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A B S T R A C T

After pioneering work on optically levitated particles in the 1970s by Ashkin,
so called optical tweezers have not only become a popular tool in biology
and medicine but also experienced a renaissance in vacuum trapping over
the last ten years. While the broader field of optomechanics already gained
popularity previously and investigated the classical-to-quantum transition
in cryogenic systems at the beginning of the last decade, levitated particle
optomechanics opened the door to room temperature quantum experi-
ments. The versatile levitated particle system has been utilized in various
applications, such as rotation experiments at world record speeds exceed-
ing 6 GHz, highly sensitive force sensors or to study stochastic effects of
thermodynamics. Most intriguing, however, was the transition into the
quantum regime by ground-state cooling of the particle’s center-of-mass
motion in one dimension, setting the first milestone of genuine quantum
experiments.

Ten years after the first cooling attempt, a technique adopted from the
atom and ion cooling community finally led to ground-state cooling of a
levitated particle. This technique, called cooling by coherent scattering, is
the central scheme of this thesis. In the first part of this thesis we describe
the construction of a double vacuum chamber system to efficiently trap and
transfer a levitated particle into an optical cavity. In contrast to previous
systems, no particle transfer to a second tweezer is necessary, minimizing
the risk of particle loss and enabling experiments within minutes after
particle loading.

In the second part, we present the working principle of our coherent
scattering setup. It was the first pure optical trapping configuration to
transition a levitated particle into high vacuum, while being stabilized
exclusively through cavity cooling. At the time, we achieved record low
cavity cooling center-of-mass energies reflected by an effective temperature
of a few millikelvin and demonstrated genuine 3D cooling of the motional
degrees of freedom.

The central feat of the coherent scattering setup is the ability to cool
the particle motion in a cavity field node, reducing the impact of laser
phase noise compared to the dispersive regime. In the last part of the thesis,
we find that the mechanical instability of the particle position limits the
suppression of phase noise, leading to particle cooling to about 10 phonons.
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Z U S A M M E N FA S S U N G

Nach ersten bahnbrechenden Experimenten mit schwebenden Partikeln
von Ashkin 1970, gewannen sogenannte optische Pinzetten an Populari-
tät in der Biologie und Medizin. Ausserdem erfuhren sie in den letzten
zehn Jahren eine Renaissance als optische Fallen im Hochvakuum. Bereits
früher erfuhr das breitere Feld der Optomechanik Berühmtheit und schon
am Anfang des letzten Jahrzehnts wurde mit Hilfe der Kryotechnik der
Übergang von der klassischen in die Quantenwelt untersucht. Es waren
jedoch schwebende Partikel, welche die Welt zu Quantenexperimenten
bei Raumtemperatur ermöglichten. Schwebende Partikel, als vielseitig an-
wendbares System, fanden in verschiedensten Applikationen Anwendung.
Dazu gehören die Rotation mit Weltrekord Geschwindigkeit von 6 GHz ,
hochsensitive Detektoren kleinster Kräfte und die Untersuchung stochas-
tischer Effekte der Thermodynamik. Das interessanteste jedoch war der
Übergang in die Quantenwelt durch Grundzustandskühlen der Schwer-
punktsbewegung des Partikels – der erste Meilenstein auf dem Weg zu
echten Quantenexperimenten.

Zehn Jahre nach den ersten Kühlexperimenten wurde Grundzustands-
kühlen mit Hilfe einer Technik aus der kalten Atom- und Ionenphysik
endlich möglich. Diese Methode des sogenannten „kohärenten Streuens“
ist zentrales Thema dieser Arbeit. Im ersten Teil der Arbeit beschreiben
wir die Konstruktion einer zweiteiligen Vakuumkammer um Partikel in
einer optischen Falle zu fangen und dann in einem optischen Resonator
zu platzieren. Im Gegensatz zu vergleichbaren früheren Experimenten be-
nötigen wir keinen Transfer des Partikels in eine zweite optische Falle.
Dadurch können wir das Risiko eines Verlusts des Partikels minimieren
und ermöglichen Kühlexperimente schon nach wenigen Minuten nach dem
Laden der Falle mit einem Partikel.

Im zweiten Teil präsentieren wir die Funktionsweise unseres kohärenten
Streuaufbaus. Es war der erste Aufbau, welcher es ausschliesslich mit der
Kühlkraft des optischen Resonators geschafft hat, ein Partikel ausreichend
zu stabilisieren, damit der Übergang ins Hochvakuum durchgeführt werden
kann. Zu diesem Zeitpunkt waren wir in der Lage, den aktuellen Rekord
tiefster Schwerpunktsenergien mit einem optischen Resonator aufzustellen.
Wir erreichten Schwerpunktsenergien, welche effektiven Temperaturen von
wenigen Millikelvin entsprachen. Darüber hinaus sind wir in der Lage, mit
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Hilfe des optischen Resonators die Bewegung des Partikels in allen drei
räumlichen Dimensionen zu kühlen.

Ein zentraler Vorteil des kohärenten Streuens ist die Möglichkeit, das
Partikel im Knoten des elektrischen Feldes des optischen Resonators zu
kühlen. Dadurch wird der Einfluss von Phasenrauschen des Lasers, im
Vergleich zu Experimenten, in denen der optische Resonator direkt durch
einen Spiegel angetrieben wird, reduziert. Im letzten Teil dieser Arbeit
berichten wir, dass die mechanische Stabilität der optischen Falle die Unter-
drückung des Phasenrauschens limitiert und dadurch eine Besetzungszahl
des mechanischen Oszillators von ca. 10 Phononen erreicht wird.
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1
I N T R O D U C T I O N

Optomechanics explores the interaction between light and mechanical mo-
tion [1] placing the field at the intersection between two domains of classical
physics, namely classical mechanics and electrodynamics. For decades me-
chanical objects have been described as ideal particles that can be fully
localized and have a mass and electric charge identifiable with infinite
precision. On the contrary, light was described as an ideal wave, character-
ized by a frequency or wavelength but completely delocalized in space [2].
According to classical mechanics we can measure an object’s position and
momentum to infinite precision which contradicts Heisenberg’s uncertainty
principle, setting a fundamental limit at h̄/2 [3, 4]. The uncertainty principle
is a central statement of quantum mechanics, a domain that emerged in
the 1920s to explain the failure of Newtonian mechanics in the world of
atoms [5] as well as the quantization of light as observed in the photoelectric
effect [6–9] and eventually unifying the particle-wave picture [10]. In the age
of modern physics, the quantum mechanical theoretical framework to study
the fundamental interaction of light and mechanics has been developed.
However, to create a measurable effect, experimental regimes have to be
chosen very carefully. In 1873 Crookes attempted to explain the motion of
the vanes of his radiometer by the repulsion of light [11], although this
explanation was incorrect. It was eventually understood as a thermal ef-
fect [12, 13]. The first effect of radiation pressure on macroscopic objects was
shown by Lebedew [14], as well as Nichols and Hull [15] at the beginning
of the 20th century, using a modified version of the radiometer. Later, Frisch
measured the deflection of an atomic beam, induced by the absorption of
light [16]. Pioneering work of was achieved around the 1970s by Arthur
Ashkin through trapping and manipulation of small particles [17, 18] and
by Vladimir Braginsky who detected mechanical damping arising from
radiation [19, 20].

In optomechanical systems one typically tries to reduce the size of the
mechanical oscillator to increase its susceptibility to a weak optical force and
boost the latter with the use of strong lasers or optical resonators. It therefore
took almost 30 years until micro- and nanofabrication techniques as well as
light sources advanced sufficiently to cool a mechanical mode with radiation
pressure in 1999 [21] and eventually a plethora of platforms evolved to
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2 introduction

maximize the light-oscillator interaction [22–30]. While scientists at the
Laser Interferometer Gravitational Wave Observatory (LIGO) investigated
the relevance of radiation forces for gravitational wave detection [31] many
platforms had the common goal of ground-state cooling the mechanical
oscillator through passive or active laser cooling techniques. Ground-state
cooling of a mechanical resonator was first reported in 2010 by placing a
ceramic drum resonator inside a dilution refrigerator without any laser
cooling involved [32]. Soon after, the first groups also entered the quantum
regime with laser cooling techniques [33, 34]. Prior to optomechanical
systems various degrees of freedom of atoms [35–37] and ions [38–42] have
been cooled to the quantum ground-state.

Levitated particles were among the first optomechanical systems to be
studied in the 1970s and optical tweezers became a standard tool in biology
and medicine in the beginning of the 21st century [43–46]. The levitated
optomechanics community gained momentum in 2010 by first levitating
and cooling silica microparticles in dual beam configurations [47, 48] and
eventually nanoparticles in a single laser beam [49]. Various cooling tech-
niques were employed to reduce the particle’s center-of-mass motion i.e.
linear feedback cooling with additional laser beams [47, 50] or by para-
metric feedback cooling through laser intensity modulation [49, 51–53] as
well as resolved sideband cooling with optical cavities [54–58]. Initial cavity
cooling protocols pumped the cavity through the mirror and trapped the
particle directly in the cavity potential [59, 60], or considered a far detuned
optical tweezer to separate the trapping mechanism from the cooling mech-
anism [61]. To simultaneously cool multiple spatial degrees of freedom of
the particle, coupling to higher order cavity modes was considered [62].
Experimentally direct cavity pumping in the resolved sideband regime is
ultimately limited to phonon temperatures of a few millikelvin by laser
phase noise [63].

Finally, technological advances in the field of levitated optomechanics
led to ground-state cooling, first in cavity systems and shortly thereafter in
free space configurations. The cavity system adapted a coherent scattering
configuration which had been successfully employed in the trapped atom
and ion community in the past [64–67] and will be described in detail in this
thesis. First coherent scattering cooling results were shown in 2019 [68, 69]
with ground-state cooling one year later [70]. The technological advantages
of cavity-based cooling by coherent scattering are twofold. Firstly, as light
is deflected from the tweezer into the cavity we can cool the particle motion
in the tweezer and cavity directions. By tilting the polarization w.r.t. the
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cavity we can stabilize the particle along three axes, without a need for
additional feedback mechanisms. Secondly, the interference of the tweezer
and cavity fields leads to maximal optomechanical coupling of the motion
along the cavity axis for the particle placed in the node of the cavity
field, or equivalently, where the intensity is minimal and laser phase noise
has a reduced impact. Free space systems on the other hand, capitalized
on an enhanced read-out of the longitudinal motion in a backscattering
configuration [71] in combination with an effective linear feedback scheme
coupling to the particle’s charge instead of an all-optical system [72–75].

Compared to other optomechanical systems levitated optomechanics can
reach ground-state without the need for cryogenic environments as the sys-
tem has no direct contact with its environment. The technological simplicity
and high sensitivity make levitated optomechanics an intriguing platform
for force, torque or acceleration sensing applications [76–81]. Furthermore
levitated particles have been studied as rotors [82–86], librators [87–89] or as
a platform for spectroscopy [90–93] or thermodynamics [94–96] and entered
the strong coupling regime [97]. After reaching the hallmark of ground-state
cooling and the development of advanced loading techniques [98] to reach
ultra high vacuum and reducing decoherence rates, the path to genuine
quantum applications are opened, as discussed by Gonzalez-Ballestero et
al. [99]. Among them are the creation of non-classical states, motional en-
tanglement, quantum delocalization and eventually quantum many-particle
systems, macroscopic superposition and quantum metrology [100–102].

This thesis is structured as follows. In Chapter 2 we introduce our levi-
tated particle cavity machine. Following the approach of [56] we implement
a two vacuum chamber setup, one for trapping particles and one for cavity
cooling with a mobile optical trap to prevent contamination of the mirrors
in the loading process. We first explain how to operate the setup as a whole
and eventually focus on the two core components, first the optical tweezer
and eventually the optical cavity. To motivate our choice of components we
introduce the physics necessary to derive the figures of merit that guided
our decisions on the way. We finish the chapter by explaining detection
techniques that we apply throughout the work. After establishing a good
understanding of the machine we continue in Chapter 3 with our first cool-
ing experiment and introduce the physics behind cavity-based cooling by
coherent scattering. The experimental results and theoretical descriptions
are largely based on [68] and [103] respectively. In Chapter 4 we investigate
the theory from [103] in more detail to motivate modifications of the setup
that should facilitate ground-state cooling. We determine trap displace-
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ment noise originating from laser phase noise as the limiting factor in our
ground-state cooling endeavours and discuss how to reduce the influence
and eventually reach the hallmark in the future.



2
A V E R S AT I L E L E V I TAT E D PA RT I C L E C AV I T Y M A C H I N E

In this chapter we describe the cavity machine that we assembled to detect
and manipulate the center-of-mass (c.m.) motion of levitated nanoparticles.
Initially we focus on the operation of the high vacuum system as a whole
consisting of two chambers - the trap and the science chamber - with
a manual transfer system. Thereafter we describe the two components
that lie at the heart of our experiments, first the optical tweezer and then
the cavity. Over the course of the PhD some modifications have been
implemented to improve the setup or steer it in a different direction than
initially anticipated. We will refer to them as first and second generation
components. In Chapter 3 we present experiments conducted with the first
generation lenses and mirrors, explain their shortcomings and consequently
continue to focus on the second generation in Chapter 4.

2.1 high vacuum chamber

Every experiment dictates a set of requirements for the vacuum setup
which can contradict each other and require compromise. The goal of
our experiment is to trap a levitated nanoparticle, to reduce the pressure
sufficiently far until its motion is not significantly affected by surrounding
gas molecules anymore and to bring the particle into an optical cavity to
scatter light into the cavity mode. The details and motivations for all these
steps will be described in the following chapters, here we want to mention
their consequences for our high vacuum setup. To load a particle we have
to be able to vent the vacuum chamber to ambient pressure, open it and
spray a particle solution into the chamber. On the other hand, to ensure that
the major contribution to the particle damping is not given by residual gas
scattering, but by photon recoil, the pressure needs to be reduced to less
than 10−8 mbar [51]. Finally, to amplify the power of light scattered into the
optical cavity we use high finesse mirrors F > 50k. We define the cavity
finesse formally in Eq. (2.13). It can be understood as a figure of merit to
indicate the reflectivity of the mirrors. The higher the finesse, the closer
the mirror reflectivity is to unity, which leads to a higher amplification
of the incoming optical field inside the cavity. Solvent residues and glass
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6 a versatile levitated particle cavity machine

Figure 2.1: Angled top view of high vacuum setup. The full setup has a length of
about 1.2 m from gate 2 until the edge of the transfer arm. The setup consists
of two vacuum chambers, the science and the loading chamber. The science
chamber can be sealed from the rest of the setup by closing gates 1 and 2. We
use two pressure gauges to separately measure the pressure of the two chambers.
The transfer arm, a hollow spring-loaded tube, can be pushed into the vacuum
setup to move the optical tweezer from the loading into the science chamber.
Not shown here are the top viewport of the science chamber, the angle valve
to slowly evacuate the loading chamber, the turbo and scroll pump as well as
their bellows connecting to the vacuum setup. Furthermore, not displayed are
the optical fiber feedthrough, which is providing the trapping light, as well as
the electric feedthrough for the nanopositioner which connects to the T-piece of
the transfer arm.
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particles on the mirror surface degrade the finesse significantly and prevent
us from trapping the particles directly inside the cavity. These aspects lead
to the conclusion to build separate loading and science chambers. The
loading chamber is compact to minimize the volume that is vented with
dry nitrogen to reach low pressures again after the loading procedure. The
science chamber is large enough to house the cavity and can be isolated to
remain at low pressure even while loading. We adopt a technique developed
by Mestres et al. [56] using a mobile optical trap but initially avoid a transfer
into a second stationary optical tweezer to reduce complexity.

Other experiments avoid the transfer setup by manually removing the
cavity during the loading process and reinsert it afterwards as shown by
Delić et al. [104]. Furthermore, Bykov et al. showed that particles can be
launched from aluminum foil via acoustic desorption and trapped directly
inside a Paul trap in high vacuum. In the future this technique could be
extended to directly trap into an optical trap at moderate to high vacuum
to bring the setup into the ultra high vacuum (UHV) regime. Moreover, the
directionality of the loading technique could make it possible to directly
load between the cavity mirrors without contaminating them.

The full vacuum setup is shown in Fig. 2.1 from a top angle and as a
cross-section in Fig. 2.2. We explain the process of trapping a particle and
coupling it to an optical cavity in Secs. 2.2 and 2.3 and want to focus on
the working principle of the vacuum setup as a whole before. The key
components of the high vacuum setup can be found in Tab. A.1 with their
corresponding supplier and part number. We use a turbo and a scroll pump
to evacuate the whole system. The science chamber, containing the optical
cavity, can be sealed from the rest of the setup by closing gates 1 and
2. At the cavity facing end of the transfer arm the tweezer assembly is
mounted. It consists of a collimator connected to a single mode fiber and
is attached to a nanopositioner. A custom lens holder described in Sec. 2.2
attaches to the collimator, forms the optical trap and collimates the beam
again. After loosening the fixing screw we can push or pull the transfer arm
to move the tweezer assembly between the science and loading chamber.
The transfer arm is a hollow tube which contains an optical fiber as well
as wires contacting the nanopositioner. We don’t show the angle valve
which can be used to slowly evacuate the loading chamber after trapping a
particle, while the science chamber is sealed. We monitor the pressures of
both chambers separately to avoid opening the gates at too high pressure
difference (∆p > 25 mbar). To trap and transfer a particle to the science
chamber we follow this protocol:
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Figure 2.2: Side view of high vacuum setup cross section. The setup shown in
Fig. 2.1 is cut vertically to visualize the transfer system. The optical cavity is
located in the science chamber on a stack of damping stages. In the displayed
configuration the transfer arm is almost completely pulled out, positioning the
tweezer assembly close to the loading chamber. Not shown are the optical fiber
and wires connecting to the nanopositioner which are fed through the hollow
transfer arm. After loosening the fixing screw and opening gate 1 we can push
the transfer arm to move the lens holder, collimator and nanopositioner assembly
into the science chamber. Behind gate 1 on the side facing the science chamber
we install a mechanical stop (not shown) which blocks the arm from moving in
too far and provides a support to improve the arm’s mechanical stability.
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We assume the setup is evacuated, the transfer arm is pulled out of the
science chamber and the angle valve is opened.

1. Close gates 1 and 2
1.

2. Vent the setup (loading chamber) with dry nitrogen2.

3. Open the loading chamber (by removing a blind flange) and trap a
particle with a nebulizer as described in Sec. 2.2.

4. Stop venting and close the loading chamber (by installing the blind
flange again) without causing air turbulence of mechanical shocks
close to the setup.

5. Close the angle valve3.

6. Evacuate the setup with the scroll pump only and slowly open the
angle valve4.

7. Open gates 1 and 2 and loosen the the fixing screw.

8. Push the transfer arm until reaching the mechanical stop and tighten
the fixing screw again.

9. Move the nanopositioner to position the particle in the center of the
cavity mode as described in Sec. 2.3.

10. Turn on the turbo pump to reach high vacuum5.

To bring vacuum systems to high or especially ultra high vacuum an
important step is to bake-out the system. The techniques and principles are
well explained in Turner [105, pp. 111ff] and we will summarize here briefly
their key conclusions and implications. After the pumps have removed
most of the nitrogen molecules from the vacuum chamber the pressure is
limited initially by outgassing of water and eventually smaller molecules

1 The science chamber stays at a pressure of about 1× 10−4 mbar without being connected to
the pumps.

2 Typically the dominant impurity of nitrogen bottles is water vapor which would be absorbed
by the vacuum chamber after venting, which would limit the smallest reachable pressure. Our
nitrogen bottles have less than 0.5 ppm H2O to reduce this effect.

3 We don’t close the angle valve vacuum tight as we simply want to reduce the pump speed
and avoid turbulent air flow at the particle.

4 This should bring the loading chamber to a pressure of 10−3 − 10−2 mbar.
5 Without baking the vacuum chamber we reach 10−5 mbar, with moderate baking we can go

down to 10−7 mbar.
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(H2, CO, CO2 and CH4). Since these molecules outgas and readsorb it
takes a long time until the turbo pump removes them. By heating up
the vacuum chambers and the components inside we can increase the
outgassing rate and accelerate this process. Turner et al. recommend both
a pre-bake-out of the components in a vacuum furnace as well as an in
situ bake-out of the installed system at temperatures as high as possible,
ideally at temperatures significantly higher than 250 ◦C. In practice, we
are able to do a pre-bake-out at 250 ◦C in a non-vacuum furnace and an
in situ bake-out at about 150 ◦C, limited by cavity components and our
nanopositioner. It is particularly challenging to not exceed the maximum
temperature of several components while avoiding cold spots that adsorb
molecules. We try to achieve this by distributing heating elements evenly
around the setup, use aluminum foil for thermal isolation and heat the
setup slowly to allow for thermal equilibration. With bake-out times of a few
days we can obtain a pressure of 8× 10−8 mbar which is sufficiently low to
not limit our experiments and could potentially be improved significantly
by higher bake-out temperatures.

2.2 optical trapping and transfer of levitated particles

Optical Trapping refers to the spatial confinement of particles by the means
of optical forces, first realized by Arthur Ashkin in 1970 in solution [17] and
later in high vacuum [18, 106]. Particularly in life sciences strongly focused
lasers for particle manipulation, commonly referred to as optical tweezers,
became a successful tool, eventually rewarded the Nobel Prize in Physics in
2018 [107, 108]. Optical tweezers can not only be used to confine a particle
in space but also to monitor and manipulate its (c.m.) motion as shown by
Ashkin in 1977 in the form of a feedback system [109]. The techniques were
refined and expanded to trap not only microparticles, but also atoms [110,
111] and nanoparticles [47, 49], paving the way to quantum control of
levitated nanoparticles half a century after the pioneering works [70, 72,
73].

The basic concepts of optical levitation are well explained in review
papers [99, 112] and PhD theses [113, 114]. To establish an understanding of
them we summarize the conclusions of Hebestreit [114] that are relevant for
this work. We focus on the trapping of silica (SiO2) nanoparticles which offer
a positive real part of polarizability α. The particle diameter is smaller than
the laser wavelength λ and hence well described in a dipolar approximation.
To study the dynamics of larger particles of radius R ≈ λ with volume
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V = 4πR3/3 one has to apply the full Mie theory formalism [115] or rely
on geometric optics in the case of R� λ [116]. In the dipole approximation
the optical force can be decomposed into a gradient force Fgrad ∝ V, pulling
the particle towards the point of highest intensity, as well as the scattering
force Fscat ∝ V2 pushing the particle along the laser’s propagation axis.
For nanoparticles and for our considerations, both gravity and scattering
force are negligible, only slightly displacing the trap center from the laser
focus. For small enough particle displacements from the focus of a beam
that is approximately Gaussian, the particle motion can be described by
a harmonic oscillator. If the particle motion is insufficiently damped by
scattering from gas molecules or a feedback mechanism, e.g. linear or
parametric feedback [117] or cavity cooling, it experiences the nonlinearities
of the confining potential. For the experiments described in this work the
particle motion is well described by three uncoupled harmonic oscillators,
corresponding to the spatial degrees of freedom. We choose to label the
particle oscillation along the laser’s polarization axis to be x, along the
laser propagation direction to be z and the remaining axis of the Cartesian
coordinate system to be y. The equations of motion of our three harmonic
oscillators are

mq̈(t) + mγq q̇(t) + mΩ2
qq(t) = F(fluct)

q (t), (2.1)

with q ∈ {x, y, z}, t denoting time, q̇ (q̈) the first (second) derivative w.r.t
to time, γq the damping rate of the motion, Ωq the oscillation frequency, m

the mass of a particle and F(fluct)
q a stochastic drive, given by random kicks

from gas molecules, along direction q. The oscillation frequencies scale with
optical power Ptw and particle density ρ as Ωq = Cq

√
Ptw/ρ. The propor-

tionality constant Cq depends on the size of the focal spot. For a Gaussian
beam the spot size is characterized by the beam waists or 1/e2 radii wx, wy
along x, y and the Rayleigh range zR along z. As strong focusing slightly
elongates the beam along the polarization axis, the transversal frequencies
are nondegenerate [118]. Furthermore, following the calculations of Hebe-
streit and assuming that the beam cannot be focused more tightly than
the diffraction limit we conclude that Ωy > Ωx > Ωz. Additionally, optical
power and tightness of focus influence stability of particle confinement
given by the depth of the optical trap U0 ∝ VPtw/wxwy.

Often it is more instructive to investigate the particle motion in the fre-
quency domain instead of the time domain. The spectral power distribution
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of the c.m. energy is described by the double-sided power spectral density
(PSD) [114]

Sqq(Ω) =
Aq

π

Ω2
qγq

(Ω2 −Ω2
q)

2 + Ω2γ2
q

, (2.2)

with Aq :=
∫ ∞
−∞ SqqdΩ = kBT/mΩ2

q = 〈q2(t)〉. Following again the
calculations by Hebestreit we approximate Sqq for positive frequencies Ω
by a Lorentzian line shape,

Sqq(Ω) ≈
Aq

2π

γq
2

(Ω−Ωq)2 +
(

γq
2

)2 , (2.3)

Here T is the temperature of the thermal bath which couples to the
oscillator and kB the Boltzmann constant. In our experiments we apply
techniques that lower the oscillation amplitude which can be interpreted as
coupling the particle to an effective bath. As this effective bath only couples
to the c.m. motion and does not affect the bulk or internal temperature [119]
of the particle we introduce temperatures Tx,y,z which characterize the
effective bath coupled to the three oscillators. The terminology "cooling
the particle motion" hence refers to lowering the c.m. temperature of the
particle. The average phonon occupation nq is then given by the Bose-
Einstein distribution [120]

nq =

[
exp

(
h̄Ωq

kBTq

)
− 1
]−1

≈
kBTq

h̄Ωq
. (2.4)

The approximation holds for kBTq � h̄Ωq. Ground-state cooling is
achieved for an average phonon number below 1 [70, 72, 73]. As the particle
still occupies a thermal state and is not projected into a single vibrational
eigenstate we write the probability p(0)x,y,z to occupy the ground-state nq = 0
given nq [121],

p(0)q = 1− exp
(
−

h̄Ωq

kBTq

)
=

1
1 + nq

. (2.5)
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2.2.1 Rayleigh and Stokes Scattering

After discussing the concept of phonon numbers we also want to introduce
the terminology of Rayleigh and Stokes scattering. Every time a photon im-
pinges on a harmonic oscillator with occupation number n three processes
may occur. One is an elastic scattering event where neither the phonon
number nor the photon frequency are changed, referred to as Rayleigh
scattering. However, the phonon number can increase or decrease which
has to be compensated by a photon frequency decrease or increase, respec-
tively. These two inelastic processes are denoted by Stokes and anti-Stokes
scattering [122]. The recoil heating rate Γ(r)

q quantifies how many phonons
are produced per second due to scattering with photons. As each phonon
creation implies the emission of a Stokes photon we can use it to estimate
the total Stokes scattered power. We write the recoil heating rate for the
motion along y according to [51] as

Γ(r)
y =

1
5

Pdp

mc2
ω

Ωy
. (2.6)

Here the total scattered power of the dipole is Pdp with incoming light at
frequency ω and the speed of light c. The power of Stokes scattered photons
is then

PS = Γ(r)
y h̄ωS(ny + 1). (2.7)

The Stokes photons are at frequencies ωS = ω + Ωy ≈ ω as Ωy � ω and
we find by employing Eq. (2.4) for large phonon numbers

PS

Pdp
≈ 1

5
kBTy

mc2

(
ω

Ωy

)2
, (2.8)

with Ty the center of mass temperature of the y oscillator we find for
a silica particle of radius R = 70 nm, trapped in an optical tweezer beam
at wavelength λtw = 1550 nm and oscillating at Ωy = 2π × 150 kHz in
thermal equilibrium with the the surrounding gas at room temperature
a ratio of PS/Pdp ≈ 10−3. As the center of mass motion of the particle is
cooled the amount of Stokes photons decreases further. We conclude that
the stream of photons scattered by the particle predominantly consists of
Rayleigh photons.
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2.2.2 High Numerical Aperture Lenses for Optical Trapping

In the previous section we discussed that high optical power and tight
focusing lead to higher trapping frequencies and deeper traps, which
are both desirable. A deeper trap reduces the risk of losing a particle
during experiments while systems with higher frequencies suffer less from
various noise sources as we will elaborate in Sec. 4.1. In contrast to other
levitated optomechanics experiments we have additional requirements
to our trapping optics imposed by the setup’s geometry. We show in
Fig. 2.4 that the trapping optics are mounted on a nanopositioner and
have to be placed between two cavity mirrors with a cavity mode living
between the trapping and collimation lens. Besides having a high numerical
aperture (NA) the trapping lens therefore needs to be sufficiently small to
fit between the mirrors, sufficiently light to not overload the nanopositioner
and have a sufficiently large working distance to not clip the cavity mode.
We could relax the size constraint by placing the lenses outside of the
cavity but would need to move the mirrors sufficiently far apart. This
would increase the cavity mode volume, which reduces the coupling rate
between particle motion and cavity mode, which is undesirable. Another
option is to manufacture sufficiently small mirrors to not clip the optical
tweezer. During the work of this thesis we implemented two generations of
trapping lenses which are described in this section. The working principle
and implementation of the two generations are very similar and are shown
in Fig. 2.4. They only differ in slight modifications to the holder assembly
to fit the exact lens design and focal length of the collimator to properly
fill the clear aperture of the lens. In both cases we feed about Ptw =
500 mW of optical power at a wavelength of λ = 1550 nm (NKT Koheras
Adjustik E15) through a polarization maintaining in-vacuum fiber to a
collimator that overfills the trapping lens (1/e2 intensity diameter of beam
is about clear aperture of lens). To not heat up the cavity mirrors with
the diverging tweezer we immediately collimate the beam again with a
second collimation lens on the opposite side of the optical trap. This is
achieved with a three part holder assembly where the outer holder has
slots to insert the lenses and an external thread (M3× 0.25) that fits into
the center piece’s internal thread. The pitch of the thread is small enough
to in situ adjust the lens separation for collimating a laser passing through
the assembly and eventually gluing the assembly in place. In Tab. 2.1 we
list key parameters of the trapping lenses used. The second generation
lens outperforms the first generation according to Zemax simulations as
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well as according to our experiments despite having a lower nominal NA.
This can be explained by the fact that the design wavelength of the first
generation did not match the experimental wavelength and that we were
not able to properly overfill the clear aperture without clipping too much
light in the tweezer assembly. Another disadvantage of the generation 1

lens is its polymer replication layer which can be dissolved by IPA/ethanol
during cleaning or particle trapping 6. The main advantage of the second
generation is the larger working distance which reduces clipping of the
cavity mode.

Generation 1 Generation 2

Manufacturer A.W.I. Lightpath

Part Number E15456-25 0355617

Material polymer on glass D-ZLAF52LA(m)

Clear Aperture (mm) 1.3 0.79

Lens Diameter (mm) 1.63 1.4

Design Wavelength (nm) 1530 1550

Working Distance (µm) 141 190

Nominal NA 0.83 0.75

Ideal Input Beam Waist (µm) 650 395

Relative Trap Frequency 1 1.19

Collimator Used S+K 60FC-4-M5-08 S+K 60FC-4-A4.5-03

Input Beam Waist (µm) 489 440

Measured Ωx,y,z (kHz/2π) [120, 140, 40] [158, 193, 60]

Table 2.1: Comparison of two generations of trapping lenses. The relative trap
frequency is relative to generation 1. The value is obtained from Zemax simulations
assuming ideal overfilling of the clear aperture. The measured trap frequencies
Ωx,y,z correspond to an optical power of about Ptw = 500(50)mW in the focus. To
avoid clipping too much power in the tweezer assembly of generation 1 we cannot
set the input waist to the ideal value, thereby lowering the trapping frequencies.

6 particles are dispersed in ethanol.
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2.2.3 Optical Trapping with a Nebulizer

To trap nanoparticles we rely on the method developed and described by
Gieseler [113]. We equip a commercially available nebulizer (Omron NE-
U22-W) with a custom aluminum nozzle that confines the otherwise wide
cloud of aerosol droplets to a narrow stream. When using a plastic nozzle
instead we observe the aerosol condensing on the sidewalls and eventu-
ally clogging the nozzle. Our theory is that static charges on the plastic
increase the pull of aerosol particles towards the sidewalls compared to
the aluminum nozzle. Furthermore, condensed solvent can dissolve plastic
particles and introduce them into the aerosol stream. We use commercially
available SiO2 beads in aqueous dispersion of concentration 50 mg/ml by
microparticles GmbH. As shown in Fig. 2.3 we monitor whether a particle is
trapped by collecting the light that is scattered from a potentially trapped
particle back into the in-vacuum fiber, through a Faraday circulator and
onto the backreflection photodiode. In practice, we not only collect light
scattered from the particle but also from fiber facets, leading to a homodyne
measurement with a thermally drifting relative phase. This arrangement is
not feasible for quantitative measurements but gives us an idea whether we
have trapped a single particle or a cluster. To introduce the particles into
the optical tweezer we follow these steps:

1. Mix 10 µl of initial solution with 5 ml of ethanol7, leading to a mean
value of about one nanoparticle per nebulizer droplet.

2. Sonicate the solution for at least 5 min in a bath sonicator to break up
particle clusters8.

3. Fill the solution into the nebulizer and attach the aluminum nozzle.

4. Make sure that a stream of aerosol particles visibly leaves the nozzle.

5. Aim the aerosol stream at the optical tweezer, varying the distance to
the focus while monitoring the backreflection photodiode.

6. Based on photodiode signal estimate if the trapped object is a single
particle or a cluster. The intensity of scattered light by a dipole and
hence the detector signal scales with Pdp ∝ V2 [114, 123].

7 Omron specifies a slightly better chemical stability for ethanol compared to IPA.
8 We observed switching to a high power sonicator can break clusters even more efficiently

leading to a higher success rate of trapping single particles.
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Figure 2.3: Trapping setup with photodiode output.(a) The schematic shows the
optical components necessary for particle trapping. We couple a 1550 nm laser
into port 1 of a fiber based Faraday circulator (AC Photonics HPMOC315P21511S1).
The laser is coupled via port 2 to the in-vacuum fiber inside the trapping arm,
passes through the lens assembly with an attached Faraday isolator (not shown)
to avoid backreflections into the trap before being dumped on the closed gate
1. Light scattered backwards from the particle is collected by the trapping lens,
enters the Faraday circulator via port 2 and couples out of port 3 alongside
spurious reflection from fiber facets, resulting in a homodyne measurement by
detector PDL, with a thermally drifting relative phase. We plot the power spectral
densities of the detected signal of six different trapping attempts in (b, c) at
pressures of 1− 10 mbar. The power at the input is chosen such that we have
Ptw = 500(10)mW in the focus. As the free space detector is blocked by gate 1

and PDL has no information about the transversal motion of the particle due to
the fiber coupling we only expect to see peaks corresponding to the motion along
z (Ωz/2π = 40(2) kHz) and higher harmonics. In (b) we show single-sided PSDs
of potential particle clusters. Besides peaks corresponding to the z-motion we
observe broad peaks from 200 kHz onward. We attribute them to libration modes
originating from the asymmetrical shape of clusters. In (c) we show single-sided
PSDs of potential single particles. The DC signal is lower compared to (b) as
the scattered power scales with the square of the particle volume and we do not
observe higher frequency peaks. The small differences between the three curves
stem from the drifting phase of the homodyne detection and the measurements
not being performed at exactly the same pressure.
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7. Evacuate the loading chamber to less than 10 mbar while monitoring
the Fourier transform (FFT) of the photodiode signal. As the phase of
our homodyne measurement drifts we see even and odd harmonics of
the particle’s z motion [114]. If there are additional peaks in the range
up to 3 MHz, fluctuating in shape or center frequency we assume that
we have trapped a cluster 9 [47, 82].

8. In case of a cluster, block the laser, vent the chamber and start again.
Otherwise continue evacuating and proceed to initiate the transfer.

2.3 a fabry-pérot cavity for particle detection and manipu-
lation

After introducing the concept of particle trapping in optical tweezers we
focus on the second key building block of the experiment, the Fabry-Pérot
cavity. It was first introduced by Charles Fabry and Alfred Pérot in 1899 as
two partially transmitting planar mirrors facing each other [124], long before
the invention of the laser in 1960 [125]. They have been used as narrowband
optical filters, by injecting a light field into the interferometer under an
angle and analyzing the measured interference pattern in reflection or
transmission. Decades of engineering were necessary to obtain highly
reflective curved mirrors with low absorption to create the mirrors we
use in our experiments. The curvature is necessary to confine a cavity
mode while a high reflectivity allows for a large amount of optical power
to build up. Ideally the cavity loss is limited by mirror transmission and
not absorption. This gives access to information about the field inside by
probing the signal leaking out through the mirrors. The first Fabry-Pérot
type resonator was coated with a thin metal dielectric film in 1939 by
Geffcken at Schott und Genossen before the reactive gas deposition processes
invented by Auwärter in 1952 practically realized environmentally stable
complex thin film interference systems [126]. In the following section we
summarize the cavity fundamentals necessary to characterize our optical
cavity and explain the experiments thereafter.

9 We are not able to measure the transversal particle motion before transfer to the science
chamber. We experienced this procedure to be a good indicator of a single particle but rely on
a proper size calibration at a later stage.
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Figure 2.4: High NA lens assembly for optical trapping of particles. (a) The lens assem-
bly positioned between the cavity mirrors is shown. We obtain this configuration
after pushing in the transfer arm as described in Fig. 2.2. The side and top plates
of the cavity housing are removed for demonstrative purpose. The laser used to
trap particles is fed into the vacuum chamber via the polarization maintaining
in-vacuum fiber, gets collimated and passes through a custom lens assembly.
With the nanopositioner we place the lens assembly such that a trapped particle
is in the transverse center of the cavity mode and can be moved along the cavity
standing wave. (b) Exploded view of the custom lens assembly cross section.
To be able to fine tune the distance between collection and trapping lens we
designed a three component lens holder. The collimator mount can be fixed
with screws to a Schäfter+Kirchhoff collimator. The trapping/collection lens has a
diameter of 1.4 mm and an NA = 0.75. Both lenses are placed in slots and glued
in place in their corresponding mounts. The center adapter has internal threads
into which we screw the outer mounts. Thereby, we are able to keep the lenses
on axis and tune the distance to properly focus and collimate the incoming beam,
while in situ gluing the adapters in place. To prevent backreflections from reen-
tering the assembly from the opposite side we glue a Faraday isolator (Isowave
I-15-LM-TD-1.4-4) at the opposite side of the collection lens holder (not shown).



20 a versatile levitated particle cavity machine

2.3.1 Cavity Fundamentals

We introduce the classical input-output formalism, see Loudon [127], to
describe a plane-parallel cavity after choosing a convention regarding the
phases picked up by reflected and transmitted light at a partially reflective
surface. For an incoming light field E we define the transmitted and reflected
fields to be given by Et = itsE and Er = rsE respectively, for real valued
reflection and transmission coefficients rs, ts. Furthermore, we define the
absorption coefficient a as well as mirror reflection R = r2

s , transmission
T = t2

s and absorption A = a2
s , with R+ T +A = 1, as a consequence

of energy conservation. We consider the situation depicted in Fig. 2.5 of a
light field Ein at frequency ω impinging on the left mirror and formulate
steady-state relations for the circulating fields as well as the fields reflected
from the left mirror (Eref) and transmitted through the right mirror (Etr),

E1 = itAEin + rAE2

E2 = rBE1ei2Lω/c

Etr = itBE1eiLω/c

Eref = rAEin + itAE2.

(2.9)

Figure 2.5: Input-output formalism for plane-parallel cavity. We consider two plane
mirrors of reflection and transmission coefficients rA, tA, rB, tB. The separation of
the mirrors is L and a light field Ein of wavelength λ is fed through the left mirror.
All denoted electric fields are steady-state solutions of the cavity system. The
field E1 (E2) refers to the fields propagating to the right (left) just after (before)
the left mirror. The reflected (transmitted) field is denoted by Eref (Etr).

We solve the system of linear equations and derive the cavity transfer
functions,

Ftr :=
Etr

Ein
=

TABeiLω/c

RABei2Lω/c − 1

Fref :=
Eref
Ein

=

√
RB(1−AA)ei2Lω/c −

√
RA

RABei2Lω/c − 1
,

(2.10)
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with TAB = tAtB, RAB = rArB, Ti = t2
i , Ri = r2

i and Ai = a2
i for

i ∈ {A, B}. From Eq. (2.10) we conclude that the light transmitted through
the cavity does not contain any directional system information10 as the
transfer function is symmetric in subscripts A, B. The reflected field on the
other hand contains directional information in the form of the reflectivity of
mirror A and B, as well as absorption of mirror A, which will be important
when discussing the Pound-Drever-Hall locking technique in Sec. 2.3.2. We
can calculate the transmitted intensity normalized to the input intensity by
taking the absolute value squared of the cavity transfer functions,

Ttr := |Ftr|2 =
T 2

AB
(1−RAB)2

1

1 +
(

2
√
RAB

1−RAB

)2
sin2

(
ωL
c

)
≈

T 2
AB

(1−RAB)2
(κ/2)2

(κ/2)2 + ∆2 . (2.11)

To obtain the approximation we have chosen ω = qωfsr + ∆ with ωfsr =
πc/L, the free spectral range and q ∈N. Therefore, ∆ denotes the detuning
from the resonance frequency and we can linearize the sine to obtain
the Lorentzian lineshape, introducing κ as the full width half maximum
(FWHM) or cavity linewidth,

κ =
1−RAB√
RAB

c
L

. (2.12)

We furthermore define the finesse F of the cavity as the ratio of the free
spectral range over the FWHM of a resonance fringe,

F := ωfsr/κ =
π
√
RAB

1−RAB
. (2.13)

As the expression for the reflected field is more involved we show the
normalized reflected intensity and phase of the transfer function in Fig. 2.6.
In Fig. 2.6(a), we tune the cavity length with cavity resonance at ∆L = 0. Off
resonance all of the light is reflected whereas on resonance the reflection
is minimal and light is transmitted through the cavity. When tuning the
cavity length over a resonance in Fig. 2.6(b), the reflected light undergoes a
phase shift which we will utilize to stabilize the cavity length at ∆L = 0 as
described in Sec. 2.3.2.

10 The transmission transfer function is invariant under exchanging the positions of mirror A
and B.
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(a) (b)

Figure 2.6: Phase and squared absolute value (∝ intensity) of reflected cavity field.
For a laser of wavelength λ = 1550 nm we set the cavity length L ≈ 8 mm. The
laser is resonant for ∆L = 0. The chosen cavity parameters are TA, TB,RA,RB =
[79 ppm, 20 ppm, 1− 83 ppm, 1− 25 ppm]. (a) Normalized reflected intensity. On
resonance the laser couples into the cavity and the reflected intensity is minimal.
(b) Phase imprinted on the reflected field. On resonance the phase is 0, but for
positive (negative) ∆L the picked up phase is positive (negative).

In our experiments, described in the following chapters, we position a
particle inside the optical cavity to couple mechanical and optical modes.
At a later stage in Sec. 3.5.1 we will discuss the optical forces on the
particle arising from the cavity field in the context of frequency and phase
fluctuations of the input laser. To facilitate the discussion we analyze here
already the impact of input laser frequency fluctuations on the cavity
intensity profile. To do so, we solve Eq. (2.9) for E1 and E2 and look at the
interference pattern at position y relative to the input mirror. We find the
normalized intensity profile Tc := |Fc|2 with

Fc = (E1eiωy/c + E2e−iωy/c)/Ein

=
itA

(
rBe

2iL∆
c + e

2iyω
c

)
e
−iyω

c

1− rArBe
2iL∆

c
. (2.14)

In Eq. (2.14) we have defined ω = qωfsr + ∆ for q ∈ N to simplify the
expression. We continue to derive the normalized intensity profile,
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Tc =
TA

[
RB + 1 + 2

√
RB

(
sin 2L∆

c sin 2yω
c + cos 2L∆

c cos 2yω
c

)]
R2

AB − 2RAB cos 2L∆
c + 1

(2.15)

We first consider the case of two resonances separated by a free spectral
range i.e. ∆ = 0 or ∆ = ωfsr.

Tc(∆ = ωfsr) =
TA
{
RB + 1 + 2

√
RB cos[2πỹ(q + 1)]

}
(RAB − 1)2

Tc(∆ = 0) =
TA
{
RB + 1 + 2

√
RB cos[2πỹq]

}
(RAB − 1)2

We defined the normalized cavity position ỹ = y/L with ỹ = 0 (1) being
on the input (output) mirror. We observe that for any q the two resonance
are in phase on the mirrors and out of phase at ỹ = 1/2. Similarly, for
resonances separated by ∆ = 2ωfsr we can derive that the the modes are in
phase on the mirrors and in the center of the cavity as shown in Fig. 2.7(a–
c). The contrast between a maximum and minimum of the intensity on
resonance is given by,

T(max)
c

T(min)
c

=
(
√
RB + 1)2

(
√
RB − 1)2

(2.16)

Now we want to consider the case of detunings close to a resonance
∆� ωfsr. When detuning the input laser from a resonance we expect less
light to couple to the cavity. Furthermore, as the detuned frequency does
not match the resonance condition of the cavity anymore, we expect the
standing wave profile to change as well. We continue our calculation to find
the position of intensity extrema, as a function of input laser frequency. We
expand Eq. (2.15),

Tc ≈
TA

[
RB + 1 + 2

√
RB +RB

(
2π∆
ωfsr

)2
sin
(

2yω
c + Φ

)]
(RAB − 1)2 (2.17)

and use Cor. A.2.2.1 to combine sine and cosine terms to find Φ = π/2
for ∆ = 0 and Φ = arctan(ωfsr/2π∆) otherwise. To find the positions of
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(a)

(b)

(c) (d)

Figure 2.7: Cavity intensity profile. We show cavity intensity standing wave profiles
for mirror parameters as in Fig. 2.6 and a cavity length of L = 2.5λ to be able to
plot the full profile. For a laser frequency detuned from the cavity resonance the
coupling and thereby the intensity are reduced. We rescale the intensity profile
to be able to compare the positions of antinodes and nodes. In the left column
we plot the intensity profile for ∆ = {0, ωfsr, 2ωfsr} in (a), (b) and (c) respectively.
Only for (a) and (c) the intensity is minimal in the center (ỹ = 1/2) while it is
maximal for (b). (d) We plot the intensity profiles in blue (orange) for ∆ = 0
(∆ = ωfsr/10). Increasing the detuning compresses and shifts the profile.

the intensity extrema we investigate θ := 2yω/c + Φ. In particular we want
to find how much these positions fluctuate, as a function of laser frequency
ω by differentiating θ,

dθ = 2π
dω

ωfsr
(ỹ− 1). (2.18)

We linearize Φ around ∞ since ωfsr � ∆ and observe that frequency
fluctuations not only affect the amount of power entering the cavity, but
also the position of nodes and antinodes of the cavity field. When coupling
light in through mirror A the extrema are maximally shifted at the input
mirror (ỹ = 0) and minimally at the output mirror B (ỹ = 1), as shown
in Fig. 2.7(d). We want to point out that this stems from our choice that
there is no phase shift imprinted on the reflected field, but solely on the
transmitted field. This choice is mathematically valid and conserves energy,
but not necessarily physically accurately describing the reflection process.
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We conclude therefore that the cavity intensity profile jitters for a frequency
or phase fluctuation of the input beam. The strength of this effect scales as
dθ ∝ dω

ωfsr
and is not uniform along the cavity axis. To understand where the

effect is minimal on the other hand we require detailed knowledge about
the dielectric mirror coating to accurately determine the phase which is
imprinted on the reflected light [128, 129].

2.3.2 Pound-Drever-Hall Lock

In the laboratory we would like to be able to set and lock the cavity length L,
such that the cavity is resonant with a certain frequency ω. From Eq. (2.11)
it becomes evident that the transmission signal (and similarly the reflection
signal) is not suitable to derive a lock signal since Ttr = Ttr(ω2), unless we
sacrifice transmitted power and lock to a point away from the maximum of
the Lorentzian (side-of-fringe lock [130]). The main drawback of the side-of-
fringe lock is its small capture range of κ/211 potentially kicking the particle
out of the optical trap while the cavity falls out of lock. Additionally, the
side-of-fringe lock is sensitive to power fluctuations which might arise from
trapping light scattering via the particle onto the photodetector PDPDH.
Hence we prefer to use the Pound-Drever-Hall (PDH) technique [131]. A
thorough description of the technique can be found in [132], but we would
like to mention key findings and implications to our setup. The main idea
behind the PDH lock is depicted in Fig. 2.6. As shown in (b) the phase
picked up by the reflected field depends on cavity length, vanishing on
resonance ∆L = 0 and having opposite signs on both sides of resonance,
making it a suitable feedback parameter. To interferometrically measure the
phase we modulate sidebands onto a laser which we denote by lock laser.
An electro-optic modulator (EOM) creates sidebands spaced at Ωs from the
lock laser carrier, creating an input field

Ein = E0ei(ωt+β sin[Ωst])

≈ E0

[
J0(β)eiωt + J1(β)ei(ω+Ωs)t + J1(β)ei(ω−Ωs)t

]
. (2.19)

We use the Bessel functions of the first kind and neglect higher order side-
bands since β� 1 [132]. For a laser of input power P0 ∝ |E0|2 we modulate
sidebands of total power Ps = J2

1 (β)P0 with a carrier of power Pc = J2
0 (β)P0.

The goal is to extract the phase picked up by the off-resonant sidebands,

11 The slope of Ttr has opposite signs on the two sides of the fringe.
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by interfering them on a photodetector in reflection and converting them
into an error signal E with electronic filters and mixers, as show in Fig. 2.8.
Using the cavity transfer function we write down the reflected power and
neglect terms at 2Ωs, stemming from the interference of the sidebands with
each other,

Pref = PcTref(ω)+Ps[Tref(ω + Ωs) + Tref(ω−Ωs)]

+2
√

PcPs{Re[Fref(ω)F∗ref(ω + Ωs)− F∗ref(ω)Fref(ω−Ωs)] cos(Ωst)

+ Im[Fref(ω)F∗ref(ω + Ωs)− F∗ref(ω)Fref(ω−Ωs)] sin(Ωst)}
+higher order terms. (2.20)

The first line of Eq. (2.20) is blocked by an electronic high pass filter and
after demodulating the output at Ωs with the correctly adjusted phase, we
obtain the error signal,

E = 2ν
√

PcPs Im[Fref(ω)F∗ref(ω + Ωs)− F∗ref(ω)Fref(ω−Ωs)]. (2.21)

Here ν is a constant that includes detector responsivity, gain and efficien-
cies of the electronic transmission line. When ω is close to resonance and the
modulation frequency is chosen such that the sidebands get fully reflected
Ωs � κ, we can simplify Eq. (2.21) since Fref(ω ±Ωs) = F∗ref(ω ±Ωs) =√
RA ≈ 1. As Fref(ω)− F∗ref(ω) = 2i Im[Fref(ω)] the cosine coefficient van-

ishes, motivating our previous decision to pick the demodulation phase
and giving us a simple expression for the error signal close to resonance,

Elin = −8ν
√

PcPs

√
RBTA

(RAB − 1)2
∆Lω

c
, (2.22)

with ∆L denoting small displacements from resonance. We observe that
indeed the error signal close to resonance depends both linearly on cavity
length and laser frequency ω, implying that either the cavity length can be
locked to the laser frequency or the other way around. Making the slope
of Eq. (2.22) steeper by increasing laser power or optimizing gain parame-
ters of the electronic circuit typically also increases noise. Since the mirror
parameters are given by the type of experiment, only two optimization
steps remain. Firstly, we set the sideband modulation strength β such that
Ps/Pc = 1/2. Secondly, in the case of an asymmetric cavity (unequal reflec-
tivities of the two mirrors) it is beneficial to choose mirror A (lock mirror)
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Figure 2.8: Pound-Drever-Hall lock scheme with error signal. (a) We use a fiber-based
EOM, driven by a local oscillator, to create sidebands as described in Eq. (2.19).
We send the beam to a beam splitter that reflects 10% towards mirror A and
transmits 90% of the cavity reflection towards a photodiode. The detector signal
is band-pass filtered, mixed with the local oscillator, low-pass filtered and fed to
an analog PID controller. The PID controller adjusts the cavity length by driving
a ring piezo behind the mirror. (b) We plot the calculated error signal as sent into
the PID controller. The orange (blue) line refers to the case of coupling through
the mirror of high (low) reflection.

of higher transmission and mirror B of higher reflectivity. Unfortunately, in
our experiments we require to place our detection optics behind the mirror
with higher transmission and have to settle with locking through the highly
reflective mirror. In Fig. 2.8(b) we observe how locking through the lower
finesse mirror improves the PDH error signal.

2.3.3 Locking to the Transverse 10 Mode

In our coherent scattering setup as described in Sec. 3.2 we populate an op-
tical cavity with a lock laser through one of the mirrors and also coherently
scatter light via a levitated particle from the side into the cavity. Initially
we tried to minimize interference of these two fields by cross polarizing
them, but eventually decided to separate them spectrally. We achieve this
by coupling the lock laser to the first higher order transverse cavity mode
(TEM10) as described in this section.
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To understand the transverse mode structure of an optical cavity one
has to move away from the model of plane-parallel mirrors. In theory, we
can calculate the transverse modes for any type of mirror shape and cavity
length [125, 133]. If a light field maintains its transverse profile upon a
cavity round trip we refer to it as a cavity mode, adopting the definition of
Siegmann [125, pp. 559ff]. In practice, we only obtain modes that survive
a significant amount of round-trips and qualify as high-finesse by using
spherical mirrors and adhering to stability criteria regarding the cavity
length. We refer to these modes as transverse modes (TEMnm) where the
indices n, m denote the number of dark fringes in the horizontal and vertical
direction, respectively. These modes are well described by Hermite-Gaussian
functions. To fulfill the longitudinal resonance condition the round-trip
phase pick up has to be an integer multiple of 2π. Since the Gouy phase is
different for each TEMnm, also the resonance frequency differs [125],

ωqnm =

[
q + (n + m + 1)

arccos(±√gAgB)

π

]
× πc

L
, (2.23)

with gi = 1− L/ROCi for i ∈ {A, B} and ROCA (ROCB) the radius of
curvature of mirror A (B). The integers q, n, m label the longitudinal and
transversal modes. The + sign applies for gA, gB > 0 and the − sign for
gA, gB < 0. In our experiment we lock the cavity length L to the frequency
of the lock laser. To scatter light from a laser at a different frequency to the
same cavity we need to tune the frequency such that Eq. (2.23) is fulfilled
for a combination of q, n, m. There are two strategies to obtain this. We can
either couple both lasers to two TEM00 modes, separated by a free spectral
range or to two different transverse modes. For both of them one has to
achieve a very stable frequency relation of the two lasers, which we obtain
by picking the lock laser off from the trap laser. For our cavity geometry
the free spectral range is ωfsr/2π ≈ 21 GHz which is impossible to bridge
with an acousto-optic modulator (AOM) and requires costly equipment
such as a high frequency RF source and an EOM. By coupling the lock laser
to the TEM10 we can reduce the frequency and have zero intensity in the
center of the lock mode, where the particle is placed. The disadvantage
is a decrease of the signal-to-noise ratio of the PDH error signal due to a
reduced coupling efficiency from a typical free space TEM00 laser mode to
the cavity TEM10 mode. In practice, our PDH loop is limited by electronic
noise of the feedback system and not by the optical coupling efficiency.

In general an EOM does not simply shift a laser frequency, but modulates
sidebands as show in Eq. (2.19). In contrast to Sec. 2.3.2 we modulate the
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EOM much stronger to suppress the carrier frequency almost entirely. As a
result most of the power is converted to first and higher order sidebands.
The frequency spacing between TEM00 and higher order modes can be
calculated using Eq. (2.23),

ωq10 −ωq00 =
arccos(±√gAgB)

π
ωfsr

ωq20 −ωq00 = 2
arccos(±√gAgB)

π
ωfsr.

(2.24)

We first consider ΩEOM1 = ωq10 − ωq00, to make the first sideband res-
onant with TEM10. With Eq. (2.24) we observe, that simultaneously the
carrier becomes resonant with TEM00 and furthermore also the second
sideband with TEM20 (and similarly TEM11). We noticed in experiments,
that especially the resonant carrier is able to heat up the particle, while
the resonant second order sideband disturbed the PDH locking scheme.
Instead of selecting a sideband with a filtering cavity [104] we decide to
combine the EOM with an AOM as shown in Fig. 2.9. The AOM scatters
light into different diffraction orders that are spatially separated, allow-
ing us to pick out the first order and shifting the beam by ΩAOM [134].
Since ΩAOM � ωq10 − ωq00 we still need to use an EOM and choose the
modulation frequencies such that ΩAOM + ΩEOM1 = ωq10 −ωq00. With this
trick we can bridge the large frequency gap and make only one sideband
resonant with the cavity.

1550 nm
AOM

EOM1 EOM2

Figure 2.9: Frequency shifting for TEM10 lock. A building block to derive the lock
laser from the trap laser is shown. The component EOM2 is the EOM shown
in Fig. 2.8(a) to derive the PDH sidebands. The other components were not
shown previously to focus on the PDH scheme exclusively. The purpose of this
setup is to shift the lock laser by ΩAOM and then modulate sidebands at ΩEOM1.
The first order higher frequency sideband picks up a total frequency shift of
ΩAOM + ΩEOM1.
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2.3.4 Designing an Optical Cavity

In the previous sections we established that cavity mirrors have to be
spherical and require placement at a precise distance. However, we did not
elaborate how specific radii of curvature, cavity lengths and mirror coatings
need to be chosen to suit our experiments. As we study and manipulate
the particle dynamics coupled to the optical cavity the important figures
of merit are the coupling strength between particle and cavity, as well as
the response or readout time of the optical cavity. In Sec. 2.3.1 we studied
only the steady-state properties of an optical cavity, but we can relate the
cavity linewidth to the cavity storage time12 τs = F/ωfsr = 1/κ [135]. In
Chapter 3 we will explain the theory behind cavity cooling in combination
with coherent scattering in detail, before discussing the influence of cavity
parameters on the lowest obtainable phonon numbers in Sec. 4.1. We will
find out that a large optomechanical coupling rate g and a cavity linewidth
similar to the mechanical frequency of the particle c.m. motion are desirable.
To motivate our cavity design we want to relate these parameters to mirror
properties and geometric characteristics of the setup. The optomechanical
coupling rate depends on cavity mode volume g ∝ 1/

√
Vc (see Eq. (4.2)).

The cavity mode volume is in turn given by Vc = πw2
c L/4, with cavity

mode waist wc and cavity length L. We can summarize how our figures of
merit relate to design parameters by considering

g ∝
2

wc
√

πL

κ =
1−RAB√
RAB

c
L

.
(2.25)

We first focus on how to increase g by investigating Eq. (2.25) and fol-
lowing the calculations of Siegmann [125, pp. 746ff]. By minimizing wc
we increase g and have the additional benefit of reduced clipping of the
cavity mode with the lens assembly as described in Fig. 2.4. As shown in
Fig. 2.10, in theory we can make the mode waist arbitrarily small at the cost
of approaching the edge of the green shaded stability region. In practice,
aligning and locking the cavity close to the unstable region is experimen-
tally challenging and not advisable. Instead we want to understand how
the mirrors radii of curvature relate to the cavity waist. We therefore choose

12 We define the storage time as the time until the intensity decays by a factor 1/e. Some references
instead define it for the field decay, obtaining a factor of 2 between the two definitions.
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(a) (b)

Figure 2.10: Cavity mode waist of an optical cavity. (a) and (b) show the cavity mode
waist as well as its position relative to the cavity center [125], normalized by the
cavity length. A relative waist position of −0.5 (0.5) corresponds to a focus on
the mirror A (B), while yw/L = 0 corresponds a focus in the center of the cavity.
The green area denotes the stability area according to [125] while the orange
dot marks the maximum mode waist. In (a) we have chosen radii of curvature
of ROCA, ROCB = [20 mm, 10 mm] while (b) represents the symmetric case of
ROCA = ROCB = 10 mm.

the cavity length to be well within the stability region, where the the cavity
waist is maximal (orange dot in figure) and find

w2
c =

Lλ

π

√
gAgB(1− gAgB)

(gA + gB − 2gAgB)2 (2.26)

max(wc) =

√
λ min(ROCA, ROCB)

2π
, (2.27)

with λ the laser wavelength. From Eq. (2.27) we see that we can achieve a
small cavity mode waist by having at least one mirror with a small radius of
curvature. In practice, we also need to be able to insert the optical tweezer
between the cavity mirrors (L > 5 mm) and would like to trap the particle at
the cavity mode waist position. From Fig. 2.10 we conclude that a symmetric
setup (ROCA = ROCB) is preferable since the mode waist is always in the
center of the cavity, regardless of the cavity length. To further boost g we
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Generation 1 Generation 2

Manufacturer ECI Layertec

Reflectivity 99.986% (99.9975%, 99.9917%)

Transmission 125 ppm (20 ppm, 79 ppm)

ROC (mm) 10 (10, 10)

Finesse 22k 58k

Length (mm) 6.46 6.85

Cavity Waist (µm) 48 48

Linewidth κ/2π (MHz) 1.06 0.32

ωfsr/2π (GHz) 23.32 21.88

(ωq10 −ωq00)/2π (GHz) 7.6 8.7

opt. coupling |g|/2π (kHz) 49.8 47.8

Purcell Factor 2C 4.5 11.7

Table 2.2: Comparison of two generations of cavities. In lines with two values
per generation the first value refers to mirror A, the mirror through which the
cavity is locked and the second value refers to mirror B, the mirror through
which the particle motion is detected. The top section of the table is according
to specifications by the manufacturer, while the bottom section is extracted or
derived from measurements. High finesse coatings on small radii of curvature
mirrors present a challenge to manufacturers. Both creating a spherical surface
with low surface roughness, as well as obtaining a homogeneous coating all over
the mirror surface are not straight forward in this parameter regime. The main
advantages of the second generation are a lower linewidth obtained through
better mirror coatings, as well as an improved particle detection through stronger
Purcell enhancement (Eq. (2.36)) and asymmetric transmission. Furthermore, the
symmetric radii of curvature make it possible to position the particle in the cavity
focus as shown in Fig. 2.10. All parameters apply at a wavelength λ = 1550 nm.
The optomechanical coupling rates are calculated with Eq. (4.2) for a tweezer
power Ptw = 500 mW and silica particles of radius R = 70 nm with density
ρ = 2200 kg/m3 and permittivity εp = 2.07 [136, 137]. Furthermore, we used the
mechanical frequencies from Tab. 2.1 for each cavity generation, matching the
trapping lens generation.
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reduce L as close as possible13 to 5 mm but have to keep in mind that this
also reduces the linewidth κ. To obtain the desired value for κ we choose
the mirror coatings RAB =

√
RARB accordingly. Since we want to detect

the particle motion via light leaking through one of the mirrors, instead of
combining both mirror outputs or alternatively losing half the power, it is
for us desirable to choose RA > RB. During the project we did experiments
with a first generation optical cavity and finally upgraded to a second
generation. A comparison of the two cavity generations is given in Tab. 2.2.

2.3.5 The Cavity Holder

Figure 2.11: Cavity housing with damping stages. (a) We show the damping system
of the cavity housing. For clarity we remove parts of the cavity housing as well
as one mirror. The cavity mirror is mounted in a holder, which is in turn placed
on a rail on the top damping stage. Each damping stage is separated by three
Viton balls to absorb vibrations. Next to the cavity mirror we see the optical
tweezer system after moving the arm into the cavity. (b) Cavity housing, with
an exploded view of the right mirror holder. For clarity we removed the side
invar plates (similar designs as for the top invar plate) that minimize motion of
the two mirror holders w.r.t. each other. The mirror is fixed with a screw to the
mirror mount which in turn is glued to a ring piezo actuator and then to the
center block made from invar. The cavity length can be locked by driving the
piezo actuators. To minimize holder motion while driving the piezo we choose
a symmetric configuration of the same ring piezo actuator, a mirror mount and
a counter weight on the opposite side of the center block. Light can be coupled
into and out of the cavity through the center through-hole.

13 minimal length which still allows the insertion of the trapping lens assembly into the cavity
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(a) (b)

(c) (d)

Titanium Housing Invar Housing

Figure 2.12: Thermal drift of cavity length. For all figures we lock an optical cavity
to a laser with wavelength λ = 1550 nm by applying a voltage to a piezo actuator
behind one of the mirrors. We previously calibrated the piezo expansion in nm
for an applied voltage and characterized the laser frequency drift over a day
to be less than 30 MHz, corresponding to cavity length fluctuations of 175 pm.
The cavity housing is as described in Fig. 2.11, with side/top plates fabricated
from titanium in the left column and from invar in the right column. In all
figures we plot the cavity length change over time (blue curve). In (a) and (b) the
optical tweezer is not placed inside the cavity and the trap laser is turned off. A
temperature sensor inside the vacuum chamber measures the temperature drift
over time (orange curves). We observe a slow temperature drift with periodicity
of ≈ 24 h and a peak-to-peak swing of ≈ 0.5 ◦C. With a delay of ≈ 4 h the cavity
reacts to the temperature drift by expanding or contracting for a temperature
increase in the cases of (a) and (b) respectively. In (c) and (d) we position the
optical tweezer inside the cavity and turn on the tweezer (Ptw ≈ 500 mW) for a
period of time (red shaded area). Some stray light is able to hit the cavity housing,
thereby heating up the components. In (c) we observe a linear expansion of the
cavity until the tweezer is turned off again. In (b), on the other hand, the cavity
contracts and reaches an equilibrium value after ≈ 1 h.
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In this section we describe the technical details of our optical cavity. In
addition to an active PDH feedback system to lock the cavity length we
implement a passive stabilization system to improve mechanical stability.
All components are shown in Fig. 2.11. The cavity is mounted on top of
a stack of three damping stages. Each stage is fabricated from steel and
separated by Viton14 balls. The stack including the cavity is kept under
vacuum, protecting the system from acoustic noise as well as preventing
contamination of the mirrors. Both cavity mirrors are mounted in cavity
holders which in turn are mounted on rail clamps, cf. Fig. 2.11(b). Thereby,
we have flexibility to change the cavity length, while keeping the mirrors
on axis. To ensure precise alignment of the two cavity holders w.r.t. each
other, we mount three invar plates from the top and the two sides to the
mirror holders. Each mirror holder contains a set of a two mirror mounts,
two ring piezo actuators and a counter weight. By applying a voltage to
both ring piezos on opposite sides of the center block, we can change
the cavity length without shaking the holder. The mirror mounts were
initially fabricated from aluminum to be lightweight while the center blocks
and side/top plates were made from titanium for mechanical stability. We
observed that the components heated up during experiments from stray
light inducing a slow drift of the cavity length which could eventually not
be compensated anymore by adjusting the piezo voltage. We improved
thermal stability by switching these parts to components fabricated from
invar. The improvement of switching the side/top plates to invar is shown
in Fig. 2.12. We observe the length drift dependence on temperature to
flip sign and reduce by a factor of two in (a) and (b). Furthermore, the
length change when turning on the optical tweezer inside the optical cavity
saturates within a feasible time (≈ 1 h). We assume that a cavity expansion
originates from expansion of the side/top plates, while a contraction is
due to expansion of the mirror mounts or center block. Initially the effect
from the titanium plates is dominant, after replacement with invar we only
observe the latter. We explain the saturation in (d) by a smaller thermal
capacity of the expanding components (e.g. aluminum mirror mount).

2.4 high precision particle motion detection

As the particle and especially its oscillation amplitude are too small to
be seen by eye or camera, we rely on interference techniques. We use the

14 Viton is a vacuum compatible fluoroelastomer by DuPont de Nemours, also called FKM according
to the DIN-ISO norm.
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optical tweezer not only for trapping the particle, but also to detect the
particle motion. In a homodyne detection setup the light, scattered by the
particle, is interfered with a local oscillator beam at equal frequency and
controlled phase difference. In a heterodyne detection setup, on the other
hand, the local oscillator is shifted in frequency [138]. For the purpose of
efficient detection, one must also ensure a high mode match between the
local oscillator and the information pattern of the c.m. mode of interest [71].
In either way, the detector signal has to be related to an absolute particle
position by applying a calibration. One option is to relate the area under
the PSD to the c.m. temperature after initially calibrating the detector at
moderate vacuum and no cooling techniques applied, i.e. the particle motion
is in thermal equilibrium with the surrounding gas [114]. This method
benefits from homodyne detection as Stokes and anti-Stokes scattered light
are mapped to the same detection frequency, increasing signal-to-noise ratio
compared to heterodyne detection. A second option based on sideband-
thermometry is described in Sec. 4.4. It requires heterodyne detection, as
the Stokes and anti-Stokes sidebands need to be spectrally separated in the
detected signal. In this work we apply both homodyne and heterodyne
detection schemes. As we use the quadrant photodetector built by Erik
Hebestreit in combination with the calibration method he describes we
refer to his thesis [114] for more details and focus in this section solely
on heterodyne detection, after introducing how to obtain the right phase
between signal and reference beam on a balanced detector through clever
use of beam splitters.

2.4.1 Beam Splitters and Phase Retarders

We understand beam splitters as optical components that split an incoming
light field into a transmitted and reflected component. The split ratio can
be either fixed or is given by the polarization of the incoming light field,
which is the case for a so-called polarizing beam splitter (PBS). We can
also use beam splitters in reverse to overlap two cross-polarized incoming
light beams. Phase retarders impose a phase delay between the vertical
and horizontal polarization component of an incoming beam. They can
be used e.g. to transform linearly polarized light into circularly polarized
light (quarter-wave plate) and vice-versa or to rotate linearly polarized
light (half-wave plate). In this section we discuss how wave plates can be
combined with PBS to interfere two light fields on a balanced detector.
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PBS PBS

or

Figure 2.13: Light fields passing through polarizing and phase retarding optics. Two
cross-polarized light fields are combined using a PBS, pass through either a half-
or quarter-wave plate and are split again by a PBS.

To built a heterodyne detection setup as described in Chp. 2.4.2 we need
to understand the impact of PBS and phase retarders on light fields as
shown in Fig. 2.13. We use this setup to copropagate two cross-polarized
light-fields by letting them pass through the PBS, tuning their polarization
state with either a half- or quarter-wave plate and, finally, split them with a
PBS. In practice, the two outputs would be sent to a balanced photodetector
which subtracts the two outputs from each other. We employ the Jones
calculus to describe the evolution of the fields, while propagating through
the setup just described [139].

Following the Jones calculus, horizontally and vertically polarized light
fields can be expressed by vectors

Eh :=

(
Eh

0

)
, Ev :=

(
0

Ev

)

while half- and quarter-wave plate’s are represented by matrices

H = e−
iπ
2

(
cos2 θ − sin2 θ 2 cos θ sin θ

2 cos θ sin θ sin2 θ − cos2 θ

)

Q = e−
iπ
4

(
cos2 θ + i sin2 θ (1− i) cos θ sin θ

(1− i) cos θ sin θ sin2 θ + i cos2 θ

)

as well as polarizers
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Ph =

(
1 0

0 0

)
, Pv =

(
0 0

0 1

)
.

In the wave plate matrices θ represents the angle of the wave plates fast
axis w.r.t. horizontal polarization. Combining these definitions we can write
down the equations for fields Et and Er as defined in Fig. 2.13,

Et = iPhW(Ev + iEh)

Er = PvW(Ev + iEh)

with W = H, Q representing either the half- or quarter-wave plate. After
inserting all definitions we calculate the transmitted and reflected field in
the case of using a quarter-wave plate as

Et,Q = −Eh

(
i sin2 θ + cos2 θ

)
e−

iπ
4 + iEv (1− i) e−

iπ
4 sin θ cos θ

Er,Q = iEh (1− i) e−
iπ
4 sin θ cos θ + Ev

(
sin2 θ + i cos2 θ

)
e−

iπ
4 .

We can choose θ = π
4 (2n− 1) for n ∈ Z to balance the output power of

both output ports of the PBS and derive formulas for the fields,

Et,Q

(
θ =

π

4

)
=

1√
2
(−Eh + Ev)

Er,Q

(
θ =

π

4

)
=

1√
2
(Eh + Ev)

(2.28)

In contrast inserting a half-wave plate leads to

Et,H = iEh

(
− sin2 θ + cos2 θ

)
+ 2Ev sin θ cos θ

Er,H = 2Eh sin θ cos θ − iEv

(
sin2 θ − cos2 θ

)
.

Once again, we choose the angle that guarantees a balanced detection
at the PBS output, which in this case is θ = π

8 (2n − 1) for n ∈ Z. The
transmitted and reflected fields are

Et,H

(
θ =

π

8

)
=

1√
2
(iEh + Ev)

Er,H

(
θ =

π

8

)
=

1√
2
(Eh + iEv) .

(2.29)
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In the next step we assume that a balanced photodiode is placed behind
the PBS. It detects the intensity of the reflected field and transmitted field
and calculates their difference D ∝ |Er|2 − |Et|2. Here we are only qualita-
tively interested in the result of the calculation, hence the proportionality.
In Sec. 2.4.2 we will rigorously derive the detector signal and introduce
the necessary constants. Using Eq. (2.28) and Eq. (2.29) we calculate the
detector signal D,

DQ ∝ 2 Re(EhE∗v)

DH ∝ 2 Im(EhE∗v).
(2.30)

To derive the balanced PBS output fields we assumed certain angles for
θ despite the solution not being unique. Picking a different solution will
flip the signs of the detector signal as does changing which PBS port is
subtracted from which. Since the physics is not affected by this we decided
to simplify the calculations by picking a certain value instead of repeating
the derivations for each case. Choosing a half- or quarter-wave plate to
balance the signal results in the detection of different quadratures of the
light field. As we are typically interested in time-averaged quantities (e.g.
PSD), the phase or sign with which we detect the incident light field does
not affect our measurements. After explaining how to interfere light fields
on a detector with a PBS we are ready to discuss our heterodyne detection
scheme in the next section.

2.4.2 Heterodyne Detection

This section presents the working principle of heterodyne detection. Later,
in Sec. 4.3, we will be particularly interested in the influence of relative
intensity noise (RIN) and phase noise on the detected signal. We consider
the case of two fields Es(t) and Elo(t) at different frequencies, interfering
on a balanced detector as depicted in Fig. 2.14,

Es(t) = E(0)
s (t− t0)e−i[ωt−kl0+φ(t−t0)]

Elo(t) = E(0)
lo (t− (t0 + τlo))e−i[ωlot−klol0−kloLlo+φ(t−(t0+τlo))]. (2.31)

The laser takes the time t0 to travel the common path length l0 and τlo

for the additional local oscillator arm length Llo. The fields E(0)
s (t− t0) and

E(0)
lo (t− (t0 + τlo)) denote fluctuating amplitudes of the input laser. Since

the laser takes times t0 on the signal arm and t0 + τlo on the local oscillator
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arm until it reaches the detector we have to consider the fluctuation at the
respective time in the past. The real average field amplitudes are denoted by

E(0)
s and E(0)

lo . Similarly φ(t− t0) and φ(t− (t0 + τlo)) denote the fluctuating
phases of the input laser. Frequencies and wave numbers are denoted by ω,
k for the signal and ωlo, klo for the local oscillator. We continue by writing
the balanced intensity I of a monochromatic wave in vacuum [140] as

I =
cε0

2

[
|Es(t) + Elo(t)|2 − |Es(t)− Elo(t)|2

]
= cε0 [Es(t)E∗lo(t) + E∗s (t)Elo(t)] .

Here c, ε0 are the vacuum speed of light and permittivity. The detected
power is given by multiplying the intensity with the detector area. To
furthermore obtain the detector output voltage D we multiply the power
with the detector responsivity RD and detector gain G,

D0 := 4GRD
√

PsPlo (2.32)

DI :=
D
D0

=
Es(t)E∗lo(t) + E∗s (t)Elo(t)

2E(0)
s E(0)

lo

(2.33)

Here Ps and Plo are the power of the signal and local oscillator beam per
photodiode respectively. With Eq. (2.31) we derive

AOM

Figure 2.14: Sketch of a heterodyne detection setup with fluctuating laser amplitude and
phase. A laser with a fluctuating amplitude E0(t) and phase φ(t) is split. The laser
on the upper path travels a distance l0 within a time t0 before impinging on a
balanced detector. The laser on the lower arm is frequency shifted by an AOM
and travels an additional distance of Llo within a time τlo before being detected.
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Es(t− t0)E∗lo(t− (t0 + τlo))

E(0)
s (t− t0)E(0)

lo (t− (t0 + τlo))
= exp{i[∆ωt + φ0 + ∆φ(t)]}

∆ω :=ωlo −ω

∆φ(t) :=φ(t− (t0 + τlo))− φ(t− t0)

φ0 :=(k− klo)l0 − kloLlo

and find the detector signal D(t), by inserting the expression into Eq. (2.33),

D(t)
D0

=
E(0)

s (t− t0)E(0)
lo (t− (t0 + τlo))

E(0)
s E(0)

lo

cos (∆ωt + φ0 + ∆φ) . (2.34)

In the absence of amplitude and phase fluctuations of the input laser the
expression simplifies to

D(t) ∝
√

PsPlo cos (∆ωt + φ0) . (2.35)

We obtain a beating signal on the detector at frequency ∆ω, the difference
frequency of signal and reference beam. The phase φ0 depends on the path
length difference of the two arms. It becomes evident from this expression,
that a heterodyne detection is useful for sideband-thermometry. For ∆ω 6= 0
we are able to spectrally separate the Stokes sideband at ∆ω−Ωq and anti-
Stokes sideband at ∆ω + Ωq of oscillator q ∈ {x, y, z}.

2.4.3 Cavity Detection and Purcell Enhancement

Recently, free space levitated particle experiments were able to detect the
particle motion precisely enough to feedback cool its motion to the quantum
ground-state [72, 73]. So far only the motion along the tweezer axis (z) can
be measured accurately enough in free space to sufficiently cool the particle
motion [71]. In levitated cavity optomechanics the increased detection
efficiency, referred to as Purcell enhancement, enables ground state cooling
and detection of the motion transversal to the tweezer [70]. In 1946 Edward
Mills Purcell discovered the enhancement of spontaneous emission rates of
atoms inside a resonant cavity [141]. Resonant cavities not only enhance
spontaneous emission, but also light scattering rates [142] which can be
quantified by the Purcell factor 2C,
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2C :=
Pc

Pdp
=

24c2

πω2
c

F
w2

c
. (2.36)

We consider a dipole, driven by a free-space laser beam. The dipole
scatters light and is placed inside an optical cavity. The Purcell factor gives
the power of light scattered into the cavity Pc over the power scattered into
free space Pdp (i.e. not into the cavity mode). The parameters in Eq. (2.36)
are the cavity finesse F , the cavity frequency ωc and mode waist wc. To
increase the scattering into the cavity, it is therefore beneficial to minimize
the mode waist, while increasing the cavity finesse.

In Fig. 2.15 we show our implementation of homo- and heterodyne setups,
with qualitative detector outputs. In particular the heterodyne detector
output is more involved than shown here, which will be discussed in Sec. 4.4.
We want to give here a brief comparison between free space homodyne
and cavity heterodyne detection to explain our choices of detection setups
in the next chapters. We can calibrate the homodyne detector and relate
the area under the peak in Fig. 2.15(b) to the particle’s c.m. temperature,
as described in [114]. To calibrate the detector it is crucial to turn off the
cooling mechanism and bring the particle to thermal equilibrium with the
surrounding gas. Once the free space detector is calibrated, we can extract
c.m. temperatures for any cavity detuning or gas pressure, as long as the
power of the trap beam does not drift. This robustness motivates us to use
the free space detector for initial cooling experiments, which we present in
Chapter 3.

At c.m. temperatures of a few millikelvin we reach the noise limit of
the free space detector. Since the experimental stability does not allow for
longer measurement times, we require to increase the detection efficiency.
We obtain this through Purcell enhancement of the light scattered into the
cavity and a detector behind the cavity mirror. To relate the area under
the measured peak on the cavity detector to a c.m. temperature we need
to calibrate the detector. We show in (c) that the heights of Stokes (Ω =
ωlo − Ωy) and anti-Stokes (Ω = ωlo + Ωy) peaks depend on the cavity
transfer function (see Sec. 2.3.1). The cavity linewidth is typically fixed
during experiments, but the detuning can be tuned to affect the cooling
strength of the cavity. If we far detune the cavity ∆� Ωy the c.m. motion is
not cooled anymore, but also the detector signal disappears. It is therefore
impossible to calibrate the detector with a particle in thermal equilibrium
with the surrounding gas. Furthermore, the calibration factor depends
on cavity detuning, as the amount of light coupling into the cavity in
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Figure 2.15: Homo- and heterodyne detection with an optical cavity. (a) A laser enters
from the top left. Before forming an optical tweezer that traps a particle inside
an optical cavity we pick off a portion of the light, which is frequency shifted by
ωlo and acts as a local oscillator. Light scattered from the particle in the forward
direction is detected by a quadrant photo detector (QPD). Light coupled to the
cavity, as well as the local oscillator are fed into a fiber-based version of the
heterodyne detection scheme shown in Fig. 2.14. (b) Light scattered from the
particle interferes on the QPD with light passing by the particle. By subtracting
the signal of quadrant B and D from quadrants A and C we perform a homodyne
measurement of the motion along y-direction. (c) Heterodyne measurement of
the cavity output signal. Stokes and anti-Stokes peaks appear at ωlo −Ωy and
ωlo + Ωy with reduced signal-to-noise compared to the homodyne detection. We
overlay the cavity transfer function (orange) with a detuning of ∆ to show how
the anti-Stokes (Stokes) signal is enhanced (suppressed).
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turn also depends on detuning. We can circumvent the direct calibration
by using both the calibrated free space and cavity detector. In a regime
where the free space detector is not yet limited by signal-to-noise, we
can attribute a c.m. temperature to the cavity detector and thereby cross-
calibrate the cavity detector. Once the signal-to-noise limit of the free space
detector is reached, we can still measure c.m. temperatures with the cavity
detector. Since experimental drifts affect the cavity detector more severely,
the improvement on signal-to-noise comes with the cost of robustness.

To benefit from Purcell enhancement on the cavity detector we do not
require a heterodyne detection scheme. However, it is convenient to use
one, to be able to apply a technique referred to as sideband-thermometry,
which we will explain in Sec. 4.4. This technique does not require detector
calibration, but extracts c.m. temperatures directly from the asymmetry
between the Stokes and anti-Stokes sidebands. To obtain accurate results
through sideband-thermometry poses its own challenges, which we will
discuss later.



3
3 D C O O L I N G O F A L E V I TAT E D PA RT I C L E B Y
C O H E R E N T S C AT T E R I N G

In 2019 we observed genuine cooling of all three spatial degrees of freedom
of a nanoparticle levitated by an optical tweezer and coherently scattering
into an optical cavity [68]. Additionally, we developed a theory describing
our findings [103]. Simultaneously Delić et al. reported similar findings [69]
and were the first to use the developed technique to ground-state cool a
levitated nanoparticle in 2020 [70]. In the following sections we introduce
our coherent scattering setup and summarize the theory which describes
the particle-cavity dynamics.

3.1 the coherent scattering setup

So far we have introduced the core building blocks of our versatile levitated
particle cavity machine in Chapter 2. In this chapter we elaborate on the
interplay of optical tweezer with cavity and present our measurement
results. After our initial 3D cooling experiments [68] the setup underwent
several upgrades to lower the reachable c.m. phonon numbers. Those
upgrades will be discussed in Sec. 4.1. At this point we focus on the state
of the setup during the initial experiments as shown in a simplified sketch
in Fig. 3.1. The components used to build the setup are listed in Tab. A.2.
The experiments presented in this chapter are all performed using the first
generation trapping lens (Tab. 2.1) as well as the first generation cavity
(Tab. 2.2).

We split laser light at a wavelength λ = 1550.0(5) nm into two beams, the
lock beam at frequency ωc = 2πc/λ and the tweezer beam. Subsequently
the tweezer beam is sent through two AOMs in double-pass configuration
shifting the frequency by ∆ [143], resulting in a frequency ωtw = ωc − ∆.
The lock laser is phase modulated by an EOM to create sidebands and
couples to the TEM00 mode of our optical cavity. The z polarized lock beam
with an optical power of 11(1) µW is back reflected from the cavity and
detected with a photodiode PDPDH. From the detector signal we derive
the Pound-Drever-Hall error signal and stabilize the cavity length at L =

45
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Figure 3.1: Simplified coherent scattering setup for 3D cooling. A single nanoparticle is
levitated in an optical tweezer trap and positioned in the mode of an optical cavity.
The particle is driven by the trapping light and scatters into the cavity mode as
well as into free space. This scattered light is detected by the cavity photodetector
PDc and by the free space photodetectors PDz and PDx,y, respectively. We use a
camera to image the mode leaking out of the cavity to ensure that both particle
scattered light and lock beam couple to the TEM00 mode. Beam splitters with
a black (red) border are polarizing (non-polarizing) beam splitters and the half
circle indicates a half-wave plate.

6.46(8)mm as described in Sec. 2.3.2. The cavity linewidth is κ/2π =
1.06(8)MHz and the finesse is F = 22(2)× 103.

The trap beam’s detuning ∆ can be tuned by controlling the AOM modu-
lation frequency resulting in ∆/2π ∈ [−10, 10]MHz. To avoid trap power
fluctuations when frequency tuning we feed the AOM output to a fiber
amplifier, which operates in saturation. The amplifier output enters the
vacuum chamber through a polarization-maintaining optical fiber, is col-
limated and forms an optical tweezer inside the lens holder assembly as
described in Sec. 2.2. The silica particle with a radius of 70(5) nm is trapped
in the x polarized tweezer beam with a focal power of Ptw = 500(5)mW.
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The particle motion is detected by our free space detectors PDz and PDx,y
with trap frequencies on the order of Ωx,y,z ≈ 2π × {120, 140, 40} kHz.

Similar to [56] we can move the optical tweezer to scan the particle
position along the cavity axis. Thermal drifts of the loading arm that hold
the nanopositioner limit the particle position stability along the cavity axis
to 50 nm as we will further elaborate in Sec. 4.2. We monitor the power
behind cavity mirror B with PDc. The signal on the photodiode is maximal
for the particle at the center of the transversal Gaussian mode and at the
intensity maximum along the standing wave (antinode) which is expected
according to our calculations presented in Fig. 3.6. Since tweezer and lock
beams are cross-polarized we use a polarizer to filter out the latter on the
detection side of the cavity (behind mirror B).

3.2 position dependent cooling

In our first measurement, displayed in Fig. 3.2, we study the 3D c.m.
temperatures Tx,y,z and damping rates γx,y,z of the particle as a function of
gas pressure p. The c.m. temperatures are obtained from the area under
the PSDs of the free space detectors PDx,y and PDz as touched upon in
Sec. 2.2 and thoroughly explained in [114]. We place the particle at different
positions relative to the cavity intensity profile corresponding to different
markers in the plot. A particle at the intensity maximum or anti-node
is indicated by , at the steep slope by and at the intensity minimum
or node through . For cavity cooling by coherent scattering, the cavity
is blue detuned from the tweezer light (∆ = 2π × 400 kHz). Fig. 3.2(a–c)
show that the temperatures along all axes decrease, as the pressure and
therewith heating due to interaction with room temperature gas molecules
are reduced. Along x and y we observe lowest temperatures Tx ≈ 100 mK
and Ty ≈ 3 mK at the node, limited by interaction with residual gas. For z,
however, we find lowest temperatures Tz ≈ 80 mK at the anti-node, starting
to level off around a pressure of 10−4 mbar.

One key finding of experiment and theory is that not only the particle
motion along the cavity axis (y) couples to the cavity mode, but also along
the tweezer axis (z). By introducing a small tilt of the tweezer polarization
and creating an overlap between x and the cavity axis we can not only
couple the cavity mode to the y and z motion, but also x. To explain the
particle-tweezer-cavity interaction we write down the interaction Hamilto-
nian according to [103, 144],
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Ĥint = −
αdp

2
[
Etw(R̂, t) + Êc(R̂) + Êfree(R̂)

]2
= Ĥt−t + Ĥc−c + Ĥf−f + Ĥt−c + Ĥt−f + Ĥc−f.

(3.1)

The polarizability of the particle αdp is given in Eq. (3.13). The operator
R̂ denotes the c.m. position relative to the focus of the optical tweezer.
The intense tweezer field is treated as a classical field Etw while the free
space and cavity modes, populated via light scattered by the particle are
represented by operators Êfree and Êc. According to [103] for small particles
and away from the photon recoil limit we can neglect Ĥf−f ∝ Ê2

free, Ĥt−f ∝
EtwÊfree and Ĥc−f ∝ ÊfreeÊc. The term Ĥt−t ∝ E2

tw represents the optical
tweezer and is responsible for trapping of the particle. The remaining two
terms Ĥc−c ∝ Ê2

c and Ĥt−c ∝ EtwÊc incorporate the direct cavity drive and
coherent scattering contribution respectively [97]. After a transformation
the interaction between the system degrees of freedom is [103]

V̂0 = ∑
q={x,y,z}

(gq − αcgcq)ĉ†(b̂† + b̂) + H.c. (3.2)

Here ĉ (b̂) and ĉ† (b̂†) are the photon (phonon) annihilation and creation
operators, respectively. The optomechanical coupling rates quantify the
interaction strength between optical and mechanical modes. In Eq. (3.2)
we introduced two optomechanical coupling rates gq and gcq. They arise
from the terms Ĥt−c and Ĥc−c in the interaction Hamiltonian. We refer to
the first one as the coherent scattering optomechanical coupling rate as
it originates from the interference of tweezer and cavity field and denote
the latter as direct optomechanical coupling rate. The motion along the
tweezer axis (z) does not directly couple to the cavity and hence gcz = 0.
The transformation to obtain V̂0 includes a displacement of cavity modes
mapping ĉ 7→ ĉ + αc. The coefficient αc can be calculated according to [103],
but it is not straight-forward. Since the direct optomechanical coupling
rates are negligible for our experimental parameters [103] we focus on the
coupling rates originating from coherent scattering,

gx

gy

gz

 = −(G/2)

kcxzpf sin φ sin θ

kcyzpf sin φ cos θ

−iktwzzpf cos φ

 , (3.3)
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(a) (b) (c)

(d) (e) (f)

Figure 3.2: Three-dimensional cavity cooling of an optically levitated nanoparticle by
coherent scattering. For a cavity detuning ∆ = 2π × 400 kHz we show the cooling
as a function of pressure along x in the first column (blue), along y in the second
column (green) and along z in the third column (red). The cooling is compared
for a nanoparticle positioned at the node ( ), steep slope ( ) and anti-node ( ) of
the cavity standing wave. (a–c) Particle temperatures. (d–f) Particle damping rates.
Both temperatures and damping rates decrease as a function of gas pressure and
are position dependent. Solid lines represent a fit to a two bath model and a
damping rate model given by Eqs. (3.5) and (3.8).

with G = αdpE0

√
ωc

2h̄ε0Vc
, kc = ktw = 2π/λ and qzpf =

√
h̄

2mΩq
the zero-

point fluctuation of oscillator q ∈ {x, y, z}. The particle mass is denoted by
m, the cavity mode volume by Vc and the electric field amplitude E0 in the fo-
cus of an approximative Gaussian beam is given by E0 =

√
4Ptw/cε0πwxwy.

Here ε0 is the vacuum permittivity and wx, wy are the 1/e2 intensity radii of
the focused beam. The angle θ ≈ 10◦ denotes the tilt of the trap’s y axis w.r.t
the cavity axis. The angle φ indicates the particle position relative to the
cavity intensity profile. For φ = 0 the particle is at the intensity maximum
or anti-node ( ), for φ = π/4 at the steep slope ( ) and for φ = π/2 at the
intensity minimum or node ( ). According to Eqs. (3.2) and (3.3) we can
convert phonons into cavity photons and vice versa at rates, that depend
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on the tweezer polarization and particle position. If we choose the correct
cavity detuning and linewidth we can enhance the process that annihilates
phonons and dissipate cavity photons to the environment, thereby cooling
the particle motion. We will investigate how the cavity cooling rate depends
on optomechanical coupling rate, cavity detuning and linewidth in Sec. 4.1.
We point out here that either the x, y axes or z axis can be cooled effectively,
but not all at the same time, due to the dependence on φ. When choosing
φ = 0 the cavity is strongly populated and phase noise can potentially
limit the cooling performance as reported in the case of direct cavity pump-
ing [63]. Furthermore, the particle scatters x-polarized light like a dipole
predominantly in the y direction, thereby coupling more information about
the y motion into the cavity. Combining these arguments, the y oscillator
is the one most promising for ground-state cooling. To describe our mea-
surements in Fig. 3.2(a–c) we employ a coupled bath model to fit the solid
lines. Following the approach in [51] we assume that the oscillators are in
equilibrium with a set of thermal baths,

nq =
Γq

γq
=

Γ(p)
q + Γ(r)

q + Γ(d)
q

γ(p) + γ
(r)
q + γ

(c)
q

. (3.4)

Here Γq and γq are the phonon heating and damping rates of oscillator
q ∈ {x, y, z} respectively. For large phonon numbers as is the case in Fig. 3.2
we can write nq = kBTq/h̄Ωq according to Eq. (2.4) and obtain for the c.m.
temperatures

Tq =
Γ̃q

γq
=

Γ̃(p) + Γ̃(r)
q + Γ̃(d)

q

γ(p) + γ
(r)
q + γ

(c)
q

. (3.5)

The temperature and phonon heating rates are related through Γq =

kBΓ̃q/h̄Ωq. The rates Γ̃(p) and γ(p) originate from a coupling to the sur-
rounding gas molecules, are dominant at high pressure but become gradu-
ally more negligible when approaching ultra high vacuum [47, 145],

γ(p) ≈ 0.619
6πR2

m
p

√
2M

πNAkBT
(3.6)

Γ̃(p) = Tγ(p). (3.7)
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Here the particle radius and mass are given by R and m, while the gas
pressure and temperature are p and T. We denote the molar mass of the
surrounding air by M and Avogadro’s constant by NA. The approximation
of Eq. (3.6) breaks down at high pressure but describes the system well at
moderate vacuum [114]. A coupling to the photon bath is described by the
rates Γ̃(r) and γ

(r)
q which only become comparable to the coupling to the

surrounding gas at pressures below 10−8 mbar [51]. The optical cavity cools
and thereby damps the particle motion which is expressed by γ

(c)
q . We add

an additional heating rate Γ̃(d) which incorporates other heating sources
which we will investigate below.

In Fig. 3.2(d–f) we independently extract the damping rates from the
width of the peak in the PSD. At high pressures cavity backaction is negligi-
ble and the damping decreases linearly with pressure as shown in Eq. (3.6).
In the intermediate pressure regime (≈ 10−2 mbar) cooling is not yet strong
enough to dominate the damping and gas damping is not strong enough
anymore to prevent the particle from experiencing nonlinearities of the
trapping potential. Following the calculations of [114] the measured peak
width γ

(tot)
q (FWHM) can be related to the damping rates through

γ
(tot)
q =

√
γ
(nl)2

q +
(

γ(p) + γ
(c)
q

)2
. (3.8)

The nonlinear broadenings γ
(nl)
q depend on the trapping beam Duffing

parameters and all three oscillation amplitudes. Finally, at sufficiently low
pressure and for efficient cavity cooling, the damping rates level off, and
γq → γ

(c)
q reaching a maximal cavity damping of 2π × 1.3 kHz. We obtain

the solid lines in Fig. 3.2(d–f) by a fit to Eq. (3.8).

3.3 cavity cooling dynamics

Relaxation measurements are a useful tool to measure cooling and heating
rates independently [146]. We normally require the particle to be in thermal
equilibrium to attribute an effective temperature Tcm. In relaxation measure-
ments we investigate the dynamics from one thermal state into another one,
either from uncooled to cooled or the other way around. The rate equation
describes the time evolution of the average particle energy during the relax-
ation process. Since it is intrinsically impossible to wait for equilibration
during the relaxation process, we have to repeat the measurement many
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(a) (b) (c)

(d) (e) (f)

Figure 3.3: Cavity cooling and reheating time traces of a nanoparticle at p = 3(1)×
10−3 mbar averaged over > 150 realizations. Markers and colors as in Fig. 3.2.
(a–c) At t = 0 cavity cooling is turned on and the decrease of Tx, Ty and Tz is
shown over time. (d–e) At t = 0 cavity cooling is turned off and the increase
of Tx, Ty and Tz is shown over time. Solid lines represent fits of the particle
temperatures to a bounded exponential growth model (Eq. (3.9)).

times and average over all realizations (> 150) to find the average energy.
Instead of solving the rate equation, here we use the result from [114],

Tq(t) = T(∞)
q + (T(0)

q − T(∞)
q )e−γ

(eq)
q t. (3.9)

We define the initial c.m. temperature of the process as T(0)
q , the final

one as T(∞)
q and the equilibration rate as γ

(eq)
q . We conduct the relaxation

experiments at 3(1) × 10−3 mbar as there the particle motion is mainly
damped by cavity backaction, when turning on the cavity (see Fig. 3.2(d–f)).
Additionally, the gas heating rate is sufficiently high to observe equilibration
in less than a second after turning off the cavity. Technically we turn
the cavity on and off by switching the detuning ∆ from 2π × 400 kHz to
2π × 20 MHz and vice versa.
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In case of our cavity cooling experiments (Fig. 3.3(a–c)), where we start
from the uncooled state and instantaneously turn on cavity cooling (t = 0),

the relaxation rate is given by the cavity cooling rate γ
(eq)
q = γ

(c)
q . The fitted

rates agree better than a factor of two with values obtained from the PSD
peak width as shown in Fig. 3.2. The remaining discrepancy is explained
by uncertainties of the pressure measurement and drifts of the system (e.g.
tweezer power, particle position).

In case of the heating experiments (Fig. 3.3(d–f)) where we start from a
cooled particle and suddenly turn off cavity cooling (t = 0) we expect the
heating rate to be dominated by residual gas heating as we are not in the

recoil limit (γ(eq)
q = Γ̃(p)/T(∞)

q ). Indeed, we extract γ
(eq)
q ≈ 2π × 2.5(5)Hz

along all three motional axes as expected from gas heating (Eq. (3.6)). We
want to point out that any heating rate (e.g. Γ̃(d)

q ) that originates from a
feedback mechanism via the optical cavity is hidden in these experiments.
The reason is that, when turning off the cooling mechanism by detuning
the cavity to ∆ = 2π × 20 MHz, we also remove the heating effect.

3.4 cavity cooling parameters

In our third experiment we confirm that our parameters do not significantly
limit our cooling efficiency. So far, we have used a detuning ∆ = 2π ×
400 kHz and a tweezer power Ptw = 500(5)mW. Since our optical trap is
fiber coupled it becomes technically challenging to increase optical power
significantly without harming the fiber facet. In Fig. 3.4(a–c) we show
the position dependent particle temperatures as a function of detuning.
Since the cavity linewidth is large compared to the mechanical frequencies
of the particle (κ > Ωx,y,z), the optimal detuning ∆ = 2π × 400 kHz is
approximately the same for all three oscillators. For ∆ . 2π × 300 kHz we
enter a regime where g2 & |∆|Ωx,y,z and the system becomes dynamically
unstable which results in particle loss [103, 147].

At large detunings, ∆ & 2π × 10 MHz, we observe no influence of the
cavity on the particle c.m. temperatures. This motivates the chosen detuning
of 2π× 20 MHz for switching off cavity cooling in the experiments shown in
Fig. 3.3. In Fig. 3.4(d) we show the c.m. temperature of the x, y (z) oscillator,
for the particle positioned in the cavity node (antinode) as a function of
trapping power. Sweeping the power from 240 to 500 mW results in stronger
cavity cooling and lower particle temperatures. The fiber-coupled optical
tweezer prevents us from increasing the power further. In Sec. 4.1 we will
analyze the power dependence of cavity cooling in detail. According to
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(a) (b)

(d)(c)

Figure 3.4: Detuning and power dependence of 3D cavity cooling at p = 3(1) ×
10−3 mbar. Markers and colors as in Fig. 3.2. (a–c) At tweezer power Ptw =
0.50(5)W the nanoparticle temperatures increase as the cavity detuning ∆ reaches
values & κ. (d) Particle c.m. temperatures for best cooling positions of the particle
as function of tweezer power at detuning ∆ = 2π × 400 kHz.

Eq. (4.2) we indeed expect the optomechanical coupling and hence cooling
rate to slightly increase for higher trapping power. When interpreting the
trend in Fig. 3.4(d) we have to be careful, increasing the power not only
increases the optomechanical coupling rate, but also the trap frequencies.
As the trap frequencies approach ∆ also the enhancement of anti-Stokes
scattering becomes stronger and thereby the cavity cooling. Once the trap
frequencies are sufficiently close to ∆ the power increase becomes less
impactful and potentially even increases the relevance of trap displacement
noise Γ̃(d)

q . Additionally, increasing trap power in our setup is challenging
due to the fiber coupling of the optical tweezer. In Sec. 4.1 we will discuss
the impact of all experimental parameters on minimal phonon occupations
in more detail, based on the theory of [103].
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3.5 limits of cavity cooling by coherent scattering

In our first experiment, shown in Fig. 3.2 we were able to match the data to
a coupled bath model by introducing an additional heating rate Γ̃(d)

q which
we refer to as trap displacement noise in [68, 103] accounting for a shaking
of the optical tweezer w.r.t the cavity intensity profile. To test the validity
of this we employ a more complex model that is derived by solving the
Hamiltonian in Eq. (3.1) according to [103]. The average phonon number is
given by

nq =
A− B + C

4|gq|2∆κΩq[4|gq|2∆− (∆2 + κ2)Ωq]
, (3.10)

with

A =2|gq|4∆[∆2κ + κ3 + 4∆Ωq(Γq/2− κ) + 2κΩ2
q]

B =Γq/2Ωq(∆2 + κ2)[κ2 + (∆−Ωq)
2][κ2 + (∆ + Ωq)

2]

C =|gq|2{−κΩq(∆2 + κ2)[κ2 + (∆−Ω)2]

+ Γq∆[2Ω4
q + Ω2

q(2κ2 − 5∆2) + (∆2 + κ2)2]}.

The formula is valid at low gas pressure (i.e. the damping due to gas
molecules γ(p) � Ωq, κ, |gq| for q ∈ {x, y, z}) and only one motional axis
is allowed to couple to the cavity at once. The thermal bath of free space
particle experiments consists of the surrounding gas, the feedback system
and incident photons. In addition we have to include the optical cavity
in our coupled bath model. Both the cavity and particle exchange energy
and both are in contact with the environment. To obtain a coupled bath
expression as proposed in Eq. (3.4) we consider different limits of Eq. (3.10)
taking into account the time scales of the different interactions and choosing
a cavity detuning ∆ = Ωq. We write [103]

nq ≈


Γq/κ for κ/2� |gq| � Ωq

2Γq/κ for κ/2 ≈ |gq| � Ωq

κΓq/4|gq|2 for |gq| � κ/2� Ωq.

(3.11)

Here Γq = Γ(r)
q + Γ(d)

q + Γ(p)
q denotes the sum of all relevant phonon

heating rates, that we introduced in Sec. 3.2. As explained before we ne-
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glect photon recoil Γ(r)
q and write the expression for the trap displacement

noise [103, 148, 149],

Γ(d)
q =

π

2

Ω2
q

q2
zpf

S(d)
qq . (3.12)

To match our definition of heating rates we introduced a factor of two
w.r.t the definitions in [103]. For the experiments presented in this chapter,
the requirements for the approximations of Eq. (3.11) are not fulfilled as
|gy| < Ωy < κ/2. We will be able to use the approximative expressions
after modifications to the setup which we will discuss in the next chapter.
At this point, we describe the measured c.m. temperatures with Eqs. (2.4)
and (3.10) and find indeed non-vanishing values for the trap displacement
noise Γ(d)

x,y,z = 2π × {84 kHz, 15 kHz, 21.5 MHz} [103]. The impact of trap
displacement noise is similar along x and y, but significantly stronger for
the z motion. We explain the difference by the position of the particle during
the cooling experiments. The minimal c.m. temperatures for the motion
along the x and y direction are found for a particle in the node. In order to
cool the motion in the z direction, on the other hand, the particle is placed
at the antinode, where the population of the cavity field is maximal. We
expect any fluctuating forces on the particle, which scale with the intensity
of the cavity mode, to be more relevant at the antinode. Hence the cooling
along the z direction would be affected more strongly. We believe laser
phase noise, which translates into trap displacement noise, to be the origin
of this effect. We will briefly explain how these two effects are connected in
the next section and have a more thorough discussion on heating effects in
Sec. 4.1.

3.5.1 Cavity Input-Output Formalism with a Pumped Particle

In this section we apply the formalism from Sec. 2.3.1 but instead of injecting
a laser into the cavity through a mirror [127], we coherently scatter light into
the cavity via a trapped particle. Since the particle radius in our experiments
is smaller than the wavelength we assume a dipolar scatterer. The analogous
calculation was conducted in [123, 142] to describe the coherent scattering of
an atom into a cavity. We can therefore rely on their results by substituting
the polarizability of an atom by that of a particle. The polarizability of a
dipole in vacuum is given by [114, 118]
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αdp =εε0Vp (3.13)

ε :=3
εp − 1
εp + 2

.

The dielectric constant of silica at a laser wavelength λ = 1550 nm is
approximately εp = 2.07 [136]. We note here, that Im εp = 0 as the intrinsic
losses of silica at the laser wavelength are negligible compared to the
radiative correction. The effective polarizability to account for radiative
losses is then [114, 118]

α =
αdp

1− i k3

6πε0
αdp
≈ αdp + i

k3

6πε0
α2

dp. (3.14)

We consider an input field Etw scattering from a dipole. The dipole is
placed inside an optical cavity and some of the scattered light couples into a
TEM00 mode of the cavity. The scattered field coupled into the cavity mode
ES is given by [123]

ES = iβEtw (3.15)

β =
k

πw2
c

α

ε0
. (3.16)

The factor β accounts for the mode overlap of the dipole field with the
cavity mode of waist wc. To derive the expression, one has to assume the
distance of the mirrors to the particle to be much larger than the wavelength
of the input field and use the far-field approximation of the dipole field.
We furthermore assume that the optical tweezer is polarized along the
x direction, transversal to the cavity axis y. Thereby, the dipole scatters
maximally into the cavity. We are now able to define a set of steady-state
fields (E1 and E2) that build up inside the cavity and leak through the
mirrors, as shown in Fig. 3.5. Both E1 and E2 are defined at the particle
position, propagating in opposite directions. The particle is centered along
the x, as well as z axes and placed at y0 along the cavity of length L. As in
Sec. 2.3.1 the field reflection and transmission coefficients are denoted by
rA and tA (rB and tB) for mirror A (B). We formulate a set of self-consistent
equations
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E1 = ES + rAE2eiktw(L+2y0)

E2 = ES + rBE1eiktw(L−2y0)

EA = itAE2eiktw(L/2+y0)

EB = itBE1eiktw(L/2−y0)

ES = iβ(Etw + E1 + E2).

(3.17)

The first two equations incorporate the phase relation between right (E1)
and left (E2) circulating fields and the scattered light. The third and fourth
lines express the fields leaking through the cavity mirrors by propagating
the circulating fields. The last equation takes into account that the particle
not only scatters the input field from the tweezer, but also light from the
cavity mode. The cavity field Ec is then given by the superposition of the
two counter-propagating fields,

Ec = E1eiktwyc + E2e−iktwyc (3.18)

where yc denotes a position inside the cavity relative to the particle
position. We solve the set of equations (Eq. (3.17)) to find expressions for
the counter-propagating intra-cavity fields. The fields leaking through the
mirrors can be easily obtained by multiplying with the appropriate factors.
The solutions are given by

E1 = −iβFEtw

[
rAeiktw(L+2y0) + 1

]
(3.19)

E2 = −iβFEtw

[
rBeiktw(L−2y0) + 1

]
(3.20)

with a dimensionless complex transfer function,

F =
{

iβ
[
rAeiktw(L+2y0) + rBeiktw(L−2y0) + 2

]
+ rArBe2iktwL − 1

}−1
. (3.21)

We apply the formalism and initially focus on the field leaking through
mirror B. We previously claimed that we can relate the power leaking
through mirror B to the particle position relative to the cavity intensity
profile. To legitimize this we investigate IB ∝ |EB|2 and Ic ∝ |Ec|2 in Fig. 3.6.
(a) The normalized intensity behind one of the mirrors as a function of
particle position is shown. We focus on three distinct positions with a
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A B

Figure 3.5: Input-Output formalism of a particle coherently scattering into an optical
cavity. A laser field Etw is scattered from a levitated particle into the cavity. The
scattered light populates a cavity mode and in turn scatters from the particle. The
total scattered field is then given by ES. We define the steady-state right traveling
field at the particle position as E1 and the left traveling field as E2. The fields
leaking out of the cavity through mirror A (B) is denoted by EA (EB). The particle
is located in the center of the cavity mode along x and z directions and at position
y0 relative to the middle between the two mirrors.

particle placed at the intensity maximum ( ), the steep slope ( ) and close
to the minimum ( ). For each of the three positions we calculate the cavity
intensity profile in the vicinity of the particle. We normalize the cavity
intensity by the intensity leaking through mirror B and show the results
in (b). We conclude that indeed the power leaking through the mirror is a
good indicator for the particle position relative to the intensity profile. In
Sec. 4.2 we will measure the drift of the trap center relative to the cavity.
To accurately relate detector signal and particle position we derive an
expression for the intensity measured behind mirror B. We observe that the
intensity on the cavity detector not only depends on particle position, but
also detuning. As we try to enhance anti-Stokes scattering in our experiment
the cavity frequency is detuned by ∆ = ωc − ωtw ≈ Ωy � ωfsr. For
detunings small compared to the free spectral range and silica particles of
typical experimental size we find by combining Eqs. (3.17), (3.19) and (3.21),

|EB|2
|Etw|2

≈
|β|2TBω2

fsr
4π2RAB

1 + r2
A ± 2rA cos(2ktwy0)

∆2 + (κ/2)2 . (3.22)

If the cavity length is chosen such that there is a field maximum (mini-
mum) in the cavity center the + (−) sign has to be chosen. The intensity
transmission coefficient of mirror B is denoted by TB = t2

B. The average
intensity reflection coefficient of both mirrors is RAB = rArB. Furthermore,
the cavity linewidth is denoted by κ, the detuning by ∆ and the free spectral
range by ωfsr.
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(a) (b)

Figure 3.6: Circulating cavity and output intensity for pumping by coherent scattering.
The cavity parameters are as discussed in Sec. 3.1 and presented in Tab. 2.2 for
generation 1. The data is obtained for an input power of Ptw = 500 mW and a
particle radius R = 70 nm. (a) We show the relative intensity leaking through
mirrors A and B. As the transmission and reflection coefficients are the same for
both mirrors the transmitted intensity is fully symmetric. The output intensity
is maximal for y0 = 0 and minimal at y0 = λ/4, with a periodicity of λ/2.
(b) We choose three values for y0 as indicated in (a) by colored markers at the
intensity maximum ( ), the steep slope ( ) and close to the minimum ( ) for
numeric reasons (y0 = 0.99λ/4). We plot the intensity profile in the vicinity of the
particle for each case. For the particle positioned in the intensity maximum the
amplification of the field w.r.t. to the field leaking out of the cavity is on the order
of the cavity finesse F ≈ 22k. For the particle positioned close to the intensity
minimum we multiply the curve with a scaling factor of 100 to improve visibility.

We continue by investigating the force on the levitated particle at a
fixed position inside the cavity. We will use this to gain intuition on how
trap displacement noise may arise and influence our cooling results in the
previous sections. A dielectric particle in an optical field E experiences a
time averaged optical force 〈Fopt〉 [114, 118]

〈Fopt(R)〉 = Re α

2 ∑
i∈{x,y,z}

Re(E∗i ∇Ei) +
Im α

2 ∑
i∈{x,y,z}

Im(E∗i ∇Ei). (3.23)

The total optical force acting on the particle is given by the sum of the
tweezer and cavity field. We define the center of the cavity in y direction
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as the origin of our reference frame. The focus of the optical tweezer is
located at ytw and the particle is at position y0 = ytw + y. We previously
defined Ec as the cavity field at yc relative to a particle at position y0. The
strongly focused optical tweezer is formally described by an Airy disk,
consisting of a strong central lobe and outer rings [118]. However, in typical
cooling experiments the particle does not experience regions of the optical
tweezer more than 100 nm away from the focus, but rather stays in the
center of the strong central lobe. To gain a qualitative understanding of the
particle-cavity interaction, it is therefore feasible to write the x polarized
optical tweezer in Gaussian approximation as [114]

Etw = E0 exp

[
− (y0 − ytw + yc)2

w2
y

]
nx, (3.24)

with E0 =
√

4Ptw/(cε0πwxwy) for beam waists wx ≈ wy ≈ 1 µm. The
cavity field is x polarized like the optical tweezer and has a Gaussian
transversal profile with waist wc = 48 µm, resulting in a total field

E = Etw + Ec exp

(
−

x2
0 + z2

0
w2

c

)
nx (3.25)

As the particle is centered w.r.t. to the cavity transversal profile with
a negligible movement relative to the large beam waist we can assume
x0 = z0 = 0, to focus on the motion along the y axis. We write for the y
component of the force at the particle position

〈Fopt〉(y0) =
Re α

2
Re
[

E∗x
∂Ex

∂yc

]
yc=0

+
Im α

2
Im
[

E∗x
∂Ex

∂yc

]
yc=0

(3.26)

The first term is often referred to as the gradient force 〈Fgrad〉 whereas
the second one is denoted by scattering force 〈Fscat〉 [118]. In our system
the scattering force along the cavity axis is orders of magnitude smaller
than the gradient force. We therefore neglect it and show the gradient force
for different particle positions and first generation cavity and trapping lens
parameters in Fig. 3.7. We overlay the gradient force exerted from the bare
tweezer on the total gradient force to compare the difference. For a tweezer
focus at the cavity field antinode, as shown in (a), we observe a slightly
steeper slope for the blue curve at y = 0. As the total field intensity at the
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(a) (b)

Figure 3.7: Gradient force on a dielectric particle in a cavity tweezer field. The experi-
mental parameters are as in Fig. 3.6. The solid blue lines correspond to the total
force exerted on the particle while the dashed orange lines denote force of a bare
tweezer without a cavity field, for reference. We show the gradient force acting
on the particle, as a function of position relative to the center of the tweezer trap.
In (a) we place the trap center at the cavity antinode, whereas in (b) the trap
center is placed at the cavity node.

antinode is higher than the tweezer intensity alone, the trap stiffens. This
effect is referred to as optical spring effect [31, 150, 151]. In (b) we place
the trap center at the cavity node and observe the opposite result. Instead
of steepening the slope, the cavity makes the curve slightly flatter. In our
experiments we observe this effect through higher trapping frequencies for
a particle at the cavity antinode than at the cavity node.

We conclude from this discussion, that a particle, placed at different
points along the cavity intensity wave, experiences additional optical forces.
These forces affect the spring constant of the optical trap and thereby
may resonantly or parametrically drive the particle motion [152]. Resonant
and parametric driving of the particle motion require intensity or trap
displacement noise at frequencies around the particle frequencies. [114,
152]. In Sec. 4.2 we analyze the mechanical stability of the optical tweezer
and observe only vibrations below Ωm = 2π × 1 kHz. In Sec. 2.3.1 we
explained that laser frequency or phase noise results in a displacement
of the cavity intensity profile. As the mechanical vibration is too slow to
directly affect the particle motion, we believe that the trap displacement
noise in our experiments stems from laser phase noise. The mechanical
vibration, however, limits our ability to place the particle close to the cavity
node, which in turn affects how strongly the elastic scattering into the cavity
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can be suppressed. Laser intensity fluctuations cannot explain the heating
rates in our measurements. Indeed, RIN could parametrically drive the
particle motion, but the main drive would stem from the intense tweezer
field alone. Hence the heating effect would be visible in our reheating
measurements in Sec. 3.3.

We used a steady-state formalism, as it gives an intuitive idea of both
the optical spring effect and the light fields that build up inside the cavity.
It is helpful, to understand the consequences of slow drifts of the trap
position inside the cavity, but we have to be careful, if we want to consider
effects around the particle oscillation frequency. The cavity field is built
up from light scattered by the particle, which in turn depends on the
particle position. As the cavity field is not created instantaneously, our
static model cannot account for fast dynamical effects. We need to consider
the Hamiltonian in Eq. (3.1) or investigate a dynamical model to explain
the process of particle cooling. We outline here how laser phase noise can
induce trap displacement noise in a static picture, but believe a detailed
analysis, that links the two in a dynamical model would be valuable. In
Sec. 4.1 we will use phase noise heating rates from the literature [69, 153,
154] to motivate upgrades to our setup.





4
T O WA R D S G R O U N D - S TAT E C O O L I N G O F A L E V I TAT E D
PA RT I C L E

In Chapter 3 we discussed our cavity-based coherent scattering cooling
experiments in a regime where the particle c.m. temperature was still
limited by kicks from the surrounding gas molecules, but an additional
noise of the system started playing a role. Based on our measurements we
expect to reach lower phonon numbers with an improved vacuum system,
but will be limited by the additional noise before cooling to quantum
ground-state. Additionally, the lowest c.m. temperature1 that we were able
to measure was close to the signal-to-noise limit of our free space detector.
As the stability of the setup does not permit to measure for sufficiently long,
to overcome the signal-to-noise limit, we need to enhance the detection
efficiency. Since we were limited both in cooling and detection of the c.m.
motion we decided to analyze how to effectively upgrade the system, based
on the theory in [103] and the experiences we collected during the initial
measurements.

To enhance the detection efficiency, recent free space ground-state cooling
experiments [72, 73] focused on cooling the motion along the tweezer axis
(z). With a detection setup in backreflection they were able to benefit from
the asymmetric information distribution in the scattered light field [71]. To
cool the motion along z in our experiment is not feasible, as it requires
to position the particle in the cavity antinode. A particle at the antinode
strongly populates the cavity with scattered light and limits the minimal
phonon number more severely than for a particle in the cavity node, as
discussed in Sec. 3.2. At the node on the other hand, we are only able to
cool the motion along the cavity axis (y). The solution to overcome the
detection limit is to use the optical cavity not only as a cooling system, but
also as a detection tool as mentioned in Sec. 2.4.3.

It seems convenient to use the optical cavity both for c.m. motion cooling
and detection, but it also complicates the discussion of the right cavity
parameters. We are not allowed to find the right parameters for cavity
cooling and cavity detection independently, but have to find compromises.
The strategy in our discussion will be to first determine a parameter range

1 Ty ≈ 3 mK, which corresponds to ny ≈ 450

65
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in which ground-state cooling is possible, within experimentally realistic
boundary conditions. Only after that we analyze which parameters within
this parameter range also enable efficient detection. Based on the discussion
we motivate the choice for our second generation trapping lens (Tab. 2.1)
and cavity mirrors (Tab. 2.2).

After finding a suitable parameter range we continue to describe the
remaining limitations of our upgraded setup, namely the mechanical sta-
bility of the trap center and noise sources in the heterodyne detection.
Thereafter we describe sideband-thermometry in combination with a cavity
enhanced detection. We apply the technique in measurements with our
most recent cavity configuration and present the minimal average phonon
number on the order of ny ≈ 10. Finally, we conclude the chapter by de-
scribing additional upgrades that can bring the setup into the quantum
ground-state.

4.1 requirements for ground-state cooling

In this section we present a favorable parameter regime for optical tweezer
and cavity while not sacrificing detection efficiency. The analysis is based on
the theory developed in collaboration with Gonzalez-Ballestero et al. [103].
Before starting a quantitative analysis we qualitatively explain the influence
of the most important parameters.

Mechanical Frequency—Ground-state cooling benefits from a high fre-
quency of the mechanical oscillator, in our case the c.m. motion along
the cavity axis at frequency Ωy. A high mechanical frequency leads to a
reduction of the thermal phonon number as ny ≈ kBTcm/h̄Ωy. Since the
particle is susceptible to noise (mechanical, acoustic or also 1/ f ) around its
motional frequency it is easier to isolate it from the environment at higher
frequencies. Furthermore, laser phase noise is lower at higher frequencies
as seen in Sec. 4.3, reducing the excess heating and facilitating data anal-
ysis. Additionally, a higher frequency technically facilitates entering the
resolved-sideband regime, since we can allow for a larger cavity linewidth
κ and thus cavity mirrors with a lower reflectivity. Current high finesse
mirror coatings achieve high reflectivity by reducing transmission, but offer
only a minimal intensity absorption value of about 1 ppm. Using mirrors
with lower reflectivity therefore benefits the detection efficiency, as more
photons are transmitted than absorbed. The mechanical frequency scales
with experimental parameters as [114]
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Ωy ∝

√
εp − 1

ρ(εp + 2)

√
Ptw

w2
tw

. (4.1)

The first factor in Eq. (4.1) depends on material properties like the di-
electric function εp and density ρ of the particle (in our case silica), but
not the particle size. Indeed, other materials than silica have been levitated
optically i.e. nanodiamonds [155, 156] or ytterbia [91] and even strongly
absorbing particles made from metal or dye-impregnated glycerol [157–159].
However, none of them have been brought into high vacuum (below a few
mbar). The exact loss mechanism in the case of nanodiamonds is under
debate. It is not clear if the particle burns and evaporates or if it is lost
through Brownian motion due to an increased internal temperature. In
either case, the problem originates from the absorption of laser power and
lack of surrounding gas particles to equilibrate the internal temperature to
the environment. Until more suitable materials for optical trapping than
silica are found, we can increase the frequency either by increasing the
power ∝

√
Ptw or tighter focusing ∝ w−2

tw . We achieve the latter by switching
to our second generation lens (Tab. 2.1). An increase in trap power on the
other hand is only possible by switching from a fiber coupled tweezer to
a free space setup. In general changing optical power not only affects the
mechanical frequency, but also optomechanical coupling and phase noise
heating, as discussed below and has to be done cautiously.

Cavity Linewidth—The cavity linewidth κ has to be considered partic-
ularly carefully to achieve the right trade-off between an efficient particle
read-out with a large linewidth and efficient sideband-resolved cooling
with a narrow linewidth. To cool the particle motion we blue detune the
cavity from the tweezer with ∆ ≈ Ωy, to the anti-Stokes sideband. All
light scattered from the particle is then filtered by the cavity transfer func-
tion, a Lorentzian centered at ∆ with FWHM κ. On one hand, sideband-
thermometry requires the detection of the suppressed Stokes scattered
light and not only the enhanced anti-Stokes scattering as we explained in
Sec. 2.4.3. On the other hand, we can suppress Rayleigh scattering while
enhancing anti-Stokes scattering with a narrow cavity linewidth. We could
add a weaker measurement laser to probe Stokes and anti-Stokes scattering
separately one or two free spectral ranges away from the optical tweezer,
increasing technical complexity and potentially adding heating mechanisms.
Instead, we choose a linewidth that is just wide enough to resolve both
Stokes and anti-Stokes scattering, but also narrow enough to achieve low
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occupation numbers. In practice, technical restrictions also set boundaries
for the cavity linewidth κ ∝ (1 − RAB)/L (see Eq. (2.25)). For our sec-
ond generation cavity we obtained mirrors with a combined reflectivity
RAB =

√
RARB ≈ 99.9892%. To minimize cavity mode volume and in turn

increase optomechanical coupling strength g, we choose the mirrors with
smallest radius of curvature commercially available (ROC = 10 mm). The
cavity stability condition limits the cavity length at L < 20 mm, correspond-
ing to the lowest possible linewidth κmin = 2π × 135 kHz. On the other
extreme, the shortest cavity we can build, with enough space to position an
optical tweezer inside is L > 6 mm. The maximal achievable linewidth is
therefore κmax = 2π × 429 kHz.

Optomechanical Coupling—The final parameter that determines cooling
performance is the coupling between the mechanical modes of the trapped
particle and the optical cavity mode. The coupling for all three oscillators is
given in Eq. (3.3). Since we focus on ground-state cooling the motion along
the cavity axis (y), we define g := Gkcyzpf/2 and insert all definitions from
Sec. 3.2 to analyze the influence of experimental parameters,

g = π5/4

√√√√ 1
λ3

√
ε3c
ρ
× 4

√
Ptw

Ωx

Ωy
×

√
V
Vc

. (4.2)

We define ε in Eq. (3.13) as a parameter depending only on the dielectric
function of silica, at the trapping wavelength. We assume that material
parameters (ε, ρ) are fixed and observe that the dependence on trapping
power is only very weak. The remaining tuning parameters are laser wave-
length and particle volume relative to cavity mode volume. To increase g
it would be beneficial to choose a shorter wavelength for our experiments
than λ = 1550 nm. But the disadvantage is compensated by highly efficient
optical components, optical coatings, low phase noise lasers2 and a larger
distance between cavity node and antinode (λ/2) making the particle po-
sitioning less critical. The largest particles trapped in our group have a
radius of approximately R ≈ 200 nm [83] and the smallest mode volume is
obtained close to the minimal cavity length L ≈ 6 mm. Assuming a tweezer
power of Ptw = 500 mW and particles made from silica, we calculate the
maximal optomechanical coupling strength of gmax ≈ 2π × 249 kHz. At
the other extreme, we can trap the smallest commercially available silica
particles which are on the order of R ≈ 50 nm and set the cavity length to
L = 15 mm and obtain gmin ≈ 2π × 20 kHz.

2 NKT Koheras ADJUSTIK E15
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In general the dependence of minimal phonon number on g is compli-
cated, as shown in Eq. (3.10). However, for g� κ/2� Ωy we find a cavity

cooling rate of γ
(c)
y = 4g2/κ according to Eq. (3.11). In Fig. 4.1 we analyze

the validity of the approximation close to ground state for our parameter
regime. To do so, we set the heating rate to Γy = 2π × 50 kHz, which is
low enough to reach ground-state in our parameter regime and discuss

(a)

(b)

Current

Current

Figure 4.1: Phonon occupations in our experimental parameter regime. We compare
the achievable phonon occupations for the motion along the y direction in the
parameter regime discussed in this section, for a heating rate of Γy = 2π× 50 kHz.
(a) The phonon occupation according to the full model of Eq. (3.10) is shown
for possible cavity linewidths and optomechanical couplings for our second
generation trapping lens and cavity. The mechanical frequency is Ωy = 2π ×
193 kHz and we choose a cavity detuning ∆ = Ωy. By changing particle size
and cavity length we can explore different regions of the parameter regime as
indicated by the curves for radii R = {50, 120} nm. For g ≈ 2π × 120 kHz the
system becomes unstable. (b) We show the phonon occupation for the same
parameters as in (a) but using the approximative formula for the case of |gy| �
κ/2� Ωy from Eq. (3.11). In particular in the regime of g < 2π× 60 kHz, the two
formulas show a good agreement. The red dot shows our current configuration
in the lab for particles of radius R = 70 nm.
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below which heating rates are actually experimentally realistic. We want
to see here, how well the more general formula of Eq. (3.10) agrees with
the approximation ny = Γyκ/4g2 from Eq. (3.11). Both figures show the
minimum phonon number for different combinations of optomechanical
coupling rate and cavity linewidth. We add a blue and orange curve to
show which particle radius enables us to explore a certain parameter regime.
The red dot denotes the parameters of the second generation cavity when
cooling silica particles of radius R = 70 nm, our latest experimental con-
figuration. Especially for moderately large coupling rates g < 2π × 60 kHz
the approximative cavity cooling rate is justified. Therefore, increasing the
optomechanical coupling rate is a viable strategy to decrease the minimal
phonon number. However, at a certain threshold the system becomes dy-
namically unstable indicated by a white area in Fig. 4.1(a) and phonon
numbers increase prior to that. Disregarding any excess heating effect,
one would suggest that a particle radius of R = 120 nm would be ideal
and ground-state could be reached for a heating rate Γy < 2π × 0.1 MHz,
corresponding to a residual gas heating at a pressure of p ≈ 2× 10−6 mbar.

Heating Mechanisms—So far we have discussed the figures of merit to
improve cooling rates. As the final phonon occupation is reached by the
competition of heating and cooling effects we cannot focus on optimizing
only one of the two and neglecting the negative implications of the other. In
free space experiments with levitated particles a variety of effects have been
investigated that could potentially increase the particle’s c.m. temperature.
Among them are heating due to RIN, trap displacement noise and photon
shot noise [51, 160]. For typical experimental parameters all of these effects
are masked by residual gas heating until pressures of < 10−8 mbar are
reached. However, in context of particle trapping with optical cavities it
was reported, that laser phase noise limits cooling performance already
at pressures on the order of ≈ 10−6 mbar suggesting that this effect is
dominant over other technical limitations [63]. In Fig. 2.7 we showed that
laser frequency or phase noise shifts the cavity intensity profile relative
to the optical tweezer (displacement noise). The fluctuating optical force
on the particle depends on the cavity population, which we can reduce by
positioning the particle at the cavity node and thereby suppressing elastic
scattering into the cavity. Therefore, phase noise heating is reduced, but
not entirely eliminated, due to thermal drifts of the mechanics moving
the particle away from the cavity node [69]. We extract the recoil heating
rate Γ(r)

q [103], RIN heating rate Γ(RIN)
q [51] and phase noise heating rate

Γ(PN)
q [69] from the literature and match them with our definitions,
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Γ(r)
q =

πε0

15h̄

(
εVE0

2π

)2
k5q2

zpfNq, Nx,y,z = {1, 2, 7} (4.3)

Γ(RIN)
q = πΩ2

qSRRnq (4.4)

Γ(PN)
q =

G2 cos2(φ)|gq|2

κ2
[(

κ
2
)2

+ ∆2
] S f f . (4.5)

The laser relative intensity and frequency noise are given by SRR and S f f
respectively. The other parameters are the dielectric function ε0, the particle
volume V, the wave number of the field impinging on the particle k, the
zero point fluctuation qzpf of oscillator q ∈ {x, y, z}, the cavity linewidth
κ and detuning ∆, as well as the particle position relative to the intensity
maximum φ. The parameters ε and G are defined in Eq. (3.13) and below
Eq. (3.3), respectively.

Since our particle is subject to both the tweezer field and the cavity field,
in principle we need to the take the recoil and RIN heating rates from both
fields into account. However, we are primarily interested in the heating
effects close to the cavity node. There the peak intensity at the particle
position is dominated by the optical tweezer, since the tweezer is more
than an order of magnitude more strongly focused than the cavity field. We
also want to point out that the heating due to RIN depends on the phonon
occupation number as it is a parametric effect and therefore also becomes
negligible when approaching the ground-state.

In [69, 153, 154] the heating effect that arises from phase noise is denoted
by an excess average phonon number3. To compare the different heating
effects with each other it is more convenient for us to convert this into a
heating rate. We have shown above, that in our cavity parameter regime
the average phonon number is well approximated by ny = Γyκ/4g2 and
thereby we can define a heating rate through Γy := 4nyg2/κ. Inserting the
expression from [69, 153, 154] into this definition we obtain Eq. (4.5).

In Sec. 4.2 we will discuss the mechanical stability of the optical trap
relative to the cavity in detail. To already take into account, that the optical
tweezer moves w.r.t. the cavity intensity profile at Ωm < 200 Hz, we write
the trap center position as y0 = ym sin(Ωmt). Since both the cooling and
the heating rates, as well as the particle oscillation frequencies are orders

3 The phase noise phonon occupation seems to give reasonable heating contributions for similar
experiments. As discussed in Sec. 3.5.1 phase noise has a few effects on the particle motion
and a thorough analysis of the exact manifestation would be valuable.
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(a) (b) (c)

Figure 4.2: Phase noise heating for different trapping parameters. We assume the sec-
ond generation cavity parameters, laser phase noise of S f f = 2π× 0.8 Hz2/Hz as
specified by the manufacturer and a thermal tweezer motion relative to the cavity
intensity profile of amplitude ym = 50 nm. In all figures the green (red) curve
denotes heating rates for the motion along y (z) and a particle positioned at the
node (antinode). (a) The total heating rate is shown. The dominant contribution
is from residual gas scattering at high pressures until phase noise becomes domi-
nant at a pressure of 10−3 mbar in the antinode and 10−5 mbar at the node. We
assume a particle size of R = 70 nm and trapping power of Ptw = 500 mW. (b)
We show the phase noise heating rate for a fixed trapping power Ptw = 500 mW
for different particle radii R. (c) The phase noise heating rate is plotted for a fixed
particle radius R = 70 nm and varying trapping power Ptw.

of magnitude higher then the mechanical motion of the trap, it might
seem feasible to let the particle slowly drift through the cavity node and
focus on a time window where the particle is close enough to it and phase
noise becomes negligible. Unfortunately, the detection scheme requires us
to record data for much longer than 1/Ωm to overcome detection noise.
We therefore define φan = ktwy0 for a particle at the antinode and φn =
φan + π/2 for a particle at the node. By integrating Eq. (4.5) over t we can
calculate the average heating rate. As there is no compact analytical result
for the integration we approximate the average heating rate by inserting the
time averaged phonon number and time averaged optomechanical coupling
rate. To test the validity of this approach we integrate Eq. (4.5) numerically
and find no significant deviation from the approximations in Eq. (4.6) for
our parameter regime. We therefore write for the phase noise heating rates
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Γ(PN)
y (φn) ≈

G4(ktwym)2{ktwyzpf[1− (ktwym)2/4]}2

8κ2
[(

κ
2
)2

+ ∆2
] S f f

Γ(PN)
z (φan) ≈

G4[1− (ktwym)2/2]{ktwzzpf[1− (ktwym)2/4]}2

4κ2
[(

κ
2
)2

+ ∆2
] S f f .

(4.6)

In Fig. 4.2 we visualize the results from Eqs. (4.3), (4.4) and (4.6). For
typical experimental parameters Ptw = 500 mW and R = 70 nm, the in-
fluence of photon recoil Γ(r)

y,z ≈ 2π × {0.7, 7.4} kHz and RIN Γ(RIN)
y,z ≈

2π×{0.2, 0.02} kHz are negligible. To calculate Γ(RIN)
y,z we assume a phonon

occupation of nq = 1000 and SRR = −125 dB/Hz as specified by the manu-
facturer4. As previously mentioned, we require pressures of p < 10−6 mbar
for ground-state cooling. In Fig. 4.2(a) we observe that the heating is dom-
inated by phase noise below 10−3 mbar along the z axis and 10−5 mbar
along the y axis preventing ground-state cooling in this regime. The phase
noise heating contribution is calculated assuming S f f = 2π × 0.8 Hz2/Hz
as specified by NKT Photonics and ym = 50 nm. To reduce the influence of
phase noise we can decrease the particle size or reduce trapping power,
as shown in Fig. 4.2(b, c) at the cost of also lowering the cooling rates. To
lower phase noise heating without any negative effects on the cooling rate
we need to reduce the noise figure of the trapping laser by using a filter
cavity [69] or improve the mechanical stability of the optical tweezer w.r.t.
the cavity.

4.1.1 Optimal parameters for Ground-State Cooling

In the previous section we have discussed which figures of merit have
to be considered to increase the cooling rates of our system or lower the
heating rates. Some have clear implications like choosing the right trapping
lens and cavity mirrors which we have implemented by switching to a
second lens and cavity generation. Other implications, like improving the
mechanical stability of the system are more challenging to implement and
are discussed in Sec. 4.2. Here we focus on finding the minimal phonon
occupation for our system by tuning parameters that do not have a clear
negative or positive effect, as they are e.g. increasing cooling and heating
rates at the same time. Those parameters are the particle radius R, cavity

4 NKT Koheras ADJUSTIK E15
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(a) (b)

Figure 4.3: Minimal phonon numbers for experimental parameters. The results of both

figures are obtained through Eq. (4.7) and assuming Γ(p)
q < Γ(PN)

q , as well as
S f f = 2π × 0.8 Hz2/Hz and ym = 50 nm. (a) The minimal phonon number is
shown as a function of trapping power Ptw and cavity length L for a particle radius
R = 50 nm. The lowest phonon number is obtained close to the masked area in the
bottom left which violates the resolved sideband criterion Ωy > κ/2. Towards the
top right cooling becomes less efficient. (b) To show the relevance of the particle
size we choose three combinations of cavity length and trap power marked in (a)
by colored markers and plot the minimal phonon number against the particle ra-
dius ((L, Ptw) = {(11 mm, 200 mW), (7.8 mm, 450 mW), (6.3 mm, 700 mW)}). The
cooling performance depends strongly on particle size but there is no significant
difference between choosing a long cavity and low trap power or a short cavity
and high trap power.

length L and trapping power Ptw. Combining Eqs. (3.11) and (4.6) under
the condition |gq| � κ/2 � Ωq and assuming that the gas pressure is

sufficiently low Γ(p)
q < Γ(PN)

q , we derive the phonon occupation limited by
phase noise heating,

ny =
G2(ktwym)2S f f

8κ
[(

κ
2
)2

+ ∆2
] (4.7)

nz =
G2
[
1− (ktwym)2

2

]
S f f

4κ
[(

κ
2
)2

+ ∆2
] . (4.8)
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Low g Medium g High g

Trap Power Ptw (mW) 200 450 700

Cavity Length L (mm) 11.7 7.8 6.3

Optom. Coupling g/2π (kHz) 16.8 25.3 32.4

Mech. Frequency Ωy/2π (kHz) 122 183 228

Linewidth κ/2π (kHz) 220 330 411

Phase Noise Heat. Γ(PN)
y /2π (kHz) 5.1 7.8 10.2

Table 4.1: We compare the parameters for the three different cooling configura-
tions of Fig. 4.3. Experimentally we choose a configuration by setting the cavity
length and trapping power which affects the parameters listed but results in the
same phonon number. For all settings we use a particle radius of R = 50 nm
and S f f = 2π × 0.8 Hz2/Hz. The color of each column matches the marker in
the figure. We decide to name each configuration according to the optomechan-
ical coupling relative to each other. For ym/λ < 25 each configuration reaches
ground-state.

As phase noise heating is less significant at the cavity node, we investi-
gate the requirements for ground-state cooling of the y motion in Fig. 4.3
by plotting the results of Eq. (4.7) for different cavity lengths L, trapping
powers Ptw and particle radii R. In Fig. 4.3(a) we show that we obtain the
lowest phonon numbers close to the edge of the sideband resolved regime
Ωy ≈ κ/2. The mechanical stability of the optical tweezer w.r.t. the cavity
dictates how close to the edge we have to operate to reach ground-state.
In Fig. 4.3(b) we investigate three specific configurations of the parame-
ter regime of (a), namely the low g, medium g and high g configuration
according to Tab. 4.1. All three configurations benefit from small particle
sizes and cool to the same phonon occupation of ny < 1 for ym/λ < 25.
The low g configuration has the smallest phase noise heating rate, but also
the smallest cavity cooling rate while the high g configuration has a higher
phase noise heating rate which is compensated by a higher cavity cooling
rate. At first glance it seems like there is no particular reason to choose
one over the other for ground-state cooling, but there are some aspects that
were so far neglected. For simplicity, we assumed that laser phase noise is
equally strong at the mechanical frequency for the three configurations. In
practice, it depends on the specific system but typically decreases for higher
frequencies, favoring the high g configurations for experiments. Addition-
ally, we assumed that residual gas heating is negligible compared to phase



76 towards ground-state cooling of a levitated particle

noise heating. Comparing the rates from Tab. 4.1 with Eq. (3.6) we require
a pressures of p < {4, 6, 8} × 10−7 mbar for the low, medium and high g
configurations respectively. If the vacuum level cannot be reached but the
mechanical stability is sufficient it can be advantageous to choose a larger
particle to increase the cooling rate even though the heating rate increases
as well. So far we did not investigate the detection of the particle motion in
ground-state, but focused on reaching it. Since the dipole scattered power
scales with Pdp ∝ Im α [123] and Im α ∝ V2 [114], a larger particle scatters
more light and can therefore be detected more easily, thereby favoring
the high g configuration. To summarize the results of this discussion in
theory the low, medium and high g configurations are equivalent, but if it
is technically possible to increase the trapping power, the high g setup is
favorable in the experiment.

4.2 mechanical stability of the trap center

After showing how crucial a precise and stable position of the optical
tweezer w.r.t. the cavity intensity profile is, we discuss the stability of
our setup. For experiments only a relative motion is relevant, therefore it
does not matter if it is the cavity or tweezer which moves. However, to
eventually improve the system it is necessary to determine the exact effects
that destabilize the setup.

4.2.1 Characterization of the Mechanical Stability

In this section we conduct two independent measurements to determine
the mechanical stability. The first requires to trap a particle and position
it inside the cavity, as shown in Fig. 4.4(a). Since the intensity of the light
leaking out of the cavity depends on the position of the particle (Sec. 3.5.1),
we can detect the frequency and amplitude of the relative motion of cavity
and tweezer with a photodetector at the output mirror. We start from the
heterodyne detector signal in Eq. (2.34) and set φ0 = ∆φ = 0, since we are
only interested in the amplitude of the signal. The detector signal is

D = 4GR
√

PBPlo cos(∆ωt), (4.9)

with PB , the power of the field leaking through output mirror B and the
detuning between the optical tweezer and local oscillator ∆ω = ωtw −ωlo.
We then insert the field leaking through mirror B for a cavity pumped
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(c)(b)
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Controller
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Figure 4.4: Trap center drift relative to optical cavity. (a) The setup works as described
in Fig. 2.15, after removing the homodyning detector and choosing ∆ω = 2π ×
1 MHz, for a laser wavelength λ = 1550 nm. (b) By moving the trapping lenses,
we position the particle at the cavity field antinode (blue) or node (orange) at
time t = 0 and measure the thermal drift by converting the detector signal to a
particle position by applying Eq. (4.12). For y0 = 0 nm (y0 = λ/4) the particle is
at the antinode (node). (c) We show the trap center displacement from t = 33 s
to t = 34 s (grey shaded in (b)) for a particle positioned in the cavity node. The
short term stability is better than 10 nm while the long term drift governs the full
range from node to antinode.

by light scattered via the levitated particle as derived in Eq. (3.22). To
simplify the expression, we assume highly reflective mirrors rA ≈ rB ≈ 1
and introduce the proportionality factor AD,

D = AD

√
PB[1 + cos(2ky0)] cos(∆ωt) (4.10)

AD =
|βEin|2TBω2

fsr
π2

GR
√

2Plo

∆2 + (κ/2)2 . (4.11)
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We define D̃ = D(t = n2π/∆ω) for n ∈ N, the demodulated detector
signal as well as D̃0 = D̃(y0 = 0). We experimentally determine D̃0 by
positioning the particle in the cavity antinode (y0 = 0). Finally, we can
invert Eq. (4.10) to find

cos(2ky0) =

(
D̃
D̃0

)2

− 1. (4.12)

In Fig. 4.4(c, d) we use this result to convert the signal strength of the
carrier in our heterodyne detection to the particle position relative to the
cavity. (c) We can either position the particle close to the antinode (blue
curve) or node (orange curve) of the cavity field and observe the thermal
drift over the course of almost one minute. As we are mostly interested in
the stability around the node, we show the drift from t = 33 s to t = 34 s
(grey shaded) in (d). For short enough time periods we have a better
stability than 10 nm, while the trap drifts from node to antinode in about
one minute. The dominant short time drift happens at frequencies around
Ωm = 2π × 100 Hz.

Measuring the movement of the optical cavity is technically difficult
and is expected to be the minor effect as the housing is very rigid and
mounted on several damping stages. The cavity mirrors are both attached
to piezos that are driven to lock the cavity length to an external laser. If
only one cavity mirror is driven, the mirror can follow a drift of the other
cavity mirror. Thereby, the cavity stays locked as the length is constant,
but the whole cavity shifts w.r.t. the optical tweezer. Applying the same

A B

Figure 4.5: QPD setup for optical tweezer drift detection. There is no particle trapped
and therefore also no light scattered into the cavity. We focus the collimated
light from the optical tweezer on a QPD about 1m away from the tweezer and
balance the detector by steering the beam with a mirror (not shown). The setup
is sensitive to motion along x and y direction, but cannot detect a drift along z.
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voltage to both mirrors reduces this effect. To be able to reach the cavity
center with the trapping lenses the mobile optical trap is mounted on a
free hanging nanopositioner as discussed in Sec. 2.3.5. The optical tweezer
is therefore more prone to mechanical excitation when compared to the
cavity. To measure the thermal drift of the optical tweezer we focus the
collimated light from the tweezer without a trapped particle on a QPD as
shown in Fig. 4.5. To be maximally sensitive we place the QPD about 1 m
away from the collection lens. The detector is balanced with a mirror very
close to the detector to minimize the influence of thermal motion of the
mirror compared to the tweezer. Any transversal motion of the tweezer arm
creates an imbalance on one of the two channels of the QPD.

We integrate the QPD signal for 80 s and show the PSDs of the two QPD
channels in Fig. 4.6. Each channel measures predominantly the motion of
the tweezer arm along x (polarization or gravity) and y (cavity), respectively.
For the motion along y we observe mechanical vibrations close to 98 Hz,

(a) (b)

Figure 4.6: Mechanical stability of the optical tweezer arm. The optical tweezer light is
collimated and focused on a QPD as shown in Fig. 4.5. We show the PSD of the y
and x channel of the QPD. The sharp features at exact multiples of 100 Hz are due
to electronic noise of the detector. The broader features stem from movement of
the tweezer arm, which results in a power imbalance on the different quadrants of
the QPD. (a) Along the cavity (y) direction, the arm moves at frequencies close to
98 Hz, 280 Hz and 620 Hz. (b) In direction of the tweezer polarization (x), which
coincides with the direction of gravity, the arm moves also at frequencies close to
98 Hz, as well as 280 Hz, but not at 620 Hz.
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280 Hz and 620 Hz. In particular the motion at 98 Hz we already noticed in
the data presented in Fig. 4.4. For the motion along x the displacement is
generally stronger than for the motion along y. When recording spectra at
different moments in time we observe that the amplitude and frequency of
the arm excitation fluctuate. It is expected that devices from the building
infrastructure (e.g. pumps or air-conditioning systems) have a varying
driving strength. We particularly observed that people talking or walking
inside the room visibly affect how strongly the arm vibrates. Along the
cavity axis we require a position stability of fractions of the wavelength
while the stability along x and z is less criticial. Transversely to the cavity
axis the coupling of the particle to the cavity scales with the 1/e2 intensity
mode radius and not the wavelength (wc = 48 µm).

We conclude this section by summarizing that the dominant short term
mechanical vibration of the optical tweezer w.r.t. the optical cavity happens
at a frequency of Ωm ≈ 2π × 98 Hz and limits the position stability to
ym ≈ 10 nm. Due to the design of the setup and the observations in Fig. 4.6,
we suspect predominantly the optical tweezer to move and not the optical
cavity.

4.3 classical noise sources in heterodyne detection

We plan to detect the ground-state c.m. motion signal of our particle via
heterodyne detection. This minute particle signal can be rendered unde-
tectable by laser phase noise and RIN. Furthermore, in Sec. 3.5 we discussed
that laser phase noise (translated into trap displacement noise) affects our
cooling abilities. In the previous section we concluded, that the mechani-
cal vibration of the tweezer arm limits our ability to place the particle in
the cavity antinode. It is therefore important to understand the impact of
laser noise, entering the system via residual Raleigh scattering due to the
particle displacement. By analyzing the detection noise we therefore not
only obtain the detection limit, but also further investigate the process, that
determines our minimal phonon occupation. Here, we therefore investigate
how laser phase noise and RIN influence the heterodyne detection signal.
To build an understanding of this involved noise propagation processes,
we first investigate the simpler free space heterodyne detection scenario. In
a second step we extend our model to our case of interest, by adding an
optical cavity into one of the heterodyne interferometer arms. To clarify in
which way laser noise enters the detector signal, we remind ourselves of
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the heterodyne setup depicted in Fig. 2.14 and reiterate the fields on the
detector,

Es(t) = E(0)
s (t− t0)e−i[ωt−kl0+φ(t−t0)]

Elo(t) = E(0)
lo (t− (t0 + τlo))e−i[ωlot−klol0−kloLlo+φ(t−(t0+τlo))].

In Sec. 2.4.2 we found the intensity on the heterodyne detector as

I =
cε0

2

[
|Es(t) + Elo(t)|2 − |Es(t)− Elo(t)|2

]
.

One large benefit of a balanced detection is the rejection of correlated,
common mode noise by eliminating the terms |Elo(t)|2 and |Es(t)|2 [161].
We point out, that photon shot noise indeed scales with laser power, but
cannot be balanced away as the stream of photons on the two detectors
is uncorrelated. Any detection noise that stems from the interference of
the local oscillator and signal beam is not balanced away and will be
investigated in this section. We will first focus on phase noise and then RIN
in free space heterodyning. Then we introduce a dynamic cavity model
proposed by [162], to repeat the derivations and find the expressions for a
cavity-based detection. Starting point of all these calculations is the detector
signal derived in Sec. 2.4.2, given by

D(t)
D0

=
E(0)

s (t− t0)E(0)
lo (t− (t0 + τlo))

E(0)
s E(0)

lo

cos (∆ωt + φ0 + ∆φ) . (4.13)

We remind ourselves, that ∆ω = ωlo −ω is the local oscillator detuning
and φ0 the phase that arises from the arm length difference. The constant
D0 = 4GRD

√
PsPlo depends on the power of the two beams, as well as

impedance gain and responsivity of the detector. For the phase noise
discussion it is particular important to recall

∆φ(t) = φ(t− (t0 + τlo))− φ(t− t0). (4.14)

The first term here is the phase of the input laser at time t− (t0 + τlo),
whereas the second one is the phase of the input laser at t− t0.
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4.3.1 Phase Noise

In this section we consider a laser without RIN i. e. E(0)
s (t− t0) = E(0)

s (t) =
E(0)

s and E(0)
lo (t − (t0 + τlo)) = E(0)

lo (t) = E(0)
lo . Furthermore, we assume,

that phase noise has the form

φ(t) = βPN sin(Ωt + ψ). (4.15)

Here βPN denotes the amplitude of phase noise at frequency Ω, given
in units of rad. To find the implication of phase noise on the detector
output we insert the definition into Eq. (4.14). For a phase noise amplitude
βPN � 2π with an arbitrary phase ψ, we simplify ∆φ by applying the sum
to product identity from App. A.2.1 and define ψ0 := ψ−Ωt0 to find

∆φ(t) =βPN sin{Ω[t− (t0 + τlo)] + ψ} − βPN sin[Ω(t− t0) + ψ]

=− 2βPN sin
(

Ωτlo
2

)
cos

(
Ωt− Ω

2
τlo + ψ0

)
. (4.16)

Since βPN � 2π also ∆φ � 2π and we can expand Eq. (4.13) after
applying the angle sum identity from App. A.2.1,

D
D0

= cos [∆ωt + φ0 + ∆φ(t)]

= cos(∆ωt + φ0) cos[∆φ(t)]− sin(∆ωt + φ0) sin[∆φ(t)]

≈ cos(∆ωt + φ0)− ∆φ(t) sin(∆ωt + φ0). (4.17)

After inserting Eq. (4.16) into Eq. (4.17) and applying the trigonometric
product to sum identity from App. A.2.1 we obtain

D
D0

= cos(∆ωt + φ0)

+βPN sin
(

Ωτlo
2

)
sin
[
(∆ω + Ω)t + φ0 + ψ0 −

Ωτlo
2

]
+βPN sin

(
Ωτlo

2

)
sin
[
(∆ω−Ω)t + φ0 − ψ0 +

Ωτlo
2

]
. (4.18)

The first line in Eq. (4.18) is what we expected from a heterodyne mea-
surement in the absence of noise. As in Eq. (2.35) we observe a signal at the
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beating frequency ∆ω. In the second and third line we observe sidebands
at ∆ω ± Ω. The strength of the sidebands depends on the phase noise
amplitude βPN as well as the time delay introduced by the delay line τlo.

To analyze our measurements it is often more convenient to investigate
the signal in the frequency domain. We use the definition of the Fourier
transform φ̂(Ω) to find the single-sided PSD of phase noise S̃φφ(Ω) =
4π limT→∞ |φ̂(Ω)|2/T, according to [114, 163]. To write the Fourier trans-
form of the sine we introduce the Dirac delta function δ(Ω′ − Ω) and
write

S̃φφ(Ω′) = 2πδ(Ω′ −Ω)β2
PN. (4.19)

Applying also the Fourier transform to Eq. (4.18) and choosing Ω′ such
that the carrier is at 0, we can write for the double-sided PSD of the detector
signal due to phase noise

S(PN)
VV (Ω′)/2π =

(βPND0)
2

2
sin2

(
Ωτlo

2

)
δ(Ω′ −Ω)

+
(βPND0)

2

2
sin2

(
Ωτlo

2

)
δ(Ω′ + Ω).

We substitute Eq. (4.19) and replace Ω′ for Ω to find

S(PN)
VV (Ω) =

D2
0

2
sin2

(
|Ω|τlo

2

)
Sφφ(|Ω|). (4.20)

With Eq. (4.20) we see how laser phase noise Sφφ affects the noise floor in
heterodyne measurements, generating noise sidebands around the carrier.
We now repeat this analysis to derive a similar formula for RIN, before
addressing the influence of an optical cavity.

4.3.2 Relative Intensity Noise

Following the approach from the previous section we now consider a laser
without phase noise i. e. φ(t− t0) = φ(t− (t0 + τlo)) = 0. We assume that
the electric field amplitude fluctuates as

E0(t) = E0[1 + βRIN sin(Ωt + ψ)], (4.21)
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with an average field amplitude E0. Again we consider the case in which
fluctuations are small compared to the average field βRIN � 1 at frequency
Ω with an arbitrary phase ψ. We repeat the calculations from the previous
sections assuming RIN instead of phase noise in App. A.1.1. We neglect
noise that scales with β2

RIN and find the detector signal as

D
D0

= cos(∆ωt + φ0)

+βRIN cos
(

Ωτlo
2

)
sin
[
(∆ω + Ω)t + φ0 + ψ0 −

Ωτlo
2

]
−βRIN cos

(
Ωτlo

2

)
sin
[
(∆ω−Ω)t + φ0 − ψ0 +

Ωτlo
2

]
. (4.22)

Before discussing the result we want to Fourier transform the detector
signal, as we did in the case of phase noise. To be consistent with literature
we first define the relative intensity RI(t) = |E0(t)|2/|E0|2 − 1 [164–166].
Inserting our expression for the electric field and dropping terms that scale
with β2

RIN we find

RI(t) ≈ 2βRIN sin(Ωt + ψ). (4.23)

The single-sided PSD of RIN is then defined by RIN2 = 4π|R̂I(Ω)|2 with
the Fourier transform of the relative intensity R̂I(Ω) leading to [163, 164]

RIN2(Ω′) = 2πδ(Ω′ −Ω)4β2
RIN. (4.24)

We can now Fourier transform Eq. (4.22) and use the defintion of RIN2

to find

S(RIN)
VV (Ω) =

D2
0

8
cos2

(
|Ω|τlo

2

)
RIN2(|Ω|). (4.25)

With Eqs. (4.20) and (4.25) we are now able to characterize the noise
figures of the laser, Sφφ(Ω) and RIN2(Ω), based on measurements of the

heterodyne PSD Shh = S(PN)
VV + S(RIN)

VV . To characterize phase noise it is

feasible to choose a long delay line since S(PN)
VV → 0 for τlo → 0. If we are

limited by RIN or phase noise in our measurements we need to tune τlo
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such that the stronger contributor is suppressed. As one of the two scales
with the sine and the other with the cosine, it is not possible to eliminate
both at the same time. In Fig. 4.10 we will use these results to find, that
in our case, phase noise has a stronger contribution than RIN and use
Eq. (4.20) to measure Sφφ. Before considering the experimental results we
continue the calculation to derive the influence of an optical cavity in one
of the detection arms.

4.3.3 Dynamic Cavity Model

To capture the time delay introduced by a cavity we have to utilize a
dynamic model and cannot rely on the steady-state cavity input output
formalism used in Sec. 2.3.1. We follow the approach of [135, 162] and write
the cavity output field Es(t) as a superposition of fields that entered the
cavity at different times in the past as shown in Fig. 4.7.

For simplicity, we consider a cavity with symmetric mirror coatings, such
that both mirrors have the same reflectivity, transmission and absorption.
As in Sec. 2.3.1 the intensity reflectivity is given by R, the transmission as
T and absorption as A. We further define τn := (2n + 1)τ, the time a beam
requires for n + 1/2 round trips and find the transmitted field

Es(t) = −T
∞

∑
n=0
RnE(0)

s (t− τn)e−i[ω(t−τn)+φ(t−τn)]. (4.26)

The minus sign arises from our phase convention regarding transmitted
and reflected fields as discussed in Sec. 2.4.1. The factor T indicates that
every field has to be transmitted through the input and output mirror. The
factor Rn takes into account that per round trip the light field has to be
reflected from both mirror surfaces once. We choose to write an infinite
series for mathematical convenience. In practice, of course the laser is not
turned on infinitely long before starting measurements, but since R < 1
contributions from the past get suppressed exponentially, and a steady-
state is reached for times � 1/κ. Furthermore, R < 1 also guarantees
convergence of the series and we don’t have to worry about cutting the
series after a finite number of reflections. Without phase noise φ(t) = 0,
the factor eiωτn indicates whether contributions from different input times
add up constructively or cancel each other out. On resonance we find
ωτn = 2πm, m ∈N leading to constructive interference of all summands.
As in the previous sections E(0)

s and φ are functions of (t − τn). They
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Figure 4.7: The dynamic cavity model. Influence of a cavity on phase noise and
RIN. We consider the output field Es(t) as a superposition of time-delayed input
fields entering the cavity at t− τ, t− 3τ, t− 5τ, ... with τ being half of the round
trip time. The laser’s RIN, imprinted in Es(t), and laser phase noise, imprinted
in φ(t), have to be considered at the respective delayed times.

represent amplitude and phase noise of the input laser at times delayed by
τn.

4.3.4 Heterodyne Detection with an Optical Cavity

In this chapter we modify the setup from Sec. 2.4.2 by adding an optical
cavity into the signal arm as shown in Fig. 4.8.

We use Eq. (4.26) and write down the fields impinging on the two
photodiodes of the heterodyne detector

Es(t) = −T
∞

∑
n=0
RnE(0)

s (t− (t0 + τn))e−i[ωt−kl0−ωτn+φ(t−(t0+τn))]

Elo(t) = E(0)
lo (t− (t0 + τlo))e−i[ωlot−klol0−kloLlo+φ(t−(t0+τlo))]. (4.27)
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AOM

A B

Figure 4.8: A simplified sketch of a heterodyne detection scheme including an optical
cavity. A laser with a fluctuating amplitude E0(t) or fluctuating phase φ(t) is
split. The laser on the upper path travels a distance l1 in time t1 before entering
an optical cavity. After leaving the optical cavity the laser travels a distance l2 in
time t2 before being detected. The laser on the lower arm is frequency shifted by
an acousto-optic modulator and travels a distance of Llo in time τlo in addition to
l0 = l1 + l2.

To simplify calculations we define

E(n)
s (t) := E(0)

s (t− (t0 + τn))e−i[ωt−kl0−ωτn+φ(t−(t0+τn))] (4.28)

Dn :=
(E(n)

s (t)E∗lo(t) + E(n)∗(t)
s Elo(t))

2E(0)
s E(0)

lo

. (4.29)

Repeating the calculations from Sec. 2.4.2 we find the balanced detector
signal

D = −T D0

∞

∑
n=0
RnDn. (4.30)

4.3.5 Phase Noise in Presence of an Optical Cavity

As in the free space case we assume phase noise of the input laser according
to Eq. (4.15). To find the total detector signal we first focus on simplifying
the expression for Dn. We define φ

(n)
0 := φ0 +ωτn as well as τ

(n)
lo := τlo− τn
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and ψ
(n)
0 := ψ0 −Ωτn and observe that the derivation can be mapped to

the free space calculation from Sec. 4.3.1. Afterwards, we can insert the
expression into Eq. (4.30) and use identities to calculate the limit of the
sum. The full calculation can be found in App. A.1.2. We write the total
detector signal in the case of phase noise as D(PN) = Dc + D(PN)

Ω + D(PN)
−Ω .

The different terms correspond to the carrier and the sidebands at ±Ω with,

Dc = T D0C sin(∆ωt + ωτ + φ0 + Φ)

D(PN)
Ω =

T βPND0

2
C(PN)

Ω sin[(∆ω + Ω)t + Φ(PN)
Ω ]

D(PN)
−Ω =

T βPND0

2
C(PN)
−Ω sin[(∆ω−Ω)t + Φ(PN)

−Ω ].

The coefficient C and phase of the carrier Φ depend on laser frequency
and cavity length. For a laser frequency ω = ωc − ∆ detuned by ∆ and
close to the cavity resonance ωc we find (see Eq. (A.5) in the appendix)

Dc = D0
T
A+ T

√
(κ/2)2

(κ/2)2 + ∆2 sin(∆ωt + ωτ + φ0 + Φ). (4.31)

The factor in front of the sine matches the Lorentzian transfer function
which we derived in the input-output formalism in Sec. 2.3.1. We continue
to investigate the sideband expressions. The coefficients C(PN)

Ω , C(PN)
−Ω and

the phases Φ(PN)
Ω and Φ(PN)

−Ω depend on laser frequency, cavity length, local
oscillator delay and sideband frequency. All definitions are given in the
appendix in App. A.1.1. The PSD of the heterodyne detector signal, in
presence of phase noise is therefore given by

S(PN)
VV (Ω) =

(D0T )2

8
Sφφ(|Ω|)×

(C(PN)
Ω )2, for Ω > 0

(C(PN)
−Ω )2, for Ω ≤ 0

(4.32)

If we compare this to the free space case of Eq. (4.20) we observe that
the dependence on local oscillator delay τlo has become more involved. In
the free space case, we are able to suppress phase noise entirely, by setting
τlo = 0. We can understand this by investigating the cavity output field
Es. The output field can be described as a sum of input fields, as shown in
Fig. 4.7. All these input fields are attenuated and delayed, inside the cavity,
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depending on their number of round trips. We are only able to suppress
the contribution of one of these input fields, by setting the correct local
oscillator delay.

4.3.6 Relative Intensity Noise in Presence of an Optical Cavity

Before we are able to compare and interpret all our results, we finish
the derivation of heterodyning noise. In this section we assume the same
amplitude fluctuations as in the free space configuration, given by Eq. (4.21).
The procedure to derive the detector signal is the same as in Sec. 4.3.5 and
the full derivation can be found in App. A.1.3. We write the total detector
signal in the case of phase noise as D(RIN) = Dc + D(RIN)

Ω + D(RIN)
−Ω ,

D(RIN)
Ω =

−T βRIND0

2
C(RIN)

Ω sin[(∆ω + Ω)t + Φ(RIN)
Ω ]

D(RIN)
−Ω =

T βRIND0

2
C(RIN)
−Ω sin[(∆ω−Ω)t + Φ(RIN)

−Ω ].

We do not investigate the expression for Dc again, as the result is the
same as in the case of phase noise. We continue to write the PSD of the
heterodyne detector, which is limited by RIN as,

S(RIN)
VV (Ω) =

(D0T )2

32
RIN2(|Ω|)×

(C(RIN)
Ω )2, for Ω > 0

(C(RIN)
−Ω )2, for Ω ≤ 0

. (4.33)

The expression of S(RIN)
VV and S(PN)

VV in a cavity heterodyne detection setup
take a similar form. To understand the differences, we have to investigate
the coefficients C(RIN)

±Ω and C(PN)
±Ω . We summarize their definitions from

Apps. A.1.2 and A.1.3 as

C(PN)
Ω =

√
C0(ω, Ω)− Csc(ω, Ω)

C(PN)
−Ω =

√
C0(ω,−Ω)− Csc(ω,−Ω)

C(RIN)
Ω =

√
C0(ω, Ω) + Csc(ω, Ω)

C(RIN)
−Ω =

√
C0(ω,−Ω) + Csc(ω,−Ω).

The definition of C0 and Csc can be found in Eq. (A.6).
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4.3.7 Summary and Analysis

In the previous sections we derived the PSDs in a heterodyne measurement
given a laser with phase noise or RIN. First we considered the free space
case, before combining the results with a dynamic cavity model. In this
section we summarize our findings in Tab. 4.2 and analyze its implications
on our experiments. In the cavity case C0(ω, Ω) does not depend on the
local oscillator delay τlo, but Csc(ω,±Ω) does. By adjusting the delay line
on the reference arm we can tune sign and amplitude of Csc(ω, Ω) to either
reduce the impact of phase noise or RIN at a certain frequency Ω. In most
cases the laser will be either dominated by phase noise or RIN and we can
tune the local oscillator delay i.e. the dominant contributor is suppressed.

We derive the optimal delay τ
(opt)
lo (Ω) that either minimizes phase noise

or RIN contribution by requiring ∂Csc(ω,Ω)
∂τlo

= 0.

τ
(opt)
lo (Ω) = τ −

{
arctan

[
B(ω)A(ω + Ω)− A(ω)B(ω + Ω)

A(ω)A(ω + Ω) + B(ω)B(ω + Ω)

]
+ πn

}
/Ω

(4.34)

For any n ∈ Z the term Csc(ω, Ω) has an extremum. To maximally
suppress phase noise (RIN) in the detection one has to pick n to be even
(odd). We emphasize that this procedure only minimizes detection noise at
a certain cavity detuning and detection frequency. Furthermore, minimizing
noise in one sideband (e.g. +Ω) will not minimize noise in the other
sideband (−Ω). The only way to circumvent this problem is to insert a
component into the reference arm that introduces a frequency dependent
delay such as an optical cavity. In Fig. 4.9 we analyze how to suppress the
influence of both phase noise and RIN separately for a high finesse cavity.

Free Space Cavity

S(PN)
VV (Ω)/Sφφ(|Ω|)

D2
0

2 sin2
(
|Ω|τlo

2

)
(D0T )2

8 [C0(ω, Ω)− Csc(ω, Ω)]

S(RIN)
VV (Ω)/RIN2(|Ω|) D2

0
8 cos2

(
|Ω|τlo

2

)
(D0T )2

32 [C0(ω, Ω) + Csc(ω, Ω)]

Carrier D2
0

2
D2

0
2

(
T
A+T

)2 (κ/2)2

(κ/2)2+∆2

Table 4.2: We compare the noise measured in a heterodyne detection normalized
by laser phase noise Sφφ(|Ω|) (first row) or RIN RIN2(|Ω|) (second row). In the
third row we show the power measured at the carrier frequency.
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Description Value

R mirror reflectivity 0.9999753

T mirror transmission 23.7 ppm

L cavity length 5 mm

F finesse 127k

λ laser wavelength 1550 nm

ω−ωlo local oscillator detuning 2π × 1 MHz

κ cavity linewidth 2π × 235 kHz

G transimpedance gain 50 kV/A

RD responsivity 1.04 A/W

Plo local oscillator power 0.35 mW

Ps signal power 2.26 µW

Table 4.3: Parameters used to characterize our heterodyne detection noise.

Since we are neither looking at the first nor second generation cavity we
summarize the relevant experimental parameters in Tab. 4.3.

The derivations in this chapter show that there are knobs to tune the
influence of phase noise and RIN in our heterodyne detection. We continue
to discuss what is the optimal scenario for our experiments. The ultimate
noise limit we can reach is photon shot noise. We will now derive criteria
which are required to lower phase noise and RIN contributions below
the shot noise limit. The single-sided PSD, for a shot noise limited photo
current, as derived by Schottky reads [167]

S̃sn
I I ( f ) = 2eI. (4.35)

Here e and I are the electron elementary charge and average current
respectively. We relate the average photo current to the optical power
incident on the photodetector my multiplying with the responsivity I =
RDP. Furthermore, we convert to the voltage PSD by multiplying with the
photodetector gain G2

S̃sn
VV( f ) = 2eG2RDP. (4.36)
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(a)

(b)

Figure 4.9: Suppression of phase noise or RIN in heterodyne detection by tuning
local oscillator delay. For cavity parameters described in Tab. 4.3 and a detuning
∆ = 2π × 180 kHz we plot the normalized noise spectra for different local
oscillator delays τlo. (a) The heterodyne PSD in absence of RIN is normalized by
D2

0 and Sφφ to make the quantity dimensionless and independent of input laser
power and input laser phase noise. The orange curve corresponds to a constant
delay of τlo − τ = 0 µs whereas for the green curve we choose τlo − τ = 0.88 µs
to minimize noise at Ω = ∆. The blue curve denotes the noise level obtained
by choosing the ideal delay for each frequency Ω to minimize phase noise
according to Eq. (4.34). (b) The heterodyne PSD in absence of phase noise is
normalized by D2

0 and RIN2. As in (a) the orange curve represents a delay line
with τlo − τ = 0 µs. The green curve arises from a delay line minimizing the
influence of RIN at Ω = ∆ given by τlo − τ = −1.9 µs. The blue curve denotes
the noise level obtained by choosing the ideal delay for each frequency Ω to
minimize RIN.
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In our heterodyne detection scheme two beams are impinging on the
detector. We choose the local oscillator power Plo � Ps such that the shot
noise level is well approximated by the local oscillator Ssn

VV = 4eG2RDPlo.
We multiplied by an additional factor of 2 since we defined Plo as the power
shining on only one of the two balanced photodiodes. We combine the
results of this sections in Eqs. (4.32) and (4.33) and insert the definition of
D0 from Eq. (2.32) to find

S(PN)
VV = 8Sφφ(GRDT )2PsPlo [C0(ω, Ω)− Csc(ω, Ω)]

S(RIN)
VV = 2RIN2(GRDT )2PsPlo [C0(ω, Ω) + Csc(ω, Ω)] . (4.37)

To be shot noise limited in the heterodyne detection we require Ssn
VV >

SPN
VV as well as Ssn

VV > SRIN
VV which leads to the criteria

SφφPs <
e

2T 2RD

1
C0(ω, Ω)− Csc(ω, Ω)

RIN2Ps <
2e
T 2RD

1
C0(ω, Ω) + Csc(ω, Ω)

.

In practice the right hand side of Eq. (4.38) is fixed by cavity and photode-
tector parameters that are difficult to tune or given by the requirements for
particle c.m. cooling. To anyway fulfill the criteria either the noise figures of
the laser must be sufficiently low or we are limited in the amount of signal
power on the detector.

In Fig. 4.10 we show experimental data for heterodyne measurements
with and without an optical cavity and compare the results to the developed
theory. In (a) we show the normalized PSD of the detector signal of a
heterodyne setup without as cavity, as shown in Fig. 2.14 for varying local
oscillator delay lines. We choose Llo ≤ 50 m i.e. |Ω|τlo = |Ω|Llo/c � 2π
and approximate Eqs. (4.20) and (4.25) to find

S(PN)
VV (Ω) ≈

D2
0

2

(
|Ω|Llo

2c

)2

Sφφ(|Ω|) (4.38)

S(RIN)
VV (Ω) ≈

D2
0

8
RIN2(|Ω|). (4.39)

In Fig. 4.10(a) we observe that the noise close to the carrier at Ω = 0
indeed scales as ∝ L2

lo and assume that phase noise dominates our hetero-
dyne measurements. We continue to extract Sφφ from the measurements in
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(a)

(c)

(b)

Figure 4.10: Detected heterodyne noise PSD with and without cavity. The x axes of
all subfigures are labeled with respect to the beating frequency ∆ω. (a) For a
heterodyne setup without an optical cavity, as shown in Fig. 2.14, we plot the PSD
of the detector voltage, normalized to the PSD of shot noise. The sharp feature
in the center is the carrier peak. The background far away from the carrier is
limited by shot noise. The broad feature with ripples stem from excess laser noise.
The different curves correspond to different local oscillator delay lines Llo. We
observe the noise increasing from the green to the brown curve corresponding
to Llo = {15, 20, 25, 35}m. (b) We employ Eq. (4.20) and extract Sφφ from the
measurements in (a). The solid line denotes the mean of Sφφ with the shaded area
corresponding to a standard deviation. (c) We conduct a heterodyne measurement
with a cavity in the signal path as shown in Fig. 4.8. We insert Sφφ which we
experimentally determined and plot in (b) into Eq. (4.32) for cavity parameters
listed in Tab. 4.3. We compare the PSD measured with a cavity (blue) to the noise
we expect from the model (orange). We observe that the model captures the noise
at the carrier and overestimates the noise in the tail. This can be explained by
uncertainties of the cavity parameters and limitations of the model. We assumed
small and continuous phase fluctuation at the laser. Large phase jumps would
not be captured by the model and lead to a different result. However, the model
is able to predict the measured phase noise up to an order of magnitude.
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(a) and plot the result including the uncertainty in (b). Finally, we include
an optical cavity into the signal arm of the heterodyne setup as shown in
Fig. 4.8 and compare the detected PSD to the expectation from our model
according to Eq. (4.32) in combination with the experimentally determined
phase noise PSD Sφφ. In Fig. 4.10(c) we observe that the model qualitatively
predicts the measured signal with better agreement close to the carrier and
deviations in the tails. We insert Sφφ(2π× 200 kHz) into Eq. (4.38) and find
that we are limited to a cavity output power of 2Ps ≈ 9 nW to be shot noise
limited at Ω = 2π × 200 kHz, close to the frequency where we expect the
sideband of the Stokes scattering from the particle’s c.m. motion.

4.4 sideband-thermometry with an optical cavity

The Raman effect was predicted in 1923 by Smekal [168] and observed
by Raman for the first time in 1928 [169]. The Raman effect refers to the
inelastic interaction of light and matter which is typically orders magnitude
weaker than the elastic process of Rayleigh scattering [118]. Detecting the
weak Raman signal was technically challenging and prevented the early
success of Raman spectroscopy. The technical challenge was overcome in
the early sixties when highly monochromatic, coherent and intense light
sources became commercially available [170]. Nowadays a collection of
Raman techniques has been developed to enhance the coupling strength
and study the vibrational spectrum of various materials. The vibrational
spectra create "fingerprints" for identification and interpretation of different
specimens [171]. The phonon excitation by absorbing a photon and emission
of a lower energy photon is referred to Stokes scattering, while the inverse
process resulting in the annihilation of a phonon and the creation of a
higher energy photon is called anti-Stokes scattering. As the latter requires
the presence of a phonon in the system, the anti-Stokes scattering rate
scales with the average phonon number n while the Stokes scattering rate
scales with n + 1 [122, 172]. The average occupation number of a harmonic
oscillator in a thermal state is given by the Bose-Einstein distribution [120],

n =

[
exp

(
h̄Ω
kBT

)
− 1
]−1

. (4.40)

Using the Bose-Einstein distribution we can find the scaling of anti-Stokes
scattering compared to Stokes scattering
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n
n + 1

= exp
(
− h̄Ω

kBT

)
. (4.41)

The vibrational frequencies studied by the Raman spectroscopy com-
munity are in the terahertz regime and hence even at room temperature
(300 K) the Stokes process dominates the anti-Stokes process. Therefore,
most Raman techniques focus on detecting Stokes photons [142, 173, 174]. In
levitated particle experiments at room temperature Stokes and anti-Stokes
process are practically equally strong, as the c.m. frequencies are on the
order of hundreds of kilohertz. To resolve an asymmetry between the two
scattering rates we need to couple the system to a low temperature bath. In
our measurements we can determine the scattering rates by measuring the
number of Stokes and anti-Stokes photons corresponding to the areas un-
der the respective sideband in a heterodyne measurement [117], hence the
terminology sideband-thermometry. This technique has been used outside
the Raman spectroscopy community to characterize the average motional
energy of single atoms or atom clouds inside optical traps [38, 39, 175].
Recently, sideband-thermometry has been used both in free space levitated
optomechanics [72, 73] as well as cavity levitated particle systems [70] to
measure the average phonon number close to the motional ground-state.

4.4.1 Cavity-Induced Sideband Asymmetry

In our experiments, light from the tweezer at frequencies ωtw coherently
scatters into the cavity mode, into sidebands at ωtw ±Ωq with q ∈ {x, y, z}.
On the detector we interfere the light leaking through one mirror with a
local oscillator field at frequency ωlo, as shown in Fig. 2.15. The detuning of
the local oscillator w.r.t. the tweezer field is defined as ∆lo = ωtw−ωlo. The
PSD of the photocurrent of the heterodyne detector Shh contains a signature
of Rayleigh scattered photons at ∆lo, as well as Stokes scattered photons
at frequencies ∆lo −Ωq and anti-Stokes scattered photons at ∆lo + Ωq. The
Rayleigh photons do not carry any information about the oscillators mo-
tion, but depend on the cavity detuning w.r.t. to the optical tweezer and
the particle position relative to the cavity intensity profile as discussed in
Sec. 3.5.1. To summarize our previous findings, Rayleigh scattering is maxi-
mal (minimal) for a particle at the antinode (node) of the cavity field. At
∆ = 0 the cavity maximally enhances Rayleigh scattering. As the detuning
is increased, the Rayleigh scattered power decreases. The amount of (anti-
)Stokes scattered photons, that we can detect behind a cavity mirror is more
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intricate. We explain it in two steps. The coupling of mechanical motion
and cavity mode is given by the optomechanical coupling rates in Eq. (3.3).
Inelastic scattering from the z oscillator (tweezer axis) is maximal (minimal)
at the antinode (node), similar to the Rayleigh scattering. Inelastic scattering
from the y motion on the other hand follows the opposite dependence and
is maximal (minimal) in the cavity node (antinode). As for the Rayleigh
scattering the inelastic scattering is enhanced by the cavity depending on
frequency and cavity detuning. In our experiments we cool the particle
motion by enhancing anti-Stokes scattering with a blue detuned cavity.
Therefore, we expect to see different scattering rates stemming from the cav-
ity enhancement, which we refer to as cavity-induced sideband asymmetry.
If we go one step further and consider a particle cooled close to ground-
state, we expect an additional asymmetry of the sidebands, according to
Eq. (4.41). This asymmetry will depend on the cooling rate of the cavity
which in turn depends also on cavity detuning and particle position. Since
we can independently measure the cavity parameters, we can compensate
for the cavity-induced asymmetry, as long as the Stokes scattering is not
suppressed strong enough to be buried by noise. To avoid suppressing
the Stokes peak, beyond measurement capabilities, it is beneficial to have
a cavity linewidth comparable to the mechanical frequency κ ≈ Ωy. We
define the measured asymmetry between the area under the anti-Stokes
and Stokes peaks as

Aq :=

∫ δ
−δ Shh(∆lo + Ωq + Ω)dΩ∫ δ
−δ Shh(∆lo −Ωq + Ω)dΩ

, (4.42)

where we assume that the peaks are narrow enough and sufficiently
far apart to integrate over almost the full area by choosing an appropriate
window 2δ. This spectral separation is not possible anymore close to ground-
state, where the y peak gets sufficiently wide to overlap significantly with
the x peak. In this case, we have to fit the x and y peaks simultaneously
to appropriately determine the area. According to Refs. [70, 74], we can
factorize the asymmetry as Aq = A(c)

q A(th)
q with the thermal asymmetry

A(th)
q = nq/(nq + 1) and A(c)

q incorporating the cavity-induced asymmetry.
We assume here that both Stokes and anti-Stokes sidebands are detected
with the same efficiency which we can verify by inverting the sign of the
detuning of the local oscillator ∆lo. From Eq. (2.11), we derive,
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A(c)
q =

κ2 + 4(∆ + Ωq)2

κ2 + 4(∆−Ωq)2 . (4.43)

The oscillator average phonon number is then given by

nq =
Aq

A(c)
q − Aq

. (4.44)

4.4.2 A Setup for Cavity Heterodyne Detection

In Sec. 4.5 we present the full setup including all improvements that were
included over the course of the project. To focus on the key elements for
sideband-thermometry, we now present a simplified setup in Fig. 4.11.
The field Etw at frequency ωtw is split to derive the local oscillator Elo at
frequency ωlo with detuning ∆lo = 2π× 1 MHz for heterodyne detection as
described in Sec. 2.4.2. The largest fraction of the light forms the optical trap
with a focal power of Ptw ≈ 500 mW that will scatter via the particle into
the TEM00 mode of an optical cavity. As explained in Sec. 2.3.3 we lock the
cavity to the TEM10. For this we derive a field Elock at frequency ωlock from
the tweezer with the relation ωlock − ωtw = ω10 − ω00 + ∆. Thereby, the
lock beam is resonant with the optical cavity as well as the tweezer beam,
up to a detuning ∆. We reiterate here that the difference of the resonance
frequencies of the two cavity modes ω10−ω00 depends on the cavity length
and lock laser wavelength.

In our cooling experiments we require ωlock to be tuned, such that ∆ ≈ Ωy
to enhance anti-Stokes scattering. As both the cavity length and the laser
wavelength are affected by thermal drifts, ω10 −ω00 is slightly different at
the beginning of every experiment. To correct for this we zero point calibrate
the detuning to ∆ = 0. We do this with a calibration beam Ecalib, derived
from the optical tweezer at frequency ωtw. We imprint phase-modulation
sidebands on the calibration field with an EOM at Ωcalib = 2π × 200 kHz
and higher harmonics. Both the tweezer light scattered by the particle, as
well as the calibration laser can be measured by the heterodyne detector,
after leaking through the right cavity mirror. The far detuned lock beam is
low in power and does not add a significant amount of shot noise on the
detector. The calibration laser has a power Pcalib < 1 nW and is turned off
during measurements to not disturb the particle motion. The calibration
steps are then:
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Figure 4.11: Simplified setup for cavity cooling and heterodyne detection. A fraction of
the field Etw is split to derive a local oscillator that is used as a reference field in
heterodyne detection. The rest is focused to a diffraction limited spot to confine
a particle in 3D which in turn scatters tweezer light into the cavity. The cavity
length is locked to the TEM10 mode of a field Elock as described in Sec. 2.3.3.
The lock field is far detuned from the tweezer field and does not influence the
heterodyne detection signal as the shot noise of the low power beam is negligible
to the local oscillator field. By rotating the polarizer we can additionally inject the
calibration field Ecalib into the cavity. The calibration laser has the same frequency
as the tweezer and has sidebands imprinted at multiples of 2π × 200 kHz which
can be used to measure the cavity linewidth and detuning in-situ. To not affect
the particle motion the laser can be fully turned off during measurements. The
heterodyne detection scheme is explained in Sec. 2.4.2.

1. Position the particle outside of the optical cavity to avoid scattering
into the cavity.

2. Set ωlock −ωtw to the theoretical value of ω10 −ω00 ≈ 2π × 4.2 GHz.
For every change in cavity geometry this value has to be calculated
again according to Eq. (2.24).

3. While sweeping the cavity length, monitor the intensity leaking
through mirror B. As the cavity becomes resonant with the lock beam
and the calibration beam for a certain length the intensity increases
behind the cavity mirror. Tune ωlock with a frequency generator until
both the lock beam and the calibration beam become resonant at the
same cavity length.

4. Lock the cavity and monitor the signal of the heterodyne detector. The
PSD of the detected signal contains peaks at the beating frequencies
of the local oscillator with the calibration beam carrier and sidebands,
as shown in Fig. 4.12(a, b).
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(a)

(b)

(c)

Figure 4.12: In situ method for cavity detuning calibration. (a, b) PSD (blue curve)
of signal detected by PDPDH in heterodyne detection setup as shown in Fig. 4.11

for two different cavity detunings. We measure a beating signal of the local
oscillator and the calibration beam carrier and sidebands equally spaced by
Ωcalib = 2π × 200 kHz. We overlay the cavity transfer function of Lorentzian
lineshape in black to visualize the linewidth and detuning. The detunings are
∆ = 0 and ∆ = 2π × 196 kHz in (a) and (b) respectively. (c) With Eq. (4.43)
we can relate the cavity detuning to the asymmetry between left and right
sidebands. Each curve shows the expected asymmetry for a cavity linewidth
κ = 2π × 320 kHz and peaks at Ωcalib, 2Ωcalib and 3Ωcalib with colors matching
the markers of (a, b). Additionally, we show datapoints for the asymmetries
measured in (a, b).

5. Fine tune ωlock with the frequency generator until every sideband
pair has the same amplitude on both sides of the carrier to achieve5

∆ = 0.

During experiments it is not feasible to set the detuning back to ∆ = 0
to confirm that ω10 −ω00 has not drifted, as the particle is not cooled any
more and can be lost from the trap. Instead we can measure the asymmetry
of the calibration sidebands and compare them to the expected asymmetry
as shown in Fig. 4.12(c).

5 After the fine tuning is complete we continue adjusting ωlock to get an estimate for how
precise we can determine ∆ = 0. We observe an uncertainty of less than 2π × 10 kHz which
corresponds to ≈ κ/30 and has a neglectable influence on the cooling performance
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4.4.3 Cavity-Based Cooling Close to the Quantum Ground-State

After discussing how to extract the mean phonon numbers from a sideband
asymmetry and how to calibrate the zero point of the cavity detuning, we
are set to interpret measurement data shown in Fig. 4.13. The setup used
to record the heterodyne PSD is sketched out in Fig. 4.11 and described
in detail in Sec. 2.4.2. Before considering the sideband asymmetries we
present the experimental parameters in Tab. 4.4 and dissect the relevant
contributions to the PSD Shh detected by PDHet. For a system far away
from the strong coupling regime, i.e. no significant hybridization of modes
occurs [97, 176, 177], the full PSD is

Shh = Ssn + SPN + SRR + ∑
q∈{x,y,z}

(
S(Ω)

qq + S(−Ω)
qq

)
. (4.45)

The PSDs are in units of V2/Hz, to improve readability we dropped
the VV subscript used in Sec. 4.3 and imply e.g. Ssn = Ssn

VV . The different
contributions in Eq. (4.45), from left to right, are respectively:

• Shot noise of the local oscillator6

• Phase noise of the laser transduced by the optical cavity

• The carrier peak at Ω = ∆lo, originating from Rayleigh scattered light
interfering with the local oscillator

• Anti-Stokes and Stokes sidebands centered at Ω = ∆lo + Ωq and
Ω = ∆lo −Ωq for each oscillator

The expressions for Ssn and SPN are given in Sec. 4.3, additionally SRR has
a Lorentzian lineshape with a linewidth of 2π × 1.6 kHz according to the
manufacturer. In theory, the expression of Eq. (2.3) needs to be multiplied
with the cavity transfer function Eq. (2.11), but as in our case the mechanical
linewidths γq are small compared to the cavity linewidth κ we can simply
correct each peak with a scaling factor, without altering the Lorentzian
lineshape.

In Fig. 4.13(a) we show the heterodyne PSD for a particle positioned at the
minimum of the cavity intensity profile (node). The light blue datapoints in
the background are calculated from a 400 ms timetrace. The grey datapoints
indicate contributions to Shh from the electronic noise of the data acquisition

6 since Plo � Ps with Ps the power leaking through the cavity mirror
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Parameter Value

Trap Power Ptw (mW) 380(5)

LO Power Plo (µW) 70(2)

LO Detuning ∆lo/2π (MHz) 1

Cavity Linewidth κ/2π (kHz) 320

Cavity Detuning ∆/2π (kHz) 196(20)

Pressure p (mbar) 1.8× 10−5

Particle Radius R (nm) 70

Mechanical Freq. Ωx,y,z/2π (kHz) {146, 167, 53}

Table 4.4: Experimental parameters for our sideband asymmetry cooling experi-
ments.

system and are not included in Eq. (4.45). Using the Welch method [178], we
divide the timetrace into 30 segments and average to reduce noise, plotted
in dark blue. At Ω = ∆lo, we observe the Rayleigh peak and close by noise
from the cavity lock electronics in the range |∆lo−Ω| < 2π× 10 kHz. Away
from the carrier, the noise floor is dominated by shot noise from the local
oscillator, indicated with a horizontal red line. Deviations from the red
line that are not Stokes and anti-Stokes sidebands are originating from
phase noise of the carrier SPN, which is more pronounced at frequencies
Ω > ∆lo due to cavity enhancement. At Ω = ∆lo ±Ωz we observe narrow
features marked in light red originating from inelastic scattering with the
z oscillator. As the optomechanical coupling of the z motion to the cavity
and hence also the cooling rate is weak at the node, the motion is only
very weakly damped, resulting in a narrow linewidth. At Ω = ∆lo ±Ωx
we observe the Stokes and anti-Stokes sidebands of the x oscillator. For a
tweezer polarization perfectly orthogonal to the cavity axis we expect the
peak to be as narrow as the peaks corresponding to the z motion. A small
tilt of the polarization axis results in moderate cooling of the x motion.
Finally, at Ω = ∆lo ±Ωy the broad Stokes and anti-Stokes peaks of the
strongly damped y motion can be seen. To guide the eye we overlay the data
with a Lorentzian fit. We want to point out the narrow spike, particularly
visible on top of the anti-Stokes peak, but also present for the Stokes peak.
The spike has a different width and amplitude in different measurements
and is not visible if we inject the laser directly into the cavity. We therefore
assume, that the feature is not only a measurement artifact, but part of the
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Parameter x y z

Stokes Area (V2) 1.9× 10−11 3.14× 10−11 2.0× 10−10

anti-S. Area (V2) 8.5× 10−11 1.20× 10−10 3.6× 10−10

FWHM γq/2π (kHz) 2 12 0.5

Asymmetry A 4.5 3.83 1.8

Cavity Asymmetry Ac 5.1 5.96 1.9

Phonon Number n 7.5 1.86 18

Table 4.5: Measured Stokes and anti-Stokes peak parameters for a particle posi-
tioned in the cavity node as shown in Fig. 4.13.

y motion. Our current understanding is, that the spike might stem from a
slight asymmetry of the particle shape, resulting in libration of the particle.
To obtain a conservative estimate of the phonon number, we integrate over
the Lorentzian, attributed to the y motion and add the area of the spikes.
In Tab. 4.5 we list the measured areas under the x, y and z peak as well as
the linewidths of the oscillators.

We estimate the phonon numbers from the measured asymmetries ac-
cording to Eq. (4.44). At this point, a word of caution is warranted: the
accuracy of the inferred phonon numbers strongly depends on the accuracy
of our experimental parameters. To illustrate this we use Eq. (4.44) to derive
the uncertainty of the phonon number resulting from uncertainties of both
the measured asymmetry and the cavity induced asymmetry. We calculate
∂nq/∂Aq, ∂nq/∂A(c)

q and employ the error propagation formula [179] to
derive

δnq

nq
= (nq + 1)

√√√√√(A(c)
q

δAq

Aq

)2

+

 δA(c)
q

A(c)
q

2

. (4.46)

We observe that particularly for large phonon numbers, measurement
uncertainties of the cavity asymmetry or measured sideband asymmetry
affect the phonon estimation severely. To fully understand the sensitivity of
the phonon number accuracy, we investigate the cavity induced asymmetry
A(c)

y and assume ∆ = Ωy to simplify Eq. (4.43),
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A(c)
y = 1 + 16

(
Ωy

κ

)2
. (4.47)

We use again Gaussian error propagation [179] to find the uncertainty of
A(y)

c arising from the uncertainty of κ and ∆,

δA(c)
y

A(c)
y − 1

=

√(
2

δκ

κ

)2
+

(
δ∆
Ωy

)2
. (4.48)

Operating in the resolved sideband regime κ � Ωy or close to it makes

sideband-thermometry challenging since A(c)
y increases quadratically with

Ωy/κ and amplifies the error contribution from the measured sideband
asymmetry in Eq. (4.46). Larger mechanical frequencies on the other hand
decrease the impact of imprecision on the cavity detuning ∆. We combine
Eqs. (4.46) and (4.48) to estimate the phonon number uncertainty in our
experiment. With Ωy/κ ≈ 0.5 and a conservative estimate of δκ/κ =
δ∆/κ ≈ 0.1 we obtain an uncertainty of δny ≈ 4 for the y oscillator.

One aspect that we have ignored so far in our analysis, which could
affect the phonon number estimation, is the role of phase noise in the
detection. As mentioned, we observe a small deviation from shot noise
in Fig. 4.13(a) at Ω > 2π × 1 MHz. Since the detector cannot distinguish
between phase fluctuations of the detected field due to laser phase noise
or due to particle motion, the (anti-)Stokes scattered light from the particle
can interfere destructively or constructively with laser phase noise on the
detector depending on their phase relation. This effect becomes especially
evident in Fig. 4.13(b). All experimental parameters are the same as for (a)
except for the particle position relative to the cavity intensity profile. Instead
of placing the particle in the node we choose the antinode or intensity
maximum. Rayleigh scattered light couples maximally to the cavity and
the noise level originating from phase noise is orders of magnitude higher
than shot noise. Besides the carrier we only observe features stemming
from the z motion of the particle marked in red and from the y motion,
marked in green. As the tweezer is polarized along the x axis which is
almost orthogonal to the cavity axis the noise level overshadows any weak
x (anti-)Stokes peaks. Since the optomechanical coupling of the z oscillator
is maximal at the antinode, we indeed see broad (anti-)Stokes peaks, but the
cooling is ultimately limited by laser phase noise as discussed in Sec. 4.1.
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(a)

(b)

Figure 4.13: Heterodyne spectra with sideband asymmetry of cavity cooled particles. We
detect light leaking through one cavity mirror with ∆lo = 2π× 1 MHz. The central
peak corresponds to Rayleigh scattered light while higher (lower) frequencies
denote anti-Stokes (Stokes) scattering. We use the second generation cavity as
described in Tab. 2.2, a trap power of Ptw = 380(5)mW, particles with a radius of
R = 70 nm and operate at a pressure of 1.8× 10−5 mbar. We integrate for 400ms
to obtain the light blue datapoints and derive through windowing the dark blue
average curves. The horizontal red line represents the shot noise level of the local
oscillator field of power Plo = 70(2) µW. To guide the eye we mask the datapoints
that are due to electronic noise of the data acquisition system in grey and mark
features in green that correspond to the particles y motion, light blue for the x
motion and red for the z motion. The PSDs in (a) and (b) correspond to a particle
positioned a the cavity node and antinode respectively.
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At Ω = ∆lo ±Ωy we interestingly don’t see sharp features corresponding
to an uncooled y oscillator but destructive interference with the phase noise
background showing that we indeed have to be careful when estimating
PSD areas in the presence of phase noise.

In conclusion, we believe that we are close to ground-state cooling of
a levitated particle with a minimum phonon occupation on the order of
ny ≈ 10. We are able to consider measurements, where the particle drifts
through the cavity node and phase noise heating is negligible compared to
gas recoil heating at 1.8× 10−5 mbar. However, we still observe an elevated
noise floor around the anti-Stokes peak arising from laser phase noise which
might affect the phonon estimation. Slow drifts of the particle position
as well as long waiting times to reach sufficiently high vacuum without
losing the particle make experiments challenging. Maturing the system
and improving stability will make it easier to acquire data for a longer
time and scan cavity parameters. Thereby, we can find the optimal cooling
configuration and decrease uncertainties on the cavity induced sideband
asymmetry to enable more confident statements about the phonon number.
To achieve this we reassembled the setup in the basement (−2nd floor) of
the building after conducting the initial 3D cooling experiments on the 6th
floor. We clearly observed an improvement in stability but could not reach
ground-state cooling yet. In the next section we discuss the latest changes
of the setup which should establish the necessary stability to overcome
current limitations.

4.5 optical trapping with a particle transfer system

In this section we discuss the implementation of a particle transfer system to
further improve the trap stability w.r.t. the optical cavity. To achieve this we
install a second optical tweezer that is not fiber-based on the damping stage
of the optical cavity, as seen in Fig. 4.14. In Sec. 4.2 we concluded, that the
movement of the optical tweezer relative to the cavity mainly stems from
the transfer arm. By transferring the particle into a tweezer, that is formed
by optics on the cavity damping stage itself, stability can be significantly
improved. We additionally switch to a free space configuration, to have
the freedom to rotate the tweezer polarization. Therefore, we can cool both
and x and y motion to improve particle containment while pumping the
chamber down to high vacuum. Only for ground-state measurements, we
rotate the polarization to be perfectly vertical w.r.t. the cavity axis and to
obtain minimal phonon numbers along the y direction. Furthermore, we
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are not limited in trapping power anymore by an optical fiber. Therefore,
the optical power can be chosen to reach minimal phonon numbers, as
discussed in Sec. 4.1.

Loading Tweezer

Science Tweezer

Figure 4.14: Two tweezer setup without optical cavity. Image taken through the top
view port of our science chamber. The loading tweezer consists of a collimator
mounted on a nanopositioner which is in turn attached to a hollow steel rod.
The loading tweezer can be moved by retracting the steel rod to the left and
inside the loading chamber. At the right end of the golden collimator we attach
a custom lens holder which centers the trapping lens w.r.t. the collimator. The
same holder and lens are used in the science tweezer on the right hand side. The
science tweezer is also mounted on a nanopositioner but light couples into the
holder through the viewport on the right and not a single-mode fiber. For first
transfer tests we removed the cavity. It will be mounted via a rail attached to the
screw holes visible in the damping plate below the tweezers, i.e. the center of the
cavity is right at the middle between the loading and science tweezer lenses.

In the previous chapters we only used the fiber coupled optical trap,
which we will here refer to as "loading tweezer". The new free space trap
will be used to confine the particle during experiments and is hence denoted
by "science tweezer". The particle trapping process and shift into the cavity
was explained in Secs. 2.1 and 2.2.3 and is not affected by the science tweezer.
To do experiments, we need to align the science tweezer with the center of
the optical cavity. To achieve this, we need to trap a particle and monitor the
amount of light, scattered into the cavity mode while tuning the tweezer
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position. As we cannot directly trap the particle inside the science tweezer,
we instead align the loading tweezer with the cavity. By collimating the
diverging loading tweezer beam with the science tweezer we can overlap the
focii of the two tweezers. Thereby, also the science tweezer is aligned with
the center of the cavity. With the science tweezer in place we can realign
the free space optics, shown in Fig. 4.15. This lengthy alignment process is
only necessary during the first particle transfer. Once the science tweezer is
aligned with the optical cavity we don’t expect significant drifts that require
realignment. In successive particle transfers, we align the loading tweezer
with the science tweezer and are automatically located at the center of the
cavity.

To transfer the particle from the loading to the science tweezer we proceed
as follows. Once the focii are aligned, we gradually increase the power of the
science tweezer while also gradually decreasing the power of the trapping
tweezer. When the loading tweezer is completely turned off, the particle
is only held by the science tweezer. The alignment of the tweezers w.r.t.
each other is not only crucial to transfer the particle, but also to couple
the science tweezer light back into the single-mode fiber inside the transfer
arm. As we place the tweezers in between cavity mirrors any stray light,
that is not collected, can couple into the cavity and raise the noise level
on the detector or heat up the cavity housing. We showed in Sec. 2.3.5,
that a temperature increase of the cavity housing induces a length drift of
the cavity. Once the cavity length drifts too much the piezos are not able
to compensate anymore for the drift and the cavity falls out of lock. To
illustrate properly how all building blocks described here work together,
we show the full setup in Figs. 4.15 and 4.16.

The latest status of the setup is, that we are able to trap particles with the
loading tweezer and transfer the particle into the science tweezer. There
appears to be no particular risk of losing the particle during the process. We
observe, however, that the power, coupled from the science tweezer into the
vacuum single-mode fiber, starts drifting after a few minutes. To mitigate
the risk of destroying the fiber, we try to passively improve the mechanical
stability and consider the implementation of a feedback system that keeps
the loading tweezer aligned with the science tweezer.
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Figure 4.15: Core setup for particle trapping, transfer and detection. To simplify
the sketch, we show components of the detection setup and cavity lock on a
separate sketch in Fig. 4.16. We link the ports as indicated by the letter. All beam
splitters with a black (red) outline are polarizing (non-polarizing) beam splitters
and components labeled FI are Faraday isolators. In Tab. A.2 we list the optical
components. All beams are derived from a NKT Photonics E15 1550 nm laser. In
the sketched configuration, the half wave plate in the loading tweezer section
is set to dump all power at the input of a FI. While loading the particle, the
tweezer is positioned in a separate vacuum chamber (not shown) and the full
power is used to trap a particle. The photodetector PDL is used to monitor the
trapping process. After aligning the loading tweezer with the science tweezer we
rotate the half wave plate in front of the FI in the science tweezer section to turn
on the science tweezer. At the same time, we rotate the half-wave plate in the
loading tweezer section, to turn off the loading tweezer and transfer the particle.
From port B we feed in a beam to lock the cavity length by using the signal of
the photodetector PDPDH. To reduce noise on the detector we cross polarize the
beam w.r.t to the tweezer and use a polarizer to filter out the particle scattered
light. On the opposite side of the cavity we use a photodiode to monitor the lock
quality PDc and an infrared camera to image the cavity mode. Mirror A is the
high finesse mirror, therefore most of the particle scattered light leaks through
mirror B. We feed the light that leaks out of the cavity to port C to detect it with
the heterodyne setup.
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Figure 4.16: Constituent setup for particle detection, cavity locking and calibration. All
components are sketched as described in Fig. 4.15. Light from the core setup enters
from the top right through port A. We drive AOM1 (+1st order) and AOM2 (−1st
order) at 2π × 80 MHz and 2π × 79 MHz, resulting in a local oscillator detuning
∆lo = 1 MHz. The heterodyne detection scheme is described in Sec. 2.4.2. As
we lock to the TEM10 mode of the cavity, we use AOM1 and EOM1 to derive a
beam at frequency close to ω10 −ω00. We modulate PDH sidebands with EOM2

as described in Sec. 2.3.3. On the opposite side of the cavity input section, we
modulate sidebands on the calibration beam before combining it with the lock
beam. We implement a flip mirror to prevent the calibration beam from entering
port B and consequently the cavity, while doing measurements. Details on the
calibration procedure are described in Sec. 4.4.2.
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O U T L O O K

When I started my PhD in January 2017, the most promising cooling results
were obtained for parametric feedback cooling at a phonon occupation of
n = 63 and limited by the feedback mechanism itself [51]. A cavity resolved
sideband cooling systems, in combination with a Paul trap, had recently
succeeded in bringing a levitated particle to pressures below few mbar and
reached n ≈ 46k, limited by signal-to-noise [58]. It seemed like the tools at
hand were exhausted and ground-state was not yet reached without a clear
path on how to overcome the challenges. When assembling our coherent
scattering setup we did not expect that this technique would eventually
pave the way to ground-state cooling but merely improve the detection
efficiency of the particle motion through Purcell enhancement. In the years
after, the field has grown and developed in many directions as summarized
in Chapter 1. Not only has it improved the tools at hand, but it found better
ones to reach the milestone of ground-state cooling [70, 72, 73].

When we observed the then record cooling performance of our coherent
scattering setup [68], despite being designed for other tasks, we replaced
the first generation optical tweezer and cavity with a new one that was
actually optimized for cavity cooling. We went to great lengths to improve
the mechanical stability of our setup to reach phonon numbers n ≈ 10
and approach ground-state, but had to conclude that further improvement
through a particle transfer to a more stable tweezer has to be implemented
to go the final distance.

In [99] the path to a variety of quantum applications after reaching
ground-state is outlined. A first step there is the coherent coupling between
the particle and other quantum systems by achieving a higher coupling
than decoherence rate of particle and external quantum system. In current
cavity experiments (including ours) the decoherence rate is limited by
surrounding gas particles. In order to achieve lower pressures, vacuum
loading techniques have to be combined with coherent scattering setups [98].
To increase the coupling rate to an external system, the coupling rate to the
cavity has to be increased which in practice also increases the phase noise
heating contribution as discussed in Sec. 4.1. To obtain high coupling rates
and low phonon numbers one has to fully optimize the position stability of
the optical tweezer w.r.t. the optical cavity. Instead of coupling the particle
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to an external system, high coupling rates can be achieved by either placing
a second quantum system (e.g. particle, atom, ion) into the same optical
cavity or coupling two spatial degrees of freedom of one particle via the
cavity [176, 177].

In cold atoms experiments full control over all degrees of freedom is
desirable to maximize fidelities in coherent quantum networks [37]. To
obtain 2D ground-state cooling of a particle, the trapping beam polarization
can be rotated, cooling both the x and y motion at the same time at the cavity
field node [103]. As the z oscillator can only be cooled at the antinode, which
is furthermore limited by phase noise, an additional cooling scheme has to
be implemented. The recent free space ground-state cooling experiments
are focused on cooling the motion along the tweezer axis and could form
a perfect combination with cavity cooling to obtain a 3D ground-state [72,
73].



A
A P P E N D I X

a.1 classical noise sources in heterodyne detection

In Sec. 4.3 we calculate the implications of phase noise and RIN on the
heterodyne detection signal. To focus in the main body on the interpretation
of the results, we note certain derivations here.

a.1.1 Relative Intensity Noise

We use Eq. (4.21), to define amplitude fluctuations of signal and local
oscillator beams as

E(0)
s (t− t0) =E(0)

s [1 + βRIN sin(Ωt + ψ0)]

E(0)
lo (t− (t0 + τlo)) =E(0)

lo {1 + βRIN sin[Ω(t− τlo) + ψ0]}.

We apply the product to sum rule as well as the sum to product rule
from App. A.2.1 and derive

E(0)
s (t− t0)E(0)

lo (t− (t0 + τlo))

E(0)
s E(0)

lo

=1 +
β2

RIN
2

cos(Ωτlo)

+ 2βRIN cos
(

Ωτlo
2

)
× sin

(
Ωt + ψ0 −

Ωτlo
2

)
−

β2
RIN
2

cos(2Ωt + 2ψ0 −Ωτlo). (A.1)

In analogy to the derivation in Sec. 4.3.1, we insert this expression in
Eq. (4.13) for ∆φ = 0 to write the detector signal as
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D
D0
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]
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−
β2
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4

cos[(∆ω− 2Ω)t + φ0 − 2ψ0 + Ωτlo]. (A.2)

a.1.2 Phase Noise in Presence of an Optical Cavity

Instead of going through the derivation of the noise again we want to rely on
results obtained in the free space case. To do so we define φ

(n)
0 := φ0 + ωτn

as well as τ
(n)
lo := τlo − τn and ψ

(n)
0 := ψ0 −Ωτn. We assume again phase

noise of the form Eq. (4.15). For the phase fluctuation between the local
oscillator and E(n)

s (Eq. (4.28)) we write

∆φ(t) =βPN sin{Ω[t− (t0 + τlo)] + ψ} − βPN sin{Ω[t− (t0 + τn)] + ψ}

=− 2βPN sin

(
Ωτ

(n)
lo

2

)
cos

(
Ωt− Ω

2
τ
(n)
lo + ψ

(n)
0

)
. (A.3)

With Eq. (4.18) we derive similarly

Dn = cos(∆ωt + φ
(n)
0 )

+βPN sin

(
Ωτ

(n)
lo

2

)
sin

[
(∆ω + Ω)t + φ

(n)
0 + ψ

(n)
0 −

Ωτ
(n)
lo

2

]

+βPN sin

(
Ωτ

(n)
lo

2

)
sin

[
(∆ω−Ω)t + φ

(n)
0 − ψ

(n)
0 +

Ωτ
(n)
lo

2

]
(A.4)

As previously we obtain carrier and sideband signals. The next step is
to calculate the infinite sum of the terms Dn to derive the total detector
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signal. Since the sidebands and carrier are at different frequencies and don’t
interfere we can analyse the three terms independently. For the carrier we
apply Cor. A.2.1.2 and find the limit of the sum as

Dc :=− T D0

∞

∑
n=0
Rn cos(∆ωt + φ0 + ωτn)

Dc

T D0
=B(ω) sin(∆ωt + ωτ + φ0)− A(ω) cos(∆ωt + ωτ + φ0).

Since we have to find similar limits for the sidebands it is convenient to
define the coefficients A(ω) and B(ω) to simplify the expressions,

A(ω) =
1−R cos(2ωτ)

1− 2R cos(2ωτ) +R2

B(ω) =
R sin(2ωτ)

1− 2R cos(2ωτ) +R2 .

As shown in Theorem A.2.2 we can calculate the interference of the sine
and cosine term and derive Dc.

Dc = T D0C sin(∆ωt + ωτ + φ0 + Φ)

C =

√
1

(1−R)2 + 4R sin2(ωτ)

Φ = arctan
[
R cos(2ωτ)− 1
R sin(2ωτ)

]
We recall the cavity linewidth κ = 1−R√

R
τ, cavity resonance frequency ωc

and detuning ∆ = ωc − ω. By considering the cavity close to resonance
we can expand sin(ωτ) ≈ −∆τ and rewrite Dc to obtain the lorentzian
lineshape we derived in Sec. 2.3.1.

Dc = D0
T
A+ T

√
(κ/2)2

(κ/2)2 + ∆2 sin(∆ωt + ωτ + φ0 + Φ) (A.5)

After deriving again the expected steady-state cavity transfer function for
the carrier we will focus now on the transmission of phase noise by looking
at the sidebands at ±Ω and find the expressions DPN

Ω as
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DPN
Ω

D0
:=− T βPN

∞

∑
n=0
Rn sin

(
Ωτ

(n)
lo

2

)

× sin

[
(∆ω + Ω)t + φ

(n)
0 + ψ

(n)
0 −

Ωτ
(n)
lo

2

]

=
T βPN

2

∞

∑
n=0
Rn{ cos[(∆ω + Ω)t + φ0 + ψ0 + (ω−Ω)τn]

− cos[(∆ω + Ω)t + φ0 + ψ0 −Ωτlo + ωτn]}.

As for the carrier we continue by writing the the limit of the infinite sum
by applying Cor. A.2.1.2 and find

DPN
Ω =

T βPND0

2
{A(ω) cos[(∆ω + Ω)t + φ0 + ψ0 + (ω−Ω)τ]

−B(ω) sin[(∆ω + Ω)t + φ0 + ψ0 + (ω−Ω)τ]

−A(ω + Ω) cos[(∆ω + Ω)t + φ0 + ψ0 −Ωτlo + ωτ]

+B(ω + Ω) sin[(∆ω + Ω)t + φ0 + ψ0 −Ωτlo + ωτ]}.

With Cor. A.2.2.1 we can again calculate the interference signal

DPN
Ω =

T βPND0

2
CPN

Ω sin[(∆ω + Ω)t + ΦPN
Ω ]

CPN
Ω =

√
C0(ω, Ω)− Csc(ω, Ω),

by defining the functions

C0(ω, Ω) := A(ω)2 + B(ω)2 + A(ω + Ω)2 + B(ω + Ω)2

Cs(ω, Ω) := 2 sin[|Ω|(τ − τlo)][B(ω)A(ω + Ω)− A(ω)B(ω + Ω)]

Cc(ω, Ω) := 2 cos[|Ω|(τ − τlo)][A(ω)A(ω + Ω) + B(ω)B(ω + Ω)]

Csc(ω, Ω) := Cs(ω, Ω) + Cc(ω, Ω).

(A.6)

Furthermore the phase of the transmitted noise sideband are given by
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Φc =A(ω) sin(Ωτ)− B(ω) cos(Ωτ)

−A(ω + Ω) sin(Ωτlo) + B(ω + Ω) cos(Ωτlo)

Φs =A(ω) cos(Ωτ) + B(ω) sin(Ωτ)

−A(ω + Ω) cos(Ωτlo)− B(ω + Ω) sin(Ωτlo)

ΦPN
Ω = arctan

(
Φc

Φs

)
+ ωτ + φ0 + ψ0.

We can repeat this calculation and derive a similar result for DPN
−Ω

DPN
−Ω =

T βPND0

2
CPN
−Ω sin[(∆ω−Ω)t + ΦPN

−Ω]

CPN
−Ω =

√
C0(ω,−Ω)− Csc(ω,−Ω)

Φc =− A(ω) sin(Ωτlo)− B(ω) cos(Ωτlo)

+A(ω−Ω) sin(Ωτ) + B(ω−Ω) cos(Ωτ)

Φs =A(ω) cos(Ωτlo)− B(ω) sin(Ωτlo)

−A(ω−Ω) cos(Ωτ) + B(ω−Ω) sin(Ωτ)

ΦPN
−Ω = arctan

(
Φc

Φs

)
+ ωτ + φ0 − ψ0.

Finally we can express the PSD of the heterodyne signal, given the PSD
of the input laser phase noise

SPN
VV(Ω) =

(D0T )2

4
Sφφ(|Ω|)×

(CPN
Ω )2, for Ω > 0

(CPN
−Ω)2, for Ω ≤ 0

(A.7)

a.1.3 Relative Intensity Noise in Presence of an Optical Cavity

Using the definitions from the previous sections we consider the case of
no phase noise and analyze the influence of an optical cavity on RIN in
heterodyne measurements. The interfering fields are given by

E(0)
s (t− (t0 + τn)) =E(0)

s {1 + βRIN sin[Ω(t− τn) + ψ0]}

E(0)
lo (t− (t0 + τlo)) =E(0)

lo {1 + βRIN sin[Ω(t− τlo) + ψ0]}.
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We apply the product to sum rule as well as the sum to product rule
from App. A.2.1, neglect sidebands at 2Ω that scale with β2

RIN and derive

E(0)
s (t− (t0 + τn))E(0)

lo (t− (t0 + τlo))

E(0)
s E(0)

lo

=1 +
β2

RIN
2

cos(Ωτ
(n)
lo )

+ 2βRIN cos

(
Ωτ

(n)
lo

2

)

× sin

(
Ωt + ψ

(n)
0 −

Ωτ
(n)
lo

2

)

We use the result of Eq. (4.22) and derive Dn as

Dn =

[
1 +

β2
RIN
2

cos(Ωτ
(n)
lo )

]
cos(∆ωt + φ

(n)
0 )

+βRIN cos

(
Ωτ

(n)
lo

2

)
sin

[
(∆ω + Ω)t + φ

(n)
0 + ψ

(n)
0 −

Ωτ
(n)
lo

2

]

−βRIN cos

(
Ωτ

(n)
lo

2

)
sin

[
(∆ω−Ω)t + φ

(n)
0 − ψ

(n)
0 +

Ωτ
(n)
lo

2

]
(A.8)

Instead of repeating the derivation of the Lorentzian lineshape for the
carrier we focus on the first order sidebands at ±Ω and find

DΩ

D0
:=− T βRIN

∞

∑
n=0
Rn cos

(
Ωτ

(n)
lo

2

)

× sin

[
(∆ω + Ω)t + φ

(n)
0 + ψ

(n)
0 −

Ωτ
(n)
lo

2

]

=− T βRIN

2

∞

∑
n=0
Rn{ sin[(∆ω + Ω)t + φ0 + ψ0 + (ω−Ω)τn]

+ sin[(∆ω + Ω)t + φ0 + ψ0 −Ωτlo + ωτn]}.

We continue by applying Cor. A.2.1.2 to write the the limit of the infinite
sum as
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DΩ =
−T βRIND0

2
{A(ω) sin[(∆ω + Ω)t + φ0 + ψ0 + (ω−Ω)τ]

+B(ω) cos[(∆ω + Ω)t + φ0 + ψ0 + (ω−Ω)τ]

+A(ω + Ω) sin[(∆ω + Ω)t + φ0 + ψ0 −Ωτlo + ωτ]

+B(ω + Ω) cos[(∆ω + Ω)t + φ0 + ψ0 −Ωτlo + ωτ]}

and make the result more easily interpretable by calculating the interfer-
ence signal with Cor. A.2.2.1,

DΩ =
−T βRIND0

2
CRIN

Ω sin[(∆ω + Ω)t + ΦRIN
Ω ]

CRIN
Ω =

√
C0(ω, Ω) + Csc(ω, Ω).

The phase of the RIN sidebands are given by

Φc =A(ω) cos(Ωτ) + B(ω) sin(Ωτ)

+A(ω + Ω) cos(Ωτlo) + B(ω + Ω) sin(Ωτlo)

Φs =− A(ω) sin(Ωτ) + B(ω) cos(Ωτ)

−A(ω + Ω) sin(Ωτlo) + B(ω + Ω) cos(Ωτlo)

ΦRIN
Ω = arctan

(
Φc

Φs

)
+ ωτ + φ0 + ψ0.

Repeating the derivations for the sideband at −Ω we find the detector
signal as

D−Ω =
T βRIND0

2
CRIN
−Ω sin[(∆ω−Ω)t + ΦRIN

−Ω ]

CRIN
−Ω =

√
C0(ω,−Ω) + Csc(ω,−Ω)

Φc =A(ω) cos(Ωτlo)− B(ω) sin(Ωτlo)

+A(ω−Ω) cos(Ωτ)− B(ω−Ω) sin(Ωτ)

Φs =A(ω) sin(Ωτlo) + B(ω) cos(Ωτlo)

+A(ω−Ω) sin(Ωτ) + B(ω−Ω) cos(Ωτ)

ΦRIN
−Ω = arctan

(
Φc

Φs

)
+ ωτ + φ0 − ψ0
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Finally we express the PSD of the heterodyne signal, given the PSD of
the input laser RIN

SRIN
VV (Ω) =

(D0T )2

16
RIN2(|Ω|)×

(CRIN
Ω )2, for Ω > 0

(CRIN
−Ω )2, for Ω ≤ 0

. (A.9)

a.2 mathematics

a.2.1 Trigonometric Identities

As stated in Abramowitz & Stegun [180, p. 72-74]. All statements hold for
θ, φ ∈ C, although they will be real in the cases considered.

Product to Sum:

2 cos(θ) cos(φ) = cos(θ − φ) + cos(θ + φ)

2 sin(θ) sin(φ) = cos(θ − φ)− cos(θ + φ)

2 sin(θ) cos(φ) = sin(θ + φ) + sin(θ − φ)

2 cos(θ) sin(φ) = sin(θ + φ)− sin(θ − φ)

Sum to Product:

sin(θ)± sin(φ) = 2 sin
(

θ ± φ

2

)
cos

(
θ ∓ φ

2

)
cos(θ) + cos(φ) = 2 cos

(
θ + φ

2

)
cos

(
θ − φ

2

)
cos(θ)− cos(φ) = −2 sin

(
θ + φ

2

)
sin
(

θ − φ

2

)
Euler’s Formula:

eiφ = cos(φ) + i sin(φ)

2 cos(φ) = eiφ + e−iφ

2i sin(φ) = eiφ − e−iφ
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Angle Sum and Difference:

sin(θ ± φ) = sin(θ) cos(φ)± cos(θ) sin(φ)

cos(θ ± φ) = cos(θ) cos(φ)∓ sin(θ) sin(φ)

Double Angle:

sin(2φ) = 2 sin(φ) cos(φ)

cos(2φ) = 2 cos(φ)2 − 1 = 1− 2 sin(φ)2

Inverse Trigonometric Functions:
The statements hold for x ∈ R

arctan(x) =
i
2

ln
(

i + x
i− x

)
sin(arctan(x)) =

x√
1 + x2

cos(arctan(x)) =
1√

1 + x2

The first statement can be found in Abramowitz & Stegun [180, p. 80]
while the second and third follow easily by inserting the first statement into
Euler’s Formula.

a.2.2 Calculus

Theorem A.2.1 (Geometric Series). Given z ∈ C with |z| < 1 the geometric
series has the property

∞

∑
n=0

zn =
1

1− z
.

Proof. Given z ∈ C and N ∈N, let s(N) = ∑N
n=0 zn be the N-th partial sum.

The following relations hold for s(N),

s(N + 1) = s(N) + zN+1

s(N + 1) = zs(N) + 1.
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Combining the two expressions we obtain

zs(N) + 1 = s(N) + zN+1

s(N) =
1− zN+1

1− z

lim
N→∞

s(N) =
1

1− z
.

Corollary A.2.1.1 (Fourier Series). Given r ∈ R with 0 ≤ r < 1 and φ ∈ R it
holds

∞

∑
n=0

rn cos(nφ) =
1− r cos(φ)

1− 2r cos(φ) + r2

∞

∑
n=0

rn sin(nφ) =
r sin(φ)

1− 2r cos(φ) + r2 .

Proof. Define z := reiφ. We use Theorem A.2.1 to write

∞

∑
n=0

(
reiφ
)n

=
1

1− reiφ

∞

∑
n=0

(
reiφ
)n

=
1− re−iφ

(1− reiφ)(1− re−iφ)
∞

∑
n=0

(
reiφ
)n

=
1− r cos(φ)

1− 2r cos(φ) + r2 +
r sin(φ)i

1− 2r cos(φ) + r2 .

Furthermore the left hand side can be formulated as

∞

∑
n=0

(
reiφ
)n

=
∞

∑
n=0

rn cos(nφ) + i
∞

∑
n=0

rn sin(nφ).

The statement follows from comparing real and imaginary part.
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Corollary A.2.1.2. Given r ∈ R with 0 ≤ r < 1 and ψ, ω and τ ∈ R, as well as
τn := (2n + 1)τ it is

∞

∑
n=0

rn cos(ωτn + ψ) =

(
1− r cos(2ωτ)

1− 2r cos(2ωτ) + r2

)
cos(ωτ + ψ)

−
(

r sin(2ωτ)

1− 2r cos(2ωτ) + r2

)
sin(ωτ + ψ)

∞

∑
n=0

rn sin(ωτn + ψ) =

(
1− r cos(2ωτ)

1− 2r cos(2ωτ) + r2

)
sin(ωτ + ψ)

+

(
r sin(2ωτ)

1− 2r cos(2ωτ) + r2

)
cos(ωτ + ψ).

Proof. Using the angle sum identity we decompose the cosine as

cos(ωτn + ψ) = cos(ω(2n + 1)τ + ψ)

= cos(2ωτn) cos(ωτ + ψ)− sin(2ωτn) sin(ωτ + ψ),

set φ := 2ωτ and write

∞

∑
n=0

rn cos(ωτn + ψ) = cos(ωτ + ψ)
∞

∑
n=0

rn cos(φn)

− sin(ωτ + ψ)
∞

∑
n=0

rn sin(φn).

The first statement follows by applying Cor. A.2.1.1. The second statement
can be proven analogously.

Theorem A.2.2 (Sine and Cosine Sum). Given a, b, ω, t ∈ R it holds

a sin(ωt) + b cos(ωt) =
√

a2 + b2 sin
(

ωt + arctan
(

b
a

)
.
)
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Proof. We start with the right hand side of the equation and apply trigono-
metric identities from above to derive

sin
(

ωt + arctan
(

b
a

))
= cos

(
arctan

(
b
a

))
sin(ωt)

+ sin
(

arctan
(

b
a

))
cos(ωt)

=

(
a√

a2 + b2

)
sin(ωt)

+

(
b√

a2 + b2

)
cos(ωt).

After multiplying by
√

a2 + b2 we show the statement.

Corollary A.2.2.1 (Trigonometric Sums). Given ω, t ∈ R and N ∈ N and
an, φn ∈ R, ∀n ∈N we can write

N

∑
n=0

an sin(ωt + φn) = A sin(ωt + Φ)

A =

√√√√( N

∑
n=0

an sin(φn)

)2

+

(
N

∑
n=0

an cos(φn)

)2

Φ = arctan

(
∑N

n=0 an sin(φn)

∑N
n=0 an cos(φn)

)
.

Proof. We start with the left hand side of the equation and apply trigono-
metric identities from above to find

N

∑
n=0

an sin(ωt + φn) = sin(ωt)
N

∑
n=0

an cos(φn) + cos(ωt)
N

∑
n=0

an sin(φn).

The corollary then directly follows from applying Theorem A.2.2.

a.2.3 Statistics

We define the variance var[ f ], root mean square RMS[ f ] and arithmetic
mean E[ f ] of a function f (t) as
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E[ f ] = lim
T→∞

1
2T

∫ T

−T
f (t)dt

var[ f ] = lim
T→∞

1
2T

∫ T

−T
f (t)2dt

RMS[ f ] = lim
T→∞

√
1

2T

∫ T

−T
f (t)2dt.

For a periodic bounded function, i. e. f (t + T) = f (t) < ∞, ∀t ∈ R it
suffices to integrate over a period instead of the infinite interval

E[ f ] =
1
T

∫ T

0
f (t)dt

var[ f ] =
1
T

∫ T

0
f (t)2dt

RMS[ f ] =

√
1
T

∫ T

0
f (t)2dt.

Proof. We first observe that f (t)2 is a periodic bounded function with
f (t + T)2 = f (t)2 < ∞, ∀t ∈ R if f (t) is periodic and bounded. As the
integral over a non-negative function is also non-negative we can square
the last line and the statement for the RMS[ f ] follows from the one for the
var[ f ]. We now assume g(t + τ) = g(t), ∀t ∈ R and define N := bT/τc to
write

1
2T

∫ T

−T
g(t)dt =

1
2T

N−1

∑
n=0

[∫ (n+1)τ

nτ
g(t)dt +

∫ −nτ

−(n+1)τ
g(t)dt

]
+

1
2T

[∫ T

Nτ
g(t)dt +

∫ −Nτ

−T
g(t)dt

]
.

As the integral over a bounded function over a finite interval is also
bounded it holds

lim
T→∞

1
2T

[∫ T

Nτ
g(t)dt +

∫ −Nτ

−T
g(t)dt

]
= 0.

We continue to investigate the first integral inside the sum and substitute
t′ := t− nτ to find
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∫ (n+1)τ

nτ
g(t)dt =

∫ τ

0
g(t′ + nτ)dt′ =

∫ τ

0
g(t′)dt′.

With the substitution t′ := t− (n− N)τ we can find similarly for the
second integral inside the sum

∫ −nτ

−(n+1)τ
g(t)dt =

∫ τ

0
g(t′)dt′.

We combine these results and derive

lim
T→∞

1
2T

∫ T

−T
g(t)dt = lim

T→∞

N
T

∫ τ

0
g(t)dt =

1
τ

∫ τ

0
g(t)dt.

For the last equality we used that limT→∞bT/τc = T/τ.

In particular we derive expressions for trigonometric functions, given
ω, t, φ0, φ1 ∈ R and T = 2π/ω as

var[cos(ωt + φ0)) sin(ωt + φ1)] =
sin(φ1 − φ0)

2

var[cos(ωt + φ0)) cos(ωt + φ1)] =
cos(φ1 − φ0)

2

var[sin(ωt + φ0)) sin(ωt + φ1)] =
cos(φ1 − φ0)

2
.

Proof. It suffices to show that one of the three statements is correct, since the
other two follow by shifting φ0 or φ1 by π/2 on both sides of the equation.
By using the angle sum identities in App. A.2.1 we calculate

cos(ωt + φ0)) sin(ωt + φ1) =(cos(ωt) cos(φ0)− sin(ωt) sin(φ0))

×(sin(ωt) cos(φ1) + cos(ωt) sin(φ1))

Therefore we need to solve the integrals
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var[cos(ωt + φ0)) sin(ωt + φ1)] =
cos(φ0) cos(φ1)

T

∫ T

0
cos(ωt) sin(ωt)dt

− sin(φ0) sin(φ1)

T

∫ T

0
cos(ωt) sin(ωt)dt

+
cos(φ0) sin(φ1)

T

∫ T

0
cos(ωt)2dt

− sin(φ0) cos(φ1)

T

∫ T

0
sin(ωt)2dt.

Using the tabulated integrals from Abramowitz & Stegun [180, p. 78] we
obtain

var[cos(ωt + φ0)) sin(ωt + φ1)] =
cos(φ0) sin(φ1)

2
− sin(φ0) cos(φ1)

2
.

The statement then follows by applying the trigonometric sum difference
rule in reverse.

a.3 components

In this section we list components used in the setup, i.e. vacuum parts,
mechanical and optical components. We list part numbers in tables, grouped
according to the sections of the setup where they are used. We then reference
the tables in the thesis.



128 appendix

Name Manufacturer Part Number

Science Chamber Kimball Physics MCF600-SphOct-F2C8

Loading Chamber Hositrad CU35

Electrical Feedthrough Kurt J. Lesker IFDGG091053

Viewport Torr Scientific Ltd. VPZ38VAR

Gates Htc vacuum GVB-SS-CF35-M

Pressure Gauges Thyracont VSH89D

Transfer Arm Thermionics FLMH-275-50

Turbo Pump Edwards nEXT300D

Scroll Pump Edwards NXDS6i

Table A.1: Vacuum Setup. In addition we use a Schäfter&Kirchhoff fiber
feedthrough with a part number V-KF16-PMC-1550-10.1-NA012-APC/APC-90/200-
P.

Name Manufacturer Part Number

Laser (1550 nm) NKT Photonics Koheras Adjustik E15

AOM Gooch & Housego 3080

EOM (PDH) Thorlabs LN65-10-P-A-A-BNL

Detector PDPDH MenloSystems FPD510-FS-NIR

Detector PDz Newport 2117-FC-M

Detector PDx,y E. Hebestreit [114]

Detector PDc Thorlabs PDA20CS2

Infrared Camera Hamamatsu C11512-01

Polarizer Codixx colorPol IR 1300 BC5

Table A.2: Components used in the coherent scattering setup. Beam splitters,
mirrors and lenses are standard components from Thorlabs, unless otherwise
stated.
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Mathematical Symbols

i imaginary unit

Jn(β) n-th Bessel function of the first kind

Physical Constants [181]

ε0 vacuum permittivity 8.854 187 812 8× 10−12 F m−1

εp dielectric constant of silica at 1550 nm 2.07

h̄ reduced Planck constant 1.054 571 817× 10−34 J s

c speed of light in vacuum 299 792 458 m s−1

kB Boltzmann constant 1.380 649× 10−23 J K−1

M molar mass of dry air 28.97× 10−3 kg mol−1

Common Variables

α effective polarizability

αdp dipole polarizability

∆ detuning cavity

∆lo detuning local oscillator

κ cavity linewidth

λ laser wavelength

λc wave length of cavity mode

λtw wave length of optical tweezer

A mirror absorption

F Finesse of an optical cavity

R mirror reflectivity

129



130 list of symbols

T mirror transmission

NA numerical aperture

Ω frequency lower than optical frequency

ω optical frequency

ωc frequency of cavity mode

ωfsr free spectral range of optical cavity

ωtw frequency of optical tweezer

nx,y,z average phonon number

ρ particle density

E complex electric field vector

Fgrad gradient force

Fscat scattering force

S̃qq single-sided power spectral density of quantity q

{γx, γy, γz} dampings of particle motion

{Γ(d)
x , Γ(d)

y , Γ(d)
z } single phonon heating rate due to trap displacement noise

{Γ(PN)
x , Γ(PN)

y , Γ(PN)
z } single phonon heating rate due to laser phase noise

{Γ(RIN)
x , Γ(RIN)

y , Γ(RIN)
z } single phonon heating rate due to RIN

{Γ(r)
x , Γ(r)

y , Γ(r)
z } single phonon heating rate due to photon recoil

{Ωx, Ωy, Ωz} oscillation frequencies of levitated particle

{gx, gy, gz} optomechanical coupling rates

{xzpf, yzpf, zzpf} zero-point fluctuation of oscillator {x, y, z}

as real field absorption coefficient

E complex scalar electric field

k wave number
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kc wave number of cavity mode

ktw wave number of optical tweezer

L cavity length

m mass of nanoparticle

nx,y,z n-th vibration level

p gas pressure

Ptw optical power

R radius of a particle

rs, rA, rB real field reflection coefficient

Sqq double-sided power spectral density of quantity q

T temperature of a thermal bath

ts, tA, tB real field transmission coefficient

Tx,y,z effective temperature of particle’s c.m. motion

U0 depth of trapping potential

V particle volume

Vc cavity mode volume

wc beam waist of cavity mode

wx beam waist of optical tweezer along polarization axis

wy beam waist of optical tweezer along cavity axis

x spatial degree of freedom along optical tweezer polarization axis

y spatial degree of freedom along optical cavity axis

z spatial degree of freedom along optical tweezer propagation axis

zR Rayleigh range of optical tweezer

ROCA, ROCB radius of curvature of mirrors A, B

gA, gB geometric cavity parameter of mirrors A, B
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