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ABSTRACT

In the following work, a phenomenological/knowledge based model and a “black-
box” approach for the simulation and optimization of Common-Rail DI diesel 
engines are developed and comparatively evaluated.  The evaluation, which is carried 
out for a comprehensive sample of engines and operating conditions, focuses on the 
ability of both approaches to yield predictive measures of the in-cylinder combustion 
process, as well as the engine out exhaust emissions.
The phenomenological/knowledge based model expands an existing, simple, yet 
physically and chemically accurate model by implementing Evolutionary Algorithms 
to calibrate the model parameters.  As is shown through comprehensive investiga-
tions using measurements from an automotive, a heavy-duty, and a two-stroke 
marine diesel engine, the new models are able to determine the qualitative and quan-
titative Rates Of Heat Release (ROHR), nitrogen oxide and soot emissions across an 
entire engine operating map within a matter of seconds.  To evaluate the general 
applicability of the model, a version of the model calibrated to one engine (for exam-
ple the heavy-duty engine) is directly applied to another engine (for example the 
marine diesel engine), without recalibrating the model parameters.  For such a “blind 
try” investigation, it is seen that because the phenomenological model considers the 
appropriate physical and chemical processes, it is capable of providing extrapolative 
predictions.
In addition to evaluating the model based on a comparison of calculations and mea-
surements from applied combustion systems, a detailed investigation of the model 
itself is carried out.  In particular, a sensitivity analysis of the model specific param-
eters and statistical analyses are used to evaluate the modeling and optimization per-
formance of the model.  From such an analysis of the ROHR model, it is shown, 
among other things, that: (i) the accuracy of the model depends on the calibration 
algorithm, (ii) there are only negligible differences due to stochastic parameter initial-
ization when using Evolutionary Algorithms, and (iii) the chemical and physical 
effects seen during the implementation of alternative fuels, such as diesel-water 
emulsions and diesel-butylal blends are correctly represented by the ROHR sub-
model. Furthermore, from the detailed analysis of the emission models, a larger sen-
sitivity of the model to small parameter changes is seen, as is a general influence of 
the operating conditions on the model accuracy.
Based on a comparison of engine variables, such as the cylinder pressure and tem-
perature, nitrogen oxide and soot emissions, determined from measurement and 
simulation results, the ability of the phenomenological model to predict the combus-
tion and emission formation processes is unambiguously verified.  Although a wide 
range of engine operating conditions are considered in this comparison, only small 
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deviations (less than 10 %) are seen between the measured and calculated engine 
variables, with the exception of the maximum rate of pressure rise.
As an alternative to the phenomenological/knowledge based model approach, an 
Artificial Neural Network (ANN) is also investigated as a representative “black-box” 
approach. From a comparison of these two approaches, based on their abilities to 
predict ROHR parameters, nitrogen oxide and soot emissions, it is seen, that the 
ANN is more easily adapted to different engine configurations and provides better 
agreement with the measured calibration (i.e. training) data.  However, when the 
models are used to predict the ROHR characteristics and exhaust emissions for 
operating conditions to which they were not trained, the ANN is not able to match 
the extrapolative ability of the phenomenological/knowledge based model, which 
provides better agreement with the measured values.   
As is shown through the comparison of the two approaches, the phenomenological/
knowledge based model and ANN have different strengths and weaknesses, and 
depending on the intended application, one approach will have distinct advantages 
over the other.  The decision as to which approach is better suited will be based, in 
part, on the available experimental data, the overall knowledge of the system being 
considered, the time available for the investigation (both for the actual calculations 
and the development of the approach), as well as the necessity for extrapolative cal-
culations.  The phenomenological/knowledge based model approach is preferred 
when qualitative predictions based on fundamental knowledge are essential, while 
the ANN is preferred when the fast analysis of comprehensive experimental mea-
surements, without fundamental knowledge of the physical and chemical processes, 
is required.  Overall, the more general applicability, the more consistent qualitative 
results, and the possibility for extrapolative investigations make the phenomenolog-
ical/knowledge based approach the more appropriate choice for the majority of 
applications, particularly for future engine developments.
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ZUSAMMENFASSUNG

Gegenstand der vorliegenden Arbeit ist die Herleitung und vergleichende Untersu-
chung eines modell-/wissensbasierten und eines “black-box” Ansatzes zur innermo-
torischen Simulation und Optimierung der Verbrennung sowie Schadstoffent-
stehung in direkt eingespritzten Common-Rail Diesel Motoren. Die hierzu entwik-
kelten Ansätze und Modelle werden für eine umfangreiche Palette von unterschied-
lichen Motoren und Betriebszustände angewandt.

Der neu entwickelte, modell-/wissensbasierte Ansatz baut auf einfachen, jedoch 
physikalisch und chemisch korrekten phänomenologischen Modellen auf, welche 
mittels evolutionärer Algorithmen kalibriert werden. Wie in umfangreichen Untersu-
chungen an einem Automobil-, einem Nutzfahrzeug-, und einem Schiffsantrieb 
erfolgreich gezeigt werden konnte, erlaubt der Ansatz die kennfeldweite, qualitative 
und quantitative Berechnung von Brennverläufen, Stickoxid- und Russemissionen 
innerhalb weniger Sekunden. Anhand von sogenannten “blinden Versuchen”, in 
welchen kalibrierte Modelle eines Motors ohne Anpassung der Parameter auf einen 
anderen Motor übertragen wurden (z.B. das für den Nutzfahrzeugmotor kalibrierte 
Brennverlaufsmodell wird zur Berechnung des Schiffsantriebs verwendet), konnte 
des weiteren gezeigt werden, dass die Verwendung geeigneter physikalisch/che-
misch basierter Modelle selbst extrapolative Abschätzungen ermöglicht.

Neben den stark anwendungsorientierten Vergleichen von experimentellen und 
berechneten Kenngrössen für die jeweiligen Betriebspunkte wurden für alle Modelle 
auch detaillierte Untersuchungen (z.B. Parameter Sensitivitätsstudien) und statisti-
sche Analysen zu speziellen Modellierungs- und Optimierungsaspekten durchge-
führt. Die detaillierte Analyse der Brennverlaufsmodellierung ergab dabei unter 
anderem eine differenzierte Abhängigkeit der Modellqualität von verschiedenen 
Kalibrierungsalgorithmen, vernachlässigbare Abweichungen aufgrund stochasti-
schen Parameterinitialisierung bei evolutionären Algorithmen, sowie die korrekte 
Abbildung der physikalischen und chemischen Einflüsse unterschiedlicher Kraft-
stoffe wie Diesel-Wasser-Emulsionen oder Diesel-Butylal-Gemische. Am Beispiel 
der Schadstoffmodellierungen konnten ferner stark unterschiedliche Sensitivitäten 
der Modelle sowohl bei geringen Parameteränderungen, als auch zwischen verschie-
denen Betriebspunkten im Allgemeinen, gezeigt werden.

Mittels eines Vergleichs von experimentell und numerisch ermittelten Motorproz-
essgrössen, wie zum Beispiel Zylinderdruck und -temperatur, Stickoxid und Russ 
Emissionen, wird das Potential der phänomenologischen Modelle zur Voraus-
berechnung motorischer Vorgänge anschaulich aufgezeigt. Über alle Betriebspunkte 
gesehen weisen dabei die betrachteten Kenngrössen, mit Ausnahme der maximalen 
Druckanstiege, lediglich Fehler im tiefen einstelligen Prozentbereich auf.
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Als Gegenstück zur Untersuchung des modell-/wissensbasierten Ansatzes werden 
in dieser Arbeit künstliche Neuronale Netze (engl.: Artificial Neural Networks 
ANN), als “Schulbeispiel” für black-box Ansätze, verwendet. Am Beispiel der 
Modellierung und Simulation, bzw. Training und Verifikation, der Brennverlauf-
scharakteristika, Stickoxid- und Russemissionen konnten sowohl eine exzellente 
Adaptierbarkeit der Netze für alle Motor und Modell Kombinationen, wie auch eine 
reduzierte Extrapolierbarkeit der trainierten Netze nachgewiesen werden. Während 
die Abweichungen zwischen den experimentellen und simulierten Ergebnissen für 
trainierte Betriebspunkte deutlich geringer ausfielen als bei den phänomenologi-
schen Modellen, verhielt es sich bei der Verifikation, bzw. Extrapolation der 
Betriebpunkte gerade umgekehrt, d.h. es kommt zu einer signifikanten Verminde-
rung der Qualität der simulierten Ergebnisse bei den künstliche Neuronalen Netzen.

Wie durch den Vergleich der beiden Ansätze gezeigt werden kann, verfügen 
sowohl der modell-/wissensbasierte als auch der black-box Ansatz über Stärken und 
Schwächen, welche abhängig vom Fokus der Untersuchung, den Ausschlag für den 
einen beziehungsweise anderen Ansatz geben. Der Entscheid welcher Ansatz letzt-
endlich besser geeignet ist, ist dabei unteranderem abhängig von den verfügbaren 
experimentellen Daten, den Kenntnissen vom betrachteten System, den zeitlichen 
Rahmenbedingungen (sowohl für die Entwicklung des Ansatzes, als auch die eigent-
lichen Berechnungen), und der Notwendigkeit von extrapolativen Berechnungen. 
Der modell-/wissensbasierten Ansatz eignet sich für qualitativ zuverlässige Vorher-
sagen basierend auf fundiertem Wissen, während der black-box Ansatz für schnelle 
Analysen von umfangreichen experimentellen Daten ohne fundierte Kenntnisse zu 
den physikalisch/chemischen Zusammenhängen anerbietet. Die breitere Anwend-
barkeit, sowie die qualitativ konstanteren Resultate und die Möglichkeit der Extra-
polation der Berechnungen lassen für die meisten Anwendungen eine Präferenz hin 
zu wissensbasierten Modellen erkennen.
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1 INTRODUCTION

More than a century after the first simple petrol engine was cranked, the technology 
which mobilized mankind on land, sea and in the air is on the edge of a period of 
new developments. There might not be a change in the basic principles of internal 
combustion engines, but the way the future engines are going to operate will be 
clearly different from the ones a decade, never mind a hundred years, ago.

Even though the major advances will be electronics empowered by microchips, 
the pace of this change has mainly been - and will continue to be - forced by con-
sumption, emission and emotion (i.e. power output) requirements. In a world where 
client satisfaction and time to market are major factors, testing and simulation have 
become increasingly important.

1.1 Motivation and Objectives
Whereas numerical simulations were often restricted to experimental data post-pro-
cessing in the past, the most stimulating factor in modern internal combustion 
engine research and development is the complementary interaction of advanced 
experimental and computational investigations. Even with the sophistication, wide 
variety and accuracy of the experimental methods available, the advantages of the 
computational methods, such as the unbounded data processing and analysis (i.e. 
potentially full resolution in time, space and species), the time and cost effectiveness, 
and the prediction capabilities, still persist.

While experimental studies are needed in order to calibrate and verify numerical 
simulations, computational investigations are required to interpret and complete 
experimental results. Facing both the exponential increase in IC engine complexity 
(e.g. Common-Rail direct injection, variable valve train actuation, etc.), and the strin-
gent time and cost conditions in the global markets, integrated experimental and 
computational approaches are in great demand [17][37][80].

Focusing on the first phase of the engine design process, the present study com-
pares a “model/knowledge based” and a “black-box” approach for the fast and 
accurate simulation and optimization of Common-Rail DI diesel engines. After an 
overview of the various IC engine models and optimization methods is given, the 
assets and drawbacks of the two approaches are systematically evaluated in a com-
prehensive investigation for three distinct engines; an automotive, a heavy-duty, and 
a two-stroke marine diesel engine.
1



INTRODUCTION
1.2 Common-Rail DI Diesel Engines
Despite the significant contributions to local and global air quality problems, as well 
as the (potential) health effects, commercial applications are almost exclusively pow-
ered by direct injection diesel engines. In addition, due to the high efficiency, supe-
rior drivability, low life-cycle costs, the share of diesel powered passenger cars in 
western Europe increased from 13.8 % in 1990 to 48.2 % in 2004 [1].

In order to control/reduce the negative impacts on the environment, emission 
regulations specify and enforce the maximum amount of pollutants allowed to be 
emitted by an internal combustion engine. For common diesel engines, generally the 
particulate matter (PM)1, the nitrogen oxide (NOx)2, the hydrocarbons (HC), and 
the carbon monoxide (CO) emissions are regulated, whereas the carbon dioxide 
(CO2) emissions for example are subject to voluntary agreements between adminis-
trations and manufacturers.

Facing the increasingly stringent emission regulations, major engine research and 
development focuses on the simultaneous reduction of fuel consumption and 
exhaust emissions of diesel engines by combustion and cycle efficiency improve-
ments [45]. According to [10], the various technologies developed and implemented 
in modern diesel engines can be classified - in a non exhaustive list - as follows:

• FUEL INJECTION AND AIR MANAGEMENT 
variable-rate fuel injection systems (e.g. Common-Rail), exhaust gas recircu-
lation, variable nozzle/geometry turbocharger, two-stage turbocharging, 
four-valve cylinder heads, variable swirl, variable valve train actuation, etc.

• FUEL COMPOSITION MODIFICATIONS 
low sulphur fuels, water-in-diesel fuel emulsions, oxygenated and hydrogen 
enriched fuels, etc.

• EXHAUST GAS AFTERTREATMENT 
oxidation catalysts, diesel particulate filters, nitrogen oxides adsorber cata-
lysts, selective catalytic reduction systems, etc.

• COMBUSTION CONCEPT 
Homogeneous Charge Compression Ignition (HCCI), Low Temperature 
Combustion (LTC), etc.

1. Particulate Matter (PM) - both solid and liquid particles of 1 nanometre to 100 micrometres in 
diameter suspended in the air. IC engine PM emission mainly consist of elemental carbon (soot), 
unburned fuel (hydrocarbons), and various acids, with a soot content that varies from 25 % to 95 % 
(depending on the fuel, operating condition and type of engine used) [3].

2. Nitrogen Oxide (NOx) - generic term for the various nitrogen oxides produced during combus-
tion, such as nitric oxide (NO), nitrogen dioxide (NO2), or nitrous oxide (N2O). Nitrogen oxide 
formation is promoted by high temperatures and excess of oxygen.
2



Common-Rail DI Diesel Engines
1.2.1 Combustion Analysis and Modeling

Given that in engineering “modeling a process” has become a synonym for develop-
ing and using an appropriate combination of assumptions and equations that permit 
critical features of a process to be analyzed [44]. Internal combustion engine models 
thus range from zero-dimensional empirical model, to three-dimensional computa-
tional reactive fluid dynamic models.

An experimental combustion analysis generally includes the interpretation of 
global engine operating characteristics, such as performance/efficiency measures 
and exhaust emissions, as well as time resolved temperature and (in-cylinder) pres-
sure data. 

1.2.2 Exhaust Emissions

Diesel exhaust is a complex mixture of gases, vapors, liquid aerosols and substances 
made up of particles (i.e. fine particles), that has the potential to cause a range of seri-
ous health problems. Despite the controversy about the epidemiology studies used 
to develop health risk assessments of diesel exhaust, long-term/chronic inhalation 
exposure is likely to pose a lung cancer hazard to humans and short-term/acute 
exposures can cause irritation and inflammatory symptoms [21].

Among the more than 40 substances emitted by diesel engines that are listed as 
hazardous air pollutants by the U.S. Environmental Protection Agency (EPA), the 
nitrogen oxide and particulate matter (soot) emissions are the most important ones. 
Whereas the nitrogen oxide emissions (along with unburned hydrocarbons and sun-
light) make for the formation of ground-level ozone1 and contribute to the forma-
tion of acid rain, particulate matter emissions are mainly associated with the serious 
health effects mentioned above.

1.2.3 Optimization

During the IC engine design process, optimization methods are used for example, to 
calibrate numerical models [100], to reduce engine exhaust emissions in automated 
test-bed systems (i.e. electronic control unit calibration) [95], or to find the best fuel/
propulsion systems in life cycle analysis studies [64]. The optimization techniques 
employed range from gradient-free methods, such as evolutionary algorithms or 
coordinate strategies, to first and second-order gradient methods, such as conjugate 
gradient or Newton’s method (c.f. Section 2.4 and [69]).

1. Ozone (O3) - an allotrope of oxygen (O2) consisting of three oxygen atoms, a powerful oxidizing 
agent, highly corrosive and poisonous.
3
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1.3 Approach
To describe the manner in which the goals outlined in Section 1.1 were attained, this 
thesis is structured in three parts. After a detailed survey on the current state-of-the-
art IC engine modeling techniques, as well as Artificial Neural Network (ANN), 
Design of Experiments (DoE), and the application of optimization techniques in IC 
engine research and development (Chapter 2), both the model/knowledge based 
and the black-box modeling approach, as well as the computational and experimen-
tal setup are presented in Chapter 3.

In the second part of this thesis, a thorough investigation of the phenomenological 
model/knowledge based approach is given. Starting with a phenomenological 
Common-Rail DI diesel engine Rate Of Heat Release (ROHR) model in Chapter 4, 
consistent models for the simulation of nitrogen oxide and soot exhaust emissions 
are given in Chapters 5 and 6, respectively. In addition to the model description and 
parameter studies in the first two sections of Chapters 4 to 6, each model is applied 
to three distinct engines - an automotive, a heavy-duty and a marine diesel engine - 
in order to evaluate the respective model generalization capability. In addition to 
these main investigations, which are conducted for all three models, both a compar-
ative algorithm study and an advanced fuels investigation are used to further evaluate 
the ROHR model (Chapter 4). To conclude the model/knowledge based approach 
part, Chapter 7 presents the application of the derived phenomenological models in 
various engine process simulations.

The third component of this work consists of a ANN/black box approach study 
on the simulation of ROHR characteristics and exhaust emissions and its compara-
tive evaluation against the phenomenological model/knowledge based approach 
(Chapter 8). This is followed by a summary, general conclusions and an outlook on 
future work in this area (Chapter 9).
4



2 STATE-OF-THE-ART

The subsequent sections are intended to give an overview of the classic modeling 
approaches for internal combustion engines and two potential alternatives; the arti-
ficial neural network (ANN) and design of experiments (DoE) approaches. An out-
line on the various optimization techniques in engineering closes the chapter.

2.1 Internal Combustion Engine Modeling
The manifold tasks and applications in engine research & development (R&D) have 
led to various types of combustion engine simulation models. Ranging from fast and 
rather approximate models to exhaustive but time-consuming models, a classifica-
tion into three major categories is commonly used [16][19]. Depending on the inten-
tion of the classification, the categories are either dimensional (zero-, quasi- and 
multi-dimensional) or complexity level based (empirical/thermodynamic, phenome-
nological and detailed/complex).

2.1.1 Empirical or Thermodynamic Models

Derived from the first law of thermodynamics, mass balances and experimentally 
obtained correlations, this type of models just accounts for only temporal variations 
(ordinary differential equations), i.e. spatial variations in composition and thermody-
namic properties are neglected. Typically, the whole combustion chamber is mod-
eled as a homogeneously mixed zone (a.k.a. single-zone combustion models). Given 
these simplifications, the models are computationally efficient and easy to handle, 
but fail to resolve local phenomena, such as fuel spray interaction, turbulence struc-
ture and emission formation.

Single-Zone Cylinder Model
Defining the entire combustion chamber as control volume (c.f. Figure 2.1) and 
applying the conservation law for mass and energy (i.e. the first law of thermody-
namics), results in the two governing equations for open thermodynamic systems:

 (2.1)

 (2.2)

(presuming all flows directed into the control volume have positive signs).
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STATE-OF-THE-ART
Fig. 2.1 Control Volume as Used in Single-Zone Cylinder Models

In order to solve the equations for the change in internal energy of the control vol-
ume, a series of sub-models are required, e.g. for the mass fluxes (gas exchange, fuel 
injection and blow-by), mechanical work (friction), heat transfer to the combustion 
chamber walls, ignition delay and the rate of heat release. Furthermore, to link the 
change of internal energy to changes in temperature and pressure, thermodynamic 
gas property correlations, such as the polynomials developed by Zacharias [108] or 
the NIST-JANAF tables [22] are needed.

Applications & Examples
Single-zone thermodynamic models have been, and still are frequently used in inter-
nal combustion engine R&D, specifically for common investigations, such as the 
analysis of in-cylinder pressure data, transient powertrain simulations or control 
engineering applications. Therefore, this class of models comprehends numerous 
modeling approaches.

• HEAT TRANSFER 
Directly derived from experimental correlations there are single equation 
models by Nusselt [71] and Eichelberg [28]. The widely used Woschni for-
mula [106] - which is based on an analogy between the in-cylinder flow pat-
tern in a combustion engine and the turbulent flow pattern in a circular tube 
- is another good example of this type of model.

• RATE OF HEAT RELEASE 
Generally there is no detailed modeling of physical and chemical processes in 
single-zone models. Hence, mathematical “substitution” functions, derived 
from analytical theory and measurement approximations, such as the Vibe 
combustion profile [98], the polygon-hyperbola profile [84] or the two equa-
tion analytical profile [39] are widely used.
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Internal Combustion Engine Modeling
• EMISSIONS 
Based on the in-cylinder mean temperature data of a single-zone model, 
Schröer [85] derived an empirical correlation (i.e. there is no chemical reac-
tion scheme used) to model engine-out emissions of nitrogen oxide. 
As for soot emissions, most global one-step equation models belong to this 
class of model (e.g. Khan et al. [57] or Lee [63])

2.1.2 Phenomenological Models

Phenomenological models aim to strike a balance between computational require-
ments and model accuracy. In order to overcome the deficiencies of the empirical 
models in handling local phenomena, the control volume (i.e. the combustion cham-
ber) is typically divided into multiple zones characterized by different temperatures 
and compositions. The zoning is thereby either done sequentially, i.e. along a given 
time axis - such as the two-zone models by Hohlbaum [49] and Rakopoulos et al. 
[79], and the n-zone model by Weisser et al. [101] - or geometrically, i.e. in space - 
such as the “packages” model by Hiroyasu et al. [47].

Using simplified yet physically and chemically coherent models to capture the 
underlying local processes (i.e. spray atomization, fuel evaporation, air entrainment, 
ignition, etc.) phenomenological models allow for both qualitative and quantitative 
predictions of pollutant emissions and rates of heat release. Given the simplistic spa-
tial resolution (the number of zones accounted for is usually in the range of two up 
to a few dozen), the absence of the Navier-Stokes momentum equation, as well as 
the spatial averaging of the turbulent flow field, these models are not able to account 
for example for the effects of changes in combustion chamber geometry, such as 
different bowl shapes, or complex interactions among different zones.

Applications & Examples
Phenomenological models are typically applied in experimental data analysis, optimi-
zation of control variables, or simulations over entire engine operating maps, to 
bridge the gap until detailed three-dimensional models become computationally 
affordable. Combining low computing times (generally of the order of seconds for 
one operating condition) and reasonably accurate predictions for global combustion 
parameters, these models are best suited for conceptual studies.

• HEAT TRANSFER 
In general, phenomenological heat transfer models distinguish between a 
radiative (hot gases and soot particles) and a forced convective (turbulent 
charge movement and gas-wall temperature gradients) component of the 
overall heat transferred to the combustion chamber walls. Given that the 
7
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overall heat flux is strongly dependent on the local conditions, most of the 
models divide the combustion chamber into sections by merging similar 
conditions [29][86].

• RATE OF HEAT RELEASE 
Given the tight coupling of the physical and chemical processes present in 
combustion engines (e.g. fuel evaporation and air entrainment), common 
rate of heat release models consequently consider the whole range of in-cyl-
inder processes. Various sub models are used to represent the injection, air 
entrainment, ignition, and combustion processes. 
Although the aforementioned approaches may differ, they share the same 
phenomenological concept; the breakdown of the combustion into kineti-
cally controlled (“premixed”) and mixing-controlled (“diffusion”) compo-
nents. Recent technical advances in multiple pulse injection systems have 
resulted in substantial work on extending the models to account for different 
injection strategies [7][67][91].

• EMISSIONS 
Based on the (extended) Zeldovich reaction mechanism for the formation of 
nitric oxide, models for both a “quasi” two-zone approach [42] and an n-
zone approach [102] have been extensively used. Numerous versions of a 
two step equation approach (formation and oxidation) have been proposed 
to model soot emissions [48][88]. Additionally, there has also been work on 
integrated approaches for the rates of heat release, soot and NOx emission 
modeling (e.g. [14][34][93]).

2.1.3 Detailed or Complex Models

Akin to empirical and phenomenological models, the governing principles for 
detailed/complex models are the conservation of mass, energy and momentum 
(a.k.a. Navier-Stokes equation). Solving these conservation laws in time and (three-
dimensional) space results in a set of partial differential equations (PDEs). Further-
more the chemistry processes prevailing in combustion, as well as the interaction 
between the chemistry and the fluid mechanics described in three-dimensional 
Navier-Stokes equations increase the complexity (i.e. the numerical stiffness) of the 
present models.

The numerical schemes used to solve these models are commonly classified into 
three main categories: the rather coarse Reynolds-Averaged Navier-Stokes (RANS), 
intermediate resolution Large Eddy Simulations (LES) and fully resolving Direct 
Numerical Simulations (DNS). Concerning combustion engineering problems; 
8



Internal Combustion Engine Modeling
RANS simulations are currently employed in a majority of the cases for the sake of 
simplicity and available computation time [8], whereas predominantly LES and DNS 
simulations are used in fundamental research studies [33][61].

Owing to the limited understanding and the complexity of the reaction chemistry 
at a fundamental level, there is considerable activity in this field of research, includ-
ing studies on hydrocarbon reaction mechanisms [9] or turbulence-chemistry inter-
actions [107].

Applications & Examples
Compared to empirical and phenomenological models, the generality of detailed/
complex models makes it possible to comply with almost any kind of problem. 
Depending on the intention, and hence the level of sophistication, the models are 
commonly used to gain insight into the governing processes, provide information of 
local in-cylinder phenomena or evaluate new combustion technologies.

• HEAT TRANSFER 
Gosman and Watkins applied computational fluid dynamic simulations for 
turbulent in-cylinder flows including a one-dimensional gas-wall heat trans-
fer model [36]. Given the present LES and DNS turbulence models avail-
able, the model accuracy is no longer restricted in terms of the turbulent flow 
field resolution.

• RATE OF HEAT RELEASE / COMBUSTION 
Focusing on the combustion itself, numerous approaches, such as the char-
acteristic time scale models by Magnussen et al. [65], the flamelet approach 
by Peters et al. [76] or the Conditional Moment Closure (CMC) model by 
Bilger et al. [12] exist. Details about the advantages and disadvantages of 
each of these models, as well as a general survey on multidimensional com-
bustion modeling are given by [92].

• EMISSIONS 
As the thermal nitric oxide formation based on the Zeldovich mechanism is 
included in most commercially available engine simulation codes, the main 
emphasis in nitrogen oxide emission studies is on prompt NO, NO2 and N2O
formation, and catalytic removal processes (e.g. Miller [68]). 
There is still only a limited understanding of the fundamental governing 
physical and chemical processes to be considered for the modeling of engine 
out soot emissions [55]. Although it is derived for laminar premixed flames, 
the model by Frenklach and Wang [31], using detailed kinetics for acetylene 
pyrolysis and the growth of polycyclic aromatic hydrocarbons (PAHs), is 
being studied for engine applications [58].
9
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2.2 Artificial Neural Networks
Inspired by biological nervous systems - such as the human brain, where informa-
tion is transmitted and stored in groups of interconnected neurons1 - Artificial 
Neural Networks (ANNs) employ clusters of small and simple information process-
ing units (a.k.a. artificial neurons) to mimic the natural learning process and thereby 
acquire knowledge.

Similar to the human brain, ANNs operate like “black box” models, as they do not 
require detailed information about the basic system being observed. ANNs “learn” 
the relationship between input and output parameters by “studying” given data, and 
“store” the knowledge in the interconnections, or rather the associated weights (akin 
to the synapses efficacy in biological neural systems).

Basic Structures & Definitions
In a simplified model of an artificial neuron, the given inputs are weighted, added up 
and passed through an activation function (e.g. a threshold, linear or sigmoid2 func-
tion) to produce an output signal, as shown in Figure 2.2. Combining several artifi-
cial neurons in a network architecture, similar neurons are generally arranged in 
layers that are labeled as input, hidden and output layers (a.k.a. multi-layer network 
architecture). During the training mode of an ANN, an appropriate learning algo-
rithm (e.g. backpropagation3) is used to modify the interconnection weights such 
that, given selected inputs, the network attempts to produce the desired outputs.

Fig. 2.2 Model of an Artificial Neuron With Interconnections

1. Neuron - primary cell of the nervous system, consisting of a cell body, the axon (single long activa-
tion fiber out of the cell body) and multiple dentdrites (receptive nerve fibers)

2. Sigmoid - curved in two directions, viz. shaped like the letter S (c.f. Figure 2.2)
3. Backpropagation - abbreviation for “backwards propagation (of errors)”
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Types of Artificial Neural Networks
Although the modular design of ANNs allows for numerous network architectures, 
mainly the feed-forward and the recurrent neural network schemes are used for engi-
neering systems [40].

• FEED-FORWARD NEURAL NETWORKS 
The unidirectional flow of information in the distinct layered network struc-
ture - from the input to the output neurons - is the characteristic feature of 
feed-forward neural networks (Figure 2.3 (a)). Composed of threshold neu-
rons1 only, a single-layer network is deemed to be the bottom-of-the-line 
feed-forward network (a.k.a perceptron network). While single-layer neural 
networks are limited to linear function approximation tasks, ANNs with 
three or more layers are capable of approximating arbitrary continuous func-
tions, using e.g. sigmoid and linear neurons [51].

• RECURRENT NEURAL NETWORKS 
Unlike in feed-forward neural networks, recurrent networks have a bi-direc-
tional flow of information. For example, the simple recurrent network 
scheme uses an additional context layer to maintain the information of a pre-
vious state, enabling time series predictions (Figure 2.3 (b)).

Applications 
A summary on the numerous applications of ANNs in internal combustion engines, 
such as emissions and performance modeling, engine controller design and fault 
diagnosis is given in [52].

Focusing on diesel engine modeling topics only, Table 2.1 lists examples of recent 
studies including ANNs used in various applications.

1. Threshold Neuron - artificial neuron with a “threshold” activation function, i.e. given normalized 
inputs and weights, the output is typically 1 or -1 with a threshold value of 0

(a) (b)

Fig. 2.3 Schematic Diagrams of (a) Multi-Layer Feedforward Neural 
Network and (b) Simple Recurrent Neural Network
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2.3 Design of Experiments (DoE)
The (statistical) Design Of Experiments (DoE) offers a range of procedures and 
methods for planning experiments, so that it is possible to analyze, predict and opti-
mize the influence of one or more input variables on the output variable(s) of an 
experiment.

According to the “Engineering Statistics Handbook” [70], the key steps in a DoE 
study are the:

1. SPECIFICATION OF OBJECTIVES & ASSUMPTIONS 
depending on the intention of the design1, i.e. whether a comparative 
(choose between alternatives), screening (identify significant input/output 
variables) or modeling study is planed

2. SELECTION OF INPUT & OUTPUT VARIABLES 
including all relevant but no dispensable variables

3. SELECTION OF EXPERIMENTAL DESIGN 
depending on the number of variables and the objectives chosen

AUTHORS TOPIC(S)

Clark et al. [23] exhaust emission modeling (CO2, NOx) based on engine 
speed & torque (incl. 1st & 2nd derivatives)

De Lucas et al. [24] modeling the influences of fuel specifications (composi-
tion, cetane index, etc.) on PM emissions

Delagrammatikas et al. [25] combination of DoE & ANNs for vehicle-level optimi-
zation studies (e.g. fuel consumption, acceleration times)

He and Rutland [41] modeling of in-cylinder pressure, temperature, wall heat 
transfer, NOx and soot emissions

Hentschel et al. [43] in-car modeling of transient exhaust emissions (opacity, 
NOx) with dynamic ANNs (ECU data inputs)

Kesgin [56] emission (NOx) and efficiency modeling

Ouenou Gamo et al. [73] exhaust emissions (i.e. opacity) modeling

Papadimitriou et al. [74] automatically selected neural networks for engine cali-
bration in control-oriented applications

Traver et al. [96] transient emission modeling (NOx, CO, CO2 and HC) 
using in-cylinder combustion pressure data

Tab. 2.1 Representative ANN Based Diesel Engine Modeling Studies

1. (Experimental) Design - a detailed planing prior to the execution of an experiment, in order to 
yield valid and objective conclusions from the experimental data obtained.
12
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4. EXECUTION OF THE DESIGN (EXPERIMENT)
5. DATA CONSISTENCY CHECK WITH ASSUMPTIONS 

are the results reproducible?
6. ANALYSIS & MODELING OF THE RESULTS 

examine the results for outliers, typographical errors and obvious problems, 
create the model from the data, check the model residuals and use the 
results to answer the questions set in the objectives

Using (simple) mathematical functions (a.k.a. regression functions) to model the 
effects of the input variables on the output of the system, the DoE response surface 
models differ significantly from other approaches, such as ANNs or phenomeno-
logical models. Both ANN and DoE approaches use “black-box” concepts to model 
the system behavior, and while ANN models are capable of approximating any con-
tinuous function describing the input/output correlations, DoE models are not.

Applications & Examples
Despite the limitations in generality, given the structured procedure and the possibil-
ity to reduce the number of experiments necessary, DoE approaches are commonly 
used in industrial applications, such as combustion engine R&D [18]. Examples 
range from comparative studies of engine components and injection strategies for an 
automotive DI diesel engine [13], to screening and modeling studies of the in-cylin-
der flow field and combustion chamber geometry for a medium-duty DI diesel 
engine [77]. 

2.4 Optimization
Optimization can be defined as the search for the best possible solution(s) to a given 
problem. In general, the n-dimensional optimization problem is expressed by

,  (2.3)

where  is the parameter vector minimizing1 the (single-)objective function 
, subject to the equality  and inequality  constraints given. 

Additionally, the limits (high/low) for the parameter vector values are defined as 
, where  stands for the lower and  for the higher limit 

respectively.

1. In practice, the optimum is generally defined as the minimum of an objective function. Maximum 
optimization problems are therefore transformed into minimization problem using max( f (x) ) =  
- min( - f (x) ).

min f x( )( )

gi x( ) 0 i 1 … p,,=,=

hj x( ) 0 j 1 … q,,=,≤⎩
⎪
⎨
⎪
⎧

x ℜn∈
f x( ) ℜ∈ gi x( ) hj x( )

xk
l x xk

h k 1 … n,,=,≤ ≤ l h
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Given that in engineering applications, e.g. gas turbine design [20], multiple (con-
flicting) objectives have to be optimized, the result of an optimization is a set of 
“trade-off” solutions (i.e. pareto optimal set1), rather than one single best solution. A 
mutual comparison of at least two solutions from the pareto set thereby shows, that 
both of them are better and worse in at least one objective at the same time [97].

Various solutions exist to tackle the optimization problem, most of them sharing 
the iterative concept of splitting-up the parameter vector estimation (optimizer) and 
the parameter vector evaluation (analyzer) as in Figure 2.4

Fig. 2.4 Iterative Optimization Scheme of Optimizer & Analyzer

The classification of single-objective optimization algorithms is based on whether 
a method requires information from the objective function’s first and second order 
derivatives, or only from the objective function. Additionally, a distinction is made 
between stochastic and deterministic methods. Using information from only the 
objective function (i.e. direct), in combination with stochastic processes e.g. in the 
reproduction and variation of the parameter vectors, the evolutionary computation 
algorithms are classified as direct-stochastic optimization methods. In contrast, the 
classic coordinate strategy may serve as an example for the direct-deterministic 
group of optimization methods [69].

2.4.1 “Classic” Methods

In general, the classic algorithms of gradient descent, deterministic hill climbing and 
purely random search (with no heredity) perform poorly when applied to nonlinear 
optimization problems. As there exists no algorithm solving for all optimization 
problems, that on average performs superior to any other algorithm (according to 
the no-free-lunch theorem [104]), the classic algorithms outperform advanced and 
complex algorithms in solving linear, quadratic or unimodal problems.

1. Pareto optimality - the parameter vector  is pareto optimal if and only if there is no vector 
x such that  for all  with at least once strict inequality. 

x' ℜn∈
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2.4.2 “Evolutionary Computation” Algorithms

The mutual basis of all regular approaches in evolutionary computation, specifically 
genetic algorithms, evolution strategies and evolutionary programming, is the imple-
mentation of the evolution principle: reproduction, random variation, competition 
and selection of contending individuals1 in a population2. Thus, the general charac-
teristics outlining any evolutionary algorithm are the collective learning process of a 
population of individuals, the randomized processes intended to model mutation3

and recombination4 and the assignment of a measure of quality or fitness value to an 
individual [5].

Translated into a pseudo-program-code, the general scheme of an evolutionary 
algorithm look as follows:

initialize the population
evaluate the initial population
REPEAT

recombine the individuals to produce an offspring
recombine population
mutate the individuals of the offspring population
evaluate the solutions for the offspring population
assign a measure of quality to the individuals
select the (best) individuals for the next generation

UNTIL some convergence criteria is satisfied

Utilizing the size of the parent and offspring population, as well as the character-
istics for the recombination, mutation, evaluation and selection processes (also 
referred to as strategy parameters) as inputs, the evolutionary algorithm iteratively 
converges towards the optimum solution.

Genetic Algorithms (GAs)
Three features distinguish GAs from other evolutionary algorithms:

• BINARY REPRESENTATION (ENCODING) 
Various subsequent implementations of the original GA5 use real-valued 
representation schemes instead of the bitstring encoding (i.e. the parameter 
vector consists of 0’s and 1’s only) to be more easily applied to the problem 
being tackled.

1. Individual - single parameter vector, representing (encoding) a search point in the space of potential 
solutions to a given problem

2. Population - a pool of individuals
3. Mutation - modification in transmission of (genetic) information from one generation to the next
4. Recombination - creation of one or more offspring given at least two individuals (parents)
5. A simple GA using bit-string encoding, crossover recombination and mutations [50]
15
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• PROPORTIONAL (PROBABILISTIC) SELECTION METHOD 
Because of the high selective pressure1 associated with it, the probabilistic 
selection of individuals according to their fitness value runs the risk of pre-
mature convergence of a population. That is, the “best” individuals become 
dominant and hence start to inbreed2.

• CROSSOVER RECOMBINATION 
Crossover recombination randomly swaps single values (bits) or segments of 
the parameter vectors of two dissimilar individuals, aiming to combine the 
best features from both individuals and thus creating a better offspring. 
Although most GAs use mutation along with crossover recombination, 
almost exclusively crossover recombination is used to assure the diversity 
and broadening of the population.

Evolution Strategies (ESs)
Using normally distributed mutations to modify the real-valued parameter vectors, 
the emphasis in ESs is equally placed on mutation and recombination as search 
operators. Moreover, the simultaneous adjustment (extended optimization) of the 
strategy parameters and the parameter vector itself further distinguishes the ESs 
from other GAs.

Unlike in GAs, the selection operators in ESs are deterministic and the parent and 
offspring population sizes usually differ from each other. That is, the number of par-
ents is less or equal the number of offspring and thus the worst performing individ-
uals (i.e. the ones with the lowest measure of quality) of an offspring generally don’t 
procreate.

Evolutionary Programming (EP)
Similar to ESs, the EP algorithms use normally distributed mutations and extend the 
evolutionary process to the strategy parameters as well. Emphasizing mutation while 
neglecting the recombination of individuals, EP algorithms drop the implicit 
assumption that the fitness value is linked to parts of the parameter vector, as is usu-
ally assumed for GAs and ESs.

Further studies on applications, advantages and disadvantages of the various opti-
mization algorithms used in EP are given in [6][30][89], whereas [35][50][60][81] pro-
vide the fundamentals for the various approaches.

1. Selective Pressure - probability of the best individual being selected compared to the average prob-
ability of selection of all individuals

2. Inbreeding - mating of nearly identical individuals, reduces the diversity of the population and 
hence increases the risk of premature convergence.
16



3 APPROACHES AND EQUIPMENT

After briefly defining the system and introducing the objectives of the study, detailed 
information on both the “model/knowledge based” and “black-box” approaches 
are given in the first part of this chapter. The second part subsequently documents 
the equipment used, i.e. both computer soft-/hardware and the three distinct IC 
engines and utilized measurement techniques.

3.1 System & Objectives
The combustion of a Common-Rail DI diesel engine, as characterized by the rate of 
heat release and the nitrogen oxide and soot emissions, serves as a measure for the 
subsequently described comparative investigation. Given the general engine and 
operating condition specifications as inputs, the actual ROHR and specific NOx and 
soot emissions are defined as outputs.

The objectives of the study are the fast and reliable prediction of the system out-
puts for three distinct types of engines, more specifically an automotive, a heavy-
duty and a two-stroke marine diesel engine. Additionally, the investigation includes 
the comparison of two dissimilar approaches for modeling; the “model or knowl-
edge based” and “black-box” approaches. As there are at least two optimization 
sequences necessary to get from initiation to an optimized simulated engine operat-
ing map, a concept for the interaction of modeling and optimization is derived.

3.2 “Model/Knowledge Based” Approach
The model or knowledge based approach in this context refers to a physical and 
chemical description of the underlying system, derived from both fundamental 
theory and phenomenological experience. As stated in the objectives, the description 
of the system (i.e. the basic models) should allow for fast and reliable predictions of 
the system outputs. In other words: the models used in this approach need to be as 
complex as necessary and as simple as possible at the same time. Hence, given the 
restrictions and requirements, only phenomenological models (c.f. Section 2.1.2, 
p. 7) are used in this study.

Physical and chemical models - phenomenological ones in particular - inherently 
need to be calibrated to fit the actual system. The model or knowledge based 
approach hence consists of two optimization parts, the model calibration (a.k.a. 
model optimization) and the system or process optimization. The quality of the 
17
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model calibration thereby significantly affects the outcome of the subsequent search 
for the system optimum.

3.2.1 “Modeling/Optimization” Scheme

Based on experience from joint experimental and numerical combustion engine 
R&D projects, such as [59] and [83], a fundamental modeling and optimization 
scheme is derived to profit from the mutual advantages of both subjects. Along with 
the distinction between modeling and optimization, the strict subdivision of exper-
imental data into calibration and verification parts thereby assures the formal cor-
rectness of the approach. Although the objectives of the two optimization parts in 
the scheme, the “model calibration” and the “system optimization”, differ, the opti-
mization algorithms do not need to be dissimilar.

Fig. 3.1 Modeling/Optimization Scheme

Starting from available (experimental) knowledge of the system, there is an itera-
tive process of modeling, calibration and verification to derive an appropriate model 
of the system. Given an appropriate model, the iteration between the numerical opti-
mization and the experimental validation allows for both the optimization of the 
system outcome and a profound understanding of the application (Figures 3.1).

3.2.2 Application Examples

As the proposed modeling/optimization scheme by itself is not restricted to diesel 
engine combustion systems only, it has successfully been applied to other applica-
tions using the same procedures, e.g. evolutionary algorithms as optimization 
method.
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“Black-Box” Approach
3.2.2.1 Thermodynamic Modeling

Similar to the approach used to model the nitrogen oxide and soot emissions from 
Common-Rail DI diesel engines (c.f. Chapters 5 and 6), Lämmle [62] uses the 
scheme to model knock1 phenomena in SI natural gas engines.

Using computational reactive fluid dynamic simulations of HCCI2 phenomena in 
diesel engines, Barroso [9] applied the scheme to determine the kinetic parameters 
for the governing reactions in a hydrocarbon combustion mechanism.

3.2.2.2 Polymer Electrolyte Fuel Cell Modeling

Using evolutionary algorithms for parameter optimization, a phenomenological 1+1 
dimensional model for Polymer Electrolyte Fuel Cells (PEFCs) [32] was calibrated 
according to the modeling/optimization scheme.

Comparing the model calibration accuracy for the global current-voltage charac-
teristics of a single plate fuel cell, the modeling/optimization scheme with evolution-
ary algorithms exceeds the classic manual model calibration.

3.3 “Black-Box” Approach
The generic term black-box approaches commonly stands for a variety of methods, 
such as Artificial Neural Networks (ANNs), statistical regression or fuzzy logic 
models, which do not contain physical or chemical models. The omission of physical 
or chemical models to describe the interdependence of the system inputs and out-

1. Knock - pressure waves/fluctuations associated with autoignition of a portion of the air-fuel mix-
ture ahead of the advancing flame front

2. HCCI - Homogeneous Charge, Compression Ignition

(a) (b)

Fig. 3.2 Polymer Electrolyte Fuel Cell Modeling: (a) Sketch of a Single Plate 
Fuel Cell, (b) Comparison Plot between the Experimental and 
Simulated Current-Voltage Characteristics

Vo
lt

ag
e 

 [
V

]

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Current  [A]
0 20 40 60 80 100 120 140 160 180 200

  Measurement
  Manual Model Calibration
  Modeling/Optimization Scheme

pO2
, pH2

  = 2 [bar]
λAir, λH2

 = 2 [-] 
Td Air, Td H2

  = 70 [°C]
19



APPROACHES AND EQUIPMENT
puts is the major advantage and disadvantage of the black-box approaches at the 
same time. Considering that there is little or no a priori knowledge of the system nec-
essary, the approach is best suited for systems where there is a lack of fundamental 
understanding. Alternatively, given a system where fundamental knowledge on the 
system behavior is available, black-box approaches tend to be less efficient than 
model/knowledge based approaches. Partial black-box approaches, a.k.a. grey-box 
methods1, are one way to compensate for this drawback, using fundamental knowl-
edge in the form of phenomenological models where available.

3.3.1 “Artificial Neural Network” Scheme

In the present study an Artificial Neural Network (ANN) scheme is used as an alter-
native example to the phenomenological modeling/optimization scheme (c.f. 
Section 3.2.1). Similar to the modeling/optimization scheme, the ANN process con-
sists of two basic phases; network training and system optimization (Figure 3.3). 
Unlike in the modeling phase of the modeling/optimization scheme though 
(Figure 3.2), there are generally no iterations needed in the network training phase.

Fig. 3.3 Artificial Neural Network Scheme

Starting from a particular ANN architecture and a set of corresponding input and 
output data (training data), a learning algorithm modifies the interconnection biases 
and weights such that the network attempts to reproduce the behavior of the system. 
Once the network is trained, the subsequent system optimization phase is analog to 
the one in the modeling/optimization scheme (Figures 3.2 and 3.3).

1. Grey-box methods - systems or modules are defined by external interfaces, as black-box methods, 
and a partially resolved internal structure based on knowledge

EXPERIMENTS SIMULATIONS

TR
A

IN
IN

G
O

PT
IM

IZ
A

TI
O

N

Architecture

Training

Validation

Verification

Optimization

EXPERIMENTS SIMULATIONS

TR
A

IN
IN

G
O

PT
IM

IZ
A

TI
O

N

Architecture

Training

Validation

Verification

Optimization
20



Computational Setup
3.4 Computational Setup
As the objectives for the present study include a comparative investigation of two 
approaches for modeling, identical experimental (Section 3.5) and computational 
setups (Section 3.4) are used. Table 3.1 lists the main characteristics of the computa-
tional setup while details on the selected software packages are provided in 
Section 3.4.1 et sqq.

3.4.1 Thermodynamic Analysis & Simulation

The in-house thermodynamic software package WEG is used to analyze experimen-
tal pressure data and predict combustion characteristics using various models simul-
taneously [72].

In addition to the classic one- and two-zone approaches for thermodynamic anal-
yses, WEG also allows for an arbitrary number of so-called virtual combustion 
zones. Directly coupled to a characteristic constant or variable air/fuel-ratio, the vir-
tual combustion zones are intended to reproduce particular combustion phenom-
ena, such as the oxygen deficiency at high engine loads or local emission formation. 
Given experimental pressure data and engine/operating condition specifications1, 
WEG calculates the apparent burn rate, overall engine heat transfer, rate of heat 
release and gas temperatures.

In order to predict the diesel combustion characteristics and exhaust emissions 
(i.e. the thermodynamic simulation), WEG contains three phenomenological mod-
els: a rate of heat release (Chapter 4), a nitrogen oxide emission (Chapter 5) and a 
soot emission model (Chapter 6). Employing the above described modeling/optimi-
zation scheme, the external dynamic data exchange2 interface furthermore allows 
the WEG thermodynamic simulation models to be used as server applications in the 
programming language MATLAB. Thus, all optimization algorithms and ANNs 
used in the present study are programmed in MATLAB.

OPERATING SYSTEM Windows XP® SP2

CPU / MEMORY Intel Pentium® P4, 3 GHz, 1 GB RAM

SOFTWARE PACKAGES MATLAB® R14 SP2, WEG R10, GT-Suite™ 6.1

Tab. 3.1 Computational Setup

1. Engine Specifications - e.g. bore, stroke, compression ratio, inlet/exhaust valve diameter, etc. 
Operating Condition Specifications - e.g. engine speed, load, SOI, rate of fuel injected, etc.

2. Dynamic Data Exchange (DDE) - standard communication & command interface between multi-
ple applications (e.g. MATLAB and WEG) in Windows operating systems
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3.4.2 Artificial Neural Networks

Featuring a modular network representation for commonly used network architec-
tures and a comprehensive set of training functions, the MATLAB Neural Network 
Toolbox 4.0.5 [66] is used to design and simulate the ANNs in this study.

Based on the universal approximation theorem by Hornik et al. [51] and following 
the successful applications in IC engine combustion modeling (e.g. [26][41]), a multi-
layer feed forward network architecture is chosen. Three different networks are 
designed to approximate the ROHR combustion characteristics and the specific 
nitrogen oxide and soot exhaust emissions as a function of seven key operating con-
dition parameters. An outline of the configuration of the ANN, as well as the param-
eters used is provided in Table 3.2 . 

3.4.3 Optimization Algorithms

Given an engineering problem, the definition of an appropriate fitness or objective 
function, as well as the physical or technical constraints of the system parameter val-
ues, are crucial to all optimization algorithms.

Constraints
Parameters in engineering systems, for example the valve timing, laminar flame 
speed or global A/F-ratio in an IC engine, are subject to physical or technical con-
straints. As the present study deals with phenomenological models based on physical 
and chemical parameters (e.g. pressure values, temperatures, velocities, etc.), the 
chosen optimization algorithms need to account for equality and inequality parame-
ter constraints. Given these constraints, the variable size of the search dimensions 
(asymmetric search space) generally has an impact on the search strategy and accord-
ingly the efficiency of the optimization algorithms. Details on the different model 
parameters and their corresponding size ranges are given in Chapter 4 et sqq.

ARCHITECTURE Multi-layer feed forward network

TRAINING Levenberg-Marquardt algorithm with back-propagation

INITIALIZATION Nguyen-Widrow method

ACTIVATION 
FUNCTION Sigmoid (hidden neurons) & linear (output neurons)

INPUTS cm , BMEP, p Inj , Δ t Inj , ϕ SOI , x EGR , λglobal

OUTPUTS ROHR Characteristics: ϕ SOC , ϕ 10 , ϕ 50 , ϕ 90 , Q max , ... 
NOx and soot emissions

Tab. 3.2 Artificial Neural Network (ANN) Characteristics
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Fitness/Objective Functions
In order to handle both single (nitrogen oxide and soot emission) and multiple (rate 
of heat release) objective optimization tasks with identical algorithms, a single objec-
tive approximation function is used to describe the multi objective pareto optimal-
ity1 [90].

Given that the optimization task in the calibration part of the modeling/optimiza-
tion scheme is the search for the “best” set of model parameters, that is the set of 
model parameters which produces the smallest deviations from the measurements 
(e.g. least square errors), the single objective approximation function is defined as 
the weighted sum of the individual multiple objectives (Table 3.3).

To account for the accuracy of the experimental data used in the model calibra-
tion, a tolerance value is assigned to each objective (output) of the model prior to the 
calculation of the objective function (Figure 3.4).

Genetic Algorithm
The classic genetic algorithm (GA) [35] notwithstanding, the in-house developed 
GA uses real value parameter encoding, mutation, as well as a simulated annealing2

mechanism in addition to the standard crossover mechanism for reproduction 
(Table 3.4).

1. Pareto optimality - a.k.a. indifference curves, best solutions to a multi objective problem that could 
be achieved without disadvantaging at least one of the objectives

ROHR  

NOX

SOOT

Tab. 3.3 Objective Functions used for the Model Calibration

(a) (b)

Fig. 3.4 Error Objective Function: (a) Standard Least Square Error (LSE), 
(b) LSE Including Tolerance Value

2. Simulated Annealing - probabilistic “neighbourhood” search method, inspired by the annealing 
technique in metallurgy (heating up and controlled cooling of a material) 
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After the stochastic initialization of the population (1st generation) and the subse-
quent evaluation of the objective function, reproduction mechanisms are applied to 
the population, using statistical probabilities of crossover, transition and mutation. 
To select the individuals that are allowed to propagate to the next generation, a rou-
lette wheel algorithm1 in combination with a guaranteed survival of the best individ-
uals (i.e. elitist survival) is used.

Evolutionary Algorithm
Unlike classic GAs, the evolutionary algorithm (EA) used in this work employs 
crossover, intermediate and extended line recombination algorithms for the repro-
duction of the individuals (Figure 3.5). Furthermore, strategic algorithm parameters 
are modified during the optimization, such as the range of the extended line recom-
bination r line, which is reduced in order to increase the (local) optimization efficiency 
towards the end of an optimization run. Both tournament2 and stochastic selection 
mechanisms are used to choose the individuals that propagate to the next generation 
(Table 3.5). 

1. Roulette Wheel Algorithm - the probability of selection is proportional to the objective value, i.e. 
the higher the objective value, the higher the probability of selection

ENCODING Real value encoding (constrained)

PARAMETERS npop , Pxover , Ptrans , Pmut , nelit (constant over generations)

INITIALIZATION Stochastic initialization of population (1st generation)

REPRODUCTION Crossover, transition (simulated annealing), mutation

SELECTION Roulette wheel selection, elitist survival

Tab. 3.4 Genetic Algorithm Characteristics

2. Tournament Selection - the best individual amongst a group of individuals (i.e. the tournament) is 
selected; the size of the tournament determines the selection pressure (ratio of the best individual's 
selection probability to the average selection probability of all indiviuals)

(a) (b) 

Fig. 3.5 Recombination Mechanisms: (a) Intermediate, (b) Extended Line 
Recombination (According to [78])
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“Covariance Matrix Adaptation” Evolutionary Strategy
The (μ, λ) Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) pre-
sented by Hansen et al. [38] determines the kth offspring of the generation (g+1), 

, given the center of mass of the selected individuals , the global step 
size  and the random vectors  according to Equation (3.1):

,  (3.1)

where μ is the number of parents, λ the number of offspring, and σ the initial step 
size. The symmetric positive definite  covariance matrix  of the random 
vectors  is used to approximate the (local) search space. The global 
step size used in the derandomized correlated mutation is deterministically adapted 
during the search process (Table 3.6).

The assets of the CMA-ES are its adaptability to arbitrary optimization problems, 
small number of parameters, and computational efficiency, including a highly paral-
lel processing architecture.

“Genetic Algorithm & Direct Search” MATLAB Toolbox
Apart from the direct search tools - which are not used in this investigation - the 
MATLAB Genetic Algorithm & Direct Search (GADS) Toolbox 1.0.3 offers a set of 
common GA mechanisms with numerous options for initialization, fitness scaling, 
selection, crossover and mutation.

ENCODING Real value encoding (constrained)

PARAMETERS npop , nparent , noffspring , Pxover , Pline , α line , r line , 
Pinter , α inter , Pmut , Ptour (adapted/modified during search)

INITIALIZATION Stochastic initialization of population (1st generation)

REPRODUCTION Crossover, (extended) line & intermediate recombination, 
mutation

SELECTION Tournament, stochastic

Tab. 3.5 Evolutionary Algorithm Characteristics

ENCODING Normalized real value encoding

PARAMETERS noffspring = λ , nparent , = μ , σ initial (adapted during search)

INITIALIZATION Fixed object variable start points

REPRODUCTION Derandomized correlated mutation

SELECTION No selection mechanism, individuals are adapted

Tab. 3.6 CMA Evolutionary Strategy Characteristics

xk
g 1+( ) x〈 〉μ

g( )

σ g( ) B g( )D g( )zk
g 1+( )

xk
g 1+( ) x〈 〉μ

g( ) σ g( ) B g( )D g( )zk
g 1+( )[ ]+= k 1 … λ, ,=

n n× C g( )

B g( )D g( )zk
g 1+( )
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APPROACHES AND EQUIPMENT
This study employs normalized real value encoding, stochastic initialization, stan-
dard crossover and mutation reproduction mechanisms, and uses truncation1 as a 
selection criteria (Table 3.7).

3.5 Experimental Setup
Extensive experimental data from investigations on three turbocharged, Common-
Rail DI diesel engines - representing automotive, heavy-duty and two-stroke marine 
diesel applications, respectively - have been provided for this study. The following 
section briefly summarizes and compares the key engine specifications, operating 
conditions and utilized measurement techniques.

3.5.1 Engines

The three engines employed cover a broad spectrum of specifications: two- and 
four-stroke operating cycles, specific displacement volumes of 0.5 to 600 [l/cyl], 
engine speeds from 60 to 4000 [rpm] and engine outputs of 120 to 8500 [kW] (cor-
responding to torques of 340 to 750’000 [Nm]) as outlined in Table 3.8. Although 
the injection systems differ in fuel pumps, electronics and injectors used, all of them 
offer flexible injection pressures and injection timings.

The selected operating conditions vary in injection pressure, start of injection and 
exhaust gas recirculation rate (EGR). In addition to these standard engine control 
unit (ECU) parameter variations, the fuel composition (i.e. reference diesel, water-in-
diesel emulsion and diesel-butylal blend) is altered for the heavy-duty diesel engine, 
which is selected as the base engine for all subsequent investigations. The variations 
in engine speed and load either cover the standard engine operating map (automo-
tive and marine diesel engine) or correspond with the official regulations for heavy-
duty diesel engine testing in Europe, the so called European Stationary Cycle (ESC) 

1. Truncation selection - selects the best (according to the objective function value) c threshold number 
of individuals

ENCODING Normalized real value encoding

PARAMETERS npop , Pxover , Pmut , cthreshold (constant over generations)

INITIALIZATION Stochastic initialization of population (1st generation)

REPRODUCTION Crossover, mutation

SELECTION Truncation

Tab. 3.7 MATLAB GADS Toolbox Characteristics
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Experimental Setup
test. A total of noc operating conditions is investigated for each engine, employing 
their respective ECU, application limitations and minimum exhaust emission set-
tings (c.f. Table 3.9).

“AUTOMOTIVE” “HEAVY-DUTY” “MARINE”

Type 5 Cyl., 4-Stroke 4 Cyl., 4-Stroke 4 Cyl., 2-Stroke

Bore 81.0 [mm] 122 [mm] 580 [mm]

Stroke 93.2 [mm] 142 [mm] 2416 [mm]

Compress. Ratio 17.5 [-] 17.2 [-] 17.9 [-]

Turbocharger Garrett VNT KKK ABB Turbo Systems

Max. Power
120 [kW] 
@ 4000 [min-1]

183 [kW] 
@ 2100 [min-1]

8500 [kW] 
@ 105 [min-1]

Max. Torque
340 [Nm] 
@ 1750 [min-1]

1060 [Nm] 
@ 1540 [min-1]

7.73·105 [Nm] 
@ 105 [min-1]

Injection System
Common-Rail Direct 
Injection

Common-Rail Direct 
Injection

Common-Rail Direct 
Injection

Fuel Pump
BOSCH 
2nd Generation

ETH/LVV 
Development

Sulzer RT-flex 
Development

Injectors
BOSCH 
2nd Generation

Common-Rail Tech-
nologies AG

Sulzer RT-flex 
Development

Max. Inj. Pressure 1600 [bar] 1600 [bar] 1100 [bar]

Nozzle Tips 5 x 0.166 [mm] 8 x 0.200 [mm] confidential

Tab. 3.8 Engine and Injection System Specifications

“AUTOMOTIVE” “HEAVY-DUTY” “MARINE”

noc [-] 57 39 + 40 26

Fuel [-] Diesel Diesel, Emulsion, 
Butylal Blend Marine Diesel Oil

cm [m/s] 3.10 .. 13.02 5.92 .. 8.71 5.32 .. 8.46

BMEP [bar] 0.50 .. 18.11 4.35 .. 19.64 7.55 .. 19.02

pInj [bar] 380 .. 1600 350 .. 1600 450 .. 1100

SOI [°CA] 317/342 .. 351/361 346 .. 357 confidential

EGR [%] 0 .. 44.5 0 .. 43 0

Tab. 3.9 Overview of Operating Condition Ranges (Minimum .. 
Maximum)
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APPROACHES AND EQUIPMENT
A stringent classification of the operating conditions into two parts, one for model 
calibration/training and the other for a subsequent verification and extrapolation 
beyond experimental variation limits (for example higher and lower injection pres-
sures), helps to ensure accurate evaluation of the investigated optimization methods 
(Table A.1 - Table A.4).

Besides the start of injection, the temporal profile of the injection, i.e. the rate of 
fuel injected, significantly affects the combustion process. The experimental injec-
tion profiles used in this study are determined from either the ECU injection param-
eters (start of injection SOI and duration t), as was the case with the automotive 
engine; or they were measured directly on an injector test bench, as was the case with 
the heavy-duty engine. An example of these methods is given in Figure 3.6 (a) and 
(b) for the automotive and heavy-duty engine, respectively.

3.5.2 Measurement Techniques
Standard measurement techniques have been applied to acquire the experimental 
data used within this study. In addition to the global steady-state engine measure-
ments (e.g. performance, exhaust emissions, etc.), the time resolved in-cylinder pres-
sure data were recorded in at least one cylinder of each of the engines.

Rate of Heat Release
As there is no direct measurement technique to record the rates of heat release, the 
so called “measured” rates of heat release are derived from indicated in-cylinder 
pressure data using standard thermodynamic heat release analysis. Measurement 
errors hence may arise from the piezoelectric pressure sensor data (e.g. due to sensor 
deformation, deposits on sensor, or drift of the signal [103]), the top dead centre 
allocation (temporal shift of the data), or the assumptions used for the heat release 
analysis (e.g. reference pressure, thermodynamic state at intake valve closing, isen-
tropic compression/expansion, etc. [75]). As an indication of the errors to be taken 
into account, Table 3.10 lists values based on in-house experience.

(a) (b)

Fig. 3.6 Examples of Injection Profiles (Rate of Fuel Injected): 
(a) Automotive Split Injection Timing and Injection Profile,  
(b) Measured Heavy-Duty Single Injection Profile
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Experimental Setup
Nitrogen Oxide Emissions
The nitrogen oxide emission measurements are conducted using standard, heated 
chemiluminescence detectors (e.g. Pierburg CLD PM 2000 for the heavy-duty 
engine [10]), with a relative error smaller than 3.5 % of the maximum value. Taking 
into account the uncertainties in the specific power output determination, an abso-
lute error of less than 0.50 [g/kWh] for the specific nitrogen oxide emission data has 
to be considered.

Soot Emissions
The specific mass of soot (a.k.a. mass of particulate matter PM) is derived using both 
gravimetric (automotive and heavy-duty engine) and filter smoke number (marine 
diesel engine) measurements. Although the gravimetric and the filter smoke number 
measurement techniques use mass and light extinction as measures respectively, both 
account for the total organic and elementary carbon fractions of the particles. In 
order to have a consistent set of data, the filter smoke number measurements are 
converted to specific mass data given an in-house experimental correlation.

The accuracy of the data is influenced by both the relative errors of the measure-
ment devices (± 0.1 % of maximum value) and the experimental repeatability due to 
deviations in engine operation, particularly for operating conditions with soot emis-
sions less than 0.05 [g/kWh]. As a rule of thumb, errors on the order of ± 0.03 [g/
kWh] have to be taken into account for the automotive and heavy-duty diesel engine 
soot mass measurements.

Recent studies on two-stroke marine diesel engines show that there are discrepan-
cies between filter smoke number and gravimetric measurements, such as simulta-
neous increases of the filter smoke numbers and decreases of gravimetric mass 
during engine load variations [4]. The experimental correlation used to convert 
between FSN and gravimetric measurements is hence assumed to introduce errors 
on the order of ± 0.04 [g/kWh].

VALUES ERROR

Peak pressure pmax [bar] ± 1 % of absolute value

Maximum pressure increase (dp/dϕ)max [bar/°CA] ± 5 % of absolute value

Top dead centre (TDC) allocation [°CA] ± 1 increment (e.g. 0.2 °CA)

ROHR characteristics (e.g. ϕSOC , ϕ50 , ...) [°CA] ± 2 increments (e.g. 0.4 °CA)

Peak ROHR Qmax [J/°CA] ± 5 % of absolute value

Tab. 3.10 Approximate Values of Errors for the Heat Release Analysis 
Based on In-House Experience
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4 RATE OF HEAT RELEASE

In order to simulate or predict both combustion performance and pollutant emis-
sions of a combustion engine, a model to derive the actual rate of heat release 
(ROHR) is needed. Based on this model, NOx or soot emissions, as well as combus-
tion noise, mechanical strains, etc., can be computed via independent (sub-)models.

4.1 Model Description
Adapted from an approach developed by Barba et al. [7], an enhanced phenomeno-
logical model is used to predict C.I. combustion rates of heat release. The develop-
ment is thereby forced by demands for a both accurate and computationally efficient 
model, capable of correctly predicting the rates of heat release for engine process 
simulation programs.

Fig. 4.1 Phenomenological Rate of Heat Release (ROHR) Model
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RATE OF HEAT RELEASE
Based on the six fundamental sub-models (c.f. Figure 4.1)
(1) Spray Formation, Evaporation and Air/Fuel Mixing,
(2) Ignition Delay(s),
(3) Fuel Allocation between Premixed and Diffusion Controlled Combustion,
(4) Premixed Combustion,
(5) Diffusion Controlled Combustion, and
(6) Superposition of Premixed and Diffusion Controlled Combustion;

the new model, in combination with an engine process simulation program, allows 
for reliable predictions of the in-cylinder pressures, emission formation and oxida-
tion within seconds across the entire engine operating map.

4.1.1 Inputs & Outputs

As only the high pressure combustion phase of the engine cycle is considered, i.e. 
the time between the intake valve(s) closing and exhaust valve(s) opening, the model 
requires as inputs the engine and operating condition specifications, the thermody-
namic variables of state (pressure, volume, mass and temperature), the composition 
of the gas trapped in the cylinder and the crank angle at intake valve closing.

The output of the model is the rate of heat released (ROHR) or rate of mass of fuel 
burned (a.k.a. burning rate). Integral characteristics, such as the time (measured as 
degree crank angle) of the start of combustion ϕ SOC , 10, 50 and 90 % energy release 
(ϕ 10, ϕ 50, ϕ 90) are used to compare different ROHRs. To enhance the character-
ization of the rates of heat released, the present study also compares the ROHR 
maxima for premixed and diffusion controlled combustion Qmax.p and Qmax.d along 
with the according times ϕ Qmax.p and ϕ Qmax.d, as well as the masses of fuel burnt 
mprmx and mdiff (c.f. Figure 4.2).

(a) (b)

Fig. 4.2 ROHR Characteristics: (a) Integral and (b) Detailed Premixed & 
Diffusion Controlled Combustion Characteristics
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Model Description
4.1.2 Evaporation & Spray Formation

The temporal behavior of the model is predominantly defined by the rates of fuel 
injected (a.k.a. injection rates) and the rates of fuel evaporated. Thus, both mass of 
fuel injected per time-step and spray formation and evaporation modeling are the 
crucial elements in ensuring the exactness of the simulation results. As shown later 
on, simple, yet physically/chemically coherent descriptions of these mechanisms can 
fulfill these demanding requirements.

Spray Formation
The mass of fuel injected per time-step is split into n identical droplets. The primary 
diameter of these droplets is assumed to be the Sauter Mean Diameter (SMD) 
according to Kamimoto [53]

,  (4.1)

where dNozzle is the effective nozzle diameter (geometric diameter x coefficient of 
contraction μ), and ReAir is the Reynolds number of the air trapped in the cylinder. 
The number of droplets n is given by the mass of fuel injected, the specific density 
of the fuel ρFuel and the SMD.

Evaporation / Wall Contact
The rate of evaporation is given by means of the common, single liquid droplet 
vaporization equation with the empirical rate constant β (a.k.a. “d 

2-law”)

 (4.2)

Given the in-cylinder geometry, the impingement of droplets on the piston head 
or cylinder liner is modeled as build-up and evaporation of a wall-applied fuel film 
(i.e. transient fuel storage)

,  (4.3)

where mFuelFilm is the actual mass of fuel stored in the film, mFuelVapWall is the 
mass of vaporized fuel reaching the piston or cylinder liner, and τFuelFilm and cFu-
elFilm are the characteristic fuel film evaporation time and build-up scaling factor, 
respectively.

Air/Fuel Mixing
The mixing of vaporized fuel with surrounding fresh mixture - composed of intake 
air and residual gas - is assumed to take place at a constant mixing ratio during the 
entire fuel injection process. Thus, the mass of fresh mixture in the premixed zone 
is given as

dSMD cSMD 47 dNozzle ReAir
0.5– ρAir

ρFuel
-----------

⎝ ⎠
⎛ ⎞

0.25
⋅ ⋅ ⋅ ⋅=

dDroplet
2 dSMD

2 β t⋅–=

m· FuelFilm
mFuelFilm
τFuelFilm
-------------------- cFuelFilm m· FuelVapWall⋅–=
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RATE OF HEAT RELEASE
 (4.4)

where Λ is the default equivalence ratio after evaporation and λst is the stoichio-
metric air/fuel ratio.

The mixing of vaporized fuel with fresh gas after either start of combustion or end 
of injection leads to a dilution of the premixed zone. Assuming spherical premixed 
zones (surface area AZone and diameter dZone) for each injector orifice, this diffusion 
of vaporized fuel out off these zones is described as

 (4.5)

4.1.3 Ignition Delay(s) & Fuel Allocation

Ignition, and thus start of combustion (SOC), occur at the time at which the so-
called ignition delay integral exceeds a value of 1:

 (4.6)

The effective ignition delay τIgnDel itself is given as the sum of both the physical 
ignition delay, which is a function of the droplet diameter dNozzle and the velocity 
u0, as well as the chemical ignition delay, defined by the in-cylinder pressure p and 
temperature T, the reaction activation temperature TA and the air/fuel ratio λPrmx .

 (4.7)

Even after start of combustion, vaporized fuel is added to the premixed combus-
tion zone by means of an allocation function FPrmxDiff. Resulting from droplets 
already existing within the premixed zone, the amount of vaporized fuel being added 
is determined by considering the mass of fuel burnt in premixed combustion mBurn-
tPrmx and the mass of fuel vaporized at start of combustion mFuelVap0.

 (4.8)

Hence the actual mass of fuel in premixed and diffusion controlled combustion 
zones mFuelVapPrmx and mFuelVapDiff are given as

, and  (4.9)

 (4.10)

Considering operating conditions with multiple pulse injection profiles (e.g. pilot, 
main and post injection) that result in a “staged” combustion (c.f. Chapter 4.4.2), a 
new ignition delay integral is used everytime the combustion of an injection pulse is 
completed prior to the start of a subsequent injection.

mPrmxFM Λ λst mFuelVap⋅ ⋅=

dmFuelVap
dt

---------------------- c1 ReAir
c2 AZone

ρFuelVap
dZone

------------------⋅ ⋅ ⋅=

1
τIgnDel
-------------- t 1≥d

0

t
∫

τIgnDel c1 u0
1.68– dNozzle

0.88 c2
p
p0
-----

⎝ ⎠
⎛ ⎞ c3

λPrmx
c4 e

TA T⁄
⋅ ⋅ ⋅+⋅ ⋅=

FPrmxDiff f mBurntPrmx mFuelVap0,( )=

m· FuelVapPrmx 1 FPrmxDiff–( ) m· FuelEvap⋅=

m· FuelVapDiff FPrmxDiff m· FuelEvap⋅=
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Model Description
4.1.4 Pre-Mixed Combustion

Premixed combustion is affected by two competing mechanisms: (1) the single-
point ignition turbulent flame propagation and (2) the time-scale driven, multi-point 
ignition turbulent combustion. Both mechanisms are based on the turbulent flame 
speed sturb, which is assumed to be a function of the laminar flame speed slam given 
by Rhodes and Keck [82], and the mean piston velocity cm.

 (4.11)

Single-Point Ignition Combustion
Given a homogeneous air/fuel mixture, the rate of fuel converted in a single-point 
ignition turbulent combustion mFuelBurn I can be written as

 (4.12)

where ρAF is the homogeneous mixture density, sturb is the turbulent flame speed 
and AFlame is the flame front surface.

Multi-Point Ignition Combustion
With the higher in-cylinder temperatures and pressures due to the single-point igni-
tion flame propagation, the probability for further ignition points in the unburned 
air/fuel mixture increases. This multi-point ignition combustion mFuelBurn II (a.k.a. 
second phase premixed combustion) is modeled as characteristic time-scale driven 
turbulent combustion

 (4.13)

where the characteristic mixing time τPrmx is a function of the characteristic length 
scale lPrmx and the premixed combustion ratio of fresh air to fuel ξ PrmxAir.

 (4.14)

Superposition
The overall premixed combustion burning rate follows from a superposition of the 
single-point and multi-point combustion mechanisms described above.

 (4.15)

sturb slam 1 1.6
cm
slam
---------

⎝ ⎠
⎛ ⎞

0.8

⋅+
⎝ ⎠
⎜ ⎟
⎛ ⎞

⋅=

m· FuelBurn I c1 ρAF sturb AFlame⋅ ⋅ ⋅=

m· FuelBurn II c2
mFuelVapPrmx

τPrmx
----------------------------⋅=

τPrmx ξPrmxAir
2 lPrmx

sturb
-----------⋅=

m· FuelBurnPrmx
m· FuelBurn I m· FuelBurn II⋅
m· FuelBurn I m· FuelBurn II+
------------------------------------------------------=
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RATE OF HEAT RELEASE
4.1.5 Diffusion Controlled Combustion

Using a frequency based approach, the characteristics of the diffusion controlled 
combustion are defined by the mixing time τDiff and the mass of vaporized fuel 
mFuelVapDiff available.

,  (4.16)

The mixing time τDiff is defined as the ratio of the characteristic diffusion length 
scale lDiff and the mass transfer velocity u’

 (4.17)

where the characteristic length scale lDiff is given as a function of the instanta-
neous in-cylinder volume VCyl, the number of injection nozzle orifices nNozzle, and 
the specific air/fuel ratio for the transferred mass λDiff .

 (4.18)

As a function of the actual air/fuel ratio at SOC λSOC and the burned mass frac-
tion ζ, the specific air/fuel ratio for the transferred mass λDiff mainly accounts for 
the decreasing mass of oxygen available during combustion.

 (4.19)

Given that the mixing of air and fuel during diffusion controlled combustion is a 
highly turbulent process, a velocity u’ derived from the instantaneous turbulence 
intensity is used as characteristic velocity for calculations concerning the mass trans-
fer. Assuming a spatially homogeneous in-cylinder turbulence distribution at all 
times, five key effects contribute to an increase in turbulent kinetic energy: intake 
flow, swirl, quench flow, injection and combustion.

As a common approximation, the contributions of the intake and quench flows, as 
well as the swirl to the turbulence intensity are taken to be proportional to the square 
of the mean piston velocity cm (a.k.a. background turbulence). The characteristic 
velocity u’ is thus defined as

 (4.20)

where the effects of injection and combustion on the turbulent kinetic energy are 
described as functions of the rate of fuel injected mFuelInj, the nozzle exit velocity u0, 
the in-cylinder mass mCyl and the burning rate mFuelBurn.

 (4.21)

m· FuelBurnDiff c3
mFuelVapDiff

τDiff
--------------------------⋅=

τDiff
lDiff
u'

---------=

lDiff

VCyl
λDiff nNozzle⋅
------------------------------

⎝ ⎠
⎛ ⎞

1 3⁄

=

λDiff f λSOC ζ,( )=

u' cg cm
2⋅ cInj kInj cComb kComb⋅+⋅+=

dkInj
dt

----------- cInjF fFormation m· FuelInj( )⋅ cInjD f⋅ Dissipation kInj lInj,( )–=
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Model Parameter Sensitivity Study
 (4.22)

Superposition of Premixed and Diffusion Controlled Combustion
Assuming that the premixed and diffusion controlled combustion start simulta-
neously, a time delay function F is used to postpone the rate of fuel burnt during dif-
fusion controlled combustion, accounting for the delayed chemical reactions 
governing the diffusion controlled combustion immediately after SOC.

 (4.23)

 (4.24)

4.1.6 Parameters

Along with the above mentioned input data, the ROHR model parameters listed in 
Table 4.1 (including the size range for each parameter) are needed to calculate the 
actual rate of fuel burnt (output). The actual values for the parameters are deter-
mined using various approaches (c.f. Chapter 3).

4.2 Model Parameter Sensitivity Study
In order to estimate the relative importance of the individual ROHR model param-
eters, a sensitivity study is performed considering 19 heavy-duty engine operating 
conditions (“calibrating” operating conditions Table A.2).

Defining x as a vector containing all ROHR model parameters, and y as a vector 
containing the model output characteristics (Section 4.1.1), the ROHR model for 
each of the noc operating conditions can be written as

 (4.25)

with

 and .  (4.26)

Given a set of base values x0, each parameter xi is independently varied in steps of 
± 5 % within its respective size range (c.f. Table 4.1). The sensitivity χ of an output 
characteristic yi on the model parameter xi is defined as average over the relative 
changes in yi normalized with the imposed variations in xi.

 (4.27)

dkComb
dt

---------------- cCombF fFormation Q· Chem( )⋅ cCombD fDissipation kComb lComb,( )⋅–=

m· FuelBurn m· FuelBurnPrmx F m· FuelBurnDiff⋅+=

F ζPrmx( )
cDelay mFuelBurnPrmx

mFuelVapPrmx
------------------------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

cDelay

= =

y fROHR x( )=

x cSMD, β, cSpray, … = y ϕSOC, ϕ10, ϕ50, … =

χ yi xi,( )
1

noc
-------

yiΔ
xiΔ

--------
noc

∑⋅ 1
noc
-------

yi y0– y0⁄
xi x0– x0⁄
----------------------------

noc

∑⋅= =
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RATE OF HEAT RELEASE
As an example, Figure 4.3 (a),(b) and (c) shows the sensitivities of the global 
ROHR characteristics (ϕ SOC/ϕ 10/ϕ 50/ϕ 90/Qmax/ϕQmax) and the detailed pre-
mixed and diffusion combustion characteristics (Qmax.p/ϕQmax.p/Qmax.d/ϕQmax.d/
mprmx/mdiff) on 5 % variations in injection and evaporation parameter values.

Except for three, all sensitivities, given the 5 % variation in model parameters, are 
lower than one; in other words, 5 % parameter variations generally result in less than 
5 % changes in model output characteristics. Furthermore, some of the variations in 
parameter values affect the model outcomes by less than a factor of 10-5, i.e. a 5 % 
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cSMD Sauter Mean Diameter scaling factor (s.f.) [-] 0.1 .. 10

β Empirical evaporation rate [-] 1·10-9 .. 1·10-6

c FuelFilm Wall-applied fuel film build-up scaling factor [-] 0.0 .. 1.0

τ FuelFilm Characteristic fuel film evaporation time [s] 1·10-5 .. 1·10-3

Λ Equivalence ratio after evaporation [-] 0.4 .. 1.0

c1 Diffusion caused dilution scaling factor [-] 1·10-5 .. 1·10-3

c2 Reynolds number exponential factor [-] 0.0 .. 1.0
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c1 Physical ignition delay scaling factor [-] 0.0 .. 10

c2 Chemical ignition delay scaling factor [-] 0.0 .. 1·10-4

c3 Cylinder pressure exponential factor [-] 0.0 .. 5.0

c4 Air/fuel ratio exponential factor [-] 0.0 .. 1.0

TA Activation temperature [K] 1000 .. 10’000
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c1 Single-point ignition combustion s.f. [-] 0.0 .. 10

c2 Multi-point ignition combustion s.f. [-] 0.0 .. 10

c3 Diffusion controlled combustion s.f. [-] 0.0 .. 10

cg Background turbulence intensity s.f. [-] 0.0 .. 10

cInj Injection induced turbulence scaling factor [-] 0.0 .. 10

cComb Combustion induced turbulence s.f. [-] 0.0 .. 10

cInjF Injection turbulence formation scaling factor [-] 0.0 .. 1.0

cInjD Injection turbulence dissipation s.f. [-] 0.0 .. 1.0

cCombF Combustion turbulence formation s.f. [-] 0.0 .. 1.0

cCombD Combustion turbulence dissipation s.f. [-] 0.0 .. 1.0

cDelay Superposition exponential delay factor [-] 0.0 .. 50

Tab. 4.1 ROHR Model Parameters
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variation of the parameter value (e.g. the dilution caused diffusion scaling factor c1) 
results in a less than 5·10-5 % change in model outputs (e.g. ϕ SOC or ϕ 50 ).

The different sensitivities of particular parameters represent the governing struc-
tures of the model. The characteristic wall-applied fuel film evaporation time 
τFuelFilm for example - although affecting the global 50 & 90% energy released char-
acteristics - has neither an effect on the start of combustion nor on the maximum of 
the premixed combustion ROHR Qmax.p. This is explained as a direct consequence 
of the inherent delay between the fuel film build-up and evaporation processes (the 
wall-applied fuel film build-up starts with the first droplet of an injection spray 
impinging the wall).

Figure 4.3 (d) shows the sensitivity of the maximum rate of heat release to a vari-
ation of the Sauter Mean Diameter cSMD , evaporation rate β , and equivalence ratio 
after evaporation Λ in the range of ± 50 %. Whereas the influence of the variation 
size on the sensitivity of the evaporation rate β is almost negligible, the influence on 
cSMD and Λ are both non-linear and oppositional in trend (a decrease in parameter 
variation leads to a decrease and an increase in Λ and cSMD sensitivity at the same 
time).

The sensitivities, and hence the relative importance of the model parameters, not 
only indicate which parameters have little influence on the model outcome, they also 

(a) (b)

(c) (d)

Fig. 4.3 ROHR Model Output Sensitivities to ± 5 % Variations of Injection & 
Evaporation Parameters: (a) Integral ROHR, (b), and (c) Detailed 
Premixed and Diffusion Controlled Combustion Characteristics. 
(d) Sensitivity of Qmax to ± 50 % Variations in cSMD, β, and Λ
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RATE OF HEAT RELEASE
indicate the need for an advanced calibration algorithm due to the inherent non-lin-
earity of the model (e.g. variable sensitivities over variation step size).

4.3 Comparative Algorithm Study
Given that there is no algorithm solving for all optimization problems , that on aver-
age performs superior to any other algorithm [105], a comparative study on the four 
algorithms mentioned in Section 3.4.3, the Genetic Algorithm (GA), the Evolution-
ary Algorithm (EA), the Covariance-Matrix-Adaption Evolutionary Strategy (CMA-
ES) and the Matlab Genetic Algorithm & Direct Search (GADS) is carried out.

4.3.1 Basic Setup

In order to compare the performance of the algorithms, each of the four is used to 
calibrate the ROHR model (single objective approximation function, Section 3.4.3) 
based on a set of heavy-duty diesel engine operating conditions (“calibration” oper-
ating conditions Table A.2). To verify the performance of the calibration, the 
models are validated using the “verification” operating conditions given in 
Table A.2. To reduce the inherent statistical randomness of the algorithms, multiple 
optimization (calibration) runs on four identical desktop computers are performed.

The sum of the deviations between experimental and numerical ROHR output 
characteristics ϕ SOC , ϕ 10 , ϕ 50 , and ϕ 90 is used as a measure to estimate the per-
formance of the calibrated models. To visualize the performance, experimental and 
numerical ROHR characteristics of both calibration and verification operating con-
ditions are plotted sequentially (Figure 4.4 (a)). In addition to the sequential operat-
ing condition representation, a “1-to-1” scatter plot of measured against simulated 
characteristics is used to visualize the statistical correlation (Figure 4.4 (b)).

(a) (b)

Fig. 4.4 Comparison of Experimental and Numerical ROHR Characteristics 
for the CMA-ES Algorithm Model Calibration: 
(a) Sequential Operating Conditions Plot, (b) “1-to-1” Scatter Plot
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Comparative Algorithm Study
4.3.2 Algorithm Performance

To visualize the temporal performance of the algorithms, the average error from ten 
consecutive optimization runs is plotted against the number of ROHR model func-
tion evaluations1 (Figure 4.5 (a)). After large initial errors, followed by similar perfor-
mance characteristics at approximately 7’500 function evaluations, the four 
algorithms investigated vary in both temporal performance and final error (the opti-
mizations are stopped after a specific CPU-time).

Whereas the GA and GADS algorithms show a linear - however different in slope 
- performance improvement, the EA and CMA-ES feature exponential and stepwise 
improvements respectively. While EA and GADS final optimization errors may 
differ by nearly 40 % ( fError.EA = 11’200 vs. fError.GADS = 15’600), the only signifi-
cant deviations found in global ROHR characteristics are at ϕ 50 and ϕ 90 (Figure 4.5
(b)).

Analyzing the four calibrated models using both the Pearson’s correlation coeffi-
cients2 and the linear regression slopes3, yields similar results for the GA, EA and 
CMA-ES algorithm (Figure 4.6 (a)). The correlation coefficients for the ϕ SOC, ϕ 10
and ϕ 50 characteristics determined using these three algorithms are of the order of 
0.9, while the ϕ 90 correlation coefficients are slightly worse (0.75 to 0.8). The corre-
lation coefficients for the GADS algorithm drop almost linearly from 0.9 (ϕ SOC) to 
0.55 (ϕ 90).

1. nfEval (# function evaluations) = noc (# operating conditions) * nfCallsAlgorithm (# function calls 
by the algorithm)

(a) (b)

Fig. 4.5 Comparison of the 4 Algorithms Used for the ROHR Model: (a) 
Performance Plot, (b) “1-to-1” Scatter Plot (Best vs. Worst Algorithm)

2. Pearson’s correlation coefficient r - measure of how well a linear equation describes the relation 
between two variables x and y; defined as the covariance of (x, y) and the product of the standard 
deviations, r = cov(x, y) / (σxσy),  (r = 1 : perfect linear correlation)

3. Linear regression slope m - slope of best-fit line plotted through x and y using the method of “least 
squares”; y = mx + b (c.f. Figure 4.6 (b))

Er
ro

r 
(M

ea
su

re
m

en
t 

- 
Si

m
ul

at
io

n)
  [

-]

10000

15000

20000

25000

30000

35000

40000

# Function Evaluations  [-]
0 15000 30000 45000 60000 75000

  Genetic Algorithm (GA)
  Evolutionary Algorithm (EA)
  Matlab GADS-Toolbox
  Covariance Matrix Adaption (CMA-ES)

ϕ
 S

im
ul

at
io

n 
 [

°C
A 

aT
D

C]

350

360

370

380

390

400

410

420

ϕ Measurment  [°CA aTDC]
350 360 370 380 390 400 410 420

 EA (Best)   /   GADS (Worst) 
   Start of Combustion   
   10% Energy Release    
   50% Energy Release   

    90% Energy Release    

1– r 1≤ ≤
41



RATE OF HEAT RELEASE
All four algorithms investigated have linear regression slopes m of approximately 
unity for the ϕ SOC and ϕ 10 characteristics, whereas the values for the ϕ 50 and ϕ 90
characteristics are significantly lower than 1, specifically for both the CMA-ES and 
GADS algorithm. As an example, Figure 4.6 (b) compares the ϕ 50 data obtained 
from both the GA and GADS calibrated ROHR models, visualizing the effects mea-
sured by the linear regression slope m. A slope m which is lower than unity refers to 
a reduced sensitivity of the simulation output, i.e. while low measurement values are 
over predicted by the simulation, higher values are under predicted.

4.3.3 Stochastic Initialization & Evolution

In order to determine the influence of a stochastic initialization on the performance 
of evolutionary algorithms, 25 consecutive ROHR model calibrations are performed 
using the EA algorithm.

As shown in Figure 4.7 (a), the initial variations caused by the stochastic initializa-
tion decrease with the number of function evaluations (Δ fError at initialization: 
24’600; after 50’000 function evaluations: 1’700). Furthermore, neither the optimiza-
tion case with the best nor the worst stochastic parameter initialization remains the 
best nor worst case at the end of the optimization. Thus, although there is a signifi-
cant influence on the initial phase of the optimization, the stochastic manipulations 
used during the evolutionary processes (i.e. recombination and mutation) have a 
larger impact on the optimization outcome.

To illustrate the influence of stochastic initialization on the individual model 
parameters, Figure 4.7 (b) shows the development of the combustion induced tur-
bulence scaling factor cComb for the 25 consecutive optimization runs. Whereas ini-
tial values are randomly distributed, the solutions tend to approach the best overall 
value with an increasing number of function evaluations (similar to the performance 
value variation decrease).

(a) (b)

Fig. 4.6 Comparative Algorithm Study Statistics: (a) Person’s Correlation 
Coefficient & Linear Regression Slope (b) ϕ 50 “1-to-1” Plot
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Model Study on Different Engine Sizes
4.3.4 Summary

Although the four algorithms show similar global performances (except for the 
minor deviations in ϕ 50 and ϕ 90), the exponential temporal performance improve-
ment of the EA makes it the preferred algorithm. Hence, the EA is used as parame-
ter calibration algorithm in all subsequent investigations and studies.

4.4 Model Study on Different Engine Sizes
To evaluate the general applicability of the proposed ROHR model, the three 
engines employed in this study cover both major application areas of modern 
Common-Rail DI diesel engines (automotive, heavy-duty and marine, specifications 
c.f. Section 3.5.1) and a wide range of operating conditions (c.f. Appendix A). Using 
the heavy-duty engine as the reference engine, in addition to the calibration of the 
model to each specific engine, the heavy-duty engine specific model is also applied to 
the automotive and marine diesel engine, without any parameter modifications (i.e. 
“bind try”).

4.4.1 “Heavy-Duty” Diesel

Figure 4.8 shows the results using an EA (Evolutionary Algorithm) with a popula-
tion size npop of 100 (nparent = 50, noffspring = 150) to calibrate the 23 ROHR model 
parameters given in Table 4.1. With a mean model calculation time of one-third of a 
second, approximately 12 hours are required to calibrate the ROHR model based on 
the 19 operating conditions.

Evident from an engineering point of view is the excellent prediction of the rela-
tive variations between two arbitrary operating conditions (hereafter referred to as 
“trends”) for the four ROHR characteristics, as well as the small deviations of the 

(a) (b)

Fig. 4.7 Performance and Parameter Variations of 25 Optimization Runs: 
(a) Error vs. # Function Evaluations (b) Single Parameter Variation
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absolute values of the start of combustion ϕ SOC and the positions of 10 % and 50 % 
energy release (ϕ 10, ϕ 50). Otherwise, the differences between the measured and 
simulated positions of 90 % energy release ϕ 90 are up to 10 °CA. As a result of the 
small energy release rates near the end of combustion, minor inaccuracies in the 
energy release cause significant deviations in the temporal locations, (e.g. an error of 
± 1 % in absolute energy released changes the location by almost 5 °CA).

The correlation statistics for ϕ SOC , ϕ 10 , ϕ 50 , and ϕ 90 given in Table 4.2 con-
firm the “graphical” interpretations from Figure 4.8. Whereas the ϕ SOC , ϕ 10 , and 
ϕ 50 correlation coefficients are of the order of 0.9 for both calibration and verifica-
tion, the ϕ 90 coefficients are significantly lower (approximately 0.7 and 0.8 respec-
tively). Furthermore, the linear regression slope m (smaller than unity) and the 
intercept b (larger than zero) indicate the slightly reduced sensitivity of the simula-
tion data on operating condition variations during both calibration and verification. 

To illustrate the broad range of operating conditions used, the heat release traces 
from six operating conditions, arbitrarily selected from the 39 heavy-duty engine 
operating conditions given in Table A.2, are compared in Figure 4.9. Although the 

(a) (b)

Fig. 4.8 Heavy-Duty Diesel ROHR Model Calibration & Verification: 
(a) Sequential Operating Conditions Plot, (b) “1-to-1” Scatter Plot

ϕ SOC  ϕ 10  ϕ 50  ϕ 90

C
al

ib
ra
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on Pearson’s Correlation Coefficient r [-] 0.8970 0.9248 0.9005 0.7111

Linear Regression Slope m [-] 0.84 0.86 0.85 0.67

Linear Regression Intercept b [-] -0.08 0.31 1.65 11.75

V
er

if
ic

at
io

n Pearson’s Correlation Coefficient r [-] 0.9465 0.9194 0.9174 0.8178

Linear Regression Slope m [-] 0.95 0.82 0.77 0.62

Linear Regression Intercept b [-] 0.01 0.71 2.83 14.17

Tab. 4.2 Heavy-Duty Engine ROHR Model Statistics 
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Model Study on Different Engine Sizes
deviations between absolute measurement and simulation values for the 90% energy 
release locations ϕ 90 seem to be significant (Figure 4.8), the actual rates of heat 
release plotted against the crank angle (Figure 4.9) do not show substantial discrep-
ancies after 375 [°CA aTDC]. 

In addition to the global ROHR characteristics given in Figure 4.8, the ignition 
delay, the premixed combustion ratio, as well as the location and magnitude of the 
maximum (peak) ROHR are further crucial factors in IC engine research and devel-
opment. The location and magnitude of the peak heat release rate are often used as 
a first approximation to estimate both the peak pressure in, and the combustion 
noise from modern DI diesel engines with advanced turbocharging, high-pressure 
injection systems and high compression ratios.

Given the process flow of the implemented phenomenological combustion model 
(Figure 4.1), the accuracy of the simulation depends on the first three sub-models: 
(1) spray formation (2) evaporation and (3) air/fuel mixing, ignition delay, fuel allo-
cation. A closer look at the ignition delay (Figure 4.10 (a)) for example shows an 
excellent correlation between measured and simulated values (maximum deviation is 
less than 1.5 °CA).

The comparison of calculated and measured premixed combustion ratios is a mea-
sure for the prediction quality of the fuel allocation, premixed combustion, and 
spray formation, evaporation and air/fuel mixing sub-models (Figure 4.10 (b)). Cal-
culated premixed combustion ratios generally under-predict their experimentally 
determined counterparts, which is partially due to shorter ignition delays in the sim-
ulation (e.g. # 1-3), and/or errors introduced by the non-deterministic distinction 
between experimental premixed and diffusion controlled combustion (c.f. [72]).

(a) (b) (c)

(d) (e) (f)

Fig. 4.9  Examples (6 out of 39) of ROHR Traces for Heavy-Duty Engine
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RATE OF HEAT RELEASE
Although more demanding in terms of model performance, the numerical results 
obtained for both maximum ROHR Qmax and location of maximum ROHR ϕ Qmax
match experimental data trends, even though deviations in absolute values are 
present (Figure 4.10 (c) and (d)). The largest errors are at operating conditions with 
high premixed combustion ratios (ξ Prmx > 40 %, e.g. # 1-3, 21-22, 36) and mainly 
originate from the simplifications used for droplet formation and evaporation mod-
eling (Section 4.1.2, assuming one representative primary droplet diameter per time-
step) and two-phase premixed combustion (Section 4.1.4, single-/multi-point igni-
tion combustion). Furthermore, the over-prediction of the maximum ROHR for 
operating conditions # 6 and 17 for example, are primarily caused by an elongated 
ignition delay in the simulation, resulting in a larger amount of fuel evaporated and 
ignitable at SOC, as seen in Figure 4.9 (e).

Apart from the inaccuracies at operating conditions with nearly identical maxi-
mum premixed and diffusion controlled ROHRs - such as # 4 and 10 (c.f. Figure 4.9
(c)) - the numerical locations of maximum ROHR match experimental data within 
an error of ± 3 ° CA.

(a) (b)

(c) (d)

Fig. 4.10 Extended ROHR Characteristics for the Heavy-Duty Engine: 
(a) Ignition Delay, (b) Premixed Combustion Ratio, (c) Maximum 
ROHR and (d) Location of Maximum ROHR
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4.4.2 “Automotive” Diesel

An identical EA as in Section 4.4.1 is used to calibrate the ROHR model using 20 
(calibration) out of the 57 representative operating conditions given in Table A.1. 
Due to the fact that all operating conditions except two (# 20 and 55) feature two 
injection pulses (i.e. pilot and main injection), the algorithm is modified to consider 
two independent sets of ignition delay parameters (c.f. Section 4.1.3). Thus, a total of 
28 (23+5) model parameters are calibrated by the modified EA.

The ROHR characteristics (ϕ SOC , ϕ 10 , ϕ 50 , and ϕ 90) from the calibration and 
verification calculations are shown in Figure 4.11. Regarding the calibration and ver-
ification operating condition sets, similar deviations between measured and simu-
lated characteristics, as well as similar trends, i.e. the variation of characteristics 
between single operating conditions, are observed. In general, deviations for ϕ SOC, 
ϕ 10 and ϕ 50 are smaller than 3 °CA, and for ϕ 90 less than 10 °CA. The 10 % energy 
release location errors ϕ 10 add up to 5 °CA for operating conditions with a mean 
piston velocity cm in the range of 7 to 10.5 [m/s] (# 13-18 and 41-51), which is 
related to the staged combustion phenomenon1, or rather the ignition delay of the 
second injection.

Two distinct injection schemes (early/late pilot injection) and their respective 
measured and simulated ROHRs are given in Figure 4.12 as an example for staged 
combustion phenomena. Although differences between measured and simulated 
ROHR are present, the model captures the major characteristics of the two combus-
tion stages or events.

In order to evaluate the general applicability of the proposed ROHR model, the 
model calibrated for the heavy-duty engine is used to simulate automotive operating 
conditions without changing any parameters (i.e. blind try). To account for the two 

1. Staged combustion - multiple sequential combustion events resulting from distinct injection pulses 
(here: 2 combustion events resulting from 2 injection pulses)

Fig. 4.11 Automotive Diesel ROHR Model: Calibration & Verification
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RATE OF HEAT RELEASE
pulse injection schemes, both first and second injection delay parameters are set to 
the single pulse injection parameters obtained from the heavy-duty calibration.

Although absolute errors between simulated and measured characteristics are sig-
nificant (c.f. Figure 4.13, Table 4.3), the trends between individual operating condi-
tions are correctly reproduced. Given this, qualitative predictions of ROHR 
characteristics are feasible for a different engine size and application, using the phe-
nomenological model without parameter recalibration.

When considering the statistics of the ROHR characteristics for both heavy-duty 
(Table 4.2) and automotive (Table 4.3) optimized (calibrated) models, it is apparent 
that the automotive ϕ 50 and ϕ 90 correlation coefficients are approximately 0.2 
lower than the respective heavy-duty values, while the linear regression statistics are 
comparable. When the automotive (optimized) and heavy-duty (blind try) model sta-
tistics are considered, the blind try correlation coefficients r (ϕ SOC , ϕ 10 and ϕ 90 : 
approx. -0.15, Δϕ 50 : -0.4!) and linear regression slopes m (ϕ SOC : -0.3, ϕ 50 : -0.4, 
and ϕ 90 : -0.15) are significantly lower. The statistics hence indicate, that in order to 
obtain valid quantitative predictions, the model must to be recalibrated to a small 
subset of operating conditions (e.g. 10-20 operating conditions), given that the blind 
try parameters only yield qualitative results.

(a) (b)

Fig. 4.12 Automotive Diesel Operating Conditions With Pilot- and Main-
Injection Pulses: (a) # 3, (b) # 25

Fig. 4.13 Automotive Diesel ROHR: Heavy-Duty Model Blind Try

N
or

m
al

iz
ed

 R
at

e 
of

 F
ue

l I
nj

ec
te

d 
[1

/°
CA

]
N

or
m

al
iz

ed
 C

ur
re

nt
 F

ee
d 

[-
]

RO
H

R 
  [

%
/°

CA
]

0

2

4

6

8

10

12

Crank Angle ϕ  [°CA aTDC]
315 330 345 360 375 390 405 420

  Current Feed
  Rate of Fuel Injected
  ROHR Measurement
  ROHR Simulation

# 3

N
or

m
al

iz
ed

 R
at

e 
of

 F
ue

l I
nj

ec
te

d 
[1

/°
CA

]
N

or
m

al
iz

ed
 C

ur
re

nt
 F

ee
d 

[-
]

RO
H

R 
  [

%
/°

CA
]

0

2

4

6

8

10

12

Crank Angle ϕ  [°CA aTDC]
315 330 345 360 375 390 405 420

  Current Feed
  Rate of Fuel Injected
  ROHR Measurement
  ROHR Simulation

# 25

Cr
an

k 
A

ng
le

 ϕ
  [

°C
A

 a
TD

C]

330

340

350

360

370

380

390

400

410

420

Automotive Operating Conditions   [-]
0 5 10 15 20 25 30 35 40 45 50 55

 /   ϕSOC (Sim/Meas)   /   ϕ10  (Sim/Meas)
 /   ϕ50  (Sim/Meas)   /   ϕ90  (Sim/Meas)
48



Model Study on Different Engine Sizes
4.4.3 “Marine” Diesel

A scaled-down version of the EA used to calibrate the ROHR model for the heavy-
duty engine (Section 4.4.1) is applied to 12 (calibration) out of the 26 representative 
operating conditions given in Table A.4. As the mean model calculation time for the 
marine diesel is about 0.5 seconds, the adapted EA using a population size npop of 50 
(nparent = 25, noffspring = 75) needs approximately five hours to calibrate the 23 
ROHR model parameters.

To ensure the confidentiality of the marine diesel data, the ROHR characteristics 
shown in Figure 4.14 and Figure 4.15 are normalized using operating condition # 15 
data as reference (ϕ SOI.meas = 0 and ϕ 90.meas = 100).

The deviations between the measured and simulated ROHR characteristics are 
generally within measurement accuracy at ϕ SOC , ϕ 10 and ϕ 50 , and ± 8 % of the 
normalized value at ϕ 90 for the calibration and verification operating conditions 
alike (Figure 4.14). Concerning ϕ 50 deviations, the two outliers (# 7 and 17) are low 
speed, low injection pressure operating conditions with an end of injection before 50 
percent of the total energy is released. Because of this, the injection induced turbu-
lence is reduced and the diffusion or mixing controlled combustion ROHR is low-
ered, resulting in a shift of the ϕ 50 normalized time.

In order to evaluate the general applicability of the proposed ROHR model even 
for large, two-stroke engines, the heavy-duty calibrated model is applied to the 
marine diesel operating conditions in a blind try, i.e. without parameter recalibration. 
The comparison of the measured and blind try simulated ROHR characteristics in 
Figure 4.15 (a) points out, that despite short combustion durations - and thus errors 
in absolute ϕ 10 , ϕ 50 and ϕ 90 values - the blind try model accurately predicts trends 
and variations (c.f. Pearson’s correlation coefficients r , Figure 4.16 (a)). While the 
simulated ϕ SOC characteristics match the measurements within the experimental 

ϕ SOC  ϕ 10  ϕ 50  ϕ 90
O

pt
im

iz
ed Pearson’s Correlation Coefficient r [-] 0.9631 0.8501 0.7810 0.5128

Linear Regression Slope m [-] 0.89 0.86 1.07 0.59

Linear Regression Intercept b [-] -0.15 -2.03 -1.37 12.64

B
li

nd
 T

ry Pearson’s Correlation Coefficient r [-] 0.8692 0.7049 0.3864 0.3838

Linear Regression Slope m [-] 0.60 0.84 0.66 0.45

Linear Regression Intercept b [-] -8.26 -5.65 -2.65 13.15

Tab. 4.3 Automotive Engine ROHR Model Statistics for the EA 
Optimized and the Heavy-Duty Blind Try Case
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RATE OF HEAT RELEASE
accuracy, the simulated overall combustion duration is only approximately 75 % of 
the measured overall combustion duration (e.g. # 15: ϕ 90.sim = 72 [a.u.]).

From an engineering point of view, the heavy-duty and marine diesel engine have 
well-known differences in the range of operating conditions (speed, EGR rate, ...), 
in-cylinder flow field (swirl, turbulence, ...), and injection system (configurations, 
fuel properties, ...). In order to account for this expert knowledge, an adjusted (blind 
try) model with a recalibrated empirical evaporation rate scaling factor β (fuel prop-
erties), as well as background cg and injection induced cInj turbulence intensity scal-
ing factors (flow field and injection system configuration) was developed, the results 
of which are shown in Figure 4.15 (b). Other than the ϕ SOC characteristics already 
matched using the blind try model, the adjusted model is capable of predicting the 
ϕ10 , ϕ 50 , and ϕ 90 characteristics as well.

In order to visualize the differences between the three models or parameter sets 
employed (optimized, blind try and adjusted), Figure 4.16 shows the comparison of 
the linear regression statistics (c.f. Table A.7). While there are only small variations in 
correlation coefficients and regression slopes (except for the blind try ϕ 90 regression 
slope), the variations in linear regression intercepts confirm the temporal offset 
(delay) of the ϕ 10 , ϕ 50 , and ϕ 90 characteristics for the blind try model.

(a) (b)

Fig. 4.14 Marine Diesel ROHR Model Calibration & Verification: 
(a) Sequential Operating Conditions Plot, (b) “1-to-1” Scatter Plot

(a) (b)

Fig. 4.15 Marine Diesel Engine ROHR Model: (a) Blind Try, (b) Adjusted
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Advanced Fuels Survey
When comparing absolute measures of the marine diesel optimized model statis-
tics with the heavy-duty (Table 4.2) and automotive (Table 4.3) optimized models, 
the quality of the marine diesel calibration even seems to be superior to the heavy-
duty and automotive calibrations. This effect however is put into perspective by 
considering the limited range of the variations and the number of operating condi-
tions employed (marine diesel engine: 26 operating conditions without EGR varia-
tions).

4.5 Advanced Fuels Survey
An advanced fuels survey is conducted to gain further information about the general 
applicability of the proposed ROHR model. The heavy-duty diesel engine is there-
fore operated at various conditions using reference diesel fuel, two water-in-diesel 
fuel emulsions (13 % and 21 % water by mass) and a diesel-butylal blend (c.f. 
Table 4.4). Bertola et al. [11] provides further information on the specifications of 
the fuels used and their effects on engine-out emissions.

To recalibrate the ROHR model parameters, the identical EA used for the heavy-
duty engine (Section 4.4.1) is applied using 20 (calibration) out of the 40 representa-
tive operating conditions given in Table A.3. As both the calibration and verification 
subsets feature operating conditions with different fuels, two indices for referring 
the operating conditions are introduced; Arabic numerals to divide calibration/veri-
fication, and Roman numerals to divide diesel/emulsions/butylal fuels. 

The resulting ROHR characteristics ϕ SOC , ϕ 10 , ϕ 50 , and ϕ 90 of this study are 
shown in calibration/verification order in Figure 4.17 (a) (Arabic numerals), and are 
also plotted against the decreasing share in diesel fuel in Figure 4.17 (c) (Roman 
numerals). Comparing the two figures, neither significant differences between cali-
bration and verification model quality nor influences due to the type of fuel used 

(a) (b)

Fig. 4.16 Marine Engine Comparison of Three Model Parameter Sets: 
(a) Pearson’s Correlation Coefficient & Linear Regression Slope, 
(b) Linear Regression Intercept
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RATE OF HEAT RELEASE
(e.g. diesel-butylal blend ϕ 90) are observed. To visualize the influence of the type of 
fuel on the deviations between measured and simulated characteristics, the absolute 
errors (Δϕ = ϕsim - ϕmeas) are plotted against fuel type ranked operating conditions 

REFERENCE 
DIESEL

EMULSION
13%

EMULSION
21%

BUTYLAL 
a 

60%

Lower Heating Value 
Hu [MJ/kg] 43.14 37.98 34.96 38.25

Stoichiometric A/F Ratio
Λst [kg/kg] 14.64 12.98 12.38 12.57

Density
ρ [kg/m3] 819 851 862 829

Water Content
mH2O /mtot [%] 0 12.89 20.89 0

Oxygen Content
mO2 /mtot [%] 0 10.15 15.36 11.98

Tab. 4.4 Advanced Fuels Properties

a. Butylal - Acetal (C9H20O2), high cetane number (> 73.7), oxygenate for diesel fuel

(a) (b)

(c) (d)

Fig. 4.17 Heavy-Duty Advanced Fuels ROHR Model Characteristics:  
(a) Calibration/Verification Operating Conditions Plot, (b) “1-to-1” 
Scatter Plot, (c) Fuel Operating Conditions Plot, (d) Model Errors
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Conclusions
(Figure 4.17 (d)). While no trends are obvious for the errors when the reference fuel 
is utilized, the combustion duration is generally too short and too long for the water-
in-diesel emulsions (e.g. emulsion 21 % : ϕ 90 < -1 °CA) and diesel-butylal blends (ϕ
90 > +1 °CA), respectively. Nevertheless, a remarkable overall accuracy of the 
results is obtained for the four different fuels used in this survey by only accounting 
for the different chemical and thermodynamic fuel properties in the proposed phe-
nomenological ROHR model (Table 4.4).

In addition to the recalibration of the ROHR model parameters, the model cali-
brated for the base - reference diesel only - heavy-duty engine is used to simulate the 
operation with advanced fuels in a blind try attempt (Figure 4.18). Although the 
absolute errors between the simulated and measured ROHR characteristics are 
slightly higher (e.g. ± 2 °CA in ϕ 90 for emulsions, c.f. Figure 4.17 (c),(d)), the overall 
performance of the blind try model allows for qualitative and quantitative predic-
tions alike.

When the optimized and blind try advanced fuel model statistics (Table 4.5) are 
compared with the statistics for the optimized heavy-duty ROHR model using ref-
erence diesel fuel (Table 4.2), the most notable differences are the reduced ϕ 90 cor-
relation coefficients r (0.1 and 0.15 the optimized and blind try model, respectively).

4.6 Conclusions
The combination of an enhanced phenomenological ROHR model with an Evolu-
tionary Algorithm for the model calibration is successfully applied to three distinct 
diesel engines; an automotive, a heavy-duty, and a two-stroke marine diesel engine. 

As shown in the sensitivity study of the model parameters, there is a need for an 
advanced calibration algorithm in order to handle the non-linear and conflicting 
influences of the parameters on the model output. Besides the differences in the 
temporal performance improvement, the comparison of four of these advanced 

(a) (b)

Fig. 4.18 Heavy-Duty Advanced Fuels Blind Try ROHR Characteristics:  
(a) Fuel Operating Conditions Plot, (b) Model Errors
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RATE OF HEAT RELEASE
algorithms demonstrates the practical application of these methods for calibration of 
phenomenological models.

An excellent agreement between the measured and simulated ROHR characteris-
tics is shown, inspite of the wide range of engine and operating condition setups 
used in this study. Furthermore, considering the heavy-duty engine calibrated model 
as example, the general applicability of the ROHR model is confirmed with blind 
trials on both the automotive and the marine diesel engines. Despite the deviations 
in absolute values, both blind trials correctly reproduce the variations among single 
operating conditions, and can be adjusted to yield correct absolute values using basic 
knowledge of the tested engine or a few experimental operating conditions for a 
recalibration.

An advanced fuels survey further shows, that both the re-calibrated and the blind 
try ROHR models are capable of predicting the effects of water-in-diesel emulsions 
and diesel-butylal blended fuels on ROHR characteristics correctly.

ϕ SOC  ϕ 10  ϕ 50  ϕ 90
O

pt
im

iz
ed Pearson’s Correlation Coefficient r [-] 0.9214 0.9538 0.9252 0.6655

Linear Regression Slope m [-] 0.83 0.91 1.01 0.58

Linear Regression Intercept b [-] 0.46 0.79 0.26 13.93

B
li

nd
 T

ry Pearson’s Correlation Coefficient r [-] 0.8918 0.9161 0.8876 0.6070

Linear Regression Slope m [-] 0.74 0.81 0.91 0.52

Linear Regression Intercept b [-] 0.36 0.82 0.18 14.21

Tab. 4.5 Heavy-Duty Advanced Fuels ROHR Model Statistics for the 
EA Optimized and the Heavy-Duty Blind Try Case
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5 EMISSIONS OF NITROGEN OXIDE

Based on the ROHR model proposed in Chapter 4, a phenomenological model to 
determine the emissions of nitrogen oxide is given below. Combined with the soot 
emissions model presented in Chapter 6, one of the most pressing topics in current 
diesel engine research & development can be addressed: the simultaneous reduction 
of both nitrogen oxide and soot emissions to meet stringent emission regulations.

5.1 Model Description
Collectively referred to as emissions of nitrogen oxide (NOx), nitric oxide (NO) 
nominally accounts for approximately 90 % of the total NOx emissions during reg-
ular diesel engine operation. However, for light-load, low-speed operating condi-
tions, the share of nitrogen dioxide (NO2) formed may increase up to 30% of the 
total amount of NOx emissions [44].

Given the low content of nitrogen in commercial fuels and the predominantly dif-
fusion controlled combustion in standard diesel engines, the governing source for 
nitric oxide formation is the oxidation of molecular nitrogen contained in the com-
bustion air (a.k.a. thermal NO formation). Moreover, for cases with high energy 
release fractions during the premixed combustion phase, or for cases with NOx
emission concentrations lower than 100 [ppm], prompt nitrogen oxide formation 
(a.k.a. Fenimore NOx) becomes a significant source for nitrogen oxide.

When fast calculations are to be made across an entire engine operating map, a 
computationally reliable and efficient mechanism for the exhaust gas NO concentra-
tion is needed. Because of both the complexity of the reaction scheme (and thus 
increase in computation time) and the low impact of the Fenimore NOx formation 
mechanism on the total NOx emissions, the present study follows a commonly used 
restriction and considers only thermal NO formation.

Weisser [102] shows for various operating conditions of a 4-stroke medium-size, 
medium-speed Common-Rail DI diesel engine, that reducing the mechanism com-
plexity results in a decrease in prediction accuracy for NO emissions as well as a sub-
stantial reduction in computational time (especially for the 0-dimensional models).

The present model calculates the NO concentration using the established and 
computationally efficient extended Zeldovich reaction mechanism [109] along with 
a CHEMKIN [54] chemical equilibrium solver. This novel implementation links the 
characteristic in-cylinder temperature traces driving the NO formation to a repre-
sentative air/fuel ratio function in a consistent way (c.f. Section 5.1.2, Figure 5.1).
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EMISSIONS OF NITROGEN OXIDE
5.1.1 Inputs & Outputs

Intended as an emission submodel in an engine process simulation program, the NO 
model uses the temporal state of the process (ROHR, temperature, pressure, etc.), 
the reaction chemistry kinetics (Section 5.1.3) and a representative air/fuel ratio 
function (Section 5.1.2) as inputs. As an output, the model provides the temporal 
NO formation and reduction rates.

5.1.2 Variable Virtual Combustion Zones

By means of a “virtual” combustion zone with variable stoichiometry (computed in 
the thermodynamic combustion process simulation), the dominant localized NO 
formation phenomena, such as hot spots in the fuel-lean post-combustion gases, are 
captured. As an attempt to include the nitrogen oxide emissions resulting from the 
fuel-rich components next to the flame front position, a richer-than-stoichiometric 
phase in the representative air/fuel ratio function is used during initial stages of 
combustion (Figure 5.1 (a)).

After the initial constant air/fuel ratio λstart (from ϕ SOC to ζstart), the presented 
model uses an air/fuel ratio proportional to the increasing combustion progress to 
account for characteristic diesel combustion effects (e.g. transition of unburned fuel-
rich to burned fuel-lean gases). The final phase of the representative air/fuel ratio 
function is modeled as a crank angle proportional leaning (maximum λglobal) of 
burned gases until the exhaust valves open at λEO and ϕ EO. The associated interme-
diate temperature trace T(λNO), which lies between the thermodynamic maximum 
process temperature T(λstoichiometric) and the mean process temperature T(λglobal), 
is determined using the rate of heat release analysis software WEG, based on the 
variable representative air/fuel ratio function (Figure 5.1). A list of the seven model 
parameters used to model the representative air/fuel ratio function is given in 
Table 5.1. 

(a) (b)

Fig. 5.1 Variable representative air/fuel ratio function and associated in-
cylinder temperature trace for NO formation
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Model Description
5.1.3 Reaction Mechanism

The three basic reactions of the extended Zeldovich mechanism describing the for-
mation (and reduction) of NO from atmospheric nitrogen are

 (5.1)

The rate of formation of nitric oxide (NO) hence can be written as 

,  (5.2)

where ki
+ and ki

- are the forward and reverse reaction rate constants respectively, 
and [ ] denote species mass concentrations.

Assuming that the combustion and NO formation processes in IC engines are 
decoupled (postflame NO formation generally dominates any flame-front-produced 
NO given the geometrically thin flame reaction zone and the short residence times ), 
the engine-out concentrations of O, O2, OH, H and N2 can be approximated by their 
equilibrium concentrations [ ]e (c.f. [44]). Using the notations

 (5.3)

PARAMETER UNIT SIZE RANGE

λ start 1st point of discontinuity : air/fuel ratio [-] 0.4 .. 1.0

ζ start 1st point of discontinuity : combustion progress [-] 0.0 .. x a

λ end 2nd point of discontinuity : air/fuel ratio [-] 1.0 .. y b

ζ end 2nd point of discontinuity : combustion progress [-] x .. 1.0

λ EO Air/fuel ratio at exhaust valve opening (EO) [-] y .. λ global c

c ROHR ROHR proportional progress slope scaling factor [-] 0.0 .. 10

c CA Crank angle proportional progress slope s.f. [-] 0.0 .. 10

Tab. 5.1 Nitrogen Oxide Emission Model Parameters

a. x - variable (max. 1.0), ensures that the 1st point of discontinuity is previous to the 2nd

b. y - variable (max. λ global ), ensures that λ end is lower than λ EO
c. λ global - global (in-cylinder) air/fuel ratio

O N2 NO N+↔+

N O2 NO O+↔+

N OH NO H+↔+

d NO[ ]
dt

----------------- k1
+ O[ ] N2[ ] k2

+ N[ ] O2[ ] k3
+ N[ ] OH[ ] –+ +=

k1
- NO[ ] N[ ] k2

- NO[ ] O[ ]– k3
- NO[ ] H[ ]–

R1 k1
+ O[ ]e N2[ ]e k1

- NO[ ]e N[ ]e==

R2 k2
+ N[ ]e O2[ ]e k2

- NO[ ]e O[ ]e==

R3 k3
+ N[ ]e OH2[ ]e k3

- NO[ ]e H[ ]e==
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EMISSIONS OF NITROGEN OXIDE
for the equilibrium state, and by substituting the equilibrium concentrations [ ]e for 
the instantaneous concentrations [ ] in (5.2), the rate of NO formation d [NO] / dt can 
be expressed as:

 (5.4)

5.1.4 Kinetics of NO Formation

When predictions of NO concentrations using established reaction rate constant ki
+

and ki
- data from different sources are compared (c.f. Section A.2), discrepancies of 

more than 20 % may result for constant pressure and temperature problems [42]. 
Furthermore, Weisser [102] shows that the order of the reaction scheme, i.e. the 
number of equations considered, has less influence on the accuracy of the predic-
tions than the set of reaction rate constants chosen.

Given that the present NO model uses the NO formation implementation scheme 
proposed by Heywood [44], the subsequent investigations are conducted using the 
corresponding reaction rate constants data (Section A.2).

5.2 Model Parameter Sensitivity Study
In order to estimate the relative influence of the individual NO model parameters on 
the model outcome, a sensitivity study on 19 heavy-duty engine operating conditions 
is performed (“calibrating” operating conditions Table A.2). Similar to the ROHR 
model parameter sensitivity study discussed in Section 4.2, the sensitivity χ of the 
model parameter xi on the mass of nitric oxide m (Table 5.1) is thereby defined as 
average of the relative changes in mass of NO normalized with the imposed varia-
tions in xi.

 (5.5)

As an example of the sensitivity of the NO emissions to both the operating con-
ditions and a positive/negative step size variation, Figure 5.2 (a) shows the ± 5 % 
variations of the point of discontinuity combustion progress parameters ζstart and 
ζend plotted against operating conditions. Whereas the mean sensitivities are 
approximately 1.5 and 0.025 for ζstart and ζend respectively, single operating condi-
tion sensitivities vary from 0.05 to 10 (ζstart) and 0.005 to 0.1 (ζend), indicating the 
dependence of the model on operating conditions, such as temperatures, EGR rate 
and engine load. The differences between positive and negative step size variations 

d NO[ ]
dt

-----------------
2 R1 1 NO[ ] NO[ ]e⁄( )2–{ }⋅ ⋅

1 NO[ ] NO[ ]e⁄( ) R1 R2 R3+( )⁄⋅+
--------------------------------------------------------------------------------------=

χ m xi,( )
1

noc
------- mΔ

xiΔ
--------

noc

∑⋅ 1
noc
-------

m m0– m0⁄
xi x0– x0⁄

--------------------------------
noc

∑⋅= =
58



Model Study on Different Engine Sizes
of one order of magnitude furthermore are a sign of the non-linear influence of the 
model parameters (c.f. Figure 5.2 (a)).

As the Heywood reaction rate constants are used for all subsequent investigations, 
Figure 5.2 (b) only illustrates the influence of the numerous reaction rate constants 
on the model output, comprehensive investigation are given in [42] and [59].

Figure 5.3 (a) shows the mean (operating condition averaged) model sensitivities 
for normalized variations of λend , c ROHR and ζend. While the sensitivity to ζend is 
approximately constant over the range of the parameter variations (i.e. a change in 
ζend linearly affects the model outcome), the sensitivities of λend and c ROHR 
strongly depend on the parameter variation step size (i.e. changes in λend or c ROHR 
have non-linear effects on model outcomes).

To visualize the relative importances of the NO model parameters, the mean sen-
sitivities to ± 5 % variation of all seven parameters are given in Figure 5.3 (b). Given 
that a mean sensitivity of unity represents an equal (i.e. proportional) variation in 
model outputs as imposed on model parameters, the NO model parameters can be 
classified into “exponential” (λend , c ROHR), “inverse exponential” (ζstart , c CA) and 
“linear” parameters (λstart , λEO , ζend).

5.3 Model Study on Different Engine Sizes
Similar to the model study using different engine sizes with the ROHR model (c.f. 
Section 4.4), the proposed NO model is applied to all three engines employed in this 
investigation in order to evaluate its general applicability. The heavy-duty engine is 
used as the reference or base engine. In addition to engine specific model calibra-
tions for the automotive and marine diesel engines, the heavy-duty model is applied 
to both engines without modifications (i.e. blind try).

(a) (b)

Fig. 5.2 Operating Condition Specific Variations of NOx Model Sensitivities: 
(a) Point of Discontinuity Combustion Progress Parameters, (b) NO 
Formation Mechanism Reaction Rate Constants
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EMISSIONS OF NITROGEN OXIDE
5.3.1 “Heavy-Duty” Diesel

Figure 5.4 shows the results using an Evolutionary Algorithm with a population size 
npop of 30 (nparent = 15, noffspring = 50) to calibrate the seven NO model parameters 
(Table 5.1). Given a mean model calculation time of about two seconds (due to 
time-consuming equilibrium reaction calculations), the calibration based on the 19 
operating conditions takes approximately ten hours.

As shown in Figure 5.4, the correlation between the measured and simulated NO 
emissions for both the calibration and verification is excellent. Except for the oper-
ating conditions # 36 (low speed, low load and high EGR rate) and # 39 (high 
speed, high load and high EGR rate), the calibrated model accurately predicts the 
measured NO emissions over a range spanning almost two orders of magnitude 
(mNO = 0.25 to 14.2 [g/kWh]).

The high Pearson’s correlation coefficients r, in combination with linear regres-
sion slopes m equal to unity and low intercepts b (c.f. Table 5.2), confirm the excel-
lent “visual” correlations show in Figure 5.4. 

(a) (b)

Fig. 5.3 Mean (Operating Condition Averaged) NOx Model Sensitivities: 
(a) Normalized Variations of λend , cROHR , and ζend , 
(b) ± 5 % Step Size Parameter Variations

(a) (b)

Fig. 5.4 Heavy-Duty Diesel NOx Model Calibration & Verification: 
(a) Sequential Operating Conditions Plot, (b) “1-to-1” Scatter Plot
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Model Study on Different Engine Sizes
Figure 5.5 shows the in-cylinder pressure history and associated ROHR (a), as well 
as the representative NO temperature and temporal NO mass history (b) for the 
heavy-duty operating condition # 10. The temporal resolved history of NO forma-
tion indicates that the NO formation takes place form approximately 360 to 380 
[°CA aTDC], while almost no reduction of NO is detectable..

5.3.2 “Automotive” Diesel

The identical Evolutionary Algorithm as implemented in Section 5.3.1 (npop = 30, 
nparent = 15, noffspring = 50) is used to calibrate the NO model based on 20 out of the 
57 representative automotive diesel engine operating conditions given in Table A.1.

While deviations between measured and calculated NO emissions for calibration 
operating conditions are almost negligible, several verification operating conditions 
show significant deviations of up to 4 to 8 [g/kWh] (c.f. # 56). In general, trends 
among the different operating conditions are correctly reproduced (Figure 5.6).

When comparing specific NO emissions, the accuracy of the engine performance 
measures must be taken into account. Given the operating condition # 56 for exam-
ple, underpredicting the engine output by 0.3 kWh causes a error (i.e. drop) of 5.5 
[g/kWh] in measured specific NO emissions, and hence a reduction in the deviation 
from 8 to 2.5 [g/kWh].

CALIBRATION VERIFICATION

Pearson’s Correlation Coefficient r [-] 0.9859 0.9488

Linear Regression Slope m [-] 1.00 1.00

Linear Regression Intercept b [-] -0.29 0.24

Tab. 5.2 Heavy-Duty Engine Calibration & Verification Statistics

(a) (b)

Fig. 5.5 Heavy-Duty Single Operating Condition: (a) Pressure History and 
ROHR, (b) Representative Temperature and Mass of Nitric Oxide
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EMISSIONS OF NITROGEN OXIDE
To further estimate the general applicability of the proposed NO model, the 
model calibrated for the heavy-duty diesel engine is used to simulate automotive 
operating conditions without changing any model parameter (blind try).

Though absolute errors between simulated and measured specific NO emissions 
are significant (c.f. Figure 5.7, Table 5.3), the trends among single operating condi-
tions are well reflected. Thus, qualitative predictions of NO emissions for a different 
engine sizes and applications, using a phenomenological model without a parameter 
re-calibration, are feasible. Similar to the optimized model calibration and verifica-
tion, the largest deviations are at low load, high speed operating conditions (e.g. # 
51, 52, 56 or 57).

Identical correlation statistics (r 0.95, m = 1.0 and b 0.0) are noted, when con-
sidering the statistics of the NO emission modeling for both the heavy-duty 
(Table 5.2) and automotive (Table 5.3) calibrations. Furthermore, significantly lower 
correlation statistics are observed when comparing the automotive verification sta-
tistics with the calibration statistics, even if the statistical outlier operating condition 
# 56 is excluded (r´ = 0.84, m´ = 0.78 and b´ = 0.81).

Regarding the automotive optimized (calibration/verification) and heavy-duty 
blind try model statistics, both the blind try correlation coefficient (r = 0.65) and 
linear regression intercept (b = 2.38) indicate a significantly lower correlation be-
tween the simulated and measured specific NO emissions for the blind try case (al-
though the linear regression slope m is equal to one).

Fig. 5.6 Automotive Diesel NO Model: Calibration & Verification

Fig. 5.7 Automotive NO Emissions: Heavy-Duty Model Blind Try
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Model Study on Different Engine Sizes
5.3.3 “Marine” Diesel

A scaled down version of the EA used to calibrate the NO model for the heavy-duty 
engine is applied using 12 of the 26 representative two-stroke marine diesel engine 
operating conditions given in Table A.4 (npop = 20, nparent = 10, noffspring = 40).

To ensure the confidentiality of the marine diesel data (as requested by the indus-
try partner), the NO emissions shown in Figure 5.8 and Figure 5.9 are normalized 
using operating condition # 15 as reference (NOmeas.#15 = 100 [a.u.]).

Given that absolute specific NO emissions from a marine diesel engine are slightly 
higher than from a heavy-duty or automotive engine, the deviations between mea-
sured and calculated NO emissions for the marine diesel engine are higher as well 
(peak relative deviations for all engines of the order of 25 %, c.f. Figure 5.8). Accord-
ing to Weisser [102], the quantitative inaccuracies in NO emission prediction are 
related to both the general chemistry model (i.e. extended Zeldovich mechanism) 
and the modeling approach for the turbulent mixing between hot combustion gases 
and surrounding fresh air (i.e. representative air/fuel ratio function). As the pro-
posed air/fuel ratio function employs both ROHR and crank angle proportional 
mixing phases (c.f. Section 5.1.2), changes in the characteristic time strongly affect 
the model outcome (1 °CA corresponds to automotive: 50 μs, heavy-duty: 100 μs, 
and two-stroke marine diesel: 1.5 ms). Despite the deficiencies in quantitative pre-
dictions, the qualitative trends are well reflected.

Calibration Verification Blind Try

Pearson’s Correlation Coefficient r [-] 0.9593 0.7428 0.6510

Linear Regression Slope m [-] 0.99 0.52 1.02

Linear Regression Intercept b [-] -0.09 1.80 2.38

Tab. 5.3 Automotive Engine: Optimized vs. Blind Try Statistics

(a) (b)

Fig. 5.8 Marine Diesel NO Model: Calibration & Verification
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EMISSIONS OF NITROGEN OXIDE
In order to estimate the general applicability of the proposed NO model even for 
large two-stroke engines, the heavy-duty calibrated model is applied to the marine 
diesel operating conditions in a blind try, i.e. without changing any parameters. The 
comparison of the measured and blind try simulated NO emissions shown in 
Figure 5.9 does not imply a significant correlation. While the NO formation in the 
heavy-duty (and automotive) engine is strongly influenced by the premixed combus-
tion and the initial increase in temperature and ROHR, the marine diesel NO forma-
tion is mainly affected by the turbulent mixing between hot combustion gases and 
surrounding fresh air, as the premixed combustion phase is negligible for standard 
operation conditions (mPrmx < 2-3 %).

The NO model statistics given in Table 5.4, in particular the low correlation coef-
ficient (r < 0.2) and flat linear regression slope (m = 0.04) for the blind try model, 
confirm the absence of a correlation between measured and blind try simulated 
results as shown in Figure 5.9.

5.4 Conclusions
The developed phenomenological nitrogen oxide emissions model is capable of 
both qualitative and quantitative NOx emission predictions of automotive and 
heavy-duty engine operating conditions. The quantitative deviations between mea-
sured and simulated NO emissions for the two-stroke marine diesel engine are 

(a) (b)

Fig. 5.9 Marine NO Emissions: Heavy-Duty Model Blind Try

OPTIMIZED BLIND TRY

Pearson’s Correlation Coefficient r [-] 0.7143 0.1919

Linear Regression Slope m [-] 0.51 0.04

Linear Regression Intercept b [-] 59.95 67.55

Tab. 5.4 Marine Engine Optimized vs. Blind Try Statistics
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Conclusions
related to both the general chemistry model and the modeling approach used to 
describe the turbulent gas mixing.

As noted during the sensitivity study of the model parameters, positive and nega-
tive parameter variations have a marked influence on the model output. Despite this 
sensitivity on the model parameter settings, the NO model allows for fast and reli-
able emission predictions over a range of more than an order of magnitude for the 
medium and high speed engines (heavy-duty and automotive engine, respectively). 
The (chemical) residence time ratio between the heavy-duty and marine diesel engine 
setup of 15 though makes it impossible for this model/parameter combination to 
predict the marine diesel NO emissions based on the heavy-duty engine calibration.
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6 SOOT EMISSION

In addition to the ROHR and NO models proposed in Chapters 4 and 5, a phenom-
enological soot model is presented in the subsequent sections. Combined with the 
NO emissions model presented in Chapter 5, this model allows for addressing one 
of the most important topics in current diesel engine R&D: the simultaneous reduc-
tion of both NOx and soot emissions to meet stringent emission regulations.

6.1 Model Description
Along with nitrogen oxide (NOx), soot1 is considered as a major pollutant emitted 
by diesel engines under regular operating conditions.

Due to the both complex and governing physical/chemical processes in the for-
mation and oxidation of soot, the quantitative operating-map-wide prediction of 
specific soot emissions is one of the most challenging topics in IC engine combus-
tion calculations. Even without limitations on the computational time and imple-
menting the most sophisticated models known (e.g. detailed PAH2 chemistry), 
quantitative soot emission predictions are still limited only to particular operating 
map regions or engine operating conditions [15][27][94].

Recent studies on numerous Common-Rail DI diesel engines showed, that two 
step approaches (formation and oxidation, c.f. Figure 6.1), such as those presented 
by Hiroyasu et al. [46][48], Boulouchos et al. [87] or Gao [34], despite their limited 
accuracy, do provide the potential for qualitative predictions with low computational 
costs.

Using the model developed by Boulouchos et al. for the subsequent investigations, 
the following assumptions are made:

• No soot formation/oxidation occurs during premixed combustion phase
• Split-up of soot formation and oxidation into virtual combustion zones (c.f. 

Section 5.1.2) with corresponding characteristic temperature histories

6.1.1 Inputs & Outputs

Similar to the NO model presented in Chapter 5, the soot model is intended as an 
emission submodel in an engine process simulation program. Hence, the model uses 

1. Soot - a.k.a. particulate matter (PM); agglomerations of elemental amorphous carbon particles with 
unburned hydrocarbons, acids, elemental sulfur, and metal oxides

2. PAH - Polycyclic Aromatic Hydrocarbons
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SOOT EMISSION
the temporally resolved state of the global combustion process (ROHR, tempera-
ture, pressure, etc.), the representative virtual formation and oxidation combustion 
zones , as well as the “φ - T” map by Akihama et al. [2] as inputs.

The temporally resolved soot formation and oxidation histories are provided as 
outputs by the model.

6.1.2 “Two Step - Two Zone” Approach

Whereas common two step models consider the soot formation process as involving 
two reaction steps in one zone, Boulouchos et al. use discrete virtual combustion 
zones to model the formation and oxidation processes. A detailed description of 
both, the model and virtual combustion zone concept are given in [99].

The net rate of change in soot mass ms is the difference between the rates of soot 
formed ms.form and oxidized ms.ox.

 (6.1)

The formation of soot is given as function of the mass of fuel burned in the diffu-
sion controlled combustion phase mFuelBurnDiff , the normalized in-cylinder pres-
sure p/p0 and the “φ - T” map function f .

 (6.2)

The results of the complex chemistry, “φ - T” map calculations carried out by Aki-
hama et al. are integrated in the phenomenological two step model with the approx-
imation function f given in Equations (6.3) and (6.4), and shown in Figure 6.2.

 (6.3)

(a) (b)

Fig. 6.1 Representative Heavy-Duty Engine Operating Condition: (a) 
ROHR, (b) Soot Formed, Oxidized and Total Mass of Soot Histories
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Model Description
, and  (6.4)

The oxidation of soot particles by molecular oxygen is modeled using an exponen-
tial temperature term (i.e. Arrhenius functional form), the mass of soot accumulated
ms , the characteristic mixing frequency of the diffusion controlled combustion τchar
and the current normalized oxygen partial pressure .

 (6.5)

Table 6.1 gives the eight empirical parameters used in the Boulouchos et al. soot 
model along with their according units and size ranges.

(a) (b)

Fig. 6.2 Equivalence Ratio - Temperature Map for Soot Formation: 
(a) Original Akihama et al [2], (b) Mathematical Approximation

PARAMETER UNIT SIZE RANGE

φ form Soot formation: (fuel/air) equivalence ratio [-] 1.0 .. 2.5

c form Soot formation: scaling factor [-] 0.0 .. 1·105

c 1 Soot formation: exponential pressure factor [-] 0.5 .. 2.0

φ ox Soot oxidation: (fuel/air) equivalence ratio [-] φ global a .. 1.0

a. φ global - global (in-cylinder) fuel/air ratio; φ global = 1/λ global

c form Soot oxidation: scaling factor [-] 0.0 .. 1·105

c 2 Soot oxidation: exponential mass factor [-] 0.5 .. 2.0

c 3 Soot oxidation: exponential O2 pressure factor [-] 0.5 .. 2.0

T A.ox Soot oxidation: activation temperature [K] 1·103 .. 1·105

Tab. 6.1 Soot Emission Model Parameters
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6.2 Model Parameter Sensitivity Study
In order to estimate the relative influence of the individual parameters on the soot 
model results, a sensitivity study on 19 heavy-duty engine operating conditions is 
performed (“calibrating” operating conditions Table A.2). Analog to the NO model 
parameter sensitivity study presented in Section 5.2, the sensitivity χ of the mass of 
soot ms on the model parameter xi (Table 6.1) is thereby defined as average of the 
relative changes in mass of soot normalized with the imposed variations in xi.

 (6.6)

To illustrate the variations in sensitivity on both operating conditions and positive/
negative step size, Figure 6.3 (a) shows the ± 5 % variations of the soot oxidation 
scaling factor cox and activation temperature TA.ox for the 19 operating conditions 
considered. Whereas the minor changes in sensitivity for the ± 5 % variations of cox
reflect the linear equation form, the discrepancies between the positive (χmean 
75) and negative (χmean  15) step size variations of TA.ox are caused by the expo-
nential temperature term in Equation (6.5). The variations among specific operating 
conditions for both cox and TA.ox further reveal the complex influence of operating 
condition parameters - such as engine speed and load, injection parameters and 
EGR rates - on the soot formation.

When comparing the mean sensitivities for both the soot model (Figure 6.3 (b)) 
and the NO model (Figure 5.3 (b)), the higher than unity sensitivities for all param-
eters, except for φox , indicate the large influence of the input parameters on the 
model output. Given the two step reaction mechanism, the soot formation parame-
ters φ form and c1 (via the p/p0 term in Equation (6.2), and the ideal gas law) affect 
the amount of soot formed by changes in the “φ - T” map function f, whereas the 
soot oxidation parameter c2 is directly linked to the mass of soot already formed.

(a) (b)

Fig. 6.3 Operating Condition Specific Sensitivities: (a) Oxidation Activation 
Temperature TA.ox and Scaling Factor cox , (b) Soot Model Mean 
Sensitivities for ± 5 % Step Size Parameter Variations
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6.3 Model Study on Different Engine Sizes
Similar to the model studies on different engine sizes for the ROHR and NO models 
in the previous chapters, the proposed soot model is applied to the heavy-duty, auto-
motive and marine diesel engine in order to evaluate the general applicability of the 
approach. The heavy-duty engine is again used as the reference engine. In addition to 
the engine specific model calibrations for the automotive and marine diesel engine, 
the heavy-duty model is applied to both engines without modifications (blind try).

6.3.1 “Heavy-Duty” Diesel

Figure 6.4 shows the results using an Evolutionary Algorithm with a population size 
npop of 50 (nparent = 25, noffspring = 75) to calibrate the eight parameters of the soot 
model (c.f. Table 6.1). Given a mean calculation time of one third of a second, the 
calibration based on the 19 operating conditions takes approximately 6 hours.

Figure 6.4 indicates that the correlation, or rather linear regression statistics, for 
both the calibration and verification are not as good as those for the NO emission 
model (Figure 5.4). While the correlation coefficient r for the calibration indicates a 
good qualitative agreement between measured and simulated soot emission values 
(r > 0.9), the low linear regression slope (m < 0.8) is a sign of the low sensitivity of 
the two step soot model (Table 6.2). The model over- and underestimates low and 
high experimental soot emissions, respectively, even if the experimental uncertain-
ties of ± 0.03 [g/kWh] (Section 3.5.2) are taken into account.

Despite the deficiencies in quantitative terms, the model correctly reproduces the 
trends (i.e. qualitative variations) among individual operating conditions, such as the 
characteristic decrease of soot emissions for an increase in injection pressures shown 
for the operating conditions # 4, 5, and 6 (400, 700, and 1000 [bar], respectively).  

(a) (b)

Fig. 6.4 Heavy-Duty Diesel Soot Model Calibration & Verification: 
(a) Sequential Operating Conditions Plot, (b) “1-to-1” Scatter Plot
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6.3.2 “Automotive” Diesel

The identical Evolutionary Algorithm implemented in Section 6.3.1 (npop = 50, npar-
ent = 25, noffspring = 75) is used to calibrate the soot model based on 20 out of the 57 
representative automotive diesel engine operating conditions given in Table A.2.

Except for the overestimation of low experimental values for high load, no EGR 
operating conditions (BMEP > 11 [bar] and EGR < 0.5 [%]; # 8, 11, 27, 33, 38/39, 
and 45/46), a good correlation between the measured and calculated soot emissions 
for both calibration and verification cases is observed (c.f. Figure 6.5). Furthermore 
the absolute deviations between measured and calculated soot emissions observed 
for the verification operating conditions back up the low model sensitivity men-
tioned in Section 6.3.1. However, trends among different operating conditions are 
still correctly reproduced for both the calibration and verification cases.

To illustrate the low model sensitivity, Figure 6.6 and Table 6.3 provide a sample 
of six out of the 57 automotive operating conditions, showing a variation in engine 
load BMEP, injection pressure pInj and EGR rate at a constant piston speed cm. 
Whereas the simulation slightly underestimates the experimental values for the low 
engine load with low injection pressure - and thus high soot emissions - operating 
conditions (# 34 - 36), it overestimates the values for the high engine load, high 
injection pressure and low EGR rate operating conditions (# 37 - 39) significantly.

CALIBRATION VERIFICATION

Pearson’s Correlation Coefficient r [-] 0.9181 0.8216

Linear Regression Slope m [-] 0.79 0.49

Linear Regression Intercept b [-] 0.05 0.04

Tab. 6.2 Heavy-Duty Soot Model: Calibration & Verification Statistics

Fig. 6.5 Automotive Diesel Soot Model Calibration & Verification
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Model Study on Different Engine Sizes
In order to estimate the general applicability of the proposed soot model, the cal-
ibrated parameter set from the heavy-duty diesel engine is used to simulate automo-
tive operating conditions without changing any parameters (blind try).

Whereas calculated soot emissions do match experimental values for 6 out of the 
first 8 operating conditions shown in Figure 6.7, the blind try simulations for oper-
ating conditions with a measured specific soot emission higher than 0.1 [g/kWh] (32 
out of 49) significantly underestimate the experimental values. Despite the absolute 
errors between simulated and measured emissions, the trends among individual 
operating conditions are well reflected and qualitative predictions of soot emissions 
for a different engine size and application using a two step soot model without 
parameter recalibration are possible.

The Pearson’s correlation coefficients and linear regression statistics given in 
Table 6.4, confirm the previously “visual” derived statements. While the qualitative 
prediction capabilities of the model are demonstrated by correlation coefficients of 
approximately 0.8 and 0.7 for the optimized (calibration/verification) and blind try 
model, respectively, the low linear regression slopes (m  0.6) reflect the low model 
sensitivity.

# cm
[m/s]

BMEP
[bar]

pInj
[bar]

EGR
[%]

34 6.199 4.00 567 19.16
35 6.199 9.00 869 16.70
36 6.199 10.00 913 16.48
37 6.199 11.00 957 11.10
38 6.199 12.99 1101 0.37
39 6.199 14.00 1174 0.33

Fig. 6.6 Automotive Soot Model: 
Variation of Engine Load

Tab. 6.3 Variation of Engine Load 
Operating Condition Data

Fig. 6.7 Automotive Soot Emissions: Heavy-Duty Model Blind Try

So
ot

 E
m

is
si

on
s 

 [
g/

kW
h]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Automotive Operating Conditions   [-]
34 35 36 37 38 39

  Measurement
  Simulation

So
ot

 E
m

is
si

on
s 

 [
g/

kW
h]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Automotive Operating Conditions   [-]
0 5 10 15 20 25 30 35 40 45 50 55

 Measurement
 Simulation

≤

73



SOOT EMISSION
6.3.3 “Marine” Diesel

A scaled down version of the EA used to calibrate the soot model for the heavy-duty 
engine is applied to 12 out of the 26 representative marine diesel engine operating 
conditions given in Table A.4 (npop = 30, nparent = 15, noffspring = 60).

To ensure the confidentiality of the marine diesel data, the soot emissions shown 
in Figure 6.8 and Figure 6.9 are normalized using the measured soot mass from 
operating condition # 15 as reference (ms.meas = 100 [a.u.]). As the specific soot 
emissions of the marine diesel engine are determined using filter smoke number 
(FSN) measurements and an experimentally derived correlation, this study focuses 
on qualitative rather than quantitative results due to the contradicting experimental 
FSN and gravimetrical results obtained for particular operating conditions (c.f. 
Section 3.5.2). 

The measured and simulated soot emissions calculated using the calibrated model 
are given in Figure 6.8. The most significant discrepancies are at low load low speed 
operating conditions (# 16, 17), whereas the trends among single operating condi-
tions are well reflected.

To assess the general applicability and gain further insights on the proposed soot 
model, the heavy-duty calibrated model is applied to the marine diesel operating 
conditions in a blind try, i.e. without any parameter changes.

Calibration Verification Blind Try

Pearson’s Correlation Coefficient r [-] 0.9317 0.8373 0.6987

Linear Regression Slope m [-] 0.93 0.81 0.32

Linear Regression Intercept b [-] 0.11 0.14 0.05

Tab. 6.4 Automotive Optimized vs. Blind Try Soot Model Statistics

(a) (b)

Fig. 6.8 Marine Diesel Soot Model Calibration & Verification
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Conclusions
No distinct correlation is evident when the measured and blind try simulated soot 
emissions given in Figure 6.9 are compared. The correlation and regression statistics 
given in Table 6.5 indicate a negative correlation for the blind try model (r = -0.31), 
implying, that for an increase in measured soot emissions the model predicts a 
decrease.

6.4 Conclusions
Despite the limitations in quantitative predictions, the phenomenological “two step 
- two zone” soot model accurately reproduces the qualitative variations between 
individual operating conditions. When the experimental uncertainties are taken into 
account, even quantitative agreements for particular automotive and heavy-duty 
diesel engine operating conditions are possible.

Beyond the reduced chemistry and the fact, that the model only accounts for 
carbon-soot, the application of the “two step - two zone” approach does not 
account for the existence of very hot and cold regions in an IC engine combustion 
chamber at the same time, causing for example a lack of oxidation of the soot pro-
duced due to low temperatures or similar effects (reduced model sensitivity). 

(a) (b)

Fig. 6.9 Marine Soot Emissions: Heavy-Duty Model Blind Try

OPTIMIZED BLIND TRY

Pearson’s Correlation Coefficient r [-] 0.4586 -0.3065

Linear Regression Slope m [-] 0.20 -0.47

Linear Regression Intercept b [-] 47.37 111.96

Tab. 6.5 Marine Engine Optimized vs. Blind Try Statistics
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7 ENGINE PROCESS SIMULATIONS

Engine process simulations are conducted to investigate practical applications of the 
proposed phenomenological models. After describing the general setup, both mea-
sured and simulated cylinder pressures and temperatures, as well as process charac-
teristics and engine design parameters, such as maximum pressure, exhaust 
temperature, and indicated efficiency, are compared. To determine the influence of 
differences between measured and simulated ROHRs on engine-out emission simu-
lations, nitrogen oxide emissions based on measured and simulated ROHRs are 
computed in this chapter.

7.1 Setup
Besides the comparison of both measured and simulated ROHR characteristics 
given in Chapter 4, engine process simulations based on measured and simulated 
rates of heat release are used to investigate the practical application of the proposed 
modeling approach.

Given the geometry and mechanical properties of the engine, as well as the oper-
ating condition settings, fluid and gas properties, and actual heat release rates, the 
engine process simulation program can be used for both steady-state and transient 
engine operation calculations. Using the 19 calibration operating conditions of the 
heavy-duty diesel engine as a basis (c.f. Table A.2), only steady-state simulations are 
performed.

Fig. 7.1 Engine Process Simulation Comparative Study Setup

Derived from a thermodynamic analysis of engine test bench experiments (details 
see Chapter 4), the so-called “measured” rates of heat release are used as reference 
case for the engine process simulations. In order to be able to both quantify the dis-
crepancies in the rates of heat release and gain further insights in the key aspects of 
ROHR modeling, “measured” instead of raw in-cylinder pressure histories are used 
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ENGINE PROCESS SIMULATIONS
as the reference1 in this study. The test case simulations are performed using the 
rates of heat release predicted by the phenomenological model proposed in 
Chapter 4 (Figure 7.1).

An outline of the engine model configuration and simulation program specifica-
tions are given in Table 7.1.

7.2 Simulations
In addition to cylinder pressure and temperature, standard engine characteristics, 
such as maximum pressure and temperature, maximum pressure location, and 
exhaust temperature are used to compare engine process simulation results.

7.2.1 Cylinder Pressure and Temperature

As an initial indication of the practical applicability of the proposed ROHR model, 
Figure 7.2 shows both the measured and simulated cylinder pressures and ROHRs 
(left side), as well as the corresponding mean and burned gas temperatures (right 
side) for three representative operating conditions (specifications are given in 
Table 7.2).  

1. Figure A.1 compares the measured and experimental cylinder pressures for six out of the 19 oper-
ating conditions used in this study, generally showing negligible variations with maximum devia-
tions of less than 2 [bar] or 3.5 %.

PROGRAM GT-Suite™ 6.1

LAYOUT Multi-cylinder turbocharged DI diesel engine 
(incl. high-pressure EGR-path with inter-cooler)

GAS EXCHANGE 1-D gas dynamics (entire manifold & exhaust)
COMBUSTION Input: measured & simulated ROHR (“burn rates”) 

Two-zone temperature modeling (heat transfer: Woschni)
INJECTION Experimental injection profiles

EMISSIONS Built-in standard NOx and soot models

Tab. 7.1 GT-Power Characteristics

# cm
[m/s]

BMEP
[bar]

pInj
[bar]

SOI
[°CA]

EGR
[%]

2 5.936 4.95 1400 356 23
5 5.936 4.89 700 350 0
15 8.699 8.79 1600 352 0

Tab. 7.2 Selected Operating Conditions Specifications (c.f. Figure 7.2)
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Simulations
From Figure 7.2 (a), it can be seen that the discrepancy in peak rate of heat release 
values influences key process simulation outputs, such as cylinder pressure and 
mean temperature (errors: approx. 4 % of the maximum values), whereas burned gas 
temperatures and other ROHR characteristics (except the maximum rate of pressure 
increase) are much less affected. Regarding operating condition # 5 (Figure 7.2 (b)) 
and # 15 (Figure 7.2 (c)), deviations between measured and simulated cylinder pres-
sures and temperatures are smaller than 1 % of the maximum values, although the 
maximum ROHR values and the start of combustion can differ significantly (e.g. 
operating condition # 15).

(a)

(b)

(c)

Fig. 7.2 Comparison of Cylinder Pressures and ROHRs (left side), Burned 
Gas and Mean Temperatures (right side) for Three Selected Heavy-
Duty Diesel Operating Conditions; (a) # 2, (b) # 5, and (c) # 15
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ENGINE PROCESS SIMULATIONS
The comparison of cylinder pressures and temperatures for representative heavy-
duty engine operating conditions thus indicates, that the proposed model is able to 
predict ROHRs with sufficient accuracy for use with common engine process simu-
lation programs.

7.2.2 Combustion Characteristics

Common engine process simulation characteristics are used to investigate the per-
formance of the model for all 19 operating conditions given. As an example, 
Figure 7.3 shows measured and simulated values of maximum cylinder pressure and 
its location (a), as well as maximum burned gas and mean temperature (b).

Whereas there are only minor discrepancies noted in the maximum cylinder pres-
sure, and burned gas and mean temperatures, the values for the maximum cylinder 
pressure location at operating condition # 9 differ by almost 13 °CA. Upon closer 
inspection of both the measured and simulated cylinder pressures for this operating 
condition (c.f. Figure 7.4), it is revealed, that the discrepancy is caused by minor dif-
ferences between the two characteristic maxima1 of the pressure histories. While the 
location of the maxima for the simulated pressure history is due to the (late) com-
bustion process (at approximately 372 [°CA aTDC]), it is due to cylinder compres-
sion/expansion only for the measured pressure history (at 360 [°CA aTDC], i.e. the 
combustion process maxima is smaller than the compression/expansion maxima).. 

As measures related to mechanical strains and turbocharger efficiency for exam-
ple, the maximum and exhaust pressure and temperature are key factors in modern 
engine R&D. These engine process simulation outputs and their corresponding rel-
ative errors are given in Figure 7.5 (left and right side, respectively), where it can be 

1. 1st Maxima: geometrically defined by the “compression/expansion” transition at TDC 
2nd Maxima: pressure increase due to late combustion (SOC after TDC)

(a) (b)

Fig. 7.3 Comparison of Engine Process Simulation Characteristics: 
(a) Maximum Pressure and Location of Maximum Pressure, 
(b) Maximum Temperature and Maximum Mean Temperature
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Simulations
seen, that the measured and simulated values are well correlated. Although errors in 
maximum pressure up to 12 % are noted (with an average error of approximately 5 
% or 3.5 [bar] in absolute values), deviations in the exhaust pressure are smaller than 
1 % (with an average error of approximately 0.3 %). Furthermore, errors in both the 
exhaust and maximum mean temperatures are less than 5 % (or 30 K and 65 K in 
absolute values, respectively), clearly indicating the good performance of the pro-
posed ROHR model in terms of engine process characteristics.

Fig. 7.4 Comparison of Cylinder Pressures and ROHRs (left side), Burn and 
Mean Temperatures (right side) for Operating Condition # 9

(a)

(b)

Fig. 7.5 Comparison of Engine Process Simulation Characteristics 
(left side: Absolute Values, right side: According Relative Errors): 
(a) Maximum Pressure and Maximum Mean Temperature 
(b) Exhaust Pressure and Exhaust Temperature
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ENGINE PROCESS SIMULATIONS
The largest deviations between measured and simulated pressure maxima are 
noted for operating conditions with either high EGR rates (# 2, 3 and 18) or low 
injection pressures (# 4, 7, 8 and 9). Whereas errors at high EGR rate operating con-
ditions are caused by the underestimation of the maximum ROHR (c.f. # 2, 
Figure 7.2 (a)), the low injection pressure operating condition errors are due to the 
too short ignition delays simulated (c.f. # 9, Figure 7.4). Discrepancies in the maxi-
mum ROHR and short ignition delays for specific operating conditions strongly 
influence the accuracy of simulation results, such as the maximum rate of pressure 
increase (c.f. Figure 7.6).

While there are significant deviations in both pressure maxima and maximum rate 
of pressure increase, errors in global process characteristics, such as the indicated 
efficiency η generally are smaller than 2.5 %.

7.2.3 Emissions

To demonstrate the influence of errors in cylinder pressure and temperature on 
engine-out emissions, specific NOx emissions for both measured and simulated 
engine process simulations - determined using the standard GT-Power built-in NOx
model - are given in Figure 7.7.

Fig. 7.6 Comparison of Maximum Pressure Increase and Indicated Efficiency 
(left side: Absolute Values, right side: According Relative Errors)

Fig. 7.7 Comparison of Nitrogen Oxide Emissions (left side: Absolute Values, 
right side: According Relative Errors)
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Conclusions
Besides the large relative errors due to low absolute values of NOx (e.g. operating 
conditions # 2, 3, and 18), significant errors for operating conditions with low injec-
tion pressures, such as # 4, 8, 9, and 16, can be observed. Whereas the simulated 
maximum cylinder pressure and mean temperature for operating conditions # 4, 8, 
and 9 are considerably higher than their corresponding measured values, the errors 
in maximum cylinder pressure and mean temperature for operating condition # 16 
are less than 0.5 %. Akin to the measured operating condition # 9 (c.f. Figure 7.4), 
the late combustion during the expansion stroke in operating condition # 16 causes 
the first of the two characteristic maxima in cylinder pressure (“geometrically” 
defined) to be higher than the second maxima for both cases (measurement and sim-
ulation). When considering only the second maxima, the simulated pressure maxima 
- though lower than the first maxima - is substantially higher than measured pressure 
maxima and thus accounts for the overestimation of the measured nitrogen oxide 
emissions.

7.3 Conclusions
The engine process simulation results using the ROHRs determined by the phenom-
enological model are in good agreement with the experimental data. Despite the sub-
stantial differences between measured and simulated maximum rates of cylinder 
pressure rise, as well as minor errors in the maximum cylinder pressure and mean 
temperature, the good agreements of both temperature and pressure at exhaust 
valve opening are not affected.

Considering the nitrogen oxide emission modeling as an example, the effects of 
the differences between the measured and simulated ROHRs for an engine process 
simulation are shown. While the relative NO emission prediction error is significant 
for operating conditions with low NO exhaust emissions or low injection pressures, 
the majority of the simulated NO emissions from the measured ROHR NO emis-
sions differ by less than 0.2 [g/kWh].

The engine process simulation investigation indicates that the general application 
of the (phenomenological) model/knowledge based approach for fast, accurate, 
engine operating map wide simulations of Common-Rail DI diesel engines is indeed 
possible.
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8 ARTIFICIAL NEURAL NETWORKS

In order to evaluate the performance of the investigated phenomenological models, 
this chapter compares the modeling outputs with Artificial Neural Network (ANN) 
results. After a description of the comparative study setup, both the ANN and cor-
responding results for all three models (i.e. rate of heat release, nitrogen oxide and 
soot emissions) and engines are shown.

8.1 Comparative Study Setup
Previous to the comparison of modeling outputs with ANN results, the neural net-
works are trained and verified on the identical operating conditions used for the phe-
nomenological modeling (c.f. Chapters 4 to 6, Appendix A.1). Given that common 
results from ANNs (single values) and phenomenological models (data traces or 
functions) differ in form, the output characteristics for phenomenological models 
derived in Section 4.1.1 et sqq. are used in this comparison (Figure 8.1).

Table 3.2 gives an outline of the configuration of the ANNs used. In order to 
avoid an overfitting of these ANNs during training phase, both training and verifi-
cation mean square errors are determined for each iteration. As a first order approx-
imation, training is stopped as soon as the verification mean square error starts 
increasing (c.f. Figure 8.2).

8.2 Rate of Heat Release
An identical network architecture with seven key operating condition parameters as 
inputs (cm , BMEP, pInj , Δ tInj , ϕ SOI , x EGR , λglobal) and ten ROHR characteristics 
as outputs (ϕ SOC , ϕ 10 , ϕ 50 , ϕ 90 , Qmax.p , Qmax.d , ϕ Qmax.p , ϕ Qmax.d , mPrmx
and mDiff ) is used for all three engines investigated.

Fig. 8.1 Comparison of Simulation 
Schemes (ANN vs. Modeling)

Fig. 8.2 Training vs. Verification: 
Overfitting Criteria
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ARTIFICIAL NEURAL NETWORKS
8.2.1 “Heavy-Duty” Diesel

The results of the ANN training and verification are given in Figure 8.3, in a fashion 
similar to that used for the ROHR model results given in Chapter 4. Evident from 
an engineering point of view is the excellent agreement of measured and simulated 
ϕ SOC , ϕ 10 , ϕ 50 , and ϕ 90 characteristics for the training operating conditions (c.f. 
Figure 8.5 (a)). However, for approximately half of the verification operating condi-
tions no correlation between the measured and simulated values is noted. 

From the correlation coefficients r given in Table 8.2, both the excellent agree-
ment for ANN training (r > 0.95) and the weak correlation for ANN verification  
(r < 0.5) are confirmed. Although the correlation coefficients are smaller than 0.5 for 
the ANN verification, the fact that the measured and simulated results do agree for 
10 out of the 20 verification operating conditions results in correlation coefficients 
significantly higher than 01.

As an example of verification operating conditions with both good and poor 
agreement, the ROHR characteristics and operating condition data for four condi-
tions - two training and two verification conditions - are given in Figure 8.4 and 
Table 8.1, respectively. The four operating conditions have identical engine speeds 
and brake mean effective pressures, as well as similar injection pressures (pInj = 350 
or 400 [bar]) and SOIs (SOI = 350, 356 or 357 [°CA aTDC]). Whereas almost no dis-
crepancy is noted between the measured and simulated characteristics for operating 
conditions # 4, 16, and 20, ROHR characteristics for operating condition # 35 
determined from ANN simulations are delayed by approximately 40 °CA. Although 
the effects of an advanced SOI timing are correctly reproduced for # 4 (SOI = 350 
[°CA aTDC]), the one degree change in SOI from 357 to 356 [°CA aTDC] between 
# 20 and # 35 causes the neural network to fail.

(a) (b)

Fig. 8.3 Heavy-Duty Diesel ROHR ANN Training & Verification: 
(a) Sequential Operating Conditions Plot, (b) “1-to-1” Scatter Plot

1. r = 0 : no linear correlation between two variables. The two variables are considered to be statisti-
cally independent.
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Rate of Heat Release
In order to compare the ANN and modeling results on a one-to-one basis, 
Figure 8.5 shows the measured and simulated ROHR characteristics for both 
approaches on the identical set of heavy-duty operating conditions (Table A.2). 
While the agreement between measured and simulated values is equally good for the 
entire set of operating conditions in the phenomenological modeling approach, a 
distinct decrease in simulation prediction quality is obvious between ANN training 
and verification operating conditions.

To quantify these visually observed statements, the correlation coefficients r of the 
ROHR characteristics for both ANN training and verification, as well as modeling 
calibration and verification are given in Table 8.2.

# cm
[m/s]

BMEP
[bar]

pInj
[bar]

SOI
[°CA]

4 5.936 4.91 400 350
16 5.944 4.93 350 357
20 5.947 4.94 350 357
35 5.936 4.90 350 356

Fig. 8.4 Heavy-Duty ROHR ANN: 
Training vs. Verification

Tab. 8.1 Heavy-Duty ROHR ANN: 
Training vs. Verification

(a) (b)

Fig. 8.5 Comparison of Heavy-Duty Engine ROHR Simulation Methods: 
(a) Artificial Neural Network, (b) Phenomenological Modeling

ϕ SOC  ϕ 10  ϕ 50  ϕ 90

ANN Training [-] 0.9737 0.9880 0.9965 0.9716

ANN Verification [-] 0.4750 0.4636 0.2663 0.2627

Modeling Calibration [-] 0.8970 0.9248 0.9005 0.7111

Modeling Verification [-] 0.9465 0.9194 0.9174 0.8178

Tab. 8.2 Heavy-Duty Engine Pearson’s Correlation Coefficients r

Cr
an

k 
A

ng
le

 ϕ
  [

°C
A

 a
TD

C]

350

360

370

380

390

400

410

420

430

440

450

Heavy-Duty Operating Conditions  [-]
# 4 # 16 # 20 # 35

VerificationTraining

 /   ϕSOC (Sim/Meas)   /   ϕ10  (Sim/Meas)
 /   ϕ50  (Sim/Meas)   /   ϕ90  (Sim/Meas)

Cr
an

k 
A

ng
le

 ϕ
  [

°C
A

 a
TD

C]

350

360

370

380

390

400

410

420

Heavy-Duty Operating Conditions   [-]
0 5 10 15 20 25 30 35 40

VerificationTraining

 /   ϕSOC (Sim/Meas)   /   ϕ10  (Sim/Meas)
 /   ϕ50  (Sim/Meas)   /   ϕ90  (Sim/Meas)

Cr
an

k 
A

ng
le

 ϕ
  [

°C
A

 a
TD

C]

350

360

370

380

390

400

410

420

Heavy-Duty Operating Conditions   [-]
0 5 10 15 20 25 30 35 40

VerificationIdentification

 /   ϕSOC (Sim/Meas)   /   ϕ10  (Sim/Meas)
 /   ϕ50  (Sim/Meas)   /   ϕ90  (Sim/Meas)
87



ARTIFICIAL NEURAL NETWORKS
8.2.2 “Marine” Diesel

As was done for the heavy-duty engine investigation in the previous section, ANN 
and phenomenological modeling results for the marine diesel engine are given in 
Figure 8.6. Whereas the trained ANN in the heavy-duty investigation fails for half of 
the verification operating conditions given, the marine diesel trained ANN fails 
(clearly) only for operating condition # 19. However, the ANN fails for an operating 
condition setting which lies between two similar settings # 2 and 23 that are cor-
rectly reproduced (# 2/19/23 : SOI = 2.58/-3.87/-10.32 [a.u.]).

In general, the agreement between the measured and simulated ROHR character-
istics for the two approaches is similar to that seen in the heavy-duty engine investi-
gation. While the correlation is almost perfect for the ANN training conditions and 
significantly lower for the ANN verification conditions (even if the outlier operating 
condition # 19 is excluded), the corresponding values for the phenomenological 
modeling approach are constant over the entire set of operating conditions (c.f. 
Table 8.3). Whereas the exclusion from outlier operating condition # 19 in the ANN 
verification set has a significant positive impact on the correlation of both ϕ SOC and 
ϕ 10, the low overall correlation coefficients for the ϕ 50 and ϕ 90 verification char-
acteristics are largely unaffected.

(a) (b)

Fig. 8.6 Comparison of Marine Diesel Engine ROHR Simulation Methods: 
(a) Artificial Neuronal Network, (b) Phenomenological Modeling

ϕ SOC  ϕ 10  ϕ 50  ϕ 90

ANN Training [-] 0.9494 0.9679 0.9493 0.9647

ANN Verification [-] 0.0119 -0.0127 -0.0059 0.1852

ANN Verification (w.o. # 19) [-] 0.8303 0.5228 0.0402 0.3781

Modeling (Optimized) [-] 0.9959 0.9683 0.9775 0.8432

Tab. 8.3 Marine Engine Pearson’s Correlation Coefficients r
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Nitrogen Oxide & Soot Emissions
In order to estimate the general applicability of the ANN and phenomenological 
modeling approach, the heavy-duty engine trained network and calibrated model are 
applied to the marine diesel operating conditions in a blind try, i.e. without recalibra-
tion. While the blind try ANN simulation cannot predict any of the combustion 
characteristics, the phenomenological model simulation, except for the short com-
bustion durations, accurately predicts trends and variations in ϕ 10 , ϕ 50 and ϕ 90
values (c.f. Figure 8.7 and Section 4.4.3).

8.3 Nitrogen Oxide & Soot Emissions
In addition to the ROHR characteristics investigation above, the ANN approach is 
used to simulate both emissions of nitrogen oxide and soot for all three engines. 
Common network architectures as described in Section 3.4.2 are used, with the 
seven key operating condition parameters cm , BMEP, pInj , Δ tInj , ϕ SOI , x EGR , 
and λglobal as inputs, and the specific nitrogen oxide and soot emissions mNO and 
msoot as outputs.

8.3.1 “Heavy-Duty” Diesel

Both measured and simulated specific nitrogen oxide and soot emissions for the 
standard heavy-duty diesel operating conditions (Table A.2) are given in Figure 8.8. 
Whereas in the training sets there are only minimal variations noted between the 
measured and simulated emissions, distinct deviations are observed for several veri-
fication operating conditions. While the deviations in specific nitrogen oxide emis-
sions are caused only by operating condition settings outside the range of the trained 
settings (e.g. # 23/24, 29/30/32), deviations in specific soot emissions appear for 
operating conditions even within the range of the trained settings (e.g. # 37).

(a) (b)

Fig. 8.7 Comparison of Blind Try Marine Diesel Engine ROHR Simulations: 
(a) Artificial Neuronal Network, (b) Phenomenological Modeling
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ARTIFICIAL NEURAL NETWORKS
Besides the negative specific soot mass predicted for operating condition # 31, a 
large discrepancy between the measured and simulated soot emissions for operating 
condition # 37 is noted. The operating condition settings and measured, ANN, and 
phenomenological model simulated specific soot emissions for the operating condi-
tions # 13, 18, and 37 given in Table 8.4 indicate, that an increase in specific soot 
emissions with increasing EGR rate is expected. Whereas this is true for the mea-
sured and the simulated values for the operating conditions # 13 and 18, only the 
model prediction for the operating condition # 37 shows this behavior. While the 
measured emission for # 37 (EGR = 17 %) is more than 300 % of the value mea-
sured for # 18 (EGR = 27 %), the ANN predicted emission for # 37 is even 50 % 
lower than that for # 13 (no EGR), implying that the ANN does not capture the 
influence of EGR. Although the experimental soot measurements of operating con-
dition # 37 are suspected to be statistical outliers, the decrease in soot emissions for 
an increase in EGR from 0 to 17 %, as predicted by the ANN, is even less plausible.

8.3.2 “Marine” Diesel
Similar to the heavy-duty results given in Figure 8.8 (a), the ANN nitrogen oxide 
emission simulations for the two-stroke marine diesel engine show an almost perfect 
agreement between measured and simulated values for training operating conditions 
and a qualitatively correct prediction of the measured values for all verification oper-
ating conditions (Figure 8.9 (a) and (b)). 

(a) (b)

Fig. 8.8 Heavy-Duty Diesel Emissions ANN Training & Verification: 
(a) Nitrogen Oxide Emissions, (b) Soot Emissions

# cm
[m/s]

BMEP
[bar]

pInj
[bar]

SOI
[°CA]

EGR
[%]

SOOT [g/kWh]
Measured ANN Model

13 8.696 4.40 1400 356 0 0.0572 0.05714 0.0988

18 8.702 4.35 1400 356 27 0.0891 0.08909 0.1212

37 8.693 4.40 1400 356 17 0.29074 0.02436 0.1035

Tab. 8.4 Heavy-Duty Diesel Specific Soot Emission Details
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Nitrogen Oxide & Soot Emissions
(a) (b)

(c) (d)

Fig. 8.9 Marine Diesel Nitrogen Oxide Emission Simulation: (a) ANN 
Sequential Operating Conditions Plot, (b) ANN “1-to-1” Scatter 
Plot, (c) ANN Blind Try, (d) Phenomenological Modeling Blind Try

(a)

(b)

Fig. 8.10 Automotive NO Emissions: (a) Measurements, (b) ANN Simulation
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ARTIFICIAL NEURAL NETWORKS
Given the difficulties with the blind try application of the heavy-duty calibrated 
nitrogen oxide emission model to marine diesel operating conditions (Section 5.3.3), 
the use of the heavy-duty nitrogen oxide ANN for marine diesel operating condi-
tions was investigated. Except for the low injection pressure (pInj = 450 [bar]) oper-
ating conditions # 3, 7, 10, 21, and 26, the blind try ANN simulated NO emissions 
vary between 60 and 65 [a.u.] only (c.f. Figure 8.9 (c)). Thus, neither the nitrogen 
oxide ANN nor the phenomenological NO model are capable to predict the emis-
sions of the marine diesel engine correctly without a recalibration.

8.3.3 “Automotive” Diesel

In order to demonstrate both the assets and drawbacks of the ANN approach, the 
57 automotive calibration and verification operating conditions (c.f. Table A.1) are 
used to train a specific nitrogen oxide emissions ANN which subsequently is verified 
for the entire engine operating map with more than 300 operating conditions nOC .

The measured and simulated NO emissions given in Figure 8.10 indicate a qualita-
tively correct prediction of the experimental values over the entire operating map. 
When considering only the ANN training operating conditions, a quantitatively cor-
rect prediction of the experimental values is possible (c.f. Figure 8.11 (a)), as indi-
cated by Pearson’s correlation coefficients of 0.9121 and 0.6309 for the training and 
verification operating condition sets, respectively1.

From the configuration of the specific nitrogen oxide emission residuals shown in 
Figure 8.11 (b), a significant dependence of the ANN prediction quality on the range 
of parameters used during network training is seen. Despite minor errors in the 
absolute NO emission values, the ANN approach is able to accurately predict the 
major effects and trends for an entire engine operating map, given sufficient and 
comprehensive training data.

1. Phenomenological Model: Calibartion r = 0.9593 (nOC : 20), Verification r = 0.7428 (nOC : 37) 
ANN : Training r = 0.9121 (nOC : 57), Verification r = 0.6309 (nOC : 256 ! operating conditions)

(a) (b)

Fig. 8.11 Automotive NO Emissions: (a) “1-to-1” Plot of Training and 
Verification Operating Conditions, (b) NO Emission Residuals
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Conclusions
8.4 Conclusions
The comparison of the ANN and phenomenological model results for Common-
Rail DI diesel engine combustion and emissions clearly demonstrates the advantages 
and disadvantages of both approaches. While the ANN approach yields fast and 
accurate training results, it may implicate errors for verification operating conditions 
outside of the training range1. Alternatively, the phenomenological (model/knowl-
edge based) approach needs fundamental knowledge about the governing processes 
and advanced calibration methods, but allows for accurate predictions for verifica-
tion operating condition and engine setups even outside of the training range.

From the heavy-duty diesel ROHR, NO and soot emission model comparison, it 
is noted that the emission ANNs show better agreement with the measured values 
than the ROHR ANN. This behavior is particularly evident for operating conditions 
outside of the training range, as well as for the verification operating conditions 
(although to a lesser degree). Inspite of this, neither the ROHR nor the NO emission 
ANNs allow for reliable predictions when switching from one engine to another, 
such as from a heavy-duty diesel to a two-stroke marine diesel.

Given an appropriate number of experimental measurements for training, it is 
possible for the ANN to generate a rough estimate of the NO emissions for an 
entire engine operating map within minutes. This is a major advantage of the ANN 
over other, for example phenomenological model based methods.

1. Training range - range of operating condition parameters used used for the model calibration
93



ARTIFICIAL NEURAL NETWORKS
94



9 CONCLUSIONS AND OUTLOOK

In this work, a model/knowledge based and a black-box approach for the simulation 
and optimization of the combustion in Common-Rail DI diesel engines are com-
pared, based on their ability to predict the rates of heat release, and the nitrogen 
oxide and soot emissions. The focus of the investigation is on the applicability of the 
two different approaches, the advanced optimization/calibration methods and the 
phenomenological/ANN models to three distinct engines: an automotive, a heavy-
duty, and a two-stroke marine diesel engine.

9.1 Summary & Conclusions
After an literature overview of the various IC engine models and calibration/optimi-
zation methods, the following phenomenological models are derived for the model/
knowledge based approach and systematically evaluated against comprehensive 
experimental data from the three engines.

• RATE OF HEAT RELEASE 
Fast and accurate engine operating map wide predictions of ROHR charac-
teristics are determined using the simplified yet physically and chemically 
coherent phenomenological ROHR model in combination with an Evolu-
tionary Algorithm (EA) to calibrate the model parameters. Motivated by the 
successful calibration and verification of the model for the three distinct 
engines, the general applicability of the model is investigated using the 
heavy-duty engine calibrated model to simulate both automotive and marine 
diesel engine operating conditions without any parameter changes (i.e. blind 
try). Despite deviations in the absolute values, both blind trials correctly 
reproduce the variations among single operating conditions, and can be 
adjusted to yield correct absolute values using basic knowledge about the 
tested engine. An advanced fuels survey further shows that the calibrated 
ROHR model is capable of predicting the effects of water-in-diesel emulsion 
and diesel-butylal blended fuels on ROHR characteristics.

• NITROGEN OXIDE EMISSIONS 
The developed phenomenological nitrogen oxide emissions model allows 
for both qualitative and quantitative predictions of specific NO emissions 
for the automotive and heavy-duty engine operating conditions. The quanti-
tative deviations between measured and simulated NO emissions for the 
two-stroke marine diesel engine can be related to both the general chemistry 
model and the modeling approach used for the turbulent gas mixing.
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CONCLUSIONS AND OUTLOOK
• SOOT EMISSIONS 
Despite the limitations in quantitative predictions, the phenomenological 
“two step - two zone” soot model accurately reproduces the variations 
between individual operating conditions. Taking the experimental measure-
ments uncertainties into account, even a quantitative agreement for particu-
lar automotive and heavy-duty diesel engine operating conditions is possible.

Artificial Neural Networks (ANN) are used as the black-box approach alternative 
to the phenomenological model/knowledge based approach. While the ANN 
approach yields fast and accurate training results, it may implicate errors for verifica-
tion operating conditions outside of the training range. Alternatively, the phenome-
nological model/knowledge based approach needs fundamental knowledge about 
the governing processes and advanced calibration methods, but allows for accurate 
predictions for verification operating condition and engine setups even outside of 
the training range.

9.2 Outlook
The following list contains possible questions and topics for future research that 
arised during this work:

• PHENOMENOLOGICAL MODELING 
Although the characterization of the model quality using single objective 
approximation functions allow for fast and accurate calibrations and verifi-
cations, the engine process simulation results given in Chapter 7 indicate the 
need for a comprehensive study on the fitness/objective functions used 
(including multi-objective optimization approaches). Whereas the deviation 
between the measured and simulated maximum ROHR significantly affects 
the in-cylinder peak pressure for operating conditions with high EGR rates, 
there is no influence detectable for high load, high speed operating condi-
tions (with no EGR). 
Regarding the formulation of the individual models, the influence of the 
EGR rate on the ROHR history, the impact of the Fenimore NO formation 
for low nitrogen oxide emission operating conditions, and the low sensitivity 
of the “two steps - two zone” soot model on engine operating condition 
parameters might be interesting topics for future investigations. 
Furthermore, the coupling of both in-cylinder and exhaust gas aftertreat-
ment models, real-time engine (emissions!) modeling, and adaption/exten-
sion of existing models according to the future demands (e.g. number size 
distribution, particulate matter models rather than specific soot mass mod-
els) are important topics in future engine modeling.
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• ANN MODELING 
Given the uncertainties noted during the ANN model verification (c.f. 
Chapter 8), promising topics for future IC engine related research may focus 
on large experimental data analyses, such as production engine testing (e.g. in 
combination with Design of Experiments) or online modeling (e.g. onboard 
diagnosis, “virtual” sensors, or measurement and control applications).

• CALIBRATION & OPTIMIZATION 
With a change from the single objective approximation functions to multi-
objective optimization functions in order to characterize the model quality, 
an in-depth comparison of the various multi-objective optimization methods 
for engine modeling specific applications would provide valuable insights. 
Considering the potential of the advanced optimization methods as shown 
for the phenomenological model/knowledge approach, a direct application 
of these optimization methods on an automated engine test-bed would be an 
additional step towards shorter IC engine development times.

• FUTURE ENGINE SIMULATIONS 
The development of an integrated engine simulation concept, accounting for 
both the system level (e.g. powertrain configuration, gas exchange, or auxil-
iaries) and the module level aspects (e.g. combustion, exhaust gas aftertreat-
ment, etc.), is perhaps the most challenging topic in future IC engine R&D. 
As a first step, exemplary investigations on subproblems, such as the combi-
nation of in-cylinder soot formation and particulate filter modeling, could be 
used to determine the potential gains that exist when the various modeling 
resolutions (empirical, phenomenological, detailed/complex) are combined.

As a scenario for the near-term future in engine R&D, an engine development 
procedure may start with a qualitative numerical evaluation of various technologies 
and concepts, using previously calibrated phenomenological models (blind try). 
After this initial design phase and the construction/production of the new engine 
for test purposes, a small number of reference measurements for the new engine are 
conducted (approx. 100 operating conditions; time exposure: 1 or 2 days, depending 
on the complexity of the system). Given these measurements, a calibration of the 
model parameters using an Evolutionary Algorithm, for example, (time exposure: 
one night) and an exhaustive evaluation of all possible engine parameter combina-
tions are carried out (time exposure: one to ten days, depending on the number of 
setups and CPU's used). After choosing the most promising configurations, the ver-
ification on the test bench completes the procedure. Compared to a standard all 
“test-bench based” scenario, i.e. measuring 1.5 million combinations (engine param-
eter setups), for example, the future scenario offers a decrease in time by at least two 
orders of magnitude.
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A APPENDIX

A.1 Operating Conditions

A.1.1 “Automotive” Diesel

... continued on next page

# cm
[m/s]

BMEP
[bar]

pInj
[bar]

SOIpilot
[°CA]

SOImain
[°CA]

EGR
[%]

“C
A

L
IB

R
A

T
IO

N
”

1 3.101 0.99 380 351.3 361.0 41.79
2 3.097 9.99 538 326.3 353.0 0.28
3 3.874 1.50 410 348.7 359.6 38.92
4 3.874 13.01 747 320.2 353.9 0.17
5 4.650 2.01 435 347.8 359.2 32.44
6 4.650 10.00 660 329.5 354.5 0.42
7 5.426 0.99 440 345.8 357.8 41.23
8 5.426 11.01 891 323.2 354.6 0.41
9 6.199 3.00 498 342.6 356.4 24.36
10 6.975 3.00 492 341.5 355.8 14.06
11 6.975 12.98 1121 318.0 350.5 0.38
12 7.751 3.00 520 338.6 353.2 14.91
13 7.751 10.00 962 318.2 353.7 5.09
14 8.524 1.50 459 337.7 349.5 0.95
15 9.304 9.01 960 318.3 350.5 0.38
16 10.076 12.98 1349 317.0 347.6 0.36
17 10.849 6.00 783 320.8 349.5 0.46
18 10.849 14.00 1553 317.0 345.8 0.38
19 10.849 11.00 1243 317.0 348.7 0.39
20 12.401 14.00 1600 0.0 339.0 0.46

“V
E

R
IF

IC
A

T
IO

N
”

21 3.101 0.50 380 351.5 360.9 44.40
22 3.101 2.00 381 349.6 361.3 30.07
23 3.097 6.98 449 339.4 355.7 5.93
24 3.874 5.00 444 343.8 360.4 13.28
25 3.874 13.59 800 318.7 354.4 0.16
26 4.650 7.00 545 337.4 358.9 9.56
27 4.650 12.99 878 321.7 353.6 0.22
28 5.426 3.02 482 344.5 358.4 26.22
29 5.426 4.00 532 342.0 358.4 19.24
30 5.426 8.00 734 330.6 357.1 12.52

Tab. A.1 Automotive Diesel Operating Conditions
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[bar]

pInj
[bar]

SOIpilot
[°CA]

SOImain
[°CA]

EGR
[%]

“V
E

R
IF

IC
A

T
IO

N
”

31 5.426 9.00 804 326.7 356.0 11.35
32 5.426 10.01 838 325.0 355.4 11.32
33 5.426 15.00 1189 317.4 353.8 0.25
34 6.199 4.00 567 339.7 356.8 19.16
35 6.199 9.00 869 321.3 356.6 16.70
36 6.199 10.00 913 320.0 356.0 16.48
37 6.199 11.00 957 319.7 354.8 11.10
38 6.199 12.99 1101 318.7 352.3 0.37
39 6.199 14.00 1174 318.1 352.2 0.33
40 6.199 18.11 1504 317.0 354.2 0.26
41 6.975 7.00 748 327.9 356.3 20.01
42 6.975 8.00 854 321.4 356.3 19.36
43 6.975 9.00 940 319.0 355.9 17.79
44 6.975 10.00 984 318.6 354.3 17.41
45 6.975 11.00 1004 318.4 353.6 5.79
46 6.975 12.00 1044 318.2 352.3 0.46
47 7.751 9.01 930 318.9 354.2 10.05
48 8.524 3.01 523 336.7 350.2 0.64
49 8.524 5.00 671 331.7 351.9 0.48
50 8.524 8.00 842 322.0 352.6 0.38
51 10.076 1.49 497 330.6 347.3 1.00
52 10.849 1.01 468 329.8 345.8 1.19
53 10.849 2.01 508 325.8 346.2 0.87
54 10.849 3.50 576 323.3 348.1 0.62
55 11.625 15.01 1600 0.0 341.2 0.44
56 13.020 0.50 499 318.2 342.3 1.20
57 13.020 1.50 556 317.0 343.6 0.90

Tab. A.1 Automotive Diesel Operating Conditions (cont.)
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Operating Conditions
A.1.2 “Heavy-Duty” Diesel

# cm
[m/s]

BMEP
[bar]

pInj
[bar]

SOI
[°CA]

EGR
[%]

“C
A

L
IB

R
A

T
IO

N
” 

/ 
“T

R
A

IN
IN

G
”

1 5.944 4.91 1400 356 0
2 5.936 4.95 1400 356 23
3 5.936 4.85 1400 356 36
4 5.936 4.91 400 350 0
5 5.936 4.89 700 350 0
6 5.938 4.86 1000 350 0
7 5.941 4.94 500 346 0
8 5.944 4.95 500 352 0
9 5.944 4.94 500 357 0
10 5.938 9.81 1400 356 0
11 7.333 9.94 1400 356 0
12 8.702 8.88 1400 356 0
13 8.696 4.40 1400 356 0
14 8.707 13.29 1400 356 0
15 8.699 8.79 1600 352 0
16 5.944 4.93 350 357 0
17 7.319 4.97 1000 352 0
18 8.702 4.35 1400 356 27
19 8.707 13.26 1400 356 7

“V
E

R
IF

IC
A

T
IO

N
”

20 5.947 4.94 350 357 0
21 5.947 4.79 1400 356 0
22 5.947 4.92 1400 356 41
23 7.350 9.91 1000 352 0
24 7.322 9.91 1000 352 0
25 7.324 9.94 700 352 0
26 7.324 9.87 1000 348 0
27 7.324 9.95 1000 356 0
28 7.322 9.89 1400 356 6
29 7.322 4.97 700 352 0
30 7.319 4.97 700 352 0
31 5.941 9.86 1000 352 0
32 8.699 8.84 1000 352 0
33 5.936 4.91 400 350 0
34 5.938 4.91 500 350 0
35 5.936 4.90 350 356 0
36 5.938 4.89 1400 356 30
37 8.693 4.40 1400 356 17
38 8.699 8.82 1400 356 10
39 8.707 13.24 1400 356 7

Tab. A.2 Heavy-Duty Diesel Operating Conditions
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APPENDIX
# cm
[m/s]

BMEP
[bar]

pInj
[bar]

SOI
[°CA]

EGR
[%]

μ H2O
[%]

μ O2
[%]

“C
A

L
IB

R
A

T
IO

N
”

1 I 5.933 4.88 500 346 0 0 0
2 II 5.933 4.91 500 352 0 0 0
3 III 5.936 4.93 1100 356 0 0 0
4 IV 5.936 4.92 1100 356 43 0 0
5 V 5.936 4.91 400 350 0 0 0
6 VI 5.938 9.81 1400 356 0 0 0
7 VII 8.702 8.88 1400 356 0 0 0
8 VIII 7.319 4.97 1000 352 0 0 0
9 XIX 5.936 4.82 560 346 0 12.89 10.15
10 XX 5.938 4.88 1200 356 0 12.89 10.15
11 XXI 5.941 9.86 1220 356 11 12.89 10.15
12 XXII 5.950 19.64 1260 356 0 12.89 10.15
13 XXVII 5.930 4.95 600 346 0 20.89 15.36
14 XXVIII 5.930 4.91 600 352 0 20.89 15.36
15 XXIX 5.930 4.95 600 346 0 20.89 15.36
16 XXX 5.927 4.92 1300 356 0 20.89 15.36
17 XXXIV 5.933 4.96 1300 356 0 0 11.98
18 XXXV 5.933 5.04 1300 356 38 0 11.98
19 XXXVI 5.938 9.77 1270 356 15 0 11.98
20 XXXVII 5.933 4.96 1300 356 0 0 11.98

“V
E

R
IF

IC
A

T
IO

N
”

21 IX 5.944 4.93 350 357 0 0 0
22 X 5.936 4.91 400 350 0 0 0
23 XI 5.938 4.91 500 350 0 0 0
24 XII 5.947 4.92 1400 356 41 0 0
25 XIII 5.941 9.89 1100 356 0 0 0
26 XIV 5.944 9.78 1100 356 0 0 0
27 XV 5.950 19.53 1100 356 0 0 0
28 XVI 7.350 9.91 1000 352 0 0 0
29 XVII 8.699 8.84 1000 352 0 0 0
30 XVIII 8.699 8.82 1400 356 10 0 0
31 XXIII 5.938 4.98 500 352 0 12.89 10.15
32 XXIV 5.938 4.92 560 352 0 12.89 10.15
33 XXV 5.941 9.79 1220 356 0 12.89 10.15
34 XXVI 5.947 14.70 1220 356 0 12.89 10.15
35 XXXI 5.930 4.95 600 346 0 20.89 15.36
36 XXXII 5.930 4.91 600 352 0 20.89 15.36
37 XXXIII 5.927 4.92 1300 356 0 20.89 15.36
38 XXXVIII 5.930 5.07 610 352 0 0 11.98
39 XXXIX 5.933 4.96 1300 356 0 0 11.98
40 XL 5.923 5.05 1300 356 37 0 11.98

Tab. A.3 Heavy-Duty Advanced Fuels Survey Operating Conditions
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Operating Conditions
A.1.3 “Marine” Diesel

# cm
[m/s]

BMEP
[bar]

pInj
[bar]

SOI (a)

[a.u.]

a. Normalized Time (Reference Operating Condition # 15: SOI = 0 and ϕ 90 = 100)

EGR
[%]

“C
A

L
IB

R
A

T
IO

N
”

1 7.683 15.70 1100 6.13 0
2 7.683 15.70 800 2.58 0
3 7.683 15.70 450 -3.87 0
4 8.456 19.02 1000 2.90 0
5 8.456 19.02 600 -2.26 0
6 5.315 7.55 800 5.16 0
7 5.315 7.55 450 -2.90 0
8 7.683 15.70 1000 -1.29 0
9 7.683 15.70 1100 -6.77 0
10 7.683 15.70 450 -16.77 0
11 6.716 11.98 1000 10.00 0
12 6.716 11.98 600 0.65 0

“V
E

R
IF

IC
A

T
IO

N
”

13 7.683 15.70 1000 5.16 0
14 7.683 15.70 600 -0.65 0
15 8.456 19.02 800 0.00 0
16 5.315 7.55 1000 7.42 0
17 5.315 7.55 600 2.58 0
18 7.683 15.70 1100 -0.32 0
19 7.683 15.70 800 -3.87 0
20 7.683 15.70 600 -7.10 0
21 7.683 15.70 450 -10.32 0
22 7.683 15.70 1000 -7.74 0
23 7.683 15.70 800 -10.32 0
24 7.683 15.70 600 -13.55 0
25 6.716 11.98 800 7.10 0
26 6.716 11.98 450 -3.87 0

Tab. A.4 Marine Diesel Operating Conditions
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APPENDIX
A.2 Kinetics of NO Formation
The kinetic data refer to the standard Arrhenius rate constant formulation

 (A.1)

where EA is the activation energy in [J/mole], A is the frequency or preexponential 
factor ,  is the universal gas 
constant and b the dimensionless temperature exponent.

PATTAS WRAY BAULCH
BRACCO URLAUB HEYWOOD

Afwd 
Arev

4.93·107

1.60·107
7.00·107

1.55·107
1.36·108

3.10·107
1.30·108

2.80·107
7.60·107

1.60·107

bfwd 
brev

0.0472
0

0
0

0
0

0
0

0
0

EAfwd 
EArev

316’480
0

316’100
0

315’680
1’400

317’850
0

316’000
0

Afwd 
Arev

1.48·102

1.25·101
1.33·104

3.20·103
6.40·103

1.50·103
6.40·103

1.50·103
6.40·103

1.50·103

bfwd 
brev

1.50
1.612

1.0
1.0

1.0
1.0

1.0
1.0

1.0
1.0

EAfwd 
EArev

23’780
157’800

29’640
163’700

26’170
161’780

26’150
163’250

26’150
163’250

Afwd 
Arev

4.22·107

6.76·108
4.00·107

1.30·108
4.20·107

1.30·108
4.20·107

1.30·108
4.10·107

2.00·108

bfwd 
brev

0
-0.212

0
0

0
0

0
0

0
0

EAfwd 
EArev

0
206’580

0
190’100

0
190’100

0
190’100

0
196’600

Tab. A.5 Rate Constants for the NO Formation Mechanism

kArr A T b E– A
ℜT
---------exp⋅ ⋅=

m3 K-b⋅( ) mole s⋅( )⁄[ ] ℜ 8.314472 J mole K⋅( )⁄[ ]=

O N2 NO N+↔+

N O2 NO O+↔+

N OH NO H+↔+
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Correlation & Linear Regression Statistics
A.3 Correlation & Linear Regression Statistics  

GAOPT EAOPT CMA-ES GADS

Error Function f Err 11854 11336 13124 15585

Start of Combustion 
ϕ SOC

r 0.9100 0.9523 0.9562 0.9384
m 0.9167 1.0363 1.1238 0.9776
b 2.99 -1.29 -4.43 0.81

10% Heat Release 
ϕ 10

r 0.9224 0.9357 0.8592 0.9340
m 1.0085 0.9562 1.0243 1.0453
b -0.30 1.57 -0.83 -1.66

50% Heat Release 
ϕ 50

r 0.9098 0.9268 0.7677 0.8252
m 1.0126 0.9437 0.7889 0.8097
b -0.46 2.05 7.80 6.99

90% Heat Release 
ϕ 90

r 0.7648 0.8272 0.5513 0.7322
m 0.8939 0.8020 0.6066 0.7379
b 4.17 7.73 15.92 10.79

Maximum ROHR 
|dQ/dϕ |max

r 0.6426 0.7117 0.6403 0.4984
m 1.0087 0.7455 0.7539 0.5765
b 0.79 2.01 2.02 3.45

Position max. ROHR 
ϕ (dQ/dϕ )max

r 0.8540 0.8383 0.6932 0.6812
m 0.7955 0.7748 0.7176  0.6172
b 7.60 8.37 10.53 14.19

Tab. A.6 Comparative Algorithm Study Statistics : 
(r) Pearson’s Correlation Coefficient, (m) Linear Regression 
Slope and (b) Linear Regression Intercept

ϕ SOC ϕ 10 ϕ 50 ϕ 90

O
pt

im
iz

ed Pearson’s Correlation Coefficient r [-] 0.9959 0.9683 0.9775 0.8432

Linear Regression Slope m [-] 1.02 0.98 0.91 0.98
Linear Regression Intercept b [-] 0.06 0.35 0.90 0.55

B
lin

d

Pearson’s Correlation Coefficient r [-] 0.9948 0.9912 0.9164 0.8025
Linear Regression Slope m [-] 1.03 0.99 0.96 0.74
Linear Regression Intercept b [-] -0.14 -1.88 -2.95 -3.12

A
dj

us
te

d Pearson’s Correlation Coefficient r [-] 0.9951 0.9624 0.8690 0.8295
Linear Regression Slope m [-] 1.02 0.92 0.87 1.01
Linear Regression Intercept b [-] -0.12 0.35 1.21 0.69

Tab. A.7 Marine Diesel Engine ROHR Model Statistics for the EA 
Optimized, the Heavy-Duty Blind Try, and the Adjusted Case
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APPENDIX
A.4 Cylinder Pressures
(a) (b)

(c) (d)

(e) (f)

Fig. A.1 Comparison of Measured and Numerical Cylinder Pressures for Six 
Selected Heavy-Duty Diesel Operating Conditions; (a) # 2, (b) # 4,. 
(c) # 5, (d) # 9, (e) # 15, and (f) # 18
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