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Relationship between epithelial organization and 
morphogen interpretation 
Dagmar Iber1,2 and Roman Vetter1,2   

Despite molecular noise and genetic differences between 
individuals, developmental outcomes are remarkably constant. 
Decades of research has focused on the underlying 
mechanisms that ensure this precision and robustness. Recent 
quantifications of chemical gradients and epithelial cell shapes 
provide novel insights into the basis of precise development. In 
this review, we argue that these two aspects may be linked in 
epithelial morphogenesis. 
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Introduction 
Epithelia are among the first tissue types to emerge 
during morphogenesis. A hallmark of epithelia is api
cal–basal polarity (Figure 1). Beneath the apical surface, 
tight junctions create a watertight seal, and control the 
paracellular passage of ions and solutes between epi
thelial cells, while preventing the mixing of apical and 
basal–lateral membranes. The adhesion belt and further 
adhesive junctions along the lateral side stabilize the 
cell–cell contacts. On the basal-most side, epithelia bind 
tightly to the basal lamina. The first epithelial structure, 
the blastula, is a hollow sphere made of a single epi
thelial cell layer. At later stages, multilayered epithelia 
emerge. As development progresses, the simple epi
thelial sheets, tubes, and vesicles grow and deform into 
the complex shapes characteristic of organs and adult 

tissues. These morphogenetic changes are guided by a 
wide range of mechanisms that use chemical signals, 
mechanical constraints, and fluid-flow-induced shear 
stress. As animals develop from a single cell, cells must 
take on the correct fate at the right position and time to 
build a functional organism. Developmental outcomes 
are remarkably constant, despite environmental, inter
individual, and evolutionary changes that alter reaction 
time and patterning length scales [1–3], a phenomenon 
coined as canalization. How such developmental preci
sion and robustness is achieved is still largely unknown. 
While mechanical contributions have recently received 
greater attention, precision of morphogenesis has, so far, 
mainly been studied for gradient-based patterning. 

Morphogen gradient precision 
The measured morphogen gradients can be approxi
mated well either by an exponential function 

=C x C e( ) x
0 (1) 

with an amplitude C0 at the morphogen source at x = 0 
and a decay length λ (Figure 2a), or by a power law 

= +C x A x x( ) ( ) ,m
0 (2) 

where A, m, x0 are positive constants [4–9]. These gra
dient profiles emerge independent of whether mor
phogen transport happens via diffusion or cytonemes  
[10]. Diffusion-based gradients have been argued to be 
more precise for large gradient length, and vice versa  
[11]. Power-law gradients arise from ligand-enhanced 
degradation and are less sensitive to a variable source  
[12], but the shallower gradient profile far away from the 
source limits their usefulness [13]. It has been argued 
that the best cost-precision trade-off can be achieved 
when gradients are read out at about 2λ from the source  
[14], but patterning distances are much larger in the 
neural tube (NT) [7], and SHH-dependent responses 
are observed even in the very dorsal NT, which is more 
than 10λ away from the SHH source [15]. 

According to the French flag model, morphogen gra
dients define different tissue domains via concentration 
thresholds (Figure 2a) [16,17], although intracellular 
regulatory networks can result in more complex de
pendencies [18,19]. In case of a threshold-based readout, 
cells exposed to morphogen concentrations above the 
threshold take on a different fate from cells exposed to 
lower concentrations. Measurements in several devel
opmental systems reveal the direct readouts of the 
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morphogen gradients to be smooth [7,20,17,21]. Sharp 
transitions require ultrasensitive readout mechanisms, 
which may include features such as cooperativity, zero- 
order ultrasensitivity, or hysteresis, among others. Bis
table networks have been explored to explain sharp 
boundaries in development, and to engineer gradient- 
based patterning in synthetic biology approaches  
[21–26]. Also with sharp readouts, noise can still result in 
a transition zone with mixed cell fates (Figure 2b), re
sulting in misaligned boundaries in morphogenetic fields 
of single embryos. As the morphogen concentration de
clines with distance from the source, noise-driven tran
sition zones have been suggested to widen [13]. Cell 
alignment along sharp boundaries can be achieved via 
polarized contractility, adhesion-based cell sorting, and 
cell competition [27–32]. 

Deviations in the readout position, xθ, between embryos, 
i, are referred to as positional error (Figure 2c) 

= xSD{ }.x i, (3) 

The positional error has been reported to be smaller for 
the readout than for the gradient [4,33,34,7], resulting in 
a quest for precision-enhancing mechanisms. Spatial and 
temporal averaging have been proposed to enhance 
precision in the Drosophila blastoderm syncytium [4], 
and the downstream-gap gene network has been sug
gested to act as an optimal decoder of upstream posi
tional information by integrating maternal inputs across 
the embryo [35,36]. Similarly, optimal decoding of the 
opposing SHH and BMP gradients has been proposed to 
explain the high precision of the progenitor-domain 
boundaries in the center of the mouse NT [7]. However, 
the gradient variability had been overestimated, and 
single gradients would be precise enough to pattern the 
center [37]. 

Recent work highlights the importance of dynamics for 
patterning precision in the Drosophila blastoderm. 

Precise patterning can be achieved faster when cellular 
decision times vary, depending on the statistical reali
zation of the noisy signal, as formulated in Wald’s se
quential probability-ratio test [38], and the transient 
dynamics that emerge from the complex regulatory in
teractions in the gap gene network play an important 
role in patterning precision and canalization [19]. 

As concentration gradients spanning orders of magnitude 
are more difficult to image in their entirety than their 
sigmoidal readouts (Figure 2b), the possibility remains 
that the reported higher gradient variability reflects 
technical errors. For the reported molecular noise levels 
in morphogen production, decay, and transport, cell- 
based simulations predict a gradient variability that is 
consistent with the observed precision of readouts, even 
at very large distances from the source [37,39]. Mor
phogen gradients may thus be more precise than thought 
and provide sufficient positional information on 
their own. 

Relationship between cellular organization 
and patterning precision 
Large cell diameters in the patterning direction increase 
gradient variability via their impact on morphogen pro
duction, removal, and transport, while spatial averaging 
over the cell surface or via cilia- or cytoneme-based 
sensing has only a small impact in the cell-based simu
lations (Figure 3a). Here, it is only important to limit the 
cell diameter in patterning direction, but not necessarily 
in the orthogonal directions. Interestingly, in the de
veloping lung, where no gradient-based patterning has 
been described, the apical surfaces are elongated in 
the direction of preferential outgrowth [41], while in the 
NT, where gradients pattern the tissue along the axis of 
preferential outgrowth, this is not the case [42,43]. Many 
ligands are sensed also on the basal–lateral side [44,45], 
but the same principles that apply apically also apply 
basal-laterally: also in this case, smaller cell diameters in 
the patterning direction will result in less variability. As 
morphogens must diffuse through the intercellular space 
to reach the lateral sides, the effective diffusion path is, 
however, longer than the beeline [46]. This phenom
enon is commonly referred to as tortuosity, and alters the 
effective macroscopic morphogen diffusivity. 

The apical surfaces are small in all epithelia that are 
known to employ gradient-based patterning and that 
have been quantified [39]. A small apical surface is not 
necessarily a reflection of small overall cell size, as 
measured by its volume. For one, tissue curvature can 
result in smaller apical surfaces (Figure 1a). In the NT, 
the SHH-sensing cilium is indeed located on the inner, 
apical surface [47], while in the flat Drosophila wing and 
eye discs, cells sense Hh along the entire apical–basal 
axis [45]. Finally, several morphogens, including SHH 

Figure 1  
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Cell polarity in a pseudostratified epithelial layer.   
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Figure 2  
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Morphogen gradient precision. (a) The French flag model and the French flag patterning problem. (b) Transition zones are not necessarily sharp. The 
noisy gradient reaches the readout threshold C(x) = Cθ at several positions (purple dots). The readout position xθ (brown dot) is set as the position where 
the averaged morphogen concentration (pink line) equals the Hill constant of the sigmoidal readout (brown line); alternative definitions exist. (c) 
Variability in the gradients translates into different readout positions. μx is the mean readout position of the three gradients.   

Figure 3  

Current Opinion in Genetics and Development

Relationship between cellular organization and patterning precision. (a) Morphogen gradients across tissues with small cell diameters are less variable 
than with large cell diameters. (b) Spatial concentration averaging over cell neighborhoods reduces gradient variability only little; long-range 3D cell 
contacts may increase this effect. Colors as below in the epithelium. Bottom: Nonlocal cell neighborship in the mouse lung epithelium as seen on the 
apical surface, reproduced with modifications from Ref. [40]. Green and blue cells are in direct contact with the red cell somewhere along the 
apical–basal axis, even though on the surface, only green neighbors are apparent. (c) The complex noncolumnar shape of cells in pseudostratified 
epithelia may give rise to an apparent imprecision of domain boundaries (blue/white). Inset: Epithelial cells in the monolayer epithelium of the developing 
mouse lung. Dataset from Ref. [40]. All noisy gradients are artificially created for illustration. 
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and ligands of the TGF-β and the WNT family, have 
been shown to increase the apical–basal height of epi
thelial cells, and thus shrink the cell diameter, via their 
impact on actin polymerization, myosin localization, and 
activity [48–50]. Morphogen signaling itself may thus 
result in small epithelial cell diameters — a relationship 
that deserves further clarification. 

For narrow cells, the nucleus — albeit deformable — is 
wider than the average cell diameter (Figure 1), and the 
nuclei disperse along the apical–basal axis, a phenom
enon commonly referred to as pseudostratification  
[40,51]. During mitosis, the nuclei must locate to the 
apical surface. As there is insufficient space to accom
modate all nuclei apically, they move toward the basal 
side during the G1 phase, and back to the apical surface 
during the G2 phase in a process termed interkinetic 
nuclear migration (IKNM) [51]. The evolutionary 
driving force behind the emergence of pseudostratifica
tion has so far remained elusive, but may now be ex
plicable with the importance of slim cells for high 
patterning precision. 

Cells in pseudostratified epithelia change their neighbor 
relationships several times along the apical–basal axis in 
an effort to minimize the surface area that covers their 
complex cell shapes [40]. They are thus in contact with 
many more cells than what is apparent on the apical or 
basal cell surface (Figure 3b), and potentially sense li
gands over a wider distance. The neighbor relationships 
change dynamically over time, facilitating the sorting of 
epithelial cells to create sharper boundaries [32,40]. 

Going forward, it will be important to analyze expres
sion domain boundaries in 3D. Cells or nuclei that may 
appear as if they were in the ‘wrong’ position in 2D slices 

may actually be in the correct domain (Figure 3c). Given 
the fluidity of cell contacts, establishing sharp boundaries 
may not be as relevant as producing cells of a certain type 
in correct numbers, as determined by the size of in
dividual domains. The size of interior domains is more 
precise than the position of their domain boundaries if the 
gradient shape remains exponential because changes in 
the gradient amplitude shift the position of the domain 
without altering its size (Figure 4) [37]. 

Conclusion and outlook 
Patterning precision has long been analyzed with a focus 
on the information content of chemical gradients. It is 
becoming increasingly evident that tissues achieve high 
patterning precision not only by minimizing molecular 
noise in chemical reactions, but also by controlling cell 
and tissue geometry [2,39]. Mechanical stress patterns 
that depend on the cellular contractility and substrate 
stiffness may also contribute to tissue patterning [52]. 
Finally, tissue patterning and growth are intricately 
linked. Morphogens control not only patterning, cell 
differentiation, and cell shapes, but also the tissue 
growth rate [6]. How embryos control tissue size and 
how patterns scale with domain size remains a field of 
intense inquiry (e.g. [9,53–57]). Synthetic gradients  
[58,53,59] and computational frameworks that enable 
high-resolution 3D cell-based tissue simulations [60] are 
promising tools to understand how nature achieves ro
bust and reliable patterning to an extent that the same 
molecular patterning mechanism can be reused in evo
lution, despite large changes in tissue size and devel
opmental rate. 
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