
ETH Library

What Makes Firms Stop Doing
R&D in Switzerland? – Project
Commissioned by SERI

Report

Author(s):
König, Michael D.; Spescha, Andrin ; Wörter, Martin ; Dobbelaere, Sabien

Publication date:
2022-04

Permanent link:
https://doi.org/10.3929/ethz-b-000541754

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
KOF Studies 169

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-5739-3218
https://orcid.org/0000-0003-4467-9134
https://doi.org/10.3929/ethz-b-000541754
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


KOF Studies, No. 169, April 2022

What Makes Firms Stop Doing R&D in 
Switzerland? – Project Commissioned by SERI

Michael D. König, Andrin Spescha, Martin Wörter and Sabien Dobbelaere



Editor

KOF Swiss Economic Institute, ETH Zurich
© 2022 KOF Swiss Economic Institute, ETH Zurich 

Authors

Michael D. König 
Andrin Spescha 
Martin Wörter 
Sabien Dobbelaere

Imprint

ETH Zurich
KOF Swiss Economic Institute
LEE G 116
Leonhardstrasse 21
8092 Zurich, Switzerland

Phone +41 44 632 42 39
Fax +41 44 632 12 18
www.kof.ethz.ch
kof@kof.ethz.ch



What Makes Firms Stop Doing R&D in Switzerland?
Project Commissioned by SERI

Sabien Dobbelaere,∗ Michael D. König,† Andrin Spescha‡ and Martin Wörter§ 

Contents

1 Executive Summary 4

2 Introduction and Research Question 6

3 Literature Review and Conceptual Notions 7
3.1 The Rise of the Superstar Firms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Knowledge Spillovers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Lack of Complementary Investments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Higher Innovation Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.5 High Fixed Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.6 Knowledge Spillovers vs. Innovation Costs . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.7 R&D Subsidies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.8 Comparison of the effectiveness of policy measures . . . . . . . . . . . . . . . . . . . . 14
3.9 Contribution to the Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Descriptive Information and International Comparison 17
4.1 International Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Descriptive Information for Switzerland . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Survival Analysis 22
5.1 The Cox proportional hazard model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2 Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3 Exit from R&D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.3.1 Baseline model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3.2 Competitive vs. less competitive firms . . . . . . . . . . . . . . . . . . . . . . . 27

∗Vrije Universiteit Amsterdam. Email: sabien.dobbelaere@vu.nl

†KOF Swiss Economic Institute. Email: koenig@kof.ethz.ch.

‡KOF Swiss Economic Institute. Email: spescha@kof.ethz.ch.

§KOF Swiss Economic Institute. Email: woerter@kof.ethz.ch.

1



5.3.3 Innovation input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3.4 Innovation output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3.5 Deep innovators vs. less deep innovators . . . . . . . . . . . . . . . . . . . . . . 32
5.3.6 Competitive and innovative: a diverging pattern . . . . . . . . . . . . . . . . . 34
5.3.7 Hampering factors R&D exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.4 Entry into R&D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.4.1 Baseline model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.4.2 Competitive vs. less competitive firms . . . . . . . . . . . . . . . . . . . . . . . 38
5.4.3 Hampering factors R&D entry . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.5 Robustness checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.5.1 Without R&D switchers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.5.2 Variance due to education . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.5.3 Sectoral differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.6 International comparison with Netherlands . . . . . . . . . . . . . . . . . . . . . . . . 48
5.6.1 Baseline model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.6.2 Competitive and innovative: a diverging pattern . . . . . . . . . . . . . . . . . 48
5.6.3 The innovation box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.6.4 Hampering factors R&D exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 The Determinants of Firms’ R&D Decision 52
6.1 Firms’ Profits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.2 R&D Decision and Linear Probability Model . . . . . . . . . . . . . . . . . . . . . . . 52
6.3 Structural Endogenous Growth Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.4 Estimation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.5 Manufacturing and Services Sectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.6 Summary of the Estimation Results for Switzerland . . . . . . . . . . . . . . . . . . . 60
6.7 Estimation Results for the Netherlands . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7 Counterfactual Analyses and R&D Policy Implications 65
7.1 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.2 R&D Funding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8 Conclusion 69

A Technical information about the Cox model 72

B A Structural Endogenous Growth Model 73
B.1 Firms’ Profits and Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
B.2 Innovation vs. Imitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
B.3 Innovation Decision and Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
B.4 Innovation Decision and Comparative Statics . . . . . . . . . . . . . . . . . . . . . . . 76
B.5 Linear Probability Model Approximation . . . . . . . . . . . . . . . . . . . . . . . . . 77
B.6 Law of Motion of the Productivity Distribution . . . . . . . . . . . . . . . . . . . . . . 77
B.7 Uniformly Distributed R&D Success Probabilities . . . . . . . . . . . . . . . . . . . . . 78
B.8 Productivity Distribution and Comparative Statics . . . . . . . . . . . . . . . . . . . . 79

2



C Structural Estimation: Productivity distribution and R&D decision 81

D Goodness-of-Fit 82

E Manufacturing and Services Sectors 82
E.1 Manufacturing Sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
E.2 Services Sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
E.3 R&D Funding Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

F Proofs 92

3



1 Executive Summary

The fraction of companies with R&D activities has changed significantly over time, not only in
Switzerland but also in many other European countries. While we are observing a sharp decline
in the share of R&D active firms in Switzerland and Germany, we are seeing an increase in
this share in the Netherlands, Austria, and Finland, for example. Against the background that
simultaneously the sales share of R&D expenditures has risen sharply in both Germany and
Switzerland, we are observing a strong concentration of R&D activities in these two countries.
This descriptive finding naturally raises questions about the economic consequences of such a
structural development. This is a complex question that we want to address in this study.

On the basis of a “survival analysis”, this study shows that the ability of a company to
carry out R&D over a longer period of time is characterized by several factors. The extent
of a company’s past innovation efforts and its competitiveness are the most important
features for the survival probability in the R&D markets. While competitive companies had a
70% probability of continuing R&D until 2017, this probability increases to 80% if the company
is not only competitive but also one of the top innovators. Although sector affiliation (high-
tech manufacturing, low-tech manufacturing, modern services, traditional services) impacts the
probability to maintain R&D over a longer time span, competitiveness is clearly more important.

More specifically, the company’s size is a decisive feature for the survival probability in
the R&D markets. Larger companies tend to have, for example, so-called ”complementary”
factors, such as international sales channels or extensive marketing departments, which increase
the profitability of R&D activities and thus reduce the probability of exiting R&D. The fraction
of well-educated employees increases the probability to remain R&D active, since it aug-
ments the ”absorptive capacity” of a company, which allows it to better understand and absorb
external relevant knowledge for its innovation activities. Access to international markets
(export activities) is also a key feature for R&D ”survivors”. R&D is expensive and involves
high fixed costs. Access to large markets increases the commercialization possibilities of the
innovative product and thus the growth prospects of the company. Fixed costs are spread over
a larger output and reduce the risk of commercial success of the R&D efforts, which in turn
significantly reduces the probability of exiting the R&D markets. A company’s technologi-
cal potential indicates the worldwide privately and publicly available technological knowledge
available to the firm for bringing about marketable innovation. A high technological potential
means that the company can draw on a large knowledge base (including basic research) in its
R&D activities, which can reduce the technical risk of R&D projects. According to our analysis,
this characteristic also significantly increases the probability of survival in the R&D markets.
Finally, the majority of a company’s R&D is financed from internal resources. The extent of
internal funding is strongly related to the productivity of a company, especially since external
investors are usually less inclined to finance risky R&D projects. The “survival analysis” shows
accordingly that labor productivity is also an important element for the survival of a company
in the R&D markets.

In contrast, companies show a significantly higher probability of exiting the R&D markets
if they suffer from a lack of equity in their innovation activities and if their innovative products
can be copied too quickly and easily. This deprives innovative companies of their ”first-
mover” advantage and makes innovation efforts less profitable.
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Company characteristics that are important for the continuation of R&D activities are also
the characteristics that increase the probability that a company will start conducting R&D.
There is one exception to this rule, however. Productive, non-R&D performing firms have a
significantly lower probability of entering R&D markets. One explanation for this finding is
that they perform very well outside these specific innovation markets and therefore remain R&D
inactive.

The findings on R&D entry and exit suggest that the share of competitive and “deep” inno-
vators within the R&D markets has not diminished significantly and maybe has even increased.
This raises the question of what this structural change means for productivity growth and the
allocation of productivity gains.

To answer this question, we investigate - in a first step - if theoretically important factors
(in-house R&D success probability, imitation success probability, R&D costs) are related to
the decision of a company to conduct R&D. These factors indeed all have a significant effect,
but with a different magnitude. The estimation results also show that the fraction of higher-
educated employees, the access to international markets (export activities), the technological
potential, and access to university knowledge are significantly and positively related to the R&D
success probability and consequently to the R&D decision of a company, whereas the number of
principal competitors worldwide shows a negative correlation. The latter indicates that intense
competition makes it difficult for companies to conduct R&D. This confirms the findings in the
relevant literature. In the course of the time, however, we see a decline in the R&D success
probability which indicates that it has become more difficult to innovate. By contrast, the
importance of innovation costs and the imitation success probability hardly changes across time.

In a second step, we simulate how the productivity growth rate and dispersion depend
upon the in-house R&D success probability and the imitation success probability. The results
show that if we increase the in-house R&D success probability from 0.8 to 1 (full success),
productivity would grow by 14%, while setting the imitation success probability from 0.85 to
1 would increase productivity by 6%. Hence, policies targeting to increase the in-house R&D
success probability are more effective than those targeting the diffusion/adoption of technologies
(imitation success probability). To go for the more effective policy option, however, has some
side effects. An increase in in-house R&D success probability also increases the dispersion of
productivity growth leading to greater inequality in the Swiss business sectors. By contrast, an
increase in the imitation success rate, decreases inequality.

In a third step, we simulate if public support to reduce the private R&D costs - for instance
through R&D tax credits or subsidies - significantly increases the productivity growth rate (due
to an increase in the in-house R&D success probability). Compared to a situation without such a
policy, the productivity growth rate would increase only marginally by 0.05%. Since this growth
effect results from companies entering the R&D markets, the number of R&D active companies
would increase, which leads to a reduction in the productivity growth dispersion in the economy.
The effect from such a policy measure is thus modest. Policies aimed at facilitating access
to international markets, increasing the availability of highly qualified workers, or promoting
cooperation between universities and industry to improve the in-house R&D success probability
might be more effective for the time being.

Comparison with the Netherlands: Since we see country-specific developments in the
share of R&D-active companies, the question naturally arises which country-specific factors

5



could be driving such differences. In cooperation with the VU Amsterdam, we have analyzed
the development in the Netherlands and compared it with Switzerland. The Netherlands is
an interesting country for comparison, as it not only shows a completely different development
in the share of R&D-active companies, but also pursues different innovation funding strategies
than Switzerland. For instance, it introduced the patent/innovation box as early as 2007, while
a patent box has been introduced in Switzerland only in 2020. The comparative analysis shows
that although we observe a similar decline in the survivor function for both countries over the
20 years under investigation, the share of companies exiting R&D has declined significantly less
in the Netherlands than in Switzerland over the past 10 years. Thus, the increase in R&D
propensity in the Netherlands is partly based on a less pronounced exit rate. Moreover, we
see that competitive and deep innovators in Switzerland are more resistant to exit R&D than
in the Netherlands, while less competitive and less deep innovators in Switzerland are more
inclined to exit R&D than in the Netherlands. One possible reason for this difference could be
the more pronounced innovation support, for example in the context of the patent/innovation
box, in the Netherlands. And indeed, based on a linear probability model, we see that the
patent/innovation box has a positive and significant impact on the firm’s R&D decision. This
shows that R&D policy incentives can influence firms’ decision to conduct R&D. However, it
remains to be investigated how such policy instrument affects firm-level productivity.

2 Introduction and Research Question

According to Global Innovation Index or the European Innovation Scoreboard, Switzerland is on of
the most innovative countries in the world. This top position is primarily due to various innovation-
relevant infrastructure indicators: for example, general human capital, which can be measured by
the density of doctoral degrees or as ”life-long learning,” as well as various patent indicators and
the attractiveness of the higher education system. If we look at direct innovation indicators at the
company level, such as the proportion of R&D active companies, we see a different development.
The proportion of companies with R&D activities is falling significantly in Switzerland and also
in Germany, while this indicator has developed very positively in the Netherlands, for example.
Accordingly, a very well developed, innovation-relevant infrastructure is a necessary, but by no
means a sufficient condition for sustainable innovation efforts by companies.

If companies decide to exit R&D, this is often a rational decision, probably made on the basis
of cost and risk considerations. Such decisions are only noteworthy from an economic perspective if
they have a negative impact on the country’s competitiveness and productivity growth. In this case,
economic policy measures are appropriate. Accordingly, the main objective of this study is, first, to
identify which type of firms continue or stop performing R&D and, second, whether a declining R&D
rate has consequences for productivity growth and thus a country’s competitiveness. In particular,
we aim to address the following research questions: How did innovation activities in Switzerland
compare to selected countries such as the Netherlands and Germany? What are the main factors
associated with the decline in R&D active firms in Switzerland? Are there significant differences
between the Netherlands and Switzerland in these factors? Are there asymmetric effects? That is,
do the factors responsible for the withdrawal from R&D activities differ from the factors motivating
firms to start R&D activities? Do competitive pressures and cyclical fluctuations influence the
(termination of) R&D activities? Does past innovation success increase the likelihood of continuing
R&D activities?
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In order to respond to these questions we need to apply a variety of methods. First, we present
descriptive statistics based on firm-level information from the Community Innovation Survey (CIS)
and the Swiss innovation survey (SIS). Second, we use ”survival analyses” to identify the factors for
R&D entry/exit. Third, we perform linear probability estimation to identify the main factors for
the R&D decision of a company. Fourth, we apply an endogenous growth model (simulated methods
of moments procedure) to estimate the significance of R&D activities for productivity growth and
dispersion and simulate the effectiveness of policy designs to reduce the R&D cost (e.g. R&D tax
credits or subsidies).

The analyses show that there is a great heterogeneity in the development of the R&D rate in
European countries. While Switzerland and Germany show a decreasing trend, the Netherlands,
Finland, and Austria show increasing R&D rates over time. A large number of employees (firm size),
productivity, human capital, exports, and technological potential are the most important individual
factors that reduce the probability of exiting R&D. In addition, we see that a strong focus on
innovation activities and past economic success (competitiveness) increases a company’s probability
of remaining active in R&D over a long period of time. Lack of equity and the ease of copying
innovations are important characteristics that increase the probability of exit. In general, we observe
a high symmetry of the factors determining entry into or exit from R&D markets, with one exception:
productivity reduces the probability of exit but does not increase the probability of entry. The main
reason for this is that productive, non-R&D firms may see no reason to enter risky and costly R&D
markets. Our results also show that the proportion of employees with higher education, access to
international markets, and university-industry partnerships increase the likelihood of in-house R&D
success and thus the likelihood of performing R&D.

It is worrying that the internal R&D success probability is decreasing over time. This suggests
that it has become more difficult to innovate. Furthermore, this development has a negative impact
on productivity growth and its dispersion. Therefore, policies should be designed that increase
the internal R&D success probability or the imitation probability. What kind of innovation policy
could be effective? Simulations of the productivity effects of policy designs, such as subsidies or
R&D tax credits, that reduce the private costs of R&D show very small positive effects. Therefore,
policies that improve access to international markets, policies that reduce competitive pressures for
a limited period of time, or policy designs to further improve university-industry partnerships or the
availability of highly skilled workers might be more effective.

In Section 3 we provide a detailed discussion of the recent literature on R&D and productivity.
Section 4 gives an overview of descriptive statistics R&D and productivity in Switzerland and abroad.
In Section 5 we discuss the results of a survival analysis of why firms start or stop doing R&D.
In Section 6 we analyze the determinants of firms’ decision to conduct R&D. Finally, Section 7
analyzes how in-house R&D, technology diffusion, and R&D subsidies affect productivity growth
and inequality. Section 8 concludes. Additional relevant material and proofs can be found in the
Appendix.

3 Literature Review and Conceptual Notions

The concentration of R&D activities among ever fewer firms we observe in Switzerland is not an
isolated economic phenomena. We observe similar tendencies of increasing concentration across
different economic activities in most developed countries. For instance, Autor et al. (2020) find an
increasing concentration in market shares, labor shares, and markups over the last decades not only
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Figure 1: The fraction of R&D active companies - an international comparison. Source: EUROSTAT
2019.

in the US but internationally.

3.1 The Rise of the Superstar Firms

Dorn et al. (2017) and Autor et al. (2020) put forward the rise of superstar firms like Google, Amazon,
or Facebook as an explanation for this increasing concentration. Industries are characterized more
and more by a “winners-take-it-all” characteristic, where one or only a few firms gain very large
market shares. Superstar firms capture higher market shares because they produce more efficiently;
they are more productive and thus become larger than their competitors (Dorn et al., 2017). Autor
et al. (2020) argue that globalization and technological change have pushed market shares toward
these most productive firms in all industry. More specifically, factors like new technologies with
positive network effects, diffusion of competitive platforms, or information intensive goods with high
fixed costs (first-copy costs) have all played a key role for increasing the concentration of market
shares (Dorn et al., 2017). Indeed, Autor et al. (2020) find that dynamic industries exhibiting the
fastest technological progress are also those industries that experienced the most rapid concentration
of market shares. Thus, one central driver behind the concentration of economic activity is the
concentration in innovative activity. The increasing concentration of R&D activities that we are
seeing in Switzerland can therefore have an impact on the entire economy, as superstar companies
such as Novartis, UBS or Nestle gain increasing economic importance at the national level over time.

However, even though highly productive firms managed to gain ever larger market shares, aggre-
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gate productivity in the economy did not rise by more than in earlier decades. In fact, productivity
growth has deteriorated over the last decade.1 To explain this discrepancy, Autor et al. (2020) argue
that knowledge diffusion between leaders and laggards in each industry may have slowed down and
that therefore the productivity gap between leaders and laggards has accentuated. In contrast, an
alternative explanation would be that innovations simply have become harder to develop than in
earlier decades (Bloom et al., 2020). Today firms need much more resources to achieve technological
progress, and only the superstar firms are able to do so. This latter mechanism would cause a similar
widening in the productivity distribution between firms as a slowdown in knowledge diffusion would.
In the following sections, we will discuss these two potential culprits for the increasing concentration
in economic activities in general and innovation activities in particular: i) a decrease in knowledge
spillovers and ii) an increase innovation costs. They are both candidates to explain the increas-
ing (productivity) gaps between leaders and laggards, culminating in a concentration of economic
activity.

3.2 Knowledge Spillovers

Akicigit and Ates (2019) go beyond just the concentration of economic activity and review the
literature on the broader category of business dynamism. They highlight ten stylized facts describing
the declining business dynamism in the United States. Many of these stylized facts are also observable
in other economies. Important for our context are the following stylized facts: i) market concentration
has risen, ii) average profits have increased, iii) the labor productivity gap between frontier and
laggard firms has widened, iv) firm entry rate has declined, v) the dispersion of firm growth has
decreased. Hence, Akicigit and Ates (2019) observe a concentration of economic activity that is
even broader than the one discussed by Dorn et al. (2017) and Autor et al. (2020). They propose
a unified theoretical framework to explain this declining business dynamism. Like Autor et al.
(2020), they find that a decline in the intensity of knowledge diffusion between firms must be a
significant driver of the stylized facts observed in the literature. However, the exact nature of
knowledge diffusion remains open. Akicigit and Ates (2019) propose: a) the data-dependent nature
of production, b) regulations favoring established firms, c) off-shoring of production abroad, and d)
anti-competitive use of intellectual property as potential mechanisms that could have lowered the
diffusion of knowledge. However, the authors do not present empirical support for their claim that
knowledge spillovers have declined.

Before we proceed to empirical evidence regarding the strength of knowledge spillovers, we have
to shortly discuss their nature. Knowledge spillovers have two central properties that affect how
they spread from leaders to laggards (Eeckhout and Jovanovic, 2002). First, while it is commonly
accepted that discoveries at the technological frontier provide an advantage for the inventors, firms
that are further away from the technological frontier can profit from such discoveries as well. Second,
the advantages of discoveries for the leaders are often hard to protect from the copying efforts of
the laggards. This is the positive side of knowledge spillovers; they guarantee that discoveries flow
from leaders to laggards. Knowledge spillovers thus contribute to a convergence of firms. Copying
allows followers to access knowledge from the technological frontier without having to bear the
full cost of development. Knowledge spillovers thus level the playing field between leaders and
followers. However, without an adequate protection of discoveries, the incentives for leaders to push

1Measurement of productivity is an important indicator for the performance of an economy (Bartelsman and Doms,
2000), and the productivity across firms is often highly unequal (Bartelsman and Wolf, 2018).
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the technological frontier are diminished. Firms cease to bring forward inventions when they expect
to be copied immediately. The free-riding behavior of followers can therefore reduce investments
in innovation below the optimal level (Eeckhout and Jovanovic, 2002). To quantify the extent of
knowledge spillovers, we need empirical evidence. This gap is filled by the empirical studies of
Andrews et al. (2015), Andrews et al. (2016), and Lucking et al. (2019).

The diffusion of technology from frontier to laggard firms is the central topic in Andrews et al.
(2015). The authors find that, despite the slowdown in aggregate productivity, productivity at
the global frontier remained robust. In contrast, a rising productivity gap between firms at this
global frontier and laggard firms has emerged, opening up the question why seemingly non-rival
technologies have not diffused to this latter group of firms. Andrews et al. (2015) document a highly
uneven process of technology diffusion, where global frontier technologies only reach laggard firms
through the respective national frontier firms. Technologies from the global frontier spread at an
increasing speed across countries but at a decreasing speed within countries. Andrews et al. (2015)
argue that this slowdown in technology diffusion from the global technology frontier to laggards in
each country can explain the overall slowdown in aggregate productivity growth in OECD countries
over the past decade.

In sharp contrast, Lucking et al. (2019) show that the diffusion of technological knowledge has
been more or less constant over time. They differentiate between positive and negative knowledge
spillovers. Positive knowledge spillovers can offset a decrease in R&D productivity. They would
cause a more stable R&D productivity among firms. Negative knowledge spillovers in the form of
product market rivalry (i.e., business stealing through increasing market shares), on the other hand,
diminish R&D productivity. Lucking et al. (2019) investigate how positive and negative spillovers
have developed from 1980 to 2015. They find a stable ratio of positive to negative knowledge spillovers
over time.

3.3 Lack of Complementary Investments

However, while Lucking et al. (2019) find stable levels of both positive and negative knowledge
spillovers for R&D over time, there remains the increasing productivity gap between global frontier
and laggard firms identified by Andrews et al. (2015) and Andrews et al. (2016). If it is not the
knowledge spillovers in the R&D process which have diminished, knowledge spillovers must have di-
minished on other dimensions. Andrews et al. (2016) argue that global frontier firms are not just able
to introduce technologically innovative goods and services but also have the capacity to optimally
combine intangibles in their production process, such as technological, organizational, and human
capital. Laggard firms, in contrast, lack these important capacities. The sophistication required
for combining complementary investments has strongly increased, as technologies have become in-
creasingly complex, demanding a high degree of tacit knowledge. The adoption of ICT technologies
requires high learning and high adjustments costs that need to go hand in hand with knowledge
based capital. Andrews et al. (2016) argue that we are still in the transition phase toward the digital
economy and firms are still learning. Consequently, the slower adoption of technologies by laggard
firms is caused by increasing costs of the transition from an economy based on production to one
based on ideas (Andrews et al., 2016).
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3.4 Higher Innovation Costs

However, Andrews et al. (2016) find that, although more robust, even the global frontier firms have
shown declining productivity growth over the last years. To explain the concentration of economic
activity toward fewer firms, we must thus go beyond the gap between leaders and laggards and search
for potential problems in the innovation process itself, hindering the development of innovations.

Cavenaile et al. (2019) examine how rising costs of innovation have been responsible for the
macroeconomic trends we have discussed at the outset, namely the rise of the superstar firms, with
industries becoming increasingly dominated by a small number of large firms. They develop a theo-
retical framework that can explain rising market concentration, markups, profits, and, importantly,
rising R&D spending, as well as the decrease in firm entries, productivity growth, and labor shares.
Moreover, their model is also consistent with the inverted U-shape relationship between innovation
and competition described by for instance Aghion et al. (2005). Cavenaile et al. (2019) find that,
while the increase in markups through superstar firms caused significant static welfare loss, this loss
was outweighed by dynamic welfare gains. Due to the expected higher profits, firms have faced
increased incentives to innovative. This suggests that increasing market concentration is not only
bad for innovation and economic growth, and superstar firms are not necessarily a problem as such.
However, the findings of Cavenaile et al. (2019) leave open the question why we then observe a decline
in productivity growth. They argue that the culprit here is the increasing costs of innovation, that
is, “ideas are getting harder to find” (Bloom et al., 2020). Their model predicts that if the costs of
innovation for firms were set to the levels of some decades ago, the decline in productivity growth
would have been more than offset. Thus, in our discussion of a concentration of R&D activities, we
need to focus on the costs of innovation. The study of Bloom et al. (2020) offers empirical data in
this respect.

Bloom et al. (2020) investigate whether, over time, the same amount of R&D input has led to
the same amount of output. In other words, they ask whether the R&D productivity of firms has
decreased or not. Their paper is thus also entitled ”Are ideas getting harder to find?”. Bloom et al.
(2020) apply simple growth accounting to the production function for new ideas. Economic growth
emerges from the product of i) the effective number of researchers and ii) their research productivity.
Bloom et al. (2020) present a wide range of empirical evidence showing that research effort is rising,
while research productivity is falling. The economic growth we observe is still positive because of
the increase in research effort, which has so far always offset the decrease in research productivity.
For instance, for the US economy as a whole, Bloom et al. (2020) find that research productivity has
declined by a factor of 41 since 1930. In other words, it requires 41 times more researchers today than
in 1930 to achieve the same level of economic growth. Thus, consistent economic growth require the
employment of ever more (effective) researcher. This is clear evidence of a “draining out” of ideas.
The low hanging fruits have been picked, and we now need more and more effort to also get at the
high hanging fruits. The concentration of innovation activities among ever fewer firms thus makes
sense economically. Only the superstar firms are able to still profitably unearth further innovations.

Jones (2009) describes the increasing difficulty to innovate as a “burden of knowledge”. If knowl-
edge is of a cumulative nature, later innovators will have it more difficult, as they need to learn
more until they can reach the knowledge frontier. This implies that, today, innovators require much
more and longer education than previous generations of innovators. The educational burden has in-
creased. However, next to further education, innovators have two more ways to cope with the burden
of knowledge: specialization and teamwork. They both take away pressure from individual innova-
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tors, as they distribute the efforts among additional minds. Importantly, both specialization and
teamwork have profound implications for the organization of the work place. Using a rich patent
data set, Jones (2009) finds empirical support for a burden of knowledge. Age at first invention,
specialization, and teamwork all have strongly increased over time. Thus, Jones (2009) provides a
potential micro founded explanation why productivity growth did not accelerate in the last decades
despite strongly increasing research efforts. Innovations have simply become too costly for smaller
firms to pursue.

3.5 High Fixed Costs

Notably, the two opposing trends of a falling share of innovative firms and of rising innovation
expenditures we observe in Switzerland show up strongly also in Germany. Rammer and Schubert
(2018) investigate the mechanisms behind this concentration on the few. They argue that small firms
are disadvantaged in the innovation process because they have fewer resources available to cover the
fixed costs of their innovation projects. According to Cohen and Klepper (1996), large firms have a
larger product base upon which they can distribute their fixed costs. Consequently, if fix costs are
rising, due to for example digital technologies or diminishing technological opportunities, small firms
will be more likely to abandon their innovation activities, as they cannot afford the accruing fixed
costs anymore. Only large firms will be able to pay the high fixed costs to still profitably exploit the
ideas that are getting harder to find.

Rammer and Schubert (2018) argue that the observation that small firms are disproportionally
stopping their innovation activities is problematic on two grounds. First, once firms have given up
their innovation activities, it will be harder for them to reenter again. Those firms that discontinue
innovation might lose important capabilities. While such decisions may save costs in the short run,
they may erode the long-term competitive position of the respective firms. Second, the increasing
concentration of innovation activities on large firms can lead to a concentration of risk. Dependence
on a small number of very successful firms makes the entire economy more vulnerable to external
shocks. If one or a few very large firms suffer adverse shocks, the economy will be hit harder than
when the shock affects some smaller firms operating in different industries.

Aghion et al. (2019) provide yet another take to explain the declining business dynamism and
rising concentration in developed economies. They formalize how superior process efficiency in firms
leads to falling economic growth, increasing market concentration, and lower labor shares. Aghion
et al. (2019) argue that firm such as Walmart, Microsoft, or Amazon can profit from organizational
capacities that have evolved over time and are very hard to reverse engineer for competitors, such
as their highly sophisticated logistics. Such highly process efficient firms have entered many new
geographical and product markets over the last two decades. Aghion et al. (2019) argue that this
was due to the IT wave, which allowed firms to extend to a wider array of product lines, as it
increased the optimal boundary of firms. The costs of spanning multiple markets have fallen. Since
firms with superior process efficiency have higher markups and lower labor shares, their expansion
into new geographical and product markets will increase aggregate markups and decrease aggregate
labor shares. Moreover, it deters innovation because of the increased levels of competition between
firms. If competition becomes too strong, the existing firms tend to shy away from innovation, as
they cannot appropriate rents anymore, especially because they do not have the means to become
as process efficient. The vast majority of firms can never afford the high fixed costs that setting
up the logistics of Amazon requires. Aghion et al. (2019) thus conclude that, counterintuitively,
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it may be welfare enhancing to constrain the expansion of the most efficient firms, as they restrict
innovation and thus long-run growth. With their dominance, highly process efficient firms create an
environment that inhibits steady levels of innovation.

3.6 Knowledge Spillovers vs. Innovation Costs

König et al. (2016) investigate a theoretical model where firms can improve productivity either by
pursing in-house R&D or by imitating other firms’ technologies. The choice of these two strategies is
thereby based on profit maximization. Firms choose the strategy that offers higher profits. Whether
in-house R&D or imitation provides higher profits depends on the distance of the firms to the
technological frontier. Firms close to the technological frontier have fewer opportunities for imitation
and thus choose in-house R&D simply because there are fewer better firms they can learn from.
In contrast, firms further from the technological frontier have more opportunities to imitate and
consequently also choose imitation; there are more firms they can learn from. In the model of König
et al. (2016), the technology spillovers from the frontier to the laggard firms assure that the overall
productivity distribution does not diverge. Repeatedly unsuccessful firms can switch to imitation to
avoid falling behind too much, closing the ranks to the technological frontier. König et al. (2016)
test their model on TFP distributions of French firms over the years 1995-2003, which together show
the pattern of a traveling wave, with increasing mean and variance. The model is indeed able to
successfully reproduce the development of the productivity distributions observed in the data.

König et al. (2020) build on the model of König et al. (2016). They similarly focus on the trade-
off between innovation and imitation. Profit-maximizing firms seek to upgrade their technologies.
They can either try to learn from other firms or discover new technologies. Each firm’s productivity
determines which of the two strategies is more profitable. Firms further behind from the technological
frontier are more likely to gain from imitation, whereas firms closer to the technological frontier have
limited opportunities to learn from others and thus need to break new grounds through innovation. In
contrast to König et al. (2016), König et al. (2020) also incorporate R&D subsidies and output taxes
in their model, which allows identifying the impact of misallocations on the evolution of productivity
growth. König et al. (2020) apply their model to data from Chinese manufacturing firms. Over the
last decade, the Chinese government has increasingly focused on supporting the innovation activities
of domestic firms, which has led to boom in R&D expenditures in China. However, König et al.
(2020) find that a substantial portion of these R&D expenditures corresponds to fake R&D. Chinese
firms respond to fiscal incentives by the government through fudging R&D, that is, they relabel part
of their operational expenditures as R&D in order to obtain public subsidies. In contrast, König
et al. (2020) show that when the same model is applied to data from Taiwan, there is no sign of
“fake” R&D. This is important for our report, as, in contrast to Switzerland, the Netherlands has
strongly supported R&D activities as well. We will investigate whether this R&D in the Netherlands
is fully effective or not.

3.7 R&D Subsidies

Arqué-Castells and Mohnen (2015) investigate whether there is room for R&D subsidies to influence
the continuation of or entry in R&D. They estimate a model of the firms’ optimal R&D decision,
where firms decide not only about whether they pursue R&D but also how much they invest in R&D.
The impact the R&D subsidies can have depends on the relation between both fixed costs and sunk
costs of R&D. If the fixed costs are positive but the sunk costs are negative (i.e., there is a sunk
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profit), R&D subsidies can play the role of a one-shot trigger and induce permanent R&D activity.
Arqué-Castells and Mohnen (2015) find that R&D subsidies do affect both the decision for R&D
and the level of R&D expenditures. Moreover, there is a state dependence: firms with R&D are
much more likely to be R&D active in the next period than firms without R&D. Hence, because the
negative sunk costs, which compensate some of the positive fixed costs, there is the possibility of a
permanent inducement effect. Firms that entered R&D because of the subsidies may remain R&D
active afterwards, even if the subsidies are withdrawn. However, the effect of such a trigger policy
fades away after seven years. In addition, if the fixed costs are high in relation to the sunk costs,
more structural policies aimed at reducing fixed costs will be necessary.

Using a sample of German manufacturing firms, Peters et al. (2017) estimate a dynamic structural
model of R&D investments to quantify their long-run benefits. They use the structural parameters
of their model to simulate how a change in innovation costs, such as a tax break or an R&D subsidy,
affects the firms R&D choice and its future productivity. They find that among R&D active high-tech
firms 20% lower maintenance costs of R&D lead after ten years to a 9%-points higher probability for
firms to pursue R&D and a 1.4% higher productivity. The respective numbers for the low-tech sector
are smaller: companies in this sector are only 7% points more likely to continue R&D, while the
productivity effects are very small. In contrast, for high-tech firms just beginning with R&D, 20%
lower maintenance costs has very little impact on the probability for the firm to pursue R&D and
thus also on its productivity. For low-tech firms these numbers are again different. Low-tech firms
just beginning with R&D have a 7%-points higher probability to pursue R&D and a 2.1% higher
productivity. Thus, reducing innovation costs has an effect on both continuation of and entry into
R&D.

3.8 Comparison of the effectiveness of policy measures

There is a broad range of possible policy instruments to foster both entry into R&D and R&D
expenditures. Bloom et al. (2019) summarize these different instruments and provide a toolkit for
policymakers. They rank tax credits for R&D as the most effective instrument in the short run. They
quality and conclusiveness of the evidence that they provide a net benefit for R&D activities are high.
Despite a danger of relocation of R&D activity, the effect of tax credits on R&D and productivity
is substantial. Also positive already in the short-run are R&D subsidies. They profit from direct
targeting to promising industries and can also directly fund basic research at for instance universities.
However, the quality and conclusiveness of the literature is somewhat less clear than for tax credits.
The problem is whether this targeting indeed proves effective. The wrong projects may be targeted
and there may be a crowing out of industry R&D. Bloom et al. (2019) argue that increasing human
capital through for instance higher university enrolment in STEM fields is most effective in the long-
run. More R&D workers increase the volume and lower the price of R&D. The literature provides
medium quality and conclusiveness in the respect. Already yielding a positive net benefit in the
short run is immigration of skilled R&D workers. The literature is very unambiguous in that such an
increase in human capital is very effective. Importantly, as the only available policy instruments, an
increase in human capital will also lower inequality in the economy, as the competition for this scare
resource decreases. Another possible policy lever is product market competition and international
trade. Bloom et al. (2019) argue that the empirical literature shows that greater competition and
trade openness typically increase innovation. The quality and conclusiveness of the literature is high
with regard to such policies. Moreover, the financial costs are low, but these policies will clearly
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further increase inequality in the economy. Bloom et al. (2019) rank patent boxes as least effective
instrument and even ascribe it a negative net benefit. They only encourage firms to relocate their
intellectual property royalties into different tax jurisdictions. Patent boxes are instruments that
allow multinational firms to minimize their tax burden. Bloom et al. (2019) argue that they are
an example of a harmful form of tax competition that disguises as pro-innovation policy. Finally,
there is evidence that co-locating many small high-tech firms together proves valuable to produce
agglomeration effects. However, the literature is not as unambiguous as local policy makers might
think. Bloom et al. (2019) argue that what is important is fostering the R&D activities of young
firms, such as angel finance or venture capital initiatives. In our report, we will focus on instruments
such as tax credits and R&D subsidies. They are broad instruments with the capacity to stabilize
the share of R&D active firms already in the short run.

Akcigit and Stantcheva (2020) focus more narrowly on tax policy, which, if applied appropriately,
can provide incentives for innovation. If applied inappropriately, it can create disincentives and
inhibit innovation. It is thus important to provide the correct tax policy. Akcigit and Stantcheva
(2020) divide tax policies into general tax policies, such as personal or corporate income tax, and
targeted tax policies, such as R&D tax credits and subsidies for specific types of research. Innovation
reacts to tax policy because it is an economic activity as well, which depends on intentional efforts and
forward-looking investments; firms form expectation about the net present values of the returns to
R&D. Akcigit et al. (2018) show that in the US both corporate and personal income taxes negatively
affected the quantity and quality of innovation throughout the 20th century, with similar responses as
for instance labor supply. Akcigit and Stantcheva (2020) argue that the response of firms to tax policy
depends on where they are in their life cycle, that is, where they are located in their development
from new entrants to established incumbents. R&D tax credits support big and profitable firms most.
However, it is the small firms that contribute the most radical innovations. Akcigit and Stantcheva
(2020) thus argue that R&D tax breaks for small firms would foster breakthrough innovations most.
Moreover, the tax regime should also preferentially treat venture capital firms supporting starts up.

Akcigit et al. (2019) address the fact that not all firms are equally productive in their R&D
process. R&D subsidies can thus have differential effects on firms. However, the productivity of the
R&D process is seldom directly observable. Akcigit et al. (2019) thus recommend a policy mix of
taxing incumbents and subsidizing R&D. The subsidies in R&D solve the problem that knowledge
spillovers are not internalized, whereas the taxes on incumbents force less productive firms to exit
and free up resources. Akcigit et al. (2019) describe the optimal tax as a lower marginal tax for more
profitable firms and lower marginal subsidies for firms with high R&D investment levels. The latter
is beneficial because it incentivizes firms that are not as productive in their R&D process to imitate
those firms that are more productive in their R&D process. The former is beneficial because firms
that are productive in their R&D process can produce more profits with the same R&D investments.
Taxing profits to a lesser extent is therefore attractive for firms that are more productive in R&D.
However, Akcigit et al. (2019) argue that a linear corporate profit tax would also be feasible, as the
benefits for less profitable firms are not sizeable; these firms anyway pay relatively low taxes. In
contrast, a non-linear tax policy for R&D subsidies is very crucial, as it would encourage a more
efficient R&D process among firms.
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Figure 2: Literature overview.

3.9 Contribution to the Literature

Overall, the above literature discussion shows that those firms that are most productive also remain
innovative. These superstar firms continue to push the technological frontier in a robust way, even
though they also have to fight the increasing costs of innovation. Superstar firms cause through
their expansion a concentration not only in market shares but on many other dimensions as well.
Most important, the rise of superstar firms goes hand in hand with an increasing concentration of
R&D activities. They are the group of firms who can still best afford the ever increasing costs of
innovation. In the report, we will analyze whether the developments we observe for the US and other
developed countries also hold for Switzerland. We pursue a survival analysis, where we analyze the
decisions to exit from and enter into R&D. The target of this survival analysis is to identify which
group of firms still has the highest likelihood to remain R&D active and which group is most likely
to exit from R&D. In case we should observe that those firms who are still R&D active are primarily
the type of superstar firms, we can except to observe a similar concentration of economic activity in
the hands of fewer firms in the future.

To identify the causes for the increasing market concentration, we rely on the theoretical model
of König et al. (2016) and its extension in König et al. (2020). It allows to investigate to which
extent rising innovation costs or decreasing knowledge spillovers are responsible for the decrease in
the share of R&D active firms in Switzerland. Moreover, it makes it possible to investigate the
impact of potential R&D subsidies on these developments.
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4 Descriptive Information and International Comparison

In Section 4.1 we provide an international comparison, while Section 4.2 provides descriptive statistics
for the Swiss economy.

4.1 International Comparison

The results for an international comparison of R&D activities have already been published elsewhere
(Spescha and Woerter, 2020). Here we will only reconsider the developments most relevant to
this report. Figure 3 shows the share of R&D active firms for eight selected European countries.
Switzerland exhibits a very similar downward trend as Germany; both have experienced a sharp
decrease in the share of R&D active firms. All other countries show a much more stable development
over time. France, Finland, and especially the Netherlands show an increasing share of R&D active
firms over the entire time span.

Figure 4 shows how the share of R&D expenditures in sales has developed for these same eight
countries. Interestingly, here we see an increase for in this indicator for both Switzerland and
Germany. Hence, in these two countries we observe an increasing concentration of more R&D expen-
ditures on an ever smaller number of R&D active firms. Austria and Sweden show an increase in the
share of R&D expenditures in sales, too. Yet, because they have not experienced a similar decrease
in the share of R&D active firms, their R&D activities do not exhibit increasing concentration. The
only countries that show a decrease in the share of R&D expenditures in sales are France and, in
the last period, Finland. Interestingly, the Netherlands also show an increase in the sales share of
R&D expenditures. However, we do not observe the Netherlands after 2012 anymore, so we cannot
make as strong a statement. Nonetheless, the data suggest that firms in the Netherlands are not
only more frequently pursuing R&D but also increasing their respective R&D expenditures.

This report does not only tackle why we observe a decreasing share of R&D active firms in
Switzerland, but also why we observe an increasing share of R&D active firms in the Netherlands.
These two contrasting developments might have a lasting effect on the respective competitiveness of
the two countries.
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Figure 3: The fraction of R&D active companies - an international comparison. Source: EUROSTAT
2019.

Figure 4: The fraction of R&D expenditures over sales - an international comparison. Source:
EUROSTAT 2019.
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4.2 Descriptive Information for Switzerland

In the following we present descriptive evidence about the distribution of productivity and the
innovation (R&D) decisions of firms in Switzerland using the Swiss innovation survey data over the
years 1999 to 2017.

Figure 5 shows the log-productivity distribution in Switzerland over the years 1999 to 2017. Pro-
ductivity is measured as value added per employee. The figure illustrates a decline in the productivity
growth and an increasing dispersion in the productivity distribution. Next, Figure 6 shows the av-
erage productivity over the years ranging from 1996 to 2017, as well as the average productivity for
different productivity percentiles (that is, the average is computed over all firms with productivity
below the 10th, 20th, ..., 100th percentile). While the average is increasing in the highest percentiles,
it is declining in the lowest percentiles. This suggests that the trend in the lowest percentile plays
an important role in the overall increase in productivity disparity. Figure 7 shows the productivity
growth rate and the standard deviation over the years from 1996 to 2017. The growth rate shows a
declining trend while the standard deviation shows an increasing trend over time. The later indicates
an increasing dispersion in the productivity distribution. Moreover, Figure 8 shows the innovation
decision (whether firms conduct R&D or not) over their productivity levels. We see that firms with
higher productivity tend to innovate more. Further, Figure 9 shows the correlation of the innovation
decision with productivity. Except for the year 2005, the correlation shows a declining trend. We
also see that the innovation threshold (i.e. the lowest productivity level at which the innovation
decision is more likely than 50%) is increasing over the years of observation.

To summarize, a descriptive statistical analysis using survey data for Switzerland allows us to
make the following observations:

(1) We observe a declining productivity growth rate (see Figures 5, 6 and the left panel in Figure
7).

(2) We find an increasing dispersion in the productivity distribution (see Figure 5 and the right
panel in Figure 7).

(3) We find a decline in the fraction of R&D active firms (concentration of R&D).2 This comes
along with an increasing productivity threshold in the decision of firms to innovate (see Figures
8 and 9).

In the following sections we will analyze the potential causes for the above listed stylized facts.

2See Rammer and Schubert (2016) for a related study of German firms showing a similar declining trend.
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Figure 5: The log-productivity distribution in Switzerland over the years 1999 to 2017.
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Figure 6: (Left panel) The average productivity A over the years ranging from 1996 to 2017.
Productivity is measured as value added per employee. The arithmetic, geometric mean and the
median are shown and all statistics follow a similar trend. (Right panel) The average productivity
(arithmetic mean) for different productivity percentiles (that is, the average is computed over all
firms with productivity below the 10th, 20th, ..., 100th percentile).
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Figure 7: (Left panel) The productivity growth rate, gA over the years from 1996 to 2017. The
growth rate shows a declining trend over time. (Right panel) The productivity standard deviation,
σA, over the years from 1996 to 2017. The standard deviation shows an increasing trend over time.
Productivity is measured as value added per employee. Dashed lines indicate a linear regression fit.
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Figure 8: (Left panel) The innovation decision over productivity pooled across all years of observa-
tion. Firms with higher productivity tend to innovate more. The solid line shows the fit of a logistic
function. The threshold (dashed line) indicates the lowest productivity level at which the innovation
decision is more likely than 50%. (Right panel) The innovation decision over productivity across
different years. Productivity is measured as value added per employee.
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Figure 9: (Left panel) The correlation of the innovation decision with productivity. Except for
the year 2005, the correlation shows a declining trend. (Right panel) The innovation threshold is
increasing over the years of observation. Productivity is measured as value added per employee.
Dashed lines indicate a linear regression fit.

5 Survival Analysis

5.1 The Cox proportional hazard model

Survival analysis concerns the analysis of the time until the occurrence of an event. In our context,
the years until firms exit from R&D, or, vice versa, the years until firms enter R&D. OLS is not
appropriate in the context of survival analysis because the time until failure is often distributed in a
non-symmetrical way, and OLS is not robust to this type of violations (Cleves et al., 2008). Survival
analysis substitutes the normality assumption of the error terms required by OLS with something
more appropriate.

More specifically, we use the Cox proportional hazard model or Cox (1972) model. It is a semi-
parametric model, which means that it does not require any assumptions about the distribution of
failure times. Instead, the Cox model relies on an ordering of failure times. It does not matter when
exactly the failures took place, but only whether a specific failure occurred before or after another
failure.

h(t) = h0(t)exp(β1x1 + ...+ βkxk)

The core of every survival analysis is the hazard rate h(t). Cleves et al. (2008) define the hazard
rate as the (limiting) probability that the failure event occurs in a given time interval, conditional
upon the subject having survived to the beginning of that interval, divided by the width of the
interval. The hazard rate is an intuitive measure of the risk of failure a subject faces at a given point
in time. For example, the risk of dying for humans follows a hazard rate that has the shape of a
bathtub. After birth, the hazard of dying is relatively high, with the hazard falling for a time until
it reaches a low point. It then remains flat for a long time and starts to increase constantly only in
higher age, until with an age of more than 100 it starts to reach values near infinity. In our context,
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the hazard rate measures the risk a firm, which is still R&D-active until time t, faces to exit R&D
from t to t+1. The hazard rate has units 1/t, that is, it measures an increase or decrease in the
risk of failure in one unit of analysis time. The interpretation of the hazard rate is therefore the
following: for a hazard rate of 0.05/t, if we were to continue for one unit of time, we would expect
0.05 exits for a subject. For instance, if the hazard rate of exit from R&D is 0.05/year, and we were
to continue for another year, the average firm, which has survived as R&D-active until right now,
would face a probability of 0.05 to exit R&D.

In survival analysis, the survivor function S(t) is usually of interest, too. It measures the proba-
bility of the subjects surviving beyond time t. In our context, the survivor function is the probability
that a given firm does not exit R&D before the year t. The survivor function S(t) is equal to 1 at
the year where the survival analysis starts and monotonically decreases to 0 with increasing time t.

There will be two types of analyses. The first analysis investigates exit from R&D. The analysis
starts out in 1996 with all firms that have R&D activities. Firms with R&D activities that appear
later on in the panel join the analysis, too, and we explicitly designate them as such. The failure
event is when firms exit from R&D. Firms are not allowed to enter into R&D again after they have
exited. In other words, we do not allow for multiple failure events: firms cannot exit R&D, enter
R&D again, and then exit R&D from anew. Firms staying R&D active until the analysis ends
(the year 2017) or firms that drop from the analysis because of non-response are coded as censored
observations. The second analysis investigates entry into R&D. The analysis starts out in 1996 as
well, with all firms that have no R&D-activities. Those firms with no R&D activities that appear
later on in the panel also join the analysis. The failure event is when firms enter R&D. Firms are not
allowed to enter into R&D, exit R&D, and then enter R&D again. That is, also the second analysis
does not allow for multiple failures. Those firms that have no R&D activities until the analysis ends
(the year 2017) or drop from the analysis because of non-response are coded as censored.

5.2 Descriptive Statistics

Table 1 and 2 show the descriptive statistics for the first survival analysis, where firms initially
pursue R&D activities and the failure event is exit from R&D. In total, we have 3,948 observations,
consisting of 1,963 firms, which result in all together 999 exits from R&D. These 1,963 firms have
been at risk for existing from R&D for an average of about 8 years, whereby the distribution of
failure times is somewhat right-skewed with a median of 6 years. Table 2 shows the estimates from
the Kaplan-Meier estimator, which in the absence of covariates is equivalent to the Cox model (Cleves
et al., 2008). The fifth column shows the survivor function, which gives the probability that a firm
survives past the respective years listed in the first column. For example, the probability that a firm,
which pursues R&D in 1996, still pursues R&D in 2005 is still 55.7%, whereas in 2017 it reduces to
21.0

Table 3 and 4 show the descriptive statistics for the second survival analysis. They mirror Table 1
and 2 in their structure, only that here we are looking at firms that start out with no R&D activities
and the failure event is entry into R&D. In total, we have 5,614 observations, consisting of 2,581 firms
(there are more firms without than with R&D), which result in 654 entries into R&D. The 2,581
firms have been at risk for entering R&D for an average of about 8 years, whereby the distribution
is also somewhat right-skewed, with a median of 6 years. The fifth column of 4 shows the survivor
function from the Kaplan-Meier estimator again. For example, the probability that a firm, which
had no R&D in 1996, still has no R&D in 2005 is 69.7%, whereas until the year 2017 this number
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Table 1: Analysis of exit from R&D

Observations 3,948
Firms 1,963
Exits from R&D 999

Mean Min. Median Max.
Time at risk: 8.06 years 2 years 6 years 21 years

Table 2: Kaplan Meier estimator: Exit from R&D

Year Firms at risk Exits Ent.-Cens. Survivor function Std. Error

1999 762 140 -339 0.8163 0.014
2002 961 169 -178 0.6727 0.0153
2005 970 167 -89 0.5569 0.0151
2008 892 142 39 0.4682 0.0144
2011 711 123 -78 0.3872 0.0136
2013 666 107 60 0.325 0.0127
2015 499 84 114 0.2703 0.0119
2017 301 67 234 0.2101 0.0113

reduces to 49.2%. The probability of surviving without R&D in Table 2 is considerably higher than
the probability of surviving with R&D in Table 4 because there are more exits from R&D than
entries into R&D in the sample.

5.3 Exit from R&D

5.3.1 Baseline model

The analysis starts out with all R&D-active firms, which can either continue or exit R&D. Given
these R&D-active firms, we investigate whether they exit R&D and if so how long they lasted until
they exit. Non-R&D active firms and firms, which enter into R&D, are not part of the analysis.

Table 3: Analysis of entry into R&D

Observations 5,614
Firms 2,581
Exits from R&D 654

Mean Min. Median Max.
Time at risk: 8.09 years 2 years 6 years 21 years
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Table 4: Kaplan Meier estimator: Entry into R&D

Year Firms at risk Entries Ent.-Cens. Survivor function Std. Error

1999 639 82 -511 0.8717 0.0132
2002 1068 130 -227 0.7656 0.0145
2005 1165 104 -207 0.6972 0.0147
2008 1268 103 91 0.6406 0.0145
2011 1074 87 -105 0.5887 0.0144
2013 1092 63 117 0.5547 0.0142
2015 912 40 249 0.5304 0.0141
2017 623 45 578 0.4921 0.0142

The analysis time starts in 1996; however, firms can join the analysis at a later point in time, given
that they are R&D active. As laid out before, to fix the start of the analysis to 1996 allows firms to
experience the same risk of exiting R&D in each year. The pressure on firms to exit from R&D could
vary widely between each calendar year. For instance, pressure might have been higher in the period
2008-2011, where the financial crisis happened, than in other periods. Accounting for the time line
in this way allows calculating a hazard rate for exiting R&D for all available years of our panel. Note
again that firms entering the analysis later only contribute to the risk profile of the years that they
have been part of.

If we have no explanatory information about a firm (covariates), the reasons why such a firm
exits from R&D remain unknown. In each period, firms are exposed to a certain risk that they exit
from R&D. For example, it may be too expensive to conduct R&D. By using covariates, we can
model the risk that firms exit R&D, as certain firm characteristics could affect the risk of firms for
their decisions to exit from R&D. The setup of survival analysis is very common in medical studies.
We have a set of patients (R&D firms) and we look at how long they survive, whereas characteristics
of the patients (R&D firms) can increase or reduce the risk of death (exit from R&D). For instance,
large firms could have a higher probability to remain R&D active.

Table 5 shows the coefficients for the explanatory variables of the estimated baseline Cox model.
The coefficients in the table are exponentiated. They show by how much the explanatory variables
shift the hazard of exiting from R&D. For instance, the hazard ratio of employment of 0.781 in the
first column means that a one percent increase in employment reduces the hazard rate of exiting
from R&D by 0.219%. The five explanatory variables shown in Table 5 are all statistically significant
and negatively correlated with the hazard rate. Ceteris paribus, higher values of employment, pro-
ductivity, human capital, exports, and technological potential are all associated with a lower hazard
rate of exiting from R&D. Vice versa, a decrease in these five explanatory variables is associated
with a higher hazard rate of exiting R&D. Importantly, the exponentiated coefficients in Table 5
change only marginally when they are part of the same model. Note that all specifications control
for 2-digit industry dummies.

Figure 10 shows the survivor function of Model V from Table 5 over the period 1999 to 2017 with
all explanatory variables held at their means. The displayed survivor function is thus relevant for an
average firm. The Y-axis displays the values of the survivor function, that is, the probability of the
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Table 5: Baseline R&D exit

(1) (2) (3) (4) (5)
VARIABLES Model I Model II Model III Model IV Model V

Ln(Employment) 0.781*** 0.783*** 0.773*** 0.793*** 0.799***
(0.017) (0.017) (0.017) (0.018) (0.018)

Ln(Value added/employee) 0.812*** 0.841*** 0.874** 0.877**
(0.048) (0.049) (0.051) (0.051)

Share academics 0.984*** 0.987*** 0.988***
(0.003) (0.003) (0.003)

Share higher education 0.992*** 0.994*** 0.994**
(0.002) (0.002) (0.002)

Export share 0.992*** 0.993***
(0.001) (0.001)

Technological potential 0.890***
(0.023)

Observations 3,946 3,938 3,938 3,910 3,910
Industry fixed effects Yes Yes Yes Yes Yes

*** p<0.01, ** p<0.05, * p<0.1

firms to make it until the years displayed on the X-axis3. The probability that firms maintain R&D
activities decreases with time. For instance, an average firm that has R&D in 1996 experiences a
probability to still have R&D in 2008 of about 0.6. In 2017, this probability further drops to less
than 0.3.

Importantly, the survivor function falls much faster than the propensity of firms to conduct R&D
(i.e., the share of firms in the economy that pursue R&D), because we only allow for exits from R&D
and not for entries into R&D. The propensity to conduct R&D sums up firms that exit and firms
that enter R&D, which makes its share more stable over time. The survivor function, in contrast,
sums up only exits from R&D. Note that because there are more firms exiting than entering R&D,
the propensity to conduct R&D falls over time as well, albeit, since it is more balanced by entries
into R&D, at a lower rate.

Figure 11 shows the evolution of the hazard rate of Model V from Table 5. To calculate the
hazard rate, the covariates shown in Table 5 are again held at their means. The hazard rate thus
takes on the values of an average firm. Figure 11 shows that the average firm initially faces a hazard
of 0.04 of exiting R&D per year. This means that, for instance in 2005, among those firms still
R&D-active, the average firm faces a probability of exiting R&D of 0.04. Interestingly, while the
hazard rate remains constant from 2002 to 2008, it almost doubles until 2015. Hence, given that they
are still R&D-active, the probability of firms exiting R&D strongly increases after the financial crisis

3The survivor function is a step function because the Cox model estimates it non-parametrically; the survivor
function is estimated directly from the data and no distribution of failure times is imposed.
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Figure 10: Survivor functions exit from R&D

in 2008/09. Today firms apparently face an even harder environment when it comes to maintaining
R&D than they have experienced in the past.

5.3.2 Competitive vs. less competitive firms

In this part we will investigate how the survival of different types of firms evolves over time. We will
build three types of firms: those with low values for the firm characteristics displayed in Table 6,
those with high values, and those firms whose values of the firm characteristics in Table 6 lie at the
median. Table 6 shows the exact values these three types of firms take on. Except for employment,
they are the values falling in the 10% quantile, the median, and the 90% quantile of the distribution
of the variables. Together, the five variables of Table 6 correspond to how competitive firms are; firms
with high values of the variables are generally more competitive than firms with low values. Figure
12 plots the survivor functions of the three types of firms. It shows that those firms scoring high on
the firm characteristics in Table 6 are much less likely to exit R&D than firms scoring low on them.
While at the end of the analysis time in 2017 firms scoring high on the firm characteristics in Table 6
have a probability of about 70% to be still R&D-active, firms scoring low on these characteristics have
a probability of less than 10% to still be R&D active. Firms at the median of the firm characteristics
in Table 6 have a probability of about 30% to still be R&D active. Hence, firms that are large,
productive, human capital intensive, export oriented, and operate in fields with a high technological
potential are much less likely to exit from R&D than firms from the opposite spectrum scoring low
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Figure 11: Hazard functions exit from R&D

on all the variables in Table 6, especially when compared with those firms taking on the 10% smallest
values. Among the firms scoring high on the firm characteristics, the exits from R&D are minimal,
particularly when considering that they are also more prone to enter R&D (see Chapter 4). In sum,
we can conclude competitive firms thus show a much lower probability to exit from R&D than less
competitive firms.

Figure 13 displays the hazard rate for the three types of firms shown in Table 6. While firms
scoring high on the firm characteristics in Table 6 face a very low hazard rate during the entire time
span, firms scoring low on the firm characteristics face a much higher hazard, and correspondingly
experience a much steeper increase in the last 10 years of the analysis time. Firms whose values lie at
the median of the variables fall right in between the two other survivor functions; they are closer to
the firms with the higher values though. While in 2015 firms scoring low on the firm characteristics
in Table 6 face a hazard rate of over 0.15, firms scoring high on the characteristics face a hazard
of only 0.02. Firms laying at the median of the variables face a hazard of about 0.08. In 2015,
the probability of exiting from R&D was almost 8 times higher for less competitive firms than for
competitive firms.

5.3.3 Innovation input

In Table 16, the explanatory variables from Table 5 are retained, although they are not displayed
again, while we introduce five new explanatory variables that measure the inputs firms invest in
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Table 6: Competitive vs. less competitive firms

Variable 10% smallest 50%: median 90% highest

Employment 50 250 500
Value added/employee 90’000 145’000 275’000
Share academics 0 3 20
Share higher eduction 3 12 33
Export share 0 33 95
Technological potential 2 3 5

Figure 12: Survivor functions competitive vs. less competitive firms
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Figure 13: Hazard functions competitive vs. less competitive firms

their R&D activities: R&D expenditures, R&D cooperation with universities, R&D cooperation with
other research institutes, and domestic and international innovation support. These variables are all
negatively associated with the hazard rate of exiting R&D. The exponentiated coefficients in Table 7
are statistically significant and below the value of one. For instance, the exponentiated coefficient of
R&D expenditures is 0.888, which means that a one percent increase in R&D expenditures reduces
the hazard of exiting R&D by 0.112%. The only variable that is not statistically significant is
international innovation support. In contrast, domestic innovation support shows an exponentiated
coefficient of 0.504, which implies that the hazard of exiting R&D is only half as large for firms
enjoying domestic innovation support than for firms without such support. Note that all specifications
in Table 7 also control for 2-digit industry dummies. In sum, Table 7 shows that firms intensively
engaged in their R&D activities also show a much lower hazard of exiting these R&D activities; those
firms that are fully committed to R&D also stay in R&D.

As an example, Figure 14 shows the survivor functions of Table 7 for firms with R&D cooperation
with universities. All variables are held at their means except for the variable that designates R&D
cooperation with universities. The two survivor functions indicate what we have already observed
in Table 7: firms that pursue R&D cooperation with universities show a slower decrease in the
probability to exit R&D. The survivor function for these firms falls much slower than the survivor
function for firms that do not pursue R&D cooperation with universities.
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Table 7: Innovation input R&D exit

(1) (2) (3)
VARIABLES Model I Model II Model III

Ln(R&D expenditures) 0.888***
(0.017)

R&D Cooperation universities 0.713***
(0.075)

R&D Cooperation other research 0.786**
(0.094)

Innovation support domestic 0.504***
(0.114)

Innovation support international 0.633
(0.220)

Observations 3,763 3,879 1,789
Control variables Yes Yes Yes
Industry fixed effects Yes Yes Yes

*** p<0.01, ** p<0.05, * p<0.1

Figure 14: Survivor functions R&D cooperation with universities

31



Table 8: Innovation output R&D exit

(1) (2) (3)
VARIABLES Model I Model II Model III

Sales share new products/services 0.993**
(0.003)

Sales share improved products/services 0.998
(0.002)

Sales share new to market 0.992*
(0.004)

Sales share new to firm 0.997
(0.003)

World first product/service 0.829**
(0.069)

Observations 3,052 1,284 2,225
Control variables Yes Yes Yes
Industry fixed effects Yes Yes Yes

*** p<0.01, ** p<0.05, * p<0.1

5.3.4 Innovation output

In Table 8, we extend the baseline Cox model from Table 5 with variables measuring the innovation
output of firms. The results show that firms with a higher sales share of new products, but not
with a higher sales share of improved products, have a lower hazard of exiting from R&D. Similarly,
firms with a higher sales share of products new to the market, but not with a higher sales share of
products new to the firm, have lower hazard rates. However, this latter difference is less pronounced.
Finally, firms that indicate they have introduced a world first product show a 17.1% lower hazard
rate than firms without such a product. In analogy to the innovation input in Table 7, Table 8 shows
that firms very active in producing highly innovative output are considerably less likely to exit from
R&D.

5.3.5 Deep innovators vs. less deep innovators

Figure 15 shows the survivor function for the so-called deep innovators. These are firms that are
intensively engaged in their R&D activities, and which at the same also produce highly innovative
output. Table 9 shows the characterization of deep innovators in comparison with less deep innova-
tors. The less deep innovators have R&D expenditures that correspond to 1% of their sales, whereas
deep innovators have R&D expenditures that corresponds to 10% of their sales. The average firms
whose values are held at the median have share of R&D expenditures in sales of 2%. Moreover,
deep innovators have a sales share of new products of 40% and a sales share of improved products of
50%. Deep innovators thus replace their product portfolio very rapidly, every 3-4 years. Less deep
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Table 9: Deep innovators vs. less deep innovators

Variable 10% smallest 50%: median 90% highest

R&D expenditures/sales 0.001 0.020 0.010
Sales share new products 0 10 40
Sales share improved products 0 15 50

Figure 15: Survivor functions deep vs. less deep innovators

innovators, in contrast, have a sales share of new products and a sales share of improved products
of 0%. The average firms held at the median have values of 10% and 15% for these two variables,
respectively. The analysis incorporates the baseline Cox model of Table 5 and only these tree vari-
ables, because the other innovation input and output variables are only available in some of the
cross-sections, which would reduce the power of the analysis too much. Figure 15 shows that deep
innovators experience a much less pronounced decrease in the probability to exit from R&D than less
deep innovators. The same pattern emerges in Figure 16 deep innovators show much lower hazard
rates than less deep innovators. We can thus conclude that firms that are intensively engaged in
their innovation activities and produce a highly innovative output are much less likely to exit from
R&D than firms falling short of these important characteristics.
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Figure 16: Hazard functions deep vs. less deep innovators

5.3.6 Competitive and innovative: a diverging pattern

Figure 17 shows the survivor functions from the baseline Cox model in Table 5 together with the three
variables characterizing deep innovators. Thus, in calculating the survivor functions, it combines
the dimensions: the pink line displays the survivor function for firms that are competitive, deep
innovators, while the blue line displays the survivor function for firms that are less competitive, less
deep innovators. The light blue line displays the survivor curve for the firms whose values for all
variables are held at the median. Figure 17 thus combines the high and low values shown in Table 6
and 9, respectively. It shows that competitive, deep innovators are very unlikely to exit from R&D,
even over a time span of 21 years. From 1996 to 2017, they face an over 80% probability to still
be R&D active. The next chapter will show that competitive, deep innovators also experienced a
pronounced shift toward entering R&D. Hence, the proportion of competitive, deep innovators with
R&D activities in the economy is even likely to have increased. The development of the hazard rate
in Figure 18 shows the same pattern as Figure 17. Competitive firms that are at the same time also
deep innovators show a very low hazard of exiting R&D, although this rate has also slightly increased
since the year 2011. The hazard is still very low though. In sharp contrast, less competitive, less
innovative firms are practically certain to exit from R&D over a time span of 21 years. The hazard
rate for this type of firms is very high right from the beginning and strongly increases over time.
Thus, we have a divergence between competitive, deep innovators and less competitive firms, less
deep innovators. Only few firms from the former category exit R&D, whereas the probability to exit
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Figure 17: Survivor functions: a diverging pattern

for a firm in the latter category reaches near certainty over the time span from 1996 to 2017. The
survivor function of the group of firms whose values are held at the mean falls in-between the other
two survivor functions, while being somewhat closer to the survivor function of the competitive, deep
innovators. The hazard of the average firm to exit from R&D is thus a bit closer to the hazard of
exiting for the group of competitive, deep innovators.

5.3.7 Hampering factors R&D exit

Table 10 shows different groups of hampering factors and how they influence the time until firms
exit from R&D. The Cox model again contains all variables from the baseline model shown in Table
7 as control variables, including the 2-digit industry dummies. Interestingly, hampering factors one
would consider as very relevant, such as high costs and payback time are not statistically significant
in this model. In contrast, firms indicating equity constraints and copiability as important hampering
factors show a significantly higher hazard rate of exiting R&D. Counterintuitively, firms with the
hampering factors technological risk and lack of R&D employees show a significantly lower hazard of
exiting R&D. A potential explanation of this pattern is that the deep innovators score higher values
on these hampering factors, which is the reason why we observe such an inverse correlation with
the hazard rate. The only hampering factor that is associated with an increase in the probability to
exit from R&D are thus constraints in equity and ease of copiability. The pursuit of R&D activities
obviously needs a stable financial basis, while the products and services should not lend themselves
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Figure 18: Hazard functions: a diverging pattern

to easy imitation.

5.4 Entry into R&D

5.4.1 Baseline model

This second analysis estimates a Cox model that starts out with all non R&D-active firms, which can
all either continue without R&D or enter R&D. It is the mirror image of the analysis in the previous
chapter on exiting from R&D and analyzes whether firms enter R&D and if so how long they last
until they enter. In this chapter, R&D active firms and firms that do not exit R&D are not part of
the analysis. The analysis starts again in 1996, and firms can join the analysis given that they are
without R&D activities. Table 11 shows the explanatory variables of the Cox model. It contains
the same explanatory variables as Table 6. The coefficients in Table 11 are again exponentiated.
They indicate by how much they shift the hazard of entering into R&D. For instance, the hazard
ratio of employment of 1.266 means that a one percent increase in employment increases the hazard
rate of entering R&D by 0.266%. Interestingly, except for value added per employee, all variables
are again statistically significantly associated with the hazard rate. Higher values of employment,
human capital, exports, and technological potential are all positively associated with the hazard of
entering R&D. This means that the same firm characteristics causing firms to maintain R&D are also
the firm characteristics making them more likely to enter R&D. Note that all specifications again
control for 2-digit industry dummies.
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Table 10: Hampering factors R&D exit

(1) (2) (3) (4) (5)
VARIABLES Model I Model II Model III Model IV Model V

High costs 1.014 1.035
(0.034) (0.038)

Copiability 1.027 1.060*
(0.028) (0.032)

Payback time 0.975 0.985
(0.033) (0.037)

Technological risk 0.930** 0.924**
(0.030) (0.032)

Market risk 1.047 1.032
(0.032) (0.035)

Lack of equity 1.074** 1.069*
(0.037) (0.040)

Lack of credit 0.953 0.969
(0.032) (0.036)

Lack of R&D personnel 0.939** 0.936**
(0.030) (0.030)

Lack of skilled personnel 0.984 0.974
(0.032) (0.033)

Observations 3,910 3,898 3,907 3,688 3,688
Control variables Yes Yes Yes Yes Yes
Industry fixed effects Yes Yes Yes Yes Yes

*** p<0.01, ** p<0.05, * p<0.1
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Table 11: Baseline R&D entry

(1) (2) (3) (4) (5)
VARIABLES Model I Model II Model III Model IV Model V

Ln(Employment) 1.266*** 1.267*** 1.269*** 1.254*** 1.242***
(0.033) (0.033) (0.033) (0.034) (0.034)

Ln(Value added/employee) 1.083 1.055 1.035 1.024
(0.078) (0.076) (0.076) (0.076)

Share academics 1.010*** 1.008** 1.008**
(0.003) (0.003) (0.003)

Share higher education 1.007*** 1.007*** 1.006**
(0.003) (0.003) (0.003)

Export share 1.004*** 1.004***
(0.001) (0.001)

Technological potential 1.123***
(0.039)

Observations 5,613 5,604 5,604 5,541 5,540
Industry fixed effects Yes Yes Yes Yes Yes

*** p<0.01, ** p<0.05, * p<0.1

5.4.2 Competitive vs. less competitive firms

As in Chapter 3.2, Figure 19 displays the survivor functions for more competitive, less competitive
firms, and firms with medium competitiveness. Because the sample of non R&D-active firms is
different from the sample of R&D active firms, the values for the characterization of competitiveness
are somewhat different. The respective 10% smallest values, median values, and 90% highest values
are shown in Table 12. In a mirror image to the part on exit from R&D, Figure 19 shows that firms
scoring high on the firm characteristics in Table 12 (i.e., the competitive firms) are much more likely
to enter R&D than firms scoring low on these firm characteristics. Note that the survivor function is
again decreasing; it can by definition only decrease, even though we are here concerned with entries
into R&D and not with exits from R&D. It measures how long non-R&D active firm can survive
without entering R&D.

At the end of the analysis time in 2017, firms with high values for the variables in Table 12 have
a probability of about 80% to enter R&D (you have to subtract the value of the survivor function
from one). In contrast, firms with low values for the variables have a low probability of less than 40%
to enter R&D. Firms with values held at the median still face a more than 50% to enter R&D. The
hazard rates in Figure 20 show a somewhat different pattern than in the previous chapter. While
competitive firms are more likely to enter R&D than less competitive firms, the hazard rate for all
three types of firms are slightly decreasing. This means that the probability for all types of firms
to enter R&D has slightly decreased over time, given that they made it this far. This observation
stands in sharp contrast with the development for the hazard rate to exit from R&D, which has
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Table 12: Competitive vs. less competitive firms

Variable 10% smallest 50%: median 90% highest

Employment 50 250 500
Value added/employee 75’000 130’000 265’000
Share academics 0 0 13
Share higher eduction 0 10 30
Export share 0 0 40
Technological potential 1 2 4

strongly increased over time.
In sum, firms that are large, human capital intensive, export oriented, and operate in technolog-

ically active fields are much more likely to enter R&D than firms scoring low on all these variables.
Because the propensity to pursue R&D (i.e., the share of firms with R&D activities) has decreased
over time, we know that the entries into R&D were not sufficient to compensate the exits from R&D
we have observed. Moreover, in chapter 5, we will run a robustness check of how entries and exits
compare when we exclude the switchers, those firms that enter and exit repeatedly.

Note that we cannot pursue an investigation of innovation input and innovation output for the
entry into R&D, because non R&D-active firms do not have positive R&D expenditures and also
show much less variation in how innovative they are. In short, we have too few deep innovators that
do not purse R&D activities. The data therefore does not allow for an identification of these effects.
These would be counterfactual possibilities we do not observe, neither in the data nor in the real
world.

5.4.3 Hampering factors R&D entry

Table 13 shows the same hampering factors as in the chapter on exit from R&D and investigates how
they influence the time until entry into R&D. The Cox model contains all variables from the model
shown in Table 11 as control variables, including the 2-digit industry dummies. Table 13 shows the
same patterns as the analysis of the hampering factors on exit from R&D, just, as expected, in the
opposite direction. Notably, most of the hampering factors are only moderately correlated with entry
into R&D. A higher payback time is associated with a significantly lower hazard of entering R&D.
In addition, the lack of R&D employees is here positively associated with the hazard rate. As in
the previous chapter, this result suggests that this hampering factor proxies for deep innovators. All
other explanatory variables are not statistically significantly associated with the hazard of entering
R&D. Most important, equity constraint seem therefore less important for entering R&D than they
are for maintaining R&D. While firms with equity constraints are more likely to exit from R&D, the
presence of equity itself does not spur entry into R&D. This means that the availability of sufficient
equity is asymmetric. A lack of equity can move firms to give up R&D, but the availability of equity
does not incline them to enter it. Equity is therefore a necessary but not a sufficient condition for
the pursuit of R&D activities.
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Figure 19: Survivor functions: competitive vs. less competitive firms

Figure 20: Hazard functions: competitive vs. less competitive firms
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Table 13: Hampering factors R&D entry

(1) (2) (3) (4) (5)
VARIABLES Model I Model II Model III Model IV Model V

High costs 1.067 1.030
(0.053) (0.057)

Copiability 1.077* 1.016
(0.043) (0.048)

Payback time 0.930 0.901*
(0.047) (0.052)

Technological risk 1.085* 1.078
(0.052) (0.058)

Market risk 1.069 1.084
(0.050) (0.059)

Lack of equity 1.034 1.013
(0.060) (0.066)

Lack of credit 0.991 0.976
(0.060) (0.064)

Lack of R&D personnel 1.143*** 1.118**
(0.053) (0.053)

Lack of skilled personnel 0.939 0.925
(0.045) (0.046)

Observations 5,539 5,457 5,536 5,177 5,176
Control variables Yes Yes Yes Yes Yes
Industry fixed effects Yes Yes Yes Yes Yes

*** p<0.01, ** p<0.05, * p<0.1
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Table 14: Exit from and entry into R&D for switchers

Analysis of exit from R&D

Observations 3,494
Firms 1,676
Exits from R&D 712

Analysis of entry into R&D

Observations 5,122
Firms 2,258
Entry into R&D 331

5.5 Robustness checks

5.5.1 Without R&D switchers

In the previous two chapters, the switchers, that is, those firms that exit R&D and then enter it
again were included to the analysis, too. The switchers constitute relevant information about the
time until failure as well, as they are true exits and entries, even though they are more short-lived
than permanent exits and entries since they do revert again. However, because the exits and entries
of switchers are more short-lived and the initial decision is reverted over time, one might argue that
the switchers are less important, as their decisions to enter or exit R&D seem not to be final. In the
first chapter, we argued that firms that do not appear as switchers could potentially be so, too, and
we just did not observe them for a long enough time span. Hence, the boundary between the two is
fuzzy and we kept them in the analysis. However, to estimate the influence of these switchers, this
chapter pursues the very same analysis as the in the previous chapters but excludes the switchers.
The switchers make up 610 firms, which either exit R&D and enter it again or enter R&D and exit
it again; they are thus distributed over both the analysis of exit from R&D and entry in R&D. Table
14 shows the descriptive statistics without the switchers. Excluding them reduces the observations
for the analysis of exit and entry by 454 and 492, respectively, as many of the switchers appear in
both analysis.

Table 15 shows that the results for exit from R&D are practically identical to the results of the
baseline Cox model in Table 5. The changes in the coefficients are minor and the subtraction of the
switchers from the analysis sample did not affect the results in any way. In the same vein, Table 16
shows that the results for entry into R&D are also practically identical to the results of the baseline
Cox model in Table 11, even though the reduction in observations is much larger in this latter case
of entry into R&D. From these two tables, we can conclude that the exclusion of the switchers does
not alter the results in any substantial way. The coefficients stay more or less the same in both types
of analysis.

As a further robustness check, Figure 17 from Section 3.6 is reproduced, where competitive and
deep innovators are combined and compared with less competitive and less deep innovators, but this
time without the switchers. We can only do this for exit from R&D, as we do not have sufficient
data on the innovativeness of non R&D-active firms, and we thus cannot pursue this analysis for
entry into R&D. The patterns in Figure 21 are practically identical to the patterns in Figure 17.
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Table 15: Baseline model exit from R&D for switchers

(1) (2) (3) (4) (5)
VARIABLES Model I Model II Model III Model IV Model V

Ln(Employment) 0.748*** 0.751*** 0.737*** 0.758*** 0.763***
(0.019) (0.019) (0.019) (0.020) (0.021)

Ln(Value added/employee) 0.815*** 0.833*** 0.867** 0.871**
(0.053) (0.056) (0.058) (0.059)

Share academics 0.983*** 0.987*** 0.988***
(0.003) (0.003) (0.003)

Share higher education 0.990*** 0.992*** 0.993***
(0.003) (0.003) (0.003)

Export share 0.991*** 0.991***
(0.001) (0.001)

Technological potential 0.897***
(0.028)

Observations 3,492 3,488 3,488 3,462 3,462
Industry fixed effects Yes Yes Yes Yes Yes

*** p<0.01, ** p<0.05, * p<0.1

Table 16: Baseline model entry into R&D for switchers

(1) (2) (3) (4) (5)
VARIABLES Model I Model II Model III Model IV Model V

Ln(Employment) 1.324*** 1.325*** 1.326*** 1.304*** 1.285***
(0.051) (0.052) (0.051) (0.053) (0.053)

Ln(Value added/employee) 1.143 1.092 1.069 1.042
(0.124) (0.117) (0.115) (0.113)

Share academics 1.014*** 1.012*** 1.011**
(0.005) (0.005) (0.005)

Share higher education 1.009*** 1.009*** 1.008**
(0.003) (0.003) (0.003)

Export share 1.005*** 1.005**
(0.002) (0.002)

Technological potential 1.211***
(0.060)

Observations 5,121 5,114 5,114 5,060 5,060
Industry fixed effects Yes Yes Yes Yes Yes

*** p<0.01, ** p<0.05, * p<0.1
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Figure 21: Survivor functions for switchers

The only difference is that the survivor functions are somewhat flatter, as there are less exits from
R&D for both groups. We see that the survivor function for the competitive firms that are also
deep innovators is practically flat over time. Over a period of more than 21 years, the hazard of
exiting for competitive, highly innovative firms does not even amount to 10%. In sharp contrast, less
competitive, less innovative firms face an almost certainty to exit R&D over the entire period of 21
years, just as in Figure 17. The hazard rate in Figure 22 shows the same divergence; the differences
in the hazard rates between competitive, deep innovators is even somewhat more pronounced than
the differences in hazard rates in Figure 18.

5.5.2 Variance due to education

One might object that a high share of employees with a tertiary education implies that the firm
must have successful innovation activities and that therefore the analysis of competitive vs. less
competitive firms in Chapter 3.2 reduces to a tautology. However, there are many firms, especially
in services, which employ high shares of skilled personnel and nevertheless do not pursue R&D
activities, such as in the financial sector. Highly qualified personnel may be a necessary but it is
not a sufficient condition for the pursuit of R&D activities. Nonetheless, to test whether our results
may to a large degree be determined by this potential problem, we conduct a robustness check where
we hold constant the share of employees with a tertiary education between competitive and less
competitive firms. The values for the firms who lie at the median of the firm characteristics in Table

44



Figure 22: Hazard functions for switchers

6 are retained.
Figure 23 displays the survivor curves for competitive vs. less competitive firms using the same

covariates as in Table 6 in Chapter 3.2. In contrast to the survivor functions in Figure 13, however,
Figure 23 uses the same high levels of tertiary education for the less competitive firms as for the
competitive firms. That is, the less competitive firms are assumed to have the same high share of
academics of 20% and the same share of employees with higher education of 33% as the competitive
firms. Figure 23 demonstrates that the probability for the less competitive firms to not exit from
R&D until 2017 increases from about 5% to about 15%, while the probability to survive for the other
two groups of firms stays, of course, the same. In the same manner, we can display the three survivor
functions by inserting the low levels of tertiary education from the less competitive firms into the
competitive firms. That is, for both the competitive and the less competitive firms, we assume a
share of academics of 0% and a share of employees with higher education of 3%. Figure 24 shows
that the probability for the competitive firm to not exit from R&D until 2017 now reduces from
about 70% to somewhat less than 60%. The survivor function for the less competitive firms and the
firms whose values are held at the median stay the same again. Hence, while tertiary education is
certainly important for maintaining R&D activities in firms, it is not the sole factor. Its influence is
on the hazard of exiting R&D is not more pronounced than the influence of the other four, equally
relevant covariates proxying for the firms competitiveness: employment, value added per employee,
export share, and technological potential.
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Figure 23: Survivor functions: variance due to education

Figure 24: Hazard functions: variance due to education
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Figure 25: Sectoral differences

5.5.3 Sectoral differences

In this part we will split the survivor function into four subsectors: high-tech manufacturing, low-
tech manufacturing, modern services, and traditional services. Figure 25 shows that there are quite
some differences in the probability to maintain R&D over the entire time span. Firms in high-tech
manufacturing are much more likely to keep their R&D activities than firms in any other subsector.
Conversely, firms in traditional services are much more likely to exit from R&D than any other
subsector. Interestingly, firms in low-tech manufacturing are somewhat more likely to still be R&D-
active than firms in modern services. R&D is thus more important in manufacturing than in services
also over time; the former firms are much less likely to exit from R&D. The shifts of the survivor
functions visible in Figure 25 show that the subsector to which a firm belongs determines the survival
of firms in R&D much less than the competitiveness shown in Figure 12 in Chapter 3.2. The survivor
functions in Figure 12 show much broader variation than the survivor functions in Figure 25. This
means that the firms’ competitiveness is more important in determining eventual decisions to exit
from R&D than the subsector to which the firms belong. The gap in survivor functions visible
in Figure 25 is more comparable to the gap in survivor functions visible in Figure 15, where we
compare deep vs. less deep innovators. Hence, differences in the subsectors to which firms belong
yield a similar influence on the probability to stay R&D-active as differences between the two types
of deep and less deep innovators.
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5.6 International comparison with Netherlands

In this section, we discuss the results of the survival analysis for the Netherlands. Exploiting the
comparative nature of the microdata, the estimations are run as close as possible to the estimations
for Switzerland. In contrast to Switzerland, where we have data only in 2 and 3 year intervals, in
the Netherlands we have data for every year. This results in a smoother survivor function than for
Switzerland.

5.6.1 Baseline model

Figure 26 shows the baseline survivor function over the years 2001 to 2016. It is equivalent to
Figure 19 in Chapter 5.3.1 for Switzerland. The explanatory variables are again held at their means
and the displayed survivor function is thus relevant for an average firm. Like in Figure 19, the
probability that firms maintain R&D decreases over time. Overall, the development of the survivor
function in the Netherlands is similar to the development of the survivor function in Switzerland.
The probability to maintain R&D decreases in Switzerland over the entire time span of almost 20
years to less than 0.3. We see a similar development in the Netherlands. However, Figure 26 shows
that the development of the survivor function in the Netherlands is less linear than in Switzerland.
The probability to still have R&D decreases very sharply in the first ten years, but this decrease is
much less pronounced from 2010 onwards. The survivor function develops almost horizontally. In
Figure 19 for Switzerland, in contrast, the survivor function does not decrease less sharply over time,
and no flatting is observed. Hence, the rate of exiting from R&D has developed more favorably in
the Netherlands than in Switzerland over the past 10 years. This is not a surprising result, given
that over this time span the propensity of firms to conduct R&D has increased in the Netherlands
whereas it has decreased in Switzerland. It indicates that the increase in the propensity to conduct
R&D in the Netherlands is based on a less pronounced rate of exits from R&D.

5.6.2 Competitive and innovative: a diverging pattern

Figure 27 shows how competitiveness and innovativeness lead to a stark contrast in the probability to
still be R&D active in the Netherlands, just as it was the case in Figure 17 for Switzerland. Figure
27 also combines two dimensions: the green line displays the survivor function for firms that are
competitive, deep innovators, while the blue line displays the survivor function for firms that are
less competitive, less deep innovators. The red line displays the survivor function for firms whose
values for all variables are held at the median. Like in Figure 17 for Switzerland, Figure 27 shows
that competitive, deep innovators are less likely to exit from R&D than less competitive, less deep
innovators. However, in Figure 27 the divergence between the two groups is less strong than in Figure
17 for Switzerland. While in the Netherlands less competitive, less deep innovators show a somewhat
less pronounced decline in the probability to exit from R&D, competitive, deep innovators show a
more pronounced decline compared to Switzerland. This implies that in Switzerland competitive,
deep innovators are more resistant in giving up R&D than in the Netherlands, while the opposite
holds for less competitive, less deep innovators: they are more likely to give up R&D in Switzerland
than in the Netherlands. This indicates that the more favorable trend of the survivor function in
Figure 26 is mainly due to the less competitive, less deep innovators, who are comparatively less likely
to exit R&D than in Switzerland. One possible reason for this difference is that in the Netherlands
there is more support for innovation activities, to which we turn now.
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Figure 26: Survivor function exit from R&D for the Netherlands

Figure 27: Survivor functions: A diverging pattern for the Netherlands
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5.6.3 The innovation box

Differently to Switzerland, in the Netherlands the Dutch government provides incentives for firms
to conduct R&D in the form of an “innovation box” and a “patent box”. The innovation box tax
incentive scheme works on the corporate income tax level, giving firms a lower tax rate on profits that
are the result of immaterial assets. It started out in 2007 as a patent box, that is, the only immaterial
asset that was allowed was a patent. This broadened to include R&D activities without a patent
or other formal property rights in 2010 (renamed into innovation box). Figure 28 shows how the
survivor functions develop over time for firms with and firms without access to the innovation box.
There is a substantial difference between the two functions: firms that profit from the innovation
box show a much less pronounced decrease in the probability to still be R&D active. The difference
between the two survivor functions in Figure 28 is comparable to the difference in Figure 27 between
competitive, deep innovators and less competitive, less deep innovators. The impact of the innovation
box on the probability to still be R&D active might thus be substantial. Figure 28 suggests that
the innovation box could have helped to maintain firms R&D active in the Netherlands. However,
these results are not necessarily causal. The firms that profit from the innovation box might differ in
observable and unobservable characteristics from those firms that cannot profit from it beyond the
measurable observables we have included in the estimations, with these hidden characteristics in fact
causing the difference. Nonetheless, we do observe a very stark difference between the two groups of
firms, suggesting that the innovation box policy instrument might be quite effective in keeping firms
in the R&D market.

5.6.4 Hampering factors R&D exit

Table 17 shows how the hampering factors influence the time until firms exit from R&D in the
Netherlands. It is the equivalent of Table 10 for Switzerland. The only hampering factors that
are statistically significantly related to the hazard rate are competition and lack of collaboration
partners. They are both associated with a lower hazard rate to exit from R&D. This indicates
that competition and own R&D are both beneficial to maintain R&D in the Netherlands. All
other variables in Table 17 are not statistically significant. Most important, a shortage in financial
resources, which is associated with a higher risk of exiting R&D in Table 10 for Switzerland, points
even into the opposite direction in Table 17. Lack of financing is therefore not related to the exit
from R&D activities in the Netherlands.

50



Figure 28: Survivor functions Innovation Box

Table 17: Hampering factors R&D exit

(1) (2) (3) (4) (5) (6) (7)
VARIABLES Model I Model II Model III Model IV Model V Model VI Model VII

High costs 0.909 1.046
(0.084) (0.142)

Competition 0.842* 0.910
(0.088) (0.104)

Market risk 0.894 0.923
(0.085) (0.108)

Lack of finance 0.887 0.992
(0.082) (0.136)

Lack of skilled personnel 0.867 0.969
(0.078) (0.113)

Lack of collab. partners 0.828* 0.871
(0.090) (0.102)

Observations 4,648 3,191 4,291 4,656 4,648 2,947 2,934
Control variables Yes Yes Yes Yes Yes Yes Yes
Industry fixed effects Yes Yes Yes Yes Yes Yes Yes

*** p<0.01, ** p<0.05, * p<0.1
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6 The Determinants of Firms’ R&D Decision

In the following we will analyze factors determining the firm’s R&D decision. We will first analyze
simple correlations in a linear probability model between the R&D decision and firm characteristics
affecting in-house R&D success, imitation success, and competition. In contrast to the survival
analysis in Chapter 5, the linear probability model is derived from the structural model presented
in this chapter. Hence, it allows us to estimate parameters that directly map to a theory about
the firm’s R&D decision. We will then present this structural model, which allows us to separately
identify the effects of the difficulty of making innovations (in-house R&D success), cost of R&D, and
technology diffusion (imitation) on the R&D decision. We will use the estimated structural model
to perform counterfactual policy simulations and to investigate the effectiveness of R&D policies. A
more detailed discussion of the structural model can be found in Appendix B.

6.1 Firms’ Profits

Let the profit, πi(t), of firm i time t be given by (König et al., 2020, 2016)

πi(t) = ψ × Ai(t)︸ ︷︷ ︸
productivity

− ci(t)︸︷︷︸
R&D cost

(1)

where ψ > 0 is a constant. Firms can increase their productivity, Ai(t), (and profits, πi(t)), due to
in-house R&D or imitating other, more productive firms. The firm’s decision to do R&D is based on
the expected profits in Equation (1) from choosing in-house R&D or imitation, respectively.

6.2 R&D Decision and Linear Probability Model

Consider a firm i with in-house R&D success probability pi. Denote by Di the decision variable of
the firm to do R&D. Then one can show that

Di = pi︸︷︷︸
innovation
potential

−κ̃eθ(ā−ai)︸ ︷︷ ︸
competition

effect

−q(1− Fai)︸ ︷︷ ︸
imitation
potential

(2)

where ai is the log-productivity of firm i, ā the average log-productivity, 1 − Fai is the fraction of
firms with a productivity larger than ai, q is the imitation success probability, and κ̃ the relative
cost of R&D. Equation (6.2) can be estimated with ordinary least squares (OLS) and we will refer
to this as the linear probability model (LPM). In an extended model we can also allow for imitation
of firms that fail to do successful in-house R&D. We refer to this as “passive imitation” with success
probability δ. This model can be estimated with non-linear least squares (NLS).

6.3 Structural Endogenous Growth Model

The simple model introduced in Section 6.2 is indicative for measuring some basic correlations with
the R&D decision. But this model might suffer from an endogeneity bias due to productivity (and
other variables) being affected by the innovation decision (and vice versa). We therefore introduce a
structural model that takes into account the endogenous evolution of the firms’ productivities from
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their innovation and imitation decisions. We characterize the evolution of the productivity distribu-
tion with heterogeneous firms (random effects) in terms of their in-house R&D success probabilities.

For the purpose of estimating the parameters of this model, we choose the parameters in such a
way as to fit the distributions predicted by the model to the empirical distributions. More precisely,
we consider a set of moments (measuring the absolute differences between the model and the data)
constructed from the log-productivity distribution and the R&D profile (i.e. the fraction of firms
conducting R&D for a given log-productivity level). We then search for the parameters that minimize
the distance between the targeted empirical moments and the stationary distribution of the model.
This estimation approach is referred to as Simulated Method of Moments (SMM) procedure.

6.4 Estimation Results

In this section we report the estimation results for both, the linear probability model (LPM/NLS)
introduced in Section 6.2 and the structural growth model (SMM) introduced in Section 6.3.

The estimation results pooled across the years 1996 to 2017 can be seen in Table 18. Table 19
shows the Nonlinear Least Squares (NLS) parameter estimates across the years from 1999 to 2017.
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Table 18: Estimation results pooled across the years 1996 to 2017.

LPM NLS SMM
w/o passive w/o firm with firm with random

imitation characteristics characteristics effects
(1) (2) (3) (4)

Innovation (p) 0.5880*** 0.4999***
–

0.7962***
(0.0203) (0.0178) (0.1199)

Cost (κ̃) 0.1495*** 0.0737*** 0.0126*** 1.7999***
(0.0211) (0.0154) (0.0083) (0.7443)

Imitation (q) 0.0781*** 0.6798*** 0.8912*** 0.6986***
(0.0157) (0.0652) (0.1000) (0.1141)

Passive Imitation (δ)
–

1.0437*** 1.0197*** 0.4307*
(0.0229) (0.0141) (0.2382)

Const. (β0)
– –

-3.5608***
–

(0.1637)
Higher Education (β1)

– –
0.0042***

–
(0.0013)

Export (yes/no) (β2)
– –

1.4907***
–

(0.0417)
Competitors: 6-10 (β3)

– –
-0.0664

–
(0.0488)

Competitors: 11-15 (β4)
– –

-0.0917
–

(0.0624)
Competitors: 16-50 (β5)

– –
-0.2738***

–
(0.0637)

Competitors: > 50 (β6)
– –

-0.8569***
–

(0.0628)
Technological Potential (β7)

– –
0.3816***

–
(0.0189)

ln(firm age) (β8)
– –

0.0469**
–

(0.0228)
KTT Universities (β9)

– –
0.2782***

–
(0.0187)

KTT Competitors (β10)
– –

-0.0734***
–

(0.0198)

Notes: Model (1) corresponds to the Linear Probability Model (LPM) discussed in Section B.5.
Models (2) and (3) correspond to a Nonlinear Least Squares (NLS) estimation procedure with
an innovation decision variable as in Equation (8) as a dependent variable. Model (4) is the
Simulated Methods of Moments (SMM) estimation algorithm discussed in Section C for which
we set ã = 0.45. In all models we set θ = 0.2 following König et al. (2020). Statistically significant
at 10% level. Robust (i.e. heteroskedasticity consistent) standard errors in parentheses for models
(1)–(3). P-values are computed under the assumption of an asymptotic normal distribution of
the estimators: *** Statistically significant at 1% level. ** Statistically significant at 5% level. *
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Table 19: Linear Probability Model (LPM) and Nonlinear Least Squares (NLS) estimation results across years. The pooled estimation
results can be found in columns (1) and (2) of Table 18, respectively.

1996 1999 2002 2005 2008 2011 2013 2015 2017
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Linear Probability Model (LPM) w/o Passive Imitation

Innovation (p) 0.6214*** 0.6152*** 0.5024*** 0.5201*** 0.4532*** 0.4207*** 0.4356*** 0.4242*** 0.3894***
(0.1084) (0.2900) (0.0204) (0.0195) (0.0197) (0.0188) (0.0193) (0.0202) (0.0217)

Innov. Cost (κ̃) 0.0537 0.1946 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
(0.0862) (0.1642) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000)

Imitation (q) 0.0631 0.0038 0.1644*** 0.2625*** 0.1991*** 0.1532*** 0.2255*** 0.2519*** 0.2253***
(0.0747) (0.1444) (0.0346) (0.0322) (0.0355) (0.0339) (0.0362) (0.0379) (0.0410)

Nonlinear Least Squares (NLS) with Passive Imitation

Innovation (p) 0.5638*** 0.4281*** 0.4677*** 0.4938*** 0.3940*** 0.4042*** 0.3615*** 0.3653*** 0.3105***
(0.0187) (0.1113) (0.0952) (0.0804) (0.0156) (0.1051) (0.0607) (0.0325) (0.0747)

Innov. Cost (κ̃) 0.0000 0.0000 0.0000 0.0109 0.0000 0.0040 0.0000 0.0000 0.0000
(0.0086) (0.1216) (0.1040) (0.0754) (0.0148) (0.1154) (0.0652) (0.0209) (0.0807)

Imitation (q) 0.9706*** 0.8991* 0.7855*** 0.7547*** 0.9651*** 0.7411*** 0.8419*** 0.9340*** 0.9298***
(0.0403) (0.4596) (0.2862) (0.1818) (0.0355) (0.3153) (0.1780) (0.0805) (0.1865)

Pass. Imit. (δ) 0.9790*** 0.9694*** 0.9161*** 0.8903*** 0.9249*** 0.9297*** 0.8300*** 0.9134*** 0.8828***
(0.0145) (0.1221) (0.1117) (0.0988) (0.0330) (0.1342) (0.1021) (0.0424) (0.0831)

Notes: P-values are computed under the assumption of an asymptotic normal distribution of the estimators: *** Statistically significant at 1%
level. ** Statistically significant at 5% level. * Statistically significant at 10% level. Robust (i.e. heteroskedasticity consistent) standard errors in
parentheses.
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Figure 29: Nonlinear least squares model parameter estimates from Table 19 across different years.
The black curve (–) indicates the model with passive imitation (δ), while the green curve (–) indicates
the model without passive imitation (δ = 0).

Year-wise parameter estimates from the Nonlinear Least Squares (NLS) model are shown in
Figure 29. We observe that the in-house R&D success probability (p) is decreasing over the years,
suggesting that it becomes harder to make innovations. Also the imitation parameters q and δ show
a weakly decreasing (or stabilizing) trend, indicating attenuated or constant trend in technology
diffusion. This is consistent with the recent analysis in Lucking et al. (2019) who show that the
diffusion of technological knowledge has been more or less constant over time.

Figure 30 shows the influence of various firm characteristics on the firm’s innovation decision
that affect the in-house R&D success probability (i.e. observable firm characteristics affecting the
in-house R&D success probability pi in Equation (2)): Technological potential is the worldwide
privately and publicly available technological knowledge available to the firm for bringing about
marketable innovations. This includes basic scientific knowledge; knowledge of key technologies (e.g.
nanotechnology, semiconductor technology, biotechnology, IT, audiovisual techniques, etc.) that is
used to implement innovations. Higher education measures the number of people with a degree
higher than vocational professional education. We observe that higher education, export orientation,
the technological potential and the knowledge and technology transfer (KTT) between universities
and the industry have increasing importance on the innovation decision.

Figure 31 shows the effect of competition on the innovation decision. Across all years, competition
tends to have a negative effect on innovation (cf. “Schumpeterian effect”; Aghion et al. (2014)), which
is becoming stronger the more intense competition is.

Table 20 shows the SMM parameter estimates across the years from 1996 to 2017.
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Figure 30: Nonlinear Least Squares (NLS) model parameter estimates for the firm characteristics
education, export (yes/no), technological potential, log firm age, KTT universities, and KTT com-
petitors, across different years. The pooled estimation results can be found in column (3) of Table
18.
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Figure 31: Nonlinear Least Squares (NLS) model parameter estimates for the firm characteristics
related to competition across different years. The pooled estimation results can be found in column
(3) of Table 18.
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Table 20: SMM estimation results across years. The pooled estimation results can be found in column (4) of Table 18.

Simulated Method of Moments (SMM)

1996 1999 2002 2005 2008 2011 2013 2015 2017
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Imitation (q) 0.7257*** 0.7978*** 0.7810*** 0.8329*** 0.7890*** 0.7845*** 0.7703*** 0.8017*** 0.8370***
(0.1057) (0.0790) (0.0634) (0.0757) (0.0938) (0.0631) (0.0770) (0.0594) (0.0777)

Passive Imitation (δ) 0.9096*** 0.9116*** 0.8943*** 0.9092*** 0.8951*** 0.8928*** 0.8740*** 0.9142*** 0.8866***
(0.0631) (0.0591) (0.0627) (0.0577) (0.0630) (0.0605) (0.0806) (0.0512) (0.0655)

Innovation (p) 0.7032*** 0.6358*** 0.6119*** 0.6419*** 0.5343*** 0.6016*** 0.5569*** 0.5420*** 0.5271***
(0.0844) (0.0925) (0.0897) (0.0808) (0.0846) (0.0918) (0.0923) (0.0742) (0.0913)

Cost (κ̃) 0.8497** 1.0493** 0.9719** 1.0307* 0.9750** 1.0821* 0.9757** 1.0632* 0.9823**
(0.3943) (0.5353) (0.4733) (0.5327) (0.4887) (0.5665) (0.4815) (0.5475) (0.4838)

Notes: P-values are computed under the assumption of an asymptotic normal distribution of the estimators: *** Statistically significant
at 1% level. ** Statistically significant at 5% level. * Statistically significant at 10% level.
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Figure 32 shows the SMM parameter estimates across different years as reported in Table 20.
The figure suggests a decreasing trend in the innovation success probability p, a weakly decreasing
trend in the passive imitation success probability δ and a weakly increasing trend in the imitation
success probability q while the innovation cost parameter κ̃ remains largely stable over the years.

The robust declining trend in the in-house R&D success probabilities indicates that it becomes
more difficult for firms to successfully make innovations. This declining trend also influences the
innovation decision of the firms. As it becomes less likely for a firm to succeed with R&D, while the
R&D costs remain the same, fewer firms decide to conduct R&D, in particular those that are further
away from the frontier and that have more to gain from imitation.

6.5 Manufacturing and Services Sectors

Year-wise parameter estimates for the manufacturing and services sector from the Nonlinear Least
Squares model are shown in Figure 33. As for the pooled sample, we observe that the in-house
R&D success probability (p) is decreasing over the years, suggesting that it becomes harder to make
innovations. Moreover, we find that in the services sector the estimated p is roughly half of what it
is for the manufacturing sector. This indicates that it is more difficult to make innovations in the
services sector than in the manufacturing sector. More detailed estimation results can be found in
Appendix E.

6.6 Summary of the Estimation Results for Switzerland

To summarize our findings from our micro-regressions at the firm level based on survey data, we
can extend the list of stylized facts in Section 4.2 further by observing that the decision of a firm to
conduct R&D is affected by the following variables:

(4) Firm size has a positive effect on the R&D decision,

(5) Number of competitors has a negative effect on the R&D decision,

(6) Technological potential4 has a positive effect on the R&D decision,

(7) Industry-University collaborations have a positive effect on the R&D decision.

(8) The in-house R&D success probability is decreasing over the years, suggesting that it becomes
harder to make innovations.

4By technological potential, we mean the worldwide private and public technological knowledge that can be used to
produce marketable innovations in your field of activity. This includes: scientific basic knowledge, knowledge about key
technologies (e.g. nanotechnology, semiconductor technology, biotechnology, computer science, audiovisual techniques,
etc.), which is suitable for implementation in innovations, technological and/or organizational knowledge specific to
your field of activity.
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Figure 32: SMM parameter estimates across different years as reported in Table 20.
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Figure 33: Nonlinear least squares model parameter estimates from Table 23 across different years
for the manufacturing (left panel) and services (right panel) sector. The black curve (–) indicates
the model with passive imitation (δ), while the green curve (–) indicates the model without passive
imitation (δ = 0).

6.7 Estimation Results for the Netherlands

In the following we provide a comparison of the estimation results we have obtained for Switzerland
with the Netherlands. As already noted in Section 5.6.3, differently to Switzerland, the Dutch
government actively promotes engaging in R&D activities through a favorable corporate tax system
(in the form of an “innovation box” and a “patent box”). The estimation results pooled across the
years 2000 to 2016 for the Netherlands with the innovation box and the patent box included as
additional regressors can be seen in Table 21. We find that both, the innovation box and the patent
box, have a positive and significant impact on the R&D decision of the firm. This shows that R&D
policy incentives can affect the decision of firms to conduct R&D. The other estimates are similar to
what we have observed for Switzerland.

Table 22 shows the Nonlinear Least Squares (NLS) parameter estimates across the years from
2000 to 2016 for the Netherlands.
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Table 21: Estimation results for the Netherlands pooled across the years
2000 to 2016.

LPM NLS
w/o passive w/o firm with firm

imitation characteristics characteristics
(1) (2) (3)

Innovation (p) 0.5958*** 0.5622***
–

(0.0160) (0.0131)
Imitation (q) 0.4223*** 0.6229*** 0.8760***

(0.0124) (0.0365) (0.0926)
Passive Imitation (δ)

–
0.4906*** 0.9660***
(0.0592) (0.0176)

Const. (β0)
– –

-0.9049**
(0.1224)

Higher Education (β1)
– –

1.3316***
(0.1028)

Export (yes/no) (β2)
– –

0.8231***
(0.0435)

Competitors (β3)
– –

0.8614***
(0.0451)

Patent Box (β4)
– –

0.6808***
(0.3117)

Innovation Box (β5)
– –

1.7532***
(0.1382)

ln(firm age) (β6)
– –

-0.1093**
(0.0252)

No. Obs. 40,781 40,781 12,486

Notes: Model (1) corresponds to the Linear Probability Model (LPM) dis-
cussed in Section B.5. Models (2) and (3) correspond to a Nonlinear Least
Squares (NLS) estimation procedure with an innovation decision variable
as in Equation (8) as a dependent variable. In all models we set θ = 0.2
following König et al. (2020). Statistically significant at 10% level. Robust
(i.e. heteroskedasticity consistent) standard errors in parentheses for mod-
els (1)–(3). P-values are computed under the assumption of an asymptotic
normal distribution of the estimators: *** Statistically significant at 1%
level. ** Statistically significant at 5% level. *
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Table 22: Linear Probability Model (LPM) and Nonlinear Least Squares (NLS) estimation results across
years for the Netherlands.

2000 2002 2004 2006 2008 2010 2012 2014 2016
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Linear Probability Model (LPM) w/o Passive Imitation

Innovation (p) 0.4024 0.5401 0.4978 0.6036 0.4392 0.3963 0.5693 0.3674 0.4187
(0.0354) (0.0172) (0.0420) (0.1221) (0.0626) (0.0609) (0.1750) (0.1789) (0.1458)

Innov. Cost (κ̃) 0.0000 0.0512 0.0000 0.0440 0.0000 0.0000 0.0000 0.0000 0.0000
(0.0000) (0.0151) (0.0000) (0.1464) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Imitation (q) 0.4314 0.3187 0.4258 0.4832 0.4821 0.4559 0.3077 0.6540 0.5262
(0.0357) (0.0244) (0.0377) (0.0762) (0.0442) (0.0514) (0.1139) (0.1131) 0.0985

Nonlinear Least Squares (NLS) with Passive Imitation

Innovation (p) 0.4125 0.4477 0.4754 0.6416 0.4360 0.3914 0.5715 0.4220 0.4329
(0.0178) (0.0177) (0.0332) (0.1511) (0.0711) (0.0426) (0.0477) (0.0908) (0.1231)

Innov. Cost (κ̃) 0.0000 0.0000 0.0000 0.0561 0.0000 0.0000 0.0000 0.0000 0.0000
(0.0000) (0.0000) (0.0000) (0.1802) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Imitation (q) 0.8547 0.7864 0.6510 0.2858 0.4145 0.7161 1.0336 1.0676 0.7272
(0.0585) (0.0542) (0.1119) (0.1305) (0.1465) (0.1386) (0.1023) (0.1357) (0.2420)

Pass. Imit. (δ) 0.7245 0.8387 0.5174 -1.4394 -0.2708 0.5427 0.8074 0.5638 0.3697
(0.0735) (0.0441) (0.1639) (1.6194) (0.6470) (0.1821) (0.0883) (0.1119) (0.3103)

No. Obs. 4,178 5,445 4,627 3,761 4,242 2,408 1,827 1,715 1,926

Notes: P-values are computed under the assumption of an asymptotic normal distribution of the estimators: ***
Statistically significant at 1% level. ** Statistically significant at 5% level. * Statistically significant at 10% level.
Robust (i.e. heteroskedasticity consistent) standard errors in parentheses.
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Figure 34: Nonlinear least squares model parameter estimates from Table 22 across different years
for the in-house R&D success probability p (left panel) and the imitation success probability q (right
panel) for the Netherlands. The black curve (–) indicates the model with passive imitation (δ), while
the green curve (–) indicates the model without passive imitation (δ = 0).

Corresponding year-wise parameter estimates for the Netherlands from the Nonlinear Least
Squares model are shown in Figure 34. Similar to Switzerland, we observe that the in-house R&D
success probability (p) is sightly decreasing (or stagnating) after 2005, suggesting that it becomes
harder to make innovations. At the same time, after 2005, the imitation success probability is
increasing. This seems to suggest that firms substitute innovation with imitation.

7 Counterfactual Analyses and R&D Policy Implications

In the following we analyze various counterfactuals to understand how the productivity growth rate
and dispersion depend on the in-house R&D success probability, the imitation success probability
and the R&D costs.

7.1 Sensitivity Analysis

Figure 35 shows changes in the productivity growth rate ν and the productivity variance σ2 when
changing the in-house R&D success probability p and the imitation success probability q, respectively.
The changes are computed relative to benchmark scenario in which p and q are set to their estimated
values. The remaining parameters (other than p and q) are set to their estimates in column (8) in
Table 20. We find that the growth rate ν is monotonically increasing with both, increasing p and
q. Setting p = 1 increases the growth rate by 14%, while setting q = 1 increases the growth rate by
6%. Hence, policies that aim at improving the in-house R&D success probability seem to be more
effective than those that increase the imitation success probability (technology diffusion). However,
this comes with an increase in productivity dispersion. Setting p = 1 increases the productivity
variance by 80%, while increasing q reduces it.
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Figure 35: Changes in the productivity growth rate ν and the productivity variance σ2 when changing
the in-house R&D success probability p and the imitation success probability q, respectively, relative
to their estimated values with the remaining parameters set to their estimates in column (9) in Table
20. Vertical lines indicate the estimated values p̂ and q̂ for p and q, respectively.
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7.2 R&D Funding

We consider a subsidy, si(t) ∈ [0, 1], to the R&D costs of the firm. This subsidy can reflect, for
example, R&D tax credits. More specifically, firm i’s current (period t) profits are given by

πi(t) = ψAi(t)− (1− si(t))ci(t), (3)

where we consider two possible cases: In the first case, we consider a uniform subsidy identical for all
firms, si(t) = s, while in the latter case, we consider a subsidy only for the firms below the threshold.

Figure 36 shows the productivity growth rate ν and the productivity variance σ2 as a function
of the R&D subsidy s ∈ [0, 1] relative to the case without a subsidy (s = 0). The parameters of the
model are set to their estimated values in column (9) in Table 20. We find that the growth rate can
be increased by up to 0.05% when introducing a full subsidy to the R&D costs of the firms. At the
same time this subsidy reduces the productivity dispersion by 0.05%. The increase in the growth
rate is due to more firms (namely those below the threshold) conducting R&D when their R&D costs
are subsidized, which also leads to a reduction in the productivity dispersion as these firms increase
their productivities and thus move closer to the productivity frontier.

Figure 37 shows the ratio of the cost of the R&D subsidy when all firms receive it (Cuniform),
or when only the firms below the threshold receive it (Cthreshold), as a function of the R&D subsidy
s ∈ [0, 1]. While the impact on the growth rate for both policies is the same, we observe that Cthreshold

is several orders of magnitude smaller than Cuniform. However, the implementation of a threshold
dependent subsidy requires information about the location of the threshold along the productivities
of the firms.
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Figure 36: Changes in the productivity growth rate ν and the productivity variance σ2 as a function
of the R&D subsidy s ∈ [0, 1] relative to the case without a subsidy (s = 0). The parameters of the
model are set to their estimated values in column (9) in Table 20.
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Figure 37: Ratio of the cost of the R&D subsidy when all firms receive it (Cuniform), or when only
the firms below the threshold receive it (Cthreshold), as a function of the R&D subsidy s ∈ [0, 1].
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8 Conclusion

We have analyzed the distribution of productivity and the innovation decision of firms in Switzerland
across a panel of 20 years of observation. Our analysis suggests that productivity growth is stagnating
and the dispersion of productivity is increasing. Our structural model estimates indicate that this
is due to increasing difficulties of firms to make innovations, as we observe a decline in the in-house
R&D success probabilities of the firms across the years. Moreover, we observe weakly declining
technology diffusion among firms, as evidenced by a weakly declining trend in the imitation success
probability.

We then use our calibrated model to investigate the impact of improving the in-house innovation
success probabilities versus the imitation success probabilities. We find that policies that aim at
improving the in-house R&D success probability seem to be more effective than those that increase
the imitation success probability (technology diffusion). However, this comes with an increase in the
productivity dispersion (inequality).

Finally, we investigate the effectiveness of a subsidy to firms’ R&D costs. While this can be
achieved relatively cost-effectively if the subsidy is provided to firms below the threshold only (and
not to firms above the threshold that would have performed R&D also without the subsidy), the
effect on improving the growth rate are rather moderate. Policies that improve the in-house R&D
success probability seem to be more effective. Such policies could support firms to access inter-
national markets, help in increasing the share of high skilled workers or foster university-industry
collaborations.
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Appendix

A Technical information about the Cox model

The attractive feature of the Cox model is that the baseline hazard h0(t) has no particular param-
eterization (Cleves et al., 2008). One does not even need to estimate it. It is possible to estimate
it from the data though. Thus, the Cox model makes no assumption about the shape of the haz-
ard rate over time, which could be increasing, decreasing, or take any other form. However, it is
assumed to be the same for all firms (Cleves et al., 2008). The Cox model is called proportional
because the hazard of a subject is multiplicatively proportional to the baseline hazard h0(t). The
Cox model parameterizes how the covariates alter the baseline hazard function. More specifically,
the Cox model assumes that the covariates multiplicatively shift the baseline hazard function h0(t).
In the Cox model, the covariates measure how they either extend or shorten the risk of failure. For
example, whether higher productivity either extends or shortens the risk of firms to exit from R&D.

Important issues in survival analysis are censoring and truncation. Censoring describes the
instant that a firm does not exhibit an exit from R&D during analysis time. Right censoring means
that the firm is still R&D active when the analysis ends; left censoring means that the firm has
never been R&D active. Both kinds of censoring are easily handled by Stata’s ”stset” function.
Interval censoring concerns inexact measurement of failure times, such as when subjects report data
only in specific, regular intervals. In our case, the period where the firms fail or enter are arguably
measured inexactly, somewhere between, for example, the years 2008 and 2011. However, because
the intervals do not overlap, there is no problem for the Cox model in handling failure times; the
Cox model is merely less efficient. More exact failure times, for instance exits recorded every year,
would provide more information and thus allow for estimates that are more precise. Truncation, in
contrast, describes the instant when we have no information on firms in certain periods. This is a
problem in our case because of the non-response of firms. Left truncation, which means that firms
join the analysis later on, is addressed through explicitly designating firms in the analysis as such.
This is straightforward to implement in Stata. Interval truncation is a concern when there are gaps
between the different responses to the survey. Fortunately, there are no cases of interval truncation
in the data. Finally, right truncation is a concern when subjects are included in the sample because
of their failure times. This is not an issue either in our case, because our sample is representative
of the economy; it is not the case that certain firms are included purposefully in the sample because
they either exit or enter R&D.

Important in survival analysis is that subjects who have equal values at time t also face the same
risk (Cleves et al., 2008). For instance, in an analysis of the effects of smoking on cancer, the onset
of the risk to develop cancer is in the year the person has started smoking. Which calendar year
the person has started smoking is less relevant and is allowed to differ across different persons. The
survival analysis starts for every person in the year he or she has started smoking, and the analysis
time is the number of years the person has smoked (one might need to control for the age of the
person though). In contrast, in our case the onset of risk for all firms has to be the fixed to the year
1996, irrespective of whether the firms enter the analysis already in 1996 or whether they enter it
in later calendar years. This is important, because the risk for exiting R&D, proxied by unobserved
covariates that we cannot measure, may have increased since the year 1996. Firms entering the
analysis later on could thus face right from the outset a higher risk for exiting from R&D than those
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firms that have started out in the year 1996 already. By fixing the onset of risk to the calendar
year 1996, we can hold constant the risk profile over the entire analysis timespan of 23 years from
1996-2017, meaning that each year is associated with a specific risk for the firms to exit R&D. Of
course, each firm then only contributes to the measurement of the risk profile for the years it is part
of the analysis. A firm that enters in, for example, 2005 only contributes to how the risk to exit from
R&D has evolved from the year 2005 on.

In the following we discuss a structural model for the decision of firms to conduct R&D and the
resulting productivity dynamics. We explain in detail the estimation algorithm, estimation results,
a discussion of the structural model and the counterfactual policy simulation. In particular, the
structural model is introduced in Section B, the estimation algorithms and estimation results are
discussed in Section C. The policy implications that are based on the estimated model can be found
in Section 7.

B A Structural Endogenous Growth Model

In the following we introduce a structural model that takes into account the endogenous evolution of
the firms’ productivities from their innovation and imitation decisions. Our theoretical model builds
on König et al. (2016) and its extension in König et al. (2020).

B.1 Firms’ Profits and Production

The final good, denoted by Y (t), is produced by a representative firm using labor and a set of
intermediate goods xi(t), i ∈ N = {1, 2, . . . , N}. Its technology is represented by the following
production function:

Y (t) =
1

α
L1−α

N∑
i=1

Ai (t)1−α xi(t)
α, α ∈ (0, 1),

where t denotes time, xi is the intermediate good i, and Ai is the technology level of industry i.
We normalize the labor force to unity, L = 1. The final good can be used for consumption, as an
input to R&D, and also as an input to the production of intermediate goods. Its price is set to be
the numeraire. The profit maximization program yields the following inverse demand function for
intermediate goods:

pi(t) =

(
Ai(t)

xi(t)

)1−α
.

The profit earned by the incumbent in any intermediate sector i is then proportional to productivity,5

πi(t) = (pi(t)− 1)xi(t)− ci (t) = ψAi(t)− ci (t) , (4)

5Each intermediate good i is produced by a technology leader who has access to the best technology. By this
best-practice technology the marginal cost of producing any intermediate input equals one unit of the final good. The
leader is subject to the potential competition of a fringe of firms that can produce the same input albeit at a higher
constant marginal cost, χ, where 1 < χ ≤ 1/α. Note that a higher value of χ indicates less competition. Bertrand
competition implies that each technology leader monopolizes its market, sets the price equal to the unit cost of the

fringe, pi(t) = χ, and sells the quantity xi(t) = χ−
1

1−αAi(t). Namely, the equilibrium entails a limit price strategy and
an inactive fringe as in Acemoglu et al. (2006).
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where we have denoted by ψ ≡ χ−1
α χ−

1
1−α , with dψ

dχ > 0, and ci(t) is the cost of innovation given by

(Chen et al., 2018; König et al., 2020)6

ci (t) =

 κA(t)θAi (t)1−θ if i innovates,

0 if i imitates.

(5)

Here, A(t) denotes the average productivity at time t (which can be related to the average wage
rate in the economy, cf. König et al. (2020)) and κ > 0, θ ∈ [0, 1] are cost parameters. Note
that we assume the R&D cost to be proportional to a geometric combination of Ai and A, where
the latter is in turn proportional to the average wage rate in the economy. If θ = 1, the R&D
costs are independent of TFP. In reality, one might expect R&D costs to vary across firms, being
possibly higher for high-productivity firms that are closer to the technological frontier. For instance,
more productive firms may be forced to divert managerial and labor resources that have a higher
opportunity cost. Our specification captures in a flexible way this possibility. For our empirical
analysis we will set θ = 0.2 following König et al. (2020).

B.2 Innovation vs. Imitation

Productivity is measured along a quality ladder, Ai ∈ {Ã, Ã2, Ã3, . . .}. Firms can increase their
productivity by a factor Ã along the ladder via two alternative channels: through costly in-house
R&D (innovation) or through imitating other firms’ technologies (diffusion).

Imitation A firm pursuing the imitation strategy is randomly matched with another firm in the
empirical distribution. If the firm is matched with a more productive firm, its productivity increases
by one notch with probability q ∈ [0, 1] and remains constant with probability 1 − q. If the firm is
matched with a less productive firm, it retains its initial productivity. Because of random matching,
the probability that an imitating firm with log-productivity a = log(A) moves up the productivity
ladder equals q

∑∞
j=1 Pa+j = q(1 − Fa), where Pa denotes the log-productivity distribution (proba-

bility mass function; pmf) and Fa =
∑a

j=0 Pj is the corresponding cumulative distribution function
(cdf).

Innovation A firm can discover something genuinely new that is unrelated to the knowledge set
of other firms. We label this process in-house innovation, and denote by pi ∈ [0, 1] the probability of
success through in-house innovation. We assume pi to be drawn from an i.i.d. uniform distribution
with support pi ∈ [p, p], where 0 ≤ p < p < 1. The realization of pi is observed at the beginning of
each period t, before firms choose whether to innovate or imitate.

If innovation fails, the firm gets a second chance to improve its technology via (passive) imitation.
However, in this case the probability of success is different from that of a firm actively pursuing
imitation, being equal to δq(1 − Fa). Thus, the total probability of success of a firm pursuing
innovation is pi + (1− pi)δq(1− Fa).

6Observe that any homothetic production function with Hicks neutral productivity admits this representation (cf.
Chen et al., 2018).
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B.3 Innovation Decision and Threshold

We assume that firms choose whether to innovate through in-house R&D or to imitate other firms
based on a standard value-maximization objective. In our environment, this is equivalent to maxi-
mizing the expected profit in every period t. In turn, Equation (4) shows that the profit is linearly
increasing in the technology level.

Let Ein
i [πi(t+ ∆t)| ·] and Eim

i [πi(t+ ∆t)| ·] denote the expected profit for a firm i, from choosing
in-house R&D or imitation, respectively. The probability of success in innovating through in-house
R&D is given by pi(t) ∈ [p, p], with 0 ≤ p ≤ p ≤ 1. The probabilities pi(t) are i.i.d. and realized at
the beginning of each period t.

Firm i chooses innovation whenever, conditional on its current productivity Ai (t) and the state
of pi(t) we have that

Ein
i [πi(t+ ∆t)|Ai(t), pi(t), P (t)] = Ein

i

[
ψAi(t+ ∆t)− κA(t)θAi(t)

1−θ
∣∣∣Ai(t), pi(t), P (t)

]
>

Eim
i [πi(t+ ∆t)|Ai (t) , P (t)] = Eim

i [ψAi(t+ ∆t)|Ai (t) , P (t)] . (6)

The expected profit from imitation is given by

Eim
i [πi(t+ ∆t)|Ai (t) , P (t)] = q

(
1− Fai(t)(t)

)
ψAi(t)Ã+

(
1− q

(
1− Fai(t)(t)

))
ψAi(t),

while the expected profit from innovation is given by

Ein
i [πi(t+ ∆t)|Ai(t), pi(t), P (t)] = pi(t)ψAi(t)Ã

+ (1− pi(t))
{
δ
[
q
(
1− Fai(t)(t)

)
ψAi(t)Ã+

(
1− q

(
1− Fai(t)(t)

))
ψAi(t)

]
+ (1− δ)ψAi(t)

}
− κA(t)θAi(t)

1−θ. (7)

In terms of log-productivities ai(t) ≡ lnAi(t), a(t) ≡ lnA(t) and ln Ã ≡ ã,7 we can write

Ein
i [πi(t+ ∆t)| ai(t), pi(t), P (t)] = pi(t)ψe

(ai(t)+ã)

+ (1− pi(t))
{
δ
[
q
(
1− Fai(t)(t)

)
ψeai(t)+ã +

(
1− q

(
1− Fai(t)(t)

))
ψeai(t)

]
+ (1− δ)ψeai(t)

}
− κeθa(t)e(1−θ)ai(t),

and

Eim
i [πi(t+ ∆t)| ai(t), P (t)] = ψeai(t)

(
1 + q

(
1− Fai(t)(t)

) (
eã − 1

))
.

In the following we denote by πim
i (ai(t), P (t)) ≡ Eim

i [πi(t+ ∆t)| ai(t), P (t)] and πin
i (ai(t), pi(t), P (t)) ≡

Ein
i [πi(t+ ∆t)| ai(t), pi(t), P (t)]. The indicator function for whether firm i conducts in-house R&D

or pursues imitation is given by χim(a, p, P ) = 1{πim
i (a,P )>πin

i (a,p,P )}. We also define the indicator

7Observe that Ai ∈ {Ã, Ã2, Ã3, . . .} = {eã, e2ã, e3ã, . . .}.

75



function for innovation as χin(a, p, P ) ≡ 1− χim(a, p, P ). Further, denoting by

κ̃ =
κ

ψ(eã − 1)

we can write

χim(a, p, P ) = 1− χin(a, p, P ) =

{
1 if p < (1−δ)q(1−Fa)+κ̃eθ(a−a)

1−δq(1−Fa) ,

0 otherwise.
(8)

B.4 Innovation Decision and Comparative Statics

To derive some further intuition for the innovation decision we consider in the following the special
case of δ = 0. Then Equation (8) reduces to

χim(a, p, P ) = 1− χin(a, p, P ) =

{
1 if p < q(1− Fa) + κ̃eθ(a−a),

0 otherwise.
(9)

The R&D decision in Equation (9) is consistent with the empirical observations (4) - (7) in Section
4.2. Consider a firm with in-house R&D success probability pi and denote by

Di = pi − κ̃eθ(a−ai) − q(1− Fai). (10)

Then the firm conducts innovation (χin(a, p, P ) = 1) if Di > 0 and does imitation (χim(a, p, P ) = 1)
if Di ≤ 0. From a comparative statics analysis we find that

∂Di

∂ai
= θκ̃eθ(a−ai) + qfai > 0, (size),

∂Di

∂κ̃
= −eθ(a−ai) < 0, (competition),

∂Di

∂pi
= 1 > 0, (tech. potential / univ. collab.).

In particular, firms with a higher log-productivity, ai, tend to be larger - see the profit function in
Equation (4)8 - and according to Equation (10) have a higher probability to do R&D (∂Di∂ai

> 0). More
intense competition - empirical observation (5) in Section 6.6 - can be captured by a higher value of
the competition parameter 1/ψ and according to Equation (10) this leads to a lower probability to
do R&D (∂Di∂κ̃ < 0 where κ̃ = κ/(ψ(eã − 1)) is increasing with 1/ψ). Note that the term eθ(a−ai)

is smaller the further the firm’s log-productivity is above the average log-productivity a, and hence
diminishing the competition effect through κ̃. Moreover, a higher value of the in-house R&D success
probability pi, due to a higher technological potential of the firm or university collaborations, leads
to a higher probability to conduct R&D (∂Di∂pi

> 0), consistent with empirical observations (6) and
(7) in Section 6.6. Finally, the term q(1 − Fai) reduces the likelihood of the firm conducting R&D,
which is increasing with the imitation success probability q and is higher for firms lagging further
behind in their log-productivity due to higher values of 1− Fai .

8Firm size xi is proportional to productivity, ai, as xi = χ−
1

1−α exp(ai). See also Footnote 5.
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B.5 Linear Probability Model Approximation

We can estimate Equation (10) directly by specifying the in-house R&D success probability as

pi = Λ
(
y>i β + εi

)
, (11)

where Λ : R → [0, 1], x 7→ 1/(1 + e−x), is the logistic function, yi are observable covariates of firm
i that affect the firm’s ability to successfully conduct R&D (such as technological potential and
university collaborations) and let εi be a small zero-mean random term. In leading orders of εi, we
can write pi = Λ

(
y>i β + εi

)
≈ Λ

(
y>i β

)
+ Λ

(
y>i β

)
Λ
(
−y>i β

)
εi, and hence Equation (10) can be

written as
Di ≈ Λ

(
y>i β

)
︸ ︷︷ ︸
innovation
potential

−κ̃eθ(a−ai)︸ ︷︷ ︸
competition

effect

−q(1− Fai)︸ ︷︷ ︸
imitation
potential

+ε̃i, (12)

where we have denoted by ε̃i = Λ
(
y>i β

)
Λ
(
−y>i β

)
εi. If we assume that the ε̃i are identically and

independently zero-mean normally distributed and Di is replaced with the observed innovation deci-
sions (χin), then Equation (12) represents a Linear Probability Model (LPM) that can be estimated
with an Ordinary Least Squares (OLS) method. In a similar way we can estimate the decision vari-
able of Equation (8) using a Nonlinear Least Squares (NLS) estimation algorithm. In both estimation
methods we can correct for heteroscedastic standard errors.

These models are indicative for measuring some basic correlations but might suffer from an
endogeneity bias due to productivity (and other variables) being affected by the innovation decision
(and vice versa). In the following sections we introduce a structural model that takes into account
the endogenous evolution of the firms’ productivities from their innovation and imitation decisions.

B.6 Law of Motion of the Productivity Distribution

We consider an environment in which firms decide to conducting in-house R&D or to imitate other
firms by maximizing the expected profit in every period t (see Section B.3). These decisions deter-
mine how the distribution of productivity evolves over time t. The following proposition provides a
complete characterization of the evolution of the productivity distribution with heterogeneous firms
in terms of their in-house R&D success probabilities, pi(t) ∈ [p, p].

Proposition 1. The evolution of the log-productivity distribution, Pa(t), a ∈ A, is given by the
following system of integro-differential equations

∂Pa(t)

∂t
=

∫
[p,p]

g(dp)
[(
χim(a− 1, p, P ) + δ(1− p)χin(a− 1, p, P )

)
q(1− Fa−1(t))Pa−1(t)

−
(
χim(a, p, P ) + δ(1− p)χin(a, p, P )

)
q(1− Fa(t))Pa(t)

+χin(a− 1, p, P )pPa−1(t)− χin(a, p, P )pPa(t)
]
, (13)
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where g : [p, p]→ [0, 1] is the density function of a random variable over the interval [p, p] and

χim(a, p, P ) = 1− χin(a, p, P ) =

{
1 if p < (1−δ)q(1−Fa)+κ̃eθ(a−a)

1−δq(1−Fa) ,

0 otherwise,
(14)

with Fa =
∑a

a′=1 Pa′ =
∑a

a′=1 Pa′ , and the average log-productivity given by a =
∑∞

a=1 Fa.

The proof of Proposition 1 can be found in Appendix F.9 We can compute the evolution of the
productivity distribution Pa(t) by numerically solving the system of ordinary differential equations
provided in Equation (17) for a given initial condition Pa(0). This will be important for the estimation
of the model discussed in Section C.

B.7 Uniformly Distributed R&D Success Probabilities

For uniformly distributed in-house R&D success probabilities we can further simplify Equation (13)
in Section B.6 as follows:

Lemma 1. Assuming a uniform distribution of the in-house R&D success probabilities with support
[0, p] allows us to write Equation (13) as follows

∂Pa(t)

∂t
=

1

p

[
q(1− Fa−1(t))Pa−1(t)

(
min{C(a− 1, P ), p}+ δ

1

2
(p(2− p)− C(a− 1, P )(2− C(a− 1, P )))1{C(a−1,P )<p}

)
−q(1− Fa(t))Pa(t)

(
min{C(a, P ), p}+ δ

1

2
(p(2− p)− C(a, P )(2− C(a, P )))1{C(a,P )<p}

)
−1

2
Pa(t)

(
p2 − C(a, P )2

)
1{C(a,P )<p} +

1

2
Pa−1(t)

(
p2 − C(a− 1, P )2

)
1{C(a−1,P )<p}

]
, (15)

where we have denoted by

C(a, P ) ≡ (1− δ)q(1− Fa) + κ̃eθ(a−a)

1− δq (1− Fa)
. (16)

Note that C(a, P ) is non-negative and decreasing in a. Let the threshold productivity be defined
as a∗ = {min a ∈ A : C(a, P ) < p} = {max a ∈ A : C(a, P ) ≥ p}. Then for all a ≤ a∗ we have
that min{C(a− 1, P ), p} = min{C(a, P ), p} = p and 1{C(a,P )<p} = 1{C(a−1,P )<p} = 0 so that we can
write Equation (15) for all a ≤ a∗ as follows

∂Pa(t)

∂t
= q(1− Fa−1(t))Pa−1(t)− q(1− Fa(t))Pa(t).

Then for a = a∗ + 1 we have that min{C(a − 1, P ), p} = p but min{C(a, P ), p} = C(a, P ) and

9A more detailed analysis of Equation (13) can be found in Appendix B.7.
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1{C(a,P )<p} = 1 but 1{C(a−1,P )<p} = 0 so that for a = a∗ + 1 we can write Equation (15) as follows

∂Pa(t)

∂t
=

1

p

[
q(1− Fa−1(t))Pa−1(t)p− q(1− Fa(t))Pa(t)

(
C(a, P ) + δ

1

2
(p(2− p)− C(a, P )(2− C(a, P )))

)
−1

2
Pa(t)

(
p2 − C(a, P )2

)]
,

For all a > a∗ + 1 we have that min{C(a − 1, P ), p} = C(a − 1, P ) and min{C(a, P ), p} = C(a, P )
and 1{C(a,P )<p} = 1{C(a−1,P )<p} = 1 so that Equation (15) for all a > a∗ + 1 can be written as

∂Pa(t)

∂t
=

1

p

[
q(1− Fa−1(t))Pa−1(t)

(
C(a− 1, P ) + δ

1

2
(p(2− p)− C(a− 1, P )(2− C(a− 1, P )))

)
−q(1− Fa(t))Pa(t)

(
C(a, P ) + δ

1

2
(p(2− p)− C(a, P )(2− C(a, P )))

)
−1

2
Pa(t)

(
p2 − C(a, P )2

)
+

1

2
Pa−1(t)

(
p2 − C(a− 1, P )2

)]
. (17)

We can compute the evolution of the productivity distribution Pa(t) by numerically solving the
system of ordinary differential equations provided in Equation (17) for a given initial condition
Pa(0).

B.8 Productivity Distribution and Comparative Statics

In Section 4.2 we have documented two empirical observations regarding the productivity distribution
among firms in Switzerland and the fraction of firms conduction R&D. First, we observe an increasing
threshold productivity for firms to conduct R&D, and second, an increasing dispersion of productivity
across firms.

Increasing Threshold A shift to the right of the threshold a∗(t) = {max a ∈ A : χim(a) = 1} as
illustrated in Figure B.1 results in a reduction in the number of R&D active firms. The reasons for
this shift could be, for example, due to higher innovation costs. We explore this possibility in the
estimation Section 6.4.

Increasing Dispersion An increasing dispersion of the productivity distribution Pa(t) as illus-
trated in Figure B.2 could be triggered by, for example, higher productivity gains from innovation.
We explore this possibility in the estimation Section 6.4.
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Figure B.1: An illustration of the threshold, a∗(t).

0 1 2 3 4 5 6 7
10

-3

10
-2

10
-1

10
0

Figure B.2: An illustration of the dispersion of the productivity distribution, Pa(t).
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C Structural Estimation: Productivity distribution and R&D de-
cision

The simple regression models seen in Section B.5 are indicative for measuring some basic correla-
tions related to the R&D decision of firms. But this might suffer from an endogeneity bias due to
productivity (and other variables) being affected by the innovation decision (and vice versa).

We consider a set of moments constructed from the log-productivity distribution, Pa, and the
innovation decision indicator variable, χin. We then search for the parameters, θ, that minimize the
distance between the targeted empirical moments and the stationary distribution of the model. Note
that the tractability of the model is crucial for our approach. Our Simulated Method of Moments
(SMM) (see e.g. Cameron and Trivedi, 2005) approach requires simulating the model many times,
and calculating the distance from the targeted moments. We minimize the weighted sum of the
distance between the empirical and simulated moments:

θ̂ = arg min
θ
h (θ)′W−1h (θ) ,

where hm (θ) = gm (θ) − 1
K

∑K
k gm,k and 1

K

∑K
k gm,k is the moment averaged across K samples.

Denote Ω the variance-covariance matrix of the bootstrapped moments. Under the null hypothesis,
Ω is proportional to the variance-covariance matrix of the simulated moments. We use the identity
matrix as the benchmark weighting matrix to avoid the potential small-sample bias (see, e.g., Altonji
and Segal (1996)). We also obtain results from using the optimal weighting matrix as a robustness
check. The difference between the true and estimated parameter follows asymptotically a normal
distribution with mean zero and the variance-covariance matrix of V , where V =

(
DW−1D′

)−1
and

D = ∂h(θ)
∂θ |θ=θ̂. The variance of the estimated parameters are on the diagonal of V .

The first set of moments derives from the productivity distribution Pa. Figure 5 shows the
empirical productivity distribution across firms in Switzerland that we target where we measure
productivity as value added per employee. The goodness of fit of the model with the empirical
distribution for the pooled sample across years can be found in Appendix D.

The second set of moments is constructed from the fraction of firms conducting R&D for a given
log-productivity level a and the log-productivity distribution P . Following the innovation decision
in Equation (14) and assuming uniform draws of p in the interval [p, p] (see also Appendix B.7) this
is given by

Ha(P ) ≡
∫

[p,p]
χin(a, p, P )dp =

∫
[p,p]

1{p>C(a,P )}dp = (p−max{C(a, P ), p})1{C(a,P )<p},

where C(a, P ) is defined in Equation (16) in Lemma 1. The goodness of fit of the model for the
pooled sample across years can be found in Appendix D. In particular, a comparison of the empirical
log-productivity innovation profile H pooled across the years 1997 to 2017 for Switzerland and the
prediction by the model can be seen in the bottom panel in Figure D.1. The parameter estimates
correspond to column (3) in Table 18.
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D Goodness-of-Fit

Figure D.1 shows a comparison of the empirical log-productivity distribution Pa and the empirical
log-productivity innovation profile Ha with the prediction by the model. The parameter estimates
correspond to column (4) in Table 18. The data are pooled across the years 1996 to 2017 for
Switzerland.
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Figure D.1: (Top panel) Comparison of the empirical log-productivity distribution Pa and the predic-
tion by the model. (Bottom panel) Comparison of the empirical log-productivity innovation profile
Ha and the prediction by the model. The parameter estimates correspond to column (3) in Table
18. The data are pooled across the years 1996 to 2017 for Switzerland.

E Manufacturing and Services Sectors

In this section we perform the econometric analysis for the linear probability model restricted to
firms in the manufacturing and the services sectors only. We find, however, that the main estimates
and time trends remain roughly the same as the ones obtained for the full sample including all firms
across all sectors.
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E.1 Manufacturing Sector

Table 23 shows the Nonlinear Least Squares (NLS) parameter estimates across the years from 1999
to 2017 for the manufacturing sector.
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Table 23: Linear Probability Model (LPM) and Nonlinear Least Squares (NLS) estimation results across years
for the manufacturing sector.

1996 1999 2002 2005 2008 2011 2013 2015 2017
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Linear Probability Model (LPM) w/o Passive Imitation

Innovation (p) 1.4868 0.9309 0.7643 0.6958 0.6307 0.6166 0.5962 0.6159 0.5815
(0.2829) (0.4601) (0.2892) (0.0297) (0.0304) (0.0293) (0.0307) (0.0321) (0.0362)

Innov. Cost (κ̃) 0.8236 0.2977 0.0760 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
(0.4087) (1.8527) (4.4861) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Imitation (q) -0.1106 0.0178 0.1844 0.2806 0.2000 0.1600 0.1850 0.2538 0.2657
(0.1532) (0.2181) (0.1487) (0.0501) (0.0576) (0.0546) (0.0601) (0.0631) (0.0711)

Nonlinear Least Squares (NLS) with Passive Imitation

Innovation (p) 0.7433 0.9188 0.7846 0.6639 0.6061 0.6864 0.5840 0.5761 0.5442
(0.0875) (0.5934) (0.2746) (0.0352) (0.0330) (0.2994) (0.0388) (0.0278) (0.0367)

Innov. Cost (κ̃) 0.0072 0.2851 0.1126 0.0000 0.0000 0.0978 0.0000 0.0000 0.0000
(11.4608) (2.3757) (2.7240) (0.0000) (0.0000) (3.4587) (0.0000) (0.0000) (0.0000)

Imitation (q) 0.9398 0.0551 0.3326 0.6847 0.7466 0.4913 0.5310 0.9293 0.8190
(0.1687) (1.1280) (0.5672) (0.2282) (0.2876) (0.6319) (0.6103) (0.0796) (0.1957)

Pass. Imit. (δ) 0.9743 0.9466 0.7133 0.8047 0.8912 0.9873 0.7811 0.9325 0.8866
(0.0819) (8.8994) (0.9345) (0.1861) (0.1357) (0.5621) (0.4865) (0.0431) (0.1116)

Notes: P-values are computed under the assumption of an asymptotic normal distribution of the estimators: ***
Statistically significant at 1% level. ** Statistically significant at 5% level. * Statistically significant at 10% level.
Robust (i.e. heteroskedasticity consistent) standard errors in parentheses.
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Figure E.1: Nonlinear Least Squares (NLS) model parameter estimates for the firm characteristics
higher education, export (yes/no), technological potential, log firm age, KTT universities, and KTT
competitors, across different years for the manufacturing sector.

Figure E.1 shows the influence of various firm characteristics on the firm’s innovation decision in
the manufacturing sector. We observe that higher education, export orientation, the technological
potential and the knowledge and technology transfer (KTT) collaborations have a stable or increasing
importance on the innovation decision.

Figure E.2 shows the effect of competition on the innovation decision in the manufacturing sector.
Similar to the pooled sample across sectors we find that across all years, competition tends to have
a negative effect on innovation.
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Figure E.2: Nonlinear Least Squares (NLS) model parameter estimates for the firm characteristics
related to competition across different years for the manufacturing sector.
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E.2 Services Sector

Table 24 shows the Nonlinear Least Squares (NLS) parameter estimates across the years from 1999
to 2017 for the services sector.
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Table 24: Linear Probability Model (LPM) and Nonlinear Least Squares (NLS) estimation results across years
for the services sector.

1996 1999 2002 2005 2008 2011 2013 2015 2017
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Linear Probability Model (LPM) w/o Passive Imitation

Innovation (p) 0.4177 0.6558 0.2927 0.4423 0.2489 0.2224 0.2760 0.2237 0.3180
(0.0352) (0.3442) (0.2109) (0.1307) (0.0230) (0.0216) (0.0222) (0.1108) (0.2205)

Imitation (q) 0.0286 -0.0617 0.0734 0.1587 0.1403 0.0903 0.2140 0.1669 0.1024
(0.0568) (0.1820) (0.1284) (0.0920) (0.0406) (0.0388) (0.0409) (0.0844) (0.1360)

Innov. Cost (κ̃) 0.0000 0.4445 0.0130 0.1037 0.0000 0.0000 0.0000 0.0067 0.1145
(0.0000) (0.9490) (19.8088) (1.3419) (0.0000) (0.0000) (0.0000) (13.5547) (2.3055)

Nonlinear Least Squares (NLS) with Passive Imitation

Innovation (p) 0.4140 0.8334 0.2927 0.4423 0.2489 0.2224 0.2760 0.2037 0.3180
(0.0324) (0.3920) (0.2109) (0.1307) (0.0230) (0.0216) (0.0222) (0.0831) (0.2205)

Innov. Cost (κ̃) 0.0000 0.6597 0.0130 0.1037 0.0000 0.0000 0.0000 0.0015 0.1145
(0.0000) (0.7259) (19.8087) (1.3419) (0.0000) (0.0000) (0.0000) (41.0406) (2.3055)

Imitation (q) 0.8422 -0.2355 0.0734 0.1587 0.1403 0.0903 0.2140 0.5685 0.1024
(0.9560) (0.1929) (0.1284) (0.0920) (0.0406) (0.0388) (0.0409) (0.4043) (0.1360)

Pass. Imit. (δ) 0.9922 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.8378 0.0000
(6.6033) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (1.8827) (0.0000)

Notes: P-values are computed under the assumption of an asymptotic normal distribution of the estimators: *** Statis-
tically significant at 1% level. ** Statistically significant at 5% level. * Statistically significant at 10% level. Robust (i.e.
heteroskedasticity consistent) standard errors in parentheses.
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Figure E.3: Nonlinear Least Squares (NLS) model parameter estimates for the firm characteristics
higher education, export (yes/no), technological potential, log firm age, KTT universities, and KTT
competitors, across different years for the services sector.

Figure E.3 shows the influence of various firm characteristics on the firm’s innovation decision
in the services sector. We observe that higher education, export orientation, the technological po-
tential and the knowledge and technology transfer (KTT) university collaborations have a stable or
increasing importance on the innovation decision. Collaborations with competitors have a declining
influence.

Figure E.4 shows the effect of competition on the innovation decision in the services sector.
Similar to the pooled sample across sectors we find that across all years, competition tends to have
a negative effect on innovation.
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Figure E.4: Nonlinear Least Squares (NLS) model parameter estimates for the firm characteristics
related to competition across different years for the services sector.
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E.3 R&D Funding Costs

We consider a subsidy, si(t) ∈ [0, 1], to the R&D costs of the firm. More specifically, firm i’s current
(period t) profits are given by

πi(t) = ψAi(t)− (1− si(t))ci(t), (18)

where we consider two possible cases: In the first case, we consider is a uniform subsidy identical
for all firms, si(t) = s, while in the latter case, we consider a subsidy only for the firms below the
threshold, that is

si(t) = s · χim(ai, p, P (t)) (19)

where s ∈ [0, 1] is the fraction of the R&D cost subsidized by the government. The long-run cost of
the uniform subsidy is given by

Cuniform(s) = lim
t→∞

n∑
i=1

si(t)ci(t) = lim
t→∞

n∑
i=1

si(t)ci(t)

= lim
t→∞

κA(t)θ
n∑
i=1

si(t)Ai (t)1−θ

= lim
t→∞

sκeθā(t)
n∑
i=1

e(1−θ)ai(t)

= lim
t→∞

sκneθā(t)
∞∑
b=1

e(1−θ)bPb(t), (20)

while the the long-run cost of the threshold subsidy is given by

Cthreshold(s) = lim
t→∞

n∑
i=1

si(t)ci(t) = lim
t→∞

n∑
i=1

si(t)ci(t)

= lim
t→∞

κA(t)θ
n∑
i=1

si(t)Ai (t)1−θ

= lim
t→∞

sκeθā(t)
n∑
i=1

χim(ai, p, P (t))e(1−θ)ai(t)

= lim
t→∞

sκneθā(t)
∞∑
b=1

χim(b, p, P (t))e(1−θ)bPb(t), (21)

where the log-productivity distribution Pa(t) is determined by Equation (13), the imitation decision
variable χim(b, p, P ) without the subsidy is given by Equation (14) while the decision variable for the
firms that receive the subsidy because they are below the threshold is given by

χ̃im(a, p, P, s) = 1− χ̃in(a, p, P, s) =

{
1 if p < (1−δ)q(1−Fa)+sκ̃eθ(a−a)

1−δq(1−Fa) ,

0 otherwise.
(22)
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F Proofs

Proof of Proposition 1. For simplicity, we consider the case in which all firms have the same in-house
R&D success probability p. The generalization to heterogeneous probabilities is straight forward.
The evolution of the log-productivity distribution Pa(t) can be written as

Pa(t+ ∆t)− Pa(t) =
(
χim(a− 1, p, P ) + δχin(a− 1, p, P )(1− p)

)
q(1− Fa−1(t))Pa−1(t)

−
(
χim(a, p, P ) + δχin(a, p, P )(1− p)

)
q(1− Fa(t))Pa(t)

+ χin(a− 1, P )pPa−1(t)− χin(a, P )pPa(t), (23)

where δ is the passive imitation probability, and

χim(a, p, P ) = 1− χin(a, p, P ) =

{
1 if p < (1−δ)q(1−Fa)+κ̃eθ(a−a)

1−δq(1−Fa) ,

0 otherwise,
(24)

with the average log-productivity given by ā =
∑∞

a=1 Fa. The first term in Equation (23) corresponds
to the case that a firm with log-productivity a − 1 is selected, times the indicator that it wants to
imitate, χim(a−1, p, P ) = 1, or that it wants to innovate, failed to do so and then engages in passive
imitation, χin(a − 1, p, P )(1 − p)δ, times the probability that it draws a firm with log-productivity
larger than a − 1 and successfully improves its log-productivity by one unit with probability q.
The second term corresponds to the events that a firm with log-productivity a is selected and
successfully imitates. The third term corresponds to the case that a firm with log-productivity a− 1
is selected, wants to innovate, χin(a − 1, p, P ) = 1 − χim(a − 1, p, P ) = 1, and succeeds to improve
its log-productivity by one unit with probability p. The fourth term corresponds to the case that
a firm with log-productivity a is selected, wants to innovate, χin(a, p, P ) = 1 − χim(a, p, P ) = 1,
and succeeds with probability p. Finally, one can check from Equation (23) that for all t ≥ 0:∑∞

a=1(Pa(t+ ∆t)− Pa(t)) = 0.

Proof of Lemma 1. Assuming a uniform distribution of the in-house R&D success probabilities allows
us to write Equation (13) as follows

∂Pa(t)

∂t
=

1

p− p

∫
[p,p]

[(
χim(a− 1, p, P ) + δ(1− p)χin(a− 1, p, P )

)
q(1− Fa−1(t))Pa−1(t)

−
(
χim(a, p, P ) + δ(1− p)χin(a, p, P )

)
q(1− Fa(t))Pa(t) + χin(a− 1, p, P )pPa−1(t)− χin(a, p, P )pPa(t)

]
dp.

Using the fact that∫
[p,p]

χim(a, p, P )dp =

∫
[p,p]

1{p<C(a,P )}dp = (min{C(a, P ), p} − p)1{C(a,P )>p},
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and ∫
[p,p]

pχin(a, p, P )dp =

∫
[p,p]

p1{p>C(a,P )}dp

=

∫
[max{p,C(a,P )},p]

pdp1{C(a,P )<p}

=
1

2

(
p2 − (max{p, C(a, P )})2

)
1{C(a,P )<p},

and∫
[p,p]

(1− p)χin(a, p, P )dp =

∫
[p,p]

(1− p)1{p>C(a,P )}dp

=

∫
[max{p,C(a,P )},p]

(1− p)dp1{C(a,P )<p}

=
1

2
p(2− p)|pmax{p,C(a,P )} 1{C(a,P )<p}

=
1

2

(
p(2− p)−max{p, C(a, P )}(2−max{p, C(a, P )})

)
1{C(a,P )<p},

where we have denoted by

C(a, P ) ≡ (1− δ)q(1− Fa) + κ̃eθ(a−a)

1− δq (1− Fa)
, (25)

we can write

∂Pa(t)

∂t
=

1

p− p

[
q(1− Fa−1(t))Pa−1(t)

(
(min{C(a− 1, P ), p} − p)1{C(a−1,P )>p}

+ δ
1

2

(
p(2− p)−max{p, C(a− 1, P )}(2−max{p, C(a− 1, P )})

)
1{C(a−1,P )<p}

)
−q(1− Fa(t))Pa(t)

(
(min{C(a, P ), p} − p)1{C(a,P )>p}

+ δ
1

2

(
p(2− p)−max{p, C(a, P )}(2−max{p, C(a, P )})

)
1{C(a,P )<p}

)
−1

2
Pa(t)

(
p2 − (max{p, C(a, P )})2

)
1{C(a,P )<p}

+
1

2
Pa−1(t)

(
p2 − (max{p, C(a− 1, P )})2

)
1{C(a−1,P )<p}

]
. (26)

From Equation (25) we see that C(a, P ) ≥ 0. Further, assuming that p = 0 allows us to write

93



0 5 10 15
10

-4

10
-3

10
-2

10
-1

10
0

Figure F.1: The log-productivity distribution Pa(t) from a Monte Carlo simulation of the stochastic
process indicated with circles. The dashed line indicates the solution of the ODE of Equation (27).

∂Pa(t)

∂t
=

1

p
[q(1− Fa−1(t))Pa−1(t) (min{C(a− 1, P ), p}

+ δ
1

2
(p(2− p)− C(a− 1, P )(2− C(a− 1, P )))1{C(a−1,P )<p}

)
−q(1− Fa(t))Pa(t) (min{C(a, P ), p}

+ δ
1

2
(p(2− p)− C(a, P )(2− C(a, P )))1{C(a,P )<p}

)
−1

2
Pa(t)

(
p2 − C(a, P )2

)
1{C(a,P )<p}

+
1

2
Pa−1(t)

(
p2 − C(a− 1, P )2

)
1{C(a−1,P )<p}

]
. (27)

Figure F.1 shows the log-productivity distribution Pa(t) from a numerical solution of Equation
(27).

94


