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Ankle joint power is usually determined by a complex process that involves heavy

equipment and complex biomechanical models. Instead of using heavy equipment, we

proposed effective machine learning (ML) and deep learning (DL) models to estimate

the ankle joint power using force myography (FMG) sensors. In this study, FMG signals

were collected from nine young, healthy participants. The task was to walk on a special

treadmill for five different velocities with a respective duration of 1min. FMG signals were

collected from an FMG strap that consists of 8 force resisting sensor (FSR) sensors.

The strap was positioned around the lower leg. The ground truth value for ankle joint

power was determined with the help of a complex biomechanical model. At first, the

predictors’ value was preprocessed using a rolling mean filter. Following, three sets of

features were formed where the first set includes raw FMG signals, and the other two

sets contained time-domain and frequency-domain features extracted using the first

set. Cat Boost Regressor (CBR), Long-Short Term Memory (LSTM), and Convolutional

Neural Network (CNN) were trained and tested using these three features sets. The

results presented in this study showed a correlation coefficient of R = 0.91 ± 0.07 for

intrasubject testing and were found acceptable when compared to other similar studies.

The CNN on raw features and the LSTM on time-domain features outperformed the

other variations. Aside from that, a performance gap between the slowest and fastest

walking distance was observed. The results from this study showed that it was possible

to achieve an acceptable correlation coefficient in the prediction of ankle joint power

using FMG sensors with an appropriate combination of feature set and ML model.

Keywords: gait analysis, FMG, ankle joint power, machine learning, LSTM, CNN

INTRODUCTION

In gait analysis, ankle joint power can play an essential role to address the issues regarding abnormal
gait actions (Zelik and Honert, 2018). For example, a decreased ankle joint power indicates muscle
weakness and a diminution of health. However, measuring the ankle joint power is still complex
and expensive, which may involve setting up a special treadmill, a motion tracking system, and an
individual biomechanical model (Zelik and Honert, 2018). Therefore, in recent studies, attempts
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have been made to facilitate this process by eliminating the need
for a complex biomechanical setup.

An approach to facilitate ankle joint analysis was made
in Zheng et al. (2008). In this study, a force sensor in the
shoe measures the ground reaction force while three Inertial
Measurement Units (IMUs) detect the lower limb movement.
The ankle joint power was obtained using the inverse kinetics
method. In further research (Miyashita et al., 2019), a single
IMU is used to estimate the ankle joint power by regression
analysis. However, the studies solely estimated the ankle joint
power during the terminal stance phase. Another example to
assess the ankle joint power for the complete gait phase is
presented in Jiang et al. (2019) and Barua et al. (2021). Data from
IMUs combined with divergent signal processing techniques and
machine learning (ML) models have already been employed to
achieve a considerable performance in the prediction of ankle
joint power.

However, the performance of other sensors, such as force
myography (FMG) using force resisting sensor (FSR) sensors for
similar applications, is yet to be explored. FSR sensors measure
the volumetric changes of the underlying muscles through
pressure (Xiao and Menon, 2019). The advantages of FMG
include eliminating the alteration of data due to sweating when
compared to surface electromyography (Victorino et al., 2018).
Moreover, FSR sensors are lightweight and cost-effective (Jiang
et al., 2017a). Therefore, FMG sensors carry potential significance
for the welfare of healthcare using wearable technologies (Xiao
and Menon, 2019). The effectiveness of FMG sensors has already
been explored in various fields of health technology, such as
hand gesture recognition (Jiang et al., 2017b; Asfour et al., 2021),
prostheses or orthoses control (Xiao et al., 2014; Ahmadizadeh
et al., 2019), hand force estimation (Sakr and Menon, 2018),
and gait phase classification (Chu et al., 2017; Jiang et al.,
2018a,b). In these studies, FMG sensors provided time-series
muscle contraction signals, which were then processed with ML
algorithms for divergent applications.

Machine learning techniques have been immensely popular
in the last few decades because of their incredible ability
to recognize patterns and create complex relationships in
data. Besides, advancement in deep learning (DL) techniques
has introduced Long-Short Term Memory (LSTM) and
Convolutional Neural Network (CNN), which are well-known
for their admirable capabilities to address the relationship among
time-series data (Song et al., 2020) and repetitive patterns by
extraction of significant features (Kiranyaz et al., 2021).

Considering the discussion mentioned above, we present the
feasibility of estimating the ankle joint power withML techniques
using FMG signals in this paper. To our knowledge, this is the
first work that includes the usage of FMG signals in the prediction
of ankle joint power by exploring appropriate combination
among ML models and feature sets. We hypothesized that the
ankle joint power could also be estimated by FMG signals
and receive a similar accuracy as the IMU-based estimation
(correlation coefficient > 0.90) (Jiang et al., 2019) with a correct
fusion of features and ML model. The rest of the paper is
structured as follows: Section Materials and Methods describes
the data accumulation, the signal processing steps, and the ML

algorithms. Section Results presents the result and comparative
evaluation. Finally, the results are discussed in SectionDiscussion
and we concluded the outcomes in Section Conclusion.

MATERIALS AND METHODS

A pictorial view of the overall procedure is presented in Figure 1,
which depicts the workflow of this whole study. It should be
mentioned that the data analyses, preprocessing steps, and the
ML models were implemented using Python 3.7.10 in Google
Colaboratory environment with the packages sklearn, keras,
and scipy.

Data Accumulation
The data used in this study were collected from nine young,
healthy male participants. [avg. height: 76 ± 7 cm, avg. weight:
72 ± 9 kg, avg. age: 27 ± 8] in a controlled environment (Jiang
et al., 2019). The Office of Research Ethics at Simon Fraser
University approved the study protocol, and all participants
provided informed consent. More details of the experiment and
the study protocol can be found in Jiang et al. (2019).

Before the experiment, the participants were equipped with an
FMG strap that consisted of 8 FSR sensors (FSR 402) (Interlink
Electronics Inc., Los Angeles, CA, USA) (Jiang et al., 2018a).
The FMG strap was positioned around the participant’s right
leg about 2 inches above the ankle (Jiang et al., 2018a). Besides,
a Vicon motion capture system was installed for capturing the
movement of the 14 reflective markers that were placed on the
thigh, shank, and foot of the left lower limb. A force-plate-
instrumented treadmill was used to measure the vertical ground
reaction force as a final tool for the experiment. For the detailed
experiment setting, please see Jiang et al. (2019). During the
experiment, each participant walked for a minute at each of the
5 divergent velocities (0.4, 0.7, 1.0, 1.3, and 1.6 m/s) on the
force-plate-instrumented treadmill. Meanwhile, the data from
the FMG strap, the force-plate-instrumented, and the motion
capture system were sampled synchronously with a sampling
frequency of 100Hz and accumulated for offline processing.
The ground truth value (the ankle joint power) was calculated
by a biomechanical model, with further processing using the
vertical ground force and the value from the Vicon motion
capturing system (Jiang et al., 2019). This process to determine
the ankle joint power is the gold standard (Bogey et al., 2010). The
arrangement mentioned above led to around 30,000 data points
for each participant.

While analyzing the participants’ data, abnormalities in the
reference value (ankle joint power) were detected. The reference
value consisted of non-logical high or low values for some data
points. In this case, we set maximum and minimum boundaries,
which were decided by observing the values of the regular
maximum and minimum peaks.

Preprocessing
The 8 FSR sensors on the FMG strap provided 8 channels of a
time-series signal. Each channel describes the muscle contraction
in a different strap position around the lower leg. To smooth
out short-term fluctuation in the raw signal, a rolling mean filter
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FIGURE 1 | An overview of the signal processing steps conducted in this study.

with a window size of 120ms and an overlapping of 110ms was
applied. The averaged value from each window corresponds to
the reference value of the last row of the corresponding window.
In Figure 2, two plots of the raw and filtered signals are shown to
depict the elimination of short-term fluctuation after smoothing.
After filtering, we performed a min-max normalization. In
ML algorithms, the normalization of the data may help to
improve the performance. Especially for gradient descent-based
algorithms or Neural Network (NN), downscaling the data to
a smaller range assists the network in converging more quickly
toward the minima. Keeping this in mind, we employed a min-
max scaler to scale the features in a range between 0 and
1. Additionally, a min-max scaler also normalized the target
variable on a range between−1 and+1. The predicted ankle joint
power made by the model was later transformed inversely before
computing the evaluation metrics.

Feature Extraction
To facilitate the prediction of ankle joint power, we decided to
use time-domain and frequency-domain features for their well-
known significance in the improvement of the performance of
ML models.

The time-domain features are used in signal regression due to
their easy and quick implementation. Besides, the time-domain
features were seemed to be considered applicable when dealing
with FMG signals (Barioul et al., 2020). From Altin and Er
(2016), we decided on using 7 features, which are presented in
Table 1. We sampled the data into the sliding window of length
120ms and allowed 110ms overlapping between two consecutive
windows to extract the features. At this moment, the window
size of 120ms was found empirically. In total, 56 features were
extracted for the 8 channels.

For extracting frequency domain features, we used the Fast
Fourier transformation (FFT), an algorithm that computes the
discrete FT and converts the signal from the time-domain
into discrete frequencies in the frequency domain (Faraggi and
Sayadi, 2019). For the FFT, the Hanning window was preferred
due to its less spectral leakage (Lyon, 2009). The data were
segmented into overlapping (95%) windows where each window
contained data corresponding to 200ms. Here, the window size
was also found by trial and error. The extracted data point from
each window corresponded to the ankle joint power of the last
row of that corresponding window. Then the FFT transformation
was applied to each channel from the signal decomposing
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FIGURE 2 | A given example of the raw data collected from the force myography (FMG) strap. The 8 channels correspond to the 8 force resisting sensor (FSR)

sensors, respectively. In diagram (A), the raw unfiltered sensor values are presented, while in diagram (B) the smoothed sensor values are displayed.

the time signal into discrete frequencies. After transforming,
solely magnitude of the two primary frequencies was extracted
and later used as features because for higher frequencies, the
magnitude was near zero. Extracting the two primary frequencies
from the 8 channels, the FFT resulted in 16 features for each
time step.

ML Models
We decided to use LSTM as our first predictive model,
considering the characteristics of the time-series data in the
accumulated dataset. The LSTM, a type of Recurrent NN, is
powerful to handle time-series data (Song et al., 2020). It has
feedback connections when compared to other NNs, which
allows it to save past information within the internal memory.
The ability to learn from past data points makes the LSTM
powerful in handling cycled time series. The LSTM model we
designed was based on the paper (Barua et al., 2021). The model
consisted of an LSTM layer with 1,024 neurons and a tanh

activation function followed by three dense layers with 256, 128,
and 64 neurons, respectively. Each layer had a relu activation
function. The last layer was a dense layer that consisted of only
one neuron and a linear activation function to predict the target
variable.

We employed 1-D CNN as our second predictive model.
Compared to LSTM, CNN is popular for image or language
processing (Kiranyaz et al., 2021). However, the 1-D CNN
allows using the model for time-series data by identifying the
repetitive patterns in the data. Besides, the 1-D CNN model
can perform convolution operations to extract high-level features
through divergent filters. Therefore, a CNN model requires
less preprocessing and can directly apply to raw signals. The
CNN model design was also based on Barua et al. (2021).
We initiated the CNN model by introducing three successive
convolution layers with kernel sizes of 7, 5, and 3 and filter
sizes of 1,024, 512, and 256, respectively. We added two dropout
layers with a dropout probability of 0.3 among the first three
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TABLE 1 | Formulas of the time-domain features.

Time domain features Formula

Mean mean =
1
N

N
∑

n=1

xn

Standard deviation std =

√

1
N−1

∑N
n=1 (xn − µ)2

Variance var = 1
N−1

∑N
n=1 (xn − µ)2

Maximum max= maxn∈N xn

Minimum min= minn∈N xn

Skewness skew =
1
N

∑N
n=1 (Xn − µ)3

σ3

Kurtosis kurt =
1
N

∑N
n=1 (Xn − µ)4

σ4

convolution layers (Barua et al., 2021). The goal of these dropout
layers was to avoid overfitting. The convolution layers were
followed by a 1-D average pooling layer and a dense layer that
contains 128 neurons. A dense layer with one neuron and a
linear activation function were defined for the output layer.
Finally, for all the other layers except for the first one, a relu
activation function was used, while for the first layer we used
a tanh activation function. The reason behind choosing LSTM
and CNN as predictive models to predict the ankle joint power
was their superior performance, which is presented in Barua
et al. (2021), using a dataset of similar volume we used in
this study.

Additionally, we used the Cat Boost Regressor (CBR) model
to observe the performance of a conventional ML model in
a similar task. The reason behind choosing a boosting model
was its extraordinary capability to create a strong learner by
sequentially aligning weak learners. CBR, belonging to the
class of boosting models, uses gradient boosting on decision
trees (Dorogush et al., 2018). We only tuned two significant
parameters of CBR, namely, max depth and max iterations.
We set the max depth to 3 to avoid overfitting and increased
the iterations to 2,000 for a more precise prediction. Equally
to the NN, we defined mean squared error (MSE) as the
loss function.

Performance Metrics
Metrics are measures commonly used in ML to evaluate
predictive performance. For our study, we decided on using the
following 3 popular performance metrics in regression:

Correlation Coefficient (R-value)
The correlation coefficient, also known as the R-value, produces
a value between −1 and +1 to quantify the strength of
dependencies between two variables. As the R-value goes closer
to +1, we are expected to achieve a high closeness measurement
between the predicted and true values.

Root Mean Squared Error
RMSE refers to the standard deviation (SD) of the error residuals
between reference value and predictions. By squaring the error,

the RMSE gives more weight to higher errors. RMSE is a
negatively oriented metric, which means that a small RMSE value
is desired. It is formulated using the following equation.

RMSE =

√

1

N

∑

(

reference value− predicted value
)2

Mean Absolute Error
MAE is also a negatively oriented metric and measures the
average amount of residual error for the predictions. Compared
to RMSE, the errors are weighted equally.

MAE =
1

N

∑
∣

∣reference value− predicted value
∣

∣

Validation Procedure
Data Reshaping
To feed the dataset into the mentioned DL models, we had
to reshape the data into overlapping windows, each containing
a fixed number of consecutive data points. For this study,
the empirically chosen window size of 150ms was used with
an overlapping of 142ms. Ankle joint power belonging to
the last row of each window acted as the dependent data
point for that corresponding window. Here, the windowing
is performed after splitting the data into train and test sets,
such that there is not a risk of data leakage. It should
be mentioned that we trained the models for 40 epochs
with an early-stopping technique and used Adam as an
optimizer with a fixed learning rate of 0.001 and MSE as a
loss function.

Validation Techniques
We performed three types of evaluation in our study. At first,
we performed an overall evaluation. To conduct this, posterior to
reshaping the data, we split the dataset for each participant into
train and test set in the following manner. For each participant,
we accumulated the first half (30 s) of data from each velocity
to the train set, and the next half (30 s) was stored in the
test set. A detailed overview of the data splitting process for
overall evaluation is shown in Figure 3. The reason behind
performing this 50/50 spilt was to ensure data from all types
of velocities in both train and test sets. Following this manner,
we acquired 9 train sets and 9 test sets corresponding to the 9
individual participants for a particular type of feature set. Since
we considered 3 types of feature sets (raw channels, time-domain
features, and frequency domain features) for this study, using the
splitting manner mentioned above, we had 3 train sets and test
sets for each subject corresponding to 3 different feature types.
Therefore, we had 27 train sets and test sets, considering all 3
types of feature sets. We trained our aforementioned 3 models
with a train set of each subject and evaluated the performance
metrics using the test set of the corresponding subject. After
completing the same validation procedure for all the subjects, we
averaged the outcome of the evaluation metrics and computed
the final performance metrics for each type of regressor. We
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FIGURE 3 | Overview of the data splitting procedure.

achieved 3 different averaged outcomes corresponding to 3
different feature sets.

Speed-Wise Evaluation
After performing the overall evaluation, we conducted the speed-
wise evaluation. We computed the performance metrics for
each type of speed. We trained each model with the train
set we made for overall evaluation but did not compute the
performance metrics for the whole test set. Instead, we computed
the performance metrics using the data of each velocity present
in the test set separately for each subject. It was done to observe
the performance of the models for each walking speed.

Subject-Wise Evaluation
Finally, the model’s performance was also analyzed subject-wise,
where the performance metrics were computed for the complete
set of data for each subject. Such that, we were able to present
the total evaluation metrics after averaging over the 9 subjects
and analyzing the performance of the models for each subject
individually. Here, the complete data for each subject were
separated into 3-folds, with each fold containing a third of the
data regarding each of the 5 velocities. The models are trained
for each subject on 2-folds and tested on the third. Finally, we
averaged the three metrics over the 3-folds. The reason behind
using different evaluation procedures was to ensure that our
proposed approach could produce equally effective performance
in terms of a divergent evaluation scheme.

RESULTS

Speed-Wise Evaluation
Although we evaluated each model for every type of feature set,
we presented the outcome for the models that performed the
best for each feature set elaborately to reduce the complexity of
comparison. We found that CNN outperformed other models
when we used raw feature set and frequency domain feature set.
For time-domain features, LSTM had the upper hand. However,
to support the choice of the best models for the different feature
sets, we provided a pictorial view in Figure 4 that depicts the
comparison between the outcomes of all 3 models for all 3 feature
sets. From Figure 4, it can be observed that the CNN (R =

0.86) outperformed both CBR (R = 0.68) and LSTM (R = 0.84)
when raw features were used. However, the difference between
the outcome of CNN and LSTM was not highly significant.
Although CBR could not deliver a considerable outcome using
raw features, it showed a steady performance similar to LSTM
and CNN for both time-domain and frequency-domain features.
For time-domain features, LSTM achieved an average R-value
of 0.86, which was high enough to outperform CNN (R =

0.83) and CBR (R = 0.81). For the frequency domain features,
CNN (R = 0.82) showed slightly better performance when
compared with the outcomes of LSTM (R = 0.79) and CBR
(R = 0.79). In short, CNN was observed to be an appropriate
choice when using raw and frequency domain features, whereas
LSTM seemed to be more impactful in the case of time-domain
features. However, considering the whole picture, CNN with
raw features and LSTM with time-domain features should be
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FIGURE 4 | The plot shows the speed-wise correlation coefficient for the three models, Cat Boost Regressor (CBR), Long-Short Term Memory (LSTM), and

Convolutional Neural Network (CNN), with each being separated into the three feature sets. The dashed lines represent the average over the velocities. In (A) the raw

signal was used as predictors, where in (B) used the extracted time-domain features and in (C) the extracted features in frequency domain were used.

TABLE 2 | The averaged metric values over the 9 participants for the Long-Short Term Memory (LSTM) and Convolutional Neural Network (CNN) on the three feature sets.

Correlation coefficient 0.4 m/s 0.7 m/s 1.0 m/s 1.3 m/s 1.6 m/s

CNN on raw features 0.76 ± 0.08 0.83 ± 0.11 0.89 ± 0.10 0.90 ± 0.10 0.93 ± 0.05

LSTM on time-domain features 0.74 ± 0.10 0.83 ± 0.11 0.89 ± 0.08 0.92 ± 0.07 0.92 ± 0.05

CNN on frequency-domain features 0.71 ± 0.11 0.76 ± 0.08 0.87 ± 0.05 0.85 ± 0.12 0.88 ± 0.07

RMSE 0.4 m/s 0.7 m/s 1.0 m/s 1.3 m/s 1.6 m/s

CNN on raw features 0.13 ± 0.04 0.22 ± 0.10 0.28 ± 0.15 0.39 ± 0.22 0.43 ± 0.17

LSTM on time-domain features 0.35 ± 0.05 0.46 ± 0.01 0.51 ± 0.13 0.60 ± 0.17 0.64 ± 0.13

CNN on frequency-domain features 0.60 ± 0.04 0.67 ± 0.07 0.71 ± 0.08 0.77 ± 0.10 0.8 ± 0.08

MAE 0.4 m/s 0.7 m/s 1.0 m/s 1.3 m/s 1.6 m/s

CNN on raw features 0.09 ± 0.02 0.13 ± 0.05 0.16 ± 0.07 0.21 ± 0.113 0.22 ± 0.08

LSTM on time-domain features 0.10 ± 0.04 0.15 ± 0.06 0.16 ± 0.07 0.20 ± 0.08 0.23 ± 0.10

CNN on frequency-domain features 0.09 ± 0.02 0.14 ± 0.05 0.17 ± 0.06 0.23 ± 0.01 0.26 ± 0.10

The metrics are separated into different velocities.

preferable to frequency-domain features. An in-depth analysis of
the best combination of the feature sets and models is presented
in Table 2.

In Table 2, we presented the outcome of best models for
corresponding feature sets for each type of walking speed. From
Table 2, we can see a performance gap between the slower and
higher velocities, especially in the frequency domain. We can
observe that the performance of the models was decreased when
predicting ankle joint power for slower speeds (0.4 and 0.7 m/s).
For instance, if we consider LSTM on time-domain features,
the correlation coefficient for the slowest velocity was 0.75,
compared to the correlation coefficient for the highest velocity,
0.93. An identical picture can be observed for CNN with the
frequency-domain features where it achieved an R-value of 0.70
for the velocity of 0.4 m/s and 0.90 for the velocity of 1.6 m/s.
Additionally, we can see that the CNN on raw features has the
highest correlation coefficient R= 0.76 for the slowest speed (0.4

m/s), and a correlation coefficient of R = 0.93 for the velocity of
1.6 m/s makes it a better choice for this kind of study.

The findings of the correlation coefficient are supported
by the evaluation of the other two metrics, RMSE and
MAE. It should also be noted that RMSE and MAE
were increased with higher velocities while the accuracy
was improved as the ankle joint power for higher
velocities had a higher magnitude that resulted in a larger
error residual.

Another interesting thing we observed during our study is
that although CNN on raw features performed better than other
models, it still had difficulty in accurately predicting the peak
ankle joint power. The same scenario was observed in the case of
CNN on frequency domain features too. In Figure 5, a graphical
view of the true ankle joint power vs. predicted ankle joint power
is presented for subject 3 for the velocity of 1.6 m/s. We can see
the suffering of all models in predicting peak values. A possible

Frontiers in Neurorobotics | www.frontiersin.org 7 April 2022 | Volume 16 | Article 836779

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Heeb et al. Effective Ankle Power Estimation Models

FIGURE 5 | The True target variable is overlayed with the predictions from the two models Long-Short Term Memory (LSTM) and Convolutional Neural Network

(CNN). This excerption presents participant 3 for the velocity of 1.6 m/s.

explanation is that the peak power value varies from cycle to
cycle, making it harder to estimate the peaks correctly.

Subject-Wise Evaluation
Asmentioned earlier, we used a 3-fold cross-validation technique
where each fold contained a third of data from each type of 5
divergent velocities for each subject. The respective results are
presented in Figure 6, Table 3.

While analyzing the subject-wise results, we observed a good
performance (R > 0.90) that is achieved almost throughout
the 9 subjects. The two exceptions were the performance of
the models regarding subjects 2 and 9. While subject 9 slightly
underperformedwith a correlation coefficient ofR= 0.87, subject
2 failed to perform a similar result. The metrics for subject 2
resulted in a correlation coefficient R = 0.64, RMSE = 0.51, and
MAE = 0.25 for the CNN on raw features when compared to
other subjects, such as subject 3 with a result of R = 0.96, RMSE
= 0.15, andMAE= 0.07.

In the overall results, after taking the average over the 9
subjects, we portrayed a similar scenario as observed in section
Speed-Wise Evaluation. For example, we experienced the slightly

inferior performance of the features in the frequency domain
while the other two feature sets had a similar performance. The
CNN on raw features [R = 0.89 ± 0.09, RMSE = 0.28 ± 0.11,
MAE = 0.14 ± 0.05] and the LSTM on time-domain [R = 0.91
± 0.06, RMSE= 0.28± 0.09,MAE= 0.16± 0.05] outperformed
the CNN on frequency domain [R = 0.85 ± 0.12, RMSE = 0.35
± 0.03, MAE = 0.15 ± 0.05] in all the metrics. It is important
to mention that the relatively high SD resulted from the inferior
performance regarding subject 2. To summarize, we observed
that the CNN on frequency domain features performed poorly
for almost every subject when compared to the CNN on raw
features and the LSTM on time-domain features. The CNN
on raw features and the LSTM on time-domain features were
observed to show similar results.

DISCUSSION

This study was aimed to examine the effectiveness of ML
models in estimating ankle joint power through FMG data
and proposed a correct combination of features set and model
for better estimation of ankle joint power. In this study, only
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FIGURE 6 | Bar plots of the subject-wise evaluation metrics (A) Correlation Coefficient, (B) RMSE, and (C) MAE) averaged over a 3-fold cross-validation.

Frontiers in Neurorobotics | www.frontiersin.org 9 April 2022 | Volume 16 | Article 836779

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Heeb et al. Effective Ankle Power Estimation Models

TABLE 3 | The subject-wise and averaged metric values of the 9 subjects for the Long-Short Term Memory (LSTM) and Convolutional Neural Network (CNN) on the three

feature sets.

Raw features on CNN Time-domain features on LSTM Frequency-domain features on CNN

Subject 1 R 0.94 ± 0.02 0.93 ± 0.02 0.88 ± 0.01

RMSE 0.27 ± 0.02 0.29 ± 0.04 0.37 ± 0.05

MAE 0.15 ± 0.004 0.16 ± 0.02 0.22 ± 0.05

Subject 2 R 0.64 ± 0.07 0.75 ± 0.02 0.55 ± 0.29

RMSE 0.51 ± 0.05 0.44 ± 0.01 0.82 ± 0.05

MAE 0.25 ± 0.02 0.25 ± 0.02 0.25 ± 0.05

Subject 3 R 0.96 ± 0.01 0.97 ± 0.01 0.91 ± 0.02

RMSE 0.15 ± 0.01 0.16 ± 0.02 0.24 ± 0.06

MAE 0.07 ± 0.001 0.09 ± 0.2 0.2 ± 0.09

Subject 4 R 0.93 ± 0.03 0.93 ± 0.01 0.90 ± 0.02

RMSE 0.30 ± 0.06 0.30 ± 0.03 0.31 ± 0.02

MAE 0.13 ± 0.03 0.15 ± 0.02 0.18 ± 0.08

Subject 5 R 0.94 ± 0.02 0.96 ± 0.01 0.92 ± 0.2

RMSE 0.21 ± 0.03 0.16 ± 0.04 0.25 ± 0.02

MAE 0.16 ± 0.01 0.11 ± 0.03 0.18 ± 0.08

Subject 6 R 0.93 ± 0.02 0.92 ± 0.01 0.92 ± 0.01

RMSE 0.24 ± 0.04 0.30 ± 0.03 0.26 ± 0.08

MAE 0.11 ± 0.02 0.17 ± 0.01 0.17 ± 0.07

Subject 7 R 0.91 ± 0.01 0.92 ± 0.01 0.88 ± 0.04

RMSE 0.25 ± 0.04 0.027 ± 0.02 0.37 ± 0.03

MAE 0.14 ± 0.01 0.14 ± 0.01 0.17 ± 0.07

Subject 8 R 0.93 ± 0.02 0.92 ± 0.03 0.93 ± 0.01

RMSE 0.25 ± 0.01 0.22 ± 0.05 0.21 ± 0.07

MAE 0.09 ± 0.02 0.13 ± 0.05 0.16 ± 0.07

Subject 9 R 0.87 ± 0.02 0.87 ± 0.01 0.84 ± 0.02

RMSE 0.42 ± 0.05 0.42 ± 0.03 0.46 ± 0.02

MAE 0.16 ± 0.02 0.23 ± 0.03 0.16 ± 0.065

Mean R 0.89 ± 0.09 0.91 ± 0.06 0.85 ± 0.12

Mean RMSE 0.28 ± 0.11 0.28 ± 0.09 0.35 ± 0.03

Mean MAE 0.14 ± 0.05 0.16 ± 0.05 0.15 ± 0.05

intra-subject testing was evaluated, because FMG signal varies
from subjects due to individual anatomy. Hence, inter-subject
testing was expected to be ineffective. Therefore, the focus
of this study was set on intra-subject testing. As expected
and already shown in Barua et al. (2021), the DL models
delivered a more effective performance in the estimation of
ankle joint power. Especially the CNN model was able to deliver
good performances using only 8 raw features. The strength
of the CNN model is the high feature extraction by filters.
Therefore, it hardly requires any additional feature extraction
methods. However, to reach the level of similar performance
as CNN did, more features had to be extracted with the other
ML models.

The time-domain features improved the performances for
both the CBR and LSTMmodels. However, time-domain features
barely enhanced the predictive performance of CNN. On the
other hand, the frequency-domain features could not improve
the performance of any model we used. Although the models
were able to deliver decent performance for high velocities with
frequency-domain features, the outcome was comparatively very

poor for low velocities. It signifies that the chosen frequency
features by an FFT were not the correct choice for estimating
ankle joint power using FMG signals. Nevertheless, it may still
be possible that other frequency-domain features could improve
the performance and can be explored in future works. From
the results presented above, it can be perceived that the CNN
slightly outperformed the other models for slower velocities.
However, other challenge of this study was to find a suitable
model that could deliver an acceptable performance throughout
all the velocities. The inferior results for the slower velocities
were expected since the same scenario was observed in a previous
study (Jiang et al., 2019). However, they were able to shrink the
performance gap in correlation coefficient for lower and higher
velocities to 0.06. In our case, the difference was about 0.20 or
higher. A possible explanation for this scenario is that the peak
ankle joint power for slower speeds was lower than for higher
speeds. Moreover, the ankle joint power for slower speeds has
more oscillations, as can be seen in Figure 7. In brief, this study
signifies that estimating ankle joint power using FMG signals is
not as effective as using IMUs. Still, with a proper combination of
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FIGURE 7 | Ankle joint power values for subject 2 for all the velocities. Starting from 0.4 m/s in (A), 0.7 m/s in (B), 1.0 m/s in (C), 1.3 m/s in (D) and 1.6 m/s in (E).
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FIGURE 8 | Smoothed sensor values for subject 2 for the velocity of 1.6 m/s.

ML models and feature sets, a considerable performance can be
acquired using FMG signals.

In addition, we observed slight variations in performance
for different subjects. Particularly for subject 2, the variation
was noticeable. All the models performed poorly for subject 2.
To investigate the reason behind such behavior, we did some
statistical and graphical investigation. We found that the data
accumulated for subject 2 contained many outliers in true ankle
joint power. Moreover, the FMG signals for subject 2 seemed to
have lower values than they had for other subjects (Figure 8).
Comparing the results from our study with the results from
the study (Jiang et al., 2019), we realize that the IMU is better
suited for solving the problem of estimating the ankle joint
power, especially because of the higher correlation coefficient (R
= 0.98 ± 0.01) and lower RMSE (0.06 ± 0.01) using IMUs. The
measuring unit in the IMUs (acceleration and angular velocity for
the three-axis) seemed to work as better predictors for estimating
ankle joint power. Besides, two IMUs were used on two distinct
leg positions in the previous study (Jiang et al., 2019), while this
study used only one FMG strap on one leg position to collect
data. In the future, a similar study can be conducted to see with
more FMG straps on more body positions to explore if it can
help to improve the models’ predictive performance as it did
for other studies (Sakr and Menon, 2017). Another option for
future work is to focus on the signal processing side. A more
profound finetuning of DL models or combined feature sets may
help to increase the predictive accuracy. Finally, a study can also
be conducted to observe if our proposed approach is feasible for
other datasets in future work.

CONCLUSION

Since the computation of ankle joint power plays a significant role
in various fields, such as health care or sports athletes’ analyses,
estimating ankle joint power with a simple model can make the
process more accessible. We explored how effective FMG data
from young, healthy subjects can be in predicting ankle joint
power with proper ML models and feature sets.

The results we acquired from the study showed that we
could generate a considerably effective LSTM model based on
the time-domain features to achieve a correlation coefficient
of over R = 0.91 ± 0.07 and CNN model using raw features
to achieve a correlation coefficient of over R = 0.89 ± 0.13,
which were acceptable when compared other similar studies
(Jiang et al., 2019; Miyashita et al., 2019; Barua et al., 2021).
However, the results were only valid for intra-subject testing.
We assume that the result will not be similarly effective
for inter-subject evaluation since the FMG sensor values
seemed to change from subject to subject due to their limb
size, skin thickness, and muscle density, even among healthy
patients (Xiao and Menon, 2019).

Another focus of this study was whether or not the FMG
data could estimate ankle joint power for slow walking
speeds. It would primarily foster gait analyses for older
people. Nonetheless, we could not overcome the performance
gap between slow and fast walking speeds despite using
various feature extraction methods and ML algorithms.
Besides, FMG signals were not as effective as IMUs for
such applications.
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As mentioned earlier, in the future, studies may take place to
explore the effectiveness of using more FMG straps on different
body positions and the potency of other ML models and more
robust feature sets to build a more functional system for more
accurate estimation of ankle joint power.
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