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A B S T R A C T   

Consumer behavior is gaining increased attention for climate mitigation efforts, especially in the transportation 
sector. Thus, representing consumer mobility behavior in energy models is being strengthened to simulate 
realistic future vehicle and mode choices. This work focuses on two widespread concepts that modelers apply: (1) 
endogenous integration of mobility behavior in standalone energy models and (2) coupling complementary 
models to reflect behavioral dimensions through data exchange. This systematic review conducted four steps 
leading to 44 publications that apply such concepts to target consumer mobility behavior. First, we summarize 
the methodological approaches for each concept by describing the trends in implementing mobility behavior in 
models. Second, we discuss the challenges, limitations, and opportunities of both concepts to compare their 
values. 

We find that endogenously representing mobility behavior in energy system models offers simplicity and 
complements their techno-economic perspective. However, this concept faces methodological limitations when 
translating behavioral attributes into monetary values. Model coupling can combine different perspectives on the 
transport and energy system but adds computational and methodological complexity. We conclude that stand
alone models are favorable for representing stylized parameters of consumer behavior, such as travel time and 
money budgets and electric charging infrastructure accessibility that can be generalized for consumer groups. 
Model coupling becomes superior when the impacts on the energy system of multifaceted mobility behaviors, 
such as preferences of individual consumers and actors of the transport system, are assessed in more detail. 
Nonetheless, both concepts should be viewed as complementary to overcome their limitations while merging 
their strengths.   

1. Introduction 

Computational energy models are often used to assess energy and 
climate change mitigation policies by evaluating technological, eco
nomic, political, environmental, and societal aspects [1,2]. Currently, 
no single modeling framework is capable of representing each of these 
aspects with a high degree of detail. Instead, several model frameworks 
exist with individual focus areas. Common model frameworks, 

comprehensively reviewed by Bhattacharyya and Timilsina [3] and 
Herbst et al. [4], are bottom-up and top-down Energy System Models 
(ESMs), Integrated Assessment Models (IAMs), and models reflecting 
socio-technical transitions [5]. ESMs usually comprise a detailed 
bottom-up techno-economic characterization of technologies [4]. They 
are used to provide long-term transition analyses on technology port
folios, energy demand projections, and greenhouse gas emissions [4]. 
However, they contain traditionally no or limited representation of 
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consumer behavior1 due to their underlying pure cost-optimization 
approach that focuses on techno-economic characteristics and repre
sents the population with one “mean representative decision-agent”2 [6] 
[5–9]. IAMs combine the representation of the energy system with 
climate-, natural-, and human systems to determine pathways for energy 
consumption and greenhouse gas emissions [10,11]. One defining 
feature of global IAMs is their long-term time horizon (often until 2100), 
which is valuable for climate change analyses [12–15]. 

Models that reflect socio-technical transitions are Socio-Technical 
Energy Transition (STET) models, System Dynamics (SD) models, and 
Agent-Based Models (ABMs) [5,9,16]. Such models aim to integrate key 
elements from societal and technological transitions, such as actor het
erogeneity, techno-economic details, and transition pathway dynamics 
[5,9,16]. Key differences of such models, compared to ESMs and IAMs, 
are the representation of non-linear dynamics of future transitions by 
feedback loops that cause endogenous changes in the system based on 
decisions of the actors [9]. Further, they can represent a high degree of 
heterogeneity with thousands of agents who can influence each other 
and make individual decisions based on multiple criteria [9,17,18]. 

Consumer choices and preferences are essential factors for the 
acceptance and market penetration of novel technologies and service 
demand paradigms in energy demand sectors [7,11,19,20]. As the focus 
for additional climate change mitigation measures is shifting from the 
energy supply sector towards energy demand sectors, the consideration 
of consumer choices and preferences in energy models is becoming 
increasingly important [11]. Accordingly, the representation of con
sumer behavior in energy demand sectors has gained increasing recog
nition within the energy modeling community [18,21–24]. Particularly 
for transportation, many research outlooks and recommendations 
emphasize the need and importance of improving behavioral realism in 
computational models and provide suggestions for achieving this 
[2,22,25–30]. Thus, it is essential to consider behavioral factors3 besides 
providing zero‑carbon technologies to decarbonize the transport sector 
[31,32]. 

Several trends have emerged to improve the representation of con
sumer behavioral realism in energy models [2]. Li et al. [9] provided a 
categorization for STET models and suggested how their key elements 
can be combined. Hirt et al. [5] showed that the linkage between models 
and socio-technical transition theories often aims to increase realism in 
models but mostly lacks in discussing concrete suggestions for increased 
model realism. Trutnevyte et al. [26] outlined strategies for linking 
existing models with insights from social sciences. Venturini et al. [22] 

reviewed measures for integrating behavioral aspects in Energy- 
Economic-Environment (E3) models. In follow-up work [33], Ventur
ini outlined that model coupling enables to represent more spatio- 
temporal details and perform more comprehensive assessments than a 
standalone model. Krumm et al. [18] discuss that modeling teams of 
ABMs, ESMs, IAMs, and Computable General Equilibrium (CGE) models 
work on including behavioral aspects, but that each framework is 
limited in how well it can represent such aspects. 

Studying the work described in the previous paragraph, we identified 
the need better to understand strengths and shortcomings among 
different modeling approaches. Therefore, we review two core concepts 
that many modelers have been working on in recent years. Such con
cepts are (1) the capturing of mobility behavior facets endogenously in 
energy models and (2) the improved representation of such facets by 
exchanging data across several models with complementary frame
works, i.e., model coupling/linking.4 

We aim to answer the following research questions:  

Q1: How are mobility behavior aspects implemented in energy 
models via the concepts of endogenous integration and model 
coupling?  

Q2: What is the value of model coupling compared to endogenous 
integration?  

Q3: What are the recommended strategies and potential trade-offs for 
considering mobility behavior in such models? 

This systematic review adds value to the existing literature in four 
ways. Firstly, to the best of our knowledge, we provide the first 
comprehensive review about model coupling approaches that focus on 
enhancing the representation of mobility behavior. Secondly, this re
view generates insights into what kind of different model coupling ap
proaches exist for including mobility behavior. Thirdly, this work goes 
beyond existing literature by highlighting and discussing the strengths 
and limitations of the two modeling concepts for reflecting mobility 
behavior. Fourthly, this paper provides straightforward, applicable 
suggestions for incorporating mobility behavior in energy models by 
each concept. This shall assist other researchers in their decision-making 
for the methodological concepts that best suit their needs for repre
senting mobility behavior. Further, we determine research gaps and 
provide suggestions for improving the representation of mobility 
behavior in future research. 

This review focuses on land-based passenger transport and meth
odological aspects. Specific model outputs, scenario analyses, or policy 
insights are beyond the scope of this paper. This review does not 
determine which factors influence consumer mobility behavior but in
vestigates in-depth the state-of-the-art of how energy models reflect 
such behavioral aspects endogenously and via model coupling. We 
acknowledge that also other concepts exist for implementing mobility 
behavior in energy models.5 However, they are not considered in this 
work, as the two covered concepts receive, in our view, currently most 
attention from the energy modeling community. Further, we acknowl
edge that the former concept was already reviewed by Venturini et al. 
[22], which is why we are building upon this review by including 
overarching measures and the latest state-of-the-art research. The 
rationale for including this concept in our review is that a good under
standing of it is critical to put the need for the model coupling concept 
into perspective. Also, both concepts can be perceived as competing, 
which is relevant for our discussion and conclusion. 

1 Consumer behavior describes the decision-making of individuals with 
considering microeconomic realism [22,167]. Consumer mobility behavior re
fers, in the context of this paper, to behavioral aspects that are relevant to the 
mobility choices of consumers regarding vehicle purchase and modal choice as 
well as their usage of such technologies and services. Specifically, we focus on 
behavioral aspects related to land-based passenger transport consumer 
decision-making. In-line with the Fifth Assessment Report of the Intergovern
mental Panel on Climate Change [11], this includes aspects influencing the 
vehicle purchase behavior, willingness to adapt to new technologies/fuels, on- 
road fuel economy (e.g., driver behavior), eco-driving, driving behavior with 
new types of vehicles (e.g., recharging patterns and location of public 
recharging systems for electric vehicles), driving rebound effects, and vehicle 
choice-related rebound effects. In this paper, we refer mostly to consumer 
mobility behavior but also use mobility behavior synonymously.  

2 The concept of the “mean representative decision-agent” [6] describes the 
homogeneity in the decision-making in ESMs, which neglects the “heteroge
neity, i.e., variation or differences between end-users” [6] in terms of their 
decision-making preferences.  

3 Mobility-related decision-making is largely influenced by consumer 
behavior. For instance, the availability of novel vehicle- and mode-technologies 
(e.g., micro-mobility solutions and high-speed transportation in reduced pres
sure tubes), new service concepts, such as car-sharing and Mobility as a Service 
(MaaS), and the emergence of autonomous driving vehicles can potentially 
change purchase- and usage decisions and mobility demand. 

4 The terms ‘model coupling’ and ‘model linking’ are used synonymously in 
this work. 

5 For instance, developing narratives/storylines that reflect societal de
velopments, structurally changing current models, or developing entirely new 
models that can account for different relevant aspects for the energy system 
[18,26]. 
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The paper is structured as follows: Section 2 presents the trends for 
enriching models with mobility behavior by using the concepts of 
mimicking mobility behavior endogenously in standalone energy 
models (Section 2.1) and applying different model coupling approaches 
(Section 2.2). Section 3 discusses the challenges, limitations, and op
portunities of the presented concepts, identifies research gaps, and 
provides future research suggestions. Section 4 concludes this work. The 
Appendix includes the comprehensive review methodology applied for 
the literature search (Appendix A), details on each model coupling 
approach relevant to mobility behavior (Appendix B), an overview of 
exchanged parameters between models in such coupling approaches 
(Appendix C), and the advantages and challenges of model coupling in 
general (Appendix D). 

2. Trends in implementing mobility behavior in models 

Sections 2.1 and 2.2 present the research trends for enriching 
mobility behavior representation endogenously in energy models and by 
applying model coupling approaches, respectively. 

2.1. Representing mobility behavior endogenously in standalone energy 
models 

The endogenous integration of mobility behavior in standalone en
ergy models started after Schäfer [21] reviewed the options and 
methods for including the following parameters of mobility behavior in 
Energy/Economy/Environment (E3) models: elastic transportation de
mand, endogenous modal choice models, choice of no (physical) travel, 
accounting for infrastructure capacity, and segmenting urban and 
intercity areas. Schäfer [21] concluded that including behavioral pa
rameters in E3-models is feasible and important for holistic energy 
system analyses. Venturini et al. [22] comprehensively reviewed the 
following efforts for enabling such measures to model mobility behavior 
in ESMs directly. They classified the implementation of consumer 
mobility behavior into four categories: vehicle choice, modal choice, 
driving pattern, and new mobility trends. Based on our review, some 
methods can additionally be applied overarching across the four cate
gories. The remaining section provides an orientation of the key mea
sures for integrating mobility behavior in energy models along these 
four categories and overarching methods. Compared to Venturini et al. 
[22], this overview is extended with additional literature and the most 
recent developments to capture the complete picture, options within 
each category, as well as the state-of-the-art. 

2.1.1. Vehicle choice 
Translating insights from discrete choice models into feasible pa

rameters is a common measure to include vehicle choice realism in ESMs 
[34–38]. In discrete choice models, individuals aim at maximizing their 
utility when making a choice. This allows going beyond the typically 
existing tangible costs in such models by considering intangible costs for 
aspects such as technology acceptance, car model availability, range 
anxiety, or charging/fueling infrastructure. 

Disutility costs6 are applied by some modelers to proxy behaviors by 
a discomfort, i.e., the monetization of intangible costs, encountered by a 
consumer when adopting a specific transport vehicle (or mode) [6,20]. 
The disutility method is commonly used for vehicles with novel drive
trains. Bunch et al. [20] represented consumer technology preferences 
in a TIMES ESM by integrating disutility costs for refueling inconve
nience, range limitations, risk premiums, and brand and model di
versity. This theoretical framework was tested in a case study with a 
more advanced ESM by Ramea et al. [39], who found that integrating 

disutility cost in ESM enablesto closely mimic the outputs of the vehicle 
choice model in the ESM. As this ESM could not dynamically adjust the 
disutility costs for the future time horizon based on the model's results in 
previous years, subsequent work [40] tackled this issue: the ESM was 
extended by an internal feedback mechanism that let it operate itera
tively to induce some behavioral realism. After each iteration, the 
simulated vehicle sales and stock dynamically update some of the 
disutility cost terms, which are fed back to the model as inputs until the 
model output converges. 

Constant Elasticities of Substitution (CES)7 between input parame
ters of a utility function were applied in top-down CGE models [41,42]. 
In addition to the CES in such models, they improvised the behavioral 
dimension of vehicle choice by attributing fixed disutility costs to novel 
vehicle types to represent additional perceived barriers of consumers for 
adopting such vehicles [42]. To integrate CGE models in ESMs, hybrid 
modeling approaches or model coupling are necessary. 

Hurdle rates8 were implemented to represent mobility behavior for 
technologies that are new to consumers or not fully matured in the 
market yet [43]. The concept of hurdle rates has already earlier been 
used to mimic consumer behavior in other sectors of ESMs [44]. 
Regarding mobility behavior, hurdle rates can account for uncertainty, a 
higher investment risk, and the lack of knowledge from the consumer. 

2.1.2. Modal choice 
The modal choice reflects the consumer choice across different 

transport modes such as car, bus, tram, or train. Some ESMs enable 
modal shift endogenously in contrast to exogenous assumptions on 
modal shares. 

Travel money budgets limit the total monetary budget of tangible 
costs for the consumer, typically following historically observed data 
[45]. For instance, Tattini et al. [46] applied a monetary travel budget 
by limiting the consumption of cost commodities perceived by the 
consumer depending on their income class. Thus, such monetary bud
gets steer modal shifts by ensuring that consumers do not spend more 
money on mobility than historically observed in their income class. 

With a similar analogy, Travel Time Budgets (TTBs) are applied. The 
rationale for TTBs is that people spend a certain amount of time per day 
traveling [45]. This approach has been applied in models to stimulate 
shifts to faster transport modes when the income rises and therewith 
longer distances are covered within the same amount of time [47–52]. 
However, while research shows that the average TTB is constant, it 
varies by sociodemographic group, income, and congestion level, which 
we have not found to be reflected in standalone ESMs [45]. The TTB is 
further enriched with so-called “Travel Time Investment” [51] that aims 
to enable endogenous investments in infrastructure availability to in
crease their associated travel speed and, therefore, reduce the travel 
time of the corresponding mode [46,51–54]. 

Discrete choice models are frequently applied in transportation 
problems [55,56]. They can predict the modal choice probability based 
on travel costs and travel time [34–36,38]. Like the vehicle choice, the 
insights of such discrete choice models are translated into parameters 
relevant for modal choice in energy models. 

CES is often applied to represent modal choice in a top-down 
framework where the CES values are typically estimated, as they 
cannot be quantified on directly observable data. The transport demand 
module of the PRIMES-TREMOVE model applies CES to allow modal 
choices based on trip-specific characteristics [57]. However, model 
validation of PRIMES-TEMOVE has shown that such elasticity 

6 “disutility costs link to the non-monetary preferences found to be influential 
in empirical studies (e.g., range anxiety, lack of refueling station availability, 
risk aversion […]” [6]. 

7 “The CES utility function […] gives rise to homothetic preferences, which 
means that the ratio of goods demanded depends only on their relative prices, 
and not on the scale of production” [42].  

8 “Hurdle rates refer to the discount rates applied to the investment cost of 
new technologies which are meant to mimic hesitancy on the part of the pur
chaser to invest in a newer technology over an established technology.” [168] 
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substitution values are small, which is in line with empirical studies that 
found modal shifts to be relatively inflexible [57]. Others represent 
shifts between similar transport modes by a CES function containing 
approximated fuel efficiency values and the substitution elasticity for 
how replaceable one mode is by another mode [58]. Waisman et al. [50] 
apply CES to describe the relationship between per-capita income and 
motorization rate, i.e., car access for different households. They, 
therefore, determine the modal shift rate of consumers towards cars or 
other transport modes depending on their level of income. Karplus et al. 
[42] enrich their CGE framework with an income elasticity that con
siders the per-capita income to assess the traveled vehicle kilometer, 
which leads to modal shift when, for instance, fuel prices are changing. 

Different transport modes are characterized by their potential dis
tance ranges [52,59]. Thus, for each trip distance, the modal shift is 
limited to such transport modes that can meet demands with the cor
responding distance. While this measure requires detailed input data on 
trip-level, it prevents a model, for example, from utilizing a metro to 
fulfill the demand of very long trips (>50 km) or to use a train for very 
short trips (<5 km). 

2.1.3. Driving patterns 
Driving patterns refer to the on-road and off-road times of mobility 

services, such as car or bus, and the distances traveled within such times 

of a day (driving profiles). They relate to the speed profile of vehicles 
and modes, depending on traffic conditions and available infrastructure, 
and can be associated with aspects such as eco-driving.9 Thus, driving 
patterns can distinguish, for instance, by trips in different regions (urban 
and non-urban areas), trips with different distances, and trips at 
different times (peak- and off-peak travel times), and they have a direct 
influence on the fuel efficiency, energy consumption, and produced CO2 
emissions [60–62]. 

Salvucci et al. [52] adopted a methodology that was previously 
introduced by Daly et al. [49] and refined by Tattini et al. [59] for 
distinguishing different categories of trip demands by their distances 
(extra-short, short, medium, and long-distance) in a TIMES model. 
Driving patterns are for each transport mode considered by differenti
ating the travel demand that is being traveled within each trip distance 
category, based on the share of km within such categories found in a 
mobility survey [59]. While we outlined before the aspect of travel time 
included in these models, it is noteworthy that each trip distance range 
considers several driving pattern aspects, such as different travel speeds, 
infrastructure availability, and traffic conditions, which all influence the 
travel time [49]. However, such aspects of driving patterns connected to 
the different trip distance ranges are represented on an annual level. 
Thus, the time granularity in these approaches does not allow to reflect 
driving patterns in its traditional sense for representing the on-road and 
off-road times, speed, and traveled distances within a day. 

In ESMs with a higher time resolution, driving patterns can be rep
resented on an hourly level, as performed by Kannan and Hirschberg 
[63]. By including the time of driving, they proxy the on-road and off- 
road times of cars. However, they have not represented further specifi
cations for driving patterns, such as differing individual driving patterns 
by trip distance, trip region, or the related lower/higher fuel efficiencies 
based on the vehicle speed in hours with peak/off-peak travel demands. 
In contrast, in PRIMES-TREMOVE [57], trips distinguish by geograph
ical area (urban metropolitan, other urban areas, inter-urban motor
ways, and inter-urban other roads), purpose (non-working, commuting, 
and business trips), and time (peak and off-peak). Such trip types enable 
to represent travel habits of different representative consumers per re
gion and trip. 

2.1.4. New mobility trends 
New mobility trends refer to novel aspects such as carpooling, car 

sharing, mobility as a service, autonomous vehicles, and the choice of no 
physical traveling due to teleworking or similar [21]. 

So far, measures representing new mobility trends or mobility busi
ness models have received low attention in energy models [28,35]. 
However, efforts for representing novel mobility trends in models 
perceive an increased interest in the ESM community [28] and in 
broader fields of social sciences that work on quantifying the impacts of 
such new mobility trends on mobility decisions of consumers, which can 
create data that can be beneficial for integrating such trends in energy 
models [64,65]. 

2.1.5. Overarching methods across the four categories 
Some measures allow integrating mobility behavior in ESMs across 

multiple outlined categories. One overarching aspect that is frequently 
being applied is the extension from one homogeneous consumer towards 
heterogeneous consumer segments: this allows recognizing differing 
socio-economic backgrounds within the population relevant for mobility 
choices, such as income level and driving frequency, and enables policy 
analyses of tailored measures for different groups of the population 
[6,20,37,39,46,66,67]. Consumer heterogeneity improves models in 
each of the outlined four categories by applying it in combination with 

Table 1 
Distinction of standalone model improvements and model coupling approaches 
when input data come from other models.  

Standalone model 
improvements 

Model coupling 

Soft-linking Hard-linking  

• Input data come from 
external sources (e.g., 
surveys or models) that 
the modelers cannot 
control.  

• Modelers (or model consortia) can access and 
control the involved models: models are developed 
‘in-house’.  

• No specific agreement 
for developing a shared 
coupling framework.  

• Modelers agree on a coupling framework, common 
scope, and shared assumptions for the models.   

• The user controls 
and evaluates data 
exchange between 
models [68].  

• Computer programs 
handle the entire data 
exchange between 
models without any 
judgment or interference 
by the user [68]. 

Note. Standalone models often adopt data from external models (or databases) 
to which the modelers may not have access to exchange data systematically. In 
this context, standalone models are static, and data of the external models are 
usually extracted from reports or similar. On the contrary, in the context of this 
paper, model coupling/linking is characterized by modelers (or model consor
tia) having full access to the models to be coupled/linked so that interactive 
variables (data) can be consistently or systematically exchanged (one-way or 
two-way) for assessing a wide range of scenarios or sensitivities. In such a setup, 
the involved models are developed ‘in-house’, and the modelers of the different 
models interact with each other by agreeing on a coupling framework, common 
scope, and shared assumptions. Model coupling is further clarified via soft- 
coupling and hard-coupling depending on the computational approach. Also, 
linked models can apply a one-way or two-way exchange of variables (interac
tively). 
It is noteworthy that several definitions in the literature distinguish model 
coupling mechanisms [68,70–73]. However, a clearly defined distinction from 
endogenous improvements of standalone models by using data from external 
models seems to be missing. For example, Kannan and Hirschberg [63] adopted 
in the Swiss TIMES Energy system Model (STEM) future mobility-demand tra
jectories from the ARE model [69]. However, STEM modelers did not have ac
cess to the ARE model, and therefore mobility demand in STEM was not 
systematically changed. Although this approach is similar to ‘model coupling’, it 
does not meet the criteria for ‘model coupling’ and is therefore not classified as 
such. Instead, it is classified as a standalone model enhancement. We 
acknowledge that it is not always evident in the existing literature to identify 
which of such two categories a modeling approach belongs to. 

9 “Eco-driving reduces fuel consumption through more efficient driving style, 
reducing speeds, proper engine maintenance, maintaining optimal tire pressure, 
and reducing unnecessary loads.” [169] 
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the corresponding measures. For instance, consumer segments assigned 
with different income levels can be assigned with respective travel 
money budgets, which could lead to distinguishing modal choice and 
vehicle purchase preferences across the segments with implications for 
mobility- and energy demands, and the energy supply mix. Ramea et al. 
[39] achieved an even higher level of heterogeneity within each con
sumer segment. They calculated for each consumer segment a proba
bility distribution that represents non-measurable differences in the 
preference of consumers as error terms. Each consumer within a 

segment, so-called ‘clones’, falls somewhere into this probability dis
tribution. Accordingly, an additional cost term has been implemented 
for each clone within that segment. 

2.2. Model coupling advancements for representing mobility behavior 

Model coupling describes data exchange between two or more 
models that complement their individual framework, scope, focus area, 
or context. Across the involved models, computed output data of one 

Table 2 
Overview of reviewed model coupling approaches that include aspects of mobility behavior. 

Model 1 Model 2 Further models Coupling framework

Name Framework Scope Name Framework Scope Name (scope)
So�-link vs. 
hard-link

Data 
itera�ons

Time 
horizon

Geographical
coverage Source

MED ESM 
(op�miza�on)

Systemic 
energy 
perspec�ve

UKTCM Transport 
model

Vehicle 
choice

- So�-link No 2050 United 
Kingdom

Anable et al. 
(2012) [71]

TIMES-
DKMS

ESM 
(op�miza�on)

Systemic 
energy 
perspec�ve

DCSM Transport 
model

Vehicle 
choice and -
stock

- So�-link Yes, un�l 
convergence

2050 Denmark Ta�ni et al. 
(2018) [72]

Irish TIMES ESM 
(op�miza�on)

Systemic 
energy 
perspec�ve

Car Stock 
model

Transport 
model

Vehicle 
choice and -
stock

- So�-link Not specified 2035 Ireland H. Daly et al. 
(2011) [73]

Irish TIMES ESM 
(op�miza�on)

Systemic 
energy 
perspec�ve

CarSTOCK Transport 
model

Vehicle 
choice and -
stock

CIMS Market share 
algorithm (hybrid 
energy-economy 
framework)

So�-link No 2050 Ireland Mulholland et 
al. (2017) 
[74,75]

REMix ESM 
(op�miza�on)

Systemic 
energy 
perspec�ve

VECTOR21 Transport 
model (hybrid 
of agent-based 
and discrete 
choice market 
penetra�on)

Vehicle fleet 
model

VencoPy (EV-
charging model), 
CURRENT (EV-
charging model)

So�-link No 2030 Germany Wulff et al. 
(2020) [76]

TIMES-DK ESM 
(op�miza�on)

Systemic 
energy 
perspec�ve

ABMoS-DK Transport 
model (agent-
based)

Modal choice - So�-link Yes, un�l 
convergence

- Denmark Ta�ni et al. 
(2018) [77,78]

IMAGE-
TIMER

SD energy 
model (TIMER) 
within an IAM 
(IMAGE)

Systemic 
energy 
perspec�ve

TRAVEL Transport 
model (based 
on MNL)

Modal- and 
vehicle 
choice

- Hard-link / 
“integra�ve”

No 2100 Global Girod et al. 
(2012) [34]

MARKAL ESM 
(op�miza�on)

Systemic 
energy 
perspec�ve

Modal 
Split 
Model

Transport 
model (myopic 
foresight)

Modal choice MIT EPPA model 
(emission model with 
myopic foresight)

So�-link Yes, un�l 
convergence 
(calibra�on 
stage)

2030 Global Schäfer &
Jacoby (2005) 
[79]

JRC-EU-
TIMES

ESM 
(op�miza�on)

Systemic 
energy 
perspec�ve

PTT-MAM SD2 simula�on 
model

Represen�ng 
systemic 
agents in the 
car market

Dione (fleet impact 
tool), EV-charge (EV-
charging model), GIS 
EV Infra (GIS-based 
charging 
infrastructure 
alloca�on tool)

So�-link Not specified - EU28 Thiel et al. 
(2016) [80]

JRC-EU-
TIMES

ESM 
(op�miza�on)

Systemic 
energy 
perspec�ve

PTT-MAM SD simula�on 
model 

Represen�ng 
systemic 
agents in the 
car market

- So�-link Yes, un�l 
convergence

2050 EU28, 
Switzerland, 
Norway, and 
Iceland

Blanco et al. 
(2019) [81]

TE3 SD model Energy 
demand and 
greenhouse 
gas emissions 
of cars

PTT-MAM SD simula�on 
model

Represen�ng 
systemic 
agents in the 
car market

- So�-link Yes, un�l 
convergence

2030 Europe, 
China, India, 
Japan, and 
USA

Gómez 
Vilchez & 
Thiel (2020) 
[82]

TIMES-FR ESM 
(op�miza�on)

Systemic 
energy 
perspec�ve

Lifestyle 
model

Input-output 
model

Transport 
demand

Metanoia 
(macroeconomic 
input-output model)

So�-link No 2072 France Millot et al. 
(2018) [83]

REMix ESM 
(op�miza�on)

Systemic 
energy 
perspec�ve

CURRENT Transport 
model

EV charging - So�-link No 2030 Germany Steck et al. 
(2019) [84]

TDM Transport 
model

Transport 
Demand

VSM Transport 
model

Vehicle 
choice and -
stock

DEEM (Direct Energy 
and Emission Model), 
LCEIM (life cycle 
model)

Hard-link / 
“integra�ve”

No 2050 United 
Kingdom

Brand et al. 
(2012) [37]

Socio-
economic 
consumer 
choice 
model

Transport 
model (based 
on revealed 
preference)

Vehicle and 
modal choice

CarSTOCK Transport 
model

Vehicle 
choice and -
stock

- Hard-link No 2050 Denmark and 
Ireland

Mulholland et 
al. (2018) [85]

Time 
Budget 
Model

Transport 
model

Transport 
Demand

Vehicle 
park 
model

Transport 
model

Vehicle 
choice and -
stock

- (CGE model), -
(Freight demand 
model), - (fuel 
demand model)

So�-link Not specified 2050 South Africa Merven et al. 
(2012) [86]

AIM/Trans
port 

Transport 
model (based 
on MNL)

Transport 
Demand

AIM/CGE CGE model Top-down 
economic 
perspec�ve

- So�-link No 2100 Global Mi�al et al. 
(2017) [87]

Note. The color coding refers to the combination of the model types that have been coupled following the four groups outlined in Section 2.2. Blue: Vehicle choice 
transport model and ESM; green: Modal choice transport model and energy (system) model; yellow: SD model and ESM (or another SD model); grey: other model 
combinations. 
1MNL: Multinomial-logit equations used to reflect discrete choice. 
2SD: System Dynamics. 
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model serve as input for the other model. Data exchange can be in one 
direction or back and forth. In the latter case, data can be exchanged 
once or in an iterative manner to consider feedback loops between the 
models. The terms ‘model coupling’ and ‘model linking’ are used syn
onymously in this work. It is essential to distinguish between model 
coupling and improvements of standalone models, which adopt data 
from external models/databases (see Table 1). 

Multiple definitions exist to describe the methodological linkage 
mechanism. We follow the definitions of Wene [68], who defined ‘soft- 
linking’ as a method where the data exchange between models is 
controlled and evaluated by the user. In contrast, ‘hard-linking’ involves 
computer programs that handle the entire data exchange between 
models without any judgment or interference by the user (see Table 1). It 
is noteworthy that in some of the reviewed literature, it remains unclear 
whether models are hard-linked or integrated into one model frame
work. Böhringer and Rutherford [69] distinguish between three cate
gories: (1) coupling existing large-scale models, (2) complementing one 
model with a reduced form of the other model, and (3) combining 
characteristics of the models. We do not follow the definition of these 
latter three categories because they typically refer to coupling top-down 
and bottom-up models, which is not the focus of this review. 

Based on insights from the reviewed literature, mobility consumer 
behavioral aspects in model coupling refer to the determined use of 
models that focus on vehicle choice- or vehicle stock, vehicle charging, 
modal choice, system dynamics, mobility demand, travel time, and 
similar. 

Table 2 presents an overview of the models and frameworks of each 
coupling approach identified through the applied review methodology 
(see Appendix A), i.e., approaches that focus on the transport sector and 
consider aspects of consumer behavior. While this section provides an 
overview of such model coupling approaches, an in-depth description of 
each approach, the data exchanged between the models, and the order in 
which the models are applied is provided in Appendix B. Concerning the 
individual models used within the analyzed model coupling approaches, 
Fig. 1 provides an overview of such model frameworks. Table 3 syn
thesizes for each coupling approach the research objectives, the quali
tative purpose of the model coupling, its methodological rationale, and 
the methodological limitations. Appendix C shows which parameters are 
exchanged between the models in each coupling approach. 

There are several ways to group the reviewed coupling approaches, 
such as by their goals, coupling mechanisms, exchanged data, or data 
iteration approach. Since we aim to understand how model coupling 

enables energy models to consider behavioral aspects, we decided to 
group and summarize them in this section by their coupling mechanism, 
i.e., scope and framework of the coupled models (as shown in four color 
shades in the tables). This grouping helps identify which model types 
have been combined in the literature. In the discussion (Section 3), we 
translate this grouping with the help of Table 3 towards goal-oriented 
practical modeling insights. 

2.2.1. Vehicle choice transport model and ESM 
Linking a vehicle choice transport model with an ESM enables to 

represent consumer behavior of vehicle purchase decision-making. 
Daly et al. [73] soft-linked the Irish TIMES ESM [88] and the Car 

Stock Model [89]. The models exchanged data in both directions to 
utilize their combined strengths, i.e., the interaction with other sectors 
in the ESM and the broad choice palette for vehicle technologies in the 
vehicle choice model. Building upon such developments, Mulholland 
et al. [74,75] enrich this model coupling with the additional CIMS 
market share algorithm [90], representing heterogeneity and varying 
consumer preferences for new technologies. Tattini et al. [72] went one 
step further by combining models that represent behavioral realism to
wards car choice and modal choice. The simulated car stock of the ho
listic and purely techno-economic TIMES-DKMS model [59] is in an 
iterative manner verified regarding its technical feasibility against the 
behaviorally-detailed DCSM model [72]. If the models are in disagree
ment, a capacity constraint is added to TIMES-DKMS to let it adhere to 
the car share projections of DCSM. Another approach develops lifestyle 
storylines that reflect societal preferences and lead to different travel 
pattern projections [71]. The impacts of such lifestyle storylines on 
vehicle choice, usage, and ownership are simulated in the United 
Kingdom Transport Carbon Model (UKTCM) [37,91]. The outputs of 
UKTCM serve as input to the MED model [92]. This entire approach 
analyses the combined effects of behavioral change and technological 
change to reach emission reduction targets [71]. Wulff et al. [76] linked 
three models in sequential order to find impacts from user behavior for 
EV charging on the energy system. By substituting two different EV 
charging models [93,94] with each other in their combined approach 
with a vehicle fleet model [95] and an ESM [96], they compared the 
influences of a more or less flexible electric charging infrastructure and 
charging behavior. 

2.2.2. Modal choice transport model and energy (system) model 
Combining a modal choice transport model with an energy (system) 

Fig. 1. Overview of existing model frameworks applied in the analyzed model coupling approaches. Different model frameworks and their overlaps with other 
frameworks are visualized. The limitations (left) and strengths (right) for representing mobility behavior are outlined for each framework. 
Adapted from [70]. 

S. Luh et al.                                                                                                                                                                                                                                      



Energy Research & Social Science 90 (2022) 102596

7

Table 3 
Research objective, qualitative purpose, methodological rationale, and limitations of the reviewed model coupling approaches. 
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model allows an improved representation of modal shift, which is 
essential for achieving climate targets. 

Schäfer and Jacoby [79] performed a model coupling approach 
within this group by combining a MARKet ALlocation (MARKAL) model 
[97] with a CGE model for emission- and policy analyses (EPPA) [98] 
and two transport-specific modal split models for passenger and freight 
transport [45], respectively. Their approach considers consumer 
behavior by accounting in the dedicated modal split model for a daily 
TTB combined with travel speeds of different transportation modes. 
Later, Girod et al. [34] integrated the global passenger transport model 
TRAVEL into the TIMER energy model, which is part of the IMAGE IAM 
[99] and feeds TRAVEL with data on population, income, and energy 
prices. In TRAVEL, two behavioral parameters serve as key drivers for 
modal choice by representing empirical observations regarding a con
stant travel income budget and a daily TTB. A coupling approach that 
takes many behavioral aspects other than travel income and TTB into 
account has recently been developed by Tattini [77] and Tattini et al. 
[78], who developed an iterative soft-link between an ESM [100] and an 
agent-based modal shift model [101]. In this approach, the latter model 
simulates transport mode choices by taking travel behavior insights 
from a travel survey into account, while the ESM allows finding the 
impact of such decisions on a whole energy system perspective. 

2.2.3. SD model and ESM (or another SD model) 
Another identified group to consider mobility behavior through 

model coupling is combining a System Dynamics (SD) model with an 
ESM or another SD model. This combination allows broadening the 
scope from consumer-focused analyses towards taking the different 
transport market players into account. The Powertrain Technology 
Transition Market Agent Model (PTT-MAM) [102,103] is used in each of 
the three approaches. PTT-MAM is an SD behavior-based ABM repre
senting four stakeholders within the EU transport market, i.e., users, 
authorities, infrastructure providers, and manufacturers. 

Thiel et al. [80] outline a suite of five models [102–107] and state 
that “the models are soft-linked” [80]. Unfortunately, they do not 

explain the respective coupling methodology. However, the model most 
relevant for mobility behavior, PTT-MAM [102,103], has been applied 
in more coupling approaches in follow-up works: Blanco et al. [81] soft- 
link PTT-MAM with a multi-regional EU energy systems optimization 
model (JRC-EU-TIMES) [106], aiming to provide improved policy rec
ommendations by combining the complementary strengths of each 
model. They tested two different approaches for data feedback from 
PTT-MAM to JRC-EU-TIMES. An improved mobility behavior was 
induced in the ESM by overwriting the powertrain market shares in the 
ESM with the behaviorally more realistic outputs from the PTT-MAM. 
Gómez Vilchez and Thiel [82] shed light on the possible deployment 
of EVs on a broad international scale by soft-linking the PTT-MAM with 
a global SD model [108] in an iterative manner until convergence was 
reached after a couple of iterations. 

2.2.4. Other model combinations 
Beyond the three groups summarized above, some model coupling 

combinations have been found that do not fit into those groups. 
Two of the coupling approaches within this group apply an ESM. 

Millot et al. [83] use a soft-linking method to combine a statistical 
lifestyle model [109], a macroeconomic input-output model [110], and 
an ESM [111]. Human behavior from national surveys regarding 
household budgets, transport and journeys, housing, and a population 
census is represented via the lifestyle model. This approach allows 
testing the impacts of lifestyle dimensions, such as mobility practices 
and leisure travel preferences, on the energy mix and emissions. How
ever, it does not consider any feedback, such as the impact of a carbon 
tax or changed fuel price on the consumer reaction. Steck et al. [84] do 
also not consider feedback loops when they soft-link an ESM [96] to a 
charging model [94]. They represent the dynamic charging demand of 
EVs by accounting for the decision algorithm of consumers, which is 
based on market mechanisms and charging preferences. Such charging 
behaviors are based on a real-world vehicle diary of Plugin Hybrid 
Electric Vehicles (PHEVs) and Battery Electric Vehicles (BEVs). 

The remaining coupling approaches in this group do not apply an 

Note. The color coding refers to the combination of the model types that have been coupled following the four groups outlined in Section 2.2. Blue: Vehicle choice 
transport model and ESM; green: Modal choice transport model and energy (system) model; yellow: SD model and ESM (or another SD model); grey: other model 
combinations. 
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ESM. Brand et al. [37] developed the UKTCM, which combines four 
hard-linked models [91]. An integrated feedback loop allows consid
ering changing consumer preferences, income, and influences on vehicle 
purchase decisions. The exogenously defined scenarios that are simu
lated can describe changing attitudes and societal factors. Mulholland 
et al. [85] aim to find effects of financial stimuli for purchasing BEVs and 
PHEVs by hard-linking a socio-economic consumer choice model with 
two CarSTOCK models [89] for Denmark and Ireland, respectively. The 
former model covers the private transport sector in a non-linear fashion 
and represents 18 heterogeneous consumer segments. It combines 
tangible costs for the consumer with monetized intangible costs, such as 
range anxiety, car model availability, refueling infrastructure, and risk- 
related disutility. The intangible costs are based on empirical data of 
consumer preferences. Merven et al. [86] also aim to provide insights 
into the future vehicle stock and related energy demand by soft-linking 
five transport-related models [86,112,113]. Three of such models 
consider behavioral aspects (annual mileage and age of vehicles; daily 
TTB of 1.1 h per person; speeds transport modes; transport mode 
affordability based on three consumer income groups). Unfortunately, 
Merven et al. [86] neither outline which data are exchanged across the 
models nor the order in which the models are applied. Mittal et al. [87] 
soft-link the global transport demand model AIM/Transport [114] that 
represents technology- and modal preferences of consumers with the 
global AIM/CGE model [115,116] that applies MNL-type equations to 
reflect travel behavior. This coupling aims to find factors impacting 
global travel demands, modal shares, and respective energy consump
tions. Most of the factors examined in this study relate to mobility 
behavior, such as travel time, preferences for transport modes, socio- 
economic macro-developments, the occupancy rate of a car related to 
the per capita income, and environmental concerns. Data were only 
transferred from AIM/CGE to AIM/Transport without a feedback loop. 

3. Discussion: challenges, limitations, and opportunities for 
representing mobility behavior 

The last years brought noteworthy improvements for representing 
consumer mobility behavior in computational energy models. Such 
improvements gain increasing recognition in the modeling community, 
as consumer behavior strongly affects the potential uptake of novel 
vehicle-drivetrains in the real world. However, such efforts come with 
generic challenges, such as reflecting the highly nuanced impacts on 
decision-making behavior in feasible terms in computer models and 
selecting the correct model type for answering different research ques
tions [7]. 

This review reasons that well-designed model coupling approaches 
can provide additional benefits compared to the endogenous integration 
of behavioral measures in an ESM. Historically, modelers of ESMs tried 
to expand the degree of detail in many sectors of the energy system to 
the same degree. Recent efforts for adding aspects of mobility behavior 
endogenously in ESMs have shown improvements but also led to 
increased complexity that is becoming less manageable. Moreover, the 
cost-optimizing scope of most single ESMs leads to limitations when 
representing mobility behavior. Such limitations of standalone models 
can be overcome by model coupling. The latter lets each model remain a 
clear focus on its key area. At the same time, it provides a wider variety 
of insights from combining the complementary centers of attention of 
each model. Thus, model coupling prevents models from getting less 
computationally heavy and prevents individual models from becoming 
very large and complex. Therefore, applying well-designed linked 
models allows pushing the individual model limitations and boundaries 
by combining their strengths and extending the scope of analysis. 
Therewith, coupling enables considering more facetted parts of mobility 
behavior. 

In the following, we discuss such aspects in detail for the advance
ments made by integrating behavioral aspects endogenously in stand
alone ESMs (Section 3.1) as well as by considering mobility behavior 

through model coupling of different model types (Section 3.2). In Sec
tion 3.3, we discuss the value of the latter concept compared to the 
former concept. Recommendations for future research are provided in 
Section 3.4. 

3.1. Standalone ESMs 

Mobility-related decisions of consumers reflect, to some extent, 
economically rational choices. Still, the decisions are also influenced by 
behavioral aspects that deviate from being purely explainable with 
economic rationality and, especially, cost-minimizing approaches that 
many ESMs follow. Behavioral aspects represent alternative rationalities 
of individual consumers, representing consumer preferences, which are 
often referred to as “bounded rationality”10 [117,118]. Quantitatively 
assessing such aspects is challenging. Further, they show a high level of 
heterogeneity, which makes it generally challenging to represent such 
consumer behaviors in ESMs. 

Despite such challenges, many approaches have been implemented 
and tested in standalone ESMs to induce mobility behavior endoge
nously. Most research integrates vehicle choice, modal choice, and 
overarching methods, such as heterogeneous consumer segments, in 
ESMs. Driving patterns and new mobility trends have received low 
attention in ESMs. Still, increased attention towards such aspects would 
be beneficial because of their potential significant impacts on future 
consumer mobility behavior. Further, we emphasize that we have not 
found any targeted attempt for deeply integrating travel rebound ef
fects11,12 i.e., demand changes resulting from increased use of infor
mation and communication technologies or autonomous vehicles, in 
ESMs. 

Several reasons speak for the endogenous representation of some 
aspects of mobility consumer behavior in ESMs. Its representation leads 
to improved model independence, as it allows performing simulations 
without relying on the performance of an external model. Since many 
endogenous behavioral measures were tested and applied during the last 
years, it may still take some time until the modeling community will 
capture the most compelling features more frequently in models. 

For representing technology choice and modal choice, a recent re
view suggests that heterogeneous consumer segments and a TTB, 
respectively, are best suited [22]. Further, consumer segments can allow 
representing an improved spatiotemporal resolution and heterogeneity, 
which is essential for reflecting mobility behavior in terms of electric 
charging accessibility (spatial distribution/density of charging stations), 
charging duration, and preferred charging times [7,28]. We echo such 
approaches due to their relatively low increased model complexity and 
low need for additional data, which are key advantages compared to 
most other options for implementing mobility behavior endogenously in 
ESMs. However, we acknowledge the limited availability of the required 
data in many countries. Further, we emphasize that these advantages are 
also valid for extending heterogeneous consumer segments with (in
come-specific) travel money budgets. Given the latest developments in 
this field, this can also improve the modal and vehicle choice decisions 

10 Examples of bounded rationality that influence vehicle purchase decision- 
making are brand preferences [170], social norms and status [171], confir
mation bias [172], and emotional and affective decision making [173,174].  
11 Travel rebound effects refer to behavioral or systemic reactions that lead to 

a lesser reduction of mobility demand or its total energy consumption than 
what could be expected from technologies or measures that increase the effi
ciency [175]. Behavioral rebound effects reflect, for instance, an increased 
amount of mobility demand due to targeted information of information and 
communications technologies [31,176], and potentially increased mobility 
demand due to new mobility services like autonomous vehicles that could 
perform empty runs, make cars accessible to people that would otherwise not 
use them, and lead to relaxed travel time constraints [177,178].  
12 We emphasize that we are referring to travel rebound effects, which 

distinguish from economic rebound effects. 
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in technology-rich ESMs [46]. For instance, the travel money budget 
helps steer consumer decisions in models containing many vehicle 
technologies with differing investment and operational costs. Hurdle 
rates effectively integrate mobility behavior, as their implied costs can 
reduce the rapid domination of novel vehicle technologies in the market, 
and they are relatively simple to integrate into ESMs [20,39,43]. How
ever, due to their linked challenges, we recommend that the imple
mentation of hurdle rates should only be considered in models that aim 
for more advanced approaches of implementing mobility behavior 
parameters. 

Driving patterns are currently mostly represented in a limited 
manner. An exemplary advanced approach could include individual 
intra-daily driving patterns representing the traffic conditions and 
driving speed of several aggregated trip types in different regions, which 
consequentially influences the fuel efficiency of the respective trips in 
the model. However, like ESM frameworks are not designed to represent 
individual consumers, they are also not designed to represent separate 
trips. Nonetheless, the inclusion of clustered trip types on a relatively 
high-level, that distinguishes aspects like trip distance, region, and time 
of the trip, would be advantageous for representing different driving 
patterns, their respective fuel efficiencies, and even the accessibility of 
certain modes for such trips. When integrating driving patterns for 
various trip types, they could be well combined with a suitable disag
gregation of heterogeneous consumer segments with matching con
sumer clustering criteria, such as the living region and typical trip 
distances of consumers. 

A set of reasons also speaks against the direct integration of con
sumer mobility behavior in ESMs. Most behavioral measures require a 
high amount of additional data, which often requires conducting large 
and complex surveys or making strong assumptions when translating 
qualitative data into quantitative model inputs. Moreover, a sheer 
number of linear programming ESMs traditionally focus on cost- 
minimization. This makes it challenging to integrate behavioral real
ism from a methodological perspective, as it is not trivial and often 
hardly feasible to translate behavioral parameters into cost-terms or 
specific preferences [119]. For instance, the calibration of quantitative 
hurdle rates provides challenges and uncertainties for selecting the 
‘right’ values; a detailed discussion for determining plausible hurdle rate 
values is beyond the scope of this paper [120]. Consequently, endoge
nous model extensions can lead to larger and more complex models, 
resulting in high data requirements, data management overhead, long 
computational times, increased required computing power, and 
complicated interpretation of model outputs [4,121]. It should be 
considered that the applied ESM in [20,39] is a relatively simple pro
totype model that does not reflect different sectors of the energy system 
but only the light-duty vehicle sector, which raises the question if this 
approach can also be utilized effectively in more complex modeling 
frameworks. In essence, it can become challenging to effectively work 
with ESMs that reflect consumer mobility behavior endogenously, which 
is a limiting factor for endogenous model advancements. 

Based on the insights of this review, we suggest the following good 
practices when enriching an ESM with the mobility behavior of 
consumers:  

1. Focus on the most effective behavioral aspects for the purchase- and 
usage decisions for vehicles and transport modes. For instance, 
reflect spatial differences with a high temporal resolution by sepa
rating the population into heterogeneous consumer segments that 
can be attributed with the most suited aspects for representing their 
mobility behavior, as demonstrated with the MoCho-TIMES model 
for Denmark [46].  

2. Consider potential behavioral rebound effects when representing 
novel mobility services, such as increased mobility demands from 
autonomous vehicles or more leisure trips when remote work be
comes more popular.  

3. Perform a careful trade-off between reflecting behavior and 
increased model complexity.  

4. Remain endogenous flexibility within the ESM by implementing 
mobility behavior in ways that do not become predictive for the 
model outcomes, i.e., behavioral aspects should not exogenously fix 
the future decisions the model can make based on (past) consumer 
behavior. Otherwise, ESMs that cover multiple sectors could become 
rather predictive in the transport sector while other sectors remain a 
higher degree of endogenous flexibility.  

5. Avoid too complex model structures that get very challenging to 
handle. In such cases, instead, consider model coupling to overcome 
the limitations of standalone models. 

Overall, the critical point for the endogenous integration of mobility 
behavior in an ESM is the careful trade-off between increased model 
complexity, limited model flexibility, and an improved mobility 
behavior representation. Therefore, this review will go one step further 
by providing an in-depth analysis of model coupling approaches that can 
overcome this limitation and, therefore, provide additional benefits in 
contrast to the endogenous implementation of mobility behavior. 

3.2. Model coupling 

This section discusses the previously outlined coupling approaches 
for representing mobility behavior. A discussion of the general advan
tages and challenges of model coupling approaches is provided in Ap
pendix D. 

Model coupling approaches have been performed with different 
model types to represent specific characteristics of mobility behavior. 
Each approach considers consumer behavior through at least one of the 
involved models. The aims of the reviewed model couplings can greatly 
distinguish and influence which type of models should be selected for 
the coupling (see Table 3). For practical reasons, it might frequently 
happen that several models are available for coupling, and based on 
that, a suitable research question is determined. However, to cover 
strong and stringent research questions, modelers should first determine 
their qualitative goal and then select feasible models that allow 
combining different perspectives to provide insights for that goal. The 
wide variety of possible model combinations shows that model coupling 
can represent many facets. 

The ultimate goal is typically to improve the future pathway analyses 
for mobility demands, energy consumption, and greenhouse gas emis
sions. To achieve this, the reviewed model couplings focus on different 
facets. To infer the mechanisms of model coupling from the goals 
identified in Table 3, we provide practical modeling insights from a goal- 
oriented perspective:  

1. Integrate behavioral realism of the transport sector into the 
interplay of the entire energy system: The entire energy system 
greatly influences the transport sector. Especially the energy supply 
and the infrastructure deployment for electricity supply and 
charging, as well as the residential situation of consumers, influence 
their mobility choices and the accessible mobility services and 
infrastructure, steering the consumer mobility behavior. In turn, the 
mobility behavior affects fuel prices, the need for such supply 
infrastructure, and mobility service and influences if other sectors of 
the energy system require stronger or less strong decarbonization to 
achieve climate targets. To reflect the critical impacts of other energy 
sectors on the mobility behavior and vice versa for potential future 
mobility pathways, we emphasize the importance of a systemic en
ergy perspective for model coupling approaches that include 
mobility behavior. As shown in Table 2, most of the reviewed model 
coupling approaches include a systemic energy perspective. Often, 
such a model was the starting point for the model coupling. Thus, the 
following goals build upon the existence of the systemic perspective, 
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and the coupling goals intend to enrich this from a behavioral 
perspective.  

2. Improved vehicle purchase choice behavioral realism: This 
objective can be tackled by including a behaviorally-detailed vehicle 
choice transport model in the coupling framework. It enables to 

provide vehicle choice decisions to another model and, in turn, to use 
the results of the external model (e.g., fuel prices) to influence the 
vehicle choice of consumers. The linkage mainly requires data 
harmonization by suitably aggregating/disaggregating the available 
technologies and consumers in each model.  

3. Improved modal choice behavioral realism: This goal requires 
implementing a mode choice transportation model that incorporates 
consumer realism into the coupling framework. By providing more 
realistic modal shares to another (energy) model, the latter can 
typically generate systemic insights for improved technology 
choices, fuel consumptions, fuel prices, and more. In an iterative 
approach, such aspects could again serve as inputs for updating the 
mode choice. 

4. Mobility service and charging (infrastructure) demand assess
ment: To assess such demands, the impacts of consumer lifestyles 
and the feedback between energy supply and EV charging are 
determined. For the former, stringent lifestyle scenarios are con
structed. Model coupling enables to evaluate the interdependencies 
of such lifestyles with mobility choices and other sectors of the en
ergy system. For the latter, the detailed charging behavior of con
sumers and their mobility demand can reflect their electricity 
demand. Model coupling allows assessing the impacts of such a 
detailed model in a greater perspective for the transport sector or the 
entire energy system. 

5. Impact of behaviors, policies, and costs on the market pene
tration of novel vehicle technologies: To evaluate the dynamic 
non-linear impacts from a broad palette of aspects and different 
market players (users, authorities, infrastructure providers, and 
manufacturers) on the market penetration of novel vehicle technol
ogies, an SD simulation model of the transport sector was used in the 
reviewed literature. Similar to the previous category, the model 

Fig. 2. Overview of literature with relevant model linkages for mobility behavior. Each graph shows the number of model couplings (N = 17) for the a) included type 
of models, b) their coupling approach, c) data-iteration across the models (feedback loop), d) time horizon, and e) geographical scale. 

Fig. 3. Collection and selection of relevant literature. The review methodology 
is exemplarily visualized for the model coupling approaches. 
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coupling with other models enables to assess the insights of such a 
detailed model in a broader perspective. 

It should be noted that this list does not contain all possible goals but 
focuses on the most common ones in the reviewed literature. New goals 
will emerge, and other aspects of mobility behavior will be examined 
more frequently with more model coupling approaches investigating 
mobility behavior in the future. 

A limiting factor for this review was the lack of discussion in the 
reviewed literature about limitations in the methodological coupling 
framework (see Table 3). While the limitations of the individual models 
within a coupling framework are discussed frequently, an overarching 
perspective regarding aspects like challenges for suitable data exchange 
or consistency issues across the different model frameworks is missing. 

Fig. 2 provides an overview of the model coupling approaches in the 
literature that consider mobility behavior. Fig. 2a shows a spread over 
the different kinds of model coupling groups. Fig. 2b shows that most 
coupling approaches apply a soft-link. In contrast, a hard-coupling or 
‘integrative’ approach was performed three times. This choice of mod
elers reflects that the hurdle to apply soft-linking is lower, which is likely 
due to the lower requirement for automated data processing between 
the models. According to Fig. 2c, most linked models do not iterate the 
data; only five iterative simulations are performed until convergence is 
reached. Missing data iterations are frequently mentioned as a potential 
avenue for future work in the analyzed publications. Fig. 2d shows that 
mostly long-term timeframes of more than 25 years into the future are 
simulated. Such long timeframes typically come with challenges when 
using historical mobility preferences to project future developments. 
This raises the open question of how reasonable it is to estimate mobility 
behavior over such long time periods [122]; something that requires 
further investigations from the research community. Fig. 2e reflects that 
mostly a single country is represented.13 This seems reasonable as it is 
crucial to determine a good spatial coverage and respective spatial 
resolution to represent different mobility preferences based on the 
geographical surroundings14 for simulating mobility behavior. 

When models are coupled for enhancing mobility behavior, it should 
be carefully examined which parameters can be exchanged among 
models and how such data need to be pre-processed to ensure consis
tency and correct data formats. Thus, it should be evaluated which 
model outputs provide beneficial information as inputs for the other 
model and help answer the research question. Mostly, a model with a 
detailed representation of mobility behavior can be combined with a 
model with no or limited mobility behavior. Thus, as each model typi
cally computes a simulation around its core purpose and then provides 
feasible data that suits the core purpose of the other model, the 
exchanged data are typically parameters that are not directly repre
senting mobility behavior (see Appendix C). Nonetheless, the couplings 
enrich the insights and impacts of mobility behavior, as the exchanged 
data values are triggered from applying, for instance, behavioral pa
rameters within one of the models. Mainly, one model focuses on tar
geting mobility behavior, while the other model is not or to a limited 
extent focused on mobility behavior (often ESMs, which in some cases 
include aspects of mobility behavior). In some cases, the applied models 
exchange data by being integrated into another model instead of being 
individual models [34,37]. In such cases, the models are hard-linked and 
can be understood as separate modules of one larger model framework. 

Translating qualitative consumer behavior into quantitative model 

inputs for the endogenous representation of mobility behavior in a 
standalone model often comes with uncertain assumptions. This can 
quickly lead to over- or underestimating the impact of mobility behavior 
on the model output. This leads to a precondition for pursuing model 
coupling with an ESM that contains such parameters: the quantitative 
assumptions that aim to represent qualitative behavior need a thorough 
assessment and sensitivity analyses because they will propagate errors to 
the connected models. The connected models would, in turn, exacerbate 
the problem in subsequent looping and jeopardize convergence. 
Avoiding such negative induced impacts is crucial. Therefore, each 
involved model should first provide a robust individual performance 
within its scope on its core task before focusing on the coupling.15 

3.3. What is the value of model coupling compared to endogenously 
integrating mobility behavior in ESMs? 

In the previous sections, we have outlined the pros and cons of both 
concepts for considering mobility behavior in models. This section goes 
one step further by evaluating the value of model coupling compared to 
endogenously integrating mobility behavior measures in ESMs. 

Despite advancements during the last decade to represent behavioral 
aspects in standalone models, it is not always possible to integrate or 
improvise behavior in single modeling frameworks due to methodo
logical limitations [123]. Based on this review, the integration of 
mobility behavior in cost-minimizing ESMs comes with the challenge of 
a limited scope for representing non-techno-economic parameters. 
Moreover, this requires a high amount of additional data, leading to 
increased model complexity and computational resources. Furthermore, 
relatively fast changes in the energy supply sector and the emergence of 
new technologies and mobility services confront ESMs with challenges 
due to increasing complexity while requiring more flexibility and cross- 
sectoral interactions in the energy system [124]. 

Applying model coupling can allow one to tackle and overcome such 
challenges. This is due to the ability of linked models to combine insights 
from different perspectives on one topic while letting each model keep 
its focus on its core purpose. With this, each model can remain a well- 
defined structure around its core purpose, manageable complexity, 
faster computational times, and produce outputs that can be easier 
interpreted. In combination, complementary models can provide more 
robust and profound insights into the impacts of mobility behavior. 
When applied iteratively, they allow reflecting behavioral dynamics and 
behavioral rebound effects through induced feedback loops. Especially 
for considering mobility behavior, it is advisable that one model has its 
core around the consumer mobility behavior and requires and/or de
livers data that can serve as connection points for a complementary 
model, which provides, for example, systemic insights. Moreover, when 
a new parameter needs to be considered in the combined framework, it 
can be integrated into the model that is best suited for representing this 
parameter, instead of finding ways for representing them in a standalone 
ESM that often has a cost-minimizing framework. As the focus of the 
model can remain in model coupling on its key area, the model is more 
flexible to be applied in several model coupling approaches in parallel. 
Thus, each aim and research question can be tackled with the most 
suitable combination of other models. It is essential to ensure continuous 
improvement of knowledge gained through the coupling when the 
separate models can still be applied individually. Therefore, modelers 

13 This includes the publication of Mulholland et al. [85] where two countries 
(Denmark and Ireland) have been simulated. For simplicity, we merged this 
publication in Fig. 2e with the model couplings that represent a single country.  
14 For instance, the geographical surrounding may lead to significant impacts 

for the accessibility of E-charging infrastructure. Alternatively, a person living 
in the mountains may have an increased need for a higher motorized vehicle in 
comparison to a person living in an urban area. 

15 For instance, when combining a behavior-oriented transport model with an 
ESM, it first should be ensured that the behavior-oriented model shows a 
reasonable performance when representing impacts on and from mobility 
behavior, while the ESM should have a good representation of reflecting cross- 
sectoral effects in the energy system relevant for the transport sector (e.g., 
simulating if enough low-carbon electricity can be produced at competitive 
prices to fuel respective vehicles, and considering cross-modal effects within the 
transport sector). 
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should develop techniques that maintain the main dynamics of a pre
vious model coupling in the separate models for future standalone ap
plications or iterations in other coupling frameworks. Otherwise, future 
model coupling activities may neglect systemic interdependencies 
tackled in a previous model coupling activity. As this strain of research is 
not covered in the reviewed literature, we stress its importance for 
achieving continuous model enhancements. 

The validation of model input data and results is an ongoing chal
lenge for the modeling community and affects both reviewed concepts 
for representing mobility behavior, standalone models and linked 
models [7,125]. In the reviewed model coupling publications, the vali
dation of the combined approach is rarely mentioned and vague. Some 
cases refer to the validation of the individual models. While the vali
dation of the individual models should be a prerequisite for robust 
model coupling, we stress the importance of establishing a set of aligned 
validated input data shared by all models within a model coupling and 
validating the entire model coupling framework as a whole. In general, 
the selected modeling concept has low relevance when the assumptions 
for future behavior are poor [126]. However, the validation of behav
ioral data is challenging because the future change of mobility behavior 
contains a high level of individual variability, and it can be influenced 
by many aspects that are prone to deep uncertainties in their future 
development, such as broad societal shifts in values and norms, 
disruptive events, and novel technologies [26,125]. Common ap
proaches for validating models include sensitivity und uncertainty an
alyses [26,103,125], expert judgment [44,125], stylized behavioral 
patterns [26,125], ex-post modeling [26], calibrating the model inputs 
to fit historically observed data with the model outputs [103], and field 
studies [127]. Those approaches can also be applied to validate mobility 
behavior. Especially for validating consumer behavior, it could be useful 
to combine quantitative and qualitative methods to take advantage of 
their individual strengths for validating overarching correlations and 
expressing complex decisions, respectively [2]. 

In essence, modelers should seek to integrate mobility behavior in 
standalone ESMs endogenously when the behavior-related data fit into 
the modeling framework and comes with a relatively low increased 
model complexity. This is typically the case for stylized behavioral facts 
(e.g., TTBs and TMBs), usage patterns, the accessibility of certain tech
nologies or (EV charging) infrastructures for consumers, and behavioral 
aspects that can be quantified in cost-terms. In addition, standalone 
ESMs can effectively distinguish relatively large groups of the popula
tion that show different mobility preferences or distinguish broadly 
defined trip distances that different transport modes can fulfill. This 
modeling concept is beneficial when consumer behavior that can be 
generalized across the population and is not highly individual is inte
grated. It provides the advantages of less complex and more independent 
model enhancements without the methodological extra-work necessary 
for setting up and performing model coupling. Further, modelers should 
aim to maintain the main dynamics of a previously applied model 
coupling to keep representing the systemic interdependencies in an in
dividual model. 

Suppose modelers seek to investigate more complex research ques
tions that investigate deeper and more nuanced behavioral preferences 
of different consumers and market players. In that case, model coupling 
can offer advantages over integrating mobility behavior into standalone 
ESMs in several ways. When different modeling perspectives/frame
works on the transport- and energy system should be assessed, 
combining different modeling frameworks in a joint approach provides 
more flexibility in representing behavioral (and other) aspects. This is 
especially substantial in the transport sector, where many players (e.g., 
consumers, infrastructure providers, car manufacturers, and policy
makers) interact with different goals, behavioral preferences, and ob
jectives that often clearly deviate from a cost-optimal solution that ESMs 
typically calculate. With model coupling, it is simpler to consider 
behavioral choice preferences that are challenging to be represented as 
cost terms and provide insights beyond a cost-optimal solution. This 

allows one to easier apply non-cost aspects as relevant criteria for the 
simulation, and a broader set of dimensions can influence consumer 
decisions. Further, model coupling shows advantages for representing 
nuanced preferences of many individual agents in a systemic energy 
context. This allows deeper investigations of the interplay between 
preferences of different consumers and other players of the transport 
system, as well as of the effects that they have on each other and, in turn, 
on the energy system as a whole. 

3.4. Recommendations for future research 

Based on the previous discussion insights, we provide future research 
suggestions to achieve improved mobility behavior representations in 
energy models. 

For standalone ESMs, we suggest extending models with measures 
that improve the vehicle- and modal choice of consumers without 
significantly increasing the model complexity and data requirements of 
the model. Suitable measures for this are implementing heterogeneous 
consumer segments like Ramea et al. [39], but each segment combined 
with their respective TTBs and income-specific travel money budgets 
[45]. Implementing more complex mobility behavior measures to an 
ESM is possible via, for instance, disutility costs or hurdle rates, but this 
leads to previously outlined challenges. At the same time, it should be 
kept in mind that the computational times should stay in acceptable 
ranges; methods for this have been analyzed by Scholz et al. [128]. In 
addition, we suggest strengthening the representation of new mobility 
trends such as Mobility as a Service or autonomous vehicles, including 
their potential rebound effects, which could strongly impact future 
mobility preferences. While such emerging aspects deem important and 
perceive an increased interest within the ESM community [28], we did 
not find appropriate approaches for modeling them. Overall, endoge
nously integrating mobility behavior measures in ESMs enables them to 
provide more substantial and more realistic insights, but it requires a 
careful trade-off between potential benefits and increased model 
complexity. 

For model coupling approaches, the ideal types of combined models 
depend greatly on the research questions to be investigated. In general, 
we recommend combining systemic energy models with behavior- 
centered models, as this enables to represent mobility behavior with 
greater detail within a systemic perspective. This is of paramount 
importance, as the changing energy system16 provides implications for 
the usage of transport technologies and opportunities for other tech
nologies to penetrate the energy system. Furthermore, feedback loops 
should iteratively exchange the data until the results converge to reflect 
the systemic changes induced by behavioral mobility dynamics and vice 
versa. 

Importantly, both concepts for representing mobility behavior 
reviewed in this work should not be considered exclusive. Instead, the 
concepts can complement each other: an ESM that considers selected 
aspects of mobility behavior can improve the possibilities for 
exchanging data with a linked behavior-centered model. Thus, better 
data integrity between the coupled models can be achieved. Further, the 
data can be exchanged with finer granularity. For example, when an 
ESM represents some aspects of mobility behavior in a simple form and 
iterates its outputs with a model that contains sophisticated mobility 
behavior representation, this could help tune the reduced representation 
in the ESM to let it better emulate the external model in a specified 
parameter space. Therefore, combining both methodological concepts 
reviewed in this work can allow overcoming their limitations while 
amalgamating their strengths. 

16 For instance, increasing hydrogen supply, market penetration of EVs, and 
opportunities for utilizing the electricity storage capacity within the transport 
sector to provide an increased flexibility for integrating variable renewable 
energy sources into the energy system. 
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To validate an entire model coupling, we recommend applying cross- 
model comparison to determine if the results are within the range of a 
certain expectation horizon. When data-iteration is applied, this com
parison with the expectation horizon should be made after each iteration 
to express in which range the results evolve. An application of such a 
comparison as well as an extensive discussion about model validation 
are outside the scope of this paper. Nonetheless, the development of 
solid validation approaches and clear communication of hardly verifi
able assumptions for future consumer behavior are crucial to provide 
policymakers with better tools and increase the credibility of standalone 
models and model couplings. 

We call for more awareness among scholars to provide detailed in
sights on the methodologies and bottlenecks experienced when applying 
model coupling and critically evaluate the applied coupling approaches. 
We emphasize three observations that repeatedly occurred during the 
literature review. First, when models are iterated, it often remains un
clear how the results developed over the single iterations and how many 
iterations were required until convergence was achieved. It is rarely 
reported that iterative coupling did not lead to convergence, which 
raises the question of whether convergence was mainly achieved with 
the first attempt or unsuccessful attempts were not reported. However, 
knowledge about failed convergences could provide helpful insights for 
other modelers to learn about potential sources of errors and how to 
overcome them. We acknowledge that such information might be sub
ject to discussions in conferences rather than being published in articles. 
Still, given that model coupling for mobility behavior often brings sci
entists from different disciplines together, we believe it is in the interest 
of future advancements in this field to emphasize such information in 
written publications. Second, the reported information sometimes show 
a lack of detail about how data are exchanged between the models. 
While it is mostly evident in which sequence models have been applied, 
more information about the required data-processing between the 
models and if validity checks of the interim data are performed would be 
helpful for peers. Thirdly, many publications about model coupling 
focus their discussions on the results and often neglect a critical review 
of the applied coupling methodology. For instance, it often remains 
unclear if and how non-linear aspects of mobility behavior were inte
grated into linear model frameworks and which influences this had for 
the solvability of the models. In summary, more detailed information on 
such issues could substantially help the research community apply 
model coupling more effectively. 

Future work on model coupling could achieve deeper insights into 
mobility behavior by enhancing the applied methodologies. Typically, 
models are being computed in sequential order, meaning that first the 
one model is simulated over its full time horizon and provides data to the 
other model that subsequently simulates its full time horizon, and vice 
versa. Such approaches could be enhanced by an interleaved co- 
execution of the models. In such a case, the models exchange data at 
every timestep of the computation, as proposed by a novel research 
project [129]. With this approach, each model considers the implica
tions of the feedback from the other model when computing the next 
timestep. This could deliver deeper and more dynamic insights into the 
impacts of mobility behavior. However, the possibilities for such an 
approach must be weighed for each model individually, as this may not 
always be possible in models that optimize over their entire time hori
zon. In addition, a broad palette of instances can influence real-world 
mobility behavior, ranging from individual aspects on the micro-level 
to societal shifts of norms and values on the macro-level. Thus, future 
work could couple new combinations of different model types to reflect 
different perspectives of the nuanced real-world mobility behavior. For 
example, rebound effects, bounded rationality, or the impact of gover
nance on shifting mobility behavior and social acceptance are crucial 
aspects for the future transition of the transport system but have not yet 
sufficiently been represented in model coupling approaches. Further, 
exploring the possibilities of modern computing advancements for 
applying self-learning algorithms could be an interesting avenue for 

future enhancements. Such algorithms could, for instance, test the 
robustness of a model coupling framework by exchanging different sets 
of parameters between the models, identify the most/least sensitive 
parameters within a model or model coupling, or improve how agents in 
an ABM react in certain situations. Finally, we recommend strength
ening the interplay between the different actors in the transport system, 
i.e., consumers, governments, car manufacturers, and transport service 
providers, in models for considering a broader sense of mobility 
behavior. Therefore, a more substantial representation of the mutual 
impact that the different transport sector actors have on each other 
would help to analyze their interaction in more depth in the future. 

4. Conclusion 

This work provides a systematic review of methodologies that aim to 
improve mobility behavior representation in future-oriented computa
tional models. Two commonly used concepts are analyzed, viz. endog
enously implementing mobility behavior measures in energy models and 
representing mobility behavior via model coupling approaches. This 
paper has answered three research questions (see Section 1) on repre
senting consumer mobility behavior with those two concepts. 

The existing methods for both concepts are reviewed and presented 
in detail. We identified the challenges, limitations, and opportunities for 
representing mobility behavior by each concept and provided sugges
tions on good practices for applying the concepts. Standalone ESMs 
made substantial improvements for endogenously representing mobility 
behavior in the last decade. They focus on implementing mobility 
behavior in terms of stylized facts (e.g., TTB, TMB, travel time in
vestments), inputs from external models/reports, driving times, the 
possible substitution of transport modes based on trip distances, and 
translating behavioral preferences, discomforts, and investment hesi
tancies into cost-terms. Such enhancements are becoming more 
commonly combined with heterogeneous consumer segments. Model 
coupling has been increasingly applied within recent years to represent 
mobility behavior. Different types of models can be combined depend
ing on the research questions to be answered. Thus, the best and most 
practical choice for representing mobility behavior depends on the scope 
and complexity of the available model(s), data availability, computa
tional resources, the modeler's know-how and expertise, and the 
examined research question. 

This review discussed which concept is more feasible in certain 
scenarios to help the research community select the most suitable 
methodology for a defined research goal. We conclude that standalone 
ESMs are beneficial when light stylized behavioral parameters that can 
be generalized across consumer groups and cultures can be incorporated 
into the typically cost-optimizing framework of such models. However, 
this concept faces methodological limitations, such as data re
quirements, modeling framework, and limited model flexibility, which 
well-designed model couplings can overcome. The latter is superior for 
integrating different perspectives in more complex analyses. This is 
critical when individual mobility behavior should be combined with a 
systemic view of the energy system. Also, model coupling proves 
particularly beneficial in representing preferences of individual con
sumers and different actors of the transport sector in a systemic energy 
perspective, compared to endogenous improvements in a standalone 
ESM. However, a good coupling approach requires that each model 
provides consistent results within its scope. Thus, it is essential to co- 
develop the individual models and their combined coupling approach. 
Consequentially, both reviewed concepts for representing mobility 
behavior should be viewed as complementary to each other to merge 
their individual strengths. For instance, coupling an ESM with endo
genized aspects of mobility behavior with a behavior-centered (trans
port) model can improve data integrity. 

There are several options for further investigating the research on the 
two reviewed concepts. This work provides recommendations for future 
work to build upon the broadly shared methods across the existing 
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literature. Besides exploring the complementary nature of both inves
tigated concepts, future work could compute the coupled models in a 
timestep-wise interleaved sequence to gain deeper insights into the 
connection between the market diffusion of new technologies and 
behavioral transport dynamics. In summary, the future work recom
mendations seek to close existing research gaps and identify novel 
research avenues that could levitate the representation of mobility 
behavior to a higher level. 
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Appendix A. Review methodology 

The literature search for this review paper followed a structured and systematic approach. The following description should allow others to 
replicate this search. 

In a first step, the literature database Elsevier Scopus, one of the largest literature databases on the internet, has been used with a pre-defined 
combination of keywords within multiple layers to find relevant papers [130]. The keywords within each layer have been combined with the 
logical operator OR. The single layers have been combined with the logical operator AND. Two sets of searches were performed, viz. 1) endogenous 
implementation of mobility behavior in standalone ESMs (see Section 2.1) and 2) model coupling approaches aimed at enhancing the representation of 
mobility behavior in energy models (see Section 2.2). Fig. 3 visualizes the process for collecting and selecting relevant literature exemplary for set 2. 
The first set has the following search layers:  

• In the first layer, we are primarily interested in passenger transportation and therefore used the keywords mobility, transport*, car, bus, train, and 
plane.  

• The second layer was targeted at behavioral aspects. We used the following keywords: behavio*, social, Rebound Effect*, and Indirect Rebound*.  
• The third layer contained keywords related to relevant model types: Energy Model*, Energy System* Model*, IAM, Integrated Assessment Model*, 

Transport Model*, mobility model*. 

The first set of the search generated a total of ~5000 publications, ranging from journal articles to reports to doctoral theses. For the second set, i.e., 
model coupling approaches,  

• the first layer aimed to find techno-economic models with the keywords Model*, Tech*Economic*, TIMES, GENeSYS, OSeMOSYS, MARKAL, DLR, 
and “Energy system*”.  

• The second layer contained keywords related to behavioral-economic models: Model*, Behavior*Econom*, Behavior*Science*, Soci*Science*, 
long-term, and Behavio*r*.  

• The third layer intended to filter for articles that include a coupling or linking aspect between such models and used the keywords Coupl*, Copl*, 
Link*, iteration, soft-link*, hard-link*, hybrid*.  

• The fourth layer referred to additional attributes such as the focus on transportation and long-term analyses and included the following keywords: 
long*term*, scenario*, long*time*, transport*, mobility*. 

The search of the second set was further focused by selecting relevant subject areas, which resulted in a total of ~50,000 publications. 
In a second step, the results were sorted by their relevance using Scopus. Then, titles of the papers were manually screened to shortlist publications 

that seemed relevant to the scope of this paper. Due to the high number of search results, the manual screening was terminated once 50 consecutive 
publications in the Scopus list were not relevant for this review topic. 

In step three, some additional relevant publications were found through references in the screened articles from step two using the reference 
management tool Mendeley and through relevant articles that came to the authors’ knowledge before and during the examination of this review. 

For set one, i.e., endogenous implementation of consumer behavior in standalone ESMs, Venturini et al. [22] provide a comprehensive review with 
an overview of this topic. Section 3.1 summarizes their key findings and complements them with additional literature and the most recent de
velopments to guide the reader. For set two, i.e., model coupling approaches that enhance mobility behavior in energy models, we shortlisted 57 
publications through steps 1 to 3, which have been reviewed more extensively. Some publications describe integrated model frameworks that consist 
of different ‘models’ but are out of scope because the consisting models have been built together from scratch to develop the framework, e.g. [131], 
instead of combining different existing models via coupling. We acknowledge the existence of even more model coupling publications, but they are 
outside the scope of this work. For the shortlisted publications, we systematically reviewed each of such publications in terms of geographical 
coverage, time horizon, coupling type (soft- vs. hard-linking), scope, objective, the purpose of their application (for instance, analyzing scenarios or 
testing a hypothesis or methodology), research questions, and coupling approach. Regarding the coupling methodology, the emphasis was on the 
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model application sequence, and the data and parameters exchanged across the models. The limitations and outlook have been critically reviewed. 
Finally (step 4), for the model coupling approaches, it was determined whether the coupling emphasizes the transportation sector and its 

consideration of behavioral aspects. Thus, some were sorted out of the shortlisted research publications as they present generic model couplings 
without explicitly emphasizing the transport sector [69,119,132–160]. Five of the remaining transport model coupling publications did not consider 
dedicated mobility behavior aspects [161–165]. Such publications, where not both aspects hold, have not been further considered for this review's in- 
depth model coupling analysis. The remaining publications cover model coupling approaches that emphasize mobility behavior and are covered in 
Section 2.2. A comprehensive list of such research publications is provided in Table 2. 

Appendix B. Detailed description of each model coupling approach relevant for mobility behavior 

B.1. Vehicle choice transport model and ESM 

The most common group to consider mobility behavior through model coupling is combining a purchase-oriented vehicle choice transport model 
with an ESM. Typically, this enables to represent consumer behavior when making vehicle purchase decisions. 

Daly et al. [73] were, to our best knowledge, the first in performing such a coupling approach between an ESM and vehicle choice/stock model 
with relevance to mobility behavior. They soft-linked the Irish TIMES energy system optimization framework [88] with the Car Stock Model [89]. The 
latter provides vehicle selection and mobility demands (in personal kilometers) to the former. By doing so, each model utilizes its strengths, i.e., the 
Irish TIMES model interacts with other sectors on the energy system, and the Car Stock model can make use of its highly disaggregated vehicle 
technologies that consumers can choose from. Building upon such developments, Mulholland et al. [74,75] apply a model-coupling that combines the 
same two models, Irish TIMES [88] and CarSTOCK [89] (the naming convention of the latter model changed compared to the previous publication 
[73], but it is the same model and has evolved over time), with the CIMS market share algorithm [90]. The exchanged data between the soft-linked 
Irish TIMES model and the CarSTOCK model became more advanced: after the Irish TIMES model generates a technology pathway to reach a pre
defined long-term CO2 target, the respective energy efficiency improvements and fuel switching effects in the private car fleet are extracted from Irish 
TIMES to create policy roadmaps in the CarSTOCK simulation model. They further enriched this framework by linking the Irish TIMES and the 
CarSTOCK model separately to a market share algorithm model to represent heterogeneity and varying consumer preferences for new technologies. 
This allows capturing socio-economic drivers related to costs and intangible costs, such as range anxiety and the hesitation of consumers towards 
buying novel vehicle technologies. 

Tattini et al. [72] went one step further in their soft-coupling of the Danish ESM TIMES-DKMS [59] with the techno-socio-economic Danish Car 
Stock Model (DCSM) [72] by modeling not only car choice but also a modal choice. Both models take specific measures for representing behavioral 
realism into account: TIMES-DKMS accounts endogenously for modal shift. It provides cost-optimal vehicle technology investment for the model 
coupling. DCSM consists of a socio-economic consumer choice simulation model [72] and the techno-economic CarSTOCK simulation model [85]. It 
provides detailed consumer preferences regarding vehicle choice, leading to a private car fleet composition according to such preferences. If it comes 
to an infeasible solution, TIMES-DKMS is enriched with capacity constraints representing car share projections from DCSM. This procedure is iterated 
until both models converge in private car fleet compositions. They achieve giving more realistic insights into the needs to achieve climate goals in the 
transport sector by considering several transport modes. However, one limitation is that modal shift is determined based on socio-economic con
straints and does not consider consumer heterogeneity. 

An alternative approach by Anable et al. [71], which also considers different transport modes, makes use of different lifestyle storylines and soft- 
links the MARKAL Elastic Demand (MED) ESM [92] with the sectoral UK Transport Carbon Model (UKTCM) [37,91]. They analyze the combined 
effects of behavioral change and technological change to reach emission reduction targets. For this, the UKTCM determines in a first step its inputs for 
transport demands from different structured lifestyle storylines, which reflect societal preferences due to shifts in non-price determinants of behavior 
and non-consumptive elements of behavior. In a second step, also policy shifts are considered that empower the consumers to execute their choices. 
With such different lifestyle storylines, UKTCM generates outputs for vehicle choice, vehicle use, vehicle ownership, and fuel consumption. These 
outputs from the UKTCM are aggregated over car sizes (MED has only one car size) and translated into inputs for the MED system model. Such inputs 
include sectoral technology mixes and -deployment (but Anable et al., 2012 focusses on the transport inputs only), vehicle fuel efficiency, distances 
traveled by transport mode, and resulting fuel demand and CO2 emissions. MED simulates the final traffic levels, technology mixes, and modal shares 
by assuming a lower discount rate for lower-carbon and energy-efficient vehicles for representing shifts in consumer preferences. However, the 
outputs from MED were not used to apply a feedback loop between the models. 

Wulff et al. [76] link three models in sequential order to find impacts from user behavior for electric vehicle charging on the energy system. By 
substituting two different EV charging models [93,94] with each other in their combined approach with a vehicle fleet model [95] and an ESM [96], 
they compare the influences of a more or less flexible electric charging infrastructure and charging behavior. 

B.2. Modal choice transport model and energy (system) model 

Combining a dedicated modal choice model with an energy (system) model allows an improved representation of modal shift, which is vital to 
achieving climate targets. 

Schäfer and Jacoby [79] have performed a model coupling approach within this group. They combined on a global scale the technological MARKet 
ALlocation (MARKAL) model [97], the economic MIT Emissions and Policy Analysis (EPPA) model [98], and two transport-specific modal split models 
for passenger and freight transport [45], respectively. MARKAL, a precursor of the TIMES family of models, is a bottom-up techno-economic model 
that finds cost-optimized technology pathways for satisfying a given transportation demand. EPPA is a CGE model representing transportation as a 
nest of constant substitution elasticity within its household and industry sectors. While the EPPA model usually determines the transport mode choice 
internally, the mode choice is in this model coupling approach determined by the dedicated modal split model that takes consumer behavior into 
account through a daily TTB combined with travel speeds of the different modes of transportation. The applied approach distinguishes between the 
calibration and simulation stages for coupling the three models. In the calibration stage, the three models exchange data iteratively until convergence 
concerning total energy use in the transport sector is reached. For this, MARKAL provides substitution elasticities and autonomous energy efficiency 
variables to EPPA. EPPA provides the absolute transport demand to the modal split models, which in turn provide modal shares to MARKAL and 
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structural changes to EPPA. In the simulation stage, EPPA provides MARKAL directly with fuel prices, taxes, and transport demands without further 
iterations. Subsequently, MARKAL determines the overall results of the coupling approach, i.e., the vehicle technology penetration on the market. This 
study was a forerunner in coupling computer models that use coupling to integrate some mobility behavior. 

Some years later, Girod et al. [34] integrated the global passenger transport model TRAVEL into the TIMER energy model, which is part of the 
IMAGE IAM [99] and feeds TRAVEL with data. TRAVEL is a global transport model based on MNL equations that connect seven transport modes and 
22 different car types, respectively. Key drivers for the mode choice in this model are the two behavioral parameters representing empirical obser
vations regarding the constant travel income budget and a daily TTB. In contrast to the constant TTB seen with Schäfer and Jacoby [79], Girod et al. 
[34] assume annually an increase of 0.25 min in the TTB per day. 

A coupling approach that takes many behavioral aspects other than travel income and TTB into account has recently been developed by Tattini 
et al. [78], who developed a soft-link between the Danish ESM TIMES-DK [100] and the Agent Based Modal Shift model of Denmark (ABMoS-DK) 
[101]. TIMES-DK provides a holistic view of the Danish energy system. ABMoS-DK simulates transport mode choices by taking travel behavior insights 
from a travel survey of the Danish population into account. This approach aims to find the policy impacts on modal shares and the meaning of such 
from the perspective of the whole energy system. The coupling is initiated by ABMoS-DK, which considers the impacts of policy measures to provide 
modal shares. Such modal shares are fed into TIMES-DK, which provides, in turn, fuel prices. The fuel prices of TIMES-DK are implemented back into 
ABMoS-DK to establish an iteration between both models. Once the results converge, TIMES-DK provides the final results regarding total system costs, 
infrastructure investments, fuel consumption, and CO2 emissions. 

B.3. SD model and ESM (or another SD model) 

Another group to consider mobility behavior with model coupling is combining a SD model with an ESM or another SD model. This allows 
broadening the scope from consumer-focused analyses towards taking the different transport market players into account. The Powertrain Technology 
Transition Market Agent Model (PTT-MAM) [102,103] is used in each of the three approaches. PTT-MAM is an SD behavior-based ABM representing 
four stakeholders within the EU transport market, i.e., users, authorities, infrastructure providers, and manufacturers. 

Thiel et al. [80] outline a palette of five models, i.e., PTT-MAM [102,103], the fleet impact model DIONE [104], the Electric-vehicle charging 
model EV-charge [105], the European energy system optimization model JRC-EU-TIMES [106], and the GIS-based charging infrastructure allocation 
tool GIS EV Infra [107]. While the study outlines that “the models are soft-linked” [80], it does not explain the respective coupling methodology or 
results from the model coupling. However, the model most relevant for mobility behavior, PTT-MAM, has been applied in coupling approaches during 
follow-up works: Blanco et al. [81] soft-links the PTT-MAM [102,103] with the JRC-EU-TIMES [106] model, a multi-regional EU energy systems 
optimization model. This linkage aims to provide improved policy recommendations by combining the complementary strengths of each model. First, 
both models are harmonized for the covered user categories, the number of energy carriers, the base year calibration, and assumptions for future 
population development and technology availability. Then, the JRC-EU-TIMES model is simulated and provides PTT-MAM with fuel prices, fuel 
investments, overall mobility demands, emission targets, and energy consumption. Two different approaches were tested to feedback data from PTT- 
MAM to JRC-EU-TIMES: the first approach did overwrite the powertrain choices from JRC-EU-TIMES in PTT-MAM in order to feedback the behav
iorally more realistic powertrain market shares (by country or at EU-level) from PTT-MAM to JRC-EU-TIMES. Two iterations were sufficient to achieve 
convergence between both models. The second approach leaves the powertrain choices within JRC-EU-TIMES and feeds the CAPital- and OPerational 
EXpenditures (CAPEX and OPEX) from PTT-MAM back to JRC-EU-TIMES. The study found that the first approach was more beneficial as it allows to 
make use of the behavioral aspects within PTT-MAM. Gómez Vilchez and Thiel [82] soft-linked the PTT-MAM [102,103] with the Transport, Energy, 
Economics, Environment (TE3) model [108] with the aim to shed light on the possible deployment of EVs on a broad international scale. TE3 is a SD 
model that distinguishes across four consumer segments (innovators, utility maximisers, low-cost buyers and habit-oriented purchasers) for finding 
the impacts of cars on energy demand and greenhouse gas emissions. The models simulate the uptake of EVs in the EU, and in China, India, Japan and 
the USA, respectively, which makes them complementary as considering a broader number of markets leads to improved representations of tech
nological learning curves for battery prices. The key-steps of the iterative coupling are initiated by PTT-MAM feeding annual BEV and PHEV sales from 
Europe into TE3. After recalibrating the learning curves, TE3 is simulated and provides re-calibrated battery price curves for PTT-MAM. Convergence 
is reached after further iterations. 

B.4. Other model combinations 

Beyond the three groups summarized before, some other model coupling combinations have been found, which do not fit into those groups. Such 
approaches are described in the following sub-section. 

One of the two model coupling approaches within this group that applies an ESM is by Millot et al. [83]. They apply a soft-linking method to 
combine economics, technology, and society. For this, they connect a statistical lifestyle model [109], the macroeconomic input-output model 
Metanoia [110], and the French TIMES ESM (TIMES-FR) [111]. The lifestyle model represents human behavior and is based on national surveys 
regarding household budgets, transport and journeys, housing, and the population census. It simulates demand pathways for the mobility, housing, 
services, and goods sectors on an individual level. The corresponding individual energy demands are given to Metanoia, which characterizes the 
relationships across the production sectors. Subsequently, the Metanoia model outputs (demands for freight-mobility, industry, services, and agri
culture) and the lifestyle model results (mobility and residential demand) are fed to the TIMES-FR energy system model. In essence, this approach 
allows testing the impacts of varieties in different lifestyles dimensions, such as mobility practices and leisure travel preferences, within the society on 
the energy mix and emissions. However, this coupling approach does not consider any feedbacks, such as considering the impact of a carbon tax or 
changed fuel price on the reaction of consumers in the lifestyle model. 

The second approach within this group that applies an ESM is developed by Steck et al. [84]. They soft-link the ESM REMix [96] with the charging 
model CURRENT [94] that represents the dynamic charging demand of E-vehicles by accounting for the decision algorithm of consumers, which is 
based on market mechanisms and charging preferences. Such charging behaviors are based on a real-world vehicle diary of PHEVs and BEVs. Due to 
the low number of such cars on the road, the corresponding information about charging behavior and charging preferences is a limitation of this study. 
Both models are coupled without taking a feedback loop into account. 

Brand et al. [37] developed the United Kingdom Transport Carbon Model (UKTCM), which allows taking individual consumer behavior into 
account by hard-linking the four models [91], namely a Transport Demand Model (TDM), Vehicle Stock Model (VSM), Direct Energy and Emission 
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Model (DEEM), and Life Cycle and Environmental Impact Model (LCEIM). The TDM and VSM contain a feedback loop to reach a partial equilibrium. 
This allows taking into account the effects of changing consumer preferences and income and their influences on vehicle purchase decisions. The 
models also take exogenous scenarios into account that can describe changing attitudes and societal factors and can lead to changing numbers of future 
vehicles in the VSM. After TDM and VSM reached partial equilibrium, the number of traveled vehicle kilometers and the average trip distances, 
disaggregated by technology, vehicle age, and size to DEEM and LCEIM. DEEM calculates the direct emissions from the vehicle operation and provides 
such data to LCEIM. Finally, the LCEIM simulates the overall external costs and environmental impacts. 

Mulholland et al. [85] aim to find the effects of financial stimuli for purchasing BEVs and PHEVs by hard-linking a socio-economic consumer choice 
model with 2 CarSTOCK models [89] for Denmark and Ireland, respectively. The socio-economic consumer choice model covers the private transport 
sector in a non-linear fashion and represents 18 heterogeneous consumer segments. It combines tangible costs for the consumer with monetized 
intangible costs, such as range anxiety, car model availability, refueling infrastructure, and risk-related disutility. The intangible costs are based on 
empirical data on consumer preferences of consumers. The two car stock models contain technological details for a high level of detail for available 
vehicle technologies. To hard-link these models, the socio-economic consumer choice model is applied first and provides market share trajectories for 
15 private vehicle technologies to the CarSTOCK models. The CarSTOCK model calculates the coupling outputs regarding vehicle stock and activity, 
energy consumption, and CO2 emissions. 

Merven et al. [86] also aim to provide insights into the future vehicle stock and related energy demand by soft-linking five models: vehicle park 
model [112], Time Budget Model [86], CGE model [113], freight demand model [86], and fuel demand model [86]. Behavioral aspects are considered 
within the vehicle park, Time Budget, and CGE models. The vehicle park model differentiates vehicles by their annual mileage and age. The Time 
Budget Model limits the maximum traveling time to 1.1 h per person per day, while differing speeds of different travel modes and consumers of three 
different income groups that can therefore afford different transport modes. The CGE model provides inputs on the evolution of income groups based 
on GDP and population trajectories. Unfortunately, Merven et al. [86] neither outline which data are exchanged across the models nor in which order 
the models are applied, i.e., if the models run in consecutive order or all provide input data to the vehicle park model, for instance. 

Mittal et al. [87] soft-link the global transport demand model AIM/Transport [114] that represents technology- and modal preferences of con
sumers with the global CGE model AIM/CGE [115,116] that applies MNL-type equations to reflect travel behavior. This coupling approach aims to 
find the impact of several factors on global travel demands, modal shares, and respective energy consumptions. Most of the factors examined in this 
study relate to mobility behavior, such as travel time, preferences for transport modes, socio-economic macro-developments, the occupancy rate of a 
car related to the per capita income, and environmental concerns. Data were only transferred from AIM/CGE to AIM/Transport without a feedback 
loop. Thus, effects from the behavior-oriented dynamics in AIM/Transport on other sectors of the energy system in AIM/CGE cannot be examined. 

Appendix C. Overview of exchanged parameters between models in the reviewed model coupling approaches  

Table 4 
Overview of exchanged parameters between models in the reviewed model coupling approaches. 

Source

Vehicle price (purchase/opera�on)

Vehicle fuel efficiency

Fuel prices/energy prices

Disaggregated consumer types

Disu�lity costs 1

Risk a�tude

Vehicle make/model
Vehicle purchase numbers/vehicle 
market shares/vehicle capacity 
constraints
Fuel consump�on

Emission targets

Demand forecast / Traveled distances

Modal Shares

Income

Door to door speed

Car occupancy rate

Carbon tax

Not specified

Anable 
et al.

(2012) 
[71]

Ta�ni
et al. 

(2018) 
[72]

H. Daly 
et al.   

(2011) 
[73]

(2017) 
[74,75]

Wulff 
et al. 

(2020) 
[76]

Ta�ni
et al.

(2018)
[77,78]

Girod 
et al. 

(2012) 
[34]

Schäfer
 & 

Jacoby 
(2005) 

[79]

Thiel 
et al. 

(2016) 
[80]

Blanco 
et al.  

(2019) 
[81]

Gómez 
Vilchez 

& 
Thiel 

(2020) 
[82]

Millot 
et al. 

(2018) 
[83]

Steck 
et al. 

(2019) 
[84]

Brand 
et al. 

(2012) 
[37]

Mulholland 
et al.  

(2018) 
[85]

Merven 
et al.  

(2012) 
[86]

Mi�al 
et al. 

(2017) 
[87]

Mulholland
et al.  

Note. The color coding refers to the combination of the model types that have been coupled following the four groups outlined in Section 2.2. Blue: Vehicle choice 
transport model and ESM; green: Modal choice transport model and energy (system) model; yellow: SD model and ESM (or another SD model); grey: other model 
combinations. 
1Disutility costs include lack of charging/refueling infrastructure, range anxiety, lack of car-model availability, inconvenience, or lack of awareness. 

Appendix D. Advantages and challenges of model coupling 

The advantages of applying model coupling approaches can be manifold. A high-level research perspective has recently highlighted the importance 
of such multi-model analyses for supporting climate policies [166]. Most importantly, each involved model can retain its core purpose and charac
teristics, while the combined models can together still consider a broad set of aspects like consumer behavior. Thus, each involved model can facilitate 
its strengths when analyzing cross-cutting aspects. When new aspects shall be considered, they can be integrated into the most suitable model. Also, 
not every single output of one model must be passed on to the next model. Thus, models can contain different degrees of detail for certain aspects, 
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which allows the combination of models to achieve more facetted results than a single model. Moreover, the linked models can be applied iteratively to 
consider dynamic feedback loops [72]. While such feedback loops require more complex data exchange processes between the models, this is 
rewarded by more robust and deeper insights into the transport dynamics and potential rebound effects that the combined models can deliver. Ideally, 
such iterations are stopped when a threshold in terms of changes in key parameters between consecutive simulations is reached. 

Challenges of model coupling start with the initial need for data harmonization to achieve consistency across the involved models [166]. The 
models must be harmonized regarding existing input and output variables, assumptions, and system boundaries. It might seem trivial on the first view, 
but we emphasize the importance of thoroughly doing this at the beginning of the coupling project to avoid problems later. If this is not done correctly, 
the outputs of the involved models are not comparable, and errors from one model can cascade to others.17 The need for harmonized data includes the 
granularity of time and space and the existing technologies covered within each model. Such data harmonization challenges typically occur when 
previously existing models are linked because they often have different scopes and system boundaries. To avoid such discrepancies, it would be ideal 
to couple models that are intentionally built together from scratch to link them, such as [131]. However, it is often not possible to build new models 
from scratch for practical reasons. Therefore, we recommend developing a mapping algorithm for all dimensions exchanged between the models. 
Wulff et al. [76] demonstrate an excellent example of applying different harmonization techniques to meet the requirements for each model 
dimension; unfortunately, their publication does not state clearly which data are exchanged across the model chain. 

Another challenge in model coupling is that data from one model can induce infeasibility in the linked model. Alternatively, it can occur in iterative 
coupling approaches that the results of the models do not converge but, for instance, oscillate dynamically with each iteration. In such cases, it may 
help to either decrease or increase the degree of freedom between the linked models to achieve converging results. This can be done by determining a 
higher or lower number of outputs from one model that serve as inputs for the other model or by adapting the flexibility within each model. 

A challenge that might be easily overlooked but can be crucial for the success of model coupling lies in the scientific background of the involved 
modelers. As a separate modeling team often develops each model, those teams may have different scientific backgrounds and scientific terminologies. 
Therefore, we recommend for the beginning of each project to develop a shared terminology that helps avoid communication problems and mis
understandings later. This can be a part of the data harmonization and model mapping exercise. 

When the involved models come from different collaborating modeling teams, another common challenge can be that the access to the coupled 
model vanishes once the collaboration comes to an end. It is essential to consider how each model can be applied and developed independently 
afterward in such cases. 

Drawing upon our extensive review of the literature, we summarize some best practices for successfully performing model couplings:  

1. Define the aim of the coupling and select suitable models, which can fulfill the aim.  
2. Establish a common and shared communication language across the modelers and define the meaning of important terminologies.  
3. Develop a mapping algorithm for all relevant data dimensions in the models: determine the connection points between the models, i.e., which 

outputs from the one model serve as a valuable and relevant input for the other model, and vice versa.  
4. Harmonize the data across the models (including spatial/temporal scope and resolution, base year calibration, assumptions for future technologies, 

policies, societal developments).  
5. Create fixed templates for exchanging data between the models to enable automation processes.  
6. Fix the future pathways/scenarios that will be analyzed and define which parameters in the involved models will be affected.  
7. Identify potential lock-in effects that could occur when the models are coupled. Preventively, find ways for overcoming such lock-in effects (e.g., by 

adapting the degree of freedom between the models).  
8. Apply iterative simulations to ensure considering feedback loops across the involved models. For this, determine a convergence threshold to stop 

the iterations. If no convergence can be reached, go back to point 4. 

Overall, a careful trade-off between the possible advantages and the involved challenges is important. Mainly, model coupling allows additional 
insights from different perspectives on a given topic, such as the future of mobility, and avoids single models becoming highly complex to be handled. 
However, attention should be paid to choosing models with scopes that complement each other in utilizing their individual strengths and generating 
novel insights with the combined approach. 
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Incorporating travel behaviour and travel time into TIMES energy system models, 
Appl. Energy 135 (2014) 429–439, https://doi.org/10.1016/j. 
apenergy.2014.08.051. 

[50] H.D. Waisman, C. Guivarch, F. Lecocq, The transportation sector and low-carbon 
growth pathways: modelling urban, infrastructure, and spatial determinants of 
mobility, Clim. Policy. 13 (2013) 106–129, https://doi.org/10.1080/ 
14693062.2012.735916. 

[51] H. Daly, K. Ramea, A. Chiodi, S. Yeh, M. Gargiulo, B.P.Ó. Gallachóir, Modal 
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[82] J.J. Gómez Vilchez, C. Thiel, Simulating the battery price and the car-mix in key 
electro-mobility markets via model coupling, J. Simul. (2020) 1–18, https://doi. 
org/10.1080/17477778.2020.1781556. 

[83] A. Millot, R. Doudard, T.Le Gallic, F. Briens, E. Assoumou, N. Maïzi, France 2072: 
lifestyles at the core of carbon neutrality challenges, in: G. Giannakidis, 
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[89] H. Daly, B.P.Ó. Gallachóir, Modelling private car energy demand using a 
technological car stock model, Transp. Res. Part D Transp. Environ. 16 (2011) 
93–101, https://doi.org/10.1016/j.trd.2010.08.009. 

[90] M. Jaccard, Combining top down and bottom up in energy economy models, in: L. 
C. Hunt, J. Evans (Eds.), Int. Handb. Econ. Energy, Edward Elgar, 2009, 
pp. 311–331. 

[91] C. Brand, UK Transport Carbon Model Reference Guide Working Paper. http 
s://d2e1qxpsswcpgz.cloudfront.net/uploads/2020/05/UK_Transport_Carbon_ 
Model-Reference_Guide.pdf, 2010. 

[92] R. Loulou, D. Lavigne, MARKAL model with elastic demands: application to 
greenhouse gas emission control, in: C. Carraro, A. Haurie (Eds.), Oper. Res. 
Environ. Manag, Springer Netherlands, Dordrecht, 1996, pp. 201–220, https:// 
doi.org/10.1007/978-94-009-0129-2_9. 

[93] Diego Luca de Tena Costales, Large Scale Renewable Power Integration With 
Electric Vehicles, PhD thesis, University Stuttgart, 2014, https://elib.uni-stuttgar 
t.de/bitstream/11682/2356/1/20140727_Large_Scale_Integration.pdf. 

[94] J.E. Anderson, F. Steck, T. Kuhnimhof, Can Renewable Energy Sources Meet 
Electric Vehicle Charging Demand Today and in the Future? A Microscopic Time- 
Specific Travel Demand Analysis for Germany, in: 97th Annu. Meet. Transp. Res. 
Board, Washington, D.C., USA, 2018, p. 15. PhD thesis, https://trid.trb.org/vie 
w/1495437. 

[95] P. Mock, Entwicklung eines Szenariomodells zur Simulation der zukünftigen 
Marktanteile und CO2-Emissionen von Kraftfahrzeugen (VECTOR21), PhD thesis, 
Universität Stuttgart, 2009, https://elib.uni-stuttgart.de/bitstream/11682 
/6777/1/Mock_Peter_101130.pdf. 

[96] Y. Scholz, Renewable Energy Based Electricity Supply at Low Costs - Development 
of the REMix Model and Application for Europe, PhD thesis, Universität Stuttgart, 
2012, http://elib.uni-stuttgart.de/opus/volltexte/2012/7635/. 

[97] S. Kypreos, The MARKAL-MACRO Model and the Climate Change (PSI Bericht Nr. 
96-14), 1996. 

[98] M.H. Babiker, J.M. Reilly, M. Mayer, R.S. Eckaus, I.S. Wing, R.C. Hyman, The MIT 
Emissions Prediction and Policy Analysis (EPPA) Model - Revisions, Sensitivities, 
and Comparisons of Results. http://18.7.29.232/bitstream/handle/1721.1/357 
4/MITJPSPGC_Rpt71.pdf?sequence=1, 2001. PhD thesis. 

[99] Netherlands Environmental Assessment Agency, Integrated modelling of global 
environmental change, in: An Overview of IMAGE 2.4, Bilthoven, the 
Netherlands, 2006, https://doi.org/10.1007/978-3-642-84608-3_11. 

[100] O. Balyk, K.S. Andersen, S. Dockweiler, M. Gargiulo, K. Karlsson, R. Næraa, 
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