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A B S T R AC T

The ever increasing demand for highly energy-efficient devices has ac-
celerated research into the development of new as well as the improve-
ment of existing functional materials. In particular, functional magnetic
materials, for example, permanent magnets, which form crucial compo-
nents in the devices used for electric power production and conversion
are of vital importance in this quest. Recently, there has been a huge
increase in demand for permanent magnets containing cheap and abun-
dant elements due to the increasing use of renewable energy sources
such as wind, tidal and hydro. At present, rare-earth-based magnets
account for the majority of the global sales, but in the past years, there
has been a huge fluctuation in price and uncertainty in the supply
of the rare-earth elements, which makes these magnets unsustainable
for future use. Thus, in this context, it is of interest to develop mag-
nets with performance in between cheap magnets like transition-metal-
based ferrite, AlNiCo, etc. and the rather expensive rare-earth-based
magnets such as Nd2Fe14B and SmCo5. Such “mid-range magnets” can
be used in applications where the high performance of the rare-earth-
based magnets is not necessarily required but are used anyways due
to the absence of permanent magnet with moderate performance and,
therefore, leading to high costs.

Quantum mechanical methods based density functional theory (DFT)
are a powerful tool to accurately calculate magnetic properties such as
saturation magnetization, magneto-crystalline anisotropy energy (MAE)
and the exchange interactions, which are important in determining the
performance of a permanent magnet. In this thesis, I explore the mag-
netic properties of a promising rare-earth free permanent magnet can-
didate, L10-FeNi, by employing DFT calculations. In particular, I in-
vestigate the effect of chemical disorder on the magnetic properties of
L10-FeNi, since the synthesis of fully ordered samples is extremely chal-
lenging. To model the chemical disorder, I employ supercell averaging
technique to take into account the effect of local symmetry-breaking of
a specific chemical environment around an individual atom. These ef-
fects are not included in effective medium approaches such as coherent
potential approximation often employed to treat the chemical disorder
in random alloys. I show that such effects are of utmost importance
when investigating the effect of increasing Fe-content on the MAE in
L10-FeNi.

In the first project of this thesis, I present a systematic study of the
coupling between magnetic and chemical degrees of freedom in L10-
FeNi. Most importantly, I examine how the degree of chemical order
affects the MAE and demonstrate that a reduction in the chemical dis-
order by about 25% does not lead to a significant decrease in the MAE.
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Moreover, I show that the MAE and the Fe orbital moment anisotropy
(OMA) are correlated, which provides an avenue to investigate how lo-
cal chemical environment leading to high OMA can be used to further
optimize the MAE in L10-FeNi. This lays the foundation for my sec-
ond project which was done in collaboration with Mayan Si, a master
student at ETH Zurich, supervised by me.

In the second project, we focus on how the MAE in L10-FeNi de-
pends on specific local chemical environment and stoichiometry and
whether it is possible to further increase the MAE by optimizing the
composition and distribution of constituent elements. Our investigation
reveals that it is indeed possible to design an optimized structure with
an increased MAE based on the favourable local chemical environment
as a guide. Based on this analysis, we then demonstrate that the MAE
for structures with 62.5% Fe-content increases by about 25% relative to
the case of a fully ordered equiatomic structure which confirms previous
experimental studies. I then perform a detailed study of the correlation
between the local chemical environment and the OMA values and find
that it is unlikely that a detailed quantitative understanding of the
MAE can be achieved.

Furthermore, I incorporate the effect of electron-electron interactions
present in rather localized d-orbitals in Fe and Ni on the MAE in L10-
FeNi by employing DFT+U calculations. This study reveals that the
electron-electron Coulomb interaction controlled by the parameter U
can have a significant impact on the magnetic properties, in particular,
the MAE in L10-FeNi alloy.

In the final project of my thesis, I study the effect of chemical disor-
der on the magnetic exchange interactions and consequently the Curie
temperature in L10-FeNi. I demonstrate that the variations in the lo-
cal chemical environment can have a significant effect on the magnetic
exchange interactions. To measure the impact of such variations in
the magnetic exchange couplings, I employ Monte-Carlo simulations
and perform a model study of the Heisenberg model with first nearest
neighbour interactions sampled from Gaussian distributions on an fcc
lattice, and demonstrate that the variation occurring in the magnetic
exchange coupling due to the chemical disorder can lead to a strong
reduction in Tc.

Finally, I summarize and conclude my thesis and give a perspective
for the L10-FeNi as a rare-earth free permanent magnet.
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Z U S A M M E N FA S S U N G

Die ständig steigende Nachfrage nach hoch energieeffizienten Geräten
hat die Forschung zur Entwicklung und Verbesserung von Funktions-
materialien beschleunigt. Insbesondere funktionelle magnetische Werk-
stoffe, z. B. Dauermagnete, die entscheidende Komponenten in Geräten
für die Stromerzeugung und -umwandlung darstellen, sind bei dieser
Suche von entscheidender Bedeutung. In letzter Zeit ist die Nachfrage
nach Dauermagneten, die billige und reichlich vorhandene Elemente en-
thalten, aufgrund der zunehmenden Nutzung erneuerbarer Energiequell-
en wie Wind-, Gezeiten- und Wasserkraft stark gestiegen. Gegenwärtig
machen Magnete auf der Basis von Seltenen Erden den Großteil des
weltweiten Absatzes aus, aber in den letzten Jahren gab es enorme
Preisschwankungen und Unsicherheiten bei der Versorgung mit Selte-
nen Erden, was diese Magnete für die Zukunft unbrauchbar macht. In
diesem Zusammenhang besteht das derzeitige Interesse darin, Magnete
zu entwickeln, deren Leistung zwischen billigen Magneten wie Ferriten
auf Übergangsmetallbasis, AlNiCo usw. und den recht teuren Magneten
auf Seltenerdbasis wie Nd2Fe14B und SmCo5 liegt. Solche “Mittelbere-
ichsmagnete” können in Anwendungen eingesetzt werden, bei denen die
hohe Leistung der Magnete auf Seltenerdbasis nicht unbedingt erforder-
lich ist, die aber dennoch verwendet werden, weil es keine Permanent-
magnete mit mäßiger Leistung gibt, was zu hohen Kosten führt.

Quantenmechanische Methoden auf der Grundlage der Dichtefunk-
tionaltheorie (DFT) sind ein leistungsfähiges Werkzeug zur genauen
Berechnung magnetischer Eigenschaften wie Sättigungsmagnetisierung,
magnetokristalline Anisotropie-Energie (MAE) und Austauschwechsel-
wirkungen, die für die Leistung eines Dauermagneten wichtig sind. In
meiner Dissertation untersuche ich die magnetischen Eigenschaften eines
vielversprechenden Kandidaten für einen freien Dauermagneten mit sel-
tenen Erden, L10-FeNi, mit Hilfe von DFT-Berechnungen. Insbeson-
dere untersuche ich die Auswirkungen chemischer Unordnung auf die
magnetischen Eigenschaften von L10-FeNi, da die Synthese vollständig
geordneter Proben äußerst schwierig ist. Um die chemische Unord-
nung zu modellieren, setze ich die Technik der Superzellen-Mittelung
ein, um den Effekt der lokalen Symmetriebrechung einer spezifischen
chemischen Umgebung um ein einzelnes Atom zu berücksichtigen. Diese
Effekte sind in den Ansätzen des effektiven Mediums, wie z. B. der
Näherung des kohärenten Potenzials, die häufig zur Behandlung der
chemischen Unordnung in Zufallslegierungen verwendet werden, nicht
enthalten. Ich zeige, dass solche Effekte von größter Bedeutung sind,
wenn man die Auswirkungen eines steigenden Fe-Gehalts auf die MAE
in L10-FeNi untersucht.
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Im ersten Projekt dieser Arbeit präsentiere ich eine systematische
Untersuchung der Kopplung zwischen magnetischen und chemischen
Freiheitsgraden in L10-FeNi. Vor allem untersuche ich, wie sich der
chemische Ordnungsgrad auf die MAE auswirkt und zeige, dass eine
Verringerung der chemischen Unordnung um etwa 25% nicht zu einer
signifikanten Abnahme der MAE führt. Darüber hinaus zeige ich, dass
die MAE und die Fe-Orbitalmomentanisotropie (OMA) korreliert sind,
was einen Weg eröffnet, um zu untersuchen, wie die lokale chemische
Umgebung, die zu einer hohen OMA führt, zur weiteren Optimierung
der MAE in L10-FeNi genutzt werden kann. Dies bildet die Grundlage
für mein zweites Projekt, das in Zusammenarbeit mit Mayan Si, einer
Masterstudentin an der ETH Zürich, unter meiner Leitung durchge-
führt wurde.

Im zweiten Projekt konzentrieren wir uns auf die Frage, wie die MAE
in L10-FeNi von der spezifischen lokalen chemischen Umgebung und
der Stöchiometrie abhängt und ob es möglich ist, die MAE durch Opti-
mierung der Zusammensetzung und Verteilung der Bestandteile weiter
zu erhöhen. Unsere Untersuchung zeigt, dass es in der Tat möglich ist,
eine optimierte Struktur mit einer erhöhten MAE zu entwerfen, die
auf der günstigen lokalen chemischen Umgebung als Leitfaden basiert.
Auf der Grundlage dieser Analyse zeigen wir dann, dass die MAE
für Strukturen mit 62,5% Fe-Gehalt um etwa 25% im Vergleich zu
einer vollständig geordneten äquiatomischen Struktur ansteigt, was
frühere experimentelle Studien bestätigt. Anschließend führe ich eine
detaillierte Untersuchung der Korrelation zwischen der lokalen chemis-
chen Umgebung und den OMA-Werten durch und stelle fest, dass es
unwahrscheinlich ist, damit ein detailliertes quantitatives Verständnis
der MAE zu erzielen. Darüber hinaus beziehe ich die Auswirkungen
starker Elektron-Elektron-Wechselwirkungen, die in eher lokalisierten
d-Orbitalen in Fe und Ni vorhanden sind, auf die MAE in L10-FeNi
ein, indem ich DFT+U -Rechnungen verwende. Diese Studie zeigt, dass
Coulomb-Elektronenwechselwirkungen, die durch den Parameter U ges-
teuert werden, einen signifikanten Einfluss auf die magnetischen Eigen-
schaften haben können, insbesondere auf das MAE in der L10-FeNi-
Legierung.

Im Abschlussprojekt meiner Dissertation untersuche ich die Auswirku-
ng chemischer Unordnung auf die magnetischen Austauschwechselwirkun-
gen und folglich die Curie-Temperatur in L10-FeNi. Ich zeige, dass die
Variationen in der lokalen chemischen Umgebung einen signifikanten
Einfluss auf die magnetischen Austauschwechselwirkungen haben kön-
nen. Um die Auswirkung solcher Variationen in den magnetischen Aus-
tauschkopplungen zu messen, verwende ich Monte-Carlo-Simulationen
und führe eine Modellstudie des Heisenberg-Modells mit Nächste-Nachb-
arn-Wechselwirkungen durch, die aus Gauß-Verteilungen auf einem fcc-
Gitter generiert werden, und zeige, dass die Variation in der magnetis-
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chen Austauschkopplung aufgrund der chemischen Unordnung zu einer
starken Verringerung von Tc führen kann.

Schließlich fasse ich meine Arbeit zusammen und gebe einen Ausblick
auf L10-FeNi als freien Seltenerd-Dauermagneten.
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1
B AC KG RO U N D A N D M O T I VAT I O N

1.1 introduction

Magnetic materials are playing an ever-increasing role in our fight
against climate change. In particular, permanent magnets, which form
a crucial component in devices used in generating electric power from
renewable energy sources such as wind, hydro, tidal, etc. play a pivotal
role in this quest.

Magnets can be divided into two categories, namely, hard and soft
magnets, depending on the ease with which they can be magnetized
and demagnetized rather than on their mechanical properties. The key
figure of merit of a magnet is the magnetic energy product, (BH)max
which is equal to the area of the biggest rectangle (optimal product
of the remanence (Br) and the coercivity (Hr)) that can be fitted in
the second quadrant of the B(H) loop and provides an estimation of
the energy that can be stored in a magnet (see black shaded region in
Fig. 1). The magnetic properties (e.g. coercivity (Hc)) derived from the
B(H) hysteresis loop are extrinsic in nature, since they depend on the
microstructure of the material while magnetic properties obtained from
M (H) hysteresis loop are intrinsic in nature (e.g. intrinsic coercivity
(Hci)) as they depend on the crystal structure and the composition of
the material.

Soft magnets generally exhibit high permeability and minimal hys-
teresis, i.e., their hysteresis loop is ideally narrow and, therefore, can
be easily magnetized and demagnetized. They are mainly used to guide
and concentrate the magnetic flux produced by electric currents in for
example transformers, electric motors, and generators. Si steels, permal-
loy (Ni-Fe), soft iron, and permendur (Fe-Co) are few of the examples
of soft magnets that are more commonly used in the electromagnetic
machinery.

Hard magnets, on the other hand, are capable of providing magnetic
flux in a particular volume of space without any expenditure of energy.
As a result, they are used to make permanent magnets. They are char-
acterized by their maximum energy product (BH)max and high coerciv-
ity which provides the resistance towards any external demagnetizing
field. Their hysteresis curve is generally broad and square in shape for
the ideal case. They find their use in a wide variety of applications,
for example, electric motors, robotics, power generators, automobiles,
loudspeakers, etc.

Currently, high performance permanent magnets are composed of
rare-earth elements (Sm, Nd, Dy, etc.), which provide high resistance
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2 background and motivation

Figure 1: Typical hysteresis curve of a ferromagnetic material. B-H and M-H
loops are denoted by blue and red lines, respectively. Both plots
contain the same information since B⃗ = µ0(M⃗ + H⃗). They look
different since B(H) curve does not saturate as B continues to rise
with increasing H. Dashed lines correspond to the magnetization
process starting from the demagnetized state. The maximal energy
product (BH)max is denoted by the black shaded region and the key
quantities, for example, saturation magnetization (Ms), remanent
magnetization (Mr), residual magnetic induction (Br), coercivity
(Hc), and the intrinsic coercivity (Hci) are denoted by different dots.

to demagnetization, and transition-metals (Fe, Co, etc.), which provide
high saturation magnetization. At present, magnets containing rare-
earth elements especially those belonging to the SmCo family (e.g.,
SmCo5 and Sm2Co17) with energy products in the range of 5-20 MG
Oe (40 - 160 kJ/m3) [4–7] and the NdFeB family (e.g. Nd2Fe14B) with
energy products in the range 5-50 MG Oe (40-400 kJ/m3) [8–10] are
in very high demand globally due to an increase in the production of
wind-turbines, hybrid-electric vehicles, electric appliances, etc. [11] For
instance, a hybrid motor in an electric vehicle requires around 1.3 kg
of Nd-Dy-Fe-B magnets while a permanent magnet generator would
require around 2918 kg of Nd-Fe-B [11].



1.1 introduction 3

Figure 2: Annual average price of Nd in USD/kg from 2004 to 2015. Repro-
duced from Ref. [19].

While there is no doubt about the performance of these rare-earth
based supermagnets, the volatility in prices [12, 13], and uncertainty
in the supply of the raw materials [14, 15] required for manufacturing
them, make these magnets unsustainable for future use. For instance,
the price of Nd increased by around 3500% between 2010 and 2012
followed by a subsequent reduction in the price in 2014 (see Fig. 2),
indicating the price volatility of this vital element [16, 17]. This price
volatility and the uncertain supply is due to certain economic geopo-
litical constraint. The rare-earth elements are not really rare, but are
scattered and are extracted mainly in China, which fulfills around 97%
of global rare-earth demand. The strict control on the export of rare-
earth elements by China lead to an increase in the price of rare-earth el-
ements which consequently lead to the so-called “rare-earth-crisis” [12].
The European Commission has since then listed rare earth elements
as “Critical Raw Materials” given their high economic importance and
high supply risk [18].

Thus, in order to meet the global increasing demand and to find an
alternative to rare-earth based magnets, new inexpensive permanent
magnets containing low or zero rare-earth elements must be developed.
It is important to note that developing a rare-earth free permanent
magnet with the performance comparable to those of high-performing
rare-earth based magnets is very challenging as removing the rare-earth
elements causes a significant loss of the magneto-crystalline anisotropy,
which is due to the interplay between enhanced spin-orbit coupling and
strongly correlated nature of the 4f -orbitals [20]. In this context, it is of
interest to develop magnets with performance in between magnets like
transition-metal-based ferrite, AlNiCo, etc., and the high performance
rare-earth-based magnets such as Nd2Fe14B and SmCo5. Such “mid-
range magnets” can be used in applications where the high performance
of the rare-earth-based magnets is not necessarily required but are used



4 background and motivation

Figure 3: Schematic representation of the face-centered cubic A1-type (left)
and the tetragonal L10-type (right) crystal structures. Green and
blue colored spheres represents two different atomic species.

anyways due to the absence of any magnet with moderate performance
and, thus, leading to high costs [21].

In the rest of this chapter, I briefly discuss a few potential candidates
for L10-structured rare-earth free permanent magnets. In Sec. 1.3, I
introduce and discuss the properties of L10-FeNi which is the main
focus of this thesis. Finally, in Sec. 1.4, I provide an overview of the
structure and scope of this thesis.

1.2 l10 -structured rare-earth free permanent mag-
net candidates

When pursuing the quest to find a new material for a rare-earth free
permanent magnet, the goal is to design a material with (1) a strong
magneto-crystalline anisotropy energy (MAE), (2) a large saturation
magnetization (Ms), and (3) a high Curie temperature (Tc). While the
materials with large Ms and high Tc exists - e.g., Fe0.65Co0.35, also
known as permendur, with Tc ∼ 1250 K and Ms ∼ 2.5 T [22], it is the
MAE that represents a real challenge.

The strength of the MAE is dictated by the symmetry of the atomic
environment and the magnitude of the spin–orbit coupling. The great-
est potential for a large intrinsic MAE is known to be found in ma-
terials with uniaxial environments such as FeNi, FePt, CoNi, MnBi,
MnAl, MnGa, etc. These compounds form in the tetragonal L10 struc-
ture1 consisting of alternating layers of the constituent elements which
are stacked parallel to the tetragonal c-axis (see Fig. 3). In contrast, a
chemically disordered phase has a cubic symmetry where each site on
an fcc lattice can be occupied by either of the constituent elements (see
Fig. 3). A chemically ordered L10 structure forms through the disorder-
order transformation from a chemically disordered fcc structure which
happens by the nucleation and growth of the chemically ordered L10
regions in the chemically disordered fcc matrix.

Mn-based ferromagnetic alloys such as MnAl and Mn2Ga are known
promising candidates for the rare-earth-free permanent magnets due

1 structure type - AuCu I, space group - P4/mmm
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to their high coercivity and low cost [23–31]. In particular, the mag-
netic properties of ferromagnetic L10 structured τ -MnAl which forms
at 51-58 at.%Mn have been extensively reported [26, 32–34]. For exam-
ple, recent studies of the (001) oriented MnAl thin films on the GaAs
substrates have reported a saturation magnetization of 361 emu/cm3

(361 kA/m), anisotropy constant of 13.65 Merg/cm3 (1.365 MJ/m3),
and the magnetic energy product of about 4 MGOe (31.82 kJ/m3) [26].
Another Mn-based candidate with good coercivity and modest magne-
tization is Mn2Ga [31], but it suffers from high cost of Ga which makes
it unfeasible as a permanent magnet unless a low-cost substitute of Ga
is found.

Fe-based rare-earth-free permanent magnet candidates such as FePt,
FeCo, FeNi, etc., are actively pursued due to the large saturation mag-
netization of Fe and its high abundance in the earth crust. FePt has
attracted a lot of attention in recent years due to the high anisotropy
resulting from the large spin-orbit coupling of the 5d element, Pt [35–
44]. L10-FePt can be generated by annealing the face-centered-cubic
FePt. Chemical synthesis routes have been widely employed for this pur-
pose [36, 38, 39, 44]. For example, in a recent study, L10-ordered FePt
nanostructures were successfully synthesized by employing a chemical
approach where bismuth additives were used to achieve the enhanced
ordering. Resultant maximum room temperature coercivity of 15.2 kOe
(1.21 MA/m) was measured [44].

Face-centered-cubic FeCo is a soft magnetic material with a very
small MAE. However, Burkert et al. [45] showed by employing first-
principles calculations of the tetragonal FeCo alloys that it is possible
to achieve a saturation magnetization which is about 50% larger than
FePt and a uniaxial MAE that is also about 50% larger than that of
FePt. Experimental realization of the tetragonal FeCo magnets was
reported by Andersson et al. [46], who created tetragonally distorted
FeCo alloys by epitaxial growth in conjucture with Pt in a superlattice.
They reported the MAE reaching to about 210 µeV/atom and a sat-
uration magnetization of 2.5µB/atom at 40 K, which is in qualitative
agreement with theoretical predictions. However, synthesis of the bulk
L10-FeCo phase has not been successful so far.

This concludes the review of some of the important rare-earth-free
permanent magnet candidates. For further reading on the progress and
the future challenges in rare-earth-free permanent magnets, I suggest
the interested reader to refer to the review articles by Cui et al. [47],
Skokov et al. [48], Ronning et al. [49], Shao et al. [50], and Lewis et
al. [16].

1.3 l10 -fe50ni50 alloy (tetrataenite)

The L10-structured Fe50Ni50 alloy (tetrataenite) is a promising candi-
date for the development of rare-earth-free permanent magnets. It was
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first discovered in 1962 in laboratory by Néel et al. during the study
of single crystal ordered by neutron bombardment under the magnetic
field at a temperature below 320◦C (593 K) [51]. Few years later, it was
also identified in iron meteorites by Peterson et al. using Mössbauer
spectroscopy and X-ray diffraction techniques [52–56].

The L10 structure imparts tetrataenite 2, a strong magneto-
crystalline anisotropy energy (MAE), large saturation magnetization,
and a high Curie temperature (TC > 800 K) [57–60]. In contrast, the
disordered phase of FeNi has an fcc structure (A1-type fcc) where Fe
and Ni atoms occupy sites over the fcc lattice randomly and has very
weak MAE due to its cubic symmetry.

Several past studies have revealed an order-disorder transition tem-
perature (To-d) of ∼ 320◦ C (593 K) [51, 61, 62]. However, recent exper-
imental studies on meteorites samples showed the onset of disordering
only above 500◦ C (793 K) [57, 60]. Santos et al. [63] pointed out the
importance of kinetics in the disordering of tetrataenite. They carried
out annealing experiments at different temperatures on two different
meteorite samples and measured the hysteresis properties such as coer-
civity and the saturation remanent magnetization for the disordering
process. They showed that disordering in tetrataenite does not start
immediately upon heating but is a kinetically limited process.

So far, it has not been possible to achieve a fully ordered FeNi phase
in laboratories similar to that found in iron meteorites, due to its low
To-d. Around To-d, diffusion coefficients of Fe and Ni are very low (one
atomic jump per 104 years [64]), so it takes millions of years for the
ordered phase to form. Therefore, it is only found in meteorites. How-
ever, in several recent experimental studies, researchers were successful
in preparing samples with a high degree of chemical order. For exam-
ple, Goto et al. [65] synthesized L10-FeNi powder with a high degree
of chemical order using nitrogen insertion and topotactic extraction
(NITE). They nitrided the A1-FeNi powder with ammonia gas in an
electric furnace which resulted in the formation of a stable intermedi-
ate material, FeNiN, which has the same arrangement of atoms as in
L10-FeNi. FeNiN was then denitrided by topotactic reaction to obtain
the single-phase L10-FeNi with an order parameter 3 of 0.71 and a co-
ercivity of 142 kA/m. In a more recent study by Nishio et al. [66], they
reported that the island structures of L10-FeNi formed by employing
sputter deposition of FeNi alloy and successive use of NITE method
can result in improved coercivity (188 kA/m at 10 K).

Makino et al. [67] also reported the L10-FeNi phase with a chemical
degree of order of about 0.8 upon crystallization of the amorphous
phase of Fe42Ni41.3Si8B4P4Cu0.7 alloy. In their analysis, they found

2 The name tetrataenite is derived from its tetragonal structure and the mineral “taen-
ite” consisting of Fe and Ni alloys.

3 Note that the degree of long-range order in this study was determined by the in-
tensity of the superlattice deflection lines corresponding to the layering in the L10
structure.
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that the formation of the ordered phase of FeNi was favoured due to
(1) a high diffusion rate of the elements in the alloy at low temperature
during the crystallization from an amorphous phase, (2) a large driving
force of the precipitation of the ordered FeNi from the amorphous phase,
and (3) the presence of clusters of the ordered phase of FeNi.

In a study by Shito et al. [68], they demonstrated that the L10-FeNi
phase can be fabricated by using pulsed laser deposition where alter-
nating monoatomic layers of Fe and Ni were deposited on a Cu (001)
substrate by using stabilized laser ablation technique. A similar ap-
proach was also employed by Kojima et al. [69] where they fabricated
L10-FeNi films by alternate deposition of Fe and Ni monoatomic layers
on the non-ferromagnetic Au–Cu–Ni buffer layer with a flat surface by
employing molecular beam epitaxy technique in an ultrahigh vacuum
chamber. Moreover, they found that the uniaxial magneto-crystalline
anisotropy energy (MAE) monotonically increased with the long-range
order parameter of the L10 phase and the highest value of the MAE
(0.93 MJ/m−3) and the saturation magnetization (1470 kA/m) was
achieved for Fe60Ni40, indicating Fe-rich stoichiometry to be favorable
for enhanced MAE.

Alongside the promising experimental studies, several researchers
have also investigated the magnetic properties of L10-FeNi by employ-
ing various electronic structure calculations and Monte-Carlo simula-
tions. For example, both Dang et al. [70] and Lavrentiev et al. [71],
found a strong coupling between magnetic and chemical orders in
L10-FeNi by employing different models and approximations. Ref. [71]
showed that the Curie temperature of the fully ordered phase is en-
hanced by about 550 K as compared to the Curie temperature of the
chemically disordered phase. In a more recent study, Tian et al. [72]
also showed by employing exact muffin-tin orbitals method based on
DFT that the Curie temperature is enhanced for the chemically ordered
phase (Tc = 780 K) relative to the Curie temperature of the chemically
disordered phase (Tc = 630 K). Note that the differences in the Curie
temperature between the chemically ordered and disordered phase re-
ported by Lavrentiev et al. ( 550 K) and by Tian et al. (150 K) can be
attributed to the different methods and approximations employed in
their studies.

The origin of the MAE in L10-FeNi was investigated by Miura et
al. [73], using first-principles density-functional calculations, where au-
thors showed that the dominant contribution to the MAE in L10-FeNi
comes from constituent Fe atoms. Moreover, they showed that the MAE
increases by almost two times when orbital polarization energy is taken
into account in the electronic structure calculations. Note that orbital
polarization energy is related to Hund’s second rule and is proportional
to the square of the angular momentum expectation value. When added
to the exchange and correlation energy, it effectively enhances the spin
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orbit coupling parameter which results in improved values of orbital
moments and anisotropy energies.

Edström et al. [74] studied using first-principles based calculations,
effects of substitutional disorder on the MAE in L10-FeNi by employing
the coherent potential approximation (CPA) [75, 76] method, which is
based on mean-field framework where an averaged out effect due to
chemical disorder is considered to treat the chemical disorder. They
found that both the MAE and Tc decreases with increasing substitu-
tional disorder. Furthermore, they found a reduction in the MAE by
about 10% when Fe-content was increased by 20% in L10-FeNi which
is in contrast to the experiments where a 30% increase in the MAE was
observed for Fe1.2Ni0.8 [77].

1.4 structure and aim of this thesis

In this thesis, I perform a detailed investigation of the key magnetic
properties such as saturation magnetization, MAE, and the Curie tem-
perature, taking into account the effect of chemical disorder in L10-FeNi.
To accomplish this, I employ first-principles-based density functional
theory calculations in combination with Monte-Carlo simulations.

Chapter 3 is devoted to the understanding of the coupling between
chemical and magnetic orders in L10-FeNi. To model chemical disorder,
we employ supercell approach where Fe and Ni atoms are distributed in
a manner so as to mimic the real disordered alloys used in experiments.
We then answer following questions:

• Is it possible to demonstrate the coupling between chemical and
magnetic degrees of freedom in L10-FeNi using a supercell ap-
proach, as shown by previous studies employing mean-field type
approaches to model the chemical disorder?

• How do the favorable magnetic properties, in particular, the MAE
depend on the degree of chemical order in L10-FeNi?

• Is there a correlation between the MAE and the (global) orbital
moment anisotropy in L10-FeNi?

In Chapter 4, we perform a detailed analysis of the impact of chem-
ical disorder on the MAE by analyzing the distribution of the local
orbital moment anisotropy for Fe and Ni atoms in partially disordered
structures. This project was performed in collaboration with Mayan Si,
a master student I supervised. We then answer following questions:

• How does the MAE in L10-FeNi depend on the specific local chem-
ical environment and stoichiometry?

• Is there a correlation between the local atomic environment of an
Fe atom and its local orbital moment anisotropy in L10-FeNi?
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• If such a correlation exists, can we further increase the MAE
by optimizing the composition and distribution of constituent
elements?

In chapter 5, we employ DFT+U calculations and answer following
question:

• How does the +U incorporating second Hund’s rule affect the
magnetic properties, in particular, the MAE in L10-FeNi?

Finally, in chapter 6, we investigate the effect of chemical disorder
on the magnetic exchange couplings and consequently the Curie tem-
perature in partially chemically ordered L10-FeNi. We answer following
questions:

• To what extent does the pairwise Heisenberg interaction depend
on the local chemical environment in L10-FeNi and can this de-
pendency be incorporated into a simple model for Monte Carlo
simulations?

• If such a dependency exists, then to what extent does the vari-
ation in the magnetic exchange couplings will affect the Curie
temperature in chemically disordered FeNi?

This thesis is structured as follows. In chapter 2, I introduce the
methods such as DFT and Monte-Carlo simulations used in this thesis
to perform the calculations. Furthermore, I also introduce in detail the
magnetic properties relevant to this thesis and how one can obtain
them using DFT calculations. This is then followed by the results in
chapter 3, 4, 5, and 6 that I have obtained during my research. In
each chapter, I first motivate the study related to the thesis, which is
then followed by the review of the relevant literature and the project
summary. This is then followed by the implications and further work,
which is followed by the preprint of the research article itself.





2
M E T H O D S A N D T H E O R E T I C A L B AC KG RO U N D

In this chapter, I will introduce the fundamentals of the computa-
tional methods used in this thesis which are widely employed to study
the properties of magnetic materials. First, I will introduce the Den-
sity functional theory (DFT) - a quantum mechanical method to in-
vestigate the electronic properties of many-body systems. Then, I will
discuss the basic concepts of DFT+U which takes into account strong
electron-electron interactions between electrons in localized d or f or-
bitals. Furthermore, I will introduce and discuss the computation of
MAE and the magnetic exchange couplings using DFT. Next, I will
discuss in detail the approach I have employed in this thesis to treat
the chemical disorder in L10-FeNi. This is then followed by the intro-
duction to the smooth overlap of atomic positions method and the
t-stochastic neighbor embedding, where former encodes the local chem-
ical environment into a rotationally invariant vector and the latter is
used to reduce the dimension of this vector for visualization. Finally, I
will explain the Monte Carlo simulations which are used in this thesis
to (a) obtain the temperature dependence of the chemical order pa-
rameter, and (b) calculate the magnetic transition temperature in the
ordered and disordered phase in L10-FeNi. This chapter mainly follows
the textbook of Giustino [78], Stöhr and Siegmann [79], Spaldin [80],
and the review article by Himmetoglu et al. [81].

2.1 density functional theory

For several decades, density functional theory has remained a pow-
erful approach to calculate the electronic ground state properties of
wide variety of materials from first principles. DFT is based on solving
Schrödinger equation for many-body systems which includes interact-
ing electrons and nuclei using certain set of reasonable physical ap-
proximations which do not take into account any empirical parameters.
These set of approximations then allow one to transform many-body
interacting problem into an effective single-particle problem.

All matter e.g., crystals, molecules, etc., consists of large number
of interacting ions and electrons. One can describe the properties of
all forms of materials by virtue of one single powerful equation: the
many-body Schrödinger equation,

HΨ(r, R) = EΨ(r,R) (1)

where Ψ(r, R) corresponds to the many-body wavefunction which de-
pends on the positions of all Ne electrons (r = r1, ..., rNe) and all Nn nu-

11
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clei (R = R1, ..., RNn) in the material, the eigenvalue E corresponds to
the total energy of the system in the quantum state given by the many-
body wavefunction Ψ(r, R), and H is a full non-relativistic Hamilto-
nian given as:

H = Te + Tn + Ve-e + Ve-n + Vn-n. (2)

The first term, Te, represents the kinetic energy of electrons and is given
as:

Te =
Ne∑
i=1

− h̄2

2me
∇2

ri
, (3)

where Ne represents the number of electrons at position ri and me

corresponds to the mass of the electron. Note that the ∇2 is the scalar
Laplace operator and the derivatives in the Laplace operators ∇2

ri
are

taken with respect to the Cartesian coordinates of each electron.
The second term, Tn, the kinetic energy of the nuclei is given as:

Tn =
Nn∑
j=1

− h̄2

2mj
∇2

Rj
, (4)

where Nn represents the number of nuclei at position Rj and mj is the
mass of j nucleus.

The third term, Ve−e, is the electron-electron Coulomb repulsion
given as:

Ve-e =
Ne∑

i ̸=i′

e2

2
|ri − ri′ |

, (5)

where i and i′ varies from 1 to Ne.
The fourth term, Ve−n, is the electron-nucleus Coulomb attraction

given as:

Ve-n =
Ne∑
i=1

Nn∑
j=1

−e2Zj

|ri − Rj |
, (6)

where Zj is the j atomic number.
Finally, fifth term, Vn−n, is the nucleus-nucleus Coulomb repulsion

given as:

Vn-n =
Nn∑

j ̸=j′

e2

2 ZjZj′

|Rj − Rj′ |
, (7)

where Zj and Zj′ are the atomic number, and j and j′ varies from 1 to
Nn.

One can now solve Eq. 1 to get the ground state wavefuction Ψ(r, R)

which would allow to determine all equilibrium properties of the mate-
rial under investigation. However, due to extreme complexity of many-
body wavefunction with 3(Ne +Nn) variables, it is impractical to solve
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for a system with large number of electrons and nuclei. Thus, certain
physical approximations were introduced in order to obtain good de-
scription of the many-body wavefunction with sufficient accuracy.

born-oppenheimer approximation The first approxima-
tion known as Born-Oppenheimer or adiabatic approximation [82],
states that the nuclei are heavier as compared to the electrons and
thus they move “slower” relative to the electrons, especially in solids
and molecules. In other words, on the time-scale of the movement of
electrons, nuclei can be considered static. This approximation allows
to neglect the kinetic energy of the nuclei and decouple the motion of
the nuclei from that of the electrons, which makes the Coulomb repul-
sion between the nuclei constant, i.e. Vn−n = constant. Thus, one can
rewrite the time-independent Schrödinger equation for a collection of
Ne electrons experiencing the potential created by fixed nuclei as:

(Te + Ve-e + Vext)ΨR(r) = EoΨR(r) (8)

where Vext is the external potential which is a sum of nucleus-nucleus
Coulomb repulsion and electron-nucleus Coulomb attraction (Vext =

Ve-n + Vn-n), and nuclear coordinates in ΨR(r) appear only as an ex-
ternal parameter and thus, ΨR(r) is a function of only electron coordi-
nates. Despite this simplification, solving Eq. 8 for Ne electrons is still
a daunting task and requires further simplifications.

2.1.1 Hohenberg-Kohn theorems

In 1964, Hohenberg and Kohn [83] showed that for a system of inter-
acting electrons present in an external potential:

1 The external potential Vext can be uniquely determined by the
ground-state electronic density n(r).

2 The total energy E of any system is a functional of the electron
density n(r) and the total energy functional E[n(r)] has a global
minimum at the ground-state electron density n0(r).

The total energy functional is given as:

E[n(r)] = F [n(r)] +
∫
d3rn(r)Vext(r) (9)

The unknown internal-energy functional F [n(r⃗)] which only depends
on the type of particles describes the kinetic and interaction energy of
the system under study and is given as:

F [n(r)] = ⟨ψGS[n(r)] |Te + Ve−e |ψGS[n(r)]⟩ (10)
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where ψGS[n(r)] is ground-state wavefunction. On substituting Eq. 10
in Eq. 9, the total energy functional can be written as

E[n(r)] = ⟨ψGS[n(r)] |Te + Ve−e |ψGS[n(r)]⟩

+
∫
d3rn(r)Vext(r) (11)

An important observation from the above equation is that all we need
is the electron density n(r) to be able to calculate the ground state
energy.

The Hohenberg and Kohn theorem neither tells us the exact func-
tional form and nor does it tell us how to construct such functional.
Therefore, additional range of physical approximations are necessary
in order to obtain such functional.

2.1.2 Kohn-Sham equations

In 1965, Kohn and Sham [84], showed how the unknown universal
functional can be approached. One can see in Eq. 11, that the second
term has an explicit dependence on the electron density n(r), while
the first term (kinetic energy + Coulomb energy) has only implicit de-
pendence on the electron density. An explicit expression for the kinetic
energy is unknown for the interacting system. Kohn and Sham there-
fore mapped the system of interacting electrons in its real potential
onto a system of non-interacting electrons with the same density. The
Eq. 11 in the Kohn-Sham system can be written as

EKS [n(r)] =

External potential︷ ︸︸ ︷∫
d3rn(r)Vext(r)−

Kinetic energy︷ ︸︸ ︷∑
i

∫
d3rϕ∗

i (r)
∇2

2 ϕi(r)

+
1
2

∫ ∫
d3rd3r′n(r)n(r’)

|r − r’|︸ ︷︷ ︸
Hartree energy

+ Exc(n(r))︸ ︷︷ ︸
Exchange-correlation energy

(12)

where ϕi(r) is the single electron wavefunction and the first three terms
(external potential, kinetic energy, and Hartree energy) constitutes the
total energy in the non-interacting system. The last term, so-called
exchange-correlation energy, Exc(n(r)), is unknown and accounts for
all the differences which occur as a result of mapping the interacting
electron system onto a non-interacting electrons system. If Exc(n(r))
can be determined, then using the electron density, one can determine
the ground state energy of the system. Furthermore, according to “Ho-
henberg–Kohn variational principle”, ground state density no(r) can
be determined by minimizing the total energy E(n(r)):

δE(n(r))
δn

∣∣∣∣∣
no(r)

= 0 (13)
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For wavefunctions ϕi(r), the Hohenberg–Kohn variational principle
then leads to(− h̄2

2m ∇2 + Vext(r) + VH(r) + Vxc(r)
)
ϕi(r) = εiϕi(r) (14)

where VH(r) and Vxc(r) represents the Hartree potential and the
exchange-correlation potential, respectively. The Kohn-Sham potential
VKS(r) is given by

VKS(r) = VH(r) + Vxc(r) + Vext(r), (15)

where the exchange-correlation potential is given by

Vxc(r) =
δExc[n(r)]
δn(r)

∣∣∣∣∣
n(r)

(16)

Once the effective single-particle wavefunctions (ϕi(r)) are found, the
electron density can be calculated as:

n(r) =
∑

i=occ

|ϕi(r)|2 (17)

The above set of equations are called Kohn-Sham equations and
Eq. 14 forms the basis of Kohn-Sham theory. Note that this equation is
a standard eigenvalue problem where one needs to determine eigenfunc-
tions, ϕi(r) and eigenvalues εi. However, to determine them, one needs
to know the total Kohn-Sham potential VKS(r) = VH(r) + Vxc(r) +
Vext(r). Vext(r) can be determined by specifying the nuclear coordinates
of the materials under consideration but the main difficulty lies in de-
termining VH(r) and Vxc(r) which depends on the electron density n(r)
which in turn depends on the unknown eigenfunctions ϕi(r). Therefore,
Kohn-Sham equations have to be solved self-consistently. Fig. 4 outlines
this approach.

To calculate properties of magnetic materials, one needs to consider
electron spin where electron density becomes spin-dependent. Spin-
DFT calculations can be classified into two broad categories, collinear
and non-collinear calculations. The collinear spin approximation is
widely used to describe the basic properties of a vast variety of standard
ferro-magnetic materials. To perform collinear spin-DFT calculations,
one need to make approximations that spin density can be aligned along
only one direction. The electron density is split into two

n↑(r) =
∑
i↑

|ϕi↑(r)|2, n↓(r) =
∑
i↓

|ϕi↓(r)|2 (18)

where n↑(r) is “spin-up” and n↓(r) is “spin-down”. The total energy
functional then depends on the total electron charge density n(r) =

n↑(r) + n↓(r) and electron spin density which is simply given as the
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Figure 4: DFT algorithm representing the self-consistent solution to the Kohn-
Sham equations.

difference in spin-up and spin-down, i.e., m(r) = n↑(r)−n↓(r). On the
other hand, non-collinear spin DFT calculations are necessary to study
the properties of more exotic phases such as spin spirals, spin glasses,
etc. A detailed overview can be found in Ref. [78].

Note that in order to solve Kohn-Sham equations, one has to make a
few more approximations. For example, choice of exchange-correlation
functional, the basis set to expand the Kohn-Sham orbitals, and in
the case of a plane-wave basis set, one generally has to use appropri-
ate pseudopotentials. In the following, I will now summarize various
approximations for exchange-correlation energy and pseudopotentials.

2.1.3 Approximations to the exchange-correlation functional

Since the advent of Kohn-Sham theory, several efforts were made to
construct accurate exchange-correlation functional to solve Kohn-Sham
equations. In the following, I will discuss two of the most simplest and
widely employed functional, namely, local density approximation (LDA)
and generalized gradient approximation (GGA).

local density approximation Kohn and Sham first pro-
posed the LDA in 1965 [84], where one considers the inhomogeneous
electron density present in real materials as locally homogeneous. This
makes it possible to calculate the exchange and correlation energy for
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the regions with slow varying density. The total exchange-correlation
energy within LDA is given as:

ELDA
xc [n(r)] =

∫
d3r n(r) εhomo

xc [n(r)], (19)

where εhomo
xc [n(r)] is the exchange-correlation energy density of a ho-

mogeneous electron gas and is given by

εhomo
xc [n(r)] = εx[n(r)] + εc[n(r)] (20)

The εx[n(r)] is the exchange energy of the electron in the homogeneous
electron gas and is known exactly [85, 86], while no simple analytical
expression of the εc[n(r)] exists. However, it is possible to calculate
the correlation energy for the homogeneous electron gas by solving
many-body Schrödinger equation numerically using quantum Monte
Carlo simulations [87, 88]. The LDA can be easily extended for mag-
netic materials to local spin-density approximation (LSDA). The total
exchange-correlation energy for spin-polarized system depends on the
spin-up (n↑(r)) and spin-down (n↓(r)) electron densities and is given
as:

ELDA
xc [n↑(r),n↓(r)] =

∫
d3r n(r) εhomo

xc [n↑(r),n↓(r)], (21)

where εhomo
xc [n↑(r),n↓(r)] is the exchange-correlation energy of the ho-

mogeneous spin-polarized electron gas.
Due to its simplicity, LDA remains a useful functional and gives

accurate material properties in, for example, simple metallic systems
where electron density is often homogeneous. However, there are cer-
tain limitations, for example, LDA tends to predict lattice constants
that are slightly smaller than the ones measured in experiments. For
spin-polarized systems, LDA incorrectly predicts nonmagnetic face-
centered-cubic (fcc) Fe to be lower in energy than the ferromagnetic
body-centered-cubic (bcc) Fe [89].

generalized gradient approximation To account for the
inhomogeneity in the electron gas, i.e., the local variation of the electron
density, another approximation known as generalized gradient approx-
imation (GGA) was proposed [90]. Within the GGA, the gradient of
the electron density is considered and the total exchange-correlation
energy functional is given as:

ELDA
xc [n(r)] =

∫
d3r n(r) εhomo

xc [n(r)]Fxc[n(r), ∇n(r), ∇2n(r), ...], (22)

where Fxc[n(r), ∇n(r), ∇2n(r), ...] is the enhancement factor that in-
corporates the changes in local electron density. Although there are
many different flavors of GGA, one of the most widely used was intro-
duced by Perdew, Burke and Ernzerhof, known as PBE [91].
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Compared to LDA, GGA tends to give more accurate values of
binding energies and bond lengths, but sometimes overestimates lat-
tice constants in solids [92]. More importantly, GGA correctly predicts
the ferromagnetic bcc Fe to be lower in energy than the nonmagnetic
fcc Fe [89]. Throughout this work, I have employed GGA-PBE as the
exchange-correlation functional in all DFT calculations.

2.1.4 Approximations to the external potential

In the last section, I discussed possible approximations to the
exchange-correlation functional to solve Kohn-Sham equations. In this
section, I discuss the remaining methodologies that are required to get a
practical solution of the Kohn-Sham equations. First, I will discuss the
mathematical representation of the single-particle orbitals in the Kohn-
Sham equations, and then finally, the way to treat electron-nucleus
interaction.

basis sets To solve Kohn-Sham equations, one need to choose a
set of basis functions φα(r) to represent the Kohn-Sham orbitals:

ϕKS(r) =
N∑

α=1
cKS,αφα(r), (23)

where cKS,α are the expansion coefficients and the summation is over
all basis functions in the N -dimensional basis set. For periodic systems
such as solids, Bloch theorem states that the electronic wavefunctions
must compose of a phase factor, ei(k)·r and a periodic part u(r) = u(r+
R) where R is a lattice vector. For condensed phases, this introduces
naturally the plane-waves with basis function:

ϕk
KS(r) =

∞∑
G=0

ck(G)ei(k+G)·r, (24)

where G is a reciprocal lattice vector and k is a wave vector. Theoreti-
cally, the sum contains infinite number of G to represent the wavefunc-
tions. But in practice, the fourier coefficients ck(G) of the wavefunc-
tions decreases with increasing lattice vectors |k + G| so that the sum
is truncated at a finite number of G. This results in plane waves that
are lower in kinetic energy than a certain cut-off energy Ecut:

− h̄2

2me
|k + G|2 < Ecut. (25)

Note that the truncation to finite number of G leads to an error in the
computed electronic property which can be controlled by increasing the
cut-off which in turn can lead to higher computational cost. Therefore,
the choice of Ecut should be such that the required accuracy should be
reached within a reasonable computational effort.
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pseudopotentials The nucleus of an atom interacts with its
electrons by a Coulomb interaction given by Eq. 6. The electrons tightly
bound to the nuclei, called core electrons, do not participate in chemical
bonding and account for the largest part of the total energy due to
their high binding energies. On the other hand, the valence electrons
participate in the chemical bonding and are more delocalized. There
is another class of electrons called, semi-core electrons, which are close
in energy to the valence states and feel the presence of the chemical
environment. However, they do not participate in the bonding process.
One requires huge number of plane waves basis set to describe the
electrons in the core region and thus leading to calculations that are
computationally very demanding. To avoid high computational cost,
pseudopotential method are often employed, where core electrons and
the nucleus are treated as an effective nucleus, or ionic core. As a
result, the real potential felt by the valence electrons due to the core
electrons and the nucleus is replaced by an effective core potential.
This leads to a small number of electrons that are treated explicitly
and reduce the number of basis set. As a result, computational cost is
effectively reduced. In this thesis, I have employed projector augmented
wave (PAW) pseudopotential introduced by Blöchl [93] as implemented
in the DFT code “Vienna Ab initio Simulation Package (VASP)” [94,
95].

DFT has remained a powerful method to describe the properties of
matter. It is important to note that DFT is a ground state formalism
describing the properties of materials at 0 K and, therefore, is not used
in its basic form for calculating the properties of excited states.

2.2 dft+u

In some cases, DFT fails to capture the ground state properties of
systems where the electron-electron interactions in rather localized d or
f valence states play a major role. Few examples of such systems include
transition metals and rare-earth metal ions with partially filled d or f
shells. This failure of DFT to describe the physics of correlated systems
can be attributed to the approximate exchange-correlation functionals
that tend to over-delocalize the valence electrons. This excessive de-
localization of the electrons is due to the fact that the exchange and
correlation interactions in the exchange-correlation functional fails to
cancel out the electronic self-interactions. To incorporate the strong
electron interactions within the localized valence states, several meth-
ods were proposed [96–102].

One of the simplest approach is the so-called LDA+U method1 [99–
102]. In this method, the strongly correlated electronic states are de-
scribed using the Hubbard-like hamiltonian [103–106]. It consists of two

1 +U correction when applied to the LDA functional is called as LDA+U. In this the-
sis, I apply +U correction to the PBE functional and simply refer to it as DFT+U.
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terms, a kinetic term taking into account the “hopping” of the electrons
from one atomic site to its neighbors, and the potential term that con-
siders the Coulomb repulsion between electrons that are present on the
same atom. The total energy within the LDA+U formalism can be
written as:

ELDA+U = ELDA +EHub −Edc (26)

where ELDA represents the total energy functional being corrected in
the DFT and EHub contains the interaction part of the Hubbard Hamil-
tonian. The Edc is the double-counting term that needs to be subtracted
from the DFT energy functional ELDA as it is already contained in the
EHub. Since, Edc functional is not uniquely defined, there are different
formulations of Edc that have been implemented and used in different
conditions. Two most popular formulations of Edc used in the imple-
mentation of DFT+U are the so-called “around-mean-field” (AMF) [99,
107–109], and “fully localized limit” (FLL) [100, 102, 110, 111]. As the
name implies, AMF is suited for materials with delocalized electrons
(such as metals) while the FLL is more applicable for materials with
well localized electrons. For an extended overview on both approaches,
interested reader can refer to Ref. [109]. In this thesis, I employ a rota-
tionaly invariant formulation of DFT+U introduced by Liechtenstein et
al. [101]. Within this formulation, the screened on-site electron-electron
interactions (U ), and exchange interactions (J ), can be calculated by
taking atomic averages of the corresponding Coulomb integrals over
the localized states.

In practice, +U terms lead to the occupation dependent potential
shifts on the d or f orbitals, which, in certain cases, allows the opening
of a gap between the spin up and spin down channels of the correspond-
ing orbitals and, thus, effectively leads to the delocalization of the over-
localized electrons in the exchange-correlation functionals. Note that
the value of U is difficult to know a priori. Therefore, in practice, U is
tuned in a semiempirical way so as to seek agreement with the available
experimental measurement of certain material property.

In this thesis, I employ DFT+U method to incorporate the atomic-
like interactions which introduces the second Hund’s rule and, thus,
increases the orbital magnetic moments, which is known to affect the
MAE [112, 113].

2.3 magneto-crystalline anisotropy energy

The magnetization curves generally look different when the magnetic
field is applied to a magnetic material in different crystallographic di-
rections. For some directions, it is easier to reach the saturation magne-
tization upon the application of the magnetic field, while for other di-
rections, it is hard to saturate a magnet (e.g., see Fig. 5.27 of Ref. [114]).
Depending on the magnitude of the applied magnetic field necessary to
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reach the saturation magnetization in a magnetic material, the corre-
sponding axes can be defined as easy or hard. For example, in the the
single crystal of body-centered cubic Fe, the easy axes are the edges of
the cube i.e., ⟨100⟩ directions, while diagonals of the cube i.e., ⟨111⟩
directions are hard axes. For face-centered cubic nickel, the situation is
just the opposite. Nevertheless, the final value of the saturation magne-
tization is same regardless of the direction in which the magnetic field is
applied. It’s the magnitude of the magnetic field that vary along differ-
ent directions to reach the saturation magnetization. The origin of this
anisotropy can either be intrinsic which can be a result of the symme-
try of the crystal structure or the crystal’s shape or it can be extrinsic
induced by using some processing techniques. In this work, I will limit
the discussion to the intrinsic anisotropy known as magneto-crystalline
anisotropy which can be defined as “the tendency of the magnetization
to align itself along a preferred crystallographic direction” [80]. One can
also define the magneto-crystalline anisotropy energy (MAE), which is
the energy required to rotate the magnetization of a material from the
easy to the hard axis. A high MAE is one of the critical requirements
for a permanent magnet. If a strong MAE is present, a large magnetic
field need to be applied to overcome the anisotropy and reverse the
magnetization. This results in a large coercive field.

Magneto-crystalline anisotropy follows the symmetry of the crystal
structure. For tetragonal systems, energy as a function of the magneti-
zation direction can be written as:

E = K1sin2θ+K2sin4θ+ ... (27)

where K1, K2, etc. are known as the anisotropy constants and θ is
the angle between the magnetization vector and the tetragonal axis. In
experiments, quantity that is typically reported is the MAE constant,
which is the sum of anisotropy constants. For uniaxial systems, MAE
is given as:

MAE = EM⊥c −EM ||c (28)

where EM⊥c and EM ||c are the total energies with the magnetization
direction perpendicular and parallel to the c-axis, respectively.

As shown by Van Vleck [115], the origin of the magneto-crystalline
anisotropy is related to the presence of spin-orbit coupling (SOC) in
the magnetic materials. SOC is the coupling of the atomic spin to the
orbital momentum. Therefore, an attempt to change the direction of the
electron spin upon the application of the magnetic field also results in
the reorientation of the orbital magnetic moment which itself is strongly
coupled to the lattice. For rare-earth materials, the SOC is strong since
the magnitude of the SOC depends on the charge on the nucleus which
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itself depends on the atomic number. Hence, rare-earth elements are
often used in permanent magnets where a large MAE is required.

In 1989, Bruno [116] showed that under certain assumptions, the
MAE can be directly related to the anisotropy in the orbital magnetic
moments in such a way that:

MAE =
ζ

4µB
(measy

o −mhard
o ) > 0 (29)

where ζ is the spin-orbit coupling parameter and measy
o and mhard

o

are the orbital magnetic moments when the magnetization direction
lies along easy and hard directions, respectively. The difference
measy

o − mhard
o is known as the orbital moment anisotropy (OMA)

which represents the change in the magnitude of the orbital magnetic
moments when the magnetization vector is rotated from the hard
axis to easy axis or vice-versa. Eq. 29 also predicts that the orbital
magnetic moments are larger along the easy axis than the hard axis.
Note that this may not be valid under certain circumstances. For
example, Andersson et al. [117] studied both the spin and the orbital
magnetic moments of Au/Co/Au trilayers grown on a W(110) single
crystal substrate by means of x-ray magnetic circular dichroism and
found that the orbital magnetic moment of Co is not maximum
along the easy axis. They showed that this is due to the presence of
large spin-orbit coupling at the Au sites, and when off-site spin orbit
coupling for example at the Co/Au interface becomes important, then
the relationship between OMA and the MAE is no longer valid.

calculation of mae Since MAE is an energy difference be-
tween two different magnetization directions, i.e., easy and hard axis,
it can be calculated by performing total energy calculations where the
difference in the total energy is taken for two different magnetization
directions with SOC included. However, it is difficult to determine the
easy and the hard axis in materials when there are almost infinite pos-
sible directions. Fortunately, for uniaxial crystals, it is well known that
the easy axis lies along the tetragonal z-axis while the hard axis is
along the xy-plane. Once the magnetization directions are determined,
the MAE can be calculated by employing first-principles based DFT cal-
culations. Note that total energy needs to be calculated with extremely
high accuracy to obtain the MAE using DFT since it is a very small
energy difference between two large quantities. For example, in FeNi
alloys which is the main topic of this thesis, the MAE is of the order of
µeV/f.u. Highly accurate value of the MAE is achieved by using a very
dense k-point sampling which is used in the integration over the Bril-
louin zone in reciprocal space, making the calculations computationally
very expensive. Due to the huge computational challenge involved in
the calculation of the MAE using a self-consistent (SC) calculations
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with SOC included, MAE is often calculated by using approximation
methods. One such method employed in this thesis is based on the
so-called magnetic force theorem (MFT) [118, 119]. Within the MFT,
first a self-consistent spin-polarized calculation is performed, without
including the spin-orbital coupling to obtain the ground state charge
density. In the next step, a non-self consistent calculation, i.e. without
updating the charge density is performed for each magnetization direc-
tion with spin-orbit coupling included as a perturbation and using the
ground state charge density obtained in the previous step. The MAE
then can be calculated as:

MAE = En̂1
tot −En̂2

tot ≃ E(n̂1) −E(n̂2) (30)

where En̂1
tot and En̂1

tot are the total energies along n̂1 and n̂1 direc-
tion, respectively and E(n̂1) and E(n̂2) represents energies that are
sum over the occupied single particle Kohn-Sham energy eigenvalues
for two different magnetization directions calculated with SOC and
non-self consistent charge density. From Eq. 30, one can see that the
calculation of the MAE within the MFT is based on the approximation
that the change in the single-particle eigenvalue sums for two different
magnetization directions is equivalent to the change in the total energy.
MFT provides a good approximation to the MAE value for a given
material if the variation in the charge and spin-density caused by the
spin-orbit coupling vanish to first order in the SOC strength.

Daalderop et al. [119] employed the MFT in 1990 to calculate the
MAE of the transition metals Co, Fe, and Ni within the framework of
local-spin-density approximation (LSDA). They found that the magni-
tude of the MAE strongly depends on the electronic structure of the
materials under consideration, in particular, on the shape of the Fermi
surface, where even a small change in the Fermi energy can make a
substantial contribution. Although their calculations did not predict
the correct easy axis in Co and Ni at that time, later total energy
calculations by Trygg et al. [120] based on the LDA functional in com-
bination with an orbital polarization correction correctly predicted the
easy axis for Co but wrong easy axis for fcc Ni. For the latter case,
they concluded that this failure is due to the limitation of the LDA
since in their calculations, the number of approximations were reduced
to a minimum. Nevertheless, the validity of MFT has been extensively
investigated by several researchers [121, 122] and it was shown that
the MFT remains a very useful approximation and, therefore, is widely
employed to calculate the MAE for magnetic materials containing 3d
transition elements.

Since SC calculations to obtain the MAE are computationally very
demanding, I have employed MFT throughout my thesis (except for
the +U calculations) to calculate the MAE in ordered and chemically
disordered FeNi alloy.
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2.4 magnetic exchange interactions and heisenberg
hamiltonian

Often, magnetic properties of materials can be well described by
the interaction between the localized atomic magnetic moments. This
exchange interaction can give rise to parallel i.e., ferromagnetic, and an-
tiparallel i.e., anti-ferromagnetism, spin alignment. The exchange inter-
actions arises due to the Coulomb interaction between the electrons and
the requirement of a total antisymmetric electronic wavefunction where
the latter expresses the Pauli exclusion principle which states that the
two electrons cannot enter into the same quantum state. Heisenberg in
1928 explained the origin of ferromagnetism by addressing the micro-
scopic origin of exchanges in solids and formulated a model popularly
known as Heisenberg Hamiltonian [123].

HHeisenberg = −1
2

∑
i ̸=j

JijSi.Sj (31)

where Si and Sj are the localized atomic magnetic moments on site i
and site j, respectively and Jij are the exchange coupling parameter be-
tween these spins. Note that Eq. 31 represents the classical Heisenberg
model where the localized atomic magnetic moments are assumed to
have fixed length and the vector variables entering in the equation are
unit vectors i.e., they only describes the direction of the atomic mag-
netic moments. In this thesis, we have taken a convention so that Jij is
positive for a ferromagnetic coupling and negative for an antiferromag-
netic coupling. For a magnetic system which can be described by the
Heisenberg Hamiltonian, one can use exchange coupling parameters as
an input into the Monte Carlo simulations to calculate the magnetic
ordering and the Curie temperature (see Sec. 2.8.1).

computing magnetic exchange interactions Magnetic
exchange couplings, Jij , can be calculated by calculating the total en-
ergy differences of different magnetic configurations using DFT, where
one flips either spin i or j or even both i and j, relative to a chosen ref-
erence magnetic configuration [124]. The exchange couplings are then
obtained from

Jij =
E↑↓ +E↓↑ −E↑↑ −E↓↓

4n , (32)

where arrows indicate spin direction on site i and site j in the corre-
sponding configuration relative to the other spin which are fixed on
the reference configuration, E is the corresponding total energy, and n
represents the number of equivalent bonds between sites i and j within
the supercell. This approach works well with large supercells as using
a sufficiently large supercells avoids the interaction of spin i with a
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periodic image of spin j but also makes the calculation computation-
ally challenging. Note that this method is only applicable to very good
Heisenberg systems and is valid for arbitrary angles between the atomic
magnetic moments.

For itinerant metallic magnets, the Heisenberg model is not necessar-
ily a good approximation [125]. Thus, to calculate magnetic exchange
couplings in FeNi, we use another approach, where energy variations
with respect to infinitesimal rotations of the spins are considered [126].
This method can also be used for materials where the Heisenberg model
applies only to small variations around the ground state. The magnetic
exchange couplings within this method are given as:

Jij =
1

2π Im
∫ εF

−∞
dε

∑
mm′m′′m′′′

∆mm′
i Gm′m′′

ij,↓ (ε)∆m′′m′′′
j Gm′′′m

ji,↑ (ε) (33)

where, Gm′′′m
ji,↑ and Gm′m′′

ij,↓ are the spin-up and spin-down intersite
Green’s function, respectively and the local exchange splitting is given
by ∆mm′

i for site i and ∆m′′m′′′
j for site j where m, m′, m′′, and m′′′

represents different orbital character. The local exchange splitting on
site i and j can be expressed as:

∆mm′
i = Hmm′

ii,↑ −Hmm′
ii,↓ , (34)

∆mm′
j = Hmm′

jj,↑ −Hmm′
jj,↓ (35)

where H represents the Hamiltonian in the tight-binding-like basis. The
quantities in Eq. 33 can be obtained using DFT calculations and re-
quires a formulation in terms of a localized tight-binding-like basis set.
This can be acheived by transforming the corresponding Kohn-Sham
Hamiltonian into Wannier functions [127–130] (see Sec. 2.5). Next, the
Green’s function matrix in the reciprocal space (Gσ(ε, k)) can be ob-
tained by Fourier transforming the Kohn-Sham Hamiltonian (Hσ(R))
in the Wannier basis and is given as:

Gσ(ε, k) = [ε−Hσ(k)]−1, (36)

where Hσ(k) is the reciprocal-space Hamiltonian matrix. Note that
the Kohn-Sham Hamiltonian Hσ(R) is diagonal in the spin subspace
since spin-orbit coupling is not taken into account and only collinear
reference configurations are considered.

Finally, the real-space Green’s function is obtained by integrating
over the Brillouin zone using the following expression:

Gmm′
ij,σ (ε, R) =

∫
BZ

Gmm′
ij,σ (ε, k)eik.Rdk, (37)

where R is the lattice vector that connects two unit cells in the real
space where the corresponding Wannier functions are located.



26 methods and theoretical background

Note that Eq. 33 allows one to decompose magnetic exchange in-
teractions into different orbital contributions if the exchange-splitting
matrix ∆i,j is diagonal. The magnetic exchange coupling between the
orbital m on site i and orbital m′ on site j can be calculated as [128]:

Jmm′
ij = ± 1

2πIm
∫ εF

−∞
dε∆mm

i Gmm′
ij,↓ ∆m′m′

j Gm′m
ji,↑ . (38)

To obtain the total orbital resolved magnetic exchange coupling be-
tween site i and j, one can then sum over all the orbital contributions
between m and m′. The code used to calculate the magnetic exchange
couplings in L10-FeNi using the method described above is available on
Materials Theory Github [131].

2.5 wannier functions

The electronic ground state of a system with periodic potential
within the independent-particle approximation can be determined by
specifying one-particle orbitals and their occupation. These one-particle
orbitals are the Bloch waves ψnk(r⃗) where, according to Bloch’s theo-
rem, k is the crystal momentum lying inside the Brillouin zone (BZ)
and n is the band index.

The Bloch orbitals ψnk(r⃗) in a perfect periodic solid is given by

ψnk(r⃗) = unk(r⃗)e
ik.r⃗ (39)

where unk has the same periodicity as the solid. However, Bloch func-
tions are delocalized in real space and, therefore, cannot be used as a
basis in Eq. 33 to obtain the magnetic exchange couplings. One requires
an atom-centered basis set that contains localized set of orbitals for this
purpose. Wannier functions which are obtained by performing Fourier
transformation of the original Bloch states fulfills this condition. In
the following, I introduce Wannier functions that are used as a basis
in Eq. 33 to obtain the magnetic exchange couplings for ordered and
disordered FeNi alloys in Paper [3].

For a disentangled set of N Bloch orbitals ψnk(r⃗), a set of N Wannier
functions can be constructed as

|wnR⟩ = V

(2π)3

∫
BZ

[ N∑
m=1

U (k)
mn |ψmk⟩

]
e−ik.Rdk, (40)

where V is the volume of real-space primitive cell, R is the real-space
lattice vector, and U (k)

mn is an arbitrary unitary matrix of dimension N
that mixes the bands at wave-vector k. The integration is done over
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the BZ. Note that different U (k)
mn results in different Wannier functions

with different spatial spreads, shape, centre, etc., and therefore, WFs
are not uniquely defined.

One can obtain the maximally localized Wannier Functions (ML-
WFs) [132] by determining the U (k)

mn in such a way so as to minimize
the quadratic spread of the resulting Wannier functions in real space.
Marzari and Vanderbilt [132] introduced a technique where U (k)

mn can
be obtained by minimizing the quadratic spread

Ω[U (k)
mn ] =

∑
n

[⟨r2⟩n − r̄2
n], (41)

measuring the sum of the quadratic spreads of the WFs in real space.
Once Ω is expressed in terms of the Bloch functions, one can obtain
the MLWFs by minimizing Ω with respect to the U (k)

mn in Eq. 40. Note
that while the maximum localization is one of the possible and widely
employed approach to uniquely define WFs for a system under investi-
gation, one can also describe the WFs via specific orbital projections
method.

Within the projection approach, WFs are generated by projecting
a set of N trial basis functions gn(R) centered at the site R, which
corresponds to some rough guess for the WFs, onto a chosen subset of
Bloch bands at wave vector k to obtain

|ϕnk⟩ =
N∑

m=1
|ψmk⟩⟨ψmk|gn(R)⟩. (42)

Note that since the projection of gn(R) is performed for a subset of
bands, the |ϕnk⟩ do not form an orthonormal basis set. Orthonormal-
ized Bloch-like states can be constructed by computing the overlap
matrix (Sk)mn = ⟨ϕmk|ϕnk⟩V (where V denotes an integral over one
cell) and are given as:

|ψ̃nk⟩ =
N∑

m=1
|ϕmk⟩(S−1/2

k )mn. (43)

One can now perform the Fourier transformation of |ψ̃nk⟩ to obtain a
set of well-localized Wannier functions.

For a more profound overview of the Wannier functions, I suggest
the interested reader to refer to Ref. [132, 133].

2.6 treatment of chemical disorder

To describe chemically disordered and partially ordered FeNi, we
employ supercell approach with different arrangements of Fe and Ni
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atoms over the available sites in an fcc lattice. Then, to quantify the
degree of chemical order, we define a long-range order parameter, which
I describe in the following.

Figure 5: Three variants of L10 ordered FeNi with Fe (red spheres) and Ni
(yellow spheres) arranged in alternating planes perpendicular to (a)
[100], (b) [010], and (c) [001].

In the L10 structure of FeNi alloy, the tetragonal axis can lie along
any of the original cubic ⟨100⟩ axes (see Fig. 5) and, therefore, we
define three long range order parameters Px, Py and Pz in x, y and
z directions, respectively. We consider a face centered cubic unit cell
with four sublattice sites α, β, γ and δ as shown in Fig. 6.

x

z

y α

β

γδ

Figure 6: Conventional fcc cell with four sublattices α, β, γ, and δ.

A fully ordered L10 structure can be achieved in three ways, (i) when
α and β sites are occupied by one type of atomic species and γ and
δ by the other type, (ii) when α and γ sites occupied by one type of
atomic species and β and δ by the other type, and (iii) when α and δ

sites occupied by one type of atomic species and γ and β by the other
type. Keeping this in mind, we define a probability that a site on a
particular sublattice i is occupied by Fe atom as

pF e
i =

NF e
i

Ni
(44)

where, NF e
i and Ni are the number of sites on sublattice i occupied

by Fe atoms and the total number of sites on sublattice i, respectively.
Using Eq. 44, one can define a generalized long range order parameter
for arbitrary compositions Pz as
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Pz = 1
2 (pα + pβ − pγ − pδ) (45)

For a completely ordered FeNi alloy as shown in Fig. 5(c), all the sites
on the α and β sublattices will be occupied by Fe atoms (pF e

α = pF e
β

= 1) while the sites on the γ and δ sublattices will be occupied by
Ni atoms (pF e

γ = pF e
δ = 0) resulting in Pz = 1. On the other hand,

in a completely disordered FeNi alloy, the probability that a site on a
particular sublattice i is occupied by Fe atom are all equal i.e., pF e

α =

pF e
β = pF e

γ = pF e
δ , resulting in Pz = 0. One can also define long range

order parameters along x and y directions in a similar way and are
given as:

Px = 1
2 (pα − pβ + pγ − pδ) , (46)

Py = 1
2 (pα − pβ − pγ + pδ) , (47)

The long range order parameters defined above reduces to the order pa-
rameters defined in Paper [1] for equiatomic stoichiometry (50% Fe and
50% Ni), where ∑

i pi = 2. Note that any deviation from the equiatomic
stoichiometry will automatically lead to a reduction in the order param-
eter.

The total bond energy (considering only nearest neighbour interac-
tions) for our system can be written as:

E = NFeFeUFeFe +NFeNiUFeNi +NNiNiUNiNi (48)

where, Nij is the number of nearest-neighbour bonds between atoms of
type i and j, and Uij is the energy of an ij bond. By writing Nij ’s in
terms of long range order parameters (analogous to that shown in [134]
for a bcc structure), the Eq. 48 can be written as

E = E0 −N∆EP 2 (49)

where, E0 and ∆E are functions of UFeFe, UFeNi and UNiNi, N is the
number of conventional unit cells in the system and P 2 = P 2

x +P 2
y +P 2

z

is the long range order parameter of the system. It is to be noted that
Eq. 48 has been defined for a very simple model, where only nearest
neighbour interactions are considered.

Finally, for fixed stoichiometry, Eqs. (45)-(47) can be inverted and
the probabilities pFe

i are defined by specifying the long range order
parameter Px, Py, and Pz within the allowed range. One can then gen-
erate configurations corresponding to a specified value of long range or-
der parameter. In this thesis, I generate configurations with equiatomic
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stoichiometry corresponding to the 2 × 2 × 2 supercell of the conven-
tional cubic fcc cell where for each configuration 16 Fe and 16 Ni atoms
are randomly distributed over the 32 available sites, according to the
probability defined in Eq. 44 corresponding to a fixed value of Pz with
Px = Py = 0. Configurations with Fe-rich stoichiometries are generated
by randomly replacing Ni atoms in the structures with equiatomic sto-
ichiometry.

The python code used to generate configurations for a given value of
Pz is publicly available on Materials Theory Github [135].

2.7 representing local chemical environments

In Paper [2], to investigate the correlation between the local chemical
environment and the orbital moment anisotropy, we employ smooth
overlap of atomic positions (SOAP) [136] method to characterize the
local atomic environment around an atom.

Within the SOAP approach, the atomic neighborhood of an atom is
represented, inside a cutoff sphere Ai(rcut), by an atomic density field
centered on the atom i and is given by

ρi(r) =
∑

jϵAi(rcut)

exp
(

− |r − rj |2

2σ2

)
, (50)

where the atomic density is represented by using 3D Gaussians centered
on each neighboring atom and the sum is taken over all the density of
atoms j within the cutoff sphere. The neighbour density around each
atom is then expanded using a combination of radial basis and spherical
harmonics. The products of the expansion coefficients then results in
the rotationally invariant descriptor in the form of a SOAP vector.

Since the SOAP approach typically results in a high-dimensional
vector, one needs to reduce the high-dimensional SOAP vector to 2- or
3-dimensions for visualization and analysis. While a large number of
dimensionality reduction methods exist [137–144], in Paper [2], we em-
ploy t-stochastic neighbour embedding (t-SNE) [145] as implemented
in scikit-learn [146]. The underlying idea behind the t-SNE is to map
high-dimensional data points to low dimensions in such a way so as
to preserve the pairwise distances as much as possible. This way, t-
SNE not only captures the local structure of the high-dimensional data
points but also preserves the global structure of the data set e.g., the
presence of clusters. Note that the cluster of data points i.e., a cluster
of SOAP vectors that are all close to each other, will represent similar
chemical environments. The algorithm first calculates the Euclidean
distances between the data points in high-dimension and then converts
these distances into joint probabilities which represents the similarities.
The similarity of datapoint y to datapoint x is given by the conditional
probability
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py|x =
Gxy

k ̸=iGxk
, (51)

where Gxy is a Gaussian kernel centered on datapoint x. Note that py|x
will be relatively high for points nearby to x while it will be very small
for widely separated datapoints. Next, a similar joint probability dis-
tribution is constructed in the low dimension by means of heavy-tailed
Student t-distribution with one degree of freedom. Using a heavy-tailed
Student t-distribution avoids the superimposition of data points on pro-
jecting high-dimensional data points to lower dimension, also known as
the “crowding problem”. The t-SNE then tries to find a set of low-
dimensional data points that minimizes the mismatch between the two
probability distributions. Note that the distances between the clusters
in the low-dimension may not be meaningful since dissimilar data points
that are modeled by large pairwise distances are strongly repelled by
the t-SNE. Moreover, while constructing the joint probabilities in the
high-dimension, a free parameter known as “perplexity” which can be
roughly defined as the number of nearest neighbors, needs to be man-
ually set and controls the size of the clusters in the low-dimensional
map.

For an extensive overview on the SOAP method and the t-SNE al-
gorithm, I suggest the interested reader to refer to Ref. [136, 147, 148]
and Ref. [145, 149], respectively.

2.8 monte carlo simulations

Monte Carlo (MC) methods are a powerful approach to solve prob-
lems in statistical physics and chemistry. MC methods are based on
statistical sampling and were first employed in 1940s to solve multi-
dimensional integrals and other intractable numerical problems [150].
The basic idea behind Monte Carlo methods is to allow the calculation
of the physical properties of a system by repeated random sampling.
For example, one can employ these methods to investigate phase tran-
sitions in magnetic materials, study of growth phenomena, etc. In the
following, I summarize the main idea underlying the MC methods and
briefly introduce the Metropolis algorithm. A good overview of MC
methods can be found in the books by Landau and Binder [151], Lesar
[152], and Frenkel and Smit [153] which were used for writing this sec-
tion.

In the canonical ensemble (constant temperature T , constant number
of particles N , and a constant volume V ), the thermodynamic average
is given by

⟨A⟩ =
∑

α e
− Eα

kBT Aα∑
α e

− Eα
kBT

=
∑

α

Aαρα, (52)
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where kB is Boltzmann constant, Eα is the energy of the system in
configuration α, Aα is some observable, and ρα is the probability of
being in a specific configuration given as:

ρα =
e

− Eα
kBT∑

α e
− Eα

kBT

=
e

− Eα
kBT

Z
. (53)

Here the partition function Z is

Z =
∑

α

e
− Eα

kBT , (54)

and the sum is over all possible configurations of the system. Estimating
the average in Eq. 52 is a challenging task as there are infinite number
of possible configurations. However, by employing certain approxima-
tions, this can be overcome. For example, one can employ importance
sampling where only those configurations are considered that are prob-
able according to a certain probability distribution (e.g. Boltzmann
distribution). This sampling can be obtained by using a Markov pro-
cess. Markov processes generates a new configuration ν, of the system
given its current state, µ. The transition from µ to ν is governed by
the transition probability P (µ → ν) and should fulfill the constraint

∑
ν

P (µ → ν) = 1, (55)

as the Markov process must generate some configuration ν given a sys-
tem in the configuration µ. To ensure that the configurations generated
using a Markov process are according to the Boltzmann distribution,
two more conditions needs to be fulfilled: ergodicity and detailed balance.
The ergodicity ensures that if the Markov process is run long enough,
then it should be able to reach any configuration of the system from any
initial configuration. The second condition of detailed balance ensures
that the Boltzmann distribution is reached when the system acquires
equilibrium.

2.8.1 Metropolis algorithm

The Metropolis Monte Carlo algorithm introduced by Metropolis et
al. [154] in 1953, is one of the most famous and widely used MC algo-
rithm. The key idea is to sample a phase space in such a way that a
particular configuration, α occurs in the sampling according to a prob-
ability ρα. The sampling mainly focuses on the relative probabilities of
the configurations and the average quantities can be determined from
the outcome which is a set of configurations with the correct probabil-
ity. In its simplest form, one starts a system at a configuration µ with
energy Eµ and a trial move is made to a new configuration ν and the
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energy in the new configuration Eν is calculated. The trial move to the
new configuration is accepted or rejected according to

Pµ→ν =

e
− Eν −Eµ

kBT , if Eν −Eµ > 0

1, else.
(56)

If the energy of the new configuration ν is lower or equal to that of the
initial configuration µ, then the trial move to the new configuration is
always accepted. On the other hand, if the energy Eν is higher than
energy Eµ, then the trial move is accepted according to the probability
given in Eq. 56. Fig. 7 show the implementation of the Metropolis
algorithm.

In this thesis, I have employed MC simulations to (1) investigate the
temperature dependence of the chemical long-range order parameter
for the ferromagnetic and paramagnetic phase in L10-FeNi and, (2)
estimate the Curie temperature in the ordered and disordered phase of
L10-FeNi.
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Figure 7: Implementation of Metropolis Monte Carlo method to calculate
the magnetic transition temperature in the ordered and disordered
phase in L10-FeNi.
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C O U P L I N G B E T W E E N C H E M I C A L A N D
M AG N E T I C P RO P E RT I E S I N L 1 0 - F E N I

In this chapter, I present our work on the DFT calculations to estab-
lish the coupling between magnetic and chemical orders in L10-FeNi.
Most importantly, I show the effect of chemical disorder on the MAE
and the orbital moment anisotropy (OMA) and further discuss how
OMA can be used as a substitute to optimize the MAE in L10-FeNi. I
start with the motivation and discuss about the work that has already
been done before, which is then followed by the project summary. Fi-
nally, I discuss the implications of the project.

3.1 motivation

As already discussed in Sec. 1.3, the laboratory synthesis of the fully
ordered phase from the disordered one is extremely challenging and,
therefore, it is hard to measure the magnetic properties of the ordered
phase. Thus, it is vital to understand how magnetic properties depend
on the degree of chemical order. In the following, I provide more de-
tailed discussion of previous theoretical studies where a strong coupling
between chemical and magnetic order was found in L10-FeNi.

In Ref. [70], a Monte-Carlo study based on Ising approximation was
performed to estimate the magnetic and chemical order-disorder transi-
tion temperatures for various stoichiometries of FeNi. Calculations were
performed for three different cases. First, by considering only magnetic
interactions for fixed chemical order, second, by considering only chem-
ical interactions, and finally, when both magnetic and chemical interac-
tions are considered simultaneously. Authors found that not only the
degree of chemical order has large effect on the magnetic transitions but
the effect of magnetism on the chemical ordering process is also rather
large. Moreover, they showed that above the magnetic and chemical
ordering temperatures, both the magnetic and chemical short-range in-
teractions continue to be important simultaneously in estimating the
magnetic and chemical properties.

In Ref. [71], Lavrentiev et al. investigated the magnetic and thermo-
dynamic properties of fcc FeNi alloys by developing a model based on
magnetic cluster expansion simulations. They employed the Heisenberg-
Landau Hamiltonian in these simulations which was parameterized us-
ing ab initio density functional theory calculations. To investigate the
temperature dependence of magnetism, they used Monte-Carlo simula-
tions and showed that the Curie temperature of the chemically ordered

35
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phase is enhanced by about 550 K relative to the Curie temperature of
the chemically disordered phase.

In a more recent study, which was performed in parallel to our work,
Tian et al. [72], investigated the order-disorder transition temperature
in Fe-Ni by employing the exact muffin-tin orbitals method based on
DFT in combination with the coherent-potential approximation (CPA)
to treat the chemical disorder. From their Monte-Carlo calculations
based on the calculated Heisenberg exchange parameters, they showed
an increase in the Curie temperature from 630 K for the chemically
disordered phase to about 780 K for the fully ordered phase.

From these findings it becomes clear that there is a strong interac-
tion between magnetic and chemical degrees of freedom. Taking these
results as the starting point, we first investigate using first-principles-
based DFT calculations, the effect of magnetic state on the chemical
properties and vice-versa, by employing a supercell approach to model
the chemical disorder. Note that our study provides complementary
insights to the previous studies employing effective medium type ap-
proaches to model the chemical disorder and also aim to show how well
can PBE functional describe the properties in L10-FeNi. With these in-
sights, we then investigate the effect of chemical disorder on the MAE
which is the main aspect of this work. Following this, we then discuss
how OMA can be utilized to further optimize the MAE in L10-FeNi.

3.2 summary of results

In order to determine the energetics of both chemical and magnetic
order-disorder transitions, we first determine the total energy as a func-
tion of long-range chemical order parameter, Pz, (as defined in Sec. 2.6)
in L10-FeNi. For each of the order parameter Pz < 1, we sample over
fifty 2 × 2 × 2 supercells of the conventional 4-atom cubic cell (see Fig. 1
of Paper [1]). Note that for the conventional 4-atom cubic cell, we keep
the lattice parameters fixed to a = 3.560 Å so that c/a = 1. Therefore,
we neglect the small tetragonal strain in the conventional cell which
according to our test calculations lead to a negligible change in the
total energy of the fully ordered system.

From the total energy calculations, we find that fully ordered con-
figuration (Pz = 1) is the one with the lowest energy while (partially)
disordered configurations are higher in energy (see Fig. 3 of Paper [1]).
Note that we simply take the average of the total energies of all 50
configurations for each Pz as we did not find any correlation between
the MAE and the total energy of various configurations, that would
indicate an energetic preference for either larger or smaller MAE. Our
results agree well with those by Tian et al. [72] where they employ ab
initio calculations within the exact muffin-tin orbitals method for total
energy calculations and use CPA to model the compositional disorder.
This shows that the local chemical environment effects often neglected
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in the CPA approach are not really essential for the total energy calcu-
lations in this system.

We then perform Monte-Carlo simulations to estimate the order-
disorder transformation temperature with ferromagnetic and param-
agnetic order. To model the paramagnetic state, we employ disordered
local moment (DLM) method [155]. Within the DLM method, param-
agnetic state is modeled by randomly initializing the directions of mag-
netic moments in the supercell. The energy of the paramagnetic phase
is obtained by averaging over the energy of a sufficient amount of ran-
domly generated configurations. For the fully ordered case, we generate
100 collinear DLM configurations, while for the chemically disordered
case, we generate 10 DLM configurations for each of the 10 different
chemically disordered configurations. Note that we randomly initialize
the direction of the magnetic moments only for Fe atoms and not ex-
plicitly for Ni atoms. Ni magnetic moments tend to disappear when
the neighboring Fe magnetic moments are antiparallel to each other or
in other cases, reorient themselves to either up or down, depending on
the direction of the neighboring Fe magnetic moment. Moreover, we
only consider collinear configurations i.e., magnetic moment directions
as either up or down.

Fig. 6 in Paper [1] reveal that the chemical order-disorder transition
temperature for the ferromagnetic state is significantly higher than that
for the paramagnetic state, indicating a strong impact of the magnetic
state on the chemical order-disorder transition temperature. Further-
more, we note that the difference in the average total energies between
the chemically ordered and chemically disordered case is significantly
larger for the paramagnetic case as compared to the ferromagnetic case.
This indicates that the magnetic state also affects the chemical order-
disorder transition temperature in L10-FeNi.

Next, we calculate the MAE as a function of the chemical long-
range order parameter using the magnetic force theorem as described
in Sec. 2.3. We first perform convergence tests of the MAE with respect
to the k-points. Fig. 8 shows the convergence of the MAE as a function
of the k-points for the fully ordered structure. One can see that at least
a 14 × 14 × 14 k-mesh (corresponding to 2744 k-points) is required to
achieve a well converged value of the MAE.

For each Pz < 1, we again sample over 50 ferromagnetic 2 × 2 × 2
supercells relative to the conventional 4-atom cubic cell. For Pz = 0,
we obtain an average MAE of around 0µeV/f.u. This indicates that
we sample over a sufficient amount of configurations since for a chem-
ically disordered system with cubic symmetry, the magnetization has
no preference for any of the orthogonal crystallographic axis. Our MAE
calculations in Fig. 7 of Paper [1] reveal an increase in the MAE with
increasing order parameter and one can see that the MAE already
reached its maximal value at Pz = 0.75. This shows that a partial
chemical disorder by around 25% in the L10 structured FeNi does not
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Figure 8: Convergence of the MAE with respect to the k-points for a fully
ordered 2 × 2 × 2 supercell of the conventional 4-atom cubic cell.
The MAE is given per formula unit which corresponds to 1 Fe and
1 Ni atom in a primitive unit cell.

lead to a significant decrease in the MAE. Most importantly, we find
that for long-range order parameters Pz = 0.75 and 0.5, some config-
urations have higher MAE than the fully ordered case. To investigate
this further, we calculate orbital magnetic moment anisotropy which
can provide insights into which local chemical environment contribute
to an overall higher value of MAE.

According to Bruno’s model [116, 156], under certain limitations
and approximations, the orbital magnetic moment anisotropy is pro-
portional to the MAE. In Fig. 8 of Paper [1], one can see total as
well as atom-resolved OMA as a function of chemical long-range order
parameter. It is clear that the main contribution to the total OMA
for Pz < 1 comes from the anisotropy of Fe orbital moment, while the
OMA from Ni atoms is rather very small. For the perfectly ordered case
(Pz = 1), Ni orbital moments are larger along [100] than [001], which
results in the negative OMA and, thus, leading to a small decrease in
the total OMA as one goes from Pz = 0.75 to 1. Furthermore, we note
that both OMA and the MAE follows a similar behaviour as a function
of increasing long-range order parameter. This leads to a question of
whether OMA and the MAE are correlated. Fig. 9 of Paper [1] illus-
trates this where the MAE is plotted as a function of the average Fe
OMA for all individual configurations with different values of Pz. One
can see a linear correlation between both quantities which is indicated
by a least mean square fit to all data points.
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3.3 implications and further work

In this project, we demonstrate that there exists a strong interaction
between the magnetic and chemical degrees of freedom in L10-FeNi by
employing supercell approach to model the chemical disorder. In partic-
ular, we show that the chemical order-disorder transition temperature
obtained from the Monte-Carlo simulations is strongly reduced when
one goes from ferromagnetic to paramagnetic state. Thus, this indicates
the effect of magnetic state on the chemical order-disorder transition
temperature. On the other hand, we also note the lower average total en-
ergy difference between the ferromagnetic and paramagnetic states for
chemically disordered alloy as compared to the chemically ordered FeNi.
This as a result leads to the lower Curie temperature of the chemically
disordered phase than that of the chemically ordered phase consistent
with previous studies [71, 72]. Thus, this indicates the effect of chemical
state on the magnetic transition temperature. Our results are consis-
tent with previous studies employing effective medium approaches to
model the chemical disorder and shows that PBE functional correctly
describes the underlying energetics in the FeNi system.

Most importantly, from our MAE calculations as a function of long-
range order parameter, we show that a decrease in the order parameter
by about 25% does not lead to a significant decrease in the MAE as
compared to that of the fully ordered FeNi. Since, synthesizing fully
ordered sample in the laboratories is extremely challenging, our results
are rather encouraging indicating that fully ordered samples are not
required to obtain a full MAE.

Furthermore, our calculations show partially disordered configura-
tions with the MAE higher than that of the fully ordered structure
which indicates the possibility of further increasing the MAE in this
alloy. Moreover, we demonstrate a linear correlation between the MAE
and the OMA of Fe atoms which suggests that one can use OMA as
a proxy for a local atomic contribution to the MAE. Hence, one can
optimize the MAE in L10-FeNi by carefully designing configurations
containing the local atomic environment that leads to high OMA. This
is further discussed in the next chapter.

We also note that our calculated MAE (0.54 MJ/m3) for fully ordered
structure (Pz = 1) is slightly smaller than the value obtained experi-
mentally for samples with a chemical long-range order parameter of
about 0.5 (≈ 0.7 MJ/m3) in Ref. [69]. This indicates that we underesti-
mate the true MAE for our system. In a study by Ravindran et al. [157]
and Miura et al. [73], they showed that by including the so-called or-
bital polarization correction, the MAE of the fully ordered system is
enhanced by a factor 2. Without the orbital polarization correction,
one usually underestimates the calculated orbital magnetic moments
e.g., in Fe and Co phases [158] as the effects responsible for the Hund’s
second rule are absent. Therefore, to incorporate the Hund’s second
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rule in our calculations, we employ DFT+U which is described later in
Chapter 5.

3.4 publication

This work is published as »Interplay between chemical order and
magnetic properties in L10-FeNi (tetrataenite): A first-principles study«
in Physical Review Materials, see Reference [1]. Copyright (2020) by
the American Physical Society.
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We use first-principles-based calculations to investigate the interplay between chemical order
and the magnetic properties of L10 FeNi. In particular, we investigate how deviations from perfect
chemical order affect the energy difference between the paramagnetic and ferromagnetic states as well
as the important magneto-crystalline anisotropy energy. Our calculations demonstrate a strong effect
of the magnetic order on the chemical order-disorder transition temperature, and conversely, a strong
enhancement of the magnetic transition temperature by the chemical order. Most interestingly,
our results indicate that the magnetic anisotropy does not decrease significantly as long as the
deviations from perfect order are not too large. Moreover, we find that in certain cases a slight
disorder can result in a higher anisotropy than for the fully ordered structure. We further analyze the
correlation between the magneto-crystalline anisotropy and the orbital magnetic moment anisotropy,
which allows to study the effect of the local chemical environment on both quantities, potentially
enabling further optimization of the magneto-crystalline anisotropy with respect to chemical order
and stoichiometric composition.

I. INTRODUCTION

Magnetic materials are ubiquitous and play a pivotal
role in many technological applications ranging from con-
sumer electronic devices to electric power production
and conversion. In particular, high performance per-
manent magnets form crucial components in the devices
used for generating electric power from renewable energy
sources such as wind, hydro, tidal, etc. The strength
of a permanent magnet is quantified by the maximum
magnetic energy product (BH)max, i.e, the product of
the remanence Br and the coercivity Hc. Thus, high
performance permanent magnets are typically composed
of rare-earth elements (Sm, Nd, Dy, etc.), which pro-
vide high resistance to demagnetization, in combination
with transition-metals (Fe, Co, etc.), which provide high
saturation magnetization. Specifically, magnets belong-
ing to the SmCo family (e.g. SmCo5 and Sm2Co17),
with energy products in the range of 5-20 MGOe (40-160
kJ/m3) [1, 2], and the NdFeB family (e.g. Nd2Fe14B),
with energy products in the range 5-50 MGOe (40-400
kJ/m3) [3], are currently the best-performing supermag-
nets. However, the volatility in price and uncertainty
of supply of the required rare earth elements, makes it
highly desirable to find alternatives to these rare-earth
based magnets, in order to meet the increasing global
demand for permanent magnets [4, 5].

An interesting candidate in this respect is the
chemically-ordered L10 phase of Fe50Ni50 (tetrataenite),
which has been found in iron meteorites [6–10]. The Fe
and Ni atoms in tetrataenite occupy alternating planes
of the underlying fcc lattice oriented perpendicular to
the c axis (see rightmost graph in Fig. 1), resulting in a
structure with tetragonal symmetry and a high magneto-
crystalline anisotropy energy (MAE) (> 7·106 erg cm−3),
large saturation magnetization (∼ 1270 emu cm−3), and a
projected energy product of 42 MGOe (335 KJ/m3) [11–
14]. In contrast, the disordered phase, where Fe and Ni

atoms are randomly distributed over the sites of the fcc
lattice (see leftmost graph in Fig. 1), exhibits only a very
small MAE.

Unfortunately, the laboratory synthesis of the ordered
phase is extremely challenging due its rather low order-
disorder transition temperature, Tod ∼ 593 K [15], and
the slow diffusion of atoms at this temperature, which is
of the order of one atomic jump per 104 years at 573 K
[16]. Since its discovery, several attempts have been made
to achieve a high degree of chemical order in this alloy
[17–20]. Nevertheless, synthesis of a fully ordered system
remains challenging.

The low order-disorder temperature and the difficul-
ties in synthesizing fully ordered samples make it also
very challenging to fully characterize the magnetic prop-
erties of tetrataenite, as the disordering occurs below the
predicted Curie temperature. It also raises the question
of how the favorable magnetic properties depend on the
degree of chemical order.

Several previous studies have found a strong coupling
between the magnetic and chemical orders in this system.
For example, both Dang et al. [21] and Lavrentiev et al.
[22] found, using different models and approximations,
that the ferromagnetic Curie temperature is drastically
enhanced in the chemically ordered case compared to the
random alloy (from ∼ 450 K to over 1000 K in Ref. 22)
and that also the magnetic interactions strongly increase
the chemical order-disorder transition temperature (by
∼ 100 K in Ref. 21). This suggests that it is necessary to
include both chemical and magnetic degrees of freedom
to accurately describe this system.

In this work, we present additional complementary
insights on the interplay between chemical order and
magnetic properties in tetrataenite by means of first-
principles-based density functional theory (DFT) and
Monte Carlo simulations. In particular, we study how
the MAE depends on the degree of chemical order in the
system. We find that small deviations from perfect or-
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FIG. 1. Examples of atomic configurations corresponding to different values of the long range order parameter Pz, depicted in
a 2× 2× 2 supercell relative to the conventional 4-atom cubic cell. Fe and Ni atoms are represented by red and yellow spheres,
respectively. In the chemically ordered L10-FeNi phase (tetrataenite) with Pz = 1, Fe and Ni atoms occupy alternate layers
perpendicular to c. In the fully disordered A1 phase (Pz = 0), they randomly occupy sites of the underlying fcc lattice.

der do not lead to a significant reduction of the magnetic
anisotropy, and that in some cases a small amount of dis-
order can even enhance the MAE. We then discuss the
anisotropy of the local orbital moments as an indicator
that allows to further optimize the magnetic anisotropy
with respect to the local atomic environment.

The remainder of the paper is structured as follows.
In Sec. II we first define the long range order parameter,
then describe how we model the partially disordered as
well as the paramagnetic state in FeNi, and introduce
the computational methods used throughout this work.
In Sec. III, we then discuss our results regarding the ener-
getics of the order-disorder transition, the effect of chem-
ical disorder on the MAE, and the correlation between
orbital magnetic moment anisotropy and the MAE. Fi-
nally, in Sec. IV, we conclude by summarizing our main
findings.

II. MODELS AND METHODS

A. Modeling of chemical disorder

To define the long range order parameter for the L10
chemical order, we divide the fcc lattice into four individ-
ual sublattices, α, β, γ, and δ, according to the four dif-
ferent sites in the conventional 4-atom cubic unit cell (see
Fig. 2). The fully ordered L10 structure can then be de-
scribed in three different ways, corresponding to arrange-
ments of different atomic species in alternating planes
perpendicular to the three Cartesian axes. Thereby, al-
ways two sublattices are fully occupied by one type of
atom, while the other two sublattices are occupied by
the other type. For example, alternating atomic planes
perpendicular to z correspond to occupation of sublattice
α and β by one type of atom and occupation of sublat-
tices γ and δ by the other type, whereas for alternating
planes perpendicular to x, sublattices α and δ are occu-
pied by one type of atom and sublattices β and γ by the
other type.

We can now define long range order parameters for the

FIG. 2. Depiction of the four sites of the fcc lattice within
the conventional cubic unit cell, defining the four sublattices
α, β, γ, and δ.

three different orientations of the L10 order as follows:

Px = pFeα + pFeγ − 1 , (1)

Py = pFeα + pFeδ − 1 , (2)

Pz = pFeα + pFeβ − 1 , (3)

where pFei is the probability that a site on sublattice i
is occupied by an Fe atom. These probabilities have to
fulfill the condition

∑
i p

Fe
i = 2 (on average 2 Fe atoms

per 4-atom unit cell), and thus only three can be chosen
independently. Furthermore, each pFei can only vary be-
tween 0 and 1, imposing an additional constraint on the
pFei . Nevertheless, Eqs. (1)-(3) can be inverted and the
probabilities pFei are then uniquely defined by specifying
the three components of the long range order parameter
within the allowed range.

To model the system with a given value for the long-
range order parameter, we generate 50 configurations,
using a 2× 2× 2 supercell of the conventional cubic cell.
For each configuration, we randomly distribute 16 Fe and
16 Ni atoms over the 32 available sites, according to the
probabilities pFei corresponding to a fixed value of Pz and
Px = Py = 0. The chosen supercell size allows to obtain
five different values for the long range order parameter,
Pz ∈ {0, 0.25, 0.5, 0.75, 1}. We then calculate the total
energy for each configurations using density functional
theory (DFT), as described in Sec. II C. The total energy
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for a given order parameter is then obtained by averaging
over the corresponding configurations.

We note that most previous first-principles-based stud-
ies, e.g., Ref. 23, have employed effective medium/mean-
field type approaches to model the compositional disor-
der. While our complementary approach is computa-
tionally more demanding, since it requires sampling over
many configurations, it also incorporates effects of disor-
der within the local environment, which turns out to be
especially important in the case of the MAE.

B. Modeling of the paramagnetic state

It is well known that in most magnetic materials lo-
cal magnetic moments still exist above the Curie tem-
perature, even though the material does not exhibit any
macroscopic (long-range) magnetic order. The incorpo-
ration of such local moments is very important to cor-
rectly describe the electronic structure of these mate-
rials, and thus the paramagnetic phase cannot simply
be treated as a non-magnetic state in DFT-based first-
principles calculations.

In order to model the paramagnetic state, we therefore
employ the disordered local moment (DLM) method [24],
where the directions of magnetic moments are con-
strained to random directions. Analogously to our treat-
ment of chemical disorder, we use a supercell approach
and sample over a sufficient amount of randomly gener-
ated configurations [25]. The average of the energy over
all configurations then represents the energy of the para-
magnetic phase (in the limit of very high temperature).

For the chemically ordered case, we generate 100
collinear DLM configurations by randomly initializing
the magnetic moments of the Fe atoms in a 2 × 2 × 2
supercell as either up or down. For the chemically disor-
dered case, we create 10 different chemically disordered
configurations (as described in Sec. II A) and then gen-
erate 10 DLM configurations for each of these configu-
rations. We do not explicitly initialize the Ni magnetic
moments, since the Ni moments tend to vanish if the sur-
rounding Fe magnetic moments are oriented anti-parallel
to each other. In other cases, the Ni moments will con-
verge to either up or down, depending on the orientation
of moments on the surrounding Fe atoms. Therefore, we
do not take into account the directions of the Ni mo-
ments as independent variables. We also do not consider
any noncollinear configurations. These are not expected
to alter the results if the basic assumptions of the DLM
method are valid, but would significantly increase the
required computational effort.

To verify our sampling of the paramagnetic state, we
evaluate the nearest-neighbor spin-correlation function
for the magnetic moments of the Fe atoms [26]:

Φ =
1

NFe

∑

i

1

Ni

∑

j

êi · êj , (4)

where the sum over i goes over all NFe Fe atoms in the
supercell (NFe = 16 in the present case), the sum over
j goes over all Fe nearest neighbors for each i (with Ni
being the number of Fe nearest neighbors of atom i, which
is different for each individual configuration), and êi is
the direction of the magnetic moment of Fe atom i.

C. Computational methods

All DFT calculations are performed using the Vienna
ab initio Simulation package (VASP) [27], the projector-
augmented wave method (PAW) [28, 29], and the general-
ized gradient approximation according to Perdew, Burke,
and Ernzerhof [30]. Brillouin zone integrations are per-
formed using the tetrahedron method with Blöchl correc-
tions and a Γ-centered 14 × 14 × 14 k-point mesh. The
plane wave energy cut-off is set to 350 eV, and the total
energy is converged to an accuracy of 10−8 eV. Our PAW
potentials include 3p, 4s, and 3d states in the valence for
both Fe and Ni .

The MAE is calculated using the magnetic force theo-
rem [31, 32], i.e., by including the spin-orbit coupling in a
non-self-consistent calculation, using the charge density
converged without spin-orbit coupling, and then taking
the difference in energies between two different orienta-
tions of the magnetization direction.

We define the MAE as the energy difference E[100] −
E[001], where E[100] and E[001] are the total energies ob-
tained with magnetization aligned along the [100] and
[001] directions, respectively. Thus, the MAE is defined
as positive when the magnetic easy axis lies along the
[001] direction, which is the reported easy axis for L10
FeNi [14, 15]. To check the convergence of the MAE with
respect to the k-point sampling, we perform calculations
using up to 25× 25× 25 k-points and find that the MAE
is sufficiently converged (to about ±1µeV/f.u.) for our
purposes using a 14× 14× 14 k-point mesh.

The temperature dependence of the chemical long-
range order parameter is obtained from simple Monte
Carlo simulations, considering an fcc lattice using a
3
√
N× 3
√
N× 3
√
N supercell of the conventional cubic cell,

containing 4N sites over which we distribute Fe and Ni
atoms in equal proportion. For a given temperature, we
perform Monte Carlo sweeps using the Metropolis algo-
rithm, where in each trial step the configuration is var-
ied by exchanging the positions of an arbitrarily chosen
pair of Fe and Ni atoms, then calculating the long range
order parameter P = (Px, Py, Pz), and evaluating the
corresponding total energy as described in Sec. III A.

III. RESULTS AND DISCUSSION

A. Energetics of the order-disorder transition

We first determine equilibrium lattice parameters for
perfectly ordered L10 FeNi in the ferromagnetic state.
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FIG. 3. Total energy (per atom) and average magnetic mo-
ment (per atom) as function of the long range order parameter
Pz (with Px = Py = 0), calculated for perfect ferromagnetic
order. Red dots represent the mean over 50 configurations for
each Pz < 1. Error bars indicate the highest and lowest ener-
gies of the individual configurations. The black curve shows
a quadratic fit to the data. Energies are defined relative to
the fully ordered state (Pz = 1). Filled squares represent the
mean of magnetic moments over 50 configurations for each
Pz < 1. The blue line is a guide to the eye.

We obtain lattice parameters a = 3.560 Å and c =
3.577 Å (c/a = 1.0048). Our calculated lattice pa-
rameters agree well with the values measured in ex-
periments (a = 3.560 Å to 3.582 Å and c = 3.589 Å
to 3.615 Å) [19, 33], and obtained in previous calcu-
lations (a = 3.557 Å to 3.560 Å and c = 3.570 Å to
3.584 Å) [13, 34, 35].

Next, we determine the dependence of the total en-
ergy on the long range chemical order parameter, while
keeping the perfect ferromagnetic order. For this, we cal-
culate the total energy of 50 configurations for each value
of Pz, generated as described in Sec. II A.

For simplicity, we keep the lattice parameters fixed cor-
responding to a metrically cubic unit cell with a = 3.560
Å and c/a = 1, i.e., we neglect the small tetragonal strain
on the unit cell (which will also depend on the degree
of long range order). Our test calculations for perfect
chemical order (Pz = 1) show that these simplifications
change the total energy by less than 5 meV/atom, which
is negligible compared to the energy changes related to
the different distributions of atoms. Furthermore, we do
not perform any further optimization of atomic coordi-
nates for the disordered configurations.

The corresponding total energies (averages as well as
total spread over different configurations) are shown in
Fig. 3 as function of the long range order parameter Pz,
together with the average magnetic moment per atom.
It can be seen that the averaged total energies are well
fitted by a quadratic dependence on Pz, E = E0−∆EP 2

z ,
where ∆E = 62 meV is the energy difference (per atom)
between the perfectly ordered and completely disordered
structure. We note that a quadratic dependence on Pz, or

more generally on P =
√
P 2
x + P 2

y + P 2
z also corresponds

to the leading order term allowed by symmetry for small
fluctuations around the disordered state, P = 0, and also
follows from a simple energetic model with only nearest
neighbor interactions. The good quality of the quadratic
fit thus also indicates that rather accurate (sufficient for
our purposes) mean energies can be obtained by using 50
different configurations for each Pz < 1.

One can also see that the average total magnetic mo-
ment depends only weakly on Pz, increasing slightly from
1.611 µB to 1.630 µB between zero and full chemical or-
der. We note that the increase in the total magnetic
moment is mainly due to the average magnetic moment
of the Fe atoms, while the average Ni magnetic moment
remains fairly constant until Pz = 0.75, after which it
slightly decreases for the perfectly ordered structure.

These results agree very well, both qualitatively and
quantitatively, with recent calculations by Tian et al.
employing the coherent potential approximation (CPA)
to treat the compositional disorder [23]. The good agree-
ment between this complementary approach and our con-
figurational sampling technique confirms on one side the
good convergence of our data and on the other side also
indicates that effects of the local environment, not in-
cluded in the CPA approach, are not too relevant for the
total energy and average magnetic moment.

In order to estimate the order-disorder temperature
from the calculated E(Pz), we perform simple Monte
Carlo simulations, as outlined in Sec. II C. The total en-
ergy for each Monte Carlo configuration is evaluated from
the quadratic fit in Fig. 3, i.e., E = −4N∆EP 2, with
∆E = 62 meV. The resulting temperature dependence of
the long range order parameter is shown in Fig. 6 using
a system size of N = 103 (see Sec. II C). Using larger
system sizes does not lead to any noticeable changes.

It can be seen that the order parameter vanishes
around 1400 K, which is significantly higher than the re-
ported experimental value for the order-disorder transi-
tion temperature of 593 K [15]. It is also significantly
above the predicted ferromagnetic Curie temperature for
L10 FeNi [22, 34]. Thus, assuming perfect ferromagnetic
order when obtaining ∆E is probably not justified. In the
following, we re-calculate the energy difference between
chemically ordered and disordered states for the param-
agnetic case, using the DLM approach [24], as described
in Sec. II B).

To confirm that our sampling over a sufficient amount
of randomly chosen DLM configurations converges as
expected, Fig. 4 shows the nearest-neighbour spin cor-
relation function (see Eq. (4)) for different chemically
ordered and disordered magnetic configurations, evalu-
ated from the converged magnetic moment directions,
together with their cumulated averages, obtained by av-
eraging over an increasing number of configurations. One
can see that the cumulated average of the spin correlation
function approaches zero both for the chemically ordered
and the chemically disordered magnetic configurations,
which shows that the amount of configurations we av-
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FIG. 4. Calculated spin correlation functions for 100 DLM
configurations for both chemically ordered (Pz = 1) and
chemically disordered (Pz = 0) configurations. Solid red and
blue lines represent the cumulative averages for Pz = 1 and
Pz = 0, respectively.

FIG. 5. Calculated total energies (per atom) for 100 DLM
configurations generated for the chemically ordered (Pz = 1,
top) and the chemically disordered (Pz = 0, bottom) case,
using a 2 × 2 × 2 supercell. The cumulative averages are
shown as solid black lines.

erage over is sufficient, and that the magnetic moments
indeed converge to the directions that were initialized.

Fig. 5 shows the total energies (per atom) obtained for
the 100 DLM configurations corresponding to the chem-
ically ordered (Pz = 1) and the chemically disordered
(Pz = 0) case. The cumulative averages are indicated by
the solid black lines. All energies are taken relative to the
chemically ordered ferromagnetic case. Again one can see
that, in spite of the large variations in the energies of the
individual configurations, the averages converge rather
well, and appear to be accurate to a few meV already
after averaging over about 50 configurations.

Table I summarizes the average total energies obtained
for the ferromagnetic and paramagnetic state, both for
the chemically ordered and the chemically disordered

TABLE I. Average total energies (in meV/atom) of the ferro-
magnetic and the paramagnetic states for chemically ordered
and chemically disordered FeNi (relative to the ferromagnetic
chemically ordered case).

L10-FeNi A1-FeNi
(chemically ordered) (chemically disordered)

Ferromagnetic 0 62
Paramagnetic 101 120

case. It can be seen that the energy difference between
the chemically ordered and the chemically disordered
case is drastically reduced in the paramagnetic state com-
pared to the ferromagnetic case (from 62 meV to about
20 meV per atom), indicating a strong coupling between
chemical and magnetic order. Furthermore, the energy
difference between the ferromagnetic and the paramag-
netic state is also significantly reduced in the chemically
disordered alloy compared to the case with perfect L10 or-
der (from about 100 meV per atom to 58 meV per atom).
This indicates that the magnetic Curie temperature of
the chemically disordered phase is expected to be signif-
icantly lower than the (hypothetical) Curie temperature
of the chemically ordered phase, which appears to be
consistent with other theoretical studies [22, 23].

For L10-ordered FeNi, a magnetic Curie temperature
of TC = 916 K has been suggested, based on first princi-
ples DFT calculations [34]. This is more or less consistent
with the value of ∼ 1000 K obtained from simulations us-
ing a first-principles-based Heisenberg-Landau magnetic
cluster expansion [22]. However, on heating the L10 order
starts to disappear at temperatures around 700-800 K,
depending somewhat on the heating rate [36]. Note that
the actual reported chemical-order disorder temperature
is much lower (Tod = 593 K [15]), but that the chemi-
cal order is kinetically stable up to temperatures where
atomic diffusion becomes thermally activated. Therefore,
it is clear that the predicted TC for the ordered system
is only a hypothetical Curie temperature, as the ordered
phase is unstable at such high temperatures.

If we simply scale the predicted values for TC of the
chemically ordered case according to our obtained re-
duction of the ferromagnetic-paramagnetic energy differ-
ence, we obtain an estimate for the Curie temperature of
chemically disordered FeNi of around 550 K, which how-
ever appears too low compared to experimental values of
around 785-789 K [37, 38].

Interestingly, one should note that the temperature
range where the chemical order effectively disappears (∼
700-800 K [36]) is quite similar to the Curie temperature
of the disordered system. This means that once the sys-
tem disorders, the magnetic order also disappears rather
abruptly (see, e.g., Refs. 14 and 39).

As seen in Fig. 6, the reduced ∆E obtained for the
paramagnetic state also leads to a strong reduction of
the order-disorder temperature, obtained in our simple
Monte Carlo simulations, to about 450 K. Note that these
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FIG. 6. Long range order parameter P as a function of tem-
perature for the ferromagnetic (black) and paramagnetic (red)
case, obtained from Monte Carlo simulations. The temper-
ature at which the long range order parameter vanishes, in-
dicates the corresponding order-disorder transition tempera-
ture.

calculations are in principle expected to strongly under-
estimate the true order-disorder temperature, since the
system is still magnetically ordered in that temperature
range. On the other hand our simple approach neglects
several other effects, e.g., lattice vibrations, which tend to
reduce the order-disorder temperature [23, 40, 41]. With-
out considering such factors as well as kinetic effects, the
temperature dependence of the order parameter is ex-
pected to follow the ferromagnetic curve for low temper-
atures and then move towards the paramagnetic curve
once the magnetic order vanishes. Note, however, that
the fully PM case considered here, with no short range
correlations, is in principle only reached for T → ∞.
Thus, while our simplified model is not expected to quan-
titatively predict the order-disorder transition tempera-
ture, it can provide order of magnitude estimates and
clearly indicates the strong coupling between the chem-
ical order-disorder transition and the magnetic state in
L10-FeNi.

B. Magneto-crystalline anisotropy

Several studies in the past have investigated the MAE
in L10 FeNi by means of first-principles calculations
[14, 34, 35, 42]. In addition, several experimentally mea-
sured values of MAE were also reported. However, very
few investigations exists on the dependence of the MAE
on the degree of chemical order in L10 FeNi. Kota
and Sakuma [43] theoretically estimated the variation of
MAE as a function of long-range order parameter for sev-
eral L10 alloys including FeNi. They employed the tight-
binding linear muffin-tin orbital method in conjunction
with the CPA. They found that for FeNi, among other
L10 alloys, the MAE is proportional to the power of the
order parameter where the power varies from 1.6 to 2.4.

FIG. 7. Calculated MAE, defined as E[100] − E[001], as a
function of the long range order parameter in FeNi, obtained
for 50 different ferromagnetic configurations for each Pz < 1.
Black dots represent the value for each configuration. Red
dots correspond to the mean MAE for a particular Pz.

We calculate the dependence of the MAE on the long
range order parameter by sampling over 50 ferromagnetic
configurations for each value Pz < 1, as described in
Sec. II C. Note that we also use the 2× 2× 2 supercell to
calculate the MAE for Pz = 1 to obtain consistent data.
The results are plotted in Fig. 7, which shows the data for
each individual configuration as well as the average value
for each Pz. It can be seen that for Pz = 0, even though
the MAE for the individual configurations shows a large
spread of ±50µeV/f.u., the obtained average is very close
to the expected value of 0µeV/f.u. This indicates that
we sample a sufficient amount of configurations to obtain
reliable averages.

The MAE increases with increasing degree of chemical
order, but, strikingly, reaches its maximal value already
for Pz = 0.75. This means that the MAE does not de-
crease significantly if the deviations from perfect order
are not too large. In view of the fact that perfectly or-
dered samples are very difficult to synthesize, this is an
important result. We also note that our results do not
follow the power-law behavior suggested by Kota and
Sakuma (MAE ∝ P 1.6-2.4) [43]. This is most likely due
to their use of the CPA approximation to describe com-
positional disorder and shows that for a quantity such as
the MAE, effects of the local environment can be very
important. This is different from the total energy, shown
in Fig. 3, which agrees well with previous CPA calcula-
tions [23]. Furthermore, for both Pz = 0.75 and Pz = 0.5,
we find some configurations with even higher MAE than
the fully ordered alloy. This indicates, that it might be
possible to further increase the anisotropy of this system,
beyond the value obtained for the stoichiometric 50:50
composition with perfect chemical order.

The MAE we obtain for the fully ordered case
(Pz = 1) is 76µeV/f.u. corresponding to 0.54 MJ/m3,
which agrees well with previous calculations using sim-
ilar methods (0.56 MJ/m3 [35], 0.48 MJ/m3 [34], and
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FIG. 8. Calculated total orbital moment anisotropy, ∆L =
L[001] −L[100], averaged over all configurations with the same
long range order parameter Pz, as a function of Pz Separate
contributions of all Fe and all Ni atoms in the system are also
shown.

0.47 MJ/m3 [44]). We note that this value is quite com-
parable, albeit slightly smaller, than what has been re-
ported experimentally in Ref. [45] for samples with a
long-range order parameter around 0.5 (≈ 0.7 MJ/m3).
On the other hand, for Pz = 0.5, we obtain a value that
is clearly smaller than the experimentally reported MAE.
This suggests that we are underestimating the true MAE
of the system. Indeed, it has been shown, that including
a so-called orbital polarization correction can enhance the
MAE of the fully ordered system roughly by a factor of
two [35, 46].

C. Orbital magnetic moment anisotropy

In order to obtain further insights into the origin of
the MAE, we now analyze the orbital magnetic moment
anisotropy as a function of long range order parameter.
The orbital magnetic moment and its anisotropy is often
closely connected to the MAE [47, 48]. In the present case
it can potentially provide insights as to which local chem-
ical environments are particularly favorable for obtaining
a large MAE. We define the orbital moment anisotropy
as ∆L = L[001] − L[100], where L[001] and L[100] are the
total orbital magnetic moments (summed over all atoms
in the 2 × 2 × 2 supercell) when the magnetization lies
along the [001] and [100] directions, respectively. Here,
the sign is chosen such that the orbital anisotropy is pos-
itive if the orbital magnetic moments are larger along the
[001] direction (which is the easy magnetic axis for L10
FeNi).

Fig. 8 shows the total as well as the atom-resolved or-
bital moment anisotropy as a function of the long range
order parameter (i.e., averaged over all configurations
corresponding to the same Pz). One can clearly see
that the main contribution to the total orbital moment
anisotropy for Pz < 1 comes from the anisotropy of the

FIG. 9. MAE versus orbital moment anisotropy of the Fe
atoms for each individual configuration. Configurations cor-
responding to different values of Pz are indicated by different
markers. The solid black line corresponds to a least square fit
to the data.

Fe orbital magnetic moment, while the contribution from
the Ni moments is almost negligible. For the perfectly
ordered structure, we observe that the orbital magnetic
moments of the Ni atoms are larger along the [100] direc-
tion, which results in a small decrease of the total orbital
moment anisotropy as we go from Pz = 0.75 to Pz = 1
(see solid black curve in the Fig 8).

Note that both the MAE and the total orbital mo-
ment anisotropy show similar behaviour as one increases
the long range order in the system. This suggests a pos-
sible explanation for the somewhat unexpected behavior
of the MAE, provided that the MAE can be understood
in terms of local contributions of the Fe and Ni atoms
that correlate with the corresponding orbital moment
anisotropies. Thereby, the (small) contribution to the
MAE from the Ni atoms would be opposite to that of
the Fe atoms and also be much more sensitive to devia-
tions from perfect chemical order, such that it essentially
vanishes already for Pz ≤ 0.75, while the contribution
from the Fe is still rather strong.

To further demonstrate the correlation between the
MAE and the orbital moment anisotropy, we show
in Fig. 9, the MAE as a function of orbital moment
anisotropy for all individual configurations with differ-
ent values of the chemical order parameter. Only the
orbital moment anisotropy obtained from the Fe atoms
is shown, here. There is a clear linear correlation be-
tween the two quantities, indicated also by the least mean
square fit to all data points (solid black line). On the
other hand, there can also be a noticeable spread in the
linear relationship between the MAE and the orbital mo-
ment anisotropy on the level of the individual configura-
tions. Nevertheless, our results suggest that the orbital
moment anisotropy can in principle be used as proxy for
the MAE, which then allows to analyze how the local
environment affects both quantities.
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IV. SUMMARY AND CONCLUSIONS

In summary, we have demonstrated a strong cou-
pling between chemical and magnetic orders in L10
FeNi, consistent with previous studies employing effective
medium/mean-field type approaches to describe the com-
positional disorder. Specifically, our results show that
chemical disorder reduces the energy difference between
the ferromagnetic and paramagnetic state by about 40 %.
Consequently, the magnetic Curie temperature of the dis-
ordered system is much lower than the rather high (hy-
pothetical) Curie temperature of the ordered phase. As
a result, the magnetic order vanishes once the system
starts to disorder under heating, as has been observed
in various experiments [14, 39]. On the other hand, per-
fect ferromagnetic order increases the energy gain due to
chemical order by nearly a factor of three compared to
the paramagnetic case. In principle, this implies, that
if it would somehow be possible to stabilize the ferro-
magnetic state at higher temperatures, one could artifi-
cially increase the order-disorder transition temperature,
which could then ease the synthesis of the ordered ma-
terial. While our simple energetic model is obviously
too crude to obtain very accurate values for the order-
disorder transition temperature, the estimates we obtain
from our Monte Carlo simulations give the correct or-
der of magnitude, indicating that our DFT calculations
correctly describe the underlying energetics.

Most importantly, our calculations of the magneto-
crystalline anisotropy (MAE) as function of the chemical
long-range order parameter Pz reveal that a reduction of

Pz by 25 % does not decrease the MAE within the accu-
racy of our method. This is rather encouraging, since it
shows that full chemical order is not required to obtain
full anisotropy. However, it also indicates that previous
estimates of the full anisotropy, based on the extrapola-
tion of results obtained for partially ordered samples, are
probably too high. We note that in order to obtain this
result, the use of our configurational sampling method is
crucial. Effective medium approaches, such as CPA, do
not take into account the specific local chemical environ-
ment and thus will always predict a gradual decrease of
the MAE for reduced chemical order.

Interestingly, we obtain the highest MAE for certain
configurations with partial disorder, which suggests that
the MAE can potentially be increased beyond the value
obtained for the perfectly ordered L10 structure. We also
demonstrate a clear correlation between the orbital mag-
netic moment anisotropy and the MAE, which suggests
that chemical environments resulting in a large local or-
bital moment anisotropy will also be favorable for ob-
taining a high MAE. While it might be highly non-trivial
to engineer a specific partially disordered configuration,
it provides an exciting avenue to optimize the MAE in
tetrataenite with respect to the local chemical environ-
ment, by considering small deviations from perfect L10
order as well as from the ideal equiatomic stoichiometry.
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were performed on the cluster “Piz Daint”, hosted by the
Swiss National Supercomputing Centre, and the “Euler”
cluster of ETH Zürich.
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4
M AG N E T O - C RY S TA L L I N E A N I S O T RO P Y E N E RG Y
I N L 1 0 - F E N I

In the previous chapter, we demonstrated that in L10-FeNi, both
magnetic and chemical orders are strongly coupled to each other. We
also showed that the MAE for a few randomly created partially dis-
ordered configurations is higher than the MAE for the fully ordered
configuration. This indicates the possibility of further optimizing the
MAE in this system by optimizing the distribution and the composition
of the constituent elements. In this chapter, we present our analysis on
the correlation between the orbital moment anisotropy and the MAE,
in order to find ways to further increase the MAE in FeNi beyond that
of the fully ordered equiatomic structure.

4.1 motivation

As discussed in the previous chapter, our MAE calculations as a
function of chemical long-range order parameter in L10-FeNi reveal that
the MAE of some of the partially disordered configuration is higher
than that of the fully ordered structure. This naturally leads to the
question of how the MAE in L10-FeNi depends on specific local chemical
environment and stoichiometry and whether it is possible to further
increase the MAE by optimizing the composition and distribution of
the constituent elements.

In an experimental study by Kojima et al. [77], they investigated the
Fe-Ni composition dependence of the MAE in ordered Fe-Ni thin films
grown by alternate deposition of Fe and Ni monoatomic layers and
found large MAE and saturation magnetization for Fe-rich stoichiome-
tries, in particular, for Fe60Ni40. Note that, however, the electronic
structure calculations employing CPA to model the chemical disorder
were not able to confirm this observation of the increase in the MAE
for Fe-rich stoichiometries relative to the equiatomic case [74].

In this chapter, we therefore employ supercell technique as described
in Sec. 2.6, to model the chemical disorder and analyze how local chem-
ical environment is related to the MAE by using local orbital moment
anisotropy as a proxy for the local atomic contribution to the MAE.
Based on our analysis, we then optimize the composition and distribu-
tion of Fe and Ni to increase the MAE beyond that of the fully ordered
FeNi.

49
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4.2 summary of results

As a first step, we analyze the distribution of local OMA for Fe
and Ni atoms present in 50 equiatomic configurations with long-range
order parameter of 0.75. Fig. 2 of Paper [2] shows the distribution of
individual Fe and Ni OMA values. One can see from the figure that the
majority of the Fe OMA values are positive and the distribution of the
Fe OMA values is rather asymmetric around zero value. On the other
hand, the distribution of the OMA values for Ni atoms is symmetric
around zero with majority of the values lying close to zero. This shows
that the Fe atoms are the majority contributors to the total OMA. Our
analysis agrees well with an experimental study by Kotsugi et al. [159],
where they showed a strong angular dependence for Fe orbital magnetic
moments from their magnetic circular dichroism measurements and not
for Ni.

We also find that a few of the Fe atoms have OMA values that are
as high as 0.015µB. We then analyze the local atomic environment of
these Fe atoms and find that they all exhibit an equivalent first-nearest
neighbour environment as shown in Fig. 1c of Paper [2]. Within this
“favorable environment”, each central Fe atom is surrounded by 6 Fe (4
in the same plane and 2 with nearest neighbors to each other either in
the plane above or below the central Fe atom) and 6 Ni atoms. We also
note that this favorable environment not always leads to high OMA
but can also exhibit an OMA values in between 0.006µB and 0.015µB.

In the next step, we design a new 2 × 2 × 2 supercell of the con-
ventional cubic cell by taking favorable environment as a guide. This
leads to a configuration with 20 Fe and 12 Ni atoms with a calculated
MAE of 141 µeV/2-atoms which is almost 2 times higher than the
MAE of a fully ordered structure. We then create several additional
configurations with Fe content varying from 53% to 59%. Fig. 3 of Pa-
per [2] reveals a MAE that is higher for all the configurations where
the Fe content is greater than 50%. Note that this already indicates
that higher Fe content might be favorable to achieve higher MAE in
this system, but before exploring this in more detail, we first perform
a systematic “measure” for the chemical environments and a possible
correlation with high local OMA.

To investigate the correlation between the local atomic environment
of an Fe atom and its OMA, we perform a more detailed analysis by
employing the SOAP descriptor as described in Sec. 2.7 which encodes
the specified local atomic environment into a rotationally invariant rep-
resentation. To visualize this correlation, we employ a dimensionality
reduction technique, t-SNE, to reduce the high-dimensional SOAP vec-
tors to two dimensions (see Sec. 2.7). In Fig. 4 of Paper [2], we show the
reduced SOAP vectors corresponding to different local atomic environ-
ments of Fe atoms present in equiatomic configurations with different
values of long-range order parameter. We note that a clear correlation
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between the OMA and the local chemical environment in such a plot is
indicated by the clustering of the data points with the same color. We
observe that for configurations with Pz ≥ 0.75, the correlation between
the OMA and the local atomic environments becomes more clear when
further neighbors e.g., 2NN and 3NN are included in the analysis. How-
ever, for configurations with Pz = 0.5, the correlation between the local
atomic environment and the OMA becomes less clear and vanishes com-
pletely for fully disordered configurations and does not improve even
on including second and third-nearest neighbors.

In the next step, we create several configurations with different Fe
content by randomly replacing Ni atoms with Fe atoms in a fully or-
dered configuration. This step is motivated by the observation that
the favorable environment contains an Fe-rich stoichiometry relative
to the local environment present in a fully ordered configuration. In
addition, we also note that such configurations are possible to obtain
experimentally e.g., using a layer-by-layer growth methods. From the
DFT calculations, we find that the average MAE increases with the
increasing Fe content upto the highest considered Fe content of 62.5%.
Our results agree well with the experimental study by Kojima et al. [77]
discussed in previous section. From their analysis, they found that the
MAE increases monotonically with long-range order parameter and fur-
ther showed that increasing Fe content is an effective way to further
increase the MAE in L10-FeNi. Finally, note that we do not increase
the Fe-content beyond 62.5% as this will not only lead to a decrease
in the degree of order parameter in the system but will also destabilize
the ferromagnetic ground state [71, 160].

4.3 implications and further work

In conclusion, we present a study on the effects of chemical disorder
on the MAE in L10-FeNi. Our calculations clearly show that the MAE
in this system can be increased beyond the MAE of a fully ordered
equiatomic structure. The identification of the favorable environment
indicating an Fe-rich stoichiometry, allowed us to design an optimized
structure with an increased MAE.

Our SOAP analysis indicates that it is unlikely to understand the
MAE in FeNi as a sum of local atomic contributions determined by
the local chemical environment of the Fe atoms. Thus, a simple model
relating the local atomic environment to the MAE might not be ap-
plicable. This is consistent with a study by Ke et al. [161] where they
decomposed the MAE by employing ab initio tight-binding framework
constructed using Wannier functions, into inter- (two-ion model) and
intra-atomic (single-ion model) contributions. They demonstrated that
the inter-atomic term is dominant in FeNi which indicates that one
needs to go beyond the single-ion model. Therefore, we note that al-
though we are able to successfully design the structures with high MAE
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using favorable environment as a guide, Fig. 4 of Paper [2] indicates
only a partial correlation between the local orbital moment anisotropy
of Fe atoms and its first nearest neighbors.

By performing DFT calculations for structures with varying Fe con-
tent, we show that the MAE increases by about 25% for an Fe content
of 62.5% relative to the case of a fully ordered equiatomic structure.
The study allow to corroborate the experimental study of the compo-
sitional dependence of the MAE by Kojima et al.. We note that this
was not verified by a previous study employing the effective medium
approach such as CPA to model the compositional disorder [74]. The
authors instead observed the decrease in the MAE by about 10% for a
20% increase in the Fe-content relative to the fully ordered equiatomic
structure. Thus, our calculations show that it is important to include
the effects beyond CPA present in disordered alloys to understand how
chemical disorder affects the key magnetic properties such as the MAE.

4.4 publication

This work is available as a preprint as »Effect of chemical disorder on
the magnetic anisotropy in L10 FeNi from first principles calculations«
on arXiv [2]. I performed initial analysis on the configurations created
in the previous chapter and wrote the SOAP and t-SNE analysis de-
scribed in section III C. All DFT calculations and their evaluation are
performed by Mayan Si who worked on this project as a master student
under my supervision. I revised the first draft written by Mayan Si, and
discussed and corrected together with C. Ederer.
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We use first principles calculations to investigate how deviations from perfect chemical order affect
the magneto-crystalline anisotropy energy (MAE) in L10 FeNi. We first analyze the local chemical
environment of the Fe atoms in various partially ordered configurations, using the orbital magnetic
moment anisotropy (OMA) as proxy for a local contribution to the MAE. We are able to identify a
specific nearest neighbor configuration and use this “favorable environment” to successfully design
various structures with MAE higher than the perfectly ordered system. However, a systematic
analysis of the correlation between local environment and OMA using smooth overlap of atomic
positions (SOAP), indicates only a partial correlation, which exists only if the deviation from full
chemical order is not too large, whereas in general no such correlation can be identified even using up
to third nearest neighbors. Guided by the observation that the identified “favorable environment”
implies an Fe-rich composition, we investigate the effect of randomly inserting additional Fe into
the nominal Ni planes of the perfectly ordered structure. We find that the MAE increases with Fe
content, at least up to 62.5% Fe. Thus, our study shows that the perfectly ordered case is not the
one with highest MAE and that an increased MAE can be obtained for slightly Fe-rich compositions.

I. INTRODUCTION

Due to the huge and strongly increasing demand of
permanent magnets for, e.g., applications in electrical
power generation and conversion, there is great interest
in new magnetic materials, in particular those contain-
ing cheap and abundant elements with no or only small
amounts of rare earth elements [1, 2]. L10-ordered FeNi
is an attractive candidate as gap magnet, i.e., a mag-
net with an expected energy product in between that of
cheap ferrite magnets and that of the rather expensive
high-performance magnets of the Nd-Fe-B family [3].

The L10-ordered phase of FeNi was first reported by
Néel and coworkers, who irradiated disordered Fe50Ni50
specimens with neutrons in the presence of magnetic
field [4, 5]. Later it was naturally observed in iron me-
teorite samples [6–10]. The laboratory synthesis of the
ordered phase is, however, very challenging because of the
rather low order-disorder transition temperature, which
is around 320◦C [4, 5, 11]. At such temperatures, atomic
diffusion is extremely slow, which prevents the formation
of the ordered state by conventional annealing techniques
on realistic time-scales. Even though the synthesis of
fully ordered L10 FeNi is very challenging, samples with
a high degree of chemical order have been prepared in
experiments using methods such as, e.g., nitrogen inser-
tion and topotactic extraction [12], the transformation
from an amorphous state to a stable crystalline state
[13], pulsed laser deposition [14], and molecular beam
epitaxy [15].

Due to the difficulty in obtaining fully ordered sam-
ples, it is important to understand the effect of partial
chemical disorder on the magnetic properties of FeNi, in
particular how deviations from equiatomic stoichiometry
and perfect chemical order affect the magneto-crystalline
anisotropy energy (MAE). Note that deviations from
equiatomic stoichiometry will automatically result in a

decrease of chemical order. The compositional depen-
dence of the MAE has been studied experimentally in
partially ordered Fe-Ni thin films grown by molecular
beam epitaxy, and a maximum of the MAE has been
found for a composition of 60 % Fe [15]. However, an in-
crease of the MAE with increasing Fe content relative to
the fully ordered equiatomic case could not be confirmed
by electronic structure calculations using the coherent
potential approximation [16].

In previous work, we have used first principles calcula-
tions within density functional theory (DFT) to investi-
gate the effect of partial chemical disorder on the MAE
of equiatomic L10 FeNi [17]. By considering supercells
with different distributions of Fe and Ni atoms over the
available lattice sites, we have shown that the average
MAE remains nearly constant if deviations from the per-
fect chemical order are not too large. Even a reduction
in the degree of chemical order by about 25 % does not
lead to a significant reduction of the MAE. This is very
promising for the experimental synthesis of L10 FeNi with
high MAE. Furthermore, several (randomly created) con-
figurations with only partial chemical order exhibited a
larger MAE than the perfectly ordered case. This raises
the question of what factors determine the MAE in L10
FeNi, how it depends on the specific atomic distribution
and composition, and whether the MAE can be further
increased by optimizing the distribution of Fe and Ni
atoms.

In this article, we analyze the relation between the
MAE and the local atomic environment, in order to iden-
tify ways to increase the MAE of FeNi beyond that of
the perfectly L10-ordered equiatomic case. Thereby, we
use the orbital magnetic moment anisotropy (OMA) as
a proxy for a potential local contribution to the MAE.
We first analyze 50 equiatomic configurations with 75 %
chemical order, and identify a local nearest neighbor envi-
ronment for the Fe atoms that appears to be particularly
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favorable for obtaining a high OMA. Using this favorable
environment as a guide, we manually construct several
new configurations with potentially high MAE and Fe
contents between 50% and 62.5%. DFT calculations are
then used to confirm the high MAE of these structures.

We then perform a more systematic analysis using
smooth overlap of atomic positions (SOAP) as descrip-
tors for the local atomic environment [18]. This analysis
indicates only a weak correlation between the local OMA
and the local environment. Furthermore, this correlation
exists only if the underlying structure does not deviate
too much from perfect chemical order. This suggest that
it is unlikely that the MAE in L10 FeNi can be under-
stood fully as a sum of local contributions determined by
the local environment. We thus refrain from further an-
alyzing the physical origin of the enhanced anisotropy in
our specifically designed configurations. Instead, we ex-
plore the effect of randomly inserting excess Fe atoms into
the Ni planes of the perfectly ordered structure (shown
in Fig. 1b). This is motivated by the fact that the pre-
viously identified “favorable environment” implies a cer-
tain degree of Fe overstoichiometry. We find that, even
though the excess Fe decreases the degree of chemical or-
der, the MAE nevertheless increases, at least up to an Fe
content of 62.5 %, consistent with previous experimental
reports [15]. Our results thus identify a very promising
route for optimizing the MAE using experimental layer-
by-layer deposition techniques.

In the remainder of this article, we first describe our
computational methods and how we model the partial
chemical order (Sec. II), before we present the identi-
fication of the favorable environment (Sec. III A) and
the specifically designed configurations with high MAE
(Sec. III B). Sec. III C contains the SOAP analysis and
Sec. III D the results for the structures with excess Fe
atoms inserted into the Ni planes. Finally, our conclu-
sions are summarized in Sec. IV.

II. COMPUTATIONAL METHOD

A. Modeling of partially ordered structures

To study different configurations with varying compo-
sition FexNi1−x with 0.5 ≤ x ≤ 0.625, we use a 2× 2× 2
supercell of the conventional cubic cell (with lattice con-
stant a = 3.56 Å), containing 32 sites of the underlying
fcc lattice (see also Ref. 17). We then occupy the lattice
sites with Fe and Ni atoms in different ways to create
structures with a certain Fe content and degree of order.
To characterize the degree of order of a given configu-
ration, we define the three-component long range order
parameter Px, Py and Pz as follows:

Px = 1
2 (pα − pβ + pγ − pδ)

Py = 1
2 (pα − pβ − pγ + pδ)

Pz = 1
2 (pα + pβ − pγ − pδ)

(1)

FIG. 1. a) Depiction of the four sites of the fcc lattice within
the conventional cubic unit cell, defining the four sublattices
α, β, γ, and δ used in Eq. (1). b) Perfectly L10-ordered struc-
ture, depicted in a 2 × 2 × 2 supercell relative to the con-
ventional four-atom cubic cell. c) Schematic representation
of the “favorable” nearest neighbor environment of Fe atoms
with the largest OMA of 0.015µB. d) Specifically designed
structure (with composition Fe0.625Ni0.375) based on this fa-
vorable environment. Red and yellow spheres in all subfigures
represent Fe and Ni atoms, respectively.

Here, pi, i ∈ {α, β, γ, δ}, denote the fraction of sites (or
the occupation probabilities in the thermodynamic limit)
for each sublattice i that are occupied with Fe, and the
different sublattices correspond to the four sites defin-
ing the fcc lattice within the conventional cubic cell (see
Fig. 1a). The definition in Eq. (1) is consistent with
the definition used in our previous work for equiatomic
composition [17], where

∑
i pi = 2, but is also applica-

ble to different Fe contents. As can be seen in Fig. 1b,
perfect L10 order consists of (001)-type planes that are
alternatingly occupied with either Fe or Ni. Depend-
ing on whether these planes are stacked along the x, y,
or z direction, the corresponding component of the or-
der parameter becomes non-zero. In the following, we
will, without loss of generality, always consider structures
where the main component of the order parameter is ori-
ented along the z direction, i.e., |Pz| ≥ 0, whereas Px
and Py are either kept to zero or they average out over
different configurations with the same Pz.

The MAE is defined as the energy difference for ori-
entation of the magnetization along the order parameter
direction (z axis) and perpendicular to it (along either
the x or the y direction). Note that for an arbitrary indi-
vidual configuration, the x and y directions are in general
not equivalent. In cases where we are interested in the
MAE of an individual configuration, we therefore evalu-
ate the MAE with respect to both x and y directions and
then take the average, i.e., MAE = (MAEx + MAEy)/2

with MAEx = E[100]−E[001] and MAEy = E[010]−E[001].

Here, E[100], E[001], and E[010] are the total energies ob-
tained for magnetization aligned along the [100], [001]
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and [010] directions, respectively. In cases where we aver-
age the MAE over different randomly created structures
with the same Pz, we only calculate MAEx, since the dif-
ference between the x and y directions will average out
over many configurations. In our definition, a positive
MAE indicates that the easy axis is oriented along the
order parameter direction, i.e., the [001] direction, which
is known to be the case for L10 FeNi.

Note that for all configurations considered in this work,
we keep the lattice constant and atomic positions fixed to
those of an ideal fcc lattice with a c/a ratio of 1.0. This
allows to focus on the purely chemical effect related to
the distribution of atoms over the available sites, and also
significantly reduces the computational effort. Note that
small changes in lattice parameters, e.g., resulting from a
varying Fe content, are not expected to have a significant
effect on the MAE. For example, we have verified that
relaxing the c/a ratio for the fully ordered configuration,
changes the MAE by only ∼ 2µeV/(2 atoms).

B. Computational details

We calculate the MAE from DFT calculations includ-
ing spin-orbit coupling, using the Vienna ab initio Sim-
ulation package (VASP) [19], the projector-augmented
wave method (PAW) [20, 21], and the generalized gra-
dient approximation according to Perdew, Burke, and
Ernzerhof [22]. To obtain the MAE, we use the magnetic
force theorem [23, 24], i.e., we perform non-self-consistent
calculations with spin-orbit coupling included, using the
charge density converged without spin-orbit coupling,
and then take the difference in band energies between
the two different orientations of the magnetization direc-
tion. Our PAW potentials include 3p, 4s, and 3d states
in the valence for both Fe and Ni. Brillouin zone integra-
tions are performed using the tetrahedron method with
Blöchl corrections and a Γ-centered 14× 14× 14 k-point
mesh. The plane wave energy cut-off is set to 350 eV, and
the total energy is converged to an accuracy of 10−8 eV.
The convergence of the MAE with respect to the k-point
sampling was tested by performing calculations using up
to 25 × 25 × 25 k-points. Thereby, the MAE was found
to be sufficiently converged for our purposes, to about
±1µeV per 2 atoms, using a 14× 14× 14 k-point mesh.

To parametrize the atomic distribution within the local
environment around each Fe atom, we use the SOAP de-
scriptor [18] implemented in the DScribe software pack-
age [25]. We employ cutoff radii of 2.6 Å, 3.6 Å, and 4.4 Å,
corresponding to first nearest neighbor (1NN), second
nearest neighbor (2NN), and third nearest neigbor (3NN)
environments, respectively. We use a basis of nmax = 8
radial and lmax = 6 angular functions, and a Gaussian
width of 0.5 Å.

We then use t-distributed stochastic neighbor embed-
ding (t-SNE) [26], as implemented in scikit-learn [27],
to reduce the high-dimensional SOAP vectors to two di-
mensions for easier visualization and analysis. This tech-

nique generates a low-dimensional map of the original
data points in such a way that similar data points are
mapped onto points that are close to each other, po-
tentially forming clusters in the low dimensional repre-
sentation, while dissimilar data points are preferentially
mapped onto more distant points. The size of the clusters
in the low-dimensional map is strongly influenced by the
“perplexity”, which can roughly be viewed as a measure
for the effective number of nearest neighbor points. We
set the perplexity to 6; larger values lead to larger clus-
ters and thus less separation between data points with
different OMA, which does not affect our conclusions.

III. RESULTS AND DISCUSSION

A. Local atomic environment of Fe atoms

In our previous work [17], we calculated the MAE for
50 configurations with Pz = 0.75 for the equiatomic com-
position (Fe0.5Ni0.5). Many of these configurations exhib-
ited a MAE larger than that of the fully ordered structure
(76 µeV/2 atoms), with one configuration even exceeding
an MAE of 125µeV/2 atoms. This raises the question of
what factors determine the MAE in FeNi and how ex-
actly it depends on the specific distribution of Fe and Ni
atoms. To address this question, we now assume that
the MAE can be understood, at least approximately, as
a sum of local contributions that are determined by the
local environment of the individual atoms in the system.
We then use the OMA, i.e., the difference in the orbital
magnetic moment for different orientations of the magne-
tization relative to the crystal axes, as a proxy for such
a local contribution to the MAE. As shown by Bruno
and others [28, 29], using a perturbative treatment of the
spin-orbit coupling within the tight binding approxima-
tion, the MAE is proportional to the OMA under certain
conditions. Indeed, previous work on L10 FeNi has found
a correlation between MAE and the (site-averaged) OMA
both for the fully ordered state [30] as well as for varying
degrees of order [17] and also showed that the OMA is
dominated by the contribution of the Fe atoms.

The latter can also be seen from Fig 2, which shows
the distribution of the OMA for the individual Fe and
Ni atoms in all 50 configurations with Pz = 0.75. Here,
we define the OMA as ∆L = L[001] −L[100], where L[001]

and L[100] are the orbital magnetic moments obtained
when the total magnetization is oriented along [001] and
[100] directions, respectively. We do not consider the
[010] direction, since all 50 configurations are designed
to have Px = Py = 0 and thus the anisotropy between
the x and y direction is assumed to be small. Note that
a positive OMA indicates that the orbital magnetic mo-
ment is larger if the magnetization is oriented along the
easy axis, i.e., along the [001] direction. The distribution
of the OMA for the Fe atoms in Fig. 2 is asymmetric
around zero, with the majority of Fe atoms exhibiting
a positive OMA. In contrast, the distribution for the Ni
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FIG. 2. Distribution of the individual OMA values (in
10−3µB), obtained for all Fe and Ni atoms included in the
50 equiatomic configurations of FeNi with long range order
parameter Pz = 0.75.

atoms is rather symmetric, with a peak centered around
zero OMA. This confirms that the total OMA is dom-
inated by the Fe contribution, consistent with previous
first principles calculations [17, 30], and also magnetic
circular dichroism measurements which found a strong
angular dependence of the orbital moments for Fe but
not for Ni [31]. In the following, we therefore focus on
analyzing only the local environment of the Fe atoms.

From Fig. 2, one can also see that a small number of Fe
atoms exhibit a particular high OMA of 0.015µB. Anal-
ysis of their local atomic environment reveals that all
these Fe atoms exhibit an equivalent first nearest neigh-
bor (1NN) environment, which is shown in Fig. 1c. Each
central Fe atom is surrounded by six Fe and six Ni atoms,
with four Fe atoms in the same x-y plane and the remain-
ing two Fe atoms as nearest neighbors to each other in
the plane either above or below the central Fe atom. All
other 1NN positions are occupied by Ni atoms. There
are also some other Fe atoms in our 50 configurations
that have exactly the same (or an equivalent) 1NN en-
vironment as depicted in Fig. 1c but exhibit an OMA
smaller than 0.015 µB. This indicates that the OMA
(and thus likely the MAE) is not completely determined
by only the 1NN environment, but that further neighbors
also play a role (a further analysis of this is presented in
Sec. III C). Nevertheless, most Fe atoms with this specific
1NN environment exhibit a OMA higher than that of the
fully ordered case (i.e., higher than 0.006 µB), and from
now on we will therefore refer to this as the “favorable
environment”.

B. New configurations based on the favorable local
environment

Next, we use the favorable environment as a guide
to design optimized configurations with potentially high
OMA, and thus high MAE. We start with a 2× 2× 2 su-

FIG. 3. MAE calculated for different configurations with
varying Fe content, obtained by randomly replacing some Fe
atoms with Ni starting from the optimized structure with 20
Fe atoms (x = 0.625). The red cross represents the MAE of
the fully ordered structure.

percell of the conventional cubic cell and place Fe atoms
at positions (0, 0, 0) and (0.5, 0.5, 0.5). We then arrange
Fe and Ni atoms on the corresponding 1NN positions of
the two initial Fe atoms according to the favorable envi-
ronment. The remaining six positions in the supercell are
then filled with Fe atoms, thereby maximizing the num-
ber of Fe atoms exhibiting the favorable environment.
This procedure results in a configuration with 20 Fe and
12 Ni atoms (x = 0.625), depicted in Fig. 1d, where 16
Fe atoms exhibit the favorable environment. The corre-
sponding long-range order parameter is Px = Py = 0 and
Pz = 0.75. Note that the Fe:Ni ratio on the 12 1NN-
sites of the favorable environment is 6:6, whereas it is 4:8
for the fully ordered equiatomic case. This results in an
excess Fe content of the specifically designed structure,
with 20 Fe and 12 Ni atoms in the unit cell.

We now use DFT to calculate the MAE of this specifi-
cally designed structure and obtain a value of 141µeV/2
atoms. This value is nearly a factor of two higher than
the MAE of 76µeV/2 atoms obtained for the perfectly
ordered structure. Further analysis shows that the 16 Fe
atoms with the favorable environment exhibit an OMA of
0.008 µB , consistent with the analysis in Sec. III A. The
remaining four Fe atoms have an OMA of only 0.001µB
while the 12 Ni atoms exhibit small OMA ranging be-
tween −0.002 and 0.003µB . The total OMA of the 32-
atom supercell is 0.144µB , which is also much higher
than that of the perfectly ordered structure (0.064µB).
It thus appears that optimizing the local 1NN environ-
ment of the Fe atoms can indeed lead to configurations
with particularly high MAE.

Motivated by this encouraging result, we create addi-
tional structures with Fe to Ni ratios of 19:13 (x = 0.594),
18:14 (x = 0.563), and 16:16 (x = 0.5), by starting from
the optimized 20:12 structure and then successively re-
placing one or more Fe atoms by Ni (without further opti-
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mization of the local environment). The calculated MAE
for these structures as well as or the fully ordered struc-
ture are shown in Fig. 3. It can be seen that, compared
to the optimized structure with 62.5 % Fe, the MAE de-
creases with decreasing Fe content while simultaneously
the number of Fe atoms exhibiting the favorable environ-
ment is reduced to 11 and 8 for x = 0.594, and to 6, 8, 6,
and 0 for x = 0.563 (listed from highest to lowest MAE
in each case). However, all structures with Fe content
larger than 0.5 exhibit a MAE that is higher than that
of the perfectly ordered equiatomic structure. For the
equiatomic composition, some structures also exhibit a
relatively low MAE, and the number of Fe atoms exhibit-
ing the favorable environment in this case varies between
0 and 4. Thus, the corresponding structures cannot be
viewed any more as specifically optimized with respect
to the local environment.

Nevertheless, this simple analysis indicates that it is
in principle possible to enhance the MAE in L10 FeNi by
moving to slightly Fe rich compositions and optimizing
the distribution of Fe and Ni atoms, and confirms our pre-
vious result that the perfectly ordered equiatomic state
is not the one with the highest MAE. However, in order
to obtain guidelines on how to potentially achieve the
corresponding structures in an experimental synthesis, a
more detailed understanding of the relationship between
atomic configuration and the resulting MAE is required.

C. Correlation between OMA and the local
chemical environment

To obtain a deeper insight into the correlation between
the local atomic environment of an Fe atom and its OMA,
it is desirable to have a more systematic and quantita-
tive way to characterize the distribution of atoms within
the different local atomic environments. For this pur-
pose, we employ the smooth overlap of atomic positions
(SOAP) approach [18], which encodes the local atomic
structure around an atom up to a specified cutoff dis-
tance in the form of well-defined descriptors. The “SOAP
vectors” provide a rotationally invariant representation
of the different local chemical environments, i.e., an ab-
stract parameterization of the spatial distribution of all
atoms up to the cutoff distance, around each site. We
generate SOAP vectors corresponding to local atomic en-
vironments including up to first-nearest neighbors (1NN),
second-nearest neighbors (2NN), and third-nearest neigh-
bors (3NN) for all Fe atoms in the various configurations.

For better analysis and visualization, the high-
dimensional SOAP vectors need to be projected into two
dimensions in a way that preserves the relative distances
between the SOAP vectors as much as possible. Note
that the “distances” between different SOAP vectors are
a measure of how similar or dissimilar the corresponding
chemical environments are. As briefly outlined in Sec. II,
we use t-SNE to map each high-dimensional SOAP vector
into a two dimensional data-point in such a way that sim-

ilar vectors, i.e. SOAP vectors representing similar local
chemical environments, are modeled by data-points that
are near to each other, while dissimilar vectors, i.e., vec-
tors representing different local chemical environments,
are modeled by points that are far away from each other.
Thus, similar atomic environments will form clusters in
the low-dimensional representation, while atomic envi-
ronments that are very different from each other will be
separated into different clusters. However, we note that
the specific distances between different clusters in the
low-dimensional representation are not meaningful, as t-
SNE mainly preserves the local similarity structure of the
data while mapping objects from high to low dimensions.

Fig. 4 shows the t-SNE visualization of the SOAP vec-
tors representing different local atomic environments, in-
cluding up to 1NN, 2NN, and 3NN, for Fe atoms in dif-
ferent equiatomic configurations with different Pz. For
each value of the long range order parameter, 50 configu-
rations have been randomly generated. The x and y axes
of the subplots represent the reduced dimensions of the
SOAP vectors obtained using the t-SNE technique, while
the symbols are colored according to the absolute value of
the OMA of the corresponding Fe atoms. We note that a
potential correlation between the local environment and
the local OMA implies that, if two local environments are
mapped onto each other by some rotation, then the corre-
sponding anisotropies should be rotated accordingly. We
therefore relate only the absolute values of the OMA to
the corresponding SOAP vectors. Nevertheless, since we
are not evaluating the OMA relative to the y-direction, a
data-point with very low OMA in Fig. 4 could still exhibit
a strong uniaxial anisotropy along y, which represents a
certain limitation of our analysis. However, at least for
Pz = 0.75, and since Px = Py = 0 was imposed for all
configurations, such cases can be considered as unlikely.

We first consider the case with Pz ≥ 0.75 with only
the 1NN included [Fig. 4(c)]. The zoomed version of
Fig. 4(c) shows some examples of the local 1NN envi-
ronment of the Fe atoms corresponding to selected data
points. Case (c1) corresponds to the local atomic envi-
ronment found in the perfectly ordered structure, while
the cluster of yellow and light green triangles denoted
as (c2) corresponds to the previously identified “favor-
able” environment with the highest OMA (see Sec. III A).
Note that due to the small truncation error in the SOAP
expansion and other numerical inaccuracies, the corre-
sponding data-points are slightly separated in the t-SNE
representation, even though they in fact correspond to
identical atomic environments. However, we have care-
fully verified that such small numerical differences in the
SOAP vectors do not lead to an artificial separation of
equivalent points into different clusters.

For another cluster, (c3), containing only dark blue
triangles indicative of a very small OMA, one can see
that one of these configurations corresponds to an atomic
environment that resembles an Fe atom within a nominal
Ni plane, and that the other configuration that is shown
indeed exhibits a nearly identical environment, but with
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FIG. 4. The t-SNE visualization of the SOAP vectors representing different local chemical environments of Fe atoms including
up to 1NN, [(a)-(c)], 2NN [(d)-(f)], and 3NN [(g)-(i)] environments corresponding to configurations with Pz = 0.0, Pz = 0.5,
and Pz ≥ 0.75. The axes of the subplots represent the reduced dimensions of the SOAP vectors. The color indicates the
corresponding absolute value of the OMA. The zoomed version of subplot (c) depicts different local atomic environments (1NN
only) corresponding to selected data points.

one Fe-Ni pair exchanged between the lower Fe plane and
the nominal Ni plane in the middle.

One can also identify some clusters in Fig. 4(c) that
contain a range of colors, indicating Fe atoms with similar
1NN environment but rather different values of the OMA
[e.g., the two clusters that are encircled in the zoomed
version, or the “cluster” corresponding to the favorable
environment (c2)].

On including further neighbors into the local atomic
environment, up to 2NN (Fig. 4(f)) and 3NN (Fig. 4(i)),
the coloring of data points within individual clusters (and

thus the correlation between OMA and atomic environ-
ment) seems to become more consistent. However, the
correlation is still not perfect. This indicates that one
certainly needs to go beyond 1NN (and perhaps even be-
yond 3NN) to establish a clear correlation between a spe-
cific atomic environment and the corresponding OMA of
the central Fe atom.

For configurations with Pz = 0.5, one can see that
the correlation between the local atomic environment of
the Fe atoms and their OMA becomes even weaker, even
when including up to 3NN [indicated by several clusters
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containing both light green and dark blue triangles in
Fig. 4(h)].

For Pz = 0.0 [Fig. 4(a), (d), and (g)], the picture is
less clear, since there are only few data points with a
large OMA. However, it seems that many clusters contain
the full spectrum of available OMA values (from dark
blue to light green), with no systematic improvement on
including further neighbors in the atomic environment.

We conclude that in general (i.e., independent of the
global configuration and the resulting value of the long
range order parameter Pz) the OMA is not uniquely de-
termined by the local environment, even if including up
to 3NN. It is therefore unlikely that the MAE of par-
tially ordered FeNi can be efficiently described by a sim-
ple model based on a sum of local contributions deter-
mined mainly by the local environment of the Fe atoms.
This seems also consistent with Ref. 32, where the MAE
of fully ordered L10 FeNi was decomposed in inter- and
intra-atomic contributions using Wannier functions, and
it was found that the inter-atomic term is dominant,
questioning the applicability of a single ion model of the
MAE for FeNi.

Thus, even though the manual identification of the “fa-
vorable environment” has allowed to successfully design
configurations with high MAE in Sec. III B, the analysis
in Fig. 4 shows that there is only a partial correlation
between OMA and the 1NN environment. Furthermore,
even if considering up to 3NN, this partial correlation
seems to only hold for Pz ≥ 0.75, i.e., when a high de-
gree of chemical order (and our limited supercell size)
introduces an implicit constraint on the available further
neighbor configurations.

D. Perfectly ordered structure doped with excess
Fe

The SOAP analysis in Sec. III C shows that it is un-
likely that the MAE in FeNi can be understood within
a simple model based on the local atomic environment
of individual atoms. Furthermore, even if such a sim-
ple model could explain the high MAE of our specifically
designed structure based on the favorable environment
in Sec. III B, it would be virtually impossible to synthe-
size the corresponding structure experimentally. Here,
we therefore pursue a different route to further optimize
the MAE in FeNi. It is based on the observation that the
favorable environment implies an excess Fe content com-
pared to the perfectly ordered equiatomic case, and that
the specifically designed structure with high MAE shown
in Fig. 1(d) essentially corresponds to the perfectly or-
dered case, but with some additional Fe atoms located in
the nominal Ni planes. In the following, we therefore in-
vestigate how a random introduction of excess Fe atoms
into the nominal Ni planes affect the MAE. Such con-
figurations could be obtained experimentally either by
using layer-by-layer growth methods, or by maximizing
the chemical order parameter in a structure with slightly

FIG. 5. Calculated MAE values for 40 random configurations
with composition belonging to Fe0.625Ni0.375 and a maximum
long-range order parameter of Pz = 0.75 (blue dots). The
cumulative average is shown by the solid black line.

more than 50 % Fe content.
We create configurations corresponding to different

stoichiometries by randomly replacing Ni atoms with Fe
starting from the perfectly ordered structure, i.e., we
keep pα = pβ = 1 in Eq. (1), whereas pγ and pδ become
nonzero, such that

∑
i pi = 4x, according to the given

stoichiometry. Note that this automatically leads to the
highest possible value of the long range order parameter,
Pz = 2(1 − x), achievable for a specific Fe content with
x > 0.5. We consider up to 62.5 % Fe, which corresponds
to 20 Fe atoms within our 32 atom supercell.

For compositions x = 0.531, x = 0.563, and x = 0.594,
corresponding to 17, 18, and 19 Fe atoms within the su-
percell, we create all possible configurations and then use
XtalComp [33] to identify symmetry-equivalent struc-
tures. For these three specific stoichiometries, we find 1,
7, and 12 distinct groups of equivalent structures within
the 32-atom supercell. We then calculate the MAE as av-
erage over MAEx and MAEy of one representative struc-
ture for each distinct group, and evaluate the average
over all groups by considering the correct multiplicities.
For x = 0.625, i.e., 20 Fe atoms in the supercell, the
number of possible configuration becomes very high and
we therefore do not perform a full symmetry analysis of
equivalent structures. Instead, we sample the MAE for
40 randomly created configurations. Fig. 5 shows the
evolution of the cumulative average of the MAE for an
increasing number of sampled configurations. One can
see that the cumulative average converges to a constant
value after about 30-40 configurations, which shows that
we average over a sufficient number of configurations.

Fig. 6 shows the resulting MAE as a function of Fe
content. The corresponding reduction of the long range
order parameter Pz is also indicated. Remarkably, the
average MAE continuously increases with increasing Fe
content, at least up to the highest considered Fe content
of 62.5 %. For this case the average MAE is 93µeV/2



8

FIG. 6. Calculated MAE as function of Fe content obtained
by randomly replacing Ni atoms with Fe, starting from the
perfectly ordered case. The corresponding reduction of the
long range order parameter Pz is indicated on the upper hori-
zontal axis. The MAE values of the individual configurations
for each Fe content are indicated by blue crosses, with the cor-
responding standard deviation marked by the black vertical
bars. Corresponding average values are shown as connected
red dots.

atoms, which corresponds to a 23 % increase compared to
the fully ordered equiatomic case. Thus, it appears that
the MAE of L10 FeNi can be increased by considering
Fe-rich stoichiometries as long as the degree of chemical
order can be kept high. This is consistent with the ex-
perimental results obtained by Kotsugi et al. [15], even
though in their case the degree of chemical order was sig-
nificantly lower than in our calculations. We note that,
for increasing Fe content, it will likely become signifi-
cantly more difficult to maintain a high degree of chem-
ical order in the system, and thus we do not consider
Fe concentrations higher than 62.5 %. Furthermore, the
ferromagnetic ground state becomes more and more un-
stable towards the Fe-rich side, in favor of noncollinear
antiferromagnetic or spin-spiral-type ordering (see, e.g.,
[34, 35]).

IV. SUMMARY AND CONCLUSIONS

In summary, we have investigated the effect of chemical
disorder on the MAE in L10-ordered FeNi using first prin-

ciples DFT calculations. Our calculations clearly show
that the perfectly ordered equiatomic configuration is not
the one with the highest MAE in this system. By ana-
lyzing the local OMA in a number of configurations with
reduced chemical order, we were able to identify an ap-
parently favorable 1NN environment, which then allowed
us to design an optimized configuration with 62.5 % Fe
content and a MAE nearly twice that of the fully ordered
case.

However, further analysis using SOAP as descriptor
for the local atomic environment, indicates that a purely
local model might not be applicable for the MAE in FeNi,
and thus developing a detailed understanding of how the
MAE depends on the specific distribution of Fe and Ni
atoms is rather challenging.

Nevertheless, our identification of the favorable envi-
ronment implies that an increase of the MAE in partially
ordered FeNi might be possible by inserting additional Fe
atoms into the nominal Ni planes of the L10 structure.
Indeed, our corresponding DFT calculations confirm an
increase of the MAE by nearly 25 % compared to the fully
ordered case for an Fe content of 0.625. We note that our
analysis presented in Fig. 2 and also in our previous work,
Ref. 17, indicates that the dominant contribution to the
total OMA, and probably also to the MAE, stems from
the Fe atoms. It therefore appears that incorporating
more Fe atoms into the system can potentially increase
the MAE as long as the degree of chemical order can be
kept sufficiently high. Thus, our results suggest a realis-
tic route for optimizing the MAE in L10 FeNi using, e.g.,
layer-by-layer growth methods that allow to incorporate
excess Fe atoms while keeping the degree of order as high
as possible.
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5
E F F E C T O F I N T RO D U C I N G + U O N T H E M A E

In this chapter, we investigate the effect of +U which incorporates
second Hund’s rule, on the magnetic properties in L10-FeNi by employ-
ing DFT+U calculations.

5.1 motivation

In Section 3.3, we discussed that our calculated MAE for chemi-
cal long-range order parameter Pz = 0.5 is lower as compared to the
value obtained experimentally in Ref. [69]. Indeed, it is well known that
orbital magnetic moments are typically underestimated due to the ab-
sence of any mechanism establishing Hund’s second rule in LDA, GGA,
etc. Since orbital magnetic moments (and their anisotropy) are closely
related to the MAE, as a result, this also leads to the underestimation
of the MAE. To circumvent this, one can apply an empirical correction
known as orbital polarization correction which has often been used in
the past [73, 157, 158]. Both Solovyev et al. [112] and Bultmark et
al. [113], showed that this empirical correction is included in the much
more general DFT+U method, where +U is essentially the electron-
electron interaction in an atomic d-orbital.

In a study by Shick et al. [162], they showed that the effects related to
the electron-electron interaction in the ordered transition metal alloys
(L10-CoPt and L10-FePt) that are not well described in the standard
LDA/GGA functionals, tend to strongly affect the orbital magnetic
moments and the MAE, and that employing DFT+U calculations can
lead to an increase in the calculated MAE.

In another study by Yang et al. [163], they showed that by taking
into account the effects due to the electron-electron interactions in Fe
and Ni, the experimental value of the MAE was correctly predicted
near U = 1.2 eV J = 0.8 eV for Fe and U = 1.9 eV J = 1.2 eV for Ni.

In the following, we therefore employ DFT+U calculations to inves-
tigate the effects of electron-electron interactions on the magnetic prop-
erties in L10-FeNi. As described in Section. 2.2, we use a rotationally
invariant form of DFT+U [110] as implemented in VASP. To calcu-
late the MAE, we perform self-consistent calculations with spin-orbit
coupling included, and then take the difference in the total energies
between the two different orientations of the magnetization direction.
We do not employ magnetic force theorem to calculate the MAE since
the use of DFT+U with the force theorem is rather questionable [164].
All calculations are performed for a 4-atom conventional cubic fcc cell
with 2 Fe and 2 Ni atoms with lattice constant a = 3.56 Å and c/a = 1.

63
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In the following, we describe our results on the effect of varying U and
J values on key magnetic properties in L10-FeNi. For simplicity, we
always apply the same U upto 2 eV and J ≤ U to both Fe and Ni.

5.2 results

Figure 9: Orbital magnetic moment of Fe for magnetization along [100] (top)
and [001] (bottom) present in L10-ordered FeNi as a function U and
J values.

u and j dependence on orbital magnetic moments
First, we investigate the effect of U and J on the orbital magnetic
moments in L10-FeNi. The calculated orbital magnetic moments for
both Fe and Ni as a function of U and J are shown in Fig. 9 and
Fig. 10, respectively. One can see in both figures, that for a fixed value
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Figure 10: Orbital magnetic moment of Ni for magnetization along [100] (top)
and [001] (bottom) present in L10-ordered FeNi as a function U
and J values.

of J, increasing U results in increasing orbital magnetic moments of
both Fe and Ni. Moreover, it can also be seen that for a constant value
of U, no systematic trend with respect to increasing J can be seen
except for one case (orbital magnetic moments of Fe along [100]). We
also note that for Ni, effect of increasing J is rather small. Furthermore,
we note that varying U has a larger effect on the magnitude of orbital
magnetic moments of both Fe and Ni, as compared to the effect due
to the variation in J. Thus, our calculations indicate that taking into
account +U correction indeed leads to an increase in the orbital mag-
netic moments as expected. Note that this observation is similar with
the more empirical orbital polarization correction which also results in
the increased orbital magnetic moments.
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Figure 11: MAE as a function of different U and J values in L10-FeNi obtained
from DFT+U calculations.

u and j dependence on the mae Fig. 11 shows the depen-
dence of the MAE in L10-FeNi on U and J values. First, we set U =
J = 0 eV, and find the calculated MAE = 100µeV/f.u. obtained using
the self-consistent approach. Note that the MAE for the fully ordered
FeNi obtained by employing the magnetic force theorem in Paper [1] is
a bit lower (75µeV/f.u.), resulting in a deviation of 25µeV/f.u. as com-
pared to the MAE obtained using SC approach. We note that although
magnetic force theorem often gives good estimate of the self-consistent
MAE value, deviations in the MAE values are known to occur. In a
study by Blanco-Rey et al. [122], they calculated the MAE values for
several transition-metal alloys FeX (X=Co, Cu, Pd, Pt, and Au) us-
ing SC approach and the MFT. For instance, in bulk L10-FeCo, they
found a deviation of 160µeV/f.u. in the MAE calculated using the SC
and MFT approach (MAESC = 390µeV/f.u., MAEMFT = 550µeV/f.u.).
In L10-FeNi, we assume that the relative differences, e.g., variations of
the MAE (calculated using the MFT method) with chemical long-range
order and/or Fe-content, are meaningful.

For a fixed value of J = 0 eV, the MAE increases with increasing
value of U and reaches to about 200 µeV/f.u for U = 2 eV and J =
0 eV, which is twice the value as compared to the case where U = 0 eV.
Note that this observation is consistent with a study by Ravindran et
al. [157], where they employed the full-potential linear muffin-tin orbital
method to calculate the MAE in L10-FeNi. They showed that the MAE
increases by about a factor of 2 when orbital polarization correction is
taken into account.

Furthermore, one can see that for a fixed value of U, increasing J
results in the reduction of the MAE. In particular, a large reduction
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and even a change in sign can be seen for J ≥ 1.5. Finally, from Fig. 11,
we note that for this system, the orbital polarization-like behaviour is
seen for 0.5 eV ≤ U ≤ 2.0 eV and J ≤ 1 eV.

u and j dependence on oma In Chapter 3, we demonstrated
that there exists a linear correlation between the MAE and the OMA
of Fe atoms. Therefore, we next investigate whether the OMA of Fe
atoms follows the same trend as observed for the MAE in Fig. 11. In
Fig. 12, we plot Fe OMA as a function of different U and J values. Note
that the OMA of Fe is calculated by taking the difference between the
orbital magnetic moment values shown in Fig. 9. For a fixed value of
J ≤ 1.0 eV, a clear increase in the OMA values of Fe can be seen for
increasing U. On the other hand, there seems to be a reduction in the
OMA values for increasing J, which is consistent with the trend as
observed for the MAE. However, for J ≥ 1.5 eV, the MAE values do
not fit this trend. We not that this maybe partially hindered due to the
smallness of the OMA values which only differs by 0.001µB.

Figure 12: Orbital moment anisotropy of Fe as a function of different U and
J values obtained from DFT+U calculations for L10-FeNi.

5.3 implications

In conclusion, we demonstrate the effect of incorporating the sec-
ond Hund’s rule on the magnetic properties in L10-FeNi, by employ-
ing DFT+U calculations. Such effects are not captured by the DFT
functionals such as PBE, but are well described by taking into account
the on-site Coulomb interactions within the DFT+U method. We show
that +U can have a significant impact on the orbital magnetic moments
and the MAE in L10-FeNi. A clear increase in the orbital magnetic mo-
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ment of both Fe and Ni can be seen with increasing U. Moreover, we
find that varying U has a larger effect on the orbital magnetic moment
of both Fe and Ni, as compared to the effect due to the variation in J.

Depending on the U and J values, the MAE can either increase or
decrease. Moreover, an orbital polarization-like behaviour is only seen
for J ≤ 1 eV. Thus, it is likely that the plain PBE underestimates the
MAE. Note that this indicates that the orbital polarization correction
would result in even further enhancement of the MAE calculated for
various Fe-content as discussed in Paper [2]. Finally, we note that the
choice of double counting correction could also play a role. However,
this aspect still needs to be verified and will be investigated in future
work.

5.4 publication

The manuscript for this study is currently “under preparation”.
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M AG N E T I C E XC H A N G E I N T E R AC T I O N S I N
L 1 0 - F E N I

In Chapter 3 and Chapter 4, we showed that there exists a strong
coupling between the chemical and magnetic state in L10-FeNi and
that chemical disorder strongly affects the important magnetic prop-
erties such as magnetic anisotropy. In this chapter, we focus on the
effect of chemical disorder on the magnetic exchange interactions and
consequently, the Curie temperature in L10-FeNi.

6.1 motivation

While the Curie temperature of the disordered FeNi system has al-
ready been measured in several experimental studies (Tc ∼ 785 K [165,
166]), the measurement of the Curie temperature of the ordered phase
poses a real challenge. The reason for this is that, depending on the
heating rate, the ordered FeNi disorders completely upon heating at
temperatures above ∼ 700 K, indicating that the disordering in FeNi
is a kinetically limited process [63]. Moreover, at the time-scales which
are typical for the magnetization measurements, the disordering occurs
above the Curie temperature of the disordered phase, resulting in the
sudden disappearance of the magnetization [57].

Several previous first principles based studies have calculated the
Curie temperature of the ordered FeNi. For example, Edström et
al. [74] predicted the Curie temperature of the ordered phase to be
around 916 K by employing spin-polarized relativistic Korringa-Kohn-
Rostocker method. Furthermore, they found a reduction in the transi-
tion temperature when chemical disorder was introduced. In another
study by Tian et al. [167], they calculated by employing exact-muffin-
tin orbitals method the Curie temperature of the ordered FeNi to be
around 780 K. Moreover, they too observed a reduction in the Curie
temperature by around 150 K for the case of chemically disordered sys-
tem.

It is important to note that both studies employ coherent potential
approximation which is an effective medium approach to model the
chemical disorder in random alloys [75, 76]. Note that, however, CPA
fails to take into account the effects which occur due to the distribution
of different atomic species in real disordered alloys. These effects are
important to study the impact of chemical disorder on the MAE as
shown in chapter 3 and 4, where we found that a slight increase in the
Fe-content can lead to an increase in the MAE, an observation that

69
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was not seen by a previous study employing CPA approach to model
chemical disorder [74].

In this work, we provide further insights into how the variation in the
local chemical environment can affect magnetic exchange interactions
and consequently, the Curie temperature in tetrataenite. We follow a
similar approach as in previous chapters, i.e., to capture the effect of
local chemical environment around an atom, we employ supercell ap-
proach to model the chemical disorder. We find that local chemical
environment can have significant impact on the magnitude of first near-
est neighbour Fe-Fe couplings. This also naturally raises a question of
whether there is a correlation between the local chemical environment
and the magnetic exchange couplings. However, from our analysis, we
did not find any simple relation between these two variables. This as
a result also makes it difficult to incorporate the information about
the variations of magnetic exchange couplings into a Heisenberg model
to obtain Tc. Nevertheless, we try to estimate the effect of such varia-
tions by using a simple model with random exchange couplings. From
our Monte-Carlo calculations, we find that if one employs local atomic
environment-independent “average” magnetic exchange couplings to ob-
tain the Curie temperature of the disordered system, then this would
lead to an overestimate of the Tc of a chemically disordered system.

6.2 summary of results

To obtain the magnetic exchange couplings in L10-FeNi, we employ
a method based on the magnetic force theorem [126], where one can
obtain Jij values by considering the change in the total energy when
magnetic moments are rotated by a very small angle (see Eq. 33 in
Sec. 2.4). In order to obtain the quantities in Eq. 33, the DFT Kohn-
Sham Hamiltonian is then transformed into a localized Wannier func-
tions basis (see Sec. 2.5). Often, one uses maximally localized Wan-
nier functions (MLWFs) to obtain a unique set of Wannier functions
from the Kohn-Sham bands. However, in the FeNi system, this leads to
Wannier functions that are not centered on the atoms and, therefore,
MLWFs cannot be used in connection with Eq. 33. To circumvent this
problem, we refrain from minimizing the quadratic spread and just use
“initial projection”, which we find all to be atom centered. From our cal-
culations, we find that the resulting Wannier functions for the 2-atom
cell of the chemically ordered FeNi are in quite good agreement with
all occupied Kohn-Sham bands below ∼ 10 eV (see Fig. 1 of Paper [3]).

In the next step, we obtain the magnetic exchange couplings by
considering different sets and subsets of Wannier functions to check
whether one can obtain a good estimate for the magnetic exchange
couplings by constructing fewer WFs corresponding to only a subset
of bands (e.g., d bands only). Note that by considering different terms
in Eq. 33, one can decompose the magnetic exchange couplings into



6.2 summary of results 71

different orbital contributions. The calculated couplings are shown in
Table II of Paper [3]. We first construct Wannier functions by consid-
ering the initial projections of all s + p + d bands and then obtain
magnetic exchange couplings by considering (i) all terms in Eq. 33,
and (ii) d-only part in Eq. 33. We find that if d-only part is considered,
then one obtains a first nearest neighbor magnetic exchange coupling
of 29.6 meV which is larger than 27.2 meV when all terms are consid-
ered in Eq. 33. This shows that indeed, the main contribution to the
magnetic exchange couplings comes from the d orbitals while the s, p,
and mixed orbital terms leads to a minor negative contribution. This
leads to a question whether it is sufficient to consider d orbitals while
constructing Wannier functions to obtain a good estimate for the mag-
netic exchange couplings. To address this, we construct two more sets
of Wannier functions from the d orbitals where in the first set, we ob-
tain Wannier functions by orthonormalized initial projections, and for
the second set, we obtain MLWFs by minimization of the quadratic
spread functional. The magnetic exchange couplings for the first near-
est neighbour Fe-Fe pair is shown in Table II of Paper [3]. From the
table, one can see that not only the d-bands but also s and p bands are
necessary while constructing Wannier functions and their subsequent
use, in obtaining the accurate values of magnetic exchange couplings
in L10-FeNi.

Next, we calculate the magnetic exchange couplings in the fully or-
dered phase of FeNi and compare with those obtained by Edström et
al. [74] (see Fig. 2 of Paper [3]). Note that we make this comparison
as Wannier-based method, i.e., using Eq. 33 on top of a plane-wave-
based DFT method is not so well established and, in particular, the
difficulties one encounters to obtain an atom-centered basis, it appears
desirable to compare our calculated magnetic exchange couplings with
results from a more established method. From our calculations, we find
that overall there is a good agreement between our calculated magnetic
exchange couplings and those obtained by Edström et al., despite the
fact that both methods employ different electronic structure methods
which involve different approximations and basis sets.

We then perform Monte-Carlo simulations to investigate the effect
of including long-range Fe-Fe couplings on the Curie temperature in
ordered FeNi. We find that due to the long-range nature of the Fe-Fe
couplings, the Curie temperature shows strong variations when plotted
as a function of the Fe-Fe cutoff distance and converges to about 700 K
when all Fe-Fe couplings are considered until a distance of around 8 Å.
This shows that it is important to consider Fe-Fe interactions upto a
very large distance to get an accurate estimate of the Tc in this system.

Based on this observation, we then calculate the Curie temperature
of the ordered FeNi where we consider calculated magnetic exchange
couplings for all pairs, i.e., Fe-Fe, Fe-Ni, and Ni-Ni up to a maximum
distance of 10·a0, where a0 is the equilibrium lattice constant of the
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Figure 13: Evaluation of the Curie temperature (Tc) of L10 FeNi based on the
Binder cumulant curves. Tc is obtained by locating the crossing of
the curves (shown by a vertical dashed line) obtained by performing
Monte-Carlo simulations for three different simulation cell sizes.

ordered FeNi. To obtain an accurate estimate of Tc, we employ Binder
cumulant method [151], which allows one to calculate properties in
the thermodynamic limit. Within this method, one calculates Binder
cumulant (also known as fourth-order cumulant),

U = 1 − ⟨m4⟩
3⟨m2⟩2 , (57)

where ⟨m2⟩ and ⟨m4⟩ corresponds to the second and the fourth moment
of the magnetization. U is then plotted as a function of temperature for
different system sizes and the critical temperature is obtained by locat-
ing the point of intersection of different curves. Fig. 13 shows the Binder
cumulant curves for the L10-FeNi obtained by performing Monte-Carlo
simulations for three different simulation cell sizes. From Fig. 13, we
obtain a Tc = 736 K, which agrees well with the value of 780 K obtained
by Tian et al. [167]. On the other hand, we note that our calculated
Tc is lower than the value of 916 K obtained by Edström et al. [74].
We note that this is due to the stronger second nearest-neighbour Fe-
Fe and first nearest-neighbour Fe-Ni couplings obtained by Edström et
al..

In the next step, we calculate the magnetic exchange couplings in
chemically disordered configurations to investigate the effect of chemi-
cal disorder on the coupling constants. We create two different partially
ordered configurations (see Fig. 4(a) and 4(b) of Paper [3]). The cal-
culated magnetic exchange couplings for first nearest neighbour Fe-Fe
pairs are shown in Fig. 5(b) of Paper [3]. From the figure, one can
see a large variation in the calculated couplings ranging from 4.7 meV
to 36.5 meV. This indicates that chemical disorder can have a signifi-
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cant impact on the magnitude of the magnetic exchange couplings in
disordered FeNi.

We then study the effect of relaxation of atoms in the supercell on
the magnetic exchange couplings and compare the couplings after relax-
ation with their corresponding values for the unrelaxed case. We find
that on an average, relaxation leads to change in the value of couplings
by about 2 meV (see Table I of Paper [3]). However, this change is sig-
nificantly weaker than the change in the values of couplings due to the
different local chemical environments.

Next, we investigate whether the magnitude of the first nearest neigh-
bor Fe-Fe magnetic exchange couplings in Fig. 5(b) of Paper [3] can be
correlated to the local chemical environments. From our analysis of the
first and first/second nearest neighbours, we do not find any correla-
tion between the magnitude of the magnetic exchange couplings and
the chemical distribution around the pair of Fe atoms and conclude
that the magnitude of the exchange couplings is affected by effects
which are rather long range, as can be expected in itinerant system like
FeNi. Note that the dependence of the magnetic exchange couplings on
the local environment makes it difficult to incorporate the information
about the variations of magnetic exchange couplings into a Heisenberg
model to obtain Tc.

Instead, we try to estimate the effect of such variations of the mag-
netic exchange couplings by using a simple model with random ex-
change couplings. In our model study, we consider a Heisenberg model
with only first nearest neighbour interactions on an fcc lattice. We con-
sider a 15 × 15 × 15 supercell of the conventional 4-atom cubic cell
with equivalent sites and then draw random magnetic exchange cou-
plings (equivalent to number of bonds in our supercell) from a Gaus-
sian distribution whose mean value corresponds to the average coupling
constant and its standard deviation, σ, represents the local chemical
environment-dependent variations in the magnetic exchange couplings.

Note that for each of the σ > 0.0, we sample 100 random instances
of the magnetic exchange couplings and then take the average over
all calculated Tc to obtain a sufficiently converged Tc. This can be
seen in Fig. 14 where the evolution of the cumulative average of Tc

is shown for an increasing number of instances. From the figure, one
can also see strong variations in Tc values for a corresponding σ value.
This indicates that the cell size is perhaps small to give sufficient “self-
averaging”, as one would expect from an infinitely large cell. Hence,
instead of increasing the cell size, we use a rather efficient method where
we sample different random instances, which gives good convergence as
shown by the cumulative average that converges to a fixed value after
around 80 instances and, thus, shows that the number of instances we
sample over are sufficient.

Next, we investigate why such variations in the Tc occurs for different
randomly sampled instances with fixed σ. Fig. 15 shows the distribution
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Figure 14: Calculated Tc for 100 random instances (shown by green dots) sam-
pled from a Gaussian distribution with mean = 1 and (a) σ = 0.1,
(b) σ = 0.25, (c) σ = 0.4, and (d) σ = 0.6. The cumulative aver-
age is shown by black line in the subplots. Each Tc is obtained by
locating the peak value of susceptibility.

Figure 15: Histogram showing the distribution for one of the instances of ran-
domly sampled magnetic exchange couplings for various σ values.
Note that the histograms are normalized such that the total area
of each histogram equals 1. For σ = 0.0, all couplings are identical
(not shown here).
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of the magnetic exchange couplings for one randomly sampled instance
for various σ values. One can see from the figure that the histogram of
the couplings for each σ seems to approximate the Gaussian distribu-
tion rather well. This indicates that variations in the Tc for fixed σ do
not occur due to the small sample size (magnetic exchange couplings)
that would result in non-Gaussian distribution. As per our initial test
calculations, we attribute these variations to the distribution of the
magnetic exchange couplings within the supercell.

Fig. 7 of Paper [3] shows the results of our model study. We find
that Tc decreases with increasing σ, i.e., with increasing variation in
the magnetic exchange couplings. For σ = 0.6, which corresponds to
the corrected standard deviation of the seven different values of first
nearest neighbor Fe-Fe magnetic exchange interactions shown in Fig.
5(b) of Paper [3], our results indicates that if one uses local chemi-
cal environment-independent “average” magnetic exchange couplings
as obtained by employing methods such as CPA, then this will lead to
an overestimation of the Curie temperature for a chemically disordered
FeNi by about 10%.

6.3 implications

In this chapter, we demonstrate the effect of local chemical environ-
ment on the magnetic exchange couplings in disordered FeNi. From
our calculations, we demonstrate a large variation in the first near-
est neighbour Fe-Fe couplings that vary from 4.7 meV to 36.5 meV in
comparison to the value of 26.5 meV for the Fe-Fe magnetic exchange
couplings that are present in a fully ordered FeNi. The use of supercell
technique with different distributions of Fe and Ni atoms allow us to
include effects that occur due to the symmetry-broken local chemical
environment around individual atoms. Note that these effects are not
included in effective mean-field approaches such as CPA. Thus, this
shows that the effects beyond CPA are necessary to obtain accurate
magnitude of magnetic exchange couplings in systems with chemical
disorder.

The absence of the simple relation between the magnitude of the
magnetic exchange couplings and the local chemical environment (upto
second nearest neighbour) around different Fe-Fe pairs present in our
supercells implies that the correlation between the magnitude of the
magnetic exchange couplings and the local chemical environment is
rather long-ranged as can be expected in an itinerant magnetic sys-
tem like FeNi. At the same time, this also makes it very difficult to
incorporate the information about the variations of magnetic exchange
coupling values into a Heisenberg model to obtain Tc.



76 magnetic exchange interactions in l10 -feni

Finally, from our model study of the Heisenberg model with first near-
est neighbour interactions sampled from Gaussian distributions on an
fcc lattice, we demonstrate that the variation occurring in the magnetic
exchange coupling due to the chemical disorder can lead to a reduction
in Tc. This implies that if one uses local environment-independent “av-
erage” magnetic exchange couplings obtained by mean-field approaches
such as CPA to estimate the critical temperature of a disordered system,
then this would lead to an overestimate of the critical temperature in
such systems. Finally, we note that the results presented in this thesis
do not yet allow, for a conclusive understanding of a decrease in Tc with
increasing standard deviation of the Gaussian distribution. Therefore,
this is currently an open question. We will explore more on this in the
future work.

6.4 publication

This work is available as a preprint as »Impact of chemical disor-
der on magnetic exchange interactions in L10-FeNi (tetrataenite)« on
arXiv [3]. I performed all the calculations and wrote the first draft
which was further discussed and corrected by my supervisor C. Ederer.
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We investigate the effect of chemical disorder on the magnetic exchange couplings and the Curie
temperature (Tc) in L10-ordered FeNi using first-principles-based calculations. We use supercells to
model chemical disorder, to account for the specific symmetry-broken local chemical environments
around the individual atoms. We find a very strong variation of the most dominant first-nearest
neighbor Fe-Fe interaction for different inequivalent Fe-Fe pairs, ranging from around 5 meV to
37 meV, compared to a coupling strength of 27 meV in the ordered state. To estimate the influence of
such strong variations of the magnetic coupling constants on the Curie temperature of the disordered
or partially ordered state, we study a simple Heisenberg model with random Gaussian-distributed
nearest neighbor couplings on an fcc lattice. Our Monte Carlo simulations for this model indicate
that strongly varying exchange couplings, such as those obtained for FeNi, can lead to a reduction
of Tc of around 10 % relative to the one obtained using only the average coupling.

I. INTRODUCTION

The chemically ordered ferromagnet L10-FeNi
(tetrataenite) has recently generated considerable inter-
est as a rare-earth-free, low-cost permanent magnet, due
to its high magneto-crystalline anisotropy energy and
large saturation magnetization [1–11]. Since its discov-
ery by Néel and coworkers in the early 1960s [12, 13],
several attempts have been made to synthesize L10-FeNi
with a high degree of chemical order [14–17]. However,
the synthesis of a fully ordered structure remains chal-
lenging, due to the rather low order-disorder transition
temperature, which is around 590 K [12, 13, 18]. At
this temperature, the diffusivity of atoms is too low for
the ordered structure to form on reasonable timescales.
Therefore, “naturally occurring” tetrataenite has only
been found in iron meteorites [19–23]. Due to the
difficulties in obtaining fully ordered samples, it becomes
essential to investigate and understand how deviations
from the perfect order affect the magnetic properties,
in particular the Curie temperature, Tc, and magnetic
anisotropy, of L10-FeNi.

Experimentally, only the Curie temperature of the dis-
ordered system (Tc ≈ 785 K [24, 25]) is accessible, since
the ordered system disorders on heating at tempera-
tures above ∼ 700 K. Thereby, the effective “disordering
temperature” depends strongly on the heating rate [26].
On time-scales typical for magnetization measurements,
disordering occurs around 820 K, i.e., above the Curie
temperature of the disordered system, and results in an
abrupt vanishing of the magnetization [3]. This indicates
that the nominal Curie temperature of the ordered sys-
tem would be noticeably higher than that of the disor-
dered system.

Several previous studies have used first-principles cal-
culations to obtain the Curie temperature in L10-FeNi.
For example, Edström et al. [5] and Tian et al. [9] ob-
tained values for the Curie temperature of the ordered
phase of 916 K and 780 K, respectively, using slightly dif-
ferent electronic structure methods. They also found that

chemical disorder leads to a reduction of the Curie tem-
perature.

Both of these studies have used the coherent-potential
approximation (CPA) [27, 28] to incorporate chemical
disorder in the material. The CPA is based on an effec-
tive medium description of the atomic environments, and
thus provides a very efficient method for the treatment
of disorder effects in random alloys using only a single
unit cell. However, CPA does not include effects related,
e.g,. to the local symmetry-breaking of a specific chemi-
cal environment around an individual atom. Such effects
beyond CPA can be particularly relevant, e.g., for the
magnetic anisotropy, as we showed in our previous work,
where we have used supercells with different distributions
of Fe and Ni atoms to investigate the effect of chemical
disorder [10, 29]. These calculations indicate that, for ex-
ample, a moderate increase in Fe content, while reducing
the degree of chemical order in the system, leads to an
increase of the magneto-crystalline anisotropy energy, an
effect not captured within the CPA.

In the present work, we use first principles calcula-
tions based on density functional theory (DFT) to pro-
vide further insights into the effect of variations in the
local chemical environment on the magnetic exchange
interactions, and consequently the Curie temperature,
in partially ordered FeNi. To model the chemical dis-
order, we follow a similar approach as in our previous
work [10, 29], i.e., we incorporate the effect of a disor-
dered local atomic environment on the magnetic coupling
by employing supercells. We find that treating the disor-
der on a local level gives rise to remarkably strong varia-
tions of the first nearest neighbour Fe-Fe coupling. Our
subsequent analysis of the correlation between the spe-
cific local chemical environment and the corresponding
magnetic exchange couplings indicates that the magnetic
coupling is governed by long range effects that clearly go
beyond the closest neighbor environment. This makes
it extremely challenging to consider such configuration-
dependent couplings for the calculation of Tc and other
thermodynamic properties. In order to obtain a rough es-
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timate of how such strong variations of the magnetic cou-
pling constants will affect the Curie temperature, com-
pared to using only an average coupling, obtained, e.g.
from an effective medium treatment of chemical disorder,
we perform Monte Carlo simulations for a simple Heisen-
berg model with random Gaussian-distributed coupling
constants. We find that variations of the same order as
obtained in our DFT calculations for FeNi can lead to a
reduction of Tc of around 10 %.

In the following, we first describe the computational
method we use to obtain magnetic exchange couplings,
and then present our results for both ordered and par-
tially disordered FeNi.

II. COMPUTATIONAL METHOD

A. Magnetic exchange interactions

Within the (classical) Heisenberg model, the energy
of a magnetic system is expressed as a sum over pair-

wise (bilinear) interactions between localized magnetic
moments:

E = −1

2

∑

i 6=j

JijSi · Sj . (1)

We use the convention that Si is a normalized vector
describing only the direction of the magnetic moment at
site i.

It is well known that, for an itinerant magnetic mate-
rial such as FeNi, the Heisenberg model is not necessarily
a good approximation [30], and Eq. (1) is typically only
valid for not too large fluctuations around the ferromag-
netic ground state. Thus, to calculate magnetic exchange
couplings, Jij , we use the following well-known equation
based on the magnetic force theorem, which is obtained
by considering the energy variation with respect to in-
finitesimal rotations of the magnetic moments [31]:

Jij =
1

2π
Im

∫ εF

−∞
dε

∑

mm′m′′m′′′

∆mm′
i Gm′m′′

ij,↓ (ε)∆m′′m′′′
j Gm′′′m

ji,↑ (ε) . (2)

Here, ∆mm′
i (∆m′′m′′′

j ) is the local exchange splitting on

site i (j), and Gm′′′m
ji,↑ (Gm′m′′

ij,↓ ) is the spin-up (spin-down)
intersite Green’s function. Both quantities are expressed
within a tight-binding-like basis, where each basis-orbital
(with index m) is localized on a specific site.

To evaluate the quantities in Eq. (2), we first obtain
the electronic structure from plane-wave-based density-
functional theory (DFT) calculations, and then trans-
form the corresponding Kohn-Sham Hamiltonian into
a basis of localized Wannier functions [32–35]. As de-
scribed in more detail in Sec. III A, we use Wannier
functions defined by orbital projection and subsequent
orthonormalization (corresponding to the “initial projec-
tions” in the wannier90 code [36]). This leads to a set of
atom-centered basis orbitals. As shown in Sec. III A, an
excellent representation of all occupied bands in FeNi can
be achieved by using a full set of s, p, and d projections
for each atom.

In contrast, constructing maximally localized Wannier
functions (MLWFs) [37] for FeNi, results in a set of Wan-
nier functions where the Wannier orbitals corresponding
to the s and p projections become localized in between
the atoms, and thus cannot be used to evaluate Eq. (2).
This is similar to what has been described for the nearly
free-electron-like bands in fcc Cu (and other 3d transition
metals), see e.g., Ref. 38. Further details are presented
in Sec. III A.

After a suitable set of Wannier functions has been con-
structed, we follow the approach outlined in Ref. [35] to

obtain exchange couplings for different pairs of atoms.

B. Computational details

In order to accommodate both the fully ordered L10
structure of FeNi as well as some configurations with
(partial) chemical disorder, we use an 8-atom cell, corre-

sponding to a
√

2×
√

2× 1 supercell of the conventional
cubic 4-atom fcc unit cell, or, equivalently, to a 2× 2× 1
supercell of the 2-atom tetragonal primitive unit cell of
the L10 structure. For test purposes, we also perform
some calculations for the perfectly ordered L10 structure
using the 2-atom primitive unit cell. In all cases, except
where otherwise noted, we fix the lattice parameters and
atomic positions to that of a perfectly cubic fcc lattice
with lattice constant a = 3.56 Å, and then distribute Fe
and Ni atoms over the available sites within the cell in
different ways.

We perform DFT calculations using the Vienna ab
initio Simulation package (VASP) [39], the projector-
augmented wave method (PAW) [40, 41], and the general-
ized gradient approximation according to Perdew, Burke,
and Ernzerhof (PBE) [42]. Brillouin zone integrations are
performed using the tetrahedron method with Blöchl cor-
rections and a Γ-centered 12× 12× 16 k-point mesh for
the 8-atom cell. The plane wave energy cut-off is set to
550 eV, and the total energy is converged to an accuracy
of 10−8 eV. Our PAW potentials include 3p, 4s, and 3d



3

states in the valence for both Fe and Ni. All calculations
are performed for the ferromagnetically ordered state.

A Wannier representation of the Kohn-Sham Hamil-
tonian is then obtained using the wannier90 code [36],
using the same k-point mesh as for the DFT calculations.
To check the convergence of the calculated magnetic ex-
change couplings with respect to the k-point sampling,
we perform calculations using up to 14×14×18 k-points
and find our results to be sufficiently converged using a
12× 12× 16 k-point mesh.

To obtain the Curie temperature for the ordered case,
using the Heisenberg model, Eq. (1), with the cou-
pling constants obtained from our DFT calculations, we
perform Metropolis Monte Carlo simulations, as imple-
mented in the UppASD package [43]. We consider mag-
netic exchange couplings for all pairs of atoms up to a
distance of 10a (∼ 25.17 Å). To accurately determine
Tc, accounting for potential finite size effects due to the
limited size of our simulation cells, we use the Binder cu-
mulant method [44]. Thus, Tc is obtained as the temper-
ature where the fourth-order Binder cumulants, obtained
for three different cell sizes, cross. We consider cell-sizes
of 20×20×20, 30×30×30, and 36×36×36, relative to
the primitive tetragonal 2-atom cell of the L10 structure.
For the test calculations presented in Fig. 3(b), we use a
cell size of 20× 20× 20.

For the model study presented in Sec. III D, we use a
15 × 15 × 15 supercell of the conventional fcc cubic cell.
We then initialize the magnetic couplings for all near-
est neighbor pairs within this cell individually by draw-
ing random numbers from a Gaussian distribution with
varying standard deviation, σ > 0, and a mean value of
µ = 1. For σ = 0.0, the coupling constants of all near-
est neighbor pairs are identical and equal to the mean of
the Gaussian distribution (µ = 1.0). The Curie temper-
ature for each σ > 0.0 is obtained by taking an average
over 100 instances of the Gaussian-distributed magnetic
exchange couplings with different random seeds. Con-
vergence with respect to the number of instances of the
randomized system has been verified by monitoring the
cumulative average of Tc with increasing number of in-
stances over all 100 samples.

III. RESULTS AND DISCUSSION

A. Construction of Wannier functions

As outlined in Sec. II A, we start by constructing a
set of Wannier functions from orthonormalized projec-
tions on s, p, and d orbitals for each Fe and Ni atom
in the unit cell. We use an outer energy window rang-
ing from −10 eV up to about 31 eV, which contains all
occupied valence bands plus a certain number of empty
bands. Furthermore, in order to accurately reproduce
all occupied bands, we employ a frozen (inner) energy
window from −10 eV up to about 1 eV above the Fermi
energy. The band dispersion (only for the majority spin

FIG. 1. Majority spin bandstructure of chemically ordered
L10-FeNi. Blue and green dots represent the Kohn-Sham and
Wannier-interpolated bands, respectively. Outer and inner
energy windows, Eo and Ei, are indicated on the right side of
the plot. The Fermi level defines zero energy.

component) obtained from the resulting Wannier func-
tions for the minimal 2-atom cell of the fully ordered L10
structure is shown in Fig. 1, together with the underlying
Kohn-Sham bandstructure.

One can see that all bands below ∼ 10 eV are well de-
scribed by the Wannier-interpolated bands. Some weak
oscillations can be seen in the lowest lying, free-electron-
like band around the Γ-point. These are due to the fact
that the k-mesh along the high-symmetry lines used to
obtain the interpolated bandstructure is much finer than
the homogeneous k-mesh used to construct the Wannier
functions, and that, in order to obtain atom-centered
Wannier functions, we do not apply the usual “disentan-
glement procedure” to obtain an optimally k-connected
subspace. We note that the calculation of the magnetic
exchange couplings is based on the original homogeneous
k-point mesh, where the Wannier bands are identical to
the DFT Kohn-Sham bands by construction. For the
minority-spin bands (not shown), we obtain a similar
good agreement between the Wannier-interpolated and
the occupied Kohn-Sham bands.

B. Magnetic interactions in L10-ordered FeNi

Next, we calculate the magnetic exchange couplings
for the ordered L10-phase of FeNi, using the method de-
scribed in Sec. II A. In Fig. 2, we compare the magnetic
exchange couplings obtained in the present study (shown
by the black dots) with those calculated by Edström et
al. [5] (shown by the green triangles). The different sub-
panels show the couplings corresponding to Fe-Fe, Fe-Ni,
and Ni-Ni pairs as a function of distance. Overall, there
is very good agreement between the two data-sets, ex-
cept for a few cases discussed further below. One can see
that the Fe-Fe couplings are strongest and rather long-
ranged while the Fe-Ni and Ni-Ni interaction is weaker
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FIG. 2. Magnetic exchange couplings for (a) Fe-Fe, (b) Fe-
Ni, and (c) Ni-Ni pairs as a function of atomic distance in the
ordered L10 phase of FeNi as calculated in this work (black
dots) and by Edström et al. [5] (green triangles).

and decays rather quickly with distance.
Note that for certain distances (e.g., for the one cor-

responding to second nearest-neighbour distance, dij =

a0 = 3.56 Å), two distinct values for Jij are obtained, de-
pending on the orientation (in-plane versus out-of-plane)
of the corresponding pair relative to the tetragonal axis,
i.e., the axis defined by the long range order. In partic-
ular for the second nearest neighbor Fe-Fe interaction,
this difference is rather large. This already indicates
a strong configuration dependence of the magnetic cou-
pling, which will be further analyzed in Sec. III C using
supercells with partial chemical disorder.

For the second nearest neighbor Ni-Ni pairs, the cou-
pling is rather weak and thus the (absolute) difference
between in-plane and out-of-plane coupling is small. Fur-
thermore, one can see that Fe-Ni couplings for certain
distances are “missing” (e.g., corresponding to second
nearest neighbors on the fcc lattice, dij = a0 = 3.56 Å).
This is due to the arrangement of Fe and Ni atoms in the
underlying L10 structure.

The good agreement between our results and the cal-
culations of Edström et al. (Ref. 5) is remarkable, since
rather different electronic structure methods, involving

FIG. 3. (a) Magnetic coupling constants as a function of
atomic distance multiplied with the cube of the correspond-
ing atomic distance, Jij ·d3ij , calculated for the ordered phase
of FeNi. Coupling constants corresponding to Fe-Fe, Fe-Ni,
and Ni-Ni pairs are shown by black, blue, and green mark-
ers, respectively. (b) Ferromagnetic Curie temperature Tc,
obtained from Monte Carlo simulations, as a function of the
cutoff distance used for the Fe-Fe interactions (see text).

different approximations and basis sets, have been em-
ployed. Furthermore, our calculations are based on a
metrically cubic fcc lattice, whereas Edström et al. have
used tetragonal lattice vectors with a slightly different
c/a ratio. The biggest difference is observed for the sec-
ond nearest neighbor (in-plane) Fe-Fe coupling and the
first nearest neighbor Fe-Ni coupling, for which Edström
et al. obtain a noticeably stronger coupling (by around 7
meV and 5 meV, respectively). Our calculated coupling
constants also appear to be in good agreement with more
recent calculations by Tian et al. [9] [45]

From Fig. 2(a) one can see that there are noticeable
Fe-Fe couplings even for rather large atomic distances.
To further analyze this distance dependence, Fig. 3(a)
shows the same coupling constants as in Fig. 2, but mul-
tiplied with the cube of the corresponding inter-atomic
distances, i.e. Jij ·d3ij . For the Fe-Ni and Ni-Ni couplings,
the corresponding data-points still converge quickly to-
wards zero for large distances, which means that these
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couplings decay with distance faster than d−3ij . On the
other hand, for the Fe-Fe pairs, one can see that the
data-points oscillate and do not seem to decay even for
very long atomic distances. As pointed out in previous
works [5, 46], this indicates an approximate d−3ij depen-
dence of the Fe-Fe interaction which, together with the
oscillatory behavior, is typical for metals with RKKY-
like exchange interactions.

Fig. 3(b) shows the ferromagnetic Curie temperature,
Tc, obtained from Monte Carlo simulations of the Heisen-
berg model, where the Fe-Fe interactions are considered
only up to a certain maximum inter-atomic distance. For
the Fe-Ni and Ni-Ni pairs, all calculated coupling con-
stants have been included, i.e., up to a very large dis-
tance of 10a0. Note that due to the fast decay of these
couplings, the following results should be unaffected by
the specific cutoff-distance used for the Fe-Ni and Ni-Ni
interactions. It can be seen that, due to the long range
of the Fe-Fe interaction, the calculated Tc exhibits strong
variations as function of the Fe-Fe cutoff distance, but
seems to converge to a value around 700 K once all Fe-Fe
interactions up to a distance of around 8 Å are taken into
account. This shows that, in order to obtain a reliable
estimate of Tc in this system, it is essential to include
Fe-Fe interactions up to rather large distances.

Based on these test calculations, we now obtain an
accurate estimate for Tc from Monte Carlo simulations
of the Heisenberg model including all calculated cou-
pling constants up to a maximum distance of 10a0 and
then perform a Binder cumulant analysis, as described
in Sec. II B. We obtain a value of Tc = 736 K. Note that
for the test calculations shown in Fig. 3(b), Tc is ob-
tained simply from the peak position of the calculated
temperature dependence of the specific heat, and thus
differs somewhat from the more accurate value obtained
via the Binder cumulants. Our calculated Tc agrees well
with the value of about 780 K obtained by Tian et al. [9],
whereas the Tc of 916 K obtained by Edström et al. [5]
is noticeably higher. This is due to the stronger second
nearest neighbor Fe-Fe and first nearest neighbor Fe-Ni
coupling constants obtained in Ref. 5 (see Fig. 2). Note
that both our and the value of Tian et al. are lower than
the experimental Tc of the disordered system and thus
seem to underestimate the “true” Curie temperature of
the ordered state.

C. Magnetic interactions for (partially) disordered
FeNi

We now investigate the effect of chemical disorder on
the magnetic exchange couplings by starting from the
fully ordered case, and then successively exchanging the
positions of one or two pairs of Fe and Ni atoms within
an 8-atom supercell, resulting in the two configurations
shown in Fig. 4(b) and (c). Note that all other configu-
rations that can be created by exchanging one Fe-Ni pair
in this 8-atom supercell are equivalent to the one shown

TABLE I. First nearest-neighbour Fe-Fe magnetic exchange
interaction (in meV) for relaxed and unrelaxed 1-pair-
exchanged and 2-pairs-exchanged configurations.

Unrelaxed Relaxed

1-pair-exchanged 7.4 10.1

36.5 38.8

19.1 19.9

4.7 6.8

2-pairs-exchanged 23.1 21.9

14.7 15.5

in Fig. 4(b), whereas several distinct configurations can
be created by exchanging two Fe-Ni pairs. For simplic-
ity we limit our study to the configuration depicted in
Fig. 4(c). In the following, we refer to these two configu-
rations as “1-pair-exchanged” and “2-pairs-exchanged”,
respectively.

In Fig. 5(b), we list the magnetic exchange couplings
obtained for all inequivalent first nearest neighbor Fe-
Fe pairs in the three different configurations. The
corresponding local atomic environments are also indi-
cated and will be discussed further below. One can
see that the calculated values vary drastically, from
4.7 meV to 36.5 meV, while the corresponding value in
the fully ordered structure is 26.5 meV. We note that,
if the nearest neighbor Fe-Fe coupling would be com-
pletely configuration-independent, then all values listed
in Fig. 5(b) would be identical. The large variation
of the Fe-Fe nearest neighbor coupling in the different
cases thus shows that the local chemical environment
has a significant influence on the magnitude of the mag-
netic exchange interactions in FeNi. As already discussed
in Sec. I, such variations are not captured by effective
medium methods such as the CPA, which are often used
to model chemical disorder in alloys.

The magnetic exchange couplings shown in Fig. 5(b)
are obtained by decorating the sites within a perfect fcc
lattice in different ways with Fe and Ni atoms, without
allowing the atomic positions to relax within the result-
ing lower symmetry. In order to assess the effect of such
relaxations, we now recalculate the magnetic coupling
constants for the 1-pair-exchanged and 2-pairs-exchanged
configurations after allowing all atomic positions to re-
lax, while still keeping the lattice vectors of the supercell
fixed. The results for the first nearest neighbor Fe-Fe
couplings are shown in Table I and are compared to the
corresponding values for the unrelaxed case. It can be
seen that the relaxation leads to changes in the magnetic
coupling constants of up to about 2 meV, but the effect
is clearly significantly weaker than the effect due to the
different chemical environments.

The strong configuration dependence of the first near-
est Fe-Fe coupling raises the question of whether it is
possible to identify simple rules on how the strength of
this coupling depends on the local atomic environment.
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FIG. 4. Different ordered and (partially) disordered configurations considered in this work, depicted in the 2 × 2 × 1 supercell
relative to the primitive tetragonal cell of the L10 structure: (a) ordered, (b) 1-pair-exchanged, and (c) 2-pairs-exchanged. Fe
and Ni atoms are represented by red and green spheres, respectively. Dotted lines in (a) indicate the underlying conventional
cubic cell of the fcc lattice.

FIG. 5. (a) Depiction of the shared first nearest and first/second nearest neighbor environment for a pair of nearest neighbor
sites (indicated as red colored spheres) in an fcc lattice. The conventional cubic cell is also shown for clarity. (b) Schematic
showing the occupation of the shared first and first/second nearest neighbour environments for all nearest neighbor Fe-Fe pairs
that are present in the ordered [(i)], 1-pair-exchanged [(ii)-(v)], and 2-pairs-exchanged configurations [(vi)-(vii)] along with the
corresponding values of the magnetic coupling constant J .

For this purpose, we analyze the distribution of atoms on
the sites that are closest neighbors to both Fe atoms form-
ing the pair under consideration. As shown in Fig. 5(a)
there are four such sites, which form a square in the mid-
plane perpendicular to the line connecting the two cou-
pled sites. These four sites represent the minimal envi-
ronment to be considered in any model describing the
configuration dependence of the first nearest neighbor
coupling. The next “shell” around the coupled Fe-Fe pair
is formed by those sites that are first nearest neighbors
to one of the coupled sites and second nearest neighbors
to the other site. There are again four such sites, which
form a rectangle in the plane parallel to the Fe-Fe dis-
tance vector and perpendicular to the plane formed by
the common first nearest neighbors (see Fig. 5(a)).

In Fig. 5, we schematically depict the occupation of
both the shared first nearest and the shared first/second
nearest neighbor sites for all the inequivalent nearest
neighbor Fe-Fe pairs included in the ordered, 1-pair-
exchanged, and 2-pairs-exchanged configurations, along
with the value of the corresponding magnetic exchange
couplings. It is obvious that the shared first nearest
neighbor environment is not sufficient to classify the dif-
ferent coupling constants, since, e.g., cases (iii), (v), and

(vi) all have an equivalent shared first nearest neighbor
environment but exhibit vastly different magnetic cou-
pling constants (including both the highest and lowest
calculated values of 36.5 meV and 4.7 meV). The same
holds for cases (i) and (ii).

Considering both the shared first and first/second
nearest neighbor environment, all inequivalent Fe-Fe
pairs contained in our three configurations exhibit differ-
ent local environments, which is in principle compatible
with a local model for the exchange coupling based on
this environment. However, to really establish or dis-
prove such a model, one has to consider much larger
supercells, that allow to sample more configurations,
and also include cases with identical first/second near-
est neighbor environment but different further neighbor
environment. This would require an excessive computa-
tional effort. Considering that, in general, the applicabil-
ity of a short-range local model for an itinerant magnetic
system such as FeNi is rather questionable, we therefore
refrain from sampling further couplings using larger and
larger supercells. Instead, we try to estimate the effect of
a strong configuration dependence of the magnetic cou-
pling constants on the Curie temperature of a disordered
magnetic system using a simple Heisenberg model with
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FIG. 6. (a) Susceptibility, and (b) specific heat as a func-
tion of temperature (in relative units) obtained from Monte
Carlo simulations for a simple Heisenberg model with only
nearest neighbor couplings on an fcc lattice for the case when
all coupling constants are identical (σ = 0). T0 is the critical
temperature for σ = 0.

random couplings.

D. Model study with random couplings

The very high sensitivity of the magnetic coupling con-
stants on the specific chemical environment, and the high
computational effort to fully resolve this configuration
dependence (if at all possible), represents a big obstacle
for the reliable estimation of magnetic ordering tempera-
tures for disordered itinerant magnets such as FeNi from
first principles calculations. In the following, we there-
fore employ a strongly simplified model to obtain a rough
estimate of how the strong configuration-dependent vari-
ations of the exchange couplings can affect the Curie
temperature of a disordered magnetic system, in com-
parison to the Curie temperature obtained using only
configuration-independent “average” magnetic coupling
constants.

Specifically, we consider a Heisenberg model with only
nearest neighbor interactions on an fcc lattice, and we ap-
proximate the configuration-dependent variations of the
magnetic coupling constants by a Gaussian-distributed
random variable, where the mean value of the Gaus-
sian distribution represents the average coupling con-
stant, and its standard deviation, σ, quantifies the
configuration-dependent variations. We then perform
temperature-dependent Monte Carlo simulations as out-
lined in Sec. II B, and analyze how the obtained Curie
temperature depends on σ, i.e., on the strength of the
variation in the magnetic coupling constants.

Fig. 6 shows the calculated susceptibility (χ) and spe-
cific heat (Cv) as a function of temperature for this model
for the case when all coupling constants are identical to
the average one (σ = 0). One can see that both χ and

FIG. 7. Curie temperature Tc of the Heisenberg model with
Gaussian-distributed coupling constants as a function of the
standard deviation, σ (defined relative to the mean value of
the Gaussian distribution). T0 = Tc(σ = 0) is the Curie
temperature obtained for the average coupling, and the error
bars indicate the standard deviation of the mean obtained by
averaging over 100 instances with different random seeds for
each σ (see text). The black dashed line is a quadratic fit to
the data.

Cv exhibit clear peaks at the same critical temperature
T0. However, since the peak in the susceptibility appears
much sharper than the one in the specific heat, in the fol-
lowing we use the peak value of χ to accurately determine
the Curie temperature as function of σ.

Fig. 7 shows the variation of the average Curie tem-
perature, Tc, relative to T0, as a function of the standard
deviation σ of the Gaussian distributed random mag-
netic coupling constants. Note that σ corresponds to
a Gaussian distribution with a mean equal to the aver-
age magnetic coupling, and is therefore defined relative
to this average coupling. One can see that Tc decreases
with increasing standard deviation σ, i.e. with increasing
“randomness” of the magnetic exchange couplings, and
that this decrease can be fitted well with a quadratic
dependence. This indicates that using configuration-
independent “average” magnetic exchange couplings ob-
tained by effective medium approaches such as CPA are
expected to overestimate the critical temperature of a
disordered system.

If we take the seven different values for the
configuration-dependent nearest neighbor interaction ob-
tained from the ordered, the 1-pair-exchanged, and the
2-pairs exchanged configuration and evaluate the empiri-
cal standard deviation, we obtain σ ≈ 0.6 (relative to an
average value of 18.9 meV). Comparing this with the data
shown in Fig. 7, this would correspond to a reduction of
Tc of about 10 % compared to the value obtained using
only an average coupling strength. We note that this
is clearly a very naive estimation based on a very small
number of samples, but it shows that a strong configu-
ration dependence of the magnetic coupling, as observed
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for FeNi in Sec. III C, can indeed lead to a noticeable
reduction of Tc compared to that obtained from average
effective medium couplings.

Note that the effect of random magnetic exchange
couplings on the magnetic transition temperature of a
Heisenberg model with nearest and next-nearest antifer-
romagnetic coupling on a two-dimensional square lattice
was studied previously by Li et al. [47]. Thereby, the
nearest neighbor coupling was obtained from a homo-
geneous random distribution within a given range, and
it was also found that the transition temperature de-
creases with increasing variation of the random magnetic
exchange couplings.

IV. SUMMARY AND CONCLUSIONS

In summary, we have investigated the effect of chemi-
cal disorder on the magnetic exchange couplings in L10-
FeNi using first principles DFT calculations. Thereby,
we have used supercells with different atomic distribu-
tions, to specifically include effects due to the symmetry-
broken local environments around the individual atoms
that are not included in effective medium approaches
such as CPA. We find that such effects can lead to rather
large variations of the magnetic exchange couplings, ex-
emplified by our analysis of the nearest neighbor Fe-Fe
coupling, which exhibits values ranging from 4.7 meV up
to 36.5 meV, with a value of 26.5 meV obtained for the
fully ordered structure.

Our analysis of the shared first and shared first/second
nearest neighbor chemical environments of the different
inequivalent Fe-Fe nearest neighbor pairs included in our
supercells indicates that the strength of the couplings is
affected by long range effects that go beyond the closest
neighbor shell, as can be expected for an itinerant metal-
lic material such as FeNi. The lack of a simple relation
that relates the variation of an individual Jij (relative
to the corresponding average value) to its local chemical
environment makes it very challenging to incorporate ef-
fects beyond CPA in the calculation of Tc. However, our
simple model study using random Gaussian-distributed
nearest neighbor couplings on an fcc lattice suggests that
such local variations of the coupling constants can lead
to a reduction of Tc of up to 10 %, compared to that
obtained using only an average coupling.

Thus, there is a hierarchy of effects that in general tend
to reduce the magnetic ordering temperature in random
alloys such as partially ordered FeNi. First, the “average”
coupling strength is affected by the chemical disorder.
For example, Tian et al. obtain a reduction of around
30-35 % of the nearest neighbor Fe-Fe coupling obtained
within CPA for the disordered system compared to the
fully ordered case [9]. This is in principle consistent with
our supercell calculations, where the simple average of
this coupling over all inequivalent Fe-Fe pairs in our two
disordered configurations gives about 17.6 meV, i.e., a
reduction by about 35 % compared to the ordered case.

However, one should note that this average is based on
only very few samples. Second, the random connectivity
between different magnetic atoms (Fe and Ni in our case)
will also affect the Curie temperature relative to the or-
dered case, which corresponds to a very regular network
of Fe-Fe, Fe-Ni and Ni-Ni bonds. Finally, the variation
of the coupling strength according to the specific chem-
ical environment around the atoms in the random alloy
can lead to a further decrease of Tc, as indicated by our
simple model. It is mainly this last effect that we have
quantified within this work.

Furthermore, it appears that our first-principles-based
results are underestimating the (hypothetical) Curie tem-
perature of the fully ordered system. It is unclear
whether this underestimation is related to the general
applicability of the (classical) Heisenberg model to FeNi
or whether it is caused by deficiencies of the generalized
gradient approximation in the underlying DFT calcula-
tions (or other approximations in the method). However,
we note that the comparison with the results obtained
by Edström et al. [5] also demonstrates that moderate
changes in specific calculated coupling constants can lead
to rather strong differences in the predicted Curie tem-
peratures.
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Appendix A: Orbital decomposition of nearest
neighbor Fe-Fe coupling

Eq. (2) in principle allows for a decomposition of the
coupling constants Jij into different orbital contributions.
However, for the case of L10-FeNi, the quantities appear-
ing in Eq. (2), in particular the exchange splitting ∆mm′

i ,
contain off-diagonal elements mixing the d and s type
Wannier orbitals. Nevertheless, by restricting the sum-
mation in Eq. (2) to only the diagonal elements ∆mm

i and
considering only contributions from the d-type orbitals,
one can obtain a “d-only” contribution to the magnetic
coupling.

In this way, we obtain a d-only contribution to the Fe-
Fe coupling of 29.6 meV (second row in Table II). This
value is larger than the full value of 27.2 meV (first row
in Table II), obtained by considering all contributions in
Eq. (2), showing that here the combination of sp and
orbitally mixed terms leads to a small negative contri-
bution to Jij [48]. Furthermore, it demonstrates that,
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TABLE II. Magnetic exchange couplings, Jij , for the nearest-
neighbor Fe-Fe interaction in L10-FeNi obtained using differ-
ent sets and subsets of Wannier functions. The first column
indicates the different sets of Wannier functions that have
been constructed, while the second column indicates which
terms are considered in Eq. 2 when evaluating the corre-
sponding Jij . All calculations are performed for the primitive
2-atom unit cell.

Wannier set Terms in Eq. 2 Jij (meV)

d+ s+ p (projections) all 27.2

d+ s+ p (projections) d-only 29.6

d (projections) all 35.7

d (MLWFs) all 43.4

as probably expected, the main contribution to the mag-
netic coupling stems from the d orbitals.

This raises the question of whether it would be suffi-
cient to consider only the d-bands in the first place, i.e.,
construct a smaller set of Wannier functions describing
only the d bands, and still obtain a good estimate for
Jij . To test this hypothesis, we construct two additional
sets of Wannier functions, where we include only five d-
orbitals per atom. For the first set, we obtain the Wan-
nier functions from orthonormalized atomic projections
as before, while for the second set we perform a sub-
sequent minimization of the quadratic spread functional
to obtain MLWFs. In both cases we use an (outer) en-
ergy window ranging from −10 eV to about 5 eV above
the Fermi level and obtain a set of atom-centered d-like
orbitals suitable to evaluate Eq. (2). In both cases also
the Wannier-interpolated bands resemble the DFT band-

structure in the energy range of the d-bands, i.e., between
approximately −5 meV and the Fermi level for the ma-
jority spin channel.

The magnetic coupling constants for the nearest-
neighbour Fe-Fe coupling obtained from these two ad-
ditional sets of Wannier functions are listed in the third
and fourth row of Table. II. It can be seen that the cor-
responding values (in particular for the set of MLWFs)
are significantly larger than the d-only contribution ob-
tained from the full description using also s and p bands.
This shows that, even though the d-orbitals make up the
main contribution to the magnetic coupling constants, it
is nevertheless important to include s and p states to ac-
curately account for their effect on the d band dispersion.
We note that, due to the entanglement of d and sp contri-
butions in the bandstructure of FeNi, the d subset of the
full d+ s+ p Wannier basis and the two different d-only
Wannier sets (projected and MLWFs) are all describing
slightly different subspaces of the occupied Kohn-Sham
states.

Only the d + s + p Wannier set results is a complete
and accurate description of all occupied bands in FeNi,
and therefore only the corresponding value of Jij should
be considered as “correct” (or most accurate). Never-
theless, our analysis raises the question of a potential
basis set dependence of the magnetic coupling constants,
for example in cases where a complete description of all
occupied bands can be achieved using different sets of
Wannier functions, e.g., corresponding to different de-
grees of localization. In the present case, a more system-
atic analysis is hindered by the strong entanglement of
bands and the fact that spread minimization on the full
set of Wannier functions leads to orbitals that are not
atom-centered. We therefore leave this question open for
future research.
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S U M M A RY A N D P E R S P E C T I V E

In this thesis, I present a detailed study on the effect of chemical dis-
order on the magnetic properties in L10-FeNi based on first-principles
based DFT calculations and Monte-Carlo simulations. In the following,
I answer questions that were raised earlier in Chapter 1.

In Chapter 3, I showed that:

■ There exists a strong coupling between the magnetic and chemical
degrees of freedom in L10-FeNi. This result which was obtained
using the supercell approach is consistent with previous studies
employing effective medium type approaches to model the chem-
ical disorder. Furthermore, I showed that the Curie temperature
of the chemically disordered structure is lower as compared to
that of the fully ordered structure.

■ Within the accuracy of our method, the MAE increases with in-
creasing chemical long-range order and reaches its maximal value
for Pz = 0.75. In other words, a decrease in the chemical disorder
by about 25% does not lead to a significant decrease in the MAE
relative to the MAE of a fully ordered equiatomic FeNi.

■ There exists a linear correlation between the average OMA of
Fe atoms and the MAE and this demonstrates that one can use
OMA as a proxy to the MAE in order to optimize the MAE in
L10-FeNi.

In Chapter 4, I showed that:

■ The analysis of the orbital moment anisotropy of Fe atoms and
their corresponding local chemical environment enabled us to
identify a favorable first nearest neighbor chemical environment
that allowed us to design an optimized Fe-rich structure with an
MAE almost two times to that of the fully ordered structure.

■ Analysis of the local atomic environment using the SOAP descrip-
tor reveals that there exists only a partial correlation between the
local orbital moment anisotropy of Fe atoms and its first nearest
neighbors. This correlation vanishes when chemical disorder is
introduced.

■ One can optimize the MAE in this system by increasing the Fe-
content. For the highest considered Fe-content of 62.5%, we ob-
tain the MAE of 93µeV/2-atoms (about 25% more than the MAE
of the L10-FeNi).

In Chapter 5, I showed that:

87
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■ Effects arising due to the incorporation of the second Hund’s
rule can have a significant impact on the magnetic properties, in
particular, the MAE in L10-FeNi.

In Chapter 6, I showed that:

■ The effects occurring due to the different local chemical environ-
ment around a pair of atoms can have significant impact on the
magnitude of the magnetic exchange couplings in FeNi.

■ Our model study of the Heisenberg model with first nearest neigh-
bors interactions sampled from Gaussian distributions with vary-
ing standard deviation indicates that the variation in the mag-
netic exchange coupling occurring due to the chemical disorder
can lead to a reduction in Tc in chemically disordered systems.
Thus, one would overestimate the critical temperature in chemi-
cally disordered systems if local environment-independent “aver-
age” magnetic exchange couplings are used.

The findings in this thesis present new aspects of the important role
played by chemical disorder on the magnetic properties in L10-FeNi.
The use of supercells with different distributions of Fe and Ni atoms
to model the chemical disorder results in the symmetry-broken local
chemical environments around the individual atoms, which is key to
understanding the vital role played by such effects on the magnetic
properties. Thus, I showed that the effects beyond CPA are necessary
to understand the impact of the chemical disorder on the magnetic
properties in FeNi. Note that such effects could also play an impor-
tant role in the accurate estimation of the magnetic properties in other
disordered materials. Thus, the research presented in this thesis is an
important advancement in our understanding of the magnetic prop-
erties in disordered materials, which in turn will allow us to design
functional magnetic materials with better performance.

The work performed in my thesis allows to identify routes for fu-
ture research work. In Chap. 6, we saw that it is extremely challenging
to incorporate the information about the variations of the magnetic ex-
change interaction occurring due to the chemical disorder into a Heisen-
berg model to obtain the Curie temperature. As a next step, one could
employ larger supercells to incorporate the chemical disorder which
would allow to sample more different chemical environments and the
corresponding magnitude of the exchange couplings. This as a result
could allow obtaining an even better estimation of the variation of the
Curie temperature as a function of the standard deviation of the mag-
netic exchange couplings in our model study.

Another research direction could be to focus on further optimizing
the MAE in L10-FeNi. Note that as already mentioned in Sec. 1.3,
optimizing the magnetic properties, in particular, the MAE in L10-FeNi
to match with those of rare-earth-based magnets is a very challenging
task, since the absence of a rare-earth-element causes a significant loss
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of the MAE. However, the MAE could be tuned in FeNi, for example,
by alloying with 3d or 5d elements. For this purpose, the computational
methods used in this thesis, for example, the supercell approach used
to model the distribution of different atomic species should be of great
value since it allows to include effects due to the symmetry-broken local
environments around the individual atoms which are found to be very
important for an accurate estimation of a critical magnetic quantity
such as the MAE.

Recently, Wysocki et al. [168] considered the formation of
FeNi1−xCox alloy by substitutional doping of the L10-FeNi with Co
and identified a new ordered phase, FeNi0.5Co0.5 with a large MAE of
180µeV/atom. In their study, they employed electronic structure cal-
culations along with CPA to model the chemical disorder. One can
revisit this study by employing the supercell approach and investigate
whether the effects occurring due to the different distribution of the
atoms could lead to significant changes in the magnitude of the MAE.
Moreover, one can extend this study by alloying the L10-FeNi with dif-
ferent 3d elements such as Mn, Cr, etc., to study the impact of such
dopants on the MAE in this system.

Further optimization of the MAE in L10-FeNi could be obtained by
alloying with 5d elements. Edström et al. [169] investigated the effect
of adding one atomic percent of 5d impurities (from Lutetium with
atomic number 71 until Mercury with atomic number 80) in L10-FeNi
using the SPR-KKR-CPA method. From their calculations, they found
that there is a strong increase in the MAE as one goes from Lu to Os
and then a rapid decrease as one continues from Os to Hg. One can also
revisit this study by employing the supercell approach and investigate
whether one gets a similar trend in the MAE across the series. Note
that while in this study a low dopant concentration was considered,
a further increase in the MAE could be obtained by increasing the
concentration of 5d dopants.

In Chap. 4, we saw that the SOAP descriptor of the local chemical
environment is able to reveal only a partial correlation between the
local orbital moment anisotropy of Fe atoms and its nearest neighbors.
One could investigate this further by using a different descriptor e.g.,
atomic cluster expansion [170] of the local atomic environment to better
understand this correlation.

Finally, to conclude, with the different routes described above, there
seems to be no physical limitation that could hinder from optimizing
the properties of L10-FeNi in order to reach a performance closer to
that of the rare-earth-based magnets.
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