appears to
originate from a small number of epochs. This is reflected in the comparison of the MAE to the
Median Absolute Error, which is 0.09741mm to 0.0742mm in favor of the Median Absolute Error,
confirming what was previously observed visually.
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Figure 20: TS51179: Measured time series vs. 1-step prediction

Figure 21: TS51179: Measured time series vs. 5-step prediction

Figure 22: TS94809: Measured time series vs. 1-step prediction
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Figure 23: TS94809: Measured time series vs. 5-step prediction

Lower Bound Upper Bound Bin Count MAE QR [mm] MAE MLP [mm] Improvement[%]

None 0.5 427 0.1384 0.1271 8.16
0.5 1.0 5, 436 0.7623 0.4724 38.03
1.0 2.0 62, 903 1.3695 0.8200 40.12
2.0 3.0 78, 331 2.1413 1.2569 41.30
3.0 4.0 48, 575 2.9286 1.6976 42.03
4.0 5.0 17, 938 3.6737 2.1200 42.29
5.0 None 5, 027 4.4340 2.5555 42.38

Table 7: Comparison of quadratic regression (QR) and the selected model using MLP-based pre-
diction accuracies for 1-step predictions

4.3 Comparison to Quadratic Regression

In this section, to asses the selected model’s prediction quality, it is put in contrast to a baseline
approach to test its capabilities compared to a more established approach. In the following, the
prediction accuracy, in form of MAEs, is compared to the MAEs of a quadratic regression model.
Each time series is treated individually. To account for the input length of 8, used by the neural
network, each time series is split into sequences of length 8. For each of these sequences, the
parameters are estimated individually and a 1-step and a 5-step prediction is performed. The
quadratic regression model scores a MAE of 2.2344mm for step length 1, which corresponds to a
70.81% increase compared to the in this work derived model’s MAE of 1.3081mm for the same step
length. For the 5-step prediction the quadratic regression models scores 8.0288mm in contrast to
1.6053mm on the MPL’s part, further increasing the margin in favor of the neural network.

Table 7 states the MAE-based prediction accuracies for different levels of smoothness (as defined in
section 4.2.4). The selected model outperforms the quadratic regression approach in all categories.
The margin is minimal when tested against the smoothest 427 time series showing an improvement
of 8%. Singular time series can be predicted more precisely using the Quadratic Regression ap-
proach, such as the in the previous section (4.2.5) TS94809. But these are based on table 7 assumed
to be exceptions.
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5 Discussion

In the subsequent chapter, the results presented in section 4 are discussed. Starting with the
selected model and the results of the training process. The discussion is focused on what could still
be improved based on the given results. In the next section the focus shifts to the selected models
performance, starting with each measure separately to lastly combine all findings and put them in
context. In the last section the comparison to the quadratic regression model, used as a baseline
model, is discussed.

5.1 Discussion on the Model Selection

As mentioned in the previous introduction, the focus in this section lies on possible improvements
to the network and the methodology based on the results at hand. The selected MLP is a 8-
layered construct with layer sizes 8-45-60-75-60-45-5 as summarized in further detail in table 4.
Compared to all other tested models, it scored the lowest validation loss averaged for all prediction
step lengths, naturally qualifying it to be selected. The fact that within the scope of this thesis
no model of higher complexity could be run, excludes the claim for optimality. This circumstance
is due to time limitations. Further tests would be necessary to find a setup that scores a higher
validation loss than the current one to indicate that this type of network construct has reached
its optimal prediction quality for the given application, without claiming global optimality. In the
following, possible improvements in terms of the methodology are discussed.

As presented previously, the guideline to use powers of 2 was dropped during the training process.
Although the results displayed in figure 9 suggested such measures, more elaborate analyses on the
matter would be beneficial. Continuing to run setups using powers of 2 could potentially deliver
further evidence for this claim, supporting the already present argument. While the scope of this
thesis did not allow for these tests to be run, the findings suggest that multiples of 15 lead to more
accurate predictions, further investigations however would need to be conducted to undoubtedly
conclude the hypothesis.

A similar limitation applies to the choice of input length. As part of this work, input lengths
were only tested up until length 10, working with the baseline assumptions to limit the number
of possible combinations and additionally keep the number of samples per time series above 90.
Various models performed best using the exact input length of 10, suggesting that longer input
lengths might be beneficial. Again, further investigations would be needed to verify if this is the
case.

Lastly, a limitation that is most certainly implied by the applied methods is leaving tuning the
batch size and learning rate for the very end. Whilst there was a good reason to keep the batch
size large as described in section 3.3.3, it is very likely to have influenced the choice of layer setup,
favoring the larger batch sizes. This results in a heavier correlation between the samples, which
ultimately could have limited the model’s prediction accuracy. The effects of adjusting the learning
rate at a late stage can be presumed as less influential than excluding tuning the batch size when
different layer configurations were tested. This is associated with the fact that a lot of research was
put into optimizing Adam, therefore resulting in a suitable default setup for most applications.
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5.2 Discussion on the Model’s Performance

In this section the model’s resulting performance is discussed. First focusing on each individual
measure and then combining the findings of the analysis of the two exemplary time series presented
in the previous chapter.

5.2.1 Discussion on Mean Absolute Errors

The statistical measures mean value and standard deviations both provide information on how
two distributions of MAEs compare to each other in terms of performance. The results lead to
the conclusion that the prediction quality decreases for increased step lengths. This is reflected in
the minimal and maximal MAE for the entire data set as well as all mean values and standard
deviations. Both of them show increases with increasing step lengths. The increases in mean values
and standard deviation are also notable in the visual representation of the MAEs. The increased
mean value results in a visual shift to the right for the distribution, whilst the higher standard
deviation causes an elongation of the tail. The right-tailed behavior illustrates an asymmetry when
comparing both extremes, in this case favoring larger MAEs over smaller ones.

The Median Absolute Error and the MAE differ for all sets of predictions in table 5. The Median
Absolute Error with its robustness against outliers being lower suggests that there must be predic-
tion outliers where the absolute error deviates significantly from what is observed for most other
predictions. Possible causes for such phenomena are high levels of noise on the respective parts of
the data or grave prediction errors. Though, the first option is more likely, since the concerning
predictions are suggested to be outliers by analyzing the Median Absolute Error. Ultimately further
analysis is required, where said predictions would be tracked and examined individually in regard
to their large deviance.

Shifting the focus to assessing the model’s prediction accuracy solely based on the test set, an
increases is denoted for all statistical measures. This implies a lower prediction quality, which can
be explained by the fact that this portion of the data was not used for training. Data behavior
displayed in this set is unknown to the network, resulting in less accurate predictions. The observed
maximal MAEs are significantly larger than for the entire data set. In addition to that, the longer
step length has the lower maximum MAE than the shorter one. Looking at the numerical value and
how high it is, it is more likely than not to be an extreme outlier. This is supported by the medians
computed for each of the respective step lengths and their discrepancies to the mean values and
the medians are larger for the test set than for the entire data set. It is important to mention that
this is very likely not the only contributing factor to a generally higher maximum MAE. Other
factors such as the overall less effective prediction behavior and the smaller sample size may very
well amplify this phenomenon.

In terms of spatial distribution, outliers do not show a spatial pattern, leading to the conclusion
that they are very likely to be the result of heavy noise or wrongful detections persistent scatterers.
Additionally, the spatial distribution suggests on average a lower prediction quality, in terms of
MAEs, in built environments. This could be due to two plausible reasons. First, in urban areas
there could potentially be a higher number of disruptive contributions due to e.g. power lines,
resulting in higher noise levels. The second reason could be that there is no pattern to detect after
all. There are significantly more persistent scatterers contained in the data set which are located in
built environments, leaving a higher chance for the model scoring higher MAEs on some of them.
To definitively determine the causes, further investigations would be required. A possible starting
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point would be to examine time series in built areas on the basis of their smoothness and exact
geographical locations, possibly identifying disruptive factors.

Conclusively, it is important to note that whilst the MAE provides a good measure for assessing
the quality of predictions, it does not respect expected changes. E.g. if the expected change for a
time series is 0.5mm and the MAE lies at 1.2mm, the predictions will not be sufficiently accurate
for this time series even though, compared to all the other time series, the MAE is better than the
average. The same applies to the other end of the spectrum as well. For a time series showing
change of 10mm or more, a MAE of 2mm could be sufficient. In addition to that, the noise levels
for this data set are unknown, which again limits the range of conclusions to be drawn from the
resulting MAEs, due to the fact that predictions are only adding information about deformation
trends if they exceed the noise level.

5.2.2 Discussion on Residuals

Residuals can be used as an indicator of model bias. Based on the mean value of the residuals
it can be determined whether the predictions have a tendency to overshoot or undershoot the
measured time series. In the results at hand, a mean value of 0.0060mm indicates that predictions
overshooting the true value are slightly more common. Due to its small magnitude, it is very
likely that the model shows no biases and no further investigations are needed. It could be tested,
however, if large spikes are more commonly found in the data than deep troughs. Based on the fact
that the model is trained to predict the average behavior observed in the training process, it has
a smoothening effect, resulting in larger errors for large spikes and deep troughs. Since the mean
value of all residuals is positive, this would imply that larger spikes occur more frequently. This
theory is yet to be vindicated with empirical evidence though.

The analysis of residuals also allows for statements about the quality to a certain extent. Similar
to what could be concluded from analyzing the MAEs, the standard deviation of the residuals
increases from the 1-step-prediction to the 5-step-prediction. A larger spread of residuals implies
larger errors on individual predictions, therefore suggesting a lower prediction accuracy for the
higher step length.

5.2.3 Discussion on Symmetric Mean Absolute Percentage Errors

Compared to the MAE, the sMAPE also accounts for the magnitudes of changes in between time
steps. The average sMAPE value of 103.5% is considered high, suggesting that on average the error
per prediction corresponds to approximately half of the measured change between the two points
in time. Being left-tailed with a high mean value, the distributions of the sMAPEs and MAEs
represent opposites. This can be an indication that rapid changes are found in the underlying
data, due to the fact that such occurrences are difficult to predict based on average behavior. The
sMAPE, being a percentage based measure on a set interval, then reacts more sensitively to errors
in these specific scenarios than MAEs, resulting in opposite behavior.

5.2.4 Discussion on Smoothness

At many places in the previous chapters, the smoothness or the changing behavior of time series
in the temporal domain seemed to be of the relevance. Due to the unknown noise level, a detailed
analysis of the time series smoothness is not possible without the risk of over-analyzing what might
simply be characterized as noise. Therefore, smoothness is compared to linear behavior in this
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context. As previously stated in section 4.2.4, higher order derivation would result in an amplifi-
cation of noise, skewing the results. The two exemplary time series found in section 4.2.5 TS51179
and TS94809, show this measures effectiveness for this application despite its rough estimation
of smoothness. TS51179 containing a high level of noise scores a high value, corresponding to
unsmooth behavior and TS94809 despite showing a quadratic underlying trend scores a very low
value, representing smooth behavior.

5.2.5 Discussion on the Overall Performance and Individual Time Series

In the following section, the results from section 4.2.5 are discussed by combining the findings from
the previous sections of chapter.

Delayed Reactions
Evaluating the predictions for TS51179, it is noticed that the predictions at times seemingly reacted
late to changes in the course of the time series. This is a typical artifact as a result of forecasting.
In most cases, the delay is linked to the step length of the prediction, since the model uses input
that is further back in time, allowing it to assume changes only when it is fed the first signs of this
change. This phenomenon is seen most distinctively for rapid change, since there are few to no
signs of the change available before its occurrence. These delayed reactions to changes are relevant
contributor to the MAE, since particularly for rapid and large changes these delays contribute
significantly to the error.

Smoothening Effect
For both of the individual time series that were highlighted, the predicted time series seems to show
smoothened behavior compared to the measured time series. This fact is linked to the model’s basic
assumption that all points are treated equally regardless of their geographical location. This results
in an average behavior, based on all time series’ trends and characteristics, learned by the model in
the training stage. When a time step is predicted, the input is analyzed and the output is predicted
according to the most likely behavior, which in this case is not optimized for the specific location
but for the average behavior of all locations, resulting in a flattening of extreme values.

Overreactions
Predicting based on average behavior can also lead to the opposite of the in the previous paragraph
described smoothening effect. For time series that show very smooth behavior, small changes can
result in outputs predicting to much change. An example of a time series is TS94809 highlighted in
section 4.2.5. This phenomenon is likely due to the model predicting based on the average behavior
learned across all points during the training process as well. As illustrated in figure 19, a large
majority of time series do not show linear behavior. This results in the average change being larger
than the changes displayed in the smoothest of time series in the data set, ultimately resulting in
overreactions to smaller changes on said smoother time series.

5.3 Discussion on the Comparison to Quadratic Regression

As stated in section 4.3, the MLP-based model achieves improvements reaching from 8% up to over
40% depending on the smoothness of the time series for a 12-day prediction (step length 1). The
two lowest improvements are achieved for the very smoothest time series, since they most resemble
linear or quadratic behavior, as seen for TS94809, where the quadratic regression model scores a
slightly lower MAE than the selected model. For all other bins, the MLP clearly outperforms the
quadratic regression. Though, the exact noise level is unknown, it may be assumed that time series
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oscillating more rapidly, which are also considered less smooth by the measure used in this thesis,
could contain higher noise levels or at least resemble time series containing higher levels of noise.
The fact that the MLP’s MAE is significantly lower for those bins suggests that this type of model
could be more resistant to noise than quadratic regression. This potential property could be very
valuable since even after sophisticated processing steps, there can still be noise present. This does
not imply a sufficient prediction accuracy though. It only suggests a possibly higher robustness to
noise.

Besides the fact that the selected model achieves significantly higher prediction accuracies on aver-
age, particularly for longer prediction step lengths, it also offers more flexibility. While a quadratic
regression models needs to estimate its parameter for each input, resulting in immense computa-
tional costs, the MLP, once trained, is fast to be applied even on larger data sets.
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6 Conclusions

This thesis aimed to construct a neural network using MLPs to predict earth deformation based on
InSAR time series and assess its applicability for this purpose. Based on the finding in this thesis,
the 8-layer construct, described in table 4, could potentially be improved by further investigating
different layer configurations. Promising setups are more likely to consist of layer sizes being
multiples of 15 rather than powers of 2. Although indications were found for multiples of 15 being
more effective, the latter cannot be conclusively excluded. Furthermore, it can be concluded that
the resulting model is likely to incorporate room for improvement by adapting the methodological
approach, such as incorporating tuning of all hyperparameters at an earlier stage.

The analyses conducted in this thesis prove the model to show virtually no signs of biases with the
capability to make predictions with a Mean Absolute Error of as low as 1.3081mm for a prediction
of 12 days and 1.6053mm for a 60-days horizon. Though, no conclusive statements on the model’s
applicability to real life earth deformation prediction purposes can be made based on the Mean
Absolute Error, due to the lacking knowledge on the exact noise level contained in the data set.
Nevertheless, the analyses show that increasing the prediction step length results in a decrease in
prediction accuracy.

While no definitive statement on the absolute quality of the predictions can be made, the comparison
to a baseline model using quadratic regression shows clear advantages on the MLP’s part. It
scores lower MAEs for all smoothness-levels of time series, apart from those showing close to
perfect quadratic behavior, where the regression-based model performs marginally better. For
lower levels of smoothness the MLP reaches an improvement of over 40%, suggesting a possibly
higher robustness to noise. The selected MLP-based model denotes an average 41% improvement
for 12-day predictions and 80% for the 60-day predictions compared to the baseline approach on
the data set at hand. Furthermore, the MLP-based approach offers more flexibility. The same
weights can be applied to all geographical locations, while the parameters of the regressional model
need to be estimated separately for each time series. In sum the MLP-based model concludes to
be a promising approach for future research.

Based on the findings in this thesis, possible next steps could be to further improve the MLP-based
approach, but also explore more sophisticated deep learning approaches, such as long short-term
memory (LSMT) networks, to possibly further expand the pallet of found-to-be promising neural
network approaches for earth deformation prediction. Furthermore, comparisons with other statis-
tical prediction tools should be performed to further assess the MLP-based approach’s performance.
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