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A B S T R A C T

Machine Learning (ML) systems contend with an ever-growing processing
load of physical world data. These systems are required to deliver high-
quality learning and decision-making often constrained by limited resources.
This need has led to a proliferation of optimization techniques at model and
implementation levels over the past decades. The model and implementation-
focused nature of these techniques, however, challenges their generalizability
across different application domains and different stages of the ML pipeline
where the problem may be as acute. This dissertation identifies several open
problems to which current cost-optimization strategies do not directly apply
or are ineffective, and offers theoretically sound and repeatable strategies that
maintain practical performance without any discernible loss in quality. These
strategies adopt a data-focused view to reduce dependency on the learner,
and enhance the cost-effectiveness of ML pipelines by reducing the amount of
data to process and their robustness through supplying domain knowledge
in replacement of robust training data. The contributions of this dissertation
are threefold:

First, we focus on hardware efficiency and investigate training with low precision Hardware-
Efficiency via
Data
Quantization

data representation to accelerate the processing of compute-intensive workloads
on hardware. Inspired by the number of application domains associated with
it, we focus on sparse signal reconstruction problems where compressive
sensing can be employed. By lowering the data precision and co-designing
the reconstruction algorithm, we show that compressive sensing can be
significantly accelerated on hardware such as Field Programmable Gate
Arrays (FPGA) and Central Processing Units (CPU) with negligible loss of
reconstruction quality. We develop theory which analyzes the scaling of
recovery error with respect to bit precision, and empirically demonstrate
the benefit of low precision compressive sensing in the context of real-world
applications.
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Next, we move our attention to labor-intensive workloads across the MLLabel-
Efficiency via

Data
Sampling

pipeline. We specifically focus on the post-training stages — which often
encounter a mismatch between the distributions of production and training
data, and requires curation for it. To account for that in a labor-efficient
manner, we introduce an active model selection strategy for pretrained models
where the best pretrained model for the downstream task can be found by
labeling only a small portion of freshly collected production data. We show
that such a specialized data sampling strategy can significantly improve label
efficiency at the later stages of the ML pipeline by accounting for the production
data shift. Closely related to the contribution of model selection, we also study
the oversmoothing in graph neural networks and rigorously identify the role
of architectural model differences in terms of graph decomposition.

The final contribution of this thesis is on the ML robustness front, where weRobustness
via

Knowledge
Integration

improve adversarial robustness by using domain knowledge. In particular, we de-
velop a knowledge enhanced ML pipeline, the first framework that integrates
domain knowledge to enhance the adversarial robustness of ML classifiers
against a diverse set of attacks throughout the pipeline. Our framework is
generic, efficient, and can be applied at different stages of the ML pipeline.
From the perspective of trustworthy ML, we show that domain knowledge, as
a robust and tenable proxy of data, can mimic the robust features relating to
the prediction variable and provide a defense whose robustness is agnostic
to the type of adversary. Finally, we formulate a theoretical foundation to
identify the regime of improvement in terms of quality of domain knowledge
and demonstrate its practical performance against a diverse collection of
attacks.
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Z U S A M M E N FA S S U N G

Machine Learning (ML)-Systeme kämpfen mit einer ständig wachsenden
Verarbeitungslast von Daten der physischen Welt. Diese Systeme sind erfor-
derlich, um qualitativ hochwertiges Lernen und Entscheidungsfindung zu
liefern oft eingeschränkt durch begrenzte Ressourcen. Dieser Bedarf hat in den letz-
ten Jahrzehnten zu einer Verbreitung von Optimierungstechniken auf Modell-
und Implementierungsebene geführt. Die modell- und implementierungsori-
entierte Natur dieser Techniken stellt jedoch ihre Verallgemeinerbarkeit über
verschiedene Anwendungsdomänen und verschiedene Stufen der ML-Pipeline
in Frage, wo das Problem ebenso akut sein kann. Diese Dissertation identifi-
ziert mehrere offene Probleme, auf die aktuelle Kostenoptimierungsstrategien
nicht direkt anwendbar oder unwirksam sind, und bietet theoretisch fundierte
und wiederholbare Strategien, die praktische Leistung ohne erkennbaren Qua-
litätsverlust aufrechterhalten. Diese Strategien verfolgen eine datenorientierte
Sichtweise, um die Abhängigkeit vom Lernenden zu verringern und die Kos-
teneffizienz von ML-Pipelines zu verbessern, indem sie die zu verarbeitende
Datenmenge und ihre Robustheit reduzieren, indem Domänenwissen anstelle
robuster Trainingsdaten bereitgestellt wird. Die Beiträge dieser Dissertation
sind dreifach:

Zuerst konzentrieren wir uns auf Hardware-Effizienz und untersuchen das Hardware-
Effizienz
durch
Datenquanti-
sierung

Training mit Datendarstellung mit niedriger Genauigkeit, um die Verarbeitung
rechenintensiver Arbeitslasten auf Hardware zu beschleunigen. Inspiriert von
der Anzahl der damit verbundenen Anwendungsdomänen konzentrieren wir
uns auf Probleme der Signalrekonstruktion mit geringer Dichte, bei denen
Compression Sensing eingesetzt werden kann. Indem wir die Datenpräzision
verringern und den Rekonstruktionsalgorithmus mitgestalten, zeigen wir,
dass Compressive Sensing auf Hardware wie Field Programmable Gate
Arrays (FPGA) und Central Processing Units (CPU) mit vernachlässigbarem
Verlust an Rekonstruktionsqualität erheblich beschleunigt werden kann. Wir
entwickeln eine Theorie, die die Skalierung des Wiederherstellungsfehlers
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in Bezug auf die Bitpräzision analysiert, und demonstrieren empirisch den
Nutzen der Kompressionsmessung mit niedriger Genauigkeit im Kontext
realer Anwendungen.
Als nächstes lenken wir unsere Aufmerksamkeit auf arbeitsintensive WorkloadsLabel-

Effizienz
durch Daten-

Sampling

in der ML-Pipeline. Wir konzentrieren uns speziell auf die Post-Training-
Phasen – die oft auf eine Diskrepanz zwischen den Verteilungen von Produk-
tions und Trainingsdaten stossen und dafür eine Kuration erfordern. Um dies
auf arbeitseffiziente Weise zu berücksichtigen, führen wir eine aktive Modell-
auswahlstrategie für vortrainierte Modelle ein, bei der das beste vortrainierte
Modell für die nachgelagerte Aufgabe gefunden werden kann, indem nur
ein kleiner Teil der frisch gesammelten Produktionsdaten gekennzeichnet
wird. Wir zeigen, dass eine solche spezialisierte Daten-Sampling-Strategie
die Label-Effizienz in den späteren Phasen der ML-Pipeline erheblich verbes-
sern kann, indem sie die Verschiebung der Produktionsdaten berücksichtigt.
Eng verbunden mit dem Beitrag der Modellauswahl untersuchen wir auch
die Überglättung in neuronalen Netzwerken von Graphen und identifizie-
ren rigoros die Rolle von Architekturmodellunterschieden in Bezug auf die
Graphenzerlegung.

Der letzte Beitrag dieser Doktorarbeit betrifft die ML-Robustheitsfront, woRobustheit
durch

Wissensinte-
gration

wir adversarial robustness durch Verwendung von Domänenwissen verbessern.
Insbesondere entwickeln wir eine wissenserweiterte ML-Pipeline, das erste
Framework, das Domänenwissen integriert, um die gegnerische Robustheit
von ML-Klassifikatoren gegenüber einer Reihe von diversen Angriffen zu
verbessern Pipeline. Unser Framework ist generisch, effizient und kann in ver-
schiedenen Phasen der ML-Pipeline angewendet werden. Aus der Perspektive
eines vertrauenswürdigen ML zeigen wir, dass Domänenwissen als robuster
und haltbarer Proxy von Daten die robusten Merkmale in Bezug auf die
Vorhersagevariable nachahmen und eine Verteidigung bieten kann, deren
Robustheit für den Typ von agnostisch ist Gegner. Schliesslich formulieren
wir eine theoretische Grundlage, um das Regime der Verbesserung in Bezug
auf die Qualität des Domänenwissens zu identifizieren und seine praktische
Leistung gegen eine Vielzahl von Angriffen zu demonstrieren.
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1
I N T R O D U C T I O N

1.1 background and motivation

The last decade has witnessed the rapid development of Machine Learn-
ing (ML) techniques that are shown to be effective when large amounts of
data and compute resources are available. When it comes to the adoption
of these techniques into data and compute-intensive real-world applications,
however, resources are limited, and learning and decision making are con-
strained to happen with limited resources. In order to tackle this problem, a host
of efforts has been brought forward by the ML and system communities under
the umbrella of cost-effective ML (also known as resource-efficient or budgeted
ML). In broad terms, cost-effective ML is the practice of optimizing the quality
of learning and decision making while keeping the cost of utilized resources
under a budget. This inescapable interplay between cost and quality con-
stantly prompts ML practitioners into answering: Does this optimization strategy
yield the desired outcome in quality given my budget? Which strategy yields the best
outcome given my budget? How optimal is this strategy? To date, answering these
questions remains to be a challenge the ML community faces on a daily basis.

In this section, as preamble to presenting the research questions addressed
in this thesis, we review current trends on cost-effectiveness of ML systems.
Broadly speaking, the term “cost” may refer to various expenses, including
but not limited to data collection, manual labeling, computing power, memory
footprint, network-throughput, and power consumption. Considering the
model and data to be the core foundations of the ML systems, we specifically
focus on the aspects that are often deemed as particularly costly, namely
training on hardware and manual labeling of data. Going beyond the measure
of accuracy, we also consider adversarial robustness, an important attribute of
trustworthiness for mission-critical ML tasks, to be the third aspect. After this
general overview of current trends and challenges that motivate this thesis,
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2 introduction

in the subsequent sections, we pose the research questions addressed within
its scope, and present its contributions and structure.

1.1.1 Hardware Efficiency

Hardware efficiency for ML workloads heavily revolves around designing
efficient and scalable techniques that ease the load of training and inference.
The rising complexity of ML models, such as deep neural networks, further
require ML systems to substantially optimize for the energy efficient use
of hardware in light of the large amount of data movement and heavy
computation. Recently, several research communities have been working
on strategies to achieve this on different optimization levels. The system
community has focused on implementation level techniques to improve
energy efficiency and computation speed, including data reuse from local
memory (Chen, Emer, and Sze, 2016; Sze et al., 2017a; Vanhoucke, Senior,
and Mao, 2011); in the context of deep learning, exploiting sparsity to skip
unnecessary computational operations (Sze et al., 2017b); reducing number of
arithmetic operations (Dubout and Fleuret, 2012; Mathieu, Henaff, and LeCun,
2014) or interventions on computation that results in it (Cong and Xiao, 2014;
Lavin and Gray, 2016); mixed signal circuit design (LiKamWa et al., 2016;
Murmann et al., 2015; Wang, Schapire, and Verma, 2014; Zhang, Wang, and
Verma, 2015, 2016), and recent technologies such as neuromorphic computing
and in-memory processing (Izhikevich, 2004). The ML community, on the
other hand, develops model level optimization techniques (Lee et al., 2021;
Menghani, 2021; Pernkopf et al., 2018) such as model quantization (Alistarh
et al., 2017; Courbariaux, Bengio, and David, 2015; De Sa et al., 2015; Gupta
et al., 2013; Seide et al., 2014); pruning (Han et al., 2015; LeCun, Denker,
and Solla, 1989); compact convolution (Sandler et al., 2018) and knowledge
distillation (Hinton, Vinyals, Dean, et al., 2015), to name a few.

The shared objective of both communities has recently resulted in a grow-
ing interest in co-designing optimization techniques spanning different levels.
There are several notable efforts in this direction, including distributed learn-
ing (see Liu and Zhang, 2020 and references therein for a comprehensive



1.1 background and motivation 3

overview) and co-designs of hardware and model that exploit sparsity as well
as compression (Albericio et al., 2016; Chen, Emer, and Sze, 2016; Han et al.,
2016; Han, Mao, and Dally, 2015; Yang, Chen, and Sze, 2017). Another un-
doubtedly prominent outcome of such co-designs is low precision training on
hardware such as CPU (De Sa et al., 2015; Noel and Osindero, 2014; Stojanov
et al., 2018), Graphics Processing Units (GPU) (Alistarh et al., 2017; Hubara
et al., 2017; Noel and Osindero, 2014; Seide et al., 2014) and FPGA (Gupta
et al., 2013; Kara et al., 2017; Zhang et al., 2017). In many of these works,
low precision training that employs Gradient Descent (GD)-based methods
is shown to retain quality of predictions even when both data and model
are significantly quantized to as low as 8-bit fixed precision. With little to
no loss of performance, compression of bit-widths reduces not only the data
movement but also computation cycles and memory requirements during
training. Spurred on by its already demonstrated effectiveness in many appli-
cation domains, we believe that tailoring these co-designs of low precision
training and hardware for a more extensive set of inference problems and
training strategies can have a profound impact. One such domain which holds
great promise is that of modern scientific instruments that employ sensing
devices, for instance in the fields of interferometry, medical imaging and
remote sensing. These instruments acquire vast amount of high dimensional
signals on a daily basis. These factors make such sensing based instruments
an opportune candidate for low precision training.

1.1.2 Label Efficiency

Despite recent advances on hardware-efficient and scalable training of super-
vised learning methods mentioned earlier, one challenge still lingers: they are
notoriously data-hungry. Typically, unlabeled data is abundant and can be eas-
ily and inexpensively collected. For many real-world applications, however,
labels are slow and expensive to acquire as they require manual annotation,
creating a need for ML models to attain good predictive performance in a
sample-efficient manner.
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The need for sample-efficient learning methods has thus naturally led to
rapid growth of strategies over several decades. Semi-supervised learning,
for instance, tackles it by pseudo-labeling of unlabeled instances with models
trained on the limited labeled data. Similarly, programmatic weak supervi-
sion (Ratner et al., 2017) performs noisy labeling of instances via labeling
functions introduced by domain experts. Techniques as bootstrapping and
data augmentation (Wong et al., 2016), for instance, re-use the existing la-
belled set to create a more diverse and rich dataset. Active learning, on the
other hand, covers the strategies where the learner interactively queries the
label of an instance that it finds informative for the learning task at hand —
up to a user-defined labeling budget.

One of the limitations of these approaches is that label efficiency is consid-
ered merely for improving the training of ML classifiers. Yet, there are several
post-training data-hungry challenges that ML practitioners and engineers
face throughout the iterations of the ML pipeline. In particular, when the
trained model enters into the operational phase, data distribution may shift
and thereby performance degradation may occur. In order to mitigate the
effect of this shift, transfer learning and domain adaptation techniques learn
the translation of the trained model on the new adaptation domain. In the
case of concept drift, additional queries may be requested by the labeling
oracle for retraining the model with the drifted data distribution. The domain
robustness of a deployed method, therefore, is often targeted by going back
to the modeling block of the ML pipeline. The question remains open as how
to avoid repeatedly firing up the expensive ML retraining stage or domain
adaptation process when the distribution shift occurs, and instead perform an
automatic and repeatable selection of the most suitable model for the drifted
production data directly at the deployment level, moreover in label-efficient
manner.

1.1.3 Adversarial Robustness

ML models are vulnerable to different types of adversarial examples, which
are adversarially manipulated inputs aiming to mislead ML models to make
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arbitrarily incorrect predictions (Bhattad et al., 2020; Eykholt et al., 2018;
Goodfellow, Shlens, and Szegedy, 2015; Szegedy et al., 2013). Such attacks can
potentially compromise the reliability of an ML system and are particularly
threatening when deployed in safety-critical applications such as self-driving
cars, medical diagnosis and face recognition in cyber-physical systems.

In response to these threats, recent years have witnessed a rapid growth of
empirical defense techniques. A powerful strategy is to train Deep Neural
Networks (DNN) over a mixture of clean and adversarial examples, the so-
called adversarial training (Madry et al., 2017). Adversarial training has shown
to be effective, also together with feature quantization (Xu, Evans, and Qi,
2017) and reconstruction approaches (Samangouei, Kabkab, and Chellappa,
2018). There exists also other defenses such as input processing (Ross and
Doshi-Velez, 2018) and approaches with certified robustness against pertur-
bation bounded attacks (distinctly from empirical defenses). Notable works
include (Cohen, Rosenfeld, and Kolter, 2019; Gehr et al., 2018; Mirman, Gehr,
and Vechev, 2018; Yang et al., 2020) and (Balunovic and Vechev, 2020; Mirman
et al., 2021; Singh et al., 2018a,b). Despite these advancements, empirical
defense techniques still get caught in the nets of trade-off between practical
performance and computational efficiency. This problem is particularly press-
ing when constructing adversarial examples from the clean training data at
each iteration of adversarial training with projected gradient descent, which
is a separate optimization problem itself. This creates a necessity to access not
only the training data and its statistics which are not always available due to
data privacy and proprietary rights (Nayak, Rawal, and Chakraborty, 2022),
but also compute resources for adversarial training, as it is computationally
much less feasible compared to vanilla training of DNN (Dolatabadi, Erfani,
and Leckie, 2021; Sriramanan, Addepalli, Baburaj, et al., 2021). To cope with
these challenges, on the robust training front, the fast gradient sign method
or the use of regularizers are shown to be efficient alternatives to adversarial
training (Chang, He, and Li, 2018; Sriramanan, Addepalli, Baburaj, et al.,
2021; Wong, Rice, and Kolter, 2020). On the robust data front, several other
methods are proposed including robust training with only a subset of training
data (Dolatabadi, Erfani, and Leckie, 2021); regular training with a robustness
curation on important image pixels (Zhu, Wei, and Zhu, 2021); detecting and
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correcting adversaries at test-time (Nayak, Rawal, and Chakraborty, 2022)
and noisy data augmentation (Liu et al., 2022). However, from the perspective
of trustworthiness, these adversarial defenses can still be adaptively attacked
again (Athalye, Carlini, and Wagner, 2018; Carlini and Wagner, 2017a) or their
robustness is not preserved against other attacks (Kang et al., 2019; Schott
et al., 2018). Thus, despite the rapid recent progress on robust learning, it is
still challenging to provide general adversarial defenses that are simple yet
effective against a diverse set of attacks.

1.2 research scope

The efficient use of resources heavily hinges on the data processing workload,
and therefore cost-optimization and general robustness are eventually bound
to the data to be processed across the ML pipeline. Therefore, we believe
that curation of cost inefficiency and costly trustworthy attributes such as
robustness through the lens of data holds great potential. Within the scope of
this thesis, we adopt such a data-focused perspective and addresses several
open challenges towards cost-effective and robust ML from this perspective.
Namely, we study different application domains and stages of the ML pipeline
where the cost of operations is acute. In particular, we seek to provide answers
to the following questions:

Question 1: (Hardware Efficient Compressive Sensing via Quantized Data) Can
training compressive sensing-based applications with low precision data representa-
tion enable accelerated signal recovery on hardware with recovery guarantees and
good practical performance?

Compressive sensing (Candes, Romberg, and Tao, 2006a,b; Donoho, 2006) is
a powerful mathematical framework behind many sensing-based scientific
instruments. Compressive sensing solvers can learn the sparse representation
of analog signals from only a few samples, enabling the efficient collection,
processing, and storage of very large amounts of data. In this thesis, we
explore the extension of low precision training to compressive sensing with
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the hardware that accommodates it. As an inspiring fact, data quantization for
compressive sensing problems is shown to exhibit a great empirical success as
many compressive sensing solvers are tolerant to noise introduced by quan-
tization. Several previous studies have taken advantage of this, decreasing
the precision of data representation to as low as a single bit (Ai et al., 2014;
Boufounos and Baraniuk, 2008; Jacques et al., 2013; Laska et al., 2011; Plan
and Vershynin, 2013a,b) and (Gopi et al., 2013; Gupta et al., 2013). We expand
this direction further and investigate the design of a compressive sensing
solver which quantizes all data (both measurement matrix and observation vector),
while imposing a more general set of assumptions on the model than that of
most existing work. This quantize-all strategy enables us to fully unleash the
potential of arithmetic operations for accelerated computation on hardware,
as demonstrated by (Kara et al., 2017; Zhang et al., 2017) on FPGA and (Sto-
janov et al., 2018) on CPU in the context of GD and SGD training. We further
investigate the effectiveness of low precision compressive sensing in the con-
text of two real-world data-intensive applications: radio interferometers and
magnetic resonance imaging.

Question 2.1: (Label Efficient and Robust Model Selection via Selective Sampling)
How can we select the best trained model for a freshly arriving production data stream
— in a label-efficient manner?

Real-world data distribution shifts in an uncontrollable way. This problem is
especially acute when models are at the production phase and can no longer
retain high quality predictions due to the production data shifting away
from the original training data. This thus results in a necessity to mitigate
the effect of distribution shift into the model in action. This scenario is also
no foreigner to industrial companies — they often train distinct models on
different sliding windows of data and automatically adapt each of these
models for new production stream. Consequently, they accumulate a pool
of candidate models that are ready to be deployed, and hope to select the
best one to make predictions on the new production stream in a cost-efficient
manner.
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Given a manual labeling budget, an effortless solution would be randomly
labeling the freshly arriving production data, but it is often scarce when
deployed for model selection and may result in an unfair evaluation of
classifiers. Application of existing active learning strategies to this scenario,
on the other hand, is non-trivial and depart from traditional active learning
setting. In this thesis, we address this problem and study label-efficient model
selection. In particular, we ask: Given k pretrained classifiers and a stream of
unlabeled data examples, how can we actively decide when to query a label so that
we can distinguish the best model from the rest under a limited labeling budget? To
answer this question, we first visit the existing active learning strategies and
adapt them for model selection. We then propose a selective sampling strategy
that actively selects informative examples to label and upon exceeding a
labeling budget, outputs the best model with high probability. We introduce
a novel evaluation framework for stream-based setting and illustrate the
effectiveness of our proposal.

Related to problem of model selection and motivated by the wide spec-
trum of applications that uses graph-structured data, we also investigate
the model selection problem for graph neural networks. In particular, we
attempt to understand why they suffer from performance degradation when
the network goes deeper, the so-called oversmoothing problem, and how graph
decomposition as an architectural (model) change helps prevent it although
being exposed to the same training data. This thus leads us to the following
research question:

Question 2.2: (Reliable Model Selection for Label Efficiency) How does decomposition
help with oversmoothing in Graph Neural Networks?

Extending Convolutional Neural Networks (CNN)s over images to graphs has
attracted recent interest, with an early attempt called Graph Convolutional
Networks (GCN) model proposed by (Kipf and Welling, 2016a). When apply-
ing GCNs to many practical applications, one discrepancy lingers — although
a traditional CNN usually achieves higher accuracy when it goes deeper, GCNs,
as a natural extension of CNNs, does not seem to benefit much from going
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Figure 1.1: Research scope overview of this thesis. We achieve three different ad-
vancements in cost efficiency and robustness: 1: Hardware efficiency with
low precision compressive sensing, 2: Label efficient model selection with selective
sampling, and 3: Adversarial robustness with domain knowledge integration.

deeper by stacking multiple layers together although being exposed to the
same training data.

This phenomenon has been the focus of multiple prior work (Li et al., 2019b;
Li, Han, and Wu, 2018; Oono and Suzuki, 2019). On the theoretical side, (Li,
Han, and Wu, 2018) and (Oono and Suzuki, 2019) identified the problem
as oversmoothing — under certain conditions, when multiple GCN layers are
stacked together, the output will converge to a region that is independent of
weights and inputs. On the empirical side, (Li et al., 2019b) showed that many
techniques that were designed to train a deep CNN, for instance, the skip
connections in ResNet (Kaiming et al., 2016), can also make it easier for GCN

to go deeper. Integrating techniques such as residual connections (ResGCN)
and dense connections (DenseGCN) can help accommodate this problem to
a certain extend; however, this limitation remains (Kipf and Welling, 2017).
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Partitioning the graph with a hand-picked structure can also potentially
help a range of tasks. For example, thinking of an image as a graph, if we
decompose it into multiple subgraphs, it is possible to design a GCN-variant
to implement a standard CNN-like model. Graph Convolutional Neural Net-
works (GraphCNN) (Such et al., 2017) (distinct from GCN) is one such example
of taking advantage of graph decomposition whose performance benefits
from going deeper. The benefit of graph decomposition further opens up
research questions such as how should I decompose my graph and set my GCN
model? We take a first step towards answering this question and conduct a
theoretical analysis to understand the impact of graph decomposition on
the performance of GNN via the lens of information theory. We explore the
regimes where oversmoothing occurs in GCN and GraphCNN, and explain how
graph decomposition helps with oversmoothing.

Question 3: (Efficient and Reliable Adversarial Robustness) Can we enhance adver-
sarial robustness of ML systems via domain knowledge integration against diverse
attacks, without requiring adversarial training or other specialized defenses?

The anatomy of adversarial examples has recently spawned an interest in the
ML security community to understand how imperceptibly small perturbations
can easily fool the state-of-the-art ML algorithms. The seminal work of Ilyas
et al., 2019 investigates this and introduces a conceptual model of adversarial
examples, where the features in a dataset are categorized based on their
robustness to perturbations and how it translates to the prediction variable.
One key observation is that adversarial examples can easily be constructed
by crafting certain features without affecting human recognition, and hence
the adversarial vulnerability of ML systems can be linked to the presence of
such non-robust and human-imperceptible features. Such a perspective posits
adversarial examples as “human-centric phenomenon” (Ilyas et al., 2019). This
observation has been enabling more advanced adversarial defense strategies,
where the concept of robust features is taken into consideration (Zhu, Wei, and
Zhu, 2021). Providing a generic and comprehensive treatment to this problem
is, however, far from trivial. In this thesis, we take a different perspective
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towards training robust ML models against adversarial attacks. Given the
observation that human with knowledge is quite resilient against these attacks,
we integrate domain knowledge during prediction as a proxy of robust
and human-perceptible attributes. We further investigate how and when
knowledge helps with robustness and attempt to understand how robustness
improvement affects the clean accuracy.

1.3 technical contributions and structure

In Part i of this thesis, we focus on efficient training of compressive sensing
solvers on hardware via lowering the data precision. We show that sparsity-
constrained minimization methods can enable significant computational
speed-up with low precision data, while still maintaining the theoretical
guarantees and practical performance under mild constraints:

• We conduct a theoretical analysis of a sparsity-constrained minimization
method, the normalized Iterative Hard Thresholding (IHT) algorithm,
when all input data, meaning both the measurement matrix and the
observation vector, are quantized aggressively. We present a variant
of low precision normalized IHT that, under mild conditions, can still
provide recovery guarantees.

• We conduct several numerical studies to understand the effect of data
quantization on the recovery error under various noise levels and differ-
ent structures of measurement matrix.

• To illustrate the benefit for sparse signal recovery problems, we apply
our quantization framework to radio astronomy and magnetic resonance
imaging. Towards that, we model the interferometric radio imaging as
a compressive sensing problem. For both applications, we show that
lowering the precision of the data can significantly accelerate image
recovery.

• We implement our approach on both Central Processing Units (CPU)
and Field Programmable Gate Arrays (FPGA) platforms, demonstrating
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speed-ups of up to 7× and 9× for full recovery, respectively, on instances
with a quantized dense model matrix.

In Part ii, we switch our focus to label efficiency for model selection. We show
that active model selection can tackle with the distribution drift within the
production data in a label-efficient manner:

• We introduce active model selection of pretrained classifiers, the first
framework that aims to perform efficient data-labeling to rank pretrained
classifiers.

• We adapt existing active learning strategies for model selection problem.

• We develop a novel, principled and efficient active model selection ap-
proach Model Picker for a setting where the production data examples
arrive in a stream.

• We introduce a fair evaluation framework and compare Model Picker

to the adapted active learning strategies.

• We furthermore conduct extensive experiments on well-studied ML

benchmarks. To reach the same accuracy, competing methods can often
require up to 2.5× more labels. Apart from the relative performance,
on the ImageNet dataset, Model Picker requires a mere 13% labeled
instances to select the best among 102 pre-trained models with 90%
confidence, while having up to 1.3× lower regret. These results establish
Model Picker as the state-of-the-art for this problem.

here.
Inspired by the idea of label-efficient model selection, in Part ii, we also

identify the role of graph decomposition in leading GNN to maintain a better
predictive performance although being exposed to the same training data:

• We characterize GCN from the information-theoretic perspective and
show that under certain conditions, the mutual information between the
output after l layers and the input of GCN converges to 0 exponentially
with respect to l. On the other hand, we show that graph decompo-
sition can potentially weaken the condition of such convergence rate,
alleviating the information loss when GCN becomes deeper.
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• We demonstrate that our theoretical analysis can enable further under-
standing on the goodness of graph decomposition and facilitates novel
and effective graph decomposition techniques.

In Part iii of this thesis, we take a first step towards integrating domain
knowledge to ML systems to improve its robustness against diverse attacks. We
make contributions on both theoretical and empirical fronts:

• We propose the Knowledge Enhanced Machine Learning Pipeline (KEMLP),
which integrates a main task ML model with a set of weak auxiliary task
models, together with different knowledge rules connecting them.

• Theoretically, we provide the robustness guarantees for KEMLP and prove
that under mild conditions, the prediction of KEMLP is more robust than
that of a single main task model.

• Empirically, we develop KEMLP based on different main task models and
evaluate them against a diverse set of attacks, including physical attacks,
Lp bounded attacks, unforeseen attacks, and common corruptions. We
show that the robustness of KEMLP outperforms all baselines by a wide
margin, with comparable and often higher clean accuracy.





Part I
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2
L O W P R E C I S I O N C O M P R E S S I V E S E N S I N G

It can scarcely be denied that the supreme goal of all theory is to make the irreducible
basic elements as simple and as few as possible without having to surrender the

adequate representation of a single datum of experience.

— Albert Einstein (1933)

2.1 overview

Hardware efficiency via low precision training is an emerging research area
with applications in ML. Several previous studies illustrated its benefit in
accelerating computation and improving on the memory usage due to com-
pression of bit-widths of the data and the model such as (Alistarh et al., 2017;
De Sa et al., 2015; Zhang et al., 2017; Zhao et al., 2021) and the line of work
on partial or end-to-end low-precision training of deep networks (Gupta
et al., 2013; Seide et al., 2014), to name a few. In these works, data and
model quantization is often studied in the context of Stochastic Gradient
Descent (SGD) training. Our goal in this part is to extend the usability of low
precision training to sparse signal recovery methods, to which the existing
results on SGD do not directly apply. An interesting property of the com-
pressive sensing problem and of many compressive sensing solvers is their
tolerance to noise introduced by data quantization. As mentioned earlier, this
has been utilized by many earlier frameworks (Ai et al., 2014; Boufounos
and Baraniuk, 2008; Gopi et al., 2013; Gupta et al., 2013; Jacques et al., 2013;
Laska et al., 2011; Plan and Vershynin, 2013a,b). Most of these previous work
focused on the case where quantization is carried out only on the observation
vector Table 2.1. In only one single previous study, both the observation
vector and the measurement matrix were quantized by imposing additional
assumptions on the measurement matrix (sub-Gaussian or binary) (Gopi
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et al., 2013). We take this direction further and investigate the design of a
compressive sensing solver which quantizes both the measurement matrix
and the observation vector, while imposing a more general set of assumptions
on the measurement matrix than that of most existing work. These refer-
ences also present a comprehensive analysis of the provable performance
guarantees for such sparsity-constrained minimization methods, in terms
of convergence to fixed point of `0-regularized cost functions and the opti-
mality of such approximations. However, when applied to real-life problems,
prior work faces additional challenges. For provable guarantees, it is often
required that (a) the measurement matrix Φ satisfies the Restricted Isometry
Property (RIP) (Candes, 2008; Chartrand and Staneva, 2008), and that (b)
the sparsity level is chosen appropriately. Motivated by these, in this thesis,
we focus on normalized Iterative Hard Thresholding (IHT) (Blumensath and
Davies, 2010), a popular iterative thresholding algorithm for compressive
sensing. The normalized IHT relaxes the RIP condition by introducing a step
size parameter and enables rigorous guarantees for a broader class of practi-
cal problems. We show that the normalized IHT converges with guarantees
on the recovery quality even when both the measurement matrix and the
observation vector are stored in lower precision — provided that the mea-
surement matrix satisfies non-symmetric RIP (Blumensath and Davies, 2010;
Eldar and Kutyniok, 2012). We moreover apply our proposal in the context
of two real-world applications radio astronomy and Magnetic Resonance
Imaging (MRI), and demonstrate the benefit of low precision training in accel-
erated sparse signal recovery. Finally, we implement our approach on both
Central Processing Units (CPU) and Field Programmable Gate Arrays (FPGA)
platforms, and achieve significant speed-ups in sparse signal recovery.1

notation In the rest of this thesis, scalars will be written in italics, vectors
in bold lower-case and matrices in bold upper-case letters. Particularly for

1 1053-587X ©2020 IEEE. Personal use the material in this chapter is permitted. Permission
from IEEE must be obtained for all other uses of the material in this chapter, in any current or
future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. Digital Object Identifier:
10.1109/TSP.2020.3010355
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this part, on the other hand, we define x as an N-dimensional real or complex
sparse vector and y as an M-dimensional real or complex observation vector.
For an M× N real or complex measurement matrix Φ, the matrix element in
the mth row and nth column is denoted as Φm,n and its Hermitian transpose
as ΦT. Also, φφφn is the nth column of Φ such that Φ = [φφφn]n={1,2,...,N}. The
submatrix of Φ obtained by selecting the columns with indices in Γ is written
as ΦΓ = [φφφn]n∈Γ, and the p-norm by ‖ · ‖p. For the sake of simplicity, we drop
p whenever p = 2. Finally, a 32-bit representation is used for the full precision
scheme and bΦ/by denotes the number of bits used to represent the elements
of the measurement matrix Φ and the observation vector y, respectively.

2.2 related work

Several studies have applied quantization in compressive sensing problems
(Table 2.1). They explore binary measurements for sparse signal recovery un-
der different assumptions on the measurement matrix. Sparse signal recovery
with a scale factor when measurements preserve only sign information was
demonstrated in (Boufounos and Baraniuk, 2008). Further, approximately
sparse signals can be robustly recovered from single-bit measurements when
sampled with a sub-Gaussian distribution (Ai et al., 2014; Davenport et al.,
2012). A similar setting is studied in (Jacques et al., 2013; Laska et al., 2011)
with a Gaussian measurement matrix (Binary IHT) (Plan and Vershynin,
2013a,b), which proposes a computationally tractable and optimal recovery
of a 1-bit compressive sensing problem. The theoretical guarantees to recover
the support of high-dimensional sparse signals from 1-bit measurements are
provided by (Gopi et al., 2013; Gupta, Nowak, and Recht, 2010).

Our work differs from prior work in two main ways. First, our assumption
that the measurement matrix is non-symmetric RIP is critical in real-life
applications, and none of the assumptions made in prior work would fit
this use case. Second, to the best of our knowledge, we are the only work
besides (Gopi et al., 2013) that quantizes both the measurement matrix Φ and
the observation vector y. The problem of building a binary measurement
matrix that can provide good recovery guarantees is considered in (Gopi
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Table 2.1: Comparison of low precision iterative hard thresholding with previous
work. Q(Φ) and Q(y) indicate whether quantization of the measurement
matrix Φ or quantization of the observation vector y are considered (X:
yes, 5 : no).

Assumption on Φ Q(Φ) Q(y)

Boufounos and Baraniuk, 2008 Gaussian 5 X

Ai et al., 2014 unit variance 5 X

Jacques et al., 2013 RIP 5 X

Laska et al. (Laska et al., 2011) Gaussian & RIP 5 X

Plan and Vershynin, 2013a Gaussian & RIP 5 X

Plan and Vershynin, 2013b Gaussian 5 X

Gupta et al., 2013 Gaussian 5 X

Gopi et al., 2013 sub-Gaussian/binary & RIP X X

This work non-symmetric RIP X X

et al., 2013) given only one-bit measurements. By contrast, we consider a
practical setting where we must quantize a given full-precision measurement
matrix as well as possible, and thus can trade off higher precision for better
recovery guarantees.

There has been significant research on designing efficient algorithms for
sparse recovery (Blanchard, Tanner, and Wei, 2013; Blumensath, 2012; Cevher,
2011; Liu et al., 2017; Wei, 2015). We focus here on normalized IHT, and
extension to other work can be a promising future direction. We further
note the work on recovery using sparse binary matrices (see (Berinde and
Indyk, 2010) for a survey). These matrix constructions could be applied in
our scenario in some cases, as they are pre-quantized with similar guarantees.
However, in certain applications such as the radio astronomy and magnetic
resonance imaging considered here, the measurement matrix is fixed and
highly dense.
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2.3 problem definition

Compressive sensing (Candes, Romberg, and Tao, 2006a,b; Donoho, 2006) is
a technique in sparse signal reconstruction that offers a range of efficient al-
gorithms acquiring high dimensional signals from inaccurate and incomplete
samples with an underlying sparse structure. Many real-world applications
including medical imaging, interferometry, and genomic data analysis benefit
from these techniques.

In mathematical terms, compressive sensing is formulated as follows: Let
a sparse or approximately sparse signal x be sampled via a linear sampling
operator Φ. This means that the observation vector y is

y = Φx + e (2.1)

where e is M-dimensional observation noise. We illustrate this model in Fig-
ure 2.1.

Compressive sensing recovery algorithms iteratively compute a sparse
estimate x̃ with N � M such that Φx̃ approximates y well, that is, ‖y−Φx̃‖
is small. This problem is NP-hard due to its combinatorial nature. Thus, most
compressive sensing algorithms resort to a convex relaxation of the under-
lying sparse optimization problem. A collection of thresholding and greedy
methods solving this problem have been proposed including IHT (Blumensath
and Davies, 2008, 2009), Compressive Sampling Matching Pursuit (CoSaMP)
(Needell and Tropp, 2008), as well as others (Blumensath, 2013; Liu et al.,
2017; Yuan, Li, and Zhang, 2014, 2016)

These references also present a comprehensive analysis of the provable
performance guarantees for such sparsity-constrained minimization methods,
in terms of convergence to fixed point of `0-regularized cost functions and
the optimality of such approximations. However, when applied to real-life
problems this prior work faces additional challenges. For provable guaran-
tees, it is often required that (a) the measurement matrix Φ satisfies the
Restricted Isometry Property (RIP) (Candes, 2008; Chartrand and Staneva,
2008), and that (b) the sparsity level is chosen appropriately. The Normalized
IHT method (Blumensath and Davies, 2010), relaxes the RIP condition by
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Figure 2.1: Compressive sensing model as a sparse expansion of measurements such
that y = ΦΨx∗+ e. The measurement matrix is given by the product of Φ
and Ψ. In our analysis, we consider Ψ to be embedded in Φ and denote
the measurement matrix by Φ.

introducing a step size parameter, which enables rigorous guarantees for a
broader class of practical problems. Our efforts in this part build upon this
line of work.

We consider the sparse signal recovery problem in Equation 2.1 described
as: given y and Φ, find x minimizing the cost function

‖y−Φx‖2 subject to ‖x‖0 ≤ s, (2.2)

where ‖x‖0 = |supp(x)| = |{i : xi 6= 0}| and s is number of sparse coefficients
we want to recover.

normalized iht Normalized IHT (Blumensath and Davies, 2010) is an
iterative solver of the optimization problem in Equation 2.2 that is shown
to outperform other methods such as traditional IHT and CoSaMP when the
non-symmetric RIP condition holds. It uses the following update rule:

x[n+1] = Hs(x[n] + µ[n]ΦT(y−Φx[n])), (2.3)

where x[0] = 0 and µ[n] > 0 is the adaptive step size parameter, Hs(x) is a
nonlinear operator preserving only the largest s entries of x in magnitude,
setting the other entries to zero.
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If x has no more than s nonzero elements, the proposed update rule con-
verges to a local minimum of the cost function ‖y−Φx‖2. Furthermore, if the
measurement matrix Φ satisfies the non-symmetric RIP condition, normalized
IHT is guarantees stability and performance,i.e., the result is near-optimal.
The properties of normalized IHT are discussed in greater detail in 2.4.1.

our setting In this work, we consider the properties of the normalized
IHT algorithm in a lossy compression setting, where both the data y and Φ

consist of floating-point values and undergo a stochastic quantization process
to a small set of discrete levels, using a transformation operator. We denote
the transformation operator by Q(·, b) where b is the bit precision used by
the representation. The goal of applying Q(·, b) is to reduce the high cost
of data transmission between the sensor or storage and the computational
device (CPU, GPU and FPGA). We thus want to recover x using the modified
normalized IHT update rule

x[n+1] = Hs(x[n] + µ[n]Q(Φ, bΦ)
T(Q(y, by)−Q(Φ, bΦ)x[n])).

2.4 normalized iterative thresholding

In this section, we review existing results on the normalized IHT algo-
rithm (Blumensath and Davies, 2010; Blumensath et al., 2012). These can
be generalized to the traditional IHT if the measurement matrix satisfies
‖Φ‖ < 1 (Blumensath and Davies, 2008, 2009). The reader who is familiar
with normalized IHT can skip this section.

2.4.1 The Algorithm

Let x[0] = 0. As introduced in Equation 2.3, normalized IHT has the following
update rule:

x[n+1] = Hs(x[n] + µ[n]ΦT(y−Φx[n])),

where Hs(x) is the thresholding operator that preserves the largest s entries
(in magnitude), and µ[n] > 0 is an adaptive step size parameter. The recov-
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ery performance of normalized IHT depends conditionally on the step size
parameter µ[n], unlike the traditional IHT approach in which µ[n] = 1. While
the traditional approach requires a rescaling of the measurement matrix such
that ‖Φ‖ < 1 to ensure convergence, introducing a step size parameter that
enables the arbitrary scaling of Φ, and hence relaxes the bounds on its norm.
Specifically, the role of µ[n] is to compensate for this rescaling by avoiding
the undesirable amplification of noise, i.e., by keeping the ratio ‖Φx‖/‖e‖
unchanged.

step size determination Normalized IHT adaptively sets the step size
as follows: if the support of x[n] is preserved between iterations, one can set
the step size adaptively to

µ[n] =

(
g[n]

Γ[n]

)Tg[n]
Γ[n](

g[n]
Γ[n]

)T
ΦT

Γ[n]ΦΓ[n]g
[n]
Γ[n]

, (2.4)

where g[n] = ΦT(y−Φx[n]) and Γ[n] = supp(x[n]). This is shown to result in
the maximal reduction of the cost function. However, if the support of x[n+1]

differs from that of x[n], a sufficient convergence condition is shown to be

µ[n] ≤ (1− c)
‖x[n+1] − x[n]‖2

‖Φ(x[n+1] − x[n])‖2

for any small constant c. If the above condition is not met, a new proposal
for x[n+1] can be calculated by setting µ[n] ← µ[n]/(k(1− c)), where k is a
shrinkage parameter satisfying k > 1/(1− c).

2.4.2 Recovery Guarantees

The analysis of hard thresholding algorithms relies on the scaling properties
of Φ. Concretely, one often considers the non-symmetric RIP condition: a



2.4 normalized iterative thresholding 25

matrix Φ satisfies the non-symmetric RIP if there are 0 < αs, βs ∈ R and
αs ≤ βs such that

αs ≤
‖Φx‖
‖x‖ ≤ βs for all x with ‖x‖0 ≤ s. (2.5)

αs and βs are the so-called Restricted Isometric Constants (RICs). Note that for
any support set Γ such that |Γ| ≤ s, αs and βs are lower and upper bounded
by the smallest and largest singular values of Φ|Γ|, respectively.

The main convergence result of normalized IHT can be stated as follows.

Theorem 1 (Blumensath et al., 2012). Let Φ be full rank and s ≤ m. If β2s ≤ µ−1,
then normalized IHT converges to a local minimum of Equation 2.2.

When setting the step size parameter, the condition β2s ≤ µ−1, which
ensures convergence, poses a challenge. To date, there is no efficient strategy
to determine the exact values of the RICs βs and αs for an arbitrary measure-
ment matrix in a computationally efficient manner. However, these constants
can be bounded efficiently, and it can be shown that randomly constructed
measurement matrices can satisfy the RIP with high probability (Candes, 2008;
Chartrand and Staneva, 2008).

The adaptive setting of the step size parameter is further shown to provide
a non-symmetric RIP variant recovery result as follows.

Theorem 2 (Blumensath and Davies, 2010). Consider a noisy observation y =

Φx + e with an arbitrary vector x, and let xs be the best s-term approximation of
x. If rank(Φ) = M and rank(ΦΓ) = s for all Γ with |Γ| = s, then the normalized
IHT algorithm converges to a local minimum of the cost function in Equation 2.2.
Also, assume Φ has the non-symmetric RIP when projected onto 2s-sparse vectors,
with RICs α2s and β2s.

We further define γ2s = β2s/α2s− 1 if the normalized IHT algorithm uses the step
size defined in Equation 2.4 at each iteration, and γ2s = max(1− α2s/kβ2s, β2s/α2s−
1) otherwise, where k > 1 is a shrinkage parameter introduced earlier. If γ2s ≤ 1/8,
then the recovery error after n iterations is bounded as

‖x− x[n]‖ ≤ 2−n‖xs‖+ 8εs (2.6)
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where

εs = ‖x− xs‖+ ‖x− xs‖1√
s

+
1

β2s
‖e‖. (2.7)

Corollary 1. After at most n∗ = log2(‖xs‖/εs) iterations, the recovery error bound
in (2.6) can be further simplified to

‖x− x[n]‖ ≤ 9εs.

The above result suggests that, after a sufficiently large number of iterations,
the reconstruction error is induced only by the noise e and that x is not exactly
s-sparse.

2.5 low precision iterative thresholding

We now introduce the quantized version of normalized IHT, called Quantized
Iterative Hard Thresholding (QIHT), and analyze it in terms of signal recovery
performance. The key idea here is that, by reducing the bit widths of the data
points in a structured manner, we can upper bound the recovery error and
fine tune the bit precision to still guarantee provable recovery performance.
In Section 2.6, we will show that the recovery error bound reflects the true
scaling of parameters in the regime where the non-symmetric RIP holds, and
that for specific applications, in particular radio astronomy and magnetic
resonance imaging, we expect the recovery error to be small, thanks to the
structure of the measurement matrix.

2.5.1 The Algorithm

The QIHT algorithm follows the modified update rule of, assuming x[0] = 0:

x[n+1] = Hs
(
x[n] + µ̂[n]Q(ΦT, bΦ)(Q(y, by)−Q(Φ, bΦ)x[n])

)
(2.8)
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DATA SOURCES
Sensor

Database
2

3

1

Recovery:
x [n+1]

STORAGE DEVICE
DRAM, CPU Cache

Data:
Q(y) , Q(ФΨ)

COMPUTATION DEVICE
FPGA, CPU, GPU

Gradient: μQ(ФΨ) H (Q (y) - Q (ФΨ) x [n])Quantization operator
Q(·): R m*n _  Z m*n

32 bits _  b bits

Figure 2.2: Low Precision IHT (QIHT) data flow. (1) Quantized data, namely the
observation vector and measurement matrix is sent to the computation
device, (2) which takes the previous update from the storage and (3)
calculates the gradient and send it to the storage device, where x[n] will
be updated to x[n+1]. This process continues until the convergence.

where the step size µ̂[n] is determined based on Equation 2.4, and Q(·, b) is an
element-wise quantization operator that maps single-precision floating-point
values to b-bit precision.

In the following, we will use the stochastic quantization operator Q(v, b),
which quantizes v to b-bit precision as follows. Let ` = 2b and q1, . . . , q` denote
` equally spaced points in [−1, 1] such that q1 = −1 ≤ q2 ≤ · · · ≤ q` = 1.
Assume that v ∈ [qi, qi+1] for some i. Stochastic quantization maps v to one
of the two nearest points as follows:

Q(v, b) =

qi, with probability qi+1−v
qi+1−qi

,

qi+1, otherwise.

Note that the quantization Q(·, b) is unbiased, i.e., E[Q(v, b)] = v, and matri-
ces and vectors are quantized element-wise.

Note that in Equation 2.8, we use two independent stochastic quantizations
for ΦT and Φ, the so-called double sampling (Zhang et al., 2017). This leads
to an unbiased gradient estimator, that is,

E
[
Q(ΦT, bΦ)(Q(y, by)−Q(Φ, bΦ)x[n]

)]
= ΦT(y−Φx[n]),
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Algorithm 1 QIHT: Low Precision IHT
Input: number of iterations n∗, 2n∗ realizations of the low precision mea-
surement matrix Q(Φ): Φ̂1, Φ̂2, . . . , Φ̂2n∗ , n∗ realizations of the low precision
observation vector Q(y): ŷ1, ŷ2, . . . , ŷn∗ , sparsity parameter s, step size tuning
parameters k, c
Output: The recovery vector x[n

∗]

Initialize x[0] = 0, Γ[0] = supp
(

Hs(Φ̂T
1 ŷ)
)
.

for n = 1 to n∗ do
g[n−1] = Φ̂T

2n−1
(
ŷ− Φ̂2nx[n]

)
µ̂[n−1] =

(
g[n−1]

Γ[n−1]

)Tg[n−1]
Γ[n−1]/

(
(Φ2n−1)Γ[n−1]g

[n−1]
Γ[n−1]

)T
(Φ2n)Γ[n−1]g

[n−1]
Γ[n−1]

x[n] = Hs(x[n−1] + µ̂[n−1]g[n−1])

Γ[n] = supp(x[n])

if Γ[n] = Γ[n−1] then

x[n] = x[n−1]

else
b[n] = (‖x[n] − x[n−1]‖2

2)/(‖Φ̂2n−1(x[n] − x[n−1])‖2
2)

if µ̂[n] ≤ (1− c)b[n] then
x[n] = x[n−1]

else

while µ̂[n] > (1− c)b[n] do
µ̂[n] = µ̂[n]/(k(1− c))

x[n] = Hs(x[n−1] + µ̂[n−1]g[n−1])

end
end

end
Γ[n] = supp(x[n])

end

which provides better convergence results.
A detailed description of QIHT is given in Algorithm 1.
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2.5.2 Performance Guarantees

We study the theoretical guarantees of QIHT by analyzing two properties,
namely convergence and recovery error.

2.5.2.1 Convergence

We start with stating the convergence result. In the following, we set Φ̂ =

Q(Φ, bΦ) and ŷ = Q(y, by). We also use Φ̂j to denote the jth quantization Φ̂.

Theorem 3 (Convergence guarantee of QIHT). The QIHT algorithm attains a local
minimum of the cost function E[‖ŷ− Φ̂x‖2] such that ‖x‖0 ≤ s.

Proof of Theorem 3. E[‖ŷ− Φ̂x‖2] can be majorized by the following surrogate
objective function

E[‖µ0.5ŷ− Φ̂x‖2 + ‖x− x[n]‖2 − ‖µ0.5Φ̂(x− x[n])‖2],

whenever ‖µ0.5Φ̂‖2 < 1. This condition is met due to the step size deter-
mination introduced in Equation 2.4. The minimizer of the above surrogate
objective x[n+1], therefore, ensures that E[‖ŷ− Φ̂x[n+1]‖2] ≤ E[‖ŷ− Φ̂x[n]‖2].
Using the arguments of (Blumensath and Davies, 2008), Equation 2.8 can be
shown to minimize the expected cost E[‖ŷ− Φ̂x‖2].

2.5.2.2 Recovery Error

The following theorem states our main analytic result, which characterizes the
recovery error of QIHT, specifically focusing on the additional error introduced
by the quantization procedure.

Theorem 4 (Recovery Error of QIHT). Consider an M-dimensional noisy ob-
servation vector y = Φx + e where Φ is an M × N-dimensional real or com-
plex matrix, and x is an N-dimensional arbitrary vector. Let Hs(x) = xs with
s ≤ M and assume the full precision measurement matrix Φ and the quantized
measurement matrix Φ̂ satisfy the non-symmetric RIP in Equation 2.5 and Equa-
tion 2.11, with RICs αs, βs and α̂s, β̂s, respectively. We also define γ2s = β2s/α2s− 1
if the normalized IHT algorithm uses the step size defined in Equation 2.4 at each
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iteration and γ2s = max(1 − α2s/kβ2s, β2s/α2s − 1) otherwise. Similarly, let
γ̂2s = β̂2s/α̂2s − 1 if the QIHT algorithm uses the step size defined in Equation 2.4
and γ̂2s = max(1 − α̂2s/kβ̂2s, β̂2s/α̂2s − 1) otherwise. If γ2s and γ̂2s satisfy
γ2s ≤ 1/24 and γ̂2s ≤ 1/24, then at each iteration n, the QIHT algorithm outputs
an approximation of xs, x[n] such that

E[‖x̂[n] − xs‖] ≤ 2−n‖xs‖+ 9εs + 4.5εq, (2.9)

where εs is given by

εs = ‖x− xs‖+ ‖x− xs‖1√
s

+
1

min(β2s, β̂2s)
‖e‖

and

εq =

√
M

β̂2s

( ‖xs‖
2bΦ−1 +

1
2by−1

)
.

Here, bΦ and by are the number of bits used to represent Φ and y, respectively.

Corollary 2. A natural stopping criterion is n∗ = dlog2(‖xs‖/εs)e, which means
the algorithm computes successive approximations of xs with accuracy E[‖x[n∗] −
xs‖] ≤ 10εs + 4.5εq.

determining the bit precision b One constraint in the above theorem
is that both Φ̂ and Φ satisfy the non-symmetric RIP with γ2s, γ̂2s ≤ 1/24. The
following lemma describes the relationship between the non-symmetric RIP

properties of Φ and Φ̂. The result suggests that one can ensure that the
non-symmetric RIP holds for Φ̂ using sufficient bit precision.

Lemma 1. Let ε > 0 and let ΦΓ satisfy the non-symmetric RIP with γ|Γ| ≤ 1/24− ε

for any support set Γ. If bΦ ≥ log
(2
√
|Γ|

εα|Γ|

)
, then Φ̂Γ is guaranteed to satisfy γ̂|Γ| ≤

1/24.
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2.5.3 Proofs

In this section, we will present the proofs for Theorem 4, Corollary 2 and
Lemma 1. Before presenting them, we introduce our notation and state the
auxiliary results that will be used throughout their proof.

preliminaries We begin by introducing our notation.

xs such that y = Φx + e = Φxs + Φ(x− xs) + e

ε Φ(x− xs) + e, hence y = Φxs + ε

εy Q(y, b)− y

Γ[n] supp{x[n]}
Γ̂[n] supp{x̂[n]}
Γs supp{xs}
B̂[n] Γ̂[n] ∪ Γs

a[n+1] x̂[n] + µ[n]Φ†(y−Φx̂[n])

â[n+1] x̂[n] + µ̂[n]Q1(Φ)†(y−Q2(Φ)x̂[n])

x[n+1] Hs(a[n+1])

x̂[n+1] Hs(â[n+1])

r[n] x̂[n] − xs

Next, assume Φ satisfies the non-symmetric RIP

αs ≤
‖Φx‖2

‖x‖2
≤ βs (2.10)

for all x : ‖x‖0 ≤ s, where αs ∈ R and βs ∈ R are the lowest and largest
singular value of Φ such that 0 < αs ≤ βs, the RICs. Inherent from its
definition, the RIP for the quantized measurement matrix denoted by Q(Φ, bm)

refers to that ∀Q(Φ, bm), we have

α̂s ≤
‖Q(Φ, bm)x‖2

‖x‖2
≤ β̂s (2.11)
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where α̂s and β̂s are the associated RICs. For simplicity, we drop bm, and use
Q(Φ) instead.

The adaptive setting of step size parameter µ[n] in normalized IHT is shown
to satisfy 1/β2

2s ≤ µ[n] ≤ 1/α2
2s if µ[n] is set to g†

Γ[n]gΓ[n]/g†
Γ[n]Φ

†
Γ[n]ΦΓ[n]gΓ[n]

at each iteration and 1/kβ2
2s ≤ µ[n] ≤ 1/α2

2s otherwise (Blumensath and
Davies, 2010). Similar inequality also holds in the quantized setting such
that 1/β̂2

2s ≤ µ̂[n] ≤ 1/α̂2
2s if µ̂[n] is set to ĝ†

Γ̂[n] ĝΓ̂[n]/ĝ†
Γ̂[n]Φ̂

†
Γ̂[n]Φ̂Γ̂[n] ĝΓ̂[n] at each

iteration, and 1/kβ̂2
2s ≤ µ̂[n] ≤ 1/α̂2

2s otherwise.

Recall from Theorem 4 that depending on the step size, γs is defined as
either βs/αs − 1 or max{1− αs/kβs, βs/αs − 1}. That also holds for γ̂s by
replacing the RICs with that of quantized measurement matrix Q(Φ); α̂s and
β̂s.

Remark 1. Using the definitions of γs and γ̂s as well as bounds on µ[n] and µ̂[n],
we further have

(1− γ2s)/α2
2s ≤ µ[n] ≤ (1 + γ2s)/β2

2s,

(1− γ̂2s)/α̂2
2s ≤ µ̂[n] ≤ (1 + γ̂2s)/β̂2

2s.

Based on the properties above, the RIP and the adaptive step size, which
we will require repeatedly throughout the proof of Theorem 4, has several
other consequences, summarized as follows.

Lemma 2. Suppose Φ and Q(Φ) satisfy RIP in Equation 2.5 and Equation 2.11, re-
spectively. Let moreover Γ, Υ and Λ has cardinality at most min

(
rank(Φ), rank(Q(Φ))

)
and Υ and Γ are disjoint, Υ ∩Λ = ∅. Then

‖
(
µ[n]ΦT

Γ − µ̂[n]Q(Φ)T
Γ
)
xΓ‖2

(1)
≤ max

(
(1 + γ|Γ|)/β|Γ|, 1 + γ̂|Γ|)/β̂|Γ|

)
‖xΓ‖2,

‖
(
µ[n]ΦT

Γ ΦΓ − µ[n]Q1(Φ)T
Γ Q2(Φ)Γ

)
xΓ‖2

(2)
≤ (γ|Γ| + γ̂|Γ|)‖xΓ‖2, ,

‖
(
µ[n]ΦT

ΥΦΛ − µ[n]Q1(Φ)T
ΥQ2(Φ)Λ

)
xΛ‖2

(3)
≤ (γ|Υ∪Λ| + γ̂|Υ∪Λ|)‖xΛ‖2.
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Proof of Lemma 2. As a simple consequence of RIP, the singular values of ΦΓ

lie between α|Γ| and β|Γ|. Remark 1 further implies that the singular values
of µ[n]ΦΓ are in [(1− γ|Γ|)/α|Γ|, (1 + γ|Γ|)/β|Γ|]. Using the similar bound for
Q(Φ)Γ, maximum singular value of (µ[n]ΦT

Γ − µ̂[n]Q(Φ)T
Γ ), i.e., its operator

norm, is given by (1 + γ|Γ|)/β|Γ| − (1− γ̂|Γ|)/α|Γ|. In the first inequality of
Lemma 2, we use a looser bound (1 + γ|Γ|)/β|Γ| for simplicity.

Similar argument holds for the second inequality, that is, the singular
values of µ[n]ΦT

Γ ΦΓ and µ[n]Q1(Φ)T
Γ Q2(Φ)Γ fall into [1− γ|Γ|, 1 + γ|Γ|] and

[1 − γ̂|Γ|, 1 + γ̂|Γ|], respectively. Then ‖µ[n]ΦT
Γ ΦΓ − µ[n]Q1(Φ)T

Γ Q2(Φ)Γ‖2 is
upper bounded by γ|Γ| + γ̂|Γ|, which proves the second inequality.

The third inequality is a consequence of the fact that −µ[n]ΦT
ΥΦΛ is

a submatrix of I − µ[n]ΦT
Υ∪ΛΦΥ∪Λ As previously shown, eigenvalues of

µ[n]ΦT
Υ∪ΛΦΥ∪Λ lie in [1−γ|Υ∪Λ|, 1+γ|Υ∪Λ|]. Hence, eigenvalues of µ[n]ΦT

ΥΦΛ

are in [−γ|Υ∪Λ|, γ|Υ∪Λ|]. The maximum eigenvalue of
(µ[n]ΦT

ΥΦΛ − µ[n]Q1(Φ)T
ΥQ2(Φ)Λ), hence its operator norm, can then be up-

per bounded by γ|Υ∪Λ| + γ̂|Υ∪Λ|.

Lemma 3. (Blumensath and Davies, 2010) For any x, let xs be the best s-term
approximation to x and Υ be a set with at most s elements. Then

‖µ[n]ΦT
ΥΦ(x− xs)‖2 ≤ (1 + γ2s)

[
‖x− xs‖2] +

‖x− xs‖1√
s

]
. (2.12)

Lemma 4. Let Q(·, b) : Rd ×Z+ → Rd denote quantization operator. For any
v ∈ Rd, the norm of quantization error can be bounded by

E[‖Q(v, b)− v‖2] ≤
cv
√

M
2b−1 (2.13)

where cv is the maximum value of the components of v in magnitude.

Remark 2. For efficient fixed-point computation on FPGA, we need an odd number
of quantization levels, and therefore total number of levels for b bit quantization is
2b−1 + 1. That is, the interval between two consecutive levels is 1/2b−2 provided the
values are confined in the interval [−1, 1] a priori.



34 low precision compressive sensing

Proof of Lemma 4. Let ṽ = v/cv. Using Jensen’s inequality we can easily show
that

E[‖Q(ṽ, b)− ṽ‖2] ≤
√

E[‖Q(ṽ, b)− ṽ‖2
2] =

√√√√ M

∑
i=1

E[
(
Q(ṽ, b)i − ṽi

)2
]

≤

√√√√ M

∑
i=1

P(Q(ṽ, b)i = `j)(ṽi − `j)2 + P(Q(ṽ, b)i = `j+1)(`j+1 − ṽi)2.

Our quantization scheme uses a stochastic approach such that P(Q(v̂, b)i =

`j) =
`j+1−ṽi
`j+1−`j

, and hence P(Q(ṽ, b)i = `j+1) = 1− `j+1−ṽi
`j+1−`j

. Substituting these
into the above inequality we have

E[‖Q(ṽ, b)− ṽ‖2] ≤
√

n

∑
i=1

(lj+1 −Q(ṽ, b)i)(Q(ṽ, b)i − `j). (2.14)

It can easily be seen that (lj+1−Q(v̂, b)i)(Q(v̂, b)i− `j) is maximized when

Q(v̂, b)i) =
`j+1−`j

2 , moreover the quantization function implies that `j+1 −
`j =

1−(−1)
l = 1

2b−2

E[‖Q(ṽ, b)− ṽ‖2] ≤

√√√√ M

∑
i=1

(`j+1 − `j)2

4
≤
√

M(`j+1 − `j)

2
≤
√

M
2b−1 . (2.15)

We move to the proof of Theorem 4.

Proof of Theorem 4. The recovery error can be split into two parts by using
triangle inequality

E[‖x̂[n+1] − xs‖2|x̂[n]] = E[‖x̂[n+1]
B̂[n+1] − xs

B̂[n+1]‖2|x̂[n]]

≤ E[‖x̂[n+1]
B̂[n+1] − â[n+1]

B̂[n+1]‖2|x̂[n]] + E[‖â[n+1]
B̂[n+1] − xs

B̂[n+1]‖2|x̂[n]].
(2.16)

where the equality follows from that x̂[n+1] − xs is supported over the set
B̂[n+1] = Γ̂[n+1] ∪ Γs.
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Recall that x̂[n+1]
B̂[n+1] is a better s-term approximation to â[n+1]

B̂[n+1] than xs
B̂[n+1](

namely, ‖x̂[n+1] − â[n+1]
B̂[n+1]‖2 ≤ ‖â

[n+1]
B̂[n+1] − xs‖2

)
. Then

E[‖x̂[n+1] − xs‖2|x̂[n]] ≤ 2E[‖â[n+1]
B̂[n+1] − xs

B̂[n+1]‖2|x̂[n]] (2.17)

Using triangle inequality, we further have

E[‖x̂[n+1] − xs‖2|x̂[n]] ≤ 2
[
E[‖â[n+1]

B̂[n+1] − a[n+1]
B̂[n+1]‖2 + ‖a

[n+1]
B̂[n+1] − xs

B̂[n+1]‖2|x̂[n]]
]

(2.18)

We now continue with the analysis referring to two terms on the right hand
side of Equation 2.18 separately.
(a) Expanding â[n+1]

B̂[n+1] and a[n+1]
B̂[n+1] we have

E[‖â[n+1]
B̂[n+1] − a[n+1]

B̂[n+1]‖2|x̂[n]]

= E[‖µ̂[n]Q1(Φ)T
B̂[n+1]

(
Qy(y)−Q2(Φ)x̂[n]

)
− µ[n]ΦT

B̂[n+1](y−Φx̂[n])‖2|x̂[n]]

= E[‖µ̂[n]Q1(Φ)T
B̂[n+1]

(
Φxs + ε + εy −Q2(Φ)x̂[n]

)
− µ[n]ΦT

B̂[n+1](Φxs + ε−Φx̂[n])‖2|x̂[n]]

= E[‖µ̂[n]Q1(Φ)T
B̂[n+1]

(
−Q2(Φ)r[n] + ε + εy

+ (Φ−Q2(Φ))xs)+ µ[n]ΦT
B̂[n+1](Φr[n] − ε)‖2|x̂[n]]

≤ ‖
(
µ[n]ΦT

B̂[n+1]Φ− µ̂[n]Q1(Φ)T
B̂[n+1]Q2(Φ)

)
r[n]‖2 + ‖

(
µ[n]ΦT

B̂[n+1] − µ̂[n]Q1(Φ)T
B̂[n+1]

)
ε‖2

+ E[‖µ̂[n]Q1(Φ)T
B̂[n+1]εy‖2] + E[‖µ̂[n]Q1(Φ)B̂[n+1]

T(Φ−Q2(Φ)
)
xs‖2].

(2.19)

where we used the expansion r[n] = x̂[n] − xs. We further derive the terms
governing the above expression in four steps below.
(a.1) Since r[n] is supported over B̂[n], we clearly have

‖
(
µ[n]ΦT

B̂[n+1]Φ− µ̂[n]Q1(Φ)T
B̂[n+1]Q2(Φ)

)
r[n]‖2

≤ ‖
(
µ[n]ΦT

B̂[n+1]ΦB̂[n+1] − µ̂[n]Q1(Φ)T
B̂[n+1]Q2(Φ)B̂[n+1]

)
r[n]

B̂[n+1]‖2

+ ‖
(
µ[n]ΦT

B̂[n+1]ΦB̂[n]\B̂[n+1]

− µ̂[n]Q1(Φ)T
B̂[n+1]Q2(Φ)B̂[n]\B̂[n+1]

)
r[n]

B̂[n]\B̂[n+1]‖2.
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Using the second inequality in Lemma 2 we have

‖
(
µ[n]ΦT

B̂[n+1]ΦB̂[n+1] − µ̂[n]Q1(Φ)T
B̂[n+1]Q2(Φ)B̂[n+1]

)
r[n]

B̂[n+1]‖2 ≤ (γ2s + γ̂2s)‖r
[n]
B̂[n+1]‖2.

(2.20)

Let now B̂[n+1] be split into two disjoint sets Γ1 and Γ2, where Γ1 ∩ Γ2 = ∅
and |Γ1|, |Γ2| ≤ s. By the third inequality in Lemma 2, we have

‖
(
µ[n]ΦB̂[n+1]

TΦB̂[n]\B̂[n+1] − µ̂[n]Q1(Φ)B̂[n+1]
TQ2(Φ)B̂[n]\B̂[n+1]

)
r[n]

B̂[n]\B̂[n+1]‖2

≤
(
‖
(
µ[n]ΦΓ1

TΦB̂[n]\B̂[n+1] − µ̂[n]Q1(Φ)Γ1
TQ2(Φ)B̂[n]\B̂[n+1]

)
r[n]

B̂[n]\B̂[n+1]‖2
2

+ ‖
(
µ[n]ΦΓ2

TΦB̂[n]\B̂[n+1] − µ̂[n]Q1(Φ)Γ2
TQ2(Φ)B̂[n]\B̂[n+1]

)
r[n]

B̂[n]\B̂[n+1]‖2
2

) 1
2

≤
√

2(γ2s + γ̂2s)‖r
[n]
B̂[n]\B̂[n+1]‖2.

(2.21)

Combining Equation 2.20 and Equation 2.21,

‖
(
µ[n]ΦT

B̂[n+1]Φ− µ̂[n]Q1(Φ)T
B̂[n+1]Q2(Φ)

)
r[n]‖2

= (γ2s + γ̂2s)‖r
[n]
B̂[n+1]‖2 +

√
2(γ2s + γ̂2s)‖r

[n]
B̂[n]\B̂[n+1]‖2 ≤ 2(γ2s + γ̂2s)‖r[n]‖2

(2.22)

where the last inequality follows from the fact that r[n]
B̂[n+1] and rB̂[n]\B̂[n+1] are

orthogonal.
(a.2) Expanding the second term in Equation 2.19

‖(µ[n]ΦB̂[n+1] − µ̂[n]Q1(Φ)T
B̂[n+1])ε‖2

≤ ‖(µ[n]ΦB̂[n+1] − µ̂[n]Q1(Φ)T
B̂[n+1])e‖2 + ‖(µ[n]ΦB̂[n+1] − µ̂[n]Q1(Φ)T

B̂[n+1])Φ(x− xs)‖2.
(2.23)
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Using Equation 2.12 and Lemma 2 we have

‖(µ[n]ΦB̂[n+1] − µ̂[n]Q1(Φ)T
B̂[n+1])e‖2

≤ max
(
(1 + γ2s)/β2s, (1 + γ̂2s)/β̂2s

)
‖e‖2‖(µ[n]ΦB̂[n+1] − µ̂[n]Q1(Φ)T

B̂[n+1])Φ(x− xs)‖2

≤
(
‖(µ[n]ΦΓ1 − µ̂[n]Q1(Φ)T

Γ1
)Φ(x− xs)‖2

2 + ‖(µ[n]ΦΓ2 − µ̂[n]Q1(Φ)T
Γ2
)Φ(x− xs)‖2

2
)1/2

≤
√

2(γ̂2s + γ̂2s)

[
‖x− xs‖2 +

‖x− xs‖1√
s

]
.

(2.24)

Combining results obtained in Equation 2.24

‖(µ[n]ΦB̂[n+1] − µ̂[n]Q1(Φ)T
B̂[n+1])ε‖2

≤ max
(
(1 + γ2s)/β2s, (1 + γ̂2s)/β̂2s

)
‖e‖2 +

√
2(γ2s + γ̂2s)

[
‖x− xs‖2 +

‖x− xs‖1√
s

]
.

(2.25)

(a.3) The third term of Equation 2.19

E[‖µ̂[n+1]Q1(Φ)T
B̂[n+1]εy‖2]

(1)
≤ (1 + γ̂2s)

β̂2s
E[‖εy‖2]

(2)
≤

(1 + γ̂2s)cy
√

M

β̂2s2by−1
(2.26)

where the inequalities follows from (1) Equation 2.11 together with Remark 1,
and (2) Lemma 4.

(a.4) Combining with Equation 2.11, Remark 1, Cauchy-Bunyakovsky-
Schwarz, Jensen inequalities and the similar discussion above

E[‖µ̂[n]Q1(Φ)T
B̂[n+1]

(
Φ−Q2(Φ)

)
xs‖2] ≤

(1 + γ̂2s)

β̂2s
E[‖

(
Φ−Q2(Φ)

)
xs‖2]

≤ (1 + γ̂2s)

β̂2s

√√√√ M

∑
i

N

∑
j

E[(Φi,j −Q2(Φi,j)xs
j)

2] =
(1 + γ̂2s)cΦ

√
M

β̂2s2bΦ−1
‖xs‖2.

(2.27)
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(b) Finally, we bound the second term on the right hand side of Equa-
tion 2.18 as follows.

‖a[n+1]
B̂[n+1] − xs

B̂[n+1]‖2 = ‖x̂[n]
B̂[n+1] + µ[n]ΦT

B̂[n+1](y−Φx̂[n])− xs
B̂[n+1]‖2

= ‖x̂[n]
B̂[n+1] + µ[n]ΦT

B̂[n+1](Φxs + ε−Φx̂[n])− xs
B̂[n+1]‖2

= ‖r[n]
B̂[n+1] − µ[n]ΦT

B̂[n+1](Φr[n] − ε)‖2

= ‖r[n]
B̂[n+1] − µ[n]ΦT

B̂[n+1](ΦB̂[n+1]r
[n]
B̂[n+1] + ΦB̂[n]\B̂[n+1]r

[n]
B̂[n]\B̂[n+1] − ε)‖2

≤ ‖(I − µ[n]ΦT
B̂[n+1]ΦB̂[n+1])r

[n]
B̂[n+1]‖2 + ‖µ[n]ΦT

B̂[n+1]ΦB̂[n]\B̂[n+1]r
[n]
B̂[n]\B̂[n+1]‖2

+ ‖µ[n]ΦT
B̂[n+1]ε‖2.

(2.28)

It can be verified by using Equation 2.5, Remark 1 and Equation 2.12 that

‖(I − µ[n]ΦB̂[n+1]
TΦB̂[n+1])r

[n]
B̂[n+1]‖2

(1)
≤ γ2s‖r

[n]
B̂[n+1]‖2‖µ[n]ΦT

B̂[n+1]ΦB̂[n]\B̂[n+1]r
[n]
B̂[n]\B̂[n+1]‖2

≤
(
‖µ[n]ΦT

Γ1
ΦB̂[n]\B̂[n+1]r

[n]
B̂[n]\B̂[n+1]‖2

2 + ‖µ[n]ΦT
Γ2

ΦB̂[n]\B̂[n+1]r
[n]
B̂[n]\B̂[n+1]‖2

2
)1/2

(2)
≤
√

2γ2s‖r
[n]
B̂[n]\B̂[n+1]‖2‖µ[n]ΦT

B̂[n+1]ε‖2

(3)
≤ 1 + γ2s

β2s
‖e‖2 +

√
2(1 + γ2s)

[
‖x− xs‖2 −

‖x− xs‖1√
s

]
.

(2.29)

By the orthogonality between r[n]
B̂[n+1] and r[n]

B̂[n]\B̂[n+1] , (2.28) can further be
simplified to

‖a[n+1]
B̂[n+1]−xs

B̂[n+1]‖2|x[n]

≤ 2γ2s‖r[n]‖2 +
1 + γ2s

β2s
‖e‖2 +

√
2(1 + γ2s)

[
‖x− xs‖2 −

‖x− xs‖1√
s

]
.

(2.30)
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Substituting Equation 2.22, Equation 2.25, Equation 2.26, Equation 2.27 and
Equation 2.30 into Equation 2.17, the norm of recovery error is given by

E[‖r[n+1]‖2|r[n]] ≤ 12 max(γ2s, γ̂2s)‖r[n]‖2 + 4 max
(1 + γ2s

β2s
,

1 + γ̂2s

β̂2s

)
‖e‖2

+ 2
√

2(3 max(γ2s, γ̂2s) + 1)
[
‖x− xs‖2 +

‖x− xs‖1√
s

]
+ 2

(1 + γ̂2s)
√

M
β̂2s

(cΦ‖xs‖2
2bΦ−1 +

cy

2by−1

)
(2.31)

Let γ2s, γ̂2s ≤ t. For t ≤ 1/24, we have

E[‖x̂[n+1] − xs‖2|x̂[0] = 0] ≤ 2−n‖xs‖2 +
8.4

min(β2s, β̂2s)
‖e‖2

+ 6.4
[
‖x− xs‖2 +

‖x− xs‖1√
s

]
+

4.2
√

M
β̂2s

(cΦ‖xs‖2
2bΦ−1 +

cy

2by−1

)
and using the following notation:

εs := ‖x− xs‖2 +
‖x− xs‖1√

s
+

1
min(β2s, β̂2s)

||e||2

εq :=

√
M

β̂2s

(
‖cΦxs‖2

2bΦ−1 +
cy

2by−1

)
we finally have

E[‖x̂[n+1] − xs‖2|x̂[0] = 0] ≤ 2−n‖xs‖2 + 9εs + 4.5εq.

Proof of Corollary 2. Inserting n∗ = dlog2(‖xs‖/εs)e into the 2−n‖xs‖ term
in Equation 2.9 yields the result.

Proof of Lemma 1. Assume that ΦΓ has the singular values confined in [α|Γ|, β|Γ|].
Through the perturbation of singular values of a matrix upon corruption of
entries with noise, it is shown that Bernoulli noise, corrupting the entries of
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the matrix independently, lifts up the singular values of the matrix, and at
most by σmax

√
|Γ| where σmax is the maximum of the noise standard devia-

tions (Stewart, 1990; Stewart, 2006; Vaccaro and Kot, 1987). Therefore, singular
values of Φ̂Γ is in [α|Γ|, β|Γ| + σmax

√
|Γ|]. Moreover, we previously showed

that the variance of the quantization noise is at most 1/2b−1, hence we have
σmax = 1/2b−1. Thus, γ̂|Γ| satisfies

γ̂|Γ| ≤ γ|Γ| +

√
|Γ|

2b−1α|Γ|

The above equation guarantees that whenever γ|Γ| + ε ≤ 1/24, for some

ε ≥
√
|Γ|

2b−1α|Γ|
, γ̂|Γ| is guaranteed to be lower than 1/24.

2.5.4 Discussion and Limitations

We now examine the error bound provided by Theorem 4. We note that this
bound is slightly simplified, that is, our proof above is tighter. From there,
we conclude that the RIP condition is scaled by a small factor which lies in
the interval (2, 3) when the measurement matrix is quantized.

The QIHT algorithm is guaranteed to asymptotically provide a sparse ap-
proximation of x up to multiples of εs and εq in the noise term e when
γ2s, γ̂2s ≤ 1/12, and with rate 2−n when γ2s, γ̂2s ≤ 1/24. We refer to Equa-
tion 2.31 for the details of the former. εs is the approximation error when x
is represented by a sparse vector xs, and εq is the noise introduced by the
quantization operator.

condition on γ̂2s Compared to Normalized IHT, the condition under
which the performance guarantee holds is stricter in our approach, i.e.,
γ2s, γ̂2s ≤ 1/24, whereas the standard analysis requires γ2s ≤ 1/8 Theorem 2

for the same rate of convergence. Although it is hard to meet this constraint in
practice, the small scaling factor between the convergence rates suggests that
we can still expect good practical performance in the low precision setting,
similarly to high precision Normalized IHT.
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limitations on β2s and β̂2s In QIHT, the measurement matrix Φ is
scale-invariant, and rigorous theoretical guarantees are achievable provided
its scaling onto sparse vectors is confined in certain intervals, i.e., the RIP

condition.
The recovery error bound satisfying Theorem 4 depends on the error

terms in Equation 2.8, εs and εq, which are inversely proportional to β2s

and β̂2s, respectively. For sufficiently large values, which would compensate
for ‖e‖ and

√
M‖xs‖, the low precision approach appears competitive with

the unmodified algorithm where the recovery error is bounded by 9εs in
Equation 2.6. Furthermore, the scale-invariance property of the measurement
matrix Φ permits us to scale up β2s, and hence β̂2s, retaining a strong recovery
guarantee, similar to that of the full precision algorithm. Scaling Φ has no
effect on the RIP condition.

on the quantization error εq From the definition of εq we infer that
the quantization errors introduced by the low precision measurement matrix
and the measurements individually differ by a scale factor of ‖xs‖ for the
same bit widths. We argue that the approximation error caused by quantizing
the measurement matrix would get smaller as s gets smaller. Moreover, the
scale invariant property of the measurement matrix can enable ‖xs‖ < 1 to
hold, yet can potentially strengthen the effect of noise.

comparison to other state-of-the-art The compressive sensing
literature covers a range of algorithms including `1-minimization and greedy-
and thresholding-based methods, each with its own trade-offs. CoSaMP, nor-
malized IHT and `1-minimization exhibit similar empirical performance
in (Blumensath and Davies, 2010), when applied to the problems with dense
Gaussian matrices. Moreover, after tuning of the step size parameter, nor-
malized IHT is competitive to these powerful methods with similar provable
guarantees (Blumensath et al., 2012). Considering that the performance of
normalized IHT compared to other state-of-the-art methods is already well-
studied in the literature and is superior in most cases, we focus only on
comparing QIHT to the normalized IHT in this work.
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2.6 experimental validation

The goal of this section is to examine the practical performance of our method.
To provide more intuition, we first run synthetic experiments to quantify the
performance gap between QIHT and normalized IHT on a toy example: artifi-
cially generated data where the data points are drawn from i.i.d. Gaussian
distributions. It is shown, for instance in (Baraniuk et al., 2008; Xu, Wang, and
Shim, 2014), that the Gaussian matrices satisfy the RIP with high probability.
The choice of such experimental data therefore helps us to better understand
how the performance gap scales with the reduced number of precision levels,
in a regime where the theoretical conditions do hold.

We then extend our focus to real-world larger-scale problems from ra-
dio astronomy and magnetic resonance imaging. We apply QIHT to (a) the
radio interferometer measurements recorded by a real telescope: the LOw
Frequency ARray (LOFAR)2, and (b) k-space subsamples recorded from the
two-dimensional Fourier domain of a representative brain image. For both ap-
plications, we model the imaging problem in the iterative hard thresholding
framework and demonstrate that the accuracy achieved in the low precision
setting is comparable with the one obtained by high precision solvers. Finally,
we examine the speedups obtained by FPGA and CPU implementations.

2.6.1 Experiments on Synthetic Data

data We draw the entries of Φ ∈ R128×1024, xs ∈ R1024 and e ∈ R128 from
an i.i.d. Gaussian distribution with zero mean and unit variance, N (0, 1),
such that the sparsity of x, i.e., s = | supp(x)|, varies from 4 to 128 in steps of
4. Similar to (Blumensath and Davies, 2010) we compute the recovery error
using different error measures and by averaging over 1,000 realizations of
data.

accuracy We first compare the recovery performance of QIHT to IHT

in the absence of noise, i.e., y = Φx. To quantify the performance gap, we

2 https://www.astron.nl/telescopes/lofar/

https://www.astron.nl/telescopes/lofar/
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(a) Sparse Coefficients∼ N (0, 1)
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(b) Sparse Coefficients=1

Figure 2.3: Recovery error and support recovery of QIHT at different bit precision
levels for (a) Gaussian and (b) unity sparse coefficients.

estimate (a) the recovery error: ‖xn − x‖/‖x‖, and (b) the support recovery,
i.e., the normalized support of x that is successfully recovered. We estimate
the above measures by averaging over 100 realizations of data.

The results shown in Figure 2.3(a) indicate that QIHT can achieve a recovery
performance that is close to the normalized IHT even when as few as 5 bits
are used. As expected, QIHT performs slightly worse when the precision is
too aggresively lowered, for instance, down to bΦ = 4 and by = 4 bits. Yet
the precision levels that preserve the quality of the results still can provide a
significant speed-up in computation time for recovery.

We now consider a case, which is often considered challenging for sparse re-
covery algorithms: when the entries of x are of equal magnitude. We repeated
the above experiment by setting the nonzero entries of x to 1 and demonstrate
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(a) SNR=20 dB
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(b) SNR=15 dB
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(c) SNR=10 dB

Figure 2.4: Recovery error and the support recovery of QIHT at different bit precision
levels and for different amounts of noise corruptions. SNR level is given
by 10 log10 ‖x∗‖2/‖e‖2.

the performance of QIHT at several precision levels in Figure 2.3(b). While
normalized IHT in general seems markedly worse at this setting, QIHT yields
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a performance as good as its high precision variant and the recovery gap
between both methods becomes negligible.

This can be justified as follows: When the data is at low precision, the sparse
coefficients are recovered by repeatedly using a linear transformation that
has only a few number of precision levels, enforcing the sparse coefficients
that are close to each other to be recovered as the similar magnitude. Hence,
when the coefficients are of the same value, the precision of the recovered
values is not important, leading eventually to less recovery error.

robustness to noise In real-life applications, measurements are usually
corrupted by noise. The theoretical bounds of the low precision variant of
the Normalized IHT on recovery error, as given in Equation 2.6, Equation 2.7
and Equation 2.9, suggest that lowering the precision of the input data only
slightly increases the noise sensitivity.

We therefore investigate the influence of lowering the precision on the
recovery performance by corrupting the observations with different levels of
noise. Figure 2.4 demonstrates the performance of QIHT for various levels of
noise corruption, validating our theoretical observations that quantization
does not amplify the effect of noise corruption on the sparse recovery.

Comparison of the normalized IHT to other state-of-the-art methods such as
CoSaMP, `1-minimization for similarly generated artificial data is performed,
for example, in (Blumensath and Davies, 2010; Blumensath et al., 2012). We
defer to these references for further comparison.

2.6.2 Real-World Applications

Motivated by the success of QIHT on artificially generated data, we apply our
framework to two larger scale real-world settings in radio astronomy and
magnetic resonance imaging. The measurement matrix used in the compres-
sive sensing formulation for these applications contains spatial information
on a two-dimensional Fourier space, i.e., relative distances between entries
are induced by the respective sensor locations. Therefore, useful information
in the linear transformation matrix is preserved even when the precision is
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lowered, which results in little loss of visual information for the underlying
image we aim to recover. In the following experiments, we show that this
intuition is indeed correct and confirmed by the good performance of QIHT.

2.6.2.1 Radio Astronomy

We consider a radio astronomy application, in which radio interferometers at
various locations on the ground record radio waves emitted by the celestial
sources over a certain time interval, and then store and process these signals
to deduce a sky image (Högbom, 1974). Interferometers first estimate the
cross-correlation between the time series measurements, called visibilities.
The visibilities correspond to subsamples of a sky map in the Fourier domain
where the sample point is a function of the antenna locations (van Cittert-
Zernike theorem (Taylor and Carilli, 1999)). For the point source recovery
problem, radio interferometry imaging inherently can be formulated as a
sparse signal recovery problem.

The usual strategy to date is to deconvolve the inverse Fourier transform of
visibilities to form a sky map by iteratively removing a fraction of the highest
peak, convolved with an instrument-based point spread function (Högbom,
1974). Moreover, recently, the radio astronomy community has started to
formalize the radio interferometer problems also as compressive sensing (Li,
Cornwell, and Hoog, 2011; Wenger et al., 2010; Wiaux et al., 2009).

The following is a standard formulation of the problem. Assume the sky
is observed by employing L antennas over a stationary time interval where
the earth’s rotation is negligible. Denote the vectorized sky image by x ∈ RN

with N = r2 where r is the resolution of images, i.e., height and width of the
image in pixels.

We formulate the interferometer pipeline as a compressive sensing problem
such that y = Φx + e where Φ ∈ CM×N is the measurement matrix with
complex entries as a function of the inner product between antenna and pixel
locations, y ∈ CM contains the visibilities where M = L2, and e ∈ CM is the
noise vector. In what follows, we derive the measurement matrix Φ from the
baseband representation of interferometric radio signals. We note that the
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baseband representation has been previously derived in this fashion by (Ocal
et al., 2015; Simeoni, 2015).

formation of Φ We begin with the following modeling assumptions (Tay-
lor, Carilli, and Perley, 1999).

(a) Celestial sources are in far field, the series emanating from sources and
captured by the antennas are thus parallel,

(b) Series emitted by celestial sources are narrow band zero mean circularly-
symmetric complex Gaussian processes,

(c) Series originating from different directions in the sky are uncorrelated.

(a) follows from the assumption sources lie on a hypothetical sphere, the
so-called celestial sphere. This implies that we can not measure how far the
sources are.

Let ŝ(t, r) denote the series emitted by the source coming from the direction
r ∈ S2. (b), therefore, implies that ŝ(t, r) ∼ CN (0, I(r)) where I(r) is the
intensity of the source series emanating from direction r. Given the center
frequency f0 ∈ R, (b) yields the following baseband representation of ŝ(t, r)

s(t, r) = ŝ(t, r)ej2π f0t. (2.32)

Note also that E[s(t, r1)s∗(t, r2)] = 0, for all r1, r2 ∈ S2 follows from (c), where
∗ denotes the conjugate operator. The series coming from direction r and
recorded by antenna i is thus given by

xi(t, r) = s(t− τi(r), r). (2.33)

where τi(r) denotes the time delay for the series reaching from the source to
reach at the antenna i. Combining Equation 2.32 and Equation 2.33 we have

xi(t, r) = ŝ(t− τi(r), r)ej2π f0(t−τi(r)). (2.34)
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Above derivations concern merely a specific source. We now focus on the
series measured by the antenna i coming from multiple sources (from all
directions), whose formal expression is given by

xi(t) =
‹

S2

ŝ(t− τi(r), r)ej2π f0(t−τi(r))dr. (2.35)

As correlations between the antenna time-series are of special interest of
imaging, we will have a closer look at the algebraic equations regarding the
correlations. Recall that the source series coming from different directions
in space are uncorrelated. Using this, we have the following closed-form
expression:

E[xi(t)xk(t)∗]

=

‹

S2

E[ŝ(t− τi(r), r)ŝ∗(t− τk(r), r)]e−j2π f0(τi(r)−τk(r))dr (2.36)

where i and k denote different antennas.
By the assumption of (b), the series ŝ(t, r) remain constant over the time

shift we further have

E[xi(t)xk(t)∗] =
‹

S2

I(r)e−j2π f0(τi(r)−τk(r))dr (2.37)

where I(r) denotes the variance of the series emitted from direction r referred
to as sky image. We further have

τi(r) =
1
c
〈rnorm, pi〉 (2.38)

where rnorm = r
‖r‖2

and pi denotes the position of antenna i.
Above relation together with Equation 2.37 gives us that

E[xi(t)xk(t)∗] =
‹

S2

I(r)e−j2π
f0
c 〈rnorm, pi−pk〉dr. (2.39)
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Note that f0
c = 1

λ0
where λ0 is the wavelength of the observation, Equation 2.39

can be further simplified to

E[xi(t)xk(t)∗] =
‹

S2

I(r)e−j2π〈rnorm,
pi−pk

λ0
〉dr (2.40)

so-called measurement equation.
Consider now a specific region of interest centered around r0 and basis

vectors ê1, ê2 and ê3 where ê1 points in the direction of rotation of the earth,
ê3 denotes the direction of r0 and ê2 is perpendicular to ê1 and ê3. r can be
therefore approximated to r ≈ lê1 + mê2 + 1ê3

3. Similarly, pi−pk
λ0

can also be

expressed in terms of the basis vectors, that is, pi−pk
λ0

= ui,kê1 + vi,kê2 + wi,kê3.
Substituting these into Equation 2.40, we get

E[xi(t)x∗k (t)]

=

¨

K⊂R2

I(l, m)
exp

(
−j2π

(
wi,k(
√

1− l2 −m2 − 1) + ui,kl + vi,km
))

√
1− l2 −m2

dl dm
(2.41)

where K is the compact support of I ∈ R2. The above equation is called
tangent plane measurement equation.

As we indicated earlier, FoV is small pointing r0 leading to small values of
l and m. Hence exp(−j2πwi,k)√

1−l2−m2−1
and
√

1− l2 −m2 terms can be assumed to be
constant. Above representation can therefore be further simplified to

E[xi(t)x∗k (t)] =
¨

K⊂R2

I(l, m) exp
(
− j2π(wi,k + ui,kl + vi,km)

)
dldm. (2.42)

Definition 1 (Taylor and Carilli, 1999). The visibility function is defined by
removing the constant phase exp(−j2πwi,k) as follows:

V(u, v) def
=

¨

K⊂R2

I(l, m) exp
(
−j2π(ul + vm)

)
dldm. (2.43)

3 More clearly; (r− r0) + r0 ≈ lê1 + mê2 + 1ê3.
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Therefore, each sample of this function is given by V(ui,k, vi,k) = E[xi(t)x∗k (t)]
the so-called visibility measurement.

Remark that visibility equation is an integration of the product of sky
intensity and a complex exponential over the unit sphere, which can be
represented as a two dimensional Fourier transform. Therefore, visibility
function is equivalent to Fourier transform of the image I(l, m). This relation
is known as van Cittert-Zernike theorem (Taylor, Carilli, and Perley, 1999).
Consequently, the samples of V(u, v) are sufficient information for sky image
recovery where each baseline gives an approximate sample from Fourier
transform of the sky image. This can be mathematically stated as follows.

Vi,k ∼ V(ui,k, vi,k) =

¨

K⊂R2

I(l, m) exp
(
−j2π(ui,kl + vi,km)

)
dldm. (2.44)

Given the visibility equation, we then form a grid of sky map by Il,m ∈ Rr×r

for l, m ∈ {1, 2, ..., r}, where r is the resolution of the map. Let pi,k ∈ R2 denote
the two-dimensional distance between i’th and k’th antenna, and rl,m ∈ R2

stand for two-dimensional position of pixel in l’th row and m’th column of I,
respectively.

Using Equation 2.44, we can approximate the noisy visibilities by

Vi,k = ∑
l,m

Il,m exp
(
−j2π f0〈pi,k, rl,m〉

)
+ δi,kei. (2.45)

where ei denotes the noise in antenna i.

Definition 2. Let A ∈ KM×N be a matrix, with field K. The vec(·) operator
is defined

vec(·) : KM×N → KMN.

Using above definition we can reformulate Equation 2.45 as follows.

y = Φx + e (2.46)
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with y, e ∈ CM, Φ ∈ CM×N and x ∈ RN such that y = vec(V) and x = vec(I).
Finally

Φz,w = e−j2π f0〈pi,k,rl,m〉 (2.47)

where z = i + L(k − 1), i, k = {1, 2, ..., L} and w = l + r(m − 1), l, m =

{1, 2, ..., r}.

experiments We recover a sky image with a resolution of 256 × 256
pixels (x ∈ R65,536 in vectorized form) by employing 30 low-band antennas
of the LOFAR CS302 station that operate in the 15–80 MHz frequency band
and in a Field of View (FoV) of 2 degrees where the sky is populated with
30 strong sources, that is, y ∈ C900, Φ̂ ∈ C900×65,536. We note here that 30

antennas lead to a visibility matrix of size 30×30, i.e., the measurement vector
is of size 900. The Signal-to-Noise-Ratio (SNR) is assumed to be 5 dB at the
antenna level, i.e., 10 log10(‖Φx‖2/‖e‖2) = 5 dB.

Figure 2.5(a) provides an example of sky recoveries: (a) ground truth esti-
mated over 12 hours of observation, (b) a least square estimate of underlying
sky (or dirty image in the nomenclature of radio astronomy), (c) 32 bit and
(d) 2/8 bit QIHT which uses 2 bit for the measurement matrix and 8 bit for
the observation. This experiment indicates that QIHT captures the sky sources
successfully even when only 2 bits are used to compress Φ. Thus, we can
drastically reduce the data precision without significantly degrading the sky
image quality.

This strong empirical performance is not completely surprising. Mathemat-
ically, the measurement matrix we formed here reflects the phase relations
induced by the antenna locations. That is, each time rm,n or cm,n flips its sign
where Φ̂m,n = rm,n + jcm,n, m = 1, 2, ..., M and n = 1, 2, ..., N, the change in
horizontal and vertical directions on the ground enables preserving the phase
information required for interferometric imaging even at very low precision.

We evaluate QIHT through (1) the recovery error, and (2) the support
recovery. In radio astronomy, it is customary to use a number of true celestial
sources resolved in the recovered image as a performance metric, i.e., true-
positive findings. That is, the performance of the algorithms is no longer
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(b) Magnetic Resonance Imaging

Figure 2.5: Illustration of the main results for the radio astronomy and the magnetic
resonance imaging applications. When representing all input data with
low precision, IHT achieves a negligible loss of recovery quality on the
data recorded by (a) LOFAR station CS302 with 2 bit measurement matrix
and 8-bit observation, (b) subsampling k-space measurements (the 2D
Fourier transform) of Magnetic Resonance Imaging (MRI) images with 8

bit measurement matrix and 12 bit observation.

described by its ability to recover support entirely but the sky objects, which
possess higher error tolerance.

Next, in order to bridge the gap between theory and practice, we revisit
the theoretical guarantees and nonsymmetric RIP condition. By definition,
the entries of Φ have unity magnitude. Moreover, when Φ is formed by
using closely located antennas, the phase difference between the entries is
even smaller, which suggests that, compressive sensing problem in radio
inteferometry has the least desirable measurement matrix structure regarding
the performance of `0-minimization methods on such matrices. To understand
if the nonsymmetric RIP, hence the theoretical guarantees, holds for such
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Figure 2.6: Implementation of QIHT on an FPGA-based system (Image credit: Kaan
Kara).

a measurement matrix in practice, we present a related note in the next
paragraph.

a note on the nonsymmetric rip Convergence is straightforward in
low precision setting provided that µ̂[n] is chosen adaptively as indicated by
the update rules of low precision IHT and the normalized IHT (Blumensath
and Davies, 2010). Regarding theoretical performance guarantees, however,
the RIP condition is to be satisfied. Real-life problems usually do not satisfy
the traditional RIP condition ‖Φ‖ < 1. The scale-invariant feature of the
measurement matrix used in normalized IHT however alleviates the RIP issue
and imposes a fairly mild constraint, that is, the non-symmetric RIP. In a
series of papers (Blumensath and Davies, 2010; Blumensath et al., 2012),
CoSaMP is shown to perform markedly worse when the RIP condition fails.
The normalized IHT, however, still preserves its near-optimal recoveries far
beyond the region of RIP. Motivated by this, we apply normalized IHT and
QIHT to real radio telescope data.
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Recall from Theorem 4 the two conditions ensuring performance guar-
antees: (a) β̂2s must be large to minimize the quantization error εq, and (b)
γ2s, γ̂2s ≤ 1/24. The former, (a), can be achieved via rescaling of Φ, whereas
for (b), this approach helps not as α2s and α̂2s will be scaled accordingly by
the same weight. Therefore we need more sophisticated strategies to achieve
this. Fortunately, in the radio astronomy application, we hold a control over
γ2s and γ̂2s via a set of preprocessing applied on Φ, such as changing the
FoV and the set of antennas that are used. We start by forming a grid on
[l, m], l, m ∈ [−d, d] where the sky map is displayed. Given the antenna
locations and d, we can exactly compute Φ. By changing d, γ2s and γ̂2s can be
tuned such that nonsymmetric RIP bounds hold. Yet, the cost of this operation
lies in the meaning of d, that is, d limits the FoV the antennas observe. For
instance, if we drastically increase it to extend FoV without changing the reso-
lution which makes the RIP condition more likely to hold at the same time, we
may no longer observe a sky source in the outer field. Hence, we must tune
d with caution with an objective to set it according to the quality of image.
To overcome the limitation on this, we can benefit from the flexibility we
have on the number and location of antennas, and form Φ in a way that the
nonsymmetric RIP condition holds. That is, the sparsity ratio s/M decreases
with number of antennas. Without loss of generality, a smaller ratio indicates
that the RIP condition is more likely hold. This can be exploited to satisfy
the RIP condition upon setting d. We remark that d In our experiments, we
use 30 low-band antennas and set d = 1 which falls into the practical range
we observed. For d = 1, we note an upper bound on γ2s to be 0.0396 that is
< 1/24. Moreover, using Lemma 4, we find that b can be as low as 2 bits by
still satisfying the nonsymmetric RIP property. In an ablation study where
we set d ∈ [0.2, 10], we observe that an upper bound γ2s is in [0.027, 0.091],
which indicates that the regime of γ2s are small in quantity and hence the RIP

condition is likely to be satisfied.

2.6.2.2 Magnetic Resonance Imaging

Compressive sensing enables faster MRI by acquiring less data through un-
dersampling in the measurement space, hence accelerating the scan time.
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While Nyquist criteria are violated due to the undersampling, the image is still
reconstructed with little or no perceptible loss of visual information, estab-
lished by a substantial body of work, for example (Lustig, Donoho, and Pauly,
2007, 2008). The key ingredient behind this success is that magnetic resonance
images exhibit a sparse representation in a known and fixed mathematical
transform domain, i.e., the wavelet transform domain. A standard strategy
is, therefore, to decode the sparse coefficients based on the undersampled
measurements and store them for later encoding and reconstruction of the
image.

In MRI, the measurements are two-dimensional Fourier coefficients of the
image, the so-called k-space samples. Inverse Fourier reconstruction of the
image from the undersampled k-space data, however, is known to produce
aliasing artifacts. In order to mitigate undersampling artifacts, the compres-
sive sensing algorithm iteratively finds an estimate of sparse coefficients. In
our notation, Φ is formed by Fourier and inverse wavelet transforms and
sampling operator, x has one-dimensional sparse coefficients, and finally, y is
a vector of undersampled k-space data.

The performance of normalized IHT on the Shepp-Logan phantom was previ-
ously studied in (Blumensath and Davies, 2010). Instead, we tested QIHT on a
representative brain image1 of size 512×512 in pixels and compare our results
to the reconstructed image through `1-minimization using the SparseMRI
software4. We subsample k-space data by a factor of 3 using a radial sampling
mask.

The brain image reconstructed by various algorithms depicted in Fig-
ure 2.5(b) reveals that QIHT still yields a similarly good performance as the
normalized IHT and `1-minimization when the bit-widths of the k-space
data and the transformation matrices are lowered down to 8 and 12 bit,
respectively.

While offering accelerated image recovery for MRI, low precision data
representation can potentially reduce the storage required to keep patients
raw data as discussed in (Langer, 2011; Poldrack, Mumford, and Nichols,
2011).

4 Available on http://people.eecs.berkeley.edu/~mlustig/Software

http://people.eecs.berkeley.edu/~mlustig/Software
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2.6.3 Implementation and Performance

We demonstrate the speed-up obtained by performing QIHT in the previous
two applications on both FPGA and CPU when reducing the number of bits
used for the data representation. The tailoring of hardware to accommodate
the QIHT algorithm is not the contribution of the thesis author, but achieve-
ments of the co-authors of (Nezihe Merve Gürel et al., 2020), namely, Kaan
Kara (on FPGA), Alen Stojanov and Tyler Smith (on CPU). We present the
necessary details taken directly from (Nezihe Merve Gürel et al., 2020) below
for the sake of completeness for the reader.

2.6.3.1 FPGA implementation

FPGA are an alternative to commonly used GPU for accelerated processing
of compute-intensive signal processing workloads. The reconfigurable logic
fabric of an FPGA enables the design of custom compute units, that can
be advantageous when working on low-precision and uncommon numeric
formats, such as 2 bit numbers. Thanks to this microarchitectural flexibility, it
is possible to achieve near linear speed-up when lowering the precision of
data that is read from memory. This has been shown recently for Stochastic
Gradient Descent (SGD) when training linear models (Kara et al., 2017; Zhang
et al., 2017). In this work, we use the open-source FPGA implementation5 from
the above mentioned works and modify it to perform QIHT.

In terms of the computation, we modify two parts of the design to convert
it from performing SGD to IHT. First, instead of updating the model after a
mini-batch count is reached, we update it after all samples are processed and
the true gradient is available. Second, after each epoch, we perform a binary
search on the updated model to find the threshold value satisfying that only
top s values are larger than the threshold. The rest of the design stays the
same, including the fixed-point computation, utilized to minimize the usage
of available FPGA resources.

5 https://github.com/fpgasystems/ZipML-PYNQ

https://github.com/fpgasystems/ZipML-PYNQ
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(a) FPGA implementation
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(b) CPU implementation

Figure 2.7: Speed-up on image recovery enabled by QIHT on (a) FPGA and (b) CPU on
real radio telescope data.

fpga performance analysis The gradient computation unit in Fig-
ure 2.6 reads the measurement matrix Φ and the measurements y from the
main memory and keeps x in on-chip memory. We note that transferring Φ

from main memory will be necessary in most practical settings, where the
matrix Φ is too large to fit onto the FPGA. The FPGA is able to consume and
process the data from the memory at a rate of P = 12.8 GB/s. Thus, the per-
formance is bounded by P for processing Φ and y. The time for each iteration
is approximately T = size(Φ)/P, since size(y)� size(Φ). Theoretically, we
can achieve a significant speed-up by using a quantized Φ, simply because
we reduce the amount of data to be consumed by the FPGA: more entries
arrive with each transfer from the main memory. The essential idea behind
achieving linear speed-up is lowering the precision of Φ while keeping P
constant. This is possible, because we can adapt the gradient computation
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Figure 2.8: Speed-up on image recovery enabled by QIHT on (a) FPGA and (b) CPU on
Magnetic Resonance Imaging (MRI) data.

unit’s microarchitecture and increase its internal parallelism to handle more
values per incoming line, thanks to the FPGA’s architectural flexibility.

computing Φ on the fly The above analysis focuses on the case where
Φ is stored in main memory, in which case quantization helps to reduce the
amount of data transferred between the main memory and FPGA. In some
applications, Φ can be calculated on the fly, inside the FPGA. Also in this
case, quantization can help in achieving better performance. The reason is
that quantizing Φ also saves other crucial resources (e.g., multipliers) that are
limited on an FPGA. These resource savings, in turn, enable higher internal
parallelism, for instance, to speed up the computation of Φx. For example, it
has been shown that to increase the dot-product parallelism from 64 to 128

while maintaining the rate of operations per cycle, it is necessary to lower
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the precision of one side of the dot product to 2-bits; otherwise, the resource
consumption is too high to fit the design to one FPGA (Kara et al., 2017).

The performance of the FPGA-based implementation is presented in Fig-
ure 2.7(a) and Figure 2.7(a). For the time spent per iteration, we see that
quantization, and the resulting compression of the measurement matrix Φ

leads to a near linear speed-up for recovering the support vector. All vari-
ants (full precision to lowest precision) of the normalized IHT on FPGA can
consume Φ at the same rate, and therefore the runtime of QIHT depends
linearly on the size of Φ, yielding the linear speed-ups that we observe in
the experiments. In terms of end-to-end performance, we measure the time
needed for each precision level to reach support recovery ratio 90% and
calculate the speed-up. The 2/8 bit QIHT reaches the same support recovery
ratio 9.2× faster.

2.6.3.2 CPU implementation

On a CPU, it is possible to achieve near-linear speedup when reducing the
size of the data representation despite lacking the necessary instructions
to compute with 4, 8, or 16-bit integer operands. This has been previously
demonstrated for both Gradient Descent (GD) and IHT (Stojanov et al., 2018).

In order to perform the low-precision computations on a CPU without
instructions supporting low-precision arithmetic, low-precision data is first
converted to 32-bit floating point. Thus the instructions used to for low-
precision arithmetic are actually less efficient than using single-precision 32-
bit arithmetic. The advantage on a CPU is that the low-precision representation
results in less data movement.

To perform CPU experiments, we build on the implementation Clover
from (Stojanov et al., 2018). The main extension needed was support for
complex arithmetic. The bulk of the computation for both GD and IHT is
dominated by two matrix-vector multiplication operations. The first is a
dense matrix times a sparse vector, and the second a dense matrix times a
dense vector. The former is implemented as a loop around a dot-product
operation for 4 and 8bit and uses the BLAS gemv routine for 32 bit. The latter
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is implemented as a loop around a dense scale and add operation for all three
supported datatypes.

Our CPU implementation uses handwritten code in AVX2 intrinsics and
supports 4-bit, 8-bit, and 32-bit precisions. We use OpenMP to parallelize
our implementation, XORShift to generate random numbers for stochastic
rounding, and the Intel math kernel library (MKL) for the 32 bit matrix-
vector multiplication. We used two different systems for our experiments.
The radio astronomy experiment was run on an Intel Xeon CPU E3-1285L v3

3.10GHz, with 32GB of RAM and 25.6 GB/s bandwidth to main memory,
running Debian GNU/Linux 8 (jessie), kernel 3.16.43-2+deb8u3. The MRI
experiment was run on an Intel Xeon E5-2690 v4 CPU with 512 GB of RAM,
153.6 GB/s bandwidth to main memory, running Ubuntu 16.04.6 LTS with
kernel version 4.4.0-148-generic. We use the Intel icc compiler 17.0.0, Intel
IPP 2017.0.0 (r52494), and Intel MKL 2017.0.0 (Build 20160801). The RDTSC
instruction is used to measure the cycle count for each iteration, and we
report the median. Turbo Boost and Hyper-threading were disabled to avoid
the effects of frequency scaling and resource sharing on the measurements.

We show performance plots for CPU speed-up in Figure 2.7(b) and Fig-
ure 2.7(b). On both data sets, we obtain up to a 2.84× speed-up for the the
8-bit implementation, and 7.1× for the 4 bit implementation, with similar
recovery properties as for FPGA.

2.7 summary

In this part, we focused on the hardware efficiency at the training stage.
By reducing precision of data, we showed that training of compute-intensive
compressive sensing applications can be significantly accelerated on hardware
with no visible loss of image quality. We investigated low precision training
for sparse signal recovery problems with particular focus on the case in which
both the observation vector and the measurement matrix are quantized. As
the main contribution, we introduced a low-precision normalized IHT variant
for stochastically quantized data, QIHT. We derived theoretical guarantees
and demonstrated its practical performance both in terms of accuracy and
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recovery time in two application areas, radio astronomy and MRI, on both
CPU and FPGA.

In what follows in Part ii, we transition our focus to the post-training stage,
and study manual labor demanding task of model selection, where we will
perform selective sampling to reduce the amount of data to label.





Part II

L A B E L E F F I C I E N C Y V I A D ATA S A M P L I N G





3
L A B E L - E F F I C I E N T M O D E L S E L E C T I O N

All models are wrong, but some are useful.

— George E. P. Box (1976)

3.1 overview

Curation of cost-inefficiency through directly reducing the amount of data to
be processed, as natural as it sounds, is highly challenging to automate in
dynamic and uncertain physical world environments. In Part i, we studied
this problem for hardware efficiency by reducing the data size via arithmetic-
level manipulations. In this part, we focus on an another cost demanding
operation across the ML pipeline: manual labeling of data for supervised
learning problems. In particular, we address this for model selection of
pretrained models at the deployment phase, at which the selected model
will be used to make predictions on freshly arriving production data whose
distribution has potentialy shifted away from that of training data.

Depending on the data availability, one can consider two settings: (i) the
pool-based setting assumes that the learner has access to a pool of unlabeled
data, and she can select informative data samples from the pool to achieve her
task, and (ii) the stream-based setting assumes the data is arriving one example
at a time (that is, in a stream), and the learner randomly decides to query the
label of the sample on the go or to just throw it away. While offering fewer
options on which data to label, this setting alleviates the scalability challenge
of storing and processing a large pool of examples in the pool-based setting.
Motivated by this, we focus on a setting where a stream of unlabelled data
examples arrive sequentially from a data source, and query decisions are made
per each example.

65
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Figure 3.1: Overview of the active model selection process in the stream-based setting.
For each incoming instance, a coin is tossed to decide whether to query
the label of that instance or not. Upon exhausting the labeling budget, the
winner model is returned based on previously queried labels (evidence).

We impose no statistical assumptions on the stream — known as the adver-
sarial setting, where an adversary chooses the order of the data points. This
enables us to account for a large coverage of scenarios where the distribution
of production data shifts during the model selection process, in which i.i.d.
assumption is violated.

In the first section of this part, Section 3.2, we focus on active model
selection of pretrained models. We first review and adapt existing active
learning strategies for model selection, and then develop a novel, principled
and efficient model selection approach for the stream setting: Model Picker.
Model Picker sequentially receives unlabelled instances and returns the best
model at any time by requesting only a small portion of labels, therefore
reducing the labelling cost. Our query strategy is randomized and leverages
hypothetical query answers to decide which data examples are likely to be
informative for identifying the best model with no regret for adversarial
streams. To illustrate its benefit, we conduct extensive experiments on a host
of pretrained model collections. Our experimental study establishes Model

Picker as the state-of-the-art for this problem.
In the second section of this part, Section 3.3, we transition our focus from

the selection of pretrained models to building a theoretical understanding
on GCN models with existence of graph decomposition. In particular, we
take the first step towards the theoretical analysis on the impact of graph
decomposition in learning with graphs. We take an information theoretical
view and analyze the infinite-sample behaviour of Shannon’s mutual infor-
mation between the input and output layers. We show that, under certain
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conditions (on the singular values of the graph), mutual information between
the input and output layers of GCN converges to 0 exponentially fast with
respect to the depth, corresponding to the oversmoothing problem of GCN

that is encountered in practice. On the other hand, for GraphCNN (Such et al.,
2017), a variant of GCN with graph decomposition, the oversmoothing occurs
in a much smaller regime of parameters. In the respective section, we will
present our theoretical analysis and illustrate that such a study that focuses
on understanding the role of decomposition can further enable novel graph
decomposition algorithms.

3.2 active model selection

3.2.1 Related Work

Our approach relates to several bodies of literature. For each related area, we
reference similar works that match the objective of our work.

active model selection (Madani, Lizotte, and Greiner, 2012) develop
their method for the online setting. They seek to identify the best model
via probing models, one at a time, with i.i.d. samples, while having a fixed
budget for the number of probes. In contrast, our approach applies even
to adversarial streams and allows one to make predictions online, while
minimizing the number of queries made. Most of other previous works (Ali,
Caruana, and Kapoor, 2014; Gardner et al., 2015; Sawade, Landwehr, and
Scheffer, 2012) and (Katariya, Iyer, and Sarawagi, 2012; Sawade et al., 2010)
and (Kumar and Raj, 2018; Leite and Brazdil, 2010) focus on pool-based
sampling of informative instances, where the learner ranks the entire pool
of unlabeled data and greedily selects the most informative examples. This
setting substantially differs from the streaming setting, and we focus on the
latter for reasons of scalability and applicability to many real-world situations.

active learning Active learning aims to query the label of those in-
stances that help improving the training of classifiers, rather than selecting
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among pre-trained models. Here we review those methods that can poten-
tially be adapted for model selection. The celebrated query-by-committee
(QBC) paradigm (Seung, Opper, and Sompolinsky, 1992) forms a commit-
tee of classifiers to vote on the labeling of incoming examples. The query
decision is made based on the degree of disagreement among the commit-
tee members. The general strategy is to query those instances that help the
learner prune the committee and only keep those classifiers with higher
accuracies. There are other QBC approaches in active learning, such as (Abe
and Mamitsuka, 1998; Cohn, Atlas, and Ladner, 1994; McCallum and Nigam,
1998; Melville and Mooney, 2004a; Settles and Craven, 2008a; Zhu et al., 2007).
One limitation of these algorithms is that they often focus on pool-based
sampling, which limits their scalability. Several other approaches consider
active learning in the streaming setting. The seminal works of (Dasgupta,
Hsu, and Monteleoni, 2008) and (Balcan, Beygelzimer, and Langford, 2009),
followed by (Beygelzimer et al., 2010; Zhang and Chaudhuri, 2014), use
disagreement-based strategies. The idea of using importance weights in ac-
tive learning is studied by a series of works including (Alina, Sanjoy, and
Langford, 2008; Sugiyama, 2006) and (Alina et al., 2011; Bach, 2007), where
importance weights are introduced to correct sampling bias and provide sta-
tistically consistent convergence to the optimal classifier in the PAC learning
setting. All of the above approaches on stream-based active learning focus
on i.i.d. streams and try to improve the supervised training of classifiers,
whereas our approach applies to the more general adversarial streams and
performs no training.

online learning and bandits In the context of online learning, the
closest strategy to ours is label-efficient prediction (Cesa-Bianchi, Lugosi,
and Stoltz, 2005), where they query the label with a fixed probability at
each round, which is simply the passive learning scenario. However, we use
the disagreement among the models predictions to adapt the probability of
querying to the instance at hand. Another line of study that is similar to ours
is consistent online learning (Altschuler and Talwar, 2018; Karimi et al., 2019),
where the learner observes the loss at every round and hopes to optimize the
number of action switches. In a setting like ours, where the goal is to minimize
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the number of queries, we do not request labels in most rounds; hence cannot
compute loss at every round. Finally, in the context of multi-armed bandit,
our framework is related to the EXP3 algorithm (Auer, Cesa-Bianchi, and
Fischer, 2002) for adversarial bandits. While the EXP3 algorithm use the
probability of selecting an arm for making unbiased estimators, we use the
probability of observing the whole loss.

3.2.2 Problem Definition

We consider a setting where we have access to

1. k pretrained models that are ready to be deployed,

2. a set of unlabeled instances that are being freshly collected in a streaming
fashion,

3. a labeling budget b.

Our goal is to develop an active learner that identifies the pretrained model
with the highest accuracy1 on this freshly collected unlabeled data by query-
ing no more than b labels. In a way, we hope to find the pretrained model
that generalizes best on the target distribution at hand by querying the least
number of labels possible.

We define the classification problem on an input space X and output space
Y ∼ {1, 2, . . . , C}. We refer to xi as instances and yi as true labels. As the
instances are collected in a streaming fashion, they arrive one at a time, and
we call each time stamp an instance arrive as round denoted by t. At each
round t, the learner makes a query decision based on how informative it
finds xt to be. This can be simply considered as an adaptive coin flipping
strategy. That is, at every round, the bias is computed in an adaptive fashion
taking the previously queried labels and the disagreement xt creates among
the pretrained models into account towards striking a balance of exploitation
and exploration. Upon querying a total of b labels, the active learner returns
the pretrained model it believes to be the best. An overview of the process is
shown in Figure 3.1.

1 The pretrained model with highest accuracy on the entire stream if all labels were known.
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We moreover list the notation for this section as follows.

k number of pretrained models

C number of classes

b labeling budget

t stream index

xt ∈ X streaming instance at round t

yt ∈ Y true label of xt

zt probability of querying the label of xt

Zt ∈ {0, 1} the query decision at round t

pt,i predicted label of xt by model i ∈ [k] and at round t

pt pt = pt,i=[k]: predicted label of xt by all models at round t

`t,i `t,i = 1{pt,i 6= yt}: Loss of model i at round t

`
(c)
t,i `

(c)
t,i = 1{pt,i 6= c}: Loss of model i at round t if yt = c for c ∈ Y

ˆ̀t,i ˆ̀t,i = 1{pt,i 6= yt}Zt/zt: Loss estimate of model i at round t

Lt,i Lt,i = ∑s∈[t] `s,i: Accumulated loss of model i at round t

L̂t,i L̂t,i = ∑s∈[t] ˆ̀s,iZs/zs: Accumulated loss of model i at round t

πt,i posterior probability of model i at round t

πt πt = πt,i=[k]: posterior probability at round t

3.2.3 Adapting Existing Strategies for Model Selection

We adapt existing selective sampling strategies such as query-by-committee (Ido
and Sean, 1995; Tosh and Dasgupta, 2018), random sampling, and importance
weighted active learning (Alina et al., 2011; Alina, Sanjoy, and Langford, 2008)
for model selection. To select informative instances in a streaming setting,
these methods follow a coin flipping strategy similar to online learning: upon
seeing an instance xt, a coin is flipped with a bias zt, and the label yt is
requested if and only if the coin comes up heads (Zt = 1).

• Passive Learning (Label Efficient Prediction/Random Sampling): We begin with
adapting the passive learning baseline (label-efficient prediction or random
sampling) where the sampling decision is made randomly with a fixed
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sampling probability zt = ε. We restrict our interest merely to the instances
in which at least two models disagree, as otherwise instances are non-
informative in the ranking of models. Given a labeling budget b that is less
than and equal to ∑t∈[T] 1

{
∃i, j ∈ [k] s.t. pt,i 6= pt,j

}
, one can set the query

probability to

zt = b/ ∑
t∈[T]

1

{
∃i, j ∈ [k] s.t. pt,i 6= pt,j

}
(3.1)

where T is the size of streaming instances, and zt = 0 for the rounds that
all models agree. This query probability ensures that z− t ≤ 1 and the
practitioner queries no more than b instances in expectation. Although
some reader might think this approach is trivial, it has shown to be very
powerful in the existence of noise (Settles and Craven, 2008b). We will
illustrate the effectiveness of this generic baseline in Section 3.2.5.

• Query by Committee: Next, we adapt the query-by-committee paradigm
proposed in (Ido and Sean, 1995) for model selection in the streaming
setting. Generally speaking, this strategy aims to measure the information
of instances by forming a committee of classifiers and identifying which
instances creates the largest disagreement among the committee mem-
bers. It consists of two sub-strategies ensemble learning and determining
a maximal disagreement measure. The ensemble learning indicates how
the committee is formed from the candidate classifiers. This step is crucial
to make the disagreement measure more reliable, hence the candidate
classifiers must have high accuracy. In literature, there exist many ensemble
learning methods including (Abe and Mamitsuka, 1998; Breiman, 1996;
Freund and Schapire, 1995; Melville and Mooney, 2004b). Most, if not
all, of these methods are either designed for pool-based sampling or for
cases where observed data is stored. Bagging predictors (Breiman, 1996)
proposes to improve performance of a single predictor by forming a com-
mittee from multiple versions of it, where the versions are trained on the
bootstrap replicates of training data. This is followed by (Abe and Mamit-
suka, 1998) where diverse ensembles are generated using bagging and
boosting techniques (Freund and Schapire, 1995). These strategies focus
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on a setting where the observed data is stored as opposed to our setting.
Another popular ensemble learning algorithm, active-decorate relies on the
existence of artificial training data to form a diverse set of examples. In our
setting, however, we assume neither storing of previously seen data nor
availability of artificial data. In the online setting, luckily, one could benefit
from the strategy introduced in (Freund and Schapire, 1995). Upon seeing
the label yt, the authors propose to update the belief on the models using
the observed loss and a hyperparameter β such that πt ∝ πt−1β`t . We note
that, this update rule very closely resembles that of the structural query
by committee, which we will review next. In fact, it is identical when both
of β are tuned to query budget b amount of label in average over many
realizations.

As for the disagreement measure, popular choices include vote margin, vote
entropy and Kullback-Leibler divergence between the label distributions of
each committee member and the consensus in (Settles and Craven, 2008b).
We note that the latter two are equivalent for 0-1 loss functions `. The
former, vote margin, on the other hand, is measured by the difference
between the votes of most voted and second most voted label. We omit this
methods in our adaptation based on the preliminary observation on the
success of entropy over the vote margin.

For the model selection problem where there are pretrained models and
their predictions on the unlabeled instances, one consider every pretrained
model as a committee member, or simply adapt an ensemble learning
method to shrink it over the streaming rounds t. However, for an arbitrary
set of pretrained models with no additional information than their predic-
tions, there is no principle on how to adaptively update information on the
models ranking.

We consider the query-by-committee paradigm proposed in (Ido and Sean,
1995) and adapt it to the streaming setting as a disagreement-based selective
sampling baseline. We take all pretrained models as committee of models.

Upon seeing each instance xt, we measure the disagreement between the
model predictions pt,i, i ∈ [k] to compute the sampling probability. In our
adaptation, we use vote entropy as the disagreement measure. Formally, at
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each new instance t, we set the sampling probability zt to the normalized
entropy of the committee votes on the labels, that is,

zt =
1

max(log C, log k) ∑
c∈[C]

vt,c log
1

vt,c
, where vt,c :=

1
C ∑

i∈[k]
1{pt,i = c}.

(3.2)

In order to limit the number of the queried instances to at most b, we
introduce a hyperparameter β to scale sampling probability uniformly over
the entire stream such that zt ← ztβ where the value of β depends on the
labeling budget.

• Structural Query by Committee: The (interactive) structural query by commit-
tee algorithm (Tosh and Dasgupta, 2018), aims to minimize the interaction
with the oracle while learning. The algorithm is built upon the query-
by-committee principle, and its sampling probability is specified via the
disagreement between competing structures that are drawn from a pos-
terior distribution πt. After each new query, the posterior is updated as
πt ∝ πt−1 exp(−β`t), where β is a fixed constant.

In our adaptation, at each time instance t, we draw two models i and j
from πt and set the query probability to be the fraction of disagreement
between i and j up to round t, that is zt =

1
t ∑s≤t 1

{
ps,i 6= ps,j

}
. In order

to meet the constraint on the labeling budget, we consider the exponent
β as hyperparameter that can be tuned accordingly. We note that the
strategy introduced in (Freund and Schapire, 1995) very closely resembles
the update rule of the structural query by committee. In fact, it is identical
when both of β are tuned to query budget b amount of label in average
over many realizations.

• Importance Weighted Active Learning: Importance weighted approaches in-
cluding (Alina, Sanjoy, and Langford, 2008; Beygelzimer et al., 2010) and
(Alina et al., 2011) have been shown to achieve substantial improvement in
label complexity when applied to supervised learning problems for binary
classification.
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Formally, given an incoming unlabeled instance xt, these approaches com-
pute a query probability zt based on the maximal disagreement xt creates
among the models in hypothesis class at time t: Ht, and the query proba-
bility is given by zt = maxi,j∈Ht,c∈[C] `

(c)
t,i − `

(c)
t,j . In our setting, we assume

access only to hard predictions, hence use 0-1 loss for `. Our query proba-
bility indicates that the label of xt will be requested if it is in the region of
disagreement of surviving hypothesis at time t.

The update of the hypothesis class at every round is a key step in making
the maximal disagreement measure reliable. To realize this, the algorithm
computes a rejection threshold θt using sample complexity bounds with
θt =

√
(8/t) ln(2t(t + 1)|Ht|2/δ) for some δ, and update the hypothesis space

Ht to contain only the models whose weighted error is θt greater than
weighted error of the current best model at time t. The weight per loss
of each instance is simply set to the reciprocal of the respective query
probability such that ˆ̀t =

Zt
zt
1{pt,i 6= yt} in order to correct for the sampling

bias. In our adaptation, we consider the confidence parameter δ and a
constant scaling of zt for all t as hyperparameters, which can be tuned in
order to keep the number of queries at the end of stream below the labeling
budget.

Among other adaptations of importance sampling variants such as (Alina
et al., 2011), we only focus on the superior one in our empirical evaluation
here and leave the details of other one to the Appendix A.1.2.

Note on the adaptation: In the context of training, the hypothesis space
is being shrunk to contain classifiers with high accuracy despite being
trained with limited data. This method in particular relies on this purpose
using sample complexity bounds and focusing on identifying the decision
boundary. Hence, it is natural for all of the methods listed above to lack
translation to the model selection task.

3.2.4 Model Picker

We now introduce a stream-based active learning algorithm, Model Picker,
whose sole purpose is to query labels to select the best pretrained model
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among many others. Expectedly, Model Picker follows an adaptive strategy
by sequentially querying the labels of those instances it finds informative.
The Model Picker framework is a joint work with Mohammad Reza Karimi,
Andreas Krause and Ce Zhang. From the research question, problem scoping
to the algorithmic details, this framework would not have been possible
without any of these contributors.

3.2.4.1 The Algorithm

In a nutshell, at each round t, Model Picker computes a query probability
zt based on the model predictions pt as well as the posterior belief on the
models πt. Upon computing zt, it makes a random decision via Zt ∼ Ber(zt).
The label yt is requested if and only if Zt = 1. The Model Picker algorithm
then computes a loss estimate of round t such that ˆ̀t = 1{pt,i 6= yt} · Zt/zt,
and updates its posterior belief πt similarly as in the Exponential Weights
algorithm (Littlestone and Warmuth, 1994) using the accumulated loss by
each model up to round t: L̂t = ∑s≤t

ˆ̀s and a decaying learning rate ηt.
Further algorithmic details and remarks are listed below:

• For a careful optimization of exploitation-exploration trade-off, the
formation of query probability zt is required to strike a balance between
the disagreement xt creates among the models (exploration) and the
evidence collected up to round t (exploitation). As the true label of
yt is unknown before the query decision is made, the active learner
has to rely on the hypothetical losses together with the posterior belief.
Model Picker therefore, achieves this by computing the maximum
possible variance of the hypothetical loss over the posterior distribution:
v(pt, πt) = maxc∈Y Vari∼πt(`

c
t,i). That is,

zt =

max{v(pt, πt), ηt} if v(pt, πt) 6= 0

0 otherwise.
(3.3)
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Algorithm 2 Model Picker

Set L̂0,i = 0 for all i ∈ [k]
for t = 1, 2, . . . do

ηt :=
√
(log k)/(2t)

Compute the posterior belief wt over models, with wt ∝ exp{−ηt L̂t−1,i}
Collect predictions pt of models for the incoming instance xt
Compute zt as in Equation 3.3 and sample Zt ∼ Ber(zt)
if Zt = 1 then

Query the label yt
L̂t,i = L̂t−1,i +

1
zt
1{pt,i 6= yt}, ∀i ∈ [k]

else
L̂t,i = L̂t−1,i, ∀i ∈ [k]

end
end

• When there is a disagreement among the models such that v(pt, πt) 6= 0,
the query probability zt is lower bounded so as to prevent unbounded-
ness. Also note that ηt decreases over t.

• The principle behind the choice of zt to be maximum possible variance
is as follows. The amount of regret accumulating due to missing the
update πt to πt+1 (that is, Zt = 0) is shown to be proportional to the
variance of `c

t . Hence, the choice of zt in Equation 3.3 can be seen as
optimizing for the worst-case scenario at each round in the view of regret.

• Using the posterior belief, it is possible to perform label-efficient predic-
tion such that ŷt = pt,i∗t where i∗t := arg maxi∈[k] πt,i.

The Model Picker algorithm is depicted in Algorithm 2.

3.2.4.2 Guarantees

We briefly visit the theoretical guarantees. The following results hold both
for adversarial and stochastic streams. The detailed results can be found
in (Mohammad Reza Karimi, Nezihe Merve Gürel† et al., 2021). The theo-
retical guarantees of Model Picker is conducted by the co-first author of
the respective paper: Mohammad Reza Karimi; not the contribution of the
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thesis author. We briefly review them here for completeness, and refer to the
original paper for the proof and further details.

identification probability For both stream settings, the probability
of misidentifying the true best model decreases nearly exponentially fast with
k exp(−λO(

√
T log k)). This result is very promising for the goal of model

selection and hints on the practical performance of Model Picker in selecting
the best model from the model pool.

accuracy gap At times where Model Picker returns a model other
than the best one, we are interested in the quality of the returned model.
Motivated by this need, we introduce a new metric, accuracy gap, that is the
expected gap between the accuracy of returned model and that of the best
model. Towards establishing the theoretical guarantee on the accuracy gap,
we introduce a term λ that indicates the hardness of an instance. λ is simply
given by λ = minj∈[k]{i∗} δ2

j /θj where δj quantifies the excessive true loss of
jth model over the best model, and θj is the probability that jth model and the
best model disagrees on an instance. Similarly as in the case of identification
probability, Model Picker guarantees to return a model whose accuracy gap,
denoted by ε, satisfies T ≥ Õ(log(1/ε)2/λ2).

regret Finally, we assess the label prediction performance of Model

Picker via its regret. The regret of Model Picker is scaled by O(
√

T log k),
which indicates that the prediction capability of Model Picker is very close
to that of the true best model.

3.2.5 Experimental Validation

We conduct an extensive set of experiments to demonstrate the practical
performance of Model Picker for online model selection and sequential label
prediction. We first run experiments on common data sets where the instances
come i.i.d. from a fixed data distribution. This setting allows us to empirically
assess the performance in the stochastic setting. We then consider a more



78 label-efficient model selection

challenging scenario where examples come from a drifting data distribution,
which we treat as an adversarial stream. For both sets of experiments, we
examine the capability of Model Picker and other adapted active learning
baselines with the same labeling budget, upon having seen the entire stream
of examples.

3.2.5.1 Datasets and Model Collection

We conduct our experiments using various models trained on common
datasets such as the SemEval 2019 dataset (EmoContext) for emotion de-
tection (Semeval-EmoContext 2019) and the long-term gas sensor drift dataset
(Drift) from the UCI ML Repository (Vergara, 2012; Vergara et al., 2012) as
well as on more complex datasets of natural images such as CIFAR-10 and Im-
ageNet. These datasets cover a wide range of scale: CIFAR-10, EmoContext

and Drift are of smaller scale while ImageNet is a large scale dataset. Each
dataset consists of a large test set (which we later use to construct streams of
examples) and (possibly multiple) training sets. For each dataset, we collect a
collection of pretrained models by training various models on the training
sets. For CIFAR-10, we trained 80 classifiers varying in model, architecture,
and parameter settings available on Pytorch Hub2. The ensemble contains
models having accuracies between 55-92% on a test set consisting of 10 000

CIFAR-10 images. The ImageNet dataset poses a 1,000-class classification
problem. We collected 102 image classifiers that are available on TensorFlow
Hub3. The accuracy of these models is in the range 50-82%. For the test set,
we use the whole official test set with 50,000 images. For the EmoContext

dataset, we collected 8 pretrained models that are the development history of
a participant in SemEval 2019. The accuracy of the models varies in 88-92%
on a test set of size 5,509. Lastly, for the Drift dataset, we trained an SVM
classifier on each of 9 batches of gas sensor data that were measured in
different months. We use the last batch as a test set, which is of size 3,000.
Due to the drift behaviour of sensor data among different time intervals, the
accuracy of the models on the test set is relatively low, and lies in 25-60%.

2 https://pytorch.org/hub/
3 https://tfhub.dev/

https://pytorch.org/hub/
https://tfhub.dev/
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Table 3.1: Characteristics of the datasets and model collections
Dataset Number of Classes Number of Instances Number of Models Accuracy of Models
CIFAR-10 10 10 000 80 55-92%
ImageNet 1 000 50 000 102 50-80%
Drift 6 3 000 9 26-65%
EmoContext 4 5 509 8 88-92%

3.2.5.2 Baselines

To compare with existing active learning strategies, we implement the strate-
gies that we adapted in Section 3.2.3. These are variations of QBC, namely, vote
entropy (Entropy) and structural QBC (S-QBC) as well as label efficient pre-
diction (Efficient) and importance weighted active learning (Importance).
It is crucial to note that none of the methods above are tailored for the task
of ranking pretrained models and (except for (Cesa-Bianchi, Lugosi, and Stoltz,
2005)) for sequential label prediction.

3.2.5.3 Experimental Setup

evaluation protocol and tuning For a fair comparison, we focus
on the following protocol. In order to mimic the streaming setting, we se-
quentially draw n i.i.d. instances uniformly at random from the entire pool
of test instances, then input it into each algorithm as a stream, and call it a
realization.

In each realization, the pretrained model with the highest accuracy on that
stream (considering all labels) is denoted as the true best model of the realiza-
tion. For each realization, at time t, we declare the winner of Model Picker

as i(t) = arg max πt,i and of other methods as i(t) = arg mini∈[k] ∑s≤t Zs

1{ps,i 6= ys} where Zs indicates if at time s is queried. Upon exhausting the
stream (t = n), we evaluate the performance of each method based on the
model that is output. We realize this process many times to have an estimate
of the expected performance.

We index realizations by r and declare the model with the highest ac-
curacy as the true winner of the stream, and denote it by i∗r , that is, i∗r =

arg maxi∈[k] acc(i) where acc(i) = 1
n ∑t∈[n] 1{pt,i = yt}.
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Figure 3.2: Histograms of model accuracies on each dataset.

For comparing the methods under the same budget constraint, we tune the
(hyper-)parameter of each method to query the same number of instances,
and compare their average performance under various labeling budgets. For
Structural QBC, we treat β (in the posterior) as the hyperparameter. For
QBC with vote entropy, importance weighted active learning and Model

Picker, we introduce a hyperparameter β to scale the query probability ac-
cording to the given labeling budget. Note that by default, Model Picker

needs no hyperparameters, and we introduce β for the sole reason of fair
comparison with other methods. We perform hyperparameter selection via
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a grid search. The hyperparameters used for each budget, together with a
large range of hyperparameters and their respective budgets can be found in
Appendix A.1.1.

performance metrics . Recall that i∗r denotes the true winner of the
realization r ∈ [R], and we define ir|b be the respective winner declared by
a method for a labeling budget b. For any round t, we further denote the
winner of realization r for budget b up to round t by ir(t)|b.

For a given labeling budget b, we consider the following key quantities as
performance measures:

identification probability. The fraction of realizations that methods
identify the true best model, computed as 1

R ∑r∈[R] 1{ir = i∗r |b}.

accuracy gap. The accuracy gap between the returned model and the
true best model, acc(i∗r |b)− acc(ir|b). We report both the average accuracy gap
and the 90th %-tile accuracy gap over all R realizations.

regret. The expected regret of the algorithm considered as 1
R ∑r∈[R]

regret(ir(t)|b) where regret(ir(t)|b) is set to the difference between the accu-
mulated loss of returned winner and true winner, up to round t. That is,
regret(ir(t)|b) = ∑s≤t 1

{
ps,ir(s) 6= ys|b

}
− 1

{
ps,i∗r 6= ys

}
.

scaling and computation cost. We conduct our experiments on
different stream sizes. We choose sizes of 5 000, 10 000, 1 000 and 2 500 for
CIFAR-10, ImageNet, EmoContext and Drift test sets, respectively. We im-
plement Model Picker, along with all other baseline methods in Python. All
the baseline methods combined, each realization takes between 1 second (for
EmoContext) and 4 minutes (for ImageNet) when executed on a single CPU

core. Model Picker alone takes between 75 miliseconds (for EmoContext)
and 47 seconds (for ImageNet). For all datasets we run 500 independent
realizations for each budget constraint. To improve the overall runtime, we
run the realizations in parallel over a cluster with 400 cores.
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b = 250 b = 500 b = 750 b = 1000 b = 1250 b = 1500 b = 2000 b = 2500

M-pick 0.59 0.76 0.86 0.96 0.99 1 1 1

Entropy 0.62 0.72 0.81 0.87 0.9 0.91 0.95 0.95

S-QBC 0.47 0.58 0.63 0.7 0.71 0.72 0.79 0.83

Efficient 0.5 0.6 0.62 0.67 0.74 0.75 0.82 0.83

Importance 0.52 0.63 0.64 0.69 0.72 0.78 0.81 0.85
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Figure 3.3: Comparison of identification probabilities for various labeling budgets
on CIFAR-10

3.2.5.4 Experimental Results

We investigate the capability of Model Picker as well as other adapted
baselines on model selection, using the true best model as the reference point.
For each of our metrics introduced earlier, we observe the following:

identification probability As illustrated in Figure 3.3 to Figure 3.6,
Model Picker achieves significant improvements of up to 2.6× in labeling
cost while returning the true best model and requesting far fewer labels
than other adapted methods. For CIFAR-10, ImageNet, Drift and EmoCon-
text datasets, Model Picker queries 2.5×, 2×, 1.5× and 1.18× fewer labels
respectively than that of the best competing method (mainly Entropy) to
reach confidence levels 96%, 97%, 94% and 84%, respectively. This shows that
Model Picker is able to achieve the same identification power as the adapted
baselines at a much lower labeling cost.

accuracy gap Next, we consider the average accuracy gap over the
realizations. Figure 3.7 to Figure 3.10 show that the accuracy gaps for Model
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b = 600 b = 900 b = 1200 b = 1500 b = 1750 b = 2000 b = 2250 b = 2500 b = 3000 b = 4000

M-pick 0.75 0.84 0.89 0.93 0.95 0.97 0.98 0.98 0.99 0.99

Entropy 0.65 0.70 0.73 0.80 0.85 0.88 0.90 0.92 0.94 0.97

S-QBC 0.44 0.53 0.58 0.64 0.68 0.69 0.74 0.75 0.80 0.80

Efficient 0.46 0.51 0.58 0.65 0.67 0.71 0.75 0.75 0.77 0.86

Importance 0.49 0.53 0.59 0.63 0.68 0.74 0.73 0.78 0.79 0.88
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Figure 3.4: Comparison of identification probabilities for various labeling budgets
on ImageNet

b = 100 b = 200 b = 300 b = 400 b = 500 b = 600 b = 700 b = 800 b = 900 b = 1000

M-pick 0.74 0.94 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00

Entropy 0.56 0.60 0.65 0.66 0.68 0.72 0.74 0.75 0.79 0.79

S-QBC 0.79 0.89 0.94 0.97 0.98 0.99 1.00 1.00 1.00 1.00

Efficient 0.78 0.90 0.95 0.97 0.99 0.99 0.99 1.00 1.00 1.00

Importance 0.72 0.86 0.91 0.96 0.99 0.99 1.00 1.00 1.00 1.00
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Figure 3.5: Comparison of identification probabilities for various labeling budgets
on Drift

Picker are much smaller than that of other adapted methods under the same
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b = 30 b = 50 b = 70 b = 90 b = 110 b = 130 b = 150 b = 170

M-pick 0.48 0.60 0.68 0.76 0.84 0.93 1.00 1.00

Entropy 0.44 0.56 0.66 0.70 0.77 0.84 0.91 0.99

S-QBC 0.43 0.56 0.63 0.69 0.74 0.83 0.87 0.87

Efficient 0.47 0.54 0.63 0.69 0.75 0.83 0.89 0.99

Importance 0.44 0.56 0.63 0.68 0.75 0.83 0.89 0.99
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Figure 3.6: Comparison of identification probabilities for various labeling budgets
on EmoContext

budget constraints. Quantitatively, in both CIFAR-10 and ImageNet datasets,
Model Picker achieves the same expected accuracy gap as Entropy by
querying nearly 2.5× less labels. For the Drift dataset, for instance, Model

Picker returns a model that is within a 0.3%-neighborhood of the accuracy
of best model after querying merely 12% of the entire stream of examples
(when the budget is 300 for a stream of size 2 500). Note that active learning
over drifting data distribution is a very challenging task, and Efficient

(Label Efficient Prediction/Passive Learning) is considered the strongest
baseline (Settles, 2009). Our experiments thus suggest that, even for small
labeling budgets, Model Picker returns a model whose accuracy is close to
that of the best model, if not the best model itself.

on the robustness of model picker Practitioners are often inter-
ested in the relative quality of the output model compared to the true best
model in a single trial. We conduct further numerical analysis on the accuracy
of the outputted models over a large number of realizations to investigate if
Model Picker performs well with high probability. We compute the 90th per-
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b = 250 b = 500 b = 750 b = 1000 b = 1250 b = 1500 b = 2000 b = 2500

M-pick 0.26 0.08 0.03 0.00 0.00 0.00 0.00 0.00

Entropy 0.30 0.13 0.07 0.04 0.03 0.02 0.01 0.00

S-QBC 0.52 0.27 0.17 0.12 0.11 0.10 0.06 0.04

Efficient 0.50 0.23 0.18 0.13 0.09 0.09 0.06 0.04

Importance 0.45 0.23 0.17 0.13 0.10 0.08 0.06 0.04
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Figure 3.7: Comparison of accuracy gaps for various labeling budgets on CIFAR-10

b = 600 b = 900 b = 1200 b = 1500 b = 1750 b = 2000 b = 2250 b = 2500 b = 3000 b = 4000

M-pick 0.16 0.06 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Entropy 0.24 0.19 0.15 0.09 0.06 0.05 0.04 0.03 0.02 0.00

S-QBC 0.47 0.32 0.24 0.20 0.15 0.14 0.12 0.11 0.07 0.07

Efficient 0.40 0.36 0.27 0.21 0.18 0.13 0.11 0.11 0.09 0.04

Importance 0.42 0.37 0.28 0.20 0.19 0.12 0.12 0.11 0.10 0.05
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Figure 3.8: Comparison of accuracy gaps for various labeling budgets on ImageNet

centile of accuracy gap as a proxy for the behaviour of the algorithms in the
high probability regime (see Figure 3.11 to Figure 3.14). In the Drift dataset,
for instance, Model Picker returns the true best model after querying merely
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b = 100 b = 200 b = 300 b = 400 b = 500 b = 600 b = 700 b = 800 b = 900 b = 1000

M-pick 1.98 0.38 0.09 0.03 0.00 0.00 0.00 0.00 0.00 0.00

Entropy 2.80 2.47 2.09 2.06 1.94 1.69 1.50 1.45 1.25 1.19

S-QBC 1.65 0.68 0.34 0.20 0.10 0.04 0.02 0.02 0.00 0.00

Efficient 1.54 0.67 0.32 0.15 0.07 0.05 0.03 0.01 0.00 0.00

Importance 2.24 1.15 0.66 0.23 0.09 0.06 0.03 0.02 0.01 0.00
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Figure 3.9: Comparison of accuracy gaps for various labeling budgets on Drift

b = 30 b = 50 b = 70 b = 90 b = 110 b = 130 b = 150 b = 170

M-pick 0.41 0.20 0.12 0.07 0.03 0.01 0.00 0.00

Entropy 0.51 0.30 0.16 0.11 0.06 0.03 0.01 0.00

S-QBC 0.54 0.29 0.18 0.11 0.08 0.04 0.02 0.02

Efficient 0.48 0.30 0.19 0.11 0.08 0.04 0.02 0.00

Importance 0.47 0.28 0.18 0.12 0.07 0.04 0.02 0.00
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Figure 3.10: Comparison of accuracy gaps for various labeling budgets on EmoCon-
text

8% of the labels (when the budget is 200 with a stream size of 2 500). For the
CIFAR-10 and ImageNet datasets, Model Picker returns the true best model
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b = 250 b = 500 b = 750 b = 1000 b = 1250 b = 1500 b = 2000 b = 2500

M-pick 0.48 0.22 0.04 0.00 0.00 0.00 0.00 0.00

Entropy 1.00 0.48 0.28 0.08 0.02 0.00 0.00 0.00

S-QBC 1.44 0.80 0.58 0.48 0.46 0.40 0.28 0.16

Efficient 1.42 0.70 0.58 0.50 0.40 0.38 0.24 0.16

Importance 1.32 0.66 0.60 0.54 0.42 0.30 0.24 0.14
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Figure 3.11: Comparison of 90th %-tile gaps for various labeling budgets on CIFAR-
10

after querying respectively 20% and 15% of the entire stream of examples
whereas the best competing method achieves this after querying 30% and
25% of the same stream of examples, respectively. These results demonstrate
that Model Picker outputs nearly the best model if not the best.

regret We measure the regret across all rounds and for those budgets
where Model Picker returns the best model with high confidence. Namely,
we set the budget to 1 250, 1 200, 130 and 1 000 for the CIFAR-10, ImageNet,
EmoContext and Drift datasets, respectively. The regret behaviour is shown
in Figure 3.15. In all cases, the regret grows sub-linearly for all algorithms.
The regret of our algorithm in all cases is smaller up to a factor of 1.3×, which
shows that Model Picker can be used for sequential label prediction tasks as
well as model selection.
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b = 600 b = 900 b = 1200 b = 1500 b = 1750 b = 2000 b = 2250 b = 2500 b = 3000 b = 4000

M-pick 0.47 0.19 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Entropy 0.95 0.81 0.70 0.43 0.14 0.10 0.02 0.00 0.00 0.00

S-QBC 1.29 1.03 0.80 0.76 0.59 0.51 0.47 0.44 0.32 0.30

Efficient 1.13 1.06 0.92 0.86 0.75 0.55 0.46 0.42 0.36 0.13

Importance 1.32 1.16 1.00 0.85 0.73 0.50 0.46 0.46 0.44 0.21

0.0

0.5

1.0

1.5
90

th
%

-t
ile

 g
ap

 (%
)

Labeling budget, b

ImageNet

M-pick Entropy S-QBC Efficient Importance

Figure 3.12: Comparison of 90th %-tile gaps for various labeling budgets on Ima-
geNet

b = 100 b = 200 b = 300 b = 400 b = 500 b = 600 b = 700 b = 800 b = 900 b = 1000

M-pick 6.68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Entropy 6.88 6.64 6.48 6.44 6.36 6.24 6.08 6.00 5.88 5.76

S-QBC 6.52 4.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Efficient 6.40 4.68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Importance 7.04 5.88 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Figure 3.13: Comparison of 90th %-tile gaps for various labeling budgets on Drift
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b = 30 b = 50 b = 70 b = 90 b = 110 b = 130 b = 150 b = 170

M-pick 1.30 0.70 0.40 0.30 0.10 0.00 0.00 0.00

Entropy 1.70 1.00 0.51 0.40 0.20 0.10 0.00 0.00

S-QBC 1.70 1.00 0.60 0.40 0.30 0.20 0.10 0.10

Efficient 1.50 1.00 0.60 0.40 0.30 0.20 0.10 0.00

Importance 1.50 0.90 0.60 0.40 0.30 0.20 0.10 0.00
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Figure 3.14: Comparison of 90th %-tile gaps for various labeling budgets on Emo-
Context

3.3 oversmoothing in graph neural networks

3.3.1 Related Work

Applying deep neural networks to graphs has attracted intense interest
in recent years. Motivated by the success of Convolutional Neural Net-
works (CNN) (Krizhevsky, Sutskever, and Hinton, 2012), Spectral CNN (Bruna
et al., 2013) models the filters as learnable parameters based on the spectrum
of the graph Laplacian. ChebNet (Defferrard, Bresson, and Vandergheynst,
2016) reduces computation complexity by approximating the filter with
Chebyshev polynomials of the diagonal matrix of eigenvalues; Graph Convo-
lutional Networks (GCN) (Kipf and Welling, 2016b) go further, introducing
a first-order approximation of ChebNet and making several simplifications.
GCN and its variants have been widely applied in various graph-related
applications, including semantic relationship recognition (Xu et al., 2017),
graph-to-sequence learning (Beck, Haffari, and Cohn, 2018), traffic forecast-
ing (Li et al., 2017) and molecule classification (Such et al., 2017).



90 label-efficient model selectionIdentification probability vs. time

0

20

40

60

80

0 2000 4000 6000 8000 10000

R
eg

re
t

Streaming instances, t

ImageNet
M-Picker
Entropy
S-QBC
Efficient
Importance

0

10

20

30

0 1000 2000 3000 4000 5000

R
eg

re
t

Streaming instances, t

CIFAR-10
M-Picker
Entropy
S-QBC
Efficient
Importance

(a) CIFAR-10 and ImageNet datasets

0

20

40

60

0 500 1000 1500 2000 2500

R
eg

re
t

Streaming instances, t

Drift
M-Picker

Entropy

S-QBC

Efficient

Importance

0

2

4

6

0 250 500 750 1000

R
eg

re
t

Streaming instances, t

EmoContext

M-Picker

Entropy

S-QBC

Efficient
Importance

(b) Drift and EmoContext datasets

Figure 3.15: Comparison of regret throughout the data stream (for a fixed budget)
on different datasets

GCN and its variants have achieved promising results on various graph
applications, while one limitation of GCN is that its performance would not
improve with the increase of network depths. For instance, (Kipf and Welling,
2017) show that a two-layer GCN would achieve the best performance on a
classic graph dataset while stacking more layers cannot help to improve the
performance. Several studies have been conducted (Wu et al., 2019b; Zhou et
al., 2018) trying to figure out the reasons behind the depth limitation and pro-
vide workarounds. (Wu et al., 2019a) hypothesizes that nonlinearity between
GCN layers is not critical, which essentially implies that the deep GCN model
lacks sufficient expressive ability since it is a linear model. DropEdge (Rong
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et al., 2019) aims to address the oversmoothing problem by randomly remov-
ing some edges from the graph. There is also a rising interest in deepening
GCN by utilizing some techniques that are used to build deeper CNN architec-
tures (e.g., ResGCN (Kipf and Welling, 2017), DenseGCN (Li et al., 2019b),
JK-Net (Xu et al., 2018)). However, these lacks of evidence showing whether
these techniques are helpful to improve the performance of general Graph
Neural Networks (GNN).

To further understand this phenomenon in GCN, (Li, Han, and Wu, 2018)
shows that GCN is a special form of Laplacian smoothing, and they prove
that, under certain conditions, by repeatedly applying Laplacian smoothing
many times, the features of vertices within each connected component of
the graph will converge to the same value. Therefore, the oversmoothing
property of GCN will make the features indistinguishable and thus hurt the
classification accuracy. (Oono and Suzuki, 2019) conducts more engaged
theoretical analysis. The goal of this work is to go beyond the analysis of
oversmoothing, instead, we to analyze how graph decomposition can help
and propose practical algorithms inspired by our analysis.

In addition, GMI (Zhen et al., 2020) proposes to maximize the correlation
between input graphs and high-level hidden representations; and improves
the performance on both transductive and inductive tasks. Compared with
these work, we aim to develop the theoretic analysis to explain the information
loss in GNN directly from the information theoretic perspective. Our work also
builds on GraphCNN (Such et al., 2017), which consists of multiple adjacency
matrices. As shown by (Such et al., 2017), this formulation is more expressive
than CNN. In this work, we focus on providing a novel empirical study and
theoretical analysis to understand the behavior of GCN and the power of
graph decomposition, which in turn inspires a connectivity-aware graph
decomposition method for general graph-structured data.

3.3.2 Motivation and Problem Definition

The success of state-of-the-art CNN go well beyond having multiple convolu-
tional layers. Many optimization techniques such as stride, skip connection
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and pooling are proposed by the computer vision community over the past
years to maximize the accuracy of the network. These techniques have also
been shown to be beneficial for GCN, for instance, by (Li et al., 2019b). Al-
though it is established by the prior work that a deep GraphCNN can match
the accuracy of state-of-the-art CNN whereas a deep GCN cannot benefit from
deep architectures, it yet remains to be an open question whether GCN can
ever match the accuracy of GraphCNN when all such optimization techniques
are used. As we aim to understand the role of decomposition in GraphCNN, in
this section, we conduct an empirical study comparing GCN to GraphCNN and
CNN when they are fully capacitated by such techniques. Our inherent goal
is to understand if the graph decomposition employed by GraphCNN is a step
whose impact cannot be offset or not. This will later motivate our theoretical
analysis on the impact of decomposition.

We take the CIFAR-10 dataset and construct an equivalent graphical rep-
resentation of the images. We treat each pixel as one node in the graph and
the surrounding pixels in 9 directions (including itself) as neighboring nodes
to mimic the behavior of a 3× 3 convolution. The dataset consists of 60,000

images of 32×32 pixels with RGB channels: in the graphical representation,
each image corresponds to a graph with 1,024 (32×32) vertices, each of which
connects to the 8 neighbors plus a self-connection.

In a nutshell, we compare GCN to GraphCNN and CNN. The architecture of
CNN (Krizhevsky, Sutskever, and Hinton, 2012) is stacked by 3×3 convolution
layers. The input channel of the first layer is 3 (including RGB) and the output
channel is set as 128. All the input and output channels of the succeeding
convolution layers are 128. As for GCN (Kipf and Welling, 2016b), we treat
all edges in the graph equally and leverage a similar network architecture
as CNN. The only difference is that we replace each 3×3 convolution layer
with a GCN layer. Finally, for GraphCNN (Such et al., 2017), we replace each
convolution layer with a GraphCNN layer, which is decomposed as illustrated
in Figure 3.16. Specifically, we decompose the adjancency matrix A into 9

submatrices A1, A2, . . . , A9. For two arbitrary pixels (i′, j′) and (m, n), we set
the edges e(p, q, m, n) = 1 of each submatrix Ai when the following equation
holds; otherwise the corresponding edges are set as zero in that matrix: (1)
p = q and m = n; (2) p + 1 = q and m = n; (3) p = q + 1 and m = n; (4)
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Models GCN GraphCNN CNN

(Train, Test Acc) (Train, Test Acc) (Train, Test Acc)
1 Layer 46.4%, 48.8% 69.4%, 66.1 % 66.7%, 68.3%
2 Layer 47.1%, 49.8% 81.1%, 80.6% 81.7%, 82.7%
5 Layer 56.9%, 57.0% 97.2%, 89,9% 93.7%, 86.6%
9 Layer 56.7%, 57.1% 99.0%, 90.3% 99.7%, 89.7%
13 Layer 56.8%, 56.9% 99.6%, 90.0% 99.04%, 87.8%
17 Layer 56.8%, 56.2% 99.1%, 88.6% 99.6%, 88.6%

Table 3.2: Comparison of GCN to GraphCNN and CNN at various depths (original
setting)

p = q and m + 1 = n; (5) p = q and m = n + 1; (6) p + 1 = q and m + 1 = n;
(7) p + 1 = q and m = n + 1; (8) p = q + 1 and m + 1 = n; (9) p = q + 1 and
m = n + 1.

For each of these three architectures, we experiment with four different
techniques. Namely, original setting where we apply convolution or graph
convolution operations in each layer with stride = 1 and without skip connec-
tions; stride setting where the stride of each layer is aligned with ResNet-18;
stride+skip setting where we add skip connections between the correspond-
ing layers (that is, 1st → 3rd, 3rd → 5th, 5th → 7th, 7rd → 9th, 9rd → 11th,
11st → 13rd, 13rd → 15th, 15rd → 17th) following the standard architecture of
ResNet-18 and stride+skip+pooling with average pooling on the top of stride
and skip connections.

The performance of CNN, GCN and GraphCNN are listed for various settings
and various depths in Table 3.2, Table 3.3, Table 3.4 and Table 3.5. Generally
speaking, the accuracy of the different architectures improve with addition
of different techniques. This can be observed by having a closer look at the
accuracy over different settings and for the same architecture and depth
thereof. Another observation we have is that the performance of GCN changes
inconsistently with number of layers. For example, it degrades in the stride
setting as shown in Table 3.3 whereas it has a slight improvement in other
settings. Moreover, the performance of GCN seems to be far from that of
GraphCNN and CNN for large number of layers despite the use of existing
techniques. These results indicate that the decomposition, or lack thereof,
plays a crucial role in deep learning with graphs.
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(c) Node decompose

(d) Edge decompose

(e) Connectivity-aware decompose

(b) GraphCNN Layer
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(d) Edge decompose
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Figure 3.16: Illustration of one layer in GCN and one layer under one decomposition
strategy in GraphCNN. A is the adjacency matrix, X is the input, and W
(Wi) are learnable weights. In GraphCNN, A = ∑i Ai and each entry of Ai
is distinct from the respective entry of Aj for i 6= j. In our experiments
and analysis, we follow the original normalized A in GCN (Kipf and
Welling, 2017)

Models GCN GraphCNN CNN

(Train, Test Acc) (Train, Test Acc) (Train, Test Acc)
5 Layer 54.9%, 56.0% 97.3%, 89.0% 99.4%, 89.0%
9 Layer 63.8%, 60.2% 99.8%, 91.9% 99.6%, 91.4%
13 Layer 82.1%, 57.8% 99.9%, 92.9% 100%, 93.1%
17 Layer 88.9%, 53.1% 99.9%, 93.1% 100%, 93.1%

Table 3.3: Comparison of GCN to GraphCNN and CNN at various depths (stride setting)

So far, we observe that the depth of the network brings substantial im-
provement when the graph decomposition is employed by the network. One
question still lingers as to what is a good decomposition strategy? To briefly in-
vestigate whether the decomposition strategy itself affect the performance of
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Models GCN GraphCNN CNN

(Train, Test Acc) (Train, Test Acc) (Train, Test Acc)
5 Layer 59.1%, 58.8% 99.8%, 89.9% 99.5%, 88.7%
9 Layer 65.8%, 63.0% 100%, 93.2% 99.9%, 91.0%
13 Layer 73.5%, 64.4% 100%, 94.3% 100%, 93.0%
17 Layer 80.0%, 63.5% 100%, 94.5% 100%, 93.2%

Table 3.4: Comparison of GCN to GraphCNN and CNN at various depths (stride+skip
setting)

Models GCN GraphCNN CNN

(Train, Test Acc) (Train, Test Acc) (Train, Test Acc)
5 Layer 64.7%, 63.7% 97.2%, 89.2% 99.5%, 88.7%
9 Layer 81.4%, 72.0% 99.8%, 92.1% 99.9%, 91.9%
13 Layer 90.5%, 74.7% 99.9%, 93.1% 100%, 92.9%
17 Layer 94.0%, 72.8% 99.9%, 93.2% 100%, 93.2%

Table 3.5: Comparison of GCN to GraphCNN and CNN at various depths
(stride+skip+pooling setting)

Setting GCN GraphCNN GraphCNN (random #1, #2, #3)
(Train, Test Acc) (Train, Test Acc) (Train, Test Acc)

original 56.8%, 56.2% 99.1%, 88.6% 69.3%, 67.7% 67.5%, 67.1% 68.3%, 68.0%
stride 88.9%, 53.1% 99.9%, 93.1% 96.1%, 74.9% 96.8%, 76.3% 97.2%, 75.0%
stride+skip 80.0%, 63.5% 100%, 94.5% 98.5%, 83.9% 99.0%, 84.8% 98.8%, 84.1%
stride+skip+pooling 94.0%, 72.8 % 99.9%, 93.2 % 97.1%, 83.6% 97.4%, 84.4% 96.9%, 83.5%

Table 3.6: Comparison of GraphCNNs with three different random decompositions
using 17-layer architectures

GraphCNN or not, we evaluate GraphCNN under three random decomposition
strategies and a GraphCNN decomposed by a human prior. The results are
illustrated in Table 3.6. We observe that the test accuracy of decompositions
varies significantly under the same conditions, indicating that the choice of
decomposition strategy is decisive of the performance.

Although answering “How does a different decomposition strategy impact the
accuracy?” is beyond the scope of our work presented here, we believe that
understanding the role of decomposition itself is a first step taken at it. Then
the question arises as to How decomposition helps? To answer this, we propose to
monitor Mutual Information (MI) between the output after l GCN/GraphCNN

layers and their inputs.
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Figure 3.17: (a) The neural network architecture that illustrates the Mutual Infor-
mation (MI) decay after three GCN layers or three GraphCNN layers. In-
tuitively, the decoder estimates the MI in a similar way as MINE. (b/c)
Reconstructions of test images from the output after 3 GCN/GraphCNN
layers. The first row is the input images and the second row is the output
images of the decoder.

As a preliminary, we perform a numerical study where we empirically
measure MI between input and output layer of the network, and compare
GCN and GraphCNN. We adapt an existing methodology (Belghazi et al., 2018)
and use the architecture illustrated in Figure 3.17(a) as the proxy of the MI

after l layers. Specifically, to measure the MI after l layers, we take the first l
GCN/GraphCNN layers and add a fully connected layer that shrinks the hidden
unit size. We then add a decoder that is a single fully connected layer that
reconstructs the hidden unit size to the input. We measure the reconstruction
error as modeled by l1 loss (Janocha and Czarnecki, 2017). The idea is that, if
the network is expressive enough to preserve information after l layers, we should be
able to train a decoder to recover the original input.

Figure 3.17(b, c) illustrates the reconstruction results after l = 3 layers.
The reconstruction error of GraphCNN (0.781) outperforms that of GCN (0.818)
significantly. This empirical study is meant to show the over-smoothing
phenomenon, which has been identified earlier (Li, Han, and Wu, 2018; Oono
and Suzuki, 2019). In what follows, we will conduct a theoretical analysis to
understand how MI scales with the number of layers l.
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3.3.3 Preliminaries

gcn Let G = (V, E) be an undirected graph with a vertex set vi ∈ V
and set of edges ei,j ∈ E. We refer to individual elements of vi as nodes,
and xi ∈ Rd associated with each vi as features. We denote the node feature
attributes by X ∈ Rn×d whose rows are given by xi. The adjacency matrix A
(weighted or binary) is derived as an n× n matrix with (A)i,j = ei,j if ei,j ∈ E,
and (A)i,j = 0 elsewhere.

We define the following operator f : Rn → Rn that is composed of (1) a
linear function parametrized by the adjacency matrix A and a weight matrix
at layer i + 1 W(i+1), and (2) an activation function as parametric ReLU such
that σ : x → max(x, ax) with a ∈ (0, 1) that applies following the linear
transformation of previous layer element-wise. Given the input matrix X, let
Y(0) = X. Each layer of the network maps it to an output vector of the same
shape:

Y(i+1) = fA,W(i+1)(Y(i)) = σ(AY(i)W(i+1)). (3.4)

graphcnn In GraphCNN (Such et al., 2017), the adjacency matrix A ∈
Rn×n is additively decomposed into K n× n matrices such that A = ∑K

k=1 Ak.
The layer-wise propagation rule becomes:

Y(i+1) = g
Ak,W(i+1)

k
(X) = σ

( K

∑
k=1

AkXW(i+1)
k

)
. (3.5)

In what follows, we denote the operator that vectorizes a matrix A by
concatenating its columns by vec(A). For matrices A ∈ Rm×n and B ∈ Rk×l,
we denote the Kronecker product of A and B by A⊗ B. Finally, we denote
the jth largest singular value of a matrix A by λj(A).



98 label-efficient model selection

3.3.4 An Anatomy of GNN

The dramatic difference between GCN and GraphCNN can look quite counter-
intuitive at the first glance. Why can a simple decomposition of the adjacency
matrix A have such a significant impact on both the accuracy and the preservation
property of mutual information? In this section, we provide a theoretical analysis
of the mutual information between the l′th layer of either network and the
input. Specifically, we identify the regimes where (1) the information after
l GCN/GraphCNN layers with (parametric) ReLUs asymptotically converges
to 0 exponentially fast, (2) the information after l GCN/GraphCNN layers with
(parametric) ReLUs is perfectly preserved at the output. More importantly,
compared with GCN, after l layers GraphCNN:

• requires a weaker condition for information to be perfectly preserved,

• requires a stronger condition for information to be fully lost.

Our theoretical analysis suggests that GraphCNN has a better data processing
capability than that of GCN under the same characteristics of layer-wise
weight matrices, justifying the observation that GraphCNN overcomes the
overcompression introduced by GCN as we pile up more layers.

3.3.4.1 Information Loss in GCN

In this section, our goal is to investigate the regimes where GCN (1) does not
benefit from going deeper, or (2) is guaranteed to preserve all information at
its output. We aim to understand this by analyzing the behaviour of mutual
information between input and output layer of the network at different
depths.

First, we formulate the relationship between input and output layers incor-
porating the non-linear activation functions. In this work, we focus on the
most popular choice, i.e., ReLU, and leave the study of other functions to
future work.

As preparation to our analysis, we introduce further notations as follows.
We denote the vectorized input X and lth layer output Y(l) by x and y(l),
respectively. For some n-dimensional real random vectors x and y defined
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over finite alphabets X n and Ωn, we denote entropy of x by H(x) and mutual
information between x and y by I(x; y). Moreover, information loss is defined
by L(y(l)) = H(x|y(l)), i.e., relative entropy of x with respect to y(l).

First, the characteristics of the layer-wise propagation rule in Equation 3.4
lead us to the following result:

Lemma 5 (Linearization of GCN Layers via Kronecker Product). Let P(i+1) be
a diagonal matrix whose nonzero entries are in {a, 1} with a ∈ (0, 1) such that
(P(i+1))j,j = 1 if

(
(W(i+1) ⊗A)y(i))

j ≥ 0, and (P(i+1))j,j = a elsewhere. y(l) can
then be written as

y(l) = P(l)(W(l) ⊗A) · · ·P(2)(W(2) ⊗A)P(1)(W(1) ⊗A)x.

Following our earlier discussion, we will now state our first result which
characterizes the regime in which the information propagated across the
GCN layers exponentially decays to 0.

Theorem 5 (Information Loss in GCN). Let GCN follows the propagation rule intro-
duced in Equation 3.4. Suppose σA = maxj λj(A) and σW = supi∈N+ maxj λj(W(i)).
If σAσW < 1, then I(x; y(l)) = O

(
(σAσW)l), and hence liml→∞ I(x; y(l)) = 0

This result indicates that under certain conditions the information after l
GCN layers with (parametric) ReLUs asymptotically converges to 0 exponen-
tially fast.4 Interestingly, there are also regimes in which GCN will perfectly
preserve the information, stated as follows:

Theorem 6 (Information Preservation in GCN). Following Theorem 5, let now
γA = minj λj(A) and γW = infi∈N+ minj λj(W(i)). If aγAγW ≥ 1, then ∀l ∈
N+ L(y(l)) = 0.

effect of normalized laplacian : The results obtained above holds
for any adjacency matrix A ∈ Rn×n. The unnormalized A, however, comes
with a major drawback as changing the scaling of feature vectors. To overcome
this problem, A is often normalized such that its rows sum to one. We then
adopt our results to GCN with normalized Laplacian whose largest singular
value is one. We have the following result:

4 Theorem 5 also holds for traditional ReLU with f : x → x+ = max(0, x).
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Corollary 3 (Information Loss in GCN with Normalized Laplacian). Let D
denote the degree matrix such that (D)j,j = ∑m(A)j,m, and L be the associated
normalized Laplacian L = D−1/2AD−1/2. Suppose GCN uses the following mapping
Y(i+1) = σ(LY(i)W(i)). Let also σW = supi maxj λj(W(i+1)). If σW < 1, then
I(x; y(l)) = O

(
σl

W
)
, and hence liml→∞ I(x; y(l)) = 0.

3.3.4.2 Information Loss in GraphCNN

Motivated by the graph decomposition strategy adopted by several works
including GraphCNN, in this section we aim to analyze the information loss
after graph decomposition, and understand whether the information can be
preserved by aggregating local sub-graphs. In particular, we take the GCN as
as an example which sums the decomposed graphs together as the adjacency
matrix to perform the analysis.

Similarly as in Lemma 5, y(l) can be reduced to

y(l) = P(l)
K

∑
kl=1

(W(l)
kl
⊗Akl

) · · · (W(2)
k2
⊗Ak2)(W

(1)
k1
⊗Ak1)x

for a diagonal matrix P(i+1) such that (P(i+1))j,j = 1 if

K

∑
ki+1=1

(W(i+1)
ki+1

⊗Aki+1
)y(i) ≥ 0

and (P(i+1))j,j = a otherwise.
Following the same proof steps performed for GCN, we obtain the following

result for GraphCNN:

Theorem 7 (Information Loss in GraphCNN). Let σ(i) denotes the maximum
singular value of P(i) ∑K

ki=1(W
(i)
ki
⊗Aki

) such that σ(i) = maxj λj
(
P(i) ∑ki

(W(i)
ki
⊗

Aki
)
)
. If supi∈N+ σ(i) < 1, then I(x; y(l)) = O

(
(supi∈N+ σ(i))l), and hence

liml→∞ I(x; y(l)) = 0.

Theorem 7 describes the condition on the layer-wise weight matrices Wk

where GraphCNN fails to capture the feature characteristics at its output in
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the asymptotic regime. We then state the second result for GraphCNN which
ensures L(y(l)) = 0 as follows.

Theorem 8 (Information Preservation in GraphCNN). Consider the propagation
rule in Equation 3.5. Let γ(i) denotes the minimum singular value of P(i) ∑K

ki=1(W
(i)
ki

⊗Aki
) such that γ(i) = minj λj

(
P(i) ∑K

ki=1(W
(i)
ki
⊗ Aki

)
)
. If infi γ(i) ≥ 1, then

∀l ∈N+ we have L(y(l)) = 0.

In order to understand the role of decomposition in GraphCNN, we revisit
the conditions on I(x; y(l)) = 0 and H(y(l)) = 0 for a specific choice of
decomposition, which will later be used to demonstrate the information
processing capability of GraphCNN.

Corollary 4 (Information Loss in GraphCNN for Orthogonal Decomposition).
Suppose the singular value decomposition of A is given by A = UASVT

A, and each
Ak is set to Ak = UASkVT

A where (Sk)m,m = λm(A) if k = m and (Sk)m,m =

0 elsewhere. We then have the following results: For σAk = λk(A) and σWk =

supi∈N+ maxj λj(W
(i)
k ), i.e., if σAkσWk < 1 ∀k = {1, 2, . . . , n}, then

liml→∞ I(x; y(l)) = 0.

Corollary 5 (Information Preservation in GraphCNN for Orthogonal Decom-
position). Let γWk = infi∈N+ minj λj(W

(i)
k ). If aσAkγWk ≥ 1, ∀k ∈ {1, 2, . . . , n},

then L(y(l)) = 0 ∀l ∈N+.

While the universally optimal decomposition strategy is unknown and its
existence is debatable, the choice of decomposition introduced above highlight
the dramatic difference between the capabilities of GCN and GraphCNN.

Proof Sketch. Following Lemma 5, the next key step in proving above results
is as follows.

Lemma 6. Consider the singular value decomposition

UΛVT = P(l)(W(l) ⊗A)...P(2)(W(2) ⊗A)P(1)(W(1) ⊗A)

such that (Λ)j,j = λj(P(l)(W(l) ⊗A)...P(2)(W(2) ⊗A)P(1)(W(1) ⊗A))
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and let x̃ = VTx. We have

I(x; y(l))
(1)
= I(x̃; Λx̃)

(2)
≤ H(x̃)

(3)
= H(x) (3.6)

where (1, 3) results from that U and V are invertible, and equality holds
in (2) iff Λ is invertible, i.e., singular values of P(l)(W(l) ⊗A)...P(2)(W(2) ⊗
A)P(1)(W(1) ⊗A) are nonzero.

Theorem 5, Theorem 6, Theorem 7 and Theorem 8 can easily be inferred
from Lemma 6. That is, I(x; y(l)) = 0 iff maxj(Λ

l)j,j = 0 in the asymptotic
regime. Similarly, iff minj(Λ

l)j,j > 0, I(x; y(l)) is maximized and given by
H(x), hence L(y(l)) = 0 .

Our results presented so far focus on covering the edge cases: I(x; y(l)) = 0
or L(y(l)) = 0. While our primary goal is to understand why GraphCNN has a
better capability of going deep than that of GCN, we note several points about
Lemma 6 in a viewpoint of entropy or uncertainty:

1. Rigorous theoretical guarantees quantifying the amount of informa-
tion preserved across the network are not straightforward, and further
require the knowledge on the statistical properties of node features.
Despite its simplicity, Lemma 6 forms a direct link from the information
processing capability of the network to the characteristics of the weights
and entropy of the nodes, xi,

2. Whereas the compression and generalization capability of the network
are closely related, we emphasize here that our analysis here is to under-
stand why and when GraphCNN overcome the overcompression introduced
by GCN. In future, we plan to investigate this via the information bottle-
neck principle,

3. In our formulation, we omit the effect of perturbation in the input
nodes considering our discussion will remain valid under the same
perturbation characteristics,

4. If all node features xi, for instance, have similar entropy, I(x; y(l))

roughly linearly scales with the rank of P(l)(W(l) ⊗ A)...P(2)(W(2) ⊗
A)P(1)(W(1) ⊗A),
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5. Lifting up singular values of layer-wise weight matrices are beneficial
for better data processing in a viewpoint of information theory. In the
next section, we will demonstrate through edge cases how GraphCNN

can overcome overcompression of GCN by achieving singular value lifting.

3.3.4.3 Discussion: Impact of Decomposition

Consider the setting where A is fixed and same for both GCN and GraphCNN.
The discussions below will revolve around the regime of singular values of
layer-wise weight matrices, W(i)

GCN and W(i)
GraphCNN where (1) L(y(l)) = 0, and

(2) I(x; y(l)) = 0.
1. Recall from Theorem 6 and Corollary 5 that while GCN requires singular

values of all weight matrices W(i)
GCN to compensate for the minimum singular

value of A such that minj λj(W
(i)
GCN) ≥

1
a mink λk(A)

to ensure L(y(l)) = 0,
GraphCNN relaxes this condition by introducing a milder constraint. That
is, the singular values of its weight matrices W(i)

k, GraphCNN need to compen-
sate only for the singular value of their respective component Ak, that is,
minj λj(W

(i)
k, GraphCNN) ≥

1
aλk(A)

guarantees that L(y(l) = 0. In other words,
singular values of weight matrices of GraphCNN are lower bounded by much
smaller values than that of GCN such that information can be fully recovered
at the output layer, hence L(y(l)) = 0 results for GraphCNN in a much larger
regime of weights.

2. The above discussion also applies to the regimes where I(x; y(l)) = 0.
From Theorem 5 and Corollary 4, we recall that the information contained in
the output layer of GraphCNN exponentially decays to zero if ∀k ∈ {1, 2, . . . , n},

max
j

λj(W
(i)
k, GraphCNN) <

1
λk(A)

whereas this regime is much larger for GCN such that maxj λj(W
(i)
GCN) <

1
maxk λk(A)

.
The decomposition makes deep GCN training easier by permitting a much

larger regime of model weights where the information is still preserved. In
other words, under the same weight characteristics (singular values of layer-
wise weight matrices), the decomposed GCN will be able to preserve more
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information of the node features than the vanilla GCN when going deeper.
So far, we theoretically justify the potential of graph decomposition in the
infinite-sample regime. For the analysis in the finite-sample regime, one could
possibly utilize the theory of information bottleneck (Saxe et al., 2019; Shamir,
Sabato, and Tishby, 2010), we leave this as future work.

3.3.5 Proofs

notation Hereafter, scalars will be written in italics, vectors in bold
lower-case and matrices in bold upper-case letters. For an m× n real matrix
A, the matrix element in the ith row and jth column is denoted as (A)ij, and
ith entry of a vector a ∈ Rm by (a)i. Also, jth column of A is denoted by (A)j,
or (A)[i=1,2,...,m],j. Similarly, we denote ith row by (A)i,[j=1,2,...,n]. The inner
product between two vectors (A)i and (A)i′ is denoted by 〈(A)i, (A)i′〉.

We vectorize a matrix A by concatenating its columns such that

vec(A) =


(A)1

(A)2
...

(A)n


and denote it by vec(A). For matrices A ∈ Rm×n and B ∈ Rk×l, we denote
the kronecker product of A and B by A⊗ B such that

A⊗ B =


(A)11B . . . (A)1nB

... . . . ...

(A)m1B . . . (A)mnB

 .

Note that A⊗ B is of size mk× nl.
We moreover denote the floor function and modulo operation by b·c and

mod, respectively. Finally, we denote the jth largest singular value of a matrix
A by λj(A).
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Next, we list some existing results which we require repeatedly throughout
this section.

preliminaries .

1. Suppose A ∈ Rm×n, B ∈ Rn×k and C ∈ Rk×p. We have

vec(ABC) = (CT ⊗A)vec(B). (3.7)

2. Let A ∈ Rm×n, B ∈ Rn×k and C ∈ Rm′×n′ , D ∈ Rn′×k′

(AB⊗CD) = (A⊗C)(B⊗D). (3.8)

3. For A ∈ Rm×m and B ∈ Rn×n, singular values of A⊗ B is given by
λi(A)λj(B), i = 1, 2, . . . , m and j = 1, 2, . . . , n.

4. Let x and y be an n-dimensional random vector defined over finite
alphabets X n and Ωn, respectively. We denote entropy of x by H(x) and
mutual information between x and y by I(x; y). We list the followings:

H( f (x))
(a)
≤ H(x)

I(x; f (y))
(b)
≤ I(x; y)

(3.9)

such that f : R→ R is some deterministic function, and equality holds
for both inequalities iff f is bijective.

proofs . The proofs are listed below in order.
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Proof of Lemma 5. Applying vectorization to the layer-wise propagation rule
introduced in Equation 3.4, we have

y(i+1)=vec
(
σ(AY(i)W(i+1))

)
y(i+1) (a)

= σ
(
vec(AY(i)W(i+1))

)
y(i+1) (b)

= σ
(
((W(i+1))T ⊗A)y(i))

y(i+1) (c)
= P(i+1)((W(i+1))T ⊗A)y(i)

(3.10)

where (a) follows from the element-wise application of σ, (b) follows from Equa-
tion 3.7, and (c) results from introducing a diagonal matrix P(i+1) with diago-
nal entries in {a, 1} such that (P(i+1))j,j = 1 if

(
(W(i+1) ⊗A)y(i))

j ≥ 0, and

(P(i+1))j,j = a elsewhere.
By a recursive application of Equation 3.10(c), we have

y(l) = P(l)(W(l) ⊗A) . . . P(2)(W(2) ⊗A)P(1)(W(1) ⊗A)x.

We drop the transpose from W(i+1) in order to avoid cumbersome notation.
The singular values of W(i+1) are our primary interest thereof our results still
hold.

Proof of Lemma 6. Let Σ be a n× n matrix with singular value decomposition
Σ = UΛVT. Inspired by the derivation for the capacity of deterministic
channels introduced by (Telatar, 1999), we derive the following

I(x; Σx) = I(x; UΛVTx)
(a)
= I(x; ΛVTx)I(x; Σx)

(b)
= I(VTx; ΛVTx)

(c)
= I(x̃; Λx̃).

(3.11)

(a) and (b) are a result of Equation 3.9(b) and that U and V are unitary hence
invertible (bijective) transformations. (c) follows from the change of variables
x̃ = VTx.
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Note that I(x̃; Λx̃) ≤ H(Λx̃). Using Equation 3.9a, we further have H(Λỹ)
≤ H(x̃) = H(x) which completes the proof.

We recall that we are interested in regimes where I(x; y(l)) = 0 and
L(y(l)) = 0. In Lemma 6, we show that I(x; y(l)) = 0 if maxj λj(P(l)(W(l) ⊗
A) · · ·P(2)(W(2) ⊗ A)P(1)(W(1) ⊗ A)) = 0, and maximized (and given by
H(x)) when P(l)(W(l) ⊗ A) · · ·P(2)(W(2) ⊗ A)P(1)(W(1) ⊗ A) is invertible.
Therefore, maximum and minimum singular values of

P(l)(W(l) ⊗A) · · ·P(2)(W(2) ⊗A)P(1)(W(1) ⊗A)

are of our interest.

Proof of Theorem 5. Let σA = maxj λj(A) and σW = supi maxj λj(W(i)). That
is, given singular values of P(i) is in {a, 1}, supi maxj λj(P(i)(W(i) ⊗A)) =

σAσW. We, moreover, have

max
j

λj(P(l)(W(l) ⊗A) · · ·P(2)(W(2) ⊗A)P(1)(W(1) ⊗A)) ≤ (σAσW)l.

Therefore, if σAσW < 1, by Lemma 6 we have I(x; y(l)) = O((σAσW)l), and
liml→∞ I(x; y(l)) = 0.

Proof of Theorem 6. We now denote γA = minj λj(A) and γW = infi minj

λj(W(i)). Hence infi minj λj(P(i)(W(i)⊗A)) = aγAγW. Moreover, minj λj(P(l)

(W(l) ⊗ A) · · ·P(2)(W(2) ⊗ A)P(1)(W(1) ⊗ A)) ≥ (aγAγW)l. If aγAγW ≥ 1,
minj λj(Pl(W(l) ⊗ A) · · ·P2(W(2) ⊗ A)P1(W(1) ⊗ A)) ≥ 1 ∀l ∈ N+, hence
I(x; y(l)) = H(x) and L(y(l)) = 0 results by Lemma 6.

Proof of Corollary 3. Let D denote the degree matrix such that (D)j,j =

∑m(A)j,m, and L be the associated normalized Laplacian L = D−1/2AD−1/2.
Due to the property of normalized Laplacian such that maxj λj(L) = 1, we
have σA = 1. Inserting this into Theorem 5, the corollary results.
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Similarly as in Equation 3.10, y(i+1) can be derived from Equation 3.5 as
follows:

y(i+1)=vec
(
σ(∑

k
AkY(i)W(i+1)

k )
) (a)
= σ(∑

k
vec(AkY(i)W(i+1)

k )
)

y(i+1) (b)
= σ(∑

k
(W(i+1)

k ⊗Ak)y
(i)σ)

(c)
= P(i+1) ∑

k
(W(i+1)

k ⊗Ak)y
(i)

(3.12)

where P(i+1) is a diagonal matrix with diagonal entries in {a, 1} with a ∈
(0, 1) such that (P(i))j,j = 1 if

(
∑k(W

(i+1)
k ⊗A)y(i))

j ≥ 0, and (P(i))j,j = a
otherwise.

Therefore, y(l) is given by

y(l) = P(l) ∑
kl

(W(l)
kl
⊗Akl

) · · ·P(2) ∑
k2

(W(2)
k2
⊗Ak2)P

(1) ∑
k1

(W(1)
k1
⊗Ak1)x.

Consider Equation 3.11 where Σ is replaced with P(l) ∑kl
(W(l)

kl
⊗Akl

) · · ·
P(2) ∑k2

(W(2)
k2
⊗Ak2)P

(1) ∑k1
(W(1)

k1
⊗Ak1). We deduce the followings:

Proof of Theorem 7. Suppose σ(i) denotes the largest singular value of
P(i) ∑K

ki=1(W
(i)
ki
⊗Aki

) such that σ(i) = maxj λj
(
P(i) ∑ki

(W(i)
ki
⊗Aki

)
)
. Follow-

ing the same argument as in the proofs of Theorem 5 and Theorem 6, Lemma 6

implies that if supi σ(i) < 1, then I(x; y(l)) = O
(
(supi σ(i))l), and hence

liml→∞ I(x; y(l)) = 0 results.

Proof of Theorem 8. Let γ(i) denote the minimum singular value of
P(i) ∑K

ki=1(W
(i)
ki
⊗ Aki

) such that γ(i) = minj λj
(
P(i) ∑K

ki=1(W
(i)
ki
⊗ Aki

)
)
. By

Lemma 6, it immediately follows that if infi σ(i) ≥ 1, then ∀l ∈N+ we have
L(y(l)) = 0.

Before we move on to the proofs of Corollary 4 and Corollary 5, we state
the following lemma.

Lemma 7. Let the singular value decomposition of A ∈ Rn×n is given by A =

UASVT
A and we set each Ak to Ak = UASkVT

A with (Sk)m,m = λm(A) if k = m
and (Sk)m,m = 0 elsewhere. For such specific composition, we argue that singular
values of ∑k Wk⊗Ak for Wk ∈ Rd×d is given by λk(A)λj(Wk) for k = 1, 2, . . . , n
and j = 1, 2, . . . , d.
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Proof of Lemma 7. Let the singular value decomposition of Wk be Wk =

UWkSWkVT
Wk

. By the property of kronecker product, we have

∑
k

Wk ⊗Ak = ∑
k
(UWk ⊗UA)(SWk ⊗ Sk)(V

T
Wk
⊗VT

A).

Next, we define a set of nd × nd mask matrices Mk such that (Mk)i,i′ = 1
if i = i′ and i (hence i′) is of the form i = k + (j − 1)n for j = 1, 2, . . . , d,
and (Mk)i,i′ = 0 otherwise. Reminding that (Sk)m,m = λm(A) if k = m and
(Sk)m,m = 0 elsewhere, above equation can be rewritten as

∑
k

Wk ⊗Ak = ∑
k
(UWk ⊗UA)Mk(SWk ⊗ Sk)Mk(V

T
Wk
⊗VT

A).

In other words, the mask matrix Mk applies on the columns (rows) of UWk ⊗
UA (VT

Wk
⊗ VT

A) where the respective diagonal entries of (SWk ⊗ Sk) are
nonzero.

Next, we note that if k = k′, MkMk′ = Mk, and Mk and Mk′ are orthogonal
for k 6= k′. This leads us to

(UWk ⊗UA)Mk(SWk ⊗ Sk)Mk(V
T
Wk
⊗VT

A)

= ∑
k′
(UWk′

⊗UA)Mk′(SWk ⊗ Sk)∑
k′′
(VT

Wk′′
⊗VT

A)Mk′′ .

By defining Ũ = ∑k(UWk ⊗UA)Mk and Ṽ = ∑k Mk(VT
Wk
⊗VT

A) and using
the above equation, we resume ∑k Wk ⊗Ak as

∑
k

Wk ⊗Ak = Ũ ∑
k
(SWk ⊗ Sk)Ṽ

T. (3.13)

Next, we will show that Ũ and Ṽ are unitary matrices through proving
that ŨŨT = ŨTŨ = I and ṼTṼ = ṼṼT = I. To avoid repeating the same
procedure, we will only show it for Ũ, but the same result also holds for Ṽ.

First, we show that (A.1) ŨŨT = I, and then (A.2) ŨTŨ = I to argue that
Ũ (and Ṽ) is unitary.
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(A.1) We can simplify ŨŨT as

ŨŨT = ∑
k

(
(UWk ⊗UA)Mk

)
∑
k′

(
(UWk′

⊗UA)Mk′
)T

ŨŨT=∑
k,k′

(
(UWk ⊗UA)Mk

)(
(UWk′

⊗UA)Mk′
)T

ŨŨT (a)
= ∑

k

(
(UWk ⊗UA)Mk

)(
(UWk ⊗UA)Mk

)T

(3.14)

where (a) follows from the orthogonality of Mk and Mk′ for k 6= k′.
We will now take a closer look at ∑k

(
(UWk ⊗UA)Mk

)(
(UWk ⊗UA)Mk

)T.
The entries of summands,

(
(UWk ⊗UA)Mk

)(
(UWk ⊗UA)Mk

)T, are equivalent
to inner product between the rows of (UWk ⊗UA)Mk for a fixed k. Recall
that for a fixed k, the mask matrix satisfies (Mk)i,i = 1 if k is of the form
i = k + (j− 1)n for j = 1, 2, · · · , d, and (Mk)i,i = 0 elsewhere. We now define
iω and iα as indices such that iω = bi/nc + 1 and iα = mod (i, bi/nc).
Similarly, let i′ω = bi′/nc+ 1 and i′α = mod (i′, bi′/nc).

Following above definitions, a moment of thought reveals that the nonzero
entries of ith row of

(
(UWk ⊗UA)Mk

)
is given by (UWk)iω ,[m=1,2,...,d](UA)iα,k.

We therefore investigate (ŨŨT)i,i′ i.e., the inner product between ith and i′th
rows of

(
(UWk ⊗UA)Mk

)
summed over all k = 1, 2, . . . , n. To start, the inner

product between ith and i′th rows of
(
(UWk ⊗UA)Mk

)
is as follows

〈[(UWk)iω ,[m=1,2,...,d](UA)iα,k], [(UWk)i′ω ,[m=1,2,...,d](UA)i′α,k]〉

= ∑
m
(UWk)iω ,m(UA)iα,k(UWk)i′ω ,m(UA)i′α,k

= ∑
m
(UWk)iω ,m(UWk)i′ω ,m(UA)iα,k(UA)i′α,k

= (UA)iα,k(UA)i′α,k ∑
m
(UWk)iω ,m(UWk)i′ω ,m.

(3.15)

Let now analyze the cases when (1) i 6= i′, and (2) i = i′. Assume (1). If further
iω 6= i′ω, it is immediate that

∑
m
(UWk)iω ,m(UWk)i′ω ,m = 0
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by the fact that UWk is unitary, hence

〈[(UWk)iω ,[m=1,2,...,d](UA)iα,k], [(UWk)i′ω ,[m=1,2,...,d](UA)i′α,k]〉 = 0

For (1), if iω = i′ω, we have iα 6= i′α. Further, ∑m(UWk)iω ,m(UWk)i′ω ,m = 1 and
hence

〈[(UWk)iω ,[m=1,2,...,d](UA)iα,k], [(UWk)i′ω ,[m=1,2,...,d](UA)i′α,k]〉

= (UA)iα,k(UA)i′α,k ∑
m
(UWk)iω ,m(UWk)i′ω ,m

= (UA)iα,k(UA)i′α,k.

(3.16)

Hence, the inner product between ith and i′th rows of
(
(UWk ⊗UA)Mk

)
is given by (UA)iα,k(UA)i′α,k. Recalling Equation 3.14, we have (ŨŨT)i,i′ =

∑k(UA)iα,k(UA)i′α,k. As previously mentioned we have iα 6= i′α. By the unitary
property of UA, we further have (ŨŨT)i,i′ = ∑k(UA)iα,k(UA)i′α,k = 0.

So far we have shown that (ŨŨT)i,i′ = 0 when i 6= i′. Let now i = i′, i.e.,
(2). IT follows from Equation 3.15 that

(ŨŨT)i,i
(a)
= ∑

k
(UA)

2
iα,k ∑

m
(UWk)

2
iω ,m(ŨŨT)i,i

(b)
= ∑

k
(UA)

2
iα,k1(ŨŨT)i,i

(c)
= 1

(3.17)

where (a) results from that UWk is unitary, and (b) follows from that UA is
unitary. Combining above arguments and Equation 3.17, we have ŨŨT = I.
(A.2) Next, we show that ŨTŨ = I. We begin with

ŨTŨ = ∑
k

(
(UWk ⊗UA)Mk

)T(∑
k′
(UWk′

⊗UA)Mk′
)
ŨTŨ

= ∑
k,k′

(
(UWk ⊗UA)Mk

)T(
(UWk′

⊗UA)Mk′
)
.

(3.18)

For k 6= k′,((
(UWk ⊗UA)Mk

)T(
(UWk′

⊗UA)Mk′
))

i,i′

=
〈(

(UWk ⊗UA)Mk
)

i,
(
(UWk′

⊗UA)Mk′
)

i′

〉
.

(3.19)
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Note that, due to the orthogonality of Mk and Mk for k 6= k′, we further have
〈
(
(UWk ⊗UA)Mk

)
i,
(
(UWk′

⊗UA)Mk′
)

i′〉 = 0 for i 6= i′. When i = i′, on the
other hand, we have((

(UWk ⊗UA)Mk
)T(

(UWk′
⊗UA)Mk′

))
i,i′

= 〈
(
(UWk ⊗UA)Mk

)
i,
(
(UWk′

⊗UA)Mk′
)

i〉

(a)
= 〈(UWk)[z=1,··· ,d],iω(UA)[w=1,··· ,n],k, (UWk′

)[z=1,··· ,d],iω(UA)[w=1,··· ,n],k′〉
= ∑

w
∑
d
(UWk)z,iω(UA)w,k(UWk′

)z,iω(UA)w,k′

(b)
= ∑

d
(UWk)z,iω(UWk′

)z,iω ∑
w
(UA)w,k(UA)w,k′

= 0
(3.20)

where (a) follows from that
(
(UWk ⊗UA)Mk

)
i = (UWk)[z=1,··· ,d],iω(UA)[w=1,··· ,n],kand

(b) results from that ∑w(UA)w,k(UA)w,k′ = 0 for k 6= k′ as UA is unitary.
Therefore, Equation 3.18 can be resumed as

ŨTŨ = ∑
k

(
(UWk ⊗UA)Mk

)T(
(UWk ⊗UA)Mk

)
ŨTŨ = ∑

k
Mk(UWk ⊗UA)

T(UWk ⊗UA)Mk

ŨTŨ
(a)
= ∑

k
MkIMk = ∑

k
Mk

(b)
= I

where (a) follows from that the kronecker product of unitary matrices is also
unitary, hence (UWk ⊗UA) is unitary, and (b) follows from the definition of
Mk.

As the last step, recall from Equation 3.13 that ∑k Wk ⊗Ak = Ũ ∑k(SWk ⊗
Sk)ṼT, and note by the definition of Sk that (SWk ⊗ Sk)i,i′ = λk(A)λj(SWk)

if i = i′ and i, hence i′, of the form i = k + (j− 1)n for j = 1, 2, · · · , d, and
(SWk ⊗ Sk)i,i′ = 0 elsewhere. Therefore, by the fact that (SWk ⊗ Sk)(SWk′

⊗
Sk′) = 0 for k 6= k′, it follows that ∑k(SWk ⊗ Sk) is a diagonal matrix with
diagonal entries λk(A)λj(SWk) where j = 1, 2, · · · , d and k = 1, 2, · · · , n,
which completes the proof.
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For the decomposition of A such that Ak = UASkVT
A where the singular

value decomposition of A is given by A = UASVT
A, we recall Theorem 7 and

Theorem 8 to conclude Corollary 4 and Corollary 5 as follows.

Proof of Corollary 4. Let σAk = λk(A) and σWk = supi maxj λj(W
(i)
k ). By

Lemma 7, we have maxj λj(∑k(W
(i)
k ⊗Ak)) ≤ maxk σAkσWk . Noting that P(i)

is diagonal with
entries at most 1, we have maxj λj

(
P(l) ∑kl

(W(l)
kl
⊗Akl

) · · ·
P(2) ∑k2

(W(2)
k2
⊗Ak2)P

(1) ∑k1
(W(1)

k1
⊗Ak1)

)
≤ (maxk σAkσWk)

l. Therefore, if

∀k = {1, 2, . . . , n} σAkσWk < 1, then liml→∞ maxj λj
(

∑k(W
(i)
k ⊗Ak)

)
= 0.

Hence liml→∞ I(x; y(l)) = 0 results by Lemma 6.

Proof of Corollary 5. Let γWk = infi minj λj(W
(i)
k ). Note that minj λj

(
P(i) ∑k W(i)

k
⊗Ak

)
≥ a mink λk(A)γWk by Lemma Lemma 7 and that minj λj(Pi) = a.

Moreover, minj λj
(
P(l) ∑kl

(W(l)
kl
⊗Akl

) · · ·P(2) ∑k2
(W(2)

k2
⊗Ak2)P

(1) ∑k1
(W(1)

k1
⊗

Ak1)
)
≥ (a mink λk(A)γWk)

l. Therefore, if aσAkγWk ≥ 1, ∀k ∈ {1, 2, . . . , n},
then I(x; y(l)) = H(x) ∀l ∈N+ by Lemma 6, hence L(y(l)) = 0.

3.3.6 Connectivity Aware Graph Decomposition

The question – “Is there an optimal decomposition strategy for my graph-structured
data?” has, beyond doubt, a non-trivial answer. In fact, there is probably no
universal strategy on how to perform graph decomposition for an arbitrary
graph-structured data. Yet, there seems to be common principles that impact
the goodness of a decomposition. For instance, our theoretical analysis hinted
that node feature information is to be preserved along with layers of GNN. In
this section, we will briefly study a connectivity-aware graph decomposition
strategy that utilizes our theoretical analysis and demonstrate its effectiveness
through numerical experiments. The Connectivity Aware Graph Decomposi-
tion framework is a joint work with the co-authors of (Xupeng Miao, Nezihe
Merve Gürel†,Wentao Zhang et al., 2021). We review the framework below
for completeness and refer to the publication for detailed explanations and
experiments.
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As illustrated in Section 3.3.2 that the random decomposition performs
poorly compared to a non-random decomposition. Moreover, the random
decomposition of the adjacency matrix A into K components may result in
a) overfitting when K is large and b) graph disconnectivity impeding the
information flow as GCN relies on the graph structures to propagate the node
features and labels along the edges. Inspired by that, we propose DeGNN to
automatically perform decomposition on graph structured data. It takes graph
connectivity into account and utilize spanning tree structure for preserving
the accessibility of the nodes. Such a connectivity aware decomposition,
DeGNN, is shown to outperform existing variants, such as GCN, JK-Net,
ResGCN, DenseGCN, on the semi-supervised node classification task and
on several datasets including Cora, Citeseer, Pubmed, Flickr and Reddit. We
refer to (Xupeng Miao, Nezihe Merve Gürel†,Wentao Zhang et al., 2021) for
further details.

3.4 summary

We introduced the problem of label-efficient model selection for pretrained
models, and presented a stream-based approach to selectively query the
labels of instances that are informative for ranking pretrained models and
to sequentially predict unseen labels. Our framework is generic, easy to
implement, and applies across various classification tasks. We illustrated the
effectiveness of our method on several well-studied ML benchmarks. Our
efforts in this part is followed by an investigation of the importance of graph
decomposition in graph neural networks. We theoretically analyzed how
graph decomposition can avoid the information loss problem caused by
increasing networks depth. To utilize the information preserving ability of
the decomposition in general graph-structured data, we briefly introduced
a novel connectivity-aware graph decomposition to balance the trade-off
between depth and information loss.

In the next part, we will go beyond accuracy and move our focus from
efficiently achieving high accuracy results to efficiently achieving adversarial
robustness.
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R O B U S T N E S S V I A K N O W L E D G E I N T E G R AT I O N





4
K N O W L E D G E E N H A N C E D A D V E R S A R I A L R O B U S T N E S S

Artificial intelligence systems need the wisdom to know when to take advice from us
and when to learn from data.

— Subbarao Kambhampati (Polanyi’s Revenge and AI’s New Romance with
Tacit Knowledge, 2021)

4.1 overview

The ability to design efficient adversarial defenses that are effective across all
phases of an end-to-end ML pipeline is tied to understanding how adversarial
perturbations mislead the ML models to make arbitrarily incorrect predictions
even when these perturbations are imperceptibly small. In this spirit, the
anatomical analysis of perturbed data has led to the creation of the robust
features concept (Ilyas et al., 2019), where the features that fail to manipulate
the predictions without human-recognition are identified as robust. This
human-centric phenomenon has lately spawned some interest in supplying
human-perceptible features into the defense mechanisms, including edge
feature utilization (Sun et al., 2021) and using domain knowledge to detect
adversaries (Melacci et al., 2021).

In this part, motivated by this human-centric perspective of adversarial
examples, we aim at improving ML robustness across the entire ML pipeline in
an effective and affordable manner by integrating domain knowledge. Towards
that, we will first take stop sign recognition as a simple example to illustrate
the potential role of knowledge in ML prediction. In this example, the main
task is to predict whether a stop sign appears in the input image. Training
a DNN model for this task is known to be vulnerable against a range of
adversarial attacks (Bielik et al., 2020; Eykholt et al., 2018; Xiao et al., 2018a).
However, if, in addition to such a DNN model, we could (1) build a detector

117
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HUMAN: THERE IS A "STOP"...
AND AN OCTAGON!

SPEED
LIMIT

45

STOP
SIGN

Figure 4.1: Illustration showing how supplying domain knowledge can help improve
ML robustness. Training a DNN model for road sign classification is known
to be vulnerable against a range of adversarial attacks (Eykholt et al.,
2018; Xiao et al., 2018a). If we could build a shape and pattern detector,
and integrate the domain knowledge such that “A stop sign should be of
an octagon shape” and “There must be a STOP on it”, it is possible that
additional information could enable the ML system to detect or defend
against attacks, which lead to conflicts between the DNN prediction and
domain knowledge.

for a different auxiliary task, for example, detecting whether an octagon
appears in the input by using other learning strategies such as traditional
computer vision techniques, and (2) integrate the domain knowledge such
that “A stop sign should be of an octagon shape”, it is possible that this additional
information could enable the ML system to detect or defend against attacks,
which lead to conflicts between the DNN prediction and domain knowledge.
For instance, if a speed limit sign with rectangle shape is misrecognized as a
stop sign, the ML system would identify this conflict and try to correct the
prediction (see Figure 4.1 for an illustration).

Inspired by this intuition, we aim to understand how to enhance the robust-
ness of ML models via domain knowledge integration. Despite the natural intuition
in the previous simple example, providing a technically rigorous treatment to
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Stop Sign 
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Figure 4.2: An overview of the KEMLP framework. KEMLP constructs a factor graph
by modeling the output of ML models as random input variables, and
the KEMLP prediction as a random output variable. It integrates domain
knowledge via factors connecting different random variables.

this problem is far from trivial, yielding the following questions: How should
we integrate domain knowledge in a principled way? When will integrating domain
knowledge help with robustness and will there be a trade-off between robustness and
clean accuracy? Can integration of domain knowledge genuinely bring additional
robustness benefits against practical attacks when compared with state-of-the-art
defenses?

We propose the Knowledge Enhanced Machine Learning Pipeline (KEMLP),
a framework that facilitates the integration of domain knowledge in order to
improve the robustness of ML models. Figure 4.2 illustrates the KEMLP frame-
work. In KEMLP, the outputs of different ML models are modeled as random
input variables, whereas the output of KEMLP is modeled as another variable.
To integrate domain knowledge, KEMLP introduces corresponding factors con-
necting these random variables. For example, as illustrated in Figure 4.2, the
knowledge rule “A stop sign is of an octagon shape” introduces a factor between
the input variable (i.e., the output of the octagon detector) and the output
variable (i.e., output of the stop sign detector) with a factor function that the
former implies the latter. To make predictions, KEMLP runs statistical inference
over the factor graph constructed by integrating all such domain knowledge



120 knowledge enhanced adversarial robustness

expressed as first-order logic rules, and output the marginal probability of
the output variable.

Based on KEMLP, our main goal is to understand two fundamental ques-
tions: (1) What type of knowledge is needed to improve the robustness of the joint
inference results from KEMLP, and can we prove it? (2) Can we show that knowledge
integration in the KEMLP framework can provide significant robustness gain over
powerful state-of-the-art models?

We conduct a theoretical analysis to understand the first question, focusing
on two specific types of knowledge rules: (1) permissive knowledge of the form
“B =⇒ A”, and (2) preventive knowledge of the form “A =⇒ B”, where
A represents the main task, B an auxiliary task and =⇒ denotes logical
implication. We focus on the weighted robust accuracy, which is a weighted
average of accuracies on benign and adversarial examples, respectively, and
we derive sufficient conditions under which KEMLP outperforms the main
task model alone. Under mild conditions, we show that integrating multiple
weak auxiliary models, both in their robustness and quality, together with
the permissive and preventive rules, the weighted robust accuracy of KEMLP

can be guaranteed to improve over the single main task model. To our best
knowledge, this is the first analysis of the proposed form, focusing on the
intersection of knowledge integration, joint inference, and robustness.

We then conduct extensive empirical studies to understand the second
question. We focus on the road sign classification task and consider the
state-of-the-art adversarial training models based on both the Lp bounded
perturbation and occlusion perturbations (Wu, Tong, and Vorobeychik, 2019)
as our baselines as well as the main task model. We will show that by training
weak auxiliary models for recognizing the shapes and contents of road signs,
together with the corresponding knowledge rules as illustrated in Figure 4.2,
KEMLP achieves significant improvements on their robustness compared with
baseline main task models against a diverse set of adversarial attacks while
maintaining similar or even higher clean accuracy, given its improvement on
the tradeoff between clean accuracy and robustness. In particular, we consider
existing physical attacks (Eykholt et al., 2018), Lp bounded attacks (Madry
et al., 2017), unforeseen attacks (Kang et al., 2019), and common corrup-
tions (Hendrycks and Dietterich, 2019), under both whitebox and blackbox
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settings. To our best knowledge, KEMLP is the first ML model robust to diverse
attacks in practice with high clean accuracy.

4.2 related work

In the following, we review several bodies of literature that are relevant to
the objective of our part.

adversarial examples are carefully crafted inputs aiming to mislead
well-trained ML models (Goodfellow, Shlens, and Szegedy, 2015; Szegedy et
al., 2013). A variety of approaches to generate such adversarial examples have
also been proposed based on different perturbation measurement metrics,
including Lp bounded, unrestricted, and physical attacks (Bhattad et al., 2020;
Eykholt et al., 2018; Wong, Schmidt, and Kolter, 2019; Xiao et al., 2018b,c).

defense methods against such attacks have been proposed. Empirically,
adversarial training (Madry et al., 2017) has shown to be effective, together
with feature quantization (Xu, Evans, and Qi, 2017) and reconstruction ap-
proaches (Samangouei, Kabkab, and Chellappa, 2018). Certified robustness
has also been studied by propagating the interval bound of a NN (Gowal
et al., 2018), by leveraging the differentiable abstract interpretation (Mirman,
Gehr, and Vechev, 2018; Singh et al., 2018a), or randomized smoothing of a
given model (Cohen, Rosenfeld, and Kolter, 2019). Several approaches have
further improved it: by incorporating it with adversarial training (Balunovic
and Vechev, 2020), for generative neural networks (Mirman et al., 2021), by
choosing different smoothing distributions for different Lp norms (Dvijotham
et al., 2020; Yang et al., 2020; Zhang et al., 2020), or training more robust
smoothed classifiers via data augmentation (Cohen, Rosenfeld, and Kolter,
2019), unlabeled data (Carmon et al., 2019), adversarial training (Salman et al.,
2019), and regularization (Li et al., 2019a; Zhai et al., 2019). While most prior
defenses focus on leveraging statistical properties of an ML model to improve
its robustness, they can only be robust towards a specific type of attack, such
as `p bounded attacks. Our work aims to explore how to utilize knowledge
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inference information to improve the robustness of a logically connected ML

pipeline against a diverse set of attacks.

joint inference has been studied to take multiple predictions made
by different models, together with the relations among them, to make a final
prediction (Biba, Ferilli, and Esposito, 2011; Chakrabarti et al., 2014; Chen
et al., 2014; Deng et al., 2014; McCallum, 2009; Poon and Domingos, 2007; Xu
et al., 2020). These approaches usually use different inference models, such as
factor graphs (Wainwright and Jordan, 2008), Markov logic networks (Richard-
son and Domingos, 2006) and Bayesian networks (Neuberg, 2003), as a way
to characterize their relationships. The programmatic weak supervision ap-
proaches (Ratner et al., 2017, 2016) also perform joint inference by employing
labeling functions and using generative modeling techniques, which aims
to create noisy training data. In this work, we take a different perspective
on this problem — we explore the potential of using joint inference with
the objective of integrating domain knowledge and to eventually improving
the ML robustness. As we will see, by integrating domain knowledge, it is
possible to improve the learning robustness by a wide margin.

4.3 knowledge enhanced machine learning pipeline

We first present the proposed framework Knowledge Enhanced Machine
Learning Pipeline (KEMLP), which aims to improve the robustness of an ML

model by integrating a diverse set of domain knowledge. In this section, we
formally define the KEMLP framework.

notation We consider a classification problem under a supervised learn-
ing setting, defined on a feature space X and a finite label space Y . We refer
to x ∈ X as an input and y ∈ Y as the target variable. An input x can be a
benign example or an adversarial example. To model this, we use z ∈ {0, 1},
a latent variable that is not exposed to KEMLP. That is, x is an adversarial
example with (x, y) ∼ Da whenever z = 1, and (x, y) ∼ Db otherwise, where
Da and Db represent the adversarial and benign data distributions. We let
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πDa = P(z = 1) and πDb = P(z = 0), implying πDa + πDb = 1. For conve-
nience, we denote PDa(x, y) = P(x, y|z = 1) and PDb(x, y) = P(x, y|z = 0).
In the following, to ease the exposition, we slightly abuse the notation and
use probability densities for discrete distributions.

Given an input x whose corresponding z is unknown (benign or adversar-
ial), KEMLP aims to predict the target variable y by employing a set of models.
These predictive models are constructed, say, using ML or some other tradi-
tional rule-based methods (e.g., edge detector). For simplicity, we describe the
KEMLP framework as a binary classification task, in which case Y = {0, 1},
noting that the multi-class scenario is a simple extension of it. We introduce
the KEMLP framework as follows.

models Models are a collection of predictive ML models, each of which
takes as input x and outputs some predictions. In KEMLP, we distinguish
three different type of models.

• Main task model: We call the (untrusted) ML model whose robustness users
want to enhance as the main task model, denoting its predictions by s∗ ∈ Y .

• Permissive models: Let sI = {si : i ∈ I} be a set of m permissive models,
each of which corresponds to the prediction of one ML model. Conceptually,
permissive models are usually designed for specific events which are sufficient
for inferring y = 1: si =⇒ y.

• preventive models: Similarly, we have n preventive models: sJ = {sj : j ∈ J },
each of which corresponds to the prediction of one ML model. Conceptually,
preventive models capture the events that are necessary for the event y = 1:
y =⇒ sj.

knowledge integration Given a data example (x, y) ∼ Db or (x, y) ∼
Da, y is unknown to KEMLP. We create a factor graph to embed the do-
main knowledge as follows. The outputs of each model over x become input
variables: s∗, sI = {si : i ∈ I}, sJ = {sj : j ∈ J }. KEMLP also has an out-
put variable o ∈ Y , which corresponds to its prediction. Different models
introduce different types of factors connecting these variables:
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• Main model: KEMLP introduces a factor between the main model s∗ and
the output variable o with factor function f∗(o, s∗) = 1{o = s∗};

• Permissive model: KEMLP introduces a factor between each permissive
model si and the output variable o with factor function fi(o, si) = 1{si =⇒ o}.

• preventive model: KEMLP introduces a factor between each preventive
model sj and the output variable o with factor function f j(o, sj) = 1{o=⇒ sj}.

learning with kemlp To make a prediction, KEMLP outputs the prob-
ability of the output variable o. KEMLP assigns a weight for each model and
constructs the following statistical model:

P[o, s∗, sI , sJ , w∗, wI , wJ , bo] ∝

exp{bo + w∗ f∗(o, s∗)} × exp
{

∑
i∈I

wi fi(o, si)
}
× exp

{
∑
j∈J

wj f j(o, sj)
}

where w∗, wi, wj are the corresponding weights for models s∗, si, sj, wI = {wi :
i ∈ I}, wJ = {wj : j ∈ J } and bo is some bias parameter that depends on o.
For the simplicity of exposition, we use an equivalent notation by putting all
the weights and outputs of factor functions into vectors using an ordering of
models. More precisely, we define

w = [1; w∗; (wi)i∈I ; (wj)j∈J ],

fo(s∗, sI , sJ ) = [bo; f∗(o, s∗); ( fi(o, si))i∈I ; ( f j(o, sj))j∈J ],

for o ∈ Y . All concatenated vectors from above are in Rm+n+2. Given this, an
equivalent form of KEMLP’s statistical model is

P[o|s∗, sI , sJ , w] =
1

Zw
exp(〈w, fo(s∗, sI , sJ )〉) (4.1)
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where Zw is the normalization constant over o ∈ Y . With some abuse of
notation, w is meant to govern all parameters including weights and biases
whenever used with probabilities. such that

Zw = exp
(
〈w, f0(s∗, sI , sJ )〉

)
+ exp

(
〈w, f1(s∗, sI , sJ )〉

)
.

weight learning During the training phase of KEMLP, we choose pa-
rameters w by performing standard maximum likelihood estimation over
a training dataset. Given a particular input instance x(n), respective model
predictions s(n)∗ , s(n)I , s(n)J , and the ground truth label y(n), we minimize the
negative log-likelihood function in view of

ŵ = arg min
w

{
−∑

n
log
(

P[o(n) = y(n)|s(n)∗ , s(n)I , s(n)J , w]
)}

.

inference During the inference phase of KEMLP, given an input example
x̂, we predict ŷ that has the largest probability given the respective model
predictions ŝ∗, ŝI , ŝJ , namely, ŷ = arg maxỹ∈Y P[o = ỹ|ŝ∗, ŝI , ŝJ , ŵ].

4.4 theoretical analysis

How does knowledge integration impact the robustness of KEMLP? In this section,
we provide a theoretical analysis about the impact of domain knowledge
integration on the robustness of KEMLP. We hope to (1) depict the regime
under which knowledge integration can help with robustness; (2) explain
how a collection of “weak” (in terms of prediction accuracy) but “robust”
auxiliary models, on tasks different from the main one, can be used to boost
overall robustness. Here we state the main results, whereas we refer interested
readers to Section 4.5 where we provide all relevant details. Furthermore, we
are interested in the performance of KEMLP over both adversarial and benign
examples. Towards that, we define our performance metric as follows.

weighted robust accuracy Previous theoretical analysis on ML ro-
bustness (Javanmard, Soltanolkotabi, and Hassani, 2020; Raghunathan et
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al., 2020; Xu, Caramanis, and Mannor, 2009) have identified two natural
dimensions of model quality: clean accuracy and robust accuracy, which are
the accuracy of a given ML model on inputs x drawn from either the benign
distribution Db or adversarial distribution Da. In this work, to balance their
trade-off, we use their weighted average as our main metric of interest. That
is, given a classifier h : X → Y we define its Weighted Robust Accuracy as

Ah = πDaPDa [h(x) = y] + πDbPDb [h(x) = y].

We use AKEMLP and Amain to denote the weighted robust accuracies of KEMLP

and main task model, respectively.

4.4.1 Weighted Robust Accuracy of KEMLP

The goal of our analysis is to identify the regime under which AKEMLP >

Amain is guaranteed. The main analysis to achieve this hinges on deriving the
weighted robust accuracy AKEMLP for KEMLP. We first describe the modeling
assumptions of our analysis, and then describe two key characteristics of
models, culminating in a lower bound of AKEMLP.

modeling assumptions We assume that for a fixed z, that is, for a
fixed D ∈ {Db,Da}, the models make independent errors given the target
variable. Thus, for all D ∈ {Db,Da}, the class conditional distribution can be
decomposed as

PD[s∗, sI , sJ |y] = PD[s∗|y]∏
i∈I

PD[si|y] ∏
j∈J

PD[sj|y].

We also assume for simplicity that the main task model makes symmetric
errors given the class of target variable, that is, PD[s∗ 6= y|y] is fixed with
respect to y for all D ∈ {Db,Da}.

characterizing models : truth rate (α) and false rate (ε) Each
auxiliary model k ∈ I ∪ J is characterized by two values, their truth rate
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(α) and false rate (ε) over benign and adversarial distributions. These values
measure the consistency of the model with the ground truth:

PermissiveModels :

αi,D := PD[si = y|y = 1], εi,D := PD[si 6= y|y = 0]

preventiveModels :

αj,D := PD[sj = y|y = 0], ε j,D := PD[sj 6= y|y = 1]

Note that, given the asymmetric nature of these auxiliary models, we do
not necessarily have εk,D = 1− αk,D. In addition, for a high quality permissive
model (k ∈ I), or a high quality preventive model (k ∈ J ) for which the logic
rules mostly hold, we expect αk,D to be large and εk,D to be small.

We define the truth rate of the main model over data examples drawn from
D ∈ {Db,Da} as α∗,D := PD(s∗ = y), and its false rate as ε∗,D := PD(s∗ 6=
y) = 1− α∗,D.

These characteristics are of integral importance to the weighted robust
accuracy of KEMLP. To combine all the models together, we define upper and
lower bounds to truth rates and false rates. For the main model, we have

∧α∗ := minD α∗,D and ∨α∗ := maxD α∗,D. For the auxiliary models, on the
other hand, for each model index k ∈ I ∪ J , we have

∧αk := min
D

αk,D, ∧εk := min
D

εk,D

∨αk := max
D

αk,D, ∨εk := max
D

εk,D.

Intuitively, the difference between ∧α and ∨α (resp. ∧ε and ∨ε) indicates the
“robustness” of each individual model. If a model performs very similarly
when it is given a benign and an adversarial example, we have that ∧α should
be similar to ∨α (resp. ∧ε to ∨ε).

The truth and false rates of models directly influence the factor weights
which govern the influence of models in the main task. In Section 4.5 we
prove that the optimal weight of an auxiliary model is bounded by wk ≥
log ∧αk(1− ∨εk)/(1− ∧αk)∨εk, for all k ∈ I ∪ J . That is, the lowest truth rate
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and highest false rate of an auxiliary model (resp. ∧αk and ∨εk) are indicative
of its influence in the main task. By taking partial derivatives, this lower
bound can be shown to be increasing in ∧αk and decreasing in ∨εk. That is, as
the lowest truth rate of a model gets higher, KEMLP increases its influence in
the weighted majority voting accordingly – in the above nonlinear fashion.
The lowest truth rate is often determined by the robust accuracy. As a result,
the more “robust” an auxiliary model is, the larger the influence on KEMLP,
which naturally contributes to its robustness.

weighted robust accuracy of kemlp We now provide a lower
bound on the weighted robust accuracy of KEMLP, which can be written as

AKEMLP = ED∼{Da,Db}Ey∼Y
[
PD[o = y|y, w]

]
. (4.2)

We first provide one key technical lemma followed by the general theorem.
We see that the key component in AKEMLP is PD[o = y|y, w], the condi-

tional probability that a KEMLP pipeline outputs the correct prediction. Using
knowledge aggregation rules f∗, fi and f j, as well as Equation 4.1, for each
D ∈ {Db,Da} we have

PD[o = y|y, w] = PD
[
P[o = y|s∗, sI , sJ , w] > 1/2

∣∣y]
= PD

[
〈w, fy(s∗, sI , sJ )− f1−y(s∗, sI , sJ )〉 > 0|y

]
.

To bound the above value, we need to characterize the concentration behavior
of the random variable

∆w(y, s∗, sI , sJ ) := 〈w, fy(s∗, sI , sJ )− f1−y(s∗, sI , sJ )〉.

That is, we need to bound its left tail below zero. For this purpose, we reason
about its expectation, leading to the following lemma.

Lemma 8. Let ∆w be a random variable defined above. Suppose that KEMLP uses
optimal parameters w such that P[y|s∗, sI , sJ ] = P[o|s∗, sI , sJ , w]. Let also ry
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denote the log-ratio of class imbalance log P[y=1]
P[y=0] . For a fixed y ∈ Y and D ∈

{Db,Da}, one has

Es∗,sI ,sJ [∆w(y, s∗, sI , sJ )|y]
≥ µd∗,D+yµdI ,D+(1− y)µdJ ,D+(2y− 1)ry := µy,D,

where

µd∗,D = α∗,D log ∧α∗
1− ∧α∗

+ (1− α∗,D) log
1− ∨α∗

∨α∗
,

µdI ,D = ∑
i∈I

αi,D log ∧
αi

∨εi
+ (1− αi,D) log

1− ∨αi
1− ∧εi

− ∑
j∈J

ε j,D log
∨αj

∧ε j
− (1− ε j,D) log

1− ∧αj

1− ∨ε j
,

and

µdJ ,D = ∑
j∈J

αj,D log
∧αj

∨ε j
+ (1− αj,D) log

1− ∨αj

1− ∧ε j

−∑
i∈I

εi,D log ∨
αi

∧εi
− (1− εi,D) log

1− ∧αi
1− ∨εi

.

Proof Sketch. This lemma can be derived by first decomposing ∆w into parts
that are relevant for s∗, sI , sJ , namely there exist d∗,D, dI ,D, dJ ,D such that

∆w(y, s∗, sI , sJ )=d∗,D+ydI ,D+(1− y)dJ ,D+(2y− 1)ry.

Then we prove that µ∗,D ≤ E[d∗,D] for the main model, and µdK,D ≤ E[dK,D]

for K ∈ {I ,J }, the permissive and preventive models.

discussion The above lemma illustrates the relationship between the
models and AKEMLP. Intuitively, the larger µy,D is, the further away the
expectation of ∆w(y, s∗, sI , sJ ) is from 0, and thus, the larger the probability
that ∆w(y, s∗, sI , sJ ) > 0. We see that µy,D consists of three terms: µd∗,D , µdI ,D ,
µdJ ,D , measuring the contributions from the main model for all y, permissive
models and preventive models for y = 1 and y = 0, respectively. More
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specifically, µy,D is increasing in terms of a weighted sum of αi, and decreasing
in terms of a weighted sum of ε j. When si =⇒ y holds (permissive models),
it implies a large αi for y = 1, whereas when y =⇒ sj holds (preventive
model) it implies a small ε j for y = 1. Thus, this lemma connects the property
of auxiliary models to the weighted robust accuracy of KEMLP.

4.4.2 Convergence

Now we are ready to present our convergence result.

Theorem 9 (Convergence of Pipeline Accuracy). For y ∈ Y and D ∈ {Db,Da},
let µy,D be defined as in Lemma 8. Suppose that the modeling assumption holds,
and suppose that µdK,D > 0, for all K ∈ {I ,J } and D ∈ {Db,Da}. Then

AKEMLP ≥ 1−Eµy,D [exp
(
−2µ2

y,D/v2)], (4.3)

where v2 is the variance upper bound to P[o = y|y, w] with

v2= 4
(

log ∨α∗
1− ∧α∗

)2
+ ∑

k∈I∪J

(
log ∨

αk(1− ∧εk)

∧εk(1− ∨αk)

)2
.

Proof Sketch. We begin by subtracting the term µy,D from PD(o = y|y, w),
and then decomposing the result into individual summands, where each
summand is induced by a single model. We then treat each summand as a
bounded increment whose sum is a submartingale. Followed by an applica-
tion of generalized bounded difference inequality (Geer, 2002), we arrive at
the proof, whose full details can be found in Section 4.5.

discussion In the following, we attempt to understand the scaling of the
weighted robust accuracy of KEMLP in terms of the models’ characteristics.

Impact of truth rates and false rates: We note that µdK,D for K ∈ {I ,J }, which
is an additive component of µy,D, is crucial in understanding the parameters
contributing to the performance of KEMLP. Generally, a larger µdK,D (and hence
µy,D) would increase the right tail probability of ∆w(y, s∗, sI , sJ ) leading to a
larger weighted accuracy for KEMLP. Although exceptions exist in cases where
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the variance increases disproportionally, here in our discussion we first focus
on parameters that increase µdK,D . Towards that, we simplify our exposition
and let each auxiliary model have the same truth and false rate over both
benign and adversarial examples, and within each type, where the exact
parameters are given by αk := αk,D = ∧αk,D = ∨αk,D and εk := εk,D = ∧εk,D =

∨εk,D, for k ∈ I ∪J . In this simplified setting where the expected performance
improvement by the auxiliary models is given by µdK,D for K ∈ {I ,J } and
fixed with respect to D, one can observe through partial derivatives that µdK,D

is increasing over αk and decreasing over εk. This explains why the two types
of knowledge rules would help: high-quality permissive models would have
high truth rate and low false rate (αi and εi), as well as the preventive models
(αj and ε j), yet with different coverages for y ∈ Y .

Auxiliary models in KEMLP - the more the merrier? Next, we investigate the
effect of the number of auxiliary models. To simplify, let |I| = |J |, and let
µ̂y,D be a random variable with µ̂y,D = µy,D/(n + 1), and v̂2 = v2/(n + 1).
The exponent thus becomes −µ2

y,D/v2 = −(n + 1)µ̂2
y,D/v̂2. One can show

that µ̂2
y,D/v̂2 ≥ c for some positive constant c, implying that AKEMLP ≥ 1−

exp(−2(n+ 1)c). That is, increasing the number of models generally improves
the weighted robust accuracy of KEMLP. To demonstrate this, we now focus
on understanding the scaling of weighted robust accuracy on a simplified
setting. We assume that the auxiliary models are homogeneous for each type:
permissive or preventive. For example, αk is fixed with respect to k ∈ I ∪ J ,
hence we drop the subscripts, i.e., αk,D = α and εk,D = ε. We assume that the
same number of auxiliary models are used, namely |I| = |J | = n, and that
the classes are balanced with PD(y = 1) = PD(y = 0), for all D ∈ {Db,Da}.
Finally, we let α∗,Db = 1 and α∗,Da = 0, and α− ε > 0. Then, the following
holds.

Corollary 6 (Homogenous models). The weighted robust accuracy of KEMLP in
the homogeneous setting satisfies

AKEMLP ≥ 1− exp
(
− 2n(α− ε)2).

In particular, one has limn→∞AKEMLP = 1.
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For this particular case, the predicted class for the target variable y is based
upon an (unweighted) majority voting decision. The above result suggests
that for a setting where the auxiliary models are homogeneous with different
coverage, the performance of KEMLP to predict the output variable y robustly
is determined by: (a) the difference between the probability of predicting
the output variable correctly and that of making an erroneous prediction,
that is, α− ε, and (b) the number of auxiliary models. Consequently, AKEMLP

converges to 1 exponentially fast in the number of auxiliary models as long as
α− ε > 0, which is naturally satisfied by the principle KEMLP employs while
constructing the logical relations between the output variable and different
knowledge.

4.4.3 Comparison

Theorem 9 guarantees that the addition of models allows the weighted robust
accuracy of KEMLP to converge to 1 exponentially fast. We now introduce a
sufficient condition under which AKEMLP is strictly better than Amain.

Theorem 10 (Sufficient condition for AKEMLP > Amain). Let the number of
permissive and preventive models be the same and denoted by n such that n := |I| =
|J |. Note that the weighted accuracy of the main model in terms of its truth rate
is simply α∗ := ∑D∈{Db,Da} πDα∗,D. Moreover, let K,K′ ∈ {I ,J } with K 6= K′

and for any D ∈ {Db,Da}, let

γD :=
1

n + 1
min
K

{
α∗,D − 1/2 + ∑

k∈K
αk,D − ∑

k′∈K′
εk′,D

}
.

If γD >
√

4
n+1 log 1

1−α∗
for all D ∈ {Db,Da}, then AKEMLP > Amain.

Proof Sketch. We first approximate ∆w(y, s∗, sI , sJ ) with a Poisson Binomial
random variable and apply the relevant Chernoff bound. Imposing a strict
bound between the Chernoff result and the true and false rates of main model
concludes the proof. We note that this bound is slightly simplified, and our
full proof in the Section 4.5 is tighter.
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discussion We start by noting that γD is a combined truth rate of all
models normalized over the number of models. That is, for a fixed distribu-
tion D, α∗,D − 1/2 indicates the truth rate of main task model over a random
classifier and ∑k∈K αk,D −∑k′∈K′ εk′,D refers to the improvement by the auxil-
iary models on top of the main task model. More specifically, in cases where
the true class of output variable is positive with y = 1, ∑i∈I αi,D −∑j∈J ε j,D
account for the total (and unnormalized) success of permissive models in
identifying y = 1 interfered by the failure of preventive model in identifying
y = 1 (resp. For y = 0, K = J ). Hence, γD is the "worst-case” combined
truth rate of all models, where the worst-case refers to minimization over all
possible labels of target variable.

Proposition 10 therefore forms a relationship between the improvement of
KEMLP over the main task model and the combined truth rate of models, and
theoretically justifies our intuition – larger truth rates and lower false rates of
individual auxiliary models result in larger combined truth rate γD, hence
making the sufficient condition more likely to hold. Additionally, employing
a large number of auxiliary models is found to be beneficial for better KEMLP

performance, as we conclude in Corollary 6 as well. Our finding here also
confirms that in the extreme scenarios where the main task model has a
perfect clean and robust truth rate (α∗ = 1), it is not possible to improve upon
the main task model. Conversely, when α∗ = 0, any improvement by KEMLP

would result in absolute improvement over the main model.

4.5 proofs

4.5.1 Preliminaries

For completeness, here we recall our setup and introduce further remarks.

data model We begin by recalling our notation. We consider a classifica-
tion problem under supervised learning setting, defined on a feature space
X and a finite label space Y . We refer to x ∈ X as an input, and y ∈ Y as the
prediction. An input x can be a benign example or an adversarial example. To
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model this, we use z ∈ {0, 1}, a latent variable which is not exposed to KEMLP.
That is, x is an adversarial example with (x, y) ∼ Da whenever z = 1, and
(x, y) ∼ Db otherwise, where Da and Db represent the adversarial and benign
data distribution. We let πDa = P(z = 1) and πDb = P(z = 0), implying
πDa + πDb = 1. For convenience, we denote PDa(x, y) = P(x, y|z = 1) and
PDb(x, y) = P(x, y|z = 0).

For simplicity, we describe the KEMLP framework as a binary classification
task, in which case Y = {0, 1}, noting that the multi-class scenario is a simple
extension of it. We introduce the KEMLP framework as follows.

knowledge integration Given a data example (x, y) ∼ Db or (x, y) ∼
Da, y is unknown to KEMLP. We create a factor graph to embed the do-
main knowledge as follows. The outputs of each model over x become input
variables: s∗, sI = {si : i ∈ I}, sJ = {sj : j ∈ J }. KEMLP also has an out-
put variable o ∈ Y , which corresponds to its prediction. Different models
introduce different types of factors connecting these variables:

• Main model: KEMLP introduces a factor between the main model s∗ and
the output variable o with factor function f∗(o, s∗) = 1{o = s∗};

• Permissive model: KEMLP introduces a factor between each permissive
model si and the output variable o with factor function fi(o, si) = 1{si =⇒ o}.

• preventive model: KEMLP introduces a factor between each preventive
model sj and the output variable o with factor function f j(o, sj) = 1{o=⇒ sj}.

learning with kemlp To make a prediction, KEMLP outputs the prob-
ability of the output variable o. KEMLP assigns a weight for each model and
constructs the following log-linear statistical model:

P[o,s∗, sI , sJ , w∗, wI , wJ ]

∝ exp{bo + w∗ f∗(o, s∗)} × exp
{

∑
i∈I

wi fi(o, si)
}
× exp

{
∑
j∈J

wj f j(o, sj)
}

where w∗, wi, wj are the corresponding weights for models s∗, si, sj, wI = {wi :
i ∈ I}, wJ = {wj : j ∈ J } and bo is some bias parameter that depends on o.
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For the simplicity of exposition, we use an equivalent notation by putting all
the weights and outputs of factor functions into vectors using an ordering of
models. More precisely, we define

w = [1; w∗; (wi)i∈I ; (wj)j∈J ],

fo(s∗, sI , sJ ) = [bo; f∗(o, s∗); ( fi(o, si))i∈I ; ( f j(o, sj))j∈J ],

for o ∈ Y . All concatenated vectors from above are in Rm+n+2. Given this, an
equivalent form of KEMLP’s statistical model is

P[o|s∗, sI , sJ , w] =
1

Zw
exp(〈w, fo(s∗, sI , sJ )〉) (4.4)

where Zw is the normalization constant over o ∈ Y such that

Zw = exp
(
〈w, f0(s∗, sI , sJ )〉

)
+ exp

(
〈w, f1(s∗, sI , sJ )〉

)
.

With some abuse of notation, w is meant to govern all parameters including
weights and biases whenever used with probabilities.

weight learning During the training phase of KEMLP, we choose pa-
rameters w by performing standard maximum likelihood estimation over
a training dataset. Given a particular input instance x(n), respective model
predictions s(n)∗ , s(n)I , s(n)J , and the ground truth label y(n), we minimize the
negative log-likelihood function in view of

ŵ = arg min
w

{
−∑

n
log
(

P[o(n) = y(n)|s(n)∗ , s(n)I , s(n)J , w]
)}

.

inference During the inference phase of KEMLP, given an input example
x̂, we predict ŷ that has the largest probability given the respective model
predictions ŝ∗, ŝI , ŝJ , namely, ŷ = arg maxỹ∈Y P[o = ỹ|ŝ∗, ŝI , ŝJ , ŵ].
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weighted robust accuracy Previous theoretical analysis on ML ro-
bustness (Javanmard, Soltanolkotabi, and Hassani, 2020; Raghunathan et
al., 2020; Xu, Caramanis, and Mannor, 2009) have identified two natural
dimensions of model quality: clean accuracy and robust accuracy, which are
the accuracy of a given ML model on inputs x drawn from either the benign
distribution Db or adversarial distribution Da. In this work, to balance their
trade-off, we use their weighted average as our main metric of interest. That
is, given a classifier h : X → Y we define its Weighted Robust Accuracy as

Ah = πDaPDa [h(x) = y] + πDbPDb [h(x) = y].

We use AKEMLP and Amain to denote the weighted robust accuracies of KEMLP

and main task model, respectively.

modeling assumptions We assume that for a fixed z, that is, for a
fixed D ∈ {Db,Da}, the models make independent errors given the target
variable y. Thus, for all D ∈ {Db,Da} the class conditional distribution can
be decomposed as

PD[s∗, sI , sJ |y] = PD[s∗|y]∏
i∈I

PD[si|y] ∏
j∈J

PD[sj|y].

We also assume for simplicity that the main task model makes symmetric
errors given the class of target variable, that is, PD[s∗ 6= y|y] is fixed with
respect to y for all D ∈ {Db,Da}.

characterizing models : truth rate (α) and false rate (ε) Each
auxiliary model k ∈ I ∪ J is characterized by two values, their truth rate
(α) and false rate (ε) over benign and adversarial distributions. These values
measure the consistency of the model with the ground truth:

PermissiveModels :

αi,D := PD[si = y|y = 1], εi,D := PD[si 6= y|y = 0]
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preventiveModels :

αj,D := PD[sj = y|y = 0], ε j,D := PD[sj 6= y|y = 1]

Note that, given the asymmetric nature of these auxiliary models, we do
not necessarily have εk,D = 1− αk,D. In addition, for a high quality permissive
model (k ∈ I), or a high quality preventive model (k ∈ J ) for which the logic
rules mostly hold, we expect αk,D to be large and εk,D to be small.

We define the truth rate of main model over data examples drawn from
D ∈ {Db,Da} as α∗,D := PD(s∗ = y), and its false rate as ε∗,D := PD(s∗ 6=
y) = 1− α∗,D.

These characteristics are of integral importance to weighted robust accuracy
of KEMLP. To combine all the models together, we define upper and lower
bounds to truth rates and false rates. For the main model, we have ∧α∗ :=
minD α∗,D and ∨α∗ := maxD α∗,D. whereas for auxiliary models, for each
model index k ∈ I ∪ J , we have

∧αk := min
D

αk,D, ∧εk := min
D

εk,D (4.5)

∨αk := max
D

αk,D, ∨εk := max
D

εk,D. (4.6)

4.5.2 Parameters

In this section we will derive the closed-form expressions for the parameters
based on our generative model, namely, weights and biases.

To make a prediction, KEMLP outputs the marginal probability of the out-
put variable o. KEMLP assigns a weight for each model and constructs the
following statistical model:

P[o|s∗, sI , sJ , w]

∝ exp{bo + w∗ f∗(o, s∗)} × exp
{

∑
i∈I

wi fi(o, si)
}
× exp

{
∑
j∈J

wj f j(o, sj)
}

,

where w∗, wi, wj are the corresponding weights for models s∗, si, sj, and bo is
some bias parameter that depends on o. For the simplicity of exposition, we
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use an equivalent notation by putting all the weights and outputs of factor
functions into vectors using an ordering of models. More precisely, we define

w = [1; w∗; (wi)i∈I ; (wj)j∈J ],

fo(s∗, sI , sJ ) = [bo; f∗(o, s∗); ( fi(o, si))i∈I ; ( f j(o, sj))j∈J ],

for o ∈ Y . All concatenated vectors from above are in Rm+n+2. Given this,
an equivalent form of KEMLP’s statistical model is

P[o|s∗, sI , sJ , w] =
1

Zw
exp(〈w, fo(s∗, sI , sJ )〉), (4.7)

where Zw is the normalization constant over o ∈ Y . We can further show that

P[o = ỹ|s∗, sI , sJ , w] =
P[o = ỹ|s∗, sI , sJ , w]

P[o = ỹ|s∗, sI , sJ , w] + P[o = 1− ỹ|s∗, sI , sJ , w]

=
exp(〈w, fy(s∗, sI , sJ )〉)

exp(〈w, fỹ(s∗, sI , sJ )〉) + exp(〈w, f1−ỹ(s∗, sI , sJ )〉)

=
1

1 + exp(−∆w(ỹ, s∗, sI , sJ ))
(4.8)

where ∆w(ỹ, s∗, sI , sJ ) is previously defined as

∆w(ỹ, s∗, sI , sJ ) := 〈w, fỹ(s∗, sI , sJ )− f1−ỹ(s∗, sI , sJ )〉.

Therefore, we have

P[o = ỹ|s∗, sI , sJ , w] = σ(∆w(ỹ, s∗, sI , sJ )) (4.9)

where σ : R 7→ [0, 1] is the Sigmoid function.
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Remark 3 (Closed form expression of ∆w(ỹ, s∗, sI , sJ )). Recalling our knowledge
integration rules, it can be shown that

∆w(ỹ, s∗, sI , sJ ) = 〈w, fỹ(s∗, sI , sJ )− f1−ỹ(s∗, sI , sJ )〉
= b(ỹ) + w∗

(
f∗(ỹ, s∗)− f∗(1− ỹ, s∗)

)
+ ∑

i∈I
wi
(

fi(ỹ, si)− fi(1− ỹ, si)
)

+ ∑
j∈J

wi
(

f j(ỹ, sj)− f j(1− ỹ, sj)
)

where b(ỹ) = bỹ − b1−ỹ. Let b := b1 − b0. Then b(ỹ) = (2ỹ− 1)b.
Using the logical rules, we moreover have

f∗(ỹ, s∗)− f∗(1− ỹ, s∗) = 1{ỹ = s∗} − 1{1− ỹ = s∗}
= (2ỹ− 1)(2s∗ − 1)

fi(ỹ, si)− fi(1− ỹ, si) = 1{si =⇒ ỹ} − 1{si =⇒ 1− ỹ}
= (2ỹ− 1)si

f j(ỹ, sj)− f j(1− ỹ, sj) = 1{ỹ =⇒ sj} − 1{1− ỹ =⇒ sj}
= −(2ỹ− 1)(1− sj).

Therefore, the closed form expression for ∆w(ỹ, s∗, sI , sJ ) is given by

∆w(ỹ, s∗, sI , sJ ) = (2ỹ− 1)
(

b + w∗(2s∗ − 1) + ∑
i∈I

wisi − ∑
j∈J

wj(1− sj)
)
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Remark 4 (Optimal parameters). We now analyze the class conditional distribu-
tion P[y|s∗, sI , sJ ]. Optimal set of parameters for our generative model must satisfy:

P[y = ỹ|s∗, sI , sJ ] =
P[y = ỹ, s∗, sI , sJ ]

P[s∗, sI , sJ ]

=
P[y = ỹ, s∗, sI , sJ ]

P[y = ỹ, s∗, sI , sJ ] + P[y = 1− ỹ, s∗, sI , sJ ]

=
1

1 + P[y=1−ỹ,s∗,sI ,sJ ]
P[y=ỹ,s∗,sI ,sJ ]

=
1

1 + exp
(

log P[y=1−ỹ,s∗,sI ,sJ ]
P[y=ỹ,s∗,sI ,sJ ]

)
=

1

1 + exp
(
− log P[y=ỹ,s∗,sI ,sJ ]

P[y=1−ỹ,s∗,sI ,sJ ]

) .

(4.10)

Note that, the optimal parameters satisfy

P[o = ỹ|s∗, sI , sJ ] = P[y = ỹ|s∗, sI , sJ ].

Hence, combining Equation 4.8 and Equation 4.10 as well as Remark 3 we further
have

log
P[y = ỹ, s∗, sI , sJ ]

P[y = 1− ỹ, s∗, sI , sJ ]
= (2ỹ− 1)

(
b + w∗(2s∗ − 1) + ∑

i∈I
wisi − ∑

j∈J
wj(1− sj)

)
.

(4.11)

Above remark indicates the condition that the optimal parameters must
satisfy.

4.5.3 Proof of Lemma 8

Recall that for each model index k ∈ I ∪ J we define upper and lower
bounds to truth rates and false rates as

∧αk := min
D

αk,D, ∧εk := min
D

εk,D

∨αk := max
D

αk,D, ∨εk := max
D

εk,D.
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Next, we revisit Lemma 8 towards its proof.

Lemma (Recall). Let ∆w be a random variable defined above. Suppose that KEMLP

uses optimal parameters w such that P[y|s∗, sI , sJ ] = P[o|s∗, sI , sJ , w]. Let
also ry denote the log-ratio of class imbalance log P[y=1]

P[y=0] . For a fixed y ∈ Y and
D ∈ {Db,Da}, one has

Es∗,sI ,sJ [∆w(y, s∗, sI , sJ )|y] ≥ µd∗,D + yµdI ,D + (1− y)µdJ ,D + (2y− 1)ry := µy,D,

where

µd∗,D = α∗,D log ∧α∗
1− ∧α∗

+ (1− α∗,D) log
1− ∨α∗

∨α∗
,

µdI ,D = ∑
i∈I

αi,D log ∧αi

∨εi
+ (1− αi,D) log

1− ∨αi
1− ∧εi

− ∑
j∈J

ε j,D log
∨αj

∧ε j
− (1− ε j,D) log

1− ∧αj

1− ∨ε j
,

and

µdJ ,D = ∑
j∈J

αj,D log
∧αj

∨ε j
+ (1− αj,D) log

1− ∨αj

1− ∧ε j
−∑

i∈I
εi,D log ∨αi

∧εi
− (1− εi,D) log

1− ∧αi
1− ∨εi

.

Proof of Lemma 8. We show earlier that the optimal parameters satisfy Equa-
tion 4.11. Note that the probabilities on the left hand side of Equation 4.11

are mixtures over both the benign and adversarial distributions. Namely,

P[y = ỹ, s∗, sI , sJ ] = ∑
D∈{Db,Da}

πDPD[y = ỹ, s∗, sI , sJ ].

Recall from our modeling assumptions that models are conditionally inde-
pendent given y with PD[s∗, sI , sJ |y = ỹ] = PD[s∗|y = ỹ]∏i∈I PD[si|y =

ỹ]∏j∈J PD[sj|y = ỹ]. Therefore, without loss of generality, this holds not
for P[y = ỹ, s∗, sI , sJ ]. That is, each parameter is to encode this dependency
structure and must be a function of some set of models. Below we propose a
strategy to choose optimal weights to satisfy Equation 4.11.

We start by decomposing log P[y=ỹ,s∗,sI ,sJ ]
P[y=1−ỹ,s∗,sI ,sJ ]

.

log
P[y = ỹ, s∗, sI , sJ ]

P[y = 1− ỹ, s∗, sI , sJ ]

= log
P[y = ỹ, s∗]

P[y = 1− ỹ, s∗]
+ ∑

i∈I
log

P[si|y = ỹ, sIi ]

P[si|y = 1− ỹ, sIi ]
+ ∑

j∈J
log

P[sj|y = ỹ, sI , sJj ]

P[sj|y = 1− ỹ, sI , sJj ]
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where Ii is the set of i′ such that i′ ∈ I and i′ < i. Similarly, we let Jj be
the set of j′ such that j′ ∈ J and j′ < j. Note that there are multiple such
constructions to satisfy Equation 4.11 to have optimal set of weights.

We split our proof into three main steps as follows.

step 1 : derivation of bounds for optimal set of parameters

Given our strategy, we then derive the parameters in terms of conditional
probabilities of individual models. Towards that, let b be decomposed into
its additive components such that b = b∗ + ∑i∈I bi −∑j∈J bj. Let also ry =

log P[y=1]
P[y=0] . We derive bounds for each sensor using Equation 4.11 as follows.

• Main task model: The parameters for the main model simply satisfies

(2ỹ− 1)
(
w∗(2s∗ − 1) + b∗

)
= log

P[y = ỹ, s∗]
P[y = 1− ỹ, s∗]

= log
∑D∈{Db,Da} πDPD[y = ỹ, s∗]

∑D∈{Db,Da} πDPD[y = 1− ỹ, s∗]
.

With a simple algebraic manipulation where y = 1 and s∗ = 1 (resp. for y = 0,
s∗ = 1), we have that

w∗ + b∗ = log
P[y = 1, s∗ = 1]
P[y = 0, s∗ = 1]

(4.12)

and for y = 0 and s∗ = 0 (resp. for y = 1, s∗ = 0)

w∗ − b∗ = log
P[y = 0, s∗ = 0]
P[y = 1, s∗ = 0]

. (4.13)

Combining Equation 4.12 and Equation 4.13 we have

w∗ =
1
2

log
P[y = 1, s∗ = 1]
P[y = 0, s∗ = 1]

P[y = 0, s∗ = 0]
P[y = 1, s∗ = 0]

(∗)
=

1
2

log

(
∑D∈{Db,Da} πDPD[y = 1]α∗,D

)(
∑D∈{Db,Da} πDPD[y = 0]α∗,D

)(
∑D∈{Db,Da} πDPD[y = 1](1− α∗,D)

)(
∑D∈{Db,Da} πDPD[y = 0](1− α∗,D)

)
(4.14)
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where (*) follows from that PD[y = s∗|y] = α∗,D and PD[y 6= s∗|y] = 1− α∗,D
for D ∈ {Db,Da}.
Similarly, for b∗ we have

b∗ =
1
2

log
P[y = 1, s∗ = 1]
P[y = 0, s∗ = 1]

P[y = 1, s∗ = 0]
P[y = 0, s∗ = 0]

=
1
2

log

(
∑D∈{Db,Da} πDPD[y = 1]α∗,D

)(
∑D∈{Db,Da} πDPD[y = 1](1− α∗,D)

)(
∑D∈{Db,Da} πDPD[y = 0](1− α∗,D)

)(
∑D∈{Db,Da} πDPD[y = 0]α∗,D

) .

(4.15)

Finally, noting that, for all ỹ ∈ Y , we have

∑
D∈{Db,Da}

πDPD[y = ỹ]α∗,D ≥ ∧α∗ ∑
D∈{Db,Da}

πDPD[y = ỹ] = ∧α∗P[y = ỹ]

∑
D∈{Db,Da}

πDPD[y = ỹ]α∗,D ≤ ∨α∗ ∑
D∈{Db,Da}

πDPD[y = ỹ] = ∨α∗P[y = ỹ].

Using the above relation as well as Equation 4.14 and Equation 4.15, the
weight and bias of the main task model, w∗ and b∗, can therefore be bounded
as

log ∧α∗
1− ∧α∗

≤ w∗ ≤ log ∨α∗
1− ∨α∗

and (4.16)

ry + log ∧
α∗(1− ∨α∗)

(1− ∧α∗)∨α∗
≤ b∗ ≤ ry + log ∨

α∗(1− ∧α∗)

(1− ∨α∗)∧α∗
. (4.17)

To distinguish the effect of class imbalance in our analysis, we define b∗∗ :=
b∗ − ry.

• Permissive models: For permissive model, we have

log
P[si|y = ỹ, sIi ]

P[si|y = 1− ỹ, sIi ]
= (2ỹ− 1)(wisi + bi).
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Therefore

log
P[si|y = ỹ, sIi ]

P[si|y = 1− ỹ, sIi ]
= log

P[si,y=ỹ,sIi
]

P[y=ỹ,sIi
]

P[si,y=1−ỹ,sIi
]

P[y=1−ỹ,sIi
]

(∗)
= log

∑D∈{Db ,Da} πDPD [y=ỹ,sIi
]PD [si|y=ỹ]

∑D∈{Db ,Da} πDPD [y=ỹ,sIi
]

∑D∈{Db ,Da} πDPD [y=1−ỹ,sIi
]PD [si|y=1−ỹ]

∑D∈{Db ,Da} πDPD [y=1−ỹ,sIi
]

where (*) follows from the conditional independence assumption.

Let ỹ = 1. Therefore, for si = 1 we have

min
D

αi,D = ∧αi ≤
∑D∈{Db,Da} πDPD[y = ỹ, sIi ]PD[si|y = ỹ]

∑D∈{Db,Da} πDPD[y = ỹ, sIi ]
≤ max

D
αi,D = ∨αi

min
D

εi,D = ∧εi ≤
∑D∈{Db,Da} πDPD[y = 1− ỹ, sIi ]PD[si|y = 1− ỹ]

∑D∈{Db,Da} πDPD[y = 1− ỹ, sIi ]
≤ max

D
εi,D = ∨εi.

Above bounds finally lead to

log ∧
αi

∨εi
≤ log

P[si|y = ỹ, sIi ]

P[si|y = 1− ỹ, sIi ]
= wi + bi ≤ log ∨

αi

∧εi
. (4.18)

Next, we let si = 0. Repeating the same technique above, we have

∑D∈{Db,Da} πDPD[y = ỹ, sIi ]PD[si|y = ỹ]

∑D∈{Db,Da} πDPD[y = ỹ, sIi ]
≥ min

D
1− αi,D = 1− ∨αi

∑D∈{Db,Da} πDPD[y = ỹ, sIi ]PD[si|y = ỹ]

∑D∈{Db,Da} πDPD[y = ỹ, sIi ]
≤ max

D
1− αi,D = 1− ∧αi

and

∑D∈{Db,Da} πDPD[y = 1− ỹ, sIi ]PD[si|y = 1− ỹ]

∑D∈{Db,Da} πDPD[y = 1− ỹ, sIi ]
≥ min

D
1− εi,D = 1− ∨εi

∑D∈{Db,Da} πDPD[y = 1− ỹ, sIi ]PD[si|y = 1− ỹ]

∑D∈{Db,Da} πDPD[y = 1− ỹ, sIi ]
≤ max

D
1− εi,D = 1− ∧εi.
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Above bounds finally lead to

log
1− ∨αi
1− ∧εi

≤ log
P[si|y = ỹ, sIi ]

P[si|y = 1− ỹ, sIi ]
= bi ≤ log

1− ∧αi
1− ∨εi

. (4.19)

Note that the same conclusion can be drawn for ỹ = 0.

• preventive models: For preventive model, we have

log
P[sj|y = ỹ, sI , sJj ]

P[sj|y = 1− ỹ, sI , sJj ]
= −(2ỹ− 1)(wj(1− sj) + bj).

Then

log
P[sj|y = ỹ, sI , sJj ]

P[sj|y = 1− ỹ, sI , sJj ]
= log

P[sj,y=ỹ,sI ,sJj
]

P[y=ỹ,sI ,sJj
]

P[sj,y=1−ỹ,sI ,sJj
]

P[y=1−ỹ,sI ,sJj
]

(∗)
= log

∑D∈{Db ,Da} πDPD [y=ỹ,sI ,sJj
]PD [sj|y=ỹ]

∑D∈{Db ,Da} πDPD [y=ỹ,sI ,sJj
]

∑D∈{Db ,Da} πDPD [y=1−ỹ,sI ,sJj
]PD [sj|y=1−ỹ]

∑D∈{Db ,Da} πDPD [y=1−ỹ,sI ,sJj
]

where (*) follows from the conditional independence assumption.

Let ỹ = 0. Therefore, for sj = 0 we have

min
D

αj,D = ∧αj ≤
∑D∈{Db,Da} πDPD[y = ỹ, sI , sJj ]PD[sj|y = ỹ]

∑D∈{Db,Da} πDPD[y = ỹ, sI , sJj ]
≤ max

D
αj,D = ∨αj

and

min
D

ε j,D = ∧ε j ≤
∑D∈{Db,Da} πDPD[y = 1− ỹ, sI , sJj ]PD[sj|y = 1− ỹ]

∑D∈{Db,Da} πDPD[y = 1− ỹ, sI , sJj ]
≤ max

D
ε j,D = ∨ε j.

Above bounds finally lead to

log
∧αj

∨ε j
≤ log

P[sj|y = ỹ, sI , sJj ]

P[sj|y = 1− ỹ, sI , sJj ]
= wj + bj ≤ log

∨αj

∧ε j
. (4.20)
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Next, we let sj = 1. Repeating the same technique above, we have

∑D∈{Db,Da} πDPD[y = ỹ, sI , sJj ]PD[sj|y = ỹ]

∑D∈{Db,Da} πDPD[y = ỹ, sI , sJj ]
≥ min

D
1− αj,D = 1− ∨αj

∑D∈{Db,Da} πDPD[y = ỹ, sI , sJj ]PD[sj|y = ỹ]

∑D∈{Db,Da} πDPD[y = ỹ, sI , sJj ]
≤ max

D
1− αj,D = 1− ∧αj

and

∑D∈{Db,Da} πDPD[y = 1− ỹ, sI , sJj ]PD[sj|y = 1− ỹ]

∑D∈{Db,Da} πDPD[y = 1− ỹ, sI , sJj ]
≥ min

D
1− ε j,D = 1− ∨ε j

∑D∈{Db,Da} πDPD[y = 1− ỹ, sI , sJj ]PD[sj|y = 1− ỹ]

∑D∈{Db,Da} πDPD[y = 1− ỹ, sI , sJj ]
≤ max

D
1− ε j,D = 1− ∧ε j.

Similarly as in permissive models, above bounds lead to

log
1− ∨αj

1− ∧ε j
≤ log

P[sj|y = ỹ, sI , sJj ]

P[sj|y = 1− ỹ, sI , sJj ]
= bj ≤ log

1− ∧αj

1− ∨ε j
. (4.21)

The same conclusion can be drawn for ỹ = 1.

step 2 : decomposition of ∆w(y, s∗, sI , sJ ) Next, we recall Remark 3

and present a lower bound for ∆w(y, s∗, sI , sJ ) that decomposes ∆w(y, s∗, sI , sJ )
into its additive components such that

∆w(y, s∗, sI , sJ ) = (2ỹ− 1)
(

b + w∗(2s∗ − 1) + ∑
i∈I

wisi − ∑
j∈J

wj(1− sj)
)

= (2ỹ− 1)
(

w∗(2s∗ − 1) + ∑
i∈I

(
wisi + bi

)
− ∑

j∈J

(
wj(1− sj) + bj

))
.

Next, we analyze

PD
[
〈w, fy(s∗, sI , sJ )− f1−y(s∗, sI , sJ )〉|y

]
= PD[∆w(y, s∗, sI , sJ )|y].
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Note that PD[s∗|y] = α∗,D if s∗ = y. Therefore, PD[s∗ = 1|y = 1] = α∗,D
and PD[s∗ = 0|y = 1] = 1− α∗,D. Similarly, PD[s∗ = 0|y = 0] = α∗,D and
PD[s∗ = 1|y = 0] = 1− α∗,D. Thus

PD[(2ỹ− 1)
(
w∗(2s∗− 1) + b∗

)
|y] (∗)= PD[w∗(2s∗∗− 1) + b∗∗+ (2ỹ− 1)ry|y]

where s∗∗ satisfies PD[s∗∗ = 1] = α∗,D and PD[s∗∗ = 0] = 1− α∗,D. Note
that (*) stems from the symmetry of s∗ and b∗∗ with respect to y. To reduce
exposition, we will stick to s∗ notation and continue to refer to s∗∗ as s∗.
Hence, we define d∗,D as

d∗,D := w∗(2s∗ − 1) + b∗∗ (4.22)

where b∗∗ := b∗ − ry as defined earlier. Therefore, the contribution of the
main task model in the majority voting random variable ∆w(y, s∗, sI , sJ ) will
be

d∗,D + (2y− 1)ry. (4.23)

Next, we analyze the auxiliary model predictions. For y = 1,

PD
[
(2y− 1)

(
∑
i∈I

(wisi + bi)− ∑
j∈J

(wj(1− sj) + bj)
)
|y
]

= PD
[

∑
i∈I

(wisi + bi)− ∑
j∈J

(wj(1− sj) + bj)|y = 1
]

where, on the right hand side, we have PD[si = 1|y = ỹ] = αi,D and PD[1−
sj = 1|y = ỹ] = ε j,D for ỹ = 1 over distribution D ∈ {Db,Da}. Therefore, we
define dI ,D as

(
∆w(y, s∗, sI , sJ )− d∗,D − ry|y = 1

)
= ∑

i∈I
(wisi + bi)− ∑

j∈J
(wj(1− sj) + bj) := dI ,D. (4.24)
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Using the same strategy for y = 0, we define dJ ,D as

(
∆w(y, s∗, sI , sJ )− d∗,D + ry|y = 0

)
= ∑

j∈J
(wj(1− sj) + bj)−∑

i∈I
(wisi + bi) := dJ ,D

(4.25)

where, on the right hand side, we have PD[1− sj = 1|y = ỹ] = αj,D and
PD[si = 1|y = ỹ] = εi,D for ỹ = 0 over D ∈ {Db,Da}.

Combining Equation 4.23, Equation 4.24 and Equation 4.25, we have

(
∆w(y, s∗, sI , sJ )|y

)
= d∗D + ydI ,D + (1− y)dJ ,D + (2y− 1)ry. (4.26)

final step : Es∗,sI ,sJ [∆w(y, s∗, sI , sJ )|y] We express ∆w(y, s∗, sI , sJ )|y in
terms of y and a function of model predictions thus far. In this step, using
the bounds on the optimal parameters in the first step as well as the de-
composition introduced in the second step, we derive a lower bound for
the Es∗,sI ,sJ [∆w(y, s∗, sI , sJ )|y]. Towards that, we lower bound the expected
value of d∗,D, dI ,D and dJ ,D individually.

• Es∗ [d∗,D]: For the main task model, we have

Es∗ [d∗,D] = Es∗ [w∗(2s∗ − 1) + b∗∗] (4.27)

over distribution D ∈ {Db,Da} and w∗. One can infer from Equation 4.16 and
Equation 4.17 for b∗∗ = b∗ − ry that

Es∗ [d∗,D] = Es∗ [w∗(2s∗ − 1) + (2y− 1)b∗∗]

≥ α∗,D log ∧α∗
1− ∧α∗

+ (1− α∗,D) log
1− ∨α∗

∨α∗
:= µd∗,D .

(4.28)
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• EsI ,sJ [dI ,D]: For the permissive models, we have

EsI ,sJ [dI ,D] = EsI ,sJ

[
∑
i∈I

(wisi + bi)− ∑
j∈J

(wj(1− sj) + bj)
]

= EsI

[
∑
i∈I

(wisi + bi)
]
−EsJ

[
∑
j∈J

(wj(1− sj) + bj)
]
.

Note that wisi + bi = wi + bi with probability αi,D and wisi + bi = bi oth-
erwise. Therefore, using Equation 4.18 and Equation 4.19 we lower bound
EsI

[
∑i∈I(wisi + bi)

]
as

EsI

[
∑
i∈I

(wisi + bi)
]
≥ ∑

i∈I
αi,D log ∧

αi

∨εi
+ (1− αi,D) log

1− ∨αi
1− ∧εi

.

Similarly, −EsJ

[
∑j∈J (wj(1− sj) + bj)

]
can be lower bounded as

−EsJ

[
∑
j∈J

(wj(1− sj) + bj)
]
≥ − ∑

j∈J
ε j,D log

∨αj

∧ε j
+ (1− ε j,D) log

1− ∧αj

1− ∨ε j
.

Combining above result, we have

EsI ,sJ [dI ,D]

≥ ∑
i∈I

αi,D log ∧
αi

∨εi
+ (1− αi,D) log

1− ∨αi
1− ∧εi

− ∑
j∈J

ε j,D log
∨αj

∧ε j
− (1− ε j,D) log

1− ∧αj

1− ∨ε j
:= µI ,D.

(4.29)

• EsI ,sJ [dJ ,D]: Following the same strategy to that of EsI ,sJ [dI ,D], we have

EsI ,sJ [dJ ,D]

≥ ∑
j∈J

αj,D log
∧αj

∨ε j
+ (1− αj,D) log

1− ∨αj

1− ∧ε j

−∑
i∈I

εi,D log ∨
αi

∧εi
− (1− εi,D) log

1− ∧αi
1− ∨εi

:= µJ ,D.

(4.30)
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Finally, combining Equation 4.26, Equation 4.27, Equation 4.29, Equation 4.30

we conclude

Es∗,sI ,sJ [∆w(y, s∗, sI , sJ )|y] = Es∗,sI ,sJ [d∗,D + ydI ,D + (1− y)dJ ,D + (2y− 1)ry]

≥ µ∗,D + yµI ,D + (1− y)µJ ,D + (2y− 1)ry := µy,D.
(4.31)

The proof is thus completed.

4.5.4 Proof of Theorem 9

We start by recalling our main theorem.

Theorem (Recall). For y ∈ Y andD ∈ {Db,Da}, let µy,D be defined as in Lemma 8.
Suppose that the modeling assumption holds, and suppose that µdK,D > 0, for all
K ∈ {I ,J } and D ∈ {Db,Da}. Then

AKEMLP ≥ 1−Eµy,D [exp
(
−2µ2

y,D/v2)], (4.32)

where v2 is the variance upper bound to P[o = y|y] with

v2= 4
(

log ∨α∗
1− ∧α∗

)2
+ ∑

k∈I∪J

(
log ∨

αk(1− ∧εk)

∧εk(1− ∨αk)

)2
.

Proof of Theorem 9. Recall that we define weighted robust accuracy of KEMLP

as

AKEMLP = ED∼{Da,Db}Ey∼Y
[
PD[o = y|y, w]

]
.

The weighted accuracy definition comes from the latent variable z. That
is, AKEMLP = P[o = y|w] = ∑z∈{0,1}P[o = y|z, w] where P[o = y|z =

0, w] = PDb [o = y|w] and P[o = y|z = 1, w] = PDa [o = y|w]. Hence,
AKEMLP = ED∼{Db,Da}

[
PD[o = y|w]

]
= ED∼{Db,Da}Ey∼Y

[
PD[o = y|y, w]

]
.
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Let w be the set of optimal parameters. Using Equation 4.9 and our infer-
ence rule, PD[o = y|y, w] can be further expressed as

PD[o = y|y, w]

= PD
[
σ
(
∆w(y, s∗, sI , sJ )

)
> 1/2|y

]
= PD[∆w(y, s∗, sI , sJ ) > 0|y] = 1−PD[∆w(y, s∗, sI , sJ ) < 0|y]

For the rest of the proof, we will focus on bounding the term
PD[∆w(y, s∗, sI , sJ ) < 0|y], and AKEMLP will follow from taking expectation
of 1−PD[∆w(y, s∗, sI , sJ ) < 0|y] over D ∈ {Db,Da} and y ∈ Y .

Next, we recall the generalized bounded difference inequality as well as
generalized Hoeffding’s inequality (Geer, 2002). Note that the same result
can be shown via Azuma’s inequality for submartingale sequences (Azuma,
1967).

Theorem 11 (Azuma, 1967; Geer, 2002). Assume that Xt be a random variable
with respect to filtration Ft, and Lt and Ut be Ft−1 measurable random variables
such that

Lt ≤ Xt − Xt−1 ≤ Ut

where Lt < Ut and Ut −Lt ≤ ct almost surely. Therefore, for some ε > 0, one has

P(Xn −E[Xn] < −ε) ≤ exp
(
− 2ε2

∑t=[n] c2
t

)
P(Xn −E[Xn] > ε) ≤ exp

(
− 2ε2

∑t=[n] c2
t

)
.

(4.33)

We now consider the random variable ∆w(y, s∗, sI , sJ ) = d∗,D + ydI ,D +

(1− y)dJ ,D + (2y− 1)ry that is meant to represent Xn in Theorem 11, where
each increment is induced by a single model. We call ∆w(y, s∗, sI , sJ ) as
X1+|I|+|J |.

To prove compatibility of our setting with the Theorem 11, we present the
following remark.
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Remark 5 (Measurability of X1+|I|+|J | and the bounded differences). Let
y = 1. We can write our random variable X1+|I|+|J | = ∆w(y, s∗, sI , sJ ) as

(
∆w(y, s∗, sI , sJ )|y = 1

)
= w∗(2s∗− 1) + b∗+ ∑

i∈I
(wisi + bi)− ∑

j∈J
(wj(1− sj) + bj).

That is, we represent
(
∆w(y, s∗, sI , sJ )|y = 1

)
as a random process with a total of

1+ |I|+ |J | increments. Let X0 = 0, we treat the main sensor as the first increment
such that

X1 = w∗(2s∗ − 1) + b∗.

For t = 1, ..., |I| we let

Xt+1 − Xt = wisi + bi s.t. i = t + 1.

Finally, for t = |I|+ 1, ..., |I|+ |J | we let

Xt+1 − Xt = −(wj(1− sj) + bj) s.t. j = t + 1.

and the similar analysis can be performed for y = 0.
Above decomposition shows that X1+|I|+|J | isFn measurable. Specifically, Xt+1−

Xt is Ft measurable for all t = 1, ..., 1 + |I| + |J |. Moreover, Xt+1 − Xt and
Xt′+1 − Xt′ are independent for t 6= t′.

Using the increments introduced above, one can further show that the maximum
increments ct for t = 1, ..., 1 + |I|+ |J | are given by

|w∗ + b∗ − (−w∗ + b∗)| = 2w∗ ≤ 2∨w∗ := c1.

For t = 1, ..., |I| we let

|Xt+1 − Xt| = |(wi + bi)− bi| ≤ ∨wi := ct+1 s.t. i = t + 1.

Finally, for t = |I|+ 1, ..., |I|+ |J | we let

|Xt+1 − Xt| = | − (wj + bj)− (−bj)| ≤ ∨wj := ct+1 s.t. i = t + 1.
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Recalling the bounds in Equation 4.16, Equation 4.18, Equation 4.19, Equa-
tion 4.20, Equation 4.21, we have

c1 = 2 log ∨α∗
1− ∧α∗

f ort = 1and ct = log ∨
αt(1− ∧εt)

∧εt(1− ∨αt)
f or t ∈ I ∪ J . (4.34)

Next, for any y ∈ Y , we derive the following

PD[∆w(y, s∗, sI , sJ ) < 0|y]
= PD

[
∆w(y, s∗, sI , sJ )−Es∗,sI ,sJ [∆w(y, s∗, sI , sJ )]

< −Es∗,sI ,sJ [∆w(y, s∗, sI , sJ )]
∣∣y]

(∗)
≤ PD

[
∆w(y, s∗, sI , sJ )−Es∗,sI ,sJ [∆w(y, s∗, sI , sJ )|y] < −µy,D

∣∣y]
where (*) stems from that µy,D is a lower bound to Es∗,sI ,sJ [∆w(y, s∗, sI , sJ )|y]
as shown in Lemma 8.

Let ε = µy,D. If µy,D > 0, using Theorem 11 for Ψ2 =
∑t∈{1}∪I∪J c2

t
µ2

y,D
where ct

is as defined in Equation 4.34 results in

PD[∆w(y, s∗, sI , sJ ) < 0|y]
≤ PD

[
∆w(y, s∗, sI , sJ )−Es∗,sI ,sJ [∆w(y, s∗, sI , sJ )|y] < −µy,D

∣∣y]
≤ exp(−2/Ψ2).

By further taking the expectation of PD[∆w(y, s∗, sI , sJ ) < 0|y] over D ∈
{Db,Da} and y ∈ Y such that

AKEMLP = ED∼{Da,Db}Ey∼Y
[
PD[o = y|y]

]
= ED∼{Da,Db}Ey∼Y

[
PD[∆w(y, s∗, sI , sJ ) > 0|y]

]
= 1−ED∼{Da,Db}Ey∼Y

[
PD[∆w(y, s∗, sI , sJ ) < 0|y]

]
≥ 1−Eµy,D

[
exp(−2µ2

y,D/v2)
]

concludes the proof.
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4.5.5 Proof of Proposition 10

We begin with recalling Proposition 10.

Theorem (Recall). Let the number of permissive and preventive models be the same
and denoted by n such that n := |I| = |J |. Note that the weighted accuracy of the
main model in terms of its truth rate is simply α∗ := ∑D∈{Db,Da} πDα∗,D. Moreover,
let K,K′ ∈ {I ,J } with K 6= K′ and for any D ∈ {Db,Da}, let

γD :=
1

n + 1
min
K

{
α∗,D − 1/2 + ∑

k∈K
αk,D − ∑

k′∈K′
εk′,D

}
.

If γD >
√

4
n+1 log 1

1−α∗
for all D ∈ {Db,Da}, then AKEMLP > Amain.

Proof of Proposition 10. We start by recalling the widely known Chernoff bound
for the sum of independent and non-identical random variables.

Lemma 9 (Chernoff Bound for Poisson Binomial Distributions). Let X be a
random variable with Poisson Binomial distribution. For δ ∈ [0, 1],

P[X < (1− δ)µX] ≤ exp(−δ2µX/2).

Recall that KEMLP predicts y to be ô where

ô = arg max
ỹ∈Y

P[o = ỹ|s̃∗, s̃I , s̃J , w] = arg max
ỹ∈Y

σ(∆w(ỹ, s∗, sI , sJ ))

where

∆w(ỹ, s∗, sI , sJ ) = (2ỹ− 1)
(

b + w∗(2s∗ − 1) + ∑
i∈I

wisi − ∑
j∈J

wj(1− sj)
)

.

We showed earlier that there exist a set of parameters w, and call it optimal
parameters w∗, where

P[o = ỹ|s̃∗, s̃I , s̃J , w∗] = P[y = ỹ|s̃∗, s̃I , s̃J ]

for all ỹ ∈ Y .
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Note that, due to above equation, P[o = ỹ|s̃∗, s̃I , s̃J , w∗] is Bayes classifier
where the error of classifier is minimized over w. Hence,

P[ô 6= y|w∗] ≤ P[ô 6= y|w]

and

P[ô = y|w∗] ≥ P[ô = y|w]

for any w ∈ R|I|+|J |+2.
Leveraging above fact, we will bound P[ô = y|w] from below where we will

use some parameters w that are not optimal. That is, from now on, we will
focus on P[ô = y|w] where w is not optimal but leads to a close resemblance
of P[ô = y|w∗]. In other words, we will perform a worst-case analysis where
ô will be a result of unweighted majority voting. Hence, we let w be given by
w = [0; 1/2; (1)i∈I ; (1)j∈J ]. For this case, ∆w(ỹ, s∗, sI , sJ ) becomes a random
variable with Poisson Binomial distribution and with some bias. That is,

∆w(ỹ, s∗, sI , sJ ) = (2ỹ− 1)
(
(s∗ − 1/2) + ∑

i∈I
si − ∑

j∈J
(1− sj)

)
where s∗, si∈I and sj∈J are random variables in Y .

Using the weight introduced above, we can now re-write the weighted
robust accuracy of KEMLP as

AKEMLP = P[ô = y|w∗] ≥ P[ô = y|w] = πDaPDa [ô = y|w] + πDbPDb [ô = y|w]

= πDa

(
PDa [ô = y|w, y = 1]PDa [y = 1] + PDa [ô = y|w, y = 0]PDa [y = 0]

)
+ πDb

(
PDb [ô = y|w, y = 1]PDb [y = 1] + PDb [ô = y|w, y = 0]PDb [y = 0]

)
.

(4.35)

Next, we will derive a lower bound for PD[ô = y|y = ỹ, w] for D ∈
{Db,Da} and for all ỹ ∈ {0, 1}.
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for y = 1: We have

PD[ô = y|w, y = 1] = PD[s∗ + ∑
i∈I

si + ∑
j∈J

sj − (|J |+ 1/2) ≥ 0|y = 1]

1−PD[s∗ + ∑
i∈I

si + ∑
j∈J

sj − (|J |+ 1/2) < 0|y = 1]

= 1−PD[s∗ + ∑
i∈I

si + ∑
j∈J

sj < |J |+ 1/2|y = 1]

where PD[s∗ = 1|y = 1] = α∗,D (resp. PD[si = 1|y = 1] = αi,D and PD[sj =

1|y = 1] = 1− ε j,D).
We let

ΨD,y=1 := s∗ + ∑
i∈I

si + ∑
j∈J

sj − (|J |+ 1/2)

and
Ψ̂D,y=1 := s∗ + ∑

i∈I
si + ∑

j∈J
sj = ΨD,y=1 + |J |+ 1/2.

Similarly, the expected values of ΨD,y=1 and Ψ̂D,y=1 over s∗, si and sj are
given by µΨD,y=1 and µΨ̂D,y=1

, respectively. Precisely,

µΨD,y=1 = α∗,D − 1/2 + ∑
i∈I

αi,D − ∑
j∈J

ε j,D

and

µΨ̂D,y=1
= α∗,D + ∑

i∈I
αi,D + ∑

j∈J
(1− ε j,D) = µΨD,y=1 + |J |+ 1/2

We then write PD[ô 6= y|w, y = 1] as

PD[ô 6= y|w, y = 1] = P[ΨD,y=1 < 0] ≤ exp(−δ2
D,y=1µΨ̂D,y=1

/2)

where
δD,y=1 = 1− |J |+ 1/2

µΨ̂D,y=1

=
µΨD,y=1

µΨ̂D,y=1

.

Let now γD,y=1 be the difference between true and false rates of sensors
normalized over preventive models when y = 1 such that
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γD,y=1 :=
1

|J |+ 1
(α∗,D − 1/2 + ∑

i∈I
αi,D − ∑

j∈J
ε j,D).

Noting that µΨD,y=1 = (|J |+ 1)γD,y=1, we have δD,y=1 =
(|J |+1)γD,y=1

(|J |+1)γD+|J |+1/2
and µΨ̂y=1

= (|J | + 1)γD,y=1 + |J | + 1/2. Using Lemma 9 for a Poisson

random variable Ψ̂y=1, we bound PD[ô 6= y|w, y = 1] as

PD[ô 6= y|w, Y = 1] = P[ΨD,y=1 < 0] = P[Ψ̂D,y=1 < |J |+ 1/2]

≤ exp(−δ2
D,y=1µΨ̂D,y=1

/2)

= exp
(
−

(|J |+ 1)2γ2
D,y=1

2
(
(|J |+ 1)γD,y=1 + |J |+ 1/2

))

≤ exp
(
−

(|J |+ 1)2γ2
D,y=1

2
(
(|J |+ 1)γD,y=1 + |J |+ 1

))

= exp
(
− (|J |+ 1)

γ2
D,y=1

2(γD,y=1 + 1)

)
(4.36)

for y = 0: We have

PD[ô = y|w, y = 0] = PD[s∗ − 1/2 + ∑
i∈I

si − ∑
j∈J

1− sj ≤ 0|y = 0]

1−PD[s∗ − 1/2 + ∑
i∈I

si − ∑
j∈J

1− sj > 0|y = 0]

= 1−PD[−s∗ + 1/2−∑
i∈I

si + ∑
j∈J

1− sj < 0|y = 0]

= 1−PD[−s∗ + 1− 1/2 + ∑
i∈I

1− si − |I|+ ∑
j∈J

1− sj < 0|y = 0]

= 1−PD[−s∗ + 1 + ∑
i∈I

1− si + ∑
j∈J

1− sj < |I|+ 1/2|y = 0]

where PD[s∗ = 1|y = 0] = 1 − α∗,D (resp. PD[si = 1|y = 0] = εi,D and
PD[sj = 1|y = 0] = 1− αj,D).



158 knowledge enhanced adversarial robustness

We let

ΨD,y=0 := 1− s∗ + ∑
i∈I

1− si + ∑
j∈J

1− sj − (|I|+ 1/2)

and

Ψ̂D,y=0 := 1− s∗ + ∑
i∈I

1− si + ∑
j∈J

1− sj = ΨD,y=0 + |I|+ 1/2.

Similarly, the expected values of ΨD,y=0 and Ψ̂D,y=0 over s∗, si and sj are
given by µΨD,y=0 and µΨ̂D,y=0

, respectively. Precisely,

µΨD,y=0 = α∗,D − 1/2−∑
i∈I

εi,D + ∑
j∈J

αj,D

and

µΨ̂D,y=0
= α∗,D + ∑

i∈I
1− εi,D + ∑

j∈J
αj,D = µΨD,y=0 + |I|+ 1/2

We then write PD[ô 6= y|w, y = 0] as

PD[ô 6= y|w, y = 0] = P[ΨD,y=0 < 0] ≤ exp(−δ2
D,y=0µΨ̂D,y=0

/2)

where
δD,y=0 = 1− |I|+ 1/2

µΨ̂D,y=0

=
µΨD,y=0

µΨ̂D,y=0

.

Let now γD,y=0 be the difference between true and false rates of sensors
normalized over permissive models when y = 0 such that

γD,y=0 :=
1

|I|+ 1
(α∗,D − 1/2 + ∑

j∈J
αj,D −∑

i∈I
εi,D).
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Noting that µΨD,y=0 = (|I|+ 1)γD,y=0, we have δD,y=0 = (|I|+1)γD
(|I|+1)γD+|I|+1/2

and µΨ̂y=0
= (|I| + 1)γD,y=0 + |I| + 1/2. Using Lemma 9 for a Poisson

random variable Ψ̂y=0, we bound PD[ô 6= y|w, y = 0] as

PD[ô 6= y|w, y = 0] = P[ΨD,y=0 < 0]

= P[Ψ̂D,y=0 < |I|+ 1/2] ≤ exp(−δ2
D,y=0µΨ̂D,y=0

/2)

= exp
(
−

(|I|+ 1)2γ2
D,y=0

2
(
(|I|+ 1)γD,y=0 + |I|+ 1/2

))

≤ exp
(
−

(|I|+ 1)2γ2
D,y=0

2
(
(|I|+ 1)γD,y=0 + |I|+ 1

))

= exp
(
− (|I|+ 1)

γ2
D,y=0

2(γD,y=0 + 1)

)
(4.37)

last step : For convenience, let n := |I| = |J | and

γD := min(γD,y=1, γD,y=0).

Using Equation 4.36 and Equation 4.37, we bound the pipeline accuracy in
Equation 4.35 such that

AKEMLP ≥ 1− ∑
D∈{Db,Da}

πD exp
(
− (n + 1)

γ2
D

2(γD + 1)

)

≥ 1− ∑
D∈{Db,Da}

πD exp
(
− (n + 1)

γ2
D
4

)
.

(4.38)

Hence, if 1 − exp
(
− (n + 1)γ2

D
4

)
> Amain for all D ∈ {Db,Da}, then

we have AKEMLP > Amain. Manipulating it further for all D ∈ {Db,Da}
concludes the proof.
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4.5.6 Proof of Corollary 6

We recall the respective setting as follows. We assume that the auxiliary
models are homogeneous for each type: permissive or preventive. For example,
αk is fixed with respect to k ∈ I ∪ J , hence we drop the subscripts, i.e.,
αk,D = α and εk,D = ε. We assume that the same number of auxiliary models
are used, namely |I| = |J | = n, and that the classes are balanced with
PD(y = 1) = PD(y = 0), for all D ∈ {Db,Da}. Finally, we let α∗,Db = 1 and
α∗,Da = 0, and α− ε > 0. Then, the following holds.

Corollary (Recall). The weighted robust accuracy of KEMLP in the homogeneous
setting satisfies

AKEMLP ≥ 1− exp
(
− 2n(α− ε)2).

In particular, one has limn→∞AKEMLP = 1.

Proof of Corollary 6. First, for α∗,Db = 1 and α∗,Da = 0, using Equation 4.12

and Equation 4.13, we note that

w∗ = b∗ = 0.

Secondly, in the homogeneous case, the conditional independence re-
flects to the mixture model and models become conditionally independent
in the mixture model as well. That is, the condition on the other mod-
els in Equation 4.18, Equation 4.19, Equation 4.20, Equation 4.21 drops
and we have closed form expression for all optimal parameters. Namely,
for αi,D = αj,D = α and εi,D = ε j,D = ε with α > ε, once can deduce
from Equation 4.18, Equation 4.19, Equation 4.20, Equation 4.21 that the
optimal weight of auxiliary sensors are given by wi = wj = log α

ε and
b = ∑i∈I bi −∑j∈J bj = ∑i∈I log 1−α

1−ε −∑j∈J log 1−α
1−ε = 0. Also, wi = wj > 0

for α > ε. For this setting, we can write out AKEMLP as follows.
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AKEMLP = ED∈{Db,Da}Ey∼Y
[
P[d∗,D + ydI ,D + (1− y)dI ,D > 0|y]

]
(∗)
= Ey∼Y

[
P[ydI ,D + (1− y)dI ,D > 0|y]

]
(∗∗)
=

1
2
(
P[dI ,D > 0|y = 1] + P[dJ ,D > 0|y = 0]

) (∗∗∗)
= P[dI ,D > 0|y = 1]

where (*) follows from the homogeneity of models over both benign and
adversarial distributions as well as that d∗,D = w∗(2s∗ − 1) = 0, (**) follows
from the class balance, and finally (***) stems from the symmetry.

Let B(n, p) denote the Binomial distribution with count parameter n and
success probability p. Let also that dα and dε be random variables with
Binomial distributions such that dα ∼ B(n, α) and dε ∼ B(n, ε). We then
rewrite the Weighted Robust Accuracy of KEMLP as follows.

AKEMLP = P[dI ,D > 0|y = 1] = 1−P[dI ,D < 0|y = 1]

= 1−P[w(dα − dε) < 0|y = 1] = 1−P[dα − dε < 0]

where the last equality follows from that w = log α
ε > 0.

We then review the Bounded Differences Inequality which will enable us
to bound the tail probability P[dα − dε < 0|y = 1].

Theorem 12 (Bounded Differences Inequality (Boucheron, Lugosi, and Mas-
sart, 2013)). Assume that a function φ : X n → R of independent random variables
X1, ..., Xn ∈ X satisfies the bounded differences property with constants c1, ..., cn.
Denote v2 = ∑i=[n] c2

i and Z = φ(X1, ..., Xn). Z satisfies:

P(Z−E(Z) > t) ≤ exp
(
−2t2

v2

)
and P(Z−E(Z) < −t) ≤ exp

(
−2t2

v2

)
.

We refer to, for example, (Boucheron, Lugosi, and Massart, 2013) for a
proof of Theorem 12.

Using Theorem 12 for Z = dα − dε, AKEMLP can be bounded as:

AKEMLP = 1−P[dα − dε < 0] = 1−P[dα − dε −E[dα − dε] < −E[dα − dε]]

= 1−P[dα − dε − n(α− ε) < −n(α− ε)].
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Moreover, for t = n(α− ε) and v2 = n we finally have

AKEMLP = 1−P[dα − dε − n(α− ε) < −n(α− ε)]

≥ 1− exp
(
− 2(n2(α− ε)2)/n

)
= 1− exp

(
− 2n(α− ε)2)

concludes the proof for the lower bound.
As the final step, we will prove that AKEMLP > Amain. Note that Amain =

ED∈{Db,Da}Ey∼Y
[
P[d∗,D > 0|y]

]
= πDbα∗,Db + πDaα∗,Da = 1/2 · 1 + 1/2 · 0 =

1/2. Therefore, it only remains to analyze whether AKEMLP > 1/2 or not.
Towards that, we state the following result.

Lemma 10 (On the comparison of two binomial random variables). Let p, q ∈
[0, 1] denote the success probabilities for two Binomial random variables. If p > q,
then P[X > Y] > 1

2 .

Proof. Let X and Y be random variables such that X ∼ B(n, p) and Y ∼
B(n, q). Z := X − Y can be shown to have the following probability mass
function

P(Z = z) =

∑k∈{0}∪[n] f (k + z, n, p) f (k, n, q) i f x ≥ 0

∑k∈{0}∪[n] f (k, n, p) f (k + z, n, q) elsewhere

where f (k, n, p) = (n
k)pk(1− p)n−k for k ≤ n. Moreover, we have

P(Z > 0) = P(X−Y > 0) = ∑
z∈[n]

k∈{0}∪[n]

f (k + z, n, p) f (k, n, q),

P(Z ≤ 0) = ∑
z∈[n]

k∈{0}∪[n]

f (k, n, p) f (k + z, n, q).

Note that if p > q, then f (k + z, n, p) f (k, n, q) > f (k, n, p) f (k + z, n, q) for
fixed n, k ≥ 0. Hence, the summation over z ∈ [n], k ∈ {0} ∪ [n] leads to
P(Z > 0) > P(Z ≤ 0). It is further implied by P(Z > 0) + P(Z ≤ 0) = 1
that P(Z > 0) > 1

2 .
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Figure 4.3: Comparison of clean accuracies: KEMLP vs. different main task models
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Figure 4.4: Robust accuracy improvement of KEMLP over GTSRB-CNN

Using Lemma 10 for X = dα and Y = dε as well as that α > ε, we have

AKEMLP = P[dα − dε > 0] = P[dα > dε] > 1/2 = Amain.

Hence the proof results.

4.6 experimental evaluation

In this section, we evaluate KEMLP based on the traffic sign recognition task
against different adversarial attacks and corruptions, including the physical
attacks (Eykholt et al., 2018), L∞ bounded attacks, unforeseen attacks (Kang



164 knowledge enhanced adversarial robustness

-20

0

20

40

60

80

1 6 11 16 21 26 31 36 41 46

R
ob

us
t A

cc
ur

ac
y 

Im
pr

ov
em

en
t

KEMLP better 
than Main

Attacks

Robust Accuracy 
Improvement 
(KEMLP over 

AdvTrain (ε=4))

Robust Accuracy 
Improvement 
(KEMLP over 

AdvTrain (ε=8))

-20

0

20

40

60

80

1 6 11 16 21 26 31 36 41 46

KEMLP better 
than Main

Attacks

R
ob

us
t A

cc
ur

ac
y 

Im
pr

ov
em

en
t

(a) ε = 4

-20

0

20

40

60

80

1 6 11 16 21 26 31 36 41 46

R
ob

us
t A

cc
ur

ac
y 

Im
pr

ov
em

en
t

KEMLP better 
than Main

Attacks

Robust Accuracy 
Improvement 
(KEMLP over 

AdvTrain (ε=4))

Robust Accuracy 
Improvement 
(KEMLP over 

AdvTrain (ε=8))

-20

0

20

40

60

80

1 6 11 16 21 26 31 36 41 46

KEMLP better 
than Main

Attacks

R
ob

us
t A

cc
ur

ac
y 

Im
pr

ov
em

en
t

(b) ε = 8

-20

0

20

40

60

80

1 6 11 16 21 26 31 36 41 46

R
ob

us
t A

cc
ur

ac
y 

Im
pr

ov
em

en
t

KEMLP better 
than Main

Attacks

Robust Accuracy 
Improvement 
(KEMLP over 

AdvTrain (ε=16))

Robust Accuracy 
Improvement 
(KEMLP over 

AdvTrain (ε=32))

-20

0

20

40

60

80

1 6 11 16 21 26 31 36 41 46

KEMLP better 
than Main

Attacks

R
ob

us
t A

cc
ur

ac
y 

Im
pr

ov
em

en
t

(c) ε = 16

-20

0

20

40

60

80

1 6 11 16 21 26 31 36 41 46

R
ob

us
t A

cc
ur

ac
y 

Im
pr

ov
em

en
t

KEMLP better 
than Main

Attacks

Robust Accuracy 
Improvement 
(KEMLP over 

AdvTrain (ε=16))

Robust Accuracy 
Improvement 
(KEMLP over 

AdvTrain (ε=32))

-20

0

20

40

60

80

1 6 11 16 21 26 31 36 41 46

KEMLP better 
than Main

Attacks

R
ob

us
t A

cc
ur

ac
y 

Im
pr

ov
em

en
t

(d) ε = 32

Figure 4.5: Robust accuracy improvement of KEMLP over Adversarial Training with
various ε

et al., 2019), and common corruptions (Hendrycks and Dietterich, 2019). We
show that under both whitebox and blackbox settings against a diverse set of
attacks, 1) KEMLP achieves significantly higher robustness than baselines, 2)
KEMLP maintains similar clean accuracy with a strong main task model whose
clean accuracy is originally high (e.g., vanilla CNN), 3) KEMLP even achieves
higher clean accuracy than a relatively weak main task model whose clean
accuracy is originally low as a tradeoff for its robustness (e.g., adversarially
trained models).
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Figure 4.6: Robust accuracy improvement of KEMLP over DOA

Table 4.1: Model performances (%) under physical attacks (β = 0.4). Performance
gain and loss of KEMLP over baselines are put in the parentheses.

Main KEMLP
Clean Acc Robust Acc W-Robust Acc Clean Acc Robust Acc W-Robust Acc

GTSRB-CNN 100 5 52.5 100(0) 87.5(+82.5) 93.75(+41.25)
AdvTrain (ε = 4) 100 12.5 56.25 100(0) 90(+77.5) 95(+38.75)
AdvTrain (ε = 8) 97.5 37.5 67.5 100(+2.5) 90(+52.5) 95(+27.5)

AdvTrain (ε = 16) 87.5 50 68.75 100(+12.5) 90(+40) 95(+26.25)
AdvTrain (ε = 32) 62.5 32.5 47.5 100(+37.5) 90(+57.5) 95(+47.5)

DOA (5x5) 95 90 92.5 100(+5) 100(+10) 100(+7.5)
DOA (7x7) 57.5 32.5 45 100(+42.5) 100(+67.5) 100(+55)

Besides the worst-case adversarial attacks, we also consider the robustness
against common corruptions (Hendrycks and Dietterich, 2019).

4.6.1 Experimental Setup

dataset Following existing work (Eykholt et al., 2018; Wu, Tong, and
Vorobeychik, 2019) that evaluate ML robustness on traffic sign data, we adopt
LISA (Mogelmose, Trivedi, and Moeslund, 2012) and GTSRB (Stallkamp et
al., 2012) for training and evaluation. All data are processed by standard
crop-and-resize to 32× 32 as described in (Sermanet and LeCun, 2011). In
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Table 4.2: Accuracy (%) under whitebox L∞ attacks (β = 0.8)

Models ε = 0 ε = 4 ε = 8 ε = 16 ε = 32

GTSRB-CNN Main 99.38 67.31 43.13 13.50 3.63

KEMLP 98.28(−1.10) 85.39(+18.08) 71.76(+28.63) 48.89(+35.39) 26.13(+22.50)

AdvTrain (ε = 4) Main 97.94 87.94 68.85 38.66 8.77

KEMLP 97.89(−0.05) 92.80(+4.86) 79.58(+10.73) 57.48(+18.82) 28.58(+19.81)

AdvTrain (ε = 8) Main 93.72 84.21 71.76 43.16 13.01

KEMLP 96.79(+3.07) 92.08(+7.87) 81.58(+9.82) 59.18(+16.02) 30.61(+17.60)

AdvTrain (ε = 16) Main 84.54 78.58 71.89 55.99 19.55

KEMLP 94.68(+10.14) 91.64(+13.06) 85.55(+13.66) 67.98(+11.99) 32.61(+13.06)

AdvTrain (ε = 32) Main 74.74 70.24 65.61 56.22 29.04

KEMLP 91.46(+16.72) 88.58(+18.34) 83.23(+17.62) 72.02(+15.80) 41.90(+12.86)

DOA (5x5) Main 97.43 57.46 28.76 5.81 0.85

KEMLP 97.45(+0.02) 83.85(+26.39) 67.98(+39.22) 45.27(+39.46) 24.28(+23.43)

DOA (7x7) Main 97.27 38.50 9.75 2.83 0.67

KEMLP 97.22(−0.05) 80.89(+42.39) 63.40(+53.65) 49.20(+46.37) 31.04(+30.37)

Table 4.3: Correspondence between id numbers and attacks/corruptions
1 2 3

Physical Attack Fog Corruption Contrast Corruption

4 5 6

Brightness Corruption L∞ Attack (ε = 4, whitebox sensor) L∞ Attack (ε = 8, whitebox sensor)

7 8 9

L∞ Attack (ε = 16, whitebox sensor) L∞ Attack (ε = 32, whitebox sensor) Fog Attack (ε = 256, whitebox sensor)

10 11 12

Fog Attack (ε = 512, whitebox sensor) Snow Attack (ε = 0.25, whitebox sensor) Snow Attack (ε = 0.75, whitebox sensor)

13 14 15

Jpeg Attack (ε = 0.125, whitebox sensor) Jpeg Attack (ε = 0.25, whitebox sensor) Gabor Attack (ε = 20, whitebox sensor)

16 17 18

Gabor Attack (ε = 40, whitebox sensor) Elastic Attack (ε = 1.5, whitebox sensor) Elastic Attack (ε = 2.0, whitebox sensor)

19 20 21

L∞ Attack (ε = 4, blackbox sensor) L∞ Attack (ε = 8, blackbox sensor) L∞ Attack (ε = 16, blackbox sensor)

22 23 24

L∞ Attack (ε = 32, blackbox sensor) Fog Attack (ε = 256, blackbox sensor) Fog Attack (ε = 512, blackbox sensor)

25 26 27

Snow Attack (ε = 0.25, blackbox sensor) Snow Attack (ε = 0.75, blackbox sensor) Jpeg Attack (ε = 0.125, blackbox sensor)

28 29 30

Jpeg Attack (ε = 0.25, blackbox sensor) Gabor Attack (ε = 20, blackbox sensor) Gabor Attack (ε = 40, blackbox sensor)

31 32 33

Elastic Attack (ε = 1.5, blackbox sensor) Elastic Attack (ε = 2.0, blackbox sensor) L∞ Attack (ε = 4, blackbox pipeline)

34 35 36

L∞ Attack (ε = 8, blackbox pipeline) L∞ Attack (ε = 16, blackbox pipeline) L∞ Attack (ε = 32, blackbox pipeline)

37 38 39

Fog Attack (ε = 256, blackbox pipeline) Fog Attack (ε = 512, blackbox pipeline) Snow Attack (ε = 0.25, blackbox pipeline)

40 41 42

Snow Attack (ε = 0.75, blackbox pipeline) Jpeg Attack (ε = 0.125, blackbox pipeline) Jpeg Attack (ε = 0.25, blackbox pipeline)

43 44 45

Gabor Attack (ε = 20, blackbox pipeline) Gabor Attack (ε = 40, blackbox pipeline) Elastic Attack (ε = 1.5, blackbox pipeline)

46

Elastic Attack (ε = 2.0, blackbox pipeline)
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this work, we conduct the evaluation on two dataset settings: 1) Setting-A: a
subset of GTSRB, which contains 12 types of German traffic signs. In total,
there are 14880 samples in the training set, 972 samples in the validation set,
and 3888 samples in the test set; 2) Setting-B: a modified version of Setting-A,
where the German stop signs are replaced with the U.S. stop signs from LISA,
following (Eykholt et al., 2018).

models We adopt the GTSRB-CNN architecture (Eykholt et al., 2018) as
the main task model. KEMLP is constructed based on the main task model
together with a set of auxiliary task models (e.g., color, shape, and content
detectors). To train the weights of factors in KEMLP, we use β to denote the
prior belief on balance between benign and adversarial distributions. More
details on implementation are provided in Chapter A.

baselines To demonstrate the superiority of KEMLP, we compare it with
two state-of-the-art baselines: adversarial training (Madry et al., 2017) and
DOA (Wu, Tong, and Vorobeychik, 2019), which are strong defenses against
Lp bounded attacks and physically attacks respectively.

For adversarial training, we adopt L∞ bound ε ∈ {4, 8, 16, 32} during train-
ing phase. Since adversarial training failed to make progress for ε ∈ {16, 32},
we use the curriculum training version (Cai, Liu, and Song, 2018), where the
model is firstly trained on smaller ε with ε gradually increasing to the largest
bound. For all versions of adversarial training in our implementation, we
adopt 40 iterations of PGD attack with a step size of 1/255. In all cases, pixels
are in 0 ∼ 255 range and the retraining takes 3000 training iterations with a
batch size of 200 for each random iteration.

For DOA, we consider adversarial patches with the size of 5× 5 and 7× 7
respectively for rectangle occlusion during retraining. For both cases, we use
an exhaustive search to pick the attack location and perform 30 iterations
PGD inside the adversarial patch to generate noise. The retraining takes 5000

training iterations and the batch size is 200.
Thus, in total, we have 7 baseline CNN models (1 standard CNN model,

4 adversarially trained CNN models, 2 DOA trained CNN models), and
we use id numbers 1 ∼ 7 to denote “GTSRB-CNN", “AdvTrain (ε = 4)",
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“AdvTrain (ε = 8)", “AdvTrain (ε = 16)", “AdvTrain (ε = 32)", “DOA (5x5)",
“DOA (7x7)", respectively in Figure 4.3.

evaluated attacks and corruptions We consider four types of
attacks for thorough evaluation: 1) physical attacks on stop signs (Eykholt et al.,
2018); 2) L∞ bounded attacks (Madry et al., 2017) with ε ∈ {4, 8, 16, 32}; 3)
Unforeseen attacks, which produce a diverse set of unforeseen test distributions
(e.g. Elastic, JPEG, Fog) distinct from Lp bounded perturbation (Kang et al.,
2019); 4) common corruptions (Hendrycks and Dietterich, 2019). For each attack,
we consider both the whitebox attack against the main task model and blackbox
attack by distilling either the main task model or the whole KEMLP pipeline.

Since our constructed KEMLP pipeline is a compound model consisting
of multiple sub-models, some of which are not differentiable, we can not
directly generate adversarial examples via the standard end-to-end white-box
attack. Alternatively, we further propose three different attack settings to
evaluate the robustness of our KEMLP pipeline: 1)White-box sensor attack,
where adversarial examples are generated by directly applying gradient
methods to the main task model of the KEMLP pipeline in a white-box fashion;
2)Black-box sensor attack. In this setting, we train substitute model of the
main task model using the same model architecture and the same standard
training data, and generate adversarial examples with this substitute model;
3)Black-box pipeline attack, in which we generate adversarial examples with
a substitute model, which is obtained via distilling the whole KEMLP pipeline.
For this setting, a substitute model with the same GTSRB-CNN architecture is
trained on a synthetic training set, where all the images are from the original
training set, while the labels are generated by the pipeline model. Then all
the models are evaluated on the same set of adversarial test samples crafted
on the trained substitute.

Specifically, 1) For L∞ attack, we consider the strength of ε ∈ {4, 8, 16, 32}
in our evaluation. 1000 iterations of standard PGD (Madry et al., 2017) with a
step size of 1/255 is used to craft the adversarial examples, and all the three
attack settings introduced above are respectively applied; 2) For unforeseen
attacks, we consider the Fog, Snow, JPEG, Gabor and Elastic attacks suggested
in (Kang et al., 2019), which are all gradient-based worst-case adversarial
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attacks, generating diverse test distributions distinct from the common Lp

bounded attacks. For Fog attack, we consider ε ∈ {256, 512}. For Snow attack,
we evaluate for ε ∈ {0.25, 0.75} respectively. For JPEG attack, we adopt the
parameters ε ∈ {0.125, 0.25}. For Gabor attack, ε ∈ {20, 40} are tested. Finally,
ε ∈ {1.5, 2.0} are considered for Elastic attack. Since all of these attacks are
gradient based, we also apply the three different settings above to generate
adversarial examples respectively; 3) For physical attacks on stop signs, we
directly use the same stickers (i.e., the same color and mask) generated in
(Eykholt et al., 2018) to attack the same 40 stop sign samples, and we also
adopt the same end-to-end classification model used in (Eykholt et al., 2018)
to construct KEMLP model. Since our ultimate goal is defense, we follow
the same practice in (Wu, Tong, and Vorobeychik, 2019), where we only
consider the digital representation of the attack instead of the real physical
implementation, ignoring issues like the attack’s robustness to different
viewpoints and environments. Thus, we implement the physical stop sign
attack by directly placing the stickers on the stop sign samples in digital space;
4) For common corruptions, we evaluate our models with 15 categories of
corruptions suggested in (Hendrycks and Dietterich, 2019). Empirically, in
our traffic sign identification task, only 3 types of corruptions out of the 15

categories effectively reduce the accuracy (with a margin over 10%) of our
standard GTSRB-CNN model. Thus, we only present the evaluation results
of our models against the three most successful corruption — Fog, Contrast,
Brightness. (Note that, here we use Fog corruption which is similar to the
Fog attack in unforeseen attacks. However, they are different in that the Fog
corruption here is not adversarially generated like that in Fog attack.)

Thus, based on different attack/corruption methods and attack settings, in
total, we have 46 different attacks/corruptions. In Figure 4.5 and Figure 4.6,
we use id numbers 1 ∼ 46 to denote all the attacks we evaluate on, and we
present the correspondence between id numbers and attacks in Table 4.3.
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Table 4.4: Accuracy (%) under whitebox unforeseen attacks (β = 0.8)
Clean Fog-256 Fog-512 Snow-0.25 Snow-0.75 Jpeg-0.125

GTSRB-CNN Main 99.38 59.65 34.18 56.58 24.54 55.74
KEMLP 98.28(−1.10) 76.95(+17.30) 62.83(+28.65) 78.94(+22.36) 53.22(+28.68) 79.63(+23.89)

AdvTrain (ε = 4) Main 97.94 55.53 29.50 66.31 32.61 56.58
KEMLP 97.89(−0.05) 76.08(+20.55) 61.96(+32.46) 80.45(+14.14) 57.84(+25.23) 84.23(+27.65)

AdvTrain (ε = 8) Main 93.72 50.03 23.56 63.71 34.93 57.56
KEMLP 96.79(+3.07) 76.59(+26.56) 63.97(+40.41) 81.40(+17.69) 57.07(+22.14) 85.11(+27.55)

AdvTrain (ε = 16) Main 84.54 47.92 19.75 66.46 37.60 66.56
KEMLP 94.68(+10.14) 77.13(+29.21) 64.38(+44.63) 81.64(+15.18) 58.20(+20.60) 86.99(+20.43)

AdvTrain (ε = 32) Main 74.74 48.71 22.84 61.78 38.91 63.58
KEMLP 91.46(+16.72) 79.22(+30.51) 66.33(+43.49) 81.20(+19.42) 64.53(+25.62) 86.70(+23.12)

DOA (5x5) Main 97.43 58.00 32.69 61.19 28.34 41.13
KEMLP 97.45(+0.02) 76.85(+18.85) 63.07(+30.38) 78.78(+17.59) 56.76(+28.42) 78.60(+37.47)

DOA (7x7) Main 97.27 59.88 38.01 62.47 30.17 23.46
KEMLP 97.22(−0.05) 78.09(+18.21) 62.76(+24.75) 79.68(+17.21) 58.26(+28.09) 74.25(+50.79)

Table 4.5: Accuracy (%) under whitebox unforeseen attacks (β = 0.8)
Jpeg-0.25 Gabor-20 Gabor-40 Elastic-1.5 Elastic-2.0

GTSRB-CNN Main 27.01 57.25 32.41 44.78 24.31
KEMLP 63.40(+36.39) 80.17(+22.92) 65.20(+32.79) 69.34(+24.56) 52.37(+28.06)

AdvTrain (ε = 4) Main 28.11 73.30 46.76 57.25 30.09
KEMLP 68.57(+40.46) 81.48(+8.18) 65.77(+19.01) 71.19(+13.94) 50.33(+20.24)

AdvTrain (ε = 8) Main 26.16 76.72 53.76 48.25 24.46
KEMLP 68.70(+42.54) 85.29(+8.57) 68.90(+15.14) 68.78(+20.53) 49.31(+24.85)

AdvTrain (ε = 16) Main 34.23 78.01 64.33 55.48 32.28
KEMLP 70.40(+36.17) 87.42(+9.41) 72.61(+8.28) 67.31(+11.83) 50.28(+18.00)

AdvTrain (ε = 32) Main 43.49 70.37 65.20 54.58 39.45
KEMLP 73.38(+29.89) 87.04(+16.67) 74.92(+9.72) 66.38(+11.80) 54.76(+15.31)

DOA (5x5) Main 11.29 55.43 29.55 58.02 32.74
KEMLP 61.78(+50.49) 80.25(+24.82) 63.89(+34.34) 72.69(+14.67) 57.51(+24.77)

DOA (7x7) Main 3.65 54.58 27.29 56.33 30.97
KEMLP 61.39(+57.74) 79.06(+24.48) 62.29(+35.00) 71.27(+14.94) 55.09(+24.12)

4.6.2 Evaluation Results

Here we compare the clean accuracy, robust accuracy, and weighted robust-
ness (W-Robust Accuracy) for baselines and KEMLP under different attacks
and settings.

clean accuracy of kemlp First, we present the clean accuracy of
KEMLP and baselines in Figure 4.3 and Table 4.1–Table 4.6. As demonstrated,
the clean accuracy of KEMLP is generally high (over 90%), by either main-
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Table 4.6: Accuracy (%) under common corruptions (β = 0.2)

Clean Fog Contrast Brightness

GTSRB-CNN Main 99.38 76.23 57.61 85.52

KEMLP 98.28(−1.10) 78.14(+1.91) 72.43(+14.82) 89.58(+4.06)

AdvTrain (ε = 4) Main 97.94 63.81 42.31 78.47

KEMLP 97.89(−0.05) 70.29(+6.48) 67.46(+25.16) 86.70(+8.23)

AdvTrain (ε = 8) Main 93.72 59.05 31.97 78.47

KEMLP 96.79(+3.07) 67.41(+8.36) 66.69(+34.72) 85.91(+7.44)

AdvTrain (ε = 16) Main 84.54 56.58 34.31 78.01

KEMLP 94.68(+10.14) 66.80(+10.22) 68.39(+34.08) 86.14(+8.13)

AdvTrain (ε = 32) Main 74.74 50.87 30.45 71.30

KEMLP 91.46(+16.72) 64.94(+14.07) 68.31(+37.86) 83.20(+11.90)

DOA (5x5) Main 97.43 73.95 62.24 83.92

KEMLP 97.45(+0.02) 76.08(+2.13) 74.38(+12.14) 87.60(+3.68)

DOA (7x7) Main 97.27 73.41 57.54 83.56

KEMLP 97.22(−0.05) 76.00(+2.59) 72.40(+14.86) 87.78(+4.22)

Table 4.7: Adversarial accuracy under black-box sensor L∞ attack, β = 0.2 (Accuracy
%)

ε = 0 ε = 4 ε = 8 ε = 16 ε = 32

GTSRB-CNN Main 99.38 85.16 67.98 47.56 25.69
KEMLP 98.28(−1.10) 91.36(+6.20) 79.53(+11.55) 61.21(+13.65) 41.85(+16.16)

AdvTrain (ε = 4) Main 97.94 94.88 90.23 72.99 50.75
KEMLP 97.89(−0.05) 95.88(+1.00) 90.66(+0.43) 77.01(+4.02) 55.56(+4.81)

AdvTrain (ε = 8) Main 93.72 91.49 89.02 80.56 64.76
KEMLP 96.79(+3.07) 94.29(+2.80) 90.23(+1.21) 81.40(+0.84) 65.92(+1.16)

AdvTrain (ε = 16) Main 84.54 83.05 82.00 79.76 73.20
KEMLP 94.68(+10.14) 90.72(+7.67) 86.52(+4.52) 80.02(+0.26) 70.47(−2.73)

AdvTrain (ε = 32) Main 74.74 73.64 72.79 71.91 67.77
KEMLP 91.46(+16.72) 86.60(+12.96) 81.66(+8.87) 75.69(+3.78) 66.77(−1.00)

DOA (5x5) Main 97.43 84.93 70.70 52.44 33.15
KEMLP 97.45(+0.02) 92.21(+7.28) 81.56(+10.86) 64.07(+11.63) 45.70(+12.55)

DOA (7x7) Main 97.27 79.48 65.77 48.71 30.99
KEMLP 97.22(−0.05) 90.56(+11.08) 80.20(+14.43) 62.55(+13.84) 44.24(+13.25)

taining the high clean accuracy of strong main task models (e.g., vanilla
DNN) or improving upon the weak main task models with relatively low
clean accuracy (e.g., adversarially trained models). It is clear that KEMLP can
relax the tradeoff between benign and robust accuracy and maintain the high
performance for both via knowledge integration.
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Table 4.8: Adversarial accuracy under black-box pipeline L∞ attack, β = 0.2 (Accu-
racy %)

ε = 0 ε = 4 ε = 8 ε = 16 ε = 32

GTSRB-CNN Main 99.38 81.17 60.52 37.60 24.28
KEMLP 98.28(−1.10) 89.76(+8.59) 76.18(+15.66) 56.07(+18.47) 37.50(+13.22)

AdvTrain (ε = 4) Main 97.94 94.42 88.32 66.08 46.60
KEMLP 97.89(−0.05) 95.88(+1.46) 89.61(+1.29) 71.91(+5.83) 51.57(+4.97)

AdvTrain (ε = 8) Main 93.72 90.72 87.11 75.49 58.64
KEMLP 96.79(+3.07) 94.16(+3.44) 89.40(+2.29) 77.31(+1.82) 60.26(+1.62)

AdvTrain (ε = 16) Main 84.54 82.87 81.46 77.13 70.09
KEMLP 94.68(+10.14) 90.87(+8.00) 86.37(+4.91) 78.06(+0.93) 68.44(−1.65)

AdvTrain (ε = 32) Main 74.74 73.66 72.35 70.16 66.08
KEMLP 91.46(+16.72) 86.70(+13.04) 81.74(+9.39) 73.46(+3.30) 65.23(−0.85)

DOA (5x5) Main 97.43 81.94 66.13 48.28 33.26
KEMLP 97.45(+0.02) 91.13(+9.19) 78.88(+12.75) 61.42(+13.14) 42.36(+9.10)

DOA (7x7) Main 97.27 77.85 63.68 46.55 31.79
KEMLP 97.22(−0.05) 89.84(+11.99) 77.78(+14.10) 60.39(+13.84) 40.90(+9.11)

Table 4.9: Adversarial accuracy under black-box sensor unforeseen attack, β = 0.2
(Accuracy %)

clean fog-256 fog-512 snow-0.25 snow-0.75 jpeg-0.125

GTSRB-CNN Main 99.38 77.55 59.93 78.50 45.34 83.10
KEMLP 98.28(−1.10) 84.03(+6.48) 68.54(+8.61) 83.08(+4.58) 57.77(+12.43) 88.97(+5.87)

AdvTrain (ε = 4) Main 97.94 70.68 54.06 77.70 49.67 87.45
KEMLP 97.89(−0.05) 79.37(+8.69) 64.38(+10.32) 82.38(+4.68) 59.21(+9.54) 91.80(+4.35)

AdvTrain (ε = 8) Main 93.72 67.70 53.73 76.13 51.75 86.27
KEMLP 96.79(+3.07) 76.70(+9.00) 64.97(+11.24) 80.99(+4.86) 60.39(+8.64) 91.02(+4.75)

AdvTrain (ε = 16) Main 84.54 66.44 49.64 75.15 52.73 81.58
KEMLP 94.68(+10.14) 77.11(+10.67) 63.84(+14.20) 81.58(+6.43) 60.73(+8.00) 87.68(+6.10)

AdvTrain (ε = 32) Main 74.74 65.82 50.18 71.97 52.37 72.61
KEMLP 91.46(+16.72) 77.62(+11.80) 64.56(+14.38) 79.60(+7.63) 61.09(+8.72) 83.85(+11.24)

DOA (5x5) Main 97.43 78.24 62.32 79.55 56.69 86.55
KEMLP 97.41(−0.02) 84.26(+6.02) 69.08(+6.76) 83.36(+3.81) 62.58(+5.89) 90.41(+3.86)

DOA (7x7) Main 97.27 76.34 61.32 79.30 55.94 83.20
KEMLP 97.22(−0.05) 82.74(+6.40) 68.52(+7.20) 83.74(+4.44) 62.47(+6.53) 89.04(+5.84)

robustness against diverse attacks We then present the robust-
ness of KEMLP based on different main task models against the physical
attacks, which is very challenging to defend currently (Table 4.1), `p bounded
attacks (Table 4.2), unseen attacks (Table 4.4 and Table 4.5), and common
corruptions (Table 4.6) under whitebox attack setting. The corresponding
results for blackbox setting can be found in Appendix. From the tables, we
observe that KEMLP achieves significant robustness gain over baselines. Note
that although adversarial training improves the robustness against L∞ attacks
and DOA helps to defend against physical attacks, they are not robust to other
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Table 4.10: Adversarial accuracy under black-box sensor unforeseen attack, β = 0.2
(Accuracy %)

jpeg-0.25 gabor-20 gabor-40 elastic-1.5 elastic-2.0

GTSRB-CNN Main 65.90 75.36 59.26 77.16 57.64
KEMLP 74.90(+9.00) 84.88(+9.52) 70.04(+10.78) 82.10(+4.94) 66.69(+9.05)

AdvTrain (ε = 4) Main 72.84 88.14 68.21 83.38 70.09
KEMLP 80.09(+7.25) 91.51(+3.37) 75.05(+6.84) 84.80(+1.42) 73.12(+3.03)

AdvTrain (ε = 8) Main 76.75 89.25 76.47 80.71 67.85
KEMLP 82.54(+5.79) 91.56(+2.31) 79.45(+2.98) 83.26(+2.55) 71.37(+3.52)

AdvTrain (ε = 16) Main 77.78 83.90 82.48 76.23 68.26
KEMLP 82.77(+4.99) 89.27(+5.37) 83.44(+0.96) 81.07(+4.84) 71.55(+3.29)

AdvTrain (ε = 32) Main 71.09 76.26 77.16 68.03 64.38
KEMLP 79.30(+8.21) 85.60(+9.34) 80.09(+2.93) 77.67(+9.64) 70.81(+6.43)

DOA (5x5) Main 71.32 82.23 67.28 87.96 75.75
KEMLP 77.98(+6.66) 87.06(+4.83) 73.69(+6.41) 86.09(−1.87) 75.90(+0.15)

DOA (7x7) Main 66.10 82.25 67.54 86.73 73.77
KEMLP 76.44(+10.34) 87.60(+5.35) 74.51(+6.97) 85.91(−0.82) 75.49(+1.72)

Table 4.11: Adversarial accuracy under black-box pipeline unforeseen attack, β = 0.2
(Accuracy %)

clean fog-256 fog-512 snow-0.25 snow-0.75 jpeg-0.125

GTSRB-CNN Main 99.38 71.17 49.13 70.73 36.45 75.44
KEMLP 98.28(−1.10) 78.96(+7.79) 60.65(+11.52) 80.02(+9.29) 52.16(+15.71) 85.31(+9.87)

AdvTrain (ε = 4) Main 97.94 66.23 47.33 73.46 42.10 84.23
KEMLP 97.89(−0.05) 74.97(+8.74) 58.62(+11.29) 80.63(+7.17) 54.09(+11.99) 90.84(+6.61)

AdvTrain (ε = 8) Main 93.72 63.14 45.14 72.87 46.66 84.59
KEMLP 96.79(+3.07) 72.89(+9.75) 58.02(+12.88) 79.73(+6.86) 55.86(+9.20) 90.59(+6.00)

AdvTrain (ε = 16) Main 84.54 62.32 42.98 73.23 50.08 80.97
KEMLP 94.68(+10.14) 73.48(+11.16) 58.18(+15.20) 80.45(+7.22) 57.54(+7.46) 86.99(+6.02)

AdvTrain (ε = 32) Main 74.74 61.86 45.01 70.47 50.57 72.38
KEMLP 91.46(+16.72) 73.33(+11.47) 58.49(+13.48) 78.94(+8.47) 58.67(+8.10) 83.33(+10.95)

DOA (5x5) Main 97.43 75.01 56.97 77.67 53.14 83.15
KEMLP 97.41(−0.02) 80.40(+5.39) 64.40(+7.43) 82.28(+4.61) 59.52(+6.38) 77.88(−1.00)

DOA (7x7) Main 97.27 73.97 57.05 77.21 53.55 81.40
KEMLP 97.22(−0.05) 80.04(+6.07) 64.17(+7.12) 82.46(+5.25) 59.75(+6.20) 88.30(+6.90)

types of attacks or corruptions. In contrast, KEMLP presents general robustness
against a range of attacks and corruptions without further adaptation.

performance stability of kemlp We conduct additional ablation
studies on β, representing the prior belief on the benign and adversarial
distribution balance. We set β = 0.5 for KEMLP indicating a balanced random
guess for the distribution tradeoff. We show the clean accuracy and robustness
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Table 4.12: Adversarial accuracy under black-box pipeline unforeseen attack, β = 0.2
(Accuracy %)

jpeg-0.25 gabor-20 gabor-40 elastic-1.5 elastic-2.0

GTSRB-CNN Main 51.98 72.61 53.47 70.88 54.53
KEMLP 67.64(+15.66) 84.13(+11.52) 69.24(+15.77) 80.66(+9.78) 67.80(+13.27)

AdvTrain (ε = 4) Main 65.07 87.29 66.95 82.10 68.80
KEMLP 76.00(+10.93) 90.61(+3.32) 74.77(+7.82) 84.85(+2.75) 74.95(+6.15)

AdvTrain (ε = 8) Main 71.35 88.86 73.74 80.30 67.88
KEMLP 80.02(+8.67) 90.92(+2.06) 77.93(+4.19) 83.80(+3.50) 73.77(+5.89)

AdvTrain (ε = 16) Main 76.26 83.51 81.22 75.80 68.75
KEMLP 80.92(+4.66) 88.30(+4.79) 82.23(+1.01) 81.71(+5.91) 72.69(+3.94)

AdvTrain (ε = 32) Main 69.70 76.16 76.39 68.65 64.99
KEMLP 77.42(+7.72) 84.95(+8.79) 79.09(+2.70) 78.37(+9.72) 71.45(+6.46)

DOA (5x5) Main 63.79 82.07 65.77 88.17 78.88
KEMLP 73.69(+9.90) 87.04(+4.97) 73.43(+7.66) 86.99(−1.18) 77.88(−1.00)

DOA (7x7) Main 62.68 82.15 67.28 87.42 78.27
KEMLP 73.48(+10.80) 87.09(+4.94) 73.95(+6.67) 86.42(−1.00) 78.58(+0.31)

of KEMLP and baselines under diverse 46 attacks in Figure 4.3. We can see
that KEMLP consistently and significantly outperforms the baselines, which
indicates the performance stability of KEMLP regarding different distribution
ratio β.

We now present the evaluation results of L∞ attack and unforeseen attacks
under blackbox sensor and blackbox pipeline attack settings. Specifically, we
present the two blackbox results for L∞ attack in Table 4.7 and Table 4.8,
and accordingly the two blackbox results for unforeseen attacks in Table 4.9,
Table 4.9, Table 4.11 and Table 4.11.

As shown, similar trends in whitebox sensor attack setting can also be
observed in these two blackbox attack settings, which indicates that the
robustness does not just come from gradient masking (Athalye, Carlini, and
Wagner, 2018; Carlini and Wagner, 2017b).

4.7 summary

In this part, we introduced KEMLP, which integrates domain knowledge with a
set of weak auxiliary models to enhance the ML robustness against a diverse
set of adversarial attacks and corruptions. We developed theory identifying
how and when knowledge help with ML robustness. In particular, we ob-
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served that introducing the knowledge via first-order logic functions helps
KEMLP to achieve strong guarantees as, in a way, it employs the knowledge
where it is powerful, as opposed to encode all relations as identity knowl-
edge. This enabled KEMLP to bring not only robust but also clean accuracy
improvement over the main task model.

We conducted several experiments to demonstrate the capabilities of such
knowledge-based framework. Under almost all evaluated settings, our KEMLP

framework significantly improved the robustness of a single neural network
model. Moreover, since our KEMLP framework based defense is orthogonal to
the neural network training based defenses (e.g. adversarial training), we can
always combine these two defense methodologies and get the best models.

Overall, KEMLP framework offers general robustness (that is, robustness
against a diverse set of attacks or corruptions). As shown by our results,
although adversarial training improves the robustness against L∞ attack and
DOA helps to defend against stop sign attacks, they are neither generally
robust to other types of attacks or corruptions. In contrast, our KEMLP models
exhibits general robustness against a diverse collection of attacks and cor-
ruptions. We thus believe that such knowledge-based methods can have a
substantial impact in bringing general robustness to ML pipelines.





5
C O N C L U S I O N

Science advances one funeral at a time.

— Max Planck (1950)

5.1 summary

Designing cost-efficient and robust ML pipelines for data-intensive applica-
tions has been one of the core challenges of artificial intelligence. In this
dissertation, we took a view through the lens of data and addressed several
open questions in regards to hardware efficiency, label efficiency and robust-
ness of ML systems without much dependency on the learner. We found that
curations of the cost problem through data extend the generalizability of
repeatability of the proposed techniques. Our findings were accompanied
by theoretical guarantees on the quality of learning, enabling practitioners
to optimize their budget according to their needs on learning quality while
still maintaining robustness of the results. In particular, this dissertation
encompassed the following contributions:

In Part i of this thesis, we extended the usability of low precision training
to compressive sensing solvers. Among all sparsity-constrained minimization
methods, we specifically focused on the normalized IHT as otherwise methods
often require strong constraints on the measurement matrix for provable
guarantees as well as practical performance. In particular, we presented a
low precision variant IHT, which we named QIHT. For provable guarantees
and practical performance, we benefited from the scale invariant property of
measurement matrix that is inherited from the normalized IHT. This allowed
us to have a high confidence on the practical performance in regimes of
non-symmetric RIP, and rescale the measurement matrix without amplifying
the additive thermal noise in electronics. Our theoretical analysis indicated

177
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that the data quantization has only a mild effect on the signal recovery
error while requiring a slightly tighter RIP condition in exchange. As the
adaptive step size enables strong practical performance also outside of RIP

regime, the performance of QIHT seems not to be highly bounded by the
RIP condition. Inspired by our theoretical findings on the potential of low
precision compressive sensing, we formulated the full sky imaging of radio
telescopes as a compressive sensing problem. We then observed through
application of QIHT to radio astronomy and MRI that lowering the precision
of the data can significantly accelerate image recovery with negligible loss
of quality. From the hardware point of view, with a small set of operators
that are newly introduced, we were able to exploit the existing designs to
implement our quantization framework on hardware.

In Part ii of this thesis, we studied label-efficient model selection. The driv-
ing force behind our motivation was the constant need to adapt downstream
model in the ML pipeline for the distribution shift of production data from
disparate sources. To cope with it, we proposed the idea of model selection
by labeling only a small portion of freshly arriving data. We investigated the
potential of the state-of-the-art active learners, and found out that tailoring
them for “model testing” is needed. Upon that, we developed Model Picker

a novel, principled and efficient model selection approach. We assumed a
stream-based setting, where the data examples arrive in a stream, and the
learner actively decides to query the label per each example. As the first
framework exploring data sampling only for the task of pretrained model
selection, we introduced a novel and fair evaluation framework, which is
nontrivial for the stream-based setting. We collected several model collections
on well-studied ML benchmarks, each of which has different properties. We
then conducted extensive experiments, comparing our algorithm with a range
of other adapted active learners. To reach the same accuracy, competing
methods often required significantly more labels. Apart from the relative
performance, on the dataset with thousands of labels, Model Picker was
demonstrated to be capable of identifying the best model by querying a mere
amount of labels with high confidence, and with low regret across the stream.
We established Model Picker as the state-of-the-art for this problem. We also
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made the Model Picker framework publicly available1 and the experimental
results reproducible.2.

Next in Part ii, we took the first step towards the theoretical analysis on the
causes of oversmoothing in graph neural networks, and the impact of graph
decomposition that alleviates it. We took an information theoretical view and
analyzed the infinite-sample behaviour of Shannon’s mutual information be-
tween the input and output of lth layer. We found the information theoretical
perspective to provide a much simpler but equally tight analysis for GCN

compared to the existing analysis, but more importantly, our analysis made
it possible to analyze more complex cases for GraphCNN with the presence of
decomposition.

In Part iii, we developed a general defense technique, KEMLP, that can be
employed at every stage of the ML pipeline and against any kind of attack and
corruption. We achieved this by integrating a diverse set of weak auxiliary
models based on their logical relationships to the main DNN model that
performs the target task. Theoretically, we provided convergence results and
prove that, under mild conditions, the prediction of KEMLP is more robust
than that of the main DNN model. We took road sign recognition as the
example use case and leveraged the relationships between road signs and
their shapes and contents as domain knowledge. We showed that compared
with adversarial training and other baselines, KEMLP achieved higher robust-
ness against physical attacks, Lp bounded attacks, unforeseen attacks, and
natural corruptions under both whitebox and blackbox settings, while still
maintaining high clean accuracy.

5.2 impact

We believe that curating cost efficiency and robustness through the manipula-
tions and interventions of data can enable novel techniques on many fronts.
In what follows, we briefly mention what we believe the impact of each

1 We demonstrate the Model Picker framework here:
https://github.com/easeml/modelpicker

2 Our results are reproducible here:
https://github.com/DS3Lab/online-active-model-selection

https://github.com/easeml/modelpicker
https://github.com/DS3Lab/online-active-model-selection
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contribution is. It must be noted that the broad range of impacts we refer
below is thanks to this data-centric view we adopt, which inherently brings
benefits in many dimensions.

First of all, learning with quantized data can bring substantial benefits
to processing high volumes of data, from efficient data communication and
computation to storage. In this thesis, we mainly studied its benefit for
accelerated computation3. In fact, in many scientific applications, the data
must be processed in a speedy manner such that the anomalies can be
detected in real-time, upon which more resources can be spent to investigate
them. For example, this is often encountered in medical imaging applications
and astronomy, where the resources are used to “zoom in” particular areas by
fusing the stream of waves to target the direction where the anomaly occurs. In
addition to its computational benefits, data compression naturally reduces the
physical layer communication overhead for far-field sensor systems. Take the
Square Kilometre Array, the largest radio telescope ever built with thousands
of dishes, as an example. By mid-2020, the Square Kilometre Array is expected
to achieve raw data throughput of 62 Exabytes (Mattmann et al., 2014).
Compressing the raw data, as practiced in this thesis, can significantly reduce
the amount of data sent from antennas to a central signal processor. Another
byproduct of low precision training is the efficient storage of data. This is
in particular crucial for medical applications, which can highly benefit from
reduced storage needs to keep patients’ raw data, as discussed in (Langer,
2011; Poldrack, Mumford, and Nichols, 2011) for the case of MRI.

Secondly, the ability to choose the most suitable model to use is becom-
ing an indispensable component of modern ML eco-systems as ML is being
applied to more and more critical applications with increasing impact on
society. In this thesis, we focus on a specific instance of this challenge where
we tackle the distribution shift and propose a label-efficient way of picking
the best model from a set of candidate models in terms of prediction accuracy.
Performing this in a label-efficient manner is particularly severe for applica-
tions where data scarcity is acute such as personalized healthcare, clinical
trials, robot reinforcement learning, and cognitively inspired natural language

3 which has made it to a new library for efficient computation using low-precision data on
state-of-the-art CPUs (Stojanov et al., 2018)
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processing. Potentially, our method can have an impact on the deployment
and maintenance of ML models in many application domains. Our framework
is agnostic as it imposes no assumption on neither the models nor the data,
which further extends its usability to many other scenarios such as choosing
the best pretrained model for transfer learning or assessing the relative bias
of models for a given task in a label-efficient fashion.

As the following contribution, our exploration of graph decomposition
and its role in overcoming oversmoothing is inherently triggered by the
interest to design decomposition strategies that improve the performance of
graph neural networks. Understanding and utilizing information preserving
ability of the decomposition in general graph-structured data can enable the
design of practical algorithms that takes advantage of graph decomposition.
One such example is the novel technique called connectivity-aware graph
decomposition, which strikes a balance between information loss and model
performance trade-off. We believe this theoretical framework can further
enable novel graph decomposition strategies that are powerful.

Finally, from the robust ML perspective, we incorporated knowledge to at-
tain better adversarial robustness. Unlike end-to-end neural network models,
knowledge fusion tackles sensory information processing and decision mak-
ing separately. First, it captures sensory information in the sensing domain
via observations. It then performs decision making in the logic domain via
logical reasoning. Such design brings two benefits. First, the sensory features
extracted in the sensing domain are in a human-understandable format with
clear semantic meaning, and the relations between features and candidate
decisions in the logical domain also have clear human knowledge as the
basis. For instance, in our implementation for traffic sign identification, the
extracted sensory features output by the sensors are all Boolean variables
representing meaningful concepts, such that whether the given sign is of the
shape of an octagon, whether the content on the sign is the characters “S", “T",
“O", “P". In the similar spirit, the decision rules as “Stop sign must be of the
shape of octagon" have a clear logical basis. As a result, in our framework, the
vulnerability of non-robust features (Ilyas et al., 2019; Tsipras et al., 2019)
is restricted to the sensing domain and tackled by the logic domain via
knowledge rules. We then only need to account for the sensory errors, as
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the sensors may still be attacked. Nevertheless, they are technically tractable
and can be well controlled, as we illustrated in Part iii via making robust
decisions despite the weakness of sensors. We believe that these benefits are
what make our framework inherently robust to combat perturbations and
corruptions not only in adversarial setting but also in changing environments
with shifting distributions. Moreover, despite that adversarial robustness is
often at the cost of clean accuracy (Mohapatra et al., 2020; Tsipras et al., 2019),
our knowledge-based framework achieved robustness without harming the
clean accuracy, as demonstrated in Part iii. This observation indicates the
potential of knowledge fusion via logic rules not only for the adversarial
robustness but the prediction accuracy of ML models in general, moreover, in
an interpretable way for humans.

5.3 future work

There are several future directions for each of the contributions we presented.
We first separately visit them below.

The framework of low precision training for scientific instruments we stud-
ied in this thesis facilitates several orthogonal research dimensions to pursue.
Firstly, QIHT can be further devised to work with end-to-end low precision
data representation where the precision of gradient vector is also reduced.
This can unlock the full potential of low precision training in accelerated
computation. The end-to-end reduced precision representations studied in
the case of deep learning (Hubara et al., 2017; Miyashita, Daisuke and Lee,
Edward H and Murmann, Boris, 2016; Miyashita, Lee, and Murmann, 2016;
Rastegari et al., 2016) and linear models (Zhang et al., 2017) are shown to
bring an order of magnitude acceleration to computation, holding a promise
also for accelerated compressive sensing. However, learning with end-to-end
low precision data requires rigorous treatment and a deep understanding of
the limitations when applied to mission-critical scientific applications such
as medical imaging, mass-spectrometers, and microscopes due to potentially
high-stake signal loss. We thus believe that this extension could be a challeng-
ing yet intriguing next direction to explore. Secondly, the tools we developed
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in the context of low precision compressive sensing (such as stochastic quan-
tization and optimization of compression ratio) are general enough to extend
to other greedy recovery algorithms. In this thesis, we scope ourselves to
iterative thresholding, but our fundamental findings are worth validating for
other sparse reconstruction or `1 minimization problems, which also demand
high processing and storage capabilities from the hardware when handling
large amounts of data. Finally, as a third potential direction, low precision
compressive sensing framework can be highly beneficial to other real-world
applications which, despite having a sparse underlying representation, em-
ploy more complex algorithms than compressive sensing. An immediate
example of this is compressive sensing with beamforming (Edelmann and
Gaumond, 2011; Gurbuz, McClellan, and Cevher, 2008; Han and Wang, 2015).
Low precision compressive sensing with beamforming is nontrivial. To exem-
plify this, take the phased-array example, in which beamforming is achieved
by sending the raw signal to the central processor in a hierarchical way to
reduce the amount of data that needs to be transferred. Hence, the mapping
from the sparse coefficients to the measurements contains several measure-
ment matrices that are combined in a non-linear fashion. Investigating the
potential of reduced precision training to function with such strategies is also
an exciting research direction and can bring substantial improvement to the
efficiency of data transmission over hundreds of kilometers. Lately, (Corda
et al., 2022) demonstrated such a possibility where complex algorithms for ra-
dio telescope imaging with data at low precision achieve significant speed-up
on FPGA.

Our work on label-efficient model selection can be further extended to-
wards a setting in which the user at once has access to a pool of production
data examples. In such a pool-based sampling case, one can rank the entire
collection of data samples to select the most informative example instead of
scanning through the data sequentially to decide whether to query a label.
Despite the applicability of our approach to such a scenario where one can
form a stream by sampling i.i.d. from the pool of samples, the availability
of entire data collection can be exploited to further reduce the annotation
costs with a more specialized strategy for pool-based scenarios. We believe
the greedy information maximization strategies (Chen et al., 2015) can be
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utilized to rank and select informative samples. The scalability problem can
be further addressed via sampling and labeling in batches of production data.

In our theoretical framework investigating oversmoothing in graph neural
networks and the impact of graph decomposition on it, we assumed an
infinite sample regime. Our findings can be explored in the finite sample
regime via the information bottleneck principle (Saxe et al., 2019; Shamir,
Sabato, and Tishby, 2010; Tishby, Pereira, and Bialek, 2000) to understand the
role of graph decomposition further when combined with the regularization
effect of the finite sample regime and to derive design principles for graph
decomposition that improves the performance of GraphCNN.

As the future directions on the robustness front, there are several points
to consider. In this thesis, we take the first step in designing a principled
framework where we perform knowledge fusion by forming logical con-
straints based on domain knowledge. The logical constraints we introduced
leverage logical relations among a set of semantic concepts induced by a
predefined knowledge base. While our framework can be extended to other
applications, for any knowledge system, one naturally needs domain experts
to design the knowledge rules specific to that application. There is probably
no universal strategy for aggregating knowledge for any arbitrary application;
instead, application-specific constructions will be needed. We believe that
our framework as a prototype demonstrated the benefit of such construction.
Once the principled framework of knowledge fusion is ready, application-
specific developments of knowledge rules will naturally follow, similar to
what happened previously for knowledge-enriched joint inference. We think
that a good starting point could be to utilize the existing knowledge APIs
such that high-quality knowledge can be formed towards combining learning
and explicit knowledge.

Ultimately, this dissertation addressed several open problems in cost effi-
ciency and robustness of ML and proposed repeatable solutions that can be
employed throughout the iterations of the ML lifecycle. We believe that it is
the additional data-focused view we adopted that brought a higher degree of
cost-efficiency, robustness, programmability, and repeatability to the ML pro-
cess compared to what is achieved via solely model-focused strategies. As the
data-centric ML research has been more and more pursued by the community,
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we hope that the insights of this dissertation contribute and bring impact to
the attributes mentioned above. Moreover, the strategies we developed in this
thesis are agnostic to the type and specifics of the ML model employed by the
pipeline and hence can be accompanied by other model-centric approaches.
We believe this is important to note as the success of artificial intelligence
hinges jointly on high-quality data and well-conceived models.
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A
A P P E N D I X

a.1 label-efficient model selection

a.1.1 Hyperparameter Setting

The hyperparameter tuning is performed via grid search. For each grid point,
we run the experiment for 100 realizations and compute the average number
of requests. The grid search was performed over the following search space:

• CIFAR-10: Model Picker: [0, 3000], Entropy: [0, 20], S-QBC: [0,
10], Importance: [0, 0.9], Efal: [0, 1.5e-2]

• ImageNet: Model Picker: [0, 135], Entropy: [0, 22], S-QBC: [0,
20], Importance: [0, 1]

• Drift: Model Picker: [0, 60], Entropy: [0, 4], S-QBC: [0, 4], Im-
portance: [0, 05]

• EmoContext: Model Picker: [0, 60], Entropy: [0, 4], S-QBC: [0,
4], Importance: [0, 05], Efal: [0, 1e-2]

• CIFAR-10 V2: Model Picker: [0, 1000], Entropy: [0, 3], S-QBC: [0,
10], Importance: [0, 0.9], Efal: [0, 1e-1]

with grid size of 250 where grid points are equally spaced. The respective
number of requests for each grid point can be found in our publicly available
repository1.

Remark that the amount of requests by Model Picker saturates when
Model Picker reaches at a high identification probability. Therefore, the
update probability is upscaled with a very high value such that Model

Picker queries large number of labels, and thus comparison to other methods

1 https://github.com/DS3Lab/online-active-model-selection
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for large budget constraints are made possible. Practically, this would not
be required as Model Picker itself decides when to stop requesting labels.
For example, when the update probability is upscaled by a factor of 11 for
CIFAR-10 V2 dataset, the number of requests made by Model Picker is 3 800

labels, whereas an upscaling of 835 is used to enable Model Picker requests
nearly 4 800 labels.

a.1.2 Extended Results

We conduct another numerical analysis on the performance of Model Picker

when pretrained models have relatively lower accuracies. Towards that, we
train 80 models on CIFAR-10 varying in machine learning models and pa-
rameters. The accuracy of pretrained models line in 40-70% over a test set
of of size 10 000. We compare the model selection methods over this new
model collection by following the exact same procedure as in the Section 3.2.5.
We use a stream size of 5 000 and average the results over 500 realizations.
Figure A.2, Figure A.3 and Figure A.4 encompass the comparison. When the
accuracy of pretrained models are low, the query by committee algorithm
expectedly underperforms as the disagreement measure becomes noisy under
the existence of models with low accuracies. Model Picker, on the other
hand, noticeably outperforms in returning the true best model as well as the
ranking of the models. The regret analysis in Figure A.5 suggests that the
structural query by committee method maintains a low regret throughout the
streaming process as well as for different labeling budgets, and very closely
followed by Model Picker.

a.2 knowledge enhanced adversarial robustness

a.2.1 Implementation Details for Traffic Sign Identification

To implement a nontrivial KEMLP pipeline for traffic sign identification, we
need to design informative knowledge rules, connecting useful sensory infor-
mation to each type of traffic sign. The full GTSRB dataset contains 43 types



A.2 knowledge enhanced adversarial robustness 213

Test accuracy (%)

[9
0%

, 9
1%

]
(9

1%
, 9

1%
]

(9
1%

, 9
1%

]
(9

1%
, 9

2%
]

(9
2%

, 9
2%

]
(9

2%
, 9

3%
]

C
ou

nt
 o

f m
od

el
s

0

0.5

1

1.5

2

2.5

EmoContext

Test accuracy (%)

[4
1%

, 4
6%

]
(4

6%
, 5

1%
]

(5
1%

, 5
6%

]
(5

6%
, 6

1%
]

(6
1%

, 6
6%

]
(6

6%
, 7

1%
]

C
ou

nt
 o

f m
od

el
s

0

5

10

15

20

25

30

35

CIFAR-10 V2

Figure A.1: Histogram of test accuracies for CIFAR-10 V2 dataset

b = 250 b = 500 b = 750 b = 1000 b = 1250 b = 1500 b = 2000 b = 2500

M-pick 0.29 0.47 0.58 0.65 0.68 0.76 0.82 0.88

Entropy 0.36 0.47 0.48 0.50 0.50 0.51 0.52 0.52

S-QBC 0.29 0.43 0.53 0.57 0.60 0.64 0.70 0.76

Efficient 0.31 0.42 0.52 0.57 0.61 0.66 0.70 0.76
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Figure A.2: Identification probability for CIFAR-10 V2 dataset

of signs, thus it requires a large amount of fine-grained sensory information
and corresponding knowledge rules to distinguish between different signs,
which requires a heavy engineering workload. Since the main purpose of
this work is to illustrate the knowledge enhancement methodology rather
than engineering practice, alternatively, we only consider a 12-class subset (as
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Figure A.3: Accuracy gap for CIFAR-10 V2 dataset
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Figure A.4: 90th %-tile gap for CIFAR-10 V2 dataset

shown in Figure A.6) in our experiment, where the selected signs have diverse
appearance and high frequencies.



A.2 knowledge enhanced adversarial robustness 215

0

30

60

90

120

0 1000 2000 3000 4000 5000

R
eg

re
t

Streaming instances, t

CIFAR-10 V2
M-Picker
Entropy
S-QBC
Efficient
Importance

Figure A.5: Regret for CIFAR-10 V2 dataset

Figure A.6: The selected 12 types of signs from the full GTSRB.

For detailed KEMLP pipeline implementation, we consider two orthogonal
domains — logic domain and sensing domain, respectively.

In the logic domain, based on the specific tasks we need to deal with, we
design a set of knowledge rules, which determine the basic logical structure
of the predefined reasoning model. Specifically, for our task of traffic sign
identification on the 12-class dataset, in total, we have designed 12 pieces of
permissive knowledge rules and 12 pieces of preventative knowledge rules for
the selected 12 types of signs. Each type of sign shares exactly one permissive
knowledge rule and one preventative knowledge rule, respectively.
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Figure A.7: Border patterns of the selected signs.

In our design, we take border patterns and sign contents of the traffic signs
as the sensory information to construct knowledge rules. As shown in Fig-
ure A.7, based on the border pattern, we can always construct a preventative
knowledge rule for each sign based on its border in the form as if it is a stop
sign, it should be of the shape of octagon. In our 12-class set, since there are six
types of signs (“Stop", “Priority Road", “Construction Area", “Yield", “Do
Not Enter", “End of Previous Limitation") sharing the unique border pattern,
we also design an permissive rule for each of the six classes based on their
borders, e.g. if the sign is of the shape of octagon, it must be a stop sign. Then, for
the rest of the six types (“No Vehicles", “Speed Limit 50", “Speed Limit 20",
“Speed Limit 120", “Keep Right", “Turn Left Ahead"), whose borders can not
uniquely determine their identity, we use their unique sign content to design
permissive rules for them. Specifically, we define the content pattern Blank
Circle, Digits-20, Digits-50, Digits-120, Arrow-Right-Down, Arrow-Left-Ahead
to distinguish between these signs. We present the permissive relations in
Figure A.8, Figure A.9 and Figure A.10.

In the sensing domain, the principal task is to design a set of reliable auxil-
iary models to identify those sensory information required by the knowledge
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Figure A.8: permissive relations for each sign.

rules defined in the logic domain. For traffic sign identification, we adopt a
non-neural pre-processing plus neural identification workflow to identify the
border and content of each type. Specifically, to identify the border type (e.g.
shape and color), we first use GrabCut (Rother, Kolmogorov, and Blake, 2004)
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Figure A.9: permissive relations for each sign.

to get the mask of the sign and then discard all pixels of sign content and
background, only retaining the border pixels, and finally a binary CNN clas-
sifier is used to make the statistical prediction (e.g. predict whether the shape
is octagon only based on the border pixels). For sign content, similarly, we
first use GrabCut to filter out all irrelevant pixels except for the sign content,
and then the edge operator will extract the contour of the content, finally
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Figure A.10: permissive relations for each sign.

CNN models are applied to recognize specific features like digits, arrows and
characters. In Figure A.11, we provide an overview of the workflow of our
implemented auxiliary models.

In total, in our KEMLP pipeline, we implement 19 submodels — 1) One
end-to-end GTSRB-CNN classifier (Eykholt et al., 2018) as the main task
model; 2) 8 binary preventative models for all 8 types of borders; 3) 6 binary
permissive models for the 6 border types, each of which is shared only by a
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Figure A.11: Overview: workflow of the auxiliary models.

unique class of sign; 4) 3 binary permissive models based on edge map of
sign content (Blank Circle, Arrow-Right-Down, Arrow-Left-Ahead); 5) A single
permissive model for digit recognition, which is used to identify Digits-20,
Digits-50, Digits-120. All of the 17 binary classification neural models adopt
the same backbone architecture in GTSRB-CNN and the rest digit recognition
model adopts the architecture proposed in (Goodfellow et al., 2013).

Training Details. To make our KEMLP pipeline function normally as the
way we expect, next, we consider the training issues of the overall model.

Given the definition of permissive and preventative models, ideally, the
permissive models should have low false rate and nontrivial truth rate, while
the preventative models should have high truth rate and nontrivial false
rate. These conditions are very critical for auxiliary models to bring accuracy
improvement into the KEMLP pipeline. We guarantee the conditions to hold
by assigning biased weights to classification loss on positive samples and
negative samples during the training stage. Specifically, we train all of our
binary auxiliary models with the following loss function:

L(D, f ) = aEx∼D+ [CE( f (x), 1)] + bEx∼D− [CE( f (x), 0)],
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where D = {D+, D−} is the dataset, D+ is the subset containing positive
samples, D− is the subset containing negative samples, f is the classifier and
CE is the crossentroy loss. For permissive model, we set a << b, so that low
false rate will be encouraged at the cost of truth rate; while for preventative
sensors, we set a >> b, then we can expect a high truth rate at the cost of
some false rate.

Besides the performance of each individual model, we also need to get
proper weights for the reasoning graphical model in the KEMLP pipeline.
Empirically, in our traffic sign identification task, since the end-to-end main
task model has almost perfect accuracy on clean data, directly training on
clean data will always give the main task model a dominant weight, leading
to a trivial pipeline model. Thus, during training, we augment the training
set with artificial adversarial samples, where the sensing signal from the
main task model is randomly flipped. As a result, during training, to make
correct predictions on these artificial adversarial samples, the optimizer must
also assign nontrivial weights to other auxiliary models. We call the ratio of
such artificial adversarial samples in the training set the “adversarial ratio"
in our context, indicating prior belief on the balance between benign and
adversarial distributions, and use β to denote it. In our evaluation, we test
different settings of β ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} and report
the best results in Table 4.2, Table 4.7,Table 4.8,Table 4.1,Table 4.4, Table 4.5,
Table 4.9, Table 4.9, Table 4.11, Table 4.11, Table 4.6. In particular, we use
β = 0.8 in Table 4.2, Table 4.4 and Table 4.5 β = 0.2 in Table 4.7,Table 4.8,
Table 4.9, Table 4.9, Table 4.11, Table 4.12, Table 4.6 and β = 0.4 in Table 4.1.

For all the neural models, we use the standard Stochastic Gradient Descent
Optimizer for training. The optimizer adopts a learning rate of 10−2, mo-
mentum of 0.9 and weight decay of 10−4. In all the training cases, we use
50000 training iterations with a batch size of 200 for each random training
iteration. To train the weights of the graphical model in the pipeline, we
perform Maximum Likelihood Estimate (MLE) with the standard gradient
descent algorithm, and we use a learning rate of 10−1 and run 4000 training
iterations with a batch size of 50 for each random iterations.
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Figure A.12: Visualization of adversarial examples and corrupted samples.

a.2.2 Visualization of Adversarial Examples and Corrupted Samples

From Figure A.12 to Figure A.14, we provide a visualization of the gener-
ated adversarial examples (corrupted samples) that are used for robustness
evaluation in our work. For each type of attack (corruption), we present the
generated example (the first image in each block), the extracted border (the
second image in each block), and the sign content (the third image in each
block) from the sample.
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Figure A.13: Visualization of adversarial examples and corrupted samples.

As we can see, although the adversarial examples can easily fool an end-
to-end neural network based main task model, the non-neural GrabCut
algorithm and edge operator can still correctly extract the border and sign
content from them. This allows other auxiliary models help to rectify the
mistakes made by the main task model.
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Figure A.14: Visualization of adversarial examples and corrupted samples.
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