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Abstract

Pathological examination is the gold standard for cancer diagnosis, prognosis, and thera-
peutic response predictions. Advancements in scanning technologies and an increased
focus on precision medicine have paved the way for developing digital-pathology-based
assessments. Digital pathology has enabled the digitization of microscopy slides into
high-resolution whole-slide images and opened up opportunities for computational pathol-
ogy (CP). CP aspires to alleviate the cumbersome and time-consuming routine workflow
of pathologists by introducing computer-aided assistive tools. To this end, CP leverages
computational techniques for automated exploration and extraction of meaningful infor-
mation from histopathology images. The demand for CP has recently gained even more
attention due to the growing incidence rate of diagnostic cases per year.

The basis of a typical CP system is artificial intelligence, in particular, deep learning
(DL) due to its recent large-scale success. Capability of DL to automatically extract and
utilize informative representations from complex histopathology images in a data-driven
manner have popularized its adoption in CP. Several DL methods have been developed to
address various histopathology tasks, such as nuclei detection and characterization, tumor
delineation, tissue grading and staging, and survival estimation. However, the clinical
adoption of DL methods is inhibited by several challenges, including: (1) infeasibility
of acquiring large high-quality annotated histopathology datasets for training models;
(2) requirement of prohibitive computational resources for processing large whole-slide
images; and (3) a lack of transparency and interpretability of DL decisions. Further,
most DL models in CP are built based on convolutional neural networks (CNNs), which
treat an image as a composition of multisets of pixels, to perform analyses in a pixel-
paradigm. However, operating in pixel-paradigm induces several crucial bottlenecks,
such as: (i) not being able to easily utilize tissue composition and well-established prior
pathological knowledge, due to a disregard for histological entities, e. g., nuclei, cells,
glands; (ii) an inability to simultaneously capture both local cell microenvironment and
global tissue microenvironment; (iii) intensive computational requirements for operating
on large whole-slide images; and (iv) non-straight-forward model interpretations due
to the trained models not making diagnostic decision explicitly based on well-defined
histological entities.

This thesis aims to address the aforementioned challenges and limitations concerning
DL methods in CP. The motivation herein is that the analysis of tissues should rely
on the phenotype and topological distribution of their constituting histological enti-
ties. Therefore, the analytical paradigm is proposed to be shifted from conventional
pixels to entities. A histopathology image is first transformed into an entity-guided
representation, specifically an entity-graph. The nodes and edges of the graph denote
comprehensible histological entities and entity-to-entity interactions, respectively. The
local entity-level phenotypical properties are embedded in the nodes and the global
tissue-microenvironment is captured by the graph topology. Subsequently, the advance-

v



vi

ments of DL techniques on graph-structured data, in particular Graph Neural Networks
(GNNs), are leveraged to efficiently construct a relation-aware entity-graph-representation
for addressing downstream histopathology tasks. Operating in the entity-paradigm en-
ables the incorporation of task-relevant entity-level prior knowledge for comprehensive
tissue modeling. Entity-graphs being more flexible and memory efficient, compared
to pixel-based counterparts, can scale to images of arbitrary shapes and sizes. Further,
interpreting an entity-graph-based model can highlight salient entities and interactions
for model decisions, which the pathologists can directly comprehend.

Relevance and superiority of learning on entity-guided tissue representations are estab-
lished for a variety of histopathology tasks across several tissue types. The proposed
entity-graphs encode different entity types, i. e., nuclei, tissue regions, and both; and in-
clude different graph topologies, i. e., uni-level, multi-level, hierarchical. Further, various
entity-guided GNNs are proposed herein to tackle the challenges of: (1) learning from
weak supervision and limited annotations; (2) processing histopathology images of arbi-
trary sizes; and (3) interpretability and explainability of model decisions in pathologist-
friendly terminologies. Specifically, the proposed methodologies are applied for the
following histopathology tasks: (a) supervised subtyping breast carcinoma tumor regions,
(b) weakly-supervised simultaneous classification and semantic segmentation of prostate
cancer needle biopsies, and (c) generating qualitative and quantitative interpretations
of breast subtyping model decisions. The proposed methods achieve state-of-the-art
performance for these tasks, and have been validated by domain-expert pathologists.
The generalization ability of the proposed methods is also substantiated by classifying
and segmenting prostate cancer biopsies from multiple data sources. In addition, a
flexible open-source python library, HistoCartography, has been developed to facilitate
effective graph analytics in digital histopathology.



Zusammenfassung

Pathologische Untersuchungen sind der Goldstandard für die Krebsdiagnostik, Progno-
stik sowie die Vorhersage von Behandlungserfolgen. Dank Fortschritten in Scanning-
Technologien und einem verstärkten Fokus auf Präzisionsmedizin ist es möglich ge-
worden, Untersuchungsverfahren basierend auf digitaler Pathologie zu entwickeln. Die
digitale Pathologie hat die Digitalisierung von Mikroskopie-Objektträgern in hochauflö-
sende, sogenannte Whole Slide Images ermöglicht und Chancen für die computergestützte
Pathologie (CP) eröffnet. Die CP zielt darauf ab, mühsame und zeitaufwändige Arbeitsab-
läufe von Pathologen durch die Einführung computergestützter Hilfsmittel zu erleichtern.
Zu diesem Zweck nutzt die CP computergestützte Techniken zur automatisierten Suche
und Extraktion von aussagekräftigen Informationen aus histopathologischen Bildern.
Aufgrund der steigenden Zahl von jährlichen diagnostischen Fällen hat der Bedarf an CP
in jüngster Zeit noch weiter zugenommen.

Typische CP-Systeme stützen sich im Kern auf künstliche Intelligenz, insbesondere Deep
Learning (DL), welches in letzter Zeit weitreichende Erfolge ermöglicht hat. Durch die
Fähigkeit automatisch und datengesteuert informative Repräsentationen aus komplexen
histopathologischen Bildern zu extrahieren und zu nutzen, hat die Anwendung von
DL in der CP zunehmend an Popularität gewonnen. Zahlreiche DL-Methoden wurden
bereits für verschiedene histopathologische Aufgaben entwickelt, z.B. zur Erkennung und
Charakterisierung von Nuklei, Abgrenzung von Tumoren, Einstufung und Einteilung
von Gewebe sowie zur Einschätzung der Überlebenswahrscheinlichkeit. Die klinische
Anwendung von DL-Methoden wird jedoch durch mehrere Probleme erschwert, darun-
ter: (1) die Tatsache, dass es nicht möglich ist, große, qualitativ hochwertige annotierte
Histopathologiedatensätze für das Training von Methoden zu erwerben; (2) der hohe
Bedarf an Rechenressourcen für die Verarbeitung großer Whole Slide Images; und (3) die
mangelnde Transparenz und Interpretierbarkeit von DL-Entscheidungen. Darüber hinaus
basieren die meisten DL-Modelle in der CP auf Convolutional Neural Networks (CNNs),
die ein Bild als eine Zusammensetzung mehrerer Pixel betrachten und Analysen im
Pixel-Paradigma durchführen. Das Arbeiten im Pixel-Paradigma führt jedoch zu meh-
reren entscheidenden Engpässen, wie z.B. (1) die fehlende Verwertung von bekanntem
pathologischen Vorwissen und Informationen über die Gewebezusammensetzung, da
histologische Instanzen, d.h., Nuklei, Zellen, Drüsen usw. außer Acht gelassen werden;
(2) die mangelnde Fähigkeit, sowohl die lokale Zell-Mikro-Umgebung als auch die globale
Gewebe-Mikro-Umgebung gleichzeitig zu erfassen; (3) intensive Rechenanforderungen
für die Vearbeitung großer Whole Slide Images; und (4) Schwierigkeiten beim Verständ-
nis von Modellinterpretationen aufgrund der unterschiedlichen Diagnoseverfahren von
Pathologen und Modellen.

Diese Arbeit hat zum Ziel, die oben genannten Herausforderungen und Einschränkungen
in Bezug auf DL-Methoden in der CP anzugehen. Das grundlegende Konzept besteht
darin, das Vorwissen zu nutzen, dass die Analyse eines Gewebes auf dem Phänotyp
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und der topologischen Verteilung der einzelnen histologischen Instanzen beruht. Daher
schlägt diese Arbeit vor, das analytische Paradigma von konventionellen Pixeln auf In-
stanzen zu verlagern. Zunächst wird ein histopathologisches Bild in eine instanzbasierte
Repräsentation transformiert, d.h. in einen Instanzgraphen. Die Knoten bzw. Kanten
des Graphen bilden nachvollziehbare histologische Instanzen bzw. Instanz-zu-Instanz-
Interaktionen ab. Die lokalen phänotypischen Eigenschaften auf der Instanzebene sind
in den Knoten eingebettet, während die globale Gewebe-Mikro-Umgebung durch die
Graphentopologie erfasst wird. Anschließend nutzt die Arbeit die Fortschritte von DL-
Techniken auf graphenbasierten Daten, insbesondere Graph Neural Networks (GNNs),
zur effizienten Konstruktion einer relationsbewussten Instanzsgraphen-Darstellung, wel-
che für anschliessende histopathologische Aufgaben genutzt werden kann. Das Arbeiten
im Instanz-Paradigma ermöglicht die Berücksichtigung von aufgabenrelevantem Vor-
wissen auf Instanzebene für eine umfassende Gewebemodellierung. Die Instanzgraphen
sind flexibler und speichereffizienter als deren pixelbasierte Gegenstücke und können
auf Bilder beliebiger Form und Größe skaliert werden. Darüber hinaus können bei der
Interpretation eines auf Instanzgraphen basierenden Modells Instanzen und Interaktio-
nen hervorgehoben werden, die wichtig für die Modellentscheidung sind. Pathologen
können einen direkten Bezug zu diesen Instanzen und Interaktionen herstellen und
entsprechende Schlussfolgerungen ziehen.

Die Relevanz und Überlegenheit des Lernens auf der Grundlage von instanzbasierten Ge-
webedarstellungen wird für eine Vielzahl von Histopathologieaufgaben in verschiedenen
Gewebetypen nachgewiesen. Die vorgeschlagenen Instanzsgraphen kodieren verschiede-
ne Instanzstypen, d.h. Nuklei und/oder Geweberegionen, und umfassen verschiedene
Graphentopologien, d.h. einstufig, mehrstufig und hierarchisch. Darüber hinaus wer-
den verschiedene instanzbasierte GNNs vorgeschlagen, um die folgenden Herausfor-
derungen zu bewältigen: (1) das Lernen aus schwacher Überwachung und begrenzten
Annotationen; (2) die Verarbeitung von Histopathologiebildern beliebiger Größe; und
(3) die Interpretierbarkeit und Erklärbarkeit von Modellentscheidungen in pathologisch
verständlicher Terminologie. Im Einzelnen werden die vorgeschlagenen Methoden an-
gewandt für (1) die überwachte Subtypisierung von Brustkrebs-Tumorregionen, (2) die
schwach überwachte gleichzeitige Klassifizierung und semantische Segmentierung von
Prostatakrebs-Nadelbiopsien und (3) die Generierung qualitativer und quantitativer
Interpretationen von Modellentscheidungen in der Brust-Subtypisierung. Die vorgeschla-
genen Methoden erreichen für die in Betracht gezogenen histopathologischen Aufgaben
eine Leistung auf dem neuesten Stand der Technik und wurden von spezialisierten
Pathologen mit fundierten Fachkenntnissen validiert. Die bessere Generalisierbarkeit der
vorgeschlagenen Methoden wird auch für die Klassifizierung und Segmentierung von
Prostatakrebs-Biopsien aus mehreren Datenquellen nachgewiesen. Darüber hinaus wird
eine generische Open-Source-Python-Bibliothek, HistoCartography, entwickelt, um
eine effektive Graph-Analyse in der digitalen Histopathologie zu ermöglichen.
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1
Introduction

Histology is a branch of biology concerned with the composition and structure of tissues
in relation to the specialized tissue functionalities. The fundamental aim of histology is to
determine how tissues are organized at all structural levels, from cells and inter-cellular
substances to organs. Histopathology is the study of tissues affected by diseases, such as
cancer. A disease affects the tissue in a distinctive way depending on the type of the tissue
as well as the progressive extent of the disease. Histopathology deals with diagnosing
such diseased tissues to identify the disease, determine their severity, and thereby select
pertinent treatment procedures. The following sections present an overview of a standard
diagnostic workflow, and its transformation from conventional non-digital examination
to modern computer-aided digital evaluation.

1.1 Histopathology diagnostic workflow

1.1.1 Conventional histopathological diagnosis

A tissue specimen (or biopsy) acquired from a patient undergoes a series of tissue
preparations, i. e., fixation, embedding, sectioning, and staining, before being examined by
a pathologist, as illustrated in Figure 1.1. During fixation, the specimen is placed into a
small container of fixative to preserve the cells and the tissue from decaying. It maintains
the cellular structure as close to the native state. Afterwards, the tissue is placed into a
cassette, a unique numbered bar coded plastic box, and loaded into a tissue processor.
The tissue is dehydrated with alcohol to effectively replace the water in the cells. The
alcohol is then removed and infiltrated with paraffin wax to enable tissue preservation. In
the embedding step, the cassettes are removed from the processor, and a histotechnologist
orients them into a rectangular mold, filled with more wax, to create a tissue block. The
block is laid on a solid tray of ice for even cooling and hardening the wax. Subsequently,
the hardened block is sectioned by a microtome into thin slices and laid on a glass slide.
A glass slide with a tissue slice is stained uniformly with a designated dye to highlight
particular morphologies of interest in the tissue. Following a final quality check, the
stained slides are assigned to a specialized pathologist for examination, who analyzes
them under a microscope for tissue characterization. The observations are collected
in a succinct report upon assessment. For a patient suspected of or diagnosed with a
disease, advanced stainings are performed to highlight specific tissue characteristics for
ascertaining the diagnosis and treatment selection.

1



2 1 introduction

1.1.2 Digital pathology and computer-aided diagnosis

With the advancements in slide-scanning technologies, glass slides with tissue specimens
are digitized into WSIs with impressive resolution. These advancements have led to
digital pathology (DP), which has not only replaced the microscopes by computers for
tissue examination, but also has profoundly transformed the daily practice of pathologists.
The digitalization facilitates the convenience of dealing with images instead of glass slides,
and enables the process of interpretation, management, and automatic analysis using
computational approaches. Telepathology is enabled by sharing the images with distant
locations in real-time, which bridges the physical distance among hospitals, pathologists,
and patients. The images can be stored and accessed from a central cloud-based repository,
which promotes remote diagnosis, teleconsultation, workload efficiency, collaborations,
central clinical review, and virtual education [Wilbur et al., 2009; Hamilton et al., 2012;
Sagun et al., 2018; Nauhria et al., 2019; Pantanowitz et al., 2018; Hanna et al., 2019].
However, a digital diagnostic workflow requires pathologists to manually evaluate the
digitized slides, analogous to a non-digital diagnostic workflow. The manual examination
poses several challenges: (1) a cumbersome and time-consuming process, which demands
the pathologists to analyze large volumes of information on slides, and (2) it is prone to
high inter- and intra-observer variability, thereby reduced reproducibility of assessments.
These challenges are further gaining prominence with the yearly increasing incidence
rate of diagnostic cases [Sung et al., 2021].

Recently, computer-aided diagnosis (CAD) systems are developed to address the afore-
mentioned challenges. A CAD system, empowered by DP, aspires to automate and assist
pathologists in tissue examination with high accuracy, throughput, and reproducibil-
ity. Figure 1.1 illustrates DP and CAD workflows along with the fundamental tissue
preparation and digitization steps. The basis of CAD is computational pathology (CP),
which leverages innovative research in artificial intelligence (AI), especially ML and deep
learning (DL), to address various histopathology tasks, such as:

• Detection, segmentation, and quantification of tissue constituents, e. g., (1) detection
and segmentation of nuclei for analyzing nuclear morphology; (2) segmentation
and analysis of glandular structures as the key criterion for cancer grading; (3) seg-
mentation of various tissue types, such as epithelium, stroma, adipose tissue; and
(4) segmentation of tumor regions in the tissue.

• Classification of histopathology images and its constituents, e. g., (1) nuclei subtyp-
ing; and (2) tumor proliferation and aggressiveness assessment, i. e., staging and
grading, respectively, in different tissue types, e. g., breast, prostate, and colon.

• Disease prognosis, e. g., prediction of cancer susceptibility, recurrence, and survival.

1.2 Motivation

DL methods automatically identify sub-visual patterns in histopathology images and
discover informative features which encode different explanatory factors to address a
histopathology task. Recently, these methods have achieved performance comparable
to expert pathologists for a number of tasks with high throughput and improved repro-
ducibility [Businesswire, 2021; Bulten et al., 2021]. Despite the success of the DL methods,
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Figure 1.1: Overview of histopathological examination in a clinical setting. The figure illustrates the
operational differences among the conventional non-digital pathology, the digital pathology, and
the computer-aided diagnostic workflows. Tissue acquisition and preparation are the fundamentals
of the workflow. Subsequent tissue digitization is the basis to enable digital pathology and
computer-aided assessment.

they still need to address several key challenges for being adopted in routine pathological
workflows [Tizhoosh et al., 2018], including:

• Lack of labeled data: DL methods typically require large sets of high-quality data
that must ideally be “labeled”. This necessitates pathologists to manually generate
large labeled datasets, which is tedious, time-consuming, expensive, and incurs
observer-variability.

• Large image sizes: The advanced scanning technologies have enabled to yield giga-
pixel sized histopathology images. End-to-end processing of these images by a
DL method is challenging due to high computational requirements. As a naive
workaround, the images can be downsampled before processing. However, this
would limit access to diagnostically relevant low-level information, thereby ham-
pering the task performance.

• Lack of transparency and interpretability of DL decisions: A trained DL model acts as a
“black box” [Castelvecchi, 2016], which impedes the fundamental requirement for a
dependable diagnosis, i. e., transparency and interpretability of the decision-making
procedure. Although several researchers have investigated creative ways to explain
the model decisions, at present there is no established way to comprehensively
explain a specific model decision for a given histopathology scan.

Another set of limitations of DL methods in CP concern with the architectures of the
DL models. Most DL models in CP so far are built on CNNs [Deng et al., 2020] due to
their large-scale success in computer vision [Li et al., 2021]. These models have achieved
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Figure 1.2: H&E stained breast tumor regions from different carcinoma subtypes (top row).
Respective cell-graphs illustrating the distribution of epithelial nuclei (thresholded k-nearest
neighbor topology (k = 5)) (bottom row).

remarkable advances in addressing various histopathology tasks [Srinidhi et al., 2021].
However, they pose several limitations, such as:

• Detachment from histological entities: A tissue specimen constitutes of several his-
tological entities, e. g., nuclei, cells, tissue types, and glands. The phenotype and
topological distribution of these entities characterize the tissue functionality. For
instance, Figure 1.2 illustrates three Hematoxylin & Eosin (H&E)-stained breast
carcinoma subtypes and their respective nuclei distributions. It can be observed
that the benign tissue is composed of glandular organization of epithelial nuclei,
whereas the invasive carcinoma includes a fragmented distribution. Thus, to aptly
comprehend a tissue composition, computational techniques are imperative to
operate on tissue representations which adequately encode the characteristics of
the entities. However, CNNs construe a tissue as a set of pixels, which disregards
the notion of entities and their organization [Hägele et al., 2020].

Further, a pathologist examines a tissue specimen in terms of the type and organi-
zation of the constituting histological entities. For instance, pathologists focus on
necrotic areas built up inside tumors to estimate the aggressiveness of ductal carci-
noma in situ in breast tissue [Salvatorelli et al., 2020]; and they analyze lymphocyte
infiltration into tumor epithelium for disease prognosis [Idos et al., 2020], as shown
in Figure 1.3. Such prior knowledge, included as inductive bias into tissue model-
ing, can improve the diagnostic performance of DL methods. However, CNNs are
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Figure 1.3: (a) H&E stained breast tumor regions from ductal carcinoma in situ and invasive
carcinoma, (b) cell-graphs of nuclei distributions, (c) cell-graphs of epithelial nuclei distributions,
(d) cell-graph of necrosis (top row) and lymphocytes (bottom row) distribution. Cell-graphs are
constructed with k-nearest neighbor topology (k = 5).

Figure 1.4: Explanation heatmaps for class cancer produced by post-hoc feature attribution tech-
niques applied to a CNN classifier. Input H&E image (a) is split into nine patches and heatmaps are
produced by using (b) probability map, (c) Grad-CAM, and (d) Layer-wise Relevance Propagation.

limited to utilize such knowledge due to their inflexibility to selectively analyze
entities and their distribution. Moreover, a disregard to histological entities in
pixel-based analysis curtails the interpretability and explainability of CNNs. To dis-
cern the focus of a CNN during the diagnosis, various post-hoc feature-attribution
techniques are employed by [Hägele et al., 2020], as illustrated in Figure 1.4. The
presented heatmaps highlighting a subset of pixels are non-localized, i. e., they
do not specify the set of relevant entities. Further, they impart distinct emphasis
on pixels that belong to an individual entity. Therefore, these heatmaps are not
thoroughly explainable to pathologists. Hence, DL methods are desired to operate
on comprehensible entity-guided tissue representations, which the pathologists can
directly relate to and reason with. This way, prior pathological knowledge can be
seamlessly incorporated into the analysis for an enhanced model performance and
interpretation.
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Figure 1.5: Field-of-view of fix-sized sized concentric patches extracted from a tissue region at
different resolutions. The arrows at the bottom depict the variation in embedded global- and
local-context information in the patches across different resolutions.

• Trade-off between capturing local- and global-context: A CNN typically processes a
histopathology image in a patch-wise manner due to its large size. The model splits
the image into a set of fixed-size patches at a particular resolution, extracts patch-
wise representations, and aggregates patch-level features to perform image-level
tasks. However, a patch-wise processing incurs the trade-off between capturing
adequate local- and global-context information, as illustrated in Figure 1.5. Ad-
dressing this challenge is crucial for diagnostic performance [Bejnordi et al., 2017a;
Sirinukunwattana et al., 2018]. To highlight, operating at a lower resolution captures
global tissue microenvironment but hinders the resolvability of cells and cellular
properties, whereas, operating at a higher resolution captures local cellular charac-
teristics but constrains the access to global tissue microenvironment. An effort to
simultaneously capturing both information encounters computational bottlenecks.
The methods by [Bejnordi et al., 2017a; Sirinukunwattana et al., 2018; Pinckaers
et al., 2020] address this trade-off by increasing the visual context per patch, but still
are restricted to incorporate information from arbitrary distanced tissue regions.
Though, the method by [Tellez et al., 2021] captures both information, it is confined
to work with only rectangular input images. Since tissues in the images can be of
arbitrary shapes and sizes, working with rectangular inputs obligates to process
both informative tissue and uninformative non-tissue regions. Therefore, DL meth-
ods are desired to efficiently capture and analyze both local- and global-context
simultaneously.

• Scalability to large histopathology images: Most of the natural images processed
by CNNs contain millions of pixels, whereas a WSIs contains billions of pixels.
Such large size requires to develop specific DL methods that can operate on an
entire WSI. To this end, Multiple Instance Learning (MIL) [Campanella et al.,
2019] and compression-based methods [Tellez et al., 2021; Shaban et al., 2020] are
proposed. MIL methods treat a WSI as a bag of patches, and aims to characterize
the bag. This ignores the spatial relationship among the patches, and incurs
the aforementioned context trade-off. In contrary, compression-based methods
demand high computational resources as they tend to process both informative
and uninformative tissue regions. Therefore, DL methods are desired to directly
operate on histopathology images of arbitrary shape and size with high efficiency.
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To address the aforementioned limitations of CNN-based methods, histological entity-
based methods are proposed by [Demir et al., 2004]. An entity-based method transforms a
histopathology image into an entity-graph, where the nodes and edges denote histological
entities and entity-to-entity interactions, respectively. Such representations explicitly
encode meaningful histological entities, thus are closer to pathological comprehension.
An entity-graph simultaneously captures both local- and global-context information in
the graph nodes and topologies, respectively. These representations are flexible enough
to describe tissues of arbitrary shapes, and can accommodate large number of nodes
and edges to encode arbitrary sizes. Notably, the analysis of these graphs is more
computationally efficient than the pixel-based counterparts, as a graph data structure is
memory efficient than images. Subsequent to the entity-graph representations, traditional
ML [Demir et al., 2004; Sharma et al., 2015] and modern DL [Zhou et al., 2019a; Wang
et al., 2019a; Adnan et al., 2020] methods are employed to process the graph-structured
data for various histopathology tasks. Considering these advantages, DL methods on
entity-graphs are gaining popularity in CP [Ahmedt-Aristizabal et al., 2021]. However,
these methods have only been applied to image-level tasks, such as tumor classification,
and survival analysis. Further, the designed entity-graphs are limited to only nuclei, as
the units of explanation, and simple graph topologies, such as k-Nearest Neighbors (k-NN).
These representations are inadequate to comprehensively capture a tissue composition.

1.3 Thesis Goals

Though DL methods have achieved remarkable success in CP, they incur several chal-
lenges and limitations, as described above. This thesis aims to tackle the above-mentioned
issues, in order to develop enhanced methods on several histopathology tasks. To this end,
this thesis advocates for an entity-based analytical workflow, as illustrated in Figure 1.6,
instead of the conventional patch-based analytical workflows. The specific objectives of
the thesis can be summarized as:

• To develop alternate representations of histopathology images that can comprehen-
sively encode tissue compositions embedded in the images. These representations
are desired to be interpretable and customizable to seamlessly accommodate task-
relevant prior pathological knowledge;

• To develop suitable DL methods that can operate on the above alternate tissue
representations and learn appropriate mappings between the tissue compositions
and any targeted task;

• To develop DL-based methodologies that can directly operate on histopathology
images of arbitrary shapes and sizes;

• To develop DL-based methodologies that can simultaneously take advantage of
multi-scale information embedded in histopathology images, and produce contex-
tualized tissue representations.

• To develop DL-based methodologies that can learn from weak- or limited-annotations,
thereby alleviating the annotation burden;

• To interpret the DL methods in CP, and express their decisions in pathologist-
understandable terminologies.
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Figure 1.6: Illustration of pixel- and entity-based analytical workflows in computational pathology.

1.4 Thesis Outline and Contributions

In the pursuit of the aforementioned goals, the structure of this thesis is outlined below.

Chapter 2 presents a literature review of extant DL methods in CP that concern with
learning from limited labeled data, processing of large size images, and interpreting the
DL models for various histopathology tasks. The chapter highlights the limitations of
these methods to emphasize on the thesis contributions. Further, this chapter presents
some essential technical preliminaries into graph representation learning, Graph Neural
Networks (GNNs), and post-hoc graph interpretability techniques, to help put in context
the proposed methods in this thesis.

Chapter 3 describes the motivation behind encoding a histopathology image in terms of
its constituting histological entities. Specifically, diagnostically relevant cell membranes
in HER2-stained immunohistochemisty images are delineated, encoded into feature
representations, and processed by ML methods to define disease-specific staining quality
metrics. Subsequently, a sensitivity analysis of the staining quality variations over the
process parametric space is performed to determine disease-specific optimal staining
protocols. The findings are substantiated by validating against clinical staining protocols.
This work has been published in a peer-reviewed journal as a joint first author [Arar†1,
Pati† et al., 2019]. In this work, my contributions were the end-to-end development of
the methodology, designing and conducting the experiments, and collaborating with
biologists for data curation and result validation.

Considering the significance of building on histological entities, Chapter 4 proposes a
hierarchical entity-graph, a hierarchical cell-to-tissue (HACT) graph, to comprehensively
characterize tissue composition. A HACT graph encodes the phenotype, and inter- and
intra-entity interactions among a multiset of entities. Afterwards, a novel hierarchical
GNN, HACT-Net, hierarchically learns on the HACT graphs for tumor subtyping. A
large cohort of H&E stained breast tumor regions is curated to benchmark the proposed
method against state-of-the-art CP methods and expert pathologists. Further, detailed
ablation studies and qualitative interpretations are conducted to demonstrate the ad-
vantages of hierarchical representation and learning. This work has been published in
a peer-reviewed journal as a joint first author [Pati†, Jaume† et al., 2021]. In this work,
my contributions include the idea conceptualization, development of image-to-graph

1 † denotes equal contribution in a shared first authorship.
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transformation modules, implementation of uni-level GNNs, software development for
efficient data curation, experiments, and validation with pathologists.

Following the classification superiority of entity-guided GNNs, Chapter 5 & 6 explore
the aspects of interpreting and explaining the model decisions. Chapter 5 proposes a
perturbation-based post-hoc interpretability technique (or explainer), CGExplainer, to
generate an explanation for a model decision. The explanation denotes the identification
of a subset of entities in an input entity-graph which drive the model prediction. The
method is applied to understand cell-graph based GNNs for breast tumor classification.
Quantitative evaluations demonstrate the sparsity of task-relevant information in the cell-
graphs. Qualitative evaluations indicate agreement between the generated explanations
and pathological reasonings. This work has been published in a peer-reviewed workshop
paper as a joint first author [Jaume†, Pati† et al., 2020]. Chapter 6 explores further into
other graph explainers to interpret entity-guided GNNs. Qualitative evaluations illustrate
that the differences in underlying mechanisms of the explainers render distinct expla-
nations for an input entity-graph. Further, there is no definite measure to identify the
best explanation or the explainer except qualitative analysis by a pathologist. Therefore,
this chapter proposes a set of novel quantitative metrics to characterize graph explainers.
The metrics are based on the statistics of class separability in terms of pathologically
measurable concepts. These metrics, validated by expert pathologists, express the model
predictions in pathologically understandable terminologies. This work has been pub-
lished in a peer-reviewed conference as [Jaume†, Pati† et al., 2021]. In these works, my
contributions include the conceptualization and development of the quantitative metrics,
implementation of a number of pixel- and graph-explainers, design of the experiments,
analyses and validations by the pathologists.

Chapter 7 & 8 propose methods to address the challenge of learning from limited labeled
data in CP. Specifically, Chapter 7 proposes CoReL, a classification framework that
simultaneously captures class-label information and spatial distribution information of
the data points in the embedding space for improving model performance. To exploit the
spatial information, DML is leveraged with a novel context-aware pair mining strategy and
a novel soft-multi-pair objective. The framework achieves state-of-the-art performance on
five benchmark datasets across three histopathology tasks. This work has been published
in a peer-reviewed journal as [Pati et al., 2021].

Chapter 8 develops a novel entity-graph based weakly-supervised semantic segmentation
method, WholeSIGHT, to segment WSIs from image-level labels. WholeSIGHT aggre-
gates the capabilities of GNNs, graph explainers, and DML, to simultaneously achieve
state-of-the-art prostate WSI classification performance and weakly-supervised Gleason
patterns segmentation performance. The results also demonstrate the scalability of entity-
graph based DL methods to large images. Further, a Bayesian extension of WholeSIGHT
is proposed to for improved generalization to out-of-domain datasets. The generalizability
is quantified in terms of performance assessment, uncertainty analyses, and estimation
of model calibration. A preliminary version of this work has been presented in a peer-
reviewed conference paper as [Anklin†, Pati†, Jaume† et al., 2021]. The extended version
is to be submitted in a peer-reviewed journal as [Pati†, Jaume† et al., 2021]. In this work, I
am responsible for the conceptualization, design and implementation of the methodology,
and experimentation and analyses.
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In view of the advances in entity-graph based representations and graph-based DL
methods in CP, Chapter 9 introduces HistoCartography, a standardized python-based
open source library. The library aims to alleviate researchers’ effort in developing
boilerplate code to perform graph analytics in CP by including adequate preprocessing,
machine learning, and explainability tools. The chapter benchmarks the library in terms of
computational time and performance on multiple datasets across various histopathology
tasks and image scales to illustrate its applicability for building CP workflows. This work
has been presented in a peer-reviewed workshop as [Jaume†, Pati† et al., 2021]. Both the
authors have contributed equally towards the design and development of the library and
the modules.

This thesis is concluded in Chapter 10 with a brief summary of the proposed methods and
contributions, their limitations, and a discussion on potential future research directions.



2
Background

Computer-aided diagnosis (CAD) in histopathology aspires to assist pathologists with
interpreting histologic findings of interest in a tissue specimen. The core of an effective
CAD system in histopathology is computational pathology (CP), which typically uses AI,
especially machine learning (ML) and deep learning (DL), to analyze the histopathology
images. This chapter reviews DL-based CP solutions for various histopathology tasks,
while emphasizing on the researches pertaining to learning from limited labeled data,
handling of large size histopathology images, and the interpretability of DL methods. In
this course, we also describe the pixel- and the entity-paradigms in histopathology, and
review the DL methods in the entity-paradigm. Additionally, we present the technical
preliminaries of DL methods operating on graph-structured data, which are relevant for
understanding the DL of entity-guided representations in this thesis.

2.1 A Review of Deep Learning in Computational Pathology

Recent advancements in DL have significantly contributed to CP in terms of automatically
discovering patterns and inter-pattern relationships from complex histopathology images.
The DL methods have the ability to handle gigantic quantity of histopathology data
created throughout the patient-care lifecycle, and encode different explanatory factors
of variation behind the data to improve the diagnosis, prediction, and disease prog-
nostication. The methods operate in a data-driven manner, and include complex and
autonomous techniques for rendering a better mapping between the underlying data
distribution and a targeted histopathology task. The quality of the mapping relies heavily
on the level of human supervision in the ingested data. The DL methods using labeled
data, i. e., paired input data and desired output labels acquired via human supervision,
produce superior mapping, thus superior task-specific performance, compared to the
methods based on unlabeled data, i. e., standalone input data. Although, there exist
several learning schemes to handle specific data ingestion scenarios, the DL methods in
CP can be majorly categorized into supervised learning and unsupervised learning. This
section first presents several DL methods in CP associated with the aforementioned learn-
ing schemes. Subsequently, this section describes specific methods that are developed to
address the challenges and limitations of applying DL in CP, as detailed in Section 1.2.

2.1.1 Deep learning methods based on training supervision

Supervised learning: Supervised learning methods are trained using labeled data to map
the input-output pairs. The type of ingested supervision depends on the histopathology
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task. For example, image-level labels are required for image classification, whereas
pixel-level labels are required for segmenting objects in the image. Further, point or
bounding box labels are required for object detection, but instance-level pixel labels are
required for segmenting object instances. Typically, the task-specific annotations are
acquired by the consensus of multiple pathologists to alleviate observational bias in the
labeling process. Notably, the type of the annotation determines the design of the DL
methods. For instance, the design of nuclei detection methods differ based on point-wise
or bounding box annotations.

Numerous supervised DL methods are proposed to address several histopathological
tasks across different tissue types, e. g., breast, prostate, colon, lung, and stomach, and
stainings, e. g., H&E, immunohistochemistry, and immunofluorescence, by using different
annotation types. A few examples are showcased as follows, nuclei detection [Sirinukun-
wattana et al., 2016; Romo-Bucheli et al., 2016; Sornapudi et al., 2018; Höfener et al.,
2018; Xing et al., 2019; Yang et al., 2020], nuclei segmentation [Kumar et al., 2017; Naylor
et al., 2019; Zhou et al., 2019b; Graham et al., 2019a; Verma et al., 2021], nuclei classifica-
tion [Sirinukunwattana et al., 2016; Li et al., 2018d; Zhou et al., 2018; Graham et al., 2019a;
Verma et al., 2021], mitosis detection [Roux et al., 2013; Veta et al., 2015; Roux, 2014; Veta
et al., 2019], semantic segmentation of cellular objects [Ciresan et al., 2012; Ronneberger
et al., 2015; Song et al., 2015; Zhang et al., 2017], cell detection [Xie et al., 2015; Kashif
et al., 2016; Wang et al., 2016; Xie et al., 2018], tissue segmentation [Xu et al., 2016a],
tissue classification [Kather et al., 2019; Xu et al., 2019b], gland segmentation [Li et al.,
2016; Xu et al., 2017a; Kainz et al., 2017; Graham et al., 2019b; Binder et al., 2019], tumor
segmentation [Bejnordi et al., 2017b; Cruz-Roa et al., 2017; Sharma et al., 2017b; Qaiser
et al., 2019a; Wei et al., 2019; Tokunaga et al., 2019], tumor classification [Hou et al., 2016;
Couture et al., 2018; Shaban et al., 2019; Nagpal et al., 2019; Bulten et al., 2020a; Rathore
et al., 2020], and survival prediction [Zhu et al., 2017; Bychkov et al., 2018; Mobadersany
et al., 2018; Courtiol et al., 2019; Kather et al., 2019].

To promote supervised DL methods in CP, a number of labeled datasets are released.
Some of the notable datasets for different histopathology tasks are, mitosis detection [Roux
et al., 2013; Veta et al., 2015; Roux, 2014; Veta et al., 2019], gland segmentation [Sirinukun-
wattana et al., 2017; Graham et al., 2019b], nuclei detection [Sirinukunwattana et al., 2016],
nuclei segmentation [Graham et al., 2019a; Kumar et al., 2020; Verma et al., 2021], nuclei
classification [Graham et al., 2019a; Verma et al., 2021], metastasis detection [Bejnordi et
al., 2017b; Bandi et al., 2018], tissue classification [Kather et al., 2019], cancer subtyping [Li
et al., 2018e; Aresta et al., 2019], HER2 scoring in breast cancer [Vandenberghe et al., 2017;
Qaiser et al., 2018], and Gleason scoring and ISUP grading in prostate cancer [Arvaniti
et al., 2018; Silva-Rodrìguez et al., 2020]. These well-defined public datasets have drawn
significant interest of the computer vision community for designing CP solutions.

Despite the success of supervised DL methods in CP, the main challenge lies in the
acquisition of task-specific high-quality large labeled datasets that capture real-world
data variations. To address this challenge, various methods are proposed to learn from
limited labeled data, as presented in Section 2.1.2.

Unsupervised learning: Unsupervised learning methods are trained using unlabeled
data and aspire to identify intrinsic data representations that can disentangle relationships
among the data points. Consequently, these methods aim to group (or cluster) the data
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points into separate categories by deciphering the underlying data distribution. These
methods are desirable as they can be interpreted in terms of their quality of understanding
about the underlying data distribution. However, without any labels, the learning
task is ambiguous as it can possibly map the input data into infinitely many subsets
of representations. Therefore, most unsupervised approaches aim to construct data
representations under certain constraints, such that the potential representation subsets
are limited and achieve a desired grouping. Some popular categories of unsupervised DL
approaches and their learning constraints are presented as follows:

• Auto-encoder learns compressed representation by using an encoder and a decoder
sub-model. It is constrained to reconstruct the ingested input, where the encoder
compresses the input into a latent representation and the decoder reconstructs the
input from the representation. Advances in modeling the stochasticity [Kingma
et al., 2014] and more robust feature disentanglement [Higgins et al., 2016; Chen
et al., 2018] have made autoencoders more attractive.

• Generative adversarial network [Goodfellow et al., 2014] uses two neural networks, a
generator and a discriminator, to optimize an explicit min-max objective such that
the instances generated by the generator are indistinguishable compared to real
instances by the discriminator. The features from the discriminator are typically
considered as the data representation [Mao et al., 2019]. However, a number of
advanced generative adversarial networks are dedicated to produce other types of
informative representations [Larsen et al., 2016; Donahue et al., 2017].

• Self-supervised learning designs unsupervised auxiliary supervision tasks to exploit
some intrinsic information available in the data. Existing methods vary in the
design of the auxiliary tasks, such as spatial context [Doersch et al., 2015; Noroozi
et al., 2016], spatio-temporal continuity [Wang et al., 2015; Wang et al., 2017], colour
patterns [Zhang et al., 2016a; Larsson et al., 2016], image inpainting [Pathak et al.,
2016], and pair similarity in embedding space [Chen et al., 2020b; Caron et al.,
2020]. Recently, a few histopathology-specific auxiliary tasks are also proposed to
produce better domain-specific data representations [Koohbanani et al., 2021].

• Deep clustering methods [Xie et al., 2016; Jiang et al., 2016] combine feature extraction,
dimensionality reduction, and clustering into an end-to-end model, allowing deep
neural networks to learn data representations that adapt to various clustering
criteria.

Several unsupervised DL methods based on aforementioned approaches are employed
to tackle various histopathology tasks, such as, nuclei detection [Xu et al., 2016b] nuclei
segmentation [Yao et al., 2021b; Liu et al., 2020], tissue classification [Ciga et al., 2020;
Koohbanani et al., 2021], tissue segmentation [Ciga et al., 2020; Mahapatra et al., 2021a],
tumor classification [Dercksen et al., 2019; Muhammad et al., 2019; Li et al., 2019b; Ciga
et al., 2020; Koohbanani et al., 2021; Mahapatra et al., 2021c; Wang et al., 2021], tumor
segmentation [Gadermayr et al., 2018; Roy et al., 2021; Mahapatra et al., 2021b], survival
prediction [Zhu et al., 2017; Yamamoto et al., 2019; Abbet et al., 2020], histology image
registration [Awan et al., 2018; Hecht et al., 2020], and anomaly detection [Schlegl et al.,
2017; Pocevičiūtė et al., 2021]. Though unsupervised methods are desired for unbiased
representation learning, they are limited to model the distribution of complex and diverse
histopathology images in the absence of labeled data. However, the recent researches
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in unsupervised DL approaches, especially self-supervised approaches, hold promising
potential for advancing unsupervised methods in CP [Ciga et al., 2020].

2.1.2 Learning from limited labeled data

DL methods are achieving new state-of-the-art performances on various histopathology
tasks. These gains are achieved at the cost of acquiring large annotated high-quality
training data. However, acquiring such annotations are often infeasible due to tedious,
time-consuming, and expensive labeling procedure, and the unavailability of expert
pathologists. Ideally, we expect DL methods to address any histopathology task in an
unsupervised manner, but unsupervised DL methods at the moment are unable to deliver
the desired performance for clinical use. Hence, learning from limited labeled data is
gaining popularity to balance the trade-off between generating labeled data and learning
performance. To this end, several research directions are being explored, such as,

• Semi-supervised learning: These methods learn from a few labeled and a large number
of unlabeled data points. To maximally utilize the labeled and unlabeled data,
semi-supervised learning methods make certain assumptions about the underlying
structure of the data, such as smoothness of the data point neighborhood and
clustering of similar data points in the embedding space. Another popular approach
is to incrementally train a DL method by predicting labels for the confident data
points in the unlabeled set, and retraining the DL method with the augmented
labeled dataset. These methods are applied to various histopathology tasks, such
as histopathology image classification [Foucart et al., 2019; Marini et al., 2021; Su
et al., 2021; Peikari et al., 2015], and segmentation [Li et al., 2018b; Yu et al., 2021].

• Active learning: These methods aims to learn an algorithm which can automatically
select the informative unlabeled data points for the training of the method. Over
multiple training iterations, these methods select informative data points, from a
large unlabeled dataset, to be annotated, get the data points labeled by human
experts, and include the labeled data into the training procedure. Labeling of
only a subset of the dataset, identified by the learning method, reduces the overall
expense of building an effective model. Primarily, active learning methods differ in
terms of their querying strategies to select the relevant data points to be labeled.
A few applications of their applications in CP are, tumor segmentation [Folmsbee
et al., 2021], nuclei segmentation [Wen et al., 2018], nuclei detection and classifica-
tion [Carse et al., 2019], analysis of nuclei pleomorphism [Cosatto et al., 2008], and
gland segmentation [Yang et al., 2017].

• Weakly-supervised learning: These methods exploit coarse-grained labels, e. g., image-
level labels, to automatically infer fine-grained, e. g., pixel/patch-level, information.
These methods are well suited for histopathology applications where the coarse-
grained labels are readily available from clinical reports, but acquiring fine-grained
labels are tedious, expensive, or infeasible. Among several weakly-supervised
approaches, MIL is a very popular method for analyzing giga-pixel sized WSIs to
perform region-level tasks [Jia et al., 2017; Liang et al., 2018] and whole-slide-level
tasks [Ilse et al., 2018; Campanella et al., 2019; Wang et al., 2019d; Wang et al., 2019e;
Lu et al., 2021; Yao et al., 2020]. In MIL, a whole-slide is decomposed into a bag of
small high-resolution patches (or instances), and bag-level labels are used to predict
both bag-level and instance-level labels. Other types of weakly-supervised methods
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alleviate the need for expensive labeling by proposing various loss functions [Li
et al., 2019a; Silva-Rodrìguez et al., 2021], feature encoding strategies [Akbar et al.,
2018; Tellez et al., 2021; Shaban et al., 2020], loss balancing mechanisms [Bokhorst
et al., 2018], to use feature attribution techniques [Chan et al., 2019], and to derive
pseudo labels from weak annotations [Qu et al., 2019] for training supervised
learning methods.

• Augmentation and data generation: Augmenting the available labeled data or syn-
thesizing labels for unlabeled data aim to increase the labeled dataset for training
effective DL methods. Data augmentation techniques, such as morphological trans-
formation, e. g., rotation, translation, and scaling, and stain color augmentation, i. e.,
perturbing images in respective staining color space [Liu et al., 2017b; Tellez et al.,
2019], are applied to the available labeled images and annotations to increase the
size of the labeled dataset. However, these techniques are limited by their inability
to address the inherent problem of dealing with a small training labeled set, which
does not comprehensively represent the underlying data distribution. Therefore,
generative methods are proposed to generate synthetic labeled data which can
augment the size and the diversity of the training dataset. To this end, Generative
Adversarial Networks [Goodfellow et al., 2014] are used to synthesize realistic
ground-truth label maps from unlabeled histopathology images. These methods
treat the label synthesis as an image-to-image translation task. Applications of such
methods have addressed nuclei segmentation [Mahmood et al., 2019; Hou et al.,
2019] and nuclei detection [Bug et al., 2019; Hou et al., 2019]. A summary of recent
state-of-the-art developments and potential future applications of image synthesis
in histopathology is detailed in [Tschuchnig et al., 2020].

• Transfer learning: These methods have become the de-facto methods for applying DL
under limited labeled data scenarios. Transfer learning aims to extract knowledge
from a well-defined source domain and apply it to a target domain to expedite
and improve the learning. The knowledge is encoded in the form of weights of the
DL method. Most of these methods in CP leverage the knowledge extracted from
natural images, and are applied for cell detection [Valkonen et al., 2020], genomic
prediction [Coudray et al., 2018], tumor classification [Tabibu et al., 2019; Ström et
al., 2020], survival prediction [Tabibu et al., 2019], etc. Recently, relevant knowledge
is being extracted from other well-defined histopathology tasks [Mormont et al.,
2020; Khan et al., 2019], or by pretraining the DL method directly on the target
data via unsupervised learning strategies, such as self-supervision, contrastive
learning, and metric learning. However, there exist several challenges in applying
transfer learning to a target domain. First, the target domain images need to be
transformed as per the input requirements of the pretrained models on the source
domain. Such transformation may cause significant information loss, thus affecting
the task performance. Second, the principles of transfer learning concerning, (1) the
domain gap between target and source domain, and (2) the amount of labeled target
domain data, need to be carefully followed for a meaningful transfer of knowledge.
Third, the transferred knowledge may significantly improve the learning speed
of the method on the target domain but may not necessarily conclude a better
performance. Evaluations of the effect of transfer conclude that transfer offers
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little benefit to performance, which may be due to the over-parameterization of
pretrained models [Raghu et al., 2019].

The aforementioned methods pose individual operating requirements based on the
amount of available labeled and unlabeled data, potential human participation, type
of label, and diversity of the labeled data. Consequently, each method pose individual
advantages and disadvantages for certain operating environment. In case of an operating
environment suiting the requirements of multiple methods, the combinations of meth-
ods can be developed to complement each other for maximally utilizing the available
data [Wang et al., 2019a; Chen et al., 2020a; Lai et al., 2021; Otálora et al., 2021].

2.1.3 Processing large histopathology images

The advancements in scanning technologies have enabled scanning glass slides with
tissue specimens at high resolution to produce high-quality WSIs. The WSIs are typically
of the order of 100,000×100,000 pixels and contain more than 1 million descriptive objects.
In a clinical setting, multiple tissue specimens are collected from a patient resulting
several WSIs per patient. Therefore, the WSIs datasets are considered as large-scale image
analysis applications. The inherent large-scale property of such datasets pose several
challenges for applying DL methods on them. DL methods need to be time, memory, and
computation efficient, while extracting as much information as possible from the WSIs.
Predominantly, two types of DL methods described below are applied in this case: MIL
and compression-based learning.

The MIL technique decomposes a WSI into a bag of patches, where the bag holds the
image-level label. The patches are encoded by a CNN to produce patch-level features,
which are aggregated to produce WSI-level features for further associating with the
WSI-level label via a DL model. The CNN backbone and the ultimate DL model can
be trained end-to-end to learn meaningful image representations. Some applicatiions
of MIL in CP are, tumor segmentation [Jia et al., 2017; Liang et al., 2018], whole-slide
tumor classification [Ilse et al., 2018; Campanella et al., 2019; Wang et al., 2019d; Lu
et al., 2021], and survival prediction [Yao et al., 2020]. The advantages of MIL methods
are, they can scale to arbitrary image sizes and perform end-to-end learning with low
memory requirements. However, the performance of MIL is impacted by the trade-off
between resolution of patch extraction and the patch-level captured context. These
methods also disregard the spatial distribution of the tissue in the process of creating a
bag representation of a WSI. Further, MIL assumes that a single patch correlating with the
bag label can predict the image label, which makes MIL prone to produce false positive
predictions because of a single adversarial patch.

A compression-based method operates on a WSI in three steps. First, it extracts consec-
utive patches from a WSI and encodes them into low-dimensional features via a CNN.
Second, it stitches the patch-wise features to form a WSI-level feature-cube representation,
which is a compressed version of the WSI due to the low-dimensional encoding of the
patches. Finally, a supervised learning method is applied on the feature-cube to map
to the slide-level label. The CNN backbone and the supervised learning method can be
trained in an end-to-end manner. Some examples of compression-based methods are,
WSI tumor classification [Tellez et al., 2021; Shaban et al., 2020], and WSI tissue segmen-
tation [Tellez et al., 2021]. Compared to MIL, the compression-based methods encode
dependencies among patches. However, as these methods operate on all the patches
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constituting a WSI, they require more computations and memory during processing.
Further, these methods are obligated to process patched from uninformative background
regions, which constitute a large percentage of areas in WSIs.

A few other techniques are being researched to handle large histopathology images, such
as, memory-efficient methods that enable CNNs to be trained with large image-tiles [Kong
et al., 2007; Pinckaers et al., 2021], and reinforcement learning methods to increase the
evaluated field-of-view in a WSI [Dong et al., 2018; BenTaieb et al., 2018; Qaiser et
al., 2019b]. However, all these methods inherit the limitations of CNNs operating on
histopathology images, such as disregard to histological entities, and inability to efficiently
process arbitrary image shapes, as described in Section 1.2.

2.1.4 Interpretability of deep learning methods

DL methods have successfully addressed several histopathology tasks with high predic-
tive performance and throughput while ensuring objectivity and reproducibility of the
assessment. These benefits come at the cost of reduced transparency in decision-making
process [Holzinger et al., 2017; Tizhoosh et al., 2018; Hägele et al., 2020] due to the
inherent “black-box” nature of the DL methods. Since, transparency, interpretability,
and explainability are fundamental requirements of any clinical decision, it is imperative
to enable the interpretability and explainability of DL decisions to pathologists for the
adoption of DL methods in a clinical setting. These requirements for a DL method are
less important when carrying out low-level tasks, e. g., nuclei detection, classification, and
segmentation, which can be readily verified by pathologists. However, these requirements
are indispensable for a DL method that performs high-level tasks, e. g., grading, staging,
survival prediction, and treatment selection.

Inspired by the interpretability techniques for DL methods on natural images [Simonyan
et al., 2013; Zeiler et al., 2014; Yosinski et al., 2015; Bach et al., 2015; Montavon et al.,
2015; Selvaraju et al., 2017; Kindermans et al., 2015; Zintgraf et al., 2017; Chattopadhay
et al., 2018; Kim et al., 2018], several interpretability techniques have been developed
to acquire insights about DL methods in CP. Primarily, these techniques in CP can be
categorized into, feature attribution-based methods [Korbar et al., 2017; Binder et al.,
2018; Hägele et al., 2020], concept attribution-based methods [Graziani et al., 2020],
attention-based learning [Lu et al., 2021], and image captioning [Zhang et al., 2019].
The feature attribution techniques are post-hoc in nature, i. e., they operate on trained
DL models, and produce visual explanations in terms of heatmaps for an input image.
A feature attribution technique, applied to a DL method operating on an image, aims
to identify a subset of pixels in the image that positively influence the prediction of
the DL model. However, the pixel-level explanations produced by these techniques
pose several notable issues, including: (1) a pixel-wise analysis disregards the notion of
histological tissue entities, their topological distribution, and inter-entity relationships,
thus any explanations generated are detached from pathological comprehension; and (2)
the generated explanations are often blurry. Further, the feature attribution techniques
applied to a typical DL method, which processes a large histopathology image in a
patch-wise manner, fail to accommodate complete tissue microenvironment information;
and produce unintuitive patchy heatmaps. Differently, a concept-attribution technique,
applied to a DL method operating on an image, evaluates the sensitivity of the DL
model’s prediction with respect to quantifiable pathological concepts, extracted from
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the image, to highlight the relevance of the concepts. A typical DL method processes
a large histopathology image, e. g., a WSI, in a patch-wise manner, thus to apply the
concept-attribution techniques, the concepts need to be extracted at patch-level. However,
patch-level concepts are neither fit nor meaningful to interpret the WSI, which contain
various localized concepts. Furthermore, attention-based learning and image captioning
techniques, i. e., a multimodal mapping between an image and corresponding diagnostic
report, are devised to localize the focus of a DL model during inference on parts of an
input image. However, the pixel-wise and patch-based processing in these techniques
incur the same issues as the feature attribution-based methods.

Notably, all the aforementioned interpretability techniques, when applied to a DL model
for an input histopathology image, produce unique qualitative explanations. To select the
most suitable explanation, all the generated explanations are required to be assessed by
an expert pathologist. However, the qualitative assessment involves several challenges,
they are, (1) the explanations being detached from pathological comprehension are
difficult to be evaluated by a pathologist; (2) to identify the best interpretability technique,
the generated explanations by all the techniques need to be benchmarked on a dataset
of histopathology images, which is tedious, time-consuming, expensive, and prone to
observer variability.

2.1.5 Deep learning of entity-guided representations

The DL-based histopathology applications described in Sections 2.1.1, 2.1.2, 2.1.3, and
2.1.4 analyze histopathology images in pixel-paradigm. These DL methods consider
an image as a composition of multiset of pixels, and operate at pixel-level to map the
tissue structure to a histopathology task. However, a histopathology image constitutes of
several histological entities, which are organized in a specific order to characterize the
tissue. Operating in pixel-paradigm entirely disregards the notion of these entities, which
consequently hampers the interpretability, scalability, and ability to incorporate prior
knowledge and adequate context information into the DL-based analysis, as detailed
in Section 1.2. In view of these limitations with pixel-based processing, DL of entity-
guided representations are gaining popularity in CP [Ahmedt-Aristizabal et al., 2021]. An
entity-guided tissue representation explicitly encodes the histological entities and their
interactions in form of nodes and edges in an entity-graph. An entity-graph is motivated
by pathological diagnostic procedure, where pathologists analyze the phenotype and
topological distribution of various histological entities, such as nuclei, cells, tissue regions,
and glands, to characterize a tissue. Therefore, an entity-graph based processing provides
an interpretable input space to the pathologists and enables them to recommend task-
specific prior knowledge for encoding inductive bias in tissue modeling and computation.
The entity-graph based processing further allows to scale to histopathology images of
arbitrary shape and size while incorporating both local- and global-context information.

In view of these advantages, several entity-graph based methods have been proposed
across a variety of histopathology tasks. The proposed entity-graph structures primarily
differ in terms of the encoded histological entities, and their embedded phenotypes and
topologies. Additionally, the methods have leveraged classical machine learning and DL
techniques to process the entity-graphs. Interestingly, a number of graph interpretability
techniques are proposed recently to interpret and visualize an entity-guided DL model.
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In this section, we present a brief overview of the entity-graph based methods in CP, and
their interpretability for various histopathology tasks.

Entity-graphs in computational pathology: Entity-graphs are first introduced by [Demir
et al., 2004] to characterize brain cancer tissues, where an entity-graph encodes cells as
the entities and a Waxman model-based cell-to-cell interactions. Afterwards, classical ma-
chine learning methods using the statistics from cell distribution are used to characterize
the cells and the tissues. Since then a variety of entity-graphs have been proposed by
using, different types of entities, such as nuclei and image patches, different entity-graph
topologies, such as k-nearest neighbor, region-adjacency, radial distance, probabilistic
models. Further, different types of features, such as hand-crafted features and DL features,
are included to characterize the nodes of the entity-graphs. After constructing mean-
ingful entity-graphs from tissues, classical machine learning and deep graph learning
methods are employed to address different histopathology tasks. Recent advancements in
entity-graph based DL methods have been applied across different tissue types, such as
breast [Anand et al., 2019; Ye et al., 2019; Aygüneş et al., 2020; Lu et al., 2020; Ozen et al.,
2021], prostate [Wang et al., 2019a; Chen et al., 2020a], colon [Zhou et al., 2019a; Javed
et al., 2020; Raju et al., 2020; Zhao et al., 2020a; Studer et al., 2021], lung [Li et al., 2018c;
Zheng et al., 2019; Adnan et al., 2020], to address various histopathology tasks, such as
disease classification, image retrieval, cellular community detection, and survival predic-
tion. Further, the entity-graph based methods have been applied to extract and combine
multiple rich visual representations of the same input data (unimodal fusion) [Shi et al.,
2021], or integrate information from various input modalities (multimodal fusion) [Chen
et al., 2020a] to enable more accurate and robust decisions.

Interpretability of entity-graphs: Inspired by the interpretability techniques for DL
model decisions on graph-structured data [Baldassarre et al., 2019; Pope et al., 2019;
Ying et al., 2019], a few developments have been made for histopathology applications.
[Wu et al., 2019] proposed a GCN propagated supervisory information over patches
to learn patch-aware interpretability in the form of a probability score. [Zhou et al.,
2019a] analyzes cluster assignment of nodes in a cell-graph to group them according
to their appearance and tissue types. [Sureka et al., 2020] proposed a robust spatial
filtering with an attention-based GNN architecture and node occlusion to highlight the
cell contributions. [Levy et al., 2020] introduced Graph Mapper, a topological data
analysis tool, to compress histological information to its essential structures and capture
meaningful histology regions. Notably, majority of the aforementioned approaches have
been limited to interpreting only cell-graphs. These works however lack the definition of
objectives to validate the quality, utility, and effectiveness of the generated explanations
by the interpretability techniques. Further, these explanations are not expressed in
pathologically comprehensive terminologies, which is crucial for bridging trust between
pathologists and computational approaches.

2.2 Technical Preliminaries on Graph Representation Learning

Graphs are a ubiquitous data structure and a universal language for describing complex
systems. In the most general view, a graph is a collection of objects, i. e., nodes, and a
set of inter-object interactions, i. e., edges. For instance, a molecule can be represented
as a graph, where nodes and edges denote atoms and chemical bonds, respectively. A
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social network can be represented as a graph, where nodes and edges denote users and
user-to-user interactions. A physical system can be designed as a graph, where objects,
i. e., nodes, interact with each other through physical forces, i. e., edges. Considering the
ever-increasing scale and complexity of graph-structured data in recent times, the analysis
of graphs in terms of modeling, comprehension, and prediction is of high significance.
For this purpose, the advancements in ML and DL have been leveraged to produce GNNs.

In this section, we begin with formally introducing graphs and the associated relevant
properties. We overview various graph related tasks that can be accomplished by neural
networks. Afterwards, we introduce GNNs and Message Passing Neural Networks
(MPNNs), a type of GNN model. Finally, we discuss several post-hoc techniques to
interpret trained GNNs. To highlight, in this section, we only describe a subset of
research topics from graph representation learning, that are relevant to understand the
contributions of this thesis. The reader can refer to [Wu et al., 2020; Zhou et al., 2020;
Hamilton, 2020] for a detailed review on graph representation learning.

2.2.1 Graphs: definitions and notations

A graph G := (VG , EG) constitutes of a set of nodes VG and a set of edges EG . A directed
edge evu ∈ EG for v, u ∈ VG is an edge starting from v and ending in u. When there is no
ambiguity, for simplicity, the node and edge sets are denoted as V and E, respectively.
For each node v ∈ V, we define its neighborhood as N (v) := {u ∈ V|evu ∈ E ∨ euv ∈
E}. While dealing with directed graphs, we distinguish between incoming neighbors
N I(v) := {u ∈ V|euv ∈ E} and outgoing neighbors NO(v) := {u ∈ V|evu ∈ E}.
Naturally, N (v) = N I(v) ∪ NO(v). The cardinalities dv = |N (v)|, dI

v = |N I(v)|, and
dO

v = |NO(v)| refer to degree, in-degree, and out-degree of node v, respectively. In this
thesis, we are concerned with undirected graphs, i. e., evu = euv, ∀e ∈ E.

Further, we are concerned with attributed graphs G := (V, E, H), where each node is
associated with attributes. The node attributes are denoted as, H ∈ R|V|×d, and defines at
node-level as Hv,. := h(v) ∈ Rd. In this thesis, we do not incorporate edge attributes for
our graph data. We refer to discrete node attributes as labels, i. e., atoms in a molecule, and
user names in a social graph. Multi-dimensional continuous node attributes are referred to
as features. Note that, the graph signal processing community usually use the term signal
to refer to attributes, and the term embeddings to refer to processed labels and features. In
the literature, the terms graph and network, and the terms nodes and vertices, are often
used interchangeably. To avoid confusion with neural networks, and in agreement with
the graph community, we only use the terms graphs and nodes.

2.2.2 Machine learning on graphs

In this section, we present an overview of common graph learning tasks (see Figure 2.1).

• Graph classification task: It aims to identify the label associated with a graph,
analogous to an image classification task. In Figure 2.1, we show a supervised graph
classification task that predicts the molecular property of chemical compounds. In
CP, graph classification can be used to predict the stage or grade of histopathology
images encoded as graphs.
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Figure 2.1: An overview of major deep graph learning tasks, i. e., Graph classification: learning
graph-level representations to predict graph-level properties; Node classification: operating in a
semi-supervised manner to predict unknown node labels by learning from known node labels;
Link prediction: predicting missing connections in an incomplete graph; and Community detection:
identifying clusters of similar nodes according to the graph topology, and node- and edge-attributes.

• Node classification task: It aims to identify the labels of constituting nodes in
a graph. Typically, a node classification task operates under a semi-supervised
setting, where a model is trained using the known node labels in a graph, and is
used to predict the unknown node labels in the graph. This setting breaks the i.i.d.
assumption of DL as the nodes to be classified in a graph are dependent on other
nodes via edges that are used for model training. While theoretically limiting, such
models can still be trained on large graphs without any issue, when the receptive
field of the network is smaller than the graph diameter. This is a reasonable
assumption in knowledge graphs, social networks, etc. Node classification can be
applied to citation network labeling, predicting user’s preference on social networks,
and recommender systems on retail websites. In CP, this task can be applied to
classify nuclei in a cell-graph representation for a H&E stained tissue region.

• Link prediction task: It aims to infer missing edges in a large and incomplete
graph. It is also referred to as graph completion or relational inference. The setting
is similar to a node classification task with a difference that the model is trained to
predict the presence or absence of edges between pairs of nodes. Link prediction
can be applied in social networks to recommend appropriate new connections,
pages, contents, etc., to a user.

• Community detection task: It aims to identify clusters of nodes in a graph that
belong to the same community or category. This task can be trained in a supervised
setting with ground truth node-level labels, similar to node classification, or in an
unsupervised manner via graph partitioning. In CP, community detection can be
applied to identifying cellular communities for tissue phenotyping.

All these tasks require to build graph- and node-level features by encoding both node
attributes and the topological distribution of the nodes. The prime objective of applying
ML and DL methods on graph dataset is to understand the composition of the nodes and
their design properties.
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Figure 2.2: Topological distribution of units of explanation, i. e., words, pixels, and objects, in text-,
image-, and network-graphs, respectively.

2.2.3 Graph Neural Networks

To analyze graph-structured data using ML or DL methods, a natural question arises to
understand whether existing methods designed for handing different data types, such as
sequence and images, can work on graphs, and to realize the limitations of these methods.

A first class of neural networks are Recurrent Neural Networks (RNNs) that are designed
to operate on sequences. A sequence can be considered as a directed path graph where
the nodes and the directed edges lie on a single straight line, as shown in Figure 2.2.
Such type of graphs implicitly assume a pre-defined ordering of nodes, which do not
hold for generic graphs, where the nodes are neither numbered nor ordered. Therefore,
RNNs can be used to model certain types of graphs, i. e., directed path graphs, or when
the graphs can be approximated by directed path graphs, e. g., in chemistry, molecular
graphs can be transformed into sequences using SMILE representations [Weininger, 1988],
and further processed by RNNs [Schwaller et al., 2018]. Thus, RNNs enforce a sequential
inductive bias in the network. Another class of neural network are CNNs that are
designed to operate on images, which is a regular grid of pixels. Grids can be considered
as graphs with a fixed node neighborhood, where each node is connected to its eight
nearest neighbors, as shown in Figure 2.2. A fixed node neighborhood allows to apply
a fixed-size convolutional kernel to the entire grid, thus inducing a local inductive bias
in the network. However, such property does not hold in generic graphs. Feed-forward
neural networks can also be seen as operating on a graph-structured data. These networks
operate on vectorized inputs by building all-to-all connections among the input features,
which is analogous to processing a fully-connected graph.

These considerations highlight that existing neural networks are insufficient to operate on
arbitrary sized and complex graph structures that do not have any fixed node ordering or
reference point. This motivates the development of a novel class of neural networks, i. e.,
Graph Neural Networks GNNs. GNNs are expected to generalize to some existing neural
networks, as the input to the existing networks can be represented in form of graphs, as
shown in Figure 2.2.

2.2.3.1 Desiderata for Graph Neural Networks

We provide a list of requisites that a GNN should meet to effectively learn on graph-
structured data.
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Figure 2.3: An overview of a Message Passing Neural Network. The Aggregate and Update steps
for node v are illustrated in the zoom.

• Permutation invariance: The node ordering of a graph is arbitrary. Re-ordering the
nodes does not change the graph. Therefore, a GNN should be invariant to node
permutations and produce the same embedding for all such permutations.

• Scalable and adaptive: A GNN should be scalable to an arbitrary large input graph,
with arbitrary number of nodes, edges, node-, and edge-attributes. Moreover, all
the graphs (as defined in Section 2.2.1), i. e., with and without directed edges,
with and without node- and edge-attributes, should be able to be encoded by the
same type of models, i. e., only minor architectural changes should be needed to
adapt to different graph types. Also, no prior knowledge beyond the mathematical
description of the graph should be required to train the GNN, i. e., the network
should remain application-agnostic.

• Locality principle: A GNN should follow a locality principle which states that
nearby neighboring nodes and edges share more information than distant neighbors.
Intuitively, a GNN should aggregate information from local topological patterns,
similar to the concept of convolution in image representation learning. To build
arbitrary deep networks, a GNN should be composed of layers that can be stacked,
thus increasing the receptive field of the model.

• Encode graph properties: A GNN should leverage all the information encoded in
a graph, i. e., the graph adjacency, that encodes the graph topology, and the node-
and edge-attributes. All information should be jointly encoded by a single GNN.

2.2.3.2 Message Passing Neural Networks

A MPNN [Gilmer et al., 2017] is a type of GNN that follows the message passing
paradigm. It is designed to operate on attributed graphs and contextualize the node-
and edge-attributes. In relevance to this thesis, we only describe message-passing GNNs
among other types of GNNs. Further, we only describe the operations on node-attributed
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graphs. As we demonstrate MPNN, we put it in relation with the aforementioned list of
desiderata. An overview of MPNN framework is illustrated in Figure 2.3.

The node attributes h(v), v ∈ V are iteratively updated in two phases, i. e., Aggregate

and Update steps. In the Aggregate step for node v, the attributes of neighboring nodes
N (v) are aggregated into a single feature representation a(v). In order to be invariant
to node permutation (Desideratum 1), the Aggregate step is chosen to be a permutation
invariant function, e. g., sum, and mean. In the Update step, the attributes of node v
are updated by using the current node attributes of v, i. e., h(v), and the aggregated
feature representation a(v). Typically, the Update step is a trainable feed-forward neural
network. This step is building local (Desideratum 3) representations by jointly encoding
the graph topology and attributes (Desideratum 4). A series of T such iterations, denoted
as T GNN layers, are stacked to obtain updated node attributes ∀v ∈ V, incorporating
information up to T-hops from each node. Therefore, increasing the number of layers
increases the receptive field of the network (Desideratum 3), which is analogous to CNNs.
Finally, we build a fix-sized graph-level embedding, denoted as hG , by pooling the node
attributes h(T)(v) in a Readout step. The Readout step is only employed for graph
classification tasks, where a graph embedding is required. Similar to the Aggregate step,
the Readout needs to be permutation invariant. This ensures the algorithm to provide
graph embeddings of the same dimension, irrespective of the graph size (Desideratum 2).
To allow back-propagation and GNN training, the Aggregate, Update, and Readout

operations must be differentiable. Formally, the three steps are presented as

a(t+1)(v) = Aggregate({h(t)(u) : u ∈ N (v)})

h(t+1)(v) = Update(h(t)(v), a(t+1)(v)) (2.1)

hG = Readout({h(T)(v) : v ∈ V})

where, t = 0, . . . , T denotes the stacked GNN layers.

Following the MPNN framework, different GNN architectures are designed by varying
the Aggregate, Update, and Readout operations. A simple message-passing GNN can
be designed by using a sum operator for Aggregate and Readout, and a shallow MLP
for Update. It can be expressed as

h(t)(v) = σ
(

h(t−1)(v) + ∑
u∈N (v)

h(t−1)(v)
)

W(t) (2.2)

where σ is the ReLU activation function, W(t) ∈ Rd(t)×d(t+1)
are trainable weights, and

d(t) and d(t+1) are the node embedding dimensions at layers t and t + 1, respectively.

2.2.3.3 Expressivity of Message Passing Neural Networks

An important aspect of designing a GNN is the characterization of its expressivity. The
expressive power is measured by the GNN’s ability to map non-isomorphic graphs to
unique graph embeddings, which denotes an injective mapping between the graph- and
the embedding-space. Powerful GNNs are expected to be expressive as they can encode
non-isomorphic input graphs to distinct locations in the embedding space. A line-of-
research exploring the expressive power of GNNs ([Morris et al., 2018; Xu et al., 2019b])
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have independently proven the connection between iterative message passing steps of a
MPNN and the popular Weisfeiler-Lehman (WL) ([Weisfeiler et al., 1968]) test for graph
isomorphism. These results are similar, in spirit, to the Universal Approximation Theorem
for neural networks [Cybenko, 1989]. In practice, it means that there exist MPNNs which
can learn unique representations for (almost) all undirected node-attributed graphs.
Further, the design choices of Aggregate, Update, and Readout operations in a MPNN
determine its expressivity.

It is established that MPNN architectures such as GIN [Xu et al., 2019b] can perform
as well as the 1-dimensional WL test for discrete node attribute spaces. However, for
graphs with continuous node attributes, e. g., CNN-based attributes, the use of multiple
permutation-invariant aggregators, e. g., sum, max and mean, can build more expressive
GNNs ([Dehmamy et al., 2019; Corso et al., 2020]). To this end, [Corso et al., 2020]
proposed PNA by using a combination of aggregators with degree-scalers. The series of
aggregators replace the sum operation in GIN, and the degree-scalers scale neighboring
aggregated-messages according to the node degree.

Specifically, the GIN node update function for node v ∈ V is defined as

h(t+1)(v) = MLP
(
(1 + ϵ(t))h(t)(v) + ∑

u∈N (v)
h(t)(u)

)
(2.3)

where ϵ(t) is an optional trainable parameter. The GIN architecture is illustrated in
Figure 2.4(a). Similarly, the PNA node update function for node v ∈ V is defined as

a(t+1)(v) =⊕u∈N (v)M(t)
(

h(t)(v), h(t)(u)
)

(2.4)

h(t+1)(v) = U(t)

(
h(t)(v), a(t+1)(v)

)

As shown in Figure 2.4(b), for a node v, first, the set of neighboring node features
{h(t)(u)}, ∀u ∈ N (v) is concatenated with h(t)(v), and processed by Mt, a MLP, to
produce a set of neighborhood-aware features. Then, multiple aggregators with degree-
scalers denoted by ⊕ operate on the set of MLP features to extract a set of multivariate
information, which expresses the neighborhood distribution of node v. Finally, the set
of information is concatenated to produce the aggregated message a(t+1)(v) for node
v. Afterwards, a(t+1)(v) and h(t)(v) are concatenated and processed by Ut, a MLP, to
update the node embedding, i. e., h(t+1)(v). Details of ⊕ is presented as

⊕ =
[

I,S(D, α = 1),S(D, α = −1)
]⊗ [

µ, σ, max, min
]

S(D, α) =
log (D + 1) α

δ
, δ =

1
|Vtrain| ∑

i∈Vtrain

log (di + 1)
(2.5)

where I is identity matrix, S is degree-scaler matrix, D is node degree matrix, δ is
normalization constant, α is scaling variable, and Vtrain is nodes in the training dataset.

[I,S(D, α = 1),S(D, α = −1)] and
[

µ, σ, max, min
]

denote the list of scalers and the

list of aggregators, respectively. The aggregators compute statistics on neighboring
multiset of nodes, and the injective scalers discriminate between the multisets of various
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Figure 2.4: An overview of GIN and PNA layers. ht
v and {ht

u} denote the representations of node v
and its neighbors at layer t, respectively. ht+1

v denotes the representation of node v at layer t + 1.

sizes. α = {−1, 0, 1} for each of these three settings respectively controls the reduction,
no scaling, or amplification of the scaling. ⊗ denotes tensor product between scalers
and aggregators, and produces twelve operations that extract the set of multivariate
information.

2.2.4 Interpretability of Graph Neural Networks

Though the development of GNNs has primarily focused on improving task performance
on graph-structured data, interpretability of GNNs still remains an open research question.
Analogous to other classes of neural networks, e. g., CNN, and RNN, GNNs are “black-
box” networks, where the process leading to a prediction is too complex for being
understood by humans. This lack of transparency can hinder the adoption of GNNs in
real-life applications, especially for applications that demand explainable and reliable
predictions. In this section, we first present a set of desiderata for deep graph explanations,
and then provide an overview of existing post-hoc graph interpretability techniques (or
explainers) that produce the graph explanations.

2.2.4.1 Desiderata for graph explanations

The goal of an explainer is to identify a subset of nodes, edges, and node attributes that
are important towards a GNN’s prediction for a certain task. The identified subset is
denoted as the explanation for the prediction. An explanation is considered to be “good”,
if it matches the task-specific prior knowledge. Specifically, there are four requisites for
building a graph explainer:
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• Fidelity: The prediction by the GNN for using the explanation and the original
graph should be consistent.

• Sparsity: The explanation should be as small as possible, i. e., the explainer should
identify the most relevant subset of graph components with high fidelity.

• Stability: The explainer should produce similar explanations for similar input
graphs, i. e., a small perturbation to an input graph should marginally affect the
output explanation.

• Accuracy: The explanation needs to align with corresponding ground truth expla-
nation. However, for majority of real-world tasks, ground truth explanations are
neither accessible nor uniquely defined, i. e., multiple convincing explanations can
exist for an observation. Therefore, this requirement can be relaxed by stating that
an explanation is required to align with the experts’ understanding of the task.

2.2.4.2 Taxonomy of deep graph explainers

Graphs can be interpreted at instance- and model-level. For instance-level interpretability,
a graph explainer identifies important input objects for a query graph. Differently,
model-level interpretability aspires to extract representative graph patterns that drive
certain behaviors. In this work, we focus on instance-level methods, which can be further
categorized into the following four groups:

• Gradient-based methods define node importance by measuring the gradient of an
output class, e. g., the predicted class, with respect to input graph components. A
positive or high gradient for a component denotes a positive relevance, whereas a
negative or low gradient for a component denotes a negative or less relevance of the
component on the prediction [Baldassarre et al., 2019; Pope et al., 2019]. Example
methods are GraphGrad-CAM and GraphGrad-CAM++.

• Perturbation-based methods study the influence of small input perturbations on the
output. Intuitively, the removal of discriminative graph components should change
the model prediction, whereas the removal of uninformative graph components
should not impact the prediction. By characterizing these changes, instance-level
explanations are proposed by [Ying et al., 2019; Luo et al., 2020; Yuan et al., 2020b;
De Cao et al., 2020].

• Decomposition-based methods decompose the original model predictions from the
predicted logits, and backpropagates the logits to the input features to understand
the relationship between the input-space and the logit-space [Baldassarre et al., 2019;
Pope et al., 2019; Schwarzenberg et al., 2019]. An example method is GraphLRP
that backpropagates the output logits in a layerwise manner by following certain
propagation rules.

• Surrogate methods aim to explain a complex model prediction via a simple and
interpretable surrogate model, e. g., a linear model [Huang et al., 2020] or a proba-
bilistic graphical model [Vu et al., 2020]. Specifically, these methods first generate
perturbed graphs around a query graph, and then approximate the original model’s
predictions on the perturbed graphs using a surrogate model.

The reader can refer to [Yuan et al., 2020a] for a thorough and detailed review on deep
graph interpretability.
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2.2.4.3 Deep graph explainers

In this section, we formally present four post-hoc graph explainers, namely, GraphLRP,
GraphGrad-CAM, GraphGrad-CAM++, and GnnExplainer, studied in this thesis.
These methods form the theoretical foundations of Chapter 6, where (1) we demonstrate
the potential of deep graph explainers for explaining predictions from histopathology
images, and (2) we emphasize the importance of developing quantitative metrics for
measuring the quality of graph explanations in the absence of ground truth explanations.

□ Notations

We define an attributed graph G := (V, E, H) as a set of nodes V, edges E, and node
attributes H ∈ R|V|×d. d denotes the number of attributes per node, and |.| denotes
set cardinality. The graph topology is defined by an adjacency matrix, A ∈ R|V|×|V|,
where Auv=1 if (u, v) ∈ E. Hn,k expresses the k-th attribute of the n-th node. The forward
prediction of a graph G is denoted as, y =M(G), whereM is a GNN operating on the
graph, and y ∈ R|T | are output logits. Notation y(t), t ∈ T denotes the output logit of
the t-th class. We refer to the logit of the predicted class as ymax = maxt∈T y(t), and the
predicted class as tmax = argmaxt∈T y(t).

□ Graph explainer setting

All the graph explainers operate in a similar setting, described as follows:

• Input is an attributed graph G.

• GNN modelM is trained a priori and can be used for inference. Note that different
graph learning models could also be combined with the presented graph explainers,
but this is beyond the scope of this work.

• Explanations are always generated by explaining one output logit, e. g., predicted
class ymax. But it can also be generated by explaining any output query logit.

• Each explainer returns normalized node-level importance scores that characterizes
the relevance of each node for predicting a certain class, e. g., for classifying tmax.

• Node importance scores can be thresholded to retain the most relevant subset,
defined as the explanation Gs = (Vs, Es, Hs) ⊂ G. The explanation graph topology
is derived by keeping all the edges connected to the subset of identified nodes, i. e.,
Es = (u, v)|u, v ∈ Vs, euv ∈ E.

□ Graph Layerwise Relevance Propagation (GraphLRP)

Layerwise Relevance Propagation (LRP) [Bach et al., 2015] is a decomposition-based
method. LRP explains an output logit by decomposing the individual contributions of
each input element, i. e., each node, to the query logit value. An output logit, defined
as the output relevance for a given class, is layerwise back-propagated until the input to
compute the positive or negative impact of the input elements on the output logit. LRP
was initially formulated for operating on fully connected layers (LRP-FC), and works
as follows. Given a pre-trained fully connected layer W ∈ Rz1×z2 between layer 1 and
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layer 2, where z1 and z2 are the number of neurons in layer 1 and layer 2, respectively,
we compute the contributions of a neuron i , i ∈ {1, ..., z1} using propagation rules
introduced in [Montavon et al., 2015]. In this work, we are interested in identifying input
elements positively contributing to the prediction. To this end, we use the z+ propagation
rule that back-propagates the positive neuron contribution from layer 2 to layer 1 as:

Ri =
z2

∑
j

fi |wij|
∑z1

k fk |wkj|
Rj (2.6)

where |wij| is the absolute value of the weight between i-th and j-th neuron in layer 1 and
2, respectively. fi denotes the activation of the i-th neuron in layer l.

The extension from LRP-FC to LRP for GIN layers (GraphLRP) is achieved by follow-
ing the observations in [Schwarzenberg et al., 2019]. First, the aggregate step in GNN
corresponds to projecting the graph’s adjacency matrix on the node attribute space. For
simplicity, assuming a 1-layer Multi-layer Perceptron (MLP) as an update function, the
GIN layer with mean aggregator can be re-written in its global form as:

H(l+1) = σ
(

W(l)(I + Ã)H(l)
)

(2.7)

where Ã is the degree-normalized graph adjacency matrix, i. e., Ãij =
1

|N (i)| Aij. σ is the

ReLU activation. Second, this representation allows to treat the term (I + Ã) as a regular,
fully connected layer. We can apply the z+ propagation rule with weights wij defined as:

wij = 1 if i = j (2.8)

wij =
1

|N (i)| if eij ∈ E (2.9)

wij = 0 otherwise (2.10)

GraphLRP outputs an importance score for each node i in the input graph.

□ Graph Gradient-weighted Class Activation Mapping (GraphGrad-CAM)

Grad-CAM [Selvaraju et al., 2017] is a feature attribution post-hoc explainer that identifies
salient regions of the input that drives a neural network prediction. It assigns importance
to each element of the input to produce a Class Activation Map [Zhou et al., 2016].
While originally developed for explaining CNNs operating on images, Grad-CAM can
be extended as GraphGrad-CAM to GNNs operating on graphs [Pope et al., 2019].

GraphGrad-CAM processes in two steps. First, it assigns an importance score to each
channel of a graph convolutional layer. The importance of channel k in layer t is computed
by looking at the gradient of the predicted output logit ymax with respect to the node
attributes at layer t of the GNN. Formally it is expressed as:

w(t)
k =

1
|V|

|V|

∑
n=1

∂ymax

∂H(t)
n,k

(2.11)
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Intuitively, large positive gradients are evidences of the presence of the class under
consideration, while small gradients do not confirm the presence. In the second step, a
node-wise importance score is computed using forward node feature activations H(t) as:

L(t, v) = ReLU
( d(t)

∑
k

w(t)
k H(t)

n,k

)
(2.12)

where L(t, v) denotes the importance of node v ∈ V in layer t , and d(t) denotes
the number of node attributes in layer t. As we are interested in the positive node
contributions, i. e., nodes that positively influence the class prediction, we apply a ReLU
activation to the node importance scores. Following the prior work by [Pope et al.,
2019], we take the average scores obtained over all the GNN layers to obtain smooth
representations, i. e.,

L(v) =
1
T ∑

t∈{1,...,T}
L(t, v), ∀v ∈ V (2.13)

Node-level scores are thresholded to identify the most important subset of nodes.

□ Graph Gradient-weighted Class Activation Mapping++ (GraphGrad-CAM++)

GraphGrad-CAM++ extends GRAD-CAM++ [Chattopadhay et al., 2018] to graph-
structured data. It improves the node importance localization of GRAD-CAM by intro-
ducing node-wise contributions to the channel importance score computation. It builds
on the work by Zhou et al. (2016), that empirically proved to have localization properties.
Specifically, Equation 2.11 is modified as:

w(t)
k =

1
|V|

|V|

∑
n=1

α
(t)
n,k

∂ymax

∂H(t)
n,k

(2.14)

where α
(t)
n,k are node-wise weights expressed for each attribute k at layer t. The closed-form

solution for α
(t)
n,k is analogous to the derivation in [Chattopadhay et al., 2018], where the

graph size, i. e., number of nodes, replaces the spatial dimensions of a channel as:

α
(t)
n,k =

∂2ymax

(∂H(t)
n,k)

2

2 ∂2ymax

(∂H(t)
n,k)

2
+ ∑|V|n=1 H(t)

n,k

( ∂3ymax

(∂H(t)
n,k)

3

) (2.15)

The subsequent node importance computation in GraphGrad-CAM++ is similar to
GraphGrad-CAM, i. e., use Equation 2.12 to derive L(t, v), and Equation 2.13 to get L(v).

□ Perturbation-based GnnExplainer

GnnExplainer [Ying et al., 2019] is based on graph pruning. It is model-agnostic
and can explain any flavor of GNN. Intuitively, GnnExplainer tries to find the minimum
sub-graph Gs ⊂ G, i. e., the minimum set of nodes and edges, while retaining the model
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prediction. It enforces explanation sparsity while ensuring high explanation fidelity. The
inferred sub-graph Gs is regarded as the explanation for the graph G.

Formally, the sub-graph Gs = (Vs, Es, Hs) ⊂ G is created such that the mutual information
(MI) between the original prediction ymax and the sub-graph Gs is maximized, i. e.,

max
Gs

MI(ŷ, Gs) = H(Ŷ)−H(Ŷ|G = Gs) (2.16)

which is equivalent to minimizing the conditional entropy,

min
Gs
H(Ŷ|G = Gs) = −EŶ|Gs

[log(PM)(Ŷ|Gs)] (2.17)

Intuitively, the sub-graph Gs is extracted which maximizes the probability of ymax. Ex-
haustively searching Gs in the space created by nodes V and edges E is infeasible due
to the combinatorial nature of the task. Instead, GnnExplainer formulates the task as
an optimization problem that learns a mask to activate or deactivate parts of the graph.
In this regard, this approach can be seen as a feature attribution method with binarized
node and edge importance scores, i. e., a node v ∈ V , edge e ∈ E, has importance one if
v ∈ Vs , e ∈ Es, and zero otherwise.

The formulation by [Ying et al., 2019] is developed for explaining node classifiers, where
the aim is to explain the classification prediction of a query node. Specifically, a mask
ME ∈ R|V|×|V| is learned over the edges, i. e., over the adjacency matrix A. Masking
edges will cut connections between the query node and its neighbors. Formally, the mask
is searched such that,

min
ME
−

C

∑
c=1

1[y=c] log(PM(Ŷ|G = A⊙ σ(ME), H)) (2.18)

where C denotes the number of classes, σ is the sigmoid activation, and ⊙ denotes element
wise multiplication. Heuristically, these constraints can be enforced by minimizing,

L = LKD(ymax, y(t)) + αME

|E|

∑
i

σ(M(t)
Ei
) + αHHe(σ(M(t)

E )) (2.19)

where, t denotes the optimization step. The first term is a knowledge-distillation loss LKD
between the new logits y(t) and the original prediction ymax, to preserve explainer fidelity.
The second term enforces explainer sparsity by minimizing the mask size ME. The third
term binarizes ME by minimizing its element-wise entropy He. Following [Hinton et al.,
2015], LKD is defined as a combination of distillation and cross-entropy loss,

LKD = λLCE + (1− λ)LDIST where λ =
He(y(t))
He(ŷ)

(2.20)

As the element-wise entropy He(y(t)) increases, LCE gains importance and avoids a
change in predicted label. ME, produced by optimizing Equation 2.19, is learned with
iterative gradient descent until convergence. Note that, the original formulation can be
extended to prune features along the node dimension as well. As this extra step is not
relevant for the proposed downstream tasks, we let the reader refer to Section 2.1 in [Ying
et al., 2019] for an in-depth formulation.





3
High-Quality Immunohistochemical
Stains through Computational Assay
Parameter Optimization

Accurate profiling of tumors using immunohistochemistry (IHC) is essential in cancer
diagnosis. The inferences drawn from IHC-stained images depend to a great extent on
the quality of immunostaining, which is in turn affected strongly by assay parameters. To
optimize assay parameters, the available tissue sample is often limited. Moreover, with
current practices in pathology, exploring the entire assay parameter space is not feasible.
Thus, the evaluation of IHC stained slides is conventionally a subjective task, in which
diagnoses are commonly drawn on images that are suboptimal. In this work, we introduce
a framework to analyze IHC staining quality and its sensitivity to process parameters. To
that extent, first histopathological sections are segmented into diagnostically relevant and
contextually immaterial signals histological entities. Then, machine learning techniques
based on the histological entities are employed to extract disease-specific staining quality
metrics (SQMs) targeting a quantitative assessment of staining quality. Lastly, an approach
to efficiently analyze the parameter space is introduced to infer sensitivity to process
parameters. We present results on microscale IHC tissue samples of five breast tumor
classes, based on disease state and protein expression. A disease-type classification
F1-score of 0.82 and a contrast-level classification F1-score of 0.95 were achieved. With the
proposed SQMs an area under the curve of 0.85 was achieved on average over different
disease types. Our methodology provides a promising step in automatically evaluating
and quantifying staining quality of IHC stained tissue sections, and it can potentially
standardize immunostaining across diagnostic laboratories.

3.1 Introduction

Malignancies are often studied and detected by acquiring a protein expression profile on
a tissue section. Such a protein expression map on a tissue is obtained by immunohis-
tochemical (IHC) staining thereby generating a visual signal while retaining the tissue
structure of tissues (histology). IHC has been an invaluable tool in the field of both cancer
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diagnostics and research, owing to a rapidly obtainable snapshot of status of cells within
tissue samples. In this paper, we focus on a new methodology for realizing high-quality
immunostaining both at the micrometer-length scale and for conventional whole-tissue
staining for tumor stratification.

IHC is implemented by exposing a tissue to antibodies which bind to a specific protein,
thus identifying prognostic and treatment-related biomarkers. The commonly used
IHC protocol is a multi-step and multi-parametric process [Taylor, 2000] and involves
binding of a primary antibody specific to a protein of interest on the tissue, followed
by a secondary antibody that binds to the primary. The colored signal on the tissue is
obtained using a chromogenic moiety coupled with the secondary antibody, where the
chromatic signal strength is a function of the density of the proteins of interest in the
tissue, their accessibility, and the concentration of the antibody that is exposed to the
antigen, among several other parameters. The IHC signal can provide vital information
in a diagnosis workflow. However, when the process parameters are not optimal, this
may lead to difficult-to-interpret images and potential misdiagnosis, e.g., false positive
and false negative staining as demonstrated in Figure 3.1.

Although IHC has been used now for decades, standardization and reproducibility
remain two major concerns. Pathology laboratories manually determine the parameters
leading to a good staining quality. Such a manual process comprising trial-and-error
is cumbersome and tissue exhaustive. Besides, it is characterized by high inter- and
intra-laboratory variability, leading to poor reproducibility. Nordic Immunohistochemical
Quality Control (NordiQC), an international external quality-assurance organization,
found that about 20% of the staining results in a breast-cancer IHC cross-lab examination
were insufficient for diagnostic use [Vyberg et al., 2016]. Inaccurate and/or equivocal
results are mostly obtained because of inappropriate parameters used in the staining
process (protocol), less specific antibodies, insufficiently calibrated antibody dilutions,
variable fixation processes and erroneous epitope retrieval methods. To improve the
standardization in immunostaining, efforts have been made by ad-hoc committees on
pathology [Goldstein et al., 2007; Yaziji et al., 2008; Wolff et al., 2007; Wolff et al., 2014;
Torlakovic et al., 2014; Torlakovic et al., 2015], by external quality-assurance schemes
[Von Wasielewski et al., 2008; Copete et al., 2011; Howat et al., 2014; O’Hurley et al., 2014],
and by field researchers [Pinard et al., 2012; Grunkin et al., 2019] through addressing
one or more of the factors affecting the staining results. The effect of specific process
parameters on the quality is hard to deconvolve owing to limited tools that allow for
the scanning of a range of process parameters on the same tissue. Thus, strategies that
perform automated analysis of process parameter sensitivity and contextual quantitative
analysis are crucial in improving the IHC standardization, and thus reproducibility.

More recently, the advent of digital pathology has prioritized the extraction of quantitative
information from scanned histopathological sections to aid pathologists in the diagnostic
process, while attempting to reduce or eliminate observer biases [Masmoudi et al., 2009;
Rizzardi et al., 2012]. Furthermore, computational pathology aims at automating the
analysis of stained sections, as manually analyzing numerous biopsy slides can be tedious
and labor intensive. Recent advances enabled the automated recognition of pathological
patterns, which has the potential to provide valuable assistance to a pathologist. There
exist several studies which demonstrate the agreement between digital image analysis-
based methods and pathologists'visual examination. For instance, Dobson et al. [Dobson



3.1 introduction 35

Figure 3.1: Immunostaining process and variability in staining quality due to process parameter
variations in IHC. (a) illustration of microfluidic probe platform for microscale IHC, (b) sample
HER2-stained tissue images using an MFP, (c) staining quality variability on healthy and primary
tumor tissues. For HER2 non-expressing healthy tissue, low and high HER2 expression indicates
high-quality staining (true negative) and over-staining (false positive), respectively. For HER2
overexpressing primary tumor tissue, low HER2 expression indicates under-staining (false negative).
HER2 expression solely on membranes implies high-quality staining (true positive), whereas
expression in cytoplasm and stroma indicates over-staining (false positive).

et al., 2009] and Brugmann et al. [Brügmann et al., 2012] demonstrated that HER2
antibody protein expression can be classified with a high accuracy by analyzing the
staining intensity and membrane connectivity on IHC images with optimal staining
quality. Differently from the previous work, this work deals with IHC-stained tissue
images with both optimal and sub-optimal staining quality. The combination of such
quantification-aided diagnosis with quantified grading has the potential to improve
diagnostic accuracy.

Limited prior work exists on the quantitative analysis of the immunostaining quality.
Pinard et al. [Pinard et al., 2012] proposed a system that extracts quantitative quality
indicators and compares them with the respective user-defined minimum acceptable
quality thresholds. Failure of one or more of the indicators to meet its respective threshold
suggests that the sample is unsuitable for a subsequent automated pathological evaluation.
Similarly, Grunkin and Hansen [Grunkin et al., 2019] described a method for assessing
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the staining quality of specimens in a working laboratory. Their system compares the
quality parameters, e.g., staining intensity, connectivity, number of cells, Allred-score,
Nottingham index, obtained from a reference specimen prepared at a standardized
laboratory according to a predetermined staining protocol with the quality parameters
obtained from a specimen prepared at the working laboratory. The relative quality
measure is computed using a distance metric between the quality parameters of the test
and reference specimen. Both studies output relative quality estimates with respect to
either a user-defined threshold or a reference specimen, which limits the standardization
of the process and thus the reproducibility. Instead, we propose to use reference standards
for quality labeling during the training phase and use the trained quality metrics during
the testing phase, thereby removing the need of posterior standards. The proposed
methodology does not completely remove the need of an external standard but reduces the
dependency on it on a daily practice. In addition, neither of the aforementioned studies
takes into account the diagnostical relevance of the signals on the stained images, which
can potentially hamper the computed quality indicators. For an alternate perspective, our
automated methodology first segments the diagnostically relevant and the contextually
immaterial signals in an IHC-stained image, followed by machine learning models for
estimating the quality indicators.

Addressing IHC assay limitations requires technologies that enable precise control of
the various steps of the assay, including the ability to create multiple assay conditions
on the same tissue section. Here we use a microfluidic probe (MFP) [Kaigala et al.,
2011], a scanning microfluidic device that localizes nanoliter volumes of antibodies on
micrometer scale areas of tissue sections. By leveraging the ability of the MFP to perform
multiple microscale IHC tests on the same tissue section [Lovchik et al., 2012; Taylor et al.,
2016], we not only can perform experimental parameter optimization of IHC by exposing
adjacent areas on a sample to different experimental conditions (antibody concentration,
incubation time), but can also be conservative of the tissue sample.

In this work, we introduce a complete methodology to quantify and analyze the stain-
ing quality and its sensitivity to IHC process parameters using well-established image
processing and machine learning techniques. The proposed methodology first extracts
quantitative information from scanned histopathological sections using an automated
diagnostically relevant signal segmentation algorithm. It then learns multiple metrics for
the quantitative assessment of the staining quality. Lastly, it performs an analysis of the
sensitivity of staining quality to process parameters for the optimal parameter-space de-
termination. Preliminary results of this work were presented in [Arar et al., 2017]. These
have been extended herein with improvements on the methodology and validation. First,
we refined our framework in order to account for different disease types. To achieve this,
we conducted a comprehensive analysis of the impact of various image representation and
classification-related parameters of the framework. We additionally explored alternative
feature extraction and classification techniques, including deep learning strategies. We
provide herein a comprehensive validation on a cohort of annotated breast cancer tissues
from five different disease types. Moreover, we compared the proposed approach against
the current clinical staining approach and demonstrate the superiority of the proposed
staining approach.



3.2 methodology 37

Figure 3.2: Overview of immuno-staining quality assessment methodology. Images are segmented
to extract different levels of information, which is used for generating various staining quality
indicators. These are fed into a machine learning algorithm to learn multiple staining quality
metrics. Lastly, an analysis of the quality sensitivity to the staining process parameters is performed
for the identification of process parameter space resulting in optimal staining quality.

3.2 Methodology

The proposed methodology for staining quality and sensitivity assessment has 4 main
components: a) separation of diagnostically relevant and contextually immaterial signals,
b) staining quality metric learning, c) image and quality representation, and d) sensitivity
analysis to staining parameters. An overview of the methodology is shown in Figure 3.2.

3.2.1 Diagnostically relevant signal segmentation

Staining quality is directly proportional to the diagnostically relevant signal, i. e., the
staining on interesting cell structures or regions (true positive staining), and is inversely
proportional to the contextually immaterial signal, i. e., the staining on the remaining
areas (false positive staining). An optimal staining quality is achieved when the ratio of
the relevant signal to the immaterial signal is the highest. Therefore, our methodology
essentially focuses on a good delineation of the two signals in IHC-stained tissue images
prior to further analysis. Note that the definition of the two signals may vary depending
on the choice of the biomarker in the staining process, as each biomarker binds to a
specific antigen present in stipulated cell structures. For instance, HER2 biomarker binds
to the HER2 antigen in the cell membrane; developing diagnostically relevant signal on
the cell membrane and arising immaterial signal on the remaining cell structures, i. e.,
cytoplasm and stroma. Whereas, p53 biomarker produces the relevant signal on the
nuclei of tumor cells and develops the immaterial signal on cell membrane and stroma.

Our methodology begins with an automatic segmentation algorithm based on a combi-
nation of well-known image processing techniques for separating aforementioned two
signals in the images of µIHC-stained breast tissue. The algorithm firstly segments an
image into two regions as off-footprint and footprint. The latter is further partitioned into
two: foreground and background, as shown in Figure 3.3 for a HER2-stained tissue. The
segmentation process begins with finding and delineating the localized footprint, the
tissue area where the MFP head is applied. To that end, we first estimate the footprint
by Otsu binarization, followed by a morphological opening to generate highly confident
masks for both the footprint and off-footprint; with the remaining regions considered as
uncertain. Second, the obtained masks are fed into the Watershed algorithm to assign the
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Figure 3.3: Sample outputs of the segmentation algorithm: (a) input IHC-stained tissue, (b) stained
region (footprint), (c) unstained region (off-footprint), (d) diagnostically relevant signal, e. g., staining
of cell membrane (foreground), (e) contextually immaterial signal (background).

uncertain areas into either footprint or off-footprint (Figure 3.3(b,c)). Next, the footprint is
subdivided into the relevant (foreground) and immaterial (background) regions as shown in
Figure 3.3(d,e). Considering the intensity distribution difference between two regions,
global thresholding with a robust threshold value is sufficient to extract the foreground.
Here, we set the threshold value as the mean of the most frequent and maximum inten-
sity values within the footprint region. To determine the threshold value more robustly,
particularly in the presence of experimental or imaging artifacts (often resulting in a
significantly high intensity), we calculate a 16-bin intensity histogram of the inverted
gray-scale footprint, and extract the corresponding values from the histogram bins. Subse-
quently, we extract the background, i.e., false positive stain. Assuming that false positive
staining highly occurs around the foreground, we subtract the binary foreground mask
from the dilated foreground mask to extract the background within a close proximity of the
foreground. We then ensure the connectivity of the background through a morphological
closing operation and remove any remnants of the foreground pixel. Lastly, we derive the
statistics on the amount of true positive and false positive staining within the segmented
regions as part of the quality features and for an early assessment of the tissue sufficiency.

3.2.2 Staining quality metric learning

Optimal staining of cell structures reveal the disease type of an IHC-stained tissue,
therefore, we consider that the definition of staining quality varies across disease types
for a particular tissue type. Figure 3.4 presents high-quality HER2-staining of 5 disease
types. HER2 is a transmembrane receptor, thus the quantification of its overexpression
can be modelled as detecting ‘peaks’ (cell membranes) versus ‘valleys’ (cell cytoplasm
and stroma), as also depicted in Figure 3.4. The ‘peaks’, and ‘valleys’ model represents
the intensity profiles along the cross-sectional view of a cell for each disease type. The
model indicates that a HER2+ tumorous tissue exhibits a high contrast, whereas a HER2-
tumorous tissue or a healthy tissue exhibits low or no contrast between the ‘peaks’ and
‘valleys’. Considering the variability in staining quality expectations, a unique SQM
per disease type must be developed. Note that, previous works on staining quality
assessment employed a reference-based staining quality estimation, e.g., [Pinard et al.,
2012], [Grunkin et al., 2019]. In contrast, herein we propose a machine learning-based
no-reference SQM learning method, which enables to assess the staining quality of a tissue
without the need of any reference specimen or user-defined quality threshold.

As per our experimental observations across various disease types, we hypothesize
that an immunostaining can be of high-quality, a) if it contains sufficient information
(signal) to reflect its disease type, and b) if the contrast level between diagnostically
relevant and contextually immaterial signals aligns with the expected contrast level for
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Figure 3.4: Variability in immunostaining quality expectations with HER2 antibody for different
disease types: (top row) Samples of high-quality immunostaining, and (bottom row) cross-sectional
intensity profiles across a cell for each category. Note that for transmembrane HER2 antibody, high
expression is expected only on the cell membrane for tumorous tissues.

the corresponding disease type. We develop our quality assessment metrics based on
these two quality indicators (Figure 3.5). For an IHC-stained tissue, we first capture the
disease type information via a probability map indicating its likelihood of being a certain
disease type. Secondly, we acquire the contrast information via another probability map
indicating the relevant-to-immaterial signal contrast level irrespective of its disease type.
We then learn disease type-specific SQMs based on these two pillars in our proposed
staining quality assessment framework. Through further analysis, additional quality
indicators may be included to improve the framework.

Disease type quality indicator: Breast tissues can be categorized into 3 types, namely,
healthy tissue adjacent to the tumor (HT), primary tumor tissue (PT), and lymph-node
metastasis tissue (MT). On staining the tissues with HER2 biomarker, the latter two can
present either an overexpression (HER2+) or a weak overexpression (HER2-) based on
the aggressiveness of the cancer. Thereby, HER2-stained breast tissues can be categorized
into 5 disease types, namely, HT, HER2+ PT (PT+), HER2- PT (PT-), HER2+ MT (MT+)
and HER2- MT (MT-). We propose to train a 5-class supervised probabilistic classifier to
identify the disease type of an IHC-stained tissue, and capture the first quality indicator.

Contrast level quality indicator: HER2-stained breast tissues exhibits a certain degree
of contrast between the cell membranes and, the cytoplasm and extra-cellular space de-
pending on the aggressiveness of cancer, as presented by the ‘peaks’, and ‘valleys’ model
in Figure 3.4. To obtain the second quality indicator, we propose to train a binary-class
supervised probabilistic classifier to identify the contrast level between the diagnostically
relevant membrane and contextually immaterial background.

SQM learning & quality assessment: We propose to learn disease-type specific SQMs
considering the unique expectation of staining quality per disease type. The quality
indicators acquired for the samples of a particular disease type are used to train an
individual SQM. An SQM is learned in a supervised manner using the quality labels for
the respective samples obtained from a group of experts. In general, the experts evaluated
each sample with various metrics, namely tissue type, antibody expression status, tissue
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Figure 3.5: Overview of the disease-specific staining quality metric (SQM) learning. It involves
learning various quality indicators, which currently rely on the output probability maps of two
classifiers such as a disease type classifier and a membrane-to-background contrast classifier.

sufficiency, membrane-to-background contrast etc., to assign a quality label ∈ {Acceptable,
NotAcceptable}. An SQM is a probabilistic classifier that learns to predict the quality
labels of images using respective two quality indicators. The p(image=Acceptable) is
termed as the quality value (QV) of the image that indicates the acceptability of the
image. For instance, a PT+ sample with low membrane-to-background contrast depicts a
low-quality staining. Thus, a QV obtained from SQMPT+ will have a low value for that
sample indicating its low acceptability. In summary, the SQM learning can be defined as:

QI1 = p(image = DiseaseTypei), DiseaseTypei ∈ {HT, PT-, PT+, MT-, MT+},
QI2 = p(image = ContrastLevelj), ContrastLevelj ∈ {High, Low},
SQMi = p(image = QualityLabelk |QI1, QI2, image ∈ DiseaseTypei), (3.1)

QualityLabelk ∈ {Acceptable, NotAcceptable},
QVi = p(image = Acceptable |QI1, QI2, SQMi)

3.2.3 Image and quality representation

The supervised probabilistic classifiers for identifying disease type and contrast level in
an immunostained tissue are trained using a set of quality relevant features extracted
from HER2-stained training images. We propose a comprehensive feature extraction
followed by feature selection to obtain a more efficient representation for individual
classification task. We experiment with traditional machine learning and deep learning
approaches for training the classifiers. The machine learning-based system relies on
hand-crafted features, which are shown to be successful in the prior work, whereas the
deep architecture is trained with features extracted from a pre-trained network. The
individual feature sets are discussed in details in following sections.

Hand-crafted features: Hand-crafted features are extracted both holistically, features
from individual segmented regions to capture information about relevant and immaterial
signals in the whole image, and locally, patch-wise features from relevant regions to
capture local structural and morphological information. Local features are extracted
from patches containing a sufficient amount of foreground, as segmenting each cell for the
analysis is not feasible.

Holistic features: Intensity-based features directly relate to the amounts of relevant and
immaterial signal in an image. We extract mean foreground intensity (relevant signal
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strength), mean footprint intensity (immaterial signal strength), mean footprint intensity
from segmented regions, and relative intensity of relevant to immaterial signal. Note
that relative intensity feature is used a major quality indicator in [Pinard et al., 2012] and
[Grunkin et al., 2019].

Percentile features, namely % of foreground in the image, % of foreground within the
footprint and % of footprint within the image are included to encode the amount of
relevant area in the whole image.

Difference of Gaussians is used to detect keypoints on the foreground of an image, and
SIFT features [Lowe, 2004] are extracted around the keypoints. We combine the SIFT
features using K-means clustering, K decided by Bayesian information criterion, with
bag-of-words to define a fixed-dimensional feature representation for the image.

Local features: We extract texture, spatial and frequency domain features in a patch-
wise manner. Texture features in terms of contrast and entropy statistics are obtained
from Gray-level co-occurrence matrices with two distance values and four orientations.
Additional image-gradient-based sharpness features namely, mean gradient magnitude,
mean and standard deviation of blur difference, sharpness and Tenengrad response are
extracted as suggested in [Lopez et al., 2013].

We acquire morphological and topological clues in the neighborhood of cells using spatial
and frequency domain wavelet features at multi-scale resolution. Gabor wavelet based
rotation- and scale-invariant features are extracted using complete and non-orthogonal
basis set of Gabor filters with eight rotations and five scaling factors, as in [Han et
al., 2007]. Discrete Haar wavelet transformation at 3 levels is performed per patch to
extract mean, variance, rotation-invariant energy and anisotropy of energy features along
horizontal, vertical and diagonal sub-bands, as in [Livens et al., 1996] and [Hu et al., 2014].
Visual perceptual directionality, contrast and coarseness features are extracted using [Jian
et al., 2009]. Shift invariant Haralick features are extracted from individual sub-images
obtained via Dual tree complex wavelet transform of patches [Yang et al., 2016].

The patch-wise features are extracted from patches with sufficient amount of foreground,
thereby, making them homogeneous in nature over an image. Hence firstly, we exclude
the outlier patches for an image, based on the distance between the per patch feature
representation and the mean feature representation, computed using all patches from the
image. Secondly, we compute the mean feature representation across all the remaining
patches to define the final feature representation for the complete image.

Feature selection: Classification-task specific feature selection is performed on the extracted
set of features to remove irrelevant and redundant attributes. We use recursive feature
elimination with Random forest feature importance to select the optimal set of features.

Deep learning-based features: Popular pre-trained networks on ImageNet dataset, such
as, VGG19 [Simonyan et al., 2014] and ResNet50 [He et al., 2016], are used to extract
feature representations for the images. Considering the difference between HER2-stained
image dataset and ImageNet, we extract more generalizable lower level features using the
pre-trained networks. Subsequently, the extracted features are used to train supervised
convolutional neural networks (CNNs) to generate the desired staining quality indicators.
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3.2.4 Sensitivity to process parameters

Sensitivity analysis of the staining quality to the staining process parameters benefits
in obtaining optimal range for the process parameters for high-quality immunistaining.
As the staining expectations differ across disease types, the optimal parameter space
depends on the disease type. Therefore, we utilize the quality values (QV) of samples
per disease type to perform the sensitivity analysis to parameters, namely antibody
concentration/dilution (C) and residence time (RT).

First, QVs are interpolated for all C and RT configurations over the entire parametric
space to have a dense and smooth distribution of QV. We triangulate the input data
(C, RT, QV), available at specific configurations, with Quickhull algorithm [Barber et al.,
1996] and construct a piece-wise cubic interpolating Bezier polynomial on each triangle
[Farin, 1986] for interpolating at desired C and RT configurations using a Clough–Tocher
scheme [Alfeld, 1984]. Second, a smooth 3D manifold is fitted to the QVs on a 3D
coordinate system with C, RT and QV as the major axes. The 3D manifold enables a
better visualization and more comprehensive statistical analysis of the sensitivity of QV
with respect to the staining process parameters.

We perform sensitivity analysis at every configuration using variation quantification,
similar to [Seguin et al., 2014]. At a point pi=(Ci , RTi , QVi) on the surface, we calculate
the difference vector, vi , between pi and its 8-connected neighbors. Then, covariance
matrix is computed for vi , as Ci = vivH

i , where vi and Ci signify the degree of change
in QV in the neighboring configurations. Eigenvalue decomposition of Ci quantifies
the degree of variation at pi in different directions. The maximum eigenvalue indicates
the degree of maximum variation at pi and the corresponding eigenvector indicates the
direction of maximum deviation. The higher the eigenvalue at a point, the higher the
degree of variation, implying a higher sensitivity of staining quality to slight variations
in corresponding process parameters at the point. Subsequent to obtaining the disease-
type specific sensitivity information at all parametric configurations, we can select the
operational parameter bounds that produce a high staining quality with a low sensitivity
of the quality to variations in the process parameters.

3.3 Materials

Tissue microarrays (TMAs) (Novusbio, USA) of HT, PT, and MT from different patients
were obtained to perform HER2-staining. HER2 is a clinically relevant protein, as it is
related to an aggressive tumor progression and is the target of immunoherapeutic agent
trastuzumab. TMA cores were graded as HER2+ or HER2- by the vendor according to
their protein expression levels. TMAs were dried at 60◦C for 15 min, dewaxed, rehydrated,
and processed with heat induced antigen retrieval. Peroxidase and protein blocks were
applied to the TMA prior to staining as per vendor’s recommendation. Monoclonal
HER2 antibodies (Thermo Fisher Scientific, USA) with concentrations of 6.25, 12.5 or
25 µg/mL were exposed on to the core using an MFP head, that stained the tissue
section in a diameter of 300 µm. Each TMA core was patterned with 8 footprints of
increasing incubation time between 12 and 289 seconds to generate a gradient. Images of
each stained regions were acquired at 40x magnification using a bright field microscope.
Exposure time was set to 24 ms with a lamp voltage of 6V, field stop is set to 30.5 mm, and
aperture stop to 30.5 mm. The neutral density filter was adjusted for 5.8% transmittance.
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White balance was automatically adjusted with a region clear of cells on the tissue as a
reference prior to imaging. Several tissue specimens were collected per TMA core and
each specimen was stained for only a particular antibody concentration and residence
time configuration.

3.4 Results

The image dataset used for empirical evaluation of the proposed staining quality as-
sessment and sensitivity analysis to process parameters methodology consisted of 488
IHC-stained images from 61 TMA cores across five disease types, namely, HT, PT-, PT+,
MT-, MT+. Each image is annotated as Acceptable and NotAcceptable regarding the
quality of immunostaining. Our methodology starts with a segmentation of each image
into footprint, off-footprint, foreground and background regions. Subsequently, hand-crafted
and deep learning-based features were extracted to train disease type and membrane-
to-background contrast level identifying supervised probabilistic classifiers that returns
the two quality indicators. The conducted experiments and the impact of experimental
hyperparameters on the extraction of individual quality indicators are explained in detail
in the following subsections.

3.4.1 Extraction of first quality indicator

The first quality indicator conveys the disease type information for an image, which is
obtained via a 5-class supervised classifier. A balanced subset of 267 images across all
disease types was selected that contained sufficient cell materials and represented the
respective disease types for both poor (over- and insufficient staining) and high-quality
staining. Both statistical machine learning-based and deep learning-based disease type
classifiers were trained to maximize the 10-fold cross-validation F1 score. Details on the
training and tuning of individual classifiers are presented below.

Traditional machine learning-based classifier: We extracted 584 hand-crafted features
for each image, namely intensity (5), segmentation statistics (3), SIFT (128), texture (22),
Gabor (26), discrete wavelet transform (100) and dual-tree complex wavelet transform
(300) based features. The acquired features and disease type labels, obtained from the
vendor, were used to train a Support Vector Machine (SVM) classifier. To obtain the
optimal classifier, several hyperparameters, such as patch size for extracting local features,
feature categories, and feature combinations, kernel types and hyperparameters, were
fine-tuned as described below in order.

Most of the features are extracted from local patches, hence the choice of patch size has a
significant impact on the overall classification performance. We examined with different
patch sizes, i.e., 48×48, 64×64, 96×96, 128×128 and 160×160 pixels. The best F1 score
was achieved for the classifier trained with a patch size of 64×64 pixels.

We evaluated the impact of individual feature categories on the disease type classification
by training separate classifiers for each feature group. Rotation- and scale-invariant Gabor
wavelet features performed the best as individual feature types, followed by texture and
dual-tree complex wavelet features. Combination of different feature groups significantly
improved the classification performance. The combination of intensity, texture, Gabor
wavelet and dual-tree complex wavelet feature groups (353 features in total) achieved
the best F1 score. A further improvement was attained by ranking and selecting the top
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Table 3.1: Disease type confusion matrix for the best classifier trained with hand-crafted features.

HT PT- PT+ MT- MT+

HT 52 2 1 0 3

PT– 0 41 2 6 1

PT+ 0 2 51 1 6

MT– 1 5 1 51 1

MT+ 1 2 9 3 25

features. After feature selection, we obtained the best accuracy by including 70 features,
which reduced the total number of features by 5-folds and provided an increment of 5%
in overall accuracy, with the optimal set of hyperparameters.

Different types of kernels, namely linear, polynomial with degrees of 3, 5, 7 and 10,
sigmoid, radial-basis function (RBF), Hellinger, Jensen-Shanon, with appropriate fine-
tuning of hyperparameters were examined with SVM classifier. The best F1 score of
0.823 was achieved for an SVM classifier trained with RBF kernel and optimal feature
set. Table 3.1 presents the confusion matrix obtained for 5-class disease type classification
for the best-trained classifier. The confusion matrix indicates the efficacy of the trained
classifier in identifying the tissue-types and HER2-expression status. As expected, most of
the confusion occurs between PT- and MT- and between PT+ and MT+, which corresponds
to a high similarity in the staining behaviors of the HER2- and HER2+ disease types.

Deep Learning-Based Classifier. We augmented the dataset for training a deep network
by extracting 50 random patches per image, which were of size 224×224 pixels and
hold more than 70% overlapping with the foreground. The patches extracted from an
image were annotated with the disease type label of the complete image. We employed a
ConvNet, pre-trained on ImageNet, to process the patches. Considering the dissimilarity
between the HER2-stained IHC patches and ImageNet, we extracted more generalizable
features from a lower layer of the network. Subsequently, another shallow CNN was
trained using the per-patch extracted representations and disease type labels.

We experimented with two pre-trained ConvNets, VGG19 and ResNet50, in Keras. The
features were extracted after the third block in both the architectures that resulted in
outputs of size 28×28×256 and 28×28×512 for VGG19 and ResNet50 respectively. The
subsequent CNN architecture and network training parameters are presented in Table 3.2.
In the testing phase, the trained network predicted disease types for 50 extracted patches
from a test image, and majority voting was performed to assign the final disease type to
the image. The trained networks with features from VGG19 and ResNet50 pre-trained
models achieved 0.758 and 0.834 F1 scores respectively.

The results in Table 3.3 indicate that the hand-crafted feature-based method performs
similarly to CNN in the disease type, HER2 expression and tissue type identification
tasks. The F1 score and Cohen’s kappa coefficient indicates very good agreement between
the original labels and the predicted labels. The kappa coefficient conveys that the trained
classifiers perform well in spite of class-imbalance in the training dataset. SVM is faster
and easier to train, easier to tune hyperparameters and possess easier explainability
compared to a deep network. As the results from the SVM and the (ResNet50 + CNN)
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Table 3.2: CNN architecture and network hyperparameters for disease type classification.

Type Output Size Block Strides

convolution 28x28x16 [1x1, 16] 1

max pool 14x14x16 - 2

convolution 14x14x8 [3x3, 8] 1

max pool 7x7x8 - 2

convolution 7x7x4 [3x3, 4] 1

flatten 196 - -

dropout (50%) 196 - -

linear 196 - -

softmax 5 - -

convolution layer = (convolution + ReLU + batch normalization),

batch size = 128, He uniform initialization, Adam optimizer,

cross-entropy loss, learning rate=0.01

Table 3.3: Machine learning and deep learning-based disease type classification results.

Approach Task F1 Kappa

Hand-crafted + SVM 5-class disease type 0.823 0.779

3-class HER2 expression 0.921 0.878

3-class tissue type 0.854 0.773

VGG19 + CNN 5-class disease type 0.761 0.699

3-class HER2 expression 0.884 0.820

3-class tissue type 0.802 0.692

ResNet50 + CNN 5-class disease type 0.835 0.793

3-class HER2 expression 0.925 0.884

3-class tissue type 0.865 0.791

5-class disease type = (HT, PT-, PT+, MT-, MT+)

3-class HER2 expression = (HT, HER2+, HER2-)

3-class tissue type = (HT, PT, MT)

were comparable, we proceeded with SVM-based development for subsequent tasks. With
the inclusion of more images in the dataset, the deep networks may become the method
of choice. Figure 3.6 presents the misclassified images by the SVM. Overstained PT- and
MT- samples (a, b respectively) displayed comparable membrane staining to HER2+,
thus being misclassified as PT+ (false positive). Understained and overstained PT+ (c, d
respectively) lack sufficient staining contrast between the foreground and the background,
similar to HER2- images, thus being misclassified as PT- and MT- (false negative). The
bottom row presents the ambiguous PT+ (e), MT+ (f) and PT- (g), MT- (h) samples. Due
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Figure 3.6: Misclassified samples by the Hand-crafted + SVM classifier. (top row) False positives,
where PT- and MT- samples were interpreted as PT+ (a, b) and false negatives, where PT+ samples
were interpreted as PT- and MT- respectively (c, d). (bottom row) Ambiguous PT+ (e), MT+ (f) and
PT- (g), MT- (h) samples.

to the similarity in staining between HER2 overexpressing tissues (PT+ and MT+) and
HER2 no over-expressing tissues (PT- and MT-), these images were misclassified.

3.4.2 Extraction of second quality indicator

The second quality indicator conveys the membrane-to-background contrast level infor-
mation of a stain, which is obtained via a binary-class supervised probabilistic classifier.
A balanced subset of 77 images were selected that clearly represented high and low
contrast levels irrespective of the disease type. We used the 584 features extracted per
image to train the contrast level classifier and tuned the same hyperparameters similar
to the first quality indicator. The best trained classifier achieved a 5-fold cross validated
F1 score of 0.947. The best classifier was an SVM trained with RBF kernel and with
63 features, which predominantly included features from intensity, Gabor wavelet and
dual-tree complex wavelet transform categories.

3.4.3 Staining quality assessment

The disease-type specific SQMs were trained with the two quality indicators extracted
from the two supervised probabilistic classifiers. We selected sets of 91, 106, 96 and 60
images from PT-, PT+, MT- and MT+ disease categories respectively with balanced sets
of images from both Acceptable and NotAcceptable staining qualities. Individual SQMs
were trained in supervised manner using quality labels acquired from the consensus of
three experts. Individual SQMs were analyzed using the area-under-the-curve (AUC)
measure of the respective receiver operating characteristic (ROC) curves. The optimal
SQMs were obtained for SVM with RBF kernel, which achieved AUC scores of 0.84, 0.83,
0.82 and 0.90 for the PT-, PT+, MT- and MT+ disease types respectively. An average
AUC score of 0.85 is achieved for the proposed methodology with individual SQMs. For
comparison, we trained an SQM that learns the staining quality labels for samples directly
using their respective feature representations. After tuning all the hyperparameters of the
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Figure 3.7: ROC curves and AUC scores for in-
dividual SQMs, aggregated result of individual
SQMs and direct SQM, trained directly with
sample features and sample quality labels.

Figure 3.8: Disease-type specific 95% confidence
ellipses fitted to quality values over the process
parameter space of antibody concentration and
residence time.

direct SQM, we achieved an overall AUC score of 0.63. The ROC curves for individual
SQMs, the aggregated SQM and the direct SQM are presented in Figure 3.7.

The QVs for the samples were acquired from the individual SQMs and the QVs were
interpolated over the entire parameter space of C and RT. Subsequently, the disease-type
specific 3D manifolds were fitted to the QVs, C and RT configurations, as shown in
Figures 3.9(a, d). Figure 3.9(e) displays the 2D contour plot of fitted 3D manifold for
SQMPT+, where the yellow region corresponds to the parameter space with≥95% staining
quality. Fitting an ellipse to this region corresponds to the 95% confidence interval of QV.
We evaluated the robustness of our SQM algorithm by generating confidence ellipses for
individual SQMs using 200 over-sampled bootstrap datasets for different disease type
categories. Figure 3.8 displays the confidence ellipses for all the trained disease-type
specific SQMs. For PT+ and MT+, the confidence ellipses are concentrated in a specific
parameter region, whereas for PT- and MT- they are more dispersed. The consistency of
the confidence ellipses for PT+ and MT+ indicate that the staining process parameters can
be confidently confined to a specific parameters space to achieve high-quality staining,
whereas this sort of confinement is not possible for PT- and MT- disease types. Usually
in HER2+ tissue sections, the overexpression of the HER2 protein is consistent, resulting
in consistent stained-expressions. For HER2- tissue samples, the HER2 protein has weak
HER2-overexpression, which can have a high variability in staining expressions. The
degree of variability in HER2 overexpression can explain the resulting behavior of the
confidence ellipses.

3.4.4 Sensitivity to process parameters

The disease-type specific SQM manifolds were used to evaluate the variability of the
staining quality scores with respect to variations in the process parameters. Using the
eigenvalue based variational quantification approach, we inspected the sensitivity of
the staining quality for all possible process parameter configurations. For instance,
Figure 3.9(e) and Figure 3.9(f) present the 2D contour plot of the staining quality and the
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Figure 3.9: Manifold fitting to quality values (QVs) acquired using disease-type specific SQMs,
(a) PT-, (b) PT+, (c) MT-, and (d) MT+. The manifolds are fitted using QVs of samples across
all configurations of antibody concentrations (C) and residence times (RT). Also shown is, the
sensitivity analysis for PT+: (e) 2D contour map of QVs and (f) 2D contour map of the staining
sensitivity to process parameters (C and RT).

2D contour plot of the sensitivity analysis for SQMPT+. Figure 3.9(e) shows that high-
quality staining can be obtained when operating in the range of 9<C< 17 µg/mL and
90<RT<160 s and that the best quality is obtained for C=14 µg/mL and RT=120 s. It
also illustrates that the staining quality is low for low-end and high-end C and RT values,
which is consistent with the concepts of under-staining and over-staining, respectively.
These observations can help reduce false negative and false positive staining, but this
map does not convey the stability in operating with these parameter settings. Figure 3.9(f)
presents the sensitivity information by plotting the degree of variation in the staining
quality for each C and RT configuration. It shows that the staining quality is slightly
sensitive towards the lower-end and the upper-end of the aforementioned range of
C values. Combining the knowledge from both the maps, an operational range of
11 < C < 15 µg/mL and 90 < RT < 130 s can be selected for generating stable and
high-quality stains for PT+. Figure 3.10 presents stained images of a PT+ TMA core
for the entire parametric configurations of antibody concentration and residence time
showing the staining and quality value variability within a core. The PT+ specific quality
values per image are indicated at the top left corner of each image. The best QVs,
corresponding to the optimal staining region, are highlighted in red. Similarly, optimal
parameter configurations and best practices for other tissue categories and biomarkers
can be inferred from their sensitivity analyses.

3.4.5 Comparison with a clinical staining protocol

To gauge the value of the proposed method, we aimed to understand whether the
methodology can be transferred to a clinical setting. Thus, we performed staining M1,
using a protocol used currently in a hospital, and staining M2, the proposed optimized
parametrization. These evaluations were performed using in vitro diagnostics antibodied
(Herceptest, Dako) with an on-bench approach, i.e. without the use of an MFP for primary
antibody deposition. Since the antibody for these tests differs from the antibody used for
developing the proposed methodology (anti-Her2 antibody, ThermoFisher), the trained
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Figure 3.10: IHC stained images of a sample PT+ TMA core for the entire parametric configurations
of antibody concentration and residence time. The PT+ specific quality values are noted at the
top left corner of each image. The best QVs, corresponding to the optimal staining region, are
highlighted in red.

classifiers, SQMs and derived optimum staining configurations could potentially present
variations, due to differences in antibody kinetic parameters. However, we expected
that the results can be transferable between different antibodies, showing the robustness
of the method. Therefore, we analyzed M1 and M2 using the parametric space from
our development dataset. To remove bias to antibody selection, we extracted feature
representations for the stained cell blocks and scaled the features to the same range as of
the features used during the training phase.

For M1, SKBR3 cell blocks were stained using an antibody concentration of 2 µg/mL for
30 minutes, as recommended by the provider (Figure 3.11(a)). The proposed disease type
classifier categorized SKBR3 to be MT+, as expected since SKBR3 cells were acquired
from a metastatic site. Then for M2, we applied the MT+ specific optimal staining
condition, 25 µg/mL for 58 s, as derived by the proposed method (Figure 3.11(b)). The
QVs were computed using SQMMT+, and resulted to QVs of 0.12 and 0.88 for M1 and
M2 respectively. Both visual inspection and qualitative assessment demonstrate that M2
produced clearer diagnostically relevant information, namely sharper stained membrane
signal compared to M1.

Despite the change in antibody, the optimized staining approach delivered a better QV.
Hence, we proceeded to stain PT+ tissues with the PT+ specific optimized configuration
(antibody concentration of 12.5 µg/mL for 135 s) using clinically validated antibodies
on-bench. Figures 3.12(a-c) depicts three stained PT+ images. Their QVs were computed
to be 0.83, 0.51 and 0.87 respectively using SQMPT+. Despite the much shorter residence
time than recommended by the provider (135 s vs 30 minutes), these samples present
appropriate staining on the cell membranes and possess good relative intensity between
the membrane and the cytoplasm, as confirmed by our experts. The estimated QVs
classified the images to be in the good staining range.

3.5 Conclusion

In this paper, we introduce a methodology to analyze the immunostaining quality sensitiv-
ity with respect to the staining process parameters, i.e., antibody dilution and residence
time. The proposed methodology initially delineates the diagnostically relevant and
contextually immaterial signals in a given immunostained tissue. It then learns machine
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Figure 3.11: SKBR3 cell blocks stained with clinical protocol and optimized staining protocol.

Figure 3.12: IHC images of PT+ tissues stained with the proposed optimized staining protocol.

learning based disease-type specific staining quality metrics using extracted comprehen-
sive features relevant to staining quality. Subsequently, it performs statistical sensitivity
analysis of the staining quality with respect to the process parameters. The proposed
quantitative quality metric and the sensitivity analysis contribute to the process parame-
ter optimization to achieve high-quality staining for various disease types. As a model
system, the proposed methodology is validated on a cohort of HER2-stained breast cancer
tissues from five different disease types, stained using µIHC under various parameter
configurations of the MFP. Utilization of the MFP allowed to stain a small fraction of a
tissue section for the analysis and extrapolation of suitable process parameters.

We believe that the entire methodology can be extended for other types of staining, disease
types, and tumor types as it does not involve any prior assumptions about the staining
method. It can easily be applied to the conventional whole-slide-staining and staining
with other biomarkers. This allows the comparison of different antibodies leading to the
choice of the best and finding the corresponding optimal staining protocols.

With the proposed method, the number of false positives and false negatives produced
by incorrect parametrization can be reduced substantially. For instance, when the disease
state is unknown, the optimal configuration of PT+ could be applied as a first approximate
set of parameters. In case of a low-quality result for PT+, one of the parameters can be
kept fixed, while the other is modified to the closest optimal value from MT+. Performing
this sequentially with the aim to maximize the quality metric, a set of optimal parameters
can easily be scanned on a tissue. Comparing the information known about the disease
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type and the one obtained with the algorithm can provide potential information on the
developmental status of the tumor.

Digital and computational pathology have received increasing attention from the medical
community as they can aid the accuracy of decisions made by pathologists, while also
reducing workloads and removing subjective artifacts. However, the underlying aspects
of staining quality still remain only partially solved. The suite of methods outlined in
this paper can assist pathologists and improve the reproducibility since it establishes an
objective metric and reduces the human factor.





4
Hierarchical Graph Representations
in Digital Pathology

Cancer diagnosis, prognosis, and therapy response predictions from tissue specimens
highly depend on the phenotype and topological distribution of constituting histological
entities. Thus, adequate tissue representations for encoding histological entities are
imperative for computer aided cancer patient care. To this end, several approaches have
leveraged cell-graphs, capturing cell-microenvironment, to depict the tissue. These allow
for utilizing graph theory and machine learning to map the tissue representation to tissue
functionality, and quantify their relationship. Though cellular information is crucial, it is
incomplete alone to comprehensively characterize complex tissue structure. We herein
treat the tissue as a hierarchical composition of multiple types of histological entities
from fine to coarse level, capturing multivariate tissue information at multiple levels. We
propose a novel multi-level hierarchical entity-graph representation of tissue specimens to
model the hierarchical compositions that encode histological entities as well as their intra-
and inter-entity level interactions. Subsequently, a hierarchical graph neural network
is proposed to operate on the hierarchical entity-graph and map the tissue structure to
tissue functionality. Specifically, for input histology images, we utilize well-defined cells
and tissue regions to build HierArchical Cell-to-Tissue (HACT) graph representations,
and devise HACT-Net, a message passing graph neural network, to classify the HACT
representations. As part of this work, we introduce the BReAst Carcinoma Subtyping
(BRACS) dataset, a large cohort of H&E stained breast tumor regions-of-interest, to
evaluate and benchmark our proposed methodology against pathologists and state-of-
the-art computer-aided diagnostic approaches. Through comparative assessment and
ablation studies, our proposed method is demonstrated to yield superior classification
results compared to alternative methods as well as individual pathologists. The code,
data, and models can be accessed at https://github.com/histocartography/hact-net

4.1 Introduction

Breast cancer is the most commonly diagnosed cancer and registers the highest number
of deaths for women with cancer ([Sung et al., 2021]). A study by [Allemani et al., 2015]
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exhibits that intensive early diagnostic activities have improved 5-year survival to 85%
during 2005–09 for breast cancer patients. Early diagnosis of cancer, primarily through
manual inspection of histology slides, enables the acute assessment of risk and facilitates
an optimal treatment plan. Though the diagnostic criteria for breast cancer are established,
the continuum of histologic features phenotyped across the diagnostic spectrum prevents
distinct demarcation. Thus, manual inspection is tedious and time-consuming with
significant intra- and inter-observer variability ([Gomes et al., 2014; Elmore et al., 2015]).
The increasing incidence rate of breast cancer cases per year ([Siegel et al., 2020]) and the
challenges in manual diagnosis demand for automated computed-aided diagnostis.

Whole-slide scanning systems empowered rapid digitization of pathology slides into high-
resolution whole-slide images (WSIs) and profoundly transformed pathologists’ daily
practice ([Mukhopadhyay et al., 2017]). Further, they enabled computer aided diagnostics
to leverage artificial intelligence ([Litjens et al., 2017; Deng et al., 2020]), especially
deep learning (DL), to address various pathology tasks, such as nuclei segmentation
([Kumar et al., 2017; Graham et al., 2019a]), nuclei classification ([Pati et al., 2021; Verma
et al., 2021]), gland segmentation ([Graham et al., 2019b; Binder et al., 2019]), tissue
segmentation ([Mehta et al., 2018; Mercan et al., 2019b]), tumor detection ([Aresta et al.,
2019; Bejnordi et al., 2017b; Pati et al., 2018]), tumor staging ([Aresta et al., 2019; Mercan
et al., 2019a]), and survival analysis ([Zhu et al., 2017; Yao et al., 2021a]). DL techniques
primarily use Convolutional Neural Networks (CNNs) ([Madabhushi et al., 2016; Parwani,
2019]) to process histology images in a patch-wise manner. CNNs extract representative
patterns from patches and aggregate them to perform image-level tasks. However,
patch-wise processing suffers from the trade-off between the resolution of operation
and the utilization of adequate context ([Bejnordi et al., 2017a; Sirinukunwattana et al.,
2018]). Operating at a higher resolution captures local cellular information but limits
the field-of-view due to computational burden and limits the access to global tissue
microenvironment. In contrast, operating at a lower resolution hinders resolvability of
cells and access to cellular properties. [Bejnordi et al., 2017a; Sirinukunwattana et al., 2018;
Tellez et al., 2021] have proposed CNN methods to address such trade-off by leveraging
visual context, however, CNNs, which operate on fix-sized input patches, are confined to
a fixed field-of-view and are restricted to incorporate information from varying spatial
distances. Further, pixel-based processing in CNNs disregards the notion of histologically
meaningful entities ([Hägele et al., 2020]), such as cells, glands, and tissue types. The
inattention to histological entities severely limits the interpretability of CNNs, and any
utilization of established entity-level prior pathological knowledge in the CNN-based
frameworks. Additionally, CNNs disregard the structural composition of tissue, where
fine entities hierarchically constitute to form coarse entities, such as, epithelial cells
organize to form epithelium, which further constitutes to form glands. Such hierarchical
structure is relevant both for diagnostics and interpretation.

In this paper, we address the aforementioned limitations by shifting the analytical
paradigm from pixel to entity-based processing. In an entity paradigm, a histology image
is described as an entity-graph, where nodes and edges of a graph denote biological
entities and inter-entity interactions, respectively. An entity-graph can be customized
in various aspects, e. g., in terms of the type of entity set, entity attributes, and graph
topology, by incorporating any task-specific prior pathological knowledge. Thus, the
graph representation enables pathology-specific interpretability and human-machine
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co-learning. In addition, the graph representation is memory efficient compared to
pixelated images and can seamlessly describe a large tissue region. [Demir et al., 2004]
first introduced cell-graphs using cells as the entity type. Though a cell-graph efficiently
encodes the cell microenvironment, it cannot extensively capture the tissue microenvi-
ronment, i. e., the distribution of tissue regions such as necrosis, stroma, and epithelium.
Similarly, a tissue-graph comprising of the set of tissue regions cannot depict the cell
microenvironment. Therefore, an entity-graph representation using a single type of entity
set is insufficient to comprehensively describe the tissue composition. To address this,
we propose a multi-level entity-graph representation, i. e., HierArchical Cell-to-Tissue
(HACT), consisting of multiple types of entity sets, i. e., cells and tissue regions, to encode
both cell and tissue microenvironment. The multiset of entities is inherently coupled
depicting tissue composition at multiple scales. The HACT graph encodes individual
entity attributes and intra- and inter-entity relationships to hierarchically describe a
histology image. Upon the graph construction, a graph neural network (GNN), a DL
technique operating on graph-structured data, processes the entity-graph to perform
image analysis. Specifically, we introduce a hierarchical GNN, HierArchical Cell-to-
Tissue Network (HACT-Net), to sequentially operate on HACT graph, from fine-level to
coarse-level, to provide a fixed dimensional embedding for the image. The embedding
encodes morphological and topological distribution of the multiset of entities in the tissue.
Interestingly, our proposed methodology resembles the tissue diagnostic procedure in
clinical practice, where a pathologist hierarchically analyzes a tissue.

We propose a methodology that consists of HACT graph construction and HACT-Net
based histology image analysis of breast tumor regions-of-interest (TRoIs). A preliminary
version of this work was presented as [Pati et al., 2020]. Our substantial extensions herein
include, (1) an improved HACT representation and HACT-Net architecture, (2) a larger
evaluation dataset (twice the earlier size), (3) detailed ablation studies and evaluation
on public data, and (4) a benchmark comparison against independent pathologists.
Specifically, the major contributions of this paper are:

• A novel hierarchical entity-graph representation (HACT) and hierarchical learning
(HACT-Net) methodology for analyzing histology images;

• Introducing BReAst Carcinoma Subtyping (BRACS1), a large cohort of breast TRoIs
annotated into seven breast cancer subtypes. BRACS includes challenging atypical
cases and a variety of TRoIs to represent a realistic breast diagnosis;

• Benchmarking of HACT-Net against three independent pathologists on BRACS.
An extensive assessment to demonstrate the superiority of HACT-Net over recent
CNN and GNN approaches for cancer subtyping, while being comparable to
pathologists’s classification performance.

4.2 Related work

Tumor subtyping in digital pathology: Several DL algorithms have been proposed to
categorize histopathology images into cancer subtypes ([Komura et al., 2018; Srinidhi et al.,
2021; Deng et al., 2020; Spanhol et al., 2016a; Araùjo et al., 2005; Aresta et al., 2019]). For
this task, most algorithms employ CNNs in a patch-wise manner. In [Araùjo et al., 2005;
Bardou et al., 2018; Roy et al., 2019; Mercan et al., 2019a], CNNs are used to classify breast

1 BRACS dataset for breast cancer subtyping: https://www.bracs.icar.cnr.it

https://www.bracs.icar.cnr.it
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histology images. These methods use single stream patch-wise approaches to capture local
patch-level context, aggregate the patch-level information, and classify the image using
aggregated information. However, single-stream approaches do not capture adequate
context from the tissue microenvironment to aptly encode a patch. [Sirinukunwattana et
al., 2018] address this issue by including multi-scale information from concentric patches
across different magnifications. [Tellez et al., 2021] propose neural image compression,
where WSIs are compressed using a neural network trained in an unsupervised fashion,
followed by a CNN trained on the compressed representations to classify the images.
[Shaban et al., 2020] include an attention module with an auxiliary task to improve neural
image compression for histology image classification. [Bejnordi et al., 2017a] propose a
stacked CNN architecture to capture large contexts and perform end-to-end processing of
large histology images. [Pinckaers et al., 2020] propose a streaming CNN to accommodate
multi-megapixel images. [Campanella et al., 2019] utilize a multiple-instance learning
approach to process whole-slide images in an end-to-end manner, which is extended
by [Lu et al., 2021] to automatically identify sub-regions of high diagnostic value via an
attention mechanism. Though the aforementioned methods use different strategies to
encode a tissue, they all operate on a square and fix-sized patches. However, actual TRoIs
can be of diverse dimensions depending on the cancer subtype and the site of tissue
extraction. Our proposed entity-graph methodology can acquire both local and global
context from arbitrary-sized TRoIs to address the aforementioned limitations.

Graphs in digital pathology: Entity-graph-based tissue representations can effectively
describe the tissue composition by incorporating morphology, topology, and interactions
among biologically comprehensible entities, unlike CNNs. Using cells as entities, [Demir
et al., 2004] introduced a cell-graph (CG) representation, where cell morphology can
be embedded in the nodes via hand-crafted ([Demir et al., 2004; Zhou et al., 2019a;
Pati et al., 2020]) or deep-learning based features ([Chen et al., 2020a]). The graph
topology is often heuristically defined, e. g., using k-Nearest Neighbors, probabilistic
modeling, or a Waxman model ([Sharma et al., 2015]). Then, a CG is processed by
classical machine learning techniques ([Sharma et al., 2016; Sharma et al., 2017a]) or
GNNs ([Zhou et al., 2019a; Pati et al., 2020; Chen et al., 2020a; Anand et al., 2019])
for mapping to tissue function. Recently, patches ([Aygüneş et al., 2020]) and tissue
regions ([Pati et al., 2020; Anklin et al., 2021]) as entities have been used for better tissue
representation. Other graph-based applications in computational pathology include
cellular community detection ([Javed et al., 2020]), WSI classification ([Zhao et al., 2020b;
Adnan et al., 2020]), WSI segmentation ([Anklin et al., 2021]). Notably, entity-graphs
consist of biological entities to which the pathologists can readily relate. So, the entity-
graph paradigm enables to incorporate pathologically-defined, task-specific entity-level
prior knowledge in constructing “meaningful” tissue representations. This implicitly
enables interpretability and explainability of graph-based networks for pathologists. To
this end, [Zhou et al., 2019a] analyzes the clustering of nodes in a CG to group cells
according to their appearance and tissue types. [Jaume et al., 2020] introduces a post-
hoc graph-pruning explainer to identify decisive cells and interactions. [Sureka et al.,
2020] employs robust spatial filtering that utilizes an attention-based GNN and node
occlusion to highlight cell contributions. [Jaume et al., 2021b] propose quantitative metrics
leveraging pathologically relevant cellular properties to characterize graph explainability
for CG analysis.
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Figure 4.1: Overview of the proposed hierarchical entity-graph based tissue analysis methodology.
Following some pre-processing, a hierarchical entity-graph representation of a tissue is constructed,
and it is processed via a hierarchical graph neural network to learn the mapping from tissue
compositions to respective tissue categories.

4.3 Methodology

In this section, we detail our proposed methodology for hierarchical tissue analysis,
as illustrated in Figure 4.1. For an input (H&E) stained histology TRoI image, first,
we apply pre-processing to standardize the input. Then, we identify pathologically
relevant entities and construct a HACT graph representation of the TRoI by incorporating
the morphological and topological distribution of the entities. Finally, HACT-Net, a
hierarchical GNN, is devised to map the HACT graph to a corresponding category, e. g.,
cancer subtype.

4.3.1 Notations

We define an attributed, undirected entity-graph G := (V, E, H) as a set of nodes V, edges
E, and node features H. Each node v ∈ V is represented by a feature vector h(v) ∈ Rd,
thus, H ∈ R|V|×d. d denotes the number of features per node, and | . | denotes set
cardinality. An edge between two nodes u, v ∈ V is denoted as euv. The graph topology
is described by a symmetric adjacency matrix A ∈ R|V|×|V|, where Au,v = 1 if euv ∈ E.
The neighborhood of a node v ∈ V is denoted as N (v) := {u ∈ V|v ∈ V, euv ∈ E}.

4.3.2 Pre-processing

H&E stained images exhibit appearance variability due to different specimen preparation
techniques, staining protocols, fixation characteristics, imaging device characteristics etc.
Such variability adversely impacts computational methods for downstream diagnosis
[Veta et al., 2014; Tellez et al., 2019]. To alleviate the variability, we use the unsupervised,
reference-free stain normalization algorithm proposed by [Macenko et al., 2009]. The
algorithm is based on the principle that RGB color of each pixel is a linear combination of
two unknown stain vectors, Hematoxylin and Eosin, that need to be estimated. First, the
algorithm estimates the stain vectors of a TRoI by using a Singular Value Decomposition
of the non-background pixels. Second, the algorithm applies a correction to account
for the intensity variations due to noise. The algorithm requiring no model training is
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Figure 4.2: Overview of hierarchical cell-to-tissue (HACT) graph construction for a TRoI. Our
HACT graph representation consists of a cell-graph, a tissue-graph, and cell-to-tissue hierarchies,
while encoding the phenotypical and topological distributions of tissue entities to describe the cell
and tissue microenvironments.

computationally inexpensive. Specifically, for stain normalization we employ the scalable
and fast pipeline proposed by [Stanisavljevic et al., 2018].

4.3.3 Graph representation

A stain normalized TRoI is processed to identify relevant entities and construct a hierar-
chical entity-graph representation. In this work, we consider nuclei and tissue regions as
the entities. Therefore, the HACT graph consist of three components: 1) a low-level cell-
graph, capturing cell morphology and interactions, 2) a high-level tissue-graph, capturing
morphology and spatial distribution of tissue regions, and 3) cells-to-tissue hierarchies,
encoding the relative spatial distribution of cells with respect to the tissue distribution.
The details of the components are presented in the following subsections.

4.3.3.1 Cell-graph representation

A cell-graph (CG) characterizes cell microenvironment, where nodes denote cells and
encode cell morphology, and edges denote cellular interactions and encode cell topology.
It is constructed in three steps, i) nuclei detection, ii) nuclei feature extraction, and
iii) topology configuration, as shown in Figure 4.2.

Precise nuclei detection enables reliable CG representation. To this end, we use HoVer-
Net, a nuclei segmentation network proposed by [Graham et al., 2019a], pre-trained on
MoNuSeg dataset by [Kumar et al., 2017]. HoVer-Net leverages the instance-rich informa-
tion encoded in the vertical and horizontal distances of nuclear pixels to their centers of
mass. These distances are used to accurately segment clustered nuclei, particularly in
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areas with overlapping nuclei. The centroids of the segmented nuclei form the spatial
coordinates of nodes in CG.

Following nuclei detection, morphological features are extracted by processing patches of
size h× w centered around nuclei centroids via ResNet [He et al., 2016] pre-trained on
ImageNet dataset [Deng et al., 2009]. Spatial features of the nuclei are extracted as the
spatial coordinates of the nuclei, normalized by the TRoI dimensions. Morphological and
spatial features together constitute the nuclei features, which are collocated for all nodes
as the node-feature matrix HCG ∈ R |VCG | × dCG .

For the CG topology ECG, we utilize the fact that spatially close cells have stronger
interactions ([Francis et al., 1997]) with distant cells having weaker cellular interactions.
Accordingly, we connect nearby cells with edges to model their interactions. To this
end, we use the k-Nearest Neighbors (kNN) algorithm to build an initial topology, that
we subsequently prune by removing edges longer than a threshold distance dmin. We
use Euclidean distances between nuclei centroids in the image space to quantify cellular
distances. Formally, for each node v, an edge evu is built if

u ∈ {w | DIST(v, w) ≤ dk ∧DIST(v, w) < dmin, ∀w, v ∈ VCG,

, dk = kth smallest distance in DIST(v, w)}
(4.1)

CG topology is presented by a binary adjacency matrix ECG ∈ R |VCG | × |VCG |. Figure 4.2
illustrates the CG representation for a sample TRoI. Formally, a CG representation is
formulated as GCG :={VCG, ECG, HCG}.

4.3.3.2 Tissue-graph representation

A tissue graph (TG) depicts a high-level tissue microenvironment, where the nodes and
edges denote tissue regions and their interactions, respectively. A TG is constructed by
first identifying tissue regions (e. g., epithelium, stroma, lumen,and necrosis), followed by
encoding the tissue regions, and finally the topology building. The steps are illustrated
in Figure 4.2. A parallel approach involving superpixel detection and neighborhood
information aggregation is adopted by [Mercan et al., 2018] to semantically segment
tissue regions in histology images.

Tissue regions are identified in two-steps. First, we oversegment the tissue to detect non-
overlapping homogeneous superpixels. We operate at a low magnification to avoid noisy
pixels and compute efficiently. Specifically, we use the Simple Linear Iterative Clustering
(SLIC) algorithm ([Achanta et al., 2012]). SLIC follows an unsupervised approach by
associating each pixel with a feature vector and merging the pixels using a localized
version of k-means clustering. Next, we iteratively merge neighboring superpixels
that have similar color attributes, i. e., channel-wise mean, to create superpixels that
capture meaningful tissue information. A sample tissue-region instance-map is shown in
Figure 4.2.

To extract feature representations of tissue regions, we follow a two-step procedure:
first, we extract CNN-based features for oversegmented superpixels, i. e., patches of
size h× w centered around the superpixel centroids are processed by ResNet. Second,
morphological features of a tissue region are obtained by averaging the deep features of
its constituting superpixels. Similar to CG, we include spatial features as the normalized
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Figure 4.3: Overview of the proposed HACT-Net architecture. The network processes an input
HACT graph representation in a hierarchical manner, from fine cell-level to coarse tissue-region
level, to obtain a contextualized graph embedding, and consequently classify the input graph.

centroids of the tissue region. For a TRoI with a set of VTG tissue regions, we denote the
TG node-feature matrix as HTG ∈ R |VTG | × dTG .

We assume adjacent tissue regions to biologically interact the most, and thus connect in
the TG topology. To this end, we construct a Region Adjacency Graph ([Potjer, 1996])
where an edge is built between adjacent tissue region. The topology is presented by a
binary adjacency matrix ETG ∈ R |VTG | × |VTG |. Formally, a TG representation is formulated
as GTG := {VTG, ETG, HTG}.

4.3.3.3 Hierarchical Cell-to-Tissue graph representation

A histopathology tissue can be considered as a hierarchical organization of biological
entities ranging from fine-level, i. e., cells, to coarse-level, i. e., tissue regions. There exist
intra- and inter-level coupling based on topological distributions and interactions among
the entities. With this motivation, we propose HACT, a HierArchical Cell-to-Tissue
(HACT) graph representation to jointly represent low-level CG and high-level TG. Intra-
level topology is captured by standalone CG and TG. Inter-level topology is presented
by a binary assignment (cell-to-tissue hierarchy) matrix ACG→TG ∈ R |VCG | × |VTG | that
utilizes the relative spatial distributions of nuclei with respect to tissue regions. For the
i th nucleus and j th tissue region, the corresponding assignment is given as,

ACG→TG[ i, j ] = 1, if i th nucleus centroid ∈ j th tissue region

ACG→TG[ i, j ] = 0, otherwise
(4.2)

Cell-to-tissue hierarchies for a tissue region are presented in Figure 4.2. Each nucleus
is assigned to one and only one tissue region. If a segmented nucleus is at the border
of multiple tissue regions, the nucleus is assigned to the tissue region that it has the
maximum overlap with. Formally for a given TRoI, a HACT representation is formulated
as GHACT := {GCG, GTG, ACG→TG}.

4.3.4 Graph learning

The HACT graph for a TRoI is processed by a hierarchical GNN to map TRoI composition
to TRoI subtype. To this end, we propose HierArchical Cell-to-Tissue Network (HACT-
Net), a hierarchical GNN architecture shown in Figure 4.3.
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HACT-Net intakes GHACT as input and outputs a graph-level representation hHACT ∈
RdHACT . Subsequently, a multi-layer perceptron (MLP) categorizes hHACT, e. g., to a cancer
subtype. Formally, HACT-Net consists of two GNNs, i. e., Cell-GNN (CG-GNN) and
Tissue-GNN (TG-GNN), to hierarchically process the HACT graph from fine to coarse
level. In this work, we leverage the recent advances in GNNs and model HACT-Net
using PNA layers ([Corso et al., 2020]).

First, CG-GNN intakes GCG := {VCG, ECG, HCG}, and applies TCG PNA layers to build
contextualized cell-node embeddings, inline with Equation 2.4 The node embeddings
h(t)(v), ∀v ∈ VCG are iteratively updated as,

a (t+ 1)
CG (v) =⊕ u∈NCG(v) M (t)

CG

(
h (t)

CG(v), h (t)
CG(u)

)
h (t+ 1)

CG (v) = U (t)
CG

(
h (t)

CG(v), a (t+ 1)
CG (v)

) (4.3)

where t = 0, . . . , TCG is the iteration index. For a node v, first, the set of neighboring

node embeddings {h(t)CG(u)}, ∀u ∈ NCG(v) are concatenated with h(t)CG(v), and processed
by M t

CG, a MLP, to produce a set of neighborhood-aware embeddings. Then, multiple
aggregators with degree-scalers denoted by⊕ operate on the set of MLP embeddings to
extract a set of multivariate information that expresses the neighborhood distribution of
node v. Finally, the set of information is concatenated to produce the aggregated message

a(t+1)
CG (v) for node v. Afterwards, a(t+1)

CG (v) and h(t)CG(v) are concatenated and processed

by U t
CG, a MLP, to update the node embedding, i. e., h(t+1)

CG (v). Details of⊕ are

⊕ =
[

I,S(D, α = 1),S(D, α = −1)
]⊗ [

µ, σ, max, min
]

S(D, α) =
log (D + 1) α

δ
, δ =

1
|Vtrain| ∑

i∈Vtrain

log (di + 1)
(4.4)

where I is identity matrix, S is degree-scaler matrix, D is node degree matrix, δ is
normalization constant, α is scaling variable, and Vtrain is nodes in the training dataset.

[I,S(D, α = 1),S(D, α = −1)] and
[

µ, σ, max, min
]

denote the list of scalers and the

list of aggregators, respectively. The aggregators compute statistics on neighboring
multiset of nodes, and the injective scalers discriminate between the multisets of various
sizes. α = {−1, 0, 1} controls the attenuation, no scaling, or amplification of the scaling,
respectively. ⊗ denotes tensor product between scalers and aggregators, and produces
twelve operations that extract the set of multivariate information. The schematic diagram
of a PNA layer is shown in Figure 2.4.

After TCG PNA layers, an LSTM-based jumping knowledge technique ([Xu et al., 2018])
is employed to adapt to different CG sub-graph structures, i. e.,

h (TCG+1)
CG (v) = LSTM

( {
h (t)

CG(v)
∣∣∣ t = 1, . . . , TCG

} )
(4.5)
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Figure 4.4: Samples of class-wise tumor regions-of-interest in BRACS dataset.

Following the CG-GNN, the cell-node embeddings, h TCG+1
CG (v) | v ∈ VCG, and the

assignment matrix ACG→TG are used to incorporate hierarchical information and initialize
the tissue-node features in the TG, i. e.,

h (0)
TG(w) = CONCAT

(
H TG(w), ∑

v∈M (w)

h (TCG+1)
CG (v)

)
(4.6)

where CONCAT denotes concatenation andM (w) := { v ∈ VCG | ACG→TG (v, w) = 1 }
is the set of nodes in GCG mapping to a node w ∈ VTG. Analogous to Equation (4.3), GTG

is processed by TG-GNN to compute tissue-node embeddings h(t)TG(w), ∀w ∈ VTG. At
t = TTG, the embedding of each tissue-node w encodes the cell and tissue information up
to TTG-hops from w.

Similar to CG, the tissue-node embeddings in TG are processed via an LSTM-based
jumping knowledge technique to combine the intermediate tissue-node embeddings.
Finally, the graph-level embedding hHACT is produced by summing all the tissue-node
embeddings. An MLP and a softmax operation follows to map hHACT to respective TRoI
label. HACT-Net is trained end-to-end by minimizing the cross-entropy loss between the
softmax output and the ground-truth TRoI label.

Following [Dwivedi et al., 2020], after each PNA layer we include graph normalization
(GraphNorm) followed by a batch normalization (BatchNorm). Graph normalization
scales the node features by the number of nodes in the graph. Intuitively, it prevents the
node representations from being at different scales, for graphs of different sizes. This
normalization helps the network to learn discriminative topological patterns when the
number of nodes vary significantly within a class.

4.4 Datasets

BRACS dataset: As part of this work, we introduce a new dataset termed as BReAst
Cancer Subtyping (BRACS). It contains 4391 TRoIs from 325 H&E breast carcinoma
WSIs. The WSIs were selected from the archives of the Department of Pathology at
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Figure 4.5: Overview of the variability for DCIS category in BRACS. The samples depict variations
in, (a, b, c) tumor size, (d, e) staining appearance, sub-patterns: (f) low-grade Papillary, (g)
moderate-grade Cribriform, (h, i) high-grade Solid and Comedo, (j, k) number of glandular regions
per TRoI, and artifacts due to tissue and slide preparation: (l) tissue-folding or tear, (m) ink stain,
(n) blur. Similar variability also persists in other categories in BRACS.

National Cancer Institute- IRCCS-Fondazione Pascale, Naples, Italy. They are scanned
with an Aperio AT2 scanner at 0.25 µm/pixel resolution. The TRoIs were selected and
annotated using QuPath ([Bankhead et al., 2017]) as being Normal, Benign, Usual ductal
hyperplasia (UDH), Atypical Ductal Hyperplasia (ADH), Flat Epithelial Atypia (FEA),
Ductal Carcinoma In Situ (DCIS), and Invasive. Figure 4.4 presents sample TRoIs from
all cancer subtypes in BRACS. Each TRoI was first annotated independently by three
pathologists. TRoIs with disagreement were further discussed and annotated by the
consensus. Note that the pathologists used the entire WSI context during annotation.
Figure 4.5 presents some DCIS samples in BRACS dataset, and highlight the included
appearance variability. Such TRoI variability is typical in practice, and were included
in BRACS to mimic the real world diagnosis. It ensures a realistic and representative
evaluation set, with results readily applicable in the field.

Table 4.1 presents category-wise statistics of the TRoIs in BRACS. The statistics demon-
strate a high variation in TRoI dimensions. We also include the statistics for the CG and
TG representations constructed by our framework, which indicate a large variation in
the size of the entity-graph representations. For evaluations on BRACS, we partition the
TRoIs into train, validation, and test sets at the WSI-level, such that two TRoIs from the
same WSI do not fall in different sets. The WSI-level splitting was performed randomly,
ensuring a comparable number of TRoIs per cancer subtype. Such partitioning aimed for
a fair evaluation of the compared methods.

BACH dataset: We evaluated the proposed methodology also on the publicly available
microscopy image dataset, i. e., the Grand Challenge on BreAst Cancer Histology images
BACH ([Aresta et al., 2019]). It consists of 400 training and 100 test images from four
breast cancer subtypes, i. e., Normal, Benign, DCIS, and Invasive. All images are acquired
using a Leica DM 2000 LED microscope and a Leica ICC50 HD camera. These images
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Table 4.1: Key statistics of the BRACS dataset.

Metric Normal Benign UDH ADH FEA DCIS Invasive Total

Im
ag

e

Number of images 512 758 471 568 783 749 550 4391

#pixels (in million) 2.8±2.7 5.7±4.5 2.4±2.9 2.2±2.0 1.2±1.1 5.0±5.0 8.2±5.4 3.9±4.3

Max/Min pixel ratio 75.3 97.9 180.1 75.3 58.3 128.6 62.4 235.6

C
G

Number of nodes 994±732 1826±1547 903±910 863±730 470±352 1723±1598 3609±2393 1468±1642

Number of edges 3759±2643 6103±5420 3371±3675 3098±2781 1738±1395 5728±5811 12490±10011 5102±6089

Max/Min node ratio 71.9 126.6 133.3 104.2 45.2 161.3 113.6 256.4

TG

Number of nodes 107±106 217±233 88±93 100±91 45±32 225±217 423±317 172±217

Number of edges 509±545 1012±1236 393±450 480±474 194±159 1111±1123 2025±1741 815±1125

Max/Min node ratio 169.5 312.5 125.0 178.6 416.7 312.5 101.0 434.8

Im
ag

e
sp

lit Train 342 586 303 405 599 562 366 3163

Validation 86 87 88 77 85 97 82 602

Test 84 85 80 86 99 90 102 626

W
SI

sp
lit

Train 67 86 59 38 37 33 41 198

Validation 28 24 24 28 17 21 19 68

Test 15 16 20 17 12 16 16 59

are in RGB TIFF format and have a fixed size of 2048×1536 pixels and a pixel scale of
0.42×0.42 µm. Notably, BRACS presents three major advantages over BACH:

• Number of images: The train and test sets of BRACS are nearly 10 times and 6
times the size of the train and test sets of BACH, respectively. The large test set
ensures a robust evaluation of the methods.

• Diverse subtypes: BRACS includes diagnostically complex pre-cancerous atypical
(ADH and FEA) categories, which represent a major diagnostic dilemma typical in
practice due to their high risk of progressing to cancer. The seven cancer subtypes
in BRACS represent a broad spectrum of breast cancer in histopathology.

• Large variability: The aforementioned high variability in BRACS in terms of TRoI
appearances and dimensions is clinically more representative, and corresponds to a
more realistic scenario of breast cancer subtyping.

4.5 Results

In this section, we comparatively assess the proposed method for breast cancer subtyping.
First, we introduce state-of-the-art CNN and GNN baselines, and their implementation
schemes. Second, we conduct ablations on BRACS to examine the impact of various
components in our framework. Third, we evaluate the classification performance of our
method and compare with the baselines, on BRACS and BACH datasets for different clas-
sification settings. Finally, we include a comparison of HACT-Net with three independent
expert-pathologists.

4.5.1 Baselines

• Single-scale CNN processes TRoIs at a single magnification. A CNN is trained to
predict patch-wise cancer subtypes, and we aggregate the patch-wise predictions to
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produce a TRoI-level prediction. We experiment with images at three magnifications, i. e.,
10×, 20×, and 40×, denoted herein as CNN(10×), CNN(20×), and CNN(40×), using
the same network architecture and training scheme. For each scale, we extract patches
of size 128×128 pixels with a stride of 64 pixels. The CNN follows the single-scale
training procedure by [Sirinukunwattana et al., 2018], and patch-wise predictions are
aggregated using the Agg-Penultimate strategy by [Mercan et al., 2019a]. We use transfer
learning with a ResNet-50 architecture, pre-trained on ImageNet, as the CNN backbone.
Following feature extraction by ResNet-50, a two-layer MLP with 128 channels classifies
the patches. To improve the classification, the ResNet-50 parameters are fine-tuned. Adam
optimizer ([Kingma et al., 2015]) with 10−3 learning rate, a batch size of 16, and a dropout
of 0.2 is used to optimize the categorical cross-entropy objective.

• Multi-scale CNN processes the TRoIs at multiple scales. We extract concentric patches
of size 128×128 pixels from multiple magnifications and follow the “Late fusion with
single-stream + LSTM" training procedure from [Sirinukunwattana et al., 2018]. We
operate at two settings, i. e., (10×+20×) and (10×+20×+40×), and denote by prepending
Multi-scale CNN in front of each. The patch-wise predictions are aggregated using the
Agg-Penultimate strategy by [Mercan et al., 2019a]. On the concatenated features from
the LSTM, we use a two-layer MLP of 128 channels to classify the patches. The training
strategy and hyperparameters are the same as Single-scale CNN.

• CGC-Net is the Cell Graph Convolutional Network (CGC-Net) proposed by [Zhou
et al., 2019a], and it is the state-of-the-art in classifying CG representations for TRoIs.
We construct the CG topology for a TRoI using thresholded kNN strategy presented in
Section 4.3.3.1. We initialize the CG nodes with hand-crafted features, employ the Adap-
tive GraphSage-based CGC-Net architecture, and follow the training strategy proposed
by [Zhou et al., 2019a].

• Patch-GNN implements the method proposed by [Aygüneş et al., 2020], which is the
state-of-the-art GNN method for classifying patch-graph representations of TRoIs. It
incorporates local inter-patch context through a GNN to construct a graph-level features,
which is then processed by an MLP to classify the TRoIs. We experiment with Patch-
GNN at three scales, i. e., 10×, 20×, and 40×, denoted herein as Patch−GNN(10×),
Patch−GNN(20×), and Patch−GNN(40×). At each magnification, we extract patches
of size 128×128 to construct a TRoI-specific patch-graph. We employ the network
architecture and training strategy proposed by [Aygüneş et al., 2020].

• CG-GNN is provided as a standalone CG-based learning baseline, to compare with
our proposed hierarchical learning. CG-GNN uses PNA layers, an LSTM-based jumping
knowledge, sum readout, and a two-layer MLP classifier. We follow the CG representation
strategy as described in Section 4.3.3.1.

• TG-GNN is provided as a standalone TG-based learning baseline, to compare with
our proposed hierarchical learning. TG-GNN uses the same architecture as the CG-GNN,
with the node features directly initialized by H TG instead of Equation (4.6).

• CONCAT-GNN is provided to evaluate the impact of hierarchical graph representation
and learning. CONCAT-GNN utilizes standalone CG and TG representations, respec-
tively, as input to standalone CG-GNN and TG-GNN to produce hCG and hTG graph-level
embeddings. The TRoI level embedding is constructed by concatenating the graph-level
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embeddings, i. e., h CONCAT = CONCAT( hCG, h TG). Finally, a two-layer MLP classifies
h CONCAT into a cancer subtype.

4.5.2 Implementation

Graph representations: CG representations (Section 4.3.3.1) use, i) patches of size 72×72,
and ii) a CNN of ResNet-34 or ResNet-50 to initialize the node features. TG represen-
tations (Section 4.3.3.2) use, i) patches of size 144×144, and ii) a CNN of ResNet-34 or
ResNet-50 to initialize the node features.

Graph architecture and learning: CG-GNN, TG-GNN, CONCAT-GNN, and HACT-Net
all share the same options and hyperparameters below,

• Number of PNA layers in GNN: [3, 4, 5]
• Number of MLP layers in a PNA layer: 2
• Number of channels in a PNA-layer MLP: 64
• Graph-level embedding dimension: 128
• Number of MLP layers in output classifier: 2
• Number of channels in output MLP classifier: 128
• Training parameters: Adam optimizer ([Kingma et al., 2015]) with a learning rate

of 10−3, batch size of 16, and a categorical cross-entropy objective.

Evaluation metrics: Considering the imbalanced number of TRoIs per class in train,
validation, and test sets (see Table 4.1), we evaluate the classification performance using
weighted F1-score, an average weighted by the number of true instances for each class.
The best weighted F1-scores on the validation set is used as the model selection criteria
during the training of each method. To present any sensitivity to initialization, we report
the mean and standard deviation of each model on the test set by training them three
times using random weight initialization. Further, we present precision, recall, and
confusion matrices to indicate the distribution of class predictions.

Computational resources: All the experiments were conducted using PyTorch ([Paszke
et al., 2019]) and Deep Graph Library (DGL) ([Wang et al., 2019b]), on NVIDIA Tesla P100
GPUs and POWER8 processors.

4.5.3 Ablation studies

We conduct ablation to evaluate the impact of three major components of our methodology
on TRoI classification performance, i. e., i) node feature initialization, ii) GNN layer type,
and iii) jumping knowledge technique. Each component is analyzed individually, while
fixing the others. Ablations are performed on BRACS for classifying the TRoIs into
7-classes.

4.5.3.1 Impact of node feature initialization

The performance of GNNs eminently rely on the initial node features ([Kipf et al., 2017]).
In our context, we analyze the impact of initial morphological features of the nodes with
the following three feature initialization schemes:
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Table 4.2: Ablation: Impact of node fea-
tures. Mean and standard deviation of 7-class
weighted F1-scores. Results expressed in %.

Weighed F1

CG-GNN: No morphological features 45.24±1.5

CG-GNN: Hand-crafted morphological features 48.34±5.2

CG-GNN: CNN morphological features 55.94±1.0

TG-GNN: No morphological features 36.81±0.7

TG-GNN: Hand-crafted morphological features 51.62±2.1

TG-GNN: CNN morphological features 56.62±1.3

CONCAT-GNN: No morphological features 47.62±1.6

CONCAT-GNN: Hand-crafted morphological features 51.55±1.3

CONCAT-GNN: CNN morphological features 57.01±2.3

HACT-Net: No morphological features 48.70±0.2

HACT-Net: Hand-crafted morphological features 52.46±0.2

HACT-Net: CNN morphological features 61.53±0.9

Table 4.3: Ablation: Impact of jumping knowl-
edge. Mean and standard deviation of 7-class
weighted F1-scores. Results expressed in %.

Weighed F1

CG-GNN: No aggregator 55.53±0.8

CG-GNN: Concatenation 55.82±1.0

CG-GNN: LSTM 55.94±1.0

TG-GNN: No aggregator 55.30±0.8

TG-GNN: Concatenation 56.07±0.8

TG-GNN: LSTM 56.62±1.3

CONCAT-GNN: No aggregator 57.67±4.5

CONCAT-GNN: Concatenation 56.28±2.7

CONCAT-GNN: LSTM 57.01±2.3

HACT-Net: No aggregator 49.16±1.1

HACT-Net: Concatenation 59.78±1.6

HACT-Net: LSTM 61.53±0.9

• No morphological features: The nodes of an entity-graph are initialized with only
the spatial features. Experiments with this setting demonstrate the impact of standalone
graph topology on the classification performance.

• Hand-crafted morphological features: The entity-graph nodes are initialized with
hand-crafted morphological features as suggested by [Zhou et al., 2019a], i. e., i) texture
features: difference of average foreground to background; standard deviation, skewness,
and mean entropy of intensities; dissimilarity, homogeneity, energy, and angular second
moment from Gray-Level Co-occurrence Matrix; and ii) shape features: eccentricity, area,
maximum and minimum axis lengths, perimeter, solidity, and orientation. Note that, the
hand-crafted features for CG and TG are computed, respectively, from the segmented
instances of nuclei and tissue regions.

• CNN morphological features: The morphological features of the entity-graph nodes
are initialized with CNN features (ResNet-34 pre-trained on ImageNet) extracted from
patches around the centroids of the nuclei and tissue regions.

Experimental results in Table 4.2 indicate that the standalone CG topology is more
discriminative for cancer subtyping than TG topology. The combination of CG and
TG topologies further improves discriminative ability. The best performance achieved
with the HACT topology confirms the strength of hierarchical representations. Further,
including morphological features significantly improves the classification. The superiority
of graphs with CNN-based morphological features indicate the richness of morphological
information acquired by CNNs, compared to hand-crafted measures.

4.5.3.2 Impact of GNN layer type

We investigate the impact of two state-of-the-art GNN layers, i. e., GIN and PNA on the
classification performance. The experiments use CNN-based node feature initialization
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Table 4.4: Ablation: Impact of GNN layers. Mean and standard deviation of 7-class weighted
F1-scores. Results expressed in %.

Weighed F1

CG-GNN: GIN 55.70±0.5

CG-GNN: PNA 55.94±1.0

TG-GNN: GIN 55.33±1.4

TG-GNN: PNA 56.62±1.3

CONCAT-GNN: GIN 56.20±2.1

CONCAT-GNN: PNA 57.01±2.3

HACT-Net: GIN 59.73±1.2

HACT-Net: PNA 61.53±0.9

and LSTM-based jumping knowledge. Results in Table 4.4 demonstrate that GNNs with
PNA layers outperform GNNs with GIN layers, for all the four GNN constructions.

4.5.3.3 Impact of jumping knowledge technique

To investigate the impact of jumping knowledge, we experiment with three settings: no
jumping knowledge, CONCAT-based, and LSTM-based. LSTM-based technique follows
Equation (4.5). Based on this, CONCAT-based technique replaces the LSTM operation
with concatenation. The experiments use CNN-based node feature initialization and PNA
layers. Results in Table 4.3 show a generally positive impact of the jumping knowledge.
Compared to CONCAT, the LSTM-based technique learns better dependencies between
GNN layers, thus generates better graph embeddings.

4.5.3.4 Ablation summary

The ablation experiments conclude the following choice of components for designing our
methodology, i) CNN-based initialization of node-level morphological features, ii) use of
PNA layers, and iii) an LSTM-based jumping knowledge technique.

4.5.4 Classification results on BRACS dataset

We evaluate our proposed methods, comparatively with CNN and GNN baselines. To
analyze the performance for different clinical applications and histopathological needs,
we evaluate and report the results separately in the following three settings:

4.5.4.1 Setting 1: 7-class classification

Here, we classify the TRoIs into 7-classes, i. e., Normal, Benign, UDH, ADH, FEA, DCIS,
and Invasive, for the differentiation of a large spectrum of breast cancer subtypes. Table 4.5
tabulates the classification performance of the compared methods.

Among single-scale CNNs, CNN(10×) performs the best, indicating the importance of
global context information for TRoI classification. Multi-scale CNNs using both global
and local context outperform single-scale CNNs. Such benefit from context is significant
for ADH, FEA, and DCIS categories, which all require both local and global context for the



4.5 results 69

Table 4.5: Mean and standard deviation of per-class F1-scores and weighted F1-scores for 7-class
classification setting. Results are expressed in %. The best result is in bold and the second best is
underlined.

Method Normal Benign UDH ADH FEA DCIS Invasive Weighted F1

C
N

N

CNN (10×) 48.67±1.7 44.33±1.9 45.00±5.0 24.00±2.8 47.00±4.3 53.33±2.6 86.67±2.6 50.85±2.6

CNN (20×) 42.00±2.2 42.33±3.1 39.33±2.0 22.67±2.5 47.67±1.2 50.33±3.1 77.00±1.4 46.85±2.2

CNN (40×) 32.33±4.6 39.00±0.8 23.67±1.7 18.00±0.8 37.67±2.9 47.33±2.0 70.67±0.5 39.41±1.9

Multi-scale CNN 48.33±2.0 45.67±0.5 41.67±5.0 32.33±0.9 46.33±1.4 59.33±2.0 85.67±1.9 52.27±1.9

(10×+20×)

Multi-scale CNN 50.33±0.9 44.33±1.2 41.33±2.5 31.67±3.3 51.67±3.1 57.33±0.9 86.00±1.4 52.83±1.9

(10×+20×+40×)

G
N

N

CGG-Net 30.83±5.3 31.63±4.7 17.33±3.4 24.50±5.2 58.97±3.6 49.36±3.4 75.30±3.2 43.63±0.5

Patch-GNN (10×) 52.53±3.3 47.57±2.2 23.67±4.6 30.66±1.8 60.73±5.3 58.76±1.1 81.63±2.2 52.10±0.6

Patch-GNN (20×) 43.86±4.2 43.37±3.2 19.47±2.3 25.73±2.9 55.57±2.1 52.86±1.8 79.20±1.0 47.10±0.7

Patch-GNN (40×) 41.70±3.1 32.93±1.0 25.07±3.7 25.63±2.0 49.47±3.5 48.60±4.2 71.57±5.1 43.23±0.6

O
ur

s

CG-GNN 58.77±6.8 40.87±3.0 46.82±1.9 39.99±3.6 63.75±10.5 53.81±3.9 81.06±3.3 55.94±1.0

TG-GNN 63.59±4.9 47.73±2.9 39.41±4.7 28.51±4.3 72.15±1.3 54.57±2.2 82.21±4.0 56.62±1.3

CONCAT-GNN 60.97±4.5 43.06±2.3 41.96±4.7 26.10±3.7 71.29±2.1 60.83±3.7 85.42±2.7 57.01±2.3

HACT-Net (Proposed) 61.56±2.1 47.49±2.9 43.60±1.9 40.42±2.5 74.22±1.4 66.44±2.6 88.40±0.2 61.53±0.9

diagnosis. Multi-scale CNNs also outperform CGC-Net and Patch-GNNs. Interestingly,
at each magnification, Patch-GNN outperforms single-scale CNN, which affirms the
importance of relational and topological information incorporated in the graphs.

Comparing our proposed GNN solutions, we observe that CG-GNN significantly out-
performs CGC-Net, indicating the superiority of CNN-based node feature initialization
over handcrafted features, and the significance of GNNs with expressive PNA layers
over Adaptive GraphSage in CGC-Net. We notice that CG-GNN and TG-GNN provide
comparable performance overall. However, they outperform each other for Normal,
Benign, UDH, ADH, and FEA categories, displaying the importance of complementary
information captured by standalone TG and CG representations. Further, both HACT-
Net and CONCAT-GNN provide overall superior performance compared to all CNN
and GNN baselines. HACT-Net significantly outperforms CONCAT-GNN showing the
significance of hierarchical modeling and learning. CONCAT-GNN produces overall
comparable or superior performance to CG-GNN and TG-GNN, although for individual
classes, CONCAT-GNN is rarely better than the two, suggesting that it may be using com-
plementary information from CG and TG. Such complementary information is indeed
best utilized by HACT-Net, with high per-class and overall classification performance.
Though HACT-Net achieves the third best result for the UDH category, it uses the com-
plementarity of CG and TG to provide better classification than TG-GNN. Moreover, the
misclassified UDH samples are predominantly categorized as Benign due to the expected
ambiguity between Benign and UDH classes. All the proposed GNNs often outperform
all CNN baselines, establishing the potential of entity-based analysis.

Figure 4.6 presents per-class precision and recall for CG-GNN, TG-GNN, CONCAT-
GNN, and HACT-Net. HACT-Net produces the highest precision values for most of
the classes. The recall ranking between CG-GNN and TG-GNN varies across classes,
whereas HACT-Net consistently yields good recall values. Further, standard deviation
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Figure 4.6: Mean and standard deviation of per-class precision and recall for 7-class classification.

of class-wise precision and recall values are the lowest for HACT-Net, for most classes.
Figure 4.7 presets row-normalized aggregated 7-class confusion matrix across three runs
for HACT-Net. It indicates ambiguities between i) Normal and Benign, ii) UDH and
ADH, and iii) ADH and DCIS. Notably, these pair-wise classes bear high pathological
ambiguity and are diagnostically very challenging.

4.5.4.2 Setting 2: 4-class classification

This setting categorizes TRoIs into 4-classes as per cancer risk: Normal, Non-cancerous
(Benign + UDH), Precancerous (ADH + FEA), and Cancerous (DCIS + Invasive). Clas-
sification performance of CNN and GNN baselines, and HACT-Net are presented in
Table 4.6. Single scale CNNs exhibit the same behavior as before. However, combining
multiple magnifications in multi-scale CNNs does not improve the classification over
the single-scales. Among the baselines, CGC-Net and Patch-GNNs perform comparable
or inferior to the CNNs, with a low-magnification CNN(10×) outperforming the others.
Similarly to the 7-class setting, our proposed methods are superior to the baselines.
HACT-Net produces the best overall performance, with the best classification perfor-
mance for Normal, Precancerous, and Cancerous categories. To highlight, HACT-Net
achieves ≈ 66% F1-score for the diagnostically challenging Precancerous category.

4.5.4.3 Setting 3: Binary classifications

In this setting, we replicate the typical decision process of a pathologist for breast cancer
subtyping which follows a diagnostic decision tree as presented in Figure 4.8. It is
inspired by the classification scheme presented by [Mercan et al., 2018]. Note that such
individual binary decisions are less constrained compared to multi-class classification,
thus allows for better discrimination between a selected pair of classes. The binary
classifiers can assist pathologists in categorizing ambiguous cases at different bifurcations
of the decision tree. Table 4.7 presents the results for six individual binary classifications,
at the bifurcations in the decision tree. Results are consistent with the 7-class and 4-
class classification settings, with HACT-Net consistently outperforming all baselines and
providing the best aggregated score.

4.5.4.4 Domain expert comparison on BRACS dataset

To further benchmark our proposed methodology as well as to assess the quality of the
introduced BRACS dataset, we acquired annotations of the BRACS test set from addi-
tional independent pathologists. For such comparison with domain experts, we follow
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Table 4.6: Mean and standard deviation of per-class F1-scores and weighted F1-scores for 4-class
classification setting. Results are expressed in %. The best result is in bold and the second best is
underlined.

Method Normal Non-cancerous Precancerous Cancerous Weighted F1

C
N

N

CNN (10×) 54.33±3.7 56.00±0.8 56.33±1.2 83.67±0.9 64.36±1.4

CNN (20×) 45.33±4.6 55.33±0.4 52.33±1.9 81.67±2.0 61.18±1.9

CNN (40×) 42.00±4.9 51.00±0.8 47.67±4.1 77.67±2.0 56.99±2.7

Multi-scale CNN (10×+20×) 51.67±5.8 55.33±1.2 52.67±2.9 80.67±1.9 61.82±2.5

Multi-scale CNN (10×+20×+40×) 51.33±3.3 56.33±2.0 57.00±1.6 81.33±3.7 63.52±2.6

G
N

N

CGG-Net 34.53±2.9 47.23±3.7 62.90±2.8 82.20±1.0 59.87±2.3

Patch-GNN (10×) 53.13±4.4 46.23±2.4 63.96±3.8 77.43±3.2 61.93±2.5

Patch-GNN (20×) 53.46±1.8 47.16±2.8 63.20±3.8 74.90±3.4 61.26±2.9

Patch-GNN (40×) 40.90±2.7 38.67±2.8 56.77±3.9 72.20±2.6 54.60±1.9

O
ur

s

CG-GNN 52.95±12.1 56.55±3.7 61.53±3.0 84.47±0.9 66.10±2.6

TG-GNN 52.96±6.8 56.52±2.8 64.36±1.0 82.21±0.8 66.24±1.1

CONCAT-GNN 54.54±1.6 56.63±1.7 62.58±1.4 81.80±0.8 65.83±0.1

HACT-Net (Proposed) 66.08±3.7 55.28±1.7 66.21±0.9 84.91±0.8 69.04±0.5

Figure 4.7: Mean and standard deviation of row-
normalized 7-class confusion matrix.

Figure 4.8: Binary decision tree used by pathol-
ogists for breast cancer diagnosis.

the evaluation protocol in [Elmore et al., 2015]. We recruited three board-certified pathol-
ogists (other than the original three pathologists who provided the initial annotations,
namely our ground truth labels), from three different medical centers, to further ensure
independence: • National Cancer Institute- IRCCS-Fondazione Pascale, Naples, Italy;
• Lausanne University Hospital, CHUV, Lausanne, Switzerland; and • Aurigen, Centre
de Pathologie, Lausanne, Switzerland. These experts are specialized in breast pathology
and have been in practice for over twenty years. The pathologists independently and
remotely annotated BRACS test set TRoIs, without having access to respective WSIs. This
protocol ensures equal field-of-view for all the pathologists as well as our methodology.

The independent pathologists’ annotations are compared to the ground truth, with the
results shown in Table 4.8. We present per-class F1-scores, overall weighted F1-score, and
overall weighted accuracy for each pathologist. We also include the aggregated statistics
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Table 4.7: Mean and standard deviation of weighted F1-scores for binary classification setting.
Further, the aggregated mean and standard deviation for the six binary tasks are reported. Results
are expressed in %. The best result is in bold and the second best is underlined.

Method I vs N+B+U vs N vs B vs A+F vs A vs Aggregated

N+B+A+U+F+D A+F+D B+U U D F

C
N

N

CNN (10×) 95.66±0.5 81.24±0.4 69.83±0.4 76.12±1.1 73.44±2.6 77.59±1.7 78.90±1.4

CNN (20×) 92.39±0.4 80.84±0.4 66.52±2.1 74.75±1.5 67.87±1.8 71.78±2.5 75.69±1.7

CNN (40×) 90.74±0.6 79.92±1.7 62.36±2.1 68.13±4.3 64.86±3.0 66.91±1.7 72.15±2.5

Multi-scale CNN (10×+20×) 94.31±1.3 80.89±1.3 67.99±1.9 75.58±2.1 72.07±1.8 76.91±2.2 77.96±1.8

(10×+20×)

Multi-scale CNN 95.12±1.1 82.21±0.3 70.87±2.1 72.89±2.3 72.08±3.2 75.47±3.7 78.11±2.4

(10×+20×+40×)

G
N

N

CGG-Net 91.60±2.1 79.73±1.5 63.67±3.1 62.37±3.0 81.56±1.6 73.80±5.4 75.46±3.1

Patch-GNN (10×) 95.80±0.4 76.53±0.3 72.57±1.1 72.87±3.1 77.17±0.8 78.26±2.6 78.87±1.7

Patch-GNN (20×) 93.70±0.4 76.63±1.4 70.10±1.9 69.77±3.1 74.10±0.1 81.03±1.8 77.55±1.8

Patch-GNN (40×) 92.40±0.9 74.43±0.6 71.10±1.7 67.40±2.5 72.97±0.7 76.40±1.9 75.78±1.6

O
ur

s

CG-GNN (Ours) 94.52±0.4 83.79±0.3 75.71±1.7 73.15±3.3 77.48±1.7 84.33±0.5 81.50±1.7

TG-GNN 96.00±0.6 80.38±0.8 69.51±3.1 76.12±1.0 80.67±0.2 84.18±3.6 81.14±2.0

CONCAT-GNN 95.91±0.6 83.21±0.7 71.84±1.5 75.67±1.8 80.14±2.6 88.88±3.9 82.61±2.1

HACT-Net (Proposed) 96.32±0.6 83.63±0.7 76.84±0.7 77.66±0.4 81.11±0.7 89.35±0.3 84.15±0.6

of the three pathologists for benchmarking HACT-Net with domain experts. Table 4.8
indicates that HACT-Net outperforms the domain experts in distinguishing TRoIs of
diagnostically challenging classes, i. e., atypia and hyperplasia, while yielding comparable
performance for the normal and cancerous categories. Per-class standard deviations of
pathologists’ statistics show the expected high inter-observer variability in breast cancer
diagnosis. Compared to the pathologists, HACT-Net yields a superior weighted accuracy
and weighted F1 given the ground truth diagnoses for the 7-class classification.

To benchmark the BRACS dataset with respect to the dataset by [Elmore et al., 2015],
we compare the aggregated pathologist statistics on both datasets for the same set of
classes, i. e., Benign without atypia (Normal + Benign + UDH), Atypia (ADH + FEA),
DCIS, and Invasive. Note that the dataset by [Elmore et al., 2015] consists of 240 breast
biopsy slides, while BRACS consists of 626 TRoI images. For the dataset by [Elmore et al.,
2015], class-wise concordance rates (class-weighted average accuracy of 115 pathologists
to a three-expert consensus) are 87%, 48%, 84%, and 96%, respectively for the four
aforementioned classes. For BRACS, the similar class-wise concordance rates are 87%,
50%, 72%, and 90%, respectively. The class-wise concordance rates exhibit a similar trend
in both datasets. Differences can be attributed to differing fields-of-view, i. e., TRoI vs.
WSI, accessible to the pathologist during annotation.

Table 4.9 presents the inter-observer concordance rates for the BRACS test set. We
notice significant differences in the concordance rates between pathologists 2 vs.3̇ and
pathologist 1 vs. the other two. This can be reasoned to differing histopathology practices
across different regions.
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Table 4.8: Comparison between HACT-Net and domain expert pathologists for 7-class breast cancer
subtyping on BRACS dataset. Per-class F1-scores, weighted F1-scores and accuracy for 7-class
classification are presented. Results are expressed in %. The best results are in bold.

Normal Benign UDH ADH FEA DCIS Invasive Weighted F1 Weighted Acc

Pathologist 1 67.53 53.92 41.90 36.00 19.13 71.59 94.00 55.30 56.71

Pathologist 2 47.83 52.94 25.00 35.37 65.22 68.00 94.00 57.07 57.99

Pathologist 3 39.66 49.59 49.43 42.29 54.12 65.19 89.47 56.71 56.55

Pathologist stats 51.57±11.7 52.15±1.8 38.78±10.2 37.89±3.1 46.16±19.6 68.26±2.6 92.49±2.1 56.36±0.8 57.08±0.6

HACT-Net stats 61.56±2.1 47.49±2.9 43.60±1.9 40.42±2.5 74.22±1.4 66.44±2.6 88.40±0.2 61.53±0.9 63.21±0.3

Table 4.9: Concordance among three independent pathologists for annotating BRACS test dataset.
Results are expressed in %.

Pathologist 1 Pathologist 2 Pathologist 3 Ground truth

Pathologist 1 - 47.60 50.96 56.71

Pathologist 2 - - 64.38 57.99

Pathologist 3 - - - 56.55

4.5.4.5 Computational time analysis

We report computation time for processing a tumor RoI of size 1000× 1000 pixels on a
single-core POWER8 processor combined with an NVIDIA P100 GPU. Stain normalization
with the Macenko method takes 0.8 seconds (CPU-only), CG generation 2.51 seconds,
and TG generation 4.14 seconds. Thus, the overall computational time for transforming
the RoI into HACT representation is 7.92 seconds. The superpixel extraction step can be
further optimized by using fast GPU implementations, e. g., as proposed by [Jampani
et al., 2018]. Provided the HACT representation, HACT-Net renders near real-time
inference by requiring 34.11 milliseconds. Additional run-time analysis is presented
by [Jaume et al., 2021a].

4.5.5 Classification results on BACH dataset

We evaluate the methods on the public BACH dataset. Considering its smaller training set
of 400 images, we employ different image augmentation techniques for training HACT-
Net. To this end, we use rotation, mirroring, and color augmentations on the training
images before extracting HACT graph representations. We do not use other graph
augmentation techniques, such as random node and edge dropping, as they may hamper
the meaningful topological distribution of the biological entities. The implementation
strategies and hyperparameters in Section 4.5.2 are employed for training HACT-Net.
Classification performance of HACT-Net and the current state-of-the-art results on the
BACH dataset are listed in Table 4.10. Our predictions have been evaluated independently
by the organizers of the BACH challenge, ensuring a fair comparison. HACT-Net results
in comparable classification accuracy with the state-of-the-art methods. The difference
in the accuracies are not significant considering only 100 TRoIs in the test set. Notably,
our methodology employs a single, unified network, where the other listed competitors
employ an ensemble strategy with multiple networks during inference.
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Table 4.10: Accuracy of 4-class breast cancer subtyping in BACH. Results are expressed in %.

Methods Accuracy

Ensemble
networks

([Aresta et al., 2018]

[Aresta et al., 2019])

Wang et al. (2019) 95.00

[Marami et al., 2018] 94.00

Yang et al. (2019) 93.00

[Chennamsetty et al., 2018] 87.00

Kwok et al. (2018) 87.00

[Brancati et al., 2018] 86.00

Single network HACT-Net 91.00

Figure 4.9: Qualitative comparison of CG-GNN, TG-GNN, and HACT-Net for 7-class classification.
Predictions by the classifiers are noted below each example. Red and Green denote incorrect
and correct classification, respectively. (a,b) TRoIs which TG-GNN misclassifies, while CG-GNN
and HACT-Net classify correctly by using the nuclei characteristics. (c,d) TRoIs misclassified by
CG-GNN, while correctly classified by TG-GNN and HACT-Net by using context information from
necrotic regions. (e,f,g,h) TRoIs which both CG-GNN and TG-GNN misclassify, where HACT-Net
classifies correctly by utilizing both cell and tissue microenvironments together.

4.5.6 Qualitative analysis

Qualitative assessment of a few TRoIs from the BRACS dataset using HACT-Net, CG-
GNN, and TG-GNN is presented in Figure 4.9. In Figure 4.10, we use GraphGradCAM
([Pope et al., 2019; Jaume et al., 2021b]), a post-hoc gradient based feature attribution
technique, to highlight the nuclei and tissue-region nodes in CG and TG, respectively,
which HACT-Net focuses on while classifying the TRoIs. Given the DCIS examples in
Figures 4.10(a-c, g-i), HACT-Net is seen to focus on the diagnostically relevant tumorous
epithelium and necrotic regions in TG, while ignoring the less important stroma and
lumen, cf. Figures 4.10(b,h). Further, within the relevant tissue regions, HACT-Net focuses
on a subset of tumorous epithelial nuclei in CG, as shown in Figures 4.10(c,i). Interestingly,
we observe in Figures 4.10(h,i) that HACT-Net uses complementary information from
the necrotic region captured by TG, but not by CG. Similar observations of HACT-Net
considering the diagnostically relevant regions can be made for FEA and Benign examples
shown in Figures 4.10(d-f, j-l). Noticeably, such feature attribution analysis of GNNs
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Figure 4.10: Feature attribution (FA) maps of HACT-Net on TG and CG for four sample TRoIs
for 7-class classification: Sample TRoIs of (a,g) DCIS, (d) FEA, and (j) Benign classes, with their
corresponding feature attribution maps on (b,h,e,k) TG and (c,i,f,l) CG.

Figure 4.11: (a) A DCIS sample including tissue-tear and blur artifacts. (b) Detected superpixels. (c)
Detected nuclei. The classifications by CG-GNN, TG-GNN and HACT-Net are indicated, where
Red and Green denote incorrect and correct classification.

localizes and highlights the focus of deep networks in the given entity-paradigm, which is
both more interpretable and more explainable compared to feature attribution strategies
in a pixel-paradigm ([Jaume et al., 2020; Jaume et al., 2021b]). Interestingly, we also
analyze the impact of tissue or slide preparation artifacts on the model performance. In
Figure 4.11, we present a DCIS image with tissue-tear and blur artifacts. We observe
that the detected superpixels do not aptly depict the tissue in the blur region, and
consequently the TG-GNN using standalone TG misclassifies it. However, the nuclei
detection is less impacted by the artifact, which allows the CG to appropriately encode
the cell microenvironment and correctly classify the sample. To highlight, HACT-Net
utilizing the complementary information from both CG and TG compensates for the issue
in TG, and correctly identifies the subtype.
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4.6 Conclusion

Pixel-based processing of pathology images suffers from the context-resolution trade-off,
and misses the notion of biological entity and tissue composition. In this work, we
propose an entity-based tissue representation and learning to address these issues. To
that end, our two specific contributions are: (i) a hierarchical entity-graph representation
of a tissue image by incorporating multisets of pathologically intuitive biological entities,
and (ii) a hierarchical graph neural network for sequentially processing the entity-graph
representation for mapping tissue compositions to tissue subtypes. Further, we introduce
BReAst Cancer Subtyping (BRACS), a large cohort of breast tumor regions-of-interest,
annotated with breast cancer subtypes. BRACS encompasses seven breast cancer sub-
types to present a realistic breast cancer diagnosis scenario. Using BRACS as well as
a public breast cancer subtyping dataset BACH, we demonstrate herein the superior
performance of our proposed methodology for classifying breast tumor regions-of-interest
into cancer subtypes. Under various experimental settings, our methodology is shown to
outperform state-of-the-art pixel-based and entity-graph based classification approaches.
Furthermore, we benchmark our methodology on the BRACS dataset by comparing it to
three independent pathologists. Notably, our method achieves better performance for
per-cancer subtype and overall aggregated classification. Although we have evaluated
our method for breast cancer classification, the technology is easily extendable to other
tissue types and diseases. Notably, the proposed hierarchical graph methodology can
also be adapted to other image modalities, such as natural images, multiplexed images,
hyperspectral images, satellite images, and other medical imaging domains, by utilizing
domain and task-specific entities.



5
Towards Explainable Graph
Representations in Digital Pathology

Explainability of deep learning (DL) techniques in digital pathology (DP) is of great
significance to facilitate their wide adoption in clinics. Recently, graph techniques
encoding relevant biological entities have been employed to represent and assess DP
images. Such paradigm shift from pixel-wise to entity-wise analysis provides more
control over concept representation. In this paper, we introduce a post-hoc explainer to
derive compact per-instance explanations emphasizing diagnostically important entities
in the graph. Although we focus our analyses to cells and cellular interactions in breast
cancer subtyping, the proposed explainer is generic enough to be extended to other
topological representations in DP. Qualitative and quantitative analyses demonstrate the
efficacy of the explainer in generating comprehensive and compact explanations.

5.1 Introduction

Convolutional Neural Networks (CNNs), so far the most successful DL method in image
analysis, have been widely adopted to assess DP images to improve diagnosis and patient
outcome. However, concept representations of CNNs remain unexplained in DP and thus
hinder their adoption in typical workflows. Therefore, explainable DL technologies in DP
have become of paramount interest to build trust and promote the employment of DL in
clinical settings [Holzinger et al., 2017].

Typically CNNs process complex and large DP images in a patch-wise manner, followed
by aggregating the patch-wise learning to address downstream DP tasks. Recently, several
research works have been devoted to demystify the concept representations of CNNs in
automated diagnosis. Patch-level explainable methods [Graziani et al., 2018; Hägele et al.,
2020; Korbar et al., 2017; Mobadersany et al., 2018; Cruz-Roa et al., 2013; Xu et al., 2017b]
build patch-level heatmaps, where an importance score is computed per pixel to identify
the regions of importance. For instance, [Hägele et al., 2020] use layer-wise relevance
propagation [Bach et al., 2015] to generate positive scores for pixels that are positively
correlated with the class label and negative scores otherwise. Such approaches have
several limitations. First, pixel-level heatmaps fail to capture the spatial organization and

This chapter has been published as: Guillaume Jaume† , Pushpak Pati† , Antonio Foncubierta-Rodríguez, Jean-Philippe
Thiran, Orcun Goksel, Maria Gabrani, “Towards Explainable Graph Representations in Digital Pathology”, In: Interna-
tional Conference on Machine Learning Workshop on Computational Biology (CompBio), Vienna, Austria, Jul 2020,
[arXiv]
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Figure 5.1: A TRoI is transformed into a CG, and is processed by a CG-GNN to predict the cancer
subtype.

interactions of relevant biological entities. Second, the pixel-level analysis is completely
detached from any biological reasoning that pathology guidelines recommend for decision
making. Third, pixel-level explanation are common in the form of blurry heatmaps, which
then do not allow to discriminate the relevance of nearby entities and their interactions.

Recently, graph techniques have been adopted to map DP images to graph representations
and process such graphs for pathology tasks [Demir et al., 2004; Zhou et al., 2019a;
Sharma et al., 2016; Anand et al., 2019; Wang et al., 2019a; Pati et al., 2020]. Graph
representations embed biological entities and their interactions. To the best of our
knowledge, explainability of graph-based approaches for DP has not been addressed
yet. In this paper, a major step towards explainability in DP is presented based on two
proposals: First, we advocate for shifting the analysis from a pixel-space to a relevant
histological entity-space. The learning can then be regulated to specific entities and
interactions, aligned with the prior pathological knowledge. Second, we propose to adopt
an instance-level post-hoc explainability method that extracts a relevant subset of entities
and interactions from the input graph. We define this subset as the explanation of our
original entity-graph representation. We hypothesize that the explanation will be deemed
useful if and when the subset aligns with prior pathological knowledge.

In this paper, we map DP images to cell-graphs [Demir et al., 2004], where cells and
cellular interactions are represented as nodes and edges of the graph, and focus on the
interpretability of cell-graphs towards cancer subtyping.

5.2 Methodology

In this section, we first present the extraction of graph representations from DP images,
and further present the Graph Neural Network (GNN) framework for processing the rep-
resentations. Second, we introduce the explainability module to acquire comprehensive
explanations.

5.2.1 Cell-graph representation and learning

The DP images are transformed into cell-graph (CG) representations. Formally, we define
a CG, GCG = (V, E, H) as an undirected graph composed of a vertices V and edges E.
Each vertex is described by an embedding h ∈ Rd, or equivalently expressed in its matrix
form as H ∈ R|V|×d. The graph topology is described by a symmetric adjacency matrix
A ∈ R|V|×|V|, where Au,v = 1 if an edge exists between vertices u and v.
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To build CG, we detect nuclei at 40× resolution using Hover-Net [Graham et al., 2019a],
a state-of-the-art nuclei segmentation algorithm pre-trained on MoNuSeg dataset [Kumar
et al., 2020]. We extract 16 hand-crafted features incorporating shape, texture and color
attributes to represent each nucleus as in [Zhou et al., 2019a]. We include centroid location
normalised by the image size to spatially encode the nucleus. The detected nuclei and
their 18-dimensional embeddings serve as the node and initial node embeddings of our
CG. The CG topology assumes that spatially close cells encode biological interactions and
consequently should form an edge. We use the k-Nearest Neighbors (kNN) algorithm,
i. e., for each node u, we build edges euv to the k closest vertices v. As isolated cells have
weak cellular interaction with other cells, they ought to stay detached. Thus, we threshold
the kNN graph by removing edges that are longer than a specified distance. We set k = 5
and the distance threshold to 50 pixels in our modeling.

For the downstream DP task, we determine the breast cancer subtypes of regions-of-
interest (TRoIs). For a dataset with N TRoIs, we create D = {GCG,i , li}i={1,...,N} consisting
of N CGs and corresponding labels li . A GNN [Defferrard et al., 2016; Kipf et al., 2017;
Veličković et al., 2018; Xu et al., 2019b], denoted as CG-GNN, is employed to build fixed-
size graph embeddings from the CGs. These embeddings are fed to a MLP to predict the
cancer subtype. In particular, we use the Graph Isomorphism Network (GIN) [Xu et al.,
2019b], an instance of message passing neural network [Gilmer et al., 2017]. A block
diagram with the main steps is presented in Figure 5.1.

5.2.2 Cell-graph explainer

We propose a cell-graph explainer (CGExplainer) inspired by the GnnExplainer [Ying
et al., 2019], a post-hoc interpretability method based on a graph pruning optimization.
Considering the large number of cells in a TRoI, we hypothetize that many of them will
provide little information in the decision making, whereas others will be responsible
for class specific patterns that would allow better understanding of the disease. Thus,
we prune the redundant and uninformative graph components, and define the resulting
sub-graph as the explanation.

Formally, let us consider a trained GNN model M, and a sample {GCG, l} from D
predicted as ŷ =M(GCG). We aim to find a sub-graph Gs = (Vs, Es, Hs) ⊂ GCG such that
the mutual information between the original prediction and the sub-graph is maximized,
i. e.,

max
Gs

MI(Ŷ, Gs) = H(Ŷ)−H(Ŷ|GCG = Gs) (5.1)

which is equivalent to minimizing the conditional entropy:

H(Ŷ|GCG = Gs) = −EŶ|Gs
[log(PM(Ŷ|Gs))] (5.2)

Intuitively, Gs maximizes the probability of ŷ. Direct optimization of Equation (5.2) is
intractable due the combinatorial nature of graphs. Therefore, CGExplainer proposes
to learn a mask that activates or deactivates parts of the graph. Considering the coher-
ent pathological explainability of cells compared to cellular interactions, we focus on
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Figure 5.2: Overview of CGExplainer. The original input CG is iteratively pruned until convergence
of the optimization.

interpreting the cells in this work. Thus, we aim at learning a mask MV at node-level that
satisfies:

min
MV
−

C

∑
c=1
1[y=c] log(PM(Ŷ|GCG, σ(diag(MV))H))) (5.3)

where C denotes the number of classes, σ is the sigmoid activation, and diag : R|V| →
R|V|×|V| is the diagonal matrix of the weight vector MV . We intend the explanations
to be as compact as possible, ideally with binarized weights, while providing the same
prediction as the original graph. Heuristically, we enforce these constraints by minimizing:

L = LKD(ŷ, y(t)) + αMV

|V|

∑
i

σ(M(t)
Vi
) + αHHe(σ(M(t)

V )) (5.4)

where, t is the optimization step. First term is the knowledge-distillation loss LKD
between the new logits y(t) and the original prediction ŷ. Second term ensures the
compactness of MV . Third term binarizes MV by minimizing its element-wise entropy
He. Following [Hinton et al., 2015], LKD is a combination of distillation and cross-entropy
loss:

LKD = λLCE + (1− λ)LDIST where λ =
He(y(t))
He(ŷ)

(5.5)

As the element-wise entropy He(y(t)) increases, LCE gains importance and avoids a
change in predicted label. MV , produced by optimizing Equation (5.4), identifies im-
portant nodes with a weight factor. An overview of the explainer module is shown in
Figure 5.2.



5.3 dataset 81

5.3 Dataset

We evaluate CGExplainer on BRACS dataset, an in-house collection of BReAst Carci-
noma Subtyping1 images. The dataset consists of 2080 TRoIs acquired from 106 H&E
stained breast carcinoma whole-slide-images (WSIs). The TRoIs are extracted at 40× mag-
nification producing images of various sizes and appearances. The TRoIs are annotated
by the consensus of three pathologists as: normal (N), benign2 (B), atypical3 (A), ductal
carcinoma in situ (D), and invasive (I) (a 5-class problem). We also study two simplified
scenarios: (1) a 2-class problem: benign (N+B) and malignant (D+I) categories, and (2)
a 3-class problem: benign (N+B), atypical (A), and malignant (D+I) categories. These
scenarios allow us to study the relation between the task complexity and the generated
explanations. Non-overlapping train, validation and test splits are created at WSI-level
consisting of 1356, 365, and 359 TRoIs respectively.

5.4 Results

5.4.1 Implementation

The experiments were conducted using PyTorch [Paszke et al., 2019] and the DGL
library [Wang et al., 2019a]. The CG-GNN consisted of three GIN layers with a hidden
dimension of 32. Each GIN layer used a 2-layer MLP with ReLU activation. The classifier
consisted of a 2-layer MLP with 64 hidden neurons that mapped the hidden dimensions
to the number of classes. The model was trained using the Adam optimizer with an
initial learning rate of 10−3 and a weight decay of 5× 10−4. The batch size was set to 16.

The explanation module used the trained CG-GNN. The mask MV was learned by
using the Adam optimizer with a learning rate of 0.01. The size constraint and the
entropy constraint contributed to the loss by weighting factors αMV = 0.005 and αH = 0.1,
respectively. The weights were adjusted such that the individual losses have comparable
range. An early stopping mechanism was triggered, if Gs predicted a different label
before reaching convergence. This ensured that the graph and its explanation always had
the same prediction.

5.4.2 Quantitative and qualitative analyses

We conducted absolute and comparative analyses between CGExplainer and a random-
explainer (RGExplainer). RGExplainer generates a random explanation from an orig-
inal CG for a TRoI by retaining equal number of nodes and edges as retained by
CGExplainer. We quantitatively and qualitatively evaluated the explainers under 2-
, 3-, and 5-class scenarios, and assessed them using surrogate metrics in the absence of
any ground truth explanations. Table 5.1 presents the weighted F1-scores for CG-GNNs,
the average node and edge reduction in the CGExplainer explanations, and cross-
entropy (CE) loss of CG-GNN for processing the original CG, CGExplainer-based CG,
and RGExplainer-based CG. The cross-entropy was computed between the predicted
class probabilities and the ground-truth labels of the TRoIs.

1 BRACS dataset for breast cancer subtyping: https://www.bracs.icar.cnr.it
2 includes benign and usual ductal hyperplasia
3 includes flat epithelial atypia and atypical ductal hyperplasia

https://www.bracs.icar.cnr.it
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Table 5.1: Quantitative results for CG-GNN, CGExplainer compactness, CGExplainer and
RGExplainer performances. ↑ and ↓ indicate higher and lower values are better, respectively.

Metric/Scenario
2-class scenario 3-class scenario 5-class scenario

N+B D+I All N+B A D+I All N B A D I All

Weighted F1-score (↑) 0.97 0.97 0.97 0.95 0.35 0.80 0.77 0.56 0.74 0.37 0.62 0.77 0.61

Node reduction (%) (↑) 97.7 91.6 94.6 89.5 92.4 85.6 88.5 92.3 93.8 75.8 63.3 59.00 76.9

Edge reduction (%) (↑) 99.2 93.8 96.4 94.3 98.7 90.5 93.5 97.1 97.0 90.6 74.1 62.8 84.2

Original CE (↓) 0.21 0.21 0.21 0.45 2.05 0.38 0.72 2.65 0.59 2.22 0.72 0.48 1.21

Explanation CE (↓) 0.10 0.21 0.16 0.44 1.41 0.55 0.67 1.65 0.73 1.61 2.57 0.67 1.41

Random CE (↓) 0.02 3.14 1.61 1.00 0.38 1.75 1.20 0.62 0.93 1.52 11.4 2.85 3.55

The CGExplainer removes a large percentage of nodes and edges to generate compact
explanations for 2-, 3-, and 5-class scenarios, while preserving the TRoI predictions. The
decrease in the percentage of node-reduction with the increase in the number of classes
per-task indicates that with the increment of task complexity, the explainer exploits more
nodes to extract valuable information. A similar pattern is observed for the percentage
of edge-reduction. Further, the reduction percentage within a task decreases with the
increase in the malignancy of the TRoI. It indicates that the explainer discards the
abundantly available but less relevant benign epithelial, stromal, and lymphocytes, while
retains the relevant tumor and atypical nuclei. Combining the CG explanations in Figure
5.3 and the nuclei types annotation in Figure 5.4, we infer that the explanations retain
relevant tumor epithelial nuclei for DCIS diagnosis. For the 2-class scenario, the CG
includes tumor nuclei in the central region of the gland. In this case, a few tumor
epithelial nuclei are sufficient to differentiate (D) from (N+B). For the 3-class scenario,
the CG includes more tumor epithelial nuclei in the central and the periphery regions
of the gland, and does not consider the atypical nuclei. This pattern differentiates (D)
from (A). For the 5-class scenario, the CG includes more tumor nuclei distributed within
and around the gland, and some lymphocytes around the gland. The CG also includes
more cellular interactions to identify a large cluster of tumor nuclei. Pathologically this
behavior differentiates (D) from (I) which has small clusters of tumor nuclei scattered
throughout the TRoI. Additionally, the retained tumor nuclei and their interactions are
consistent across the considered classification scenarios.

Further, we compared the class-wise predicted probabilities with the ground truth labels
for the original, CGExplainer-based CG, and RGExplainer-based CG via a cross-entropy
(CE) function. Table 5.1 presents the class-wise CE and average CE across all the classes.
The CGExplainer-based CG and the original CG have comparable class-wise CE and
average CE across all scenarios. We observe that in each scenario, the RGExplainer-
based CG is biased towards one class. For instance, in the 2-class scenario, RGExplainer

frequently predicts the class (N+B) leading to a per-class CE smaller than CGExplainer.
Further, on average across all the classes, the RGExplainer CE is consistently higher than
the CGExplainer. It conveys that the RGExplainer removes relevant entities from CGs,
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Figure 5.3: Qualitative comparison of original CG and CGExplainer generated explanations for
2-, 3-, and 5-class scenarios on a DCIS TRoI.

thereby increasing the loss. These qualitative and quantitative analyses conclude that the
CGExplainer generates meaningful and consistent explanations.

5.5 Conclusion

We believe that our work, though preliminary, is a step in the right direction towards better
representations and interpretability in DP. We have herein focused on the methodological
introduction and cell-level analyses. In future work, we plan to extend our approach to
other biological entities and further to pathological assessment. Ultimately, our goal is
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Figure 5.4: Nuclei types annotation. Overlaid segmentation masks of nuclei from 5-class explanation
in green.

to understand any information additional to a DL model prediction that one needs to
provide to a user, to build trust and to facilitate adoption and deployment of such DL
technologies in clinical setting.



6
Quantifying Explainers of
Graph Neural Networks in
Digital Pathology

Explainability of deep learning methods is imperative to facilitate their clinical adop-
tion in digital pathology. However, popular deep learning methods and explainability
techniques (explainers) based on pixel-wise processing disregard biological entities’ no-
tion, thus complicating comprehension by pathologists. In this work, we address this
by adopting biological entity-based graph processing and graph explainers enabling
explanations accessible to pathologists. In this context, a major challenge becomes to
discern meaningful explainers, particularly in a standardized and quantifiable fashion. To
this end, we propose herein a set of novel quantitative metrics based on statistics of class
separability using pathologically measurable concepts to characterize graph explainers.
We employ the proposed metrics to evaluate three types of graph explainers, namely the
layer-wise relevance propagation, gradient-based saliency, and graph pruning approaches,
to explain Cell-Graph representations for Breast Cancer Subtyping. The proposed metrics
are also applicable in other domains by using domain-specific intuitive concepts. We
validate the qualitative and quantitative findings on the BRACS dataset, a large cohort of
breast cancer RoIs, by expert pathologists. The code, data, and models can be accessed at
https://github.com/histocartography/patho-quant-explainer.

6.1 Introduction

Histopathological image understanding has been revolutionized by recent machine
learning advancements, especially deep learning (DL) [Bera et al., 2019; Serag et al., 2019].
DL has catered to increasing diagnostic throughput as well as a need for high predictive
performance, reproducibility and objectivity. However, such advantages come at the cost
of a reduced transparency in decision-making processes [Holzinger et al., 2017; Tizhoosh
et al., 2018; Hägele et al., 2020]. Considering the need for reasoning any clinical decision,
it is imperative to enable the explainability of DL decisions to pathologists.

This chapter has been published as: Guillaume Jaume† , Pushpak Pati† , Behzad Bozorgtabar, Antonio Foncubierta-
Rodriguez, Anna Maria Anniciello, Florinda Feroce, Tilman Rau, Jean-Philippe Thiran, Maria Gabrani, Orcun Goksel
“Quantifying Explainers of Graph Neural Networks in Computational Pathology”, In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 8106-8116, Nashville, USA, Jun 2021, doi: 10.1109/CVPR46437.2021.00801,
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Figure 6.1: Sample explanations produced by pixel- and entity-based explainability techniques for
a ductal carcinoma in situ RoI.

Inspired by the explainability techniques (explainers) for DL model decisions on natural
images [Simonyan et al., 2013; Zeiler et al., 2014; Yosinski et al., 2015; Bach et al., 2015;
Montavon et al., 2015; Selvaraju et al., 2017; Kindermans et al., 2015; Zintgraf et al., 2017;
Chattopadhay et al., 2018; Kim et al., 2018], several explainers have been implemented
in digital pathology, such as feature attribution [Korbar et al., 2017; Binder et al., 2018;
Hägele et al., 2020], concept attribution [Graziani et al., 2020], and attention-based
learning [Lu et al., 2021]. However, pixel-level explanations, exemplified in Figure 6.1,
pose several notable issues, including: (1) a pixel-wise analysis disregards the notion of
biological tissue entities, their topological distribution, and inter-entity interactions; (2) a
typical patch-based DL processing and explainer fail to accommodate complete tumor
macro-environment information; and (3) pixel-wise visual explanations tend to be blurry.
Explainability in entity space is thus a natural choice to address the above issues. To
that end, an entity-graph representation is built for a histology image, where nodes and
edges denote biological entities and inter-entity interactions followed by a Graph Neural
Network (GNN) [Kipf et al., 2017; Xu et al., 2019b]. The choice of entities, such as cells
[Demir et al., 2004; Zhou et al., 2019a; Pati et al., 2022], tissues [Pati et al., 2022] or others,
can be task-dependent. Subsequently, explainers for graph-structured data [Baldassarre
et al., 2019; Pope et al., 2019; Ying et al., 2019] applied to the entity-graphs highlight
responsible entities for the concluded diagnosis, thereby generating intuitive explanations
for pathologists.

In the presence of various graph explainers producing distinct explanations for an input,
it is crucial to discern the explainer that best fits the explainability definition [Arrieta et al.,
2020]. In the context of computational pathology, explainability is defined as making the
DL decisions understandable to pathologists [Holzinger et al., 2017]. To this end, the
qualitative evaluation of explainers’ explanations by pathologists is the candid measure.
However, it requires evaluations by task-specific expert pathologists, which is subjective,
time-consuming, cumbersome, and expensive. Additionally, though the explanations
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are intuitive, they do not relate to pathologist-understandable terminologies, e. g., “How
big are the important nuclei?", and “How irregular are their shape?", which toughens
the comprehensive analysis. These bottlenecks undermine not only any qualitative
assessment but also quantitative metrics requiring user interactions [Mohseni et al., 2021].
Furthermore, expressing the quantitative metrics in user-understandable terminologies
[Arrieta et al., 2020] is fundamental to achieve interpretability [Doshi-Velez et al., 2017;
Nguyen et al., 2020]. To this end, the most popular quantitative metric, explainer
fidelity [Ribeiro et al., 2016; Dhurandhar et al., 2017; Samek et al., 2017; Hoffman et al.,
2018; Mohseni et al., 2021; Pope et al., 2019], is not satisfactory. Moreover, explainers
intrinsically maintain high-fidelity, e. g., GnnExplainer [Ying et al., 2019] produces an
explanation to match the GNN’s prediction on the original graph.

Thus, we propose a set of novel user-independent quantitative metrics expressing
pathologically-understandable concepts. The proposed metrics are based on class sep-
arability statistics using such concepts, and they are applicable in other domains by
incorporating domain-specific concepts. We use the proposed metrics to evaluate three
types of graph-explainers, (1) graph pruning: GnnExplainer [Ying et al., 2019; Jaume
et al., 2020], (2) gradient-based saliency: GraphGrad-CAM [Selvaraju et al., 2017; Pope
et al., 2019], GraphGrad-CAM++ [Chattopadhay et al., 2018], (3) layer-wise relevance
propagation: GraphLRP [Bach et al., 2015; Montavon et al., 2015; Schwarzenberg et al.,
2019], for explaining Cell-Graphs [Demir et al., 2004] in Breast Cancer Subtyping as
shown in Figure 6.1. Our specific contributions in this work are:

• A set of novel quantitative metrics based on the statistics of class separability using
domain-specific concepts to characterize graph explainability techniques. To the best
of our knowledge, our metrics are the first of their kind to quantify explainability
based on domain-understandable terminologies;

• Explainability in computational pathology using pathologically intuitive entity-
graphs;

• Extensive qualitative and quantitative assessment of various graph explainability
techniques in computational pathology, with a validation of the findings by expert
pathologists.

6.2 Related work

Graphs in digital pathology: Graph-based tissue image analysis effectively describes
a tissue environment by incorporating morphology, topology, and tissue components
interactions. To this end, cell-graph (CG) is the most popular graph representation,
where nodes and edges depict cells and cellular interactions [Demir et al., 2004]. Cell
morphology is embedded in the nodes via hand-crafted features [Demir et al., 2004; Zhou
et al., 2019a; Pati et al., 2020] or DL features [Chen et al., 2020a; Pati et al., 2022]. The
graph topology is heuristically defined using k-Nearest Neighbors, probabilistic modeling,
Waxman model etc. [Sharma et al., 2015]. Subsequently, the CGs are processed by classical
machine learning [Sharma et al., 2015; Sharma et al., 2016; Sharma et al., 2017a] or GNN
[Zhou et al., 2019a; Chen et al., 2020a; Anand et al., 2019; Pati et al., 2020] to map the
tissue structure to function relationship. Recently, improved graph-representations using
patches [Aygüneş et al., 2020], tissue components [Pati et al., 2022], and hierarchical
cell-to-tissue relations [Pati et al., 2022] are proposed to enhance the structure-function
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Figure 6.2: Overview of the proposed framework. (a) presents pathologist, and entity-based
(cell-graph + GNN) diagnosis of a histology image. (b) presents nuclei-level pathologically relevant
concept measure D, a post-hoc graph explainability technique to derive nuclei-level importance
I for concepts C, measurable attributes Ac , and classes T . D, I and prior pathological knowledge
defining concepts’ relevance are utilized to propose a novel set of quantitative metrics to evaluate
the explainer quality in pathologist-understandable terms.

mapping. Other graph-based applications in computational pathology include cellular
community detection [Javed et al., 2020], whole-slide image classification [Zhao et al.,
2020b; Adnan et al., 2020] etc. Intuitively, a graph representation utilizes pathologically
relevant entities to represent a tissue specimen, which allows pathologists to readily relate
with the input, also enabling them to include any task-specific prior knowledge.

Explainability in digital pathology: Explainability is an integral part of pathological diag-
nosis. Though DL solutions have achieved remarkable diagnostic performance, their lack
of explainability is unacceptable in the medical community [Tizhoosh et al., 2018]. Recent
studies have proposed visual explanations [Hägele et al., 2020] and salient regions [Korbar
et al., 2017; Hägele et al., 2020] using feature-attribution techniques [Selvaraju et al., 2017;
Chattopadhay et al., 2018]. Differently, concept-attribution technique [Graziani et al.,
2020] evaluates the sensitivity of network output w.r.t. quantifiable image-level pathologi-
cal concepts in patches. Although such explanations are pathologist-friendly, image-level
concepts are neither fit nor meaningful for real-world large histology images that contain
many localized concepts. Furthermore, attention-based learning [Lu et al., 2021], and mul-
timodal mapping between image and diagnostic report [Zhang et al., 2019] are devised
to localize network attention. However, the pixel-wise and patch-based processing in all
the aforementioned techniques ignore biological entities’ notion; thus, they are not easily
understood by pathologists. Separately, the earlier stated entity-graph-based processing
provides an intuitive platform for pathologists. However, research on explainability and
visualization using entity-graphs has been scarce: CGC-Net [Zhou et al., 2019a] analyzes
cluster assignment of nodes in CG to group them according to their appearance and tissue
types. CGExplainer [Jaume et al., 2020] introduces a post-hoc graph-pruning explainer to
identify decisive cells and interactions. Robust spatial filtering [Sureka et al., 2020] utilizes
an attention-based GNN and node occlusion to highlight cell contributions. No previous
work has comprehensively analyzed and quantified graph explainers in computational
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pathology while expressing explanations in a pathologist-understandable form to the
best of our knowledge. This gap between the existing and desired explainability of DL
outputs in digital pathology motivates our work herein.

6.3 Methodology

In this section, we present entity-graph processing, explainability methods, and our
proposed evaluation metrics. First, we transform a histology region-of-interest (RoI)
into a biological entity-graph. Second, we introduce a “black-box" GNN that maps the
entity-graph to a corresponding class label. Third, we employ a post-hoc graph explainer
to generate explanations. Finally, we perform a qualitative and quantitative assessments
of the generated explanations. An overview of the methodology is shown in Figure 6.2.

6.3.1 Entity-graph notations

We define an attributed undirected entity-graph G := (V, E, H) as a set of nodes V, edges
E, and node attributes H ∈ R|V|×d. d denotes the number of attributes per node, and |.|
denotes set cardinality. The graph topology is defined by a symmetric graph adjacency,
A ∈ R|V|×|V|, where Au,v = 1 if euv ∈ E. We denote the neighborhood of a node v ∈ V as
N (v) := {u ∈ V | v ∈ V, euv ∈ E }. We denote a set of graphs as G.

6.3.2 Entity-graph construction

Our methodology begins with transforming RoIs into entity-graphs. It ensures the
method’s inputs are pathologically interpretable, as the inputs consist of biologically-
defined objects that pathologists can directly relate-to and reason-with. Thus, image-to-
graph conversion moves from uninterpretable to interpretable input space. In this work, we
consider cells as entities, thereby transforming RoIs into cell-graphs (CGs). A CG nodes
and edges capture the morphology of cells and cellular interactions. A CG topology
acquires both tissue micro and macro-environment, which is crucial for characterizing
cancer subtypes.

First, we detect nuclei in a RoI at 40× magnification using Hover-Net [Graham et al.,
2019a], a nuclei segmentation algorithm pre-trained on MoNuSeg [Kumar et al., 2017].
We process patches of size 72×72 around the nuclei by ResNet34 [He et al., 2016] pre-
trained on ImageNet [Deng et al., 2009] to produce nuclei visual attributes. We further
concatenate nuclei spatial attributes, i. e., nuclei centroids min-max normalized by RoI
dimension. The nuclei and their attributes (visual and spatial) define the nodes and node
attributes of the CG, respectively. Following prior work [Pati et al., 2022], we construct
the CG topology by employing thresholded k-Nearest Neighbors algorithm. We set k = 5,
and prune the edges longer than 50 pixels (12.5 µm). The CG-topology encodes how
likely two nearby nuclei will interact [Francis et al., 1997]. A CG example is presented in
Figure 6.1.

6.3.3 Entity-graph learning

Given G, the set of CGs, the aim is to infer the corresponding cancer subtypes. We use
GNNs [Scarselli et al., 2009; Defferrard et al., 2016; Kipf et al., 2017; Hamilton et al., 2017;
Veličković et al., 2018; Ying et al., 2018; Gilmer et al., 2017], the conceptual analogous



90 6 quantifying explainers of graph neural networks

Figure 6.3: Overview of proposed quantitative assessment. (a) presents input dataset D, and
parameters concepts C, measurable attributes Ac , classes T , and importance thresholds K. For
simplicity |Ac | = 1, ∀c ∈ C in this figure. (b) shows histogram probability densities for ∀a ∈
Ac , ∀k ∈ K, ∀t ∈ T . (c) displays the algorithm for computing class separability score S. (d) presents
the algorithm for computing the proposed class separability-based risk-weighted quantitative
metrics.

of 2D convolution for graph-structured data, to classify the CGs. A GNN layer follows
two steps: for each node v ∈ V, (1) aggregation step: the states of neighboring nodes,
N (v), are aggregated via a differentiable and permutation-invariant operator to produce
a(v) ∈ Rd, then, (2) update step: the state of v is updated by combining the current node
state h(v) ∈ Rd and the aggregated message a(v) via another differentiable operator.
After L iterations, i. e., the number of GNN layers, a readout step is employed to merge
all the node states via a differentiable and permutation-invariant function to result in a
fixed-size graph embedding. Finally, the graph embeddings are processed by a classifier
to predict the class label.

In this work, we use a flavor of Graph Isomorphism Network (GIN) [Xu et al., 2019b], that
uses mean and a multi-layer perceptron (MLP) in the aggregation and update step respectively.
Formally, we define a layer as,

h(v)(l+1) = MLP(l)
(

h(v)(l) +
1

|N (v)| ∑
u∈N (v)

h(u)(l)
)

(6.1)

where h(v) denotes features of node v, and l ∈ {1, ..., L}. Our GNN consists of 3-GIN
layers, with each layer including a 2-layer MLP. The dimension of latent node embeddings
is fixed to 64 for all layers. We use mean operation in readout step, and feed the graph
embedding to a 2-layer MLP classifier. The GNN is trained end-to-end by minimizing
cross-entropy loss between predicted logits and target cancer subtypes. We emphasize that
the entity-based processing follows a pathologist’s diagnostic procedure that identifies
diagnostically relevant nuclei and analyzes cellular morphology and topology in a RoI,
as shown in Figure 6.2.
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6.3.4 Post-hoc graph explainer

We generate an explanation per entity-graph by employing post-hoc graph explainers.
The explanations allow to evaluate the pathological relevance of black-box neural network
reasoning. Specifically, we aim to evaluate the agreement between the pathologically
relevant set of nuclei in a RoI, and the explainer identified set of important nuclei, i. e.,
nuclei driving the prediction, in a CG. In this work, we consider three types of graph
explainers for explaining CGs, which follow similar operational setting, i. e., (1) input data
are attributed graphs, (2) a GNN is trained a priori to classify the input data, and (3) each
data point can be inferred independently to produce an explanation. Here, we briefly
present the graph explainers. The detailed formulations are described in Section 2.2.4.

GraphLRP: Layerwise relevance propagation (LRP) [Bach et al., 2015] propagates the
output logits backward in the network using a set of propagation rules to quantify the
positive contribution of input pixels for a certain prediction. Specifically, LRP assigns
an importance score to each neuron such that the output logit relevance is preserved
across layers. While initially developed for explaining fully-connected layers, LRP can
be extended to GNN by treating the GNN aggregation step as a fully connected layer that
projects the graph adjacency matrix on the node attributes as in [Schwarzenberg et al.,
2019]. LRP outputs per-node importance.

GraphGrad-CAM: Grad-CAM [Selvaraju et al., 2017] is a feature attribution approach
designed for explaining CNNs operating on images. It produces class activation expla-
nation following two steps. First, it assigns weights to each channel of a convolutional
layer l by computing the gradient of the targeted output logit w.r.to each channel in layer
l. Second, importance of the input elements are computed by the weighted combination
of the forward activations at each channel in layer l. The extension to GNN is straight-
forward [Pope et al., 2019], and only requires to compute the gradient of the predicted
logits w.r.to a GNN layer. Following prior work [Pope et al., 2019], we take the average of
node-level importance-maps obtained from all the GNN layers l ∈ {1, ..., L} to produce
smooth per-node importance.

GraphGrad-CAM++: Grad-CAM++ [Chattopadhay et al., 2018] is an increment on
Grad-CAM by including spatial contributions into the channel-wise weight computation
of a convolution layer. The extension allows weighting the contribution by each spatial
location at a layer for improved spatial localization. The spatial locations in a convolutional
layer are analogous to the size of the graph in a GNN layer. With this additional
consideration, we propose an extension of Grad-CAM++ to graph-structured data.

GnnExplainer: GnnExplainer [Ying et al., 2019; Jaume et al., 2020] is a graph pruning
approach that aims to find a compact sub-graph Gs ⊂ G such that mutual information
between Gs and GNN prediction of G is maximized. Sub-graph Gs is regarded as the
explanation for the input graph G. GnnExplainer can be seen as a feature attribution
technique with binarized node importances. To address the combinatorial nature of
finding Gs, GnnExplainer formulates it as an optimization problem that learns a mask
to activate or deactivate parts of the graph. [Jaume et al., 2020] reformulates the initial
approach in [Ying et al., 2019] to learn a mask over the nodes instead of edges. The
approach in [Jaume et al., 2020] is better suited for pathology as the nodes, i. e., biological
entities, are more intuitive and substantial for disease diagnosis than heuristically-defined
edges. The optimization for an entity-graph results in per-node importance.
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6.3.5 Quantitative metrics for graph explainability

In the presence of several graph explainers producing distinct explanations for an input,
it is imperative to discern the explainer that produces the most pathologically-aligned
explanation. Considering the limitations of existing qualitative and quantitative measures
presented in Section 6.1, we propose a novel set of quantitative metrics based on class
separability statistics using pathologically relevant concepts. Intuitively, a good explainer
should emphasize the relevant concepts that maximize the class separation. Details of the
metric evaluations are presented as follows.

Input: A graph explainer outputs an explanation, i. e., node-level importance I , for an
input CG. To quantify a concept c ∈ C, C denoting the set of concepts, we measure nuclear
attributes a ∈ Ac for each nucleus in CG, e. g., for c = nuclear shape, we measure Ac =
{perimeter, roughness, eccentricity, circularity}. We create a dataset D =

⋃
t∈T Dt, T denoting

the set of cancer subtypes. We define Dt := {(Dt
i , I t

i )|i = 1, . . . , Nt} ∀t ∈ T , where Nt is
the number of CGs for tumor type t. I t

i and Dt
i are, respectively, the sorted importance

matrix for a CG indexed by i and corresponding node-level attribute matrix. To perform
inter-concept comparisons, we conduct attribute-wise normalization across all Dt

i ∀t, i.
In order to compare different explainers, we conduct CG-wise normalization of I . The
structure of input dataset D is presented in Figure 6.3(a).

Note that the notion of important nuclei vary (1) per-CG since the number of nodes vary
across CGs, and (2) per-explainer. Hence, selecting a fixed number of important nuclei
per-CG and per-explainer is not meaningful. To overcome this issue, we assess different
number of important nuclei k ∈ K, selected based on node importances, per-CG and
per-explainer. In the following sections we will show how to aggregate the results for a
given explainer.

Histogram construction: Given the input dataset D, and parameters K, C,Ac, T , we apply
threshold k ∈ K on I t

i , ∀t ∈ T , ∀i ∈ Nt to select CG-wise most important nuclei. The
cancer subtype-wise selected set of nuclei data from D are used to construct histograms

H(k)
t (a), ∀a ∈ Ac, ∀c ∈ C and ∀t ∈ T . For histogram H(k)

t (a), bin-edges are decided
by quantizing the complete range of attribute a, i. e., D(a), by a fixed step size. We

convert each H(k)
t (a) into a probability density function. Similarly, sets of histograms are

constructed by applying different thresholds k ∈ K. Sample histograms are shown in
Figure 6.3(b).

Separability Score (S): Given two classes tx , ty ∈ T and corresponding probability density

functions H(k)
tx

(a) and H(k)
ty

(a), we compute class separability s(k)a (tx , ty) based on optimal
transport as the Wasserstein distance between the two density functions. We average

s(k)a (tx , ty) over all a ∈ Ac to obtain a score s(k)c (tx , ty) for concept c and threshold k.
Finally, we compute the area-under-the-curve (AUC) over the threshold range K to get
the aggregated class separability S(tx ,ty),c for a concept c. The class separability score
indicates the significance of concept c for the purpose of separating tx and ty. Thus,
separability scores can be used to compare different concepts and to identify relevant
ones for differentiating tx and ty. A pseudo-algorithm is presented in Algorithm 1, and
illustrated in Figure 6.3(c). A separability matrix S ∈ RΩ×|C| is built by computing class
separability scores for all pair-wise classes, i. e., ∀ (tx , ty) ∈ Ω := (|T |2 ) and ∀c ∈ C.
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Statistics of Separability Score: Since explainability is not uniquely defined, we include
multiple metrics highlighting different facets. We compute three separability statistics
∀(tx , ty) ∈ Ω using S as given in Equation (6.2), i. e., (1) maximum: the utmost separability,
(2) average: the expected separability. These two metrics encode (model+explainer)’s focus,
i. e., “how much the black-box model implicitly uses the concepts for class separability?",
(3) correlation: encodes the agreement between (model+explainer)’s focus and pathological
prior P. P ∈ RΩ×|C| signifies the relevance ∀c ∈ C for differentiating (tx , ty) ∈ Ω, e. g.,
nuclear size is highly relevant for classifying benign and malignant tumor as important
nuclei in malignant are larger than important nuclei in benign. Formally:

smax(tx , ty) = max
c∈C

S(tx ,ty),c

savg(tx , ty) =
1
|C| ∑

c∈C
S(tx ,ty),c

scorr(tx , ty) = ρ(S(tx ,ty),c=1,..,|C|, P(tx ,ty),c=1,..,|C|)

(6.2)

where ρ denotes Pearson correlation. smax, savg∈[0, 8) show separation between unnormal-
ized class-histograms; and scorr ∈ [-1, 1] shows agreement between S and P. We build Smax,
Savg and Scorr by computing Equation (6.2) ∀(tx , ty) ∈ Ω. These metrics’ complementary
nature may lead to relevant concepts different to pathological understanding.

Risk: We conceptually introduce the notion of risk as a weight to indicate the cost of
misclassifying a sample of class tx , erroneously as class ty [Thai-Nghe et al., 2010; He
et al., 2013]. Indeed, misclassifying a malignant tumor as a benign tumor is riskier than
misclassifying it as an atypical tumor. Thus, we construct a risk vector R ∈ RΩ. In this
work, each entry in R defines the symmetric risk of differentiating tx from ty measured
as the number of class-hops needed to evolve from tx to ty.

Metrics: Finally, we propose three quantitative metrics based on class separability to
assess an explainer quality. The metrics are computed as the risk weighted sum of the
statistics of separability scores, i. e.,, (1) maximum separability Smax,R := Smax ⊙ R, (2)
average separability Savg,R := Savg ⊙ R, (3) correlated separability Scorr,R := Scorr ⊙ R, where
⊙ defines the Hadamard product. The first two metrics are pathologist-independent,
and the third metric requires expert pathologists to impart the domain knowledge in the
form of pathological prior P. Such prior can be defined individually by a pathologist or
collectively by consensus of several pathologists, and it is independent of the algorithm
generated explanations.

6.4 Dataset

We experiment on BReAst Cancer Subtyping (BRACS), a large collection of breast tumor
RoIs [Pati et al., 2022]. BRACS consists of 4391 RoIs at 40× resolution from 325 H&E
stained breast carcinoma whole-slides. The RoIs are annotated by the consensus of three
pathologists as, (1) Benign (B): normal, benign and usual ductal hyperplasia, (2) Atypical
(A): flat epithelial atypia and atypical ductal hyperplasia, and (3) Malignant (M): ductal
carcinoma in situ and invasive. The RoIs consist of an average #pixels=3.9± 4.3 million,
and average #nuclei=1468± 1642, and are stain normalized using [Stanisavljevic et al.,
2018]. The train, validation, and test splits are created at the whole-slide level, including
3163, 602, and 626 RoIs.
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Algorithm 1 Class separability computation.

Input: D = {(Dt
i , I t

i )}, t ∈ T , i ∈ Nt Parameters: T , C, Ac, K
Result: S ∈ R(|T |2 )×|C|

for c in C do ▷ go over concepts
for k in K do ▷ go over nuclei thresholds

for a in Ac do ▷ go over attributes
for t in T do ▷ go over classes

var← Dt
i (a)[: k] ▷ sorted It

i

H(k)
t (a)← histogram(var)

end for
for (tx , ty) in (|T |2 ) do ▷ go over class pairs

s(k)a (tx , ty)← d(H(k)
tx

(a), H(k)
ty

(a))
end for

end for
s(k)c (tx , ty)← 1

|Ac | ∑a∈Ac s(k)a (tx , ty)

end for
S(tx ,ty),c ← AUCk∈K(s

(k)
c (tx , ty))

end for

6.5 Results

This section describes the analysis of CG explainability for breast cancer subtyping. We
evaluate three types of graph explainers and quantitatively analyze the explainer quality
using the proposed class separability metrics.

6.5.1 Implementation

We conducted our experiments using PyTorch [Paszke et al., 2019] and the Deep Graph
Library (DGL) [Wang et al., 2019b]. The GNN architecture for CG classification is
presented in Section 6.3.3. The CG classifier was trained for 100 epochs using Adam
optimizer [Kingma et al., 2015], 10−3 learning rate and 16 batch size. The best CG-
classifier achieved 74.2% weighted F1-score on the test set for the three-class classification.
Average time for processing a 1K×1K RoI on a NVIDIA P100 GPU is 2s for CG generation
and 0.01s for GNN inference.

6.5.2 Qualitative assessment

Figure 6.4 presents explanations, i. e., nuclei importance maps, from four studied graph
explainers. We observe that GraphGrad-CAM and GraphGrad-CAM++ produce simi-
lar importance maps. The GnnExplainer generates almost binarized nuclei importances.
Interestingly, the gradient and pruning-based techniques consistently highlight similar
regions. Indeed, the approaches focus on relevant epithelial region and unfocus on
stromal nuclei and lymphocytes outside the glands. Differently, GraphLRP produces less
interpretable maps through high spatial localization Figure 6.4(d) or less spatial localiza-
tion Figure 6.4(h,l). Qualitative visual assessment of Figure 6.4 conclude that, (1) fidelity
preserving explainers result differently based on the underlying mechanism, (2) high
fidelity does not guarantee straightforward pathologist-understandable explanations, (3)
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Figure 6.4: Qualitative results. The rows represent the cancer subtypes, i. e., Benign, Atypical and
Malignant, and the columns represent the graph explainability techniques, i. e., GnnExplainer,
GraphGrad-CAM, GraphGrad-CAM++, and GraphLRP. Nuclei-level importance ranges from
blue (the least important) to red (the most important).

qualitative assessment cannot rigorously compare explainers’ quality, and (4) large-scale
tedious pathological evaluation is inevitable to rank the explainers.

6.5.3 Quantitative assessment
For cancer subtyping, relevant concepts are nuclear morphology and topology [Rajbongshi
et al., 2018; Kashyap et al., 2018; Nguyen et al., 2017; Allison et al., 2016]. Here, we
focus on nuclear morphology, i. e., C = {size, shape, shape variation, density, chromaticity}.
Table 6.2 lists the attributes Ac, ∀c ∈ C. In our experiments, we select K = {5, 10, ..., 50}
nuclei per CG. We further introduce a Random explainer via random nuclei selection
strategy per CG to assess a lower bound per quantitative metric. Table 6.1 presents the
statistics of pair-wise class separability and aggregated separability w/ and w/o risk to
assess the studied explainers quantitatively. Also, for each class pair (tx , ty), we compute
classification accuracy by using the CGs of type tx , ty.

Noticeably, GnnExplainer achieves the best maximum and average separability for majority
of pair-wise classes. GraphGrad-CAM++ and GraphGrad-CAM followed GnnExplainer

except for (B vs. A), where GraphLRP outperforms them. All explainers outperform
Random which conveys that the quality of the explainers’ explanations are better than
random. Notably, GraphGrad-CAM and GraphGrad-CAM++ quantitatively perform
very similarly, which is consistent with our qualitative analysis in Figure 6.4. Interestingly,
a positive correlation is observed between pair-wise class accuracies and average separa-
bility for the explainers, i. e., better classification leads to better concept separability, and
thus produces better explanations. Further, the observation does not hold for Random

generated explanations, which possesses undifferentiable average concept separability.
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Table 6.1: Quantitative assessment of graph explainers: GnnExplainer, GraphGrad-CAM,
GraphGrad-CAM++ and GraphLRP, using proposed maximum, average, and correlated separa-
bility metrics. Results are provided for each pair-wise breast subtyping tasks, and are aggregated
w/o and w/ risk weighting, i. e., Smax and Smax,R . The first and second best values are indicated in
bold and underline.

Tasks (Ω) B vs. A B vs. M A vs. M B vs. A vs. M

Accuracy (in %) 77.19 90.29 80.42 74.92

Explainer Metric ∀ (tx , ty) ∈ Ω (↑) Agg. Metric w/o Risk (↑) Agg. Metric w/ Risk (↑)
GnnExplainer

s m
ax
(t

x,
t y
)

3.26 6.24 3.48

S m
ax

12.98

S m
ax

,R

19.22

GraphGrad-CAM 1.24 4.41 3.36 9.01 13.42

GraphGrad-CAM++ 1.27 4.42 3.40 9.09 13.51

GraphLRP 2.33 2.46 1.28 6.07 8.53

Random 1.02 1.26 1.11 3.39 4.65
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GraphGrad-CAM 1.15 2.57 2.08 5.80 8.37

GraphGrad-CAM++ 1.18 2.58 2.09 5.85 8.43

GraphLRP 1.38 1.59 1.47 4.44 6.03

Random 1.05 1.00 0.95 3.00 4.00

GnnExplainer
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−0.02 0.36 0.38
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S c
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GraphGrad-CAM −0.01 0.57 0.58 1.14 1.71

GraphGrad-CAM++ −0.01 0.58 0.59 1.16 1.74

GraphLRP −0.15 −0.49 −0.23 −0.87 −1.36

Random −0.37 −0.31 −0.18 −0.86 −1.17

Table 6.2: Quantification of concepts for pair-wise and aggregated class separability in
GnnExplainer. The first and second best values are indicated in bold and underline. The
per-concept attributes are presented in the first column.

Concept (Attributes) / Tasks (Ω) B vs. A B vs. M A vs. M w/o risk (↑) w/ risk (↑)
Size (area) 3.26 6.24 3.48 12.98 19.22

Shape (perimeter, roughness, eccentricity, circularity) 1.27 2.23 1.60 5.10 7.34

Shape variation (shape factor) 0.69 2.30 1.99 4.97 7.28

Density (mean density, std density) 1.01 0.80 0.52 2.33 3.14

Chromaticity (GLCM contrast, homogeneity, ASM, entropy, variance) 1.44 2.31 2.07 5.82 8.13

Average separability (↑) 1.54 2.78 1.93 6.25 9.03

To obtain pathological prior to compute correlation separability, we consulted three pathol-
ogists to rank the concepts in order of their relevance for discriminating each pair of
classes. For instance, given an atypical RoI, we asked how important is nuclear shape to
classify the RoI as not benign and not malignant. Acquired concept ranks for each class
pair are min-max normalized to output prior matrix P. We observe that GnnExplainer,
GraphGrad-CAM, and GraphGrad-CAM++ have positive correlated separability for (B
vs. M), (A vs. M), and nearly zero values for (B vs. A). It shows that the explanations
for (B vs. M) and (A vs. M) bear similar order of concepts as the pathologists, and focus
on a different order of concepts for (B vs. A). GraphGrad-CAM++ has the best over-
all agreement at the concept-level with the pathologists, followed by GraphGrad-CAM
and GnnExplainer. Random agrees significantly worse than the three explainers, and
GraphLRP has the least agreement. Table 6.2 provides more insights by highlighting the
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per-concept metrics of GnnExplainer. Nuclei size is the most relevant concept, followed
by chromaticity and shape variation. Comparatively nuclear density is the least relevant.

6.6 Conclusion

In this work, we presented an approach for explaining black-box DL solutions in computa-
tional pathology. We advocated for biological entity-based analysis instead of conventional
pixel-wise analysis, thus providing an intuitive space for pathological understanding.
We employed four graph explainability techniques, i. e., graph pruning (GnnExplainer),
gradient-based saliency (GraphGrad-CAM, GraphGrad-CAM++) and layerwise rel-
evance propagation (GraphLRP), to explain “black-box” GNNs processing the entity-
graphs. We proposed a novel set of user-independent quantitative metrics expressing
pathologically-understandable concepts to evaluate the graph explainers, which relaxes
the exhaustive qualitative assessment by expert pathologists. Our analysis concludes that
the explainer bearing the best class separability in terms of concepts is GnnExplainer,
followed by GraphGrad-CAM++ and GraphGrad-CAM. GraphLRP is the worst ex-
plainer in this category while outperforming a randomly created explanation. We
observed that the explainer quality is directly proportional to the GNN’s classification
performance for a pair of classes. Furthermore, GraphGrad-CAM++ produces explana-
tions that best agrees with the pathologists in terms of concept relevance, and objectively
highlights the relevant set of concepts. Considering the expansion of entity-graph-based
processing in the domains of radiology, computation biology, satellite and natural images
etc., graph explainability and their quantitative evaluation is crucial. The proposed
method encompassing domain-specific user-understandable terminologies can potentially
be of great use in this direction. It is a meta-method that is applicable to other domains
and tasks by incorporating relevant entities and corresponding concepts. For instance,
with entity-graph nodes denoting body parts of cars in Stanford Cars [Krause et al., 2013]/
Human poses [Andriluka et al., 2014], and expert knowledge available on car-model/
human activity, our method can infer relevant entities by quantifying their agreement
with experts.

6.7 Appendices

6.7.1 BRACS dataset

In this paper, the BRACS dataset is used to analyze CG explainability for breast cancer
subtyping. The pixel-level and entity-level statistics of the dataset are presented in
Table 6.3. Training, validation, and test splits are created at the whole-slide level for
conducting the experiments. The details of the class-wise distribution of images in each
split are presented in Table 6.3.

6.7.2 Concepts and Attributes

In this paper, we focus on pathologically-understandable nuclear concepts C pertaining
to nuclear morphology for breast cancer subtyping. To quantify each c ∈ C, we use
several measurable attributes Ac. Table 6.4 presents the list of concepts and corresponding
attributes used to perform the proposed quantitative analysis in this work. Also, Table 6.4
includes the class-wise expected criteria for each concept.
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Table 6.3: Statistics of BRACS dataset.

Metric Benign Atypical Malignant Total

Im
ag

e Number of images 1741 1351 1299 4391

Number of pixels (in million) 3.9±3.5 1.62±1.5 6.35±5.2 3.9±4.3

Max/Min pixel ratio 180.1 75.3 128.6 235.6

C
G

Number of nodes 1331±1134 635±510 2521±1934 1468±1642

Number of edges 4674±4131 2309±2110 8591±7646 5102±6089

Max/Min node ratio 312.5 416.7 312.5 434.8

Im
ag

e
sp

lit Train 1231 1008 928 3163

Validation 261 162 179 602

Test 249 185 192 626

The attributes of the nuclei in a TRoI are computed as proposed in [Parvatikar et al., 2020].
It uses the TRoI and corresponding nuclei segmentation map, denoted as Iseg. Area of a
nucleus x, denoted as A(x), is defined as the number of pixels belonging to x in Iseg. P(x),
the perimeter of x, is measured as the contour length of x in Iseg. PConvHull(x), the convex
hull perimeter of x, is the contour length of convex hull induced by x in Iseg. The major
and minor axis of x, noted as amajor(x) and aminor(x), are the longest diameter of x and
the longest line segment perpendicular to amajor(x), respectively. The chromatin attributes
are computed from the normalized gray level co-occurrence matrix (GLCM) [Haralick
et al., 1973], which captures the probability distribution of co-occurring gray values in x.

6.7.3 Quantitative assessment

In this section, we analyze two key components of the proposed quantitative metrics:
the histogram construction and class separability scores for threshold set K. Further, we
relate the analysis to class-wise expected criteria for each concept, as shown in Table 6.4.

Histogram analysis: Histogram construction is a key component in the proposed
quantitative metrics. Figure 6.5 presents per-class histograms for each explainer and the
best attribute per concept. We set the importance threshold to k = 25, i. e., for each TRoI,
we select 25 nuclei with the highest node importance. The best attribute for a concept is
the one with the highest average pair-wise class separability.

The row-wise observation exhibits that GnnExplainer and GraphLRP provide, respec-
tively, the maximum and the minimum pair-wise class separability. The histograms for a
concept and for an explainer can be analyzed to assess the agreement between the selected
important nuclei concept, and the expected concept behavior as presented in Table 6.4,
for all the classes. For instance, nuclear area is expected to be higher for malignant
TRoIs than benign ones. The area histograms for GnnExplainer, GraphGrad-CAM and
GraphGrad-CAM++ indicate that the important nuclei set in malignant TRoIs includes
nuclei with higher area compared to benign TRoIs. Similarly, the important nuclei in
malignant TRoIs are expected to be vesicular, i. e., high texture entropy, compared to
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Table 6.4: Pathologically-understandable nuclear concepts, corresponding measurable attributes, and
computations are shown in Columns 1, 2, 3, respectively. The expected concept behavior for three
breast cancer subtypes is shown in Columns 4, 5, 6, respectively.

Concept (C) Attribute (A) Computation Benign Atypical Malignant

Size Area A(x) Small Small-Medium Medium-Large

Shape

Perimeter P(x)

Smooth Mild irregular IrregularRoughness PConvHull(x)
P(x)

Eccentricity aminor(x)
amajor(x)

Circularity 4πA(x)
P(x)2

Shape
Shape factor

4πA(x)
P2

ConvHull
Monomorphic Monomorphic Pleomorphic

variation

Spacing
Mean spacing mean(dy|y ∈ kNN(x))

Evenly crowded Evenly spaced Variable
Std spacing std(dy|y ∈ kNN(x))

Chromatin

GLCM dissimilarity ∑i ∑j |i− j|p(i, j)

Light Hyperchromatic Vesicular

GLCM contrast ∑i ∑j(i− j)2 p(i, j)

euchromatic

GLCM homogenity ∑i ∑j
p(i,j)

1+(i−j)2

GLCM ASM ∑i ∑j p(i, j)2

GLCM entropy −∑i ∑j p(i, j) log(p(i, j))

GLCM variance ∑i ∑j(i− µi)
2 p(i, j)

with µi = ∑i ∑j ip(i, j)

light euchromatic, i. e., moderate texture entropy, in benign TRoIs. The chromaticity his-
tograms for GnnExplainer, GraphGrad-CAM and GraphGrad-CAM++ display this
behavior. Additionally, the histogram analysis can reveal the important concepts and
important attributes. For instance, nuclear density proves to be the least important concept
for differentiating the classes.

Separability score for threshold set K: Multiple importance thresholds K are required to
address the varying notion of important nuclei across different cell graphs and different
explainers. Figure 6.6 presents the behavior of pair-wise class separability for using
various k ∈ K = {5, 10, ..., 50}. For simplicity, we present the behavior for the best
attribute per concept. In general, the pair-wise class separability is observed to decrease
with decreasing k. Intuitively, decreasing k results in including more unimportant nuclei
into the evaluation, thereby gradually decreasing the class separability.

The degree of agreement between the difference in the expected behavior per con-
cept and the pair-wise class separability in Figure 6.6, for all pair-wise classifications
and various k ∈ K can be used to assess the explainer’s quality. For instance, ac-
cording to Table 6.4, the difference in the expected nuclear size can be considered
as benign–atypical < benign–malignant, and atypical–malignant < benign–malignant.
GnnExplainer, GraphGrad-CAM and GraphGrad-CAM++ display these behaviors
∀k ∈ K. GnnExplainer provides the highest class separability in each pair-wise classifi-
cation, thus proving to be the best explainer pertaining to size concept. Detailed inspection
of Figure 6.6 shows that all the differences in the expected behavior, per concept for all
pair-wise classifications, is inline with the concept-wise expected behavior in Table 6.4,
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Figure 6.5: Per-class histograms for different concepts across different graph explainers. For
simplicity, histograms are shown for the best attribute per concept at importance threshold k = 25.

∀c ∈ C and ∀k ∈ K. Overall, GnnExplainer is seen to be the best explainer as it agrees
to the majority of the expected differences ∀c ∈ C for all pair-wise classifications, while
providing high-class separability. Furthermore, size proves to be the most important
concept that provides the maximum class separability across all pair-wise classifications.

6.7.4 Qualitative assessment

Figure 6.7 and Figure 6.8 present CG explanations produced by GnnExplainer,
GraphGrad-CAM, GraphGrad-CAM++, and GraphLRP for TRoIs across benign, atypi-
cal and malignant breast tumors. It can be observed that GnnExplainer learns to binarize
the explanations, thereby producing the most compact explanations by retaining the most
important nuclei set of nuclei with high importance. However, GraphGrad-CAM and
GraphGrad-CAM++ produce explanations with more distributed nuclei importance
than GnnExplainer. GraphLRP produces the largest explanations by retaining most of
the nuclei in the CGs.
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Figure 6.6: Visualizing the variation of pair-wise class separability score (Y-axis) w.r.t. several nuclei
importance thresholds in K (X-axis). The analysis is provided for different graph explainers, and
for the best attribute per concept.
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Figure 6.7: Qualitative results. The rows represent breast cancer subtypes, and columns represent
graph explainers, i. e., GnnExplainer, GraphGrad-CAM, GraphGrad-CAM++, and GraphLRP.
Nuclei level importance ranges from blue (the least important) to red (the highest important).
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Figure 6.8: Qualitative results. The rows represent breast cancer subtypes, and columns represent
graph explainers, i. e., GnnExplainer, GraphGrad-CAM, GraphGrad-CAM++, and GraphLRP.
Nuclei level importance ranges from blue (the least important) to red (the highest important).





7
Reducing Annotation Effort in Digital
Pathology: Co-Representation Learning
Framework for Classification Tasks

Classification of digital pathology images is imperative in cancer diagnosis and prognosis.
Recent advancements in deep learning and computer vision have greatly benefited the
pathology workflow by developing automated solutions for classification tasks. However,
the cost and time for acquiring high quality task-specific large annotated training data are
subject to intra- and inter-observer variability, thus challenging the adoption of such tools.
To address these challenges, we propose a classification framework via co-representation
learning to maximize the learning capability of deep neural networks while using a
reduced amount of training data. The framework captures the class-label information and
the local spatial distribution information by jointly optimizing a categorical cross-entropy
objective and a deep metric learning objective, respectively. A deep metric learning
objective boosts the classification, especially in the low training data regime. Further, a
neighborhood-aware multiple similarity sampling strategy, and a soft-multi-pair objective
that optimizes interactions between multiple informative sample pairs, is proposed to
accelerate deep metric learning. We evaluate the proposed framework on five benchmark
datasets from three digital pathology tasks, i. e., nuclei classification, mitosis detection,
and tissue type classification. For all the datasets, our framework achieves state-of-the-art
performance by using approximately 50% of the training data. On using complete training
data, the proposed framework outperforms the state-of-the-art on all the five datasets.

7.1 Introduction

Histopathological analysis is a common clinical procedure for diagnosing the presence,
type, and progression of diseases such as cancer. Pathologists manually identify and
examine the nuclear phenotype, tissue topology, and cytology among several other factors
for the staging and grading of cancer. In clinical practice, an inspection of tissue slides
under a microscope is tedious, time-consuming, and subject to inter- and intra-observer
variability, e. g., concordance rates can be as low as 48% for some cases of breast cancer
atypia ([Elmore et al., 2015]). As a consequence of the recently gained efficiency in

This chapter has been published as: Pushpak Pati, Antonio Foncubierta-Rodriguez, Orcun Goksel, Maria Gabrani
“Reducing Annotation Effort in Digital Pathology: A Co-Representation Learning Framework for Classification Tasks”,
In: Medical Image Analysis, vol. 67, pp. 101859, 2021, doi: 10.1016/j.media.2020.101859
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scanning techniques that digitize glass slides into impressive resolution images, digital
pathology (DP) has profoundly transformed the daily practice of pathologists. DP
facilitates remote diagnostic work, teleconsultation, workload efficiency, collaborations,
central clinical review, and virtual education ([Wilbur et al., 2009; Hamilton et al., 2012;
Sagun et al., 2018; Nauhria et al., 2019; Pantanowitz et al., 2018; Hanna et al., 2019]).
Additionally, DP promotes innovative research opportunities in image analysis and
computing to automate cancer diagnosis ([Litjens et al., 2017]).

Recent advancements in computer vision and deep learning (DL) have enabled to learn
sub-visual image features that may not be easily discernible by the human eye. DL
algorithms learn representations directly from images and have demonstrated superior
performance compared to handcrafted feature-based methods [Litjens et al., 2017]. When
applied to medical images, such as DP images, these algorithms offer the opportunity for
better quantitative modeling of disease appearance, and hence improved diagnosis and
patient outcome. DL methods have successfully addressed several tasks in DP by sub-
stantially reducing the laborious and tedious nature of providing accurate quantification,
and by reducing the observer variability.

However, these compelling opportunities in DP come with their own set of challenges
([Tizhoosh et al., 2018]). Most DL algorithms require large sets of high quality labeled data,
and they do not generalize to data deviating from the training dataset. Further, variations
in tissue acquisition, staining procedure, scanning technology, and a high degree of
polymorphism in tissue structures across organs in DP hinder the generalization of
DL. To address these difficulties, large datasets need to be acquired encompassing all
potential variations. Further, DL algorithms belong to the class of narrow AI algorithms.
They are designed to perform only one task, thus requiring task-specific large annotated
data. Though several multi-task learning algorithms have been proposed in the literature
([Graham et al., 2019a; Yan et al., 2019]), still they are limited to be useful for very closely
related tasks. Annotating such large datasets by experts is time-consuming and expensive.
Annotation procedure becomes highly complicated in presence of low-resolution images,
artifacts, or ambiguous features. Alternative solutions such as crowd-sourcing may be
cheaper and quicker but have the potential to introduce noise ([Alialy et al., 2018]).

The aforementioned challenges underline the need for learning strategies to maximally
utilize the dataset, especially for scenarios with scarce labeled data. Several techniques
in machine learning tackle the scarce data challenge, such as data augmentation, data
generation, transfer learning, semi-supervised learning, and active learning. Generative
adversarial networks (GANs, [Goodfellow et al., 2014]) have been a potential solution
to synthesize labeled data. However, generating high-resolution images incorporating
complex medical structures, training instability, and non-convergence inhibit GAN’s
application to medical imaging ([Yi et al., 2019]). GANs also require a substantial amount
of data to train, and visual inspection by experts for model selection ([Yu et al., 2017]).
Unified generator for multiple classes results in inferior performance compared to class-
specific generators [Frid-Adar et al., 2018]. Furthermore, [Finlayson et al., 2018] argue that
images generated from GANs may serve as an effective augmentation in the medium-data
regime, but may not help in high or low-data regime. Transfer learning from natural
images has become a de-facto method for DL applications to medical imaging for small
labeled data. Evaluation of the effect of transfer concludes that transfer offers little
benefit to performance. Some differences from transfer learning are due to the over-
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parameterization of standard models rather than sophisticated feature reuse. [Raghu et al.,
2019] present these observations and emphasize on more efficient model exploration.
Active learning is more tightly coupled with human-in-the-loop learning that requires an
annotator to annotate unlabeled data during the training phase as presented by [Budd
et al., 2021] and [Lutnick et al., 2019]. Further, [Schaumberg et al., 2016] introduce a
non-intrusive approach to approximate a pathologist’s routine clinical work and generate
large annotated dataset in a non-algorithmic manner. However, the availability of an
expert in the training loop or mimicking a pathologist for each task is expensive and
may not be feasible. Semi-supervised learning iteratively augments the training data
by annotating the unlabeled data during the training phase. The performance of these
algorithms rely on the base classification performance for label assignment.

In this paper, we propose a co-representation learning (CoReL) framework for classifica-
tion tasks to extract maximum information from the training data via multiple learning
strategies. CoReL aims at enhancing the classification performance, especially for low
training data regime. CoReL is a generic framework that can be employed in generative
modeling, semi-supervised learning or active learning setting to further boost the perfor-
mance of individual settings. Additionally, CoReL can be extended to a wide-range of
classification tasks ranging from nuclei classification to whole-slide-image classification.
In regards, the major contributions in this paper are,

• We propose a CoReL for classification framework that leverages class label informa-
tion via optimizing categorical cross-entropy, and spatial distribution information
of samples in the embedding space via optimizing a deep metric learning objective.
The framework improves the classification compared to a standalone cross-entropy
based classifier without additional training parameters and and inference time.

• We propose a neighborhood-aware multiple similarity sampling, a novel pair
mining strategy that utilizes context information of samples and pair-wise similarity
measures to identify informative pairs. Further, a soft-multi-pair objective is
proposed that jointly optimizes the interactions of multiple positive and negative
pairs in a triplet setting to accelerate deep metric learning.

• We evaluate the CoReL framework on five benchmark datasets across three DP
classification tasks, i. e., nuclei classification, mitosis detection, and tissue type
classification. The proposed deep metric learning strategy along with the joint
learning technique improve the performance of the CoReL framework. The im-
provement is significant especially in the low training data regime. CoReL achieves
the state-of-the-art performances on all datasets by using substantially reduced
training data. For using the complete training data, it outperforms the current
state-of-the-art approaches on all five datasets.

7.2 Related work

In the past few years, DL algorithms have addressed various classification tasks in DP.
The applications include nuclei classification ([Sirinukunwattana et al., 2016; Graham
et al., 2019a; Pati et al., 2020]), nuclei detection ([Sirinukunwattana et al., 2016; Ciresan
et al., 2013]), tissue classification ([Kather et al., 2019; Xu et al., 2019b]) tumor staging
([Spanhol et al., 2016b; Aresta et al., 2019; Pati et al., 2020]), tumor grading ([Veta et al.,
2019; Tellez et al., 2021]), tumor detection ([Liu et al., 2017b; Pati et al., 2018]), outcome
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prediction ([Kather et al., 2019; Bychkov et al., 2018]) etc. DL algorithms outperform earlier
handcrafted feature-based approaches by automatically learning robust representations.
In this work, we review nuclei classification, mitosis detection and tissue classification
tasks.

[Sirinukunwattana et al., 2016] builds a spatially constrained CNN and a neighboring
ensemble predictor coupled with a CNN to respectively detect and classify nuclei. [Shao
et al., 2018] uses deep active learning with pairwise constraints to actively query the
most valuable nuclei for annotation by an expert and subsequently updates a CNN
by incorporating the newly annotated samples. [Hamad et al., 2018] presents a two-
stage pipeline by combining a fully convolutional regression network with a CNN for
nuclei localization and classification. [Li et al., 2019c] uses a position of interest network
with a cascade residual fusion block to localize nuclei and categorizes the nuclei by
a multi-cropping network. [Zhou et al., 2018] presents a sibling fully convolutional
network with prior objectness interaction to simultaneously detect and classify nuclei.
[Graham et al., 2019a] proposes a CNN, leveraging information encoded within the
vertical and horizontal distances of nuclear pixels for simultaneous nuclei segmentation
and classification.

Several contests, including ICPR12 ([Roux et al., 2013]), AMIDA13 ([Veta et al., 2015]),
MITOS-ATYPIA-14 ([Roux, 2014]) and TUPAC16 ([Veta et al., 2019]), have promoted
remarkable advances in the area of automatic mitosis detection. [Ciresan et al., 2013]
proposes a computationally expensive sliding-window-based detection method. [Chen
et al., 2016] uses a fully convolutional neural network for a coarse retrieval of mitosis
candidates, and a fine discrimination model utilizing knowledge transferred from cross-
domain to identify mitoses from hard mimics. [Li et al., 2018a] applies a proposal-based
deep detection network for mitosis detection and a patch-based deep verification network
to improve the predictions. [Li et al., 2019a] proposes a concentric loss based semantic
segmentation approach to identify mitoses. [Paeng et al., 2016] trains a large-view CNN
using mitotic and non-mitotic patches, and proposes a fully convolutional network-based
inference to predict on a large image with a single forward pass.

[Kather et al., 2019] utilizes CNN for classifying tissue patches from colorectal cancer into
nine tissue categories. [Xu et al., 2019b] integrates a CNN with a focal loss to identify
tissue composition in colorectal cancer.

Several research works have improved various DP classification tasks using large anno-
tated data. However, only a few efforts based on active learning ([Carse et al., 2019; Budd
et al., 2021; Lutnick et al., 2019]), semi-supervised learning ([Akram et al., 2018; Peikari
et al., 2018]) and deep metric learning ([Teh et al., 2020; Han et al., 2017]) have been
dedicated to tackle the issue of limited training data. Though transfer learning-based
approaches have been adopted in this regard, [Raghu et al., 2019] discards the benefit of
transfer and emphasizes on efficient model exploration. [Tizhoosh et al., 2018] lists a set
of challenges in annotating large datasets from a pathology perspective, and mentions its
impact on learning algorithms from an engineering perspective. Annotating large datasets
may incorporate human error, such as data processing error, and incomplete annotation
error. For instance, annotation errors are identified in the popular CAMELYON16 lymph
node metastasis detection challenge by [Liu et al., 2017b]. Additionally, acquiring a large
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labeled data with balanced classes is very difficult for DP tasks which can adversely
impact the learning of classifiers ([Johnson et al., 2019]).

Recently, a few frameworks have been proposed that jointly optimize a classification
objective via categorical cross-entropy (CCE) and a similarity constraint via a deep metric
learning (DML) objective for better classification performance on natural images. Both
objectives constrain the embedding space independently, thus providing complementary
information. [Zhang et al., 2016b] uses multi-level relevance through quadruplets to
optimize a multi-task learning framework to effectively learn fine-grained feature repre-
sentation. [Liu et al., 2017a] proposes an (N+M)-tuplet cluster loss and identity-based
sampling to improve DML, and combines DML with softmax loss in a unified two fully
connected layer branched framework to improve facial expression recognition. [Li et al.,
2018d] proposes a DL framework to jointly optimize softmax loss and a pair loss objective.
These frameworks include dataset-specific heuristically tailored sampling strategies and
similarity constraints for improving DML performance. Our proposed CoReL framework
consists of a generic sampling strategy and a generic deep metric objective. Through
ablation studies on uncorrelated classification tasks, we demonstrate the generic learning
ability of our framework. We further extend the CoReL framework to address limited
training data scenario.

Recent advancements in DML ([Kaya et al., 2019]) have paved way for learning discrimina-
tory networks using limited training data. DML measures the similarity among samples
in the embedding space while using an optimal distance metric for learning tasks. The
success of DML relies on the capacity of the embedding network to understand the
similarity relationship among samples, an informative sample selection strategy and an
appropriate distance metric objective. [Hadsell et al., 2006] proposes a Siamese network
optimizing a contrastive loss that encourages pair of samples from the same class (positive
pair) to be as close as possible, while pushing away pair of samples from different classes
(negative pair) beyond a certain margin. It fixes a constant margin for all pairs of negative
samples, thus embeds visually diverse classes and visually similar classes in the same
small embedding space without allowing for distortions. [Schroff et al., 2015] introduces
a triplet loss that aims to keep all positives closer to any negatives for each example. This
formulation allows the embedding space to be arbitrarily distorted and does not impose
a constant margin. However, triplet loss fails to utilize the full mini-batch information as
it uses separate pairs consisting of one positive and one negative sample per anchor. [Oh
Song et al., 2016] proposes a lifted structure loss to improve a mini-batch optimization
using all pairs available in the batch. However, the lifted structure loss mines an equal
number of positive and negative pairs randomly, thus discards a large number of infor-
mative negative pairs arbitrarily. [Sohn, 2016] proposes multi-class N-pair loss, similar
to lifted structure loss, in the sense that it recruits multiple negative samples in a given
mini-batch to compute the loss term. [Wang et al., 2019b] proposes a multi-similarity
loss to utilize meaningful pair-wise relations by jointly considering the self-similarity and
the relative similarities among pairs. In this work, we propose a soft-multi-pair loss that
jointly optimizes multiple positive and negative pair interactions to accelerate and im-
prove DML. Similarly, various sampling strategies have been proposed to accelerate DML
convergence. [Chang et al., 2017] introduces an active bias learning to emphasize on high
variance samples. Self-paced learning [Kumar et al., 2010], which pays more attention on
samples with a higher confidence, is explored to design noise-robust algorithms by [Jiang
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Figure 7.1: Overview of the proposed co-representation learning for classification framework that
jointly optimizes categorical cross-entropy objective, computed using the softmax output, and
a deep metric objective, computed using a proposed neighborhood-aware multiple similarity
sampling with proposed soft-multi-pair loss.

et al., 2014]. [Schroff et al., 2015] proposes to use a semi-hard negative mining to yield
negative samples that are fairly hard but not too hard. [Hermans et al., 2017] proposes to
sample the hardest positive and the hardest negative samples within a mini-batch to form
triplets. However, mining hard negative samples often leads to collapsed models. [Wu
et al., 2017] exploits the distribution of pair-wise distances on an unit sphere to weight
positive and negative pairs. This scheme only leverages the self-similarity of pairs. [Wang
et al., 2019b] uses both self-similarity and relative similarities of pairs to sample informa-
tive pairs. We propose a neighborhood-aware multiple-similarity sampling strategy that
weights and mines a pair of samples by using the neighborhood of the samples within a
local data distribution, the self-similarity of the samples, and the relative similarities of
the pair to equivalent pairs in the embedding space.

7.3 Background

In this work, we propose a CoReL framework to capture class label information and
local spatial distribution information of samples via jointly optimizing a CCE and a DML
objective. In this section, we explain the building blocks of our framework. We begin
with the notations and terminologies, and then introduce the CCE and DML objectives.
Additionally, we present the notion of complementary information captured by both the
objectives from an information theory perspective.

7.3.1 Preliminaries

Let X = {xi}M
i=1 is a data matrix of M sample images, and Y = {yi}M

i=1 denotes the
corresponding ground-truth vector. xi ∈ RH×W×3 is the i-th RGB image with height
H and width W. yi ∈ C is the class label for xi , where C is the set of classes. xi
is projected onto a unit sphere in a D-dimensional space by an embedding module,
f E(. ; θE) : RH×W×3 → RD . Further, a classification module f C(. ; θC) : RD → RC ,
operates on f E(xi ; θE) to predict p(ŷi = c|xi), ∀c ∈ C, where ŷi is the predicted class
label for xi . f E and f C are neural networks parameterized by θE and θC , respectively. For
simplicity, we denote f E(. ; θE) and f C(. ; θC) as f E(.) and f C(.), respectively. The feature
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representations f E(xi), ∀xi ∈ X, are normalized to have unit length for training stability
([Schroff et al., 2015]).

7.3.2 Categorical cross-entropy

CCE is widely used in classification tasks. f C( f E(.)) transforms an input into class-
wise probabilities through a series of convolutions, non-linear activations and a softmax
function. f C(.) learns p(ŷi = c | xi), ∀c ∈ C vector such that the input image has the
highest compatibility with its ground-truth p(yi = c | xi), ∀c ∈ C vector. p(yi = c | xi) is
1 for only one class and 0 for others. During training, f C(.) aims at jointly maximizing
p(ŷi = c | xi), ∀xi ∈ X so that all inputs are correctly classified. The identical form for this
aim is to minimize CCE, given by,

arg max
θE , θC

M

∏
i=1

p(ŷi = c | xi) = arg min
θE , θC

− 1
M

M

∑
i=1

log p(ŷi = c|xi)

= arg min
θE , θC

− 1
M

M

∑
i=1

C

∑
c=1

p(yi = c|xi). log p(ŷi = c|xi) = arg min
θE , θC

Lcce(Y, Ŷ |X)
(7.1)

where, Ŷ denotes the predicted label vector for X and Lcce denotes the CCE loss. Opti-
mizing CCE aims at tuning the network parameters to maximize the mutual information
between the ground-truth class probability distribution and the predicted class probability
distribution for all samples.

7.3.3 Deep metric learning

DML utilizes the local spatial distribution of samples in the non-linearly projected
embedding space to bring similar samples (samples from the same class) closer, while
pushing dissimilar samples (samples from different classes) apart. Similarity between
a pair of samples (xi , xj) is measured by the euclidean distance, denoted by dij :=
∥ f E(xi) − f E(xj)∥2. dij is bounded by [0, 2] as the embeddings lie on an unit sphere.
In this work, we use triplets to capture the spatial distribution of samples. A triplet
consists of an anchor, a positive and a negative identity, where the anchor and the
positive identity are similar, and the anchor and the negative identity are dissimilar. For
simplicity, we denote an anchor-positive identity pair as positive-pair, and an anchor-
negative identity pair as a negative-pair. Following [Schroff et al., 2015], triplets are
formed in an online manner using the samples from a mini-batch. Let B = {Bc}C

c=1 be
a mini-batch, and Bc be the number of samples per class in B. Let Pi and Ni denote
the set of positive identities and negative identities respectively for an anchor xi ∈ B.
A triplet tl : (ta

l , tp
l , tn

l ) = (xi , xj, xk) is formed such that i ̸= j ̸= k, yi = yj, yi ̸= yk, and
(xi , xj, xk) ∈ B. ta

l , tp
l and tn

l are anchor, positive and negative identities respectively. Let
T = {(ta

l , tp
l , tn

l )}
T
l=1 be the set of triplets created from B with cardinality T. Thus, DML

aims at,
d( f E(ta

l ), f E(tp
l )) + m < d( f E(ta

l ), f E(tn
l )), ∀l ∈ T (7.2)

where, m is a margin factor that controls the distance between a positive-pair and a
negative-pair. Several structured loss functions have been proposed by [Schroff et al.,
2015; Sohn, 2016; Oh Song et al., 2016; Wu et al., 2017; Wang et al., 2019b] to optimize
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the DML objective. For instance, [Schroff et al., 2015] propose a triplet loss to optimize
Equation 7.2, given by,

Ltriplet = ∑
l∈T

[d( f E(ta
l ), f E(tp

l ))− d( f E(ta
l ), f E(tn

l )) + m]+ (7.3)

Similarly, [Sohn, 2016] propose a multi-class N-pair loss that employs one positive identity
tp
l , and N-1 negative identities {(tn

l1, tn
l2, ..., tn

lN−1)} per anchor to facilitate interaction with
multiple negative classes in each update. N-pair loss is given as,

Lnpair = ∑
l∈T

log(1 +
N−1

∑
k=1

exp( f E(ta
l )

T . f E(tn
lk)− f E(ta

l )
T . f E(tp

l ))) (7.4)

Furthermore, the number of all possible triplets in B has a cubic complexity. It introduces a
large number of uninformative triplets, i. e., triplets that do not violate equation 7.2. Also,
it is time exhaustive and computationally infeasible to deal with all triplets. Therefore,
several mining strategies are proposed by [Schroff et al., 2015; Hermans et al., 2017; Wu
et al., 2017; Wang et al., 2019b] to sample informative triplets.

[Tschannen et al., 2019] shows that optimizing DML objective is equivalent to maximizing
the mutual information between an anchor, and its corresponding distribution of positive
and negative identities in the embedding space. Unlike CCE, DML leverages the local
spatial context of an anchor to define its embedding. Therefore, jointly optimizing CCE
and DML for an anchor can maximize the mutual information between the anchor and
its context, and the ground-truth class probability distribution and the predicted class
probability distribution for the anchor. The context information from DML can support
CCE, thereby improving the classification performance.

7.4 Methodology

In this section, we first propose the CoReL framework that learns class-label information
and local spatial distribution information of samples. We describe the strengths of
CoReL, and compare with standalone CCE and DML classifiers under limited training
data. Then, we propose a neighborhood-aware multiple similarity sampling strategy
to mine informative pair of samples, and a soft-multi-pair objective to boost the DML
performance. Further, the proposed DML methodology is integrated with CoReL to
enhance its performance. Figure 7.1 presents the overview of the CoReL framework and
its components.

7.4.1 Co-representation learning framework for classification

CCE and DML optimize different objectives for classification. Optimizing CCE minimizes
the gap between the predicted class probabilities and the ground-truth class distribution
for a sample. Whereas, DML utilizes local spatial distribution of samples to learn robust
embeddings for class delineation. [Horiguchi et al., 2020] thoroughly compare CCE and
DML objectives to demonstrate their individual strengths and weaknesses. The objective
of the CoReL framework aims at exploiting their complementarity:

LCoReL(T ) = Lcce(Ta) + αLdml(Tapn) + λ ||W||2 (7.5)
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Figure 7.2: Illustration of multiple similarities for a negative pair considering the spatial distribution
of samples in the embedding spaces. With respect to a given pair AB in the base embedding space
(a), increased self-similarity of AB in (b), reduced negative relative similarity of AB in (c), and
reduced positive relative similarity of AB in (d), are demonstrated.

where, LCoReL is determined by Lcce, CCE loss for the anchor identities in T , Ldml ,
DML loss for the triplets in T , and L2 regularizer operating on network parameters
W = {θE, θC}. α > 0 is the loss trade-off parameter that adjusts the contribution by
the losses. λ is the regularization coefficient. The CoReL framework possesses several
advantages over standalone CCE and DML based classifications.

• CoReL can improve the classification by using the complementary information from
CCE and DML objectives. The framework learns discriminative features, preserves
intra-class variance and increases inter-class separability, without sacrificing the
classification accuracy.

• In CoReL, the CCE objective can facilitate the mining of informative samples. Also,
the faster convergence of CCE can benefit the DML convergence.

• The joint optimization prevents the framework from focusing too much on the class
label information. The DML objective can be viewed as an indirect regularization of
the framework. DML regularizes the feature representation using local distribution
information, consequently preventing the network from overfitting.

• For limited training data, class labels provide limited information. However, the
similarity constraints by DML can provide additional information about the spatial
distribution, leading to a better classification. Also, the regularization provided by
DML prevents the CCE objective to overfit to small training data. Both the measures
boost the efficacy of CoReL using limited training data.

7.4.2 Improving deep metric learning

In addition to CoReL, we propose a methodology to improve DML classification per-
formance, thus boosting the joint learning. Mining informative positive and negative
pairs, and optimizing appropriate distance metric impact the quality of the learned
embeddings, the convergence speed and the performance of DML. We hypothesize that
the informativeness of a pair relies on the local spatial distribution of the constituting
samples, the similarity between the constituting samples, and the relative similarity of
the pair to its equivalent pairs in the embedding space. To this end, we introduce three
types of similarity measures and a neighborhood-aware weighting scheme to define the
informativeness of a pair. Finally, we propose a neighborhood-aware multiple similarity
sampling (NAMSS) strategy for mining informative positive and negative pairs. Similarly,
we propose a soft-multi-pair (SoMP) objective that considers to jointly optimize the
interactions between multiple positive and negative pairs for an anchor to accelerate
DML, and improve class separability.
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7.4.2.1 Multiple similarities

We define three types of similarities for a pair, i. e., self-similarity, positive similarity and
negative similarity, inspired by [Wang et al., 2019b]. For simplicity, we take a negative
pair AB in Figure 7.2 across different embedding spaces to describe the similarities. A
positive pair can be analyzed similarly.

• Self-similarity: Self-similarity is computed from a pair itself. The self-similarity between
A and B is increased when the euclidean distance between A and B is decreased from
Figure 7.2(a) to Figure 7.2(b). A high self-similarity between the samples of a negative pair
indicates the difficulty of distinguishing the two paired samples from different classes.
Such pairs are more informative to learn discriminative features. However, self-similarity
does not fully describe the sample distribution in the embedding space. Also, it does not
capture any correlation to other negative pairs, which can make a significant impact on
similarity measurement.

• Negative relative similarity: Negative relative similarity is estimated by considering
the correlation from neighboring negative pairs. It captures the significance of a pair in
comparison to other equivalent pairs. Compared to Figure 7.2(a), the negative samples
neighboring to B move closer to the anchor A in 7.2(c). This increases the self-similarities
of the negative pairs neighboring to AB. Thus, the negative relative similarity of AB is
reduced even when its self-similarity is unchanged.

• Positive relative similarity: A positive relative similarity captures the distribution of
positive pairs with a same anchor to influence the informativeness of a negative pair.
Compared to Figure 7.2(a), the positive samples are closer to anchor A in Figure 7.2(d).
The AB pair is informative in 7.2(a) as it violates the triplet objective from Equation 7.2.
But, in Figure 7.2(d) the AB pair satisfies Equation 7.2 and is less informative. Thus, the
positive relative similarity of AB is reduced even when its self-similarity is unchanged.

•Multiple similarity sampling (MSS): We incorporate the three similarities to formulate
a weighting scheme. To sample a negative pair, first, positive relative similarity is used to
discard the less informative pairs. Second, self-similarity and negative relative similarity
are used to weight the mined pairs. Third, informative pairs are uniformly sampled from
the weight distribution.

Specifically, first, a negative pair is compared to the hardest positive pair. Formally, for
an anchor xi , a negative pair (xi , xk) is selected if dik satisfies,

d−ik < max
yi=yl

dil + m, where xl ∈ Pi (7.6)

The index set of selected negative pairs are denoted as Ni ∈ Ni . Second, the weight
[w−ik ]MS for a mined negative pair (xi , xk) ∈ Ni is computed as,

[w−ik ]MS =
exp (β dik)

∑
l ∈Ni

exp (β dil)
(7.7)

where, β is a fixed hyperparameter to scale the importance of hard-negatives. The
numerator includes the self-similarity dik, and the denominator includes equivalent
negative pairs to compute relative similarity. Finally, a negative pair is uniformly sampled
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Figure 7.3: Illustrating the contribution of neighborhood awareness for sampling informative
positive and negative pairs under neighborhood-aware multiple similarity sampling blanket.
Samples B and C are equidistant from anchor A in the presented scenarios, thus AB and AC pairs
are equally weighted according to multiple similarity measures. Evaluated scenarios are given as,
(Case 1) positive identity mining for an easy anchor, (Case 2) positive identity mining for a difficult
anchor, (Case 3) negative identity mining for an easy anchor, and (Case 4) negative identity mining
for a difficult anchor.

from the weight distributions. The three steps are iteratively used to sample negative
pairs for each anchor.

Similarly, a positive pair is mined using negative relative similarity, weighted using
self-similarity and positive relative similarity, and sampled uniformly from the weight
distribution. Formally, for an anchor xi , a positive pair (xi , xj) is mined if,

d+ij > min
yi ̸=yl

dil −m, where xl ∈ Ni (7.8)

The index set of mined positive pairs are denoted as Pi ∈ Pi . Weight [w+
ij ]MS for a positive

pair (xi , xj) ∈ Pi is computed as,

[w+
ij ]MS =

exp (−γ dij)

∑
l ∈Pi

exp (−γ dil)
(7.9)

where, γ is a fixed hyperparameter to scale the importance of hard-positives.

7.4.2.2 Neighborhood awareness

Investigating the neighborhood distributions of samples in the embedding space char-
acterize the spatial pattern. The relative spatial position of a sample with respect to
similar samples and dissimilar samples in the embedding space indicate the degree of
disorganization. A disorganized sample, i. e., a sample surrounded by dissimilar samples
or located away from similar samples, is more informative as it contributes the maximum
to the DML objective. The neighborhood analysis identifies such samples, thus is vital for
DML performance.

To characterize the notion of neighborhood awareness, we perform class-wise neigh-
borhood analysis and assign a neighborhood-aware weight to each sample. Class-wise
weighting of samples depict the relative degree of organization of similar samples. For
a sample, we compute its average distance to K-nearest neighbors from the same class
in the embedding space. Next, a class-wise weight normalization is used to compute
the neighborhood-aware weights. A small and a large weight indicate relative orga-
nization and disorganization of the samples in the embedding space, respectively. A
threshold value δ on the degree of organization delineates the samples into two cate-
gories, i. e., easy-neighborhood-samples and difficult-neighborhood-samples. Formally,
the neighborhood-aware weight for xi is defined as,
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vi1 = arg min
j∈ Bc , yi=yj=c

dij; vik = arg min
j∈ Bc , yi=yj=c, vi1 ,...vik−1

dij

wi =
1
K ∑

k∈K
divik , [wi ]NA =

wi

∑
j∈ Bc

wj

xi =

{
easy-neighborhood-sample; if [wi ]NA ≤ δ

difficult-neighborhood-sample; otherwise

(7.10)

where, {vi1, ..., vik} denote the index of K-nearest neighbors of xi , and [wi ]NA denotes the
neighborhood-aware weight for xi . We follow the aforementioned scheme to categorize
the anchor, positive and negative identities into easy or difficult categories.

7.4.2.3 Neighborhood-aware multiple similarity sampling

The neighborhood-awareness of the samples and similarity measures for a pair capture
the structural information of the spatial distribution of samples in the embedding space
to quantify the informativeness of the pair. In the context of mining informative triplets
for DML, we define the sampling strategies for the following four scenarios,

• Case-1: positive mining for easy-anchor: Figure 7.3(a) presents an easy-anchor A
surrounded by similar samples. Given B and C are equidistant from A, MSS assigns
equal and the highest weights among all the positive identities. Easy-positive B is already
organized appropriately in the respective class-cluster. Hence, pulling the difficult-positive
C towards the respective class-cluster is more informative. Thus, difficult-positives are
weighted more compared to easy-positives when mining positive identity for an easy-
anchor.

• Case-2: positive mining for difficult-anchor: Figure 7.3(b) shows a difficult-anchor
A distant from the similar samples. MSS assigns the highest and equal weights to AB
and AC pairs, given B and C are equidistant from A. Disorganized A should be pulled
towards the stable positive cluster instead of getting pulled towards the disorganized
difficult-positive C. Thus, easy-positives are weighted more than difficult-positives when
the positive pair involves a difficult-anchor.

• Case-3: negative mining for easy-anchor: Easy-anchor A in Figure 7.3(c) should push
away from the cluster of easy-negatives for better class separation. Thus, given equidistant
samples B and C from A, easy-negative pair AC is weighted higher.

• Case-4: negative mining for difficult-anchor: The difficult-anchor A in Figure 7.3(d)
should push away from the cluster of easy-negatives for better class separability. Pushing
A from a disorganized difficult-negative B may not lead the anchor towards a stable
positive cluster. Thus, easy-negatives are assigned higher weights compared to difficult-
negatives when the negative pair involves a difficult-anchor.
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Considering the aforementioned scenarios, the weighting of a positive pair (xi , xj) and a
negative pair (xi , xk) based on neighborhood awareness can be given as,

[w+
ij ]NA =


exp([wj ]NA)

∑
l ∈Pi

exp([wl ]NA)
; if [wi ]NA ≤ δ

exp(−[wj ]NA)

∑
l ∈Pi

exp(−[wl ]NA)
; otherwise

[w−ik ]NA =
exp(−[wk ]NA)

∑
l ∈Ni

exp(−[wl ]NA)

(7.11)

For a given anchor, we combine the neighborhood awareness and the multiple similarities
to define the NAMSS pair weighting scheme. Informative pairs are sampled uniformly
from the normalized weight distribution given as follows,

w+
ij = [w+

ij ]NA.[w+
ij ]MS, [w+

ij ]NAMSS =
w+

ij

∑
l ∈Pi

w+
il

w−ik = [w−ik ]NA.[w−ik ]MS, [w−ik ]NAMSS =
w−ik

∑
l ∈Ni

w−il

(7.12)

7.4.2.4 Soft-multi-pair loss

DP images contain high intra-class variability and high inter-class ambiguity. Similarity
analysis via DML on such data by considering only one positive and only one negative
identity per anchor exhibits slow convergence in learning the data variability. Further,
considering the difference in the convergence speed between CCE and DML, CoReL may
be unable to utilize the information from DML. Thus, We propose a triplet based soft-
multi-pair (SoMP) loss that jointly optimizes the interactions between multiple positive
pairs and multiple negative pairs per anchor to accelerate DML. Unlike multi-class N-pair
loss ([Sohn, 2016]), SoMP considers multiple positives and multiple negatives per anchor
to additionally constrain the embedding space.

Formally, let T be the set of triplets with cardinality T. The l-th triplet in T is presented
by, (ta

l , tp
l1, tp

l2, ..., tp
lP, tn

l1, tn
l2, ..., tn

lN). ta
l denotes the anchor identity, (tp

l1, tp
l2, ..., tp

lP) denotes
the set of P unique positive identities, and (tn

l1, tn
l2, ..., tn

lN) denotes the set of N unique
negative identities. The SoMP objective over T is defined as,

LSoMP =
T

∑
l=1

log(1 +
P

∑
j=1

N

∑
k=1

exp[(d( f E(ta
l ), f E(tp

lj))

− d( f E(ta
l ), f E(tn

lk)) + m)]+)

(7.13)

where, m denotes the acceptable margin between a positive pair and a negative pair. The
margin m enforces a distance between class clusters, and relaxes the objective by avoiding
to correct “already correct" triplets. This ensures the optimization to focus on informative
triplets that violate in Equation 7.2. For a triplet, SoMP jointly optimizes the interactions
between multiple positive pairs and multiple negative pairs per anchor, thus eliminating
the need of optimizing multiple triplets per anchor.
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7.4.3 Co-representation learning training strategy

We perform online triplet mining from a mini-batch during training. Within a mini-batch,
each sample is considered once as an anchor identity. A set of P positive identities and a
set of N negative identities are sampled using NAMSS strategy to form triplets for each
anchor. P and N are considered as design choices based on the size of the training data
and the computational resources. SoMP loss is discounted by loss trade-off parameter
α, and is jointly optimized with CCE loss as per Equation 7.5. CCE loss is optimized
only for the anchor identities of the triplets, and the SoMP loss is optimized for the set of
constructed triplets. Since each sample is once employed as an anchor, optimizing CCE
for positive or negative identities is redundant. Optimizing CCE for the anchors ensures
that complete class-label information is utilized during joint learning.

7.5 Results
In this section, we evaluate the CoReL framework on three classification tasks in DP: nuclei
classification, mitosis detection and tissue type classification. We consider CRCHistoPhe-
notypes ([Sirinukunwattana et al., 2016]), CoNSeP ([Graham et al., 2019a]), ICPR12 ([Roux
et al., 2013]), AMIDA13 ([Veta et al., 2015]) and Kather Multiclass ([Kather et al., 2019])
datasets in this regard. First, we perform ablation studies on CRCHistoPhenotypes and
AMIDA13 to demonstrate the performance of the proposed DML methodology. Due to
computationally prohibitive runtimes, not all datasets could be included in an extensive
ablation study. Considering CRCHistoPhenotypes and ConSeP both having the same
multi-class nuclei classification objective and similar dataset statistics, the well-established
former dataset is selected for ablation experiments. Similarly, between AMIDA13 and
ICPR12 having the same mitosis detection objective, the comparatively larger AMIDA13
dataset is used to obtain more reliable ablation statistics. Kather Multiclass presents
an easier task and a relatively large dataset, thus, making it less suitable for extensive
experiments. Second, we evaluate the performance of CoReL, incorporating the DML
methodology, on all datasets with different percentages of training data.

7.5.1 Implementation

The CoReL framework is experimented separately for individual dataset, for different
sampling strategies, different DML objectives and incremental subsets of training data.
For each dataset, hyperparameters are tuned by training CoReL on complete training
data, which are then applied to training with other subsets of the training data. In this
section, we specify the implementation details of CoReL that are common to all datasets.
Dataset-specific implementations and results are provided in the respective subsections.

First, we select the base deep network for the embedding module. Three networks, ResNet
([He et al., 2016]), Wide Residual Network (WRN) ([Zagoruyko et al., 2016]) and DenseNet
([Huang et al., 2017]), are trained to optimize CCE on the complete training data. The
network with the highest classification performance on the validation set is selected as
the base network. The output from the penultimate layer of the base network passes
through D 1× 1 convolutions, a global average pooling and a l2-normalization to produce
the D-dimensional embedding. A classification module, consisting of a fully-connected
layer and a softmax layer, processes the embedding to produce softmax output. DML
and CCE objectives are computed using the D-dimensional embedding and the softmax
output, respectively, and combined as per Equation 7.5 to define the CoReL objective. For
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Figure 7.4: Classification scores (higher is better) and DB scores (lower is better) on CRCHistoPhe-
noTypes (subfigures a to d) and AMIDA13 (subfigures e to h) datasets: (a) and (b) show the
weighted F1 scores and DB scores for various triplet sampling strategies, (c) and (d) show the
weighted F1 scores and DB scores for various DML losses. Similarly, (e) and (f) show the F1 scores
and DB scores for various triplet sampling strategies, (g) and (h) show the F1 scores and DB scores
for various DML losses.

the baselines, standalone classifiers are trained with individual classification strategies.
For instance, a DML classifier optimizes DML objective and fits a K-nearest neighbor
classifier to obtain class predictions.

Upon evaluation, we select a basic-wide WRN for AMIDA13 and ICPR12 datasets, and
a DenseNet for CRCHistoPhenotypes, CoNSeP and Kather Multiclass datasets. The
WRN has 16 base filters, a widening factor of 2, a depth of 40 layers and no average
pooling. The DenseNet has 3 dense blocks with 12 layers per dense block, 48 base filters,
0.5 reduction rate and a depth of 40 layers. We use Adam optimizer ([Kingma et al.,
2015]) with β1 = 0.9, β2 = 0.999 and ϵ = 1e−8. The network weights are initialized with
He normal ([He et al., 2015]). The hyperparameters β, γ, δ and λ are set to 2, 50, 0.5
and 10−4, respectively. Experimented hyperparameters and their values are given as,
embedding size (D ∈ [32, 64, 128, 256, 512]), base batch size (b ∈ [2, 4, 8, 16, 32]), learning
rate (lr ∈ [0.001, 0.01, 0.1]), loss trade-off parameter (α ∈ [0.001, 0.01, 0.1, 0.5, 1]) and margin
(m ∈ [0.5, 1.0, 1.5]). The learning rate is reduced by 0.5 when the evaluation metric on the
validation data does not improve for 5 consecutive epochs. Early stopping with a patience
of 20 epochs is used to prevent overfitting. Each training mini-batch is constructed by
mimicking the per-class distribution of samples in the training data. The experiments are
performed using an NVIDIA Tesla P100 GPU with POWER8 processors. All networks
are implemented in Keras with TensorFlow 1.8 backend.

7.5.2 Ablation framework

We perform ablation studies to evaluate the impact of four factors on DML classification,
i. e., (1) triplet sampling strategy, (2) DML loss function, (3) embedding size, and (4) batch
size. Each factor is analyzed individually, while fixing the others.

We compare six triplet sampling strategies. For a triplet (xa, xp, xn), and corresponding
positive set P and negative set N in a mini-batch, the sampling strategies are given as,
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Random sampling (RS): xp and xn are sampled independently of xa by randomly
choosing from P and N, respectively.

Batch-hard sampling (BHS) [Hermans et al., 2017]: The hardest positive xp ∈ P (the
farthest from xa) and the hardest negative xn ∈ N (the closest to xa) are sampled for xa.

Distance weighted sampling (DWS) [Wu et al., 2017]: All negative pairs for xa are
weighted in inverse proportion, and all positive pairs for xa are weighted in direct
proportion to the distribution of pair-wise distances on an unit sphere. xp and xn are
uniformly sampled from the weighted distribution.

Multiple similarity sampling (MSS): xp and xn are uniformly sampled from the weighted
probability distributions specified in Equation 7.9 and Equation 7.7, respectively.

Neighborhood-aware distance weighted sampling (NADWS): All positive and negative
pairs for xa are weighted by combining the neighborhood awareness distribution, Equa-
tion 7.10, and the pair-wise distance weighted distribution, [Wu et al., 2017]. xp and xn

are sampled uniformly from the joint probability distribution.

Neighborhood-aware multiple similarity sampling (NAMSS): All positive and negative
pairs for xa are weighted by combining the neighborhood awareness and multiple
similarity measures as per Equation 7.12. xp and xn are uniformly sampled from these
joint probability distributions.

Further, we compare five DML objectives, i. e., triplet loss ([Schroff et al., 2015]), multi-
class n-pair loss ([Sohn, 2016]), margin loss ([Wu et al., 2017]), multiple similarity loss
([Wang et al., 2019b]) and the proposed SoMP loss. We consider three settings to evaluate
the impact of optimizing multiple pair interactions in DML, i. e., (p1, n1), (p1, n3) and
(p3, n3), where the numbers next to p and n denote the number of positive and negative
identities per anchor in a triplet. We perform ablation studies for five embedding sizes
(D ∈ [32, 64, 128, 256, 512]) and four base batch sizes (b ∈ [4, 8, 16, 32]).

Weighted F1 score and F1 score on test set measure the classification performance on
CRCHistoPhenotypes and AMIDA13, respectively. Weights for weighted F1 score on
CRCHistoPhenotypes are given in Section 7.5.3. We analyze the quality of the embeddings
using Davies-Bouldin (DB) score [Davies et al., 1979] that measures the appropriateness
of data partitions in the embedding space. DB score is defined as the average similarity
measure of each cluster with its most similar cluster, where similarity is the ratio of
within-cluster distances to between-cluster distances. Clusters that are farther apart and
less dispersed results in a better (i. e., lower) score.

7.5.3 CRCHistoPhenotypes

CRCHistoPhenotypes ([Sirinukunwattana et al., 2016]) dataset consists of 100 H&E
stained histology images of size 500×500 pixels from 10 whole-slides across 9 colorectal
adenocarcinoma patients. The images are captured at 20×magnification by Omnyx VL120
scanner from normal and malignant regions. These images include a total of 22444 nuclei
that are classified into four categories: 7722 epithelial, 5712 fibroblast, 6971 inflammatory,
and 2039 miscellaneous nuclei. Inflammatory category includes lymphocyte plasma,
neutrophil and eosinophil, and miscellaneous category includes all the remaining types
of nuclei, such as adipocyte, endothelium, mitotic figure, and nucleus of necrotic. We
employ two-fold cross-validation evaluation, same as [Sirinukunwattana et al., 2016],
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Table 7.1: Effect of embedding size on classification performance using various subsets of training
data on CRCHistoPhenotypes and AMIDA13.

Embedding size CRCHistoPhenotypes AMIDA13

%Training Data 12.5% 100% 5% 100%

32 0.625 0.779 0.364 0.624

64 0.645 0.784 0.415 0.633

128 0.649 0.791 0.426 0.646

256 0.657 0.799 0.458 0.654

512 0.648 0.794 0.451 0.653

Table 7.2: Effect of base batch size on classification performance using various subsets of training
data on CRCHistoPhenotypes and AMIDA13.

Batch size CRCHistoPhenotypes AMIDA13

%Training Data 12.5% 100% 5% 100%

4 0.654 0.793 0.448 0.633

8 0.657 0.799 0.458 0.654

16 0.645 0.794 0.449 0.632

32 0.641 0.786 0.445 0.621

and split the dataset into 40, 10 and 50 images for train, validation and test respectively.
Further, to experiment with limited training data constraints, we prepare six incremental
subsets of the training data. We split the training set into sets of [1, 5, 10, 20, 30, 40]
images corresponding to [2.5%, 12.5%, 25%, 50%, 75%, 100%] of training data. Patches of
size 36×36 pixels are extracted from the images centered around the annotated nucleus
centroids. Patches are randomly augmented using rotation (900, 1800, 2700), translation
(±4 pixels), mirroring along horizontal and vertical axes and color augmentation in HSV
space. In the HSV space, the hue (H), saturation (S), and value (V) variables are separately
multiplied by random numbers rH ∈ [0.95, 1.05], and rS, rV ∈ [0.9, 1.1]. For a test nuclei,
class-wise mean of the predicted probabilities for 5 augmentations of the nuclei are used
to assign the final class label. We compute the F1 score for each nuclei class and compute
their weighted average by the number of nucleus samples to summarize the overall
classification performance.

7.5.3.1 Ablation study

• Impact of embedding size: We study DML performance for varying embedding sizes
on two training subsets, i. e., 12.5% and 100%. DML classifiers are trained using NAMSS
strategy, SoMP(p3, n3) loss with m = 0.5, b = 8 and lr = 0.01. Table 7.1 indicates
consistent performance gain for both the subsets with increasing the embedding size up
till 256.
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Figure 7.5: Mean and standard deviation of classification performances for various learning
objectives, including standalone categorical cross entropy, and the proposed CoReL framework with
various DML losses and sampling strategies. All frameworks using incremental subsets of training
data are trained three times with different weight initializations on (a) CRCHistophenotypes,
(b) CoNSeP, (c) AMIDA13, (d) ICPR12, (e) Kather Multiclass Internal, and (f) Kather Multiclass
External datasets. Also, a reference to the state-of-the-art classification approaches for each dataset
trained using complete training data is given by a dashed line.

• Impact of base batch size: Similar studies are performed with D = 256 and varying
base batch sizes. Effective batch size of a mini-batch corresponding to b = [4, 8, 16, 32]
are [25, 52, 104, 208]. Table 7.2 shows increase in classification performance for increasing
b till 8, and decreases with further increment in b. CRCHistoPhenotypes dataset is
a fine-grained dataset with small inter-class variations, making it easy to collect hard
negative pairs with small batch size.

• Impact of triplet sampling techniques: Experiments are conducted by optimizing
triplet loss with m = 0.5, D = 256, b = 8 and lr = 0.01 on three subsets of training
data, i. e., 12.5%, 50%, and 100%. Figure 7.4(a) and Figure 7.4(b) present the weighted
F1 scores and DB scores for experiments with different sampling strategies. Selecting
only hard-negatives in BHS provides too hard-negatives causing the gradient to have
high variance, thus reducing the performance. All other sampling strategies perform
better than RS, signifying the importance of sampling in DML. MSS performs better than
DWS indicating the positive impact of relative similarity measures. Both NADWS and
NAMSS further improve the performances of DWS and MSS, depicting the importance of
neighborhood awareness in pair mining. The DB score evaluating the cluster quality in
the embedding space confirms the above observations. The proposed NAMSS strategy
provides the best classification performance among the sampling strategies.

• Impact of DML objective: We analyze the impact of DML objectives for NAMSS
strategy. Figure 7.4(c) and Figure 7.4(d) present the weighted F1 scores and DB scores
for the experiments. Unlike N-pair loss, triplet loss includes a margin to not penalize
already correct triplets. The better performance of triplet loss than N-pair (p1, n1)
indicates the positive impact of margin relaxation. However, N-pair (p1, n3) outperforms
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Table 7.3: Results on CRCHistoPhenotypes dataset. Weighted F1 scores for various learning
strategies, including categorical cross entropy alone, and CoReL with various deep metric losses
and sampling strategies. The best weighted F1 scores are shown in bold.

%Training Data 2.5% 12.5% 25% 50% 75% 100%

Softmax CNN + NEP ([Sirinukunwattana et al., 2016]) - - - - - 0.784

Softmax CNN + SSPP ([Sirinukunwattana et al., 2016]) - - - - - 0.748

CCE 0.571 0.639 0.701 0.758 0.780 0.791

CCE + Triplet: MSS 0.565 0.642 0.703 0.764 0.785 0.798

CCE + Triplet: NAMSS 0.572 0.643 0.712 0.772 0.790 0.799

CCE + SoMP(p1,n1): NAMSS 0.591 0.656 0.712 0.764 0.789 0.802

CCE + SoMP(p1,n3): NAMSS 0.602 0.663 0.721 0.769 0.792 0.807

CCE + SoMP(p3,n3): NAMSS 0.637 0.678 0.726 0.781 0.798 0.813

Table 7.4: Results on AMIDA13 dataset. F1 scores for various learning strategies, including binary
cross entropy alone, and CoReL with various deep metric losses and sampling strategies. The best
F1 scores are shown in bold.

%Training Data 5% 10% 25% 50% 75% 100%

SegMitos ([Li et al., 2019a]) - - - - - 0.673

IDSIA ([Veta et al., 2015]) - - - - - 0.611

BCE 0.371 0.442 0.511 0.577 0.618 0.644

BCE + Triplet: MSS 0.435 0.530 0.578 0.631 0.642 0.664

BCE + Triplet: NAMSS 0.451 0.540 0.587 0.637 0.645 0.667

BCE + SoMP(p3,n3): NAMSS 0.489 0.565 0.598 0.639 0.650 0.671

triplet loss indicating the importance of jointly optimizing multiple negative interactions.
SoMP performance increases with increasing the number of interactions as shown by
SoMP(p3, n3) > SoMP(p1, n3) > SoMP(p1, n1). SoMP (p3, n3) outperforms N-pair (p1, n3)
signifying the effect of margin relaxation and the optimization of multiple positive
interactions. Further, we compare SoMP(p3, n3) with two recent DML frameworks
proposed by [Wu et al., 2017] and [Wang et al., 2019b], to demonstrate the efficacy of our
DML framework.

7.5.3.2 Classification with CoReL

The ablation studies signify the efficacy of NAMSS strategy and SoMP objective for
improving DML performance. We incorporate the proposed DML methodology to
CoReL to evaluate its significance in the joint learning framework. From Table 7.1
and Table 7.2, we set D = 256 and b = 8. Table 7.3 presents the best weighted F1
scores for the state-of-the-art approaches, the standalone CCE classifier, and the CoReL
framework with various DML methodologies. We train each network three times with
different weight initializations, and report the mean and standard deviations of weighted
F1 scores in Figure 7.5. CoReL frameworks provide better results compared to stan-
dalone CCE classifier for all subsets of training data. CCE+Triplet:NAMSS performs
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Table 7.5: Results on ICPR12 dataset. F1 scores for various learning strategies, including binary
cross entropy alone, and CoReL with various deep metric losses and sampling strategies. The best
F1 scores are shown in bold.

%Training Data 20% 40% 60% 80% 100%

DeepMitosis ([Li et al., 2018a]) - - - - 0.832

SegMitos ([Li et al., 2019a]) - - - - 0.771

IDSIA ([Roux et al., 2013]) - - - - 0.782

BCE 0.712 0.724 0.766 0.789 0.806

BCE + Triplet: MSS 0.722 0.754 0.778 0.800 0.802

BCE + Triplet: NAMSS 0.736 0.759 0.782 0.795 0.806

BCE + SoMP(p3,n3): NAMSS 0.747 0.775 0.798 0.814 0.818

Table 7.6: Results on CoNSeP dataset. Weighted F1 scores for various learning strategies, including
categorical cross entropy alone, and CoReL with various deep metric losses and sampling strategies.
The best weighted F1 scores are shown in bold.

%Training Data 1% 5% 10% 25% 50% 75% 100%

CCE 0.605 0.654 0.740 0.799 0.809 0.824 0.831

CCE + Triplet: MSS 0.602 0.701 0.748 0.804 0.819 0.825 0.835

CCE + Triplet: NAMSS 0.627 0.691 0.752 0.811 0.824 0.836 0.839

CCE + SoMP(p3,n3): NAMSS 0.672 0.742 0.772 0.816 0.832 0.841 0.844

better than CCE+Triplet:MSS signifying the impact of neighborhood awareness based
sampling. Further, CCE+SoMP(p1,n1):NAMSS outperforms CCE+Triplet:NAMSS in-
dicating the contribution of SoMP loss. The performance of CoReL with SoMP ob-
jective increases with increasing the number of multiple positive and negative pair
interactions, indicated by CCE+SoMP(p3,n3):NAMSS > CCE+SoMP(p1,n1):NAMSS.
CCE+SoMP(p3,n3):NAMSS provides significant gain compared to CCE classifier in the
limited data regime. The gain gradually decreases with increasing the size of the training
data. CCE+SoMP(p3,n3):NAMSS achieves the state-of-the-art results ([Sirinukunwat-
tana et al., 2016]) by using 50% of the training data. On using complete training data,
CCE+SoMP(p3,n3):NAMSS surpasses the state-of-the-art by 2.1%. We can not compare
our results with [Shao et al., 2018; Zhou et al., 2018; Hamad et al., 2018; Li et al., 2019c] as
they use different data splitting protocols, i. e., different number of cross-validation folds,
and nuclei-level splitting instead of image-level splitting compared to the original work
by [Sirinukunwattana et al., 2016].

7.5.4 AMIDA13

AMIDA13 ([Veta et al., 2015]) dataset consists of 12 subjects for training and 11 subjects
for testing. The training set contains 311 high-power-fields (HPFs) and 550 annotated
mitotic figures, and the test set contains 295 HPFs and 533 mitoses. The size of each
HPF is 2000×2000 pixels, representing an area of 0.25mm2. The HPFs are captured at
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40× magnification with a spatial resolution of 0.25 µm/pixel by ScanScope XT whole-
slide scanner. Centroid annotations for mitoses are provided by the consensus of two
pathologists. We split the training set by subjects, and consider 9 subjects for training
and 3 subjects [6, 9, 10] for validation. The training subjects include 230 HPFs and 452
mitoses, and the validation subjects include 81 HPFs and 98 mitoses. To add the limited
data constraints, we split the 230 HPFs into incremental subsets of [12, 24, 61, 120, 176,
230] images corresponding to [5%, 10%, 25%, 50%, 75%, 100%] of the training data. These
splits contain [28, 48, 107, 228, 340, 452] mitoses respectively.

We begin with normalizing the HPFs using color deconvolution [Stanisavljevic et al.,
2018] to reduce the appearance variability. The nuclei in H&E stained HPFs possess
high blue channel intensity. We convert the RGB images into blue-ratio images ([Chang
et al., 2011]) and identify potential nuclei candidates by detecting high brightness objects.
Morphological opening, Otsu thresholding and connected components analysis detect the
bright objects. We consider connected components above an area of 100 pixels to define
nuclei candidates, and extract patches of 72×72 pixels centered around their centroids.
Nuclei detected within 20 pixels from the annotated mitoses are considered as mitoses.
Extracted patches are randomly augmented using rotation (angles in multiples of 450),
translation (±8 pixels) and flipping along horizontal and vertical axes.

We follow an incremental training strategy to address the high non-mitoses to mitoses
ratio in the dataset. A preliminary network is trained using all mitoses and equal number
of non-mitoses NM, a subset of complete non-mitotic set. The network identifies hard
non-mitoses, i. e., non-mitoses predicted as mitoses with high probability, from the com-
plementary set NM′. The hard non-mitoses are included to NM for subsequent training.
NM is periodically extended by repeating the above strategy. The strategy prevents fitting
suboptimal hypotheses by using evidence from the entire training set, and significantly
limits the non-mitoses in the training phase. Additional to the implementation strategy
in Section 7.5.1, Adam optimizer is used with learning rates set to 10−3, 10−3 and 10−4,
respectively, at 0th, 20th and 40th epoch. Hard non-mitoses are included at 20th and
40th epochs. For a test HPF, we detect nuclei centroids and classify corresponding nuclei
patches. Prediction probabilities are obtained for 5 augmentations of every nuclei. Class-
wise mean of the probabilities is used to assign final class label. A predicted mitosis is
considered a true-positive, if it lies within 30 pixels from the ground-truth mitotic location.
Misdetected and undetected mitoses are considered as false-positives and false-negatives
respectively. F1 score for mitotic class is used for evaluation. The highest F1 score on the
validation data is used for model selection.

Ablation study:

• Impact of embedding size: DML classifiers are trained by optimizing SoMP(p3, n3)
loss with m = 0.5, NAMSS sampling strategy and b = 8 for varying embedding sizes on
5% and 100% of training data. F1 score increases with increasing embedding dimensions
till 512 as shown in Table 7.1. The trend is consistent for both the training subsets.

• Impact of base batch size: Similar setting as 7.5.3.1A with D = 256 is evaluated with
different base batch sizes. Table 7.2 indicates increase in F1 score for increasing base batch
size from 4 to 8. Further increase in base batch size reduces F1 score.

• Impact of triplet sampling strategies: Sampling strategies are compared by training
DML classifiers by optimizing triplet loss with m = 0.5, D = 256 and b = 8 on 5% and
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Table 7.7: Results on Kather Multiclass datasets. Accuracy values for various learning strategies,
including categorical cross entropy alone, and CoReL with various deep metric losses and sampling
strategies. The best accuracies are shown in bold.

Methods Kather Multiclass Internal Kather Multiclass External

%Training Data 1% 5% 10% 25% 35% 50% 70% 1% 5% 10% 25% 35% 50% 70% 100%

Kather19 ([Kather et al., 2019]) - - - - - - 0.987 - - - - - - - 0.943

CCE 0.806 0.919 0.956 0.978 0.982 0.986 0.989 0.753 0.800 0.854 0.913 0.914 0.922 0.922 0.924

CCE + Triplet: MSS 0.871 0.959 0.978 0.984 0.990 0.991 0.993 0.763 0.808 0.894 0.918 0.920 0.924 0.927 0.930

CCE + Triplet: NAMSS 0.875 0.962 0.978 0.986 0.991 0.992 0.993 0.802 0.866 0.898 0.919 0.925 0.928 0.932 0.935

CCE + SoMP(p3,n3): NAMSS 0.891 0.970 0.982 0.990 0.991 0.993 0.995 0.842 0.888 0.913 0.933 0.935 0.939 0.942 0.951

100% of training data. Results in Figure 7.4(e) and Figure 7.4(f) present similar trend
in classification performances like CRCHistoPhenotypes. The results indicate superior
performance for NAMSS strategy on both training subsets.

• Impact of DML objectives: DML losses are analyzed for NAMSS strategy with D = 256
and b = 8. Figure 7.4(g) and Figure 7.4(h) demonstrate similar trend in classification
performances like CRCHistoPhenotypes. SoMP(p3, n3) performed the best among the
DML objectives which includes the strategies proposed by [Wu et al., 2017] and [Wang
et al., 2019b].

7.5.5 Classification with CoReL

We analyze the CoReL frameworks for jointly optimizing binary cross-entropy (BCE)
and various DML strategies. Considering the binary classification task BCE is optimized
instead of CCE. All experiments are conducted three times with different network weight
initializations, D = 256 and b = 8 using different subsets of training data. The best F1
scores for all experiments and the state-of-the-art are presented in Table 7.4. The mean and
standard deviation of F1 scores are presented in Figure 7.5(c). BCE+SoMP(p3, n3):NAMSS
performs the best across all training subsets. It outperforms the state-of-the-art classifica-
tion approach ([Veta et al., 2015]) significantly and achieves comparable performance to
the state-of-the-art segmentation approach ([Li et al., 2019a]). Results in Table 7.4 indicate
the improvements provided by the NAMSS strategy and SoMP loss. For limited data
regime, BCE+SoMP(p3, n3):NAMSS significantly improves the detection performance
compared to standalone BCE classifier. Also, the detection performance of the BCE clas-
sifier for using 100% training data is achieved by BCE+SoMP(p3, n3):NAMSS for using
only 50% of the training data. BCE+SoMP(p3, n3):NAMSS sets the new state-of-the-art
results for classification based mitotis detection.

7.5.6 ICPR12

The ICPR 2012 mitotis dataset ([Roux et al., 2013]) is extracted from a set of five breast can-
cer biopsy slides. 10 HPFs at 40× magnification are selected per slide by the pathologists.
Among the 50 HPFs, 35 HPFs and 15 HPFs belong to train set and test set respectively.
We use 25 images for training and 10 images for validation. The validation set contains
2 HPFs per slide. To experiment with limited data, we divide the training set of 25
images into five incremental subsets of [5, 10, 15, 20, 25] HPFs corresponding to [20%,
40%, 60%, 80%, 100%] of the training data. These splits contain [38, 63, 93, 137, 171]
mitoses respectively. ICPR12 dataset contains pixel-wise annotation masks for mitoses.
We consider the centroid of the mitoses masks as the ground-truth mitotic locations.
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We follow the same pre-processing steps as AMIDA13 to detect nuclei candidates. We
extract patches of size 96×96 around the centroids of the detected nuclei. Random
augmentations are applied by rotating (angles in multiples of 450), translating (±8 pixels)
and flipping around horizontal and vertical axes. We follow the same training and
testing protocol as AMIDA13. Mitoses detected within 20 pixels from the ground-truth
annotations are considered as true-positives. F1 score for the mitotic class is used to
evaluate the algorithms.

Table 7.5 presents the F1 scores for several methodologies. Figure 7.5(d) presents the mean
and standard deviation of F1 scores for all experiments trained three times with different
weight initializations. All CoReL frameworks outperform the BCE classifier for all training
subsets. BCE+SoMP(p3, n3):NAMSS achieves the best F1 score. The BCE detector perfor-
mance for using 100% training data is achieved by BCE+SoMP(p3, n3):NAMSS for utilizing
50% of the training data. On using complete training data, BCE+SoMP(p3, n3):NAMSS
outperforms the state-of-the-art classification ([Roux et al., 2013]) and segmentation
approach ([Li et al., 2019a]), and performs comparable to the mixed segmentation and
classification approach ([Li et al., 2018a]).

7.5.7 CoNSeP

CoNSeP [Graham et al., 2019a]) dataset consists of 41 H&E stained images, each of size
1000×1000 pixels. Images are extracted at 40× magnification with an Omnyx VL120
scanner from 16 colorectal adenocarcinoma patients. The nuclei are categorized into
four categories: epithelial, inflammatory, spindle-shaped and miscellaneous. Epithelial
type consists of normal and tumor epithelial. Spindle-shaped type includes endothelial,
muscle and fibroblast. Miscellaneous type contains necrotic, mitotic and cells that could
not be categorized. Out of a total of 24332 nuclei annotations, 8751 are epithelial, 5579 are
inflammatory, 9070 are spindle-shaped and 932 are miscellaneous. The train and test sets
consists of 27 and 14 images respectively. We consider indices, [1, 6, 8, 10, 16, 25, 26], out of
27 images for validation. To experiment with limited data constraints, we divide the nuclei
from 20 images into seven incremental training subsets, i.e, [1%, 5%, 10%, 25%, 50%, 75%,
100%]. We do not split at the image-level due to the uneven distribution of nuclei types
across images. Patches of size 64×64 pixels are extracted around nuclei centroids. We
follow the data augmentations and testing procedure specified for CRCHistoPhenotypes.
Class-wise distributions of nuclei are used as weights to compute weighted F1 score.

Table 7.6 presents the weighted F1 scores for different methodologies. Figure 7.5(b)
presents the mean and standard deviation of weighted F1 scores for all experiments
trained three times with different weight initializations. All CoReL frameworks perform
better than the CCE classifier for all subsets of training data, and CCE+SoMP(p3, n3):NAMSS
achieves the best score. It significantly outperforms the CCE classifier in the low data
regime. The best weighted F1 score by the CCE classifier for using 100% training data is
achieved by CCE+SoMP(p3, n3):NAMSS for using only 40% of the training data. We can
not compare our results to [Graham et al., 2019a], as they provide classification results for
only 73.68% nuclei in the test data that are detected by the nuclei segmentation branch.

7.5.8 Kather Multiclass

Kather Multiclass ([Kather et al., 2019]) provides two datasets: Kather Multiclass-Internal
(KMI) and Kather Multiclass-External (KME). KMI contains 100,000 tissue images of
224×224 pixels at 0.5 µm/pixel spatial resolution for 86 H&E colorectal cancer slides from
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Figure 7.6: Qualitative assessment of the impact of the size of training data on CoReL classification
performance. The evaluation is performed on AMIDA13 dataset by training the CoReL framework
on 5% and 100% training data.

NCT biobank and UMM pathology archive. KME contains 7180 images from 25 H&E
colorectal cancer slides from DACHS study in the NCT biobank. The images are stain
normalized with [Macenko et al., 2009] algorithm. KMI and KME contain nine tissue
types, i. e., adipose tissue, background, debris, lymphocytes, mucus, smooth muscle,
normal colon mucosa, cancer-associated stroma, and colorectal cancer epithelium. Similar
to [Kather et al., 2019], we divide KMI into 70%, 15% and 15% for training, validation and
testing. Entire KMI is split into eight incremental subsets, i. e., [1%, 5%, 10%, 25%, 35%,
50%, 70%, 100%]. The first seven sets are used for training, and the incremental 30% in
the last subset is split to define the validation and test set. Similar to [Kather et al., 2019],
KME is used as an external validation set for networks trained using KMI. Thus, all eight
subsets are used for training while validating on KME. We employ DenseNet architecture
as the embedding module instead of VGG19 architecture employed by [Kather et al.,
2019] considering the similar classification performance of DenseNet with a significant
reduction in network complexity in terms of trainable network parameters.

Table 7.7 presents test accuracies on KMI and validation accuracies on KME data for
the state-of-the art approach, CCE baseline and CoReL frameworks with various DML
strategies. Figure 7.5(e) and Figure 7.5(f) present the mean and standard deviation of
accuracies for all experiments trained three times with different weight initializations. In
both the datasets, CCE+SoMP(p3, n3):NAMSS performs the best for all training subsets.
In the limited data regime, it significantly outperforms the standalone CCE classifier. It
achieves the state-of-the-art results on KMI and KME data for using 25% and 70% of
training data respectively. CCE+SoMP(p3, n3):NAMSS outperforms the state-of-the-art by
using the complete training data. However, results on KME can further be improved by
using a better embedding module.

7.5.9 Qualitative analysis

The size of the training data impacts the learning, hence the discriminability power of
CoReL framework. To assess this impact, we present qualitative results for CCE+SoMP(p3,
n3):NAMSS trained with 5% and 100% training data from AMIDA13 dataset, denoted
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as CoReL-5 and CoReL-100 respectively. Unlike CRCHistoPhenotypes, AMIDA13 is a
binary classification task, thus it is selected for simplified qualitative assessment. Figure
7.6 presents qualitative results by illustrating false negative (FN) and false positive (FP)
mitotic samples for CoReL-5 and CoReL-100 frameworks.

Figure 7.6(a,b) and Figure 7.6(c,d) present FN and FP instances for CoReL-5 respectively.
CoReL-100 disagrees with CoReL-5 for the instances in Figure 7.6(a,c), and agrees with
CoReL-5 for the instances in Figure 7.6(b,d). Specifically, Figure 7.6(a) includes samples
from different mitotic phases indicating the learning inefficiency of CoReL-5 due to
the low intra-class variability in the small mitotic training data. However, Figure 7.6(b)
presents difficult mitotic instances for both CoReL-5 and CoReL-100, which primarily
contains complex and ambiguous patterns, and noise such as blurring, and boundary
mitotic figures. Figure 7.6(c) displays FPs for CoReL-5 which can be characterized
as samples with non-mitotic figures such as, stromal nuclei, lymphocytes, cancerous
epithelial nuclei, and samples with dense nuclei arrangements, ambiguous patterns, and
noise. The small mitotic training data of CoReL-5 accounts for the misclassifications.
Further, Figure 7.6(d) presents FPs common to both CoReL-5 and CoReL-100 which
primarily include complex discernible patterns. The precision of CoReL-5 and CoReL-
100 are 0.395 and 0.636 respectively, and the recall of CoReL-5 and CoReL-100 are 0.642
and 0.724 respectively. A comparatively higher gain in precision than recall and the
qualitative results indicate that increasing training data significantly lowers the FP mitoses,
and learns to identify the mitotic phases.

7.5.10 Runtime analysis

Training time statistics for CRCHistoPhenotypes and AMIDA13 datasets are provided
in Table 7.8. We present the absolute training time per epoch for CCE and CoReL
(CCE+SoMP(p3, n3):NAMSS) framework, and the relative training time of CoReL with
respect to CCE for different percentages of training data. Table 7.8 depicts that the CoReL
framework is computationally 1.568± 0.03 and 1.113± 0.03 times more expensive than
standalone CCE classifier for CRCHistoPhenotypes and AMIDA13, respectively. This
is likely due to the DML component in CoReL that involves expensive triplet sampling.
Further, the effective batch sizes for training CoReL frameworks on CRCHistoPhenotypes
and AMIDA13 are 52 and 20, respectively. This leads to a more expensive DML component
for CRCHistoPhenotypes, which results in higher relative training time. However, CoReL
possesses the same inference time as the standalone CCE classifier as both the frameworks
consist of an equal number of network parameters, and the DML component in CoReL is
not computed during the inference phase.

7.6 Discussion

The classification performances for optimizing CCE and DML objectives are impacted
differently by the training data size. To understand the contribution of the individual
objectives to the CoReL framework, we experiment with loss-tradeoff parameter α for dif-
ferent training data sizes. We evaluate for the best performing CCE+SoMP(p3, n3):NAMSS
framework, and the SoMP loss is optimized with m = [0.5, 1.0, 1.5] to eliminate the impact
of margin. For every dataset, we rank the mean of the classification performances for
varying α values on each subset of the training data. A higher rank indicates a higher
classification performance. In Figure 7.7, for lower training data regions, higher α val-
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Table 7.8: Training time analysis of CoReL framework and standalone CCE framework on
CRCHistoPhenoTypes and AMIDA13 dataset for different percentages of training data.

CRCHistoPhenotypes

% Data/Time(in s) 12.5% 25% 50% 75% 100%

CCE 40 60 100 140 170

CoReL 60 95 160 220 270

Relative time 1.50 1.58 1.60 1.57 1.59

AMIDA13

% Data/Time(in s) 5% 10% 25% 50% 75% 100%

CCE 130 140 150 180 200 220

CoReL 140 150 170 200 230 250

Relative time 1.08 1.07 1.13 1.11 1.15 1.14

ues result in higher ranks, thus emphasizing on DML. In these regions, CCE objective
does not acquire sufficient class label information. Whereas, DML exploits the avail-
able data by jointly optimizing multiple pair-wise interactions per anchor to capture
spatial distribution information of the samples in the embedding space. Further, DML
strongly regularizes the framework, and forces it focus less on the class labels. to prevent
overfitting. Thus, DML drives the performance of the CoReL framework under limited
training data. In Figure 7.7, for higher training data regions, lower α values result in
higher ranks, thus emphasizing on CCE. In these regions, CCE objective acquires vital
class label information and overpowers DML objective to drive the CoReL performance.
DML objective still boosts the class discriminability by providing additional structural
information and regularization. Figure 7.7 demonstrates that the α value with the highest
rank gradually reduces with the increase in the training dataset size. This indicates a
smooth transition between the amount of contributions by the two objectives.

Among the evaluated DML strategies, SoMP(p3, n3): NAMSS framework achieves the
highest F1 score and the lowest DB score as shown in Figure 7.4. Collective assessment of
Figure 7.4 and Figure 7.5 depict that SoMP(p3, n3):NAMSS outperforms the standalone
CCE classifier, and performs poorer than the proposed CoReL framework. The observa-
tions are consistent for both low and high training data regimes on CRCHistoPhenotypes
and AMIDA13 datasets. The observations conclude the proposed NAMSS with SoMP to
be the best DML strategy among the competing DML and standalone CCE classifiers.

The proposed CoReL framework provides consistent performance improvement for
class-imbalanced datasets by using simple class balancing techniques. For instance, the
class-wise distribution of epithelial, inflammatory, spindle-shaped, and miscellaneous
categories is 11:4:3:1 in CRCHistoPhenotypes, and 26:9:6:1 in CoNSep. CoReL employs
simple data augmentations as described in Section 7.5.3 and Section 7.5.7 to consistently
outperform other compared methodologies. Similarly, for AMIDA13 and ICPR12 datasets
with mitosis to non-mitosis ratio of, respectively, 1:1000 and 1:265, CoReL handles the
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Figure 7.7: Effect of loss trade-off parameter α, signifying the relative contribution of DML towards
the classification performance of the CoReL framework for using varying sizes of training data. A
higher rank in the colorbar indicates a higher performance.

high class-imbalance by incrementally sampling difficult non-mitoses as explained in
Section 7.5.4 and Section 7.5.6.

Furthermore, for all five datasets, the best performing CoReL framework, CCE+SoMP(p3,
n3):NAMSS, outperforms the standalone CCE classifier and significantly improves the
performance in the limited training data regime. The framework achieves the current state-
of-the-art performances by using significantly less training data, i. e., approximately 50%
for all evaluation datasets. On using complete training data, CCE+SoMP(p3, n3):NAMSS
outperforms the current state-of-the-art classification results on all datasets. The perfor-
mance graphs of CCE+SoMP(p3, n3):NAMSS in Figure 7.5 present a positive slope in the
high training data regime. It indicates that the framework possesses the ability to learn
further on increasing the training data. The framework contains the same number of
trainable parameters as the baseline CCE classifier. Thus, CCE+SoMP(p3, n3):NAMSS
delivers higher efficacy with no additional inference cost. The classification performance
values for all the frameworks in Figure 7.4, Figure 7.5 and Figure 7.7 are presented in
Appendix A of the supplementary material.

Despite several advantages, CoReL includes certain anticipated limitations. Our proposed
DML methodology may be sensitive to the training batch size, where the classification
performance increases with increasing batch size for datasets with high variability. This
may lead to a high computational cost and long training time per epoch. Furthermore,
the joint optimization of CCE and DML objectives may be sensitive to the loss-tradeoff
hyperparameter α, which may be computationally expensive to tune.

7.7 Conclusion
Digital pathology can greatly benefit from the advancements in artificial intelligence
and computer vision, but the annotation effort required for training these tools pose a
major challenge. In this paper, we adapt the training strategy to maximize the learning
capabilities of deep neural networks in digital pathology, where the annotation cost is
extremely high due to the size, variability, and complexity of the data.
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In this paper, we have proposed a co-representation learning for classification (CoReL)
framework to enhance the classification performance under data scarcity constraints.
CoReL utilizes the annotated class-label information via optimizing a CCE objective, and
captures the local spatial distribution information of the data in the embedding space
via optimizing a DML objective. The CCE objective maximizes the per-sample mutual
information between the ground-truth class-label distribution and the predicted class-
label probability distribution. On a side note, the DML objective exploits the pair-wise
relationship between the samples from the same class and the samples from different
classes. DML optimizes the per-sample mutual information between the anchor embed-
ding and the embeddings of the corresponding positive and negative identities in the
local spatial distribution to bring the anchor and the positive samples together while
pushing the anchor and the negative samples apart. We showcase the complementarity
of the objectives and jointly optimize them to maximize the information utilization from
the available data. Our approach has three major components: 1) a loss optimization
component that jointly optimizes the CCE objective and the DML objective, 2) a sampling
component that selects informative pairs to learn the spatial distribution of data, and
3) a deep metric loss component that simultaneously optimizes the interactions among
multiple positive pairs and negative pairs per anchor to accelerate DML. In this regard,
we propose a novel informative sampling strategy that uses per-sample neighborhood
distribution, and per-pair self-similarity and relative similarities to assess the informa-
tiveness of each pair. Further, we propose a soft-multi-pair loss to jointly optimize the
interactions of multiple similar pairs and dissimilar pairs to accelerate DML.

We target three classification tasks in digital pathology, i. e., nuclei classification, mitosis
detection, and tissue type categorization in this work. We consider five benchmark
datasets in this regard to compare the performance of CoReL with the baseline classifier
trained by CCE alone. CoReL significantly outperforms the baseline frameworks across all
datasets for training with limited annotated data. CoReL achieves state-of-the-art results
for utilizing much-reduced training data. On using the complete training data, CoReL
outperforms the state-of-the-art classification approaches on all five datasets. Ablation
studies establish the impact of the proposed sampling strategy and the proposed deep
metric loss towards improving the DML performance. Additional analysis demonstrates
the higher contribution by the DML objective to the CoReL performance under limited
training data. On increasing the training data, the CCE objective gradually takes over the
role of the major contributor.

The CoReL framework poses a great value for majority of the digital pathology classifica-
tion tasks as they suffer from data scarcity issues. It can cater to a variety of tasks as it
does not involve any dataset-specific component. Considering the enhanced performance
under limited data, it can be employed in active learning or semi-supervised learning
setting to further strengthen the classification performance. Also, the framework is
generic enough to be extended to classification tasks in other domains.
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7.8 Appendices

Table 7.9: Ablation study: Impact of triplet sampling strategies on classification performance for
CRCHistoPhenotypes and AMIDA13 datasets.

CRCHistoPhenotypes AMIDA13

%Training data 12.5% 50% 100% 5% 100%

Loss+Sampling F1 DB F1 DB F1 DB F1 DB F1 DB

Triplet: RS 0.615 4.02 0.725 2.38 0.769 2.16 0.366 1.21 0.607 0.82

Triplet: BHS 0.601 4.18 0.720 3.25 0.753 2.75 0.382 1.43 0.621 0.79

Triplet: DWS 0.620 3.75 0.734 2.41 0.781 2.11 0.404 1.35 0.623 0.78

Triplet: MSS 0.639 3.57 0.735 2.36 0.781 2.19 0.409 1.28 0.633 0.72

Triplet: NADWS 0.634 3.35 0.737 2.34 0.783 2.01 0.415 1.22 0.637 0.67

Triplet: NAMSS 0.642 3.29 0.743 2.14 0.785 1.96 0.420 0.95 0.643 0.60

Table 7.10: Ablation study: Impact of DML losses on classification performance for CRCHistoPhe-
notypes and AMIDA13 datasets.

CRCHistoPhenotypes AMIDA13

%Training data 12.5% 50% 100% 5% 100%

Loss+Sampling F1 DB F1 DB F1 DB F1 DB F1 DB

Margin: DWS ([Wu et al., 2017]) 0.605 4.52 0.740 2.35 0.761 2.12 0.362 1.68 0.619 0.76

MS(p3,n3): MSS ([Wang et al., 2019b]) 0.599 3.73 0.734 2.35 0.794 2.25 0.421 1.22 0.627 0.67

Triplet: NAMSS 0.642 3.29 0.743 2.14 0.785 1.96 0.420 1.11 0.643 0.60

Npair(p1,n1): NAMSS 0.627 3.93 0.748 2.34 0.782 2.10 0.400 1.18 0.624 0.70

Npair(p1,n3): NAMSS 0.648 3.43 0.749 2.03 0.789 2.01 0.424 1.05 0.647 0.58

SoMN(p1,n1): NAMSS 0.645 3.32 0.750 2.28 0.784 1.83 0.403 1.34 0.637 0.62

SoMN(p1,n3): NAMSS 0.654 3.19 0.753 2.05 0.792 1.76 0.427 0.99 0.643 0.57

SoMN(p3,n3): NAMSS 0.657 2.98 0.756 1.95 0.799 1.62 0.458 0.89 0.654 0.54

Table 7.11: CRCHistoPhenotypes dataset: Mean and standard deviation of weighted F1 scores for
various learning strategies.

%Training Data 2.5% 12.5% 25% 50% 75% 100%

CCE 0.550±0.007 0.610±0.002 0.696±0.005 0.756±0.003 0.779±0.001 0.788±0.004

CCE + Triplet: MSS 0.560±0.003 0.638±0.004 0.698±0.002 0.762±0.006 0.780±0.006 0.793±0.003

CCE + Triplet: NAMSS 0.568±0.003 0.641±0.002 0.708±0.004 0.765±0.004 0.784±0.004 0.796±0.002

CCE + SoMP(p3,n3): NAMSS 0.631±0.004 0.676±0.002 0.724±0.001 0.777±0.003 0.796±0.002 0.808±0.004
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Table 7.12: AMIDA13 dataset: Mean and standard deviation of weighted F1 scores for various
learning strategies.

%Training Data 5% 10% 25% 50% 75% 100%

CCE 0.363±0.006 0.428±0.012 0.515±0.008 0.583±0.008 0.616±0.005 0.630±0.006

CCE + Triplet: MSS 0.427±0.006 0.513±0.012 0.570±0.006 0.624±0.006 0.638±0.004 0.658±0.004

CCE + Triplet: NAMSS 0.449±0.002 0.534±0.007 0.578±0.007 0.631±0.004 0.640±0.005 0.664±0.002

CCE + SoMP(p3,n3): NAMSS 0.482±0.005 0.546±0.017 0.592±0.006 0.635±0.003 0.648±0.002 0.669±0.001

Table 7.13: ICPR12 dataset: Mean and standard deviation of weighted F1 scores for various learning
strategies.

%Training Data 20% 40% 60% 80% 100%

CCE 0.691±0.017 0.733±0.015 0.753±0.008 0.780±0.011 0.798±0.005

CCE + Triplet: MSS 0.712±0.009 0.744±0.007 0.770±0.005 0.798±0.002 0.796±0.005

CCE + Triplet: NAMSS 0.718±0.012 0.749±0.008 0.775±0.005 0.792±0.002 0.803±0.002

CCE + SoMP(p3,n3): NAMSS 0.733±0.010 0.771±0.003 0.795±0.002 0.810±0.004 0.810±0.005

Table 7.14: Kather Multiclass Internal dataset: Mean and standard deviation of weighted F1 scores
for various learning strategies.

%Training Data 1% 5% 10% 25% 35% 50% 70%

CCE 0.801±0.004 0.904±0.004 0.954±0.001 0.977±0.001 0.981±0.001 0.982±0.001 0.988±0.001

CCE + Triplet: MSS 0.869±0.002 0.959±0.001 0.975±0.002 0.983±0.001 0.989±0.001 0.990±0.001 0.993±0.001

CCE + Triplet: NAMSS 0.873±0.002 0.960±0.002 0.977±0.002 0.986±0.001 0.990±0.001 0.991±0.001 0.992±0.001

CCE + SoMP(p3,n3): NAMSS 0.884±0.002 0.968±0.001 0.981±0.001 0.989±0.001 0.990±0.001 0.993±0.001 0.994±0.001

Table 7.15: Kather Multiclass External dataset: Mean and standard deviation of weighted F1 scores
for various learning strategies.

%Training Data 1% 5% 10% 25% 35% 50% 70% 100%

CCE 0.748±0.005 0.796±0.004 0.851±0.003 0.910±0.002 0.912±0.001 0.918±0.003 0.919±0.003 0.922±0.001

CCE + Triplet: MSS 0.759±0.003 0.803±0.003 0.890±0.003 0.916±0.002 0.918±0.001 0.920±0.002 0.923±0.002 0.928±0.001

CCE + Triplet: NAMSS 0.788±0.001 0.862±0.002 0.895±0.002 0.918±0.002 0.923±0.001 0.923±0.003 0.928±0.003 0.933±0.001

CCE + SoMP(p3,n3): NAMSS 0.835±0.007 0.865±0.001 0.908±0.003 0.929±0.007 0.932±0.001 0.936±0.004 0.940±0.001 0.949±0.002
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Table 7.16: Impact of α on the classification results of CoReL trained using varying training data
sizes for CRCHistoPhenotypes and CoNSeP datasets.

CRCHistoPhenotypes CoNSeP

α/%Data 2.5% 12.5% 25% 50% 75% 100% 1% 5% 10% 25% 50% 75% 100%

0.001 0.587 0.656 0.705 0.769 0.789 0.795 0.629 0.712 0.745 0.795 0.818 0.830 0.830

0.01 0.593 0.656 0.708 0.771 0.792 0.802 0.632 0.712 0.753 0.799 0.821 0.835 0.833

0.1 0.601 0.658 0.715 0.769 0.790 0.805 0.645 0.727 0.754 0.8160 0.824 0.839 0.832

0.5 0.621 0.6659 0.699 0.769 0.789 0.798 0.652 0.728 0.759 0.804 0.821 0.832 0.832

1.0 0.599 0.658 0.695 0.767 0.784 0.796 0.644 0.720 0.752 0.794 0.817 0.831 0.827

Table 7.17: Impact of α on the classification results of CoReL trained using varying training data
sizes for AMIDA13 and ICPR12 datasets.

AMIDA13 ICPR12

α/%Data 5% 10% 25% 50% 75% 100% 20% 40% 60% 80% 100%

0.001 0.419 0.413 0.571 0.619 0.628 0.649 0.686 0.733 0.756 0.787 0.801

0.01 0.425 0.471 0.570 0.619 0.645 0.648 0.703 0.734 0.759 0.797 0.806

0.1 0.455 0.485 0.575 0.628 0.638 0.647 0.699 0.745 0.771 0.799 0.802

0.5 0.468 0.509 0.555 0.620 0.627 0.648 0.727 0.744 0.770 0.786 0.792

1.0 0.425 0.477 0.552 0.604 0.607 0.646 0.714 0.727 0.767 0.784 0.786

Table 7.18: Impact of α on the classification results of CoReL trained using varying training data
sizes for Kather Multiclass Internal and Kather Multiclass External datasets.

Kather Multiclass Internal Kather Multiclass External

α/%Data 1% 5% 10% 25% 35% 50% 70% 1% 5% 10% 25% 35% 50% 70% 100%

0.001 0.821 0.963 0.976 0.987 0.988 0.992 0.993 0.812 0.836 0.882 0.908 0.911 0.921 0.923 0.928

0.01 0.851 0.963 0.977 0.987 0.989 0.992 0.994 0.824 0.845 0.892 0.915 0.930 0.924 0.923 0.935

0.1 0.836 0.966 0.979 0.987 0.990 0.992 0.994 0.825 0.869 0.900 0.918 0.927 0.928 0.934 0.931

0.5 0.883 0.966 0.979 0.987 0.989 0.992 0.993 0.826 0.874 0.905 0.924 0.931 0.932 0.929 0.928

1.0 0.853 0.967 0.979 0.987 0.989 0.992 0.993 0.827 0.858 0.886 0.906 0.926 0.920 0.929 0.926





8
Weakly Supervised Segmentation and
Classification of Prostate Cancer Slides

Segmenting histopathology images into diagnostically relevant regions is imperative
to support timely and reliable decisions by pathologists. To this end, computer-aided
techniques have been proposed to delineate relevant regions in histopathology slides.
However, the techniques necessitate task-specific large datasets of annotated pixels, which
is tedious, time-consuming, expensive, and infeasible to acquire for many histopathology
tasks. Therefore, weakly-supervised semantic segmentation techniques are proposed
to leverage image-level inexact annotations, which are cheaper and quicker to acquire.
In this chapter, we propose WholeSIGHT, a weakly-supervised semantic segmentation
method using tissue-graphs, to simultaneously segment and classify whole-slide images
(WSIs) of arbitrary shape and size. Formally, WholeSIGHT first constructs a tissue-graph
representation for an input image, where the nodes depict tissue regions, and the edges
describe interactions among tissue regions. Subsequently, the method employs a graph-
classification head to classify WSIs, followed by a post-hoc feature attribution technique
to derive node-level pseudo labels. Finally, a node classification head is trained using the
pseudo labels to segment WSIs. We evaluated WholeSIGHT on three public prostate
cancer WSI datasets from three pathology labs. Our method achieved state-of-the-art
weakly-supervised segmentation performance on all the datasets, and resulted in better or
comparable classification performance with respect to state-of-the-art weakly-supervised
WSI classification methods. Further, two Bayesian variants, WholeSIGHT-MCD and
WholeSIGHT-DE, based on MC-dropout and deep ensembles, respectively, are proposed,
which improves the generalization of WholeSIGHT over external test datasets. The
generalization capabilities of the methods are quantified in terms of segmentation and
classification performance, uncertainty estimations, and model calibration analyses.

Preliminary version of this chapter has been published as: Valenin Anklin† , Pushpak Pati† , Guillaume Jaume† ,
Behzad Bozorgtabar, Antonio Foncubierta-Rodriguez, Jean-Philippe Thiran, Maria Gabrani, Orcun Goksel. “Learning
Whole-Slide Segmentation from Inexact and Incomplete Labels using Tissue Graphs”, In: Medical Image Computing
and Computer Assisted Intervention (MICCAI), pp. 636-646, Strasbourg, France, Sep 2021, doi: 10.1007/978-3-030-
87196-3_59, [arXiv]
This chapter with comprehensive extensions has been prepared to be submitted as: Pushpak Pati† , Guillaume Jaume† ,
Behzad Bozorgtabar, Jean-Philippe Thiran, Maria Gabrani, Orcun Goksel “Weakly Supervised Learning for Joint
Whole-Slide Segmentation and Classification in Prostate Cancer”, 2021, for review as a journal publication.
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8.1 Introduction

Prostate cancer is the second most frequently diagnosed cancer in men in the U.S., with
250,000 new registered cases resulting in 35,000 deaths in 2021. In contrary, the number of
pathologists, who play a pivotal role in the diagnosis and management of cancer patients,
is gradually decreasing. In the U.S., a decrease of 18% is recorded between 2007 and 2017,
with a consequence of 42% increase in average workload [Wilson et al., 2018]. Moreover,
the practice of uro-pathology has its own challenges [Amin et al., 2015]. Indeed, even
though diagnostic criteria for prostate cancer grading are established [Tan et al., 2019], the
continuum of histologic features phenotyped across the diagnostic spectrum leaves room
for inconsistencies, with significant intra- and inter-observer variability [Gomes et al.,
2014; Elmore et al., 2015]. Manual slide inspection is also a tedious and time-consuming
which would benefit from automation and standardization. All these elements demand
the development of AI-based automated CAD tools for diagnosing prostate cancer.

With the advancements in AI, in particular DL, several supervised CAD tools are proposed
to assist the diagnosis of prostate cancer [Linkon et al., 2021; Tataru et al., 2021]. Recent
studies have also demonstrated that AI-assisted prostate cancer diagnosis significantly
outperforms standalone pathologist-based diagnosis [Bulten et al., 2021; Campanella
et al., 2019]. Although these DL-based tools achieve remarkable performance, they often
require task- and tissue-specific pixel or patch annotations on large datasets. Acquiring
such annotations is laborious, time-consuming, and often infeasible.

To alleviate the burden of annotation requirements, several DL-based weakly-supervised
methods are proposed across different types of tissues, which can leverage readily
available WSI-level annotations. Most of these methods, that are scalable to WSIs, focus
on classification tasks, e. g., MIL [Campanella et al., 2019; Lu et al., 2021] or compression-
based representation learning [Tellez et al., 2021; Shaban et al., 2020]. Though methods
classifying WSIs are important, their applicability is limited due to their poor ability to
assist pathologists’ focus during diagnosis [Wang et al., 2019c]. To address this limitation
with classification methods, semantic segmentation methods are desired that can delineate
diagnostically relevant regions in WSIs and speed up the diagnosis by directly guiding
their focus to informative regions. Further, a pixel-level segmentation can also enable the
quantification of tumor areas for better patient stratification, tailored treatment selection,
and strengthening trust between the DL methods and pathologists. However, semantic
segmentation of WSIs is more annotation-demanding, i. e., requiring pixel-level labeling,
compared to WSI classification. Therefore, weakly-supervised semantic segmentation
(WSS) methods are imperative for pathological diagnosis.

While DL-based WSS methods have shown great successes on natural images, they en-
counter several challenges when applied to histopathology images [Chan et al., 2021],
as histopathology images (1) contain finer-grained objects with large intra-class varia-
tions [Xie et al., 2019]; (2) often include ambiguous boundaries among different histology
components [Xu et al., 2017b]; (3) can be as large as several giga-pixels with arbitrary
tissue shapes. Nevertheless, some WSS methods have been proposed for a number of
histopathology applications. For instance, the methods by [Xu et al., 2014; Hou et al.,
2016; Jia et al., 2017; Xu et al., 2019a; Ho et al., 2021] perform WSS at patch-level. These
methods are limited as they require patch-level labels and cannot incorporate global
tissue microenvironment to perform contextualized WSI segmentation. While [Chan
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et al., 2019; Silva-Rodrìguez et al., 2021] propose to analyse larger image-tiles compared
to patches, they are constrained in terms of computational complexity and memory
requirements to operate on WSIs in an end-to-end manner. Further, the method by [Chan
et al., 2019] requires exact fine-grained tile-level annotations, i. e., a precise denomination
of the presence of each lesion type in the image-tiles, which requires pathologists to
annotate images beyond standard clinical needs and norms. Differently, recent WSI
classification methods propose to use learned attention weights or feature attribution
techniques to highlight salient regions in a WSI that drive the model’s prediction [Lu
et al., 2021; Tellez et al., 2021]. The identified salient regions are informative for visual
assessment, but are insufficient, incomplete, and blurry for accurately delineating di-
agnostically relevant regions. Further, the saliency of a region signifies its relevance
towards the model prediction, but do not convey the class label of the region. In addition,
these methods typically require densely overlapping patch-level predictions to obtain a
granular saliency map, which is computationally expensive while working with WSIs.

In addition to the above shortcomings, the aforementioned approaches do not include
uncertainty estimate analyses, which are crucial to understanding when to trust the model
predictions. Indeed, DL methods typically tend to produce overconfident predictions
and do not indicate when they are likely to be incorrect [Fort et al., 2019], especially
when generalizing predictions to unseen cohorts. This can be partially explained by the
lack of confidence and uncertainty estimates in neural network parameters, also known
as epistemic uncertainty. Intuitively, epistemic uncertainty can be correlated to the inter-
observer variability in pathology diagnosis, which is known to be high for challenging
tasks. Each pathologist, with his/her experience, develops an own understanding of
the task. Thus pathologists can be considered as different “models”, with different
decision boundaries that induce uncertainty in challenging cases. Further uncertainty
can be induced due to data, also known as aleatoric uncertainty. In pathology, aleatoric
uncertainty is caused by, (1) the difficulty of matching the continuum of histologic
features to the diagnostic spectrum, (2) intra- and inter-patient tumor heterogeneity,
and (3) visualization artifacts that create ambiguous cases. Consequently, aleatoric and
epistemic uncertainty are inherently part of pathology practice and should be considered
when developing CAD tools.

Given the above, it is imperative to develop a WSS method that can (1) operate on
arbitrarily large histopathology images, e. g., on WSIs; (2) utilize both local and global
contexts to conduct precise segmentation; (3) perform simultaneous classification and
segmentation; (4) leverage readily available annotations in a clinical setting, without
any task-specific assumptions or post-processing; and (5) provide reliable uncertainty
estimates as confidence to diagnostic predictions as well as to detect any domain shifts
when applied to new datasets.

To address the aforementioned requirements, we propose WholeSIGHT, “Whole-slide
SegmentatIon using Graphs for HisTopathology”. Formally, WholeSIGHT represents a
histopathology image using a superpixel-based tissue-graph (TG), and transforms the
segmentation task into a node-classification task. WholeSIGHT incorporates both local
and global inter-tissue-region relationships to perform contextualized segmentation, prin-
cipally in agreement with inter-pixel relation-based WSS method [Ahn et al., 2019]. To
account for epistemic uncertainty, we further propose two Bayesian variants of WSS based
on MC-dropout [Gal et al., 2016; Kendall et al., 2017] (MCD) and deep ensembles [Lak-
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shminarayanan et al., 2017; Fort et al., 2019] (DE), respectively. Our major contributions
are:

• WholeSIGHT, a novel weakly-supervised semantic segmentation and classification
method that can scale to WSIs.

• A thorough evaluation of WholeSIGHT on three prostate cancer datasets for
Gleason pattern segmentation and Gleason grading, and comparison against state-
of-the-art WSI classification algorithms. WholeSIGHT directly predicts the Gleason
pattern associated to each pixel, i. e., Benign (B), grade3 (G3), grade4 (G4), and
grade5 (G5), along with the WSI-level grade defined as the combination of the most
common (primary, P) and the second most common (secondary, S) cancer growth
patterns in the image.

• A study of the generalization ability of WholeSIGHT, WholeSIGHT-MCD, and
WholeSIGHT-DE by testing on in-domain and out-of-domain cohorts. The gener-
alizability is quantified in terms of segmentation and classification performance,
uncertainty estimation, and calibration of neural network predictions.

8.2 Related work

8.2.1 Weakly-supervised histopathology image classification

Most of the weakly-supervised methods in CP are proposed to classify histopathology
images, i. e., tissue microarrays and whole-slides. EM-CNN is introduced in [Hou et
al., 2016], a patch-based method that is trained using image-level labels. It employs
an Expectation Maximization (EM)-based method to identify discriminative patches by
utilizing the inter-patch spatial relationships, and subsequently uses a decision fusion
model to aggregate the patch-level predictions. A two-step approach is proposed in
[Campanella et al., 2019], which first identifies informative patches using a patch-level MIL
framework, and then adopts a RNN-based strategy to aggregate patch-level predictions
for WSI classification. Another MIL approach, CLAM, is proposed in [Lu et al., 2021]
that learns class-level attention weights to discriminate diagnostically relevant regions.
CLAM is further optimized by learning an instance-level clustering over the patches to
constrain and refine the learned feature space. Differently, two-step compression-based
procedures are proposed in [Tellez et al., 2021] and [Shaban et al., 2020] to analyse
WSIs. First, they extract patch-level embeddings using a network pre-trained on an
auxiliary task [Tellez et al., 2021; Shaban et al., 2020], e. g., contrastive learning, or
using unsupervised learning [Tellez et al., 2021], e. g., a Variational Auto-Encoder (VAE).
Then, they build a compressed feature cube representation of the input WSI, which is
further processed by a CNN classifier. Despite the success of these weakly-supervised
classification approaches, they cannot directly be extended for semantic segmentation.

8.2.2 Weakly-Supervised histopathology image segmentation

A few methods in literature have been proposed to perform WSS of histopathology
images. DWS-MIL is proposed in [Jia et al., 2017], which trains a binary-classifier to
generate pixel-level predictions, and then produces image-level prediction using a softmax
function. The network is trained to optimize the image-level predictions, and thereby
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improving the pixel-level predictions. A MIL-based label enrichment method, CAMEL,
is proposed in [Xu et al., 2019a] for WSS. It splits an image into latticed instances and
automatically generates instance-level labels. After label enrichment, the instance-level
labels are further assigned to the corresponding pixels, producing the approximate pixel-
level labels and making fully supervised training of segmentation models possible. A
deep multi-magnification network is introduced in [Ho et al., 2021] which performs
patch-wise multi-class tissue segmentation by using concentric patches across multiple
magnifications. This method leverages scribble annotations of regions in WSIs during
the training phase. HistoSegNet, proposed in [Chan et al., 2019], performs WSS of
histological tissue types in two steps. First, a CNN is trained at tile-level using tile-level
annotations to predict the presence of different tissue types in a tile. Then, Grad-CAM, a
feature attribution technique is employed to derive pixel-level class predictions. To further
improve the segmentation, HistoSegNet employs a complex hand-crafted class-specific
post-processing steps. As a main limitation, the aforementioned methods cannot perform
WSS on giga-pixel WSIs using only image-level labels, and cannot adapt to WSIs of
different sizes. Comparatively, WeGleNet proposed in [Silva-Rodrìguez et al., 2020] is
scalable to WSIs. WeGleNet includes a multi-class segmentation layer and a global-
aggregation layer to perform image-level classification during training and pixel-level
prediction during inference. It aggregates class-wise pixel-level softmax activations to
perform image-level task, and significantly upsample the pixel-level activations to segment
an image. However, the method is insufficient to precisely delineate different lesions in
an image, and is incomplete to highlight multiple occurrings of lesions. Further, it also
requires to extract densely-overlapping patches to render fined-grained segmentation. In
contrast, our proposed WSS approach can perform WSS by leveraging image-level labels,
while efficiently scaling to WSIs with arbitrary shape and size.

8.2.3 Domain shift, generalization, and uncertainty in computational pathology

Domain shift and generalization: Building models that are in the same time robust
to domain shifts and able to provide reliable uncertainty estimates is fundamental to
deploy CAD tools in real-world [Tellez et al., 2018; Tellez et al., 2019]. Domain shifts are
challenging to model and detect in DL. This is prevalent in CP, where domain-level biases
are introduced due to various reasons, such as different staining protocols, manufacturing
devices, materials, and scanning devices with respective color response [Aubreville et al.,
2021]. Nevertheless, several approaches have been proposed to alleviate such domain
shifts by developing data- and model-level adaptation mechanisms.

Stain normalization [Reinhard et al., 2001; Macenko et al., 2009; Vahadane et al., 2016; Ren
et al., 2019] is a widely employed technique in this direction. It objectively operates at
data-level by standardizing the input. Stain normalization is model-agnostic and has been
shown to improve generalization performance of DL models [Tellez et al., 2018; Tellez
et al., 2019]. Differently, color augmentations are proposed to model staining variations,
e. g., by adding additive and multiplicative noise to the input [Tellez et al., 2018; Faryna
et al., 2021]. These techniques offer good compromise between ease of integration in DL
pipelines and performance gain.

In another scenario, when (unlabeled) samples from the target domain are available
during training, domain adversarial learning [Ganin et al., 2016; Aubreville et al., 2020]
methods are proven effective for domain adaptation. However, the availability of target
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domain samples during training is often impractical due to, (1) lack of knowledge about
the setup where the model will be deployed, and (2) limitations related to data privacy
and regulations. Further, a pre-trained model on a source domain can be fine-tuned by
leveraging a few labeled target domain samples, but at the cost of compromising the
generalization capabilities of the model.

Uncertainty estimation: While the aforementioned approaches propose various mecha-
nisms to alleviate the impact of the distribution shifts, they do not address the scenario
where the distribution on unseen cohorts is drastically different. In this case, accurate
uncertainty estimates are crucial to know when to trust the model. This task is challenging
for neural networks, which often provide over-confident predictions, as studied in [Guo
et al., 2017; Lakshminarayanan et al., 2017; Fort et al., 2019]. This may hinder real-life
deployment in clinics, where CAD must be transparent.

However, CP research along uncertainty estimation is scarce. [Thagaard et al., 2020]
benchmarked the detection of adenocarcinoma in H&E lymph node sections from breast
cancer under various real-life distribution shifts. Their work concluded that Bayesian
neural networks based on deep ensembles [Fort et al., 2019] and MC-dropout [Gal et al.,
2016; Kendall et al., 2017; Fort et al., 2019] provide better uncertainty estimates than
classical approaches. Our proposed generalization and uncertainty analysis further
ascertains the findings of [Thagaard et al., 2020] for WSI-level Gleason grading.

8.3 Methodology

This section presents the proposed WholeSIGHT methodology for scalable WSS of
histopathology images. First, an input image is transformed into a tissue-graph (TG)
representation, where the nodes and edges of the graph denote tissue regions and
their interactions, respectively. Then, a GNN is employed to learn contextualized node
embeddings. The resulting node embeddings are processed by a graph-classification head
for primary and secondary Gleason classification. Upon training the graph-head, a feature
attribution technique and a node selection strategy are employed to determine pseudo
labels for a subset of the nodes, which are further used to train a node-classification head.
The outcomes of the node-head are used to segment the Gleason patterns in the image. An
overview of WholeSIGHT is provided in Figure 8.1.

8.3.1 Notation and preliminaries

We define a graph G ∈ G as a pair (VG , EG), where VG and EG represent the set of nodes
and edges, respectively, of G, and G represents the set of graphs. The neighborhood of a
node v ∈ VG is denoted as N (v) := {u ∈ VG | (v, u) ∈ EG ∨ (u, v) ∈ EG}. We denote
the cardinality of a set as |.|, e. g., |N (v)| indicates the number of neighbors of v ∈ VG .
We are concerned with attributed graphs, where G ∈ G is associated with d-dimensional
node-level attributes H. Attributed graph G is denoted as G := (VG , EG , H), where
H ∈ R|V|×d, or denoted at node-level as Hv,. := h(v) ∈ Rd.

GNNs [Kipf et al., 2017; Xu et al., 2019b; Hamilton et al., 2017; Veličković et al., 2018]
are a class of neural architectures that can learn from graph-structured data. In a typical
message-passing GNN, the node features are iteratively updated via a two-step procedure
to contextualize their feature representation in accordance with their neighborhood node
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Figure 8.1: Overview of the WholeSIGHT method. (a) Preprocessing transform a WSI into a TG,
where the nodes denoting tissue regions are identified via superpixels. (b) Graph-classification
head contextualizes node-embeddings via a GNN and classifies the TG. In a post-hoc step, a
feature attribution method and an importance-based node selection strategy derive node-level
pseudo-labels. (c) Node-classification head contextualized node-embeddings by the trained GNN,
and leverages the pseudo-labels to train a node-classifier, which generates the segmentation output.

information. First in an Aggregate step, for each node v ∈ VG , the features of the
neighboring nodes N (v) are aggregated by a differentiable and permutation-invariant
function. Next in an Update step, the current features of v and the aggregated feature
vector of N (v) are processed by a differentiable operator to produce the new features of
v. The above procedure is repeated T times, where T denotes the number of GNN layers.

In this work, we use a version of the GIN architecture [Xu et al., 2019b], where the
Aggregate step is based on a mean-operator, and the Update step combines the aggregated
features with the current node features h(v) via a multi-layer perceptron (MLP). Formally,
the Aggregate and the Update steps are given as,

h(t+1)(v) = MLP
(

h(t)(v) +
1

|N (v)| ∑
u∈N (v)

h(t)(u)
)

(8.1)

These steps are repeated T times, which acquires context information up to T-hops for
each v ∈ VG . The GNN can be denoted as a function Fθ that maps the graph nodes to
embeddings, where θ are learnable parameters. For a graph classification, a fix-sized
graph-level embedding hG is derived by pooling the node-level feature representations
hT(v), ∀v ∈ VG by a Readout step, e. g., a mean-Readout operation. Subsequently, the
graph-level embeddings can be mapped to target classes by a neural network classifier Fϕ,
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where ϕ are learnable parameters. Similarly, for a node classification task, the node-level
feature representations hT(v), ∀v ∈ VG can be classified by a neural network classifier
Fψ, where ψ are learnable parameters.

Formally, classification aims to predict a target label y ∈ K for an input x ∈ X , where
K and X denote the set of classes and the set of inputs, respectively. Given a set of
sample pairs {(xi , yi)}N

i=1, where N is the number of samples and (xi , yi) ∼ p(x, y),
the data likelihood can be expressed as p(Y|X, θ, ϕ) = ΠN

i=1 p(yi |xi , θ, ϕ). The optimal
parameters (θ̂, ϕ̂) are obtained by Maximum Likelihood Estimation (MLE), or equivalently
by minimizing the Negative Log-Likelihood (NLL) −∑N

i=1 log p(yi |xi , θ, ϕ). In practice,
NLL is expressed as a cross-entropy loss, where the model weights are updated by
Stochastic Gradient Descent (SGD), or a similar gradient-based optimizer. In a graph
classification setting, a sample pair is denoted as (yG , G), yG ∈ KG , G ∈ G. In node
classification, a sample pair is denoted as (yV , v), yV ∈ KV , v ∈ V . For the considered
task at hand, the set of graph- and node-level classes are the same, simplifying notation
to K := KG = KV .

We further introduce the notion of model calibration. Intuitively, the probability of
outcomes, i. e., confidence scores, of a calibrated model should match its performance.
For example, the samples predicted with an average confidence of 60% by a model should
have an average accuracy of 60%. Formally, for a given network, f : X → K, and p(X, Y)
a joint distribution over the data and the labels, f (x) is said to be calibrated with respect
to p if, Ep[Y| f (X) = β] = β, ∀β ∈ [0, 1]. The calibration can be visualized with a reliability
diagram [DeGroot et al., 1983]. Namely, all the samples in the dataset are assigned to
bins according to their predicted confidence scores by the network. Then, the network
performance, e. g., accuracy, is computed for all the samples in each bin. The network
performance is plotted against the binned confidence scores, where deviations from the
diagonal represent uncalibrated bins.

8.3.2 Preprocessing and tissue-graph construction

The input H&E stained images in the dataset are first stain-normalized using the algo-
rithm by [Vahadane et al., 2016] to reduce any appearance variability across the images
due to tissue preparation. Stain normalization is crucial since such variabilities can
adversely impact the computational methods for downstream diagnosis [Veta et al., 2014;
Tellez et al., 2019]. In the next step, a stain normalized image is transformed into a
TG, Figure 8.1(a), where the nodes and the edges of the TG denote tissue regions and
inter-tissue interactions, respectively. Motivated by [Bejnordi et al., 2015], we consider
superpixels as the visual primitives to encode the tissue regions for this work. In compari-
son to rectangular patches, superpixels are flexible units to accommodate arbitrary shapes
in accordance with the local homogeneity of the tissue in an image. The homogeneity
constraint also restricts the superpixels to span across multiple distinct structures and
include different morphological regions.

The high-level steps in a TG construction are, (1) the construction of superpixels to define
the nodes VG , (2) characterization of the superpixels to define the node features H, and
(3) the construction of the graph topology to define the edges EG . For identifying the
superpixels in an input image, a two-step procedure is adopted. First, unsupervised
Simple Linear Iterative Clustering (SLIC) algorithm [Achanta et al., 2012] emphasizing on
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space proximity is employed on the image to produce over-segmented superpixels. The
SLIC algorithm is applied on a low magnification of the image to capture homogeneity,
while offering a good compromise between granularity and smoothing-out noise. Second,
the over-segmented superpixels are hierarchically merged according to their channel-wise
color similarity at high magnification. The color similarity is quantified in terms of
channel-wise 8-bin color histograms, mean, standard-deviation, median, energy, and
skewness. The resulting merged tissue regions form the nodes of the TG. The merging
allows to semantically group the superpixels and render meaningful tissue regions. In
addition, the merging reduces the node complexity of the TG, thereby enabling the scaling
of TG to large dimensional histopathology images and contextualization to distant nodes.

To characterize the nodes of the TG, we extract morphological and spatial features from
the tissue regions constituting the nodes. Considering the arbitrary dimensions of the
superpixels, a two-step process is adopted to extract deep learning-based morphological
features. First, patches of size 144×144 pixels are extracted from a superpixel, resized
to 224×224 size, and encoded into 1280-dimensional features by processing through a
MobileNetV2 network [Sandler et al., 2018] pre-trained on ImageNet [Deng et al., 2009].
Then, the corresponding node-level morphological features are computed as the mean of
the individual patch-level features. Further, spatial features of the nodes are computed
by normalizing the superpixel centroids by the image dimensions. The normalization
ensures the invariability of the spatial features with respect to the varying dimensions of
the input histopathology images. Finally, the TG topology is defined by constructing a
Region Adjacency Graph (RAG) [Potjer, 1996] using the spatial connectivity of superpixels.
To this end, we assume that adjacent tissue regions biologically interact the most, and
thus should be connect in the TG topology.

8.3.3 Contextualized node embeddings

Given a TG, we aim to learn discriminative node embeddings (see Figure 8.1(b)) by
utilizing the context information of the nodes, i. e., the tissue micro-environment and the
inter-tissue interactions. The contextualized node embeddings are subsequently used for
WSI classification and WSS. To contextualize the node embeddings, we use a GIN [Xu
et al., 2019b] graph neural network, denoted as Fθ and parametrized by the learnable
parameters θ. Since GNNs can operate on graphs of arbitrary and varying sizes, they
allow to encode histopathology images represented in the form of TGs without the need
for tile-based processing. As the discriminative information, dependent on the sub-graph
structures, can lie at different abstraction levels in the GNN, we employ a Jumping
Knowledge (JK) strategy to incorporate multi-level node representations. Namely, the
final node-level embedding after T GIN-layers is defined as,

h(T)(v) = CONCAT(h(t)(v), ∀t ∈ {1, ..., T}) (8.2)

where, CONCAT denotes a concatenation operation.

8.3.4 WSI classification

Following the contextualized node embeddings, a graph-classification head is employed
to classify the TG by leveraging image-level inexact labels. To this end, first, a Readout

averages out the information from all the nodes h(T)(v), ∀v ∈ VG to build a fix-sized



146 8 weakly supervised segmentation and classification

graph-level embedding hG . Subsequently, the graph-level embedding is fed to a multi-
task classifier for primary and secondary Gleason grading. Specifically, the classifier is
composed of two parallel MLPs, denoted as Fϕ = {Fϕ1 ,Fϕ2}, which are parametrized
by trainable parameters ϕ = {ϕ1, ϕ2}. The two MLPs individually predict the primary,
i. e., the worst Gleason pattern, and secondary, i. e., the second worst Gleason pattern, in
the WSI. Each MLP solves a multi-class problem with |K| Gleason pattern classes, i. e.,
B, G3, G4, G5. The final Gleason grade is derived as the sum of the predicted primary
and secondary Gleason patterns. Fθ and Fϕ are optimized jointly by minimizing the
weighted multi-label cross-entropy loss,

LG = λLCE(yGP , ŷGP ) + (1− λ)LCE(yGS , ŷGS ) (8.3)

where, P and S denote the primary and the secondary labels of ground truth yG and
prediction ŷG , and λ ∈ [0, 1] is a hyper-parameter used to balance the two terms. Gleason
grading is typically imbalanced, where WSIs with higher grade patterns are less frequent.
To address this, we define class-weights as w := {log(∑i Ni

Ni
), i = {1, ..., |K|}}, where Ni

is the count of class-wise Gleason patterns. The weights are designed such that a higher
value is assigned to classes with lower frequency.

8.3.5 Weakly supervised semantic segmentation

The nodes in a TG are identified by superpixels that denote morphologically homoge-
neous tissue regions. Since each Gleason pattern is characterized by distinct morphological
patterns, we assume that each tissue region, depicted by a node of the TG, includes a
unique Gleason pattern. Thereby, the WSI segmentation task is transformed into a classifi-
cation task of the nodes in the TG. In the presence of only image-level labels, the node
classification task is achieved in two steps. First, pseudo-node labels are generated by
leveraging the image-level annotations, and subsequently the pseudo-node labels are
used to train a node classifier.

8.3.5.1 Pseudo node label generation

Following the image-level classification in Section 8.3.4, a post-hoc feature attribution
technique is employed to measure the importance of each node for TG classification.
Specifically, we use GraphGrad-CAM [Pope et al., 2019; Jaume et al., 2021b], an extension
of Grad-CAM [Selvaraju et al., 2017] technique to operate with GNNs. For a graph
G, GraphGrad-CAM produces class-wise node attribution maps, Ak, ∀k ∈ K. The
attribution maps highlight the importance ∀v ∈ VG towards the classification of G into
|K| categories, as demonstrated in Figure 8.1. Given the importance scores of a node
v ∈ VG towards |K| classes, a simple and straight-forward approach would be to assume
that the class label of v is k ∈ K if the highest importance score corresponds to class k.
At this stage, an argmax operation across the class-wise importance scores ∀v ∈ VG can
be considered to classify the nodes. However, such node classification strategy carries
several disadvantages.

• An argmax operation for a node greedily selects the class label with the highest
importance score. However, some nodes only marginally contribute to the graph
classification, e. g., background nodes, and bear low importance scores for all k ∈ K.
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An argmax operation would confidently label such nodes into one of the K classes,
which reduces confidence in the node classification.

• The class labels of the nodes that highly contribute towards a certain class cannot
be guaranteed to be the same as the corresponding class label. For example, a
node can bear high importance if it provides useful complementary information
for tie-breaking or ruling out another class possibility. Formally, if the set of nodes
Vk ⊂ V have high importance scores for class k, then the class labels of Vk are not
ensured to be k. Further, the labels of v ∈ Vk are also not ensured to be the same,
e. g., a node v ∈ Vk can be an evidence of the absence of all classes K \ {k}, thus
bearing high importance for classifying the graph as k, while not being of this class.

• GraphGrad-CAM does not necessarily highlight all the nodes that belong to a
class in the corresponding class attribution map. Depending on the complexity
of a classification task, a classifier may utilize only a subset of the informative
nodes corresponding to a class for graph classification. Formally, if the set of nodes
Vk ⊂ V have high importance scores for class k, then Vk may not include all the
nodes in Vk ⊂ V that have the actual label k, i. e., Vk ⊂ Vk .

• There are several feature attribution techniques in literature that can be employed
to assign node-wise importance scores and perform node classification. However,
as demonstrated in [Jaume et al., 2021b], differences in the underlying mechanisms
of these techniques lead to different node-wise importance scores. Therefore, a
single feature attribution technique, e. g., GraphGrad-CAM, may not be trusted
for a score-based node classification.

Therefore, we devise a strategy to use the highlighted nodes by GraphGrad-CAM as
pseudo-labels to train a node-classification head. The strategy aims to create pseudo-labels
while minimizing the class-wise false positives and false negatives. Specifically, for a graph
G with Gleason score P + S, such that P, S ∈ K, we compute the node importance scores
IP and IS ∀v ∈ VG . IP and IS are computed by using un-normalized GraphGrad-CAM
on the P-th class and the S-th class in the primary and secondary graph-classification
heads. Since the importance scores by GraphGrad-CAM are unbounded, employing a
fixed threshold on the importance scores across all samples is sub-optimal. Therefore, we
select the top n% nodes, denoted as VP and VS, based on the respective importance scores
IP and IS. n is a hyperparameter, which is tuned during the training phase. For a node
v ∈ VP and v ∈ VS, we compute arg max(IP(v), IS(v)) to assign v to either of the sets. This
ensures that VP ∩VS = ∅. Subsequently, we label the nodes v ∈ VP as P and the nodes
u ∈ VS as S. This process ensures to select the most important set of nodes corresponding
to the ground truth image-level label of G, and create the pseudo-labels, denoted as yṼ .
Continuing this process for all the TGs in the dataset produces pseudo-node labels across
all classes, denoted as YṼ .

8.3.5.2 Node classification

The pseudo-node labels YṼ are used to train a node-classification head, as shown in Fig-
ure 8.1. Specifically for a graph G, we extract the node embeddings h(T)(v), ∀v ∈ VG
using Fθ̂ , where θ̂ are the parameters from the graph classification in Section 8.3.4. Fθ̂ is
kept frozen during the node classification to ensure that the same GNN backbone can be
used for both segmentation and classification, thereby reducing the number of trainable
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parameters. The node embeddings are processed by an MLP classifier Fψ, parameterized
by learnable parameters ψ, to predict the pseudo-node labels. The node-classification head
Fψ is trained by minimizing a weighted multi-class cross-entropy objective and a deep
metric learning objective (as described in Chapter 7), denoted as,

LV = λwLCE(yṼ , ŷV) + (1− λ)LDML(yṼa
, yṼp

, yṼn
) (8.4)

The (a, p, n) denotes (anchor, positive, negative) triplets that are selected in an online manner
by using batch-hard sampling technique. In this work, triplet loss is used as LDML. The
metric learning objective assists the node classification cross-entropy objective by further
constraining the node-embedding space. Similar to the graph classification setting, the
class-weights are defined as w := {log(∑i Ni

Ni
), i = {1, ..., |K|}}, where Ni is the number

of annotated nodes of class i. The node-wise predicted class labels are finally used to
obtain the segmentation prediction.

We refer to our proposed method, the simultaneous WSI classification and pseudo-
node labeling-based WSS, as WholeSIGHT. Noticeably, unlike [Chan et al., 2019],
WholeSIGHT does not involve any customized post-processing, thus being a generic
method that can be applied to various organs, tissue types, segmentation tasks, etc.

8.3.6 Extension to Bayesian models

We propose two Bayesian variants of WholeSIGHT to incorporate uncertainty estimates
into model predictions. We assume that aleatoric uncertainty, i. e., data uncertainty, is
already modeled during network training and reflected in the predicted probabilities of
WholeSIGHT. Since epistemic uncertainty is not explicitly captured by WholeSIGHT,
we propose to model this using WholeSIGHT-MCD based on MC-dropout [Gal et al.,
2016; Kendall et al., 2017] as well as WholeSIGHT-DE based on deep ensembles [Laksh-
minarayanan et al., 2017; Fort et al., 2019]. These methods are built on the fact that there
exist several sets of parameters that can explain a given dataset equally well, i. e., a set of
WSIs and WSI labels. The underlying principle of these methods aims to utilize multiple
optimal models to capture the variations in the decision boundaries of the individual
models, thereby accounting for the epistemic uncertainty. These methods are also crucial
when generalizing to unseen cohorts, including distribution shifts in the data.

Deep Ensembles: Deep ensembles are realized by training several models with dif-
ferent network initializations, herein exploring diverse modes in function space. In our
graph classifier, recall that the conditional distribution p(yG |G, θ, ϕ) is approximated
by Fϕ(Fθ(G)), which learns an optimal parameter set (θ̂, ϕ̂) by MLE. Using different
network weight initializations, we can learn potentially different optimal parameters
{θ̂(m), ϕ̂(m)}M

m=1, where m ∈ {1, ..., M} denotes different models. Then, for a test sample
G∗ ∈ G, WholeSIGHT-DE output is obtained by computing the average prediction from
all the models, i. e.,

p̂(y∗G |G∗) :=
1
M

M

∑
m=1

p(y∗G |G∗, θ̂(m), ϕ̂(m)) (8.5)

For node classification and WSI segmentation, a similar approach is employed where
p(yV |v, θ, ψ) is approximated by Fψ(Fθ(v)).
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MC-dropout: MC-dropout [Gal et al., 2016; Gustafsson et al., 2020] follows the same
principle to propose a modification of the use of dropout layer in the network. Unlike
the standard DL networks which utilize dropout only during training, MC-dropout
proposes to retain the dropout layers during inference as well. Due to the dropout layer,
that randomly switches-off some neurons in the network, each forward pass during
inference operates on a different network defined as a random subset of the original
network. The randomly sampled networks can be viewed as an ensemble of networks
that provide different decision boundaries, and thus different predictions. As in deep
ensembles, the output WholeSIGHT-MCD predictions are obtained by averaging the
network predictions over N passes with different dropout patterns.

8.4 Datasets

We evaluate our proposed method on three prostate cancer datasets that are acquired
from three independent data sources, and consist of whole-slide prostate cancer needle
biopsies. We use these datasets for simultaneously segmenting Gleason patterns in
the WSIs and classify the WSIs into different Gleason grades. The Gleason patterns
range from G3, characterized by moderately differentiated nuclei and the presence of
poorly-formed and cribiform glands, to G4, that include poorly differentiated nuclei and
irregular masses, to grade G5, characterized by even less differentiated nuclei and lack or
only occasional glands. Normal glands and non-epithelial tissue regions are categorized
as B. The Gleason grade is estimated from a Gleason score which is presented as primary
+ secondary, where the primary and the secondary denote the worst and the second worst
Gleason patterns, respectively. Details of the datasets are presented as follows:

Radboud dataset: The Radboud dataset [Bulten et al., 2020a] is composed of 5,759
core needle biopsies extracted from 1,243 patients. The dataset were acquired between
January 1, 2012 and December 31, 2017, from patients who underwent prostate biopsy for
suspected cancer at the Radboud University Medical Center. The slides were scanned with
a 3D Histech Panoramic Flash II 250 scanner at 20×magnification, pixel resolution 0.24µm,
and were further downsampled to 10×. The annotations include WSI-level Gleason scores
and noisy pixel-level segmentation masks of Gleason patterns, which were made available
as part of the Prostate cANcer graDe Assessment (PANDA) challenge [Bulten et al.,
2020b]. These segmentation masks were cleaned for the purpose of Gleason pattern
segmentation by using standard image manipulation techniques, such as contextualized
noise removal, hole filling, and edge smoothing. In the absence of large public datasets
with pixel-level annotated prostate cancer WSIs, we utilized the Radboud dataset for the
development and evaluation of our methods.

Karolinska dataset: The Karolinska dataset [Ström et al., 2019] comprises of 5,662 core
needle biopsies from 1,222 patients. The data were acquired on men aged between 50
and 69 years, between 2012 and 2015 from various hospitals in Stockholm, Sweden. The
slides were scanned with a Hamamatsu C9600-12 and an Aperio Scan Scope AT2 scanner
at 20× magnification, with pixel resolution of 0.45202µm and 0.5032µm, respectively.
Gleason scores of the biopsies were annotated by an expert uro-pathologist.

Sicap dataset: The Sicap dataset [Silva-Rodrìguez et al., 2020] contains 18,783 patches
of size 512×512 with complete pixel-level annotations and WSI-level Gleason scores
from 155 WSIs extracted on 95 patients. The original WSIs and annotation masks
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Figure 8.2: Class distribution of the Karolinska, Radboud, and Sicap datasets.

were reconstructed by stitching the patches in the dataset. The WSIs were scanned at
40× resolution with a Ventana iS-can Coreo scanner, and further downsampled to 10×
magnification for processing. Pixel- and WSI-level annotations were acquired by a group
of expert urogenital pathologists at the Hospital Clínico of Valencia.

Each dataset is split into train, validation, and test in a ratio of 60%, 20%, and 20% at
Gleason grade-level, using a random stratified partition that preserves the percentage
of samples in each class. No further sample-level analysis was performed to partition
the data. The Gleason grade-wise dataset distribution is displayed in Figure 8.2, which
highlights the different class-level imbalances across the three datasets. Karolinska dataset
is more skewed towards benign and low-grade Gleason categories. The Gleason grade-
wise distribution is the most balanced in Radboud dataset. Notably, all three datasets
contain a lower fraction of high-grade Gleason categories.

8.5 Results

8.5.1 Implementation and metrics

WholeSIGHT is implemented by using PyTorch [Paszke et al., 2019], DGL [Wang et al.,
2019b], and Histocartography [Jaume et al., 2021a]. The experiments were conducted on
NVIDIA Tesla P100 GPUs and POWER9 CPUs.

To develop the WholeSIGHT network architecture, the GNN backbone Fθ , the graph-
classification head Fϕ, and the node-classification head Fψ were developed by setting and
optimizing their respective hyperparameters. First, Fθ and Fϕ were trained by using
image/graph-level labels, and afterwards pseudo-node labels were created to train Fψ.
The segmentation output was obtained via node classification from Fψ. The number
of GIN layers in Fθ are optimized for the values {3, 4, 5}, where the Update function
was defined as a 2-layer MLP with 64 hidden units, and Rectified Linear Unit (ReLU)
activations. The graph-classification head Fϕ contains two heads for classifying primary and
secondary Gleason categories, where each head consists of a 2-layer MLP with 128 hidden
units and ReLU activations. The node-classification head Fψ contains a 2-layer MLP with
128 hidden units and ReLU activations.

For the Sicap dataset, that consists of a few WSIs, node-level augmentation techniques are
employed to augment the graph dataset. Specifically, random node rotations {90, 180, 270}
degrees, and horizontal and vertical mirroring are used for augmenting the nodes. The
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batch size and the learning rate were optimized from {4, 8, 16} and {10−4, 5× 10−4, 10−3}
set of values, respectively. Dropout layers with dropout rates 0.2, 0.5, and 0.5 were
included in the MLPs belonging to Fθ , Fϕ, and Fψ, respectively.

Following the hyperparameter tuning, eight WholeSIGHT models were trained with
different network initializations. The reported WholeSIGHT results correspond to the
mean and standard deviation obtained over these eight models. A similar approach
was employed for WholeSIGHT-MCD, where each model was run 25 times on different
sampled networks created randomly by using the dropout layers. WholeSIGHT-DE was
defined by randomly sampling five out of the eight trained models. This process was
repeated eight times to obtain different ensemble-based predictions. All the algorithms
were trained with Adam optimizer [Kingma et al., 2015].

The model selection criteria during training relied on the version of the WholeSIGHT
method. For the first version, model with the best Gleason grade weighted-F1 on the
validation set was selected, whereas for the other two versions, model with the best
node-classification weighted-F1 score on the validation set was selected. For creating
the pseudo-node labels, several percentages of the most important nodes were selected,
where the experimented percentage values were {5, 10, 15, 20}.
Classification metrics: WSI classification performance is measured by the weighted-F1
score of the predicted Gleason grade. In accordance with the prior work [Bulten et al.,
2020a; Bulten et al., 2021], we also report the quadratic kappa score (κ2) of the predicted
ISUP grade [Epstein et al., 2005; Epstein et al., 2016]. ISUP grading is an alternative
grading system which corresponds with Gleason grade as, Benign→ ISUP-0, GG(3+3)→
ISUP-1, GG(3+4)→ ISUP-2, GG(4+3)→ ISUP-3, GG8→ ISUP-4, and GG≥9→ ISUP-5.
κ2 measures the level of disagreement between the prediction and ground truth.

Segmentation metrics: The segmentation performance is measured by the Dice score
between the ground truth and the predicted Gleason pattern segmentation masks. The
Dice score is equivalent to F1-score at pixel-level predictions. In view of the imbalance of
the Gleason patterns in the datasets, we also report the per-pattern Dice score.

Uncertainty metrics: Following the previous work of [Gomariz et al., 2021], we evaluate
the classification and segmentation uncertainties by computing the Brier score sB (lower
is better) and the NLL sNLL (lower is better) over a set of N test samples, expressed as,

sB =
1
N

N

∑
n=1

|K|

∑
i=1

(yi − ŷi)
2, sNLL = − 1

N

N

∑
n=1

|K|

∑
i=1

p(yi) log p̂(yi) (8.6)

Intuitively, the uncertainty estimates will be good, (1) when the model performance is
high, and (2) when the misclassified samples are not highly confident in their predictions.

Calibration metrics: Reliability diagrams provide an intuitive understanding of model
calibration. To quantify the observations in a reliability diagram, we use the Expected
Calibration Error (ECE) metric [Kumar et al., 2018]. It computes the weighted average
deviation of the confidence scores over all the bins. Formally, it is expressed as,

cECE =
B

∑
b=1

Nb
N
|acc(b)− conf(b)|, (8.7)
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where nb represents the number of samples in bin b, acc(b) and conf(b) denote the
accuracy and average confidence of samples in the bin b, respectively.

8.5.2 Baselines

WholeSIGHT(Graph, GraphGrad-CAM): This variant of WholeSIGHT uses only im-
age/ graph-level supervision during training. Compared to the proposed WholeSIGHT
method, this baseline contains only the GNN backbone Fθ and the graph-classification
head Fϕ. It does not create or utilize pseudo labels, and the segmentation output is
obtained by taking the argmax over the class-wise GraphGrad-CAM attribution maps.

WholeSIGHT(Multiplex, NC): This variant of WholeSIGHT leverages both inexact
image- and complete pixel-level supervision during training. It acts as the upper-bound for
WholeSIGHT method. As pixel-level annotations are available, the node-classification
head is trained by using ground-truth node-level labels, instead of generated pseudo-
node labels. It constitutes of the same GNN backbone Fθ , graph-classification head
Fϕ, and node-classification head Fψ as the WholeSIGHT architecture. In this setting,
Fθ , Fϕ, and Fψ are trained jointly by optimizing a multi-task objective, i. e., WSI-level
primary and secondary Gleason score prediction along with node-level Gleason pattern
prediction. This variant of WholeSIGHT was proposed in our preliminary work, as
described in [Anklin et al., 2021].

CLustering-constrained Attention Multi Instance Learning (CLAM): CLAM [Lu et al.,
2021] is a clustering-constrained attention MIL approach designed for WSI classification.
Our experiments are based on the publicly available implementation of CLAM 1. Minor
modifications were performed to adapt the algorithm for a multi-task objective, i. e.,
primary- and secondary Gleason score classification. Specifically, patches of size 256× 256
were extracted from a WSIs. Each patch was further processed by a ResNet50 model
pretrained on ImageNet, where features after the third residual block are extracted
with an adaptive mean-spatial pooling operation, which resulted in a 1024-dimensional
feature representations. The attention module was using a self-attention network with
sigmoid activations and 0.25 dropout. The clustering module, that learns class-level
representations, was trained by using outputs of the attention network as pseudo-labels
and a smooth top1 SVM loss. The attention-weighted patch features were finally passed
to a linear classifier for classifying the primary and secondary Gleason scores.

Neural Image Compression (NIC): NIC [Tellez et al., 2021] creates feature cube repre-
sentations of WSIs to learn a mapping between deep patch features and WSI-level class
labels. Our implementation and experiments are partially based on the publicly available
implementation 2, which required to be completed with training utilities, dataloaders,
and model translation in PyTorch. Specifically, input WSIs were resized to the dimensions
of the largest WSI in our datasets with padding. It allowed to associate each WSI to
WSI-level label without further processing. Different patch feature extraction strategies
were experimented to extract the compressed WSI representations. In our experiments,
we found that NIC with BiGAN features (see [Tellez et al., 2021] for implementation
details) led to the best performance. A custom CNN with eight convolutional layers was
trained from scratch, where each layer has 128 channels, a batch normalization module,

1 CLAM publicly available code: https://github.com/mahmoodlab/CLAM
2 NIC publicly available code: https://github.com/davidtellez/neural-image-compression
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0.2 dropout, and stride 1. As a significant portion of the input is background, the average
pooling was replaced by max pooling to extract the most relevant regions per channel.
Then, the primary and secondary Gleason pattern classifiers were implemented as 2-layer
MLPs with 128 channels and LeakyReLU activations. The network was trained with a
multi-class cross entropy loss.

For all the baselines, hyper-parameter search was conducted to find the best learning-rate
and batch size, if applicable. Subsequently, eight models were re-trained from scratch
with the optimal set of parameters. For each experiment, we report the average and
standard deviation over these runs without further model selection.

8.5.3 WSS performance analysis

Training setting: We study the classification and segmentation performance of the
proposed WholeSIGHT method, and compare against the aforementioned baselines on
three datasets, i. e., Karolinska, Radboud, and Sicap datasets. These evaluations measures
the standalone applicability of the methods across independent train and test datasets.

Results analysis: Table 8.1 presents the classification and segmentation results on the
Sicap dataset. The analyses are performed under two supervision settings, namely
complete (C) and inexact (IE ). The C setting utilizes both inexact image-level labels and
the pixel-level annotations. Whereas, the IE setting only uses the inexact image-level
labels. WholeSIGHT reaches 39.3% average Dice score, which significantly outperforms
WholeSIGHT(Graph, GraphGrad-CAM) by +8.6% in absolute. Further, WholeSIGHT
significantly outperforms HistoSegNet in terms of both classification and segmentation
metrics. WholeSIGHT(Multiplex, NC), which acts as the upperbound, results in slight
improvement in classification and a significant gain in segmentation comapared to
WholeSIGHT. The per-class Dice scores indicate that the benign patterns, that constitute
most of the tissue area, have a high detection rate compared to less occurring Gleason
patterns. For the classification task, WholeSIGHT outperforms NIC and CLAM methods
both in terms of Gleason grade weighted-F1 and ISUP κ2. However, considering the small
size of the Sicap test set, the classification performance assessment on the Radoud and
Karolinka datasets reveal a more confident picture.

Table 8.2 presents the classification and segmentation results on Radboud. WholeSIGHT
renders an absolute gain of +10.33% in average Dice score over WholeSIGHT(Graph,
GraphGrad-CAM). This confirms the utility of pseudo-node labels for a superior
segmentation. WholeSIGHT(Multiplex, NC) remains a good upper-bound with an
average Dice score of 64.99± 0.4. The observations of class-wise Dice scores are consistent
with Sicap, where the benign patterns have a high detection rate, followed by G3, G4,
and G5 patterns. As the Radboud dataset includes more G5 patterns than Sicap, we
observe a significant gain in detecting high-grade patterns. For the classification task, the
observations are consistent with the observations on the Sicap dataset. Noticeably, the
complementarity of the image- and pixel-level annotations results in a better classification
performance for WholeSIGHT(Multiplex, NC) than WholeSIGHT.

Table 8.3 presents the classification results on Karolinska. In the absence of ground
truth pixel-level annotations, the segmentation performances could not be computed.
WholeSIGHT outperforms NIC and produces comparable classification performance
with respect to CLAM. The Gleason grade weighted-F1 score is higher for Karolinska
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Table 8.1: Classification and segmentation results on Sicap dataset. The best performances for
using image-level supervision are highlighted in bold.

A
nn

ot
.

per-class Dice avg. Dice GG wF1 ISUP κ2

Method Benign Grade3 Grade4 Grade5

C WholeSIGHT 91.1±1.0 39.4±1.6 52.9±1.4 10.6±5.4 48.7±1.3 55.0±1.7 86.2±3.1

(Multiplex, NC)

IE

NIC [Tellez et al., 2021] - - - - - 35.3±5.0 44.5±14.2

CLAM [Lu et al., 2021] - - - - - 53.8±3.5 61.8±5.5

HistoSegNet [Chan et al., 2019] 71.5±1.4 1.5±0.7 8.4±0.9 1.6±0.3 22.4±0.3 16.7±4.3 36.7±2.8

WholeSIGHT 65.5±2.3 23.3±4.2 30.0±5.5 4.1±1.4 30.7±2.1 54.1±4.1 79.2±2.9

(Graph, GraphGrad-CAM)

WholeSIGHT 73.0±3.1 34.7±1.2 43.8±5.3 5.7±0.4 39.3±1.4 54.7±4.6 81.4±5.2

(Graph + Pseudo, NC)

Table 8.2: Classification and segmentation results on Radboud dataset. The best performances for
using image-level supervision are highlighted in bold.

A
nn

ot
.

per-class Dice avg. Dice GG wF1 ISUP κ2

Method Benign Grade3 Grade4 Grade5

C

WholeSIGHT 91.6±0.1 64.3±0.3 65.9±0.8 38.2±1.1 65.0±0.2 61.7±0.4 76.3±1.3

(Multiplex, NC)

IE

NIC [Tellez et al., 2021] - - - - - 35.1±1.2 45.0±2.2

CLAM [Lu et al., 2021] - - - - - 55.8±1.1 73.7±1.7

WholeSIGHT 63.8±2.3 23.8±3.8 22.6±1.9 12.1±0.7 30.6±1.0 58.0±0.8 73.8±1.6

(Graph, GraphGrad-CAM)

WholeSIGHT 83.8±0.6 36.3±1.1 23.1±2.3 20.6±0.3 40.9±0.5 58.0±0.8 73.8±1.6

(Graph + Pseudo, NC)

compared to Radboud. This is due to the presence of more high-grade Gleason grade
WSIs in Karolinska. This observation is substantiated by the confusion matrix of Gleason
grade classification for the WholeSIGHT-DE method, as shown in Figure 8.3.

8.5.4 Generalization: performance, uncertainty, and calibration

Training setting: To study the generalization capability of WholeSIGHT, we propose a
modified training setting. Specifically, we build a new training dataset that comprises of
Karolinska and Radboud training WSIs. Thus, we create one large multi-source dataset
by encompassing better sample variability and including more diagnostically challenging
cases than their standalone counterparts. The trained models on this curated dataset are
tested individually on the Karolinska and Radboud test WSIs, herein studying the in-
domain performance. Further, we test on the entire Sicap dataset to analyze performance
on out-of-domain WSIs.
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Table 8.3: Classification results on Karolinska dataset. The best performances for using image-level
supervision are highlighted in bold.

GG wF1 ISUP κ2

IE

NIC [Tellez et al., 2021] 44.0±1.0 45.7±2.4

CLAM [Lu et al., 2021] 66.3±1.0 78.1±1.5

WholeSIGHT 67.1±0.9 77.4±1.2

(Graph)

Table 8.4: Classification and segmentation results on Radboud, Karolinska, and Sicap datasets for
models trained using both Radboud and Karolinska datasets.

A
nn

ot
.

Radboud Karolinska Sicap

Method avg. Dice GG wF1 ISUP κ2 GG wF1 ISUP κ2 avg. Dice GG wF1 ISUP κ2

C WholeSIGHT 64.8±0.6 58.5±1.4 74.0±1.5 67.6±1.4 78.8±1.2 55.8±0.6 75.0±3.9 92.8±3.0

(Multiplex, NC)

IE

NIC[Tellez et al., 2021] - 27.6±5.0 40.6±7.2 43.1±2.4 45.0±4.7 - 27.3±6.3 36.1±9.1

CLAM[Lu et al., 2021] - 57.6±2.3 73.8±2.3 65.5±1.3 77.3±2.8 - 56.4±2.7 75.0±7.5

WholeSIGHT 29.0±1.2 56.5±0.5 72.0±1.5 68.1±0.6 77.4±0.9 24.2±2.1 64.2±4.7 86.9±4.4

(Graph, Grad-CAM)

WholeSIGHT 46.0±0.4 56.5±0.5 72.0±1.5 68.1±0.6 77.4±0.9 41.6±0.5 64.2±4.7 86.9±4.4

(Graph + Pseudo, NC)

Ba
ye

s WholeSIGHT-MCD 43.9±1.8 58.2±0.8 73.7±3.1 67.9±1.1 77.7±1.0 44.5±3.0 61.4±3.6 75.2±6.7

WholeSIGHT-DE 46.3±0.2 60.6±0.6 76.5±0.7 68.6±0.4 78.1±0.6 46.6±1.7 66.0±1.5 84.5±1.2

Performance analysis: Table 8.4 compares the classification performance of WholeSIGHT,
its Bayesian variants, CLAM, and NIC. For the Gleason grade weighted-F1 on the in-
domain Karolinska and Radboud datasets, WholeSIGHT reaches a comparable perfor-
mance to CLAM, and significantly outperforms NIC. Similar observations are prevailed
for the ISUP κ2 metric for both the in-domain datasets. However, the variances of Gleason
grade weighted-F1 and ISUP κ2 of the CLAM models are much higher than WholeSIGHT.
For testing on the out-of-domain Sicap dataset, WholeSIGHT achieves significantly bet-
ter Gleason grade weighted-F1 and ISUP κ2 compared to competing CLAM and NIC.
Even though the WholeSIGHT variance on Sicap is larger compared to Karolinska and
Radboud, it remains significantly lower than CLAM and NIC.

WholeSIGHT-MCD performs comparable to WholeSIGHT, without highlighting a clear
performance gain for any of the datasets. Further, the variances of WholeSIGHT-MCD are
significantly higher than standalone WholeSIGHT. However, WholeSIGHT-DE shows a
significant gain in classification and segmentation performances for all datasets. The deep
ensemble-based methods result in clear advantages over MC-dropout-based methods,
which are consistent with the observations by [Thagaard et al., 2020]. Noticeably, the gain
in performances are higher on the out-of-domain dataset, compared to in-domain datasets.
This finding corroborates the conclusion of [Gustafsson et al., 2020] which showed that
deep ensemble improves generalization to unseen cohorts. Overall, WholeSIGHT-DE is
the best performer across all datasets for all the evaluation metrics. Figure 8.3 presents
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Figure 8.3: Confusion matrix of Gleason grade classification for the WholeSIGHT-DE method on
Karolinska, Radboud, and Sicap datasets.

the Gleason grading confusion matrices of WholeSIGHT-DE on the three considered
datasets. It can be observed that the most misclassifications lie close to the diagonal.
Majority of the confusion occurs between GG6 and GG7, i. e., GG(3+ 3) versus GG(3+ 4)
and GG(4 + 3). Such ambiguity is prevalent among pathologists, as presented in [Ozkan
et al., 2016; Salmo, 2015]. Further confusion matrices for Gleason grading, ISUP grading,
primary classification, and secondary classification are presented in Figure 8.9

Table 8.4 and Figure 8.4 present the segmentation and its generalizability assessment for
WholeSIGHT, and its Bayesian variants. Both WholeSIGHT-MCD and WholeSIGHT-DE
significantly outperform WholeSIGHT by improving the mean Dice by +2.9% and +5.0%,
respectively, on Sicap. In consistence with the classification results, WholeSIGHT-DE is
the best performer in terms of class-wise and aggregated Dice, and systematically reduces
the variance in performance. Benign regions, being the most common class, results the
highest Dice. Whereas, the less encountered Gleason patterns, i. e., G3, G4, G5, have
comparatively lower Dice. This drop primarily occurs due to the ambiguities among the
cancerous patterns and false positive benign regions.

Uncertainty estimate analysis: Figure 8.5 presents the classification uncertainties of
WholeSIGHT, and its Bayesian variants, in terms of NLL (Figure 8.5(a)) and Brier score
(Figure 8.5(b)), on Karolinska, Radboud, and Sicap. The Bayesian methods render a
significantly lower NLL than WholeSIGHT across all datasets, for primary, secondary,
and Gleason grading (P+S). The relative gain of WholeSIGHT-DE is +34.1% for P+S on
Karolinska, +44.71% on Radboud, and +51.59% on Sicap. Interestingly, the gain is higher
for the out-of-domain dataset, showing that Bayesian models, in particular deep ensembles,
provide better uncertainty estimates. These observations are also consistent for the Brier
score. WholeSIGHT-DE consistently outperforms WholeSIGHT, with a relative gain
of +13.37% on Karolinska, +15.45% on Radboud, and +21.87% on Sicap. Noticeably,
the NLL and Brier scores are consistently higher for predicting the secondary Gleason
patterns compared to the primary patterns. This resonates with the fact that identifying
secondary patterns is a harder task with higher ambiguity.

A similar analysis for quantifying the uncertainty in segmentation is shown in Fig-
ure 8.4(b). A relative gain of +21.49% and +1.44% in NLL and Brier score, respectively,
is achieved by WholeSIGHT-MCD on average Dice score. Though WholeSIGHT-DE
outperforms WholeSIGHT-MCD in terms of NLL, it performs inferior in terms of Brier.
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Figure 8.4: (a) Average and per-class Dice scores of WholeSIGHT, WholeSIGHT-MCD, and
WholeSIGHT-DE on Sicap dataset. (b) Uncertainty analysis of these methods in terms of Brier
and NLL metrics on Sicap dataset.

Model calibration analysis: A model with a good uncertainty estimate should be
well-calibrated, i. e., the model confidence should be close to the underlying model perfor-
mance. Figure 8.5(c) presents the reliability diagrams of the primary classification head on
Karolinska and Radboud datasets. WholeSIGHT-DE shows significantly better calibra-
tion than WholeSIGHT-MCD and WholeSIGHT-DE in accordance with the uncertainty
estimate analysis. However, we observe that WholeSIGHT-DE remains over-confident as
the model accuracy (in orange) is lower than the expected optimal calibration (in blue).
Figure 8.6 shows a detailed analysis of model calibration. We observe that even if not per-
fectly aligned, the gap between model accuracy and model confidence, denoted as dashed
vertical lines in black, is reduced for the Bayesian methods. This gain is quantified by
computing the ECE. For instance, the Radboud secondary classification head calibration
is improved by +27.7% for WholeSIGHT-MCD and +46.4% for WholeSIGHT-DE.

8.5.5 Qualitative analysis

We qualitatively analyze the results of our proposed WholeSIGHT method by (1) visu-
alizing overlaid segmentation masks on WSIs, (2) analysing the t-distributed stochastic
neighbor (t-SNE) [Van der Maaten et al., 2008] node embeddings, and (3) correlating the
segmentation outputs with pathological reasonings.

Visualizing WholeSIGHT segmentation masks: Figure 8.7 demonstrates segmentation
predictions obtained with WholeSIGHT and its variant, WholeSIGHT(Multiplex, NC),
on Sicap dataset. We can observe that WholeSIGHT correctly delineates the cancerous
regions in the WSIs. Zooming into different regions conclude that the tissue regions
of TG, i. e., the nodes of TG, (outlined in black in Figure 8.7) encode meaningful units
of homogeneous tissue. It substantiates the relevance of using TG representations for
segmenting the tissue regions into Gleason patterns. We further notice that WholeSIGHT,
in a few cases, predicts benign regions adjacent to cancerous patterns as cancerous. For
example, the benign region, primarily consisting of stroma, in Figure 8.7(c) is predicted
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as G5. We argue that these false positive detections do not inhibit the applicability of the
method, as neighboring cancerous regions are correctly detected. In a few other cases,
WholeSIGHT correctly detects cancerous regions that are missed in the ground truth
annotations. For instance, in Figure 8.7(b), the missing G4 region in the upper part of the
WSI is correctly identified by WholeSIGHT.

On comparing WholeSIGHT with WholeSIGHT(Multiplex, NC) in Figure 8.7(a), we see
that several false positives are removed, thereby offering more accurate segmentation.
However, the improvements by WholeSIGHT(Multiplex, NC) are achieved at the cost
of training with pixel-level annotations, that are hardly available in real-world practice.
Thus, WholeSIGHT appears to be an appealing compromise between segmentation
performance and annotation requirement for Gleason pattern segmentation.

Visualizing tissue-level t-SNE feature space: A t-SNE visualization of the learned tissue-
level embeddings is demonstrated in Figure 8.8 for Sicap dataset. The t-SNE algorithm
projects the GNN node embeddings onto a two-dimensional feature space, allowing to
analyse the connection between node embeddings and the Gleason pattern distribution.

Figure 8.8(a) displays the t-SNE feature space for the correctly classified nodes, which
highlights demarcated clusters for each Gleason pattern. The large cluster of benign
nodes indicate the diversity of the benign category. Several patches from each cluster
are shown in Figure 8.8(d). We can observe the reduced nuclei differentiation across the
patches from benign to grade 5. Further, Figure 8.8(b) and (c) display the t-SNE feature
space for the misclassified nodes. Specifically, Figure 8.8(b) represents the ground truth
node labels, and Figure 8.8(c) the predicted node labels. Different embedding locations
are further selected and highlighted by different colored rectangles and put in relation
with corresponding patches to indicate the inter-class ambiguities, as demonstrated in
Figure 8.8(e). For example, the first row in Figure 8.8(e) showcases patches which are
actually benign but are predicted as Gleason pattern-3. We can visually compare these
patches with the Gleason pattern-3 patches in the third row of Figure 8.8(d). Similar
ambiguities between other pairs of Gleason patterns are also included in Figure 8.8(e).

Interpreting model outcomes via predicted segmentations: Predicted segmentations
provide human-understandable interpretability maps. For researchers, the segmentations
allow to, (1) identify morphological patterns responsible for the WSI classification, (2)
analyse failure cases by inspecting the pixel-level predictions, and ultimately (3) better
understand the model behavior towards biomarker discovery. For pathologists, they
assist to, (1) put in relation the predicted WSI-level Gleason scores and the highlighted
pixel-level Gleason patterns, (2) confirm that the morphology of the identified cancerous
regions align with the pre-established diagnosis criteria.

Additionally, in the perspective of developing AI-assisted human-in-the-loop tools, a
Gleason grading system that can simultaneously classify and segment WSIs is closer
to the latest pathological standards. Indeed, recent revisions of the Gleason grading
system [Epstein et al., 2016] emphasized on the importance of reporting the percentage
of each grade for better patient stratification and treatment selection [Cheng et al., 2007;
Huang et al., 2014; Choy et al., 2016; Sharma et al., 2018]. These percentages can be
trivially derived from the predicted segmentation maps by counting the number of
pixels belonging to each pattern. Naturally, such information is not available in mere
WSI classification systems. Reporting per-grade percentage is particularly important in
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ambiguous and borderline cases. For instance, consider two patients with Gleason score
3+4. When a small percentage of pattern-4 is present, e. g., 10%, the case can be considered
as an intermediate risk cancer where active patient surveillance is enough [Amin et al.,
2014]. However, a larger secondary pattern may require specific treatments. Reporting
percentages of each grade allows to easily discriminate these two scenarios. Similarly,
consider a Gleason score 4+3 with a small secondary Gleason pattern, e. g., 90% and 10%
area for primary and secondary patterns, respectively. This case will be scored as 4+3,
even though it is close to a score 4+4, which would lead to a different treatment protocol.
By explicitly reporting the Gleason pattern percentages, such corner-cases can be avoided.

8.6 Conclusion

Accurate delineation of patterns in a giga-pixel sized whole-slide histopathology image
by using a deep learning method typically demands pixel-level annotations. However,
such exhaustive annotations are often impossible to acquire in a real-world scenario due
to the bottlenecks in time, effort, and expense. Nonetheless, the semantic segmentation of
diagnostically relevant patterns is crucial for disease diagnosis and treatment selection.
To this end, we have proposed a novel weakly-supervised semantic segmentation method,
WholeSIGHT, that can segment the relevant patterns of interest in histopathology images
by leveraging only image-level supervision. To the best of our knowledge, WholeSIGHT
is the first weakly-supervised semantic segmentation method that can operate in an end-
to-end manner on histopathology images of arbitrary shape and size. First, WholeSIGHT
transforms a histopathology image into a tissue-graph representation, where the nodes
and edges of the graph denote tissue regions and tissue-to-tissue interactions. Second,
the method employs a graph neural network to construct inter-tissue relationship-aware
representations for the tissue regions. These contextualized representations are further
used to classify the tissue-graph. Subsequently, pseudo-labels are generated for the
tissue regions via a graph-feature-attribution technique, which enables the classification
of the tissue regions and segments the input histopathology image. We evaluated our
proposed method on three publicly available prostate needle biopsy datasets for Gleason
grade classification and the delineation of different Gleason patterns in the biopsies. On
comparing with several state-of-the-art methods, we demonstrated the classification and
segmentation superiority of our proposed WholeSIGHT method. Further, we conducted
extensive experimentation to assess the generalizability of WholeSIGHT on out-of-domain
histopathology datasets. Further, we proposed a Bayesian extension of WholeSIGHT,
i. e., WholeSIGHT-DE, to enhance the generalizability of the method to images from
different data sources. The generalizability is quantified in terms of classification and
segmentation performance metrics, uncertainty estimation, and model calibration analysis.
Notably, the proposed WholeSIGHT method can utilize both image-level and pixel-level
supervision to simultaneously perform image classification and segmentation tasks.
Hence, WholeSIGHT performance on both tasks can be enhanced in presence of pixel-
level partial annotations from pathologists. Though we have evaluated our method for
H&E stained prostate cancer needle biopsies, the technology is easily extendable to other
tissue types, e. g., breast, colon, and lungs, or imaging techniques, e. g., tissue microarrays,
and resection biopsies, or image modalities, e. g., other staining types in histopathology,
multiplexed histopathology images, etc., or domains, e. g., natural images, hyperspectral
images, satellite images, and other medical imaging data.
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Figure 8.5: Uncertainty analysis of the WholeSIGHT, WholeSIGHT-MCD, and WholeSIGHT-DE
models. (a) and (b) present Brier scores (lower is better) and NLL (lower is better), respectively,
on Karolinska, Radboud and Sicap. (c) Reliability diagrams on Karolinska and Radboud test sets
for the primary Gleason classification head. The expected calibration (blue) denotes a perfectly
calibrated model. Calibrations of WholeSIGHT, WholeSIGHT-MCD, and WholeSIGHT-DE, and
the fraction of samples in each confidence bin is shown in red, purple and orange, respectively.
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Figure 8.6: Reliability diagrams of WholeSIGHT, WholeSIGHT-MCD, and WholeSIGHT-DE
tested on Karolinska and Radboud datasets for the primary and secondary Gleason classification
heads. The expected calibration (blue) highlights a perfectly calibrated network. The observed
network calibrations are shown in red. The fraction of samples in each confidence bin is shown in
orange. Proximity of average confidence to average weighted-F1 indicates a better calibration. Note
that ECE is the integral between the expected calibration (blue) and the network calibration (red).
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Figure 8.7: Samples of segmentation maps for the Sicap dataset. The columns indicate ground
truth (left), the proposed WholeSIGHT (middle), and WholeSIGHT(Multiplex, NC) (right) seg-
mentation maps, respectively. (a), (b), and (c) presents examples from GG (3+3), GG (4+4), and GG
(5+5), respectively. The tissue regions, i. e., TG nodes, are highlighted in black overlay. For better
visualization, the benign areas are not highlighted on the segmentation maps.
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Figure 8.8: t-SNE visualization of node-level feature representations, extracted by WholeSIGHT,
and example patches corresponding to several regions on the two-dimensional t-SNE feature space
for Sicap dataset. (a) t-SNE visualization of correctly classified nodes. (b) and (c) display the t-SNE
visualization of misclassified nodes, where (b) and (c) highlight the ground truth and predicted
class labels of the nodes, respectively. (d) and (e) display square patches of size 224× 224 at 10×
magnification cropped around the node centroids selected from different regions on the t-SNE
embedding space. (d) and (e) present the correctly and incorrectly classified patches, respectively.
The labels of the patches in (e) are formatted as Y → Ŷ, where Y and Ŷ denote the ground truth
and the predicted class labels. The colored rectangles around the patches in (d) and (e) correspond
to respective colored rectangles in (a), (b), and (c).
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Figure 8.9: Gleason grade, ISUP grade, primary-, and secondary-classification confusion matrices
obtained for WholeSIGHT-DE on Karolinska, Radboud, and Sicap datasets.



9
HistoCartography: A Toolkit for
Graph Analytics in Digital Pathology

Advances in entity-graph analysis of histopathology images have brought in a new
paradigm to describe tissue composition, and learn the tissue structure-to-function
relationship. Entity-graphs offer flexible and scalable representations to characterize
tissue organization, while allowing the incorporation of prior pathological knowledge
to further support model explainability. However, their analysis requires prerequisites
for image-to-graph translation and knowledge of state-of-the-art algorithms applied
to graph-structured data, which can potentially hinder their adoption. In this work,
we aim to alleviate these issues by developing HistoCartography, a standardized
python API with necessary preprocessing, machine learning and explainability tools to
facilitate graph-analytics in computational pathology. Further, we have benchmarked
the computational time and performance on multiple datasets across different imaging
types and histopathology tasks to highlight the applicability of the API for building
computational pathology workflows. HistoCartography is available at https://github.
com/histocartography/histocartography.

9.1 Introduction

Recent advancements in tissue-slide digitization have paved way for enhancing stor-
age, sharing capabilities, and computer-aided inspection by leveraging DL. Most DL
approaches analyze tissue images in three steps, namely patch generation, patch-level
feature extraction, and feature aggregation to produce image-level embeddings for down-
stream pathology tasks. However, they suffer from several limitations, (1) the trade-off
between operational resolution and adequate context per-patch, (2) the aggregation is
often sub-optimal, (3) comprehensive modeling of tissue composition is missing, and (4)
the lack of model transparency raises barriers to deployment in real life.

To circumvent these limitations, entity-graphs are proposed by [Demir et al., 2004] where
the nodes and edges of the graphs denote tissue entities and their interactions, respectively.
Entity-graphs, followed by GNNs-based processing, have recently gained popularity in
addressing various pathology tasks [Zhou et al., 2019a; Chen et al., 2020a; Pati et al., 2022;

This chapter has been published as: Guillaume Jaume† , Pushpak Pati† , Valenin Anklin, Antonio Foncubierta-Rodriguez,
Maria Gabrani “HistoCartography: A Toolkit for Graph Analytics in Digital Pathology”, In: Medical Image Computing
and Computer Assisted Intervention (MICCAI) Workshop on Computational Pathology (COMPAY), vol. 156, pp.
117-128, Strasbourg, France, Sep 2021, [arXiv]
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Anklin et al., 2021; Jaume et al., 2021b]. The entities can be biologically-defined, e. g.,
nuclei, tissue regions, glands [Zhou et al., 2019a; Pati et al., 2022; Anklin et al., 2021], or
can be patches [Adnan et al., 2020; Aygüneş et al., 2020]. The entity-graphs enable to
simultaneously capture local entity environment and global tissue composition. They
can seamlessly scale to arbitrary tissue dimensions by incorporating arbitrary number
of entities and interactions, thus offering an alternate to MIL [Campanella et al., 2019;
Lu et al., 2021]. The entity-graphs also enable to selectively operate on diagnostically
relevant entities, instead of analyzing the entire tissue [Tellez et al., 2021; Shaban et
al., 2020]. Furthermore, when the entities depict biological units, such as nuclei, and
glands, the analysis allows pathologists to directly comprehend and reason with the
outcomes [Jaume et al., 2020; Jaume et al., 2021b]. However, constructing an entity-graph
based pathological workflow demands several prerequisites, such as entity detection,
entity encoding, and constructing the graph topology, alongside standard preprocessing,
such as stain normalization, and tissue detection. Additionally, the workflow requires to
utilize the recent advancements in DL for processing graph-structured data. All these may
inhibit the adoption of entity-graphs in computational pathology. In addition, the lack of
a standardized framework with the aforementioned functionalities urge the researchers
to reinvent the wheel, which is cumbersome, time-consuming, hampers reproducibility,
and requires a wide range of technical acumen.

To overcome these constraints, we present HistoCartography, a novel open-source
python library that facilitates graph-analytics in computational pathology. Specifically
our contributions are: (1) a standardized, unit-tested python library that unifies a set
of histology image manipulation tools, entity-graph builders, GNN models, and model
explainability tools, (2) a benchmark assessment of performance and scalability on
classification and segmentation tasks in pathology, (3) a comprehensive overview of
graph representation and modeling in histology, and (4) a review of extant libraries for
histological image analysis.

9.2 Related work

9.2.1 Graphs in computational pathology

Entity-graphs are proposed to realize the tissue composition-to-functionality relationship
in terms of the phenotypical and structural characteristics of tissue. The entities can be
nuclei [Demir et al., 2004; Zhou et al., 2019a; Wang et al., 2019a; Chen et al., 2020a; Pati
et al., 2022], tissue regions [Pati et al., 2022], patches [Anand et al., 2019; Adnan et al., 2020;
Aygüneş et al., 2020; Zhao et al., 2020b; Li et al., 2018c; Levy et al., 2021], etc. Typically
nodes include handcrafted or DL features to characterize the entities, and the topology
can depict the spatial or semantic relationship among the entities, e. g., k-NN, region
adjacency, or probabilistic models. The graphs can be processed using classic ML [Sharma
et al., 2016; Sharma et al., 2017a] or GNNs to outperform state-of-the-art CNN-based
approaches for several pathology tasks across multiple organs [Garcià-Arteaga et al.,
2017; Zhou et al., 2019a; Zhao et al., 2020b; Adnan et al., 2020; Pati et al., 2022; Studer
et al., 2021; Anklin et al., 2021]. Interestingly, when the graph-nodes depict biological
entities, e. g., nuclei, tissue regions, the entity-graphs combined with feature attribution
techniques can provide pathologist-friendly interpretations [Zhou et al., 2019a; Jaume et
al., 2020; Sureka et al., 2020] and explanations [Jaume et al., 2021b], unlike pixelated blurry
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saliency maps. A detailed review of graphs in computational pathology is presented
by [Ahmedt-Aristizabal et al., 2021].

9.2.2 Extant libraries in computational pathology

Several open-source libraries facilitate the development of computational pathology work-
flows. Most of them include helper functions to perform standard preprocessing and
visualization. Histolab [Marcolini et al., 2020] includes WSI-level tissue detection and tile
extraction modules. Syntax [Byfield et al., 2020] provides the same features with abstrac-
tion where modules can be stacked and run in a pre-defined pipeline. StainTools [Byfield
et al., 2019] provides tools for stain normalization and augmentation. HistomicsTK [Bee-
zley et al., 2021] enables to perform tissue detection, object detection and segmentation,
image filtering, stain normalization and deconvolution, and handcrafted feature extrac-
tion. Further, HistomicsTK allows nuclei segmentation and classification using classical
ML approaches. It also provides a User Interface (UI) to run containerized modules
and pipelines. Though HistomicsTK includes valuable functionalities, it caters limited
DL tools. Similarly, OpenSlide [Gilbert et al., 2020] provides a UI to read and visualize
histology images that supports most of the WSI formats. Finally, QuPath [Bankhead
et al., 2021] offers a UI that allows to read, visualize and annotate WSIs. It also includes
tools to perform stain normalization, nuclei and tissue detection, and implement basic ML
models. However, QuPath is not a python API, which makes it difficult to integrate into
existing workflow and DL frameworks, e. g., PyTorch, Tensorflow. Most importantly, none
of the frameworks provide graph-related helpers. With the advent of graph-techniques
as a new paradigm for analyzing histology images, a standardized library is desired for
reinforcing the development.

9.3 HistoCartography: Graph analytics tool for pathology

In this section, we highlight the core modules of HistoCartography, (1) Preprocessing
module: a set of histology image processing tools and entity-graph builders, (2) ML
module: helpers to learn from entity-graphs, (3) Explainability module: a set of GNN
model interpretability tools. List of module-wise functionalities are summarized in
Table 9.1. To facilitate integration and reduce boilerplate code, HistoCartography

includes a pipeline runner which allows to pre-define pipeline steps along with loading
and saving utilities.

9.3.1 Preprocessing module

Stain normalization: Variation in H&E staining protocols for tissue specimens induces
appearance variability that adversely impacts computational methods [Tellez et al., 2019].
To alleviate these variations, HistoCartography implements two popular normalization
algorithms proposed by [Macenko et al., 2009] and [Vahadane et al., 2016], similar
to StainTools and HistomicsTK, which supports both reference-based and reference-
free normalization, i. e., with manual stain vectors. Figure 9.1 highlights a sample
normalization output using our API.

Tissue Detection: A WSI usually includes significant non-tissue region. Identifying the
tissue regions can confine the analysis and reduce computational effort. The tissue detec-
tor in HistoCartography iteratively applies Gaussian smoothing and Otsu thresholding
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Table 9.1: Overview of HistoCartography functionalities, with the i/o, CPU and GPU com-
patibility, and availability in extant libraries for individual module. I, M, X, G, P and S denote
an image (np.array [Harris et al., 2020]), a mask (np.array), features (torch.Tensor [Paszke et al.,
2019]), a graph (DGLGraph [Wang et al., 2019b]), predictions (torch.Tensor) and importance scores
(torch.Tensor), respectively.

Module Function Input Output Existing CPU GPU

Pr
ep

ro
ce

ss
in

g

Vahadane Stain Norm I I ✓ ✓ ✗

Macenko Stain Norm I I ✓ ✓ ✗

Tissue Mask Detection I M ✓ ✓ ✗

Nuclei Detection I M ✓ ✓ ✓

Nuclei Concepts I, M M ✓ ✓ ✗

Tissue Component Detection I M ✗ ✓ ✗

Deep Feature Extraction I, M X ✗ ✓ ✓

Feature Cube Extraction I X ✗ ✓ ✓

k-NN Graph Building X, M G ✗ ✓ ✗

RAG Graph Building X, M G ✗ ✓ ✗

M
L

Cell-Graph Model G P ✗ ✓ ✓

Tissue-Graph Model G P ✗ ✓ ✓

HACT Model G, G, X P ✗ ✓ ✓

Ex
pl

ai
ne

rs

GnnExplainer G S ✗ ✓ ✓

GraphGrad-CAM G S ✗ ✓ ✓

GraphGrad-CAM++ G S ✗ ✓ ✓

GraphLRP G S ✗ ✓ ✓

until the mean of non-tissue pixels is below a threshold. This module is common across
Histolab, Syntax, HistomicsTK and QuPath.

Nuclei detection: This module enables to segment and locate nuclei in H&E images.
Though it is well-studied in computational pathology, only a few public implementations
are available. For instance, QuPath allows to detect nuclei but requires model train-
ing and fine-tuning. While providing flexibility, the module includes only elementary
ML methods. HistoCartography integrates two checkpoints from the state-of-the-art
HoVerNet model [Graham et al., 2019a] trained on PanNuke [Gamper et al., 2020] and
MoNuSac [Verma et al., 2021] datasets for nuclei segmentation and classification.

Tissue Component Detection: HistoCartography includes an unsupervised superpixel-
based approach to segment tissue regions. First, the tissue is oversegmented into homo-
geneous superpixels using SLIC [Achanta et al., 2012]. Then, neighboring superpixels are
hierarchically merged using color similarity to denote meaningful tissue regions, e. g.,
epithelium and stroma regions. Superpixels depicting tissue regions are used by [Bejnordi
et al., 2015; Pati et al., 2020; Pati et al., 2022].

Feature Extraction: HistoCartography includes two types of feature extractors, i. e.,
handcrafted- and CNN-based, to encode the entity characteristics. The handcrafted feature
extractor computes entity-level morphological and topological properties. Morphological
features capture the shape and size, e. g., entity area, eccentricity, and perimeter, and
the texture captures chromaticity using the gray-level co-occurrence matrix. Topological
features capture the local entity distribution using k-NN entity density estimation. A
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Figure 9.1: Overview of HistoCartography modules and functionalities.

comprehensive list is provided in the Appendix. Handcrafted features can be used for
training DL algorithms [Demir et al., 2004; Zhou et al., 2019a; Pati et al., 2020; Studer
et al., 2021], or concept-based post-hoc explainability [Jaume et al., 2021b].

The deep feature extractor allows to extract CNN features by using any pre-trained deep
architecture, e. g., ResNet, MobileNet, embedded in torchvision [Marcel et al., 2010].
The module intakes patches centered around the entity and extracts features from the
penultimate layer of the architectures. If the entity is larger than the specified patch size,
then multiple patches within the entity, w/ or w/o overlapping, are processed, and the
final feature is computed as the mean of the patch-level deep features, as in [Chen et al.,
2020a; Pati et al., 2020; Pati et al., 2022]. Deep features can alternatively be extracted from
WSI to build a feature-cube as suggested by [Shaban et al., 2020; Tellez et al., 2021].

Graph builders: HistoCartography presents two graph builders, i. e., the thresholded
k-NN and the RAG. The k-NN graph builder defines the graph topology by connecting
each entity to its k-closest neighbors. Connections between distant entities beyond a
threshold can be pruned to have spatial sparsity in the graph. We recommend this builder
to connect single entities, e. g., nuclei, glands. The RAG builder connects entities using
spatial adjacency, i. e., entities sharing a common boundary. It builds a sound topology
when dealing with dense segmentation maps, e. g., tissue regions. Figure 9.1 presents
samples of cell- and tissue-graphs. Further, the module fuses the node features and the
topological distribution to render a Deep Graph Library (DGL) graph for an image.

9.3.2 Graph machine learning module

HistoCartography includes a set of DL models, based on a GNN backbone to learn
from graph-structured tissue representations. It includes two state-of-the-art GNN layers,
i. e., GIN [Xu et al., 2019b] and PNA [Corso et al., 2020]. PNA proves to outperform
GIN provided more computational resources [Dwivedi et al., 2020]. HistoCartography

defines cell- and tissue-graph models, which are GNN-based abstractions to learn from
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biological entity-graphs. They offer efficient [Pati et al., 2022], scalable [Anklin et al.,
2021] and explainable [Jaume et al., 2020; Jaume et al., 2021b] approaches to analyze
histology images. Further, the library includes models to jointly represent and learn
from cell- and tissue-graphs [Pati et al., 2022]. The models in HistoCartography

are organized such that they can be adapted to various GNN backbones, tasks (e. g.,
regression, clustering, classification, segmentation), organs, and entity-types. These
models provide the blueprints to accelerate the development of graph-based models in
computational pathology. All the graph modules are implemented using DGL [Wang
et al., 2019b], a state-of-the-art library for GNNs built around PyTorch.

9.3.3 Explainability module

HistoCartography includes four post-hoc feature attribution graph explainers, that can
generate node-level saliency maps to highlight the node-wise contribution towards an out-
put task. Namely, the library includes two gradient-based explainers (GraphGrad-CAM
[Selvaraju et al., 2017; Pope et al., 2019] and GraphGrad-CAM++ [Chattopadhay et al.,
2018; Jaume et al., 2021b]), a node pruning-based explainer (GnnExplainer [Ying et al.,
2019]), and a layer-wise relevance propagation explainer (GraphLRP [Schwarzenberg
et al., 2019]). The saliency map can be visualized by overlaying the node importances
on the input image (see Figure 9.2). Alternatively, entities with high importances can be
extracted and studied independently to assess their relevance [Jaume et al., 2021b].

9.4 Benchmarking HistoCartography

We benchmark HistoCartography in terms of run-time and performance for various
histopathology tasks, i. e., stain normalization, tissue detection, tumor classification and
segmentation, on images of various sizes. The CPU and GPU compatible modules are
assessed on a single-core POWER8 processor and a NVIDIA P100 GPU, respectively.

9.4.1 Computational time

Analyzing the computational time for processing a histology image is imperative. We
thoroughly analyze the run-time of HistoCartography functionalities on a set of RoIs
and WSIs (Table 9.2). The preprocessing modules are observed to be the most time-
consuming. For instance, Vahadane stain normalization can take up to 3 minutes to
process a 11′000× 11′000 image, whereas Macenko method is 2× faster for competitive
result. The implementations are computationally similar to Histolab and StainTools,
and scale linearly w.r.to image size. The cell- and tissue-graph construction take 2.5 and
4.1 seconds, respectively, for a 1000× 1000 image with the following parameters. Nuclei
detection is performed on patches of size 256× 256 with an overlap of 164 pixels. Nuclei
features are extracted from 72× 72 patches centered around the nuclei, that are resized
to 224× 224 and processed by ResNet34 pretrained on ImageNet [Deng et al., 2009].
Finally, thresholded k-NN topology is built with k = 5 and a threshold distance of 50
pixels. For the tissue-graph, SLIC is used to extract 400 superpixels per image, that are
subsequently merged to provide the tissue components. Tissue features are also extracted
using ResNet34 with 144× 144 size patches that are resized to 224× 224. The graph
buildings can be further optimized as per the task by downsampling the input image,
reducing the patch overlap, or by using a lighter feature extractor. For extracting the
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Table 9.2: Run time analysis of HistoCartography core functionalities (in seconds).

M
od

.

Function / Image type
Tumor RoI WSI

10002 25002 50002 50002 75002 110002

Pr
ep

ro
ce

ss
in

g

St
an

da
rd

Vahadane Normalization 1.77 6.46 29.03 30.67 68.27 186.10

Macenko Normalization 0.80 2.86 11.19 15.98 32.37 81.72

Tissue Mast Detection - - - 1.04 2.11 8.09

Feature Cube Extraction 0.24 1.61 5.92 6.27 11.97 29.79

C
G

Nuclei Detection 3.03 12.93 47.66 - - -

Nuclei Concept Extraction 2.95 6.52 27.94 - - -

Deep Nuclei Feature Extraction 0.010 0.30 1.28 - - -

k-NN Graph Building 0.06 0.20 1.35 - - -

TG

Super-pixel Detection 3.32 17.84 68.99 31.50 68.99 183.54

Deep Tissue Feature Extraction 0.56 2.99 8.40 4.17 9.96 20.54

RAG Graph Building 0.12 2.04 25.6 6.33 19.98 85.73

M
L

Cell-Graph Model 0.028 0.033 0.040 - - -

Tissue-Graph Model 0.011 0.015 0.026 0.039 0.056 0.069

HACT Model 0.034 0.041 0.057 - - -

Ex
pl

ai
ne

rs

C
G

GnnExplainer 12.00 13.09 35.33 - - -

GraphGrad-CAM 0.011 0.022 0.035 - - -

GraphGrad-CAM++ 0.011 0.023 0.035 - - -

GraphLRP 0.020 0.024 0.90 - - -

TG

GnnExplainer 11.23 11.28 11.38 - - -

GraphGrad-CAM 0.011 0.012 0.018 0.025 0.030 0.033

GraphGrad-CAM++ 0.011 0.013 0.018 0.026 0.030 0.033

GraphLRP 0.011 0.014 0.016 0.079 0.085 0.089

feature cube representation, we process patches of size 144× 144 resized to 224× 224
w/o overlap by pretrained ResNet34.

TRoIs are processed using a cell- and tissue-graph model, and hierarchical cell-to-tissue
graph model [Pati et al., 2022]. They consist of three PNA layers with 64 hidden units
followed by a 2-layer MLP with 128 hidden units for classification. WSIs are processed
using SegGini [Anklin et al., 2021], a weakly supervised approach basdn on tissue-graphs,
which contains six GIN layers with 64 hidden units followed by a 2-layer MLP with 128
hidden units. The models process in near real-time irrespective of the increment in the
graph size. The graph explainers are based on GNNs with 3 GIN layers, each having a
2-layer MLP with 32 hidden units, and a 2-layer MLP head. GnnExplainer is the slowest
among all as it requires to optimize a mask to explain each image.
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Table 9.3: Benchmarking HistoCartography for classification and segmentation (in %).

Task Dataset Model Image Type Avg. #pixels #classes Avg. Dice Weighted F1

C
la

ss
ifi

ca
ti

on

BRACS CG-GNN Tumor RoI (TRoI) 3.9× 106 (40×) 7 - 55.9± 1.0

BRACS TG-GNN TRoI 3.9× 106 (40×) 7 - 56.6± 1.3

BRACS HACT-Net TRoI 3.9× 106 (40×) 7 - 61.5± 0.9

BACH HACT-Net TRoI 3.1× 106 (20×) 4 - 90.7± 0.5

SICAPv2 SegGini WSI 121× 106 (10×) 6 - 62.0± 3.6

UZH SegGini TMA 9.6× 106 (40×) 6 - 56.8± 1.7

Se
g.

SICAPv2 SegGini WSI 121× 106 (10×) 4 44.3± 2.0 -

UZH SegGini TMA 9.6× 106 (40×) 4 66.0± 3.1 -

Figure 9.2: Qualitative explanations of sample breast RoIs: (a) Benign, (b) ADH, (c) DCIS (d, e, f)
and highlight the ten most important nuclei for the respective samples.

9.4.2 Performance benchmark

Table 9.3 benchmarks the performance of HistoCartography for classification and
segmentation tasks. Classification is performed on BRACS [Pati et al., 2022] and
BACH [Aresta et al., 2019] datasets to characterize breast tumors using cell-graph model,
tissue-graph model, and HACT-Net [Pati et al., 2022], and the performance is measures
by weighted-F1 score. Segmentation is performed using SegGini [Anklin et al., 2021]
to delineate Gleason patterns in prostate cancer images from UZH [Zhong et al., 2017]
and SICAPv2 [Silva-Rodrìguez et al., 2020], and the performance is measured by average
Dice score. We evaluate on various image types, i. e., tumor RoIs, tissue microarrays,
and whole-slides, to highlight the scalability of entity-graphs in HistoCartography to
arbitrary image dimensions.

Figure 9.2 presents the outcome of GraphGradCAM function in HistoCartography to
interpret a cell-graph model. This function renders per-image explanations in terms of
node-level saliency maps by applying post-hoc feature attribution methods on trained
cell-graph model. Further, the cell-graph model can be interpreted by characterizing the
highlighted important nuclei per-image, as shown in Figure 9.2.
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9.5 Conclusion

We introduced HistoCartography, the first open source library, to the best of our knowl-
edge, to facilitate graph analytics, i. e., graph representation, learning, and explainability,
in computational pathology. It can potentially enable researchers to develop entity-graph
based pathology workflows by leveraging the inbuilt helpers. As the library is built on
python, the deep learning researchers can seamlessly customize and integrate the func-
tionalities into their task-specific workflows. HistoCartography is constantly growing
with new functionalities and improved implementations, aiming to promote the adoption
of graph-based analysis in computational pathology.

9.6 Appendices

9.6.1 HistoCartography ecosystem

HistoCartography core functionalities can be tested using a set of examples avail-
able at url. Examples include stain normalization, cell- and tissue-graph generation,
cell-graph explanation, and feature cube extraction. Additionally, a Jupyter Notebook
presenting the library interpretability and explainability capabilities can be found at
url. Individual functions are thoroughly unit tested (88% unit test coverage), and
can be accessed at url. The code documentation, which provides a user-friendly ap-
proach to understanding HistoCartography architecture and modules can be accessed
at https://histocartography.github.io/histocartography/. Finally, papers using
HistoCartography can be found at https://github.com/histocartography.

9.6.2 HistoCartography syntax

In this section, we introduce the syntax to implement the functionalities of HistoCar-
tography. Figure 9.3 presents code snippets to implement Vahadane stain normal-
ization and tissue mask detection. Figure 9.4 shows the syntax for building cell- and
tissue-graphs. Noticeably, these functionalities require only ten lines of code by using
HistoCartography, which could have otherwise required a few hundred lines. In Fig-
ure 9.5, we present the syntax to declare and run a cell- and tissue-graph model. All
the model parameters, e. g., GNN type, number of GNN layers, can be adapted and
fine-tuned using a configuration file. Finally, Figure 9.6 shows code snippets to use the
graph explainability modules. All explainers follow a similar syntax with the same input
and output types, making implementation and integration straightforward.

9.6.3 Supported handcrafted features

In this section, we provide a comprehensive list of morphological and topological features
which can be extracted per-entity by HistoCartography. Morphological features include
shape, size and texture properties, namely, entity area, convex area, eccentricity, equivalent
diameter, euler number, length of the major and minor axis, orientation, perimeter, solidity,
convex hull perimeter, roughness, shape factor, ellipticity, roudness. Texture properties
are based on gray-level co-occurrence matrices (GLCM). Specifically, we extract the GLCM
contrast, dissimilarity, homogeneity, energy, angular speed moment and dispersion. The
topological features are based on the entity density computed as the mean and variance

https://github.com/histocartography/histocartography/blob/main/examples/
https://github.com/maragraziani/interpretAI_DigiPath/tree/main/hands-on-session-2
https://github.com/histocartography/histocartography/tree/main/test
https://histocartography.github.io/histocartography/
https://github.com/histocartography
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Figure 9.3: Implementation of Vahadane stain normalization (left) and tissue mask detection (right)
with the Preprocessing functionalities in the HistoCartography API.

of entity crowdedness. These features can be computed for the most important set of
entities highlighted by the graph explainability techniques, and utilized along with prior
pathological knowledge to interpret the trained entity-graph models.

9.6.4 Future of HistoCartography

HistoCartography development is only in its infancy, bugs will be fixed as people use it,
new modules will be developed as the community develops novel graph-based methods
and algorithms. Nevertheless, HistoCartography can already be used for developing
new projects. Thanks to its modularity, pipelines can be developed by only partially using
HistoCartography, e. g., only for building tissue-graphs, while novel components that
require more flexibility and control can be developed on the side, e. g., for developing
new models.
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Figure 9.4: Implementation of cell-graph (left) and tissue-graph (right) generation using the graph
builders in HistoCartography.

Figure 9.5: Implementation of the cell- (left) and tissue- graph (right) models by using the ML
modules in HistoCartography.
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Figure 9.6: Implementation of graph explainers in HistoCartography. The most important nodes
are marked in red and the least important ones in blue.



10
Conclusions

In this chapter, we summarize the major contributions of this thesis, and highlight their
strengths and limitations. Then, we postulate a set of future research directions, both on
the methodological and clinical aspects.

10.1 Summary and limitations

The core concept of this thesis is to shift the analytical paradigm of histopathology images
from pixels to histological entities. Operating in the entity-paradigm enables to address
several limitations of the pixel-based analysis, such as, (1) disregard for histological
entities, (2) inability to simultaneously capture both local and global context, (3) intensive
computational requirements for processing large WSIs, and (4) difficulty in comprehend-
ing the model interpretations by pathologists. In the entity-based analytical workflow,
first, a histopathology image is transformed into an entity-graph, where the nodes and
edges denote histological entities and entity-to-entity interactions. Subsequently, DL
methods operating on graph structured data, in particular GNNs, are devised to address
various tasks. An entity-graph is built in three steps, i. e., (1) a task-relevant entity identi-
fication to form the graph nodes, (2) encoding the entities for node characterization, and
(3) a task-relevant topology builder to define the graph edges. The nodes and topology
of a graph encode the local phenotype and global tissue microenvironment to compre-
hensively represent the tissue composition. The GNNs process these graphs to construct
context-aware entity- and graph-representations to enable enhanced tissue-structure to
histopathology task mapping. The advantages of DL on entity-guided representations, in
terms of superior performance, scalability, and interpretability, are demonstrated across
different chapters in this thesis.

The motivation behind emphasizing on histological entities in an image, instead of the
entire image, is described in Chapter 3. Specifically, diagnostically relevant entities
from a HER2-stained immunohistochemisty image, i. e., cell membranes and secondary
stained regions, are analyzed to quantify the quality of HER2 staining. The extracted
entities across a dataset of images are characterized to define disease-specific staining
quality metrics (SQMs). Further, sensitivity analyses of the SQMs over the staining-
parametric space are performed to determine disease-specific optimal staining-process
parameters. Such optimization enables to standardize the staining quality assessment, and
significantly reduces the search space for determining an appropriate staining protocol.
The resulting protocols are further substantiated by comparing against clinical protocols
through staining several standard cell-blocks. The findings motivated to explore the
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potential of the entity-paradigm through advanced entity encoding and computational
techniques.

Encoding of a tissue composition in form of an entity-graph, and processing the entity-
graph via a GNN is proposed in Chapter 4. The chapter illustrates the potential and
advantages of leveraging pathological prior into comprehensive tissue representation.
Further, the scalability of entity-graph-based processing is highlighted by processing
histopathology images of arbitrary shapes and sizes. Specifically, a Hierarchical Cell-
to-Tissue (HACT) representation is proposed to encode both cell-level and tissue-level
information in a hierarchical fashion. The cell-level information is encoded as a cell-
graph, where nodes and edges denote nuclei and inter-nuclei interactions. The tissue-level
information is captured as a tissue-graph, where nodes are tissue regions and edges
are relationships among adjacent regions. The intra-level hierarchies are encoded in
terms of edges denoting the relative spatial distribution among nuclei and tissue regions.
Subsequently, a novel GNN, HACT-Net, is devised to hierarchically process the HACT
graphs. HACT combined with HACT-Net is benchmarked on the curated BRACS
dataset, to date the largest cohort of H&E breast histopathology TRoIs. The framework
outperformed several CNNs and performed comparable to domain-expert pathologists.
While being promising, the approach suffers from several challenges, listed as follows.
(1) The construction of an entity-graph requires task-specific entity detectors. For example,
to represent a WSI using glands as entities, a gland detector is required, which is a non-
trivial task. (2) To construct domain-specific HACT representations, either HACT-Net is
required to be made end-to-end trainable, or histopathology-specific pre-trained feature
extractors [Tellez et al., 2021; Shaban et al., 2020] are to be developed. A domain-specific
representation refers to encoding histopathology-specific features in the nodes of the
HACT graph. The nodes of the proposed HACT graphs are encoded using pre-trained
CNNs on ImageNet dataset. In the current form, HACT-Net can in theory be trained
end-to-end but at a really high computational cost, as the graphs need to be built on-the-
fly during batch construction. Notably, this challenge is common to other CNN-based
methods in CP as well. Further, the downstream gain in classification performance would
be marginal if not nonexistent. (3) The impact of other inter-level graph topologies are
not studied. We hypothesize that any topology enforcing spatial connectivity, e. g., k-NN,
and radial topology, would lead to similar performance. This is a reasonable assumption
as the uni-level entity-graphs are homophilous, i. e., a node and its neighbors share the
same functional properties. For example, the nuclei belonging to a gland bear similar
morphological features, compared to the nuclei outside the gland, i. e., stromal nuclei or
lymphocytes. In this sense, cell-graph GNNs act as low-pass filters to learn discriminative
relation-aware nuclei phenotypes.

Chapter 5 and 6 propose methods to interpret and explain an entity-graph in pathologist-
understandable terminologies. A post-hoc perturbation-based interpretability technique
(or explainer), CGExplainer is proposed in Chapter 5 to identify salient nuclei in a
cell-graph, i. e., an explanation, processed by a cell-GNN. It illustrated the sparseness of
informative content in cell-graphs which drive the model prediction. Considering the lim-
itations of qualitative evaluation of the explanations, generated by several explainers, a set
of quantitative metrics, i. e., maximum, average, and correlated separability, are proposed in
Chapter 6. The metrics are built on the statistics of class separability due to pathologically
measurable concepts, e. g., shape, size, and chromaticity of nuclei. The limitations of the
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approaches are listed as follows. (1) Gathering a universal prior for computing correlated
separability is not always feasible, which requires the prior knowledge of task-specific
expert pathologists. (2) The conceptualization of the set of concepts requires domain- and
task-specific knowledge. Even the transferability of the metrics, built on a set of concepts,
across related tasks or domains may require the supervision of domain experts.

A co-representation learning framework (CoReL) for classification tasks is proposed in
Chapter 7 to learn from limited annotated data. CoReL simultaneously captures the
class-label information and the local spatial distribution information of the data points in
the embedding space to enhance the learning capability of the model. A key contribution
of the method includes a novel context-aware pair mining strategy and a soft-multi-
pair objective to boost the efficacy of the DML component in the method. Notably,
CoReL achieves state-of-the-art classification on five benchmark datasets across three
histopathology tasks. However, CoReL includes certain anticipated limitations. (1) The
DML component may be sensitive to the training batch size. Empirically, the performance
increases with increasing batch size for datasets with high variability. This may lead to a
high computational cost and long training time per epoch. (2) The joint optimization of
the multiple objectives may be sensitive to the loss trade-off hyperparameter, which may
be computationally expensive to tune.

Chapter 8 addresses the challenge of learning from weak-supervision in CP. Specif-
ically, the chapter proposes Whole-slide SegmentatIon using Graphs for HisTology
(WholeSIGHT) to simultaneously segment and classify WSIs by using weakly-supervised
WSI-level annotations. To this end, the method leverages the potentials of entity-graph
representation and learning, graph interpretability technique, and DML. At first, a WSI is
encoded into a tissue-graph and a GNN is trained for graph classification. Then, a graph
explainer generates pseudo node-level labels, which are used to train a node classifier.
The class prediction and segmentation are obtained from the graph- and node-classifiers,
respectively. The main limitation of WholeSIGHT is the module for detecting tissue
regions, which is both time-consuming and sub-optimal. This module relies on basic
image processing to identify tissue regions in form of superpixels. To optimize this
module, either a DL-based superpixel detector or a dedicated tissue region detector is
required. Despite this limitation, WholeSIGHT is applicable to real-world setting. It
provides better fine-grained segmentation compared to state-of-the-art weakly-supervised
MIL methods, which typically process densely overlapping patches for an acceptable
segmentation. Further, the chapter proposes a Bayesian variant of WholeSIGHT for
better generalization to out-of-domain datasets. The method achieves state-of-the-art
weakly-supervised Gleason grading and Gleason pattern segmentation performances on
prostate cancer needle biopsies.

Chapter 9 introduces HistoCartography, a generic open-source python library to
facilitate effective graph analytics in digital histopathology.

10.2 Future work

A thesis is a continuum of projects and tasks, through which a plethora of new ideas
emerge. Below we list some research directions that could be promising to further
explored.
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Pathological prior-aware tissue modeling: One of the key strengths of entity-graphs is
their flexibility to encode complex relationships among histological entities. The choice of
the entity and inter-entity interactions up to arbitrary spatial distances can be modelled by
an entity-graph. More complex heterogeneous entity-graphs can also be designed by using
multiset of entities and intra-entity relationships for a comprehensive encoding of tissue
composition. Such degree of flexibility enables the incorporation of well-established prior
knowledge into tissue modeling. For example, to evaluate the Gleason grade in prostate
cancer, the prior dictates the importance of analyzing the phenotype and topological
distribution of glands, the constituting nuclei, and associated stroma [Gordetsky et al.,
2016]. Therefore, a hierarchical entity-graph representation, similar to HACT, can be
constructed by encoding the characteristics and distribution of the mentioned relevant
entities, for an improved diagnosis. Further, the entity-graphs allow to selectively operate
on a subset of entities. For instance, to characterize tumor infiltrating lymphocytes, only
the distribution of tumorous epithelial nuclei and lymphocytes, among other nuclei types,
can be evaluated. Such selective assessment can improve the diagnosis by reducing the
amount of uninformative content and emphasizing more on the informative substance.

Patient-level-graphs with heterogeneous concepts: The explanations of entity-guided
GNNs, generated by interpretability techniques, illustrate that different subset of concepts
are informative for differentiating different disease pairs. Further, the relevant subsets are
also patient-dependent. These observations convey that there exist a level of homogeneity
and heterogeneity among patients at concept-level for disease stratification. However, DL
methods, operating under i.i.d. assumption, do not leverage the inter-sample relationships.
An exact modeling of these relations is also infeasible for a direct incorporation into DL
methods. Nevertheless, the relations can be learned through a patient-graph, where the
nodes encode patients. The edges can exploit the homogeneity and heterogeneity among
the patients at concept-levels, such that the graph can encode heterogeneous information
in abstraction. A utilization of this additional information can potentially improve data
modeling, inducing better generalization.

Multi-modal entity-graphs: Entity-graphs are generic and applicable to other imaging
modalities and medical domains. These graphs can be employed to perform early- or late-
fusion of multi-modal information from diverse modalities, such as pathology, radiology,
clinical records, and multi-omics. Within the pathology domain, multi-modal graphs
can also be constructed by leveraging different types of tissue stains. As each stain is
targeted to highlight specific tissue structures, an inclusion of a variety of stains can suffice
a comprehensive tissue encoding. The modalities can be simply incorporated across
registered images by considering each stain as an image channel. However, considering
the complexities of registering images across stains, stain-specific relevant entity-graphs
can be built, and the context information of the entities can be utilized to include cross-
stain relationships. As this would be registration-free, it can seamlessly include diverse
stains highlighting different tissue structures, which are challenging to register.
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