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Abstract

Biological systems possess a remarkable ability to adapt to and withstand the
dynamic environments they populate. This ability, often referred to as home-
ostasis, is realized by sophisticated regulatory machinery, frequently in the
form of feedforward or negative feedback loops. In engineering, robustness to
uncertainty in the system and its environment is often addressed using the prin-
ciples of control theory. Due to the immense complexity and uncertainty faced
when trying to engineer biological systems, synthetic biologists have started
adopting these principles for genetic circuit engineering.

One such uncertainty in the engineering of genetic circuits is the strong
context dependence of the genetic parts used. Often this leads to unexpected
and unintended circuit behavior. An important instance of this context depen-
dence is competition for shared limited resources. On the gene expression level,
this manifests as a negative correlation between co-expressed genes, such that
the expression level of one gene decreases as the expression of another gene
increases. In Chapter 2, we describe the characterization of the competition
for shared limited resources in the context of transient transfections in mam-
malian cells. We show how several common genetic regulatory strategies are
affected and in particular focus on the effect of microRNA target number and
location on an mRNA on resource allocation. Further, we describe a mathemat-
ical modeling framework that enables the extension of existing mathematical
models to the resource-limited regime. Based on the collected insights and the
mathematical framework, we implement both endogenousmicroRNA- and syn-
thetic microRNA-based incoherent feedforward loops to mitigate the effects of
changes in resource availability on a target gene.

In Chapter 3 we address context sensitivity of genetic circuits more gener-
ally by engineering genetic antithetic integral and proportional-integral feed-
back circuits in mammalian cells. We show that integral feedback reliably
adapts to changes in the degradation rate of a regulated transcription factor ex-
pression at different expression levels. Furthermore, we demonstrate that the
regulated transcription factor is insensitive to the interacting network struc-
ture by adding an additional negative feedback loop to its regulation. To fur-
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ther improve the variability in the regulated transcription factor expression,
we augmented the antithetic integral feedback motif with proportional nega-
tive feedback to realize proportional-integral feedback. We show that in ad-
dition to adapting to increased degradation at different expression levels, the
proportional-integral feedback circuit also reduces the variability in the expres-
sion of the regulated transcription factor. By changing the resource availability
through the expression of additional genes, we show that both the integral and
proportional-integral feedback circuits successfully mitigate the competition
for shared and limited resources. Lastly, we suggest the applicability of our
genetic proportional-integral feedback circuit in a simulation study of a cell
therapy approach to type 1 and type 2 diabetes.

In this thesis, we have contributed towards a better understanding of con-
text sensitivity of genetic circuits in synthetic biology by identifying resource
limitations in mammalian cells and provide potential solutions to the problem
via genetically engineered incoherent feedforward, integral and proportional-
integral feedback loops. The contributions made in this thesis could help ad-
vance genetic circuit engineering in mammalian cells and could contribute to
the development of robust biomedical therapies.
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Zusammenfassung

Biologische Systeme besitzen eine bemerkenswerte Fähigkeit, sich an die dy-
namischen Umgebungen, die sie besiedeln, anzupassen und diesen zu widerste-
hen. Diese Fähigkeit, die oft als Homöostase bezeichnet wird, wird durch aus-
geklügelte Regulationsmechanismen realisiert, häufig in Form von Forwärts-
kopplungs- oder negativen Rückkopplungsschleifen. In der Technik wird die
Robustheit gegenüber Ungewissheiten im System und seiner Umgebung häufig
anhand der Prinzipien der Regelungstheorie angegangen. Aufgrund der enor-
men Komplexität und Ungewissheit, mit der man konfrontiert wird, wenn man
versucht, biologische Systeme zu konstruieren, haben synthetische Biologen
damit begonnen, diese Prinzipien für die genetische Schaltungskreistechnik zu
übernehmen.

Eine solche Unsicherheit bei der Konstruktion genetischer Schaltkreise ist
die starke Kontextabhängigkeit der verwendeten genetischen Teile. Oft führt
dies zu unerwartetem und unbeabsichtigtem Verhalten des Schaltkreises. Ein
wichtiges Beispiel für diese Kontextabhängigkeit ist die Konkurrenz um ge-
meinsam genutzte begrenzte Ressourcen. Auf der Genexpressionsebene ma-
nifestiert sich dies als negative Korrelation zwischen koexprimierten Genen,
so dass das Expressionsniveau eines Gens abnimmt, wenn die Expression ei-
nes anderen Gens zunimmt. In Kapitel 2 beschreiben wir die Charakterisie-
rung der Konkurrenz um gemeinsame begrenzte Ressourcen im Zusammen-
hang mit transienten Transfektionen in Säugerzellen. Wir zeigen, wie mehre-
re gängige genetische Regulationsstrategien betroffen sind, und konzentrieren
uns insbesondere auf die Auswirkung der Anzahl und Position von microRNA-
Bindestellen auf einer mRNA auf die Ressourcenallokation. Darüber hinaus
beschreiben wir einen mathematischen Modellierungsrahmen, der die Erwei-
terung bestehender mathematischer Modelle auf das ressourcenbegrenzte Re-
gime ermöglicht. Basierend auf den gesammelten Erkenntnissen und dem ma-
thematischen Rahmen implementieren wir sowohl endogene microRNA- als
auch synthetische microRNA-basierte inkohärente Forwärtskopplungsschlei-
fen, um die Auswirkungen von Änderungen der Ressourcenverfügbarkeit auf
ein Zielgen zu mildern.
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Zusammenfassung

In Kapitel 3 befassen wir uns allgemeiner mit der Kontextsensitivität, in-
demwir genetisch antithetische Integral- und Proportional-Integral-Rückkopp-
lungsschaltungen in Säugetierzellen entwickeln. Wir zeigen, dass sich das inte-
grale Rückkopplung zuverlässig an Änderungen der Abbaurate eines regulier-
ten Transkriptionsfaktors auf verschiedenen Expressionsniveaus anpasst. Dar-
über hinaus zeigen wir, dass der regulierte Transkriptionsfaktor unempfindlich
gegenüber der interagierenden Netzwerkstruktur ist, indem wir seiner Regula-
tion eine zusätzliche negative Rückkopplungsschleife hinzufügen. Um die Va-
riabilität in der Expression des regulierten Transkriptionsfaktors weiter zu ver-
bessern, haben wir das antithetische integrale Rückkopplungsmotiv mit pro-
portional negativer Rückkopplung erweitert, um eine proportional-integrale
Rückkopplung zu realisieren. Wir zeigen, dass der Proportional-Integral-Rück-
kopplungsschaltkreis zusätzlich zur Anpassung an den erhöhten Abbau bei
verschiedenen Expressionsniveaus auch die Variabilität in der Expression des
regulierten Transkriptionsfaktors reduziert. Durch die Änderung der Ressour-
cenverfügbarkeit durch die Expression eines zusätzlichen Gens zeigen wir, dass
sowohl die integralen als auch die proportional-integralen Rückkopplungskrei-
se die Konkurrenz um gemeinsam genutzte und begrenzte Ressourcen erfolg-
reichmildern. Schließlich schlagen wir die Anwendbarkeit unserer genetischen
Proportional-Integral-Rückkopplungsschaltung in einer Simulationsstudie ei-
nes Zelltherapieansatzes für Typ-1- und Typ-2-Diabetes vor.

In dieser Dissertation haben wir zu einem besseren Verständnis der Kon-
textsensitivität in der synthetischen Biologie beigetragen, indem wir Ressour-
cenbeschränkungen in Säugetierzellen identifiziert haben undmögliche Lösun-
gen für das Problem durch gentechnisch hergestellte inkohärente Forwärts-
kopplungs-, Integral- und Proportional-Integral-Rückkopplungsschleifen bereit-
stellen. Wir hoffen, dass die in dieser Dissertation geleisteten Beiträge dazu
beitragen können, die genetische Schaltungstechnik in Säugetierzellen voran-
zutreiben und zur Entwicklung robuster biomedizinischer Therapien beizutra-
gen.
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Chapter One

Introduction

This chapter has been adapted from a short review published in Current
Opinion in Systems Biology under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International license (CC
BY-NC-ND 4.0; https://creativecommons.org/licenses/by-nc-nd/4.0/).

Frei, T., & Khammash, M. (2021). Adaptive circuits in synthetic biology.
Current Opinion in Systems Biology, 28, 100399

1.1 Adaptive circuits in synthetic biology
To survive, biological systems need to adapt to the ever-changing environment
that they inhabit. This connection between adaptation and survival is consid-
ered a defining property that distinguishes the living from the non-living (Reece
et al., 2014). Analogously, in manmade systems, engineers frequently design
systems that adapt to unwanted perturbations or disturbances allowing them
to robustly carry out their intended function. The properties that enable such
adaptive behavior have been a subject of active research in the field of control
theory. This shared interest in adaptation in natural and engineered systems
is now increasingly being exploited in synthetic biology, where the theoretical
insights from control theory are being used to design genetic circuits and ge-
netically engineered cells that robustly operate in variable environments and
without complete knowledge of the interactions that affect the system.

Adaptive synthetic biological systems hold great promise in the treatment
of disease. In particular, they provide the ability to restore adaptation where it
was lost due to disease. This is the case in illnesses that are directly attributed
to the loss of homeostasis (Kotas & Medzhitov, 2015), an actively maintained
constant internal state. Indeed, recent advances in synthetic biology and ge-
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Incoherent Feedforward Negative Feedback

YX1 Xn…

Uncertain network with
 parameters 𝜃

Adaptation ofY  to changes in parameter 𝜃 :

Y

X

Adaptation ofY  to changes in U :

Figure 1.1: A mathematical description of adaptation. Adaptation can be assessed by looking
at how the variable of interest 𝑌 in steady state changes with respect to what it adapts to.
Mathematically, this can be expressed as the derivative of 𝑌 with respect to either the input
𝑈 (incoherent feedforward loops) or the parameters 𝜃 (negative feedback) at steady state. The
closer this expression is to zero the better the adaptation will be and it is considered perfect if
either d𝑌

d𝑈
or d𝑌

d𝜃
are approximately equal to zero. For incoherent feedforward loops adaptation is

improved by matching the terms 𝐹 and 𝐺𝐻which can be seen as making the direct and indirect
effects of the input 𝑈 on the variable of interest 𝑌 roughly the same. For negative feedback
systems, adaptation improves with the term 𝐺𝐻 becoming larger than 𝐹, which is the same
as increasing the strength of the feedback by either making the variable of interest 𝑌 have a
greater effect on ℎ (𝐻 = 𝜕ℎ

𝜕𝑌
) or analogously by letting ℎ have a greater effect on the variable of

interest 𝑌 (𝐺 = 𝜕𝑓
𝜕ℎ
).

netic circuit engineering have since enabled the construction of sophisticated
biological devices capable of partially restoring homeostasis (Kemmer et al.,
2010; Rössger et al., 2013; Xie et al., 2016; Smole et al., 2017).

In the context of this thesis, we consider adaptation not in the evolutionary
sense, but as a property of a network that results from suitable dynamic regu-
lation leading to reduced sensitivity to external influences or system perturba-
tions. Theoretical studies have identified several network motifs with charac-
teristic interactions that are capable of producing this type of adaptive behavior
(Ma et al., 2009). More recently, classes of network motifs that produce perfect
adaptation have been described in the deterministic and stochastic setting (Xiao
& Doyle, 2018; Aoki et al., 2019; Gupta & Khammash, 2022). Here, we examine
two of the most important and widely prevalent adaptive motifs: incoherent
feedforward loops, and negative feedback loops (Figure 1.1), focusing on their
use in synthetic circuits.
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Figure 1.2: Incoherent feedforward loop motifs. (a) The network motif that composes an
incoherent feedforward loop is shown embedded between an unknown upstream network and
an unknown downstream network. The input species U is sensed through the production of
species Z1. The signal from species Z1 is then passed on to species Z2 and 𝑍3. Species Z2
negatively affects the levels of species 𝑍3 to realize the incoherent aspect of the feedforward
loop. The 𝑍3 species finally interacts with a downstream network trough the output species
𝑋. Shown on the right is a prototypical response of an incoherent feedforward loop to a step
change in its input. Saturation of repression from Z2 or if 𝑍3 is only removed when interacting
with Z2 will yield perfect adaptation. (b) A genetic circuit that can adapt to changes in resource
availability through a microRNA-based incoherent feedforward loop. By sensing the amount
of available resources in the expression levels of the synthetic microRNA FF4 the expression
levels of two fluorescent proteins mCitrine and mRuby3 can be adapted to changes in resource
allocation.

Incoherent feedforward loops
Discovered as a prototypical motif in biological signaling and natural gene reg-
ulatory networks (Mangan & Alon, 2003), the incoherent feedforward loop has
become a recurring theme in synthetic biology due to its simple and diverse
implementation opportunities. In one of its minimal realizations, the incoher-
ent feedforward loop motif consists of three species (Figure 1.2a). Species Z1
is produced in response to an input U and activates the production of two ad-
ditional species Z2 and 𝑍3. The species Z2 then negatively affects the levels of
the output species 𝑍3 to realize the incoherent feedforward component of the
network. While negative feedback circuits can adapt to perturbations in the
network structure or parameters and to certain exogenous inputs, the incoher-
ent feedforward motif generally only adapts to changes in the input U. Viewed
from the perspective of signal processing, the incoherent feedforward loopmay
also be viewed as a filter that removes unwanted dynamics from an incoming
signal (Zechner et al., 2016). The level of adaptation depends on specific reac-
tion rates in the motif (Ferrell Jr, 2016) and can be improved (Figure 1.2a, left
panel bottom) through the choice of the constituent components (matching 𝐹
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and 𝐺𝐻 as in Figure 1.1). Since its discovery, the incoherent feedforward motif
has been realized in several synthetic gene circuits (Basu et al., 2004; Entus et
al., 2007; Guo & Murray, 2019).

One successful application of the incoherent feedforward loop motif is in
the adaptation to variation of gene copy numbers. This was first achieved in
mammalian cells where intronically-expressed microRNAs were used to target
the mRNA they were spliced from. Here, an incoherent feedforward loop was
implemented that has the gene copy number as its input and hence adapts to
its fluctuations (Bleris et al., 2011). Other studies have since used the same
principle for similar purposes (Strovas et al., 2014; Lillacci et al., 2018; Frei et
al., 2020). More recently, bacterial promoters have been engineered that are
repressed by transcription-activator-like effectors (TALEs) (Segall-Shapiro et
al., 2018). By constitutively expressing the TALE from the same plasmid as
the repressible-promoter-driven output, it was shown that it can near-perfectly
adapt to many different causes of plasmid copy number variability.

Amulti-output incoherent feedforward loopwas implemented using a tran-
scriptional repressor in bacteria (Bondí et al., 2017). The incoherent feedfor-
ward motif has further also been extended to perform more complex computa-
tions (Lillacci et al., 2018; Lormeau et al., 2021; Benzinger et al., 2021).

Negative feedback loops

Another simple way to realize adaptive circuits is through negative feedback
using either repressive or degradation-inducing interactions. The ongoing dis-
covery of novel interactions within this category has lead to a wealth of simple
synthetic negative feedback circuits (Shimoga et al., 2013; Bloom et al., 2015;
Kelly et al., 2018; Guinn & Balázsi, 2019). The earliest reported synthetic in-
stance of such a negative feedback system is in (Becskei & Serrano, 2000), where
autoregulatory negative feedback was used to reduce the expression variabil-
ity of the self-repressing fusion protein TetR-EGFP. This self-repressing realiza-
tion has later been extended to linearize the non-linear dose-response curves
inherent to inducible promoters in yeast (Nevozhay et al., 2009). Moreover,
recently this has also been adapted to a pair of orthogonally and linearly in-
ducible promoters in mammalian cells (Szenk et al., 2020). Another variation of
this self-repression approach also appeared as a genetic circuit in mammalian
cells (Stapleton et al., 2012). Here, the autoregulatory negative feedback was
however chosen such that the repression acts on translation rather than tran-
scription. Alternatively to implementing negative feedback on the transcrip-
tional or translational level, a recent study used a de novo-designed protein
pair to realize post-translational negative feedback (Ng et al., 2019).
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(a) Autocatalytic integral feedback loop motif (b) Biological implementation
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Figure 1.3: Autocatalytic feedback loops. (a) The autocatalytic feedback motif is shown em-
bedded in some unknown network. The species 𝑍 catalyzes its own production and its levels
are negatively affected by the output species of the unknown network Xn. Species 𝑍 interacts
with the unknown network through species X1. Note that to be a valid feedback loop there
has to be a path from species X1 to species Xn as is shown in dark gray. A disturbance to the
dynamics of an arbitrary species in the unknown network is shown as a zigzagging blue ar-
row. On the right, we show how this motif is expected to react to disturbances in the unknown
network. Here, we compare the closed-loop system — one with an embedded motif — to an
open-loop system that lacks this motif. Adaptation is only achieved in the closed-loop system.
(b) A simple genetic circuit that exploits cell division as the autocatalytic process and induced
killing through quorum sensing implements autocatalytic feedback. Constitutive production
of LuxI and LuxR produces and senses the small molecule AHL. AHL is secreted and by binding
to LuxR induces the expression of the LacZα-ccdB killer gene.

While simple negative feedback circuits are well-understood and relatively
easy to implement, they do not in general achieve perfect adaptation. As has
been recognized in several studies (Shoval et al., 2011; Drengstig et al., 2012;
Briat, Zechner, et al., 2016), autocatalysis or positive feedback implements what
is sometimes referred to as constrained integral feedback (Xiao & Doyle, 2018).
Integral feedback is a particular type of negative feedback that has been shown
in control theory to guarantee perfect adaptation. In this motif, as is shown
in Figure 1.3a, an unknown network interacts with a molecular species or cell
type 𝑍 through node Xn in an inhibitory way. Furthermore, species 𝑍 catalyzes
its own production and acts on the unknown network through node X1. For
a feedback loop to be closed, there has to be a path along which the levels of
species X1 influence the levels of species Xn. An alternative interpretation of
species 𝑍 is as a cell type. A reason why such an interpretation is useful is the
fact that proliferating cells naturally realize autocatalysis or positive feedback.
Every cell makes a copy of itself as it divides. In fact, this motif might be at the
heart of tissue size control (Lander et al., 2009; Buzi et al., 2015).
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A synthetic instance of autocatalytic feedback has been realized in E. coli
for population size control (You et al., 2004). Here, the authors used the produc-
tion of the quorum sensing molecule acyl-homoserine-lactone (AHL), which is
produced at a rate proportional to the number of cells, to induce the production
of a killer gene through which cell density is downregulated (Figure 1.3b). This
circuit can be seen as a realization of the autocatalytic feedback motif (Xiao &
Doyle, 2018). Although the focus of the study (You et al., 2004) is population
density control, an analysis of the genetic circuit as an autocatalytic feedback
motif suggests that the controlled variable, Xn is in fact AHL. This observation
is clarified by viewing the cells themselves as the autocatalytic entity. More-
over, it was observed that increasing the degradation rate of AHL in themedium
by increasing medium pH leads to an increase in cell density, 𝑍, which suggests
that the system is compensating for an increased loss of AHL in the medium.

Antithetic integral feedback motif
More recently, a promising class of negative feedback circuits was described
which are also capable of realizing integral feedback. The core motif has been
termed antithetic integral feedback and can be implemented with two species
(Briat, Gupta, et al., 2016). As is shown in Figs. 1.4 and 1.5a, these two species,
Z1 and Z2 interact in such a way that they sequester each other’s function.
Furthermore, Z2 is produced at a rate proportional to the controlled species Xn
and acts as a sensor, while species Z1 is constitutively produced and acts on
the unknown network through X1. A biological implementation of this motif
was introduced in (Aoki et al., 2019; Lillacci et al., 2017) and has been shown
to be capable of perfectly adapting to disturbances in the controlled variable as
depicted in Figure 1.5b. To the best of our knowledge, this is the first genetic
circuit to specifically implement integral feedback control in a living organism.
A variant of this circuit has been realized in a cell-free system as well (Agrawal
et al., 2019). An alternative implementation of the antithetic feedback motif
in bacteria utilized small RNAs to realize quasi-integral control (Huang et al.,
2018). It is known from theoretical analyses of the antithetic motif that sub-
stantial degradation or dilution of the two species in the motif leads to leaky
integration. If substantial, this leakiness leads to a departure from the per-
fect adaptation, unless it is mediated by increased loop gains (Aoki et al., 2019;
Qian & Del Vecchio, 2018). Since RNA species are generally short-lived in bac-
teria this makes RNA-based implementations in fast dividing cells challenging.
While RNAs have a fast turnover rate in bacteria, in mammalian cells this is
not generally the case (Milo & Phillips, 2015). This has made a recent imple-
mentation of the antithetic integral feedback motif in mammalian cells possi-
ble, where sense mRNA and anti-sense RNA sequester each other to inhibit the
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Figure 1.4: Schematic of the canonical antithetic integral feedback motif. The antithetic inte-
gral feedback motif is realized by two species, commonly referred to as Z1 and Z2. These two
species together with four reactions constitutes the antithetic integral feedbackmotif. Each one
of these reactions may be assigned a particular role in the motif. The reaction labeled actuation
that produces species X1 at a rate 𝑘 enables the controller to exert influence on the controlled
network and with that on the output species of interest Xn. The reaction that produces species
Z1 at the rate 𝜇, labeled as reference, defines the steady-state expression of the output species
Xn. In the reaction labeled comparison which occurs at a rate 𝜂, the expression levels of the two
species are compared and the difference between the two levels is computed. Lastly, the levels
of the output species Xn are sensed at a rate 𝜃 in the reaction labeled sensing.

translation of the mRNA and realize the antithetic motif (Frei et al., 2021).

1.2 Translating genetic circuit cartoons into
ordinary differential equations

Mathematical modeling is starting to establish itself as an invaluable tool in
synthetic biology. It accelerates both the design and troubleshooting of engi-
neered genetic circuits by enabling the construction and testing of hypotheses
without needing to run laborious experiments. Many introductory texts that
teach mathematical modeling in the context of systems and synthetic biology
exist, however these often approach the subject more theoretically than most
practicing synthetic biologists are familiar with.
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Figure 1.5: Antithetic integral feedback loops. (a) An antithetic motif is shown embedded in
an unknown network. The state of the output species Xn is sensed in the levels of species Z2.
Species Z1 is produced at a constant rate and reacts with species Z2 through sequestration.
Species Z1 further interacts with the unknown network through species X1. For the system
to form a valid feedback loop, there has to be a path through which the levels of X1 affect
the levels of species Xn. This is illustrated in dark gray in the graphic. A disturbance to the
dynamics of an arbitrary species in the unknown network is depicted as blue zigzagging arrow.
The ideal response of the output species Xn to disturbances in the unknown network in closed-
loop feedback with an antithetic integral feedback loop is shown on the right. The open-loop
response of a system lacking antithetic feedback is shown as comparison. (b) The bacterial
transcription factor AraC is sensed by the antithetic motif by activating the expression of the
rsiW gene. The anti-σ factor RsiW sequesters the σ factor SigW, which is inducibly expressed
through the LuxR system. SigW finally activates the expression of AraC to close the feedback
loop. As a readout, the fluorescent protein sfGFP is also expressed from the same transcript as
AraC. To introduce a targeted disturbance, theMf Lon protease is inducibly expressed through
the TetR system. Both AraC and sfGFP are fused to degradation tags which are recognized by
the protease. Therefore, upon addition of aTc the expression of the Mf Lon protease is induced
and the expression levels of AraC and sfGFP are perturbed.

Here, we will attempt to provide a recipe that describes the translation of
genetic circuit cartoons into mathematical ordinary differential equation mod-
els. The proposed recipe consists of three steps, first, one is given or draws a
cartoon of a genetic circuit based on a description or idea. Second, since there
are usually many implicit assumptions about the specifics of the interactions
depicted in these cartoons, a set of reactions and constraints that represent the
aspects of the cartoon one wants to model are written down. Third and finally,
the set of reactions is translated into a set of ordinary differential equations
with the help of a lookup table.

The first step in the recipe is the most informal as many different depictions
of genetic circuits are used in the synthetic biology literature. While there exist
endeavors to standardize the representations of genetic circuits (Galdzicki et al.,
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Figure 1.6: Circuit cartoon of sense/antisense implementation of the antithetic integral feed-
back motif. Details of the motif are elaborated in Chapter 3 of this thesis. Reaction number 3
from Table 1.1 is not depicted in the cartoon.

Table 1.1: Reactions of an implementation of the antithetic integral feedback motif.

Nr. Reaction Description

1 ∅
𝜇

Z1 Production of Z1 (reference in Fig. 1.4).

2 Z1
k

Z1 + Out. Z1-dependent production of the output
(actuation in Fig. 1.4).

3 Out.
𝛾

∅ Degradation/dilution of output.

4 Out.
𝜃

Out. + Z2 Output-dependent production of Z2
(sensing in Fig. 1.4).

5 Out. + Dist.
𝜔

Dist. Output- and disturbance-dependent
degradation of the output.

6 Z1 + Z2
𝜂

∅ Z1- and Z2-dependent sequestration of
Z1 and Z2 (comparison in Fig. 1.4).

2014; Baig et al., 2021), these are often limited in their expressiveness and do
not capture the wealth of interactions possible in biology. Chemical reaction
network theory provides a rigorous framework in which most biomolecular
circuits may be represented (Gunawardena, 2003). However, most depictions
of genetic circuits do not adhere to such a rigorous framework, although there
does appear to be some convergence to a limited set of common syntax choices
for cartoon representations of genetic circuits.

To illustrate the recipe, we will use an implementation of the antithetic in-
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1. Introduction

tegral feedback motif as an example of which we will derive a simple ordinary
differential equation model. The cartoon of the circuit is depicted in Fig. 1.6
and in this case already concludes step 1. For step two, we will elaborate on the
assumptions not explicitly made in the cartoon that lead to the set of reactions
collected in Table 1.1. To derive a useful model in terms of ordinary differential
equations, we generally assume that all biomolecular species are well mixed
and in sufficiently high copy numbers such that all molecules belonging to the
same species may be treated equally. Since the production of the sense mRNA
(labeled as reaction 1 in Fig. 1.6), which we will refer to as species Z1, does not
depend on any species that has time-dependent amounts we model it as zeroth
order reaction. The Z1-dependent production of tTA-mCitrine-SMASh (reac-
tion 2 in Fig. 1.6), referred to as Output, however depends on the amounts of
the species Z1 present in the system. Since the species Z1 is not consumed in the
reaction, wemodel it as a first order catalytic production reaction. Although not
depicted explicitly in Fig. 1.6, we commonly assume that all molecular species
within a cell are either actively degraded or dilute over time due to cell growth
and division. We therefore include a reaction that models the removal of the
Output species. This reaction falls into the category of first order reactions,
since the rate of removal depends on the amount of the output species present
in the system. One may notice that we have not assumed any degradation or
dilution of the two controller species Z1 and Z2. This is due to the fact that the
antithetic integral feedback motif specifically requires that the two controller
species are only removed by sequestration. More details on this are provided
in Section 1.4 and Chapter 3. The production of the antisense RNA, referred to
as Z2, depends on the amount of Output species. However, the Output species
does not get consumed in the reaction and we therefore model it as a first or-
der catalytic reaction. In the depicted circuit the disturbance used to test for
perfect adaptation is shown as the interaction of the Output species with the
small molecule Asunaprevir, which we will call the Disturbance. Since this re-
action depends both on the amount of Output species and Disturbance species
we model it as a second order reaction that only has the Disturbance species
as a product, due to the induced degradation of the Output species. Finally and
arguably most importantly for the antithetic integral feedback motif, we model
the interaction of the two controller species Z1 and Z2 as a sequestration where
the reaction rate depends on both species. Therefore, this is a again a second
order reaction. However, this time the reaction does not have a product since
both species remove each other’s function.

Once all the reactions one wants to model have been identified and listed,
similar towhat has been done in Table 1.1, one can use the lookup table Table 1.2
to construct a system of ordinary differential equations that model the time
evolution of the concentrations of the individual species. To do so, the reactions

10



1.2. Translating genetic circuit cartoons into ordinary differential equations

Table 1.2: Reaction lookup table.

Nr. Reaction
Term

Substrate Product

0t
h 1 ∅ k

A d𝐴(𝑡)
d𝑡 = 𝑘

1s
t

3 A
k ∅ d𝐴(𝑡)

d𝑡 = −𝑘𝐴(𝑡)

A
k

B d𝐴(𝑡)
d𝑡 = −𝑘𝐴(𝑡) d𝐵(𝑡)

d𝑡 = 𝑘𝐴(𝑡)

A
k

A + A d𝐴(𝑡)
d𝑡 = 𝑘𝐴(𝑡)

2, 4 A
k

A + B d𝐵(𝑡)
d𝑡 = 𝑘𝐴(𝑡)

A
k

B + C d𝐴(𝑡)
d𝑡 = −𝑘𝐴(𝑡) d𝐵(𝑡)

d𝑡 = d𝐶(𝑡)
d𝑡 = 𝑘𝐴(𝑡)

2n
d

6 A + B
k ∅ d𝐴(𝑡)

d𝑡 = d𝐵(𝑡)
d𝑡 = −𝑘𝐴(𝑡)𝐵(𝑡)

A + B
k

A d𝐵(𝑡)
d𝑡 = −𝑘𝐴(𝑡)𝐵(𝑡)

5 A + B
k

B d𝐴(𝑡)
d𝑡 = −𝑘𝐴(𝑡)𝐵(𝑡)

A + B
k

C d𝐴(𝑡)
d𝑡 = d𝐵(𝑡)

d𝑡 = −𝑘𝐴(𝑡)𝐵(𝑡) d𝐶(𝑡)
d𝑡 = 𝑘𝐴(𝑡)𝐵(𝑡)

A + B
k

A + B + C d𝐶(𝑡)
d𝑡 = 𝑘𝐴(𝑡)𝐵(𝑡)

A + A
k ∅ d𝐴(𝑡)

d𝑡 = −2𝑘𝐴(𝑡)2

A + A
k

A d𝐴(𝑡)
d𝑡 = −𝑘𝐴(𝑡)2

A + A
k

B d𝐴(𝑡)
d𝑡 = −2𝑘𝐴(𝑡)2 d𝐵(𝑡)

d𝑡 = 𝑘𝐴(𝑡)2

in Table 1.1 are identified with the equivalent reactions in the lookup table
and the corresponding terms are added to get a differential equation for every
species. This is illustrated in Eq. (1.1).

d𝑍1(𝑡)
d𝑡

= (
d𝑍1(𝑡)
d𝑡

)
𝑃1

+ (
d𝑍1(𝑡)
d𝑡

)
𝑆6

d𝑍2(𝑡)
d𝑡

= (
d𝑍2(𝑡)
d𝑡

)
𝑃4

+ (
d𝑍2(𝑡)
d𝑡

)
𝑆6

d𝑋(𝑡)
d𝑡

= (
d𝑋(𝑡)
d𝑡

)
𝑃2

+ (
d𝑋(𝑡)
d𝑡

)
𝑆3

+ (
d𝑋(𝑡)
d𝑡

)
𝑆5

(1.1)

Here, indices are used to indicate if the species is either a substrate (S) or
product (P) and is combined with the reaction number that relates it to the
reactions in Table 1.1. Once all the terms have been identified, we arrive at the
model shown in Eq. (1.2).
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1. Introduction

d𝑍1(𝑡)
d𝑡

= 𝜇 − 𝜂𝑍1(𝑡)𝑍2(𝑡)

d𝑍2(𝑡)
d𝑡

= 𝜃𝑋(𝑡) − 𝜂𝑍1(𝑡)𝑍2(𝑡)

d𝑋(𝑡)
d𝑡

= 𝑘𝑍1(𝑡) − 𝛾𝑋(𝑡) − 𝜔𝐴(𝑡)𝑋(𝑡)

(1.2)

In the above equations, we use 𝑋(𝑡) for the output and 𝐴(𝑡) for the distur-
bance.

General antithetic integral feedback motif model
To arrive at a more general model of the antithetic integral feedback controller,
we allow the controlled network to be of an arbitrary size. For this we replace
𝑋(𝑡) in Eq. (1.2) with the state vector of the controlled network X(𝑡) of length 𝑛
corresponding to the number of species in the network. The networks dynam-
ics are given by 𝑔(X(𝑡)) and we actuate on the system through species X1. This
is represented by the term 𝑒1𝑘𝑍1(𝑡), where 𝑒1 = [1, 0, … , 0]T of length 𝑛 and 𝑘 is
the reaction rate of the actuation reaction. We assume that the last species Xn
in the network is sensed and controlled robustly. The full system of equations
reads:

d𝑍1(𝑡)
d𝑡

= 𝜇 − 𝜂𝑍1(𝑡)𝑍2(𝑡)

d𝑍2(𝑡)
d𝑡

= 𝜃𝑋𝑛(𝑡) − 𝜂𝑍1(𝑡)𝑍2(𝑡)

dX(𝑡)
d𝑡

= 𝑔(X(𝑡)) + 𝑒1𝑘𝑍1(𝑡).

(1.3)

1.3 Resource limitations
Work in bacterial synthetic biology (Ceroni et al., 2015; Qian et al., 2017) has
identified competition for shared limited resources as a source of unexpected
behavior when engineering genetic circuits. In these studies, it was postulated
that resources required for gene expression, such as RNA polymerases and ri-
bosomes, exist in limited and conserved quantities within a cell. Due to this,
genes will compete for these resources when they are expressed and indirectly
affect each others expression levels. More specifically, this leads to the expres-
sion levels of genes being anticorrelated, an increase in expression of one gene
leads to a decrease in expression of all other genes that share a common pool
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1.4. Limitations of antithetic integral feedback control

of limited resources. The details of this phenomena are elaborated in Chapter 2
of this thesis.

To mitigate this effect, incoherent feedforward loops have been applied.
Two recent studies (one of which is reproduced as Chapter 2 in this thesis)
apply different incoherent feedforward loop implementations in mammalian
cells to adapt gene expression to changes in cellular resource allocation. In
one, an endoribonuclease that cleaves RNA upon recognition of a particular
secondary structure — a so-called hairpin — was used to knock down the trans-
lation of an mRNA that encoded said hairpin. By placing both the gene for the
endoribonuclease and the hairpin-encoding mRNA on the same plasmid, an
incoherent feedforward motif was constructed (Jones et al., 2020). In another
study, the microRNA-based incoherent feedback loop from (Lillacci et al., 2018)
was modified to adapt multiple genes to variations in resource availability (Fig-
ure 1.2b) (Frei et al., 2020,Chapter 2). Furthermore, this work implemented a
minimal incoherent feedforward motif capable of mitigating resource burden
by exploiting endogenous microRNAs.

Negative feedback circuits have also been used to address issues that arise
from competition for limited and shared cellular resources. To confront this
issue in bacteria, a promoter that natively activates under burdened conditions
was used to expresses a guide RNA that together with the dCas9 protein adap-
tively represses the expression of other synthetic constructs in the cell (Ceroni
et al., 2018). In another recent study, self-repression on the promoter level by a
dCas9/guide RNA complex was utilized to eliminate competition for the shared
dCas9 protein in CRISPRi circuits in bacteria (Huang et al., 2021).

1.4 Limitations of antithetic integral feedback
control

While its simple structure makes the antithetic feedback motif an attractive
topology to implement genetically, some technicalities related to specific choices
about its implementationmay demand a deviation from the conditions required
for achieving robust perfect adaptation. In this section, we will briefly describe
some of these technicalities. In particular, we will discuss the effects of re-
source dependence, the effects of saturation of either the sensing or actuation
reactions and the effect of degradation or dilution of the controller species on
the robustness of the set point.
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1. Introduction

Resource dependence
As briefly introduced in Section 1.3 and elaborated on more in Chapter 2, com-
petition for limited resources induces an indirect coupling of expressed genes.
Most and especially high copy number genetic implementations of the anti-
thetic integral feedback motif will also be affected by this phenomena and its
consequences may directly influence the robustness properties of the output
species. We will illustrate this by extending the model of the canonical anti-
thetic integral feedback motif introduced in Section 1.2 with resource limited
production reactions.

d𝐶𝑍1(𝑡)
d𝑡

= 𝛼𝑍1𝑅𝑖𝑌𝑚(𝑡) − (𝛽𝑍1 + 𝜇)𝐶𝑍1(𝑡)

d𝑍1(𝑡)
d𝑡

= 𝜇𝐶𝑍1(𝑡) − 𝜂𝑍1(𝑡)𝑍2(𝑡)

d𝐶𝑍2(𝑡)
d𝑡

= 𝛼𝑍2𝑅𝑗𝑋𝑛(𝑡) − (𝛽𝑍2 + 𝜃)𝐶𝑍2(𝑡)

d𝑍2(𝑡)
d𝑡

= 𝜃𝐶𝑍2(𝑡) − 𝜂𝑍1(𝑡)𝑍2(𝑡)

(1.4)

In Eq. (1.4) we have introduced the two additional species CZ1
and CZ2

to
denote the complex formed by binding of the substrate species with a resource.
We have further also introduced a substrate speciesYm for the controller species
Z1. The set point for the output species Xn is now no longer 𝑋𝑚 = 𝜇

𝜃 but also
includes the steady-state of the free resource species Ri, Rj and the substrate
species Ym. Explicitly, the new set point is

𝑋𝑛 =
𝜇
𝜃
𝐶𝑍1
𝐶𝑍2

=
𝜇
𝜃

𝜁−1𝑍1

𝜁−1𝑍2

𝑅𝑖
𝑅𝑗
𝑌𝑚. (1.5)

Here, we have lumped the parameters regarding the complexes as 𝜁𝑍1 ∶=
(𝛽𝑍1 + 𝜇)/𝛼𝑍1 and 𝜁𝑍2 ∶= (𝛽𝑍2 + 𝜃)/𝛼𝑍2 . In the expression shown in Eq. (1.5),
the steady states of the species Ri, Rj and Ym may depend on parameters of
the unknown network and would therefore not be robust to their variation.
In particular, the steady state of the resource species Ri and Rj will depend
on the steady states of all the species whose production they catalyze. That
way, shared resources couple the expression of the controller species Z1 and Z2
to the species in the unknown network they are controlling. Furthermore, the
substrate species Ym will often also depend on the steady-state level of a shared
resources, further complicating the situation.

To set up a framework for assessing how robustness may be recovered for
resource burdened systems, we assume an order on the resource pools con-
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1.4. Limitations of antithetic integral feedback control

sidered. For example, following the central dogma of molecular biology, we
may assume a general pool of transcriptional Rtxs and a pool of translational
resources Rtsl, we order them as ∅ → Rtxs → Rtsl → Rtxs → …. The conse-
quence of this order is that species created by resources from the transcriptional
pool will catalyze the creation of other species together with resources from
the translational pool. We also assume the order to be circular, which may be
interpreted in the example as transcription factors, produced by translational
resources, catalyzing the production of mRNA with the help of transcriptional
resources. To account for an arbitrary number of resource pools, we define the
order ∅ → R1 → … → Rn → Rk → … with k ∈ {1, … , 𝑛 − 1} and where every
Ri with i ∈ {1, … , n} is a distinct set of resources. In this order, we allow for
resource pools that precede the loop by allowing Rk to be any resource pool
except for the last resource pool Rn.

Assuming sufficient freedom in the choice of implementation robustness
may be recovered. This may be done by choosing the controller species such
that they are produced by the initial pool of resources. In that case, we have𝑅𝑖 =
𝑅𝑗 = 𝑅1 and the fraction in Eq. (1.5) will cancel. Since we chose the resource to
be the first in the order there is also no resource affecting the species Ym and
the set point will now be decoupled from changes in resource availability. This
gives the steady state for Xn as:

𝑋𝑛 =
𝜇
𝜃

𝜁−1𝑍1

𝜁−1𝑍2

𝜎𝑚. (1.6)

Here, we introduce 𝜎𝑚 to indicate the steady state of Ym that does not de-
pend on any resource pool.

Sensing saturation

The gene expression response of an inducible promoter often has a sigmoidal
shape. This can be partially explained by both the cooperative nature of tran-
scription factor binding and limited binding capacity of the promoters. Specifi-
cally the latter property leads to the saturation of the gene expression response.
Under saturation the change in expression is effectively zero even when more
transcription factor is being produced. Early work in enzyme kinetics has de-
rived mathematical expressions that model these sigmoidal response curves.
Most famously, work by Hill, and Michaelis and Menten (Hill, 1910; Michaelis,
Menten, et al., 1913) has produced compact expression commonly used tomodel
saturation in biomolecular reactions.
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𝑓 (𝑥) = 𝛼 + (1 − 𝛼) 𝑥ℎ

𝜅ℎ + 𝑥ℎ
(1.7)

In this equation we have also introduced a parameter 𝛼 to model basal ex-
pression that is independent of the amount of 𝑥. Specifically, we use the con-
straint 0 ≤ 𝛼 ≤ 1 to vary the amount of basal expression. In the extremes,
if we let 𝛼 = 0, then there would be no basal expression at all, whereas if we
let 𝛼 = 1 then all expression would be basal. The exponent ℎ can be inter-
preted as a measure of cooperativity and the parameter 𝜅 may be derived akin
to a Michaelis-Menten constant as a fraction of the sum of the forward and the
catalytic reactions over the backward reaction.

To potentially capture more realistic implementations of the antithetic in-
tegral feedback motif, we replace the sensing reaction term in Eq. (1.2) with a
more general production reaction.

d𝑍1(𝑡)
d𝑡

= 𝜇 − 𝜂𝑍1(𝑡)𝑍2(𝑡)

d𝑍2(𝑡)
d𝑡

= ̂𝜃𝑓 (𝑋𝑛(𝑡)) − 𝜂𝑍1(𝑡)𝑍2(𝑡)
(1.8)

Specifically, we have replaced the 𝜃𝑋𝑛(𝑡) term with ̂𝜃𝑓 (𝑋𝑛(𝑡)) in Eq. (1.8)
to then arrive at an expression for the steady state of species Xn with a more
general sensing reaction. We introduce ̂𝜃 since in the formulation in Eq. (1.8) 𝜃
no longer has units 1/[𝑇 𝑖𝑚𝑒] but now has units [𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠]/[𝑇 𝑖𝑚𝑒]. The steady-
state expression in Eq. (1.9) will hold for any invertible 𝑓.

𝑋𝑛 = 𝑓 −1 (
𝜇
̂𝜃
) (1.9)

If we then consider the case of a hill-type activation function as was intro-
duced in Eq. (1.7), then the inverse function is

𝑓 −1(𝑥) = 𝜅 (𝑥 − 𝛼
1 − 𝑥

)
1/ℎ

. (1.10)

Plugging the inverse function from Eq. (1.10) into the steady-state expres-
sion for Xn in Eq. (1.9), we get

𝑋𝑛 = 𝜅(

𝜇
̂𝜃
− 𝛼

1 − 𝜇
̂𝜃

)

1/ℎ

. (1.11)

Given that we require that𝑋𝑛 ∈ ℝ≥0, we find that the expression in Eq. (1.11)
provides both an upper and a lower bound on the set point. The bounds can be
deduced from the inequality in Eq. (1.12).
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1.4. Limitations of antithetic integral feedback control

𝜅 (

𝜇
̂𝜃
− 𝛼

1 − 𝜇
̂𝜃

)

1/ℎ

≥ 0 (1.12)

Reducing the above expression, we find that 𝛼 ≤ 𝜇
̂𝜃
< 1. Interpreting these

bounds, we find that to obtain an admissible set point we want to chose it such
that it exceeds the basal fraction of the sensing reaction and remains below 1.

Actuation saturation
Similar to sensing saturation, actuation saturation puts bounds on parameters
for which robust perfect adaptation remains possible. To illustrate this, we
adapt Eq. (1.3) by changing the term 𝑒1𝑘𝑍1(𝑡) to 𝑒1𝑘̂𝑓 (𝑍1(𝑡)). Again, in this
formulation the units of 𝑘 change from 1/[𝑇 𝑖𝑚𝑒] to [𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠]/[𝑇 𝑖𝑚𝑒] and we
replace it by 𝑘̂ to reflect this. This gives the following system of equations:

d𝑍1(𝑡)
d𝑡

= 𝜇 − 𝜂𝑍1(𝑡)𝑍2(𝑡)

d𝑍2(𝑡)
d𝑡

= 𝜃𝑋𝑛(𝑡) − 𝜂𝑍1(𝑡)𝑍2(𝑡)

dX(𝑡)
d𝑡

= 𝑔(X(𝑡)) + 𝑒1𝑘̂𝑓 (𝑍1(𝑡)).

(1.13)

To see how the saturation of the actuation reaction imposes bounds on the
parameters, we solve for the steady state of species Z1. This gives

𝑍1 = 𝑓 −1(−1
𝑘̂
𝑔1(X)). (1.14)

To go from the more general solution obtained in Eq. (1.14) to a more par-
ticular form, we assume the same 𝑓 as previously introduced in Section 1.4 and
Eq. (1.7). Since we require that 𝑍1 ∈ ℝ≥0, we again obtain an inequality

𝜅 (
−1
𝑘̂
𝑔1(X) − 𝛼

1 + 1
𝑘̂
𝑔1(X)

)

1/ℎ

≥ 0. (1.15)

Reducing this inequality gives the constraints 𝛼 ≤ −1
𝑘̂
𝑔1(X) < 1. Unfor-

tunately, this formulation requires knowledge of the function 𝑔 to rationally
select parameters such that the constraints hold. Furthermore, generally when
engineering a biological system one cannot manipulate the parameters in the
controlled network. However, since we may have the ability to change the
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actuation reaction rate 𝑘̂, one may attempt to satisfy these bounds by experi-
mental trial and error. Additionally, the steady state of the controlled network
will depend on the set point 𝜇

𝜃 . Therefore, the bounds may also be satisfied
by changing the set point. However, the steady state of Z1 may depend non-
trivially on the set point and direct satisfaction of the bounds may be hard to
achieve.

Degradation / dilution
As has been shown in Briat, Gupta, et al., 2016, the integral action of the con-
troller is revealed by taking the difference d𝑍1(𝑡)

d𝑡 − d𝑍2(𝑡)
d𝑡 and integrating, which

gives

(𝑍1 − 𝑍2)(𝑡) = 𝜃 ∫
𝑡

0
(
𝜇
𝜃
− 𝑋𝑛(𝑠)) d𝑠. (1.16)

From Eq. (1.16) it can be seen that the integral over the error between the
set point and the controlled species Xn is realized in the difference between the
two controller species Z1 and Z2.

In biology, most molecules are constantly turned over and therefore a more
accurate model of the antithetic integral feedback circuit should incorporate
dilution and/or degradation of the controller species. Adding these reactions to
the model in Eq. (1.3) gives

d𝑍1(𝑡)
d𝑡

= 𝜇 − 𝜂𝑍1(𝑡)𝑍2(𝑡) − 𝜙𝑍1(𝑡)

d𝑍2(𝑡)
d𝑡

= 𝜃𝑋𝑛(𝑡) − 𝜂𝑍1(𝑡)𝑍2(𝑡) − 𝜓𝑍2(𝑡)

dX(𝑡)
d𝑡

= 𝑔(X(𝑡)) + 𝑒1𝑘𝑍1(𝑡).

(1.17)

Here, we have introduced dilution/degradation by subtracting the terms
𝜙𝑍1(𝑡) and 𝜓𝑍2(𝑡) to their respective equations. Reevaluating the integral action
with the updated model gives

(𝑍1 − 𝑍2)(𝑡) = 𝜃 ∫
𝑡

0
(
𝜇
𝜃
− 𝑋𝑛(𝑠) −

𝜙
𝜃
𝑍1(𝑠) +

𝜓
𝜃
𝑍2(𝑠)) d𝑠. (1.18)

Now, the error integrated over does no longer only depend on the set point
but also the levels of the controller species. Because the levels of the controller
species will also depend on the reaction rates in the controlled network, the
controlled species Xn will no longer be robust to changes in these parameters
as well as changes in the network structure.
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The most straightforward way to mitigate this effect is by ensuring that
the dilution/degradation rates 𝜙 and 𝜓 are low such that their contribution is
minimized. Alternatively, increasing the sensing reaction rate 𝜃 will decrease
the contribution of the dilution/degradation of the controller species Z1 and
Z2. However, when increasing the rate 𝜃 one should also increase the reference
reaction rate 𝜇 to maintain the set point at the desired level.
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Chapter Two

Characterization and mitigation
of gene expression burden in
mammalian cells

This chapter was published in Nature Communications under a Creative
Commons Attribution 4.0 International License (CC BY 4.0;
https://creativecommons.org/licenses/by/4.0/).

Frei, T., Cella, F., Tedeschi, F., Gutiérrez, J., Stan, G.-B., Khammash, M., &
Siciliano, V. (2020). Characterization and mitigation of gene expression

burden in mammalian cells. Nature communications, 11(1), 1–14

2.1 Abstract
Despite recent advances in circuit engineering, the design of genetic networks
in mammalian cells is still painstakingly slow and fraught with inexplicable
failures. Here, we demonstrate that transiently expressed genes in mammalian
cells compete for limited transcriptional and translational resources. This com-
petition results in the coupling of otherwise independent exogenous and en-
dogenous genes, creating a divergence between intended and actual function.
Guided by a resource-awaremathematical model, we identify and engineer nat-
ural and synthetic miRNA-based incoherent feedforward loop (iFFL) circuits
that mitigate gene expression burden. The implementation of these circuits
features the use of endogenous miRNAs as elementary components of the en-
gineered iFFL device, a versatile hybrid design that allows burden mitigation
to be achieved across different cell-lines with minimal resource requirements.
This study establishes the foundations for context-aware prediction and im-
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provement of in vivo synthetic circuit performance, paving the way towards
more rational synthetic construct design in mammalian cells.

2.2 Introduction
Mammalian synthetic biology facilitates the study of diverse biological pro-
cesses including gene regulation (Brinkman et al., 1995), developmental pat-
terns (Bamforth et al., 2001), evolution (Farquhar et al., 2019), and cancer pro-
gression (Liu et al., 2000). More recently, it has gained clinical relevance, offer-
ing powerful new tools for the engineering of recombinant proteinproducing
cells (Stuible et al., 2018) and for the creation of novel cell-based therapies for
clinical use (M. Xie et al., 2016; Siciliano et al., 2018; Caliendo et al., 2019). Prior
to cell engineering, the synthetic parts and the behavior of their resulting de-
vices are tested and characterized via transient transfection in the desiredmam-
malian cell lines. However, often the discrepancy between expected and actual
behavior leads to numerous design–build–test–learn iterations (MacDonald &
Siciliano, 2017; di Bernardo et al., 2012), which are particularly expensive and
time consuming (Xiang et al., 2018) in mammalian cells.

At the core of the problem is the poor predictability of gene expression (di
Bernardo et al., 2012) in transfected cells arising from the dependence of gene
expression on the cellular context. In particular, the often overlooked depen-
dence of exogenous genetic circuits on limited host resources that are shared
with endogenous pathways frequently leads to unanticipated and counterin-
tuitive circuit behaviors (Borkowski et al., 2016). In bacterial cells, substan-
tial progress towards increasing the predictability of gene expression has been
made by showing that exogenous genetic material imposes a significant burden,
resulting in decreased growth rates and degraded cellular performance (Ceroni
et al., 2015). This has been attributed to the diversion of the pool of resources
available for gene expression (Li et al., 2014; Scott et al., 2010) towards tran-
scription and translation of the newly introduced synthetic payloads. These
observations prompted the development of models that consider gene expres-
sion in a resource-limited context (Carbonell-Ballestero et al., 2016; Qian et al.,
2017; Weiße et al., 2015; Gyorgy et al., 2015) and led to approaches for miti-
gating the impact of resource burden in bacteria (Huang et al., 2018; Ceroni
et al., 2018). Analogous studies in Saccharomyces cerevisiae showed that tran-
scription and translation are limiting processes (Kafri et al., 2016). For example,
the use of potent transactivators — such as the DOX-inducible rtTA — causes a
squelching shortage of general transcription factors for native gene expression
in yeast (Gouda et al., 2019). In mammalian cells, while performance short-
comings of synthetic circuits due to transactivator dosage and plasmid uptake
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variation (Lillacci et al., 2018) have been observed, a deeper understanding of
the problem of resource burden and methods for its mitigation are still miss-
ing. Competition for endogenous resources can have detrimental effects on ba-
sic and translational biology. For instance, in studies based on transient DNA
expression, genes that are used to normalize the results might be subject to
resource-dependent expression coupling (e.g. protein levels measured by flow
cytometry are usually normalized to the expression levels of the transfection
marker, which is also used as a measure of transfection efficiency).

Here, we investigate the burden imposed by transiently expressed synthetic
circuits on host cells (Fig. 2.1). Through the design of genetic constructs that al-
low us to uncouple transcription and translation processes, we separately study
transcriptional and translational burden caused by cellular resource sharing. In
particular, we engineer several regulatory circuits composed of a tunable load,
called X-tra (eXtra Transgene), which we genetically express in the host cell in
varying amounts. We then measure the impact of this tunable load on a “sen-
sor” gene, whichwe refer to as the capacitymonitor (Fig. 2.1a). We demonstrate
in different mammalian cell lines that the sharing of transcriptional and transla-
tional resources in the host cell can tightly couple otherwise independently co-
expressed synthetic genes and lead to trade-offs in their expression (Fig. 2.1a).
To enhance the predictability of synthetic devices in mammalian cells, we ex-
plicitly incorporate these load-sharing effects in a general mathematical model
in which we replace the rates of resource-dependent reactions with adjusted
effective rates (Fig. 2.1b). This framework follows ideas originally used to cap-
ture the competitive interaction of multiple inhibitors with an enzyme (Chou
& Talaly, 1977) and has been applied to describe shared cellular resources in
previous studies (Carbonell-Ballestero et al., 2016; Qian et al., 2017; Weiße et
al., 2015; Gyorgy et al., 2015; Rondelez, 2012). We demonstrate the usefulness
of this modeling framework by showing that it successfully recapitulates the
non-monotonic dose–response behavior of a simple inducible gene expression
system observed in Lillacci et al. (Lillacci et al., 2018). Additionally, we in-
vestigate the role of posttranscriptional regulators, like RNA-binding proteins
(RBPs) and microRNAs (miRNAs), in mitigating the impact of burden-induced
coupling and find that both are able to reallocate resources, making them can-
didates for use in burden-mitigation circuits. Using these observations, and
guided by our modeling framework, we identify the incoherent feedforward
loop (iFFL) as a network topology that is particularly effective at resource bur-
den mitigation, and then we use endogenous and synthetic miRNA regulation
to engineer iFFL-based, burden-mitigating synthetic circuits (Fig. 2.1c). While
miRNA-based iFFL circuits have been previously constructed and proposed to
buffer gene expression against noise (Siciliano et al., 2013; Carignano et al.,
2018) and fluctuations in external inducer concentration (Strovas et al., 2014),
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Figure 2.1: Resource sharing and the origin of gene expression burden. a Characterization of
gene expression burden. Expression of independent exogenous genes impacts on host cellular
resources. Thus, perturbations in one gene’s expression (hereby named X-tra) affect the ex-
pression of a second gene (hereby named capacity monitor). b Modeling of gene expression in
a resource-limited environment. Modeling of gene expression is generally performed under the
assumption of unlimited resources. A simple framework enables the straightforward transfor-
mation of such a model to a system that incorporates resources explicitly. The transformation
involves a simple function that scales the original reaction rate. c Mitigation of gene expression
burden. A simple microRNA-based circuit motif is capable of mitigating the burden-induced
coupling of X-tra and the capacity monitor. It should be noted that the dynamic range of X-
tra also slightly decreases as a consequence of mitigation. However, as it will be discussed in
the results section and shown in Supplementary Fig. A.19, the absolute expression of X-tra is
higher with mitigation.
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in this study we demonstrate that they also act to rescue the expression level
of genes of interest despite changes in available cellular resources due to the
loading effects of transgene constructs (Fig. 2.1c). Our findings pave the way
to more realistic output predictions and optimal synthetic construct design in
mammalian cells.

2.3 Results

Genetic circuits compete for limited shared resources
We reasoned that competition for finite cellular resources would introduce an
indirect coupling in the expression levels of two otherwise independently ex-
pressed genes. To test this, we cotransfected HEK293T cells with two consti-
tutively expressed fluorescent proteins mCitrine and mRuby3 driven by EF1α
promoters, in molar ratios ranging from 1:4 to 4:1, for a total of 50 ng (low)
or 500 ng (high) of encoding plasmid (Fig. 2.2a). The competition for limited
resources is expected to shape gene expression as presented in Fig. 2.2a, ac-
cording to the modeling framework that will be introduced in Fig. 2.4a (model
described in Supplementary Note A.2). As expected, the total amount of 500
ng of encoding plasmids results in a dramatic drop of encoded-gene expres-
sion as compared to 50 ng (Fig. 2.2a, right). Furthermore, in both experimental
conditions mCitrine and mRuby3 fluorescence levels are negatively correlated;
the higher the amount of expressed mCitrine, the lower that of mRuby3 and
vice versa (Fig. 2.2a, right); this correlation was also more severe for 500 ng of
transfected plasmid than for 50 ng.

We demonstrated that the negative correlation is promoter independent:
using a CMV and a PGK promoter (Qin et al., 2010) that have different expres-
sion strength in HEK293T and H1299 (Supplementary Fig. 2.1a), we observed
analogous outcomes (Supplementary Fig. 2.1b–e). Further, by combining dif-
ferent molar ratios of mCitrine and mRuby3 encoding plasmids driven by two
promoters of different strengths (EF1α or EFS) a similar behavior to Fig. 2.2a
was observed (Supplementary Fig. 2.2). Finally, as many synthetic circuits rely
on tunable gene expression, we next tested resource competition on transcrip-
tional inducible systems, by modulating X-tra repression with a Doxycycline
(Dox)-repressed promoter (Fig. 2.2b) at different concentrations of Dox (from 0
to 1 μg/mL) while keeping capacity monitor amounts constant (Fig. 2.2b, left).
Consistent with previous results, we observed that increased repression of X-
tra corresponds to increased capacity monitor levels (Fig. 2.2b, right).

To exclude any bias of fluorescent protein expression on resource compe-
tition, we transfected a plasmid encoding a human codon optimized variant of
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Figure 2.2: See caption on the next page.
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Figure 2.2: Burden imposed by genetic circuits in mammalian cells. a Left: As the total plasmid
amount increases, the total expression plateaus. Right: Titration of two plasmids expressing the
fluorescent proteins mCitrine and mRuby3 from EF1α promoters in ratios from 1:4 to 4:1 (total
of 50 ng, top right; or 500 ng of DNA, bottom right). N = 3 biological replicates. Source data are
provided as a Source Data file. b Two plasmids were co-transfected, one constitutively express-
ing capacity monitor and tTA from a strong constitutive promoter and the other expressing
X-tra from a tTA responsive promoter. Capacity monitor levels counterbalance the increase in
X-tra expression. Flow cytometry data are normalized to the expression at maximal Dox. N =
3 biological replicates. Source data are provided as a Source Data file. c mRNA quantification
of X-tra and a capacity monitor expressed at different molar ratios. As the X-tra increases, the
mRNA levels of the capacity monitor decreases. N = 4 biological replicates. qPCR analysis was
performed 48 h post-transfection and data show fold change ± SE. Source data are provided as
a Source Data file. d Cells transfected with a plasmid expressing two fluorescent proteins from
a bidirectional promoter were sorted according to high, intermediate, or no fluorescence (Sup-
plementary Fig. A.4) for mRNA extraction. mRNA levels expressed from endogenous genes
decrease in cells with intermediate and high fluorescence. N = 3 biological replicates. Data
show fold change ± SE. Individual values are plotted in Supplementary Fig. A.28. Source data
are provided as a Source Data file. e Capacity monitor levels are higher with an HDV ribozyme
rapidly degrading the capacity monitor mRNA than with an inactive mutant, suggesting a se-
questration of transcriptional resources. N = 3 biological replicates (N = 2 for HDV, 1.6 ng/μL
DOX). Source data are provided as a Source Data file. f The synthetic intron shows higher
X-tra levels compared to a control and leads to reduced capacity monitor levels. N = 4 biolog-
ical replicates. Source data are provided as a Source Data file. g Repressed X-tra expression
leads to increased capacity monitor levels. N = 2 biological replicates for L7Ae and N = 4 for
Ms2-cNOT7. Source data are provided as a Source Data file. h When X-tra is downregulated
by miR-221 endogenously expressed in HEK293T cells, the capacity monitor levels increase.
All flow cytometry data were acquired 48 h post-transfection and are plotted as mean ± SE.
SE standard error, r.u. relative units. N = 2 biological replicates. Source data are provided as a
Source Data file. Unpaired two-sided T-test. P value: ****<0.0001, ***<0.0005, **<0.005, *<0.05.

the bacterial σ-factor sigW in increasing amounts with a fixed concentration of
the mCitrine capacity monitor plasmid, and demonstrated similar behavior to
fluorescent protein expression (Supplementary Fig. A.3).

Finally, to avoid any experimental confounds as the source of our observa-
tions, we showed that neither cell seeding nor nutrient supply had any appar-
ent effect on the expression levels of the two genes, one of which was titrated
whereas the secondwas held at a constant copy number (Supplementary Fig. A.4).

These proof-of-concept experiments demonstrate that (i) gene expression
in mammalian synthetic circuits is connected even in the absence of direct reg-
ulation and (ii) expression of exogenous genes is limited by cellular resource
availability.
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Transcriptional and translational resources are limiting

Since several different resource pools could be responsible for the observed ef-
fects described above, we set out to characterize the individual contributions
of transcriptional and translational resource limitation to cellular burden in
HEK293T and H1299 cells (Fig. 2.2). To evaluate potential limitations in tran-
scriptional resources and the consequent gene competition for mRNA expres-
sion, we quantifiedmRNA levels in cells expressing X-tra/capacity monitor mo-
lar ratios from 1:1 to 2.5:1 in H1299 cells for a total of 500 ng of plasmid DNA
(corresponding protein data in Supplementary Fig. A.8a). We observed that
as the X-tra mRNA increased, the capacity monitor mRNA levels decreased
(Fig. 2.2c), supporting the hypothesis that shared transcriptional resources are
indeed a limiting factor in mammalian synthetic gene co-expression.

To investigate whether the expression of endogenous genes is also affected
by heterologous genetic payloads, we transfected H1299 cells with a plasmid
encoding for EGFP and mKate under the control of a bidirectional promoter.
We then sorted transfected cells according to high and intermediate levels of
fluorescent markers as well as non-transfected cells (absence of fluorescence)
(Supplementary Fig. A.5). We then quantified the mRNA levels of three en-
dogenous genes (CyCA2, eIF4E, GAPDH, Fig. 2.2d, Supplementary Fig. A.28).
Notably, in transfected cells that express high and intermediate levels of EGFP
and mKate, the expression of CyCA2, eIF4E, and GAPDH decreases when com-
pared to the non-transfected population. We also measured the mRNA levels
of CyCA2, eIF4E, and GAPDH in cells transfected with X-tra/capacity moni-
tor molar ratios from 1:1 to 2:1 and observed a progressive, albeit not dramatic
decrease with higher amounts of X-tra when compared to the 1:1 ratio (Supple-
mentary Fig. A.6). Of note, in the latter experiment cells were not sorted before
mRNA extraction.

To provide further support to the observations on transcriptional burden on
exogenous genes (Fig. 2.2c), we implemented a genetic circuit that can selec-
tively overload the transcriptional resource pool without sequestering transla-
tional resources. The system is based on the self-cleaving hepatitis delta virus
(HDV) ribozyme, which ensures that most of the transcribed mRNA is cleaved
and thus destabilized (Fig. 2.2e, left). The circuit is composed of a single plas-
mid with two transcriptional units (TUs). One TU contains a tTA transcription
factor co-expressed with the mRuby3 (capacity monitor) via the P2A peptide,
driven by a constitutive promoter. The second TU includes the HDV-Xtra ex-
pression regulated by the TRE promoter. In this setup, Dox can be used to
modulate the amount of burden imposed, similar to what was already shown
in Fig. 2.2b.

We compared this circuit to a catalytically inactive mutant of the HDV ri-
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bozyme in HEK293T cells. As expected, we observed that when the HDV ri-
bozyme is inactive, X-tra protein levels increase with decreasing amounts of
Dox (Supplementary Fig. A.7, top pale pink bar), whereas those of the capac-
ity monitor decrease (Fig. 2.2e, bottom pale blue bar). In contrast, when the
HDV ribozyme is active, X-tra expression is strongly reduced and only minorly
increasing with lower Dox concentrations (Supplementary Fig. A.7, top dark
purple bar). Here, the capacity monitor levels decrease to a smaller extent than
in the previous condition, supporting the observations in Fig. 2.2c that tran-
scriptional resources are limited to a certain extent (Fig. 2.2e, dark blue bar).
Interestingly, the expression levels of the capacity monitor with active HDV
ribozyme are higher compared to the inactive mutant (Supplementary Fig. A.7,
bottom dark blue bar). We suggest that, assuming that the X-tra mRNAwith an
active HDV ribozyme is decapped and rapidly degraded, it is likely to sequester
fewer translational resources, which should result in higher expression of the
capacity monitor.

Transcriptional resource pool sharing is therefore at least partially respon-
sible for the described gene expression trade-offs, and translational resources
may represent an additional bottleneck to the overall expression of synthetic
genes. We confirmed this hypothesis by adding a synthetic intron (Lu et al.,
2013) in the 5′ untranslated region (UTR) of the X-tra fluorescent protein (Fig. 2.2f,
top). The synthetic intron enhances translation by augmenting mRNA ex-
port from the nucleus to the cytoplasm (Lu et al., 2013) and therefore imposes
specific translational load. Indeed, we observed higher expression of X-tra in
HEK293T (Fig. 2.2f) and H1299 (Supplementary Fig. A.8b) cell lines in the pres-
ence of a synthetic intron, accompanied by lower capacity monitor levels, con-
firming that resources employed for translational regulation are also limiting.
Thus our data collectively indicate that exogenous genes compete for resources
both at the transcriptional and translational levels, overall imposing a gene ex-
pression burden on mammalian cells.

Since one of the goals in synthetic biology is output predictability, repro-
ducibility, and robustness, gene expression burden is a key issue to address. We
reasoned that posttranscriptional and translational regulators, such as RBPs
and miRNAs, may free up cellular resources (Kallehauge et al., 2017) by re-
pressing target mRNA translation or inducing its degradation. If true, they
could be exploited in more robust circuit topologies to reduce gene expression
load, resulting in improved performance and predictability of engineered cir-
cuits. Therefore, we tested two RBPs, L7Ae andMs2-cNOT7 (Wroblewska et al.,
2015; Cella et al., 2018), as well as endogenous miRNAs, miR-221 and miR-31, in
HEK293T (Fig. 2.2g, h) andH1299 (Supplementary Fig. A.8c, d) respectively. For
each system, a fluorescent protein encoding mRNA targeted by either RBPs or
miRNAs (X-tra) was co-expressed with a second, constitutively expressed fluo-
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rescent readout (capacity monitor). L7Ae binds the 5′UTR of the X-tra mRNA
inhibiting its translation, whereas Ms2 binds target sites (TS) in the 3′UTR of
the X-tra transcript, allowing cNOT7 to cut the polyA tail to destabilize the tar-
get mRNA (Wroblewska et al., 2015). We consistently observed in both cell lines
that X-tra downregulation by RBPs results in increased levels of the capacity
monitor (Fig. 2.2g, Supplementary Fig. A.8c).

miRNAs operate by either translation inhibition or mRNA degradation, ac-
cording to complete (Gam et al., 2018) or partial (Ameres & Zamore, 2013) com-
plementarity to the mRNA target. To evaluate the effect of miRNA regulation
on cellular resource reallocation, we placed three perfect complementary TS
in the 3′UTR of X-tra, which respond to the endogenous miR-221 and miR-31
highly expressed in HEK293T and H1299 cells. The capacity monitor expres-
sion levels increased when the X-tra mRNA was downregulated by miRNAs, as
compared to controls lacking miRNA TS (Fig. 2.2h, Supplementary Fig. A.8d).

To further demonstrate that the burden imposed by synthetic circuits is cell-
type independent, we performed the same set of experiments of Supplementary
Fig. 2.1d and Fig. 2.2f–h in U2OS, HeLa, and CHO-K1 cells, obtaining similar re-
sults (Supplementary Figs. A.9–A.11). Interestingly, even CHO-K1 cells, which
are the workhorses of the biopharmaceutical industry due to their high pro-
ductive capability (Meleady et al., 2011) show cellular burden. Redistribution
of resources was also observed by the RBPs L7Ae andMS2-cNot7 and the highly
expressed endogenous miR-221 and miR-21 in U2OS and HeLa/CHO-K1 cells,
respectively.

These results confirm that post-transcriptional regulators can redistribute
intracellular resources and, importantly, that this phenomenon is cell-context
independent. The extent of negative correlation between X-tra and capacity
monitor expression, as well as the amount of repression by post-transcriptional
regulators, differs across cell lines; this could be the consequence of several
factors, such as the relative abundance of transcriptional, post-transcriptional,
and translational resources.

A major advantage of miRNAs over RBPs is that they are endogenously
expressed and cell line specific. Thus, their expression does not impose an ad-
ditional burden, and since several thousand endogenous miRNAs with different
TS are naturally present in mammalian cells (Alles et al., 2019), the design space
is rather large, giving rise to a tremendous number of circuits that can be easily
tailored to the cell/tissue of interest. Based on the results presented here, we
envision that genetic circuits that mitigate resource competition via miRNAs
may be designed for any mammalian cell line with a very broad set of potential
applications.
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Figure 2.3: Impact of miRNA target sites number and location on burden. a Schematics of
experimental design to infer miRNA-mediated cellular resources redistribution. EGFP (capac-
ity monitor) and mKate (miRNA sensor) are encoded on the same bidirectional CMV promoter
plasmid. One or 3 TS for miR-31 (TS) are added either in the 3′ or 5′UTR of mKate. Control:
no miR-31 TS. Hypothesis: in the absence of miR-31 regulation, capacity monitor and miRNA
sensor are expressed to a certain level (top). In the presence of miR-31, lower miRNA sensor
levels correlate with higher capacity monitor expression (middle). This condition is reversed
by an miR-31 inhibitor (bottom). b Fold change of miRNA sensor and capacity monitor protein
levels compared to control (set to 1). EGFP increases up to fivefold with the strongest down-
regulation of mKate (3 TS 5′UTR). Flow cytometry data were acquired 48 h posttransfection
and are plotted as mean ± SE. SE standard error, r.u. relative units. N = 6 biological replicates.
Source data are provided as a Source Data file. Unpaired two-sided T-test. P value: ****<0.0001,
**<0.005, *<0.05. c When miR-31 activity was impaired by a miR-31 inhibitor, the rescue of
mKate expression corresponds to reduced EGFP levels, whereas both fluorescent proteins do
not vary in the control. The heatmaps represent the fold change derived by flow cytometry
data, calculated as the ratio between the geometric mean of six biological replicates and the
corresponding geometric mean in the control condition. Source data are provided as a Source
Data file. Bar plots and statistical analysis are reported in Supplementary Fig. A.12.

Characterizing the effect of miRNAs on resource
distribution

We sought to characterize the correlation between miRNA-mediated downreg-
ulation and resource redistribution by building a library of miRNA sensors for
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2. Characterization and mitigation of gene expression burden

miR-31, which is endogenously expressed in H1299 lung cancer cells (Thomson
et al., 2011). The miRNA sensor is composed of the fluorescent reporter mKate
with or without miR-31 TS, encoded along with the capacity monitor (EGFP) on
a single plasmid with a bidirectional promoter (Fig. 2.3a). The library includes
0, 1, or 3 fully complementary miR-TS in the 3′ or 5′UTR of mKate.

Similar to what was previously observed (Supplementary Fig. A.8d), when
the miRNA sensor’s levels decrease as a consequence of miR-31 regulation, the
expression of the capacity monitor increases. The strongest repression was
achievedwith 3 TS in the 5′UTR andwas accompanied by corresponding higher
capacity monitor levels (Fig. 2.3b). Conversely, when we rescued mKate ex-
pression by a miR-31 inhibitor (Fig. 2.3c, left and Supplementary Fig. A.12, red
bars), the capacity monitor levels decreased (Fig. 2.3c, right and Supplementary
Fig. A.12, dark blue bars) demonstrating that miRNA sensor and capacity mon-
itor levels are linked. Interestingly, the effect of the miRNA inhibitor was more
pronounced with TS placed in the 3′UTR. Synthetic miRNA inhibitors bind to
endogenous miRNAs in an irreversible manner (Robertson et al., 2010), but dif-
ferences in their action (e.g. when TS are placed in the 3′ versus 5′UTR), as
well as mechanistic insights into these differences, are still missing.

To confirm that miRNA-mediated resource redistribution is independent
of experimental setting and plasmid design, we encoded the miRNA sensor
and capacity monitor on two separate plasmids. Similar to previous results,
miRNA sensor and capacity monitor were negatively correlated (Supplemen-
tary Fig. A.13a), suggesting that cellular burden andmiRNA-dependent resource
reallocation are a common challenge and solution respectively. Downregula-
tion of themiRNA sensorwas also confirmed by qPCR (Supplementary Fig. A.13b).
Finally, when the miR-31 sensor was transfected in low miR-31 cell lines such
as U2OS and HEK293T, neither the miRNA sensor nor the capacity monitor lev-
els varied (Supplementary Fig. A.14), further confirming the miRNA-dependent
resource reallocation.

We showed in Fig. 2.2h and Supplementary Figs. A.8d, A.9d, A.10d and
A.11d that miRNA-dependent resource reallocation is observed across different
cell lines, by expressing cell-specific miRNA sensors which include 3 TS in the
3′UTR. We then built a library of sensors with different numbers and locations
of TS for miRNA-221 and -21 which are highly expressed in U2OS and HeLa
cells, respectively. We also confirmed here that miRNA sensor and capacity
monitor are inversely correlated, consistent with our observations in H1299
cells (Supplementary Figs. A.15 and A.16).

Overall these data show that miRNAs can be used to develop resource-
aware plasmid-designs harboring burden-mitigating circuit topologies, and that
the number and location of TS can be tuned to achieve desired protein expres-
sion levels.
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A resource-aware model framework
In order to provide a better understanding of our results, we developed a gen-
eral resourceaware model, which offers a simple and convenient framework for
extending existing models of biochemical reactions allowing them to incorpo-
rate the effects of shared limited resources.

Fig. 2.4a illustrates an overview of the framework. The main idea is to re-
place the rates of reactions that involve a shared resource with an effective
reaction rate that captures the reduced availability of that resource due to the
presence of competing genes. To create a distinction between regular reactions
and resource-limited ones, we use double-headed reaction arrows to denote
resource-limited reactions as illustrated at the bottom of Fig. 2.4a. This double-
headed arrow summarizes the set of intermediate interactions shown in more
detail at the top left of Fig. 2.4a. Here, the substrate 𝐴𝑖 binds resource 𝑅 with
rate 𝑘+𝑖 to form the complex 𝐶𝑖. This reaction is also assumed to be reversible
with rate 𝑘−𝑖 . With a rate 𝑘𝑐𝑎𝑡𝑖 the complex gives rise to the product 𝐵𝑖, while also
freeing up both the substrate 𝐴𝑖 and the resource 𝑅. We assume that the total
amount of resource, 𝑅𝑡𝑜𝑡𝑎𝑙, is conserved and remains constant at the time scale
of the considered reactions. Considering all possible substrates that require
resource 𝑅 and assuming that 𝐶𝑖 is in quasi-steady state, the rate for resource-
limited production can be expressed as 𝑘𝑒𝑓 𝑓𝑖 , shown in the top right corner of
Fig. 2.4a. A more detailed derivation can be found in Supplementary Note A.1.
𝑘𝑒𝑓 𝑓𝑖 is a function of the total amount of resources and the current concentra-
tion of all substrates competing for this resource. This expression can be readily
used to substitute all reaction rates that involve shared and limited resources.

To demonstrate the effectiveness of our modeling framework, we extend
the models of different circuit topologies introduced in Lillacci et al. (Lillacci
et al., 2018) to include limited resources and show that the resulting extended
models recapitulate the previously unexplained non-intuitive experimental ob-
servations.

The four topologies considered in Lillacci et al. (Lillacci et al., 2018) were
split into two groups based on the presence of negative feedback from the flu-
orescent protein DsRed to the transcriptional activator (tTA). The first group
consisted of the open-loop (OLP) and incoherent feedforward (IFF) topologies.
In both these circuits, the constitutively expressed transcriptional transactiva-
tor, fused to the fluorescent protein Cerulean (tTA-Cer), activates the expression
of the fluorescent protein DsRed. Furthermore, the gene of DsRed intronically
encodes the synthetic miRNA FF4 (miR-FF4). In the IFF topology, the matched
target of this miRNA is present in the 3′UTR of the DsRed gene. This tar-
get is replaced by a mismatched target for the miRNA FF5 in the OLP. These
detailed interactions are depicted here in Fig. 2.4b, left side. To observe poten-
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Figure 2.4: A resource-aware mathematical modeling framework. a General framework for
transforming molecular interaction network models. Existing models of molecular interac-
tion networks can be transformed to include shared limiting resources by substituting ki, the
reaction rate of a resource-limited production, with keffi. Shown above an exemplary resource-
limited production are the detailed interactions between the substrate and the shared resource.
b Limited shared resources reproduce non-monotonous dose response in open-loop and inco-
herent feedforward circuit topologies. On the left, a graphical representation of amodel for both
the open-loop (OLP) and incoherent feedforward (IFF) topologies from Lillacci et al. (Lillacci
et al., 2018). Transcriptional activation is modeled by a Hill-type function. The solid arrows
denote reactions assumed to follow the law of mass action. The model incorporates resources
as introduced in panel a. These reactions are depicted as double-headed arrows. The model
was fit to data obtained by transiently transfecting HEK293T cells with increasing amounts of
plasmid encoding tTA-Cerulean. The data and the fit are shown on the right. c Limited shared
resources reproduce nonmonotonous dose-response in feedback and hybrid circuit topologies.
The model shown on the left is the same as in panel b with an additional negative feedback
from miR-FF4 to tTA-mRNA. These topologies correspond to the feedback (FBK) and hybrid
(HYB) topologies from Lillacci et al. (Lillacci et al., 2018). The activation of gene expression
by tTA-Cerulean is modeled by a Hill-type function as shown in the center. Reactions with
double-headed arrows denote resourcelimited production reactions as introduced in panel a.
Solid arrows are assumed to follow the law of mass action. The model was fit to experimen-
tal data obtained from transient transfections with increasing amounts of plasmid encoding
tTA-Cerulean. A description of the models can be found in Supplementary Note A.4 and the
parameter values obtained by fitting are summarized in Supplementary Table A.28. Data were
obtained 48 h after transfection and are plotted as mean ± SE. SE standard error. N = 3 biolog-
ical replicates. Source data are provided as a Source Data file.

tial shifts in the allocation of resources, we generated dose–response curves
by increasing the amount of transfected tTA-Cer plasmid, while the other two
plasmids, containing DsRed and the constitutively expressed fluorescent trans-
fection reporter mCitrine, were held constant. As can be seen from the model
fit, plotted as a solid line in the data graph, the extended model reproduces the
non-monotonic behavior of the dose responses (Fig. 2.4b, right).

The second group of topologies considered by Lillacci et al. (Lillacci et al.,
2018) consisted of the feedback (FBK) and the FBK + IFF hybrid (HYB) topolo-
gies. In addition to all the interactions described for the OLP and IFF circuits,
the FBK and the HYB circuits possess miR-FF4 targets in the 3′UTR of the tTA-
Cer gene, which introduces negative feedback. Furthermore, the FBK and HYB
differ from each other by the presence of a matched target for miR-FF4 in the
HYB topology, which introduces incoherent feedforward and is replaced by a
mismatched FF5 target in the FBK circuit. All the interactions are illustrated
in detail in Fig. 2.4c, left. The dose–response curves for the two circuits were
obtained as described above. Again, the fit of the extended model to the data
captures its rather unexpected behavior (Fig. 2.4c, right).

Lastly, we also apply our framework to model the gene expression systems
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presented in Figs. 2.2b, e, g and 2.3b. The resulting model fits are shown in
Supplementary Fig. A.17. The models are described in Supplementary Note A.6
and the parameter values obtained by fitting are summarized in Supplementary
Table A.34–A.38.

Our simple framework adapts existing models of gene expression to include
pools of shared and limited resources. We show that it can be used to pro-
vide an explanation for unintuitive dose responses in tTA-based circuits. With
this framework as a tool, we believe that performance issues attributed to gene
expression burden can be addressed head-on in the design phase of circuit-
building, thereby reducing the need for costly subsequent build-test-learn iter-
ations.

Mitigating burden with iFFL circuits
We implemented a strategy that exploits miRNA to reduce the indirect coupling
between co-expressed genes. In particular, we took advantage of the fact that
miRNA production also requires (pre-translational) cellular resources, there-
fore acting as a sensor for resource availability. Because of this, it is possible
to reduce the coupling between genes co-expressed via a common resource
pool by introducing miRNA-mediated repression of those genes (as long as
the miRNA itself is also affected by the same resource pool). Since both the
miRNA and the miRNA-repressed gene are affected by the availability of re-
sources, miRNA-mediated repression implements an iFFL similar to previously
published circuits (Lillacci et al., 2018; Strovas et al., 2014; Bleris et al., 2011)
(Fig. 2.5a). Interestingly, this iFFL-based circuit constitutes a biological imple-
mentation of the miRNA circuit proposed by Zechner et al. (Zechner et al.,
2016). In this setting, the miRNA can be interpreted as an estimator of its cel-
lular context (e.g. amount of free resources) and acts to filter out this context,
thereby minimizing its impact on the output of interest.

We explored this strategy for an endogenously expressed miRNA (Fig. 2.5b,
c) and a synthetic miRNA encoded on a plasmid (Fig. 2.5d, e). More specifically,
Fig. 2.5b describes a strategy that exploits endogenous miRNAs to reduce the
coupling of a gene of interest (GOI) to the expression level of other genes, in-
troduced by the limitation in resources. Implementation of this strategy only
requires adding the TS of an endogenous miRNA to the 5′ UTR of the gene of
interest (mKate). In our experimental setup, when the copy number of a sec-
ond gene (X-tra) is increased, resources are drawn away from the expression of
mKate and allocated to the expression of X-tra. The shift in resource allocation
is expected to also affect miR-31, which acts as a capacity monitor. This leads to
a reduction in the repression of mKate, effectively compensating for the burden
imposed by the co-expression of the X-tra gene.
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2. Characterization and mitigation of gene expression burden

Figure 2.5: Mitigating the effects of resource limitation with microRNA-based iFFL. a The
microRNA-based incoherent feedforward loop (iFFL) motif. b Mitigation system based on en-
dogenous microRNA. At high copy number of the X-tra, resources are drawn away from the
production of the GOI and miR-31. By sensing the resource availability and repressing the GOI
less when there are fewer resources, the miRNA reduces the effect of limited resources. c Two
plasmids were co-transfected into H1299 cells which respectively express the X-tra and GOI
genes (EGFP and mKate respectively (b)), and the molar ratio of the X-tra:GOI plasmid was
progressively increased. The presence of miR-31 TS in mKate 5′UTR mitigates effects due to
resource sharing. The parameter values obtained by fitting are summarized in Supplementary
Table A.29. N = 3 biological replicates. d Mitigation system based on synthetic miRNA. In
the presence of many copies of the X-tra gene, resources are drawn away from the production
of both the GOIs and the miR-FF4. Due to lower production of miR-FF4 the GOIs are less re-
pressed. This compensates for the reduced availability of resources. e A plasmid encoding both
the fluorescent protein mCitrine and an intronic microRNA expressed from the mRuby3 gene
(GOI1, GOI2 and miR-FF4 (d)) was co-transfected into HEK293T cells with increasing amounts
of a plasmid expressing the X-tra gene (miRFP670 (d)). The impact of resource limitation on
both GOIs was reduced when they contained three miR-FF4 targets in their 3′UTRs compared
to when they contained three mismatched miR-FF5 targets. The parameter values obtained by
fitting are summarized in Supplementary Table A.30. N = 3 biological replicates. Source data
are provided as a Source Data file. A description of the models can be found in Supplementary
Note A.5. Flow cytometry data were acquired 48 h post-transfection and are plotted as mean ±
SE. SE standard error, r.u. relative units.

To demonstrate this mitigation approach experimentally, we co-transfected
H1299 cells with increasing amounts of EGFP (X-tra), along with a constant
amount of mKate (GOI) that either includes (for mitigation) or omits (no mit-
igation) three miR-31 TS in the 5′UTR. As expected, the expression level of
X-tra approached saturation as the plasmid copy number increased, both for
the targeted and non-targeted GOI variants (Fig. 2.5c). In agreement with pre-
vious results, the expression of the nontargeted GOI strongly decreased with
increased expression of X-tra. Conversely, the decrease in expression of the tar-
geted GOI was only about a third of that of the non-targeted variant, indicating
improved adaptation to changes in resource availability (Fig. 2.5c and Supple-
mentary Fig. A.18). This observation was also captured well by a model of the
system that explicitly considered resources, as described in the previous sec-
tion. It should be noted that while the relative dynamic output range of X-tra
is slightly reduced (fold change of 1.94× with mitigation versus 2.18× without
mitigation (Fig. 2.5c), our data show that the absolute levels of X-tra increases
about 2× in the presence of miR-31-based iFFL, de facto benefiting from this
network topology (Supplementary Fig. A.19). Analogously, miR-221 iFFL cir-
cuits specific for U2OS and HEK293T cells (Tian et al., 2012) (Supplementary
Fig. A.21) show improved robustness to burden imposed by increasing exoge-
nous gene load (Supplementary Figs. A.20 and A.22). Models used for fitting
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and the resulting parameter values are summarized in Supplementary Note A.5
and Supplementary Table A.31–A.32.

Importantly, the delivery of genetic payloads also affects the expression of
endogenous genes (CyCA2, elF4E, and GAPDH), as shown in Fig. 2.2d. We then
sought to compare the expression of the same endogenous genes in the pres-
ence or absence of miR-31 sensor in H1299 cells. After 48 h from transfection
of EGFP and mKate on a bidirectional plasmid, with mKate either including
(miRNA sensor) or not (noTS) TS for miR-31, we sorted cells according to high,
intermediate, or absence of fluorescence expression (Supplementary Fig. A.23a)
and performed qPCR. Curiously, we observed that in cells transfectedwithmiR-
31 sensor, the decrease in the expression of the endogenous genes was much
lower than in its absence (Supplementary Fig. A.23c). Furthermore, the ex-
pression of endogenous genes was inversely proportional to the levels of flu-
orescent proteins (Supplementary Fig. A.22b). Thus, the lower expression of
endogenous genes due to the burden imposed by exogenous payloads is coun-
teracted by the miR-31 sensor. To investigate whether the use of endogenous
miRNAs may impair the regulation of native targets, we measured the expres-
sion of SATB2 mRNA, a natural target of miR-31 (Aprelikova et al., 2010) in
cells transfected with miR-31 sensor versus the noTS control, and observed no
difference between the two conditions (Supplementary Fig. A.24).

Motivated by our desire to achieve portability across cell lines andmultiple-
output regulation, we implemented and tested a synthetic miRNA-iFFL circuit
that tunes two GOIs (Fig. 2.5d). Similar to the endogenous case, the genes of
interest, mCitrine (GOI1) and mRuby3 (GOI2), encode TS for the miRNA-FF4
in their 3′UTRs. In contrast to endogenous miRNA expression, however, here
the miRNA is expressed intronically from GOI2. In this way, the circuit forms
a self-contained unit that can be easily transferred between cell types.

We co-transfected HEK293T cells with a plasmid encoding constitutively
expressed miRFP670 (X-tra) and a plasmid composed of two TUs, each ex-
pressed under the constitutive promoter EF1α (Fig. 2.5d). The first TU encodes
mCitrine, whereas the second drives mRuby3. Furthermore, the 3′UTR of mC-
itrine and mRuby3 contained either three TS for the synthetic miRNAFF4 or
three mismatched miR-FF5 TS (negative control). The miRNA-FF4 was intron-
ically encoded in the mRuby3 gene. Identically to the endogenous case, the
amount of X-tra plasmid was increased while keeping the GOIs plasmid con-
stant. Again, expression of X-tra increased and approached saturation with
increasing molar amounts and consequently, the non-targeted variants of the
GOIs decreased (TFF5 in Fig. 2.5e). Conversely, the expression of the targeted
variants (TFF4 in Fig. 2.5e) decreased to a lesser extent than the non-targeted
ones, analogously to what was observed for endogenous miRNAs, albeit with
lower efficiency. Finally, to demonstrate the portability of the device we tested
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the approach in mouse embryonic stem cells (Supplementary Fig. A.25). Here,
adaptation to shifts in resource availabilitywas similar to the endogenousmiRNA-
based regulation (Fig. 2.5c). The model used for fitting and the resulting param-
eter values are summarized in Supplementary Note A.5 and Supplementary Ta-
ble A.33. Thus, we showed that also in entirely synthetic systems, adaptation
to shifts in resource availability was achieved. To ensure that the observed
mitigation was not caused by a higher tolerance to changes in availability at
lower expression levels, we showed analytically using the described modeling
framework that the normalized expression at lower levels was more sensitive
to burden (Supplementary Note A.3).

Indeed, mitigation comes at the cost of the maximal achievable expression
levels for the capacity monitor. Moreover, tuning the iFFL circuit to become
even less sensitive to changes in available resources will necessarily further
limit the maximal expression. This trade-off is intrinsic to the iFFL mitiga-
tion strategy. Nevertheless, these results suggest that our approach can be
used to mitigate resource-mediated coupling of gene expression despite cell-
to-cell variability, demonstrating the portability and broad applicability of our
findings. Our results demonstrate that iFFL circuits can mitigate burden from
transgene expression in mammalian cells. Importantly, by using miRNAs one
can either opt for endogenous miRNAs to specifically tailor a circuit to a de-
sired cell line or create a portable circuit by using a synthetic miRNA such as
miR-FF4.

2.4 Discussion
Our study demonstrated that the sharing of limited cellular resources repre-
sents a general bottleneck for the predictability and performance of transiently
transfected synthetic circuits inmammalian cells, with important consequences
for mammalian synthetic biology and biotechnology applications. Due to re-
source limitations, transient heterologous gene expression results in the cou-
pling of independent exogenous genes and affects the expression of endogenous
ones. We presented a detailed characterization of the distinct contributions of
transcriptional and translational processes to resource competition and showed
that RBPs and miRNAs can redistribute cellular resources thereby alleviating
burden. To get a deeper understanding of the mechanisms behind gene ex-
pression coupling, we described a modeling framework that captures the in-
direct interdependence of gene expression in a resource-limited context. Our
resource-aware model successfully recapitulated the non-intuitive behavior of
the dose responses for the family of controllers described in Fig. 2.4, demon-
strating its potential to aid the design of circuits that are less prone to burden
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effects.
The modeling framework also suggested that an iFFL is a particularly well-

suited circuit motif for mitigating burden effects. The iFFL itself is one of the
core gene regulatory motifs in biology, and unsurprisingly it has served as in-
spiration for many synthetic genetic circuits that exploit its adaptation proper-
ties (Lillacci et al., 2018; Strovas et al., 2014; Bleris et al., 2011; Segall-Shapiro
et al., 2018). In this study we adopt a miRNA implementation of iFFL circuits
for the purpose of burden mitigation. Previously, synthetic miRNA-based iF-
FLs have been demonstrated to increase robustness to gene dosage variability
(Lillacci et al., 2018; Bleris et al., 2011) and external perturbations (Strovas et
al., 2014). In contrast to synthetic miRNAs, endogenous miRNAs have seen
far more limited use in synthetic circuits (e.g. as inputs to synthetic cell-type
classifiers (Z. Xie et al., 2011; Matsuura et al., 2018)). Regardless of their ori-
gin, miRNA-based iFFL circuits were shown here to decouple the expression of
both exogenous and endogenous genes. We speculate that this positive effect is
attributed to the freeing up of translational resources, leading to an increase in
the expression of proteins involved in the transcription of endogenous genes.
At the same time, as already proposed in Gambardella et al. (Gambardella et al.,
2017), the downregulation of mKate by miRNAs may lead to a “queueing ef-
fect” for the degradation of the other mRNAs, similar to what was shown with
two independent proteins tagged for degradation by the proteasome (Cookson
et al., 2011).

An implementation of iFFL could alternatively be achieved using RBPs (e.g.
L7Ae and Ms2-cNOT7), or using endoribonucleases as is done in a concurrent
study by Jones et al. (Jones et al., 2020). Here, we opted for a miRNA-based
approach (both endogenous and synthetic) due to several considerations. RBPs
impose additional burden, limiting their suitability to mitigate burden itself,
while miRNAs are endogenously or intronically expressed with the GOI, thus
channeling a negligible amount of resources. To achieve minimal load as in our
endogenous miRNA-based iFFL, the RBP alone, or the iFFL should be integrated
into the genome. However, a single-copy integration may not guarantee bur-
den mitigation, whereas multiple copy integration may constitute itself a new
source of burden. Such systems would need to be tested to assess their useful-
ness for burden mitigation. Moreover, RBPs rely on specific binding sites that
are not as easy to tune as miRNA TS. Lastly, miRNA circuits do not use genetic
components that derive from different organisms, circumventing potential tox-
icity and immunogenicity concerns that could limit their application in medical
therapy (Charlesworth et al., 2019; You et al., 2019).

At the same time, miRNAs offer several inherent benefits. Specifically, iFFL
circuits that exploit endogenous miRNAs enable cell-type specificity (Z. Xie et
al., 2011; Miki et al., 2015), whereas synthetic miRNAs enable portability of cir-
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cuits across different cell lines. Furthermore, flexibility at the sequence level
allows scaling up to many orthogonally operating circuits. The specificity of a
miRNA can be easily engineered to target any synthetic or endogenous gene
without the need to engineer the target itself (Geisler & Fechner, 2016; Seyhan,
2016; Laganà et al., 2014) (programmability). Finally, tunability of repression
strength can be easily achieved both through the number and the placement
of the targets, and can be used to enhance adaptation to variations in resource
availability. It should be noted that stronger repression will yield lower ex-
pression levels of the gene of interest (GOI, Fig. 2.5c). This trade-off is un-
avoidable, and is an inherent limitation to all implementations of iFFL-based
burden-mitigation circuits, including endoRNase implementations.

A potential limitation of miRNA-based iFFL circuits is the diversion of en-
dogenous miRNAs from native targets to synthetic ones. Although this is not
what we observe in our miR-31 iFFL (Supplementary Fig. A.24) this may how-
ever give rise to an inevitable trade-off similar to what has been observed for
competing endogenous RNA (ceRNA). ceRNAs are known to naturally regu-
late other RNAs by competing for miRNA-binding. To attempt to remedy this,
one could use partially complementary TS, which would decrease the affinity
of the miRNA to the target and diminish the competition. However this would
make the system less efficient and potentially decrease the mitigation effect.
Alternatively, the incorporation of multiple TS that respond to different highly
expressed miRNAs would distribute the competition betweenmultiple miRNAs
and reduce the detrimental effects on their native targets.

Besides iFFLs, negative feedback motifs (Lillacci et al., 2018; Nevozhay et
al., 2013; Guinn & Balázsi, 2019; Aoki et al., 2019; Becskei & Serrano, 2000) can
also be used to mitigate resource burden, as was shown in a series of studies
in Escherichia coli (Ceroni et al., 2015; Qian et al., 2017; Huang et al., 2018;
Ceroni et al., 2018; Boo et al., 2019). While negative feedback circuits possess
well-established robustness properties, iFFL circuits have several advantages
for burden mitigation. In particular, iFFL circuits are considerably simpler to
implement and easier to tune than negative feedback circuits, which usually
require more components and can become dynamically unstable if not prop-
erly designed and tuned. In terms of dynamic response, iFFL circuits are also
generally faster in rejecting disturbances like a sudden change in resource avail-
ability. Indeed iFFL regulation responds to the disturbance itself, while negative
feedback begins to act only after the impact of the disturbance on the regulated
output has been detected.

In this study we characterized the contribution of transcriptional and trans-
lational processes to resource competition in mammalian cells. In yeast, it was
previously reported that squelching, a shortage of general transcription fac-
tors, is responsible for the evolutionary breakdown of synthetic gene circuits
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following exogenous gene expression under a rtTAresponsive promoter (Gouda
et al., 2019). However, a deeper understanding of similar effects in mammalian
cells is currently lacking. For example, the activation domain of tTA, VP16,
interacts with essential components of the transcription machinery such as
TFIIB, TFIID, TFIIH, and dTAFII40 (Baron et al., 1997), whose abundances or
sub-compositions are unknown and may vary widely across cells (Gelev et al.,
2014; Dikstein et al., 1996). Uncovering the key players responsible for gene
coupling and endogenous genes’ dysregulation will enable the implementation
of even more robust and resource-aware solutions to mitigate gene expression
burden.

Ultimately, the goal of gene circuit engineering is the creation of cell lines
that stably express circuits of interest. Although the presented work focused on
the effects of limited resources as induced by transient transfection, it would be
natural to investigate if similar effects also occur in the context of genomic in-
tegration of highly expressed genes. Moreover, while using a transiently trans-
fected capacity monitor enables the quantification of cellular expression capac-
ity by providing a comparative measure of the geometric mean of free resources
in a burdened population relative to a minimally burdened baseline population,
stable integration of the capacity monitor would permit a more direct measure
in terms of arithmeticmean of free cellular resources (SupplementaryNote A.7).

Understanding the impact of resource availability during the engineering of
biological systems will have important consequences for biological studies and
for improved mammalian cell engineering. For example, studies of biological
functions that employ perturbations by exogenous gene expression often lack
accuracy and exhibit highly variable results due to less-thanoptimal genetic
circuit designs. Using burden-aware designs, cell therapies that rely on finely
tuned expression and secretion of therapeutic molecules can now be engineered
with resourceaware circuits. Our findings suggest that, when choosing a host
cell line, one of the key factors to consider should be its transcriptional and
translational capacity (Kafri et al., 2016) not only in terms of productivity but
also in terms of the ability of the cells to maintain their fitness while performing
their engineered function. Our study presents a portable design capable of en-
hancing the insulation of transgene expression and will thus contribute to the
development of robust-by-design mammalian synthetic circuits, with impor-
tant implications for basic science and applications in industrial biotechnology
and medical therapy.
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2.5 Methods

Cell culture
HEK293T, U2OS, and HeLa cells (all from the ATCC) used in this study were
maintained inDulbecco’smodified Eaglemedium (DMEM,Gibco); H1299 (ATCC)
were maintained in Roswell Park Memorial Institute medium (RPMI, Gibco);
CHO-K1 were maintained in minimum essential medium α (α-MEM, Gibco).
All media were supplemented with 10 % FBS (Atlanta BIO), 1 % penicillin/strep-
tomycin/L-glutamine (Sigma-Aldrich), and 1 % non-essential amino acids (Hy-
Clone). HEK239T cells (ATCC, strain number CRL-3216) used for part of this
study were maintained in DMEM (Sigma-Aldrich or Gibco) supplemented with
10% FBS (Sigma-Aldrich), 1× GlutaMAX (Gibco) and 1mM Sodium Pyruvate
(Gibco). E14mouse embryonic stem (mES) (a kind gift fromDr.MaaikeWelling)
cells were grown in DMEM (Gibco) supplemented with 15 % FBS (PAN Biotech;
specifically for ES cell culture), 1 % penicillin/streptomycin (Sigma-Aldrich),
1 % non-essential amino acids (Gibco), 2mM L-glutamine (GlutaMAX; Gibco),
0.1mM beta-mercaptoethanol (Sigma-Aldrich), and 100UmL−1 Leukemia in-
hibitory factor (LIF; Preprotech). At every passage the media was additionally
supplemented with fresh CHIR99021 to 3 µM and PD0390125 to 1 µM to sup-
port naïve pluripotency (2i conditions (Ying et al., 2008)). All labware used was
coated with 0.1 % gelatin (prepared ourselves) prior to plating the ES cells. The
cells were maintained at 37 °C and 5 % CO2.

Transfection
Transfections were carried out in a 24-well plate for flow cytometry analysis
or in a 12-well plate format for flow cytometry and qPCR analysis run on the
same biological replicates (Table A.1). Transfections for Fig. 2.2d and Supple-
mentary Figs. A.5 and A.22 were carried out in 6 cm dishes. H1299, HeLa, U2OS,
HEK293T, and CHO-K1 cells were transfected with Lipofectamine® 3000 (Ther-
moFisher Scientific) according to themanufacturer’s instructions and 300 ng to-
tal DNA (500 ng in Fig. 2.2c, d and Supplementary Figs. A.1, A.8a, A.9a, A.10a,
and A.11a) in 24-well plates. DNA and transfection reagents were scaled up
according to the Lipofectamine® 3000 manufacturer’s instructions. miR-31 in-
hibitor (Invitrogen™ mirVana™ miRNA Inhibitors) was co-transfected using
the same method as for DNA (Fig. 2.3c). HEK293T cells used for experiments
shown in Figs. 2.2a, b, e, 2.4 and 2.5e were plated approximately 24 h before
transfection at 62,500–75,000 cells per well in 24-well plates. The transfection
solution was prepared using polyethylenimine (PEI) “MAX” (Mw 40,000, Poly-
sciences, Inc.) in a 1:3 (µgDNA to µg PEI) ratio with a total of 500 ng of plasmid
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DNA per well. Both DNA and PEI were diluted in OptiMEM I reduced serum
media (Gibco) before being mixed and incubated for 25min prior to addition
to the cells. E14 mouse embryonic stem cells were transfected using Lipofec-
tamine® 2000 (ThermoFisher Scientific) in a 1:3 (µgDNA to µg Lipofectamine®
2000) with 300 ng of plasmid DNA per well. The transfection was performed on
cells in suspension immediately after plating at approximately 30,000 cells per
well. All wells were coated with 0.1 % gelatin before the addition of the cells.

Flow cytometry and data analysis
H1299, HEK293T, U2OS, HeLa, and CHO-K1 cells were analyzed with a BD
Facsaria™ cell analyzer (BD Biosciences) or BD Celesta™ cell analyzer (BD Bio-
sciences) using 488 and 561 lasers. For each sample >20,000 singlet events were
collected and fluorescence data were acquired with the following cytometer
settings: 488 nm laser and 530/30 nm bandpass filter for EGFP, 561 nm laser
and 610/20 nm filter for mKate. Cells transfected in 12-well plates were washed
with DPBS, detached with 100 µL of Trypsin-EDTA (0.25 %), and resuspended
in 600 µL of DPBS (Thermo Fisher). Two hundred microliters of cell suspension
were used for flow cytometry and 400 µL for RNA extraction. HEK293T used for
experiments shown in Figs. 2.2a, b, e, 2.4 and 2.5e cells were measured 48 h after
transfection on a BD LSRFortessa™ Special Order and Research Product (SORP)
cell analyzer. mCitrine fluorescence was excited via a 488 nm laser and was de-
tected through a 530/11 nm bandpass filter. mRuby3 was excited via a 561 nm
laser and measured through a 610/20 nm bandpass filter. miRFP670 was excited
at 640 nm and measured through a 670/14 nm bandpass filter. E14 mES cells
were measured 48 h after transfection on a Beckman Coulter CytoFLEX S flow
cytometer. mCitrine fluorescence was excited using a 488 nm laser and was de-
tected through a 525/40+OD1 bandpass filter. mRuby3 was excited with 561 nm
laser light and measured through a 610/20+OD1 bandpass filter. miRFP670 was
excited at 638 nm andmeasured through a 660/10 bandpass filter. The cells were
collected for measurement by washing with DBPS (Sigma-Aldrich or Gibco)
and detaching in 70 µL to 180 µL of Accutase solution (Sigma-Aldrich). For
each sample between 10,000 and 200,000 singlet events were collected. Flu-
orescence intensity in arbitrary units (a.u.) was used as a measure of protein
expression. For each experiment a compensation matrix was created using un-
stained (wild type cells), and single-color controls (mKate/mCherry only, EGFP
only or mCitrine only, mRuby3 only, miRFP670 only). Live cell population and
single cells were selected according to FCS/SSC parameters (Supplementary
Figs. A.26 and A.27). Data analysis was performed with Cytoflow or a custom
R script. Data fitting was performed using Mathematica’s NonlinearModelFit
function and the InteriorPoint method.
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Cell sorting

H1299 cells used for the experiment shown in Fig. 2.2d were trypsinized from
6 cm dishes and counted. They were then centrifuged at 500 g for 5min and
resuspended at a concentration of 5mlnmL−1 in sorting buffer (PBS 1× + 3mM
EDTA + 0.8 % Trypsin + 1 % FBS). Cells were sorted with a BD FACSMelody™
cell sorter according to their fluorescence levels (Supplementary Fig. A.5). In
total, 150,000 cells per gate were collected.

DNA cloning and plasmid construction

Plasmid vectors carrying gene cassetteswere created using In-FusionHD cloning
kit (Clonetch), Gibson Assembly, via digestion and ligation or using the yeast
toolkit (YTK) (Lee et al., 2015) with custom parts for mammalian cells. Gib-
son Assembly master mixes were created from Taq DNA Ligase (NEB), Phu-
sion High-Fidelity DNA Polymerase (NEB), and T5 Exonuclease (Epicentre)
in 5× isothermal buffer (Supplementary Table A.27). Ligation reactions were
performed in 1:2–5 molar ratios of plasmid backbone:gene insert starting with
50 ng to 100 ng of vector backbone digested with selected restriction enzymes.
Assemblies using the YTKwere performed according to the original publication
(Lee et al., 2015). Newly created constructs were transformed into XL10-Gold or
TOP10 E. coli strains. For plasmids with miRNA TS, the target sequences were
selected using miRBase database (http://www.mirbase.org/) and are listed in
Supplementary Table A.25. List of oligos used to clone endogenous miRNAs
TS are listed in Supplementary Table A.24. All plasmids were confirmed by se-
quencing analysis and deposited to addgene. To perform western blot analysis,
an His-tag composed of six Histidine residues was inserted after the start codon
of mKate encoding plasmids.

mRNA extraction and reverse transcription

RNA extraction was performed with E.Z.N.A.® Total RNA Kit I (Omega Bio-
tek). The protocol was followed according to manufacturer’s instructions and
RNA was eluted in 30 µL of RNAse free water. RNA samples were conserved
at -80 °C. PrimeScript RT Reagent Kit with gDNA Eraser—Perfect Real Time
(Takara) was used according to the manufacturer’s instructions. The protocol
was performed on ice in a RNAse free environment to avoid RNA degradation.
A negative control without PrimeScript RT Enzyme Mix I was always prepared
to investigate genomic DNA contamination.
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qPCR
Fast SYBR Green Master Mix (ThermoFisher Scientific) was used to perform
qPCR of cDNAs obtained from 500 ng of RNA and diluted 1:5. Samples were
loaded in MicroAmp™ Fast Optical 96-Well Reaction Plate (0.1mL) and the ex-
periment was carried out with a CFX96 Touch Real-Time PCRDetection System
(BioRad) machine. Each well contained 20 µL of final volume (7 µL SYBR Green
Master Mix, 10 µL ddHO, 1 µL of each primer, 1 µL of template). Also, a control
without template (blank) was set. Primers were designed to amplify a region
of 60 bp to 200 bp (Supplementary Table A.26) and with a temperature of an-
nealing between 50 °C and 65 °C. Data were analyzed using the comparative Ct
method according to the Applied Biosystems Protocols.

Statistics and reproducibility
Each experiment was repeated independently at least twice with similar results,
with the exception of Supplementary Fig. A.2 and condition w/o Mitigation,
1.5 equimolar EGFP to mKate plasmid in Supplementary Fig. A.20. All models
used for parameter fitting are contained in Supplementary Notes A.4–A.6. The
obtained parameter values are summarized in Supplementary Table A.28–A.38.
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precise gene regulation
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3.1 Abstract
The processes that keep a cell alive are constantly challenged by unpredictable
changes in its environment. Cells manage to counteract these changes by em-
ploying sophisticated regulatory strategies that maintain a steady internal mi-
lieu. Recently, the antithetic integral feedback motif has been demonstrated to
be a minimal and universal biological regulatory strategy that can guarantee
robust perfect adaptation for noisy gene regulatory networks in E. coli. Here,
we present the first realization of the antithetic integral feedbackmotif in a syn-
thetic gene circuit in mammalian cells. We show that the motif robustly main-
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tains the expression of a synthetic transcription factor at tunable levels even
when it is perturbed by increased degradation or its interaction network struc-
ture is perturbed by a negative feedback loop with an RNA-binding protein.
We further demonstrate an improved regulatory strategy by augmenting the
antithetic integral motif with additional negative feedback to realize antithetic
proportional-integral control. We show that this motif produces robust perfect
adaptation while also reducing the variance of the regulated synthetic tran-
scription factor. We demonstrate that the integral and proportional-integral
feedbackmotifs canmitigate the impact of gene expression burden andwe com-
putationally explore their use in cell therapy. We believe that the engineering
of precise and robust perfect adaptation will enable substantial advances in in-
dustrial biotechnology and cell-based therapeutics.

3.2 Significance Statement
To survive in the harsh environments they inhabit, cells have evolved sophis-
ticated regulatory mechanisms that can maintain a steady internal milieu or
homeostasis. This robustness, however, does not generally translate to engi-
neered genetic circuits, such as the ones studied by synthetic biology. Here, we
introduce an implementation of a minimal and universal gene regulatory motif
that produces robust perfect adaptation for mammalian cells and we improve
on it by enhancing the precision of its regulation.

3.3 Introduction
The ability to maintain a steady internal environment in the presence of a
changing and uncertain external environment— called homeostasis — is a defin-
ing characteristic of living systems (Urry et al., 2017). Homeostasis is main-
tained by various regulatory mechanisms, often in the form of negative feed-
back loops. The importance of homeostasis is clearly exemplified in physiology
and medicine, where a loss of homeostasis is often attributed to the develop-
ment of disease (Kotas & Medzhitov, 2015; Mullur et al., 2014; Yu et al., 2015).

Feedback control systems in engineering use the error or more specifically
the difference between the desired output — commonly referred to as the set-
point — and the current output of the system which is to be regulated to deter-
mine the effort that the control system applies to steer the system under control.
In a simple proportional feedback system the effort is determined by the instan-
taneous difference. Therefore, if the difference becomes zero when the desired
output is reached no effort is applied and the output is free to deviate from the
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desired state. Compared to this simpler proportional feedback, integral feed-
back does not just feed back the instantaneous difference between the desired
state and the current state, but uses the entire history of the difference to deter-
mine the control effort applied (see Figure 3.1(d)). This difference may build up
and will provide control effort even as the error has decayed to zero. Therefore
it can guarantee that a zero difference between desired output and current out-
put is achieved and adaptation is perfect (Åström & Murray, 2010). A system
with integral feedback is known to reject constant disturbances in parameters
and structure of the system under control and is also able to perfectly track a de-
sired output commonly referred to as the setpoint. More recently, it has become
increasingly evident that integral feedback is a regulatory strategy that drives
biological adaptation in different systems (Yi et al., 2000; El-Samad et al., 2002;
Miller & Wang, 2006; Muzzey et al., 2009; Ben-Zvi & Barkai, 2010). Although
integral feedback guarantees robust perfect adaptation, it does not in general
prevent large transient deviations. To mediate this, control engineers often
augment proportional feedback to their integral feedback control systems. By
counteracting such large deviations, proportional-integral feedback also sup-
presses large stochastic fluctuations around the setpoint and therefore provides
preciser regulation than integral feedback can achieve (Briat et al., 2018).

Here, we demonstrate perfect adaptation in a sense/antisense mRNA im-
plementation of the antithetic integral feedback circuit in mammalian cells and
show that the resulting closed-loop control system is highly robust to network
changes and parameter disturbances. By further incorporating proportional
feedback on the sensed output to achieve proportional-integral feedback con-
trol, we also increase the precision of the resulting adaptation. Furthermore,
we derive a mathematical (mechanistic) model that describes the various inter-
actions in the system. We show that the obtained model fits the experimentally
obtained data well, and is also capable of predicting the robustness features
of our implementation of the antithetic integral controller. Lastly, we demon-
strate the applicability of our integral and proportional-integral controllers by
demonstrating perfect mitigation of gene expression burden and show that the
proportional-integral controller provides superior precision over integral feed-
back.

Over the last decade, several experimental studies have constructed genetic
systems and cell-based therapies that implement negative feedback to mitigate
disease (Kemmer et al., 2010; Wei et al., 2012; Rössger et al., 2013; Xie et al.,
2016). These, however, rely solely on proportional feedback rather than integral
or proportional-integral feedback and are therefore not guaranteed to achieve
precise and robust regulation. In 2016, Briat et al. introduced a biomolecular cir-
cuit topology that implements integral feedback control for general biomolecu-
lar systems (Briat et al., 2016). Figure 3.1(a) depicts an abstract representation of
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Figure 3.1: The antithetic proportional-integral feedbackmotif. (a) Network topology of an ar-
bitrary molecular network interacting with an antithetic proportional-integral feedback motif.
The nodes labelled with Z1 and Z2 together compose the antithetic motif responsible for real-
izing integral feedback. Species Z1 is produced at a rate 𝜇 and is functionally annihilated when
it interacts with species Z2 at a rate 𝜂. Furthermore, Z1 interacts with the controlled network
by promoting the production of species X1. To close the feedback loop, species Z2 is produced
at a reaction rate that is proportional to 𝜃 and the regulated output species XL. An additional
negative feedback from the output to the production reaction extends themotif to proportional-
integral feedback. (b) Dynamics of the antithetic integral controller. Subtracting the differential
equations of 𝑍1 and 𝑍2 reveals the integral action of the controller that ensures that the steady
state of the output converges to a value that is independent of the controlled network parame-
ters. Additionally, through linearization (Filo & Khammash, 2021), the individual integral and
the proportional control actions of the antithetic proportional-integral motif can be expressed
separately. (c) The elements of proportional-integral feedback. Without any feedback control,
the output of the controlled network may be highly variable and will likely respond drastically
to a disturbance in the network. By adding integral feedback, it can be assured that the output
will adapt perfectly to disturbances. Conversely, by adding proportional feedback the variabil-
ity in the output can be reduced. Combining the two types of feedback reduces the variability
of the output while also ensuring perfect adaptation. (d) Graphical demonstration of integral
and proportional control. Integral control accounts for error history by mathematically inte-
grating it in time. Consequently, integral controllers have memory and ”remember” the past.
However, proportional controllers act instantaneously by only accounting for the present error.
Consequently, proportional controllers are memory-less and ”forget” the past.

this control motif. A subsequent publication by the same authors showed that
additional proportional negative feedback further reduces variance in the con-
trolled output (Briat et al., 2018). Central to this strategy — termed antithetic
proportional-integral feedback— is the so-called annihilation (or sequestration)
reaction between the two species that implement the controller (reaction with
rate 𝜂 in Figure 3.1(a)). The annihilation refers to the requirement that both
controller species abolish each other’s function when they interact. Another
stringent requirement to achieve integral feedback is that the two controller
species on their own remain fairly stable over time. Given these conditions, any
network interconnected in a stable way with this antithetic integral controller
will achieve robust adaptation (Figure 3.1(c)). The incorporation of additional
proportional negative feedback from the output of the controlled network to
the actuation reaction then yields proportional-integral feedback (Figure 3.1(a)).
Independent of integral feedback, this proportional feedback introduces a re-
duction in the variance of the controlled output (Figure 3.1(c)).

The initial theoretical work has motivated the implementation of antithetic
integral control in bacteria (Lillacci et al., 2017; Aoki et al., 2019) and in vitro
(Agrawal et al., 2019). A quasi-integral controller in E. coli (Huang et al., 2018)
also relies on a similar topology. In realizing antithetic integral feedback, one of
the main challenges is identifying a suitable implementation of the annihilation
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(or sequestration) reaction (Aoki et al., 2019). In the bacterial implementation of
the antithetic integral feedback motif (Aoki et al., 2019) stable proteins (a 𝜎 and
anti-𝜎 factor pair) were used to realize the sequestration reaction. However, this
approach is not directly applicable to mammalian cells. Instead, in this work
we exploit hybridization of complementary mRNAs to realize this critical reac-
tion. (Figure 3.2(a)). For the antithetic integral controller to function properly,
the sense and antisense RNAs have to be stable such that their degradation is
predominantly due to their mutual interaction (via the hybridization reaction).
Unlike bacterial RNAs where the majority of mRNAs have half-lives between 3
and 8 minutes Milo and Phillips, 2015, mammalian RNAs are much more stable
with typical mRNA half lives of several hours Pérez-Ortín et al., 2013. Indeed
in human cells, the majority of mRNAs have half-lives between 6 and 18 hours,
with an overall mean value of 10 hours (Yang et al., 2003; Schwanhäusser et al.,
2011). The hybridization of themammalian sense/antisense RNAs and their sta-
bility allow us to realize the antithetic integral controller in mammalian cells.
Sense and antisense mRNA have previously been employed to control gene ex-
pression in yeast (Bayer & Smolke, 2005) and to build a genetic oscillator in
mammalian cells (Tigges et al., 2009). Furthermore, antisense RNA has shown
promise in the treatment of cancer and other genetic diseases as well as infec-
tions (Haberman et al., 2002; Fuchs et al., 2004; Tebas et al., 2013).

3.4 Results

Integral Feedback

A schematic depiction of the sense/antisense RNA implementation of the anti-
thetic integral feedback circuit is shown in Figure 3.2(a). The basic circuit con-
sists of two genes, which are encoded on separate plasmids. The gene in the
activator plasmid is the synthetic transcription factor tTA (tetracycline transac-
tivator) (Gossen & Bujard, 1992) fused to the fluorescent protein mCitrine. The
expression of this gene is driven by the strong mammalian EF-1 𝛼 promoter.
This transcription factor drives the expression of the other gene in the antisense
plasmid via the tTA-responsive TRE promoter. This gene expresses an antisense
RNA that is complementary to the activator mRNA. The hybridization of these
two species realizes the annihilation reaction and closes the negative feedback
loop. As an experimental control incapable of producing integral feedback, we
built an open-loop analog of the closed-loop circuit, in which the TRE promoter
was replaced by a non-cognate promoter. The closed-loop configuration is set
up to regulate the expression levels of the activator tTA-mCitrine. To introduce
specific perturbations to the activator we additionally fused an Asunaprevir

62



3.4. Results

(ASV) inducible degradation tag (SMASh) to tTA-mCitrine (Chung et al., 2015).
To show that our genetic implementation of the circuit performs integral

feedbackwe apply constant disturbanceswithASV at a concentration of 0.033 µM
to HEK293T cells which were transiently transfected with either the open- or
the closed-loop circuit. Additionally, we vary the setpoint by transfecting the
two plasmids at ratios ranging from 1/16 to 2 (Activator Plasmid/Antisense
Plasmid). The fluorescence of the cells was measured 48 hours after transfec-
tion using flow cytometry. As the setpoint ratio increases, so does the fluo-
rescence of tTA-mCitrine, indicating that our circuit permits setpoint control
(Figure 3.2(b) and Supplementary Figure B.5). Note that this fluorescence is a
monotonically-increasing function of the plasmid ratios (see also the function
𝜃 in Figure B.1(b)). We consider a circuit to be adapting if its normalized fluo-
rescence intensity stays within 10% of the undisturbed control. Under this cri-
terion, adaptation is achieved for all the setpoints tested below 2 in the closed-
loop configuration. In contrast, none of the open-loop configurations manage
to meet this adaptation requirement (Figure 3.2(c)).

Next, we sought to demonstrate that our implementation of the antithetic
integral controller will provide disturbance rejection at different setpoints re-
gardless of the network topology it regulates. Therefore, we added a negative
feedback loop from tTA-mCitrine to its own production. This negative feed-
back was realized by the RNA-binding protein L7Ae (Saito et al., 2010), which
is expressed under the control of a tTA-responsive TRE promoter and binds the
kink-turn hairpin on the sense mRNA to inhibit translation (Figure 3.2(a)). The
closed- and open-loop circuits were transiently transfected either with or with-
out this negative feedback plasmid to introduce a perturbation to the regulated
network. The setpoints 1/4 and 1/2were tested by transfecting an appropriate
ratio of the activator to antisense plasmids. These different conditions were fur-
ther perturbed at the molecular level by adding 0.033 µM ASV to induce degra-
dation of tTA-mCitrine. As shown in Figure 3.2(d) (see also Supplementary
Figure B.6), the closed-loop circuit rejects both perturbations nearly perfectly
in all cases, whereas again the open-loop circuit fails to adapt.

Proportional-integral feedback
The capability of the antithetic integral controller to reject topological network
perturbations, as demonstrated previously in Figure 3.2(d), allowed us to further
improve the controller performance by increasing its complexity. In particular,
we implement a common control strategy that is extensively applied in var-
ious engineering disciplines, referred to as Proportional-Integral (PI) control.
This control strategy adds to the Integral (I) controller Proportional (P) feed-
back action to enhance dynamic performance, such as transient dynamics and
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Figure 3.2: See caption on the next page.

variance reduction (Briat et al., 2018; Filo & Khammash, 2021; Chevalier et al.,
2019), while maintaining the adaptation property. To implement proportional
feedback control that acts faster than the integral feedback, we use a proxy pro-
tein, namely the RNA-binding protein L7Ae, which is produced in parallel with
mCitrine-tTA from a single mRNA via the use of P2A self-cleavage peptide (Fig-
ure 3.3a). Therefore, the expression level of L7Ae is expected to proportionally
reflect the level of tTA-mCitrine. The negative feedback is hence realized via
the proxy protein that inhibits translation by binding the 5’ untranslated region
of the sense mRNA. Note that, as opposed to the circuit in Figure 3.2(a), the pro-
duction of L7Ae in the PI controller is not regulated by the tTA responsive TRE
promoter. Instead, it is directly controlled by the sense mRNA. Furthermore,
the proportional feedback realized in the PI controller is expected to act faster
than the feedback implemented by the tTA-dependent production of L7Ae (Fig-
ure 3.2(a)) because it does not require additional transcription and translation
steps.

As illustrated in Figure 3.3(b), with a standalone Proportional (P) controller,
increasing the proportional feedback strength via introducing additional L7Ae
binding hairpins has the effect of reducing the steady-state error induced by
the drug disturbance. Nonetheless, despite the error reduction, our criteria of
adaptation is not met. On the other hand, with a Proportional Integral (PI) con-
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Figure 3.2: Perfect Adaptation of a Synthetic Antithetic Integral Feedback Circuit in Mam-
malian Cells. (a) Genetic implementation of open- and closed-loop circuits. Both circuits con-
sist of two genes, realized on separate plasmids. The gene in the activator plasmid encodes the
synthetic transcription factor tTA (tetracycline transactivator) tagged with the fluorescent pro-
teinmCitrine and a chemically-inducible degradation tag (SMASh). Its expression is driven by a
strong constitutive promoter (PEF-1 𝛼). The gene in the antisense plasmid expresses the antisense
RNA under the control of a tTA responsive promoter (PTRE). In the open-loop configuration,
the TRE promoter was exchanged for a non-cognate promoter. In this setting the controlled
species is the tTA protein, which can be perturbed externally by addition of Asunaprevir (ASV),
the chemical inducer of the SMASh degradation tag. Another type of (internal) perturbation is
introduced by adding a negative feedback in the controlled network. In particular, a negative
feedback loop from tTA-mCitrine to its own production was added by expressing the RNA-
binding protein L7Ae under the control of a tTA-responsive TRE promoter. This protein binds
to the kink-turn hairpin on the sense mRNA to inhibit the translation of tTA. (b) Steady-state
levels of the output (mCitrine) for increasing plasmid ratios. The genetic implementation of the
closed-loop circuit as shown in panel (a) was transiently transfected at different molar ratios
(setpoint ∶= activator / antisense) by varying the concentration of the activator plasmid while
keeping the concentration of the antisense plasmid constant. The data is normalized to the
lowest setpoint (1/16). This shows that increasing the plasmid ratio increases the steady-state
output level. (c) Steady-state response of the open-loop and closed-loop implementations to
induced degradation by ASV. The genetic implementation of the open- and closed-loop circuit
as shown in panel (a) was transiently transfected at different molar ratios and perturbed with
30 nM of ASV. The data normalized to the unperturbed conditions for each setpoint separately.
(d) The closed-loop circuit is not affected by the topology of the regulated network. The closed-
and open-loop circuits were perturbed by co-transfecting the network perturbation plasmid and
by adding 30 nM of ASV. This was done at two setpoints 1/4 and 1/2 (setpoint ∶= activator /
antisense). The data is normalized to the unperturbed network and no ASV conditionj. For all
the data, the HEK293T cells were measured using flow cytometry 48 hours after transfection
and the normalized data are shown as mean ± standard error for n = 3 replicates. The unnor-
malized data is shown in Supplementary Figures B.5 and B.6 and are provided in separate files.

troller, the expression of tTA-mCitrine is ensured to be robust to the induced
drug disturbance as depicted in Figure 3.3. This demonstrates that the addi-
tional proportional feedback indeed does not break the adaptation property of
the antithetic integral controller, as predicted by control theory.

Mathematical modeling
To demonstrate that the circuits in Figures 3.2(a) and 3.3(a) are consistent with
our understanding of the regulatory topologies, we first derive detailed mecha-
nistic models of these topologies, starting from basic principles of mass-action
kinetics. Next, a model reduction technique is carried out based on a quasi-
steady-state approximation that exploits the time-scale separation imposed by
the various fast binding/unbinding reactions in the network. The mathemati-
cal details can be found in Supplementary Information B.1, B.2 and B.3, where
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Figure 3.3: See caption on the next page.

each circuit is mathematically treated separately. The resulting reduced mod-
els are all compactly presented in a single reaction network depicted in Fig-
ure 3.4(a). The overall network can be divided into two biomolecular con-
troller sub-networks – the integral and proportional controllers – that are con-
nected in feedback with another sub-network to be controlled. This is illus-
trated schematically in Figure 3.4(a) and mathematically as a set of Ordinary
Differential Equations (ODEs) in Figures B.1(b), B.3(b) and B.4(b). The reduced
models capture the expression dynamics of the three genes, denoted by G1,
G2 and G′

2, that are encoded in the activator, antisense and network perturba-
tion plasmids, respectively. Gene G1 is constitutively expressed at a rate 𝜇(𝐺1),
while the other two genes G2 and G′

2 are activated by the (dimer) transcription
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Figure 3.3: A Proportional-Integral Controller. (a) Genetic implementation of a Proportional-
Integral (PI) controller. A negative feedback loop from the RNA-binding protein L7Ae (which
is proxy to tTA-mCitrine since it is simultaneously produced from the same mRNA) is added to
the antithetic motif. This protein binds in the 5’ untranslated region of the sense mRNA species
to inhibit the translation of tTA and itself simultaneously. Stronger proportional feedback is
realized by adding additional L7Ae binding hairpins. (b) A PI controller does not break the adap-
tation property. The P and PI circuits were implemented by adding a negative feedback loop
from L7Ae to the open- and closed-loop circuits. All circuits were perturbed by adding 30 nM
of ASV. The HEK293T cells were measured using flow cytometry 48 hours after transfection
and the data is shown as mean per condition normalized to the unpertubed (no ASV) condition
± standard error for n = 3 replicates. (c) Proportional-integral control reduces the steady-state
variance. Computing the normalized coefficient of variation squared on the steady-state flow
cytometry distributions, reveals a reduction in variation in the presence of proportional feed-
back. The coefficients of variation squared were normalized to the No P-Control condition for
both setpoints and is shown ± standard error for n = 3 replicates. The unnormalized data is
shown in Supplementary Figure B.7 and B.8 and is provided in a separate file.

factor A at rates 𝜃(𝐴; 𝐺2) and 𝜃𝑝(𝐴; 𝐺′
2), respectively. The derived mathemati-

cal expressions of the functions 𝜇, 𝜃, 𝜃𝑝 and the active degradation propensity, 𝜆,
are all given in Figures B.1(b) and B.4(b). Note that the model for the circuit of
Figure 3.2(a) without (resp. with) network perturbation can be obtained by set-
ting 𝐺′

2 = 𝜏 = 0 (resp. 𝜏 = 0); whereas, the model for the circuit of Figure 3.3(a)
can be obtained by setting 𝐺′

2 = 0 and 𝜏 = 1.
Next, we calibrate the derived mathematical models to the experimental

measurements that were collected at steady state. The measured fluorescence,
denoted by 𝑀, represents all the molecules involving mCitrine: X1 X2, and A.
It is shown in Supplementary Information B.1 that𝑀 can be expressed solely in
terms of the concentration of the regulated output A, as shown in the bottom
of Figure 3.4(a), where 𝑐𝑥 is an instrument-related proportionality constant that
maps concentrations in nM to fluorescence in a.u., and 𝜅 is the dimerization
dissociation constant of A. Of course, steady-state measurements alone can-
not uniquely estimate all parameters in the model. However, by carrying out a
steady-state analysis of the underlying differential equations, we can identify a
set of parameter groups (or aggregated parameters) that can be uniquely esti-
mated based on the collected data. The detailed mathematical analyses, show-
ing the aggregated parameter groups and their calibrated values are reported
for each circuit separately in Supplementary Information B.1, B.2 and B.3.

In the ideal closed-loop scenario where the dilution/degradation rate 𝛿 is
zero, the steady-state analyses are fairly straight forward and are shown in the
bottom of Figures B.1(b), B.3(b) and B.4(b) for each circuit. These analyses show
that the steady-state concentration of the regulated output, denoted by 𝐴̄, is the
same for all the circuits and is given by
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3. A genetic mammalian proportional-integral feedback control circuit

𝐴̄ = 𝜅2
𝑟 − 𝑘0/𝑘2
1 − 𝑟

, with 𝑟 ∶=
𝑘1𝐺1
𝑘2𝐺2

. (3.1)

Observe that 𝐴̄ is a monotonically increasing function of the plasmid ra-
tio 𝐺1/𝐺2, and is independent of the various controlled network parameters,
particularly the disturbance 𝐷 and the plasmid concentration 𝐺′

2. As a result,
robust perfect adaptation is exactly achieved since the ASV disturbance and the
network perturbation have absolutely no effect on the steady-state concentra-
tion of the regulated output A.

In practice, the dilution/degradation rate 𝛿 is never exactly zero, which
makes the integrator ‘leaky’. In this case, the steady-state analysis becomes
more involved, and one cannot obtain an explicit formula for 𝐴̄ as in the ideal
situation. However, implicit (polynomial) formulae can be obtained and are
used here to fit the mathematical models to the data. It should be pointed out
that when 𝛿 is sufficiently small relative to other controller rate parameters
(as can be achieved with slowly growing cells and fairly stable sense/antisense
RNA) the integrator leakiness will be negligibly small, and perfect adaptation
can still be achieved for all practical purposes Aoki et al., 2019; Qian and Del
Vecchio, 2018. This is verified experimentally in Figures 3.2(c), (d) and 3.3(b).
Themodel fits for the integral circuit of Figure 3.2(a), shown in Figure 3.4(b), are
carried out sequentially for the open-loop circuit first (with and without distur-
bance), then for the closed-loop circuit (without disturbance). This sequential
procedure avoids over-fitting the model to the data. Finally, the closed-loop
circuit with disturbance was left for model prediction to assess the calibration
accuracy. As shown in the plots of Figure 3.4(b), the model fits the data very
well, and is also capable of predicting the experimentally observed disturbance
rejection feature of the antithetic integral controller (dashed red curve in the
right plot). Similar model calibration procedures were also carried out for the
circuits of Figure B.3(a) and B.4(a), and the model fits and predictions are re-
ported in Figures 3.4(c) and B.4(c), respectively. Clearly, the models fit the data
quite well, and are also capable of predicting another experimentally observed
feature of the antithetic integral controller: robustness to network perturba-
tions. The models also show that appending the proportional controller to the
integral controller does not affect the steady state of the measured output, but
it is capable of reducing the stationary variance (equivalently the coefficient
of variation), as demonstrated experimentally in Figure 3.3(c) (Supplementary
Figure B.8(b)) and theoretically through the stochastic simulations depicted in
Figure 3.4(d).
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Figure 3.4: See caption on the next page.
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Figure 3.4: Mathematical Modeling of the Various Circuits. (a) A Chemical Reaction Network
Compactly Modeling the Various Circuits presented in Figures 3.2 and 3.3. The sense mRNA,
Z1, is constitutively produced at a rate 𝜇(𝐺1) that depends on the gene (plasmid) concentration,
𝐺1. Then, Z1 is translated into a fusion of a synthetic transcription factor, fluorescent protein
and inducible-degradation tag, referred to as X1, at a rate 𝑘. X1 is either actively degraded by
the ASV disturbance D at a rate 𝜆(𝑋1; 𝐷) or converted to X2 at a rate 𝑐 by releasing the SMASh
tag. The protein X2 dimerizes to form A which activates the transcription of the antisense
RNA, Z2. The transcription rate, denoted by 𝜃, is a function of 𝐴 and the gene concentration
𝐺2. The antithetic integral control, shown in the blue box, is modeled by the sequestration of Z1
and Z2 at a rate 𝜂. Note that the open-loop circuit is obtained by removing the feedback from
the regulated output A. The proportional controller (orange box) is modeled by producing the
protein X1

′, also at a rate 𝑘, in parallel with X1 to serve as its proxy. A negative feedback is
then achieved by the (un)binding reaction between the proxy X1

′ and Z1. Finally, the network
perturbation (purple box) is modeled by introducing an additional gene G2

′. This gene is ac-
tivated by A to transcribe the mRNA Z2

′ at a rate 𝜃𝑝 which is a function of 𝐴 and 𝐺′
2. Z2

′ is
then translated into the proteinX1

′ that has, once again, a negative feedback on the production
of X1 by binding to Z1. See Figures B.1, B.3 and B.4 for a detailed mathematical explanation
for each separate circuit. (b) and (c) Model Calibrations to Experimental Data. The left plots
show themodel fits for the open-loop circuits with/without disturbance in (b) andwith/without
network perturbation in (c). The right plots similarly show the model fits for the closed-loop
circuits. The model fits for proportional control are reported in Figure B.4(c). The solid lines
denote model fits, while dashed lines denote model predictions. The model fits and predic-
tions show a very good agreement with the experiments over a wide range of plasmid ratios
(setpoints) 𝐺1/𝐺2 for all scenarios. (d) Stochastic Simulations Demonstrating the Variance Re-
duction property of the Proportional Controller. The calibrated steady-state parameter groups
of the PI closed-loop circuit, given in (B.42), are fixed, while the time-related parameters are set
as follows: 𝛾 = 𝛾 ′, 𝑘 = 𝑐 = 𝑑 = 1min−1 to demonstrate the variance reduction property that is
achieved when a proportional controller is appended to the antithetic integral motif. Note that
𝐺1 = 0.002 pmol and 𝐺2 = 0.004 pmol.

Gene expression burden mitigation

To demonstrate the antithetic integral and proportional-integral controllers in
a more practical setting, we apply the circuits introduced in Figure 3.2 and Fig-
ure 3.3 to decouple the expression of the transcription factor tTA-mCitrine-
SMASh from the expression of other genes when they are competing for finite
pools of shared resources. This effect was first described in bacteria (Ceroni
et al., 2015) and later also characterized in mammalian cells (Frei et al., 2020;
Jones et al., 2020). The effective consequence of this is that changes in the ex-
pression of one gene inversely affects the expression of all other genes that
share a pool of resources with it. In the context of feedback control, the afore-
mentioned changes in gene expression can be seen as disturbances to the con-
trolled network (Figure 3.5(a)). To experimentally introduce this perturbation,
we co-transfected varying amounts of an additional disturbance plasmid that
constitutively expresses the fluorescent protein miRFP670. Previously, it has
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been observed that the expression of transiently transfected genes is repressed
by the presence of double stranded RNA (dsRNA) (Nejepinska et al., 2014). We
similarly observed that the double stranded RNA (dsRNA) formed through the
hybridization of sense and antisense mRNA inhibits the expression of the addi-
tionally transfected miRFP670 (comparing Closed Loop to Syn1 Open Loop in
Supplementary Figure B.9). To make the gene expression burden — reflected by
miRFP670 expression levels — comparable between the closed-loop and open-
loop conditions, we replaced the inactive Syn1 promoter with a constitutively
active EF1𝛼 promoter and tuned the plasmid ratio such that the expression of
miRFP670 matches the closed-loop expression (Low EF1𝛼 Antisense condition
in Supplementary Figure B.9). As was already done in Figure 3.3, we now com-
pare the responses of the open-loop (No Control), proportional feedback (P-
Control), integral feedback (I-Control) and proportional-integral (PI-Control)
variant to this new disturbance. As can be seen in Figure 3.5(b) (Supplementary
Figure B.10(a)), a setpoint of 1/2 is maintained within 10 % up to a disturbance
strength of 2.3 for I-Control and for all disturbance strengths for PI-Control
(Figure 3.5(b) and Supplementary Figure B.10(a)). This is not the case for the
No Control and P-Control configurations, where the steady-state error steadily
increases with the increasing strength of the disturbance (Figure 3.5(b) and Sup-
plementary Figure B.10(a)). In all cases, the disturbance is similar in relative
extent (Figure 3.5(b) top and Supplementary Figure B.10(a) top). In addition
to providing perfect adaptation, PI-Control improves regulation over I-control
by further reducing the steady-state cell-to-cell variability (Figure 3.5(c) and
Supplementary Figure B.10(b)).

3.5 Discussion
This study presents the first implementation of integral and proportional-integral
feedback in mammalian cells. With our proof-of-principle circuit we lay the
foundation for robust and predictable control systems engineering in mam-
malian biology. We believe proportional-integral feedback systems will have
a transformative effect on the field of synthetic biology just like they have had
on other engineering disciplines.

Based on the antithetic motif (Figure 3.1(a)), we designed and built a proof-
of-concept circuit capable of perfect adaptation. This was achieved by exploit-
ing the hybridization of mRNA molecules to complementary antisense RNAs.
The resulting inhibition of translation realized the central sequestration mech-
anism. Specifically, we expressed an antisense RNA through a promoter that
was activated by the transcription factor tTA. This antisense RNA was comple-
mentary to and bound with the mRNA of tTA to close the negative feedback
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Figure 3.5: Mitigating Competition for Shared Limited Resources with Antithetic Integral and
Proportional-Integral Feedback. (a) A genetic implementation of an antithetic integral and
proportional-integral feedback circuit for mitigating the effects of limited shared resources.
The antithetic integral and proportional-integral feedback circuit characterized in Figure 3.2
and Figure 3.3 are re-purposed to mitigate the coupling of gene expression induced by shared
pools of finite resources. Varying the amounts of an additional disturbance plasmid that con-
stitutively expresses the fluorescent protein miRFP670 introduces a disturbance to the amount
of available resources which indirectly affects the expression levels of tTA-mCitrine-SMASh.
(b) Steady-state rejection of disturbances to available limited shared resources. The activator
plasmid and antisense plasmid for all conditions were transiently transfected at a setpoint ratio
of 1/2 together with disturbance strengths varying from 0.6 to 3.5. The disturbance strength
describes the amount of disturbance plasmid relative to the activator plasmid. (c) Reduction
in cell-to-cell variability as a result of proportional-integral feedback control. The coefficient
of variation squared was computed for the first two disturbance strengths and normalized two
the I-Control condition. The data is shown as the mean ± standard error for 𝑛 = 3 replicates
per condition. The unnormalized data is shown in Supplementary Figure B.10 and is provided
in a separate file.
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loop (Figure 3.2(a)). We further highlighted the properties of integral feedback
control by showing that our circuit permits different setpoints. By applying
a disturbance to the regulated species we showed that the closed-loop circuit
achieved adaptation and provided superior robustness compared to an analo-
gous open-loop circuit (3.2(c)). Further, we showed that adaptation was also
achieved when the setpoint of the circuit was changed. An earlier implemen-
tation of the antithetic integral feedback motif in bacteria (Aoki et al., 2019)
used a 𝜎 and anti-𝜎 factor pair to realize the sequestration reaction. Due to
the requirement of factors native to the bacterial cell for 𝜎 factors to activate
transcription, this approach is not directly applicable to mammalian cells. Con-
versely, the sense and antisense RNA approach utilized in this study is likely to
be more difficult to realize in bacterial cells due to rapid mRNA turnover.

Moreover, we demonstrated that our realization of the antithetic integral
feedback motif is agnostic to the network structure of the regulated species.
This was achieved by introducing a perturbation to the controlled network it-
self (Figure 3.2(d) and Supplementary Figure B.6). Furthermore, we also demon-
strated that the closed-loop circuit still rejected disturbances even in the pres-
ence of this extra perturbation to the network. In the open-loop circuit, the
disturbance, perturbation, and perturbation with disturbance all led to a strong
decrease in tTA-mCitrine expression.

Next, we used the perturbation to the controlled network to incorporate
proportional feedback into our integral control circuit directly. We then showed
that this proportional-integral feedback controller maintained the same set-
point as the integral controller, evenwhen challengedwith induced degradation
of the controlled species. To demonstrate that this new controller did utilize
proportional feedback, we showed a reduction in the cell-to-cell variability by
computing the coefficient of variation squared on the measured fluorescence
distributions.

To test our understanding of the mechanistic interactions within our cir-
cuits, we derived mechanistic mathematical models for the circuits, starting
from basic mass-action kinetics, and showed that the obtained models were
capable of fitting the experimental measurements. We also showed that the
models were capable of predicting key features of our implementation of the
antithetic proportional-integral controller: disturbance rejection and robust-
ness to network perturbations.

Finally, we employed our integral and antithetic-integral feedback circuits
to perfectly mitigate gene expression burden on the controlled species caused
by introducing an additional, constructively expressed fluorescent protein at
varying levels. In light of recent studies on the effects of shared cellular re-
sources in mammalian cells (Frei et al., 2020; Jones et al., 2020), it is important
to point out that the dependence of the production of the two controller species
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on the same resource pool (e.g. transcriptional resources for sense/antisense
RNAs) was crucial for maintaining the setpoint despite variations in resource
availability. This derives from the fact that the setpoint is a function of the ratio
of the production rates of the two controller species (ratio r in 3.1). Whenever
both rates depend similarly on the same resource pool, the effect of this de-
pendence cancels out. When the production rates depend on different resource
pools, they do not cancel out and the setpoint becomes sensitive to resource
allocation.

Aside from realizing integral feedback control, the sense and antisense RNA
implementation is very simple to adapt and is versatile. Indeed both sense and
antisense are fully programmable, with the only requirement that they share
sufficient sequence homology to hybridize and inhibit translation. Due to this
fact, mRNAs of endogenous transcription factors may easily be converted into
the antithetic motif simply by expressing their antisense RNA from a promoter
activated by the transcription factor. However, one should note that in this case
the setpoint to the transcription factor will be lower than without the antisense
RNA due to the negative feedback. Furthermore, if the mRNA of the endoge-
nous transcription factor is not very stable, the integrator is expected to not
perform perfectly.

Genetically engineered controllers have desirable properties as treatment
strategies for homeostasis-related pathologies. Previously, it has been demon-
strated thatwhen encapsulated insulin-producing designer cells were implanted
in diabetic mice they alleviated the effects of type 1 diabetes mellitus (T1DM) by
secreting insulin in response to low blood pH mediated by diabetic ketoacido-
sis (Ausländer et al., 2014) or, alternatively, in response to sensed glucose (Xie
et al., 2016). This pioneering work provided a proof-of-concept for the practical
feasibility of this approach. In this previous work, however, the designed feed-
back controller is similar to standalone proportional controller, and therefore
cannot exhibit the property of robust perfect adaptation that is characteristic
of integral feedback. We next exploit our antithetic proportional-integral con-
troller implementation to carry out a simulation study that demonstrates the
achievable robust precision and accuracy of the glucose response in modeled
diabetic patients. To illustrate the clinical translatability of our proposed con-
troller topologies, we employed disease models for diabetes mellitus (DM) and
interfaced them with the different controller circuits (Figure 3.6). The ability of
pancreatic 𝛽-cells to synthesize and release insulin determines the classification
of DM into two main categories: type 1DM of autoimmune etiology and type 2
DM (T2DM). As a result, we utilized mathematical models for both T1DM (Man
et al., 2014; Dalla Man, Raimondo, et al., 2007) and T2DM (Dalla Man, Rizza, et
al., 2007), which originated from the UVA-PADOVA Type 1 Diabetes Simula-
tor (S2008) and its updated versions (Man et al., 2014; Kovatchev et al., 2009).
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Figure 3.6: See caption on the next page.

This simulator constitutes the first computer model approved by the FDA as an
alternative to preclinical trials and animal testing.

Over the past decades the prevalence of DM has increased exponentially,
and DM is now considered the most common endocrine disease, affecting ap-
proximately 1 in 11 adults globally (Zheng et al., 2018). Our results propose a
closed-loop alternative to open-loop replacement therapy with exogenous in-
sulin, which in the case of T1DM is prescribed for life. They also offer a po-
tentially more manageable approach to the combination of lifestyle changes
and pharmacological interventions that is recommended for addressing T2DM
management (Stumvoll et al., 2005). Moreover, we showed that the simulated
glucose control is robust to inter-patient variability (see Figure 3.6(b)), for ex-
ample due to differences in endogenous glucose production by the liver (clini-
cally found under stress conditions or in critically ill patients (McCowen et al.,
2001)), or to changes in renal function, such as physiological or pathological
(e.g. diuretic administration, chronic kidney disease) variations in glomerular
filtration rate. It was also shown in Figure 3.6(c) that the antithetic integral
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Figure 3.6: Simulation of Glucose Regulation in the Blood with Antithetic Proportional-
Integral Control. (a) A schematic representation describing the mathematical model of the
closed-loop network. The diagram to the right provides a high-level description of the mod-
eled glucose and insulin dynamics based on Dalla Man, Rizza, et al., 2007. This diagram rep-
resents the controlled network, where the output of interest (to be controlled) is the glucose
concentration (mgdL−1) in the plasma; whereas, the input that actuates this network is the in-
sulin concentration (pmol L−1) in the plasma. Note that, unlike the controlled network in the
previous figures, this network has a negative gain: increasing the input (insulin) decreases the
output (glucose). Hence, to ensure an overall negative feedback, a P-Type controller (with pos-
itive gain) is adopted here and shown in the schematic to the left which models a genetically
embedded antithetic proportional-integral controller. The P-Type property of the integrator
is achieved by switching Z1 with Z2, that is, the antisense RNA is now constitutively pro-
duced while the sense mRNA “senses” the output (glucose) and actuates the input (insulin).
The P-Type property of the proportional controller is achieved by using an activation reaction
(instead of an inhibition reaction as in Figure 3.3(a)) where glucose activates a gene (in orange)
to produce insulin. (b) Robustness to inter-patient variability. To demonstrate the robustness
of our proportional-integral controllers, three parameters 𝑘𝑝1 ∈ [2.4, 3], 𝑉𝑚𝑥 ∈ [0.024, 0.071] and
𝑘𝑒1 ∈ [0.0003, 0.0008] (see Dalla Man, Rizza, et al., 2007) in the controlled network are varied,
while the controller parameters are fixed. Changes of 𝑘𝑝1 depict alterations in endogenous glu-
cose production (e.g. in various catabolic or stress states McCowen et al., 2001), 𝑉𝑚𝑥 is used to
simulate variations in the insulin-dependent glucose utilization (𝑈𝑖𝑑 in Dalla Man, Rizza, et al.,
2007) in the peripheral tissues (e.g. by physiological or pathological changes in GLUT4 translo-
cation), while 𝑘𝑒1 is the glomerular filtration rate. The responses are shown for a meal of 40 g
of glucose at 𝑡 = 0. Adaptation is achieved for all these parameters and for both Type I and II
diabetic subjects. (c) Response to 40 g of glucose at time 𝑡 = 0 and a disturbance in endogenous
glucose production (EGP) rate at 𝑡 = 24 h. A single meal comprised of 40 g of glucose and an
increase of endogenous glucose production rate from 𝑘𝑝1 = 2.7mgmin−1 → 3mgmin−1 (see
Dalla Man, Rizza, et al., 2007) are applied to the models of healthy and diabetic subjects at 𝑡 = 0
and 𝑡 = 24 h, respectively. The top (resp. bottom) plots depicts the response of glucose (resp. in-
sulin) concentration; whereas the left (resp. right) plots correspond to a Type I (resp. II) diabetic
subject. The black curves correspond to a healthy subject whose glucose levels quickly returns
back to the glycemic target range (for adults with diabetes) [80, 130]mgdL−1 Assessment, 2021
after the meal due the naturally secreted insulin. In contrast, the red curves correspond to un-
controlled diabetic patients whose glucose levels are incapable of returning back to the healthy
range due to lack of insulin (Type I) or low insulin sensitivity (Type II). Finally, the solid gray,
dashed gray and green curves correspond to diabetic patients whose glucose levels are con-
trolled by our integral, proportional and proportional-integral controllers, respectively. Both
integral and proportional-integral controllers are capable of restoring a healthy level of glucose
concentration by tuning the set-point to a desired value (100mgdL−1); whereas, the propor-
tional controller alone is neither capable of returning to the desired set-point nor rejecting the
disturbance. Furthermore, the proportional-integral controller outperforms the standalone in-
tegral controller by speeding up the convergence to the set-point, especially for type I diabetes.
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and proportional-integral controllers were capable of achieving robust adapta-
tion. In contrast, a standalone proportional controller did not meet the desired
set-point, nor could it reject disturbances such as an increase in endogenous
glucose production rate (𝑘𝑝1 in Dalla Man, Rizza, et al., 2007). Note that dis-
similarities in the response of the healthy patient and that of the PI-controller-
treated patient are, for themost part, not due to any differences between the two
regulation strategies (natural vs synthetic). Rather they are mostly attributed
to the fact that for the treated patient the insulin was modeled to be synthe-
sized de novo from a genetically engineered synthetic insulin gene, leading to
inevitable gene expression delay. In comparison, for healthy patients insulin is
stored in vesicles for quick release, which ensures a more rapid response — a
fact that was also accounted for in the model of the healthy patient. Neverthe-
less, the response of the PI-controller-treated patient in Figure 3.6(c) meets all
the preprandial and peak postprandial plasma glucose guidelines of the Amer-
ican Diabetes Association (Assessment, 2021), and hence offers a potentially
effective treatment strategy. Interestingly, the same controller for the single
T1DM patient of Figure 3.6(c) (left) was capable of meeting the guidelines for
all 1728 patients in Figure 3.6(b) (left) without requiring re-tuning for differ-
ent patients — a clear demonstration of robust adaptation. A similar robust
adaptation was seen in T2DM, where a single controller met the guidelines for
the majority of patients. For those patients for whom the guidelines were not
met, the violation was slight (glucose levels exceeded 180mgdL−1 only briefly
beyond the maximum of two hours Figure 3.6(b) (right)). This, however, can
be remedied by slightly re-tuning the controller for these patients if necessary.
The details of the mathematical modeling can be found in Supplementary In-
formation B.4.

We believe that the ability to precisely and robustly regulate gene expres-
sion inmammalian cells will findmany applications in industrial biotechnology
and biomedicine. In the area of biomedicine, these robust perfectly adapting
controllers can be used to restore homeostasis in the treatment of metabolic
diseases, as well as for applications in immunotherapy and precise drug deliv-
ery.
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Chapter Four

Conclusion and outlook

This chapter has been adapted from a short review published in Current
Opinion in Systems Biology under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International license (CC
BY-NC-ND 4.0; https://creativecommons.org/licenses/by-nc-nd/4.0/).

Frei, T., & Khammash, M. (2021). Adaptive circuits in synthetic biology.
Current Opinion in Systems Biology, 28, 100399

In the present thesis we have described how gene expression burden af-
fects transiently transfected genes in mammalian cells and how these effects
can be mitigated using microRNA-based incoherent feedforward loops. Addi-
tionally, a mammalian implementation of the antithetic integral feedback motif
has been shown to produce robust perfect adaptation and was further extended
to realize proportional-integral feedback which further also reduces the vari-
ability of the controlled species. Furthermore, it was shown that both integral
and proportional-integral feedback mitigate the effects of the competition for
shared limited resources on the controlled species.

4.1 Open questions regarding gene expression
burden in mammalian cells

In Chapter 2 (Frei et al., 2020) the particular case of gene expression burden in
transient transfection was investigated. While, transient transfection serves as
a rapid prototyping paradigm for genetic circuit engineering, in most cases the
desired end product is a genetically engineered cell line that has the genetic cir-
cuit stably integrated into the genome. For this reason, a natural continuation
of our work would entail the characterization of gene expression burden to ge-
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nomically integrated genes. To investigate gene expression burden for genomi-
cally integrated genes, one can no longer make use of varying the copy number
of an X-tra gene as was done by changing the amount of transfected plasmid.
However, one can employ an inducible gene expression system with externally
tunable induction as was shown in Fig. 2.2b and c. Moreover, due to the stable
copy number of the genes it would also be feasible to perform a characterization
of the gene expression dynamics with regard to effects of resource sharing. For
this one might also consider using an light-inducible gene expression system
such that precise dynamic control of X-tra expression may be achieved. While
the simplest methods for genomic integration such as transposase-mediated in-
tegration will likely compare more directly with the observations obatined by
transient transfection due to their multi-copy integration nature, it will also be
of great interest to investigate if and how gene expression burden may also be
observed for site-specific single copy integrations.

Another open question in gene expression burden is the exact nature of
the limited resources. So far, as was shown in Section 2.3 of Chapter 2 two
pools of limiting resources have been distinguished. However, the two identi-
fied pools may be further separable into more specific resource pools. Ideally,
the limiting resource species would be identified such that one could attempt to
directly regulate their amounts to further mitigate resource constraints. In bac-
teria, ribosomes have been identified as one of the limiting resources for gene
expression and coupling of co-expressed genes has been mitigated by intro-
ducing orthogonal ribosome species (Darlington et al., 2018). Realizing similar
solutions for mammalian cells remains an open challenge.

What mechanisms are capable of maintaining conserved resource levels
in a cell remains to be elucidated as well. Given that all biological systems
constantly consume and dissipate energy, the conservation might not follow
from fundamental conservation laws known in physics but may be conserved
through emergent conservation laws (Baez et al., 2018).

4.2 Extensions to more sophisticated feedback
controller architectures

While integral feedback can guarantee robust perfect adaptation, it does not
ensure safe transient responses. More so, it is known that integral feedback
has a tendency to destabilize a system. To additionally ensure safer transient
dynamics, the integral feedback may be augmented with additional feedback
paradigms such as proportional and derivative feedback. The proportional-
integral feedback circuit introduced in Chapter 3 (Frei et al., 2021) represent a
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first step towards this goal. However, an assessment of the transient response
of the circuit was unfortunately outside of the scope of this thesis.

In particular, to reliably record transient responses we require that the cir-
cuits we are interested in have been stably integrated into the genome of the
host cell line and a monoclonal population was expanded from a single cell.
Additionally, the reporters in the circuit which are used as readouts of the be-
havior of the circuit should be sufficiently destabilized so that they faithfully
follow the dynamics they should be reporting on.

Once transient responses can be recorded reliably, one can explore more ad-
vanced feedback topologies such as proportional-integral-derivative feedback
(Chevalier et al., 2019; Filo et al., 2021). Furthermore, it will also become pos-
sible to directly observe the effects of feedback gain tuning on the transient
response. This will not only allow the controller architectures to adapt per-
fectly but also do so quickly and safely.

4.3 Mutual removal as a generalization of the
antithetic motif

If one takes the antithetic integral feedback motif and relaxes the assumption
that the species 𝑍1 and 𝑍2 annihilate each other at the same rate, one arrives
at a slight modification of the motif where the interaction of the two controller
species can be interpreted asmutually degrading or removing each other. Math-
ematically, this corresponds to substituting the rate 𝜂 with two distinct rates 𝜂1
and 𝜂2 in the rate equations for the species 𝑍1 and 𝑍2, as shown in Eq. (4.1). In
this regard, the canonical antithetic integral feedback motif is a special case of
the mutual degradation interpretation, where 𝜂1 = 𝜂2 = 𝜂.

d𝑍1(𝑡)
d𝑡

= 𝜇 − 𝜂1𝑍1(𝑡)𝑍2(𝑡)

d𝑍2(𝑡)
d𝑡

= 𝜃𝑓 (𝑋𝑛(𝑡)) − 𝜂2𝑍1(𝑡)𝑍2(𝑡)
(4.1)

By setting the derivatives of 𝑍1(𝑡) and 𝑍2(𝑡) to zero and solving for the prod-
uct 𝑍1𝑍2 in one of the two equations, substituting this expression into the other
and solving for 𝑋𝑛 we find that

𝑋𝑛 = 𝑓 −1 (
𝜂1
𝜂2

𝜇
𝜃
) . (4.2)

Compared to the steady state of the minimal antithetic motif 𝑋𝑛 = 𝑓 −1 (𝜇𝜃 ),
the steady state of the mutual removal model is additionally scaled by 𝜂1

𝜂2
. This
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Figure 4.1: Mutual removal interpretation of the antithetic integral feedback motif.

provides additional parameters through which the set point value may be ad-
justed. However, one may also view this as an increase in the fragility of the
set point, as it will now be sensitive to changes in two additional parameters.

The interpretation of the antithetic motif as two separate removal reactions
extends the space of possible biomolecular realizations by relaxing the require-
ment of the strict one-to-one stoichiometry of the sequestration reaction. Fur-
thermore, it also provides a framework in which imperfect sequestration can
also to be shown to produce perfect adaptation. For example, even when most
interactions between the controller species 𝑍1 and 𝑍2 lead to catalytic degra-
dation of either one of them and only a few of these interactions yield proper
sequestration perfect adaptation may be achieved. To see how the mutual re-
moval interpretation encompasses this case, consider the case where 𝑍1 is also
catalytically degraded by 𝑍2.

d𝑍1(𝑡)
d𝑡

= 𝜇 − (𝜂 + 𝜂𝑐𝑎𝑡)𝑍1(𝑡)𝑍2(𝑡)

d𝑍2(𝑡)
d𝑡

= 𝜃𝑓 (𝑋𝑛(𝑡)) − 𝜂𝑍1(𝑡)𝑍2(𝑡)
(4.3)

By setting 𝜂1 ∶= 𝜂 + 𝜂𝑐𝑎𝑡 and 𝜂2 ∶= 𝜂 in Eq. (4.3) we show the connection to
the mutual removal model shown in Eq. (4.1). Within this perspective, a much
larger class of biomolecular realizations may be capable of implementing inte-
gral feedback controllers. For example, the interaction betweenmicroRNAs and
their target mRNAs haven been described to be both catalytic through either
cleaving or deadenylation of the mRNA, or sequestration trough binding of the
microRNA complex to the mRNA and blocking translation (Jonas & Izaurralde,
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2015).

4.4 Adaptation beyond simple controllers
Phenomena in biology (e.g. homeostasis) have inspired the application of in-
tegral feedback to gene regulation to recreate perfect adaptation. However,
biological plasticity may provide more sophisticated forms of adaptation that
go beyond fixed network topologies and may be better understood as forms of
learning. For example, the good regulator theorem from cybernetics (Conant &
Ross Ashby, 1970) states that every good regulator of a system must be a model
of that system. In control theory, a more specific result is known as the internal
model principle (Francis & Wonham, 1976). It states that integral control pro-
vides an internal model for constant disturbances that may also be extended
to ramped and parabolic disturbances by sequentially composing integrators.
By learning more general internal models of the external world, more sophisti-
cated forms of adaptationmay be possible. Specifically, onemay envision forms
of adaptation that also adaptively change the reference levels such that certain
optimality conditions are met. Moreover, learned internal models may hold the
potential to generalize beyond the initially considered disturbances. Therefore,
understanding the principles that govern learning from a theoretical perspec-
tive, such as endeavors in machine learning and artificial intelligence, may lead
to both a better understanding of biology as well as enable the discovery of
even more sophisticated mechanisms of adaptation.

Some theoretical studies have started considering the realization of artifi-
cial neural networks with chemical reactions (Genot et al., 2012; Poole et al.,
2017; Moorman et al., 2019; Samaniego et al., 2020; Anderson et al., 2020), a feat
that was realized already in DNA computing (Qian et al., 2011; Cherry & Qian,
2018). More generally, more abstract and flexible frameworks capable of cap-
turing aspects of learning might be more fruitful in formalizing learning for re-
action networks. For example, theories that originated from evolutionary game
theory have been shown to be analogous to bayesian computations (Czégel et
al., 2020). More abstractly, a general theory of biological systems as adaptive
learners has emerged from theories of the brain. Collectively these theories fall
under the umbrella term free energy principle and active inference (Karl, 2012).
The specifics and plausibility of these theories are however still being fiercely
debated both from a scientific and philosophical point of view (Bruineberg et
al., 2020; Biehl et al., 2021). While these theories are either still very restrictive
or not developed for the particular application in chemical reaction networks,
they might pose interesting avenues for further exploring adaptive circuits that
can learn their internal model.
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4.5 Concluding remarks
The thesis presented here demonstrates a step towards the successful integra-
tion of control theory concepts into synthetic biology. While there remain
many open challenges in this endeavor, we are witnessing and actively con-
tributing to the formation of a subfield in synthetic biology that strives to em-
ploy control theoretic principles to engineer reliable and robust biological sys-
tems. We firmly believe that further advances in this field will enable the con-
struction of highly sophisticated systems capable of addressingmany important
challenges.
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A. Characterization and mitigation of gene expression burden
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FigureA.1: Relation of X-tra and capacitymonitor expression in H1299 andHEK293T cell lines
using CMV and PGK promoter. (a) Levels of fluorescence driven by the same promoter (CMV
or PGK) differ across cell lines. Data show absolute units of capacity monitor detected by flow
cytometry in 1:1 molar ratio transfection. N=2 biological replicates. Source data are provided
as a Source Data file. Flow cytometry results of H1299 (N=4 biological replicates). Source data
are provided as a Source Data file. (b) and HEK293T (N=2 biological replicates). Source data
are provided as a Source Data file. (c) cells co-transfected with fixed amount of CMV-mKate
(capacity monitor) PGK-EGFP (X-tra) (molar ratio from 1:1 to 1:2.5). Flow cytometry results of
H1299 (N=2 biological replicates) (d) and HEK293T (N=2 biological replicates). Source data are
provided as a Source Data file. (e) cells co-transfected with fixed amount of mKate (capacity
monitor) under PGK promoter regulation and increasing amount of EGFP (X-tra) under CMV
promoter regulation (molar ratio from 1:1 to 1:2.5). N=2 biological replicates. Source data are
provided as a Source Data file. Data show the mean fluorescence normalized to its value at a
plasmid molar ratio of 1. Error bars represent the standard error, SE. au: arbitrary units. ru:
relative units. Unpaired two-sided T-test. p-value: * < 0.05.
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FigureA.2: Promoter expression strength indirectly affects expression of co-transfected genes.
Plasmids expressing the fluorescent protein mCitrine and mRuby3 from a strong (EF-1α) or a
medium strength EF-1α short (EFS) promoter were co-transfected in several molar ratio com-
binations. The expression levels for both mCitrine and mRuby3 were normalized by the data
obtained from the weakest promoters pair (EFS/EFS). Similar to Fig. 2.2a, there is a negative
correlation between the expression strength of one protein and the promoter strength of the
other gene. Of note, when strong promoters drive both proteins, the global expression levels
drop as already suggested by Fig. 2.2a. Source data are provided as a Source Data file. Data was
acquired 48 hours after transfection and is plotted as fluorescence normalized to the EFS/EFS
sample. ru: relative units.
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Figure A.3: Non-fluorescent protein genes also compete for cellular resources. A plasmid
encoding a human codon optimized variant of the bacterial σ-factor sigWwas co-transfected in
increasing amounts with a fixed concentration of the mCitrine capacity monitor plasmid. Data
were acquired 48 hours after transfection and are plotted as mean fluorescence normalized to
the lowest equimolar ratio. Error bars represent the standard error, SE. ru: relative units. N=3
biological replicates. Source data are provided as a Source Data file.
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Figure A.4: Assessing nutrient starvation and cell seeding density as potential impacts on
limited resources. In this experimental setting, cells were co-transfected with two plasmids.
The first plasmid, which was provided at incremental levels, is composed of two transcriptional
units (TU), one consisting of a strong promoter driving the expression of mCitrine (hEF1a), the
other driving the expression of miRFP670 under a weak promoter (SV40). The second plasmid
encodes for mRuby3 under a strong constitutive promoter (hEF1a). HEK293T cells were seeded
at 5e4 (low) and 7.5e4 (high) cells/well to assess seeding density effects. To investigate the effects
of nutrient starvation, we refreshed the medium in two out of four wells per condition. Data
were collected 48 hours post transfection and represent the mean fluorescence intensity of the
three fluorescent proteins normalized to the 0.5 equimolar ratio condition. Error bars represent
the standard error, SE. N=2 biological replicates. Source data are provided as a Source Data file.
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Figure A.5: Sorting strategy. H1299 cells were transfected with a plasmid encoding the fluo-
rescent proteins EGFP and mKate, expressed from a bidirectional promoter. Cells were sorted
by fluorescence intensity 48 hours post-transfection to collect non-transfected, intermediate
and high transfected cells from the same transfection plate. (a, b) First, gates to select live and
single cells were determined (left and middle plots). Then, the threshold for fluorescent inten-
sity was set using a non-transfected sample as reference (a, right). The two additional gates to
collect intermediate and high transfected cells were created as shown in the plots (a, b) on the
right.
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Figure A.6: Effect of X-tra titration on endogenous genes. We measured CyCA2, eIF4E and
GAPDHmRNA levels by qPCR in the samples shown in Fig. 2.2c at 1.0, 1.5 and 2.0 molar ratios.
Data represent the mean value normalized to the equimolar ratio of 1.0. Error bars represent
the standard error, SE. N=4 biological samples for CyCA2 and GAPDH. N=2 biological samples
for eIF4E. Source data are provided as a Source Data file.
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FigureA.7: Fluorescence data of Fig. 2.2e shown in arbitrary units. In this experimental setting
Dox represses X-tra transcription. Thus, the lower Dox, the higher the X-tra levels, and as a
consequence, the lower the capacity monitor levels. The HDV-dependent mRNA decapping
and degradation of X-tra should consume less translational resources, which is consistent with
the higher expression of the capacity monitor (dark blue bars) as compared to the inactive
mutant (pale blue bars). Data was acquired 48 hours after transfection and is plotted as mean
fluorescence intensity +/- SE. SE: standard error. N=3 biological replicates (N = 2 for HDV -,
1.6 ng/μL DOX). Source data for Fig. 2.2e are provided as a Source Data file.
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Figure A.8: Gene expression burden in H1299 cells. (a) Flow cytometry results of H1299 cells
co-transfected with fixed amount of capacity monitor and increasing amount of X-tra (1:1 to
1:2.5 molar ratio), both under CMV promoter regulation. Data show the mean fluorescence
normalized to its value at a plasmid molar ratio of 1. N=4 biological replicates. Source data
are provided as a Source Data file. (b) Flow cytometry results of H1299 cells co-transfected
with X-tra (mKate) which includes or not a synthetic intron in the 5’UTR, and capacity moni-
tor (EGFP). Data show that when mKate expression is enhanced by the synthetic intron, EGFP
levels decrease. Data represent the mean fluorescence normalized to fluorescence values in the
absence of the intron. N=4 biological replicates. Source data are provided as a Source Data file.
(c) Flow cytometry results of H1299 cells co-transfected with 2kturn-EGFP or EGFP-8xMs2 (X-
tra) and mKate (capacity monitor) in presence or absence of L7Ae or Ms2-cNOT7 respectively.
Data show that when X-tra is down-regulated, the capacity monitor levels increase. Plot rep-
resents mean fluorescence normalization of fluorescence values to the condition without RBP.
N=4 biological replicates. Source data are provided as a Source Data file. (d) Flow cytometry
results of H1299 cells co-transfected with mKate (X-tra) that includes or not miR-31 target sites
in the 5’UTR, and EGFP (capacity monitor). Data show that capacity monitor levels are higher
when the X-tra is downregulated by miR-31. N=4 biological replicates (N = 3 for noTS). Source
data are provided as a Source Data file. Plot represents normalization of mean fluorescence val-
ues to the no target site condition. Data were acquired 48 hours post-transfection. Error bars
represent the standard error. ru: relative units. Unpaired two-sided T-test. p-value: **<0.005,
*<0.05.
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Figure A.9: Gene expression burden in U2OS cells. (a) Flow cytometry results of U2OS cells
co-transfected with fixed amount of capacity monitor and increasing amount of X-tra (1:1 to
1:2.5 molar ratio), both under CMV promoter regulation. Data show the mean fluorescence
normalized to its value at a plasmid molar ratio of 1. N=4 biological replicates. Source data are
provided as a Source Data file. (b) Flow cytometry results of U2OS cells co-transfected with
X-tra (mKate) which includes or not a synthetic intron in the 5’UTR, and capacity monitor
(EGFP). Data show that when mKate expression is enhanced by the synthetic intron, EGFP lev-
els decrease. Data are the mean fluorescence normalized to fluorescence values in the absence
of the intron. N=4 biological replicates. Source data are provided as a Source Data file. (c) Flow
cytometry results of U2OS cells co-transfected with 2kturn-EGFP or EGFP-8xMs2 (X-tra) and
mKate (capacity monitor) in presence or absence of L7Ae or Ms2-cNOT7 respectively. Data
show that when X-tra is down-regulated, the capacity monitor levels increase. Plot represents
normalization of mean fluorescence values to the condition without RBP. N=2 biological repli-
cates for L7Ae and N=4 for Ms2-cNOT7. Source data are provided as a Source Data file. (d) Flow
cytometry results of U2OS cells co-transfected with mKate (X-tra) that includes or not miR-221
target sites in the 5’UTR, and EGFP (capacity monitor). Data show that capacity monitor levels
are higher when the X-tra is downregulated by miR-221. N=4 biological replicates. Source data
are provided as a Source Data file. Plot represents normalization of mean fluorescence values to
the no target site condition. Data were acquired 48 hours post-transfection. Error bars repre-
sent the standard error. ru: relative units. Unpaired two-sided T-test. p-value: **<0.005, *<0.05.
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Figure A.10: Gene expression burden in HeLa cells. (a) Flow cytometry results of HeLa cells
co-transfected with fixed amount of capacity monitor and increasing amount of X-tra (1:1 to
1:2.5 molar ratio), both under CMV promoter regulation. Data show the mean fluorescence
normalized to its value at a plasmid molar ratio of 1. N=4 biological replicates. Source data
are provided as a Source Data file. (b) Flow cytometry results of HeLa cells co-transfected with
X-tra (mKate) which includes or not a synthetic intron in the 5’UTR, and capacity monitor
(EGFP). Data show that when mKate expression is enhanced by the synthetic intron, EGFP lev-
els decrease. Data are the mean fluorescence normalized to fluorescence values in the absence
of the intron. N=2 biological replicates. Source data are provided as a Source Data file. (c) Flow
cytometry results of HeLa cells co-transfected with 2kturn-EGFP or EGFP-8xMs2 (X-tra) and
mKate (capacity monitor) in presence or absence of L7Ae or Ms2-cNOT7 respectively. Data
show that when X-tra is down-regulated, the capacity monitor levels increase. Plot represents
normalization of mean fluorescence values to the condition without RBP. N=4 biological repli-
cates. Source data are provided as a Source Data file. (d) Flow cytometry results of HeLa cells
co-transfected with mKate (X-tra) that includes or not miR-21 target sites in the 5’UTR, and
EGFP (capacity monitor). Data show that capacity monitor levels are higher when the X-tra is
downregulated by miR-21. N=4 biological replicates. Source data are provided as a Source Data
file. Plot represents normalization of mean fluorescence values to the no target site condition.
Data were acquired 48 hours post-transfection. Error bars represent the standard error. ru:
relative units. Unpaired two-sided T-test. p-value: **<0.005, *<0.05.
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Figure A.11: Gene expression burden in CHO-K1 cells. (a) Flow cytometry results of CHO-K1
cells co-transfected with fixed amount of capacity monitor and increasing amount of X-tra (1:1
to 1:2.5 molar ratio), both under CMV promoter regulation. Data show the mean fluorescence
normalized to its value at a plasmid molar ratio of 1. (b) Flow cytometry results of CHO-K1 cells
co-transfected with X-tra (mKate) which includes or not a synthetic intron in the 5’UTR, and
capacity monitor (EGFP). Data show that when mKate expression is enhanced by the synthetic
intron, EGFP levels decrease. Data represent the mean fluorescence normalized to fluorescence
values in the absence of the intron. (c) Flow cytometry results of CHO-K1 cells co-transfected
with 2kturn-EGFP (X-tra) and mKate (capacity monitor) in presence or absence of L7Ae. Data
show that when X-tra is down-regulated, the capacity monitor levels increase. Plot represents
mean normalization of fluorescence values to the condition without L7Ae. (d) Flow cytometry
results of CHO-K1 cells co-transfected with mKate (X-tra) that includes or not miR-21 target
sites in the 5’UTR, and EGFP (capacity monitor). Data show that capacity monitor levels are
higher when the X-tra is downregulated by miR-21. Plot represents normalization of mean flu-
orescence values to the no target site condition. Data were acquired 48 hours post-transfection.
Error bars represent the standard error. ru: relative units. N=2 biological replicates. Source
data are provided as a Source Data file.
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Figure A.12: Inhibition of miR-31 in H1299 cells. miR-31 activity impaired by a miR-31 in-
hibitor, leads to the rescue of miRNA sensor (mKate) expression in transfected H1299 cells.
As a consequence, capacity monitor (EGFP) levels decrease. Both fluorescent proteins do not
vary in the control. Data are expressed in logarithmic base 2 scale. Flow cytometry data were
acquired 48 hours post-transfection and are plotted as mean fluorescence normalized on the
control +/- SE. SE: standard error. ru: relative units. N=6 biological replicates. Source data
are provided as a Source Data file. Unpaired two-sided T-test. p-value: ****<0.0001, ***<0.0005,
*<0.05.
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Figure A.13: miR-31 sensor in H1299. (a) Flow cytometry results of mKate-miR31-TS (miRNA
sensor) co-transfected with EGFP (capacity monitor) in H1299 cells show that downregulation
of miRNA sensor expression leads to an increase in capacity monitor levels. Data were acquired
48 h post transfection and are plotted as mean fluorescence +/- SE. SE: standard error. au: ar-
bitrary units. N=2 biological replicates (N=2 in noTS sample; N=3 in 3TS 5’ sample). Source
data are provided as a Source Data file. (b) qPCR measurement confirms lower mRNA levels
of miRNA sensor. Top, scattered dot plot of 2−dCt values. Data are plotted +/- SE. SE: standard
error. Bottom, bar plot of the fold change measured with the 2−ddCt method8. Data were ac-
quired 48 h post transfection. N=4 biological replicates. Source data are provided as a Source
Data file.
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Figure A.14: The increase of capacity monitor levels is a consequence of miRNA regulation.
U2OS and HEK293T cells were co-transfected with the 4-TS-3’UTR miR-31 sensor (miRNA
sensor) and EGFP (capacity monitor). Both cell lines do not exhibit high expression of miR31,
therefore miRNA sensor levels should not change. Data show that both miRNA sensor and the
capacity monitor levels are comparable with and without miR-31 TS, indicating that the higher
capacity monitor levels are indeed a consequence of miRNA activity. Data were acquired 48 h
post-transfection +/- SE. SE: standard error. au: arbitrary units. N=2 biological replicates.
Source data are provided as a Source Data file.
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Figure A.15: miRNA-mediated resource re-allocation in the U2OS cell line. The miRNA sensor
responds to miR-221, which is highly expressed in U2OS cells. Flow cytometry results of a co-
transfection of mKate-miR221-TS (miRNA sensor) and EGFP (capacity monitor) in U2OS cells
show the negative correlation of the two genes. Data were acquired 48 h post-transfection and
are plotted as mean fluorescence +/- SE. SE: standard error. au: arbitrary units. N=4 biological
replicates (N=2 in 2TS 3’ sample). Source data are provided as a Source Data file.
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Figure A.16: miRNA-mediated resource re-allocation in the HeLa cell line. The miRNA sensor
gene was designed for miR-21, which is highly expressed in HeLa cells. Flow cytometry re-
sults from a co-transfection of mKate-miR21-TS (miRNA sensor) and EGFP (capacity monitor)
in HeLa cells. Interestingly, mKate downregulation seems to saturate already at 1TS3’. This
may be due to the absolute levels of miR21 in this cell line. Data were acquired 48 h post trans-
fection and are plotted as mean fluorescence +/- SE. SE: standard error. au: arbitrary units.
N=2 biological replicates for noTS, 3TS 3’, 3TS 5’ and N=4 for 1TS 3’, 2TS 3’, 1TS 5’ and 2TS 5’.
Source data are provided as a Source Data file.
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Figure A.17: Model fits for data displayed in Fig. 2.2b,e,g and Fig. 2.3b. The modeling frame-
work described in Fig. 2.4a was applied to models of the genetic circuits used to generate
the data in Fig. 2.2b,e,g and Fig. 2.3b. Detailed descriptions of these models can be found in
Supplementary Note A.6. The parameters obtained are summarized in Supplementary Ta-
ble A.34–A.38. Source data for the respective figures are provided as a Source Data file. The
data are presented as mean +/- SE. SE: standard error. au: arbitrary units.
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Figure A.18: GOI fluorescence distribution in co-transfected cells population. We compared
the tolerance of mKate to increasing levels of X-tra gene in the absence or presence of an iFFL
in which mKate includes miR-31 TS in the 5’UTR. The iFFL mitigation of resource competition
is reflected by smaller shifts in GOI fluorescence at different equimolarities (right side). Data
were acquired 48 h post-transfection. Source data are provided as a Source Data file.
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FigureA.19: X-tra absolute fluorescence in presence or absence of iFFL. X-tra expression levels
of the plasmid titration experiment in Fig. 2.5c. With miR-31 iFFL mitigation, the absolute X-tra
expression increases about 2 fold compared to w/o mitigation. Data is plotted as mean +/- SE.
SE: standard error. au: arbitrary units. N=3 biological replicates. Source data are provided as a
Source Data file.
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Figure A.20: The miR-221-based iFFL improves tolerance to exogenous gene load in U2OS
cells. An iFFLwherebymKate includesmiR-221 TS in the 5’UTR is less affected by the increased
amount of the X-tra gene, as compared to the expression in the absence of miR-221 regulation.
The model was unable to capture the differences in expression between the two conditions
in the X-tra response due to the variability in the data. Therefore, the two lines plotted are
exactly the same and it appears as if only one was plotted. Experimental data are normalized
to the lowest equimolar ratio. The parameter values obtained by fitting are summarized in
Supplementary Table A.31. Data were acquired 48 h post-transfection and are plotted +/- SE.
SE: standard error. ru: relative units. N=2 biological replicates (N=1 for w/o Mitigation, 1.5
equimolar EGFP to mKate plasmid). Source data are provided as a Source Data file.
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Figure A.21: miRNA-mediated resource re-allocation in the HEK293T cell line. The miRNA
sensor gene was designed for miR-221, which is highly expressed in HEK293T cells. Flow
cytometry results from a co-transfection of mKate-3xmiR2215’UTR-TS (miRNA sensor) and
EGFP (capacity monitor) in HEK293T cells. Data were acquired 48 h post-transfection and are
plotted +/- SE. SE: standard error. au: arbitrary units. N=2 biological replicates. Source data
are provided as a Source Data file.
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Figure A.22: The miR-221-based iFFL improves tolerance to exogenous gene load in HEK293T
cells. We compared the tolerance of mKate to increasing levels of X-tra gene in the absence or
presence of an iFFL whereby mKate includes miR-221 TS in the 5’UTR. The iFFL mitigates the
effects of resource competition. The model was unable to capture the differences in expression
between the two conditions in the X-tra response. Therefore, the two lines plotted are exactly
the same and it appears as if only one was plotted. The parameter values obtained by fitting
are summarized in Supplementary Table A.32. Experimental data are normalized to the lowest
equimolar ratio. Data were acquired 48 h post-transfection and are plotted +/- SE. SE: standard
error. ru: relative units. N=2 biological replicates. Source data are provided as a Source Data
file.
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Figure A.23: Impact of transient plasmid transfection on endogenous genes in noTS and
miR31-sensor samples. (a) H1299 cells were transfected with a bidirectional promoter plasmid
encoding the fluorescent proteins EGFP (capacity monitor) and mKate (miRNA sensor), with-
out (noTS, left) or with TS for miR-31 (miR31-sensor, right). Cells were sorted by fluorescence
intensity 48 hours after transfection to collect non-transfected, intermediate transfected and
high transfected cells from the same transfection plate. (b) Protein levels of EGFP and mKate
in sorted populations of noTS and miR31-sensor transfected cells. Consistent with the gates,
fluorescence intensity increases in intermediate and high transfected cells when compared to
non-transfected cells. In agreement with data shown in Fig 2h and 3b,c, EGFP fluorescence
is higher in miR31-sensor samples, while mKate is lower. Data are the mean fluorescence +/-
SE. (c) mRNA levels of CyCA2, eIF4E and GAPDH in sorted samples. All three endogenous
genes decrease in intermediate and high transfected cells as compared to non-transfected cells.
However, in cells transfected with the miR31-sensor circuit the decrease of expression is lower.
mRNA levels are normalized to the non-transfected population. Data were collected 48 hours
after transfection and are represented as mean +/- SE. SE: standard error. au: arbitrary units.
Unpaired two-sided T-test. p-value: ****<0.0001, ***<0.0005, **<0.005, *<0.05. N=3 biological
replicates. Source data are provided as a Source Data file.

112



Intermediate High
0.000

0.001

0.002

0.003

SATB2

m
R

N
A

le
ve

l(
2^

-d
C

t)

noTS
miR31-3TS5'

n.s.
n.s.

Gate:

Figure A.24: Impact of noTS control vs miR-31-3TS5’ transfections on the native miR-31 target
SATB2. mRNA extracted from sorted populations as described in Supplementary Fig. A.22a and
analyzed in Fig. 2.2d and Supplementary Fig. A.22c, was used to measure SATB2 levels relative
to the internal reference 18S. SATB2 expression does not vary when miR-31 TS are present in
our genetic circuit. Data represent the mean mRNA expression +/- SE. SE: standard error. ru:
relative units. Unpaired two-sided T-test. N=3 biological replicates. Source data are provided
as a Source Data file.
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Figure A.25: The iFFL architecture improves tolerance to increase gene load in a 3-output
system. Mouse embryonic stem cells were transfected with the miRNA mitigation iFFL shown
in Fig. 2.5d. Light and dark colors represent gene expression levels in the absence or presence
of mitigation. The solid lines show a model that includes resources, fit to the experimental
data. Experimental data are normalized to the lowest equimolar ratio. The parameter values
obtained by fitting are summarized in Supplementary Table A.33. All data were acquired 48 h
post transfection and are plotted +/- SE. SE: standard error. ru: relative units. N=3 biological
replicates. Source data are provided as a Source Data file.
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a b c

Figure A.26: FACS gating strategy. (a) The recorded events were gated in the FSC-A vs SSC-A
channels to select the living cells population (P1). (b) The P1 was then gated in the FSC-A vs
FSC-H channels to select the single cell population. (c) For each experiment a sample of non-
transfected cells was used to set the positive threshold for each fluorescence. Cells selected
following this pipeline were then analyzed.
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Figure A.27: Alternative FACS gating strategy. The plots show the hierarchical gating strategy
implemented in a custom R script. The hierarchy progresses from left to right, top to bottom.
Top left: The first gate removes events that potentially lie on the boundary of the detectable
values. Top middle: This gate facilitates the subsequent gating by removing potential bubbles
that were recorded. Top right: Here, a custom density-based gating strategy is employed to
select for the living cell population and remove debris. Bottom left: In this gate the tail of
the distribution in the FSC-W channel representing the bulk of the doublet event is removed.
Bottom middle: The singlet population is further refined by gating in the FSC-H vs FSC-A
channels. Bottom right: The resulting singlets are further refined by applying an ellipse gate
around the point of highest density.
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Figure A.28: mRNA level of data show in Fig. 2.2d. Individual measures of mRNA level in the
3 biological replicates. Source data are provided as a Source Data file. mRNA was extracted 48
hours post-transfection from sorted cells according to Supplementary Fig. A.5 gating. Data are
plotted +/- SE. NT: Non Transfected. SE: standard error.
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A.1 Supplementary Note 1

Derivation of the effective production rate constant 𝑘𝑒𝑓 𝑓𝑖 (𝐴1, … , 𝐴𝑛). Here we
show the derivation of the effective production rate constant as the quasi-steady-
state solution for the complexes formed between substrate species 𝐴𝑖 and their
corresponding resource pool 𝑅. The reactions shown in Fig. 2.4a are:

A𝑖 + R
k+
𝑖 C𝑖

C𝑖
k−
𝑖 A𝑖 + R

C𝑖
kcat
𝑖 A𝑖 + R + B𝑖

In these reactions, 𝐵𝑖 is the product formed. We apply the law of mass action
to get the following ordinary differential equation for the complex species 𝐶𝑖:

̇𝐶𝑖(𝑡) = 𝑘+𝑖 𝑅(𝑡)𝐴𝑖(𝑡) − (𝑘−𝑖 + 𝑘𝑐𝑎𝑡𝑖 )𝐶𝑖(𝑡)

Assuming a limited amount of available resources, we can express the free
resources as:

𝑅(𝑡) = 𝑅𝑡𝑜𝑡𝑎𝑙 −
𝑛
∑
𝑗=1

𝐶𝑗(𝑡)

Since we would like to obtain a quasi-steady-state expression for any 𝑛, we
cast the equations in matrix from:

Ċ = diag(k+)(𝑅𝑡𝑜𝑡𝑎𝑙 − 1TC)A − diag(k− + kcat)C

Here we use bold font to denote vectors and diag(x) to represent the matrix
with the vector x as its diagonal. When we set the left-hand side to zero, lump

the binding, unbinding and production rates into km such that 𝑘𝑚𝑖 ∶=
𝑘−𝑖 +𝑘𝑐𝑎𝑡𝑖
𝑘+𝑖

and solve for C∗ we get the expression:

C∗ = 𝑅𝑡𝑜𝑡𝑎𝑙(𝐼 + diag(k−1m )A∗1T)−1diag(k−1m )A∗

= 𝑅𝑡𝑜𝑡𝑎𝑙(𝐼 −
diag(k−1m )A∗1T

1 + 1Tdiag(k−1m
)diag(k−1m )A∗

=
𝑅𝑡𝑜𝑡𝑎𝑙diag(k−1m )A∗

1 + 1Tdiag(k−1m )A∗

Where the second step is an application of the Sherman-Morrison formula.
The effective production rate is obtained by multiplying this last expression

with diag(kcat). For an individual element this gives:

𝑘𝑒𝑓 𝑓𝑖 (𝐴1, … , 𝐴𝑛) ∶= 𝑘𝑐𝑎𝑡𝑖 𝑅𝑡𝑜𝑡𝑎𝑙
𝑘−1𝑚𝑖 𝐴𝑖

1 + ∑𝑛
𝑗=1 𝑘−1𝑚𝑗 𝐴𝑗
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A.2 Supplementary Note 2
A simple model of plasmid copy number induced competition for limited re-
sources.

To derive the equations used in Fig. 2.2a of themain text the followingmodel
was used:

𝑀̇𝑖 = 𝑘𝑒𝑓 𝑓𝑀𝑖
(𝐺1, … , 𝐺𝑛)𝐺𝑖 − 𝛿𝑀𝑖𝑀𝑖

̇𝑃𝑖 = 𝑘𝑒𝑓 𝑓𝑃𝑖 (𝑀1, … ,𝑀𝑛)𝑀𝑖 − 𝛿𝑃𝑖𝑃𝑖

Here, we distinguish between two potential pools of shared limited re-
sources. One for mRNA production and one for protein production. ThemRNA
species are denoted by the subscript letter 𝑀 and the protein species are de-
noted by the subscript letter 𝑃. The copy number of the genes are denoted by
𝐺𝑖 and are assumed to be constant. The degradation rates of each species is
represented by a 𝛿 subscripted with the respective species’ name. Using the
definition:

𝑘𝑒𝑓 𝑓𝐵𝑖 (𝐴1, … , 𝐴𝑛) ∶= 𝑘𝑐𝑎𝑡𝐵𝑖 𝑅
𝑡𝑜𝑡𝑎𝑙

𝑘−1𝑚𝐵𝑖

1 + ∑𝑛
𝑗=1 𝑘−1𝑚𝐵𝑗

𝐴𝑗

The equations can be written as:

𝑀̇𝑖 = 𝑘𝑐𝑎𝑡𝑀𝑖
𝑅𝑡𝑜𝑡𝑎𝑙𝑀

𝑘−1𝑚𝑀𝑖

1 + ∑𝑛
𝑗=1 𝑘−1𝑚𝑀𝑗

𝐺𝑗
𝐺𝑖 − 𝛿𝑀𝑖𝑀𝑖

̇𝑃𝑖 = 𝑘𝑐𝑎𝑡𝑃𝑖 𝑅
𝑡𝑜𝑡𝑎𝑙
𝑃

𝑘−1𝑚𝑃𝑖

1 + ∑𝑛
𝑗=1 𝑘−1𝑚𝑃𝑗

𝑀𝑗
𝑀𝑖 − 𝛿𝑃𝑖𝑃𝑖

We solve for the steady state expressions of each of the species by setting
the left-hand side of the equations to zero. After simplifying we obtain the
following expressions:

𝑀∗
𝑖 =

𝑘𝑐𝑎𝑡𝑀𝑖
𝑅𝑡𝑜𝑡𝑎𝑙𝑀

𝛿𝑀𝑖

𝑘−1𝑚𝑀𝑖
𝐺𝑖

1 + ∑𝑛
𝑗=1 𝑘−1𝑚𝑀𝑗

𝐺𝑗

𝑃∗𝑖 =
𝑘𝑐𝑎𝑡𝑀𝑖

𝑅𝑡𝑜𝑡𝑎𝑙𝑀

𝛿𝑀𝑖

𝑘𝑐𝑎𝑡𝑃𝑖 𝑅
𝑡𝑜𝑡𝑎𝑙
𝑃

𝛿𝑃𝑖

𝑘−1𝑚𝑀𝑖
𝑘−1𝑚𝑃𝑖

𝐺𝑖

1 + ∑𝑛
𝑗=1 𝑘−1𝑚𝑀𝑗

(1 + 𝑘−1𝑚𝑃𝑗

𝑘𝑐𝑎𝑡𝑀𝑗𝑅
𝑡𝑜𝑡𝑎𝑙
𝑀

𝛿𝑀𝑗
)𝐺𝑗
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A. Characterization and mitigation of gene expression burden

The normalized expressions as shown in Fig. 2.2a are further defined as
̂𝑃∗𝑖 = 𝑃∗

𝑖
𝑃∗
𝑖 |𝐺𝑘=𝐺𝑘0

with 𝑘 ≠ 𝑖, which gives:

̂𝑃∗𝑖 =
1 + 𝑘−1𝑚𝑀𝑘

(1 + 𝑘−1𝑚𝑃𝑘

𝑘𝑐𝑎𝑡𝑀𝑘
𝑅𝑡𝑜𝑡𝑎𝑙
𝑀

𝛿𝑀𝑘
)𝐺𝑘0 +∑𝑛

𝑗≠𝑘 𝑘−1𝑚𝑀𝑗
(1 + 𝑘−1𝑚𝑃𝑗

𝑘𝑐𝑎𝑡𝑀𝑗𝑅
𝑡𝑜𝑡𝑎𝑙
𝑀

𝛿𝑀𝑗
)𝐺𝑗

1 + 𝑘−1𝑚𝑀𝑘
(1 + 𝑘−1𝑚𝑃𝑘

𝑘𝑐𝑎𝑡𝑀𝑘
𝑅𝑡𝑜𝑡𝑎𝑙
𝑀

𝛿𝑀𝑘
)𝐺𝑘 +∑𝑛

𝑗≠𝑘 𝑘−1𝑚𝑀𝑗
(1 + 𝑘−1𝑚𝑃𝑗

𝑘𝑐𝑎𝑡𝑀𝑗𝑅
𝑡𝑜𝑡𝑎𝑙
𝑀

𝛿𝑀𝑗
)𝐺𝑗

Specifically for Fig. 2.2a 𝑛 was set to 2.

A.3 Supplementary Note 3
Normalized gene expression of low absolute expression levels are more sensi-
tive to reduced availability of resources.

To show that normalized expression is more sensitive to burden at low ex-
pression levels we take the general term for the protein levels derived in Sup-
plementary Note A.1.

𝑃∗𝑖 =
𝑘𝑐𝑎𝑡𝑀𝑖

𝑅𝑡𝑜𝑡𝑎𝑙𝑀

𝛿𝑀𝑖

𝑘𝑐𝑎𝑡𝑃𝑖 𝑅
𝑡𝑜𝑡𝑎𝑙
𝑃

𝛿𝑃𝑖

𝑘−1𝑚𝑀𝑖
𝑘−1𝑚𝑃𝑖

𝐺𝑖

1 + ∑𝑛
𝑗=1 𝑘−1𝑚𝑀𝑗

(1 + 𝑘−1𝑚𝑃𝑗

𝑘𝑐𝑎𝑡𝑀𝑗𝑅
𝑡𝑜𝑡𝑎𝑙
𝑀

𝛿𝑀𝑗
)𝐺𝑗

To simplify the above term we lump parameters by setting:

𝛽𝑀𝑖 ∶= 𝑘−1𝑚𝑃𝑖

𝑘𝑐𝑎𝑡𝑀𝑖
𝑅𝑡𝑜𝑡𝑎𝑙𝑀

𝛿𝑀𝑖

𝛼𝑃𝑖 ∶=
𝑘𝑐𝑎𝑡𝑃𝑖 𝑅

𝑡𝑜𝑡𝑎𝑙
𝑃

𝛿𝑃𝑖

Which gives:

𝑃∗𝑖 =
𝛼𝑃𝑖𝛽𝑀𝑖𝑘

−1
𝑚𝑀𝑖

𝐺𝑖

1 + ∑𝑛
𝑗=1 𝑘−1𝑚𝑀𝑗

(1 + 𝛽𝑀𝑗) 𝐺𝑗

From this term we can write the expression level normalized with respect
to the expression level at 𝐺𝑘0 as:

̂𝑃∗𝑖 =
𝑃∗𝑖

𝑃∗𝑖 |𝐺𝑘=𝐺𝑘0

=
1 + 𝑘−1𝑚𝑀𝑘

(1 + 𝛽𝑀𝑘) 𝐺𝑘0 +∑𝑛
𝑗≠𝑘 𝑘−1𝑚𝑀𝑗

(1 + 𝛽𝑀𝑗) 𝐺𝑗

1 + 𝑘−1𝑚𝑀𝑘
(1 + 𝛽𝑀𝑘) 𝐺𝑘 +∑𝑛

𝑗≠𝑘 𝑘−1𝑚𝑀𝑗
(1 + 𝛽𝑀𝑗) 𝐺𝑗
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A.4. Supplementary Note 4

To test whether the normalized expression for a gene expressing at low
levels is less sensitive to reduced resource availability than its high expressing
counterpart we wish to evaluate the following inequality ̂𝑃∗𝑖 < ̂𝑃∗𝑖 |𝐺𝑖= ̄𝐺𝑖

where
the low expression is given by the assumption that ̄𝐺𝑖 < 𝐺𝑖. To simplify this
inequality we write it as the equivalent inequality given by sgn( ̂𝑃∗𝑖 − ̂𝑃∗𝑖 |𝐺𝑖= ̄𝐺𝑖

) <
0 where sgn denotes the sign function. Plugging in the expression for ̂𝑃∗𝑖 and
̂𝑃∗𝑖 |𝐺𝑖= ̄𝐺𝑖

gives:

sgn(
1 + 𝑘−1𝑚𝑀𝑘

(1 + 𝛽𝑀𝑘) 𝐺𝑘0 +∑𝑛
𝑗≠𝑘 𝑘−1𝑚𝑀𝑗

(1 + 𝛽𝑀𝑗) 𝐺𝑗

1 + 𝑘−1𝑚𝑀𝑘
(1 + 𝛽𝑀𝑘) 𝐺𝑘 +∑𝑛

𝑗≠𝑘 𝑘−1𝑚𝑀𝑗
(1 + 𝛽𝑀𝑗) 𝐺𝑗

−
1 + 𝑘−1𝑚𝑀𝑖

(1 + 𝛽𝑀𝑖) ̄𝐺𝑖 + 𝑘−1𝑚𝑀𝑘
(1 + 𝛽𝑀𝑘) 𝐺𝑘0 +∑𝑛

𝑗≠{𝑖,𝑘} 𝑘−1𝑚𝑀𝑗
(1 + 𝛽𝑀𝑗) 𝐺𝑗

1 + 𝑘−1𝑚𝑀𝑖
(1 + 𝛽𝑀𝑖) ̄𝐺𝑖 + 𝑘−1𝑚𝑀𝑘

(1 + 𝛽𝑀𝑘) 𝐺𝑘 +∑𝑛
𝑗≠{𝑖,𝑘} 𝑘−1𝑚𝑀𝑗

(1 + 𝛽𝑀𝑗) 𝐺𝑗
) < 0

(A.1)

Given that all parameters are positive and we demand that 𝐺𝑘 > 𝐺𝑘0 the
term on the left hand side of the inequality above reduces to sgn(𝐺𝑖 − ̄𝐺𝑖) < 0.
Given our initial assumption that ̄𝐺𝑖 < 𝐺𝑖 and the requirement that both are
positive real numbers we find that the claim stated in the inequality is false
because the sign function evaluates to 1. Therefore, the model shows that the
normalized expression of a gene expressing at low absolute levels will be more
affected by resource availability than its high expressing counterpart.

A.4 Supplementary Note 4

Model for the topologies from Lillacci et al. (Lillacci et al., 2018).

The model for the four topologies can be given by a system of ordinary
differential equations, where setting the individual repression rates 𝜂𝑀1 and/or
𝜂𝑀2 of the microRNA to zero specifies the topology. More specifically, 𝜂𝑀1 =
0 and 𝜂𝑀2 = 0 is the open-loop (OLP) topology, 𝜂𝑀1 = 0 and 𝜂𝑀2 > 0 the
incoherent feedforward (IFF) topology, 𝜂𝑀1 > 0 and 𝜂𝑀2 = 0 is the feedback
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A. Characterization and mitigation of gene expression burden

(FBK) topology and 𝜂𝑀1 > 0 and 𝜂𝑀2 > 0 is the hybrid (HYB) topology.

𝑀̇1 = 𝑘𝑒𝑓 𝑓𝑀1
(𝐺1, 𝐺2𝑓 (𝑃1), 𝐺3)𝐺1 − (𝛿𝑀1 + 𝜂𝑀1𝑚)𝑀1

𝑀̇2 = 𝑘𝑒𝑓 𝑓𝑀2
(𝐺1, 𝐺2𝑓 (𝑃1), 𝐺3)𝐺2𝑓 (𝑃1) − (𝛿𝑀2 + 𝜂𝑀2𝑚)𝑀2

𝑀̇3 = 𝑘𝑒𝑓 𝑓𝑀3
(𝐺1, 𝐺2𝑓 (𝑃1), 𝐺3)𝐺3 − 𝛿𝑀3𝑀3

𝑚̇ = 𝑘𝑒𝑓 𝑓𝑚 (𝐺1, 𝐺2𝑓 (𝑃1), 𝐺3)𝐺2𝑓 (𝑃1) − 𝛿𝑚𝑚
̇𝑃1 = 𝑘𝑒𝑓 𝑓𝑃1 (𝑀1, 𝑀2, 𝑀3)𝑀1 − 𝛿𝑃1𝑃1
̇𝑃2 = 𝑘𝑒𝑓 𝑓𝑃2 (𝑀1, 𝑀2, 𝑀3)𝑀2 − 𝛿𝑃2𝑃2
̇𝑃1 = 𝑘𝑒𝑓 𝑓𝑃3 (𝑀1, 𝑀2, 𝑀3)𝑀3 − 𝛿𝑃3𝑃3

In this system of equations the species 𝑀1, 𝑀2 and 𝑀3 correspond to tTA-
Cer. mRNA, DsRed mRNA and mCitr. mRNA respectively as shown in Fig. 2.4b
and c. 𝑃1 denotes the transcriptional activator tTA-Cer., 𝑃2 denotes the flu-
orescent protein DsRed and 𝑃3 denotes the fluorescent protein mCitrine. 𝑚
denotes miR-FF4 expressed from the same gene as DsRed. Furthermore, 𝐺1, 𝐺2
and 𝐺3 correspond to the plasmid copy number of tTA-Cer., DsRed and mC-
itr. respectively. The rates beginning with a 𝛿 denote the degradation rates of
the species written in the subscript. The rates beginning with 𝜂 correspond to
the repression rates of the microRNA FF4. Lastly, the transcriptional activation

was modeled by a hill-type function 𝑓 (𝑥) ∶= 𝑥ℎ
𝜅ℎ+𝑥ℎ . The steady states for the

protein species used for fitting can be written as:

𝑃∗
1 =

𝛼𝑃∗
1

𝛽𝑀1𝐺1𝑘−1𝑚𝑀1

1+𝐺1𝑘−1𝑚𝑀1
+𝛾𝑀2𝑓 (𝑃

∗
1 )(1+𝜃𝑀1)+𝛾𝑀3

1 +
𝛽𝑀1𝐺1𝑘−1𝑚𝑀1

1+𝐺1𝑘−1𝑚𝑀1
+𝛾𝑀2𝑓 (𝑃

∗
1 )(1+𝜃𝑀1)+𝛾𝑀3

+
𝛽𝑀2𝛾𝑀2𝑓 (𝑃

∗
1 )

1+𝐺1𝑘−1𝑚𝑀1
+𝛾𝑀2𝑓 (𝑃

∗
1 )(1+𝜃𝑀2)+𝛾𝑀3

+
𝛽𝑀3𝛾𝑀3

1+𝐺1𝑘−1𝑚𝑀1
+𝛾𝑀2𝑓 (𝑃

∗
1 )+𝛾𝑀3

𝑃∗
2 =

𝛼𝑃2
𝛽𝑀2𝛾𝑀2𝑓 (𝑃

∗
1 )

1+𝐺1𝑘−1𝑚𝑀1
+𝛾𝑀2𝑓 (𝑃

∗
1 )(1+𝜃𝑀2)+𝛾𝑀3

1 +
𝛽𝑀1𝐺1𝑘−1𝑚𝑀1

1+𝐺1𝑘−1𝑚𝑀1
+𝛾𝑀2𝑓 (𝑃

∗
1 )(1+𝜃𝑀1)+𝛾𝑀3

+
𝛽𝑀2𝛾𝑀2𝑓 (𝑃

∗
1 )

1+𝐺1𝑘−1𝑚𝑀1
+𝛾𝑀2𝑓 (𝑃

∗
1 )(1+𝜃𝑀2)+𝛾𝑀3

+
𝛽𝑀3𝛾𝑀3

1+𝐺1𝑘−1𝑚𝑀1
+𝛾𝑀2𝑓 (𝑃

∗
1 )+𝛾𝑀3

𝑃∗
3 =

𝛼𝑃3
𝛽𝑀3𝛾𝑀3

1+𝐺1𝑘−1𝑚𝑀1
+𝛾𝑀2𝑓 (𝑃

∗
1 )+𝛾𝑀3

1 +
𝛽𝑀1𝐺1𝑘−1𝑚𝑀1

1+𝐺1𝑘−1𝑚𝑀1
+𝛾𝑀2𝑓 (𝑃

∗
1 )(1+𝜃𝑀1)+𝛾𝑀3

+
𝛽𝑀2𝛾𝑀2𝑓 (𝑃

∗
1 )

1+𝐺1𝑘−1𝑚𝑀1
+𝛾𝑀2𝑓 (𝑃

∗
1 )(1+𝜃𝑀2)+𝛾𝑀3

+
𝛽𝑀3𝛾𝑀3

1+𝐺1𝑘−1𝑚𝑀1
+𝛾𝑀2𝑓 (𝑃

∗
1 )+𝛾𝑀3

Here, 𝛼𝑃𝑖 and 𝛽𝑀𝑖
are the same as defined in Supplementary Note A.2. Additionally,

𝛾𝑀𝑖
∶= 𝑘−1𝑚𝑀𝑖

𝐺𝑖 for 𝑖 ∈ {2, 3} and 𝜃𝑀𝑖
∶=

𝜂𝑀𝑖
𝛿𝑀𝑖

𝑘𝑐𝑎𝑡𝑀2𝑅
𝑡𝑜𝑡𝑎𝑙
𝑀

𝛿𝑚
were introduced. The equations were

fit in the implicit form shown because a closed form solution could not be obtained.
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A.5. Supplementary Note 5

A.5 Supplementary Note 5
Models for endogenous microRNA-based iFFL and synthetic microRNA-based iFFL cir-
cuits.

EndogenousmicroRNA-based iFFL: The system of equations used to derive the
steady state expressions is given by:

𝑀̇1 = 𝑘𝑒𝑓 𝑓𝑀1
(𝐺1, 𝐺2, 𝐺𝑚)𝐺1 − 𝛿𝑀1

𝑀1

𝑀̇2 = 𝑘𝑒𝑓 𝑓𝑀2
(𝐺1, 𝐺2, 𝐺𝑚)𝐺2 − (𝛿𝑀2

+ 𝜂𝑀2
𝑚)𝑀2

𝑚̇ = 𝑘𝑒𝑓 𝑓𝑚 (𝐺1, 𝐺2, 𝐺𝑚)𝐺𝑚 − 𝛿𝑚𝑚
̇𝑃1 = 𝑘𝑒𝑓 𝑓𝑃1 (𝑀1, 𝑀2)𝑀1 − 𝛿𝑃1𝑃1
̇𝑃2 = 𝑘𝑒𝑓 𝑓𝑃2 (𝑀1, 𝑀2)𝑀2 − 𝛿𝑃2𝑃2

Here, 𝑀1 and 𝑀2 represent the mRNA species for the fluorescent proteins EGFP
(X-tra) and mKate (GOI) respectively. 𝑃1 and 𝑃2 correspond to the proteins themselves
and 𝑚 denotes the microRNA miR-31. As in Supplementary Notes A.1 and A.3, the
degradation rates are shown as 𝛿 subscripted with the species they correspond to and
the repression rates are shown as 𝜂 subscripted with the respective species. 𝐺1 and 𝐺2
are the plasmid copy number of the EGFP and mKate plasmids respectively and 𝐺𝑚 is
the copy number of the microRNA on the genome. The steady states for the protein
species can be written as:

𝑃∗
1 =

𝛼𝑃1
𝛽𝑀1𝐺1𝑘−1𝑚𝑀1

1+𝐺1𝑘−1𝑚𝑀1
+𝛾𝑀2+𝛾𝑚

1 +
𝛽𝑀1𝐺1𝑘−1𝑚𝑀1

1+𝐺1𝑘−1𝑚𝑀1
+𝛾𝑀2+𝛾𝑚

+
𝛽𝑀2𝛾𝑀2

1+𝐺1𝑘−1𝑚𝑀1
+𝛾𝑀2+𝛾𝑚(1+𝜃𝑀2)

𝑃∗
2 =

𝛼𝑃2
𝛽𝑀2𝛾𝑀2

1+𝐺1𝑘−1𝑚𝑀1
+𝛾𝑀2+𝛾𝑚(1+𝜃𝑀2)

1 +
𝛽𝑀1𝐺1𝑘−1𝑚𝑀1

1+𝐺1𝑘−1𝑚𝑀1
+𝛾𝑀2+𝛾𝑚

+
𝛽𝑀2𝛾𝑀2

1+𝐺1𝑘−1𝑚𝑀1
+𝛾𝑀2+𝛾𝑚(1+𝜃𝑀2)

For fitting, the expressions were normalized the same way as introduced in Sup-
plementary Notes A.1 and A.2 which yields the expressions:

̂𝑃∗
1 =

𝐺1 (1 + 𝐺10𝑘
−1
𝑚𝑀1

+ 𝛾𝑀2
+ 𝛾𝑚)

𝐺10 (1 + 𝐺1𝑘−1𝑚𝑀1
+ 𝛾𝑀2

+ 𝛾𝑚)

1 +
𝛽𝑀1𝐺10𝑘

−1
𝑚𝑀1

1+𝐺10𝑘
−1
𝑚𝑀1

+𝛾𝑀2+𝛾𝑚
+ 𝛽𝑀2𝛾𝑀2

1+𝐺10𝑘
−1
𝑚𝑀1

+𝛾𝑀2+𝛾𝑚(1+𝜃𝑀2)

1 +
𝛽𝑀1𝐺1𝑘−1𝑚𝑀1

1+𝐺1𝑘−1𝑚𝑀1
+𝛾𝑀2+𝛾𝑚

+ 𝛽𝑀2𝛾𝑀2

1+𝐺1𝑘−1𝑚𝑀1
+𝛾𝑀2+𝛾𝑚(1+𝜃𝑀2)

̂𝑃∗
2 =

1 + 𝐺10𝑘
−1
𝑚𝑀1

+ 𝛾𝑀2
+ 𝛾𝑚 (1 + 𝜃𝑀2

)

1 + 𝐺1𝑘−1𝑚𝑀1
+ 𝛾𝑀2

+ 𝛾𝑚 (1 + 𝜃𝑀2
)

1 +
𝛽𝑀1𝐺10𝑘

−1
𝑚𝑀1

1+𝐺10𝑘
−1
𝑚𝑀1

+𝛾𝑀2+𝛾𝑚
+ 𝛽𝑀2𝛾𝑀2

1+𝐺10𝑘
−1
𝑚𝑀1

+𝛾𝑀2+𝛾𝑚(1+𝜃𝑀2)

1 +
𝛽𝑀1𝐺1𝑘−1𝑚𝑀1

1+𝐺1𝑘−1𝑚𝑀1
+𝛾𝑀2+𝛾𝑚

+ 𝛽𝑀2𝛾𝑀2

1+𝐺1𝑘−1𝑚𝑀1
+𝛾𝑀2+𝛾𝑚(1+𝜃𝑀2)
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A. Characterization and mitigation of gene expression burden

Synthetic microRNA-based iFFL: The system of equations used to obtain the steady
state expressions is given by:

𝑀̇1 = 𝑘𝑒𝑓 𝑓𝑀1
(𝐺1, 𝐺2)𝐺1 − 𝛿𝑀1

𝑀1

𝑀̇2 = 𝑘𝑒𝑓 𝑓𝑀2
(𝐺1, 𝐺2)𝐺2 − (𝛿𝑀2

+ 𝜂𝑀2
𝑚)𝑀2

𝑀̇3 = 𝑘𝑒𝑓 𝑓𝑀3
(𝐺1, 𝐺2)𝐺2 − (𝛿𝑀3

+ 𝜂𝑀3
𝑚)𝑀3

𝑚̇ = 𝑘𝑒𝑓 𝑓𝑚 (𝐺1, 𝐺2)𝐺2 − 𝛿𝑚𝑚
̇𝑃1 = 𝑘𝑒𝑓 𝑓𝑃1 (𝑀1, 𝑀2, 𝑀3)𝑀1 − 𝛿𝑃1𝑃1
̇𝑃2 = 𝑘𝑒𝑓 𝑓𝑃2 (𝑀1, 𝑀2, 𝑀3)𝑀2 − 𝛿𝑃2𝑃2
̇𝑃1 = 𝑘𝑒𝑓 𝑓𝑃3 (𝑀1, 𝑀2, 𝑀3)𝑀3 − 𝛿𝑃3𝑃3

Here, 𝑀1, 𝑀2 and 𝑀3 denote the mRNA species of the fluorescent proteins miRFP670 (X-
tra), mCitrine (GOI1) and mRuby3 (GOI2) respectively. Similarly, 𝑃1, 𝑃2 and 𝑃3 denote their
protein species and 𝑚 represents the microRNA FF4. 𝐺1 corresponds to the plasmid which en-
codes miRFP670 and 𝐺2 corresponds to the plasmid which encodes both the transcriptional unit
of mCitrine and the transcriptional unit of mRuby3 and the microRNA. Again, rates beginning
with 𝛿 describe degradation rates, while rates beginning with 𝜂 denote the repression by the
microRNA. Compared to the endogenous system, the microRNA FF4 is produced from the same
gene as mRuby3 and therefore we model their production rates in a similar manner. The steady
states for the protein species can be obtained to be:

𝑃∗
1 =

𝛼𝑃1
𝛽𝑀1𝐺1𝑘−1𝑚𝑀1

1+𝐺1𝑘−1𝑚𝑀1
+𝛾𝑀2+𝛾𝑀3

1 +
𝛽𝑀1𝐺1𝑘−1𝑚𝑀1

1+𝐺1𝑘−1𝑚𝑀1
+𝛾𝑀2+𝛾𝑀3

+ 𝛽𝑀2𝛾𝑀2

1+𝐺1𝑘−1𝑚𝑀1
+𝛾𝑀2+𝛾𝑀3(1+𝜃𝑀2)

+ 𝛽𝑀3𝛾𝑀3

1+𝐺1𝑘−1𝑚𝑀1
+𝛾𝑀2+𝛾𝑀3(1+𝜃𝑀3)

𝑃∗
2 =

𝛼𝑃2
𝛽𝑀2𝛾𝑀2

1+𝐺1𝑘−1𝑚𝑀1
+𝛾𝑀2+𝛾𝑀3(1+𝜃𝑀2)

1 +
𝛽𝑀1𝐺1𝑘−1𝑚𝑀1

1+𝐺1𝑘−1𝑚𝑀1
+𝛾𝑀2+𝛾𝑀3

+ 𝛽𝑀2𝛾𝑀2

1+𝐺1𝑘−1𝑚𝑀1
+𝛾𝑀2+𝛾𝑀3(1+𝜃𝑀2)

+ 𝛽𝑀3𝛾𝑀3

1+𝐺1𝑘−1𝑚𝑀1
+𝛾𝑀2+𝛾𝑀3(1+𝜃𝑀3)

𝑃∗
3 =

𝛼𝑃3
𝛽𝑀3𝛾𝑀3

1+𝐺1𝑘−1𝑚𝑀1
+𝛾𝑀2+𝛾𝑀3(1+𝜃𝑀3)

1 +
𝛽𝑀1𝐺1𝑘−1𝑚𝑀1

1+𝐺1𝑘−1𝑚𝑀1
+𝛾𝑀2+𝛾𝑀3

+ 𝛽𝑀2𝛾𝑀2

1+𝐺1𝑘−1𝑚𝑀1
+𝛾𝑀2+𝛾𝑀3(1+𝜃𝑀2)

+ 𝛽𝑀3𝛾𝑀3

1+𝐺1𝑘−1𝑚𝑀1
+𝛾𝑀2+𝛾𝑀3(1+𝜃𝑀3)

For fitting we again use the expression normalized to the first titration of miRFP670.

̂𝑃∗
1 =

𝐺1 (1 + 𝐺10𝑘
−1
𝑚𝑀1

+ 𝛾𝑀2 + 𝛾𝑀3)

𝐺10 (1 + 𝐺1𝑘−1𝑚𝑀1
+ 𝛾𝑀2 + 𝛾𝑀3)

1 +
𝛽𝑀1𝐺10𝑘

−1
𝑚𝑀1

1+𝐺10𝑘
−1𝑚𝑀1

+𝛾𝑀2+𝛾𝑀3
+

𝛽𝑀2𝛾𝑀2
1+𝐺10𝑘

−1𝑚𝑀1
+𝛾𝑀2+𝛾𝑀3(1+𝜃𝑀2)

+
𝛽𝑀3𝛾𝑀3

1+𝐺10𝑘
−1𝑚𝑀1

+𝛾𝑀2+𝛾𝑀3(1+𝜃𝑀3)

1 +
𝛽𝑀1𝐺1𝑘

−1𝑚𝑀1
1+𝐺1𝑘−1𝑚𝑀1

+𝛾𝑀2+𝛾𝑀3
+

𝛽𝑀2𝛾𝑀2
1+𝐺1𝑘−1𝑚𝑀1

+𝛾𝑀2+𝛾𝑀3(1+𝜃𝑀2)
+

𝛽𝑀3𝛾𝑀3
1+𝐺1𝑘−1𝑚𝑀1

+𝛾𝑀2+𝛾𝑀3(1+𝜃𝑀3)

̂𝑃∗
2 =

1 + 𝐺10𝑘
−1
𝑚𝑀1

+ 𝛾𝑀2 + 𝛾𝑀3 (1 + 𝜃𝑀2)

1 + 𝐺1𝑘−1𝑚𝑀1
+ 𝛾𝑀2 + 𝛾𝑀3 (1 + 𝜃𝑀2)

1 +
𝛽𝑀1𝐺10𝑘

−1
𝑚𝑀1

1+𝐺10𝑘
−1𝑚𝑀1

+𝛾𝑀2+𝛾𝑀3
+

𝛽𝑀2𝛾𝑀2
1+𝐺10𝑘

−1𝑚𝑀1
+𝛾𝑀2+𝛾𝑀3(1+𝜃𝑀2)

+
𝛽𝑀3𝛾𝑀3

1+𝐺10𝑘
−1𝑚𝑀1

+𝛾𝑀2+𝛾𝑀3(1+𝜃𝑀3)

1 +
𝛽𝑀1𝐺1𝑘

−1𝑚𝑀1
1+𝐺1𝑘−1𝑚𝑀1

+𝛾𝑀2+𝛾𝑀3
+

𝛽𝑀2𝛾𝑀2
1+𝐺1𝑘−1𝑚𝑀1

+𝛾𝑀2+𝛾𝑀3(1+𝜃𝑀2)
+

𝛽𝑀3𝛾𝑀3
1+𝐺1𝑘−1𝑚𝑀1

+𝛾𝑀2+𝛾𝑀3(1+𝜃𝑀3)

̂𝑃∗
1 =

1 + 𝐺10𝑘
−1
𝑚𝑀1

+ 𝛾𝑀2 + 𝛾𝑀3 (1 + 𝜃𝑀3)

1 + 𝐺1𝑘−1𝑚𝑀1
+ 𝛾𝑀2 + 𝛾𝑀3 (1 + 𝜃𝑀3)

1 +
𝛽𝑀1𝐺10𝑘

−1
𝑚𝑀1

1+𝐺10𝑘
−1𝑚𝑀1

+𝛾𝑀2+𝛾𝑀3
+

𝛽𝑀2𝛾𝑀2
1+𝐺10𝑘

−1𝑚𝑀1
+𝛾𝑀2+𝛾𝑀3(1+𝜃𝑀2)

+
𝛽𝑀3𝛾𝑀3

1+𝐺10𝑘
−1𝑚𝑀1

+𝛾𝑀2+𝛾𝑀3(1+𝜃𝑀3)

1 +
𝛽𝑀1𝐺1𝑘

−1𝑚𝑀1
1+𝐺1𝑘−1𝑚𝑀1

+𝛾𝑀2+𝛾𝑀3
+

𝛽𝑀2𝛾𝑀2
1+𝐺1𝑘−1𝑚𝑀1

+𝛾𝑀2+𝛾𝑀3(1+𝜃𝑀2)
+

𝛽𝑀3𝛾𝑀3
1+𝐺1𝑘−1𝑚𝑀1

+𝛾𝑀2+𝛾𝑀3(1+𝜃𝑀3)
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A.6. Supplementary Note 6

A.6 Supplementary Note 6
Models for DOX, HDV, RNA-binding protein and miRNA experiments.

Doxycycline (DOX) titration: The system of ordinary differential equations used to obtain the steady state
expressions is:

𝑀̇1 = 𝑘𝑒𝑓 𝑓𝑀1
(𝐺1, 𝐺1, 𝐺2𝑓 (𝑃1), 𝐺2𝑓 (𝑃1))𝐺1 − 𝛿𝑀1𝑀1

𝑀̇2 = 𝑘𝑒𝑓 𝑓𝑀2
(𝐺1, 𝐺1, 𝐺2𝑓 (𝑃1), 𝐺2𝑓 (𝑃1))𝐺1 − 𝛿𝑀2𝑀2

𝑀̇3 = 𝑘𝑒𝑓 𝑓𝑀3
(𝐺1, 𝐺1, 𝐺2𝑓 (𝑃1), 𝐺2𝑓 (𝑃1))𝐺2𝑓 (𝑃1) − 𝛿𝑀3𝑀3

𝑀̇4 = 𝑘𝑒𝑓 𝑓𝑀4
(𝐺1, 𝐺1, 𝐺2𝑓 (𝑃1), 𝐺2𝑓 (𝑃1))𝐺2𝑓 (𝑃1) − 𝛿𝑀4𝑀4

̇𝑃1 = 𝑘𝑒𝑓 𝑓𝑃1 (𝑀1, 𝑀2, 𝑀3, 𝑀4)𝑀1 − 𝛿𝑃1𝑃1
̇𝑃2 = 𝑘𝑒𝑓 𝑓𝑃2 (𝑀1, 𝑀2, 𝑀3, 𝑀4)𝑀2 − 𝛿𝑃2𝑃2
̇𝑃3 = 𝑘𝑒𝑓 𝑓𝑃3 (𝑀1, 𝑀2, 𝑀3, 𝑀4)𝑀3 − 𝛿𝑃3𝑃3
̇𝑃4 = 𝑘𝑒𝑓 𝑓𝑃4 (𝑀1, 𝑀2, 𝑀3, 𝑀4)𝑀4 − 𝛿𝑃4𝑃4

Here, the species𝑀1 and𝑀2 represent the mRNA species of the constitutively expressed transcriptional activator
tagged with a fluorescent protein tTA-Cerulean (capacity monitor; 𝑃1) and the fluorescent protein mCitrine (𝑃2). The
species𝑀3 and𝑀4 represent the mRNA species of the two fluorescent proteins mRuby3 (X-tra; 𝑃3) and miRFP670 (𝑃4).
These two genes are expressed from a bidirectional tTA activatible promoter. By setting the left-hand side to zero, we
can solve for the steady state of the protein species:

𝑃∗
1 =

𝛼𝑃1
𝛽𝑀1𝛾𝑀1

1+𝛾𝑀1+𝛾𝑀2+(𝛾𝑀3+𝛾𝑀4)𝑓 (𝑃
∗
1 )

1 +
𝛽𝑀1𝛾𝑀1

1+𝛾𝑀1+𝛾𝑀2+(𝛾𝑀3+𝛾𝑀4)𝑓 (𝑃
∗
1 )

+
𝛽𝑀2𝛾𝑀2

1+𝛾𝑀1+𝛾𝑀2+(𝛾𝑀3+𝛾𝑀4)𝑓 (𝑃
∗
1 )

+
𝛽𝑀3𝛾𝑀3𝑓 (𝑃

∗
1 )

1+𝛾𝑀1+𝛾𝑀2+(𝛾𝑀3+𝛾𝑀4)𝑓 (𝑃
∗
1 )

+
𝛽𝑀4𝛾𝑀4𝑓 (𝑃

∗
1 )

1+𝛾𝑀1+𝛾𝑀2+(𝛾𝑀3+𝛾𝑀4)𝑓 (𝑃
∗
1 )

𝑃∗
2 =

𝛼𝑃2
𝛽𝑀2𝛾𝑀2

1+𝛾𝑀1+𝛾𝑀2+(𝛾𝑀3+𝛾𝑀4)𝑓 (𝑃
∗
1 )

1 +
𝛽𝑀1𝛾𝑀1

1+𝛾𝑀1+𝛾𝑀2+(𝛾𝑀3+𝛾𝑀4)𝑓 (𝑃
∗
1 )

+
𝛽𝑀2𝛾𝑀2

1+𝛾𝑀1+𝛾𝑀2+(𝛾𝑀3+𝛾𝑀4)𝑓 (𝑃
∗
1 )

+
𝛽𝑀3𝛾𝑀3𝑓 (𝑃

∗
1 )

1+𝛾𝑀1+𝛾𝑀2+(𝛾𝑀3+𝛾𝑀4)𝑓 (𝑃
∗
1 )

+
𝛽𝑀4𝛾𝑀4𝑓 (𝑃

∗
1 )

1+𝛾𝑀1+𝛾𝑀2+(𝛾𝑀3+𝛾𝑀4)𝑓 (𝑃
∗
1 )

𝑃∗
3 =

𝛼𝑃3
𝛽𝑀3𝛾𝑀3𝑓 (𝑃

∗
1 )

1+𝛾𝑀1+𝛾𝑀2+(𝛾𝑀3+𝛾𝑀4)𝑓 (𝑃
∗
1 )

1 +
𝛽𝑀1𝛾𝑀1

1+𝛾𝑀1+𝛾𝑀2+(𝛾𝑀3+𝛾𝑀4)𝑓 (𝑃
∗
1 )

+
𝛽𝑀2𝛾𝑀2

1+𝛾𝑀1+𝛾𝑀2+(𝛾𝑀3+𝛾𝑀4)𝑓 (𝑃
∗
1 )

+
𝛽𝑀3𝛾𝑀3𝑓 (𝑃

∗
1 )

1+𝛾𝑀1+𝛾𝑀2+(𝛾𝑀3+𝛾𝑀4)𝑓 (𝑃
∗
1 )

+
𝛽𝑀4𝛾𝑀4𝑓 (𝑃

∗
1 )

1+𝛾𝑀1+𝛾𝑀2+(𝛾𝑀3+𝛾𝑀4)𝑓 (𝑃
∗
1 )

𝑃∗
4 =

𝛼𝑃4
𝛽𝑀4𝛾𝑀4𝑓 (𝑃

∗
1 )

1+𝛾𝑀1+𝛾𝑀2+(𝛾𝑀3+𝛾𝑀4)𝑓 (𝑃
∗
1 )

1 +
𝛽𝑀1𝛾𝑀1

1+𝛾𝑀1+𝛾𝑀2+(𝛾𝑀3+𝛾𝑀4)𝑓 (𝑃
∗
1 )

+
𝛽𝑀2𝛾𝑀2

1+𝛾𝑀1+𝛾𝑀2+(𝛾𝑀3+𝛾𝑀4)𝑓 (𝑃
∗
1 )

+
𝛽𝑀3𝛾𝑀3𝑓 (𝑃

∗
1 )

1+𝛾𝑀1+𝛾𝑀2+(𝛾𝑀3+𝛾𝑀4)𝑓 (𝑃
∗
1 )

+
𝛽𝑀4𝛾𝑀4𝑓 (𝑃

∗
1 )

1+𝛾𝑀1+𝛾𝑀2+(𝛾𝑀3+𝛾𝑀4)𝑓 (𝑃
∗
1 )

These expressions were fit to the data. The parameters were lumped according to:

𝛼𝑃𝑖 ∶=
𝑘𝑐𝑎𝑡𝑃𝑖 𝑅

𝑡𝑜𝑡𝑎𝑙
𝑃

𝛿𝑃𝑖

𝛽𝑀𝑖 ∶= 𝑘−1𝑚𝑃𝑖

𝑘𝑐𝑎𝑡𝑀𝑖
𝑅𝑡𝑜𝑡𝑎𝑙
𝑀

𝛿𝑀𝑖

𝛾𝑀𝑖 ∶= 𝑘−1𝑚𝑀𝑖
𝐺𝑖

Further, to reflect the inhibiting action of Doxycycline we use the product of an activating and a inhibiting hill-
type function:

𝑓 (𝑥,DOX ) = 𝑥ℎ𝑎

𝜅ℎ𝑎𝑎 + 𝑥ℎ𝑎
𝜅ℎ𝑖𝑖

𝜅ℎ𝑖𝑖 + DOX ℎ𝑖
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A. Characterization and mitigation of gene expression burden

HDV: The system of ordinary differential equations used to obtain the steady state expressions is:

𝑀̇1 = 𝑘𝑒𝑓 𝑓𝑀1
(𝐺1𝑓 (𝑃1), 𝐺1)𝐺1𝑓 (𝑃2) − 𝛿𝑀1𝑀1

𝑀̇2 = 𝑘𝑒𝑓 𝑓𝑀2
(𝐺1𝑓 (𝑃1), 𝐺1)𝐺1 − 𝛿𝑀2𝑀2

̇𝑃1 = 𝑘𝑒𝑓 𝑓𝑃1 (𝑀1, 𝑀2)𝑀1 − 𝛿𝑃1𝑃1
̇𝑃2 = 𝑘𝑒𝑓 𝑓𝑃2 (𝑀1, 𝑀2)𝑀2 − 𝛿𝑃2𝑃2

In these equations, the HDV-tagged mRNA species of X-tra (mCitrine) is denoted as 𝑀1 and X-tra itself is de-
noted by 𝑃1. Further, the species 𝑀2 and 𝑃2 represent the capacity monitor (tTA-P2A-mRuby3) mRNA and protein,
respectively. To model the different expression of 𝑃1 with and without the HDV ribozyme, we introduce an additional
parameter 𝜔𝑀1 . This parameter captures the reduction in the production rate of mature mRNA 𝑀1 in the presence of
the ribozyme. In the absence of the ribozyme, we set 𝜔𝑀1 = 1.

𝑃∗
1 =

𝛼𝑃1

𝛽𝑀1
𝜔𝑀1

𝛾𝑀1𝑓 (𝑃
∗
2 )

1+𝛾𝑀1𝑓 (𝑃
∗
2 )+𝛾𝑀2

1 +

𝛽𝑀1
𝜔𝑀1

𝛾𝑀1𝑓 (𝑃
∗
2 )

1+𝛾𝑀1𝑓 (𝑃
∗
2 )+𝛾𝑀2

+
𝛽𝑀2𝛾𝑀2

1+𝛾𝑀1𝑓 (𝑃
∗
2 )+𝛾𝑀2

𝑃∗
2 =

𝛼𝑃2
𝛽𝑀2𝛾𝑀2

1+𝛾𝑀1𝑓 (𝑃
∗
2 )+𝛾𝑀2

1 +

𝛽𝑀1
𝜔𝑀1

𝛾𝑀1𝑓 (𝑃
∗
2 )

1+𝛾𝑀1𝑓 (𝑃
∗
2 )+𝛾𝑀2

+
𝛽𝑀2𝛾𝑀2

1+𝛾𝑀1𝑓 (𝑃
∗
2 )+𝛾𝑀2

These expressions were fit to the data. The parameters were lumped according to the same definitions as in the
Doxycycline titration model above.

RNA-binding proteins:
L7Ae:
The system of ordinary differential equations used to obtain the steady state expressions is:

𝑀̇1 = 𝑘𝑒𝑓 𝑓𝑀1
(𝐺1, 𝐺2, 𝐺3)𝐺1 − (𝛿𝑀1 + 𝜂𝑃3)𝑀1 + 𝜈𝐶𝑀1,𝑃3

𝑀̇2 = 𝑘𝑒𝑓 𝑓𝑀2
(𝐺1, 𝐺2, 𝐺3)𝐺2 − 𝛿𝑀2𝑀2

𝑀̇3 = 𝑘𝑒𝑓 𝑓𝑀3
(𝐺1, 𝐺2, 𝐺3)𝐺3 − 𝛿𝑀3𝑀3

̇𝑃1 = 𝑘𝑒𝑓 𝑓𝑃1 (𝑀1, 𝑀2, 𝑀3)𝑀1 − 𝛿𝑃1𝑃1
̇𝑃2 = 𝑘𝑒𝑓 𝑓𝑃2 (𝑀1, 𝑀2, 𝑀3)𝑀2 − 𝛿𝑃2𝑃2
̇𝑃3 = 𝑘𝑒𝑓 𝑓𝑃3 (𝑀1, 𝑀2, 𝑀3)𝑀3 − 𝛿𝑃3𝑃3

̇𝐶𝑀1,𝑃3 = 𝜂𝑀1𝑃3 − (𝜈 + 𝛿𝐶𝑀1,𝑃3
)𝐶𝑀1,𝑃3

In this set of equations, 𝑀1 denotes the mRNA species of the X-tra protein 𝑃1. The capacity monitor mRNA is
represented by𝑀2 and its protein by 𝑃2. The RNA-binding protein L7Ae is denote by 𝑃3 and its mRNA species is given
by 𝑀3.

𝑃∗
1 =

𝛼𝑃1
𝛽𝑀1𝛾𝑀1(1+𝜈)

(1+𝛾𝑀1+𝛾𝑀2+𝛾𝑀3)(1+𝜈+𝜌𝑀1𝑃
∗
3 )

1 +
𝛽𝑀1𝛾𝑀1(1+𝜈)

(1+𝛾𝑀1+𝛾𝑀2+𝛾𝑀3)(1+𝜈+𝜌𝑀1𝑃
∗
3 )

+
𝛽𝑀2𝛾𝑀2

1+𝛾𝑀1+𝛾𝑀2+𝛾𝑀3
+

𝛽𝑀3𝛾𝑀3
1+𝛾𝑀1+𝛾𝑀2+𝛾𝑀3

𝑃∗
2 =

𝛼𝑃2
𝛽𝑀2𝛾𝑀2

1+𝛾𝑀1+𝛾𝑀2+𝛾𝑀3

1 +
𝛽𝑀1𝛾𝑀1(1+𝜈)

(1+𝛾𝑀1+𝛾𝑀2+𝛾𝑀3)(1+𝜈+𝜌𝑀1𝑃
∗
3 )

+
𝛽𝑀2𝛾𝑀2

1+𝛾𝑀1+𝛾𝑀2+𝛾𝑀3
+

𝛽𝑀3𝛾𝑀3
1+𝛾𝑀1+𝛾𝑀2+𝛾𝑀3

𝑃∗
3 =

𝛼𝑃3
𝛽𝑀3𝛾𝑀3

1+𝛾𝑀1+𝛾𝑀2+𝛾𝑀3

1 +
𝛽𝑀1𝛾𝑀1(1+𝜈)

(1+𝛾𝑀1+𝛾𝑀2+𝛾𝑀3)(1+𝜈+𝜌𝑀1𝑃
∗
3 )

+
𝛽𝑀2𝛾𝑀2

1+𝛾𝑀1+𝛾𝑀2+𝛾𝑀3
+

𝛽𝑀3𝛾𝑀3
1+𝛾𝑀1+𝛾𝑀2+𝛾𝑀3
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A.6. Supplementary Note 6

Here, we introduce a new lumped parameter 𝜌𝑀1 ∶=
𝜂

𝛿𝑀1
. Due to the complexity of the expressions, the system

has not been fully solved for its steady state. To obtain the expressions used for fitting to the data, the steady state
expression for 𝑃∗

3 above was solved for 𝑃∗
3 and plugged into the steady state expressions of 𝑃∗

1 and 𝑃∗
2 .

Ms2-cNOT7:
The system of ordinary differential equations used to obtain the steady state expressions is:

𝑀̇1 = 𝑘𝑒𝑓 𝑓𝑀1
(𝐺1, 𝐺2, 𝐺3)𝐺1 − (𝛿𝑀1 + 𝜂𝑃3)𝑀1

𝑀̇2 = 𝑘𝑒𝑓 𝑓𝑀2
(𝐺1, 𝐺2, 𝐺3)𝐺2 − 𝛿𝑀2𝑀2

𝑀̇3 = 𝑘𝑒𝑓 𝑓𝑀3
(𝐺1, 𝐺2, 𝐺3)𝐺3 − 𝛿𝑀3𝑀3

̇𝑃1 = 𝑘𝑒𝑓 𝑓𝑃1 (𝑀1, 𝑀2, 𝑀3)𝑀1 − 𝛿𝑃1𝑃1
̇𝑃2 = 𝑘𝑒𝑓 𝑓𝑃2 (𝑀1, 𝑀2, 𝑀3)𝑀2 − 𝛿𝑃2𝑃2
̇𝑃3 = 𝑘𝑒𝑓 𝑓𝑃3 (𝑀1, 𝑀2, 𝑀3)𝑀3 − 𝛿𝑃3𝑃3

Again, 𝑀1 represents the mRNA and 𝑃1 the protein of X-tra. 𝑀2 and 𝑃2 denote the mRNA and the protein of the
capacity monitor. The RNA-binding protein Ms2-cNOT7 is captured in 𝑃3, with the mRNA species 𝑀3. Solving the
above system for steady state yields.

𝑃∗
1 =

𝛼𝑃1
𝛽𝑀1𝛾𝑀1

(1+𝛾𝑀1+𝛾𝑀2+𝛾𝑀3)(1+𝜌𝑀1𝑃
∗
3 )

1 +
𝛽𝑀1𝛾𝑀1

(1+𝛾𝑀1+𝛾𝑀2+𝛾𝑀3)(1+𝜌𝑀1𝑃
∗
3 )

+
𝛽𝑀2𝛾𝑀2

1+𝛾𝑀1+𝛾𝑀2+𝛾𝑀3
+

𝛽𝑀3𝛾𝑀3
1+𝛾𝑀1+𝛾𝑀2+𝛾𝑀3

𝑃∗
2 =

𝛼𝑃2
𝛽𝑀2𝛾𝑀2

1+𝛾𝑀1+𝛾𝑀2+𝛾𝑀3

1 +
𝛽𝑀1𝛾𝑀1

(1+𝛾𝑀1+𝛾𝑀2+𝛾𝑀3)(1+𝜌𝑀1𝑃
∗
3 )

+
𝛽𝑀2𝛾𝑀2

1+𝛾𝑀1+𝛾𝑀2+𝛾𝑀3
+

𝛽𝑀3𝛾𝑀3
1+𝛾𝑀1+𝛾𝑀2+𝛾𝑀3

𝑃∗
3 =

𝛼𝑃3
𝛽𝑀3𝛾𝑀3

1+𝛾𝑀1+𝛾𝑀2+𝛾𝑀3

1 +
𝛽𝑀1𝛾𝑀1

(1+𝛾𝑀1+𝛾𝑀2+𝛾𝑀3)(1+𝜌𝑀1𝑃
∗
3 )

+
𝛽𝑀2𝛾𝑀2

1+𝛾𝑀1+𝛾𝑀2+𝛾𝑀3
+

𝛽𝑀3𝛾𝑀3
1+𝛾𝑀1+𝛾𝑀2+𝛾𝑀3

As before, the expressions fit to the data are obtained by solving the equation for 𝑃∗
3 and plugin the result into

the other two expressions.
miRNA:
The system of ordinary differential equations used to obtain the steady state expressions is:

𝑀̇1 = 𝑘𝑒𝑓 𝑓𝑀1
(𝐺1, 𝐺1, 𝐺𝑚)𝐺1 − (𝛿𝑀1 + 𝜂𝑚)𝑀1

𝑀̇2 = 𝑘𝑒𝑓 𝑓𝑀2
(𝐺1, 𝐺1, 𝐺𝑚)𝐺1 − 𝛿𝑀2𝑀2

𝑚̇ = 𝑘𝑒𝑓 𝑓𝑚 (𝐺1, 𝐺1, 𝐺𝑚)𝐺𝑚 − 𝛿𝑚𝑚

̇𝑃1 = 𝑘𝑒𝑓 𝑓𝑃1 (𝑀1, 𝑀2)𝑀1 − 𝛿𝑃1𝑃1
̇𝑃2 = 𝑘𝑒𝑓 𝑓𝑃2 (𝑀1, 𝑀2)𝑀2 − 𝛿𝑃2𝑃2

In this system of equations, we denote the miRNA sensor mRNA by 𝑀1 and the respective fluorescent protein
output as 𝑃1. The capacity monitor is expressed through the mRNA 𝑀2 and the protein 𝑃2. The miRNA itself is
represented by 𝑚. Solving for steady state yields:

𝑃∗
1 =

𝛼𝑃1
𝛽𝑀1𝛾𝑀1

1+𝛾𝑀1+𝛾𝑀2+𝛾𝑚(1+𝜃𝑀1𝜆𝜏)

1 +
𝛽𝑀1𝛾𝑀1

1+𝛾𝑀1+𝛾𝑀2+𝛾𝑚
+

𝛽𝑀2𝛾𝑀2
1+𝛾𝑀1+𝛾𝑀2+𝛾𝑚(1+𝜃𝑀1𝜆𝜏)

𝑃∗
2 =

𝛼𝑃2
𝛽𝑀2𝛾𝑀2

1+𝛾𝑀1+𝛾𝑀2+𝛾𝑚

1 +
𝛽𝑀1𝛾𝑀1

1+𝛾𝑀1+𝛾𝑀2+𝛾𝑚
+

𝛽𝑀2𝛾𝑀2
1+𝛾𝑀1+𝛾𝑀2+𝛾𝑚(1+𝜃𝑀1𝜆𝜏)
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A. Characterization and mitigation of gene expression burden

We use the additional lumping parameter:

𝜃𝑀𝑖 ∶=
𝜂𝑀𝑖

𝛿𝑀𝑖

𝑘𝑐𝑎𝑡𝑀2
𝑅𝑡𝑜𝑡𝑎𝑙
𝑀

𝛿𝑚

To account for the placement of the miRNA targets in different UTRs and different numbers of targets we intro-
duce the two parameters 𝜆 (UTR) and 𝜏 (target number). Specifically, 𝜆 ∈ {𝜆3′ , 𝜆5′} and 𝜏 ∈ {𝜏1𝑥, 𝜏3𝑥}.

A.7 Supplementary Note 7
Use of geometric means as a relative measure of cellular capacity.

To show how the ratio of geometric means measures gene expression capacity we consider a simple model of
gene expression:

̇𝐶𝑀𝑖 = 𝑘+𝑀𝑖
𝐺𝑖𝑅𝑓𝑀 − (𝑘−𝑀𝑖

+ 𝑘𝑐𝑎𝑡𝑀𝑖
)𝐶𝑀𝑖

𝑀̇𝑖 = 𝑘𝑐𝑎𝑡𝑀𝑖
𝐶𝑀𝑖 − 𝛿𝑀𝑖𝑀𝑖

̇𝐶𝑃𝑖 = 𝑘+𝑃𝑖𝑀𝑖𝑅𝑓𝑃 − (𝑘−𝑃𝑖 + 𝑘𝑐𝑎𝑡𝑃𝑖 )𝐶𝑃𝑖
̇𝑃𝑖 = 𝑘𝑐𝑎𝑡𝑃𝑖 𝐶𝑃𝑖 − 𝛿𝑃𝑖𝑃𝑖

In this model, gene 𝐺𝑖 can bind free transcriptional resources 𝑅𝑓𝑀 . This forms the complex 𝐶𝑀𝑖 with rate 𝑘+𝑀𝑖
. This

complex can disassociate with rate 𝑘−𝑀𝑖
or give rise to the mRNA species 𝑀𝑖 with rate 𝑘𝑐𝑎𝑡𝑖 . The mRNA species 𝑀𝑖 may

also degrade with rate 𝛿𝑀𝑖 . Analogously to this process, the mRNA species can bind free translational resources 𝑅𝑓𝑃 to
form the complex 𝐶𝑃𝑖 with rate 𝑘+𝑃𝑖 . Again, this complex may dissociate with rate 𝑘−𝑃𝑖 or produce the protein species 𝑃𝑖.
This protein species is removed with rate 𝛿𝑃𝑖 . When the left-hand side of the equations above are set to zero, we can
solve for the steady-state expression for the protein species:

𝑃∗
𝑖 = 𝛼𝑖𝐺𝑖𝑅∗

𝑓𝑀𝑅
∗
𝑓𝑃 with 𝛼𝑖 ∶=

𝑘𝑐𝑎𝑡𝑃𝑖
𝛿𝑃𝑖

𝑘+𝑃𝑖
𝑘−𝑃𝑖 + 𝑘𝑐𝑎𝑡𝑃𝑖

𝑘+𝑀𝑖

𝑘−𝑀𝑖
+ 𝑘𝑐𝑎𝑡𝑀𝑖

By treating 𝐺𝑖, 𝑅∗
𝑓𝑀 , 𝑅

∗
𝑓𝑃 and 𝑃∗

𝑖 as random variables we can write the geometric mean of 𝑃∗
𝑖 as:

𝑒E[log(𝑃
∗
𝑖 )] = 𝑒E[log(𝛼𝑖𝐺𝑖𝑅

∗
𝑓𝑀

𝑅∗𝑓𝑃)]

= 𝑒E[log(𝛼𝑖)+log(𝐺𝑖)+log(𝑅
∗
𝑓𝑀

)+log(𝑅∗𝑓𝑃)]

= 𝑒log(𝛼𝑖)+E[log(𝐺𝑖)]+E[log(𝑅
∗
𝑓𝑀

)]+E[log(𝑅∗𝑓𝑃)]

= 𝛼𝑖𝑒E[log(𝐺𝑖)]𝑒
E[log(𝑅∗𝑓𝑀)]𝑒E[log(𝑅

∗
𝑓𝑃
)]

If we consider 𝑃∗
𝑖 as our capacity monitor, which we use to measure the change in gene expression capacity

relative to the capacity monitor measures for a baseline capacity𝑃∗
𝑖,0, then we write:

𝑒E[log(𝑃
∗
𝑖 )]

𝑒E[log(𝑃
∗
𝑖,0)]

=
𝛼𝑖𝑒E[log(𝐺𝑖)]𝑒

E[log(𝑅∗𝑓𝑀)]𝑒E[log(𝑅
∗
𝑓𝑃
)]

𝛼𝑖𝑒E[log(𝐺𝑖)]𝑒
E[log(𝑅∗𝑓𝑀,0)]𝑒E[log(𝑅

∗
𝑓𝑃,0

)]

Assuming that the plasmid take-up distribution of the capacitymonitor plasmid𝐺𝑖 does not change across samples
we get:

𝑒E[log(𝑃
∗
𝑖 )]

𝑒E[log(𝑃
∗
𝑖,0)]

= 𝑒E[log(𝑅
∗
𝑓𝑀

)]𝑒E[log(𝑅
∗
𝑓𝑃
)]

𝑒E[log(𝑅
∗
𝑓𝑀,0)]𝑒E[log(𝑅

∗
𝑓𝑃,0

)]

= 𝑒E[log(𝑅
∗
𝑓𝑀

)]+E[log(𝑅∗𝑓𝑃)]

𝑒E[log(𝑅
∗
𝑓𝑀,0)]+E[log(𝑅

∗
𝑓𝑃,0

)]

= 𝑒E[log(𝑅
∗
𝑓𝑀

)+log(𝑅∗𝑓𝑃)]

𝑒E[log(𝑅
∗
𝑓𝑀,0)+log(𝑅

∗
𝑓𝑃,0

)]

= 𝑒E[log(𝑅
∗
𝑓𝑀

𝑅∗𝑓𝑃)]

𝑒E[log(𝑅
∗
𝑓𝑀,0𝑅

∗
𝑓𝑃,0

)]
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𝑒E[log(𝑃
∗
𝑖 )]−E[log(𝑃

∗
𝑖,0)] = 𝑒E[log(𝑅

∗
𝑓𝑀

𝑅∗𝑓𝑃)]−E[log(𝑅
∗
𝑓𝑀,0𝑅

∗
𝑓𝑃,0

)]

𝑒E[log(𝑃
∗
𝑖 )−log(𝑃

∗
𝑖,0)] = 𝑒E[log(𝑅

∗
𝑓𝑀

𝑅∗𝑓𝑃)−log(𝑅
∗
𝑓𝑀,0𝑅

∗
𝑓𝑃,0

)]

𝑒
E[log(

𝑃∗𝑖
𝑃∗𝑖,0

)]
= 𝑒

E[log(
𝑅∗𝑓𝑀

𝑅∗𝑓𝑃
𝑅∗𝑓𝑀,0𝑅

∗
𝑓𝑃,0

)]

This shows that our approach can report on relative changes in available free resources. In comparison, when
the same analysis is performed with the same assumptions but the arithmetic mean is used instead of the geometric
mean we get:

E[𝑃∗
𝑖 ]

E[𝑃∗
𝑖,0]

=
E[𝛼𝑖𝐺𝑖𝑅∗

𝑓𝑀𝑅
∗
𝑓𝑃]

E[𝛼𝑖𝐺𝑖𝑅∗
𝑓𝑀,0𝑅

∗
𝑓𝑃,0]

=
E[𝐺𝑖𝑅∗

𝑓𝑀𝑅
∗
𝑓𝑃]

E[𝐺𝑖𝑅∗
𝑓𝑀,0𝑅

∗
𝑓𝑃,0]

This expression is analogous to the ratio of the weighted arithmetic mean, where the weighting is given by 𝐺𝑖. If
we consider the gene of the capacity monitor to be integrated, the expression simplifies to:

E[𝑃∗
𝑖 ]

E[𝑃∗
𝑖,0]

=
E[𝑅∗

𝑓𝑀𝑅
∗
𝑓𝑃]

E[𝑅∗
𝑓𝑀,0𝑅

∗
𝑓𝑃,0]

This holds because the gene copy number 𝐺𝑖 is fixed after integration and can be pulled out of the expected value.
The expression shows that integration of the capacity monitor into the genome of a cell would permit a more direct
way of measuring the cellular capacity.

129



A. Characterization and mitigation of gene expression burden

Table A.1: Transfection table for Figure 2.2a.

500 ng total pGLM49 pTTF72 pGLM171
1:1 62.5 ng 62.5 ng 375 ng
1:2 62.5 ng 125 ng 312.5 ng
1:3 62.5 ng 187.5 ng 250 ng
1:4 62.5 ng 250 ng 187.5 ng
2:1 125 ng 62.5 ng 312.5 ng
2:2 125 ng 125 ng 250 ng
2:3 125 ng 187.5 ng 187.5 ng
2:4 125 ng 250 ng 125 ng
3:1 187.5 ng 62.5 ng 250 ng
3:2 187.5 ng 125 ng 187.5 ng
3:3 187.5 ng 187.5 ng 125 ng
3:4 187.5 ng 250 ng 62.5 ng
4:1 250 ng 62.5 ng 187.5 ng
4:2 250 ng 125 ng 125 ng
4:3 250 ng 187.5 ng 62.5 ng
4:4 250 ng 250 ng 0 ng

Reagent/cells
Optimem to 50 μL

PEI 1.5 μL
HEK293T 62500
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50 ng total pGLM49 pTTF72 pGLM171
1:1 6.25 ng 6.25 ng 487.5 ng
1:2 6.25 ng 12.5 ng 481.25 ng
1:3 6.25 ng 18.75 ng 475 ng
1:4 62.5 ng 25 ng 468.75 ng
2:1 12.5 ng 6.25 ng 481.25 ng
2:2 12.5 ng 12.5 ng 475 ng
2:3 12.5 ng 18.75 ng 468.75 ng
2:4 12.5 ng 25 ng 462.5 ng
3:1 18.75 ng 6.25 ng 475 ng
3:2 18.75 ng 12.5 ng 468.75 ng
3:3 18.75 ng 18.75 ng 462.5 ng
3:4 18.75 ng 25 ng 456.25 ng
4:1 25 ng 6.25 ng 468.75 ng
4:2 25 ng 12.5 ng 462.5 ng
4:3 25 ng 18.75 ng 456.25 ng
4:4 25 ng 25 ng 450 ng

Reagent/cells
Optimem to 50 μL

PEI 1.5 μL
HEK293T 62500

Table A.2: Transfection table for Supplementary Figure A.2.

pTTF57 pTTF181 pGLM49 pTTF72 pGLM171
EFS/EFS 174.9 ng 174.8 ng 0 ng 0 ng 96.8 ng
EF1a/EFS 0 ng 174.8 ng 215.0 ng 0 ng 56.7 ng
EFS/EF1a 174.9 ng 0 ng 0 ng 215.5 ng 56.0 ng
EF1a/EF1a 0 ng 0 ng 215.0 ng 215.5 ng 15.9 ng

Reagent/cells
Optimem to 50 μL

PEI 1.5 μL
HEK293T 50000/75000
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Table A.3: Transfection table for Supplementary Figure A.3.

pTTF57 pTTF181 pGLM49 pTTF72 pGLM171
EFS/EFS 174.9 ng 174.8 ng 0 ng 0 ng 96.8 ng
EF1a/EFS 0 ng 174.8 ng 215.0 ng 0 ng 56.7 ng
EFS/EF1a 174.9 ng 0 ng 0 ng 215.5 ng 56.0 ng
EF1a/EF1a 0 ng 0 ng 215.0 ng 215.5 ng 15.9 ng

Reagent/cells
Optimem to 50 μL

PEI 1.5 μL
HEK293T 50000/75000

Table A.4: Transfection table for Figure 2.2b.

pGLM49 pTTF72 pGLM171
1:1 62.5 ng 62.5 ng 375 ng

Reagent/cells
Optimem to 50 μL

PEI 1.5 μL
HEK293T 62500

Table A.5: Transfection table for Supplementary Figure A.4.

pL-A1 pBI-G pEMPTY
1.0 120 ng 120 ng 360 ng
1.5 120 ng 180 ng 200 ng
2.0 120 ng 240 ng 140 ng
2.5 120 ng 300 ng 80 ng

Reagent/cells
Optimem 50 μL

Lipofectemine 3000 0.75 μL
P3000 1 μL
H1299 150000
U2OS 200000
HeLa 200000

HEK293T 150000
CHO-K1 150000
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Table A.6: Transfection table for Figure 2.2c and supplementary figure A.1b-c, A.8a, A.9a,
A.10a.

pL-A1 pBI-G pEMPTY
1.0 120 ng 120 ng 360 ng
1.5 120 ng 180 ng 200 ng
2.0 120 ng 240 ng 140 ng
2.5 120 ng 300 ng 80 ng

Reagent/cells
Optimem 50 μL

Lipofectemine 3000 0.75 μL
P3000 1 μL
H1299 150000
U2OS 200000
HeLa 200000

HEK293T 150000
CHO-K1 150000

Table A.7: Transfection table for Supplementary Figure A.1d-e.

ai274 pBI-G pEMPTY
1.0 120 ng 120 ng 360 ng
1.5 120 ng 180 ng 200 ng
2.0 120 ng 240 ng 140 ng
2.5 120 ng 300 ng 80 ng

Reagent/cells
Optimem 50 μL

Lipofectemine 3000 0.75 μL
P3000 1 μL
H1299 150000
HEK 150000

Table A.8: Transfection table for Figure 2.2d and Supplementary Figure A.5, A.23, A.24.

pBI-F3G pBI-H3G
noTS 500 ng

miR31 iFFL 500 ng
Reagent/cells
Optimem 250 μL

Lipofectemine 3000 11 μL
P3000 8.25 μL
H1299 1650000
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Table A.9: Transfection table for Figure 2.2e and Supplementary Figure A.7.

pTTF218 pTTF219
HDV (-) 0 ng 500 ng
HDV (+) 500 ng 0 ng

Reagent/cells
Optimem to 50 μL

PEI 1.5 μL
HEK293T 70000

Table A.10: Transfection table for Figure 2.2f and Supplementary Figure A.8b, A.9b, A.10b,
A.11b.

pL-A1 Oipron pBI-G pEMPTY
(-) synthetic intron 50 ng 50 ng 200 ng
(+) synthtic intron 50 ng 50 ng 200 ng

Reagent/cells
Optimem 50 μL

Lipofectemine 3000 0.75 μL
P3000 1 μL
H1299 150000

HEK293T 150000
U2OS 200000
HeLa 200000

CHO-K1 150000

Table A.11: Transfection table for Figure 2.2g and Supplementary Figure A.8c, A.9c, A.10c,
A.11c.

pL-S1 pL-C1 p125 pL-R1 pL-A1 pEMPTY
L7Ae control 50 ng 50 ng 200 ng

L7Ae 50 ng 50 ng 50 ng 150 ng
Ms2-cNOT7 control 50 ng 50 ng 200 ng

Ms2-cNOT7 50 ng 50 ng 50 ng 150 ng
Reagent/cells
Optimem 50 μL

Lipofectemine 3000 0.75 μL
P3000 1 μL
H1299 150000
HEK 150000
U2OS 200000
HeLa 200000

CHO-K1 150000
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Table A.12: Transfection table for Figure 2.2h and Supplementary Figure A.8d, A.9d, A.10d,
A.11d.

pL-A1 pH-7 pH-22 pH-14 pL-S1 pEMPTY
H1299 control 50 ng 50 ng 200 ng

H1299 reppressed 50 ng 50 ng 200 ng
U2OS control 50 ng 50 ng 200 ng

U2OS repressed 50 ng 50 ng 200 ng
HeLa control 50 ng 50 ng 200 ng

HeLa repressed 50 ng 50 ng 200 ng
Reagent/cells
Optimem 50 μL

Lipofectemine 2000 1.5 μL
P3000 1 μL
H1299 150000
HeLa 200000
U2-OS 200000

Table A.13: Transfection table for Figure 2.3b,c and Supplementary Figure A.12.

pBI-F3G pBI-H1G/pBI-H3G/pBI-H5G/pBI-H7G pEMPTY
Control 100 ng 200 ng

miR-31 TS 100 ng 200 ng
miR-31 TS + inhibitor (20pmol) 100 ng 200 ng

Reagent/cells
Optimem 50 μL

Lipofectemine 3000 0.75 μL
P3000 1 μL
H1299 150000

Table A.14: Transfection table for Supplementary Figure A.13.

pL-A1 pH-1/pH-2/pH-3/pH-5/pH-6/pH-7 pL-S1 pEMPTY
noTS 50 ng 50 ng 200 ng

miR-31 TS 50 ng 50 ng 200 ng
Reagent/cells
Optimem 50 μL

Lipofectemine 3000 0.75 μL
P3000 1 μL
H1299 150000
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Table A.15: Transfection table for Supplementary Figure A.14.

pL-A1 pH-31 pL-S1 pEMPTY
noTS 50 ng 50 ng 200 ng

miR-31 TS 50 ng 50 ng 200 ng
Reagent/cells
Optimem 50 μL

Lipofectemine 3000 0.75 μL
P3000 1 μL

HEK293T 150000
U2-OS 200000

Table A.16: Transfection table for Supplementary Figure A.15, A.16.

SF 16 pL-A1 pH-16/pH-17/pH-18/pH-20/pH-21/pH-22 pL-S1 pEMPTY
noTS 50 ng 50 ng 200 ng

miR-221 TS 50 ng 50 ng 200 ng
SF 17 pL-A1 pH-8/pH-9/pH-10/pH-12/pH-13/pH-14 pL-S1 pEMPTY
noTS 50 ng 50 ng 200 ng

miR-21 TS 50 ng 50 ng 200 ng
Reagent/cells
Optimem 50 μL

Lipofectemine 3000 0.75 μL
HeLa 200000
U2-OS 200000
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Table A.17: Transfection table for Figure 2.4.

pGLM49 pGLM91 pGLM92 pGLM102 pGLM103 pGLM171
OLP 0 ng 140 ng 0 ng 180 ng 0 ng 0 ng 180 ng
OLP 20 ng 140 ng 0 ng 180 ng 0 ng 20 ng 140 ng
OLP 60 ng 140 ng 0 ng 180 ng 0 ng 60 ng 100 ng
OLP 100 ng 140 ng 0 ng 180 ng 0 ng 100 ng 60 ng
OLP 140 ng 140 ng 0 ng 180 ng 0 ng 140 ng 20 ng
OLP 180 ng 140 ng 0 ng 180 ng 0 ng 180 ng 0 ng
IFF 0 ng 140 ng 180 ng 0 ng 0 ng 0 ng 180 ng
IFF 20 ng 140 ng 180 ng 0 ng 0 ng 20 ng 140 ng
IFF 60 ng 140 ng 180 ng 0 ng 0 ng 60 ng 100 ng
IFF 100 ng 140 ng 180 ng 0 ng 0 ng 100 ng 60 ng
IFF 140 ng 140 ng 180 ng 0 ng 0 ng 140 ng 20 ng
IFF 180 ng 140 ng 180 ng 0 ng 0 ng 180 ng 0 ng
FBK 0 ng 140 ng 0 ng 180 ng 0 ng 0 ng 180 ng
FBK 20 ng 140 ng 0 ng 180 ng 20 ng 0 ng 140 ng
FBK 60 ng 140 ng 0 ng 180 ng 60 ng 0 ng 100 ng
FBK 100 ng 140 ng 0 ng 180 ng 100 ng 0 ng 60 ng
FBK 140 ng 140 ng 0 ng 180 ng 140 ng 0 ng 20 ng
FBK 180 ng 140 ng 0 ng 180 ng 180 ng 0 ng 0 ng
HYB 0 ng 140 ng 180 ng 0 ng 0 ng 0 ng 180 ng
HYB 20 ng 140 ng 180 ng 0 ng 20 ng 0 ng 140 ng
HYB 60 ng 140 ng 180 ng 0 ng 60 ng 0 ng 100 ng
HYB 100 ng 140 ng 180 ng 0 ng 100 ng 0 ng 60 ng
HYB 140 ng 140 ng 180 ng 0 ng 140 ng 0 ng 20 ng
HYB 180 ng 140 ng 180 ng 0 ng 180 ng 0 ng 0 ng
Reagent/cells
Optimem to 50 μL

PEI 1.5 μL
HEK293T 62500
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Table A.18: Transfection table for Supplementary Figure A.21.

pL-A1 p-H3/p-H18 pBI-G pEMPTY
0.25 noTS 120 ng 30 ng 150 ng

0.25 miR-TS 120 ng 30 ng 150 ng
0.50 noTS 120 ng 60 ng 120 ng

0.50 miR-TS 120 ng 60 ng 120 ng
0.75 noTS 120 ng 90 ng 90 ng

0.75 miR-TS 120 ng 90 ng 90 ng
1.00 noTS 120 ng 120 ng 60 ng

1.00 miR-TS 120 ng 120 ng 60 ng
1.25 noTS 120 ng 150 ng 30 ng

1.25 miR-TS 120 ng 150 ng 30 ng
1.50 noTS 120 ng 180 ng

1.50 miR-TS 120 ng 180 ng
Reagent/cells
Optimem 50 μL

Lipofectemine 3000 0.75 μL
P3000 1 μL
H1299 150000
U2OS 200000

HEK293T 150000
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TableA.19: Transfection table for Figure 2.5c and Supplementary Figure A.18, A.19, A.20, A.22.

pL-A1 p-H3/p-H18 pBI-G pEMPTY
0.25 noTS 120 ng 30 ng 150 ng

0.25 miR-TS 120 ng 30 ng 150 ng
0.50 noTS 120 ng 60 ng 120 ng

0.50 miR-TS 120 ng 60 ng 120 ng
0.75 noTS 120 ng 90 ng 90 ng

0.75 miR-TS 120 ng 90 ng 90 ng
1.00 noTS 120 ng 120 ng 60 ng

1.00 miR-TS 120 ng 120 ng 60 ng
1.25 noTS 120 ng 150 ng 30 ng

1.25 miR-TS 120 ng 150 ng 30 ng
1.50 noTS 120 ng 180 ng

1.50 miR-TS 120 ng 180 ng
Reagent/cells
Optimem 50 μL

Lipofectemine 3000 0.75 μL
P3000 1 μL
H1299 150000
U2OS 200000

HEK293T 150000

Table A.20: Transfection table for Supplementary Figure A.21.

pL-A1 pH-18 pL-S1 pEMPTY
noTS 50 ng 50 ng 200 ng

miR-221 TS 50 ng 50 ng 200 ng
Reagent/cells
Optimem 50 μL

Lipofctemine 3000 0.75 μL
P3000 1 μL
HEK 150000
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Table A.21: Transfection table for Figure 2.5d.

pTTF220 pTTF223 pTTF138 pGLM171
0.25 mCit.-3xTFF5/mRub.-3xTFF5 155.1 ng 0 ng 24.2 ng 120.7 ng
0.50 mCit.-3xTFF5/mRub.-3xTFF5 155.1 ng 0 ng 48.3 ng 96.6 ng
0.75 mCit.-3xTFF5/mRub.-3xTFF5 155.1 ng 0 ng 72.5 ng 72.4 ng
1.00 mCit.-3xTFF5/mRub.-3xTFF5 155.1 ng 0 ng 96.6 ng 48.3 ng
1.25 mCit.-3xTFF5/mRub.-3xTFF5 155.1 ng 0 ng 120.8 ng 24.1 ng
1.50 mCit.-3xTFF5/mRub.-3xTFF5 155.1 ng 0 ng 144.9 ng 0 ng
0.25 mCit.-3xTFF4/mRub.-3xTFF4 0 ng 155.1 ng 24.2 ng 120.7 ng
0.50 mCit.-3xTFF4/mRub.-3xTFF4 0 ng 155.1 ng 48.3 ng 96.6 ng
0.75 mCit.-3xTFF4/mRub.-3xTFF4 0 ng 155.1 ng 72.5 ng 72.4 ng
1.00 mCit.-3xTFF4/mRub.-3xTFF4 0 ng 155.1 ng 96.6 ng 48.3 ng
1.25 mCit.-3xTFF4/mRub.-3xTFF4 0 ng 155.1 ng 120.8 ng 24.1 ng
1.50 mCit.-3xTFF4/mRub.-3xTFF4 0 ng 155.1 ng 144.9 ng 0 ng

Reagent/cells
Optimem to 50 μL

Lipofectamine 2000 0.6 μL
mES E14 70000

Table A.22: Transfection table for Supplementary Figure A.25.

pTTF220 pTTF223 pTTF138 pGLM171
0.25 mCit.-3xTFF5/mRub.-3xTFF5 258.4 ng 0 ng 40.3 ng 201.3 ng
0.50 mCit.-3xTFF5/mRub.-3xTFF5 258.4 ng 0 ng 80.5 ng 161.1 ng
0.75 mCit.-3xTFF5/mRub.-3xTFF5 258.4 ng 0 ng 120.8 ng 120.8 ng
1.00 mCit.-3xTFF5/mRub.-3xTFF5 258.4 ng 0 ng 161.0 ng 80.6 ng
1.25 mCit.-3xTFF5/mRub.-3xTFF5 258.4 ng 0 ng 201.3 ng 40.3 ng
1.50 mCit.-3xTFF5/mRub.-3xTFF5 258.4 ng 0 ng 241.6 ng 0 ng
0.25 mCit.-3xTFF4/mRub.-3xTFF4 0 ng 258.4 ng 40.3 ng 201.3 ng
0.50 mCit.-3xTFF4/mRub.-3xTFF4 0 ng 258.4 ng 80.5 ng 161.1 ng
0.75 mCit.-3xTFF4/mRub.-3xTFF4 0 ng 258.4 ng 120.8 ng 120.8 ng
1.00 mCit.-3xTFF4/mRub.-3xTFF4 0 ng 258.4 ng 161.0 ng 80.6 ng
1.25 mCit.-3xTFF4/mRub.-3xTFF4 0 ng 258.4 ng 201.3 ng 40.3 ng
1.50 mCit.-3xTFF4/mRub.-3xTFF4 0 ng 258.4 ng 241.6 ng 0 ng

Reagent/cells
Optimem to 50 μL

PEI 1.5 μL
HEK293T 70000
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Table A.23: List of the plasmids used in this study. Plasmids sequences are available on Gen-
Bank.

Fig. Short
plasmid
name

Full plasmid name Parts from GenBank
accession
code

2c-e-f-g, 5b & SF1, 8-11, 13-16, 18-21 pL-A1 pT-GTW6-CMV-mKate (Siciliano et al., 2018) MT891367
SF1 ai274 pT-PGK-mCherry (Matsumiya et al., 2018) MT891341
2f & SF8-11 Oipron pT-GTW6-CMV-SImKate (Lu et al., 2013)
2c-e, 5c & SF1, 8-11, 18-19 pBI-G pBI-CMV1_EGFP Clontech 631630 MT891343
2g-h & SF8-11, 13-16, 20 pL-S1 pBoxCDGC_2xKMet_EGFP (Wroblewska et al., 2015) MT891368
2g & SF8-11 pL-C1 pBoxCDGCmut_KMetEGFP-8xMS2-pA (Wroblewska et al., 2015) MH883358
2g & SF8-11 p125 pT-GTW6-CMV-L7AescFv35 (Wroblewska et al., 2015) MH883336
2g & SF8-11 pL-R1 pT-GTW6-CMV-MS2- CNOT7 (Wroblewska et al., 2015) MH883359
SF13 pH-1 pT-GTW6-CMV-mKate_1xmiR31TS5’ (Cella et al., 2018) MT891348
SF13 pH-2 pT-GTW6-CMV-mKate_2xmiR31TS5’ (Cella et al., 2018) MT891349
5c & SF13 pH-3 pT-GTW6-CMV-mKate_3xmiR31TS5’ (Cella et al., 2018) MT891350
SF13 pH-5 pT-GTW6-CMV-mKate_1xmiR31TS3’ (Cella et al., 2018) MT891351
SF13 pH-6 pT-GTW6-CMV-mKate_2xmiR31TS3’ (Cella et al., 2018) MT891352
SF8, 13-14 pH-7 pT-GTW6-CMV-mKate_3xmiR31TS3’ (Cella et al., 2018) MT891353
2d, 3 & SF5, 12, 23-24 pBI-F3G pBI-CMV1_EGFP_mKate Clontech 631630 MT891342
3 & SF12 pBI-H1G pBI-CMV1_EGFP_mKate_1xmiR31TS5’ Clontech 631630 MT891344
3 & SF5, 12, 23-24 pBI-H3G pBI-CMV1_EGFP_mKate_3xmiR31TS5’ Clontech 631630 MT891345
3 & SF12 pBI-H5G pBI-CMV1_EGFP_mKate_1xmiR31TS3’ Clontech 631630 MT891346
3 pBI-H7G pBI-CMV1_EGFP_mKate_3xmiR31TS3’ Clontech 631630 MT891347
SF15 pH-8 pT-GTW6-CMV-mKate_1xmiR21TS5’ (Cella et al., 2018) MT891354
SF15 pH-9 pT-GTW6-CMV-mKate_2xmiR21TS5’ (Cella et al., 2018) MT891355
SF15 pH-10 pT-GTW6-CMV-mKate_3xmiR21TS5’ (Cella et al., 2018) MT891356
SF15 pH-12 pT-GTW6-CMV-mKate_1xmiR21TS3’ (Cella et al., 2018) MT891357
SF15 pH-13 pT-GTW6-CMV-mKate_2xmiR21TS3’ (Cella et al., 2018) MT891358
SF10-11, 15 pH-14 pT-GTW6-CMV-mKate_3xmiR21TS3’ (Cella et al., 2018) MT891359
SF16 pH-16 pT-GTW6-CMV-mKate_1xmiR221TS5’ (Cella et al., 2018) MT891361
SF16 pH-17 pT-GTW6-CMV-mKate_2xmiR221TS5’ (Cella et al., 2018) MT891362
SF16, 20-22 pH-18 pT-GTW6-CMV-mKate_3xmiR221TS5’ (Cella et al., 2018) MT891363
SF16 pH-20 pT-GTW6-CMV-mKate_1xmiR221TS3’ (Cella et al., 2018) MT891364
SF16 pH-21 pT-GTW6-CMV-mKate_2xmiR221TS3’ (Cella et al., 2018) MT891365
2h & SF16 pH-22 pT-GTW6-CMV-mKate_3xmiR221TS3’ (Cella et al., 2018) MT891366
2a, 4, SF2 & SF3 pGLM49 INS-bGHpA-PEF1α-mCitrine-SV40pA-INS MT891334
SF3 pGLM177 PSV40-PuroR-SV40pA-INS-bGHpA-PEF1α-sigW-

SV40pA-INS
(Lillacci et al., 2018) MT891340

2a, SF2 & SF4 pTT72 INS-bGHpA-PEF1α-mRuby3-SV40pA-INS (Lillacci et al., 2018) MT891324
2a, 4, 5e, SF3, SF25 & SF27 pGLM171 AmpR-INS-bGHpA-SV40pA-INS-pUCori (Lillacci et al., 2018) MT891339
2b pTTF84 INS-bGHpA-synpA-PEF1α-tTA2::Cerulean-

SV40pA-INS-bGHpA-PEF1α-mCitrine-SV40pA
(Lillacci et al., 2018) MT891325

2b pTTF145 INS-bGHpA-mRuby3-PbiTRE-miRFP670-
SV40pA-INS

(Lillacci et al., 2018) MT891327

2e & SF7 pTTF218 PTRE-(HDV)mCitrine-SV40pA-INS-bGHpA-
PEF1α-tTA2::P2A::mRuby3-SV40pA-PSV40-
puΔtk-SV40pA

(Lillacci et al., 2018) MT891330

2e & SF7 pTTF219 PTRE-(dHDV)mCitrine-SV40pA-INS-bGHpA-
PEF1α-tTA2::P2A::mRuby3-SV40pA-PSV40-
puΔtk-SV40pA

(Lillacci et al., 2018) MT891331

SF4 pTTF57 INS-bGHpA-PEFS-mCitrine-SV40pA-INS (Lillacci et al., 2018) MT891323
SF4 pTTF181 INS-bGHpA-PEFS-mRuby3-SV40pA-INS (Lillacci et al., 2018) MT891328
4 pGLM91 INS-bGHpA-PTRE-DsRed(FF4)-TFF4x3-

SV40pA-INS
MT891335

4 pGLM92 INS-bGHpA-PTRE-DsRed(FF4)-TFF5x3-
SV40pA-INS

MT891336

4b pGLM103 PSV40-PuroR-SV40pA-INS-bGHpA-PEF1α-
tTA::Cerulean-TFF5x3-SV40pA-INS

MT891338

4c pGLM102 PSV40-PuroR-SV40pA-INS-bGHpA-PEF1α-
tTA::Cerulean-TFF4x3-SV40pA-INS

MT891337

5e & SF25 pTTF138 INS-bGHpA-PEF1α-miRFP670-SV40pA-INS (Lillacci et al., 2018) MT891326
5e & SF25 pTTF220 PSV40-PuroR-SV40pA-INS-bGHpA-PEF1α-

mCitrine-TFF5x3-SV40pA-INS-PEF1α-
mRuby3(FF4)-TFF5x3-SV40pA-INS

(Lillacci et al., 2018) MT891332

5e & SF25 pTTF223 PSV40-PuroR-SV40pA-INS-bGHpA-PEF1α-
mCitrine-TFF4x3-SV40pA-INS-PEF1α-
mRuby3(FF4)-TFF4x3-SV40pA-INS

(Lillacci et al., 2018) MT891333

SF4 pTTF194 INS-bGHpA-PEF1α-mCitrine-SV40pA-INS-
PSV40-miRFP670-SV40pA-INS

(Lillacci et al., 2018) MT891329
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Table A.24: List of the primers and oligos used to generate miRNA target sites.

Construct Primer name Primer Sequence
mKate_1xmiR31TS5’ Fw1 GATCCAGCTATGCCAGCATCTTGCCTG
mKate_1xmiR31TS5’ Rv1 CTAGCAGGCAAGATGCTGGCATAGCTG
mKate_2xmiR31TS5’ Fw2 GATCCAGCTATGCCAGCATCTTGCCTAGCTATGCCAGCATCTTGCCTG
mKate_2xmiR31TS5’ Rv2 CTAGCAGGCAAGATGCTGGCATAGCTAGGCAAGATGCTGGCATAGCTG
mKate_3xmiR31TS5’ Fw3 GATCCAGCTATGCCAGCATCTTGCCTAGCTATGCCAGCATCT
mKate_3xmiR31TS5’ Rv3 TAGCTAGGCAAGATGCTGGCATAGCTG
mKate_3xmiR31TS5’ Fw4 TGCCTAGCTATGCCAGCATCTTGCCTG
mKate_3xmiR31TS5’ Rv4 CTAGCAGGCAAGATGCTGGCATAGCTAGGCAAGATGCTGGCA
mKate_1xmiR31TS3’ Fw5 AGCTTAGCTATGCCAGCATCTTGCCTTTAAT
mKate_1xmiR31TS3’ Rv5 TAAAGGCAAGATGCTGGCATAGCTA
mKate_2xmiR31TS3’ Fw6 AGCTTAGCTATGCCAGCATCTTGCCTAGCTATGCCAGCATCTTGCCTTTAAT
mKate_2xmiR31TS3’ Rv6 TAAAGGCAAGATGCTGGCATAGCTAGGCAAGATGCTGGCATAGCTA
mKate_3xmiR31TS3’ Fw7 AGCTTAGCTATGCCAGCATCTTGCCTAGCTATGCCAGCATCT
mKate_3xmiR31TS3’ Rv7 TAGCTAGGCAAGATGCTGGCATAGCTA
mKate_3xmiR31TS3’ Fw8 TGCCTAGCTATGCCAGCATCTTGCCTTTAAT
mKate_3xmiR31TS3’ Rw8 TAAAGGCAAGATGCTGGCATAGCTAGGCAAGATGCTGGCA
mKate_1xmiR21TS5’ Fw9 GATCCTAGCTTATCAGACTGATGTTGAG
mKate_1xmiR21TS5’ Rv9 CTAGCTCAACATCAGTCTGATAAGCTAG
mKate_2xmiR21TS5’ Fw10 GATCCTAGCTTATCAGACTGATGTTGATAGCTTATCAGACTGATGTTGAG
mKate_2xmiR21TS5’ Rv10 CTAGCTCAACATCAGTCTGATAAGCTATCAACATCAGTCTGATAAGCTAG
mKate_3xmiR21TS5’ Fw11 GATCCTAGCTTATCAGACTGATGTTGATAGCTTATCAGACTGAT
mKate_3xmiR21TS5’ Rv11 AGCTATCAACATCAGTCTGATAAGCTAG
mKate_3xmiR21TS5’ Fw12 GTTGATAGCTTATCAGACTGATGTTGAG
mKate_3xmiR21TS5’ Rv12 CTAGCTCAACATCAGTCTGATAAGCTATCAACATCAGTCTGATA
mKate_1xmiR21TS3’ Fw15 AGCTTTAGCTTATCAGACTGATGTTGATTAAT
mKate_1xmiR21TS3’ Rv15 TAATCAACATCAGTCTGATAAGCTAA
mKate_2xmiR21TS3’ Fw16 AGCTTTAGCTTATCAGACTGATGTTGATAGCTTATCAGACTGATGTTGATTAAT
mKate_2xmiR21TS3’ Rv16 TAATCAACATCAGTCTGATAAGCTATCAACATCAGTCTGATAAGCTAA
mKate_3xmiR21TS3’ Fw17 AGCTTTAGCTTATCAGACTGATGTTGATAGCTTATCAGACTGAT
mKate_3xmiR21TS3’ Rv17 AGCTATCAACATCAGTCTGATAAGCTAA
mKate_3xmiR21TS3’ Fw18 GTTGATAGCTTATCAGACTGATGTTGATTAAT
mKate_3xmiR21TS3’ Rv18 TAATCAACATCAGTCTGATAAGCTATCAACATCAGTCTGATA
mKate_1xmiR221TS5’ Fw21 GATCCACCTGGCATACAATGTAGATTTG
mKate_1xmiR221TS5’ Rv21 CTAGCAAATCTACATTGTATGCCAGGTG
mKate_2xmiR221TS5’ Fw22 GATCCACCTGGCATACAATGTAGATTTACCTGGCATACAATGTAGATTTG
mKate_2xmiR221TS5’ Rv22 CTAGCAAATCTACATTGTATGCCAGGTAAATCTACATTGTATGCCAGGTG
mKate_3xmiR221TS5’ Fw23 GATCCACCTGGCATACAATGTAGATTTACCTGGCATACAATGT
mKate_3xmiR221TS5’ Rv23 CAGGTAAATCTACATTGTATGCCAGGTG
mKate_3xmiR221TS5’ Fw24 AGATTTACCTGGCATACAATGTAGATTTG
mKate_3xmiR221TS5’ Rv24 CTAGCAAATCTACATTGTATGCCAGGTAAATCTACATTGTATGC
mKate_1xmiR221TS3’ Fw25 AGCTTACCTGGCATACAATGTAGATTTTTAAT
mKate_1xmiR221TS3’ Rv25 TAAAAATCTACATTGTATGCCAGGTA
mKate_2xmiR221TS3’ Fw26 AGCTTACCTGGCATACAATGTAGATTTACCTGGCATACAATGTAGATTTTTAAT
mKate_2xmiR221TS3’ Rv26 TAAAAATCTACATTGTATGCCAGGTAAATCTACATTGTATGCCAGGTA
mKate_3xmiR221TS3’ Fw27 AGCTTACCTGGCATACAATGTAGATTTACCTGGCATACAATGTA
mKate_3xmiR221TS3’ Rv27 CAGGTAAATCTACATTGTATGCCAGGTA
mKate_3xmiR221TS3’ Fw28 GATTTACCTGGCATACAATGTAGATTTTTAAT
mKate_3xmiR221TS3’ Rv28 TAAAAATCTACATTGTATGCCAGGTAAATCTACATTGTATGC

Table A.25: List of the target sites for miRNAs used in this study (Griffiths-Jones et al., 2006).

miRNA Sequence
hsa-miR-31-5p AGCTATGCCAGCATCTTGCCT
hsa-miR-21 TCAACATCAGTCTGATAAGCTA
hsa-miR-221 AAATCTACATTGTATGCCAGGT
miR-FF4 CCGCTTGAAGTCTTTAATTAAA
miR-FF5 AAGCACTCTGATTTGACAATTA
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Table A.26: List of the primers used for qPCR analyses.

Primer Function Sequence (5’-3’)
F7 Forward primer for mKate GGTGTCTAAGGGCGAAGAGC
F8 Reverse primer for mKate GCTGGTAGCCAGGATGTCGA
qPCR-EGFP-F Forward primer for EGFP AAGGGCATCGACTTCAAG
qPCR-EGFP-R Reverse primer for EGFP TGCTTGTCGGCCATGATATG
qPCR-18S-F Forward primer for 18S GCTTAATTTGACTCAACACGGGA
qPCR-18S-R Reverse primer for 18S AGCTATCAATCTGTCAATCCTGTC

Table A.27: 5x isothermal reaction buffer recipe.

Component Concentration
PEG-800 25 %
Tris-HCl, pH 7.5 500 mM
MgCl2 50 mM
DTT 50 mM
dATP 1 mM
dTTP 1 mM
dCTP 1 mM
dGTP 1 mM
NAD 5 mM
To 3 mL with ddH2O

Table A.28: Parameter fits related to Figure 2.4b,c and Supplementary Note A.3.

Parameter Unit Value
𝛼𝑃1 𝐴𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦𝑓 𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 3108.52
𝛼𝑃2 𝐴𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦𝑓 𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 28007.3
𝛼𝑃3 𝐴𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦𝑓 𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 2198.66
𝛽𝑀1 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 9275.79
𝛽𝑀2 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 1017.34
𝛽𝑀3 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 709.432
𝑘𝑚𝑀1

𝑛𝑔 0.00400709
𝛾𝑀2 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 1.35779
𝛾𝑀3 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 14.5078
𝜃𝑀1 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 286.573
𝜃𝑀2 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 126.876
𝜅 𝐴𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦𝑓 𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 17.2643
ℎ 𝑈 𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 31
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Table A.29: Parameter fits related to Figure 2.5c and Supplementary Note A.4 endogenous
microRNA-based iFFL.

Parameter Unit Value
𝛽𝑀1 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 0.746056
𝛽𝑀2 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 32.429
𝑘𝑚𝑀1

𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 59.104
𝛾𝑀2 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 0.480552
𝛾𝑚 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 33.2046
𝜃𝑀2 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 227.144

Table A.30: Parameter fits related to Figure 2.5d and Supplementary Note A.4 synthetic
microRNA-based iFFL.

Parameter Unit Value
𝛽𝑀1 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 1.89289
𝛽𝑀2 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 0.0152265
𝛽𝑀3 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 1.43347e-18
𝑘𝑚𝑀1

𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 3.21455
𝛾𝑀2 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 2.04539e-16
𝛾𝑀3 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 1.91369
𝜃𝑀2 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 9.80712
𝜃𝑀3 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 30.272

Table A.31: Parameter fits related to Supplementary Figure A.19 and Supplementary Note A.4
endogenous microRNA-based iFFL.

Parameter Unit Value
𝛽𝑀1 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 1.01232e-9
𝛽𝑀2 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 0.943493
𝑘𝑚𝑀1

𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 3.57119
𝛾𝑀2 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 2.85075e-11
𝛾𝑚 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 0.173874
𝜃𝑀2 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 10.9904
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Table A.32: Parameter fits related to Supplementary Figure A.21 and Supplementary Note A.4
endogenous microRNA-based iFFL.

Parameter Unit Value
𝛽𝑀1 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 2.81166
𝛽𝑀2 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 1.95439e-5
𝑘𝑚𝑀1

𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 2.32439
𝛾𝑀2 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 1.1604e-13
𝛾𝑚 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 6.65805
𝜃𝑀2 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 6.38791

Table A.33: Parameter fits related to Supplementary Figure A.22 and Supplementary Fig. A.4
synthetic microRNA-based iFFL.

Parameter Unit Value
𝛽𝑀1 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 9.61413e-16
𝛽𝑀2 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 0.00222615
𝛽𝑀3 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 3.91565e-17
𝑘𝑚𝑀1

𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 33.6238
𝛾𝑀2 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 3.19321e-14
𝛾𝑀3 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 13.4858
𝜃𝑀2 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 6.45491
𝜃𝑀3 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 30.2392
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Table A.34: Parameter fits related to Supplementary Figure A.17 and Supplementary Note A.6
Doxycycline titration.

Parameter Unit Value
𝛼𝑃1 𝐴𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦𝑓 𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 8467.86
𝛼𝑃2 𝐴𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦𝑓 𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 11843.7
𝛼𝑃3 𝐴𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦𝑓 𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 34208.2
𝛼𝑃4 𝐴𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦𝑓 𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 7872.41
𝛽𝑀1 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 36149.8
𝛽𝑀2 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 1763.75
𝛽𝑀3 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 2970.3
𝛽𝑀4 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 9847.66
𝛾𝑀1 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 276.803
𝛾𝑀2 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 11620.
𝛾𝑀3 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 1914.02
𝛾𝑀4 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 13025.9
𝜅𝑎 𝐴𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦𝑓 𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 0.000376413
𝜅𝑖 𝐴𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦𝑓 𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 0.402255
ℎ𝑎 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 1
ℎ𝑖 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 1

Table A.35: Parameter fits related to Supplementary Figure A.17 and Supplementary Note A.6
HDV.

Parameter Unit Value
𝛼𝑃1 𝐴𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦𝑓 𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 2349.49
𝛼𝑃2 𝐴𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦𝑓 𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 5194.24
𝛽𝑀1 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 2.17088
𝛽𝑀2 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 0.389635
𝛾𝑀1 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 269.809
𝛾𝑀2 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 308.635
𝜔𝑀1 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 19.1555
𝜅𝑎 𝐴𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦𝑓 𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 0.00309458
𝜅𝑖 𝐴𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦𝑓 𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 1.36083
ℎ𝑎 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 2
ℎ𝑖 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 1
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Table A.36: Parameter fits related to Supplementary Figure A.17 and Supplementary Note A.6
RNA-binding proteins (L7Ae).

Parameter Unit Value
𝛼𝑃1 𝐴𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦𝑓 𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 41764.7
𝛼𝑃2 𝐴𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦𝑓 𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 2604.06
𝛼𝑀3 𝐴𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦𝑓 𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 16208.
𝛽𝑀1 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 657.816
𝛽𝑀2 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 3508.74
𝛽𝑀3 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 386.641
𝛾𝑀1 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 142.346
𝛾𝑀2 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 23.082
𝛾𝑀3 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 10.0254
𝜈 𝑇 𝑖𝑚𝑒−1 36932.
𝜌𝑀1 𝐴𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦𝑓 𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒−1 1093.94

Table A.37: Parameter fits related to Supplementary Figure A.17 and Supplementary Note A.6
RNA-binding proteins (Ms2-cNOT7).

Parameter Unit Value
𝛼𝑃1 𝐴𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦𝑓 𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 19444.9
𝛼𝑃2 𝐴𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦𝑓 𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 14480.
𝛼𝑀3 𝐴𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦𝑓 𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 1.77696
𝛽𝑀1 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 2115.61
𝛽𝑀2 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 858.958
𝛽𝑀3 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 74.2967
𝛾𝑀1 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 41.1893
𝛾𝑀2 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 104.793
𝛾𝑀3 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 31.3533
𝜌𝑀1 𝐴𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦𝑓 𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒−1 213.586
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Table A.38: Parameter fits related to Supplementary Figure A.17 and Supplementary Note A.6
miRNA.

Parameter Unit Value
𝛼𝑃1 𝐴𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦𝑓 𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 433.658
𝛼𝑃2 𝐴𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦𝑓 𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 4855.31
𝛽𝑀1 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 992.56
𝛽𝑀2 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 895.094
𝛾𝑀1 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 2232.66
𝛾𝑀2 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 518.349
𝛾𝑀3 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 2.56322
𝜆3′ 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 155.969
𝜆5′ 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 926.904
𝜏1𝑥 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 3.0671
𝜏3𝑥 𝑈𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 70.1826
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Appendix B

A genetic mammalian
proportional-integral feedback
control circuit for robust and
precisegene regulation

B.1 Mathematical Modeling of the Circuit in
Figure 3.2 without Network Perturbation

Consider the circuit depicted in Figure 3.2(a) without network perturbation, where an RNA-based molecular realization
of the antithetic integral controller regulates the production of a particular protein of interest, namely the transcription
factor tTA-mCitrine. The circuit can operate in either open loop or closed loop. We first present a detailed (mechanistic)
mathematical model and then carry out a model reduction technique that allows us to analyze the steady-state behavior
of the output protein. Finally, we provide the technical details of properly calibrating the model to the experimental
data.

Full Model Description
A detailed biochemical reaction network that describes the interactions between the various biochemical species, de-
picted in Table B.1, is given in Table B.2. These tables are sufficient to provide a mathematical model for the circuit in
Figure 3.2(a). The open-loop circuit can be obtained by setting 𝑎2 = 0 (in Table B.2) thus preventing the transcriptional
activator A from binding to the promoter of the anti-sense gene GF

2 . Note that if A and B are two species, then A:B is
understood to be the complex formed when A and B are bound together.

Model Reduction
In this section, the full model given in Table B.2 is mathematically reduced to the model described schematically in
Figure B.1(a) and mathematically in Figure B.1(b).

Note that Figure B.1 is a special case of Figure 3.4(a) in the main text, where there is only integral control and no
network perturbation. The model reduction procedure is based on the following assumption:

Assumption 1. The binding/unbinding reactions are fast.
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η
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A Dimerized X2

D Disturbance

Z1 sense mRNA
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G2 Antisense Gene

Reaction

Influence

Sequestration
Reaction

∅

a

b Controlled Network Dynamics
Ẋ1 = kZ1 − (c+ γ)X1 − λ(X1;D)

Ẋ2 = cX1 − γX2 − 2(aX2
2 − dA)

Ȧ = aX2
2 − (d+ γ)A

Controller Dynamics{
Ż1 = µ(G1)− ηZ1Z2 − δZ1

Ż2 = θ(A;G2)− ηZ1Z2 − δZ2

Active Degradation Constitutive Transcription Transcriptional Activation

λ(X1;D) = D
k3(X1/κ3) + k′3(X1/κ

′
3)

2

1 +X1/κ3 + (X1/κ′3)
2

µ(G1) = k1G1 θ(A;G2) =

[
k0 + (k2 − k0)

A/κ2
1 + A/κ2

]
G2

Open Loop: κ2 →∞ Closed Loop: κ2 <∞

Ideal Closed Loop (δ ≈ 0) : Ż1 − Ż2 = 0 =⇒ µ(G1) = θ(Ā;G2) =⇒ Ā = κ2
r − k0/k2

1− r , with r :=
k1G1
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104Closed Loop
Measurement Average Model Fit Model Prediction With/Without Disturbance/c

Measured Output: M := cx (X1 +X2 + 2A) ≈ cx

(√
κA+ 2A

)
cx is a fluorescence proportionality constant
κ := d/a is the dimerization dissociation constant

Figure B.1: Mathematical Modeling of the I-Circuit without Network Perturbation in Fig-
ure 3.2. (a)/(b) Schematic/Mathematical Description of the Reduced Model. This is a special
case of the compact model presented in Figure 3.4(a) where the proportional controller and
network perturbation are removed to model only the integral control action. The model for
the open-loop circuit is obtained by setting 𝜅2 → ∞, where 𝜅2 is the dissociation constant of A
from G2. This removes the the feedback from the regulated output A since 𝜃(𝐴; 𝐺2) becomes
𝑘0𝐺2. In the ideal operation of the antithetic integral controller, where the dilution rate 𝛿 is
negligible with respect to the other rates of the controller, the regulated outputA has a steady-
state concentration, denoted by 𝐴̄, that is independent of the controlled network parameters.
This ensures robust perfect adaptation of the regulated output to external disturbances such as
D. (c)Model Calibration to Experimental Data. This panel is the same as Figure 3.4(b), but the
x-axis is plotted on a linear scale here to examine the concavity of the curves.
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B.1. Mathematical Modeling of the Circuit in Figure 3.2

Species Symbol Species Symbol

Activator Gene G1 Antisense Gene (Free) GF
2

Sense mRNA Z1 Anti-sense RNA Z2

Asunaprevir Disturbance (Free) DF tTA:mCitrine:SMASh X1

X1:DF X*1 tTA:mCitrine X2

Dimerized tTA:mCitrine A GF
2:A G*2

Table B.1: List of Biochemical Species

Reaction Mechanism Constants

Transcription 1 G1
𝑘1 G1 + Z1

Transcription 2 GF
2 + A

𝑎2

𝑑2
G*2

𝑘2 G*2 + Z2 𝜅2 ∶=
𝑑2
𝑎2

Leaky Transcription 2 GF
2

𝑘0 GF
2 + Z2

Translation Z1
k Z1 + X1

Active Degradation X1 + DF 𝑎3

𝑑3
X*1

𝑘3 DF 𝜅3 ∶=
𝑑3+𝑘3
𝑎3

Conversion X1
c X2

Dimerization X2 + X2
a

d
A 𝜅 ∶= 𝑑

𝑎

Dilution/Degradation Zi
𝛿 ∅ Xi

𝛾
∅ (i = 1,2) A

𝛾
∅

Sequestration Z1 + Z2
𝜂

∅

Table B.2: List of Biochemical Reactions

Assumption 1 allows us to exploit a time-scale separation principle based on the fact that the (un)binding reactions
are much faster than the other reactions in the system. As a result, a Quasi-Steady-State Approximation (QSSA) is
applied.

Now, we show the mathematical derivation of the reduced model. The conservation laws are given in terms of
the total concentrations of bound and free antisense gene and ASV denoted by 𝐺2 and 𝐷, respectively. That is, we have

𝐺𝐹
2 + 𝐺∗

2 =∶ 𝐺2

𝐷𝐹 + 𝑋 ∗
1 =∶ 𝐷.

(B.1)

Note that 𝐺1, 𝐺2 and 𝐷 are constants and are considered to act as external inputs and disturbance to the circuit. Since
the binding reactions are much faster than the other reactions in the network (Assumption 1), one can invoke the
Quasi-Steady-State Approximation (QSSA) as follows

𝐺̇∗
2 ≈ 0 ⟹ 𝑎2𝐺𝐹

2𝐴 − 𝑑2𝐺∗
2 ≈ 0 ⟹ 𝐺∗

2 ≈
𝐴𝐺𝐹

2
𝜅2

̇𝑋 ∗
1 ≈ 0 ⟹ 𝑎3𝑋1𝐷𝐹 − (𝑑3 + 𝑘3)𝑋 ∗

1 ≈ 0 ⟹ 𝑋 ∗
1 ≈

𝑋1𝐷𝐹

𝜅3
,

(B.2)

where the dissociation and Michaelis-Menten constants, 𝜅2 and 𝜅3, are given in Table B.2. By substituting the quasi-
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B. A genetic mammalian proportional-integral feedback control circuit

steady-state approximation of 𝐺∗
2 in the conservation law 𝐺𝐹

2 + 𝐺∗
2 = 𝐺2, we obtain the following expressions

𝐺𝐹
2 ≈ 𝐺2

1
1 + 𝐴/𝜅2

, 𝐺∗
2 ≈ 𝐺2

𝐴/𝜅2
1 + 𝐴/𝜅2

.

Similarly, by substituting the quasi-steady-state approximation of 𝑋 ∗
1 in the conservation law 𝐷𝐹 + 𝑋 ∗

1 = 𝐷, we obtain

𝐷𝐹 ≈ 𝐷 1
1 + 𝑋1/𝜅3

, 𝑋 ∗
1 ≈ 𝐷

𝑋1/𝜅3
1 + 𝑋1/𝜅3

.

Equipped with the quasi-steady-state approximations, we can now write down a set of Ordinary Differential
Equations (ODEs) that describe the evolution of 𝑋1, 𝑋2, 𝐴, 𝑍1 and 𝑍2.

̇𝑋1 = 𝑘𝑍1 − 𝑎3𝑋1𝐷𝐹 + 𝑑3𝑋 ∗
1 − (𝑐 + 𝛾)𝑋1 ≈ 𝑘𝑍1 − 𝑘3𝑋 ∗

1 − (𝑐 + 𝛾)𝑋1

≈ 𝑘𝑍1 − ((𝑐 + 𝛾)𝑋1 + 𝑘3𝐷
𝑋1/𝜅3

1 + 𝑋1/𝜅3
)

̇𝑋2 = 𝑐𝑋1 − 𝛾𝑋2 − 2(𝑎𝑋 2
2 − 𝑑𝐴)

𝐴̇ = 𝑎𝑋 2
2 − 𝑑𝐴 − 𝛾𝐴

̇𝑍1 = 𝑘1𝐺1 − 𝜂𝑍1𝑍2 − 𝛿𝑍1

̇𝑍2 = 𝑘2𝐺∗
2 + 𝑘0𝐺𝐹

2 − 𝜂𝑍1𝑍2 − 𝛿𝑍2 ≈ 𝐺2 (
𝑘0 + 𝑘2(𝐴/𝜅2)
1 + 𝐴/𝜅2

) − 𝜂𝑍1𝑍2 − 𝛿𝑍2.

Finally, the dynamics of the reduced model can be more compactly written as

⎧
⎪
⎪

⎨
⎪
⎪
⎩

̇𝑋1 = 𝑘𝑍1 − (𝑐 + 𝛾)𝑋1 − 𝜆(𝑋1; 𝐷)

̇𝑋2 = 𝑐𝑋1 − 𝛾𝑋2 − 2(𝑎𝑋 2
2 − 𝑑𝐴)

𝐴̇ = 𝑎𝑋 2
2 − (𝑑 + 𝛾)𝐴

̇𝑍1 = 𝜇(𝐺1) − 𝜂𝑍1𝑍2 − 𝛿𝑍1
̇𝑍2 = 𝜃(𝐴; 𝐺2) − 𝜂𝑍1𝑍2 − 𝛿𝑍2,

with

⎧
⎪⎪

⎨
⎪⎪
⎩

𝜆(𝑋1; 𝐷) ∶= 𝑘3𝐷
𝑋1/𝜅3

1 + 𝑋1/𝜅3
𝜇(𝐺1) ∶= 𝑘1𝐺1

𝜃(𝐴; 𝐺2) ∶= [𝑘0 + (𝑘2 − 𝑘0)
𝐴/𝜅2

1 + 𝐴/𝜅2
] 𝐺2,

(B.3)

where 𝑘0 << 𝑘2 since leaky transcription is usually much slower than activated transcription. Note that in the open-
loop circuit, only the leaky transcription reaction can occur, that is 𝑎2 = 0. As a result, 𝜅2 → ∞, and therefore the
function 𝜃 becomes independent of 𝐴, i.e. 𝜃(𝐴; 𝐺2) = 𝑘0𝐺2.

The only difference between the dynamics given in (B.3) and Figure B.1(b) lies in the active degradation function 𝜆.
In fact, by setting 𝑘′3 = 0 and 𝜅′3 → ∞ in Figure B.1(b), we obtain (B.3). The active degradation function of Figure B.1(b)
is, in general, of higher order and involves squared terms 𝑋 2

1 . It turns out that this higher order function is necessary to
fit the data properly (refer to Supplementary Information B.1 for a detailed explanation). The mechanism underlying
this higher-order active degradation function is explained in the subsequent section.

Higher Order Active Degradation
The active degradation function 𝜆(𝑋1; 𝐷) in (B.3) takes the form of a hill function multiplied by the (disturbance)
Asunaprevir concentration 𝐷. We now consider the more general hill function of Figure B.1(b) which is given by

𝜆(𝑋1; 𝐷) = 𝐷
𝑘3𝑋1/𝜅3 + 𝑘′3 (𝑋1/𝜅′3)

2

1 + 𝑋1/𝜅3 + (𝑋1/𝜅′3)
2 . (B.4)

This function has a higher order (hill coefficient) since it involves squared terms 𝑋 2
1 . We show next how this hill

function can mechanistically arise from the interactions of the various species in the circuit.
In addition to the Active Degradation reaction given in Table B.2, we allow X1 to dimerize to form the complex

A1 (Dimerized tTA:mCitrine:SMASh) which can also be actively degraded by D. These additional mechanisms are
modeled by appending the previous model with the additional active degradation and dimerization reactions listed in
Table B.3. Note that, theoretically, A1 can still release the SMASh tag at some rate 𝑐′ and/or may still be able to initiate
transcription ofG2 at some rate 𝑘′2. However, we assume that the bulk dimerA1 is very unstable and tends to dissociate
at a rate 𝑑′3 >> 𝑐′ and its transcription rate is much slower than that of A. As a result, 𝑐′ and 𝑘′2 can be neglected and
thus the corresponding reactions are not listed in Table B.3.

Now, we show the mathematical derivation of the higher order active degradation function 𝜆(𝑋1; 𝐷). The math-
ematical procedure is, once again, based on Assumptions 1; however, an additional assumption is added here as well.
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B.1. Mathematical Modeling of the Circuit in Figure 3.2

Reaction Mechanism Constants

Dimerization 2 X1 + X1
𝑎′1

𝑑′1
A1 𝜅′1 ∶=

𝑑′1
𝑎′1

Active Degradation 2 A1 + DF 𝑎′3

𝑑′3
A*1

𝑘′3 DF 𝜅′3 ∶=
𝑑′3+𝑘′3
𝑎′3

Table B.3: Additional Biochemical Reactions for Higher Order Active Degradation

Assumption 2. The concentration of the free ASV molecules 𝐷𝐹 is low.

This assumption means that the majority of the ASV molecules are in their bound state. The conservation law
that can be seen from Tables B.2 and B.3 is given by

𝐷𝐹 + 𝑋 ∗
1 + 𝐴∗

1 =∶ 𝐷. (B.5)

This replaces the conservation law for 𝐷 given in (B.1) since the species A*1 is a complex formed of A1 and DF. With
Assumption 1 in mind, one can invoke the Quasi-Steady-State Approximation (QSSA) as follows

𝐴̇∗
1 ≈ 0 ⟹ 𝑎′3𝐴1𝐷𝐹 − (𝑑′3 + 𝑘′3)𝐴∗

1 ≈ 0 ⟹ 𝐴∗
1 ≈

𝐴1𝐷𝐹

𝜅′3

𝐴̇1 ≈ 0 ⟹ 𝑎′1𝑋 2
1 − 𝑑′1𝐴1 − (𝑎′3𝐴1𝐷𝐹 − 𝑑′3𝐴∗

1) ≈ 0 ⟹ 𝐴1 ≈
𝑋 2
1

𝜅′1 +
𝑘′3
𝑎′1𝜅

′
3
𝐷𝐹

,
(B.6)

where the constants 𝜅′1 and 𝜅′3 are given in Table B.3. By substituting the quasi-steady-state approximations of 𝑋 ∗
1 from

(B.2) and (𝐴1, 𝐴∗
1) from (B.6) in the conservation law 𝐷𝐹 +𝑋 ∗

1 +𝐴∗
1 = 𝐷, while invoking Assumption 2 (more precisely

𝜅′1 >>
𝑘′3
𝑎′1𝜅

′
3
𝐷𝐹), we obtain

𝐷𝐹 ≈ 𝐷 1
1 + 𝑋1/𝜅3 + 𝑋 2

1 /𝜅′1𝜅′3
, 𝑋 ∗

1 ≈ 𝐷
𝑋1/𝜅3

1 + 𝑋1/𝜅3 + 𝑋 2
1 /𝜅′1𝜅′3

, 𝐴∗
1 ≈ 𝐷

𝑋 2
1 /𝜅′1𝜅′3

1 + 𝑋1/𝜅3 + 𝑋 2
1 /𝜅′1𝜅′3

.

Equipped with the quasi-steady-state approximations, we can now update the Ordinary Differential Equation (ODE)
that describes the evolution of 𝑋1.

̇𝑋1 = 𝑘𝑍1 − (𝑎3𝑋1𝐷𝐹 − 𝑑3𝑋 ∗
1 ) − (𝑐 + 𝛾)𝑋1 − 2(𝑎′1𝑋 2

1 − 𝑑′1𝐴1)

≈ 𝑘𝑍1 − 𝑘3𝑋 ∗
1 − (𝑐 + 𝛾)𝑋1 − 2(𝑎′3𝐴1𝐷𝐹 − 𝑑′3𝐴∗

1)
≈ 𝑘𝑍1 − 𝑘3𝑋 ∗

1 − (𝑐 + 𝛾)𝑋1 − 2𝑘′3𝐴∗
1

≈ 𝑘𝑍1 − (𝑐 + 𝛾)𝑋1 − 𝐷
𝑘3𝑋1/𝜅3 + 2𝑘′3𝑋 2

1 /𝜅′1𝜅′3
1 + 𝑋1/𝜅3 + 𝑋 2

1 /𝜅′1𝜅′3
=∶ 𝑘𝑍1 − (𝑐 + 𝛾)𝑋1 − 𝜆(𝑋1; 𝐷),

and thus the active degradation function 𝜆 takes the intended form given in (B.4) (with slight abuse of notation) and
shown in Figure B.1(b).

Mathematical Model of the Measured Output:
Fluorescence
Let𝑀 𝑖 (𝐺1, 𝐷) denote the measured fluorescence at a given concentration of the activator gene 𝐺1 and drug disturbance
𝐷, where 𝑖 = 𝑜 corresponds to open-loop measurements while 𝑖 = 𝑐 corresponds to closed-loop measurements. Note
that 𝐺2 is held constant throughout the paper, and thus the explicit dependence of the measured fluorescence 𝑀 on 𝐺2
is not emphasized here. Fluorescence is emitted from all molecules containing mCitrine, that is species X1, X2 and A
(see Figure B.1(a)). Hence we have

𝑀 𝑖 (𝐺1, 𝐷) = 𝑐𝑥 (𝑋 𝑖
1 + 𝑋 𝑖

2 + 2𝐴𝑖) 𝑖 ∈ {𝑜, 𝑐}, (B.7)
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B. A genetic mammalian proportional-integral feedback control circuit

where 𝑐𝑥 is a proportionality constant that maps concentrations (in nM) to fluorescence (in a.u.). Recall that the dy-
namics of 𝑋1, 𝑋2 and 𝐴 (in both open and closed loop) are given by

⎧

⎨
⎩

̇𝑋1 = 𝑘𝑍1 − (𝑐 + 𝛾)𝑋1 − 𝜆(𝑋1; 𝐷)
̇𝑋2 = 𝑐𝑋1 − 𝛾𝑋2 − 2(𝑎𝑋 2

2 − 𝑑𝐴),

𝐴̇ = 𝑎𝑋 2
2 − (𝑑 + 𝛾)𝐴.

At steady state, we have 𝐴̄ = ̄𝑋 2
2 /𝜅 with 𝜅 ∶= (𝑑 + 𝛾)/𝑎. which implies that ̄𝑋1 = 𝛾

𝑐 (
̄𝑋2 + 2𝐴̄). This implies that the

measurement at steady state is given by

𝑀̄ 𝑖 (𝐺1, 𝐷) = 𝑐𝑥
𝛾 + 𝑐
𝑐

( ̄𝑋 𝑖
2 + 2𝐴̄𝑖) = 𝑐𝑥

𝛾 + 𝑐
𝑐

(√𝜅𝐴̄𝑖 + 2𝐴̄𝑖) .

This equation links the measured fluorescence at steady state, 𝑀̄ 𝑖, to the steady-state concentration of the regulated
output 𝐴̄𝑖 for both open- and closed-loop circuits. In fact, this equation is also approximately valid transiently (not
only at steady state) under the following assumption.

Assumption 3. Transcription is much slower than releasing the SMASh tag.

This assumption is reasonable since X1 is very unstable and tends to release the SMASh tag very quickly (i.e. 𝑐
is large). Under this assumption, a quasi-steady-state argument can be used to obtain the following approximations
𝐴 ≈ 𝑋 2

2 /𝜅 and 𝑋1 ≈ 𝛾
𝑐 (𝑋2 + 2𝐴) which yield the same measurement equation at any time 𝑡 (not just at steady state).

Furthermore, we can drop the factor (𝛾 +𝑐)/𝑐 since 𝑐 >> 𝛾 to obtain the expression shown in the bottom of Figure B.1(c)
and Figure 3.4(a).

Model Calibration to the Experimental Data
In this section, we calibrate the model depicted in Figures B.1(a) and (b) to fit the experimentally collected data at
steady state.

Mathematical Representation of the Data
The experiments that are carried out allows us to obtain the data set visualized in Figure B.2. Themathematical notation
for the available data is described in Table B.4.

No Disturbance (D = 0 nM) With Disturbance (D = 33 nM)

Open Loop {𝐺𝑗
1, 𝑀̂

𝑜,𝑁𝐷
𝑗 }

𝑁 𝑜

𝑗=1 {𝐺𝑗
1, 𝑀̂

𝑜,𝐷
𝑗 }

𝑁 𝑜

𝑗=1

Closed Loop {𝐺𝑗
1, 𝑀̂

𝑐,𝑁𝐷
𝑗 }

𝑁 𝑐

𝑗=1 {𝐺𝑗
1, 𝑀̂

𝑐,𝐷
𝑗 }

𝑁 𝑐

𝑗=1

Table B.4: Data Representation: Set of inputs 𝐺1 and measured outputs 𝑀̂ for the open- and
closed-loop circuits with and without disturbance. 𝑁 𝑜 (resp. 𝑁 𝑐) denotes the number of differ-
ent concentrations of G1 that are applied to the open-loop (resp. closed-loop) circuit. For each
𝐺 𝑗
1 (𝑗 = 1, ..., 𝑁 𝑜 or 𝑁 𝑐), four measurements 𝑀̂ (.)

𝑗 are obtained. 𝑀̂ 𝑜,𝑁𝐷
𝑗 (resp. 𝑀̂ 𝑜,𝐷

𝑗 ) denotes the
measurement for the open-loop circuit without (resp. with) disturbance; whereas, 𝑀̂ 𝑐,𝑁𝐷

𝑗 (resp.
𝑀̂ 𝑐,𝐷

𝑗 ) denotes the measurement for the closed-loop circuit without (resp. with) disturbance.
Constant disturbances 𝐷 = 30 nM are applied and the concentration of the antisense plasmid
𝐺2 = 0.004 pmol is kept constant throughout all the experiments. Note that the measurements
𝑀̂ represent the average of the experimentally obtained triplicates.
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1/16 1/8 1/4 1/2  1  2

Closed Loop
Measurement Average Without Disturbance With Disturbance

Figure B.2: Data used for fitting the circuit realizing an antithetic integral controller. The
fluorescence data are obtained for a wide range of plasmid ratios 𝐺1/𝐺2, for open/closed loop
settings, and with/without disturbance by fixing 𝐺2 = 0.004 pmol and sweeping 𝐺1 accordingly.

Necessity of Higher Order Active Degradation
We select the higher order active degradation function introduced in Supplementary Information B.1 because it will
be shown that the negative concavity of the fitted curve in the open-loop setting with disturbance (see Figure B.1(c))
cannot be captured by a simple first order hill function 𝜆.

The fixed point of the dynamics in the open-loop setting, denoted by ( ̄𝑋 𝑜
1 , ̄𝑋 𝑜

2 , 𝐴̄𝑜, ̄𝑍 𝑜
1 , ̄𝑍 𝑜

2) satisfies the following
set of nonlinear algebraic equations.

⎧
⎪
⎪

⎨
⎪
⎪
⎩

0 = 𝑘 ̄𝑍 𝑜
1 − (𝑐 + 𝛾) ̄𝑋 𝑜

1 − 𝜆( ̄𝑋 𝑜
1 ; 𝐷)

0 = 𝑐 ̄𝑋 𝑜
1 − 𝛾 ̄𝑋 𝑜

2 − 2 (𝑎 ( ̄𝑋 𝑜
2)

2 − 𝑑𝐴̄𝑜)

0 = 𝑎 ( ̄𝑋 𝑜
2)

2 − (𝑑 + 𝛾)𝐴̄𝑜

0 = 𝑘1𝐺1 − 𝜂 ̄𝑍 𝑜
1 ̄𝑍 𝑜

2 − 𝛿 ̄𝑍 𝑜
1

0 = 𝑘0𝐺2 − 𝜂 ̄𝑍 𝑜
1 ̄𝑍 𝑜

2 − 𝛿 ̄𝑍 𝑜
2 ,

(B.8)

and the measured output denoted by 𝑀̄ 𝑜(𝐺1, 𝐷) is given by

𝑀̄ 𝑜(𝐺1, 𝐷) = 𝑐𝑥
̄𝑐
𝑐
( ̄𝑋 𝑜

2 + 2𝐴̄𝑜) , (B.9)

where ̄𝑐 ∶= 𝑐 + 𝛾. To analyze the concavity of 𝑀̄ 𝑜 as a function of 𝐺1, we study the sign of the second derivative 𝜕2𝑀̄𝑜

𝜕𝐺2
1
.

First, observe that using the second and third equations in (B.8), the measured output can be rewritten as

𝑀̄ 𝑜(𝐺1, 𝐷) = 𝑐𝑥
̄𝑐
𝑐
( ̄𝑋 𝑜

2 +
2
𝜅
( ̄𝑋 𝑜

2)
2)

= 𝑐𝑥
̄𝑐
𝑐
𝑐
𝛾

̄𝑋 𝑜
1

= 𝑐𝑥
̄𝑐
𝛾

̄𝑋 𝑜
1 .

Hence the sign of 𝜕2𝑀̄𝑜

𝜕𝐺2
1

is the same as that of 𝜕2 ̄𝑋 𝑜
1

𝜕𝐺2
1

which we derive next. Taking the second derivative of the first

equation in (B.8) with respect to 𝐺1 yields

𝑘
𝜕2 ̄𝑍 𝑜

1

𝜕𝐺2
1
− ̄𝑐

𝜕2 ̄𝑋 𝑜
1

𝜕𝐺2
1

−
𝜕2𝜆( ̄𝑋 𝑜

1 ; 𝐷)
𝜕𝑋 2

1
(
𝜕 ̄𝑋 𝑜

1
𝜕𝐺1

)
2

−
𝜕𝜆( ̄𝑋 𝑜

1 ; 𝐷)
𝜕𝑋1

𝜕2 ̄𝑋 𝑜
1

𝜕𝐺2
1

= 0 ⟹
𝜕2 ̄𝑋 𝑜

1

𝜕𝐺2
1

=
𝑘 𝜕

2 ̄𝑍 𝑜
1

𝜕𝐺2
1
− 𝜕2𝜆( ̄𝑋 𝑜

1 ;𝐷)
𝜕𝑋 2

1
( 𝜕 ̄𝑋 𝑜

1
𝜕𝐺1

)
2

̄𝑐 + 𝜕𝜆( ̄𝑋 𝑜
1 ;𝐷)

𝜕𝑋1

. (B.10)
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B. A genetic mammalian proportional-integral feedback control circuit

Next we derive an expression for 𝜕2 ̄𝑍 𝑜
1

𝜕𝐺2
1
. Subtracting the last two equations in (B.8) from each other yields

𝑘1𝐺1 − 𝑘0𝐺2
𝛿

= ̄𝑍 𝑜
1 − ̄𝑍 𝑜

2 ⟹
⎧⎪
⎨⎪
⎩

𝜕 ̄𝑍 𝑜
1

𝜕𝐺1
−

𝜕 ̄𝑍 𝑜
2

𝜕𝐺1
=

𝑘1
𝛿

𝜕2 ̄𝑍 𝑜
1

𝜕𝐺2
1

=
𝜕2 ̄𝑍 𝑜

2

𝜕𝐺2
1
.

(B.11)

By taking the first derivative of the fourth equation in (B.8) with respect to 𝐺1 and exploiting (B.11), we obtain an

expression for 𝜕 ̄𝑍 𝑜
1

𝜕𝐺1
given by

𝜕 ̄𝑍 𝑜
1

𝜕𝐺1
=

𝑘1
𝛿

𝜂 ̄𝑍 𝑜
1 + 𝛿

𝜂( ̄𝑍 𝑜
1 + ̄𝑍 𝑜

2) + 𝛿
.

Furthermore, by taking the second derivative of the fourth equation in (B.8) with respect to 𝐺1 and exploiting (B.11),

we obtain an expression for 𝜕2 ̄𝑍 𝑜
1

𝜕𝐺2
1

given by

𝜕2 ̄𝑍 𝑜
1

𝜕𝐺2
1

= 2𝜂
𝑘21
𝛿2

(𝜂 ̄𝑍 𝑜
1 + 𝛿)2

[𝜂( ̄𝑍 𝑜
1 + ̄𝑍 𝑜

2) + 𝛿]3
> 0.

Therefore, observe using (B.10), that as long as 𝜆 is an increasing function of 𝑋1 (
𝜕𝜆(𝑋1;𝐷)

𝜕𝑋1
≥ 0)with negative concavity

( 𝜕2𝜆(𝑋1;𝐷)
𝜕𝑋 2

1
≤ 0), we have 𝜕2 ̄𝑋 𝑜

1
𝜕𝐺2

1
> 0. Therefore for a first order active degradation function 𝜆(𝑋1; 𝐷) = 𝑘3𝐷

𝑋1/𝜅3
1+𝑋1/𝜅3

, we

have that 𝜕2𝑀̄𝑜

𝜕𝐺2
1

> 0 and, as a result, it cannot capture the negative concavity of the measurements in the open-loop

setting with disturbance shown in Figure B.1(c). On the other hand a second order active degradation function 𝜆 given
in (B.4) is capable of changing the concavity and hence is adopted in the paper.

Choice of Parameter Groups
Consider the circuit depicted in Figures B.1(a) and (b). The measured output for the open- (𝑖 = 𝑜) and closed-loop (𝑖 = 𝑐)
settings is given by

𝑀̄ 𝑖(𝐺1, 𝐷) = 𝑐𝑥 (√𝜅𝐴̄ + 2𝐴̄) , for 𝑖 ∈ {𝑜, 𝑐}

with

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

0 = 𝑘 ̄𝑍1 − (𝑐 + 𝛾) ̄𝑋1 − 𝐷
𝑘3 ̄𝑋1/𝜅3 + 𝑘′3 ( ̄𝑋1/𝜅′3)

2

1 + ̄𝑋1/𝜅3 + ( ̄𝑋1/𝜅′3)
2

0 = 𝑐 ̄𝑋1 − 𝛾 ̄𝑋2 − 2(𝑎 ̄𝑋 2
2 − 𝑑𝐴̄)

0 = 𝑎 ̄𝑋 2
2 − (𝑑 + 𝛾)𝐴̄

0 = 𝑘1𝐺1 − 𝜂 ̄𝑍1 ̄𝑍2 − 𝛿 ̄𝑍1

0 = 𝜃 𝑖(𝐴̄; 𝐺2) − 𝜂 ̄𝑍1 ̄𝑍2 − 𝛿 ̄𝑍2, 𝜃 𝑖(𝐴; 𝐺2) = {
𝑘0𝐺2, for 𝑖 = 𝑜

[𝑘0 + (𝑘2 − 𝑘0)
𝐴/𝜅2

1 + 𝐴/𝜅2
] 𝐺2, for 𝑖 = 𝑐.

(B.12)

The systemmodel has 15 parameters: {𝑘, 𝑘0, 𝑘1, 𝑘2, 𝑘3, 𝑘′3, 𝜅2, 𝜅3, 𝜅′3, 𝑐, 𝑎, 𝑑, 𝛿 , 𝛾 , 𝜂} to be calibrated to the data. Furthermore,
the measurement equation has an additional parameter 𝑐𝑥 to be calibrated as well and thus summing up to 16 total
parameters. However, steady-state measurements cannot uniquely identify all of those parameters. For this reason,
we carry out a suitable choice of re-parameterization to obtain aminimal number of (aggregated) parameter groups that
can be uniquely identified from the steady-state measurements. Particularly, define the following parameter groups

Δ1 ∶=
𝑘3
𝜅3

1
𝑐 + 𝛾

, Δ2 ∶=
𝑘′3
𝜅′23

𝛾
𝑐 + 𝛾

1
𝑐𝑐𝑥

, Δ′
1 ∶=

1
𝜅3

𝛾
𝑐𝑐𝑥

, Δ′
2 ∶=

1
𝜅′23

𝛾 2

𝑐2𝑐2𝑥
,

̄𝛿 ∶= 𝛿
𝑘1

̄𝛾 ∶=
𝛾
𝑘
𝑐 + 𝛾
𝑐

1
𝑐𝑥
, ̄𝜅 ∶= 𝑐𝑥𝜅, ̄𝜅2 ∶= 𝑐𝑥√𝜅𝜅2

̄𝜂 ∶=
𝜂
𝑘1
, 𝑘̄0 ∶=

𝑘0
𝑘1
, 𝑘̄2 ∶=

𝑘2
𝑘1
.

(B.13)
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B.1. Mathematical Modeling of the Circuit in Figure 3.2

and the following transformed variables

𝑋̃1 ∶= 𝑐𝑥
𝑐
𝛾

̄𝑋1 and 𝑋̃2 ∶= 𝑐𝑥 ̄𝑋2. (B.14)

Then the steady-state measurements can be rewritten in terms of the parameter groups and transformed variables as

𝑀̄ 𝑖 (𝐺1, 𝐷) = 𝑋̃1, for 𝑖 ∈ {𝑜, 𝑐}, such that

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

𝑋̃1 = 𝑋̃2 + 2
𝑋̃ 2
2
̄𝜅

̄𝑍1 = ̄𝛾 [𝑋̃1 + 𝐷
Δ1𝑋̃1 + Δ2𝑋̃ 2

1

1 + Δ′
1𝑋̃1 + Δ′

2𝑋̃ 2
1
]

̄𝑍2 =
𝐺1

̄𝜂 ̄𝑍1
−

̄𝛿
̄𝜂

0 = ̄𝜃 𝑖(𝑋̃2; 𝐺2) − ̄𝜂 ̄𝑍1 ̄𝑍2 − ̄𝛿 ̄𝑍2

where ̄𝜃 𝑖(𝑋̃2; 𝐺2) =
⎧⎪
⎨⎪
⎩

𝑘̄0𝐺2, for 𝑖 = 𝑜

[𝑘̄0 + (𝑘̄2 − 𝑘̄0)
(𝑋̃2/ ̄𝜅2)

2

1 + (𝑋̃2/ ̄𝜅2)
2 ] 𝐺2, for 𝑖 = 𝑐.

(B.15)

Note that 𝑖 = 𝑜 and 𝑖 = 𝑐 correspond to the open- and closed-loop settings, respectively. Hence given the input
𝐺1 and the disturbance 𝐷, one can use (B.15) to compute the mCitrine measurement in the open- and closed-loop
settings. To do so, one has to solve the set of nonlinear algebraic equations. This is done in Matlab by recasting the
set of nonlinear algebraic equations as a single but high order polynomial in 𝑋̃2 using the symbolic toolbox and then
solving the polynomial using the command “roots”. This allows us to solve the system of equations more efficiently
(by computing eigenvalues of a companion matrix associated with the obtained polynomial) without requiring an
initial guess as in Newton-Raphson-like methods. This is particularly important since model calibration may require
solving this system of equations thousands of times. We close this section by observing that we have now reduced the
parameters to be calibrated down to 11 (as compared to 16).

Model Calibration Steps

The model calibration is carried out in four steps to avoid over-fitting. In the first step, the parameters of the model for

the open-loop circuit in the absence of disturbance (𝐷 = 0) are fit to the data {𝐺 𝑗
1, 𝑀̂

𝑜,𝑁𝐷
𝑗 }

𝑁 𝑜

𝑗=1
by solving the following

optimization problem for 𝜃𝑜,𝑁𝐷 ∶= [ ̄𝛾 ̄𝛿 ̄𝜂 𝑘̄0].

min
Θ𝑜,𝑁𝐷

𝐽 (Θ𝑜,𝑁𝐷) =
𝑗=𝑁 𝑜

∑
𝑗=1

[𝑀̂ 𝑜,𝑁𝐷
𝑗 − 𝑀̄ 𝑜(𝐺 𝑗

1, 0)]
2

s.t. 𝑀̄ 𝑜(𝐺 𝑗
1, 0) = 𝑋̃1 and

⎧
⎪

⎨
⎪
⎩

̄𝑍1 = ̄𝛾 𝑋̃1

̄𝑍2 =
𝐺 𝑗
1

̄𝜂 ̄𝑍1
−

̄𝛿
̄𝜂

0 = 𝑘̄0𝐺2 − ̄𝜂 ̄𝑍1 ̄𝑍2 − ̄𝛿 ̄𝑍2,

where 𝐺2 = 0.004 pmol. Note that this system of equations can be rewritten in terms of 𝑋̃1 explicitly as a second degree
polynomial.

In the second step, we first fix the parameters that are obtained from the previous fit. Then, the parameters of

the model for the closed-loop circuit in the absence of disturbance (𝐷 = 0) are fit to the data {𝐺 𝑗
1, 𝑀̂

𝑐,𝑁𝐷
𝑗 }

𝑁 𝑐

𝑗=1
by solving
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B. A genetic mammalian proportional-integral feedback control circuit

the following optimization problem for 𝜃 𝑐,𝑁𝐷 ∶= [ ̄𝜅 ̄𝜅2 𝑘̄2].

min
Θ𝑐,𝑁𝐷

𝐽 (Θ𝑐,𝑁𝐷) =
𝑗=𝑁 𝑐

∑
𝑗=1

[𝑀̂ 𝑐,𝑁𝐷
𝑗 − 𝑀̄ 𝑐(𝐺 𝑗

1, 0)]
2

s.t. 𝑀̄ 𝑐(𝐺 𝑗
1, 0) = 𝑋̃1 and

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

𝑋̃1 = 𝑋̃2 + 2
𝑋̃ 2
2
̄𝜅

̄𝑍1 = ̄𝛾 𝑋̃1

̄𝑍2 =
𝐺 𝑗
1

̄𝜂 ̄𝑍1
−

̄𝛿
̄𝜂

0 = [𝑘̄0 + (𝑘̄2 − 𝑘̄0)
𝑋̃ 2
2 / ̄𝜅2

1 + 𝑋̃ 2
2 / ̄𝜅2

] 𝐺2 − ̄𝜂 ̄𝑍1 ̄𝑍2 − ̄𝛿 ̄𝑍2,

where 𝐺2 = 0.004 pmol. Note that the last equation can be rewritten in terms of 𝑋̃2 explicitly as a sixth degree
polynomial.

In the third step, we first fix the parameters that are obtained from the previous fits. Then, the parameters of the

model for the open-loop circuit in the presence of disturbance (𝐷 = 33 nM) are fit to the data {𝐺 𝑗
1, 𝑀̂

𝑜,𝐷
𝑗 }

𝑁 𝑜

𝑗=1
by solving

the following optimization problem for 𝜃𝑜,𝐷 ∶= [Δ1 Δ2 Δ′
1 Δ′

2].

min
Θ𝑜,𝐷

𝐽 (Θ𝑜,𝐷) =
𝑗=𝑁 𝑜

∑
𝑗=1

[𝑀̂ 𝑜,𝐷
𝑗 − 𝑀̄ 𝑜(𝐺 𝑗

1, 𝐷)]
2

s.t. 𝑀̄ 𝑜(𝐺 𝑗
1, 0) = 𝑋̃1 and

⎧
⎪
⎪

⎨
⎪
⎪
⎩

̄𝑍1 = ̄𝛾 [𝑋̃1 + 𝐷
Δ1𝑋̃1 + Δ2𝑋̃ 2

1

1 + Δ′
1𝑋̃1 + Δ′

2𝑋̃ 2
1
]

̄𝑍2 =
𝐺 𝑗
1

̄𝜂 ̄𝑍1
−

̄𝛿
̄𝜂

0 = 𝑘̄0𝐺2 − ̄𝜂 ̄𝑍1 ̄𝑍2 − ̄𝛿 ̄𝑍2,

where 𝐺2 = 0.004 pmol, 𝐷 = 33 nM. Note that the last equation can be rewritten in terms of 𝑋̃1 explicitly as a sixth
degree polynomial.

In the last step, we already have all the parameter groups, and thus we use them to mathematically predict the
measurements for the closed-loop circuit with disturbance (𝐷 = 33 nM). This is done by using (B.15) where the system
of equations can be rewritten as a polynomial in 𝑋̃2 of degree 13.

Estimated ParameterGroups: Themodel fit and prediction are shown in Figures 3.4(b) and B.1(c),
where the optimally estimated parameter groups are given by

Δ1 ≈ 0 nM−1, Δ2 = 1.26 × 10−6 a u −1nM−1, Δ′
1 ≈ 0 a u −1, Δ′

2 ≈ 0 a u −2,
̄𝛿 = 9.5 × 10−3 ̄𝛾 = 1.01 × 10−5 a u −1, ̄𝜅 = 10.1 × 104 a.u., ̄𝜅2 = 1.22 × 104 a u −1

̄𝜂 = 2.59 × 103 nM−1, 𝑘̄0 ≈ 0, 𝑘̄2 = 2.13.

(B.16)

The estimated parameter groups suggest that leaky transcription of the antisense gene is negligible. They also suggest
that the active degradation function is approximately purely quadratic in 𝑋1 that is 𝜆(𝑋1; 𝐷) ≈ 𝑘3𝐺 (𝑋1/𝜅′3)

2 which
means that the degradation of the dimerized tTA:mCitrine:SMASh dominates the degradation of the monomer.

B.2 Mathematical Modeling of the Circuit in
Figure 3.2 with Network Perturbation

Consider the circuit depicted in Figure 3.2(a) with network perturbation. The difference here compared to the circuit
analyzed in Supplementary Information B.1, lies in the additional plasmid encoding a gene that expresses an RNA-
binding protein capable of inhibiting the translation of the sense mRNA. We first describe the additional mechanistic
interactions that are introduced by this gene, and then carry out a model reduction technique that allows us to analyze
the steady-state behavior of the output protein. Finally we provide the technical details of fitting the model to the
experimental data.
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B.2. Mathematical Modeling of the Circuit in Figure 3.2

Full Model Description
A detailed biochemical reaction network that models the dynamics of the circuit in Figure 3.2(a) can be obtained by
appending Tables B.1 and B.2 (that model the circuit of Figure 3.2(a) without network perturbation) by the list of
biochemical species and reactions given in Tables B.5 and B.6, respectively. These species and reactions describe the
biochemical reaction sub-network that is introduced by the additional gene encoding for NES-L7Ae.

Species Symbol Species Symbol

NES-L7Ae Gene (Free) G’F2 Activated Gene G’*2 G’F2:A

NES-L7Ae mRNA Z’2 NES-L7Ae Protein X’1

Z’1 Z1:X’1

Table B.5: List of Additional Biochemical Species

Reaction Mechanism Constants

Transcription 2′ G’F2 + A
𝑎2

𝑑2
G’*2

𝑘′2 G’*2 + Z’2 𝜅2 ∶=
𝑑2
𝑎2

Leaky Transcription 2′ G’F2
𝑘′0 G’F2 + Z’2

Translation 2′ Z’2
𝑘′ Z’2 + X’1

Inhibition X’1 + Z1
𝑎′

𝑑′
Z’1

Dilution/Degradation X’1
𝛾 ′

∅ Z’1
𝛿 ∅ Z’2

𝛿 ′ ∅

Sequestration 2 Z’1 + Z2
𝜂

∅

Table B.6: List of Additional Biochemical Reactions

Model Reduction
In this section, the full model given in Tables B.2 and B.6 ismathematically reduced to themodel described schematically
in Figure B.3(a) and mathematically in Figure B.3(b). Note that Figure B.3 is a special case of Figure 3.4(a) in the main
text, where there is only integral control but with network perturbation. The model reduction procedure is based on
the reduced model that is obtained previously in Supplementary Information B.1.

One additional conservation law is appended here to the previous conservation laws in (B.1). It is given in terms
of the total concentration of the bound and free NES-L7Ae gene denoted by 𝐺′

2. That is, we have

𝐺′𝐹
2 + 𝐺′∗

2 =∶ 𝐺′
2. (B.17)

Note that 𝐺′
2 is a constant that is considered to act as an external perturbation to the circuit. Since the binding

reactions are much faster than the other reactions in the network (Assumption 1), one can invoke the Quasi-Steady-
State Approximation (QSSA) as follows

̇𝐺′∗
2 ≈ 0 ⟹ 𝑎2𝐺′𝐹

2𝐴 − 𝑑2𝐺′∗
2 ≈ 0 ⟹ 𝐺′∗

2 ≈
𝐴𝐺′𝐹

2
𝜅2

, (B.18)

where the dissociation constant 𝜅2 is given in Table B.6 and is assumed to be equal to that in Table B.2 since G2 and
G’2 have the same promoters. By substituting the quasi-steady-state approximation of 𝐺′∗

2 in the conservation law
𝐺′𝐹

2 + 𝐺′∗
2 =∶ 𝐺′

2, we obtain the following expressions

𝐺′𝐹
2 ≈ 𝐺′

2
1

1 + 𝐴/𝜅2
, 𝐺′∗

2 ≈ 𝐺′
2

𝐴/𝜅2
1 + 𝐴/𝜅2

.
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B. A genetic mammalian proportional-integral feedback control circuit
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b Controlled Network Dynamics
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Ẋ2 = cX1 − γX2 − 2(aX2
2 − dA)

Ȧ = aX2
2 − (d+ γ)A

Controller Dynamics{
Ż1 = µ(G1)− ηZ1Z2 − δZ1 − (a′X ′

1Z1 − d′Z ′
1)
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1)Z2 − δZ2

Network Perturbation Dynamics
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1)− ηZ2Z
′
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1 − Ż2 = 0 =⇒ µ(G1) = θ(Ā;G2) =⇒ Ā = κ2
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1− r , with r :=

k1G1

k2G2(at Steady State)

Figure B.3: Mathematical Modeling of the I-Circuit with Network Perturbation in Figure 3.2.
(a)/(b) Schematic/Mathematical Description of the Reduced Model. This is a special case of the
compact model presented in Figure 3.4(a) where the proportional controller is removed, that is
X’1 cannot be produced from Z1. As a result, this network models the integral control action
and the network perturbation introduced by the NES-L7Ae gene, denoted by G’2 which gives
rise to the sub-network in purple. Here, the dimerA acts as a transcription factor for both genes
G2 and G’2. When G’2 is activated, it is transcribed into Z’2 at a rate 𝜃𝑝(𝑋2; 𝐺′

2) which in turn
is translated into X’1 at a rate 𝑘′𝑍 ′

2. Then X’1 is capable of inhibiting the translation of Z1 by
binding to it. Note that the complex Z’1 formed from the binding reaction can still sequester the
antisense RNA Z2. In the ideal operation of the antithetic integral controller, where the dilution
rate 𝛿 is negligible with respect to the other rates of the controller, the regulated output A has
a steady-state concentration, denoted by 𝐴̄, that is unaffected by the network perturbation.
This ensures robust perfect adaptation of the output not only to external disturbances in the
controlled network as illustrated in Figure 3.2(c), but also to network perturbations as well.

Equipped with these quasi-steady-state approximations, we can update the ODEs of 𝑍1 and 𝑍2 from (B.3) and
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B.2. Mathematical Modeling of the Circuit in Figure 3.2

write down the additional ODEs for 𝑍 ′
1 , 𝑍 ′

2 and 𝑋 ′
1 .

̇𝑍1 = 𝜇(𝐺1) − 𝜂𝑍1𝑍2 − 𝛿𝑍1 − (𝑎′𝑋 ′
1𝑍1 − 𝑑′𝑍 ′

1)
̇𝑍2 = 𝜃(𝐴; 𝐺2) − 𝜂𝑍1𝑍2 − 𝛿𝑍2 − 𝜂𝑍2𝑍 ′

1
̇𝑋 ′
1 = −𝑎′𝑋 ′

1𝑍1 + 𝑑′𝑍 ′
1 + 𝑘′𝑍 ′

2 − 𝛾 ′𝑋 ′
1

̇𝑍 ′
1 = 𝑎′𝑋 ′

1𝑍1 − 𝑑′𝑍 ′
1 − 𝜂𝑍 ′

1𝑍2 − 𝛿𝑍 ′
1

̇𝑍 ′
2 = 𝑘′2𝐺′∗

2 + 𝑘′0𝐺′𝐹
2 − 𝛿 ′𝑍 ′

2 ≈ 𝑘′2𝐺′
2 (

𝑘′0/𝑘′2 + 𝐴/𝜅2
1 + 𝐴/𝜅2

) − 𝛿 ′𝑍 ′
2 .

Finally, the dynamics of the reduced model can be written as

⎧
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎩

̇𝑋1 = 𝑘𝑍1 − (𝑐 + 𝛾)𝑋1 − 𝜆(𝑋1; 𝐷)
̇𝑋2 = 𝑐𝑋1 − 𝛾𝑋2 − 2(𝑎𝑋 2

2 − 𝑑𝐴)

𝐴̇ = 𝑎𝑋 2
2 − (𝑑 + 𝛾)𝐴

̇𝑍1 = 𝜇(𝐺1) − 𝜂𝑍1𝑍2 − 𝛿𝑍1 − (𝑎′𝑋 ′
1𝑍1 − 𝑑′𝑍 ′

1)
̇𝑍2 = 𝜃(𝐴; 𝐺2) − 𝜂(𝑍1 + 𝑍 ′

1)𝑍2 − 𝛿𝑍2
̇𝑍 ′
1 = 𝑎′𝑋 ′

1𝑍1 − 𝑑′𝑍 ′
1 − 𝜂𝑍 ′

1𝑍2 − 𝛿𝑍 ′
1

̇𝑍 ′
2 = 𝜃𝑝(𝐴; 𝐺′

2) − 𝛿 ′𝑍 ′
2 ; with 𝜃𝑝(𝐴; 𝐺2) ∶= [𝑘′0 + (𝑘′2 − 𝑘′0)

(𝐴/𝜅2)
1 + (𝐴/𝜅2)

] 𝐺′
2

̇𝑋 ′
1 = 𝑘′𝑍 ′

2 − 𝛾 ′𝑋 ′
1 − 𝑎′𝑋 ′

1𝑍1 + 𝑑′𝑍 ′
1 ,

(B.19)

where 𝑘′0 << 𝑘′2 (since leaky transcription is usually much slower than activated transcription) and 𝜆, 𝜇, 𝜃 are all func-
tions given in (B.3). Note that by setting 𝐺′

2 = 0, we obtain the circuit in Figure B.1(a) where there is no network
perturbation.

Model Calibration to the Experimental Data
In this section, we calibrate the model depicted in Figures B.3(a) and (b) to fit the experimentally collected data at steady
state. The mathematical model of the measurement described in Supplementary Information B.1 is applicable here as
well. However we add here the argument 𝐺′

2 to the measurement function𝑀(𝐺1, 𝐷, 𝐺′
2) to explicitly show the depen-

dence of the measurement on the concentration of the gene G’2. The experimental data are collected for both open-
and closed-loops with/without disturbance and with/without network perturbation over two plasmid ratios 𝐺1/𝐺2 as
shown in Figure 3.4(c). The disturbance is introduced via 𝐷 = 30 nM, while network perturbation is introduced via
𝐺′

2 = 0.001 pmol.

Choice of Parameter Groups
Consider the circuit depicted in Figures B.3(a) and (b). The measured output for the open- (𝑖 = 𝑜) and closed-loop (𝑖 = 𝑐)
settings are given by

𝑀̄ 𝑖(𝐺1, 𝐷, 𝐺′
2) = 𝑐𝑥 (√𝜅𝐴̄ + 2𝐴̄) , for 𝑖 ∈ {𝑜, 𝑐}

with

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

0 = 𝑘 ̄𝑍1 − (𝑐 + 𝛾) ̄𝑋1 − 𝜆( ̄𝑋1; 𝐷)

0 = 𝑐 ̄𝑋1 − 𝛾 ̄𝑋2 − 2(𝑎 ̄𝑋 2
2 − 𝑑𝐴̄)

0 = 𝑎 ̄𝑋 2
2 − (𝑑 + 𝛾)𝐴̄

0 = 𝜇(𝐺1) − 𝜂 ̄𝑍1 ̄𝑍2 − 𝛿 ̄𝑍1 − (𝑎′ ̄𝑋 ′
1 ̄𝑍1 − 𝑑′ ̄𝑍 ′

1)

0 = 𝜃 𝑖(𝐴̄; 𝐺2) − 𝜂( ̄𝑍1 + ̄𝑍 ′
1) ̄𝑍2 − 𝛿 ̄𝑍2; 𝜃 𝑖(𝐴; 𝐺2) = {

𝑘0𝐺2, for 𝑖 = 𝑜

[𝑘0 + (𝑘2 − 𝑘0)
𝐴/𝜅2

1 + 𝐴/𝜅2
] 𝐺2, for 𝑖 = 𝑐.

0 = 𝑎′ ̄𝑋 ′
1 ̄𝑍1 − 𝑑′ ̄𝑍 ′

1 − 𝜂 ̄𝑍 ′
1 ̄𝑍2 − 𝛿 ̄𝑍 ′

1

0 = 𝜃𝑝(𝐴̄; 𝐺′
2) − 𝛿 ′ ̄𝑍 ′

2 ; 𝜃𝑝(𝐴; 𝐺2) = [𝑘′0 + (𝑘′2 − 𝑘′0)
𝐴/𝜅2

1 + 𝐴/𝜅2
] 𝐺′

2

0 = 𝑘′ ̄𝑍 ′
2 − 𝛾 ′ ̄𝑋 ′

1 − 𝑎′ ̄𝑋 ′
1 ̄𝑍1 + 𝑑′ ̄𝑍 ′

1 ,

(B.20)
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B. A genetic mammalian proportional-integral feedback control circuit

The system model has 7 additional parameters (compared to the circuit in Figure B.1) to be calibrated to the data:
𝑎′, 𝑑′, 𝑘′0, 𝑘′1, 𝑘′, 𝛿 ′ and 𝛾 ′. Once again, we carry out a suitable choice of re-parameterization to obtain a minimal number
of (lumped) parameter groups that can be uniquely identified from the steady-state measurements. To specify the
choice of the parameter groups, we first express all the variables as rational functions of ̄𝑋2. The first three and
seventh equations in (B.20) can be rewritten as

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

̄𝑋1 =
𝛾
𝑐
( ̄𝑋2 + 2

̄𝑋 2
2
𝜅
)

𝐴̄ =
̄𝑋 2
2
𝜅
; 𝜅 ∶=

𝑑 + 𝛾
𝑎

̄𝑍1 =
1
𝑘
[(𝑐 + 𝛾) ̄𝑋1 − 𝜆( ̄𝑋1; 𝐷)]

̄𝑍 ′
2 =

𝜃𝑝(𝐴̄; 𝐺′
2)

𝛿 ′
.

(B.21)

Hence, we expressed now ̄𝑋1, 𝐴̄, ̄𝑍1 and ̄𝑍 ′
2 as rational functions of ̄𝑋2. Next, we express ̄𝑍2 as a rational function of

̄𝑍1 and 𝐴̄ (and thus ̄𝑋2). To do so we obtain the following equations

̄𝑍 ′
1 = ̄𝑍2 +

𝜇(𝐺1) − 𝜃(𝐴; 𝐺2)
𝛿

− ̄𝑍1 (B.22)

̄𝑍 ′
1(𝜂 ̄𝑍2 + 𝛿) = 𝜇 − ̄𝑍1(𝜂 ̄𝑍2 + 𝛿) (B.23)

̄𝑋 ′
1 =

1
𝛾 ′

[𝑘′ ̄𝑍 ′
2 − ̄𝑍 ′

1(𝜂 ̄𝑍2 + 𝛿)] , (B.24)

where the first equation is obtained by subtracting the fifth equation in (B.20) from the sum of the fourth and sixth
equations, the second equation is obtained by summing up the fourth and sixth equations in (B.20), and the third
equation is obtained by summing up the sixth and eighth equations in (B.20). By substituting for ̄𝑋 ′

1 in the sixth
equation of (B.20), we obtain

𝑎′𝑘′

𝛾 ′
̄𝑍1 ̄𝑍 ′

2 − ( 𝑎
′

𝛾 ′
̄𝑍1 + 1) ̄𝑍 ′

1(𝜂 ̄𝑍2 + 𝛿) − 𝑑′ ̄𝑍 ′
1 = 0. (B.25)

By substituting the expressions for ̄𝑍 ′
1(𝜂 ̄𝑍2 + 𝛿), ̄𝑍 ′

1 and ̄𝑍 ′
2 from (B.23), (B.22) and (B.21), respectively we obtain

̄𝑍2 =
( ̄𝑍1 +

𝛾 ′

𝑎′ +
𝑑′

𝑎′
𝛾 ′

𝛿 ) (𝐺1 −
𝛿
𝑘1

̄𝑍1) −
𝑑′

𝑎′
𝛾 ′

𝛿
𝜃
𝑘1

− 𝑘′

𝛿′
̄𝑍1
𝜃𝑝
𝑘1

𝜂
𝑘1

̄𝑍1 ( ̄𝑍1 +
𝛾 ′

𝑎′ ) −
𝑑′
𝑎′

𝛾 ′

𝑘1

. (B.26)

Finally, one can substitute the expressions for ̄𝑍1, ̄𝑍 ′
1 and ̄𝑍2 in the fifth equation of (B.20) to obtain a single (high

order) polynomial equation in ̄𝑋2 solely which can be solved efficiently in Matlab using the command “root”, instead
of solving the set of nonlinear algebraic equations (B.20).

Next, we rewrite the obtained equations in terms of the parameter groups and transformed variables. By recalling
the transformed variable 𝑋̃2 given in (B.14) and the parameter groups given in (B.13) and introducing the following
five additional parameter groups

̄𝛾 ′ ∶=
𝛾 ′

𝑎′
, ̄𝜅′ ∶= 𝑑′

𝑎′
𝛾 ′

𝛿
, 𝑘̄′ ∶= 𝑘′

𝛿 ′
, 𝑘̄′0 ∶=

𝑘′0
𝑘1
, 𝑘̄′2 ∶=

𝑘′2
𝑘1
, (B.27)

we can rewrite ̄𝑍2 as

̄𝑍2 =
( ̄𝑍1 + ̄𝛾 ′ + ̄𝜅′) (𝐺1 − ̄𝛿 ̄𝑍1) − ̄𝜅′ [𝑘̄0 + (𝑘̄2 − 𝑘̄0)

𝑋̃ 2
2 / ̄𝜅22

1+𝑋̃ 2
2 / ̄𝜅22

] 𝐺2 − 𝑘̄′ ̄𝑍1 [𝑘̄′0 + (𝑘̄′2 − 𝑘̄′0)
𝑋̃ 2
2 / ̄𝜅22

1+𝑋̃ 2
2 / ̄𝜅22

] 𝐺′
2

̄𝜂 ̄𝑍1 ( ̄𝑍1 + ̄𝛾 ′) − ̄𝛿 ̄𝜅′
. (B.28)

Therefore, the steady-state measurements can be rewritten in terms of the parameter groups and transformed variables
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B.3. Mathematical Modeling of the Circuit in Figure 3.3

as
𝑀̄ 𝑖 (𝐺1, 𝐷, 𝐺′

2) = 𝑋̃1, for 𝑖 ∈ {𝑜, 𝑐}

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

𝑋̃1 = 𝑋̃2 + 2
𝑋̃ 2
2
̄𝜅

̄𝑍1 = ̄𝛾 [𝑋̃1 + 𝐷
Δ1𝑋̃1 + Δ2𝑋̃ 2

1

1 + Δ′
1𝑋̃1 + Δ′

2𝑋̃ 2
1
]

̄𝑍2 =
( ̄𝑍1 + ̄𝛾 ′ + ̄𝜅′) (𝐺1 − ̄𝛿 ̄𝑍1) − ̄𝜅′ ̄𝜃 𝑖(𝑋̃2; 𝐺2) − 𝑘̄′ ̄𝑍1 ̄𝜃𝑝(𝑋̃2; 𝐺′

2)

̄𝜂 ̄𝑍1 ( ̄𝑍1 + ̄𝛾 ′) − ̄𝛿 ̄𝜅′

̄𝑍 ′
1 = ̄𝑍2 +

𝐺1 − ̄𝜃 𝑖(𝑋̃2; 𝐺2)
̄𝛿

− ̄𝑍1

0 = ̄𝜃 𝑖(𝑋̃2; 𝐺2) − ̄𝜂( ̄𝑍1 + ̄𝑍 ′
1) ̄𝑍2 − ̄𝛿 ̄𝑍2

where ̄𝜃 𝑖(𝑋̃2; 𝐺2) =
⎧⎪
⎨⎪
⎩

𝑘̄0𝐺2, for 𝑖 = 𝑜

[𝑘̄0 + (𝑘̄2 − 𝑘̄0)
(𝑋̃2/ ̄𝜅2)

2

1 + (𝑋̃2/ ̄𝜅2)
2 ] 𝐺2, for 𝑖 = 𝑐.

and ̄𝜃𝑝(𝑋̃2; 𝐺′
2) = [𝑘̄′0 + (𝑘̄′2 − 𝑘̄′0)

(𝑋̃2/ ̄𝜅2)
2

1 + (𝑋̃2/ ̄𝜅2)
2 ] 𝐺

′
2.

(B.29)

Note that 𝑖 = 𝑜 and 𝑖 = 𝑐 correspond to the open- and closed-loop settings, respectively. Hence given the input 𝐺1, the
perturbation 𝐺′

2, and the disturbance 𝐷, one can use (B.29) to compute the mCitrine measurement in the open- and
closed-loop settings. We close this section by observing that we have now reduced the parameters to be calibrated
down to 16 (as compared to 23).

Model Calibration Steps
The model fitting is carried out in three steps to avoid over-fitting. In the first step, the model without network per-
turbation (𝐺′

2 = 0) that is obtained in Figure B.1 via the estimated group parameters given in (B.16) is re-calibrated
to the new experimental conditions such as the change in the fluorescence proportionality constant 𝑐𝑥. In the sec-
ond step, the parameters 𝑘̄′0, 𝑘̄′2, 𝑘̄′, ̄𝛾 ′ and ̄𝜅′ are estimated using the data of the scenario with network perturbation
(𝐺′

2 = 0.002 pmol) but without disturbance (𝐷 = 0 nM). Finally, a prediction step is carried out to further assess the
model fitting procedure. In this step, the estimated parameters are used to predict the scenario where both network
perturbation and disturbance are applied simultaneously.

Estimated Parameter Groups: The model fit and prediction are shown in Figure 3.4(c), where the
optimally estimated parameter groups are given by

Δ1 ≈ 0 nM−1, Δ2 = 2.76 × 10−7 a u −1nM−1, Δ′
1 ≈ 0 a u −1, Δ′

2 ≈ 0 a u −2,
̄𝛿 = 9.5 × 10−3 ̄𝛾 = 1.35 × 10−6 a u −1, ̄𝜅 = 82 × 104 a.u., ̄𝜅2 = 10.5 × 104 a u −1

̄𝜂 = 2.59 × 103 nM−1, 𝑘̄0 ≈ 0, 𝑘̄2 = 2.44, 𝑘̄′0 ≈ 0

𝑘̄′2 = 0.42, 𝑘̄′ = 2.12 × 103, ̄𝛾 ′ = 0.11 nM, ̄𝜅′ = 99.3 nM

(B.30)

It is straight forward to see that the parameter groups that are common with (B.16) are numerically very close if one
takes into consideration that the fluorescence proportionality constant 𝑐𝑥 is increased by seven to eight times.

B.3 Mathematical Modeling of the Circuit in
Figure 3.3

Consider the circuit depicted in Figure 3.3(a), with a Proportional-Integral controller, that can operate in either open
or closed loop. We first present a detailed (mechanistic) mathematical model and then carry out a model reduction
technique that allows us to analyze the steady-state behavior. Finally we provide the technical details of fitting the
model to the experimentally obtained data.
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B. A genetic mammalian proportional-integral feedback control circuit

Full Model Description
A detailed biochemical reaction network that models the dynamics of the circuit in Figure 3.3(a) can be obtained by
replacing the translation reaction in Table B.2 with a slightly modified version, and appending additional inhibition,
degradation/dilution and sequestration reactions depicted in Tables B.7 and B.8. These species and reactions describe
the biochemical reaction sub-network that provides a proportional control action via the additional protein X’1 which
is translated from the same mRNA Z1 as X1. This protein can bind to Z1 to form the complex Z’1 to inhibit translation.
However, the complex Z’1 can still be sequestered by the anti-sense RNA Z2.

Species Symbol Species Symbol

NES-L7Ae X’1 Z1:X’1 Z’1

Table B.7: List of Additional Biochemical Species (PI-Circuit)

Reaction Mechanism Constants

Translation Z1
k Z1 + X1 + X’1

Inhibition X’1 + Z1
𝑎′

𝑑′
Z’1

Dilution/Degradation X’1
𝛾 ′

∅ Z’1
𝛿 ∅

Sequestration Z’1 + Z2
𝜂

∅

Table B.8: List of Additional Biochemical Reactions (PI-Circuit)

Model Reduction
In this section, the full model given in Tables B.2 and B.8 ismathematically reduced to themodel described schematically
in Figure B.4(a) and mathematically in B.4(b). The model reduction procedure is based on the reduced model that is
obtained previously in Supplementary Information B.1. In fact, one can update the ODEs of 𝑍1 and 𝑍2 from (B.3) and
write down the additional ODEs for 𝑋 ′

1 and 𝑍 ′
1.

̇𝑋 ′
1 = 𝑘𝑍1 − 𝑎′𝑋 ′

1𝑍1 + 𝑑′𝑍 ′
1 − 𝛾 ′𝑋 ′

1

̇𝑍1 = 𝜇(𝐺1) − 𝜂𝑍1𝑍2 − 𝛿𝑍1 − 𝑎′𝑋 ′
1𝑍1 + 𝑑′𝑍 ′

1

̇𝑍2 = 𝜃(𝐴; 𝐺2) − 𝜂(𝑍1 + 𝑍 ′
1)𝑍2 − 𝛿𝑍2

̇𝑍 ′
1 = 𝑎′𝑋 ′

1𝑍1 − 𝑑′𝑍 ′
1 − 𝜂𝑍2𝑍 ′

1 − 𝛿𝑍 ′
1.

Finally, the dynamics of the reduced model is thus given by

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

̇𝑋1 = 𝑘𝑍1 − (𝑐 + 𝛾)𝑋1 − 𝜆(𝑋1; 𝐷)
̇𝑋2 = 𝑐𝑋1 − 𝛾𝑋2 − 2 (𝑎𝑋 2

2 − 𝑑𝐴)

𝐴̇ = 𝑎𝑋 2
2 − (𝑑 + 𝛾)𝐴

̇𝑋 ′
1 = 𝑘𝑍1 − 𝛾 ′𝑋 ′

1 − (𝑎′𝑋 ′
1𝑍1 − 𝑑′𝑍 ′

1)
̇𝑍1 = 𝜇(𝐺1) − 𝜂𝑍1𝑍2 − 𝛿𝑍1 − (𝑎′𝑋 ′

1𝑍1 − 𝑑′𝑍 ′
1)

̇𝑍2 = 𝜃(𝐴; 𝐺2) − 𝜂(𝑍1 + 𝑍 ′
1)𝑍2 − 𝛿𝑍2

̇𝑍 ′
1 = 𝑎′𝑋 ′

1𝑍1 − 𝑑′𝑍 ′
1 − 𝜂𝑍 ′

1𝑍2 − 𝛿𝑍 ′
1,

(B.31)

where 𝜆, 𝜇 and 𝜃 are all functions given in (B.3).
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B.3. Mathematical Modeling of the Circuit in Figure 3.3

Controlled
Network

I-Control

P-Control

Open Loop
(κ2 → ∞)

X1 X2 A

Z1 Z2

D

G1

G2

Regulated
Output

X′
1

Z′
1

∅ ∅

∅ ∅

∅

∅ ∅

∅

∅

∅

∅

∅

∅
∅

kZ1

c

λ(X1;D)

γ γ

γDimerization Rate
a

d
Dissociation Rate

µ(G1)

θ(A;G2)
η

δ δ

kZ1 γ′

a′/d′

η

δ

X1 X2:SMASh

X2 tTA:mCitrine

A Dimerized X2

D Disturbance

X′
1 NES-L7Ae

Z′
1 X′

1:Z1

G1 Activator Gene

G2 Antisense Gene

Z1 sense mRNA

Z2 antisense RNA

Reaction

Influence

a′/d′

Reversible
Binding Reaction

a′: Association Rate
d′: Dissociation Rate

Sequestration
Reaction

∅

a

b Controlled Network Dynamics
Ẋ1 = kZ1 − (c+ γ)X1 − λ(X1;D)

Ẋ2 = cX1 − γX2 − 2(aX2
2 − dA)

Ȧ = aX2
2 − (d+ γ)A

I-Controller Dynamics{
Ż1 = µ(G1)− ηZ1Z2 − δZ1 − (a′X ′

1Z1 − d′Z ′
1)

Ż2 = θ(A;G2)− η(Z1 + Z ′
1)Z2 − δZ2

P-Controller Dynamics{
Ż ′

1 = (a′X ′
1Z1 − d′Z ′

1)− ηZ2Z
′
1 − δZ ′

1

Ẋ ′
1 = kZ1 − γ′X ′

1 − (a′X ′
1Z1 − d′Z ′

1)

Open Loop: a′ = d′ = 0, κ2 →∞ I-Control: a′ = d′ = 0, κ2 <∞
P-Control: a′ > 0, κ2 →∞ PI-Control: a′ > 0, κ2 <∞

Ideal PI-Control (δ ≈ 0) : ˙̄Z1 + ˙̄Z ′
1 − ˙̄Z2 = 0 =⇒ θ(Ā;G2) = µ(G1) =⇒ Ā = κ2

r − k0/k2
1− r , with r :=

k1G1

k2G2(at Steady State)
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Figure B.4: Mathematical Modeling of the PI-Circuit in Figure 3.3. (a)/(b) Schematic/Mathe-
matical Description of the ReducedModel. This is a special case of the compactmodel presented
in Figure 3.4(a) where the network perturbation is removed, that is the additional gene G’2 is
removed. As a result, this network models the Proportional-Integral (PI) control actions. The
P-controller, depicted in the orange box, is realized via the production of X’1 by Z1 at the same
rate 𝑘 as that of X1. This allows X’1 to act as a proxy for X1. A negative feedback action is then
achieved via the (un)binding reaction between X’1 and Z1 which inhibits the production of X1.
In the ideal operation of the controller, where the dilution rate 𝛿 is negligible with respect to the
other rates of the controller, the regulated output A has a steady-state concentration, denoted
by 𝐴̄, that is unaffected by the P-controller. This ensures that the robust perfect adaptation of
the regulated output is not influenced by the proportional controller. In fact, the P-controller
has the effect of shaping the transient dynamics and reducing the steady state variance of A
while leaving 𝐴̄ unchanged.
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B. A genetic mammalian proportional-integral feedback control circuit

Model Calibration to the Experimental Data
In this section, we calibrate the model depicted in Figures B.4(a) and (b) to fit the experimentally collected data at steady
state. The mathematical model of the measurement described in Supplementary Information B.1 is applicable here as
well. The experimental data are collected for both open- and closed-loops with/without disturbance and with/with-
out Proportional P-control over three different plasmid ratios 𝐺1/𝐺2 as shown in Figure 3.4(d). The disturbance is
introduced via 𝐷 = 30 nM.

Choice of Parameter Groups
Consider the circuit depicted in Figures B.4(a) and (b). The measured output for the open- (𝑖 = 𝑜) and closed-loop (𝑖 = 𝑐)
settings are given by

𝑀̄ 𝑖(𝐺1, 𝐷) = 𝑐𝑥 (√𝜅𝐴̄ + 2𝐴̄) , for 𝑖 ∈ {𝑜, 𝑐}

with

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

0 = 𝑘 ̄𝑍1 − (𝑐 + 𝛾) ̄𝑋1 − 𝜆( ̄𝑋1; 𝐷)

0 = 𝑐 ̄𝑋1 − 𝛾 ̄𝑋2 − 2(𝑎 ̄𝑋 2
2 − 𝑑𝐴̄)

0 = 𝑎 ̄𝑋 2
2 − (𝑑 + 𝛾)𝐴̄

0 = 𝜇(𝐺1) − 𝜂 ̄𝑍1 ̄𝑍2 − 𝛿 ̄𝑍1 − (𝑎′ ̄𝑋 ′
1 ̄𝑍1 − 𝑑′ ̄𝑍 ′

1)

0 = 𝜃 𝑖(𝐴̄; 𝐺2) − 𝜂( ̄𝑍1 + ̄𝑍 ′
1) ̄𝑍2 − 𝛿 ̄𝑍2; 𝜃 𝑖(𝐴; 𝐺2) = {

𝑘0𝐺2, for 𝑖 = 𝑜

[𝑘0 + (𝑘2 − 𝑘0)
𝐴/𝜅2

1 + 𝐴/𝜅2
] 𝐺2, for 𝑖 = 𝑐.

0 = 𝑎′ ̄𝑋 ′
1 ̄𝑍1 − 𝑑′ ̄𝑍 ′

1 − 𝜂 ̄𝑍 ′
1 ̄𝑍2 − 𝛿 ̄𝑍 ′

1

0 = 𝑘 ̄𝑍1 − 𝛾 ′ ̄𝑋 ′
1 − 𝑎′ ̄𝑋 ′

1 ̄𝑍1 + 𝑑′ ̄𝑍 ′
1 ,

(B.32)

Note that by open loop (resp. closed loop), we mean the circuit without (resp. with) the integral controller. The system
model has 3 additional parameters (compared to the circuit in Figure B.1) to be calibrated to the data: 𝑎′, 𝑑′ and 𝛾 ′.
Once again, we carry out a suitable choice of re-parameterization to obtain a minimal number of (lumped) parameter
groups that can be uniquely identified from the steady-state measurements. To specify the choice of the parameter
groups, we first express all the variables as rational functions of ̄𝑋2. The first three equations in (B.32) can be rewritten
as

⎧
⎪
⎪

⎨
⎪
⎪
⎩

̄𝑋1 =
𝛾
𝑐
( ̄𝑋2 + 2

̄𝑋 2
2
𝜅
)

𝐴̄ =
̄𝑋 2
2
𝜅
; 𝜅 ∶=

𝑑 + 𝛾
𝑎

̄𝑍1 =
1
𝑘
[(𝑐 + 𝛾) ̄𝑋1 − 𝜆( ̄𝑋1; 𝐷)]

(B.33)

Hence, we expressed now ̄𝑋1, 𝐴̄ and ̄𝑍1 as rational functions of ̄𝑋2. Next, we express ̄𝑍2 as a rational function of ̄𝑍1 and
𝐴̄ (and thus ̄𝑋2). To do so we obtain the following equations

̄𝑍 ′
1 = ̄𝑍2 +

𝜇(𝐺1) − 𝜃(𝐴; 𝐺2)
𝛿

− ̄𝑍1 (B.34)

̄𝑍 ′
1(𝜂 ̄𝑍2 + 𝛿) = 𝜇 − ̄𝑍1(𝜂 ̄𝑍2 + 𝛿) (B.35)

̄𝑋 ′
1 =

1
𝛾 ′

[𝑘 ̄𝑍1 − ̄𝑍 ′
1(𝜂 ̄𝑍2 + 𝛿)] , (B.36)

where the first equation is obtained by subtracting the fifth equation in (B.32) from the sum of the fourth and sixth
equations, the second equation is obtained by summing up the fourth and sixth equations in (B.32), and the third
equation is obtained by summing up the last two equations in (B.32). By substituting for ̄𝑋 ′

1 in the sixth equation of
(B.32), we obtain

𝑎′𝑘
𝛾 ′

̄𝑍 2
1 − ( 𝑎

′

𝛾 ′
̄𝑍1 + 1) ̄𝑍 ′

1(𝜂 ̄𝑍2 + 𝛿) − 𝑑′ ̄𝑍 ′
1 = 0. (B.37)

By substituting the expressions for ̄𝑍 ′
1(𝜂 ̄𝑍2 + 𝛿) and ̄𝑍 ′

1 from (B.35) and (B.34), respectively we obtain

̄𝑍2 =
( ̄𝑍1 +

𝛾 ′

𝑎′ +
𝑑′

𝑎′
𝛾 ′

𝛿 ) (𝐺1 −
𝛿
𝑘1

̄𝑍1) −
𝑑′

𝑎′
𝛾 ′

𝛿
𝜃
𝑘1

− 𝑘
𝑘1

̄𝑍 2
1

𝜂
𝑘1

̄𝑍1 ( ̄𝑍1 +
𝛾 ′

𝑎′ ) −
𝑑′
𝑎′

𝛾 ′

𝑘1

. (B.38)
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B.3. Mathematical Modeling of the Circuit in Figure 3.3

Finally, one can substitute the expressions for ̄𝑍1, ̄𝑍 ′
1 and ̄𝑍2 in the fifth equation of (B.32) to obtain a single (high

order) polynomial equation in ̄𝑋2 solely which can be solved efficiently in Matlab using the command “root”, instead
of solving the set of nonlinear algebraic equations (B.32).

Next, we rewrite the obtained equations in terms of the parameter groups and transformed variables. By recalling
the transformed variable 𝑋̃2 given in (B.14) and the parameter groups given in (B.13) and introducing the following
three additional parameter groups

̄𝑎′ ∶= 𝑎′

𝛾 ′
, ̄𝑑′ ∶= 𝑑′

𝛿
, 𝑘̄ ∶= 𝑘

𝑘1
, (B.39)

we can rewrite ̄𝑍2 as

̄𝑍2 =
( ̄𝑍1 +

̄𝑑′+1
̄𝑎′ ) (𝐺1 − ̄𝛿 ̄𝑍1) −

̄𝑑′

̄𝑎′ [𝑘̄0 + (𝑘̄2 − 𝑘̄0)
𝑋̃ 2
2 / ̄𝜅22

1+𝑋̃ 2
2 / ̄𝜅22

] 𝐺2 − 𝑘̄ ̄𝑍 2
1

̄𝜂 ̄𝑍1 ( ̄𝑍1 +
1
̄𝑎′ ) −

̄𝛿
̄𝑑′
̄𝑎′

. (B.40)

Therefore, the steady-state measurements can be rewritten in terms of the parameter groups and transformed variables
as

𝑀̄ 𝑖 (𝐺1, 𝐷) = 𝑋̃1, for 𝑖 ∈ {𝑜, 𝑐}

⎧
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎩

𝑋̃1 = 𝑋̃2 + 2
𝑋̃ 2
2
̄𝜅

̄𝑍1 = ̄𝛾 [𝑋̃1 + 𝐷
Δ1𝑋̃1 + Δ2𝑋̃ 2

1

1 + Δ′
1𝑋̃1 + Δ′

2𝑋̃ 2
1
]

̄𝑍2 =
( ̄𝑍1 +

̄𝑑′+1
̄𝑎′ ) (𝐺1 − ̄𝛿 ̄𝑍1) −

̄𝑑′

̄𝑎′ [𝑘̄0 + (𝑘̄2 − 𝑘̄0)
𝑋̃ 2
2 / ̄𝜅22

1+𝑋̃ 2
2 / ̄𝜅22

] 𝐺2 − 𝑘̄ ̄𝑍 2
1

̄𝜂 ̄𝑍1 ( ̄𝑍1 +
1
̄𝑎′ ) −

̄𝛿
̄𝑑′
̄𝑎′

̄𝑍 ′
1 = ̄𝑍2 +

𝐺1 − ̄𝜃 𝑖(𝑋̃2; 𝐺2)
̄𝛿

− ̄𝑍1

0 = ̄𝜃 𝑖(𝑋̃2; 𝐺2) − ̄𝜂( ̄𝑍1 + ̄𝑍 ′
1) ̄𝑍2 − ̄𝛿 ̄𝑍2

where ̄𝜃 𝑖(𝑋̃2; 𝐺2) =
⎧⎪
⎨⎪
⎩

𝑘̄0𝐺2, for 𝑖 = 𝑜

[𝑘̄0 + (𝑘̄2 − 𝑘̄0)
(𝑋̃2/ ̄𝜅2)

2

1 + (𝑋̃2/ ̄𝜅2)
2 ] 𝐺2, for 𝑖 = 𝑐.

(B.41)

Recall that 𝑖 = 𝑜 and 𝑖 = 𝑐 correspond to the open- and closed-loop settings, respectively. Hence given the input 𝐺1 and
the disturbance 𝐷, one can use (B.41) to compute the mCitrine measurement in the open- and closed-loop settings. We
close this section by observing that we have now reduced the parameters to be calibrated down to 14 (as compared to
19).

Model Calibration Steps
The model fitting is carried out in three steps to avoid over-fitting. In the first step, the model without a proportional
controller (the production of X’1 by Z1 is removed) that is obtained in Figure B.1 via the estimated group parameters
given in (B.16) is re-calibrated to the new experimental conditions such as the change in the fluorescence propor-
tionality constant 𝑐𝑥. In the second step, the parameters ̄𝑎′, ̄𝑑′, 𝑘̄ are estimated using the data of the scenario with a
proportional controller but without disturbance (𝐷 = 0 nM). Finally, a prediction step is carried out to further as-
sess the model fitting procedure. In this step, the estimated parameters are used to predict the scenario where both a
proportional controller and disturbance are applied simultaneously.

Estimated Parameter Groups: The model fit and prediction are shown in Figure 3.4(d), where
the optimally estimated parameter groups are given by

Δ1 ≈ 0 nM−1, Δ2 = 2.1 × 10−7 a u −1nM−1, Δ′
1 ≈ 0 a u −1, Δ′

2 ≈ 0 a u −2,
̄𝛿 = 9.5 × 10−3 ̄𝛾 = 2.7 × 10−6 a u −1, ̄𝜅 = 35.1 × 104 a.u., ̄𝜅2 = 55.3 × 104 a u −1

̄𝜂 = 2.59 × 103 nM−1, 𝑘̄0 ≈ 0, 𝑘̄2 = 2.53, ̄𝑎′ = 9.1nM−1

̄𝑑′ = 903, 𝑘̄ = 1.8.

(B.42)
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B. A genetic mammalian proportional-integral feedback control circuit

B.4 Antithetic Proportional-Integral Control of
Plasma Glucose

In this section, we provide the mathematical details underlying the simulation results given in Figure 3.6 which demon-
strate the tight regulation of glucose concentration in the plasma via an antithetic proportional-integral controller.

Brief Description of the Glucose-Insulin Network to be
Controlled
Themathematical whole-bodymodel describing the dynamics of the glucose-insulin system is adopted fromDalla Man
et al., 2007. The FDA-approved mathematical model is comprised of 15 species, 19 reactions and 64 parameters and
is conveniently implemented as part of the SimBiology toolbox in MATLAB The MathWorks, Inc. (2021). MATLAB
(Version 2021a), n.d. It captures the dynamics of glucose and insulin across the various relevant organs/tissues in the
body. For a healthy subject, the model parameters take particular values; whereas for a type-II diabetic patient, certain
relevant parameters are modified to reflect the lower sensitivity to insulin (see Dalla Man et al., 2007, Table I and
The MathWorks, Inc. (2021). MATLAB (Version 2021a), n.d. for details). In contrast, for a type-I diabetic patient, the
endogenous insulin production reactions Dalla Man et al., 2007, Equations 23-26 are removed from the model to reflect
the death or inactivity of the 𝛽-cells while the parameters are kept the same as those associated with a healthy subject.
The output to be controlled here is the plasma glucose concentration inmg/dL; whereas the actuated input is the total
secreted quantity of insulin in the plasma in pmol.

P-Type Proportional-Integral Control Motif
In the previous circuits of Figures 3.2, 3.3 and 3.5, the controlled networks have positive gains. That is, producing
more input species leads to an increase in the output species. As a result, the designed controllers for these networks
implement negative feedback to ensure closed-loop stability and are hence called N-type controllers (for Negative
feedback). In contrast, the glucose-insulin network to be controlled here has a negative gain since producing more
insulin (input species) leads to a decrease in plasma glucose levels (output species). Subsequently, the controller for
this network should implement positive feedback (P-type) to achieve overall negative feedback for the closed loop. A
P-type antithetic integral controller can be achieved by switching the roles of the sense and antisense RNAs, and a
P-type proportional controller can be achieved by using a promoter that is activated in the presence of glucose to drive
the expression of insulin.

Next, we provide the controller differential equations that we append to the glucose-insulin model. Let 𝐺 and
𝐼 denote the plasma glucose concentration (output) and total plasma insulin molecules (input) in mg/dL and pmol,
respectively. The controller dynamics are thus given by

⎧
⎪⎪⎪

⎨
⎪⎪⎪
⎩

̇𝑍1 = 𝜇 − 𝜂𝑍1𝑍2
̇𝑍2 = 𝜃𝐺 − 𝜂𝑍1𝑍2

̇𝑍3 = ℎ(𝐺) − 𝛾𝑍3; ℎ(𝐺) ∶= ℎmax
𝐺𝑛

𝐺𝑛 + 𝜅𝑛
̇𝐼𝑐 = 𝑁(𝑘𝑍2 + 𝛼𝑍3) − 𝑑𝐼𝑐
̇𝐼 = 𝑑𝐼𝑐 + ⋯ ,

(B.43)

where 𝑍1 and 𝑍2 represent the average quantities (per cell) of the anti-sense and sense RNAs, respectively, while 𝑍3
represents the average quantity of another mRNA that is transcribed by the gene associated with the proportional
controller (see Figure 3.6(a)). Note that the average quantities are taken across 𝑁 cells in pmol. Furthermore, 𝐼𝑐 denotes
the total quantity of produced insulin in all the cells before they diffuse at a rate 𝑑 to the plasma. Hence the rate of total
insulin secretion into the plasma given by 𝑑𝐼𝑐 (in pmol/h) serves as the proportional-integral actuation to the glucose-
insulin system. Note that the controller reactions and parameters are appended to the SimBiology glucose-insulin
model in Matlab to close the loop.

Choice of Controller Parameter Values
To enhance the performance of any controller, the control parameters has to be properly tuned. However, in practice,
the various biological controller parameters cannot be freely tuned since the time scales are governed by gene ex-
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B.4. Antithetic Proportional-Integral Control of Plasma Glucose

pression processes. The controller parameter values appearing in the system of differential equations of the controller
(B.43) are listed in Table B.9 for Type I and II diabetic subjects.

Controller Numerical Values
Parameters Type I Type II Units Brief Description

𝜇 1.66 × 10−10 1.66 × 10−10 pmol/h Constitutive transcription rate
𝜃 𝜇/100 𝜇/100 pmol dL/mg/h Transcription rate constant
𝜂 1010 1010 1/pmol/h Transcription rate
𝑁 109 109 Dimensionless Number of implanted controller cells
𝑘 10𝑁 10𝑁 1/h Translation rate constant
𝛼 700𝑁 700𝑁 1/h Translation rate constant
𝛿 log(2)/0.5 log(2)/0.5 1/h Fast mRNA degradation rate constant
𝑑 1/0.5 1/0.5 1/h Insulin diffusion rate constant

ℎmax 𝜇 2.5𝜇 pmol/h Transcription rate
𝜅 200 150 mg/dL Dissociation constant
𝑛 4 4 Dimensionless Hill coefficient

Table B.9: List of plausible numerical values of the various biological controller parameters
for controlling both Type I and Type II diabetic patients by the Proportional-Integral controller
described in (B.43). Standalone proportional control is achieved by setting 𝑘 = 0, while stan-
dalone integral control is achieved by setting 𝛼 = 0.

Next, we provide the rationale behind picking realistic numerical values of the various biological control pa-
rameters in the case of Type I diabetic subjects. This ensures that the modeling and simulation study summarized
in Figure 3.6 is numerically realistic and plausible. In the case of Type II diabetic subjects, the control parameters are
similar to the Type I case, with some additional fine tuning to enhance the performance. Two important numbers are of
particular interest: transcription and translation rates. It is shown in Schwanhäusser et al., 2011 that the transcription
rate ranges between 0.1 and 100 mRNAs per hour with extreme cases going up to more than 500 mRNAs per hour.
Hence picking a transcription rate, for the antisense RNA Z1, of 100 mRNAs per hour allows us to set 𝜇 to

𝜇 = 100 × 1012

𝑁𝐴
≈ 1.66 × 10−10pmol/h,

where 𝑁𝐴 is Avogadro’s number. Since ℎ(𝐺) is also a transcription rate whose maximum value (as 𝐺 → ∞) is
ℎmax, then we also set

ℎmax = 𝜇 = 1.66 × 10−10pmol/h.

The desired set-point of the controlled glucose levels in the plasma is chosen here to be 100mg/dL.
Hence for the proportional-integral controller to achieve this set-point given by 𝜇/𝜃, we set 𝜃 to be

𝜃 = 𝜇/100 ≈ 1.66 × 10−12pmol dL/mg/h.

Observe that for this value of 𝜃, the transcription rate of the sense-mRNA (around the set-point) is given by 𝜇
which is already selected to be plausible. Next, it is also shown in Schwanhäusser et al., 2011 that the translation rate
ranges between 1 and 1000 proteins per mRNA per hour. This allows us to set 𝑘 and 𝛼 to plausible values between 1
and 1000 h−1 multiplied by the number of implanted cells N which is taken to be 1 billion — equal to the number of
𝛽-cells in the human pancreas Scharfmann et al., 2019. The sequestration rate 𝜂 is chosen to be large enough to reflect
a fast sense/antisense RNA hybridization. Furthermore, 𝜅 is selected to tune the threshold of the Hill function with
high sensitivity (Hill coefficient 𝑛 = 4).

Ideally, a proportional controller exhibits an instantaneous feedback from the output into the input. Here, in a
more practical setting, the proportional controller can be realized via gene expression (see Figure 3.6(a)) where the
degradation rate of the associated mRNA Z3 is desired to be fast to mimic the ideal instantaneous proportional control
action. Consequently, the degradation rate of the mRNA Z3 is picked to be fast enough, that is log(2)/0.5h−1 to reflect

a relatively short half-life of 0.5 h. Finally, a conversion reaction Ic
d I is introduced to reflect a delay caused by

the diffusion of the insulin from the cells to the plasma at a rate of 𝑑 = 1/0.5h−1. This reflects a 30 min average time
to secrete 1000 newly produced insulin molecules into the plasma.
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Figure B.5: Fluorescence values shown in Figure 3.2(c) in arbitrary fluorescence units. The
genetic implementations of the open- and closed-loop circuits as shown in Figure 3.2(a) were
transiently transfected in six different molar ratios (setpoint := activator/antisense) and per-
turbed with 30 nM ASV. The data was collected 48 hours after transfection and is plotted as
mean fluorescence intensity ± standard error for N = 3 replicates. The data is provided in a
separate file.
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Figure B.6: Fluorescence values shown in Figure 3.2(d) in arbitrary fluorescence units. The
closed- and open-loop circuits were perturbed by an additional negative feedback loop from
L7Ae and by adding 30 nM ASV, as shown in Figure 3.2(a). This was done for two setpoints
1/4 and 1/2 (setpoint :=activator/antisense). The data was collected 48 hours after transfection
and is plotted as mean fluorescence intensity ± standard error for N = 3 replicates. The data is
provided in a separate file.
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Figure B.7: Fluorescence values shown in Figure 3.3(b) in arbitrary fluorescence units. The P
and PI circuits were implemented by adding a negative feedback loop from L7Ae to the open-
and closed-loop circuits, as shown in Figure 3.3(a). All circuits were perturbed by adding 30
nM of ASV. This was done for two setpoints 1/4 and 1/2 (setpoint :=activator/antisense). The
data was collected 48 hours after transfection and is plotted as mean fluorescence intensity ±
standard error for N = 3 replicates. The data is provided in a separate file.
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Figure B.8: Fluorescence values shown in Figure 3.3(c) in arbitrary fluorescence units. This
experiment was performed in a 24-well plate rather than a 96-well plate because a large sample
size is required to estimate the steady-state variance accurately. The P and PI circuits were im-
plemented by adding a negative feedback loop from L7Ae to the open- and closed-loop circuits,
as shown in Figure 3.3(a). This was done for two setpoints 1/4 and 1/2 (setpoint :=activator/anti-
sense). (a) Expression levels of tTA-mCitrine-SMASh are plotted as mean fluorescence intensity
± standard error for N = 3 replicates. (b) The coefficient of variation squared is shown as the
mean ± standard error for N = 3 replicates per condition. The data is provided in a separate
file.
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Figure B.9: Fluorescence values of different implementations of the open-loop circuit. Besides
the open- and closed-loop circuit shown in Figure 3.2a, another open-loop implementation,
in which the antisense RNA is expressed by a strong constitutive EF1𝛼 promoter, is shown.
The amount of activator plasmid was fixed among different circuits, and therefore, different
levels of dsRNA formation were achieved by different amounts of antisense plasmid. All of the
conditions were co-transfected with different amounts of an additional disturbance plasmid
that constitutively expresses the fluorescent protein miRFP670. Expression of miRFP670 not
only reflects the potential effect of dsRNA formation on gene expression but also introduces a
disturbance to the amount of available resources which indirectly affects the expression levels
of tTA-mCitrine-SMASh. The data was collected 48 hours after transfection and is plotted as
mean fluorescence intensity ± standard error for N = 3 replicates. The data is provided in a
separate file.
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Figure B.10: See caption on the next page.
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Figure B.10: Fluorescence values shown in Figure 3.5 in arbitrary fluorescence units. This ex-
periment was performed in the 24-well plate rather than 96-well plate because a large sample
size is required to estimate the steady-state variance accurately. The open-loop (No Control),
proportional feedback (P-Control), antithetic integral feedback (I-Control) and proportional-
integral feedback (PI-Control) circuits were perturbed by co-transfecting different amounts
of an additional disturbance plasmid that constitutively expresses the fluorescent protein
miRFP670, as shown in Figure 3.5(a). The increase of miRFP670 expression introduces a dis-
turbance to the amount of available resources which indirectly affects the expression levels
of tTA-mCitrine-SMASh. The activator plasmid and antisense plasmid for all controllers were
transiently transfected at a setpoint ratio of 1/2 together with disturbance strengths varying
from 0.6 to 3.5. The data was collected 48 hours after transfection. (a) Expression levels of tTA-
mCitrine-SMASh and miRFP670 are plotted as mean fluorescence intensity ± standard error
for N = 3 replicates. (b) The coefficient of variation squared is shown as the mean ± standard
error for N= 3 replicates per condition. The data is provided in a separate file.

Table B.10: Transfection table regarding data shown in Figure 3.2.

Open Loop (OL)
100 ng total pCH127 pCH124 pGLM171
Plasmid ratio = 2 31.08 ng 14.26 ng 54.66 ng
Plasmid ratio = 1 15.54 ng 14.26 ng 70.20 ng
Plasmid ratio = 1/2 7.77 ng 14.26 ng 77.97 ng
Plasmid ratio = 1/4 3.89 ng 14.26 ng 81.86 ng
Plasmid ratio= 1/8 1.94 ng 14.26 ng 83.80 ng
Plasmid ratio = 1/16 0.97 ng 14.26 ng 84.77 ng
Optimen to 10 uL
PEI 0.3 uL
HEK293T 12000

Closed Loop (CL)
100 ng total pCH127 pCH122 pGLM171
Plasmid ratio = 2 31.08 ng 14.84 ng 54.08 ng
Plasmid ratio = 1 15.54 ng 14.84 ng 69.62 ng
Plasmid ratio = 1/2 7.77 ng 14.84 ng 77.39 ng
Plasmid ratio = 1/4 3.89 ng 14.84 ng 81.28 ng
Plasmid ratio = 1/8 1.94 ng 14.84 ng 83.22 ng
Plasmid ratio = 1/16 0.97 ng 14.84 ng 84.19 ng
Optimen to 10 uL
PEI 0.3 uL
HEK293T 12000
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Table B.11: Transfection table regarding data shown in Figure 3.2(d). Open Loop (OL), Closed
Loop (CL), With/Without Network Perturbation (NP).

Plasmid ratio = 1/2
100 ng total pCH310 pCH124 pCH122 pCH135 pCH323 pGLM171
OL w/o NP 7.80 ng 14.26 ng 0 ng 0 ng 2.26 ng 75.68 ng
CL w/o NP 7.80 ng 0 ng 14.84 ng 0 ng 2.26 ng 75.1 ng
OL w/ NP 7.80 ng 14.26 ng 0 ng 2.41 ng 0 ng 75.53 ng
CL w/ NP 7.80 ng 0 ng 14.84 ng 2.41 ng 0 ng 74.95 ng
Optimen to 10 uL
PEI 0.3 uL
HEK293T 12000

Plasmid ratio = 1/4
100 ng total pCH310 pCH124 pCH122 pCH135 pCH323 pGLM171
OL w/o NP 3.90 ng 14.26 ng 0 ng 0 ng 2.26 ng 79.58 ng
CL w/o NP 3.90 ng 0 ng 14.84 ng 0 ng 2.26 ng 79.43 ng
OL w/ NP 3.90 ng 14.26 ng 0 ng 2.41 ng 0 ng 79.00 ng
CL w/ NP 3.90 ng 0 ng 14.84 ng 2.41 ng 0 ng 78.85 ng
Optimen to 10 uL
PEI 0.3 uL
HEK293T 12000
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Table B.12: Transfection table regarding data shown in Figure 3.3(b). Open Loop (OL), Closed
Loop (CL), With/Without Proportional Control (PC).

Plasmid ratio = 1/2
100 ng total pCH184 pCH183 pCH192 pCH191 pGLM171
OL w/o NP 8.24 ng 0 ng 15.26 ng 0 ng 76.49 ng
CL w/o NP 8.24 ng 0 ng 0 ng 15.84 ng 75.91 ng
OL w/ NP 0 ng 8.24 ng 15.26 ng 0 ng 76.49 ng
CL w/ NP 0 ng 8.24 ng 0 ng 15.84 ng 75.91 ng
Optimen to 10 uL
PEI 0.3 uL
HEK293T 12000

Plasmid ratio = 1/4
100 ng total pCH184 pCH183 pCH192 pCH191 pGLM171
OL w/o NP 4.12 ng 0 ng 15.26 ng 0 ng 80.62 ng
CL w/o NP 4.12 ng 0 ng 0 ng 15.84 ng 80.04 ng
OL w/ NP 0 ng 4.12 ng 15.26 ng 0 ng 80.62 ng
CL w/ NP 0 ng 4.12 ng 0 ng 15.84 ng 80.04 ng
Optimen to 10 uL
PEI 0.3 uL
HEK293T 12000
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Table B.13: Transfection table regarding data shown in Figure 3.3(c). Open Loop (OL), Closed
Loop (CL), With/Without Proportional Control (PC).

Plasmid ratio = 1/2
500 ng total pCH184 pCH183 pCH192 pCH191 pGLM171
OL w/o NP 41.21 ng 0 ng 76.32 ng 0 ng 382.47 ng
CL w/o NP 41.21 ng 0 ng 0 ng 79.22 ng 379.57 ng
OL w/ NP 0 ng 41.21 ng 76.32 ng 0 ng 382.47 ng
CL w/ NP 0 ng 41.21 ng 0 ng 79.22 ng 379.57 ng
Optimen to 50 uL
PEI 1.5 uL
HEK293T 75000

Plasmid ratio = 1/4
100 ng total pCH184 pCH183 pCH192 pCH191 pGLM171
OL w/o NP 20.61 ng 0 ng 76.32 ng 0 ng 403.08 ng
CL w/o NP 20.61 ng 0 ng 0 ng 79.22 ng 400.18 ng
OL w/ NP 0 ng 20.61 ng 76.32 ng 0 ng 403.08 ng
CL w/ NP 0 ng 20.61 ng 0 ng 79.22 ng 400.18 ng
Optimen to 50 uL
PEI 1.5 uL
HEK293T 75000
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Table B.14: Transfection table regarding data shown in Figure B.9.

Closed Loop (TRE Antisense)
100 ng total pCH127 pCH122 pTTF138 pGLM171
DS = 1 7.77 ng 14.84 ng 10 ng 67.39 ng
DS = 2 7.77 ng 14.84 ng 20 ng 57.39 ng
DS = 3 7.77 ng 14.84 ng 30 ng 47.39 ng
DS = 4 7.77 ng 14.84 ng 40 ng 37.39 ng
DS = 5 7.77 ng 14.84 ng 50 ng 27.39 ng
Optimen to 10 uL
PEI 0.3 uL
HEK293T 12000

Open Loop (Syn1 Antisense)
100 ng total pCH127 pCH124 pTTF138 pGLM171
DS = 1 7.77 ng 14.26 ng 10 ng 67.97 ng
DS = 2 7.77 ng 14.26 ng 20 ng 57.97 ng
DS = 3 7.77 ng 14.26 ng 30 ng 47.97 ng
DS = 4 7.77 ng 14.26 ng 40 ng 37.97 ng
DS = 5 7.77 ng 14.26 ng 50 ng 27.97 ng
Optimen to 10 uL
PEI 0.3 uL
HEK293T 12000

Open Loop (Low EF1𝛼 Antisense)
100 ng total pCH127 pCH218 pTTF138 pGLM171
DS = 1 7.77 ng 1.94 ng 10 ng 80.29 ng
DS = 2 7.77 ng 1.94 ng 20 ng 70.29 ng
DS = 3 7.77 ng 1.94 ng 30 ng 60.29 ng
DS = 4 7.77 ng 1.94 ng 40 ng 50.29 ng
DS = 5 7.77 ng 1.94 ng 50 ng 40.29 ng
Optimen to 10 uL
PEI 0.3 uL
HEK293T 12000

Open Loop (High EF1𝛼 Antisense)
100 ng total pCH127 pCH218 pTTF138 pGLM171
DS = 1 7.77 ng 3.88 ng 10 ng 78.35 ng
DS = 2 7.77 ng 3.88 ng 20 ng 68.35 ng
DS = 3 7.77 ng 3.88 ng 30 ng 58.35 ng
DS = 4 7.77 ng 3.88 ng 40 ng 48.35 ng
DS = 5 7.77 ng 3.88 ng 50 ng 38.35 ng
Optimen to 10 uL
PEI 0.3 uL
HEK293T 12000
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Table B.15: Transfection table regarding data shown in Figure 3.5. No Control (NC), P-Control
(P), I-Control (I), PI-Control (PI), Disturbance Strength (DS).

Plasmid ratio = 1/2
500 ng total pCH184 pCH183 pCH218 pCH191 pTTF138 pGLM171
NC w/ DS = 0.6 43 ng 0 ng 10.13 ng 0 ng 20.02 ng 426.85 ng
NC w/ DS = 1.2 43 ng 0 ng 10.13 ng 0 ng 40.04 ng 406.83 ng
NC w/ DS = 1.8 43 ng 0 ng 10.13 ng 0 ng 60.06 ng 386.81 ng
NC w/ DS = 2.3 43 ng 0 ng 10.13 ng 0 ng 80.09 ng 366.78 ng
NC w/ DS = 2.9 43 ng 0 ng 10.13 ng 0 ng 100.11 ng 346.76 ng
NC w/ DS = 3.5 43 ng 0 ng 10.13 ng 0 ng 120.13 ng 326.74 ng
P w/ DS = 0.6 0 ng 43 ng 10.13 ng 0 ng 20.02 ng 426.85 ng
P w/ DS = 1.2 0 ng 43 ng 10.13 ng 0 ng 40.04 ng 406.83 ng
P w/ DS = 1.8 0 ng 43 ng 10.13 ng 0 ng 60.06 ng 386.81 ng
P w/ DS = 2.3 0 ng 43 ng 10.13 ng 0 ng 80.09 ng 366.78 ng
P w/ DS = 2.9 0 ng 43 ng 10.13 ng 0 ng 100.11 ng 346.76 ng
P w/ DS = 3.5 0 ng 43 ng 10.13 ng 0 ng 120.13 ng 326.74 ng
I w/ DS = 0.6 43 ng 0 ng 0 ng 82.52 ng 20.02 ng 354.46 ng
I w/ DS = 1.2 43 ng 0 ng 0 ng 82.52 ng 40.04 ng 334.44 ng
I w/ DS = 1.8 43 ng 0 ng 0 ng 82.52 ng 60.06 ng 314.42 ng
I w/ DS = 2.3 43 ng 0 ng 0 ng 82.52 ng 80.09 ng 294.39 ng
I w/ DS = 2.9 43 ng 0 ng 0 ng 82.52 ng 100.11 ng 274.37 ng
I w/ DS = 3.5 43 ng 0 ng 0 ng 82.52 ng 120.13 ng 254.35 ng
PI w/ DS = 0.6 0 ng 43 ng 0 ng 82.52 ng 20.02 ng 354.46 ng
PI w/ DS = 1.2 0 ng 43 ng 0 ng 82.52 ng 40.04 ng 334.44 ng
PI w/ DS = 1.8 0 ng 43 ng 0 ng 82.52 ng 60.06 ng 314.42 ng
PI w/ DS = 2.3 0 ng 43 ng 0 ng 82.52 ng 80.09 ng 294.39 ng
PI w/ DS = 2.9 0 ng 43 ng 0 ng 82.52 ng 100.11 ng 274.37 ng
PI w/ DS = 3.5 0 ng 43 ng 0 ng 82.52 ng 120.13 ng 254.35 ng
Optimen to 50 uL
PEI 1.5 uL
HEK293T 150000
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Table B.16: List of the plasmids used in this study. Plasmid sequences enclosed in separate
file.

Fig. Short name Description
2, 3, 4, 6, s5 pGLM171 AmpR-INS-bGHpA-SV40pA-INS-pUCori

6, s5 pTTF138 INS-bGHpA-PEF1a-miRFP670-SV40pA-INS

2, 3, s5 pCH122
ConLS-pTRE-antisense-tTA-mCitrine-SMASh(Ai)-

FF5-SV40p(A)-INS-ConR1

2, 3, s5 pCH124
ConLS-pSyn1-antisense-tTA-mCitrine-SMASh(Ai)-

FF5-SV40p(A)-INS-ConR1

2,s5 pCH127
ConL1-pEF1a-tTA-mCitrine-SMASh(Ai)-

FF5-SV40p(A)-ConRE
3 pCH135 ConL2-pTRE-NES-L7AE-SV40p(A)-INS-ConR1

4b, 4c, 6 pCH183
ConL1-pEF1a-KT hairpin-tTA-mCitrine-SMASh(Ai)-P2A-

L7Ae-SV40p(A)-ConRE

4b, 4c, 6 pCH184
ConL1-pEF1a-KT hairpin(mut)-tTA-mCitrine-SMASh(Ai)-P2A-

L7Ae-SV40p(A)-ConRE

4b, 4c, 6 pCH191
ConLS-pTRE-antisense-tTA-mCitrine-SMASh(Ai)-P2A-

L7Ae-SV40p(A)-INS-ConR1

4b, 4c pCH192
ConLS-pSyn1-antisense-tTA-mCitrine-SMASh(Ai)-P2A-

L7Ae-SV40p(A)-INS-ConR1

6, s5 pCH218
ConL2-pEF1a-anti-sense-tTA-mCitrine-SMASh(Ai)-

FF5-SV40p(A)-ConRE

3 pCH310
ConL1-pEF1a-KT hairpin-tTA-mCitrine-SMASh(Ai)-

FF5-SV40p(A)-ConRE
3 pCH323 ConL2-pSyn1-NES-L7AE-SV40p(A)-INS-ConR1
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