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Abstract: A search for new heavy resonances decaying to a pair of Higgs bosons (HH)
in proton-proton collisions at a center-of-mass energy of 13TeV is presented. Data were
collected with the CMS detector at the LHC in 2016–2018, corresponding to an integrated
luminosity of 138 fb−1. Resonances with a mass between 0.8 and 4.5TeV are considered using
events in which one Higgs boson decays into a bottom quark pair and the other into final
states with either one or two charged leptons. Specifically, the single-lepton decay channel
HH→ bbWW∗ → bb`νqq′ and the dilepton decay channels HH→ bbWW∗ → bb`ν`ν and
HH→ bbττ→ bb`νν`νν are examined, where ` in the final state corresponds to an electron
or muon. The signal is extracted using a two-dimensional maximum likelihood fit of the
H → bb jet mass and HH invariant mass distributions. No significant excess above the
standard model expectation is observed in data. Model-independent exclusion limits are
placed on the product of the cross section and branching fraction for narrow spin-0 and
spin-2 massive bosons decaying to HH. The results are also interpreted in the context of
radion and bulk graviton production in models with a warped extra spatial dimension. The
results provide the most stringent limits to date for X → HH signatures with final-state
leptons and at some masses provide the most sensitive limits of all X→ HH searches.
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1 Introduction

The discovery of a Higgs boson (H) at the CERN LHC [1–3] validated the proposed
mass generation mechanism within the standard model (SM) [4, 5], the so-called “Brout-
Englert-Higgs mechanism.” A number of theoretical difficulties found in the simple model
are ameliorated by an extended Higgs sector [6]. Supersymmetry [7–14] requires such
an extended Higgs sector that includes additional spin-0 particles. Models with warped
extra dimensions, proposed by Randall and Sundrum [15], postulate the existence of a
compact fourth spatial dimension with a warped metric. Such compactification creates
heavy resonances arising as a tower of Kaluza-Klein excitations, leading to possible spin-0
radions [16–19] or spin-2 bulk gravitons [20–22]. The ATLAS [23–34] and CMS [35–51]
Collaborations have conducted a number of searches for these particles, where the new
bosons decay into vector bosons and/or SM Higgs bosons (WW, ZZ, WZ, HH, ZH, or WH).

In this paper, we present an expansion of a previous search [52] for heavy resonances
(X) decaying to HH. The previous study considered a smaller data set of proton-proton
(pp) collisions and searched for a signal in which one Higgs boson decayed to a bottom quark
pair (bb) and the second decayed to a pair of W bosons, with one decaying leptonically and
the other hadronically (WW∗ → `νqq ′). The data set analyzed in ref. [52] corresponded
to collisions at

√
s = 13TeV recorded in 2016 with an integrated luminosity of 36 fb−1. In

this new search, in addition to the HH → bb`νqq ′ decay channel from ref. [52], two other
signal decay channels are included by considering dilepton decays of the Higgs boson that
does not decay to bb : the H → WW∗ → `ν`ν and the H → ττ → `νν`νν decays. In all
three cases, the ` denotes an electron or a muon; the analysis is also sensitive to leptonically
decaying τ leptons in the bbWW∗ decays. Events from bbττ comprise 30–35% of the total
expected dilepton signal yield. The analysis is optimized for the three X → HH channels
just mentioned, but signal events from HH → bbZZ∗ are also included in our acceptance
and constitute 1–3% of the total expected signal yield.

This search is performed on a data set of pp collisions at a center-of-mass energy of
13TeV, collected in 2016–2018 at the CERN LHC, corresponding to an integrated luminosity
of 138 fb−1, and considers narrow resonances in the mass range 0.8 < mX < 4.5TeV. The
Higgs bosons have a high Lorentz boost because of the large values of mX considered, so the
decay products of each one are contained in a collimated cone. The degree of collimation
is enough such that the hadronically decaying bosons (H and W) are each reconstructed
as a single jet that has substructure consistent with a decay to two energetic quarks. The
distinguishing characteristic of the signal is a peak in the two-dimensional (2D) plane of
the H → bb jet mass mbb and the reconstructed HH invariant mass mHH .

In the single-lepton (SL) channel, the quarks in the H → WW∗ → `νqq ′ decay are
reconstructed as a single large jet (the qq ′ jet) with a nearby lepton (e or µ). This jet is
required to have substructure consistent with a decay to two energetic quarks. This Higgs
boson decay chain is reconstructed as the qq ′ jet, the lepton, and the missing transverse
momentum ~pmiss

T . In the dilepton (DL) channel, two leptons are reconstructed in close
proximity to each other, with ~pmiss

T nearby, consistent with the expected neutrinos. In all
channels considered, the H → bb decay is reconstructed as a single large jet (the bb jet)
with substructure and high transverse momentum pT.

– 1 –
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The main SM background in this search arises from top quark pair (tt) production.
This analysis is most sensitive to top quarks that have collimated decay products because
of large Lorentz boosts. In the SL channel, the largest background comes from tt decays
in which one top quark decays with a charged lepton and a neutrino (t → Wb → `νb),
and the other decays exclusively to quarks (t → Wb → qq ′b), which can be mistakenly
reconstructed as the bb jet candidate. Other significant backgrounds in this channel are
the production of W bosons in association with jets with W → `ν (hereafter referred to as
W+jets), and multijet events from quantum chromodynamic processes (QCD multijets),
with either a lepton originating from heavy flavor decay or a hadron misidentified as a
lepton. In the DL channel, the background yield is smaller than that of the SL channel
by a factor of ≈60. Top quark pair production is the dominant background here too, with
approximately equal contributions from tt events with a single lepton in the final state
and events in which both top quarks decay leptonically. Single-lepton tt events can fall
into the DL channel when some part of the hadronic top quark decay is misidentified as a
lepton. The other significant background in this channel is production of Z/γ

∗ bosons in
association with jets (Z/γ∗+jets), with Z/γ∗ → ``. These backgrounds are distinguished in
data using the mbb spectrum. Contributions from backgrounds with an SM Higgs boson
(e.g., ttH) are considered but found to be negligible in both channels.

The CMS detector and the simulated samples used to build the analysis are described
in sections 2 and 3, respectively. Relative to ref. [52], this analysis incorporates new
DL signal modes and employs new particle reconstruction and identification techniques
in the SL channel. These include more efficient algorithms for identifying electrons and
jets with b hadrons (b tagging) as well as an improved reconstruction procedure for the
H → WW∗ → `νqq ′ decay. The developments are discussed in section 4, which details
the event reconstruction and identification, including the final-state particles and the
intermediate-state bosons. Section 5 discusses the selection criteria used to discriminate
signal from background and the division of all events into 12 exclusive categories by the
number of leptons, the lepton flavor, the quality of jet flavor tagging, and the H →WW∗

decay kinematics. Section 6 details the model-building process for the signal and the
background. The signal and SM background yields are estimated using a simultaneous
maximum likelihood fit to the 2D mbb and mHH mass distributions in all 12 categories.
All systematic uncertainties are discussed in section 7, and the post-fit results are presented
in section 8. The analysis is summarized in section 9.

Tabulated results are provided in the HEPData record for this analysis [53].

2 The CMS detector and global event reconstruction

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal
diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon
pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and
a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two
endcap sections. Forward calorimeters extend the pseudorapidity (η) coverage provided by
the barrel and endcap detectors. Muons are measured in gaseous detectors embedded in
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the steel flux-return yoke outside the solenoid. A more detailed description of the CMS
detector, together with a definition of the coordinate system used and the relevant kinematic
variables, can be found in ref. [54].

Events of interest are selected using a two-tiered trigger system. The first level,
composed of custom hardware processors, uses information from the calorimeters and muon
detectors to select events at a rate of around 100 kHz within a fixed latency of about 4µs [55].
The second level, known as the high-level trigger, consists of a farm of processors running a
version of the full event reconstruction software optimized for fast processing and reduces
the event rate to around 1 kHz before data storage [56].

Event reconstruction relies on a particle-flow (PF) algorithm [57], which aims to identify
each individual particle in an event with an optimized combination of information from the
various elements of the CMS detector. The vector ~pmiss

T is computed as the negative vector
pT sum of all the PF candidates in an event, and its magnitude is denoted as pmiss

T [58].
The ~pmiss

T is modified to account for corrections to the energy scale of the reconstructed jets
in the event. In each event, jets are clustered from these PF candidates using the anti-kT
algorithm [59, 60] with a distance parameter of 0.4 (AK4 jets) and of 0.8 (AK8 jets).

The jet momentum is determined as the vectorial sum of all particle momenta in the
jet, and is found from simulation to be, on average, within 5–10% of the true momentum
over the entire pT spectrum and detector acceptance. Additional pp interactions within the
same or nearby bunch crossings (pileup) can contribute extra tracks and calorimetric energy
depositions, increasing the apparent jet momentum. To mitigate this effect for AK4 jets,
tracks identified as originating from pileup vertices are discarded, and an offset correction
is applied to correct for residual contributions [57, 60]. For AK8 jets, a different pileup
per particle identification algorithm [61, 62] reduces the effect of pileup by considering
local shape variables [62] to rescale the momentum of each jet constituent according to its
probability to originate from the primary vertex. Jet energy corrections are derived from
simulation studies so that the average measured energy of jets becomes identical to that of
particle-level jets. In situ measurements of the momentum balance in dijet, photon+jet,
Z+jet, and multijet events are used to determine any residual differences between the jet
energy scale in data and in simulation, and appropriate corrections are made [63].

3 Simulated samples

Signal and background yields are extracted from a fit to the data in the 2D mbb and mHH
mass distribution using templates obtained from samples generated by Monte Carlo (MC)
simulation.

The signal processes pp → X → HH → bbVV∗ (where V = W or Z) and pp → X →
HH → bbττ are simulated for spin-0 radions and spin-2 gravitons in the bulk scenario
of Randall-Sundrum models with warped extra dimensions. Only the bbWW∗ and bbττ

events are used to optimize the analysis, but any bbZZ∗ events that pass the full selection
are included in the signal acceptance. The simulated X bosons are produced via gluon fusion
and with a narrow width (1MeV) that is small compared to the experimental resolution
of roughly 5%. The branching fractions used to normalize the signal correspond to those
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expected for SM Higgs boson decays. The signal is generated at leading order (LO) using
the MadGraph5_amc@nlo V5 2.4.2 generator [64] with the MLM merging scheme [65]
for mX of 0.8–4.5TeV.

The MadGraph5_amc@nlo generator is also used to produce the W+jets, Z/γ∗ → ``,
and QCD multijet background samples at LO. The W+jets and Z/γ∗ → `` samples are
normalized using next-to-next-to-LO (NNLO) cross sections, calculated with fewz v3.1 [66].
Samples of WZ diboson production and of the associated production of tt with either a W
or Z boson are also generated with MadGraph5_amc@nlo but at next-to-LO (NLO) with
the FxFx jet merging scheme [67]. The powheg v2 generator is used to produce samples
for tt , WW, ZZ, ttH, and single top quark production at NLO [68–75]. Furthermore, the
tt process is normalized to the NNLO cross section, computed with Top++ v2.0 [76].

Parton showering and hadronization are simulated in the 2016 samples with pythia
v8.226 [77] using the CUETP8M1 [78] tune, except for the tt , ttH, and X → HH → bbVV∗

signal samples, which are simulated using the CP5 tune. For 2017–2018, pythia v8.230
and the CP5 tune [79] are used to produce the samples. The parton distribution functions
(PDFs) used to produce the samples are the NNPDF 3.0 [80] set for the 2016 data set and
the NNPDF 3.1 [81] set for the 2017–2018 data sets. The simulation of the CMS detector
is performed with the Geant4 [82] toolkit. The simulated samples are weighted to have
the same multiplicity distribution of pileup interactions as observed in data.

4 Decay chain reconstruction

All signal events, regardless of lepton multiplicity, feature a high-pT jet that has substructure
consistent with two b quark decays. This jet is generally opposite in the transverse plane to
a collection of other particles from a boosted Higgs boson decay. In the SL channel, signal
events feature a lepton originating from a boosted W boson decay and a nearby jet that
has substructure consistent with a W → qq ′ decay. Even at the lowest considered mX of
0.8TeV, the median angular distance ∆R =

√
(∆η)2 + (∆φ)2 (where φ is the azimuthal

angle) between the W → qq ′ decay and the lepton is approximately ∆R = 0.5. In the DL
channel, there are two high-pT leptons originating from the decay of either a boosted W
boson pair or a boosted τ lepton pair, but there is no jet in the vicinity of the leptons,
resulting in a cleaner experimental signature.

Events are first selected by the trigger system with small year-to-year differences in the
criteria. Events are triggered if they contain one of the following: an isolated muon with
pT > 24GeV (27GeV in 2017), an isolated electron with pT > 32GeV (27GeV in 2016), or
HT > 1050GeV (900GeV in 2016), where HT is the scalar sum of jet pT for all trigger-level
AK4 jets with pT > 30GeV. An inclusive-OR combination of lepton and HT triggers is
used because the high-mX SL signal does not have leptons that are sufficiently isolated
to pass the online lepton isolation selection, as the decay products WW∗ → `νqq ′ are
highly collimated. Additional multiobject triggers that select events with at least one lepton
and considerable jet energy supplement these triggers, helping to maintain high trigger
efficiency for signal over the entire range of mX . In particular, these multiobject triggers
fire for events with HT > 450GeV (400GeV in 2016) and a lepton that has pT > 15GeV
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and looser isolation requirements than for the previously mentioned isolated single-lepton
triggers. These multiobject triggers are particularly helpful for the SL signal topology with
the lepton close to the jet. The trigger efficiency is measured for eµ tt events in data for
events passing offline selection criteria for HT in the SL channel and both HT and lepton
pT in the DL channel. We use tt events because the lepton and jet multiplicities resemble
those in signal events. Simulation is corrected such that the trigger efficiency matches
that in the data. In the SL channel, the trigger efficiency for signal events is over 96% at
mX = 0.8TeV and increases to >99% above mX = 1.0TeV. In the DL channel, the trigger
efficiency is >99% over the full range of mX .

4.1 Electron and muon identification

Different selection criteria are required for the SL and DL channels to identify signal-like
leptons because of the different decay topologies. First, however, an event in either channel
must contain either a muon with pT > 27GeV or an electron with pT > 30GeV. In the DL
channel, the other lepton must have pT > 10GeV. All muons are required to have |η| < 2.4.
Electrons in the DL channel are required to have |η| < 2.5, but those in the SL channel are
restricted to the ECAL barrel region (|η| < 1.479) to suppress a significant contribution from
the QCD multijet background with a small loss in signal acceptance. Leptons must satisfy
reconstruction quality and identification requirements that are optimized to maintain high
efficiency and low probability for misidentifying hadrons as leptons [83, 84]. Additionally,
the impact parameters of lepton tracks with respect to the primary vertex are required to
be consistent with those originating from this vertex. Looser constraints on the impact
parameter are used in the DL channel because some of the leptons originate from H → ττ

decays and thus have significant displacements from the primary vertex. Leptons are
required to be isolated with an isolation cone size designed for leptons from boosted decays,
in which the cone size becomes smaller with larger pT [85]. Because less hadronic energy
is expected near the leptons in the DL channel than in the SL channel, the allowed extra
transverse energy in the isolation cone is smaller.

In the SL channel, as measured with signal simulation, the electron selection efficiency
has a maximum of 70% at mX = 0.8TeV and then degrades to 7.5% at mX = 4.5TeV.
This is caused by a selection imposed at a low-level reconstruction step on the ratio of
the energy deposited in the HCAL to that deposited in the ECAL. Electrons in the
H →WW∗ → eνqq ′ decay often fail this selection because of nearby energy deposits from
the qq ′ jet, which grow with larger boosts. However, the reconstruction of muons does not
rely on such HCAL measurements and so is much more efficient than for electrons, but the
isolation of muons is still sensitive to the qq ′ jet. As a result, the overall selection efficiency
for signal muons is better than for electrons but still degrades for larger mX ; the muon
efficiency ranges from approximately 90% at mX = 0.8TeV down to 60% at mX = 4.5TeV.

In the DL channel, where there is no qq ′ jet, the lepton selection efficiency is larger for
all mX than in the SL channel. Because of the increased boost of the system, the efficiency
still drops toward high mX . For electrons, the reconstruction efficiency is much larger
than in the SL channel, ranging from approximately 82% at mX = 0.8TeV down to 71%
at mX = 4.5TeV. The muon efficiency is also larger, ranging from approximately 96% at

– 5 –



J
H
E
P
0
5
(
2
0
2
2
)
0
0
5

mX = 0.8TeV down to 91% at mX = 4.5TeV. The lepton efficiencies are also measured
in simulation and data in a Z → `` sample, and the simulation is corrected to match the
efficiency in data. The systematic uncertainties in these measurements are applied to the
normalization of the signal.

4.2 Reconstruction and flavor identification of jets

Because of the boost imparted to the Higgs bosons by the decay of the much more massive
X boson, the H → bb and W → qq ′ decays are each reconstructed as a single, merged
AK8 jet with two-prong substructure. In order to prevent the qq ′ jet from containing the
lepton’s momentum in the SL channel, the PF candidates associated with the lepton are
not included in the clustering of the set of jets from which the qq ′ jet is selected. Only the
PF candidates associated with a lepton that fulfills the analysis requirements are removed,
and the same jet energy corrections described in section 2 for AK8 jets are applied to these
lepton-subtracted AK8 jets. We ensure the validity of applying these corrections to the
lepton-subtracted AK8 jets by comparing the jet energy response in simulation between
jets that require lepton subtraction and jets that do not. Jets of both types are required to
have |η| < 2.4 so that most of the jet particles are within the acceptance of the tracker.

The Higgs bosons have collimated decays and typically are produced back-to-back
in the transverse plane, i.e., ∆φ(H,H) ≈ π. The bb jet candidate is required to have
pT > 200GeV. In the SL channel, it is required to have a ∆φ > 2.0 separation from the
lepton and a ∆R > 1.6 separation from the qq ′ jet, while in the DL channel, it is required
to have a ∆φ > 2.0 separation from the dilepton momentum and to not contain either
lepton within the jet cone. The qq ′ jet in the SL channel is chosen as the closest AK8
jet in ∆R to the lepton, provided that it is found within ∆R < 1.2 of the lepton and
has pT > 50GeV. Within both the bb and qq ′ jets, two subjets are reconstructed that
must each have pT > 20GeV. Constituents of the AK8 jets are first reclustered using the
Cambridge-Aachen algorithm [86, 87]. The “modified mass drop tagger” algorithm [88, 89],
also known as the “soft drop” (SD) algorithm, with angular exponent β = 0, soft cutoff
threshold zcut < 0.1, and characteristic radius R0 = 0.8 [90], is applied to remove soft, wide-
angle radiation from the jet. The subjets used are those remaining after the algorithm has
removed all recognized soft radiation. The jets in this analysis are required to have exactly
two subjets. The SD jet mass is the invariant mass of these two subjets. The SD jet mass of
the bb jet is used to obtain the search variable mbb , after applying pT-dependent corrections,
so that mbb in simulation is on average equal to the Higgs boson mass of 125GeV.

Identifying the H → bb decay in signal events and discriminating against background
events relies on tagging jets as likely to have originated from b hadron decays. The AK8
jets are identified as consistent with a bb decay using the DeepAK8 mass-decorrelated
Z/H → bb tagger [91], with a discriminator denoted as DZ/H→bb , at a working point that
has an efficiency of ≈85% for selecting bb jets and a misidentification probability of <1% for
pure light-flavor quark and gluon jets. This is a deep neural network based tagger, designed
to discriminate high-pT jets consistent with a bb substructure against light-flavor quark
(u, d, s) or gluon jets. Furthermore, by design the tagger does not sculpt the SD jet mass
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distributions, thereby enabling the use of the SD jet mass in the background estimation.
The b tagging efficiencies are measured in data, and the simulation is corrected for any
discrepancies. The uncertainty in this bb tagging efficiency is the dominant systematic
uncertainty in the analysis, denoted as “bb jet tagging” in table 7 and discussed later in
section 7.2.

In tt events, the most common events misreconstructed as signal, the bb jet candidate
is typically reconstructed around the decay of one of the b quarks, while the other b quark
decays into the opposite direction in the transverse plane. Identifying a b-tagged AK4 jet
that is separated from the bb jet is an effective method of discriminating between such tt
events and signal events, in which the bb jet is reconstructed from the two H → bb quarks.
To be considered a candidate b jet, an AK4 jet must have pT > 30GeV and be identified using
the DeepJet tagger [92–94] at a working point that has an efficiency of ≈80% for selecting
b jets and a misidentification probability of ≈1% for light-flavor quark and gluon jets.

4.3 Reconstructing the HH system mass

Depending on whether the final state has one or two leptons, different strategies are employed
to reconstruct the four-momentum of the Higgs boson that does not decay to bb . The mass
mHH is then the invariant mass of this four-momentum and the bb jet four-momentum.
The mass of the bb jet used in this calculation is not the SD jet mass mbb but is rather the
ungroomed jet mass. In sections 4.3.1 and 4.3.2, respectively, the reconstruction strategies
are described for the SL and DL channels.

4.3.1 Single-lepton channel

To reconstruct the Higgs boson four-momentum in the H →WW∗ → `νqq ′ decay chain
from the visible and invisible decay products, a likelihood-based technique that takes the
reconstructed lepton, the ~pmiss

T , and the qq ′ jet as input is employed. For each event, values
for the following five parameters are extracted by maximizing a likelihood function:

• ~pν : the three components of the neutrino momentum.

• Rqq ′ : the jet response correction, a multiplicative scale factor applied to the pT of
the qq ′ jet. The jet pT is allowed to vary because the uncertainty associated with the
estimated pT of this jet is large.

• Vqq ′ : a boolean indicator of whether the qq ′ jet favors a larger or smaller mass than
the leptonic W boson decay. This is largely a bookkeeping device for the W and W∗

hypotheses.

With these parameters, the H →WW∗ four-momentum can be fully determined. This four-
momentum is then the sum of the neutrino four-momentum pν , the qq ′ jet four-momentum
(with pT modified by Rqq ′), and the four-momentum of the lepton.

The likelihood function is constructed with six probability density functions (pdfs)
P (x|~y) estimated from signal simulation, where x is the corresponding observable in the
pdf. The symbol ~y represents the set of free parameters associated with that pdf, such as
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Vqq ′ . These pdfs are represented as one-dimensional (1D) histograms. The full likelihood
function is:

L=P
(
mjet|Vqq ′

)
P
(
pjet

T |Rqq ′ ,Vqq ′

)
P
(
m`νqq ′ |~pν ,Rqq ′ ,Vqq ′

)
P
(
m`ν |~pν ,Vqq ′

)
P
(
~pmiss

T |~pν ,Vqq ′

)
.

(4.1)
The observable mjet is the SD jet mass of the qq ′ jet, and its corresponding pdf is coarsely
binned to remain insensitive to the precise modeling of the SD algorithm. The observable
pjet

T is the unmodified qq ′ jet pT, and the pdf P (pjet
T |Rqq ′ , Vqq ′) is the jet pT response.

Two other observables, m`ν and m`νqq ′ , are masses of the lepton-neutrino pair and the
lepton-neutrino-qq ′ jet system.

The last factor in eq. (4.1) represents the product of two pdfs, each corresponding to a
single component of ~pmiss

T :

P
(
~pmiss

T |~pν , Vqq ′

)
= P

(
pmiss

T,‖ |~pν , Vqq ′

)
P
(
pmiss

T,⊥ |~pν , Vqq ′

)
. (4.2)

The two observables pmiss
T,‖ and pmiss

T,⊥ are defined with respect to the reference frame of the
H →WW∗ decay, along the direction of ~p reco

T :

~p reco
T = ~pmiss

T +
(
~p` + ~pqq ′ jet

)
T
. (4.3)

The two ~pmiss
T pdf factors are parameterized as the components of the extra pmiss

T (relative
to the neutrino momentum) that are parallel and perpendicular to this vector ~p reco

T . The
extra pmiss

T along this direction arises primarily from mismeasurement of the bb jet, while
the orthogonal component arises mostly from pileup and the underlying event.

The pdfs P of the observables are generally independent of mX , but there is still some
residual dependence. We account for this by producing two sets of pdfs, one at low preco

T
(<600GeV) and one at high preco

T (>1400GeV). Then, event-by-event, the histogram of the
pdf is obtained by interpolating between the two histograms at the two regimes of preco

T . This
interpolation is performed linearly as a function of the event preco

T . The P are all dependent
on whether the hadronically decaying W boson is heavier than the leptonically decaying W,
so each factor is dependent on the free parameter Vqq ′ . Correlations among the observables
in the likelihood were studied and found not to affect the sensitivity significantly.

This method gives an mHH resolution for signal events that is very similar to that
from a direct calculation using the Higgs boson mass as a constraint (as in [52]), but for
background events it typically returns lower values of mHH than in the direct calculation.
We take advantage of this fact using an alternative likelihood Lalt, which is less constrained
by the intermediate masses. Instead of fitting for the neutrino pz, the massesm`ν andm`νqq ′

are included as free parameters. Both likelihoods are used to construct a discriminating
variable between signal and background:

D`νqq ′ = −2 logL/Lalt, (4.4)

where L is the likelihood described in eq. (4.1). We discuss how D`νqq ′ is used in section 5.
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4.3.2 Dilepton channel

Because of the absence of a qq ′ jet, the presence of larger pmiss
T , and much smaller back-

grounds, there is no need for a likelihood-based technique to separate signal and background
in the DL channel. Instead, we make simple assumptions regarding the decay kinematic
distributions in order to reconstruct the full invisible four-momentum pinv due to neutrinos.
First, the transverse components of pinv are taken directly from the ~pmiss

T . Second, because
the decay products of the boosted Higgs boson are collimated, we assume the polar angle θ
of pinv is equal to that of the dilepton momentum: θinv = θ`` . With this constraint, the
z-component of pinv is obtained. Lastly, the invisible invariant mass minv due to neutrinos
is assumed to be 55GeV, the mean of the distribution from signal simulation. The cor-
responding Higgs boson four-momentum is the summed four-momentum of pinv and the
dilepton four-momentum p`` .

5 Event selection and categorization

Events are selected in this search if they pass the following criteria indicating that they
could include the production and decay of an X boson. They are then divided into 12
distinct categories (eight SL and four DL). A separate set of criteria is applied to define
control regions that are used to validate the modeling of background processes.

Offline, all events are required to have HT > 400GeV, either one electron with
pT > 30GeV or one muon with pT > 27GeV, and a selected bb jet. Background from tt
production is reduced by vetoing all events with an AK4 jet that is ∆R > 1.2 from the
bb jet and is identified as a b jet, as described in section 4.2.

We ensure that the sets of events belonging to the SL and DL channels are disjoint. To
accomplish this, we first impose that any event with exactly two oppositely charged lepton
candidates passing the DL channel lepton selection be assigned as a DL event. Otherwise,
if the event has at least one lepton candidate passing the SL channel lepton selection and
also has fewer than two lepton candidates passing the DL channel lepton selection, it is
classified as an SL event. In this case, the highest-pT lepton candidate that passes the SL
channel lepton selection is selected for Higgs boson reconstruction. If these two criteria
cannot be fulfilled by the set of lepton candidates, the event is not used in the analysis.

The following sections review the event selection and categorization of events into
the 12 exclusive search regions. Selections that are used only to discriminate signal from
background and not to categorize events are detailed in sections 5.1 and 5.2 for the SL and
DL channels, respectively. Section 5.3 discusses the discriminating selections that are also
used to categorize events.

5.1 Single-lepton channel event selection

In the SL channel, the qq ′ jet is chosen as the closest AK8 jet to the lepton, and it is
required to have pT > 50GeV and be located within ∆R < 1.2 of the lepton, where the
former requirement is optimized for signal acceptance and the latter for background rejection.
Jets in background events tend to be produced at higher |η| than those produced in signal
events, which contain jets from the decay of a heavy particle. To exploit this property,
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Figure 1. Single-lepton channel observables: distributions are shown for data (points), pre-fit
simulated SM processes (filled histograms), and simulated signal (solid lines). The statistical
uncertainty in the simulated sample is shown as the hatched band. Spin-0 signals for mX of 1.0 and
3.0TeV are displayed. The rightmost bin in the D`νqq ′ plot contains the overflow events. For both
signal models, σB(X → HH) is set to 1.0 pb. The lower panels of each plot show the ratio of the
data to the sum of all background processes. The red dashed line and arrow indicate the selected
region of the variable of interest.

the ratio of the pT of H → WW∗ divided by mHH , denoted as pT/m, is required to be
>0.3. The distribution of pT/m is shown in figure 1 (upper right) for the data, expected
pre-fit background, and two signal mass hypotheses with a normalization corresponding to
a product of the cross section and branching fraction (σB) of 1.0 pb.

5.2 Dilepton channel event selection

Events in the DL channel must pass additional criteria. In signal events, the invariant mass
of the two leptons is kinematically constrained by the mass of the boosted Higgs boson from
which they originate, peaking near 30GeV. Background in the m`` spectrum from Z/γ∗+jets

– 10 –



J
H
E
P
0
5
(
2
0
2
2
)
0
0
5

populates predominantly lower masses from the continuum and higher masses from the Z
boson. Background from tt also populates higher masses since the leptons are typically
opposite each other in the transverse plane. Requiring the dilepton invariant mass to satisfy
6 < m`` < 75GeV reduces these backgrounds while preserving the signal. Requiring that
the leptons be close together in η-φ space with ∆R`` < 1.0 further helps to suppress the tt
background. In Z/γ∗+jets the ~pmiss

T can be in the direction of the bb jet, away from the
leptons, due to jet mismeasurements, while in signal the ~pmiss

T is close to the leptons because
of the boosted Higgs boson decay. Thus, we also require that |∆φ(~pmiss

T , ~p``)| < π/2 to
discriminate against Z/γ∗+jets. Background is further separated from signal by requiring
pmiss

T > 85GeV. Figure 2 shows the distributions of the discriminating variables m`` (upper
right), ∆R`` (middle left), pmiss

T (middle right), and |∆φ(~pmiss
T , ~p``)| (lower).

5.3 Event categorization

Events are categorized by event properties that reflect the signal purity, and the catego-
rization is the same over the full range of mX . In the SL channel, electron and muon
events are separated because their reconstruction efficiencies for background and signal
are different, resulting in different signal purities. The electron and muon categories are
labeled “e” and “µ,” respectively, in the figures. Likewise, in the DL channel, events with
leptons of the same flavor and of the opposite (different) flavor are separated because the
background composition is different between these two cases. These are labeled “SF” and
“OF,” respectively, in the figures. We do not separate ee from µµ in the DL channel because
these events have similar ratios of signal to background. For all events, there are two
categories for bb jet tagging, constructed from different subsets of the distribution of the
DeepAK8 mass-decorrelated Z/H → bb discriminator DZ/H→bb , introduced in section 4.2.
The distribution of DZ/H→bb is shown in the upper left plot of figures 1 and 2 for the SL and
DL channels, respectively. The discriminator value ranges from 0 to 1, with larger values
indicating that the jet is more consistent with bb substructure. We use two working points
that yield a loose category defined by 0.8 < DZ/H→bb < 0.97 (labeled “bL”) and a tight
category defined by DZ/H→bb ≥ 0.97 (labeled “bT”). One more criterion for categorization,
related to the H →WW∗ → `νqq ′ decay, is implemented for the SL channel but not the DL
channel. This categorization relies on both the τ2/τ1 N -subjettiness ratio [95] of the qq ′ jet
(denoted now as τ2/τ1) and the H →WW∗ likelihood discriminator D`νqq ′ that was first
introduced in eq. (4.4). The ratio τ2/τ1 measures how consistent the jet substructure is with
a two-prong decay versus a single-prong decay, with lower values more strongly indicating a
two-prong decay. Figure 1 shows the distributions of D`νqq ′ (lower left) and τ2/τ1 (lower
right). All events in the SL but not in the DL search region are required to satisfy both
τ2/τ1 < 0.75 and D`νqq ′ < 11.0. We construct a low-purity category (labeled “LP”) with
events that satisfy either 0.45 < τ2/τ1 < 0.75 or 2.5 < D`νqq ′ < 11.0 and a high-purity
category (labeled “HP”) with events that satisfy both τ2/τ1 < 0.45 and D`νqq ′ < 2.5. In
2016 data, the lower working point for τ2/τ1 is 0.55 instead of 0.45.

The selections just described are combined to produce 12 distinct search categories
(eight SL and four DL). When describing a single category, the label is a combination of
those listed above. For example, in the SL channel the tightest bb jet tagging category
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Figure 2. Dilepton channel observables: distributions are shown for data (points), pre-fit simulated
SM processes (filled histograms), and simulated signal (solid lines). The statistical uncertainty in
the simulated sample is shown as the hatched band. Spin-0 signals for mX of 1.0 and 3.0TeV are
displayed. The rightmost bin in the m`` , ∆R`` , and pmiss

T plots contains the overflow events. For
both signal models, σB(X → HH) is set to 0.1 pb. The lower panels of each plot show the ratio
of the data to the sum of all background processes. The red dashed line and arrow indicate the
selected region of the variable of interest.
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Categorization type Selection Label

Lepton flavor Electron e
Muon µ

bb jet tagging 0.8 < DZ/H→bb < 0.97 bL
DZ/H→bb > 0.97 bT

H →WW∗ purity 0.45(0.55) < τ2/τ1 < 0.75 or 2.5 < D`νqq ′ < 11.0 LP
τ2/τ1 < 0.45(0.55) and D`νqq ′ < 2.5 HP

Table 1. The SL channel event categorization and corresponding category labels. All combinations
of the two lepton flavors, two bb jet tagging, and two H →WW∗ decay purity selections are used
to form eight independent event categories. The lower τ2/τ1 working point is 0.55 (0.45) in 2016
(2017–2018).

Categorization type Selection Label

Lepton flavor Two electrons or two muons SF
One electron and one muon OF

bb jet tagging 0.8 < DZ/H→bb < 0.97 bL
DZ/H→bb > 0.97 bT

Table 2. The DL channel event categorization and corresponding category labels. All combinations
of the two lepton flavors and two bb jet tagging selections are used to form four independent
event categories.

with a low-purity selection on the H →WW∗ decay in the electron channel is: “e, bT, LP.”
The categories and their corresponding labels are summarized in tables 1 and 2.

The search is performed for 30 < mbb < 210GeV and 700 < mHH < 5050GeV.
Extending the mbb mass window down to 30GeV helps to capture the background in the
fit, but events below 30GeV would be relatively difficult to model since these are events
for which the SD algorithm removes nearly all of the jet energy. The mHH lower bound is
chosen such that the mHH distribution is monotonically decreasing for the full background.
The upper bound is several hundred GeV above the highest mass event observed in data.

For spin-0 scenarios in the considered HH modes, the total selection efficiency for an
SL channel event to pass the criteria of any event category is 9% at mX = 0.8TeV. This
efficiency includes the branching fraction for H → bb . The efficiency increases with mX up
to 23% at mX = 1.5TeV because the Higgs boson decays become more collimated. Above
1.5TeV, the selection efficiency decreases to a minimum of 14% at mX = 4.5TeV for two
main reasons: the b tagging efficiency degrades for high-pT jets and the lepton isolation
worsens for extremely collimated Higgs boson decays. For DL channel events, the combined
selection efficiency to pass the criteria of any event category is 9% at mX = 0.8TeV,
increases sharply with mX to 30% at mX = 1.5TeV, and then increases more slowly to 36%
at mX = 4.5TeV. The efficiency grows over the full range of mX because in the absence
of a nearby jet, the leptons become easier to select at high pT. Tables 3 and 4 show the
efficiencies for each individual selection requirement with the full selection otherwise applied.
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SL channel selection Background
Signal

1TeV 3TeV
b jet veto 0.31 0.87 0.82
DZ/H→bb > 0.8 0.07 0.81 0.84

τ2/τ1 < 0.75 0.69 0.91 0.92
D`νqq ′ < 11.0 0.63 0.87 0.83

pT/m > 0.3 0.87 0.97 0.86

Table 3. Efficiencies of each selection criterion in the SL channel with the rest of the full selection
applied. The efficiencies for the total expected SM background and signals at 1.0 and 3.0 TeV
are shown.

DL channel selection Background
Signal

1TeV 3TeV
b jet veto 0.45 0.86 0.84
DZ/H→bb > 0.8 0.05 0.81 0.83

pmiss
T > 85GeV 0.55 0.88 0.97

6 < m`` < 75GeV 0.62 0.95 0.94
∆R`` < 1.0 0.51 0.93 0.998

|∆φ(~pmiss
T , ~p``)| < π/2 0.83 0.98 0.97

Table 4. Efficiencies of each selection criterion in the DL channel with the rest of the full selection
applied. The efficiencies for the total expected SM background and signals at 1.0 and 3.0 TeV
are shown.

The Higgs bosons in signal events from a spin-2 X boson are produced at lower values
of |η| than those from a spin-0 X, resulting in larger selection efficiencies for spin-2 events.
The relative increase in efficiency for spin-2 signal is larger at low mass (≈40%) than at
high mass (≈15%).

5.4 Control regions

Two control regions (CRs) are used to validate the SM background estimation and systematic
uncertainties. These regions are depleted of signal by construction, and the events within
them are not used to search for signal. The first, labeled “top CR,” targets background events
with top quarks, particularly tt . Such events are selected by inverting the AK4 jet b tag veto.
To increase the statistical power of the sample, the pT/m selection is removed for SL channel
events, and the ∆R`` selection is altered to ∆R`` > 0.4 for DL channel events. Events in
this CR are then divided into the 12 categories previously described in section 5.3. The
mbb and mHH distributions in this CR are similar to the distributions in the signal region
for backgrounds with top quarks. The top quark pT spectrum in tt events has been shown
to be mismodeled in simulation [96, 97]. A small pT-dependent correction, on the order of a
few percent, is measured in an expanded version of this CR and applied to the tt simulation.

– 14 –



J
H
E
P
0
5
(
2
0
2
2
)
0
0
5

While the top CR is an adequate probe of processes that involve top quarks, it is not
sensitive to background from Z/γ∗+jets, W+jets, or QCD multijet processes. Instead, a
second CR, labeled “non-top CR,” is used to study the modeling of these processes. The
selection of events in this CR is the same as for the signal region, except that the bb jet is
required to be inconsistent with having bb substructure, i.e., 0.01 < DZ/H→bb < 0.04. We
exclude events with DZ/H→bb < 0.01 because of substantial mismodeling in that region.
As a result, events in this CR are not categorized by bb jet tagging, yielding half as many
(six) categories here as in the top CR. Because it has fewer categories, the non-top CR
cannot in principle test the modeling of the b tagging of q/g background jets that contain
b quarks or are misidentified as containing b quarks. Instead, we rely on the top CR to
verify that this modeling is well behaved.

Ultimately, the final values of the normalization and shape of each background compo-
nent and their corresponding uncertainties are determined in the 2D fit to the data in the
search region.

6 Background and signal modeling

The search is performed by simultaneously estimating the signal and background yields
with a 2D maximum likelihood fit of the data in the 12 event categories. The data are
binned in two dimensions, mbb and mHH , within the ranges 30 < mbb < 210GeV and
700 < mHH < 5050GeV. The mbb bin width is 6GeV, and the mHH bin width is variable:
25GeV width at the low end of the mass range, 50GeV width in the middle of the mass
range, and 75GeV at high mass. These bin widths are smaller than the mass resolutions of
the signal in the relevant parts of mHH space. Signal and background mass distributions
are modeled using a number of 2D templates that are created using only simulation,
which is smoothed using different strategies described in the rest of this section before the
templates are fit to data. Independent templates are used for each event category. Shape
and normalization uncertainties that account for possible differences between data and
simulation, detailed in section 7, are included while executing the fit. This fitting method
was previously presented in ref. [98].

6.1 Background component classification

To perform the fit to data, we split the background into components and then generate
2D templates in the mbb and mHH mass plane for each component independently. The
normalization and shape of each component is then allowed to vary in the fit to the data in
each search category.

Instead of splitting by SM process, we distinguish four components by particle-level
information, such that they each have distinct mbb distribution shapes. The background is
divided by counting in simulation the number of generator-level quarks from the immediate
decay of a top quark or vector boson within ∆R < 0.8 of the bb jet axis. The first
component is the “mt background,” in which all three quarks from a single top quark
decay fulfill this criterion. The second component is the “mW background,” identified as
the events that do not fulfill the mt background criterion but in which both quarks from
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Bkg. category Dominant SM processes Resonant in mbb Num. of particle-level quarks
mt tt top quark mass 3 from top quark
mW tt W boson mass 2 from W boson
lost-t/W tt No 1 or 2
q/g V+jets and QCD multijet No 0

Table 5. The four background components with their kinematical properties and defining number
of generator-level quarks within ∆R < 0.8 of the bb jet axis.

either a Z or W boson fall within the jet cone. Both of these backgrounds contain resonant
peaks in the mbb shape corresponding to either the top quark or W boson mass. The
“lost-t/W background” contains events in which at least one quark is contained within the
bb jet cone, but not the full set needed to satisfy one of the previous two requirements.
Finally, all other events are designated by the “q/g background”. The first three categories
are primarily composed of tt events, while the q/g background is composed mostly of
W+jets and QCD multijet processes in the SL channel and of Z/γ∗+jets in the DL channel.
The background classification is summarized in table 5. Figure 3 shows the pre-fit mbb
spectrum separately for the SL and DL channels. The background components are shown
either as SM processes or with the background classification just described.

6.2 Template construction strategy

For each of the four background components, a unique template in the mbb and mHH
mass plane is produced for each of the 12 event categories. First, we produce a small
set of inclusive templates that have more statistical power than the set of events in each
individual search category. These inclusive templates are made by combining events in
multiple categories and by relaxing selections, provided that the inclusive shape remains
consistent with the shape for the full selection. Then, for each of the 12 event categories,
the inclusive templates are fit to the simulated mass distributions to produce templates with
their own individual shapes. This fit is performed in a similar manner and with a similar
parameterization of the template shape as is done for the fit to data. The background
templates and associated systematic uncertainties are ultimately validated by fitting to
data in dedicated CRs, a procedure described in section 6.5.

In the SL channel, a modified approach is used when building templates that reduces
fluctuations due to the limited size of the QCD multijet simulated event sample. The bb jet
reconstruction in the QCD multijet simulation is similar to that in W+jets, and the W+jets
simulation has much more statistical power. Both processes contribute significantly to the
q/g background, with light-flavored quark or gluon AK8 jets that are misidentified as b
jets, yielding very similar falling shapes in the mbb spectrum and similar bb jet tagging
distributions. Instead of using the QCD simulation directly in the q/g background modeling,
a combined distribution is created by measuring the ratio of QCD to W+jets event yields
as a function of mHH and then using these corrections to scale up the W+jets simulation.
Corrections and distributions are obtained for each lepton flavor and H → WW∗ purity
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Figure 3. The pre-fit mbb distributions for the SL (upper row) and DL (lower row) channels. The
data are shown as the points with error bars. In each plot, the pre-fit background (filled histograms)
is shown broken down either according to the SM process (left) or according to the background
classification of section 6.1 (right). The total simulated background is the same in each case. The
statistical uncertainty in the simulated sample is shown as the hatched band. Spin-0 signals for mX
of 1.0 and 3.0TeV are also shown (solid lines). The product σB(X → HH) is set to 1.0 pb for the
SL channel and 0.1 pb for the DL channel. The lower panels of each plot show the ratio of the data
to the sum of all background processes.

category, since the bb jet tagging between W+jets and QCD is equivalent. This distribution
is then used as input to the q/g background modeling to account for both processes.

6.3 Background modeling

The background templates are modeled using conditional probabilities of mbb as a function
of mHH so that the templates include the correlation of these two variables, fully described
in ref. [52]. The full 2D template is defined as:

Pbkg(mbb ,mHH) = Pbb (mbb |mHH , θ1)PHH(mHH |θ2), (6.1)
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where Pbb is a 2D conditional probability distribution, PHH is a 1D probability distribution,
and θ1 and θ2 are sets of nuisance parameters used to account for background shape
uncertainties. The sets θ1 and θ2 do not share any common nuisance parameters.

The PHH templates are produced by smoothing 1D mHH histograms with kernel density
estimation (KDE) [99–101]. To produce these templates, we use Gaussian kernels with
adaptive bandwidths, which are parameters of the KDE that control the smoothing and
are dependent on the local event density. We do this to apply less smoothing to regions
of the distribution with many events and more smoothing to regions with few events. For
mHH & 2TeV, where there are very few events in simulation or in data, the mHH tail is
further smoothed by fitting with an exponential function.

The 2D templates Pbb are obtained with different methods for the resonant and
nonresonant background components. For each of the resonant backgrounds (mt and
mW), we fit the mbb distributions with a double Crystal Ball function [102, 103] centered
around mt and mW , respectively. This function has a Gaussian core, which is used to
model the bulk of the mbb resonance, and power-law tails, which account for the effects
of jet misreconstruction. The fits are performed for events binned in mHH to capture
the dependence of the mbb shape on mHH . For the nonresonant backgrounds (lost-t/W
and q/g), the Pbb are estimated from 2D histograms using 2D KDE. Independent KDE
parameters are used for each dimension and each background when building the Pbb
templates. As done for the PHH tail modeling, the high-mass mHH distribution tail here is
exponentially smoothed. The normalizations from simulation are used as the initial values
for the background normalizations in the fit to data.

6.4 Signal modeling

The signal templates are also defined following ref. [52] using conditional probabilities:

Psignal(mbb ,mHH |mX) = PHH(mHH |mbb ,mX , θ
′
1)Pbb (mbb |mX , θ

′
2). (6.2)

The sets θ′1 and θ′2 do not share any common nuisance parameters. However, θ′2 and θ1
from eq. (6.1) do share two nuisance parameters corresponding to the mass scale and
resolution uncertainties of SD jets in the mbb dimension. This is discussed in more detail
in section 7.1.2.

The Psignal distributions are first obtained for discrete mX values by fitting histograms of
the signal mass distributions. The mass shapes for spin-0 and spin-2 signals are very similar,
and so the modeling is performed on the combined set of events and applied to both spin
hypotheses. Models continuous in mX are then produced by interpolating the fit parameters.
The 1D Pbb templates are created by fitting the mbb spectra with a double Crystal Ball
function, and the mass resolution is slightly larger than 10%, with the largest resolution at
low mass. The modeling of events in the bL category also contains an exponential component
to model the small fraction of signal events with no resonant peak in the distribution.

The 2D PHH templates are designed to account for correlations between mHH and mbb .
These mHH distributions are also modeled with a double Crystal Ball function, but with an
additional linear dependence on mbb , parameterized by ∆bb = (mbb−µbb )/σbb . Here, µbb
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and σbb are the mean and width parameters, respectively, in the fit to the mbb spectra. To
accomplish this, the mean parameter µHH in the Crystal Ball function fit is then taken to be

µHH = µ0(1 + µ1∆bb ), (6.3)

where µ0 and µ1 are fit parameters. With this approach, we can account for mismeasure-
ments of the bb jet that result in mismeasurements of mHH . The resolution of the mHH
resonance, denoted as σHH , is also dependent on mbb such that

σHH =

σ0(1 + σ1|∆bb |), ∆bb < 0
σ0, ∆bb > 0

(6.4)

where σ0 and σ1 are fit parameters. In the case that the SD algorithm produces an un-
dermeasurement of mbb by removing too much energy from the Higgs boson decay, the
correlation increases, and the mHH resolution grows wider. For |∆bb | > 2.5, we use the
value at the boundary, since the correlation does not hold for severe mismeasurements. The
mHH resolution is ≈5%.

The product of the acceptance and efficiency for X → HH events to fall into any of
the individual search categories is taken from simulation. As done for the signal shape
parameters, the efficiency is interpolated along mX . Uncertainties in the relative acceptances
and in the integrated luminosity of the sample are included in the 2D maximum likelihood
fit that is used to obtain confidence intervals for the X → HH process. The signal modeling
is tested using pseudo-experiments in which we fit the templates to pseudodata that contain
a fixed amount of signal; no significant bias in the fitted signal yield is found.

6.5 Validation of background models with control region data

The background models are validated in the top CR and non-top CR data samples. For
both CRs, background templates are constructed in the same way as for the search region,
except using the CR selection. The background templates are then fit to the CR data with
the same nuisance parameters that are used in the standard 2D maximum likelihood fit. In
the non-top CR, the mt background is negligible and not included in the modeling. The
result of the simultaneous fit is shown in figure 4 for both CRs. To improve visualization,
the displayed binning in these and subsequent histograms is coarser than the binning used
in the maximum likelihood fit. The projections in both mass dimensions are shown for the
combination of all event categories. In both CRs, the fit results model the data well in
all categories, indicating that the shape uncertainties can account sufficiently for potential
differences between data and simulation.

7 Systematic uncertainties

Systematic uncertainties that affect the normalization and shape of the signal and back-
ground are modeled with nuisance parameters in the 2D maximum likelihood fit to data.
Nuisance parameters for shape uncertainties have Gaussian constraints, while normalization
uncertainties have log-normal constraints. In certain cases a single nuisance parameter may
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Figure 4. The post-fit model compared to data in the top CR (upper plots) and non-top CR (lower
plots), projected into mbb (left) and mHH (right). Events from all categories are combined. The fit
result is the filled histogram, with the different colors indicating different background components.
The background shape uncertainty is shown as the hatched band. The lower panels of each plot
show the ratio of the data to the fit result.

affect both the normalization and the shape of a resonance, in which case the nuisance
parameter constraint is Gaussian. Detailed methods of parameterizing the background and
signal uncertainties are described in sections 7.1 and 7.2, respectively.

To implement nonresonant mass shape uncertainties, templates are first generated with
modified event weights that include multiplicative parameters proportional to mbb , mHH ,
1/mbb , and 1/mHH . Each of these four modifications produces two alternative templates
that represent an upward and downward shift from the nominal model. The 2D fit then
interpolates between these two alternative templates to constrain the magnitudes of these
parameters. Resonant mass shape uncertainties are implemented as uncertainties in the
mean and width parameters of a double Crystal Ball function. In most cases, different
nuisance parameters are used for the background shape uncertainties from those used for
the signal uncertainties.
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All background and signal uncertainties are listed in tables 6 and 7, respectively, with
their initial sizes. A single uncertainty type can be applied to multiple event categories with
independent nuisance parameters for each category. The background model contains 104
total nuisance parameters, while the signal model contains 27, with two parameters shared
between signal and background. The descriptions of all uncertainties and their correlations
are also described in the rest of this section.

7.1 Background uncertainties

Background uncertainty parameters are chosen by considering possible discrepancies between
data and simulation, such as in the relative background composition or in the jet energy scale.
Studies of the two CRs are used to verify that the chosen uncertainties cover such differences.
The fitted values and the sensitivity to signal do not depend strongly on the sizes of the
pre-fit uncertainties because they serve as loose constraints on the fit. We verify this by
inflating all pre-fit background uncertainties by a factor of two and observing that the final
result does not change. Therefore, the pre-fit uncertainties are sufficiently large to account
for discrepancies between data and simulation in the CRs. More complex background
models, such as those with more nuisance parameters or higher-order shape distortions,
were studied following the same approach as in ref. [52] and not found to be necessary.

In the following subsections, we detail the parameterization of the different uncertainties
for the background.

7.1.1 Background normalization uncertainties

The mW , mt , and lost-t/W backgrounds all primarily arise from tt production. Con-
sequently, some uncertainties are applied by treating these three backgrounds together,
referred to collectively as the tt background in table 6. We account for differences between
data and simulation in the tt normalization by including independent nuisance parameters
for each category that allow the normalizations of these backgrounds to vary in a correlated
manner (“tt normalization”). However, the three tt-dominated background components
exhibit differences in the b tagging efficiency and the bb jet pT spectrum, so we include
additional nuisance parameters (“tt relative normalization”) that allow the relative normal-
izations of each of these to vary within the absolute normalization, which itself also varies.
Separate nuisance parameters are used to control the q/g background normalization, as
this is the only background component to arise primarily from non-tt processes.

7.1.2 Background shape uncertainties

The shape uncertainties for the backgrounds are modeled differently depending on whether
or not the shape is resonant in the mbb dimension. All backgrounds are nonresonant in
the mHH dimension, and mismodeling of the background pT spectrum can manifest as an
incorrectmHH scale. To account for this, the mHH shape uncertainties are implemented with
alternative background templates built with parameters proportional to mHH (“scale”) and
1/mHH (“inverse scale”), as described in the beginning of section 7. For the q/g background,
a pair of these nuisance parameters is included for each category in the SL channel and for
each b tagging category in the DL channel. For the tt-dominated backgrounds, we include
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Uncertainty type Processes Np σI σC/σI

SD jet mbb scale mW , mt , signal 2 0.54%, 2.0% (mt) 98%, 19% (mt)

SD jet mbb resolution mW , mt , signal 2 8.6%, 17.2% (mt) 95%, 25% (mt)

q/g normalization q/g 12 50% (1`), 100% (2`) 37–78%
q/g mHH scale q/g 10 ±0.5 mHH/TeV 78–99%
q/g mHH inverse scale q/g 10 ±1.4TeV/mHH 64–99%
q/g mbb scale q/g 4 ±0.00375 mbb/GeV 81–99%

q/g mbb inverse scale q/g 4 ±15GeV/mbb 77–99%

Lost-t/W mbb scale lost-t/W 4 ±0.003 mbb/GeV 71–99%

Lost-t/W mbb inverse scale lost-t/W 4 ±18GeV/mbb 88–99%

tt normalization lost-t/W, mW , mt 12 35% (1`), 70% (2`) 19–68%
tt relative normalization lost-t/W, mW , mt 8 35% (1`), 70% (2`) 9–96%
tt mHH scale lost-t/W, mW , mt 12 ±0.25 mHH/TeV 84–99%
tt mHH relative scale lost-t/W, mW , mt 8 ±0.25 mHH/TeV 74–99%
tt mHH inverse scale lost-t/W, mW , mt 12 ±0.7TeV/mHH 61–99%

Table 6. Background systematic uncertainties included in the maximum likelihood fit. The
uncertainty types with “normalization” correspond to uncertainties in the background yield, while all
others are uncertainties in the background shape. The Np column indicates the number of nuisance
parameters used to model the uncertainty. In the last two columns, σI refers to the initial estimate
of the uncertainty, and σC refers to the constrained uncertainty obtained post-fit. For the q/g,
tt , and lost-t/W shape uncertainties, “scale” uncertainties are those implemented with alternative
templates with multiplicative parameters proportional to mass m, and “inverse scale” uncertainties
are those implemented with parameters proportional to 1/m.

a pair of these nuisance parameters for each search category. Furthermore, to allow the
tt-dominated backgrounds to be anticorrelated, we include nuisance parameters for the
relative mHH scale (alternative templates built with factors proportional to mHH) for each
b tagging category, separately for the SL and DL channels.

The q/g and lost-t/W backgrounds are nonresonant in mbb , and thus alternative
templates are also used to encode the shape uncertainties for the mbb dimension with
factors proportional to mbb or 1/mbb . The uncertainties account for mismodeling in the
simulated jet energy scale and resolution. For both of these nonresonant backgrounds, the
mbb shape does not depend on the lepton flavor or the H → WW∗ purity, and so there
is a pair of nuisance parameters for each background and each bb jet tagging category,
separately for the SL and DL channels.

For the mW and mt backgrounds in the mbb dimension, where resonances are con-
structed using AK8 SD jets, the jet mass uncertainties are dependent on the jet substructure.
Because of this, the jet mass uncertainties for the signal and the mW background, respec-
tively from the two-prong decays H → bb and W → qq ′, are correlated. This is the only
such instance where signal and background are correlated, sharing nuisance parameters.
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Uncertainty type Np Uncertainty values
SD jet mbb scale 1 S(mbb ): 0.54%

SD jet mbb resolution 1 R(mbb ): 8.6%

Integrated luminosity 1 1.6%
PDFs+scales 1 spin-0: 2.0%, spin-2: 2.5%
Trigger 6 1`: 2.0%, 2`: 3.0%
Pileup 1 1`: 1.0%, 2`: 0.6%
Electron reconstruction 1 1`: 0.5%, 2`: <0.8%
Electron identification 2 1`: 4.2%, 2`: <2.6%
Muon identification 2 1`: 2.3%, 2`: <2.3%
Electron isolation 1 1`: 6%, 2`: 3% for each electron
Muon isolation 1 1`: 6%, 2`: 2% for each muon
Jet energy scale 1 Y : 2%, S(mHH): 0.8%, R(mHH): 3%
Jet energy resolution 1 Y : 0.5%. S(mHH): 0.3%, R(mHH): 4%
Unclustered energy 1 Y : 0.5%, S(mHH): 0.1%, R(mHH): 1.5%
Other detector effects 2 Y : 0.6%, R(mHH): 1.0%
AK4 b tag efficiency 1 <4.0%
AK4 b tag misidentification rate 1 <2.5%
bb jet tagging 1 bL: 8.5%, bT: 11.5%
qq ′ jet τ2/τ1 efficiency 1 LP: 26% HP: 6.7%

Table 7. Signal systematic uncertainties included in the maximum likelihood fit. The Np column
indicates the number of nuisance parameters used to model the uncertainty. In the “Uncertainty
values” column, some uncertainties are noted as affecting both the yield (Y ) and mHH shape (S for
scale, R for resolution) of the signal. All other uncertainties, except the SD jet mass uncertainties,
are uncertainties in the signal yield alone.

Uncertainties that have been measured in data for W boson decays into merged jets in
tt events are found to cover discrepancies between our simulation and data for the mW
background but not for the mt background. We do not expect these uncertainties to
cover discrepancies in the mt background because the SD algorithm behaves differently for
the three-prong top quark jets (t → bqq ′) in this background. Thus, these uncertainties
are larger than for two-prong jets and are not correlated with the mW jet mass shape
uncertainties, as seen in the upper two rows of table 6.

7.2 Signal uncertainties

As shown in table 7, uncertainties are applied to the normalization of the signal to account for
mismeasurements in the total integrated luminosity [104–106], the pileup profile, the trigger
efficiency, the lepton selection efficiencies, and other detector effects. Signal acceptance
uncertainties from the choices of the PDFs and also the factorization and renormalization
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scales are also applied. The scale uncertainties are obtained following refs. [107, 108], and
the PDF uncertainty is evaluated using the NNPDF 3.1 PDF set [81].

The signal acceptance and the mHH resonance scale and resolution all have uncertainties
due to the jet energy scale and resolution, the unclustered energy resolution, and other
detector effects. The same mbb resonance scale and resolution uncertainties that are applied
for the mW background are applied to the signal because they are both SD jets with
two-prong substructure.

The qq ′ jet τ2/τ1 selection efficiency is measured in a tt data sample enriched with
hadronically decaying W bosons. The uncertainties in this measurement are included as
normalization uncertainties in the H →WW∗ decay purity categories, and the LP and HP
uncertainties are anticorrelated. Normalization uncertainties are also applied to account for
the efficiency and misidentification rate of AK4 jet b tagging used to identify and reject jets
from tt production. The uncertainty in the bb jet tagging efficiency is included as a single
nuisance parameter that varies the signal normalization and is dependent on both the bb jet
tagging category and mX . These bb jet tagging uncertainties are the dominant systematic
uncertainties associated with the signal normalization, followed by the uncertainties in the
τ2/τ1 efficiencies.

8 Results

The data are interpreted by performing a maximum likelihood fit in the 2D (mbb , mHH)
mass plane using one model containing only background processes and using one containing
both background and signal processes. We find that the background-only model fits the data
well. We interpret the results as upper limits at 95% confidence level (CL) on σB(X → HH).

The quality of the fit is quantified with a likelihood ratio goodness-of-fit test using
the saturated model [109]. The probability distribution function of the test statistic is
obtained with pseudo-experiments, and the observed value is within the central 68% interval
of expected results. The best-fit values of the nuisance parameters are consistent with the
initial 1 standard deviation range of uncertainty.

The fit result and the data are projected in mbb for each event category in figure 5. The
mbb shape is modeled well by the background-only model, and each background component
is important in at least some subspace of the mass range. Particularly, the resonant peaks
corresponding to the W boson and top quark are correctly modeled by the fit. Similarly,
the mHH projections of the fit are shown in figure 6. There is good agreement for the full
mHH mass range in these figures as well.

Upper limits are shown at 95% CL in figure 7 for both the spin-0 and spin-2 boson
scenarios. The limits are evaluated using the asymptotic approximation [110] of the CLs
method [111, 112], and the validity of this approximation was confirmed by calculating limits
with pseudo-experiments. The difference in the limits calculated with pseudo-experiments
versus the asymptotic approximation is significantly smaller than 1 standard deviation in
the expected limit. The observed exclusion limits are consistent with the expected limits.
A spin-0 signal at mX = 0.8TeV is excluded for σB > 24.5 fb, and the exclusion limits
strengthen over the full mass range to σB > 0.78 fb at mX = 4.5TeV. Spin-2 signals have
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Figure 5. The background-only 2D fit result compared to data projected onto the mbb axis for both
the SL and DL channels. The label for each search category is in the upper left of each plot. The fit
result is the filled histogram, with the different colors indicating different background components.
The background shape uncertainty from the fit is shown as the hatched band. Example spin-0 signal
distributions for mX = 1.0 and 3.0TeV are shown as solid lines, with σB(X → HH) set to 0.2 and
0.1 pb for the SL and DL channels, respectively. The lower panels show the ratio of the data to the
fit result. Only nonzero data entries are shown in the interest of clarity.

– 25 –



J
H
E
P
0
5
(
2
0
2
2
)
0
0
5

3−10

2−10

1−10

1

10

210

310

410

510

E
v
e

n
ts

 /
 1

0
0

 G
e

V
 (13 TeV)

-1
138 fb

CMS
, bL, LPµ

 HH) = 0.2 pb→(X Βσ

Data q/g bkg.

Fit unc. Lost t/W bkg.

  
spin-0

1 TeV X  bkg.
W

m

  
spin-0

3 TeV X  bkg.tm

1000 1500 2000 2500 3000 3500 4000 4500 5000
 [GeV]

HH
m

0.5

1

1.5

D
a

ta
 /

 f
it

2−10

1−10

1

10

210

310

410

E
v
e

n
ts

 /
 1

0
0

 G
e

V

 (13 TeV)
-1

138 fb

CMS
e, bL, LP

 HH) = 0.2 pb→(X Βσ

Data q/g bkg.

Fit unc. Lost t/W bkg.

  
spin-0

1 TeV X  bkg.
W

m

  
spin-0

3 TeV X  bkg.tm

1000 1500 2000 2500 3000 3500 4000 4500 5000
 [GeV]

HH
m

0.5

1

1.5

D
a

ta
 /

 f
it

2−10

1−10

1

10

210

E
v
e

n
ts

 /
 1

0
0

 G
e

V

 (13 TeV)
-1

138 fb

CMS
SF, bL

 HH) = 0.1 pb→(X Βσ

Data q/g bkg.

Fit unc. Lost t/W bkg.

  
spin-0

1 TeV X  bkg.
W

m

  
spin-0

3 TeV X  bkg.tm

1000 1500 2000 2500 3000 3500 4000 4500 5000
 [GeV]

HH
m

0.5

1

1.5

D
a

ta
 /

 f
it

2−10

1−10

1

10

210

310

E
v
e

n
ts

 /
 1

0
0

 G
e

V

 (13 TeV)
-1

138 fb

CMS
, bL, HPµ

 HH) = 0.2 pb→(X Βσ

Data q/g bkg.

Fit unc. Lost t/W bkg.

  
spin-0

1 TeV X  bkg.
W

m

  
spin-0

3 TeV X  bkg.tm

1000 1500 2000 2500 3000 3500 4000 4500 5000
 [GeV]

HH
m

0.5

1

1.5

D
a

ta
 /

 f
it

2−10

1−10

1

10

210

310
E

v
e

n
ts

 /
 1

0
0

 G
e

V

 (13 TeV)
-1

138 fb

CMS
e, bL, HP

 HH) = 0.2 pb→(X Βσ

Data q/g bkg.

Fit unc. Lost t/W bkg.

  
spin-0

1 TeV X  bkg.
W

m

  
spin-0

3 TeV X  bkg.tm

1000 1500 2000 2500 3000 3500 4000 4500 5000
 [GeV]

HH
m

0.5

1

1.5

D
a

ta
 /

 f
it

2−10

1−10

1

10

210

E
v
e

n
ts

 /
 1

0
0

 G
e

V

 (13 TeV)
-1

138 fb

CMS
OF, bL

 HH) = 0.1 pb→(X Βσ

Data q/g bkg.

Fit unc. Lost t/W bkg.

  
spin-0

1 TeV X  bkg.
W

m

  
spin-0

3 TeV X  bkg.tm

1000 1500 2000 2500 3000 3500 4000 4500 5000
 [GeV]

HH
m

0.5

1

1.5

D
a

ta
 /

 f
it

2−10

1−10

1

10

210

310

410

E
v
e

n
ts

 /
 1

0
0

 G
e

V

 (13 TeV)
-1

138 fb

CMS
, bT, LPµ

 HH) = 0.2 pb→(X Βσ

Data q/g bkg.

Fit unc. Lost t/W bkg.

  
spin-0

1 TeV X  bkg.
W

m

  
spin-0

3 TeV X  bkg.tm

1000 1500 2000 2500 3000 3500 4000 4500 5000
 [GeV]

HH
m

0.5

1

1.5

D
a

ta
 /

 f
it

2−10

1−10

1

10

210

310

E
v
e

n
ts

 /
 1

0
0

 G
e

V

 (13 TeV)
-1

138 fb

CMS
e, bT, LP

 HH) = 0.2 pb→(X Βσ

Data q/g bkg.

Fit unc. Lost t/W bkg.

  
spin-0

1 TeV X  bkg.
W

m

  
spin-0

3 TeV X  bkg.tm

1000 1500 2000 2500 3000 3500 4000 4500 5000
 [GeV]

HH
m

0.5

1

1.5

D
a

ta
 /

 f
it

2−10

1−10

1

10

210
E

v
e

n
ts

 /
 1

0
0

 G
e

V

 (13 TeV)
-1

138 fb

CMS
SF, bT

 HH) = 0.1 pb→(X Βσ

Data q/g bkg.

Fit unc. Lost t/W bkg.

  
spin-0

1 TeV X  bkg.
W

m

  
spin-0

3 TeV X  bkg.tm

1000 1500 2000 2500 3000 3500 4000 4500 5000
 [GeV]

HH
m

0.5

1

1.5

D
a

ta
 /

 f
it

2−10

1−10

1

10

210

310

E
v
e

n
ts

 /
 1

0
0

 G
e

V

 (13 TeV)
-1

138 fb

CMS
, bT, HPµ

 HH) = 0.2 pb→(X Βσ

Data q/g bkg.

Fit unc. Lost t/W bkg.

  
spin-0

1 TeV X  bkg.
W

m

  
spin-0

3 TeV X  bkg.tm

1000 1500 2000 2500 3000 3500 4000 4500 5000
 [GeV]

HH
m

0.5

1

1.5

D
a

ta
 /

 f
it

2−10

1−10

1

10

210

310

E
v
e

n
ts

 /
 1

0
0

 G
e

V

 (13 TeV)
-1

138 fb

CMS
e, bT, HP

 HH) = 0.2 pb→(X Βσ

Data q/g bkg.

Fit unc. Lost t/W bkg.

  
spin-0

1 TeV X  bkg.
W

m

  
spin-0

3 TeV X  bkg.tm

1000 1500 2000 2500 3000 3500 4000 4500 5000
 [GeV]

HH
m

0.5

1

1.5

D
a

ta
 /

 f
it

2−10

1−10

1

10

210

E
v
e

n
ts

 /
 1

0
0

 G
e

V

 (13 TeV)
-1

138 fb

CMS
OF, bT

 HH) = 0.1 pb→(X Βσ

Data q/g bkg.

Fit unc. Lost t/W bkg.

  
spin-0

1 TeV X  bkg.
W

m

  
spin-0

3 TeV X  bkg.tm

1000 1500 2000 2500 3000 3500 4000 4500 5000
 [GeV]

HH
m

0.5

1

1.5

D
a

ta
 /

 f
it

Figure 6. The background-only 2D fit result compared to data projected onto the mHH axis for
both the SL and DL channels. The label for each search category is in the upper left of each
plot. The fit result is the filled histogram, with the different colors indicating different background
components. The background shape uncertainty from the fit is shown as the hatched band. Example
spin-0 signal distributions for mX = 1.0 and 3.0TeV are shown as solid lines, with σB(X → HH) set
to 0.2 and 0.1 pb for the SL and DL channels, respectively. The lower panels of each plot show the
ratio of the data to the fit result. Only nonzero data entries are shown in the interest of clarity.
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Figure 7. Observed and expected 95% CL upper limits on the product of the cross section and
branching fraction to HH for a generic spin-0 (left) and spin-2 (right) boson X, as functions of
mass. Example radion and bulk graviton predictions are also shown. The HH branching fraction is
assumed to be 25% for radions and 10% for bulk gravitons.

larger acceptance, and so the exclusion limits on these signals are stronger: at mX = 0.8TeV,
we exclude σB > 16.7 fb, and at mX = 4.5TeV we exclude σB > 0.67 fb.

Table 8 shows the event yields for each search category that are observed in data and
are expected before and after a background-only fit, along with the associated post-fit
uncertainty in the total background yield in each category. Figure 8 shows the expected
exclusion limit at 95% CL for each search category alone. In general, the tight (bT) bb jet
tagging categories are the most sensitive over the full range of mX , since these contain
the most signal and the least background. The DL categories are generally more sensitive
than most SL categories since the background yields are much lower in the DL channel. A
notable exception to this trend is the µ bT LP category, which is the most sensitive above
approximately 2.5 TeV. At high mX , the electron categories in the SL channel are the least
sensitive because the electron reconstruction efficiency is degraded.

The total uncertainty in the signal sensitivity is dominated by the statistical uncertainty
of the data in the analysis. As mentioned in section 7.2, the dominant systematic uncertainty
for all mX comes from the bb jet tagging efficiency for the signal. Most of the background
systematic uncertainties do not have an impact on the signal sensitivity. For high mX
signals, none of the background systematic uncertainties have a significant impact, and
only the signal systematic uncertainties have an effect. For low mX signals, however, the
background normalization uncertainties in the most sensitive categories (those with the
least background) have an impact.

Relative to the X → bb`νqq ′ search in ref. [52], this analysis ranges from 6 times more
sensitive at low mX to 14 times more sensitive at high mX . The improvements in sensitivity
arise primarily from three developments. First, an improvement in the expected upper
limits by a factor of ≈3.5 is achieved because of the larger integrated luminosity alone. This
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Search category Observed Expected (pre-fit) Expected (post-fit) Post-fit uncertainty
µ bL LP 4542 4362.2 4540.9 1.5%
µ bL HP 417 402.4 416.1 4.8%
µ bT LP 657 731.8 658.5 4.2%
µ bT HP 56 67.0 57.3 10.0%
e bL LP 2945 2973.7 2945.4 1.9%
e bL HP 248 246.1 247.7 5.7%
e bT LP 423 443.0 423.9 4.2%
e bT HP 37 41.0 37.7 14.6%
SF bL 59 70.2 59.6 14.2%
OF bL 50 61.1 50.8 13.5%
SF bT 6 11.3 7.9 31.6%
OF bT 6 11.6 8.1 25.8%

Table 8. Event yields broken down by search category. For each category, shown are the event
yields observed in data, expected before and after a fit of the background-only model, and the
corresponding relative uncertainty.

Figure 8. Median expected upper limits at 95% confidence level for each of the 12 search categories
individually.
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level of improvement is expected because the number of background events is much smaller
than the number of signal events under a typical signal peak, even at low mX . Second,
because of improved techniques in the SL channel alone, we achieve similar sensitivity at
mX = 0.8TeV and up to a ≈2 times improvement at mX = 4.5TeV. Finally, the addition of
the DL channel provides significant improvement in sensitivity. At low mX , the DL channel
is ≈70% more sensitive than the SL channel, largely because the background level is over
an order of magnitude smaller. At high mX , where there is virtually no background in any
channel, the DL channel has similar sensitivity to the SL channel. This occurs because the
dilepton signal efficiency is largest at high mass, and in the SL channel, despite the larger
branching fraction, the lepton efficiency (particularly for electrons) degrades at high mass
because of the nearby qq ′ jet.

This search yields the most sensitive upper limits for X → HH production with leptons
in the final state. The only X → HH searches that are more sensitive in any subspace of the
considered mX and for any spin hypothesis are those in the bbbb final state from ATLAS
and CMS, each of which extend only up to 3.0 TeV. From 0.8 to 3.0TeV, the sensitivity of
this search is mostly comparable to and in some places stronger than the bbbb searches.

Predicted radion and bulk graviton cross sections [113] are also shown in figure 7 in
the context of Randall-Sundrum models that allow the SM fields to propagate through
an extra dimension. Typical model parameters are chosen as proposed in ref. [114]. A
branching fraction of 25% to HH and an ultraviolet cutoff ΛR = 3TeV are assumed for
the radion, which is excluded for mX < 2.25TeV. A 10% branching fraction is assumed
for the bulk graviton, which occurs in scenarios that include significant coupling between
the bulk graviton and top quarks. Bulk graviton production cross sections depend on the
dimensionless quantity k̃ =

√
8πk/MPl, where k is the curvature of the extra dimension

and MPl is the Planck mass. For this interpretation, we choose k̃ = 0.3 and 0.5. The bulk
gravitons with k̃ = 0.3 and 0.5 are excluded for mX < 1.20 and 1.35TeV, respectively.
For these particular signal parameters, the radion and bulk graviton decay widths are
larger than the 1MeV width chosen for signal sample generation but much smaller than
the detector resolution.

9 Summary

A search has been performed for new bosons (narrow resonances) decaying to a pair of Higgs
bosons (HH) where one decays into a bottom quark pair (bb) and the other via one of three
different modes into final states with leptons. The large Lorentz boost of the Higgs bosons
produces a distinct experimental signature with one jet that has substructure consistent with
the decay H → bb . For the Higgs boson that does not decay to bb , the single-lepton decay
H → WW∗ → `νqq ′ and the dilepton decays H → WW∗ → `ν`ν and H → ττ → `νν`νν

are considered. In the single-lepton channel, the experimental signature is characterized by
a second large jet with a nearby lepton, which is consistent with the decay of H →WW∗.
In the dilepton channel, the experimental signature contains two leptons and significant
missing transverse momentum. This search uses a sample of proton-proton collisions at√
s = 13TeV, corresponding to an integrated luminosity of 138 fb−1, collected by the CMS
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detector at the LHC. The primary standard model backgrounds — production of top quark
pairs and of vector bosons in association with jets — are suppressed by reconstructing the
HH decay chain and applying selections to discriminate signal from background. The signal
and background yields are estimated by a two-dimensional template fit in the plane of the
bb jet mass and the HH resonance mass. The templates are validated in a variety of data
control regions and are shown to model the data well. The data are consistent with the
expected standard model background. Upper limits are set on the product of the cross
section and branching fraction for new bosons decaying to HH. The observed limit at 95%
confidence level for a spin-0 (spin-2) boson ranges from 24.5 (16.7) fb at 0.8TeV to 0.78
(0.67) fb at 4.5TeV. The results of this search provide the most stringent exclusion limits
to date for X → HH signatures with leptons in the final state and are among the most
stringent of all X → HH searches, at certain mass points the most sensitive.
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