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Abstract

Vehicles are an integral part of modern life. Across the globe, the number of vehi-
cles has witnessed an enormous increases from around 193 million in the 1970’s in
the last century to more than one billion today. A significant amount of the popu-
lation of most developed countries, e.g., Germany and the U.S., spends up to one
hour driving on a daily basis. The number of vehicles in developing countries has
also experienced rapid growth in the last few decades. With their increased usage,
vehicles are conceptualised as the third living space (after the home and workplace).
Moreover, unlike the home and workplace, in which the introduction of new infras-
tructure technologies will induce potentially high costs, modern vehicles are already
equipped with advanced sensors and infotainment systems that facilitate various in-
teractions between the driver and the vehicle. As such, increasingly more researchers
and practitioners view vehicles as an ideal platform into which wellness features can
be engineered. In this vision, vehicles are not only a tool for transportation, but also
a platform that optimises a user’s psychological and physiological well-being via the
monitoring and intervention of their states.

Beyond the sophisticated wellness features, one should keep in mind that road safety
remains a major challenge. Globally, traffic accidents are among the top (ranked 8th)
causes of mortality. In addition to the loss of human life, the economic impact is also
non-negligible. It has been estimated that traffic accidents lead to a monetary cost
of around 3% of the global gross domestic product (GDP). Tremendous efforts have
been devoted to the development of advanced driver assistance systems (ADAS) and
(semi-)autonomous driving systems. While more recently developed systems focus
on the perception and interaction between the ego-vehicle and surrounding traffic
participants, a relatively small portion of researchers has considered the improve-
ment of driving safety and experience from a driver-centric perspective. Given the
current development progress, autonomous driving features are mostly available only
for simple scenarios on highways or under limited speed. In other words, driving
safety under complex traffic conditions, such as in downtown areas or bad weather,
remains heavily dependent on drivers. Therefore, the monitoring of driver’s states is
an essential and important approach to the improvement of driving performance, and
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ultimately to the increase of driver safety.

To improve mental wellness and road safety, both academia and automobile manu-
facturers alike have paid increasingly more attention to the recognition of a driver’s
psychological state, or, be more precisely, the emotional state. Indeed, sub-optimal
emotional states (e.g., anger and sadness) do not only affect a user’s well-being, but
are also found to be associated with risky or dangerous driving behaviours. However,
the mainstream of existing approaches relies on cumbersome physiological sensors
to capture data on the driver’s heart rate (HR), skin conductance, and respiration rate
or uses privacy-breaching cameras to record the driver’s face, which reduces the ac-
ceptance of the users. To achieve a more ubiquitous and privacy-preserving emotion
recognition, this thesis relies on the various advanced sensors and technology embed-
ded in today’s highly computerised vehicles. Instead of the analysis of the driver’s
physiological signals or driver face information, the proposed approach utilises the
sensors and the technology in current vehicles that offer a comprehensive capturing
of the traffic context and driving behaviours, such as heavy braking, evasive steering,
and sharp turning. By leveraging machine learning techniques, the emotional states
of drivers can be inferred from the traffic context and driving behaviours, thereby
ultimately achieving non-intrusive and private emotion recognition.

In addition to utilising the psychological state monitoring approach that can be de-
ployed in current vehicles, this thesis further explores the possibility of the estima-
tion of drivers’ heart rate variability (HRV) in future vehicles when driver monitoring
cameras become a mandatory component. HRV and its measures are key indicators
of physiological states and reflect not only a driver’s health states but also whether a
driver is fit for driving. Conventional methods for the measurement of HRV, such as
smartwatches, electrocardiography (ECG), and photoplethysmography (PPG), suf-
fer from various constraints, including inaccuracy and inconvenient deployment. In
this thesis, a facial expression-based HRV inference approach is proposed, as facial
expressions and heart activity are both controlled by the autonomic nervous system
(ANS). The facial expressions of drivers can be captured via a driver monitoring
camera, which is very likely to be a mandatory component of future vehicles. Driver
monitoring cameras are of significant importance in level-3 (L3) and level-4 (L4) au-
tonomous driving because the vehicle must ensure that the driver is capable of taking
back control when the autonomous system fails to handle over-complicated traffic
situations. The evaluation demonstrates that the proposed facial expression-based
HRV inference approach is superior in the detection of the outliers of HRV and its
measures as compared to conventional methods, such as smartwatches. By monitor-
ing the physiological states of drivers, the vehicles in the future are not only capable
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of improving driving safety but also open up various opportunities to facilitate the
well-beings related features.

The experiments conducted in this thesis were performed based on the datasets col-
lected from a field study consisting of a total driving distance of approximately
50,000 kilometres (by nine drivers) on public roads. This naturalistic dataset al-
lows for an in-depth and reliable analysis of driver behaviours and facial expressions,
as well as the interplay between drivers and the traffic context. The presented ap-
proaches, to the best of the author’s knowledge, are the first-of-its-kind research that
was evaluated under naturalistic settings and exhibit conceptual improvements over
the state-of-the-art model. The promising results of the proposed approaches high-
light the importance and potential of leveraging vehicle sensors to achieve a better
driving experience and improved safety.

Ultimately, this thesis first utilised artificial intelligence to improve the driving ex-
perience and safety of current vehicles via the non-intrusive and privacy-preserving
inference of drivers’ psychological states. Furthermore, an approach for the physio-
logical state monitoring of drivers based on driver cameras is envisioned for future
vehicles. While the proposed approaches for current and future vehicles rely on dif-
ferent sensory settings (without and with driver cameras, respectively), they are not
contradictory to each other. The transition from current vehicles to L3 or higher-level
autonomous vehicles equipped with driver cameras will be a gradual process. It can
be anticipated that in the upcoming future, autonomous vehicles will not be imme-
diately available among the majority of populations, especially in those low-income
regions. The proposed approaches target the challenges in the different phases of
this transition, and facilitate the improvement of the driving experience during this
process. In our vision, an intelligent vehicle is not only a means of transportation but
is also a platform where a driver’s state is optimised via various interventions, such
as changes in in-vehicle lightning, temperature, and music, or mindfulness exercises.
For these interventions, the recognition and the estimation of a driver’s psychologi-
cal and physiological states are preliminary. In line with this vision, the approaches
outlined in this thesis, in essence, provide driver-centric assistance to make life safer,
healthier and more comfortable.
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Zusammenfassung

Das Fahrzeug ist für viele Menschen ein wesentlicher Bestandteil des modernen
Lebens. Weltweit ist die Anzahl an Fahrzeugen von rund 193 Millionen in den
1970er Jahren auf zuletzt über eine Milliarde enorm gestiegen. In den meisten Indus-
trieländern, beispielsweise in Deutschland oder den USA, verbringt ein erheblicher
Teil der Bevölkerung täglich bis zu einer Stunde mit Autofahren. Darüber hin-
aus haben sich inzwischen auch die Menge an Fahrzeugen in den Entwicklungslän-
dern in den letzten Jahrzehnten rasant vermehrt. Mit der zunehmenden Nutzung
stellen Fahrzeuge eine Art dritten Lebensraum dar (neben Wohnort und Arbeitsplatz).
Darüber hinaus sind moderne Fahrzeuge im Gegensatz zum Wohnort und dem Ar-
beitsplatz, wo die Einführung neuer Infrastrukturtechnologien potenziell hohe Kosten
verursachen wird, bereits mit fortschrittlichen Sensoren und Infotainmentsystemen
ausgestattet, die verschiedene Interaktionen zwischen Fahrenden und Fahrzeugen er-
leichtern. Daher sehen immer mehr Forschende und Unternehmen Fahrzeuge als ide-
ale Plattform, in die Wellness-Funktionen integriert werden können. In dieser Vision
sind Fahrzeuge nicht nur ein Transportmittel, sondern auch eine Plattform, die das
psychologische und physiologische Wohlbefinden eines Benutzers durch Überwach-
ung und Intervention seines Zustands verbessert.

Neben den ausgefeilten Wellness-Features sollte man bedenken, dass die Verkehrs-
sicherheit eine große Herausforderung bleibt. Verkehrsunfälle gehören weltweit zu
den häufigsten Todesursachen (Platz 8). Neben dem Verlust des menschlichen Lebens
sind auch die wirtschaftlichen Auswirkungen nicht zu vernachlässigen. Schätzun-
gen zufolge verursachten Verkehrsunfälle finanzielle Einbußen von rund 3 % des
weltweiten Bruttoinlandsprodukts (BIP). In die Entwicklung fortschrittlicher Fahrer-
assistenzsysteme und (semi-)autonomer Fahrsysteme wurde ein enormer Aufwand
gesteckt. Während neuer entwickelte Systeme sich auf die Wahrnehmung und In-
teraktion zwischen dem Ego-Fahrzeug und den umgebenden Verkehrsteilnehmern
konzentrieren, haben sich ein relativ kleiner Teil der Forschenden mit der Opti-
mierung der Fahrsicherheit und des Fahrerlebnisses aus der Fahrerperspektive besch-
äftigt. Beim aktuellen Entwicklungsfortschritt stehen autonome Fahrfunktionen meist
nur für einfache Szenarien auf Autobahnen oder bei begrenzter Geschwindigkeit
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zur Verfügung. Das heißt, die Fahrsicherheit unter komplexen Verkehrsbedingun-
gen, wie in der Innenstadt oder bei schlechtem Wetter, bleibt stark vom Fahrer ab-
hängig. Daher ist die Überwachung des Fahrerstatus ein wesentlicher und wichtiger
Ansatz zur Verbesserung der Fahrleistung und damit zur Erhöhung der Fahrersicher-
heit.

Um das mentale Wohlbefinden und die Verkehrssicherheit zu verbessern, nutzen
sowohl die Forschung als auch die Automobilhersteller immer stärker das Erken-
nen des psychischen Zustands des Fahrers, genauer gesagt des emotionalen Zus-
tands. Tatsächlich wirken sich suboptimale emotionale Zustände (z. B. Wut und
Trauer) nicht nur auf das Wohlbefinden des Benutzers aus, sondern werden auch
mit riskantem oder gefährlichem Fahrverhalten in Verbindung gebracht. Der Main-
stream bestehender Ansätze beruht jedoch auf umständlichen physiologischen Sen-
soren, die die Herzfrequenz, Hautleitfähigkeit und Atemfrequenz eines Fahrers er-
fassen oder Kameras nutzen, die zu sehr in die Privatsphäre des Fahrers eingreifen,
was wiederum die Akzeptanz der Nutzer verringert. Um eine allgegenwärtigere und
die Privatsphäre bewahrende Emotionserkennung zu erreichen, stützt sich diese Ar-
beit auf die verschiedenen modernen Sensoren und Technologien, die in heutigen
hochcomputerisierten Fahrzeugen eingebettet sind. Anstatt physiologische Signale
oder Gesichtsinformationen des Fahrers zu analysieren, nutzt der vorgeschlagene
Ansatz die Sensoren und die Technologie in aktuellen Fahrzeugen, die eine um-
fassende Erfassung des Verkehrskontexts und des Fahrverhaltens wie starkes Brem-
sen, ausweichendes Lenken und scharfes Abbiegen ermöglichen. Durch den Ein-
satz von maschinellen Lerntechniken können die emotionalen Zustände aus dem
Verkehrskontext und dem Fahrverhalten abgeleitet werden und somit eine nicht-
intrusive und vertrauliche Emotionserkennung erreicht werden.

Neben dem psychologischen Zustandsmonitoring-Ansatz, der in aktuellen Fahrzeu-
gen eingesetzt werden kann, untersucht diese Arbeit die Möglichkeit der Schätzung
der Herzfrequenzvariabilität (HRV) des Fahrers in zukünftigen Fahrzeugen, wenn die
Fahrerüberwachungskamera eine obligatorische Komponente wird. Die HRV und
ihre abgeleiteten Metriken sind Schlüsselindikatoren für physiologische Zustände
und spiegeln nicht nur den Gesundheitszustand des Fahrers, sondern auch seine
Fahrtüchtigkeit wider. Herkömmliche Methoden zur Messung der HRV, wie Smart-
watches, Elektrokardiographie (EKG) und Photoplethysmographie (PPG), leiden un-
ter verschiedenen Einschränkungen, einschließlich Ungenauigkeit und umständlicher
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Nutzungsmöglichkeiten. In dieser Arbeit wird ein mimikbasierter HRV-Inferenzan-
satz vorgeschlagen, da Mimik und Herzaktivität beide vom autonomen Nervensys-
tem (ANS) gesteuert werden. Die Mimik von Fahrern kann über eine Fahrerüberwach-
ungskamera erfasst werden, die mit hoher Wahrscheinlichkeit ein obligatorischer Be-
standteil zukünftiger Fahrzeuge sein wird. Fahrerüberwachungskameras sind im au-
tonomen Fahren der Level 3 und Level 4 von großer Bedeutung, da das Fahrzeug
sicherstellen muss, dass der Fahrer die Kontrolle übernehmen kann, wenn das au-
tonome System zu komplizierte Verkehrssituationen nicht meistert. Unsere Evalua-
tion zeigt, dass der mimikbasierte HRV-Inferenzansatz bei der Erkennung der Aus-
reißer der HRV und deren Messgrößen herkömmlichen Methoden wie Smartwatches
überlegen ist. Durch die Überwachung der physiologischen Zustände des Fahrers
sind die Fahrzeuge der Zukunft nicht nur in der Lage, die Fahrsicherheit zu verbessern,
sondern eröffnen auch vielfältige Möglichkeiten, die Wohlfühlfunktionen zu opti-
mieren.

Die Experimente in dieser Dissertation wurden basierend auf den Datensätzen einer
Feldstudie durchgeführt, die sich aus Gesamtfahrstrecken von rund 50.000 Kilome-
tern (neun Fahrer) auf öffentlichen Straßen zusammensetzt. Dieser naturalistische
Datensatz ermöglicht eine tiefgreifende und zuverlässige Analyse des Fahrerverhal-
tens, der Mimik sowie des Zusammenspiels zwischen Fahrer und Verkehrskontext.
Die vorgestellten Ansätze sind nach unserem besten Wissen die erste ihrer Art, die
unter naturalistischen Bedingungen evaluiert wurden und den Stand der Technik
konzeptionell verbessern. Die vielversprechenden Ergebnisse der vorgeschlagenen
Ansätze unterstreichen die Bedeutung und das Potenzial der Nutzung der Sensoren
von Fahrzeugen für ein besseres Fahrerlebnis und mehr Sicherheit.

Zusammenfassend nutzt diese Arbeit künstliche Intelligenz, um das Fahrerlebnis
und die Sicherheit aktueller Fahrzeuge durch nicht-intrusive und die Privatsphäre
bewahrende Rückschlüsse auf die psychischen Zustände des Fahrers zu verbessern.
Darüber hinaus zeigt die Dissertation einen Ansatz, wie die Überwachung des phys-
iologischen Zustands von Fahrern basierend auf Fahrerkameras für zukünftige Fahr-
zeuge aussehen kann. Die vorgeschlagenen Ansätze für aktuelle und zukünftige
Fahrzeuge beruhen zwar auf unterschiedlichen Sensorikkonfigurationen (ohne bzw.
mit Fahrerkamera), sie widersprechen sich aber nicht. Der Übergang von aktuellen
Fahrzeugen zu autonomen Fahrzeugen des Level 3 oder höherwertigen Fahrzeu-
gen, die mit Fahrerkameras ausgestattet sind, ist ein schrittweiser Prozess. Es ist
zu erwarten, dass autonome Fahrzeuge in der kommenden Zukunft, insbesondere
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in einkommensschwachen Regionen, für die Mehrheit der Bevölkerung nicht so-
fort verfügbar sein werden. Die vorgeschlagenen Ansätze zielen auf die Heraus-
forderungen in den verschiedenen Phasen dieses Übergangs ab und ermöglichen die
Verbesserung des Fahrerlebnisses während dieses Prozesses. In unserer Vision ist ein
intelligentes Fahrzeug nicht nur ein Fortbewegungsmittel, sondern auch eine Plat-
tform, auf der der Zustand des Fahrers durch verschiedene Eingriffe wie Beleuch-
tung im Fahrzeug, Temperatur, Musik oder Achtsamkeitsübungen optimiert wird.
Für diese Eingriffe sind das Erkennen und die Einschätzung der psychischen und
physiologischen Zustände des Fahrers notwendig. Im Einklang mit dieser Vision bi-
eten die in dieser Arbeit skizzierten Ansätze im Wesentlichen eine fahrerzentrierte
Assistenz, um das Leben sicherer, gesünder und komfortabler zu gestalten.
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Disclaimer

Parts of this doctoral thesis have already been published elsewhere.

Except for a few sections and adaptations, Section 1.2, Section 2, Section 3.1 - 3.7,
and Appendix A have been published at the Proceedings of the ACM on Interactive
Mobile Wearable and Ubiquitous Technologies (Liu et al., 2021a). Instead of citing
this doctoral thesis, we recommend to cite directly the following paper:

Shu Liu, Kevin Koch, Zimu Zhou, Simon Föll, Xiaoxi He, Tina Menke, Elgar
Fleisch, and Felix Wortmann (2021). “The Empathetic Car: Exploring Emotion
Inference via Driver Behaviour and Traffic Context”. In: Proceedings of the ACM
on Interactive Mobile Wearable and Ubiquitous Technologies 5.3, Art. no. 117:1–
34.

Except for a few sections and adaptations, Section 1.2, Section 4.1 - 4.6, and Ap-
pendix B have been accepted for publication in the IEEE Internet of Things Journal
(Liu et al., 2021b). Instead of citing this doctoral thesis, we recommend to cite di-
rectly the following paper:

Shu Liu, Kevin Koch, Zimu Zhou, Martin Maritsch, Xiaoxi He, Elgar Fleisch, and
Felix Wortmann (2021). “Towards Non-Intrusive Camera-Based Heart Rate Vari-
ability Estimation in the Car under Naturalistic Condition”. In: IEEE Internet of
Things Journal. Accepted.
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Chapter 1

Introduction

“Bosch’s approach is to envisage the vehicle as the ‘3rd living space’, a private space
in which you feel comfortable and like to spend time. This will be realised through
new control concepts and features that are not feasible in today’s cars.”

Robert Bosch GmbH, 2016

1.1 Context and Motivation

Driving is an inseparable part of many people’s daily lives. In the U.S., for example,
about 90% of the population (aged 16 or older) drove 2.5 trips daily from 2019-2020
on average, which corresponds to about one hour of driving time or a distance of
approximately 50 km of distance per day (American Automobile Association Foun-
dation for Traffic Safety, 2020). In Germany, approximately 60% of employees use
their car for commuting, among which over 25% of them spend at least 30 min-
utes per direction (Statistisches Bundesamt, 2016). Therefore, the industry imagines
that vehicles are being transformed into people’s third living space (after the home
and workplace) of people (Robert Bosch GmbH, 2016). With the help of advanced
information technologies, many new features that can improve the comfort, well-
being, and safety of drivers are expected to be integrated into such a transformation.
Among these features, two functionalities of our particular interests are the monitor-
ing of a driver’s psychological and physiological states, as the modern life style and
the ageing population have had serious negative impacts on people’s wellness. In the
following, the significance and the potential of psychological and physiological state
monitoring in vehicles are introduced. After that, we motivate furthermore from road
safety perspective that optimising driver states is a critical measure to improve safe
driving.
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Driver Mental Well-being. The prolonged driving time in modern life has a pro-
found impact on people’s mental states, which, in turn, influences the driving ex-
perience and road safety. First, during daily driving tasks, people often inevitably
encounter frustrating situations such as traffic jams, unreliable navigation, and un-
friendly traffic participants. Such events are often the triggers of negative emotions
such as anger, stress, and sadness (Chatterjee et al., 2020; Legrain, Eluru, and El-
Geneidy, 2015; Zepf et al., 2019). Subsequently, the accumulated negative emotions
and stress adversely affect the driving experience and further cause the immediate
impairment of driving performance. For example, anger and sadness can lead to
risky and degraded driving performance (Chan and Singhal, 2015; Underwood et al.,
1999). Therefore, the timely recognition and regulation of such negative emotions
is an effective way to restore drivers into their optimal mental states and hence ulti-
mately reduce the possibility of human errors.

From a broader perspective, in-vehicle emotion recognition and regulation have deriva-
tive benefits for improving mental health, which has escalated to a major concern of
the public health sector (Kohn et al., 2004). With the accelerated pace of life and
increased work stress, the number of cases of psychological illness has witnessed an
astonishing increase over the last decade. For example, major depressive disorders
and anxiety disorders have increased by 18.4% to 320 million cases per year and by
14.9% to 264 million cases per year, respectively (Vos et al., 2016; World Health Or-
ganization, 2017). In addition to the lowered quality of life, the economic losses due
to these illnesses are uncountable due to high treatment costs and reduced productiv-
ity (Greenberg et al., 2015). Large scale conventional dedicated preventive interven-
tions and treatment are needed to combat increasing mental illness, which, however,
exceeds the available capacity of current medical systems (Ebert et al., 2017). There-
fore, researchers and experts have called for light-weighted novel interventions that
can be performed ubiquitously and provide the advantage of being independent of
both time and place (Ebert et al., 2017; Nahum-Shani, Hekler, and Spruijt-Metz,
2015). As such, cars are considered to have a great potential in the monitoring and
improvement of people’s mental states because the in-vehicle setting is a unique en-
vironment where commuters spend a considerable amount of time.

Driver Physiological Health. Health and well-being are important aspects of peo-
ple’s daily lives. In particular, driving is a demanding task that requires full attention
and optimal performance from the driver, especially in high-speed dynamic scenarios
(Coughlin, Reimer, and Mehler, 2011). Empirical statistics show that inattentiveness,
drowsiness, and fatigue constitute one of the main factors of traffic accidents (Choi
et al., 2016). The situation is even more serious for the ageing driving population,



1.1. Context and Motivation 3

especially in those high income countries. Therefore, it is of vital importance to
promptly recognise such sub-optimal states of drivers. Heart rate variability (HRV)
and its measures are very informative physiological signals for the recognition of
driver states, and have been proven to be relevant to stress, drowsiness, and inatten-
tiveness. Indeed, a substantial amount of efforts in both academia and industry has
been devoted to the monitoring of the heart activities of drivers. However, the exist-
ing solutions, such as smartwatches, remote photoplethysmogram (rPPG), the ultra-
wide band (UWB) technique, and ballistics-based methods, etc., suffer from various
constraints including the mediocre accuracy, inconvenient deployment, and the lack
of ubiquity, which prevents their practical usage (D’Angelo et al., 2010; Stricker,
Müller, and Gross, 2014; Wartzek et al., 2011; Zheng et al., 2020). Therefore, a
ubiquitous and reliable HRV monitoring technique is yet to be invented to ensure
optimal driving performance, reduce human errors, and improve driving safety has
yet to be invented.

In addition, the monitoring of HRV measures provides a significant extra benefit from
the perspective of well-being. Heart activities are not only an indicator of driving
performance, but also reflect multiple psychological and physiological states. For
example, occupational burnout, depression, and mood disorders, etc., can lead to
sub-optimal states and manifest as changes in HRV measures changes (Holzman and
Bridgett, 2017; Lo, Wei, and Hwang, 2020; Malik et al., 1996). A vehicle capable of
monitoring HRV can be combined with well-being interventions that restore the sub-
optimal psychological and physiological states of drivers (Koch et al., 2021; Lee,
Elhaouij, and Picard, 2021) due not only to driving events, but also to other daily
activities.

Road Safety. In 2019 the World Health Organisation (WHO) and the Global Health
Estimates reported that road traffic accidents are the major cause of mortality of the
young population aged between 15 and 29 years (World Health Organization, 2019).
While various efforts, such as better infrastructures and more advanced driver assis-
tance systems, have successfully reduced the rate of road traffic deaths by almost
two-fold in the past years (from 115 deaths / 100,000 vehicles in 2006 to 64 death
/ 100,000 vehicles in 2016), the continuous growth of vehicle usage has neutralised
the advantage of the reduced rate of road traffic deaths. In the same period from
2006 to 2016, the number of vehicles worldwide has increased from approximately 1
billion to 2.1 billion. As a result, the road traffic fatality has increased steadily, from
around 1.25 million in 2013 to 1.35 million in 2016 (World Health Organization,
2015; World Health Organization, 2018). In addition to the significant humanitarian
concerns of the globally increasing traffic fatalities, each year the non-fatal traffic
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casualties reach about 50 million (World Health Organization, 2015). WHO has esti-
mated that the economic cost of traffic accidents constitutes approximately 3% of the
global gross domestic product (GDP) (Gahr et al., 2019; World Health Organization,
2018).

Among various factors, driver errors are the most significant critical reason for traffic
crashes. Based on the National Motor Vehicle Crash Causation Survey, conducted
in the U.S. from 2005 to 2007, the National Highway Traffic Safety Administration
(NHTSA) summarised that approximately 94% of the traffic crashes were attributed
to driver errors (National Highway Traffic Safety Administration, 2015). A rising
technology to combat the consequence of human errors is the artificial intelligence
facilitated semi-, and fully-autonomous driving. With the advancement of sensing
and decision-making techniques, vehicles in the future are promised to overtake the
driving task for humans. Nevertheless, the development of automated driving system
(ADS) is a gradual process. Despite progressive achievements in autonomous driv-
ing techniques, only a few vehicles in the market have level-3 (L3) autonomy, and
the current features of L3 autonomy are constrained to a very limited number of use
cases. For instance, the Traffic Jam Pilott (TJP) from Audi can be operated at up to
60 km/h on highways with a longitudinally-divided traffic flows (Autovista Group,
2020). Moreover, the Drive Pilot from Mercedes is only usable in dense traffic, tail-
backs, or on appropriate sections of the motorway in Germany (Patel, 2020). The
NHTSA of the U.S. envisions fully automated safety features for highway autopilot
only after 2025 (National Highway Traffic Safety Administration, 2020a). Traffic
on highways represents a relatively simple scenario, whereas many complicated sit-
uations still require manual control. Therefore, it is justified to hypothesise that, in
the near future, vehicles will still require human operation in many scenarios when,
for example, the vehicle is outside predefined level-4 (L4) regions or in complicated
scenarios when the system requires the driver to take control. Moreover, autonomous
cars will not be directly widely available; it may take years or decades until manual
vehicles are fully replaced. This progress may take even longer in developing coun-
tries, as the envisioned ADS might involve an upgrade of not only vehicles, but also
infrastructures (Chen et al., 2019a). Furthermore, the barrier to the deployment of
ADS originates not only from the technical perspective, but also from the legal per-
spective. For example, Audi postponed the release of L3 autonomous features due
to legal structures and model life cycles related issues (Autovista Group, 2020); it
remains unclear whether the L3 autonomous features of the Mercedes-Benz S-Class
will be available in the US market at the same time as they will be in the European
market (Patel, 2020). In summary, drivers will continue to play a key role in traffic;
compared with autonomous driving systems that completely overtake driving tasks,
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the approaches that reduce human errors can bring immediate benefit. As such, we
believe that the monitoring of the psychological and physiological states of drivers is
of significant importance from the road safety perspective.

1.2 Research Objective and Approach

Today’s cars are highly computerised with a rich sensor set that captures the inter-
action between the driver and the vehicle as well as the surrounding traffic context.
These sensors collect a large amount of information about the driver’s states. Nev-
ertheless, there is a gap in both academia and industry regarding the potential util-
isation of such vehicle data for the inference of driver states. This motivated the
two research objectives that this thesis sets out to investigate. First, it is investigated
whether a driver’s emotions can be inferred based on sensors that are available in
current vehicles without causing inconvenience and compromising the driver’s pri-
vacy. The second research question aims at whether we can further estimate a driver’s
physiological state in a non-intrusive manner, given the additional sensors that will
be installed in future vehicles. In the following subsections, these two objectives
are described and elucidated in higher granularity. Furthermore, an overview of the
overall target of this thesis is provided.

1.2.1 Inference of Driver Emotions

An empathetic car that is capable of reading the driver’s emotions has been envi-
sioned by many car manufacturers. Emotion inference enables in-vehicle applica-
tions to improve driver comfort, well-being, and safety. Available emotion inference
approaches use physiological, facial, and speech-related data to infer emotions dur-
ing driving trips. However, existing solutions have two major limitations: First, the
reliance on sensors that are not built into the vehicle restricts the inference of emo-
tions to those people leveraging corresponding devices, for example smartwatches,
electrocardiography (ECG) devices, or electroencephalography (EEG) devices. Sec-
ond, the utilisation of modalities such as facial expressions and speech raises privacy
concerns. By contrast, researchers in mobile health have been able to infer affec-
tive states (e.g., emotions) based on behavioural and contextual patterns decoded
in available sensor streams, e.g., those obtained by smartphones (Canzian and Mu-
solesi, 2015; LiKamWa et al., 2013; Zhang et al., 2018). In this way, no additional
sensors are needed and users’ privacy is better protected. In this thesis, the rationale
from the mobile health domain is transferred to an in-vehicle setting by analysing the
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feasibility of inferring drivers’ emotions by passively interpreting the data streams of
vehicles, leading to the first research question (RQ) of this thesis:

RQ 1: Can a driver’s emotions be inferred based on the control area network (CAN-
bus) and the traffic context (from the front-view camera or on-board radar sys-
tem)?

To verify the idea that resided in this question, we conducted a four-month field
study on public roads (around 50,000 km of driving data from nine drivers) covering
a variety of uncontrolled daily driving activities. Given the naturalistic setting of the
field study, the results of the experiments were generated beyond the confines of a
laboratory environment and can provide more reliable insight into the feasibility of
driver emotion inference in the wild.

1.2.2 Estimation of Driver Heart Rate Variability

Driver states monitoring systems will be a vital component of smart cars in the future,
especially in the era when (semi-)autonomous driving vehicles will need to ensure
a driver’s capability to take back control of the vehicle when necessary. The heart
rate (HR) is one of the most important physiological signals concerning the driver’s
state. To infer the HR of drivers, the mainstream of existing research has focused on
capturing the subtle heartbeat-induced vibration of the torso, or has leveraged pho-
toplethysmography (PPG) to detect cardiac cycle-related blood volume changes in
the microvascular. However, existing approaches rely on dedicated sensors, which
are expensive and cumbersome to be integrated, or are vulnerable to ambient noise.
Moreover, their performance on the detection of HR does not guarantee a reliable
computation of HRV measures, which are more applicable metrics for the inference
of mental and physiological states. The accurate computation of HRV measures is
based on the precise measurement of the inter-beat interval (IBI), which can only
be accomplished by medical-grade devices for which electrodes are attached to the
body. These existing challenges limit the utility of driver health monitoring in the
real world, and hence lead to the second research question investigated in this the-
sis:

RQ 2: Can a driver’s HRV be reliably estimated in a non-intrusive manner (via a
driver monitoring camera) in future vehicles?

To address this question, a facial expression based HRV estimation approach is pro-
posed. The rationale behind this approach is to establish a link between facial expres-
sions and heartbeat, as both are controlled by the autonomic nervous system (ANS).
Moreover, it should be noted that driver state monitoring systems in future cars will
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most likely be realised by driver monitoring cameras. Therefore, the proposed ap-
proach does not introduce additional sensors, nor does it impose any inconvenience
to drivers, and thus has a high degree of ubiquity. The experiments conducted to
investigate RQ 2 were based on the same study data used for the RQ 1; however,
only a subset (two weeks) of the data was used, as the HRV data were not recorded
throughout the entire field study. To further improve facial expression-based HRV
estimation, a tree-based probabilistic fusion neural network approach is proposed
and respectively compared with the conventional random forest and neural network
methods and the PPG-based measurements used in smartwatches.

It should be noted that, unlike in-vehicle emotion recognition that relies only on the
existing sensors in current vehicles, the proposed HRV estimation approach features
a future application scenario in which driver monitoring cameras will be a prevalent
or even mandatory component of vehicles. Therefore, this thesis targets different
phases of the transition from current vehicles to future (semi-)autonomous driving
vehicles.

1.3 Structure of the Dissertation and Contribution State-
ment

The remainder of this dissertation is organised around the two research questions and
is structured as follows.

Chapter 2 presented the foundational dataset that is used in this work, and describes
the properties of the participants of the experiments and the characteristics of the
driving data. This dataset was collected by my colleague Kevin Koch.

Chapter 3 focuses on the RQ 1, exploring driver emotion inference via driving be-
haviour and traffic context. This chapter is based on our ACM IMWUT 2021 publi-
cation (Liu et al., 2021a).

Chapter 4 focuses on the RQ 2, investigating the possibility of non-intrusive camera-
based HRV estimation in vehicles. This chapter is based on our latest manuscript,
which has been accepted for publication in the IEEE Internet of Things Journal (Liu
et al., 2021b).

Chapter 5 finally summarises the key discoveries, the implications for both researchers
and practitioners, and the significance of the proposed monitoring approaches in the
up-coming era of more intelligent vehicles. Furthermore, an outlook is provided that
outlines potential work that could be performed and research topics that could be
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investigated to further improve driver safety and the driving experience in the fu-
ture.

As stated previously, the contributions presented in this dissertation are partially
based on the work of other researchers, and primarily consist of the study design,
application for the approval of the field study by the ethics committee, the replica-
tion of the state-of-the-art algorithm, and the collection of dataset. All collaborators
mentioned previously are acknowledged with the co-authorship in the related publi-
cations. In Section 1.4, a comprehensive list of all other co-authors is given. These
co-authors have provided intensive discussion and ingenious feedback on the study
design, the argumentation of concepts, algorithm implementation, and the literature
review. Apart from that, unless specifically mentioned, the contribution described in
this dissertation is originally from the author.

1.4 List of Publications

The research of this dissertation have been presented as the following publications,
which constitute the fundamental contribution of this dissertation.

1. Shu Liu, Kevin Koch, Zimu Zhou, Simon Föll, Xiaoxi He, Tina Menke,
Elgar Fleisch, and Felix Wortmann (2021). “The Empathetic Car: Exploring
Emotion Inference via Driver Behaviour and Traffic Context”. In: Proceed-
ings of the ACM on Interactive Mobile Wearable and Ubiquitous Technolo-
gies 5.3, Art. no. 117:1–34.

2. Shu Liu, Kevin Koch, Zimu Zhou, Martin Maritsch, Xiaoxi He, Elgar Fleisch,
and Felix Wortmann (2021). “Towards Non-Intrusive Camera-Based Heart
Rate Variability Estimation in the Car under Naturalistic Condition”. In:
IEEE Internet of Things Journal. Accepted.

In addition, the publications that were part of my PhD research, but are outside the
scope of this dissertation, are listed below:

3. Kevin Koch, Verena Tiefenbeck, Shu Liu, Thomas Berger, Elgar Fleisch,
and Felix Wortmann. “Taking Mental Health & Well-Being to the Streets:
An Exploratory Evaluation of In-Vehicle Interventions in the Wild”. In: Pro-
ceedings of the 2021 CHI Conference on Human Factors in Computing Sys-
tems, Art. no. 539:1–15.
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4. Kevin Koch, Varun Mishra, Shu Liu, Thomas Berger, Elgar Fleisch, David
Kotz, and Felix Wortmann (2021). “When Do Drivers Interact with In-vehicle
Well-being Interventions? An Exploratory Analysis of a Longitudinal Study
on Public Roads”. In: Proceedings of the ACM on Interactive Mobile Wear-
able and Ubiquitous Technologies 5.1, Art. no. 19:1–30.

5. Kevin Koch, Shu Liu, Thomas Berger, and Felix Wortmann (2020). “To-
wards the Healing Car: Investigating the Potential of Psychotherapeutic In-
vehicle Interventions”. In: European Conference on Information Systems.
Research-in-Progress Papers, pp. 1–8.

6. Shu Liu, Kevin Koch, Bernhard Gahr, and Felix Wortmann (2019). “Brake
Maneuver Prediction–An Inference Leveraging RNN Focus on Sensor Con-
fidence”. In: IEEE Intelligent Transportation Systems Conference, pp. 1415–
1420.

7. Bernhard Gahr, Katherine Caves, Junhan Wen, Kevin Koch, Shu Liu, and
Felix Wortmann (2019). “The Costs of Traffic Accident Hotspots”. In: IEEE
Intelligent Transportation Systems Conference, pp. 883–888.

8. Bernhard Gahr, Shu Liu, Kevin Koch, Filipe Barata, André Dahlinger, Ben-
jamin Ryder, Elgar Fleisch, and Felix Wortmann (2019). “Driver Identifica-
tion via the Steering Wheel”. In: arXiv, arXiv:1909.03953.
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Chapter 2

Foundational Materials and
Methods

Our analysis is based on a four-mouth field study during which a variety of empirical
sensory data were collected from participants during daily drives. The field study
involved nine participants (originally 10; data from one participant were corrupted,
and were thus removed), and lasted from July 4 to November 5, 2019. Data collec-
tion was approved by the university ethics committee of University of Bern prior to
starting the study.

2.1 Participants

We recruited nine (four females and five males, mean age, 37±8 years) participants
using an internal call in an enterprise with more than 1,000 employees. Our selection
followed the idea of recruiting ordinary daily commuters. They were selected to rep-
resent a large variety of people (purposive sampling). Two participants were single
and eight were married. Three had children and two had pets. The preferred activi-
ties while driving included making phone calls, listening to music or the radio, and
talking to other occupants of the car. We assigned each participant the same type of
vehicle (with modifications for data collection as described below). The participants
were supposed to use the vehicles for their daily drives, including business trips and
vacations.

2.2 Data Collection Equipment and Protocol

Our hypothesis is that the driver’s emotion can be inferred from driving behaviours
and traffic contexts, which can be measured in turn by the vehicle’s control area net-
work (CAN-bus) and front-view cameras, respectively. The emotion labels based
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on ground-truth facial expressions were captured by another camera mounted on the
dash-board of the vehicle. Because the state-of-the-art affect recognition schemes
(Healey and Picard, 2005; Nardelli et al., 2015; Schmidt et al., 2019) rely on physio-
logical sensors, we also collected physiological data of the participants for compari-
son.

Wearable HRV 
monitoring device

(A) Participant in vehi-
cle

(B) Heart monitoring
device - Firstbeat (First-
beat Technologies Oy,

2019)

(C) CAN data collec-
tion device.

(D) Webcam deploy-
ment

FIGURE 2.1: Experimental setup

We accessed the CAN-bus data via a PCAN-USB Pro FD-Adapter (PEAK-System
Technik GmbH, 2019). Two webcams (Logitech HD Pro Webcam C920) were
mounted on the dashboard of the vehicle to record videos of the traffic context 1

as well as the driver’s facial expressions. The CAN-bus and video data streams
were controlled by an industrial-grade embedded computer (Compulab IOT-GATE-
IMX7), and were stored locally in the vehicles on external hard disks. When the

1We used a separate camera for this, and did not rely on the CAN-bus-based radar or camera
systems, to make our analysis more flexible as both systems in the car had only a limited feature set
available.
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vehicle was started, the computer initialised the recordings of both types of data. We
collected 49 CAN signals, including those for the speed of the four wheels, acceler-
ator position, angle of the steering wheel, and brake pedal pressure. A complete list
of CAN signals is shown in Table A.1 in Appendix A. Figure 2.1c and Figure 2.1d
show setups for collecting the CAN-bus data, data from the front-view camera, and
data from videos of the driver’s face.

In line with previous emotion recognition studies that used physiological data (Nardelli
et al., 2015; Schmidt et al., 2019), we collected the heart rate (HR) and the heart rate
variability (HRV) using a heart monitoring device (Firstbeat Bodyguard 2), as shown
in Figures 2.1a and 2.1b. All participants were asked to wear the device for the
two weeks of the field study 2. The sampling rate of the HR and HRV of the heart
monitoring device was 1000 Hz. For the sake of a more comprehensive comparison
participants also wore a recent consumer smartwatch (Garmin vívoactive 3) during
driving.

FIGURE 2.2: An example of Affectiva annotation

2.3 Characteristics of Driving Data

It was crucial for our dataset to capture representative driving situations. This sub-
section presents some important statistics related to our dataset.

2We recorded the heart rate signals of the participants only in the first two weeks because wearing
the heart monitoring device for a prolonged time may cause discomfort.
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FIGURE 2.3: Number of trips per driver and per day

(A) Total driving dis-
tance per driver

(B) GPS heatmap of
trips

FIGURE 2.4: Spatial coverage of driving trips

After data cleansing, we had around 675.6 hours of driving data with videos from
front view camera as well as videos of the driver’s face. Figure 2.3 plots the number
of trips3 per day for each participant during the field study. The overall average
number of trips per day was greater than one, and the participants had up to 10
trips per day. Most participants were working during the period of our field study,
except drivers #3 and #9, who had taken vacations in July and August. The total
driving distances of each participant are plotted in Figure 2.4a. Most drivers drove for
reasonably long distances (more than 3000 km) during the field study. The average
trip length and duration were around 25 km and 23 min, respectively. The GPS
records of the vehicles are presented as a heatmap in Figure 2.4b. As is shown there,
most participants drove around the area of Stuttgart, Germany. A few long-distance
trips were also taken to Prague and northern Germany.

Overall, our dataset covered a wide range of daily driving activities. All participants
3A trip was defined as a segment of continual driving behaviour without a pause longer than 10

minutes.
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were active in terms of the number of trips per day and driving distance. The cov-
erage and diversity of the dataset ensured that our experiments were generalisable to
heterogeneous situations and drivers.
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Chapter 3

Driver Emotion Inference

The previous chapters have outlined the motivation for driver state monitoring, and
the potential that psychological state recognition brings to this increasingly popular
field. The data collection system and detailed information about participants and
driving statistics have been described and discussed. While the results of existing
works have shown enormous and increasing enthusiasm in driver emotion recogni-
tion, a major disadvantage of them are their intrusive (relying on cumbersome physi-
ological sensors) and privacy breaching (relying on driver face information) property.
As such, this chapter focuses on the first research question of this thesis:

RQ 1: Can a driver’s emotion be inferred based on the control area network (CAN-
bus) and the traffic context (from the front-view camera or on-board radar sys-
tem)?

The emotion recognition based on CAN-bus data stream and traffic context does
not introduce inconvenience to the drivers and can better protect privacy, and hence
targets the key limitation of existing works. In the following of this chapter, we start
by revisiting the motivation of non-intrusive and privacy preserving driver emotion
recognition. In addition, more information about the definition and the annotation
of emotions, as well as recent advancements in emotion recognition is provided.
The data preprocessing and transformation that are specific to this research question
are described and enable deeper insight into the underlying challenge of this topic.
Subsequently, the methodology and the results are presented, which are followed by
a discussion and outlook that may inspire researchers in the future.

3.1 Context and Motivation

The aim of affective computing is to recognise and adapt to the affective state of the
user. Examples of its implications include reducing the user’s frustration through
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adaptive and comfortable communication or just-in-time interventions (Sarker et al.,
2014). Driving is often a cause of stress, and is associated with cognitive burden
(Stutzer and Frey, 2008). Traffic, driving task, and navigation systems, etc., fre-
quently constitute sources of negative emotions during driving (Chatterjee et al.,
2020; Legrain, Eluru, and El-Geneidy, 2015; Zepf et al., 2019) and hence lead to
a sub-optimal mental states while driving than other daily tasks (Chatterjee et al.,
2020; Kahneman et al., 2004). The accumulated cognitive load and negative af-
fective states do not only have negative consequences for the drivers’ physiological
well-being (Stutzer and Frey, 2008), but can also cause the immediate impairments
of driving performance. For instance, anger and sadness are found to be associated
with risky and degraded driving performance (Chan and Singhal, 2015; Underwood
et al., 1999) and a positive valence is found to be correlated with better steering be-
haviours (Trick, Brandigampola, and Enns, 2012). It is of vital importance to detect
negative or stress-related emotions, such as anger, disgust, fear, and sadness, as well
as positive emotions such as joy and valence. In the environment of a car, technolo-
gies that can infer the driver’s emotions can help improve their comfort, well-being,
and safety. Thus, detecting the driver’s emotional state is an important part of the
vision for the car of the future. In pursuit of this vision, OEMs (e.g., BMW, KIA and
Mercedes–Benz (Corby, 2017; KIA, 2019; Mcmanus, 2020b)) and start-up compa-
nies (e.g., Affectiva (Mcmanus, 2020a)) have already taken initial steps.

However, past research on in-vehicle emotion recognition has yielded two major lim-
itations that hinder the large-scale integration of this technology into the car (Braun,
Weber, and Alt, 2020). First, available solutions such as the ENERGIZING COACH,
introduced by Mercedes–Benz (Corby, 2017), rely on smartwatches that incur addi-
tional cost, and hence are still not extensively used. Hence, such approaches are
limited in their scalability. Second, existing work has focused on emotion recogni-
tion via facial expressions or speech, which particularly compromises drivers’ pri-
vacy (Zepf et al., 2020). This substantially differs from the approach considered
here because we rely on the CAN-bus and front-view camera data. The CAN-bus is
a standard for communication among in-vehicle sensors, controllers, and actuators,
and contains detailed information about driving behaviours such as steering, braking,
and accelerating. Front-view cameras can easily be mounted on vehicles to record
videos that capture the ambient traffic environment, and are already built into the
latest generation of cars. Hence, approaches based on CAN-bus and front-view cam-
era can be applied to existing vehicles without requiring expensive, special-purpose
hardware.

Our approach draws on an analogy between recent advancements in generic emotion
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recognition via user behaviour and the contexts of application to enable in-vehicle
emotion inference. Many studies have shown the feasibility of inferring a users’ emo-
tions from the patterns of his/her smartphone usage (LiKamWa et al., 2013; Lu et al.,
2019; Zhang et al., 2018). Emotion-induced behavioural patterns are highly corre-
lated with context (e.g., dining, working, and entertainment), which can improve the
accuracy of emotion recognition (Gjoreski et al., 2016; Mishra et al., 2018). Because
driving is a unique activity with predefined rules and interactions that differ from
what has been investigated in previous studies (LiKamWa et al., 2013; Lu et al.,
2019; Zhang et al., 2018), we apply the concept of re-purposing the available sen-
sor modalities to develop inference models targeting behavioural and context-based
emotion recognition. In summary, the novelty of our approach is in applying ma-
chine learning to CAN-bus and front-view video data streams to reliably detect the
emotions of drivers while minimising privacy-related concerns. The RQ 1 is then
divided into the following two sub-research questions:

• RQ1.1: To what extent can the emotions of drivers be inferred based on (a)
CAN-bus data streams, (b) the front-view camera, and (c) a combination of
both (fusion)?

• RQ1.2: How much improvement does emotion recognition based on vehicle
data offer compared with state-of-the-art methods based on physiological sen-
sors?

In successfully answering these research questions, the main contributions and re-
sults of this study can be summarised as follows:

• We conducted a four-month field study involving nine participants to collect
various (CAN-bus, front-view camera, driver facial camera and physiological
sensors) empirical sensory data during uncontrolled daily driving activities on
public roads. In total, we collected valid data on 675.6 hours driving data made
by nine participants covering various scenarios.

• Recording CAN-bus and video data requires pre-processing in order to use
them in machine learning pipelines. We outline a comprehensive pre-processing
and feature engineering pipeline for both kinds of data. We comprehensively
summarise important features for time-series and video data as the basis of the
classification algorithms.

• We develop an emotion classification algorithm that can process and classify
CAN-bus and video data streams as well as fuse them. Based on either kind
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of CAN-bus or video data, our algorithm can detect the emotions1 based on
facial expressions with an average macro F1-score of around 70% in user-
dependent settings, and around 60% in user-independent settings. The results
of our experiments showed that the fusion of the two modalities can further
improve the performance.

• While the methods based on physiological sensors are the most prevalent among
in-vehicle emotion recognition, there is a clear trend towards more ubiquitous
affective state monitoring methods (Zepf et al., 2020). We demonstrate that our
proposed method can accurately recognise drivers’ emotions and achieve com-
parable performance as the medical-grade physiological sensor-based state-of-
the-art baseline method (Nardelli et al., 2015). Our solution is more ubiquitous,
and uses only sensors available in modern cars.

• To the best of our knowledge, this is the first study that verifies the feasibility
of non-intrusive inference of driver emotions in empirical situations based on
driving behaviours and traffic contexts. Based on 675 hours of driving data
collected on public roads in real driving scenarios, a challenging environment
compared with laboratory conditions, our results are likely to be more reliable.

The remainder of this chapter is organised as follows: The related work on the defini-
tion, the annotation of emotions and the recent advancements in emotion recognition
are reviewed in Section 3.2. We present the emotion label transformation and data
cleansing procedure in Section 3.3. We explain our methods for emotion recognition
in Section 3.4. Section 3.5 summarises the results of verification of our method, and
we discuss them further in Section 3.6. Finally, Section 3.7 provides the conclusions
of our study.

3.2 Related Work

In this section, we outline common standards of emotion measurement, the current
trends in emotion recognition, and the progress in research on in-vehicle emotion
recognition for drivers.

1In this work, we focused on: anger, disgust, fear, joy, neutral, sadness, surprise, and valence.
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3.2.1 Emotions

To recognise the emotional state of drivers, it is important to obtain a reliable ground
truth of emotions that can be used to train and evaluate models. The affective com-
puting community often uses several expressions interchangeably to describe emo-
tions (Calvo and D’Mello, 2010), and there is no consensus on a general classifi-
cation, even in the field of psychology (Izard, 2009). The challenge is that the
emotional spectrum ranges around different origins: short and raw (affect), directed
and intensely felt (emotions), or long and diffuse (moods) (Barrett, 2006; Schwarz,
1990). Researchers commonly summarise these differences in origins as experiences
of feeling basic emotional states (Schwarz, 1990), and various models have been
proposed to reliably measure these emotional states in a standardised way.

The common methods of measurement are discrete category models and two- (2D)
or three-dimensional (3D) models (Calvo and D’Mello, 2010). Discrete category
models (e.g., (Ekman et al., 1987)) allow subjects to categorise their emotional states
into a set of basic emotions, such as happiness, sadness, anger, surprise, fear, and
disgust. By contrast, 2D and 3D models measure emotions in a multidimensional
space (Calvo and D’Mello, 2010). An example is Russel’s circumplex model, in
which subjects can rate their levels of arousal (i.e., degree of activeness) and valence
(i.e., degree of happiness) (Russell, 1980). Combinations of the two express specific
emotional states, e.g., low arousal and low valence represent sadness, whereas high
arousal and high valence indicate excitement.

3.2.2 Recent Advancements in Emotion Recognition

Inferring emotions is an objective that has been addressed in many prior studies. Al-
though the task considered here is similar, the approach differs with regard to the
input used. A variety of inputs, ranging from physiological sensors (Nardelli et al.,
2015; Schmidt et al., 2019) and facial images (Lopes et al., 2017) to speech (El Ayadi,
Kamel, and Karray, 2011), have been used. Physiological sensors such as smart-
watches allow for the continuous estimation of a subject’s emotions, inferred based
on the heart rate (variability), electrodermal activity, and accelerometer data. The po-
tential of this technique has been recognised by researchers. Ubiquitous devices that
record physiological data streams can be used to detect emotional states (Nardelli et
al., 2015; Schmidt et al., 2019). However, monitoring physiological signals requires
that subjects wear one or multiple devices, which may introduce inconvenience or
discomfort for regular daily use. As an alternative, non-intrusive approaches have
been developed. The most popular methods of emotion recognition are based on fa-
cial expressions and speech (El Ayadi, Kamel, and Karray, 2011; Lopes et al., 2017;
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Verma and Choudhary, 2018). Nevertheless, the continuous recording of a user’s
visual or audio information may raise privacy-related concerns.

Inferring emotions from behaviours and contexts is a promising less-intrusive alter-
native. Data accumulated from a user’s interactions with everyday devices contain
behavioural and contextual information that can act as a proxy for the experiences
or specific emotional states of the users. Researchers rely on devices such as smart-
phones to gather this information. The data gathered from smartphones are diverse,
and contain information on app usage, screen time, accelerometer, GPS, SMS, call
activity, Wi-Fi, and Bluetooth signals. These data constitute a digital representation
of user behaviour and context, from which their emotional state can be deducted
(Trifan, Oliveira, and Oliveira, 2019). Several studies (Buda, Khwaja, and Matic,
2021; LiKamWa et al., 2013; Reece and Danforth, 2017; Taylor et al., 2020; Zhang
et al., 2018) have shown that users’ emotions can be inferred from their patterns of
mobile phone usage. Canzian et al. used mobility trace from a smartphone to detect a
tendency toward depression (Canzian and Musolesi, 2015). The car, as an everyday
device with sensor modalities, allows us to derive the driver’s behaviour and con-
text as the basis for our emotion recognition algorithms. We propose detecting the
driver’s emotions using driving behaviours as represented by the CAN-bus signals of
the car and the context (surrounding traffic) as determined by the front-view video
camera.

3.2.3 Facial Expressions and Their Annotations

Facial expressions are among the most informative source for the estimation of af-
fective and cognitive states (Ekman, Friesen, and Ancoli, 1980). The Facial Action
Coding System (FACS) is an objective and quantitative way to measure facial ex-
pression. In the FACS, action units describe the expressions currently active in the
face at any given time, such as "brow furrow" and "eye widen". As a consequence,
facial expressions can be quantified based on the combination and the level of pres-
ence of action units (Ekman and Rosenberg, 1997; Sayette et al., 2001). Various
existing works have relied on facial expressions or action units for the estimation of
psychological states (Katsis et al., 2008; Sharma et al., 2020; Zhou, Phadnis, and
Olechowski, 2020) or the detection of deception (Sen et al., 2018).

However, manual FACS-coding requires profound expert knowledge and the process
is laborious due to the manual labelling required. With recent advances in computer
vision and machine learning, numerous studies have proposed the automated recog-
nition of facial expressions (Baltrusaitis, Robinson, and Morency, 2016; Dhall et al.,
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2011; McDuff, Kaliouby, and Picard, 2012; McDuff et al., 2016; Yang, Ciftci, and
Yin, 2018).

Developments in the automated recognition of facial expressions has had a major
impact on affective computing. Whereas earlier works relied on the manual anno-
tation of facial expressions, an increasing number of researchers now detect facial
action units or acquire emotion labels by using various algorithms. For example,
based on automatically detected facial action units, Sen et al. analysed deceptive
communication (Sen et al., 2018), and Sharam et al. focused on the assessment of
cognitive performance (Sharma et al., 2020). Rostaminia et al. leveraged the the out-
put of detection of OpenFace (Baltrusaitis, Robinson, and Morency, 2016) as ground
truth labels for the unobtrusive sensing of upper facial action units (Rostaminia et al.,
2019). To estimate emotional experiences during collaborative computer-aided de-
sign (CAD), Zhou et al. utilised the results of detection of facial expressions from
Affectiva (McDuff et al., 2016) as the emotion labels of CAD users (Zhou, Phadnis,
and Olechowski, 2020).

Compared with self-report questionnaires, the automated annotation of emotions
based on facial expressions has several advantages. First, automated annotation can
significantly reduce the manual labour required, thus enabling the acquisition of a
large number of emotion labels at a more temporally granular level. Second, the
unobtrusive emotion annotation via facial expressions means that the subject’s expe-
rience is uninterrupted. The frame-by-frame annotation of facial expressions enables
dynamic representations of how emotion evolve over time (McDuff, Kaliouby, and
Picard, 2012). Finally, by using facial expressions, the cognitive load imposed by
self-reports is avoided and the subjects’ responses are less likely to be biased due to
the form of the questionnaires, their context, and other irrelevant factors (Schwarz
and Strack, 1999).

Given the above advantages, we acquire facial expressions-based emotion labels of
drivers in this study by using a facial monitoring camera mounted on the dashboard
of the vehicle. Past work (Verma and Choudhary, 2018) has shown that state-of-the-
art algorithms can reliably detect the facial expressions of drivers with an accuracy
of around 95% in various contexts. Thus, in this work, we rely on the automated
facial expression annotation tool for the emotion label acquisition.



24 Chapter 3. Driver Emotion Inference

3.2.4 In-vehicle Emotion Recognition

As in the wider field of emotion recognition, researchers use sensors to detect the
driver’s emotions in cars.2 Physiological sensors are preferred for measuring stress
levels as a specific emotional response of the driver (Healey and Picard, 2005; Rigas,
Goletsis, and Fotiadis, 2012; Saeed and Trajanovski, 2017; Wang, Lin, and Yang,
2013) because stress and emotions in general are highly correlated with physiolog-
ical measures, such as the heart rate, the variation in heart rate, and blood pressure
(Sano and Picard, 2013). Malta et al. used electrodermal activity (EDA) in combina-
tion with facial expressions, driving events, and pedal behaviours to build a Bayesian
network to predict the frustration of drivers (Malta et al., 2011). To infer the compre-
hensive mental and physical states (concentration, tension, tiredness, relaxation) of
drivers, the authors of (Rebolledo-Mendez et al., 2014) built a body sensor network
to monitor signals, the such as electrocardiogram (ECG), electroencephalography
(EEG), EDA, and respiration rate. Kato et al. classified emotions as positive and
negative based on ECG and pulse wave measurements during traffic jams (Kato et
al., 2011). Most in-vehicle emotion recognition based on physiological signals relies
on numerous sensors, which are inconvenient to deploy. Data from physiological
sensors as well as those on facial expressions were used by Zhang et al. to monitor
a driver’s emotional states and degree of fatigue (Zhang et al., 2017). Guang et al.
introduced the first neuromorphic vision based distracted driving recognition sys-
tem that analyses driver drowsiness, driver gaze-zone, driver hand-gesture behaviour
from the generated streams of asynchronous events with a dynamic vision sensor
(Chen et al., 2020). Shafaei et al. proposed a multimodal system that combines fa-
cial expressions with steering wheel usage and vehicular acceleration for emotion
recognition (Shafaei, Hacizade, and Knoll, 2018). Facial expressions have been used
in industry solutions in this vein. For example, Affectiva has developed an automo-
tive software development kit that can analyse emotions using a driver-monitoring
camera system (Mcmanus, 2020a). Research has also used the driver’s speech to
detect emotions (Tawari and Trivedi, 2010). However, the fundamental barriers of
emotion recognition also apply to these methods. The use of video data for the face
or data for speech analysis raises privacy concerns. Physiological sensors are also
particularly intrusive.

Given that today’s car already have a set of sensor modalities, they are already well
prepared for emotion inference. Cars are equipped with a large number of sensors
that are accessible via the CAN-bus. In the CAN-bus, the sensors and actuators

2We recommend a recent review by Zepf et al. (Zepf et al., 2020) that reports details of research
on emotion recognition in a vehicle.
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of a car transmit comprehensive information about driving-related activities and the
vehicle’s dynamics while the radar and camera systems interpret the environmental
context. Researchers have shown that CAN-bus data can be used to detect driver
behaviours to derive the relevant contextual information, for example, identifying
the driver among a group of users (Enev et al., 2016), the profile of the driving
style (Martinez et al., 2017), and the anticipation of the driver’s intentions (Hallac
et al., 2018; Liu et al., 2019). Several studies have explored the use of CAN-bus
information (Dobbins and Fairclough, 2019; Paredes et al., 2018a) to detect stress
using driving behaviours. As this past research indicates, the available sensor data
allow for a wider interpretation beyond their intended usage (i.e., controlling the
car). To the best of our knowledge, this is the first study to detect the driver’s detailed
emotional state by passively interpreting data streams available in today’s cars.

3.3 Emotion Label Transformation

This subsection describes the statistics of the ground-truth emotion labels acquired
from the Affectiva algorithm as well as the procedures for data cleansing, pre-processing,
and transformation that were applied to them.

3.3.1 Emotion Annotation Tool

Affectiva spun out of MIT’s Media Lab. Its emotion recognition technology uses
computer vision algorithms and deep learning models to estimate emotions based on
facial expressions. Unlike other solutions based on the recognition of facial expres-
sions, Affectiva’s algorithms are built on a very large foundational dataset, containing
more than 9.7 million facial images of people from 90 countries, with over 5 billion
facial frames and six years of video data. Affectiva’s deep learning algorithms are
optimised with automotive in-cabin data, including more than 20,000 hours featuring
more than 4,000 unique individuals (Mcmanus, 2020a). Given these features, Affec-
tiva’s solution can reliably capture driver emotions. In our experiment, we used one
of the latest stable versions (ics-2.2.1) of Affectiva for annotation.

Affectiva detects the facial expression of the subject for every frame. For all emotions
except for valence, it outputs a score between 0 (absent) and 100 (present), indicating
the presence level of the relevant emotions (McDuff et al., 2016). The emotions
included anger, disgust, fear, joy, neutral, sadness, and surprise. The score of valence
ranged from -100 to 100, and thus was divided into negative and positive valence
(unhappy to happy).
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3.3.2 Emotion Persistence

Facial expressions are often not long-lasting, with a duration between 0.5s - 4s (Ek-
man, 2007). An example is provided in Figure 3.1 and 3.2. To ensure that the driver’s
most prevalent and stable affective states were captured accurately, we applied a non-
overlapping sliding window and divided the driving data into driving segments. The
emotion labels were defined according to their average level of presence in each
driving segment. Our objective was therefore to predict driver emotion using the
CAN-Bus data and data from the front-view video of the same driving segments.
An illustration of this setting is provided in Figure 3.3. By adjusting the length of
the sliding windows (and hence the length of the driving segments), driver emotion
could be recognised at different granular levels. We defined the default length of the
driving segments as 10 mins to capture emotions (directed and intensely) rather than
affects (short and raw) or moods (long and diffuse) 3. In addition, the combination of
the sliding window and the temporally continuous annotation from Affectiva enabled
emotion recognition at any time during drive.

FIGURE 3.1: An example of the raw output of Affectiva results over
time, dominance of anger and negative valence

Owing to inevitable occlusion (e.g., from driver turning head), and undesirable illu-
mination, facial expressions could not be detected in every frame. Only in a subset of
the frames were both the driver’s face and their facial expressions detected. We refer
to such frames as valid frames. To ensure the quality of the label, we considered only
the driving segments that contained more than 70% of valid frames. The labels of

3The analysis of different lengths of driving segments is provided in Section 3.5.3
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FIGURE 3.2: An example of the raw output of Affectiva results over
time, dominance of joy and positive valence

the driving segments were then computed as the average level of presence of an emo-
tion over all valid frames. Such a quality check reduced the amount of driving data
being used for training and testing, as some driving segments were discarded owing
to an inadequate number of valid frames. From 675.6 hours of driving data, we ob-
tained a total of 19,885 two-minute driving segments (equivalent to 662.8 hours of
data) or 3,377 10-minute driving segments (equivalent to 562.7 hours). Trips shorter
than 10 mins were not included in the 10-minute driving segments, which led to the
different number of driving hours between the types of segments.

Traffic context is collected from vehicle front view camera (data resampled to 10Hz)

Driving begins Driving ends

CAN-Bus data is collected during drives (data resampled to 10Hz)

Facial Expression based emotion from driver face camera, annotated using Affectiva

Input 1 :

Label: emotion 
annotation

Input 2:

Driving segments, no gap or overlap btw. 
subsequent segments

. . .

Video data
CAN-Bus data Machine Learning 

Model
Avrg. emotion of 
current segment

FIGURE 3.3: Data and emotion labels used for our data analysis
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FIGURE 3.4: Violin plots of the emotion distribution of each driver

3.3.3 Emotion Distribution

It is critical to inspect the label distribution to understand how reliable we can pre-
dict the emotions and to ensure that our ground truth is valid. As described in Sec-
tion 3.3.2, the emotion labels were the average presence level of emotions over driv-
ing segments of a predefined length. Figure 3.4 illustrates the distribution of emotion
labels of the 10-min driving segments The following observations can be made from
it:

• The drivers elicited more negative valence than positive valence. This can be
explained by the fact that driving is a task that requires high cognitive load and
induces stress (Chatterjee et al., 2020; Kahneman et al., 2004).

• Driving had a varying impact on the drivers, which was reflected in the distinct
personalised mean values of each emotion across different drivers.

• Most emotions have a low presence level. This can be explained by the in-
stantaneous nature of facial expressions: The values shown in Figure 3.4 were
averaged over segments of 10 mins of driving; owing to the instantaneous na-
ture of facial expressions, as illustrated in Figure 3.1 and 3.2, the values were
balanced out by non-present moments, in which a given expression was absent
from the subject’s face.

3.3.4 Transformation of Emotion Labels and Data Cleansing

Before conducting further data analysis, we needed to address common affective
computing-related issues with our data.
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As discussed in Section 3.3.3, each participant had their personalised baseline (i.e.
different mean values) of emotions in the context of driving because emotions are
subjective, and their interpretation among people differs (Martínez, Yannakakis, and
Hallam, 2014; Yang and Chen, 2011; Yannakakis, Cowie, and Busso, 2017). Such
subjective factors introduced bias to the emotion recognition. Therefore, the emotion
labels of each participant were calibrated following a personalised emotion label
transformation, as described in Equation 3.1. This binarisation processing procedure
was similar to that in (Canzian and Musolesi, 2015; Egilmez et al., 2017; Mishra
et al., 2018; Sen et al., 2018).

emotion label =

(
low class, i f presence level < personalised median

high class, i f presence level >= personalised median
(3.1)

Such a transformation accounted for variations in individual perceptions of the driv-
ing task. Owing to the continuous values of the annotation, we have almost balanced
the emotion labels for low and high classes (average proportion of majority class =
50.6%± 0.7%) after label transformation. The objective of our final prediction was
to determine whether a driver’s emotion positively or negatively deviated from their
personal baseline.

3.4 Methodology

This section explains our methodology to infer the driver’s emotions based on their
driving behaviours (CAN-bus data) and the traffic contexts (video data). We first
introduce the data pre-processing and feature engineering for each sensor modality
in Section 3.4.1, and then detail the inference models based on the CAN-bus and
video data as well as their combination in Section 3.4.2.

3.4.1 Data Pre-processing and Feature Engineering

We briefly explain the candidate features extracted from CAN-bus, front-view video,
and additional data sources. Note that we focus on interpretable features that have
been proven to be effective in research on sensing the activities of the driver.

Features from CAN-bus Data

The CAN-bus data were used to capture driving behaviours and vehicular dynamics.
By using 49 CAN data signals, we chose the following as candidate features because
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they were the most common across different vehicles and, thus, could guarantee
the capability of generalisation of our analysis. They were as follows: angle of the
steering wheel, yaw rate, brake pressure, pedal position of the accelerator, speeds
of the four wheels, longitudinal and lateral acceleration, and rotational speed of the
motor.

Because the recording of the raw CAN-bus data was not synchronised, we re-sampled
them to 10 Hz, which is suitable for CAN-bus data processing (Hallac et al., 2018).
Following the common practices for such data processing (Enev et al., 2016), the
re-sampled CAN-bus data streams were split into sliding windows, from which fea-
tures such as statistical features, auto-correlation, etc., are derived to form a feature
vector. Our tests of several sliding windows with different lengths resulted in five-
second-long windows without overlap. These comparably short windows are com-
mon in CAN processing and seem to capture single driving manoeuvres (Enev et al.,
2016; Liu et al., 2019). Table 3.1 lists the features derived from the CAN-bus data
streams.

TABLE 3.1: Input signals and derived features from CAN-bus data.
The features have been widely used for CAN-bus data processing
(Enev et al., 2016), and were intended to capture driving behaviours
and vehicular dynamics. The dimensions of certain features are noted

in brackets.

Input Signal

Steering wheel angle,
Yaw rate,
Brake pressure,
Accelerator pedal angle,
Speeds of the four wheels,
Longitudinal and lateral acceleration,
Motor rotational speed

Derived Features for CAN data

min, max, mean,
std. dev., median,
kurtosis, skewness,
quantile (25%, 75% and 95%),
piece-wise approximation (14D),
auto-correlation (50D),
log(FFT) (26D),

Features of Front-view Video Data

Video data from the front-view camera were expected to reflect the traffic contexts.
Because we hypothesise that the driver’s emotions can be inferred from traffic con-
texts, it is reasonable to assume that these contexts are easy to perceive and interpret
by humans. Following this assumption, we derived the video-based features from
objects detected by using the available object detection algorithms. Deriving pixel-
wise features from videos for recognising the driver’s emotion is beyond the scope
of our work.
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We applied Yolo-v3 (Redmon and Farhadi, 2018) to detect a subset of objects related
to the driving context (small vehicles, trucks, pedestrians, and cyclists), and used the
location and size of each object as candidate features. The videos were re-sampled
to 10 frames per second, and Yolo-v3 detection was used on each frame.

lateral coordinate

FIGURE 3.5: Simplified lane separation: front view of webcam

FIGURE 3.6: Simplified lane separation: lateral distribution of num-
ber of detected objects

To infer driver emotion from traffic situation, it is important to involve lane informa-
tion as it can affect the cognitive load on drivers (Lee, Lee, and Boyle, 2007). With
lane information, the relative position of the surrounding traffic participants can be
better determined. However, state-of-the-art lane detection (Neven et al., 2018) algo-
rithms are computationally expensive and limited in their availability to researchers.
We used a simplified method to gain lane-related information. We split an image into
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three columns, corresponding to [0,0.25), [0.25,0.65) and [0.65,1] along the lateral
axis. These columns were approximated as the left, middle, and right lane from a
drivers perspective, respectively. In addition, past research (Lee, Lee, and Boyle,
2007) has shown that drivers are more sensitive to closer vehicles than distant ones.
Therefore, the trade-off between accuracy and simplicity was acceptable even though
the correspondence between the split and the lanes was valid only in the near-range of
the ego-vehicle. Moreover, such an approximation was supported by the distribution
of the detected positions and number of vehicles captured by the front-view camera
as shown in Figure 3.5 and 3.6. The lateral distribution of the detected objects was
approximated by a Gaussian mixture model with three clustering centres.

For each approximated lane we computed the statistical features and auto-correlation
of the number and the sum of the sizes of the detected objects in it in each sliding
window (the same sliding windows as for CAN-bus data). Each approximated lane
was used to compute 120 features, for a total of 360 features from the results of
detection using Yolo-v3. These are summarised in Table 3.2.

TABLE 3.2: Features of traffic

Input Signal

Yolo detection results:
- Class (vehicle, cyclist, or pedestrian)
- Confidence, coordinates of bounding
boxes 10 most confidently detected
objects in each frame

Derived Features for Video data

min, max, mean, std. dev.,
median, kurtosis, skewness,
quantile (25%, 75%, or 95%),
and auto-correlation of number
of objects and sum of sizes
in each approximated lane
in a sliding window

Features from Auxiliary Data Sources

Because emotions vary over the course of a day (Egloff et al., 1995), we considered
temporal features to recognize the emotions of the driver using the following: sec-
onds before dawn, seconds after dusk, seconds before sunrise, seconds after sunset,
indicator of driving at night, current time (formatted in the 24h-scale), and the day
of the week. The first four features were set to zero if driving had occurred after or
before the corresponding event to ensure that there were no negative values in the
temporal features. The temporal features were computed for every five seconds by
using a sliding window based on the time associated with the corresponding win-
dows. From each five-second sliding window, a temporal feature vector of seven
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dimensions was computed. That is to say, for instance, from a 10-min driving seg-
ment, a 120-step (10min / 5s = 120) sequence of 7D temporal feature vectors was
computed. We did not perform feature selection on the temporal features, and sim-
ply concatenated this temporal sequence of feature vectors to the sequences obtained
from CAN data, videos, or a fusion of the two.

Summary of Features

From each sliding window, we computed 1100D, 360D, and 7D feature vectors
for the CAN-bus, front-view video, and temporal modalities, respectively. Each
modality therefore contained a sequence of feature vectors of the same sequence
length. For example, the sequence length of a 10-min driving segment was 120
(10min / 5s = 120). For each driver, we computed the p-values associated with
each dimension of the feature vector by using an ordinary least-squared regression
for every emotion. We selected only the 10 dimensions with the lowest p-values as
input from each modality (i.e., the CAN-bus and front-view videos) per emotion for
each driver. The cumulative distribution of the p-values of the selected dimensions of
the feature vectors are plotted in Figure A.1 in Appendix A. Note that for most signal
sources, more than 80% of the selected features had p-values lower than 0.05. We
leveraged multi-task learning approach, a method that has been proven to be useful
in recognising emotions or activities (Saeed, Ozcelebi, and Lukkien, 2019; Schmidt
et al., 2019), to build a neural network to predict all emotions at the same time. This
meant that for every driver in the training set, 80 (10D, eight emotions = 80) CAN
features, 80 video features and seven temporal features were considered. If a feature
was relevant to multiple emotions, it was selected only once. If multiple drivers were
in the training set, the union of the selected features was used. Therefore, the number
of selected features varied depending on the drivers in the training set.

3.4.2 Driving Behaviour- and Context-based Inference Models

In this subsection, we first introduce the driving behaviour- and context-based models
using data from only either CAN-bus or front-view videos as input, followed by a
combination of the two (i.e., sensor fusion).

CAN-bus-only Model

Random forest approaches, as for example in (Enev et al., 2016), can be used to
process CAN-bus data. However, they require hand-crafted features and are unable
to capture temporal dependencies between these feature vectors. By contrast, the
approaches based on recurrent neural networks (RNN) like the one in (Hallac et al.,
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2018) can model the time dependence on a wider time scale even without explicit
feature creation. However, such end-to-end training methods must learn the knowl-
edge of carefully designed features and requires larger amounts of data. Our method
combines the advantages of both. Our pipeline begins by computing the feature vec-
tors of CAN-bus data using sliding windows as shown in Table 3.1 and Section 3.4.1.
Then, the feature vectors are fed sequentially into a RNN.

The RNN can learn a high-level abstract summary of the data from the sequence of
feature vectors. This summary is then processed by a fully connected network that
outputs a probability distribution as a prediction of low and high states of a certain
emotion. The detailed settings of the proposed method are as follows: We choose an
RNN architecture with two layers, where each consists of 64 gated recurrent units
(GRUs). This architecture is similar to (Hallac et al., 2018), where they have input
dimension of 665 and two layers RNN with 256 gated recurrent units is used. We
have proportionally applied the similar reduction from our input dimension to the
gated recurrent units. The CAN-bus and time feature vectors are concatenated in each
sliding window. Our RNN has a simple structure because manual feature extraction
and feature selection are applied a priori, which significantly reduces the complexity
of the input. The input to the RNN is a sequence of feature vectors with reduced
dimensions. We leveraged a multi-task learning approach to build a neural network
that predicted all emotions at the same time. As the labels were almost balanced for
every emotion, we randomly shuffled the training batches to obtain an almost equal
number of low- and high-state samples on average for each emotion in every training
batch. We used the Adam (Kingma and Ba, 2014) optimiser and cross-entropy as
loss functions, as described in Equation 3.2. The ReLU (Nair and Hinton, 2010) was
applied as activation function to the fully connected layers. The learning rate was
set to 0.005. The hyper-parameters/parameters are empirically tuned to achieve the
best emotion recognition performance. We trained the neural network until its loss
converges. The inverse proportion to the class ratio was assigned as weight to the
loss function:

L =
n

Â
i=1

�wi[yi · log s(xi)+ (1� yi) · log(1�s(yi))] (3.2)

with

wi = n/
n

Â
j=1

(1� yi)(1� y j)+ yiy j (3.3)

where xi and yi are the prediction and ground truth for the ith sample, respectively,
and n is the total number of samples. The framework of the proposed method is
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illustrated in Figure 3.7.
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FIGURE 3.7: Recurrent neural architecture for recognising the
driver’s emotion: CAN-only model

Front-view Video-only Model

Apart from the modality of the input, the structure and settings for the front-view
video-only model were identical to the CAN-bus-only model. The feature vectors of
video replaced those of the CAN-bus as explained in Section 3.4.1. Vectors of the
video and the time feature were concatenated in each sliding window. The framework
of the front-view video-only model is illustrated in Figure 3.8.
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FIGURE 3.8: Recurrent neural architecture for recognising the
driver’s emotion: Video-only model

Fusion Model

We then integrated the two sensor modalities into a joint inference model, called the
fusion model. To fuse the sensor data of the CAN-bus with the front-view video,
we constructed fused feature vectors formed by concatenating the feature vectors
as described in the previous two sub-sections. The rest of the network architecture
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and settings constant are kept constant. The sensor fusion model is illustrated in the
Figure 3.9.
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FIGURE 3.9: Multi-modal recurrent architecture for recognising the
driver’s emotion: fusion model

3.5 Evaluation

Our evaluation section has three parts. In Section 3.5.1, we evaluated our driving
behaviour- and context-based inference models. In Section 3.5.2, we described the
baseline methods and compared their results with that of our proposed method. Fi-
nally, in Section 3.5.3 we investigated the stability, usability, and complexity of our
approach.

To avoid misinterpretation, the macro-F1-score that we used is formalised in Equa-
tions 3.4 - 3.7, where t p, f p, and f n represent the true positive, false positive and
false negative, respectively, depending on the level of presence of each emotion,
and subscript (c) distinguishes between low-and high-scoring classes, i.e., (c) =
(low) or (high). For the sake of brevity, all F1-scores in this paper refer to the
macro F1-score.

As mentioned in Section 3.3.2, the driving segments were generated by using non-
overlapping sliding windows to ensure that there was no intersection between any
pairs of driving segments. For intra-subject evaluation, we built a personalised model
for each driver by randomly dividing their driving segments into training (70%) and
test (30%) datasets. For the leave-one-subject-out (LOSO) evaluation, we used the
driving segments from the ith driver as test data and the data from the remaining
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N � 1 drivers is used as training data. In our case, i was iterated from one to nine.
All the experiments were repeated 10 times by using 10 different random seeds for
both intra-subject and LOSO evaluations. The F1-scores presented are the average
of the 10 repetitions of all drivers. The standard deviations of the 10 repetitions are
indicated as error bars in the corresponding figures.

F1 = (F1(low) +F1(high))/2 (3.4)

precision(c) = t p(c)/(t p(c) + f p(c)) (3.5)

recall(c) = t p(c)/(t p(c) + f n(c)) (3.6)

F1(c) =
2

recall�1
(c) + precision�1

(c)

(3.7)

3.5.1 RQ1.1: To what extent can the emotions of drivers be in-
ferred based on (a) CAN-bus data streams, (b) front-view
camera, and (c) the combination of both (fusion)?

Table 3.3 summarises the results of our proposed models for intra-subject and leave-
one-subject-out (LOSO) evaluations. The best performance scores are highlighted
in bold. In the intra-subject evaluation settings, the results indicate that the fusion
model achieved the best performance scores on all emotions. For all emotions com-
bined, our CAN-bus-only model achieved an F1-score of 68.8%. Our video-only and
fusion models improved this score to 69.9% and 71.0%, respectively. With limited
fluctuations, all emotions achieved comparable equally high scores. This suggests
that a comprehensive recognition of the driver emotional state was possible in intra-
subject setting. We then inspected the generalisability of the proposed models by
exploring the results of the LOSO evaluation.

Compared with the setting for the intra-subject evaluation setting, the LOSO evalua-
tion yielded lower scores. This was expected because emotion is subjective and user-
independent emotion recognition remains a daunting challenge in affective comput-
ing community. The F1-scores achieved by the fusion model highlighted the varying
performance across all emotions in the LOSO setting. Whereas the emotions of
anger, disgust, neutral, sadness, and valence yielded relatively high scores of 63.8%,
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64.5%, 62.8%, 63.5%, and 62.4%, respectively, those of fear, joy and surprise were
less accurately detected, with F1-scores of 48.7%, 58.7% and 49.8%, respectively.
These varying performance scores across emotions also accounted for the results of
the CAN-bus-only and front-view video-only models. We conclude that some emo-
tions were more difficult to detect than others independently of the sensor modality
in the LOSO setting.

TABLE 3.3: Intra-subject and LOSO cross-validation: comparison
between the driving behaviour- and context-based inference models
as well as the fusion of both modalities. The best results of the three

models (CAN, video, and fusion) are highlighted.

Personalised Model LOSO Model
F1-score (%) CAN Video Fusion CAN Video Fusion

anger 69.8 71.2 72.3 62.9 62.3 63.4

disgust 69.9 71.8 72.8 63.7 63.7 64.5
fear 69.1 69.2 70.5 48.0 49.3 48.7
joy 67.8 67.5 68.6 59.3 58.3 58.7

neutral 68.3 69.6 70.9 61.9 60.6 62.8

sadness 68.1 70.2 70.6 62.4 61.8 63.5

surprise 69.5 69.6 70.9 49.3 49.7 49.8

valence 68.3 70.4 71.1 60.5 60.2 62.4

average 68.8 69.9 71.0 58.5 58.2 59.2

Furthermore, we plotted the confusion matrix of the fusion model to better visualise
the results in Figure 3.10 and 3.11. For the personalised setting, the fusion model
predicted the low and high classes with comparatively equal accuracy for all emo-
tions, despite small variations. For the LOSO settings, we observed similar patterns
(i.e., higher values along the diagonal of the matrix) except in case of the emotions
of fear and surprise. The confusion matrix shows that our proposed solution was
not biased towards the low or the high class, which reflects the stability of our re-
sults. While the LOSO evaluation in general achieved lower F1-scores than the per-
sonalised evaluation, the confusion matrix showed that anger, sadness, and valence
could be relatively accurately recognised in the LOSO settings. The more reliable de-
tection of these three emotions in the LOSO settings is in line with existing findings
in literature providing evidence that they are closely related to driving performance
and safety (Chan and Singhal, 2015; Jeon, 2016; Trick, Brandigampola, and Enns,
2012; Underwood et al., 1999). For the sake of completeness, the confusion matrices
of the CAN-only and video-only models are provided in Appendix A.

In summary, the F1-scores estimated using intra-subject and LOSO cross-validation
indicate that emotions could best be inferred based on a combination of CAN-bus



3.5. Evaluation 39

data and front-view camera data. The use of single modality models leads only to a
minor reduction in performance.

FIGURE 3.10: Confusion matrix for fusion modality under intra-
subject evaluation

FIGURE 3.11: Confusion matrix for fusion modality under LOSO
evaluation

3.5.2 RQ1.2: How much improvement does emotion recognition
based on vehicle data offer compared with state-of-the-art
methods based on physiological sensors?

The performance scores of our models were compared with a physiological signals-
based baseline. Physiological signals are widely used for emotion recognition (Dob-
bins and Fairclough, 2019; Gjoreski et al., 2016; Healey and Picard, 2005; Schmidt
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et al., 2019) because emotions have an influence on the autonomic nervous system
(Kreibig, 2010), which is highly correlated with such physiological measures as the
heart rate, heart rate variability, and blood pressure (Sano and Picard, 2013). We
used the emotion recognition models proposed by Nardelli et al. (Nardelli et al.,
2015) as our physiological sensor baseline. In (Nardelli et al., 2015), the emotion of
subjects were induced by affective sounds in lab settings. During the experiments,
the heart rate variability (HRV) data of the subjects were collected. The authors de-
rived features of the time and frequency domains as well as non-linear features, and
performed feature selection using the Friedman test and Wilcoxon signed-rank test.
A quadratic discriminant classifier was then used for classification, and yielded an
accuracy above 80% for valence and arousal by using the LOSO procedure. For the
convenience of the readers, a comprehensive list of HRV features are provided in
Table A.2.

Combinations of valence and arousal express specific emotional states according
to Russel’s circumplex model (Russell, 1980). For example, low arousal and low
valence represent sadness, whereas high arousal and medium valence indicate hap-
piness. Therefore, the model from (Nardelli et al., 2015), designed for valence and
arousal recognition, was used as a proxy for the recognition of a variety of emo-
tions, in preference to models that focus on detecting stress or frustration (Healey
and Picard, 2005; Malta et al., 2011; Rigas, Goletsis, and Fotiadis, 2012; Saeed
and Trajanovski, 2017). Furthermore, unlike other physiological sensors-based ap-
proaches (Gjoreski et al., 2016; Healey and Picard, 2005; Schmidt et al., 2019), the
one in (Nardelli et al., 2015) does not require such physiological signals as the photo-
plethysmogram, skin temperature, and skin conductance. Therefore, this baseline
approach, by relying only on HRV data represents the available commercial wear-
able solutions to emotion recognition (Garmin Ltd., 2019). Moreover, our in-vehicle
environment resembled the laboratory settings in (Nardelli et al., 2015) because the
subjects were seated and no dramatic physical movements were allowed. Therefore,
(Nardelli et al., 2015) was a suitable and competitive baseline.

We replicated the method developed by Nardelli et al. as our physiological sensor
baseline, and refer to it as the baseline method. In accordance with our evaluation
scheme in Figure 3.3, we used HRV data of the driving segments to predict the emo-
tion labels in them. The baseline was evaluated and compared with our approach on
a subset of the available driving data because HRV data were collected from the par-
ticipants over only a two-week period. Therefore, only around 65 of the 675 hours of
the data on the trips contained the relevant HRV data, corresponding to 388 samples
of 10-mins driving segments. Although the HRV subset constituted only 9.6% of the



3.5. Evaluation 41

entire dataset, it was still larger than the dataset used in (Nardelli et al., 2015), which
consisted of only 208 samples.

Since the baseline (Nardelli et al., 2015) was conducted in lab condition, we opti-
mised it to our context by exploring prevalent machine learning models in affective
computing including Random Forest, Gradient Boosting, Support Vector Classifier,
Extra Trees Classifier, Decision Trees as well as our proposed recurrent neural net-
work. We performed grid search for optimal parameters and found that Extra Trees
Classifier (the number of trees = 50, maximum depth of the tree = 20, and the mini-
mal number of samples per split = 2) achieved the best performance. We refer to this
optimised model as baseline*.

A comparison between the proposed method and baseline* method is provided in
Table 3.4 and 3.5 4. Our proposed methods outperformed the baseline* method in
most of the cases. The scores in Table 3.4 and 3.5 are lower than those in Table 3.3.
Such a decrease in model performance is expected, because we used a smaller dataset
for comparison with the HRV baseline, and our proposed method relies on deep
learning. We discuss this instance of performance and the dataset size in more detail
in Section 3.5.3. The reduced performance of the baseline method compared to our
approach is barely explainable due to a small dataset because our sample size (388)
is much larger than the dataset (208) used in (Nardelli et al., 2015). Therefore, our
proposed method is better suited for in-vehicle emotion recognition than the state-
of-the-art based physiological sensor-based approach.

TABLE 3.4: Intra-subject cross-validation: comparison between the
baseline and the proposed three models

Personalised Model
F1-score (%) CAN Video Fusion baseline*

anger 63.1 63.4 61.5 58.7
disgust 64.4 66.1 62.1 60.6

fear 62 59.5 56.8 55.8
joy 62.1 63.5 64.5 59.7

neutral 64.3 64.5 64 56.5
sadness 63.7 64.3 62.9 59.8
surprise 66.4 64.7 66.1 58.2
valence 66.7 61 62.4 62.5

average 64.1 63.4 62.5 59

4The comparison between the proposed method and baseline method is provided in Table A.3 and
A.4 in the Appendix
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TABLE 3.5: LOSO cross-validation: comparison between the base-
line and the proposed three models

LOSO Model
F1-score (%) CAN Video Fusion baseline*

anger 51.4 52.9 50.8 44.4
disgust 52.4 50.8 49.5 47.9

fear 54.7 54 50.6 49.9
joy 56.6 54.8 53.3 54.3

neutral 54.6 51.6 52.4 49
sadness 48 49.8 47.4 45.3
surprise 54.3 50.7 49.3 55.4
valence 47.9 50.2 46.4 45.7

average 52.5 51.8 50 49

3.5.3 Analysis of Stability, Usability, and Complexity of Proposed
Solution

In this section, the stability, usability, and complexity of the proposed solution are
analysed in detail.

Stability vs. Dataset Size

Like all intelligent learning systems, the performance of our proposed method is
sensitive to the amount of training data used. Hence, we analysed changes in the
performance of our models with the size of the training dataset for both intra-subject
and LOSO evaluations. We changed the size of our training dataset by randomly
removing a certain amount of data while keeping the size of the test dataset constant:
a total of 30% of the dataset (intra-subject evaluation) or data for one driver (LOSO
evaluation).

Figure 3.12a depicts the results of the stability analysis of the intra-subject evalua-
tion. In general, despite fluctuations in case of small amounts of available data, the
performance patterns of different modalities stabilised once the training dataset had
reached 40% of its original size. After stabilisation, our fusion model outperformed
the CAN-bus-only and front-view video-only models by around one standard devi-
ation, independently of the size (> 40%) of the dataset. Overall, there is potential
to further improve the performance by increasing training dataset size. However, it
should be noted that the performance improvement relative to dataset size starts to
show the sign of saturation after the training dataset size reaches 40% of its original
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size. Therefore, the performance we showed in Table 3.3 is very close the the upper
bound if more data is available.

We performed the same stability analysis on the LOSO evaluation as shown in Fig-
ure 3.12b. The performance began to saturate as the size of the dataset increased
to over 40% of the original dataset. After saturation, the fusion model consistently
showed slight improvements over the CAN-only or Video-only models.

Another bottleneck in the LOSO model was the dataset diversity, i.e., the number
of training subjects. The higher the diversity of the dataset was, the greater was the
possibility that the model finds generalisable patterns among the drivers. To verify
this hypothesis, we evaluated our LOSO model with different numbers of subjects
in the training dataset. This is depicted in Figure 3.13. While the overall perfor-
mance saturated once four drivers had been included in the training dataset, the stan-
dard deviation dropped drastically as more drivers were included. This indicates the
importance of diversity among the training subjects for model stability in emotion
recognition.

Analysis of Usability

First, we analyse emotion recognition at different temporal granularities. As de-
scribed in Section 3.3.4, the length of the driving segments could be adjusted to infer
driver emotions at different granular levels. To inspect the performance of the model
from this perspective, experiments were carried out on segments with lengths of 2-
mins (19,884 samples), 5-mins (7,540 samples) and 10-mins (3,377 samples), and en-
tire segments of trips 5 (1,773 samples). The result is illustrated in Figure 3.14.

Both the personalised and the LOSO models delivered the best performance on data
on 10-min segments of driving. Despite having around two times more training sam-
ples than the setting for the 10-min driving segments, emotion recognition on the
5-min driving segments achieves inferior results. The performance on entire trips in
terms of recognition was by some distance the poorest. There are several possible ex-
planations for this: a) driver emotions fluctuating while driving, where the proposed
method was able to better infer a driver’s prevalent emotional state over a certain
period (in our case, around 10 mins) than the instantaneous detection of emotion, b)
events during driving having varying impacts on the drivers’ global emotions, and
c) the total number of training samples for segments of entire trips being only half

5A trip is defined as the duration from the driver starts driving until he/her ends driving. Therefore
the trips have varying length.
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(A) Personalised model

(B) LOSO model

FIGURE 3.12: Model performance vs. size of training dataset
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FIGURE 3.13: Model performance vs. number of drivers in training
set, LOSO model

of those for the 10-min segments, in which case the reduced dataset had a negative
impact on performance.

The proposed solution could best infer driver emotions at approximately 10-min in-
tervals. Emotion recognition at a higher temporal resolution led to a decline in per-
formance. This analysis shows that minute-level emotion recognition is possible by
using the proposed solution. The high temporal resolution enables a more granular
understanding of the evolution of driver’s mental states evolving over time, and hence
provides more opportunities for numerous applications. For example, just-in-time
emotion regulation can be better applied at the appropriate time in this way.

Next, the analysis of ablation study on CAN sensors is provided. We performed
an ablation study by using only one, or a subset of, CAN sensor(s) to understand
behaviour-based affective computing. The results are illustrated in Figure 3.15.

For personalised models, lateral acceleration (lat. acc.), yaw rate, and steering wheel
angle and vehicle acceleration (Steer. & Veh. Acc) perform the best among all CAN
sensors. That is to say, the emotion of individual person, to a certain degree, can
be better traced by using vehicular dynamics (i.e., lat. acc. and yaw rate) than the
interaction between the driver and the vehicle (accelerator pedal and brake). For the
LOSO model, steering wheel angle (steer. wheel) achieved the best F1-score with
a low standard deviation, which means that steering wheel-related behaviours were
more generalisable than other sensors among users.

Overall, the reduced number of CAN sensors had a negative impact on the CAN-only
model. However, the degradation in performance in terms of emotion recognition
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(A) Personalised model

(B) LOSO model

FIGURE 3.14: Model performance vs. segment length



3.5. Evaluation 47

(A) Personalised model

(B) LOSO model

FIGURE 3.15: CAN-only model performance vs. ablation on CAN
sensors: select only features from one sensor. Note: Steer. & Veh. Acc
contains steering wheel angle, latitudinal & longitudinal acceleration
and accelerator pedal; this subset replicates the settings in (Shafaei,

Hacizade, and Knoll, 2018).



48 Chapter 3. Driver Emotion Inference

performance was moderate. Even with only one CAN sensor (lat. acc. for person-
alised models and steer. wheel for LOSO models), the CAN-only model achieved
F1-scores that were only around 2�3% lower than if all sensors were used. The ab-
lation study thus demonstrated the flexible usability of the proposed solution in case
certain CAN sensors are not available.

Model Complexity

In this section, the model complexity of the proposed solution is analysed as it is vital
for mobile and ubiquitous applications to run efficiently. Our model had a varying
number of input dimensions depending on the feature selection process. Therefore,
the number of model parameters was not fixed. As a reference, a model with a
feature vector containing 100 dimension had 79,560 parameters and a size of 180KB.
Time complexity was mainly evaluated based on the CPU setup: Intel Core i5 1.4
GHz Quad-Core, 16 GB LPDDR3. To better outline the performance of current
advancements in GPU-accelerated parallel computing, Yolo-v3 object detection was
also evaluated on GPU setup: Intel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz, 196
GB LPDDR3, GeForce RTX 2080 Ti.

Table 3.6 shows the time complexity of each stage of processing of the proposed
method on a 10 min segment. The proposed solution relied on explicit feature engi-
neering in combination with a simple recurrent neural network. Therefore, the data
pre-processing and the feature generation had higher time complexity. The main
bottleneck of data pre-processing was the Yolo-v3 object detection on CPU-setup.
However, potential improvements can help avoid this for ubiquitous in-vehicle emo-
tion recognition, especially when the proposed solution is deployed on mobile de-
vices:

• Subject to local legislative permission, the Yolo-v3 object detection can be
delegated from mobiles devices to a cloud service with GPU devices. In our
case, a 10-min segment of a video at 10FPS and a resolution of 640⇥360 had
a size of only around 50 MB, which is acceptable in light of current mobile
network capacity.

• An increasing number of mobile devices are now equipped with neural pro-
cessing units that can significantly reduce the computation time and energy
consumption for object detection on mobile devices.

• Our proposed video feature engineering relies only on size and location of
the surrounding objects. Such information is already available in vehicles that
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are equipped with a radar or visual sensing systems. Thus, integrating the pro-
posed solution into vehicles will not impose an additional computation burden.

TABLE 3.6: Time complexity for processing one 10 min driving seg-
ment

procedure Wall-time (s)

CAN resampling 10.7
Yolo-v3 detection (CPU) 8028.0
Yolo-v3 detection (GPU) 75.0
CAN feature generation 1.2
Video feature generation 1.1

Inference 0.2

In conclusion, the run-time complexity analysis demonstrates that the proposed so-
lution has significant potential for the deployment on mobile devices (e.g., in com-
bination with driving recorders or smartphones mounted on dashboards), or for inte-
gration into an on-board computer of vehicles.

3.6 Discussion

In this section, we discuss the results of our work. We outline the potential and
limitations of the proposed non-intrusive approach with a special focus on privacy
protection.

3.6.1 Non-intrusive In-Vehicle Emotion Recognition and its Con-
tribution to the Car of the Future

In this subsection, we present the current solution offered by Original Equipment
Manufacturers (OEMs) to infer emotions and highlight the possible impact of our
approach on it. Braun et al. reviewed concept cars because corporate research is not
often published in the technical literature (Braun, Weber, and Alt, 2020). For exam-
ple, Audi presented its concept car, Elaine, which is similar to the solution proposed
by Mercedes–Benz (Audi AG, 2018). Elaine is capable of detecting stress and fa-
tigue based on body temperature and heart rate obtained through wearable devices.
Actions are subsequently triggered based on the recognised emotions. Such actions
can be interventions, adaptive music, ambient light, or empathetic speech. Although
the actions differ among OEMs, most of them are similar in that emotions are recog-
nised based on sensors that increase cost and might breach the user’s privacy.
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Unlike the above-mentioned emotion recognition methods that require physiological
sensors or the facial images of users, our methods rely solely on a set of existing
sensor modalities - CAN-bus and sensors that are going to be installed in future ve-
hicles - traffic sensing systems, such as the radar, Lidar, and visual sensing systems.
We used front-view cameras to capture traffic context. This paper showed that the
analysis of driving behaviour and the context of an everyday task, i.e., driving, can
help form a reliable estimate of the driver’s emotional state. We used Affectiva to an-
notate the facial expressions of the drivers. Our algorithms were able to differentiate
among 8 emotions to provide a detailed picture of the individually perceived emo-
tions. In contrast to prevalent technologies that conduct frame-by-frame predictions
(e.g., Affectiva (Mcmanus, 2020a)), our solution offers an assessment of the emotion
of the driver over a certain period, based on their driving behaviour and the traffic
context. Although, initially it seems that both approaches are ambivalent, we believe
that they are complementary. The emotional spectrum ranges around different ori-
gins. While Affetiva focuses on short and raw affect, our approach is more geared
towards directed and less volatile emotions and can better protect user privacy.

Our approach is fully comparable with recent advancements in behaviour-based emo-
tion recognition in the wild (Buda, Khwaja, and Matic, 2021; Reece and Danforth,
2017; Taylor et al., 2020). Since most in-vehicle emotion recognition relied on phys-
iological sensors, facial expression, or speech and were conducted in lab settings
(Zepf et al., 2020), we benchmark our results with that of other in the wild studies
based mainly on behaviours. Relying on Instagram photos, Reece and Danforth were
able to detect the depression of users at an accuracy of 70% (Reece and Danforth,
2017). Taylor et al. built a personalised model to classify binary states (sad/happy)
at an accuracy of 78.4%; similarly, Buda et al. (Buda, Khwaja, and Matic, 2021)
predicted lower or upper outliers of users’ happiness and achieved and macro F1-
score at 64.7% and 59.2% 6 for user-dependent and user-independent model, respec-
tively. In particular, (Taylor et al., 2020) excluded neutral days from both train and
test, and (Buda, Khwaja, and Matic, 2021) focused on classification of anomaly. In
comparison, we did not exclude any data in our approach, meaning that our method
shows more robustness in predicting ambiguous emotion responses that are close to
the boundary between low and high classes. As such, our competitive performance
against the state-of-the-art approaches demonstrate that our in-vehicle solution can
serve as a good complement of prevalent behaviour-based emotion recognition ap-
proaches.

6Both macro F1-scores are computed from their reported confusion matrix and data distribution.
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Our proposed non-intrusive system to recognise driver emotions allows for and en-
courages new opportunities to exploit the available data streams to infer the emo-
tional state of the driver. Because our data were collected on public roads in em-
pirical driving scenarios, a challenging environment was provided compared with
laboratory conditions, and so our results are likely to be more reliable.

3.6.2 Emotion Recognition with Respect to Privacy Protection

We evaluated our method in terms of protecting user privacy. CAN-bus data and the
surrounding visual information are much less sensitive to intrusion or leaking than
physiological and facial data. For example, physiological data can reveal sensitive
health conditions. Capturing surrounding traffics via a camera can violate privacy
laws in certain regions (e.g., the General Data Protection Regulation (GDPR) in Eu-
rope (European Union, 2020)). In such regions, the proposed CAN-only model can be
applied as it achieves similar performance to that of the Video-only and fusion models
while better ensuring preserve user privacy. Nevertheless, our models require only
locations and distances (we used object size as a proxy) of the surrounding traffic
participants. Surrounding object information can be retrieved from on-board radar
systems (Sun, Fei, and Pohl, 2019). Acquiring such information does not capture
sensitive information (e.g., license plates, facial images or explicit activities) from
traffic participants. Hence, our approach adheres to the idea of privacy by design
by minimising the data collection. It is compliant with current privacy-related laws
and should be more acceptable to customers than prevalent technologies, such as
driver-monitoring cameras or health-sensor-based approaches. Thus, the novelty of
our non-invasive emotion recognition algorithms is in their potential for scalability
and privacy-preserving capabilities.

3.6.3 Flexible Deployment

The proposed CAN-only, Video-only and Fusion models delivered similar perfor-
mances, as described in Section 3.5.1. We thus believe that the proposed meth-
ods have great flexibility in terms of deployment depending on the available sensor
modalities:

• The CAN-only model can be deployed in regions in which vehicular front-view
videos are disallowed (by law), or in the vehicles that are not equipped with the
requisite sensing systems to capture traffic context information. Furthermore,
the CAN-only model is robust against adversarial attacks and can be used in
security sensitive scenarios.



52 Chapter 3. Driver Emotion Inference

• The Video-only model is more flexible than CAN-only model. On the one hand,
in the regions (e.g., China, India and USA) where the front-view video are per-
mitted, the Video-only model can be used in combination with driving recorders
or smartphones mounted on the vehicle dashboard. Such a setting allows for
the recognition of driver emotion without access to CAN data, and hence fur-
ther increases the ubiquity. On the other hand, the Video-only model is a natural
fit in the context of increasingly intelligent vehicles. Vehicles in the future will
have better sensing capability of surrounding traffic. The proposed video-only
model relies exactly on the location and the distance of surrounding traffic
participants. Such information can be reused in more and more intelligent ve-
hicles.

• The fusion model further improved emotion recognition performance com-
pared with single modality models. It can be applied to achieve the best user
experience if the relevant conditions allow for it.

Our comparison should inform future research in the area on the suitability of these
three models. Hence, we believe that our findings actually revealed high flexibility
of the proposed method in the deployment.

3.6.4 Limitations

Despite our best efforts, this study has several limitations. First, our data collec-
tion took place in real-world traffic, a complex environment. To ensure a competi-
tive baseline, we relied on heart rate variability measures obtained by FirstBeat - a
recording device for cardiovascular activity. To record the data, electrodes needed to
be attached to the chests of the subjects. Such a procedure is cumbersome, and re-
quires additional training for the subject to correctly attach the electrodes. Moreover,
our prototypical setup, its cost, and the cumbersome physiological sensors forced us
to limit our sample size to nine drivers. These limitations should be, however, eval-
uated under the consideration that ours is the first study to explore drivers’ emotions
inference in a longitudinal setup (over four months). Our comprehensive sensor set
that was used to collect information on driver behaviour and the environment of the
car covered a wide range of influential factors.

Furthermore, we did not explicitly analyse the relation between emotion and spe-
cific driving manoeuvres or traffic events. Such a relation was modelled implicitly
by using a neural network. Identifying driving manoeuvres or traffic events remains
challenging. Even the state-of-the-art methods can identify only simple manoeuvres,
such as lane changing or turning right while accelerating (Liu et al., 2017; Peng
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et al., 2020b; Xie, Hilal, and Kulić, 2018). Future research should address this is-
sue and a more explainable model is promised to better benefit both academia and
industries.

Lastly, the LOSO model does not achieve as good performance as personalised
model. Generalising from a user-dependent to a user-independent model remains
a challenging topic in affective computing community. However, our results show
that a generilisability across users is possible, especially for the emotions such as
anger, sadness, and valence that are very relevant to driving safety. Further research
is needed to investigate the extent to which such generalisation is achievable.

3.7 Conclusion

In-vehicle emotion recognition can enable applications of intelligent automobiles
to improve comfort, well-being, and safety by adapting the car to the needs of the
drivers. Current applications rely on physiological, facial, and speech-based data
for emotion recognition. However, physiological sensors are cumbersome to wear
during daily commute, and incur additional costs. Moreover, recording facial ex-
pressions and speech may raise privacy-related concerns. In this paper, we leverage
recent advancements in generic emotion recognition through user behaviours, and
used the idea for in-vehicle emotion inference. We relied solely on data streams of
today’s cars (i.e., CAN-bus and front-view camera data): a strong advantage that al-
lows for a scalable and privacy-preserving implementation in cars. We collected four
months of CAN-bus front-view video data from nine users under naturalistic driving
settings on public roads. The in-situ emotions of the drivers’ faces were recorded by
a monitoring camera and the relevant videos were annotated by using a the state-of-
the-art facial expression recognition software - Affectiva.

Our results can be summarised as follows: First, we evaluated our models based on
intra-subject and LOSO evaluations, and compared the performance of different sen-
sor modalities. This evaluation revealed that a fusion model that combined CAN-bus
data and front-view video data achieved the best results among our models. A single
modality model yielded similar performance scores to those of a fusion model, which
allows for the flexible deployment of the proposed model when certain sensor modal-
ities are unavailable. Second, we compared the results of the proposed model with
an HRV baseline. This evaluation revealed that our models can achieve comparable
performance as the HRV baseline. Therefore, inferring driver emotions within a ve-
hicle based on driving behaviour and context by using data from CAN-bus and video
segments yields better ubiquity than physiological sensor-based approaches.
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Chapter 4

Driver Heart Rate Variability
Estimation

The previous chapters have so far described how the proposed psychological (emo-
tion) state recognition approach contributes to driver state monitoring in current ve-
hicles. As a further improvement that incorporates new sensors available in future
vehicles, the possibility of the driver’s heart rate variability (HRV) monitoring is in-
spected. The monitoring of HRV does not only improves driving safety, but to a
certain degree, is in-line with the vision of digital health that the well-being of peo-
ple can be monitored and improved in ubiquitous and pervasive manner. However,
existing works on driver HRV monitoring suffer from disadvantages ranging from
inaccurate measurement in complicated environments to inconvenient deployment.
As such, this chapter focuses on the second research question of this thesis:

RQ 2: Can a driver’s HRV be reliably estimated in a non-intrusive manner in future
vehicles?

In the following of this chapter, we start by revisiting the motivation of driver HRV
monitoring. Instead of presenting existing works in an independent section, we
merged the recent advancement of driver HRV monitoring techniques into the de-
scription of the context of this research question because the latest related work com-
prehensively depicted the current limitations and thus well motivated this topic. The
experiment settings and data transformation that are specific to this research question
are described and justified. After that, the methodology and the evaluation results are
presented. Subsequently, the usability, reliability, and limitations of the proposed
approach are discussed in detail. Finally, this chapter concludes the contributions to
the community and outlines potential improvements for future research.
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4.1 Context and Motivation

Daily driving is an integral part of the day for many people, a fact that is frequently
demonstrated by statistics. For example, in Germany 68% of the working popula-
tion uses their car for commuting and more than 25% of them commute daily more
than 30 minutes per direction (Statistisches Bundesamt, 2016). However, in the U.S.,
about 90% of all citizens (aged 16 or older) drove 2.5 trips daily from 2019–2020 on
average, which corresponds to about 1 hour of driving time or 30 miles (⇡ 48.3 km)
of distance (American Automobile Association Foundation for Traffic Safety, 2020)
per day. Moreover, the industry imagines the vehicle as the 3rd living space (after
home and workplace) of people (Robert Bosch GmbH, 2016), which has a tremen-
dous impact on people’s lives. Nevertheless, driving is still a cognitively demanding
task (Stutzer and Frey, 2008). The prolonged driving time induces excessive stress
(Chatterjee et al., 2020; Legrain, Eluru, and El-Geneidy, 2015; Zepf et al., 2019),
which has the potential to impair mental and physiological health (Stutzer and Frey,
2008). Furthermore, inattentiveness, drowsiness, and fatigue constitute one of the
main factors of traffic accidents (Choi et al., 2016). The timely recognition of the
driver’s states can be of significant benefit to improve driver states with just-in-time
intervention (JITI) (Koch et al., 2021; Lee, Elhaouij, and Picard, 2021; Sarker et al.,
2014). The recognition and regulation of driver states are particularly meaningful in
the era of (semi-)automated vehicles. During the transition to fully automated ve-
hicles (L2, L3 automation), drivers need to be mentally and physically prepared to
take over the driving task at any given moment (National Highway Traffic Safety Ad-
ministration, 2020a). Therefore, the vision of future intelligent cars extends the idea
of being a simple means of transportation toward a dedicated space where drivers’
mental and physiological states are taken care of. Ultimately, identifying the states of
drivers in vehicles is one important step toward safer driving and better life quality.
From a broader perspective, the enhanced in-vehicle experience under the concept of
ambient intelligence facilitates Internet-of-Things (IoT) enabled the transformation
of a vehicle into a well-being and safety platform, where the driving performance,
mental and physiological states are improved by restoring driver states in an optimal
range, as illustrated in Figure 4.1 (Aarts and Ruyter, 2009; Coughlin, Reimer, and
Mehler, 2011).

Heart rate variability (HRV) and its measures are the most promising physiological
signals to recognise driver states. Various studies have demonstrated their relevance
to infer stats like stress, drowsiness, or inattentiveness. HRV is the variation in the
time interval between heartbeats (inter-beat interval, IBI), and it can be characterised
by HRV measures in time and frequency domains. In the context of our work, there
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FIGURE 4.1: Driving performance vs. cognitive load according to
Yerkes-Dodson law, adapted from (Coughlin, Reimer, and Mehler,
2011). In future cars, intelligent vehicle systems are envisioned to be
able to regulate excessive fatigue or stressful states of drivers, in order
to further improve driving experience and safety (Coughlin, Reimer,

and Mehler, 2011).

are three most relevant and fundamental HRV measures in existing literature. In time
domain, the root mean square of successive differences between IBIs (RMSSD) is
a widely used measure. Increased RMSSD is associated with fatigue or drowsiness
states, whereas stress can cause a decrease in HRV (Hernando et al., 2018; Kim et
al., 2018; Lohani, Payne, and Strayer, 2019). Furthermore, Taelman et al. observed
that mental tasks can significantly reduce the proportion of successive normal beat
to normal beat intervals (NN-interval) with a difference greater than 50 ms (pNN50)
(Taelman et al., 2009). In addition to the signal in the time domain, HRV measures
in the frequency domain are also powerful indicators. Patel et al. and Vicente et al.
found statistically significant evidence that low frequency (LF) and high frequency
(HF) ratio (LF/HF ratio) is in alert states higher than fatigue states while driving (Pa-
tel et al., 2011; Vicente et al., 2016). To sum it up, excessively low or high states of
the depicted HRV measures (RMSSD, LF/HF ratio, and pNN50) are strongly asso-
ciated with the drivers’ cognitive load and psychological states.

As a consequence, researchers and automobile manufacturers have taken pioneer ef-
forts in driver heart rate detection. For example, BMW built a skin-resistance sensor
into the steering wheel for heart rate monitoring (Choi et al., 2016; D’Angelo et al.,
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2011). Similarly, Toyota and Denso monitored electrocardiography (ECG) and pho-
toplethysmogram (PPG) using a steering wheel equipped with different electrodes
and green light LEDs (525nm) (Choi et al., 2016; Osaka et al., 2008; Osaka, 2012).
In contrast, Ford and Denso utilised the driver seat (Sakai et al., 2013; Walter et al.,
2011; Wartzek et al., 2011). Although these methods seem to promise advanced
and widely validated technology (as PPG used in today’s smartwatches), researchers
agree that these approaches cannot yet provide reliable measurements. For instance,
(D’Angelo et al., 2010) evaluated the performance of steering wheel integrated sen-
sor under lab condition and concluded that there was an average error of 6% and
the maximal error could escalate to 20%. Such error is far greater than commodity
smartwatches, as we evaluated in this study (see Figure 4.10a). In (Wartzek et al.,
2011), Wartzek et al. found that seat-integrated sensors could not reliably detect
heart rate from drivers in all situations because seat integrated sensors are, for ex-
ample, vulnerable to the thickness and the material of outer clothing as well as the
weight of drivers.

To overcome such drawbacks, Zheng et al. recently designed a radio frequency de-
vice and leveraged ultra-wide band (UWB) impulse. The drivers’ heart rate can
be inferred by analysing of the Doppler frequency shift of UWB signal induced by
heartbeat, respiration and ambient noise (Zheng et al., 2020). Although the method
of (Zheng et al., 2020) can accurately detect drivers’ heart rate, inherent disadvan-
tages exist. First, such a method requires a special purpose UWB device, which is not
readily available. Second, due to ambient noise and physical constraint of sampling
rate, IBI can only be measured with moderate accuracy (about 50% of IBI measure-
ments have an error greater than 50 ms (Zheng et al., 2020)). Such an accuracy
limitation can be tolerated, when only the average heart rate is detected since HR is
computed as the inverse of the mean IBI in a certain interval. The noise in the IBI
measurement is cancelled out by the mean operation. However, considering critical
metrics, such as RMSSD or LF/HF ratio, the inaccuracy will be magnified because
these measures are sensitive even to the small inaccuracies in the measurements. Re-
cently, with the advancement of computer vision techniques, remote PPG (rPPG)
(McDuff, Gontarek, and Picard, 2014; Wang et al., 2017) has attracted prominent
attention. The fundamental principle of rPPG is as follows. Heartbeat (hence blood
volume in vessels) induces subtle colour variations on the human skin surface, which
can be captured by an RGB camera. Signal processing techniques are then applied
to analyse such variation; thus human cardiac activities can be monitored. Although
rPPG technique is appealing, many efforts are still needed before it can be applied
to the real world scenario. Remote PPG is sensitive to illumination and motion arte-
facts. More importantly, commodity cameras record video at 30 or 60 Hz, which by
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Nyquist–Shannon sampling theorem is insufficient for the accurate measurements of
IBIs, of which the variation is at millisecond-level. Existing research on HR/HRV
detection using rPPG was conducted in well-defined lab conditions; therefore their
generalisability to real-world scenarios remains unclear (Chen et al., 2019b; Gudi
et al., 2019; Stricker, Müller, and Gross, 2014; Tasli, Gudi, and Uyl, 2014). In a
nutshell, the existing contact-less monitoring methods do not guarantee a reliable
measurement of HRV in real world scenarios.

In light of these existing challenges, we propose an alternative way to monitor driver
states through HRV. As described above, drivers’s cognitive load and mental states
are strongly characterised by excessively low or high HRV measures (i.e., RMSSD,
LF/HF ratio, and pNN50). Therefore, instead of attempting to derive HRV measures
from inherently noisy IBI measurements, we propose a facial expression-based ap-
proach to detect the onset of HRV outliers. On the basis of existing literature, we
define HRV outlier as samples whose values are one standard deviation below or
above the mean (Buda, Khwaja, and Matic, 2021; Smyth and Heron, 2016).

Facial expressions are strongly connected and influenced by the autonomic nervous
system (ANS). On the one hand, human cardiac activity is controlled by ANS. The
sympathetic nervous system (SNS) accelerate the heart rate through the discharge
of epinephrine and norepinephrine while the parasympathetic nervous system (PNS)
releases acetylcholine to induce deceleration (Gordan, Gwathmey, and Xie, 2015;
Robinson et al., 1966). On the other hand, ANS also functions involuntarily and
cope-with affective arousal in reaction to circumstance accordingly (Isaacson, 2013);
To estimate HRV from facial expression, we employed the state-of-the-art machine
learning scheme and developed a novel tree-based probabilistic fusion neural net-
work approach. Compared with existing contact-less and non-intrusive UWB or
rPPG based methods (Wang et al., 2017; Zheng et al., 2020), the advantage of
our facial expression-based method and our contribution can be summarised as fol-
lows.

• Our approach relies on commodity RGB camera working at 30 FPS, which is
very likely to be integrated in future vehicles as a part of driver monitoring sys-
tems (European Commission, 2020; Official Journal of the European Union,
2019). Thus, no additional UWB devices are needed.

• We verified our approach based on around 3,400 km (68.6 hours) of driving
data collected from a two-week field study, involving nine participants during
uncontrolled daily driving activities on public roads.
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• A novel tree-based probabilistic fusion neural network approach is developed
to optimise HRV estimation performance. The proposed tree-based proba-
bilistic fusion framework outperformed conventional convolutional or recur-
rent neural networks and classic tree based machine learning models by up to
6.9% in balanced accuracy.

• We benchmark our method against consumer smartwatch measurement. Smart-
watch can be seen as a proxy of the upper bound of rPPG since its close contact
with the skin mitigates a large portion of noise due to illumination and motion
artefacts. Our evaluation shows that the proposed approach can even outper-
form high-end consumable smartwatches by a large margin.

• To the best of our knowledge, this is the first study that verifies the feasibility of
facial expression-based HRV outlier detection based on driving data collected
from public roads in real driving scenarios. Since the overall environment is
challenging compared with laboratory conditions, our results are likely to be
more reliable.

The remainder of the chapter is organised as follows: We present our field study in
Section 4.2. We introduce our methods for HRV estimation in Section 4.3. Sec-
tion 4.4 summarises the results of our methods. The implication of the method
and discovery is discussed in Section 4.5. Finally, Section 4.6 presents the con-
clusion.

4.2 Experiment Settings

We conducted a two-week field study with nine daily commuters (originally then;
one participant’s data were removed due to corruption) during their normal driving
routine on public roads. A variety of sensory data, including HRV, facial expression,
and smartwatch records, is collected from the daily the driving activity of participants
in naturalistic condition. The participants were supposed to use the vehicles for their
daily drives, including business trips and vacations.

4.2.1 Characteristics of Driving Activity

It was crucial for our dataset to capture representative driving situations. This sub-
section presents some important statistics related to the subset of the whole dataset
where the precise HRV recording (recorded by Firstbeat Bodyguard 2) was avail-
able.
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As described in Section 2.2, all the drivers wore the Firstbeat Bodayguard 2 for a
period of two weeks. After data cleansing, we had about 68.6 hours of video data
with associated HRV measurements during driving. The total driving distances of
each participant are plotted in Figure 4.2. Most drivers drove for reasonably long
distances (more than 300 km) during the field study. The GPS records of the vehicles
are presented as a heatmap in Figure 4.3. As shown in this figure, most partici-
pants drove around the area of Stuttgart, Germany. An additional heatmap covering
a driver’s vacation activities is also provided in Figure B.1. Overall, our dataset
covered a wide range of daily driving activities like commuting, shopping trips, and
leisure activities at the weekend.

FIGURE 4.2: Accumulated driving distance

10 km

FIGURE 4.3: GPS heatmap of the most active area
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4.2.2 Characteristics of Heart Rate Variability Measure

HRV is measured over a period of time. We applied an overlapping sliding win-
dow with a length of 5 min and a step size of 30 s to compute HRV measures (i.e.,
RMSSD, LF/HF ratio, and pNN50). The choice of 5 min follows the convention of
short term HRV measurement (Malik et al., 1996; Shaffer and Ginsberg, 2017). We
refer to such 5-min segments as HRV segments. The entire facial expression-based
HRV detection framework is shown in Figure 4.4. We take facial expressions in HRV

segments as input data to estimate the HRV measures associated with the correspond-
ing segments. From the recording of Firstbeat Bodyguard 2, the ground truth of HRV
measures is computed based on a standardised wearable data processing toolkit (Föll
et al., 2021). These HRV segments are randomly shuffled for training and testing. To
avoid the intersection between training and test datasets caused by overlapping slid-
ing windows, we discard HRV segments that intersect both datasets for each shuffle,
as illustrated in Figure B.2.

Facial 
expression 

Heart rate variability is measured as inter beat interval (data sampling rate at 
1000Hz)

Driving begins Driving ends

Facial expression of driver from face camera, detected using Affectiva

HRV

5-minute sliding window, with a
step size of 30 second

. . .

Facial expression Machine 
learning model

HRV outlier 
detection

FIGURE 4.4: HRV outlier detection framework

Next, we inspect the distribution of HRV, which is illustrated in Figure 4.5 to 4.7.
Owing to the influence of age and gender, there is significant difference among par-
ticipants in terms of the median and range (Malik et al., 1996; Voss et al., 2015).
To account for such individual factors, we define HRV outlier detection as a binary
classification problem and predict whether a given driver’s HRV measures are exces-
sively low or high with respect to his/her personal empirical distribution. We distin-
guished between low and high HRV outlier detections, as formulated in Equation 4.1
and 4.2, respectively. Such definition is similar to (Buda, Khwaja, and Matic, 2021;
Smyth and Heron, 2016), in where they defined outliers for stress or mental states
estimation as one standard deviation below or above the mean. Consequently, HRV
measures within one standard deviation of the personal mean are considered normal.
It means that we develop two machine learning models, one for the detection of low
outliers of HRV measures and the other for high outliers.
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low
detector

=

(
low outlier, < per. mean� per.std

rest, >= per. mean� per.std
(4.1)

high
detector

=

(
rest, <= per. mean+ per.std

high outlier, > per. mean+ per.std
(4.2)

FIGURE 4.5: Distribution of RMSSD

FIGURE 4.6: Distribution of LF/HF ratio

We performed data cleansing and removed IBI artefacts (< 250 ms or > 2000 ms).
We removed HRV segments where the driver faces appeared in less than 70% of
video frames as well as HRV segments with no valid IBI signal. Finally, we obtained
in total 3876 HRV segments, the distribution of low and high outliers, and normal
samples are given in Table 4.1.

4.3 Methodology

This section explains our approach to infer HRV outliers from facial expressions.
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FIGURE 4.7: Distribution of pNN50

TABLE 4.1: Sample Counts for Different Category

RMSSD LF/HF ratio pNN50

low 513 584 423
normal 2840 2636 2858

high 523 656 595

4.3.1 Data Preprocessing

Detection of Facial Action Units. The facial action units (AUs) is used in the facial
action coding system (FACS) to describe the muscle movement currently active in the
face, such as “nose wrinkle” or “cheek raise” (Ekman and Rosenberg, 1997) Based
on the active level and the combination of AUs, facial expressions such as anger, fear,
and joy can be quantitatively determined.

The manual coding process of FACS requires profound expert knowledge and is labo-
rious. To alleviate this problem, we leveraged the automatic FACS coding algorithm
from Affectiva, a spin-off of MIT’s Media Lab. Affectiva’s facial expression recogni-
tion technology uses computer vision and deep learning techniques to first detect the
active level of AUs, based on which another mapping function is established between
facial expression and AUs (Mcmanus, 2020a). The Affectiva’s major advantage is
that it is built on a very large foundational dataset, consisting of more than 9.7 million
facial images of people, with more than 5 billion facial frames (Mcmanus, 2020a).
Additionally, based on the in-vehicle data of more than 20,000 hours featuring more
than 4,000 unique individuals, Affectiva is well optimised to automotive in-cabin en-
vironment (Mcmanus, 2020a). Given these features, Affectiva’s solution can reliably
capture facial movements. In this study, we used one of the latest stable versions
(ics-2.2.1).

Feature Engineering. Affectiva detects AUs for each frame and presents the results
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as the activation level of each AU in the range of 0 to 100. The entire list of detected
AU is the following:“browRaise”,“browFurrow”, “noseWrinkle”, “upperLipRaise”,
“mouthOpen”, “eyeClosure”, “cheekRaise”, “eyeWiden”, “innerBrowRaise”, “yawn”,
“blink”, “blinkRate”, “lipCornerDepressor”, “lidTighten” and “smile” (in total 15
AUs). We build feature vectors (FVs) for AUs through a sliding window, with both
the length and the step size equal to five seconds. In each sliding window, we com-
pute mean, min, max, median, standard deviation, quantile-25%, quantile-75%, kur-
tosis and skewness for each AU. That is to say, for every 5 seconds, a 135-dimension
(15 AUs ⇥ 9 features) FV is generated. From a 5-min HRV segment, a sequence of
60 FVs (5min / 5s = 60) is generated.

In addition to AUs, HRV is heavily influenced by the time of day. We incorporate
this prior information by including time features defined as current time (formatted
in the 24 h-scale), day of the week, an indicator of driving at night, seconds before
dawn, seconds after dusk, seconds before sunrise, and seconds after sunset. The last
four features were set to zero if driving had occurred after or before the correspond-
ing event. By merging the time features to each FV, the final input to the machine
learning models has the shape of 60 steps⇥ 142 dim.

4.3.2 Machine Learning Approaches

Standard Pipeline. We first verify the feasibility of the HRV outlier detection in
the wild by exploring a random forest model. Despite the simplicity of tree-based
models, they often outperform more complicated models such as neural networks
or support vector machines (SVM) (Fernández-Delgado et al., 2014). This is espe-
cially the case with a lack of prior insight about underlying data property or domain
knowledge (Wang, Aggarwal, and Liu, 2017).

Our random forest based pipeline is depicted in Figure 4.8. In the training phase, we
assign all FVs in an HRV segment the same label as the HRV segment, meaning that
the input instance to the random forest is each FV. In the test phase, we perform pre-
diction on all FVs in each HRV segment. The final prediction for one HRV segment
is aggregated from prediction results of all FVs in that HRV segment. In this study,
we use the majority vote as the aggregation function.

The input FVs are sequences of time-series data. Therefore, to further explore the
possibility of other machine learning models, the choice of random forest can be
replaced by prevalent (1D) convolutional neural network (CNN), recurrent neural
network (RNN), and multilayer perceptron (MLP), etc. We used random forest as
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FIGURE 4.8: HRV outlier detection using standard random forest
pipeline

well as various neural networks as baseline method and the evaluation is presented
in Section 4.4.

Tree-based Probabilistic Fusion Network (TPFN). As we will show in Table 4.4
and 4.5 in Section 4.4, when tree-based models are applied in the standard pipeline,
they usually outperform neutral network models. The tree-based model often per-
form better than other models in practise (Fernández-Delgado et al., 2014; Wang,
Aggarwal, and Liu, 2017). The reason is that the hierarchy decision stage of tree-
based models does not impose restrictions on the distribution of inputs; the merit of
the ensemble mechanism of random forest makes it extremely robust to unseen data
(Fernández-Delgado et al., 2014; Wang, Aggarwal, and Liu, 2017; Zhou and Feng,
2017). Unlike neural networks whose architecture is sensitive to specific data distri-
bution and requires profound domain knowledge, recent work suggested that random
forests can help discover the underlying structure of data (Fernández-Delgado et al.,
2014; Wang, Aggarwal, and Liu, 2017). As such, we develop a hybrid model that
uses a tree-based model to create a probabilistic embedding from data, which is fur-
ther fused and processed by a neural network. The details of our proposed model are
explained as follows.

We first compute the probability embedding of each AU. This is performed by build-
ing 15 random forests for the 15 feature subsets of all AUs. Each feature subset con-
tains not only features of the corresponding AU, but also the prior mentioned time
features. Therefore, each random forest takes FVs of 16 dim. (nine statistical fea-
tures from AUs and seven time features) as input. We train these 15 random forests
similar to those in Figure 4.8. After that, instead of aggregating the predictions of
the random forests, we take the prediction probability (with closer to 0 being more
likely to be class 0, and vice versa), which is again a time-series sequence of form 60
step ⇥ 15 AUs, as input to a neural network. The neural network take the fusion of
the probability from the random forests and further predicts the HRV outlier for the
entire sequence. In this study, we used a multilayer perceptron (two layers, each with
16 neurons and sigmoid as activation) to classify on every step the fused probability
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and then with a final classification that is aggregated (by majority vote) from the 60
votes.
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FIGURE 4.9: Tree based probabilistic fusion model: feature vectors
are transformed into probabilistic embedding before fed into neural

networks

4.4 Evaluation

In this section, we evaluate the proposed method against state-of-the-art machine
learning models. The evaluation is performed by constructing a general model for
all drivers.

In the following, we will provide an insight into the HRV measurement accuracy of
the current high-end commodity smartwatch compared with medical-grade heart rate
monitor (Firstbeat Bodyguard 2). Next, we comprehensively compare the proposed
approach with various baseline methods.

4.4.1 Measurement Accuracy of Smartwatch

Smartwatches and other wearable devices are becoming popular in people’s daily
life. The low cost and ubiquitous property make them an ideal tool for health mon-
itoring. Therefore, we should first inspect if their measurement accuracy meets the
requirement of HRV detection in the wild.

For this purpose, we use the measurement of the Firstbeat as the gold standard to
compute the errors of smartwatches. The absolute and relative errors of mean heart
rate and RMSSD of HRV segments are illustrated in Figure 4.10. In this study, we
have an overlap of 21.25 hours of Firstbeat data with smartwatch measurements.
Due to the in-the-wild property of the experiment, drivers sometimes did not wear
the smartwatch.
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(A) Heart rate (B) RMSSD

FIGURE 4.10: Absolute and relative errors of high-end smartwatch
compared with Firstbeat bodyguard 2 (Firstbeat Technologies Oy,

2019)

It it obvious in Figure 4.10a that the smartwatch can very accurately measure the
average heart rate. The mean value of the absolute error is only around 1 beat
per minute. This magnitude of error agrees with the latest systematic evaluation
of smartwatches (Hernando et al., 2018; Shcherbina et al., 2017). However, the
errors become significant when using the measured IBI from a smartwatch to com-
pute RMSSD, as illustrated in Figure 4.10b. The mean of the relative errors is al-
most 100%. More comparisons between smartwatch and Firstbeat measurements are
given in Figure B.5. Although the sensors of smartwatches tremendously improved
and will continue (e.g., ECG monitoring is now available in certain smartwatches,
the prerequisite of its usage is that the users must sit still without arm movements;
thus, limited applicability while driving (Hernando et al., 2018)), the current high-
end smartwatch that measures the accurate mean heart rate does not provide reliable
HRV measurements while driving.

4.4.2 Comparison with Baseline Methods

In this subsection, we present the baseline methods to be compared and analyse the
results quantitatively.

Baseline Methods. This part describes the baseline methods in detail. On the one
hand, the chosen baselines, such as smartwatch and time models, are used to demon-
strate that our proposed facial expression based approach is a good and necessary
complement of currently prevalent heart rate monitoring methods; on the other hand,
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the comparison with the tree-based and neural network models can demonstrate that
the proposed tree-based probabilistic fusion is an efficient way to learn data repre-
sentation.

• Smartwatch Model. Although smartwatches exhibit unreliable measurements
of HRV, as described in Section 4.4.1, it is still meaningful to evaluate whether
the noise in the smartwatch is consistent. This means, for example, if the noise
adds a consistent offset to the HRV measurements, HRV outlier detection can
still be accurately performed since we are interested in whether HRV is lower
or higher than the personal baseline level. We refer to the smartwatch model
as SM.

• Time Model. It is well known that the time of day has a strong impact on
HRV (Tsuji et al., 1996). For example, HRV tends to be higher during working
hours than at night because the body must react to the accumulated stress and
cognitive load. We demonstrate the time-dependent variation of RMSSD in
Figure 4.11. More examples of LF/HF ratio and pNN50 are given in Figure B.3
and B.4 in the Appendix B.

FIGURE 4.11: RMSSD of the nine drivers in different time interval

Therefore, it is crucial to inspect the possibility of inferring HRV outlier purely
based on time. To this end, instead of defining a rule based model, we build a
Time Model (referred as TM) by constructing a random forest using only time
features (7D). The TM resembles the settings in Figure 4.8 except for the input
FVs.

• Tree Based Models. As described in Section 4.3.2, random forest (refered as
RF) can be used as the machine learning back-end in the pipeline. To explore
the feasibility of other tree-based models, we further replace random forest
with one of the latest tree-based models, the Deep Forest (referred as DF)
(Zhou and Feng, 2017). For RF, DF and tree-part of TPFN, a grid-search of
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parameters is performed. The candidate parameters are described in Table B.1.
The optimal parameters for all tree-based models are determined as depth of
tree = None (i.e., unlimited depth), number of trees = 200, min samples split =
2, min samples leaf = 1.

• Neural Network Models. Over the last decade, neural network techniques
have experienced tremendous improvement. Therefore, it is meaningful to
benchmark our proposed tree-based probabilistic fusion approach with them.
We implemented 1D convolutional neural network (referred as CNN), Multilayer-
perceptron (referred as MLP) as well as recurrent neural network (referred as
RNN) to the time-series FVs. To be more precise, the CNN, as depicted in
Figure 4.12, consists of two cascaded 1D convolutional filters (kernel size =
3, filter size = 64, dropout rate = 0.5, and activation = sigmoid) followed by
a linear fully connected (FC) layer with 16 neurons and a Softmax operation
that reduces the flatted convolutional output to two dimensions, corresponding
to the binary classification.
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FIGURE 4.12: CNN baseline model

RNN, as shown in Figure 4.13, uses two recurrent layers (dropout rate = 0.5)
with 16 gated recurrent units (GRU) followed by a linear FC layer with 16
neurons and a Softmax operation that reduces the hidden states of GRUs to
two dimensions, similar to CNN.

MLP resembles the pipeline in Figure 4.8, where random forest is replaced
by a two-layer multilayer perceptron (activation = sigmoid, dropout rate = 0.5)
with 32 units in each layer. The classification is performed on each FV and
the final prediction is the aggregation (majority vote) of all FVs in an HRV
segment.
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The chosen architectures for CNN, RNN and MLP are similar to the ones used
in (Schmidt et al., 2019; Taylor et al., 2020), which have been proven to be ef-
fective in predicting various physiological and psychological states. Addition-
ally, the optimal parameter settings of the above mentioned neural networks
were determined using grid search. This is done by applying a 5-fold cross
validation to the training dataset. Subsequently, each network is re-trained on a
total training dataset with the optimal parameters. This procedure of parameter
searching is similar to that of (Taylor et al., 2020). The candidate parameters
for the grid search are described in Table B.2 - B.4. Furthermore, for all net-
works, we further grid searched on optimiser (SGD and ADAM), normalisa-
tion schemes (Z-score normalisation, min-max normalisation, and logarithmic
transformation1), and gradient clipping schemes (norm type = 2-norm, the op-
tion for max. norm was iterated over 1, 10, 100). Finally, all neural network
models (including the neural network part of TPFN) are trained by ADAM
with a learning rate of 0.005; Z-score normalisation and gradient clipping with
max. norm = 10 are applied. The loss function is defined as cross-entropy.

Numeric Results. We perform the binary classification on an unbalanced dataset
(ma jority : minority ⇡ 82% : 18%). Therefore balanced accuracy is used as the met-
ric, which is an unweighted mean of accuracy over all classes. Thus, this metric is not
biased towards the majority class and can provide a more accurate evaluation of the
overall performance. As relevant HRV metrics, we selected RMSSD and evaluated
LF/HF ratio and pNN50 since they are closely related to mental states, as explained
in Section 4.1.

We first compare the proposed approach with HRV outlier detection based on smart-
watch measurements. That is to say, for SM we computed HRV measures from
smartwatch-measured IBI and use the computed HRV measures to detect HRV out-
liers. Smartwatch measurements are available for 21.25 hours of 68.58 hours. To

1to avoid numerical issues, logarithmic transform is applied as A = log(|A|+ 1)
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ensure a fair comparison, the proposed TPFN is trained for the remaining 47.3 hours.
After that, TPFN and SM were validated on the same dataset where smartwatch mea-
surements are available. The result is described in Table 4.2 and 4.3. The proposed
TPFN method outperforms SM in all cases, with an improvement ranging from 3.6%
to 13.1%. The evaluation demonstrated that the IBI measured by smartwatches could
not precisely compute HRV measures despite accurate heart rate measurement. The
measurement noise does not constitute a constant offset, making HRV outlier detec-
tion based on smartwatches imprecise.

TABLE 4.2: Balanced accuracy of low HRV outlier detection, smart-
watch (SM) vs. proposed solution (TPFN)

Model RMSSD LF/HF ratio pNN50

SM 68.2 52.7 55.1
TPFN 73.3 60.3 68.2

TABLE 4.3: Balanced accuracy of high HRV outlier detection, smart-
watch (SM) vs. proposed solution (TPFN)

Model RMSSD LF/HF ratio pNN50

SM 64.7 58.6 61.0
TPFN 68.3 70.6 71.9

Next, we compare the proposed TPFN with prevalent machine learning models. We
randomly split the dataset into train (70%) and test (30%) sets. The final results are
presented as the average of 10 repeated experiments using 10 different random seeds.
The standard deviations of the 10 repetitions are indicated in brackets in correspond-
ing tables.

The results are presented in Table 4.4 and 4.5. TM performs by distance the worst
despite the strong correlation between HRV and time (Malik et al., 1996). Neu-
ral network approaches (CNN, RNN and MLP), despite their higher complexity,
achieve worse results than tree-based models (RF and DF). Finally, the best per-
formance is achieved by the proposed hybrid TPFN model that combines the merits
of both tree based model and neural networks. The TPFN model outperforms other
best performing baseline models by an average of 3.4% and up to 6.9% in balanced
accuracy.

To better visualise the performance of the outlier detection, the confusion matrices
of TPFN are plotted in Figure 4.14 - 4.16. The confusion matrices show that the
proposed TPFN is not particularly biased towards the majority class, except for the
high outlier detection of LF/HF ratio in Figure 4.15. Meanwhile, the model maintains
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TABLE 4.4: Balanced accuracy of low HRV outlier detection

Model RMSSD LF/HF ratio pNN50

TM 60.3 (1.7) 58.0 (2.2) 61.5 (2.5)
RF 62.4 (2.1) 61.6 (2.7) 66.8 (2.2)
DF 62.8 (2.8) 61.8 (2.7) 66.6 (2.2)

CNN 59.1 (3.3) 57.9 (2.9) 55.3 (3.7)
RNN 58.4 (3.2) 56.1 (3.1) 57.3 (3.3)
MLP 60.5 (2.5) 55.5 (5.3) 56.3 (4.7)
TPFN 69.7 (2.2) 65.3 (2.7) 71.4 (2.1)

TABLE 4.5: Balanced accuracy of high HRV outlier detection

Model RMSSD LF/HF ratio pNN50

TM 56.0 (2.4) 61.4 (2.8) 59.2 (2.6)
RF 65.5 (2.3) 64.5 (2.7) 65.5 (2.4)
DF 66.8 (2.4) 64.8 (2.7) 65.8 (2.3)

CNN 56.0 (3.5) 60.2 (3.4) 60.3 (4.7)
RNN 60.5 (2.3) 61.1 (2.7) 62.2 (4.2)
MLP 59.7 (3.8) 58.1 (3.8) 60.4 (4.5)
TPFN 68.3 (2.1) 65.7 (2.7) 69.2 (2.2)

low false negative and false positive rates, as illustrated in the sub-diagonals of the
confusion matrices.

FIGURE 4.14: Confusion matrix of RMSSD outlier detection

4.5 Discussion

In this section, we discuss the proposed approach in terms of prediction usability,
reliability and potential limitations.
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FIGURE 4.15: Confusion matrix of LF/HF ratio outlier detection

FIGURE 4.16: Confusion matrix of pNN50 outlier detection
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4.5.1 Usability

The proposed approach relies on a driver monitoring camera. Although such a cam-
era is not widely installed in current vehicles, it is becoming an integral and essential
component of future cars. The reason is that a driver monitoring camera is an es-
sential safety feature that prevents inattention or drowsiness while driving. European
Union (EU) is the pioneer in pushing forwards this safety feature. In 2019, a general
safety regulation was passed by the EU Council of Ministers. The safety regulation
requires that all new vehicles on the EU market must install advanced safety sys-
tems to prevent distraction and drowsiness. Such an advanced safety system is very
likely to be implemented through a driver monitoring camera (European Commis-
sion, 2020; Lyrheden, 2020; Official Journal of the European Union, 2019). Starting
in 2022, all new type-approved vehicles with a certain level of autonomy must fulfil
this requirement. By 2026, this law will cover all newly produced cars regardless of
their level of automation (European New Car Assessment Programme, 2021; Lyrhe-
den, 2020). In the United States, two safety-related traffic bills have been introduced
or passed (H.R.2 - Moving Forward Act and S.4123 - SAFE Act of 2020). This
may lead to the requirement that driver monitoring camera becomes mandatory in
new vehicles (Lyrheden, 2020). In China, the regulations requiring long-distance
trucks to use driver monitoring have already been implemented in certain regions,
in particular for vehicles transporting hazardous goods. More similar regulations are
expected to follow (Lyrheden, 2020). We can anticipate that driver monitoring cam-
eras will become essential and mandatory in many regions of the world in the future.
The proposed solution can be well integrated into future cars without any additional
hardware cost.

The proposed solution plays an important complementary role to the emerging driver
monitoring solutions such as activity recognition and gaze detection (Vicente et al.,
2015; Xing et al., 2019). While driver activity recognition and gaze detection al-
gorithms can infer whether a driver’s behaviours are allowed during driving, these
algorithms do not guarantee if a driver’s mental states is favourable. Various studies
suggested that incremental cognitive load impact drivers’ visual behaviour and their
gaze is therefore focused on the central road region (Sodhi, Reimer, and Llamazares,
2002; Victor, Harbluk, and Engström, 2005). Even worse is that increased cognitive
load reduces drivers’ awareness of incidents occurring within the restricted visual
field, namely “look but fail to see” (Coughlin, Reimer, and Mehler, 2011). Such
shortcomings of driver activity or gaze monitoring techniques can be well compen-
sated by our proposed algorithm, which assesses the cognitive load of drivers through
HRV estimation.
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Finally, the monitoring of HRV measures provides a significant derivative benefit
from the well-being perspective. Driving is not the only source of stress and mental
load in daily lives. Occupational burn-out, sentimental relation between couples, and
mood disorders, etc., can lead to sub-optimal states and could manifest themselves in
the changes of HRV measures (Holzman and Bridgett, 2017; Lo, Wei, and Hwang,
2020; Malik et al., 1996). The HRV monitoring technique in combination with well-
being interventions that regulate drivers’ psychological states (Koch et al., 2021; Lee,
Elhaouij, and Picard, 2021), in essence, does not only reduces stress and cognitive
load from driving, but also from other daily events (Coughlin, Reimer, and Mehler,
2011). The smart vehicles in the future should not only be a tool for transportation,
but also an intelligent 3rd living space integrated with a wellness platform (Coughlin,
Reimer, and Mehler, 2011).

4.5.2 Reliability

The proposed HRV estimation solution provides supportive service to improve the
user experience. Upon the detection of excessively low or high HRV measures, in-
telligent vehicle systems can deliver corresponding interventions to regulate the sub-
optimal states of drivers. State-of-the-art driver stress or mental regulation strategies
mainly consist of music or mindfulness intervention, breath exercise, control of am-
bient auditory, lighting or aero (wind) feedback, and odour stimulation, etc. (Balters
et al., 2020; Dmitrenko et al., 2020; Koch et al., 2021; Lee, Elhaouij, and Picard,
2021; Paredes et al., 2018b).

Unlike obstacle avoidance or pedestrian detection systems that have almost zero tol-
erance for false detection, the HRV estimation in our context can engage in ambiguity
when the system is uncertain about its estimation. This is in line with the Guidelines
for Human-AI Interaction proposed by Amershi et al. (Amershi et al., 2019). There
is a certain grey zone that tolerates ambiguous decisions. In the case of uncertainty,
the reliability of the system can be further improved by adopting the interaction be-
tween system and users, for instance, through verbal communication (Rudovic et al.,
2019), an inquiry of the necessity of intervention (Koch et al., 2021), or adjusting
intensity/option of intervention (Nahum-Shani, Hekler, and Spruijt-Metz, 2015), etc.
On the other hand, interventions yield a stronger effect, especially if users are in a
sub-optimal state (and hence a state of high “vulnerability”), because more poten-
tial for improvement exists. That being said, wrongly applied interventions (i.e.,
user in the optimal state) to regulate low HRV measures are unlikely to move the
user from optimal state to a state of high HRV measures (Nahum-Shani, Hekler, and
Spruijt-Metz, 2015). If interventions are provided based on wrong HRV estimation,
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the consequence is not as dangerous as, for instance, miss-detection of lane marks or
pedestrians.

4.5.3 Numerical Issue and Revisit of Tree-based Models

Our intensive experiments showed that tree-based models (RF, DF, and TPFN), de-
spite their simplicity, outperform prevalent neural network models. This is not sur-
prising: In a recent research (Fernández-Delgado et al., 2014), Fernandez et al. com-
pared random forest against other prevalent models like SVM and various type neural
network models, and concluded that random forest was statistically significantly bet-
ter than other machine learning models.

To further explore the merit of tree-based models in our context, we visualise the
mean and maximal absolute values of the input feature vectors in Figure 4.17 and
4.18. As can be seen, while the average input values are very small, the maximal val-
ues could scale up to 100, which is around two orders of magnitude larger than the
mean. This high variant property of the input makes it difficult for neural networks to
minimise loss. Indeed, both neural networks and tree-based models can approximate
arbitrary decision boundaries. They differ in that neural networks learn a contin-
uous decision boundary according to Universal Approximation Theorem (Hornik,
1991). In comparison, a tree-based model can create a decision boundary based
on the minimisation of Gini-index and therefore is not constrained on continuity
(Breiman, 2001), which means the decision boundary of tree-based model can jump
between very large and very small values. Due to this reason, tree-based models
perform better on our high variant input data.

While various schemes (Z-score normalisation, min-max normalisation, logarithmic
transformation, and gradient clipping) have been proposed to handle the high vari-
ance of input data, our evaluation demonstrated their limited capability. In com-
parison, our proposed TPFN first embeds input data into a probability space via a
tree-based model and after that, the fusion of the probability intermediate outputs is
further processed by a neural network. Therefore, the proposed method avoids nu-
merical issues due to the high variance of input data. Our evaluation showed that
the proposed TPFN outperforms pure neural network models and can further boost
tree-based models.

Though deep learning techniques are becoming dominating in the machine learning
domain, our discovery should inspire researchers to revisit the merit of tree-based
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models, especially in practice when it comes to the area where few domain knowl-
edge is available or/and the underlying data distribution could cause unstable be-
haviour of neural networks (Wang, Aggarwal, and Liu, 2017).

FIGURE 4.17: Mean value of each dimension

FIGURE 4.18: Maximal value of each dimension

4.5.4 Limitations

This research should be assessed considering its limitations. Even though our ex-
periments were performed under naturalistic conditions, a very challenging setting,
the proposed approach does not generalise to the leave-one-subject-out setting. This
drawback could be attributed to the fact that we have only nine drivers in our dataset.
The limited sample size is not diverse enough for a machine learning model to learn
a generalisable pattern among different subjects. We expect that a large scale field
study with a greater number of the subject could be conducted to further explore the
generalisability of facial expression-based HRV estimation.
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In addition, it is worth noting that the estimation of LF/HF ratio is generally infe-
rior than the other HRV measures. We believe that this difference can be explained
by the fact that subject respiration heavily influences the frequency components of
HRV (Brown et al., 1993; Poh, McDuff, and Picard, 2010). More specifically, both
respiration and autonomic nerve activities contribute to the deviation in LF/HF ra-
tio, whereas only the latter factor can be reliably interpreted by the proposed facial
expression-based inference model. For future work, we see potential in integrating a
respiration detection module and thus fusing the information of breath to further im-
prove the HRV estimation, which shall be one of our focuses in future research.

Furthermore, although the excessively low or high HRV measures are strong indi-
cators of certain physiological and psychological states, an exact measurement of
HRV measures could bring more insight into a user’s health states (e.g., monitoring
of hypertension or other cardiovascular diseases), which is not accomplished in this
study. The exact measurement of HRV relies on precise capturing of IBI, which can
be achieved by rPPG under well-defined lab condition. The fundamental mechanism
of rPPG that detects the heartbeat induced peak of blood volume in a vessel is a more
straightforward approach for measuring the exact value of HRV. However, rPPG is
not as robust as our approach and is vulnerable to ambient noise due to illumination
and motion artefacts (Niu et al., 2019). With the positive results demonstrated in this
study, researchers in the future could focus on a fusion approach that leverages the
robustness of our approach to reduce noise in rPPG; thus, achieving a reliable HRV
measurement in the wild. At the same time, future work could extend our work by
investigating the feasibility of applying the proposed facial expression-based HRV
estimation outside the vehicle. For example, a potential use case could be patients
with cardiovascular diseases who need low-cost monitoring of their current condi-
tion. The mandatory step to validate our approach would be the collection of medical
data from affected patients and subsequent experiments on this data.

4.6 Conclusion

Several studies and surveys pointed out that the sub-optimal state of drivers is the
main cause of traffic accidents (Choi et al., 2016). The National Highway Traffic
Safety Administration (NHTSA) suggested that 94% of accidents resulted from hu-
man errors (National Highway Traffic Safety Administration, 2020b). Therefore, a
strategy for monitoring drivers’ states and driving performance becomes crucial in
the reduction of the number of accidents. Such a driver monitoring system is par-
ticularly meaningful in the upcoming era of ever automated vehicles, where driver
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states needs to be maintained to ensure a seamless takeover of the control of cars. Al-
though several HRV estimation approaches have been proposed, the mediocre accu-
racy, inconvenient deployment and the lack of ubiquity prevent them from becoming
a practical and prevalent solution.

To address the existing challenges and embrace future technologies, we proposed
a facial expression-based approach for HRV measure outlier detection. The rea-
son is that empirical research showed that excessively low or high HRV measures
are strongly correlated with various sub-optimal mental and psychological states of
people (Hernando et al., 2018; Kim et al., 2018; Patel et al., 2011; Vicente et al.,
2016). The merit of the proposed approach is three-fold. First, HRV estimation is
a meaningful and even necessary complement to visual human activity recognition
(HAR) based driver monitoring. While HAR captures drivers’ physical behaviours,
HRV estimation evaluates their mental states. Second, driver monitoring cameras
will become a mandatory component of future vehicles in many regions. Therefore
the proposed approach does not induce any extra hardware cost, providing a higher
degree of ubiquity than smartwatches and UWB based technologies. Our evaluation
demonstrates that the proposed tree-based probabilistic fusion network approach out-
performs a consumer smartwatch in HRV measure outlier detection by up to 13.1%
in terms of balanced accuracy. The positive results and the ubiquity of the pro-
posed approach demonstrated its great potential in improving driving experience and
safety. Finally, the proposed tree-based probabilistic fusion network approach out-
performs other prevalent pure tree-based or neural network based methods by an
average of 3.4% in balanced accuracy. The idea of the tree-based probabilistic em-
bedding should inspire researchers to consider the possibility of hybrid models that
leverages the merits of the tree-based models, especially when no rich prior domain
knowledge is available.

The concept of facial expression-based estimation of HRV measures proposed in
this work could further facilitate various IoT-based services and applications. For
example, in mobile crowd sensing (Wang et al., 2018a; Wang et al., 2020a), car
ridesharing companies (Uber, Didi, etc.) could determine whether a driver is an opti-
mal state based on the proposed HRV estimation approach. After that, task allocation
can be optimised by assigning more demanding tasks to the drivers of better states
or enforcing mandatory pause to the drivers who are temporally not fit for working.
Thus, the quality of service will be improved. Another example is smartphone-based
mobile sensing of user physiological and psychological states. One major limita-
tion of smartphone-based sensing is the lack of accurate physiological data (Buda,
Khwaja, and Matic, 2021; Taylor et al., 2020; Wang et al., 2018b). With the help
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of the proposed method, users’ HRV estimation can be shared via data link between
smartphones and the devices that capture facial expressions (e.g., intelligent vehicles,
webcam of laptops, and surveillance cameras). In this way, smartphone-based mo-
bile sensing can achieve a more comprehensive understanding of users’ states. The
method proposed in this work, in essence, conceptualises a more robust and more
accurate way of pervasive monitoring of users’ mental states. The concept targets
“IoT Data Analytical Services”, one of the ten main challenges in developing an IoT
service outlined by Bouguettaya et al. (Bouguettaya et al., 2021). The purpose of IoT
data analytics is to distil heterogeneous IoT data in order to provide domain-specific
actionable knowledge of adequate quality (Bouguettaya et al., 2021). In our vision,
the facial expression-based HRV estimation of users should not only be limited to
drivers, but can also be generalised to broader applications where users’ mental state
should be considered. As such, we expect to see interdisciplinary research from psy-
chology, neuroscience, and computer science could benefit from our idea and further
push forward the pervasive sensing of user states.
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Chapter 5

Conclusion and Outlook

The previous chapters of this thesis have so far introduced the context and the mo-
tivation for driver states monitoring and presented the relevant existing works that
can help readers gain a deeper understanding of current development in this domain.
Moreover, the experimental settings, the methodology, and evaluation results for the
two research questions regarding the monitoring of the psychological and physiologi-
cal states of drivers were also presented in the corresponding chapters. In this chapter,
the overall context and motivation for the detection of the emotions and well-being
of drivers are reintroduced. Combined with the key findings and the concepts of the
newly proposed approaches, the reintroduction provides a better understanding of
the contribution of this thesis to the community. The two research questions are sub-
sequently revisited and the core results of this thesis are summarised. Furthermore,
the implications for researchers and practitioners are provided, along with limitations
that should be addressed in future research. Finally, this chapter concludes the thesis
with closing remarks.

5.1 Summary of Contributions

The vision of a safer and more comfortable driving experience is being intensively
researched by both academia and industry. Among various techniques and concepts,
driver-centric monitoring and assistance techniques have been identified as opportu-
nities to realise this goal (Coughlin, Reimer, and Mehler, 2011; Zepf et al., 2020).
The traditional concept of driver monitoring and assistance typically improved road
safety by measures such as the promotion of the warning of upcoming hazards, the
prediction of locations with a higher risk of traffic accidents, and the anticipation of
a driver’s next manoeuvres (Gahr et al., 2019; Hallac et al., 2018; Ryder et al., 2017).
In contrast to this concept, an increasing amount of research has explored alternative



84 Chapter 5. Conclusion and Outlook

possibilities via the improvement of the mental and physical states of drivers, in or-
der to reduce the risk of human errors before it becomes unmanageable (Dobbins and
Fairclough, 2019; Paredes et al., 2018a; Zepf et al., 2020; Zheng et al., 2020). Fol-
lowing this vein, the thesis at hand focused on the monitoring of the psychological
and physiological states of drivers, and thus contributes to the new concept of driver
monitoring systems.

Furthermore, with the growing concerns of people’s psychological and physiological
health, there is an emerging market that requires the more ubiquitous and persuasive
measurement of users’ bio-markers (Koch et al., 2021; Nahum-Shani, Hekler, and
Spruijt-Metz, 2015). Given the important role that vehicles play in modern life and
the sophisticated sensors and technologies embedded in current and future vehicles,
increasingly more researchers and practitioners have identified the great potential of
health monitoring and intervention in in-vehicle environments. However, many ex-
isting techniques involved cumbersome physiological sensors or driver monitoring
cameras that could compromise user privacy. Such limitations prevent the prevalent
usage of these techniques. With the progressive advancement of computer science
and engineering technologies, the real-time collection and processing of the wealth
of information from dynamic sources of naturalistic driving data becomes realistic
in ordinary vehicles. Yet, to date, only few existing works have leveraged these data
to perform driver states inference in a non-intrusive manner. When considering the
great potential and progressive achievement of user states inference in the mobile
computing domain (Canzian and Musolesi, 2015; LiKamWa et al., 2013; Lu et al.,
2019; Zhang et al., 2018), for instance user emotion recognition based on smart-
phone usage pattern, there is a research gap regarding driving data based user states
inference, which was addressed in this thesis.

Moreover, previous studies on vehicle data based user states inference were mostly
conducted under laboratory settings or controlled naturalistic conditions, which are
characterised by a limited amount of data or the restricted diversity of experimental
subjects (Zepf et al., 2020). Therefore, the community lacks a more reliable and
robust evaluation of such vehicle data-based user states inference. To deliver stronger
empirical evidence of the utility of this new concept, all the experiments conducted
in the present work were based on a longitudinal field study of four months involving
nine participants driving on public roads.

Overall, a novel concept was adopted in this thesis to improve existing driver moni-
toring systems via the inference and estimation of a driver’s psychological and phys-
iological states. The proposed approaches targets the limitation of existing works by
emphasising the ubiquity of the solution while better protecting the privacy of users.
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The real world assessment of the proposed methods enables the provision of reli-
able answers to the two research questions, namely (RQ 1) can a driver’s emotion be
inferred based on the control area network (CAN-bus) and the traffic context (from
the front-view camera or on-board radar system), and (RQ 2) can a driver’s heart
rate variability (HRV) be reliably estimated in a non-intrusive manner (via a driver
monitoring camera) in future vehicles? The analysis of the key findings targeting
these two questions are respectively presented in the subsequent sub-sections, which
summarise the implications for researchers and practitioners in the future.

5.1.1 Driver Emotion Inference

To address the challenge depicted in the first research question, a longitudinal field
study of four months, involving nine participants driving on public roads, was con-
ducted. The relevant data, including CAN-Bus data (driving behaviour), front-view
video streams (traffic context), driver facial video streams (emotion labels), and phys-
iological signals, were collected. In contrast to other existing research on driving
behaviour-based emotion recognition, in which experiments were performed on the
data collected from a driving simulator or under a controlled naturalistic environ-
ment, the evaluation and analysis in this work were based on the wealth of naturalis-
tic data from the field study, which cover a wide range of driving areas and distances.
Given the in-the-wild nature of the data, the following research question was thor-
oughly investigated:

RQ 1: Can a driver’s emotion be inferred based on the driving behaviour (from
CAN-bus) and the traffic context (from the front-view camera)?

A series of systematic experiments were performed to investigate this research ques-
tion, which included the investigation of the usability of various sensor modalities,
comparisons with state-of-the-art physiological sensor-based methods, and the flex-
ibility and ubiquity of the proposed method in the real world. Based on these com-
prehensive evaluations, the following key findings, and their implications for both
researchers and practitioners, are subsequently highlighted.

Driver emotions can be inferred from either the driving behaviour or traffic
context, whereas the fusion of both modalities can further improve the emotion
recognition performance. Driving behaviour and traffic context information are ac-
quired from very different sensor modalities. Although driving behaviour informa-
tion (based on CAN-Bus data) information is available in almost all modern vehicles,
it has certain limitations including: (a) restricted access: the data are typically only
available to Original Equipment Manufacturers (OEMs); (b) a lack of generalisation
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to different types of vehicles due to individual definitions of the format of CAN data
by OEMs; and (c) the decrease of the interaction between drivers and vehicles due
to the increased automation of smart vehicles. Given these drawbacks, the feasibility
of emotion recognition based on the traffic context, which is typically acquired via
front-view cameras, was also investigated. The advantages of using the traffic con-
text can be summarised as follows: (a) front-view cameras are becoming prevalent in
current and future vehicles, (b) the machine learning models based on video streams
are generalisable to different types of vehicles, and (c) if a vehicle is not yet equipped
with a front-view camera, front-view video streams can be acquired by a smartphone
mounted on the dashboard of the vehicle. However, the privacy regulations in certain
regions might restrict the processing of front-view video streams; moreover, video
based models could be vulnerable to adversarial attacks.

To address these concerns, we specifically built driver emotion recognition mod-
els based on either driving behaviour (CAN-only model), traffic context (video-only
model), or the combination of both (fusion model). Overall, the CAN-only and
video-only model achieved comparable performance, reaching a macro-F1 score of
approximately 69% for intra-subject evaluation and approximately 59% for leave-
one-subject-out (LOSO) evaluation. The fusion model exhibited further improve-
ment in these scores by around 1.2%. These numbers are comparable with recent
advancements in behaviour-based emotion recognition in the wild. Furthermore, it
should be noted that the model under LOSO evaluation achieved an F1-score that
was almost 10% higher than the random guess baseline (50%). LOSO evaluation
is the most challenging scenario in affective computing and is even not possible in
many behaviour-based emotion recognition models (LiKamWa et al., 2013; Zhang
et al., 2018). The experiments conducted in the present work demonstrated that the
proposed models are able to capture generalisable patterns across different subjects,
which should inspire future researchers regarding how to perform feature engineer-
ing and construct the architecture of machine learning models.

Overall, this is a positive result for the field of driver emotion recognition. While
there is still room for the improvement of the performance, the analysis suggests that
the current bottleneck lies in the limited size and diversity of training data. This
limitation should, however, be assessed with consideration that ours is the first study
to explore drivers’ emotions inference in a longitudinal setup (over four months). It
could be anticipated that when a larger amount of data and more diverse subjects are
involved, a better driver emotion recognition performance can be achieved.

The driving behaviour and traffic context based emotion recognition method
outperforms the physiological sensor-based method. To date, the mainstream of
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user emotion recognition has been based on physiological signals such as HRV, elec-
trocardiography (ECG), or electroencephalography (EEG). While such methods have
achieved impressive performance, especially under laboratory conditions, their gen-
eralisabiliy in the real world remains a challenging. On the one hand, not only emo-
tions, but also other factors such as physical exercises, diseases, and the environment
have impact on physiological signals; on the other hand, despite the progress in elec-
tronic technologies, most of physiological sensors are still cumbersome in practices.
Even the most high-end smartwatch can only provide reliable HR measurements but
not HRV measurements.

To address this issue, the HRV data of subjects were also collected during the field
study using a medical-grade device. The state-of-the-art HRV-based emotion recog-
nition algorithm was replicated (Nardelli et al., 2015) and its performance was com-
pared with that of the proposed driving behaviour and traffic context-based methods.
The comparison revealed that the proposed solution achieved higher performance
than the HRV-based method in terms of the F1-score.

The result of the comparison is significant. Without the hurdles of cumbersome phys-
iological sensors, the proposed emotion recognition solution has great potential for
practical use. More importantly, this concept can be extended beyond the environ-
ment of cars. For example, manufacturers of mobile devices and smart infrastructure
could leverage this idea and embed mental state monitoring functions in their prod-
ucts, thereby passively interpreting the behaviours of users. This idea is in line with
the recently proposed idea of the Artificial Internet of Things (AIoT), which is the
fusion of artificial intelligence (AI) technologies and Internet of Things (IoT) equip-
ment to achieve more powerful and efficient data management and analysis, and
ultimately to facilitate human-machine interactions.

The lightweight property and the flexible deployment requirement facilitate the
ubiquitous usage of the proposed non-intrusive driver emotion recognition ap-
proaches. As described above, our evaluation demonstrated that driver emotion can
be recognised, even when only one sensor modality (CAN-bus data or front-view
video) is available. This revealed the great ubiquity and flexibility in the deployment
of the proposed driver emotion recognition model. Automobile manufacturers, health
service providers, and third-party infotainment systems can choose appropriate set-
tings for sensor modalities to infer a driver’s mental states and ultimately improve
the driving experience of users.

For example, the CAN-only model can be deployed in regions where the recording
of front-view videos is forbidden, or in the vehicles that are not yet equipped with
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traffic context sensing systems. Moreover, the CAN-only model is less vulnerable to
adversarial attacks. The video-only model has a higher degree of flexibility. In the re-
gions where the front-view video recording is allowed, the video-only model can be
deployed in combination with driving recorders or smartphones mounted on the ve-
hicle dashboard. This setting can be directly deployed in current vehicles without the
retrofitting of the hardware of vehicles to gain the access to CAN data. Furthermore,
intelligent vehicles in the future will most likely be equipped with advanced sens-
ing systems that capture surrounding traffic information. In this case, the video-only
model can reuse such information to distil the knowledge about the traffic context. In
general, the fusion model achieved the best performance among the three modality
settings, and can be applied when relevant regulations and conditions permit.

In addition to flexible deployment, the proposed solution has a lightweight prop-
erty. For the CAN-only model, the prevalent CPU configuration can satisfy real-time
computation, including data pre-processing, feature generation, and machine learn-
ing inference. The main bottleneck lies in the processing of context information from
video streams, as image processing relies heavily on deep learning models. The real-
time processing of video streams can only be achieved by a GPU device. However,
there are many ways to bypass this limitation. First, when local legislative regula-
tion allows for it, the video processing task can be delegated to a cloud service with
GPUs. The transmission of video streams is acceptable given the current mobile
network capability. Second, with the advancement of neural processing units, it is
anticipated that the computation time and energy consumption for video processing
on mobile devices will be greatly reduced in the future. Third, in the case of fu-
ture smart vehicles that are equipped with radar or visual perception systems, the
traffic context information will be directly available from vehicles, and therefore no
additional video processing will be required for the video-only model.

Overall, the thorough evaluation and analysis demonstrated the flexible and lightweight
properties of the proposed non-intrusive emotion recognition model. This is of
important significance, as it indicates that not only automobile manufacturers, but
also other service providers, such as healthcare or mobile social network service
providers, can leverage the pervasive sensing of driver emotions and deliver more
customised services for users.

5.1.2 Driver Heart Rate Variability Estimation

The monitoring of a driver’s physiological state has been a vision of intelligent ve-
hicles for a long amount of time. On the one hand, driver well-being has a direct
impact on road safety, as fatigue, stress, and inattentiveness all contribute to traffic
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accidents; on the other hand, with the increasing trend towards a healthier lifestyle
and the more precise recording of health information, many researchers consider ve-
hicles as an ideal platform that can improve user well-being. Both in industry and
academia, HRV is widely used as a proxy for the estimation of physiological states
(D’Angelo and Lüth, 2011; D’Angelo et al., 2011; Wartzek et al., 2011; Zheng et al.,
2020). However, the existing approaches for the monitoring of the HRV of drivers
suffer from various constraints ranging from intrusive deployment to mediocre accu-
racy. Given the current drawbacks and the ultimate vision of intelligent vehicles, the
following research question was raised:

RQ 2: Can a driver’s HRV be reliably estimated in a non-intrusive manner (via a
driver monitoring camera) in future vehicles?

To address this research question, the data collected for the investigation of RQ 1
were reused, and the possibility of establishing the link between heart activities and
facial expressions via the autonomic nervous systems (ANS) was explored. It should
be noted that, unlike existing approaches that focus on the computation of the exact
values of the HR or HRV measures, the proposed approach aims at the estimation of
the outliers (i.e., one standard deviation below or above the mean) of HRV measures.
This alternative health monitoring approach is supported by existing literature, which
has found that a user’s stress level, cognitive load, fatigue, and alert states can mani-
fest themselves in excessively low or high states of certain HRV measures (RMSSD,
LF/HF ratio, and pNN50) (Kim et al., 2018; Lohani, Payne, and Strayer, 2019; Patel
et al., 2011; Taelman et al., 2009; Vicente et al., 2016). Ultimately, the extensive
experiments and evaluation verified that via the link of the ANS, the outliers of HRV
measures can be reliably inferred from the facial expressions of drivers, and can even
outperform prevalent solutions such as smartwatches. Moreover, the opportunity
to improve machine learning models was explored by integrating the decision tree
model into neural networks. A series of systematic experiments were performed and
led to the following key findings.

The implicit relationship between heart activity and facial expressions can be
leveraged by camera technology in conjunction with a tree-based probabilistic
fusion network model. The ANS is the part of the human nervous system that con-
trols bodily reactions at the unconscious level. Functions such as the HR, pupillary
response, facial expressions, and sexual arousal are regulated via the ANS (Schmidt
and Thews, 1989). Furthermore, the ANS consists of the sympathetic nervous sys-
tem (SNS) and the parasympathetic nervous system (PNS). The SNS emerges from
the spinal cord and stimulates the HR through the discharge of epinephrine and nore-
pinephrine, whereas the PNS releases acetylcholine to decelerate the HR (Gordan,
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Gwathmey, and Xie, 2015; Robinson et al., 1966). Despite the close relationship
between heart activity and facial expressions, to date, there exists no explicit knowl-
edge about how they influence each other, even in the medical domain. Given this,
tree-based machine learning models were leveraged in this work, as they often per-
form well when there is a lack of prior insight about the underlying data structure or
domain knowledge.

To be more specific, the performance of HRV outlier estimation was compared by
using various deep learning architectures, such as the convolutional neural network,
recurrent neural network, and multi-layer perceptron, as well as conventional ma-
chine learning models, such as the random forest and deep forest models. The com-
parison revealed a consistent advantage of the random forest and deep forest models.
Given this finding, the merits of both tree-based models and deep learning archi-
tectures were further leveraged, and a hybrid combination of the two, namely the
tree-based probabilistic fusion network (TPFN), was proposed. The TPFN first uses
a deep forest to create a probabilistic embedding from the features of facial action
units (AUs). The embedding is then further processed by a deep neural network. The
advantages of this arrangement are twofold, namely that (a) deep forests are good at
handling the heterogeneous distribution of AU features, and (b) after AU features are
converted into probabilistic embedding by a deep forest, a neural network can learn
a better mapping from facial cues to HRV measures due to the increased numerical
stability. The results of extensive experiments demonstrated that the proposed TPFN
model outperformed prevalent neural architectures and tree-based models. It is worth
noting that this is not the first attempt to combine a tree-based model with neural net-
works; various researchers have exploited similar ideas and verified their advantages
in different contexts (Kong and Yu, 2018; Kontschieder et al., 2015; Wang, Aggar-
wal, and Liu, 2017). Overall, a novel TPFN model that can reliably estimate the
outliers of HRV measures, and hence provide the reliable well-being monitoring of
drivers, was proposed in this thesis. Furthermore, the idea of the hybrid usage of a
tree-based model and neural network should inspire future researchers in the devel-
opment of machine learning models, especially when no prior domain knowledge is
available.

HRV measurements from consumer smartwatches are conditionally unreliable.
Wearable devices such as smartwatches are becoming popular in people’s daily lives.
Thanks to the progressive advancements in electronic technology and signal pro-
cessing techniques, nowadays these devices provide an accurate assessment of the
average HR in various contexts. Compared to other existing driver HR monitoring
solutions, such as methods based on ballistocardiograph, ultra-wide band (UWB), or
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remote photoplethysmography (rPPG) (McDuff, Gontarek, and Picard, 2014; Sakai
et al., 2013; Walter et al., 2011; Zheng et al., 2020), and smartwatches have exhibited
a great leap in terms of measurement accuracy. In the presented assessment, the mean
absolute error between high-end smartwatches and medical-grade heart monitoring
devices (Firstbeat) of drivers is only as large as one beat per minute, correspond-
ing to a relative error of less than 2%. This magnitude of errors is in line with the
latest systematic assessment of smartwatches (Hernando et al., 2018; Shcherbina et
al., 2017). However, the accurate HR monitoring does not imply reliable computa-
tion of derived HRV measures. For example, the mean absolute error of RMSSD
between smartwatches and medical-grade devices is approximately 30 milliseconds,
corresponding to a relative error of around 90%. Such a substantial drop in accuracy
can be attributed to the fact that driving involves frequent hand and arm movements,
while the monitoring of HRV measures in smartwatches works best if users sit still
and avoid arm movements (Hernando et al., 2018). Given this, smartwatches are not
a suitable device for the direct monitoring of the physiological conditions of drivers,
when precise HRV measures are required.

Furthermore, the requirement was relaxed and smartwatches were used to perform
the outlier estimation of HRV measures, as was done for the proposed TPFN model.
This evaluation was necessary to verify if the measurement error of smartwatches
constitutes consistent offsets. If so, smartwatches can still serve as a reliable tool for
outlier estimation of HRV measures because an offset error does not affect outlier
detection. The evaluation showed that TPFN based on facial expressions outper-
formed smartwatches in all HRV measures with an improvement ranging from 3.6%
to 13.1% in terms of balanced accuracy. As such, the comparison results highlight
the advantages of facial expression-based HRV estimation, which not only provides
higher estimation accuracy, but also facilitates easier application because no wear-
able device is needed.

5.2 Limitations

The encouraging results and implications of this thesis should be assessed in the light
of the limitations of the research and evaluation settings, as discussed in Section 3.6
and Section 4.5. This section revisits the previously mentioned limitations and chal-
lenges while additionally emphasising the common issues shared by the analysis of
both RQ 1 and RQ 2. Discussions on potential improvements that can be made to
address these limitations are also provided to advance the research in the domain of
ubiquitous and mobile computing.
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Regarding driver emotion recognition, a critical obstacle is the accuracy of emo-
tion labels. Emotions are subjective feelings and can be induced by various inner
and external factors. For example, a driver might get upset due to the aggressive
actions of other traffic participants. Meanwhile, he or she might also be experienc-
ing anger while driving due to a conflict with family members at home. Therefore,
the emotion labels of drivers inherently contain a large amount of noise due to the
diverse sources of emotions. Similar driving behaviours and traffic contexts might
be mapped to contradictory emotional states. For this reason, the upper bound of
the emotion recognition accuracy achieved in this study was approximately 70% in
terms of the F1-score. In fact, label noise has been a long-standing problem in the
machine learning community. One potential approach by which to improve emotion
recognition in the current context is to adopt uncertainty suppression mechanisms
(Peng et al., 2020a; Wang et al., 2020b). Briefly explained, this mechanism creates
a score for each training sample, indicating the reliability of the corresponding la-
bel. By doing so, the machine learning model is able to adjust its loss function in
order to put more emphasis on more reliable samples and hence increase the overall
performance.

Furthermore, the usability of the outlier estimation of HRV measures should be thor-
oughly inspected and improved. First, unlike smartwatch-, rPPG-, or UWB-based
approaches, the proposed facial expression-based outlier estimation method does not
provide exact values of HRV measures. While the outliers can reflect certain extreme
physiological and psychological states of users, the exact measurement of HRV mea-
sures could provide a much more comprehensive assessment of a user’s health condi-
tion. This goal can be achieved only by exploring beyond pure learning-based meth-
ods, as the exact HRV measures rely on the precise detection of the IBI. A promising
direction could be the combination of rPPG and the facial expression-based method,
as their underlying mechanisms complement each other. The rPPG-based method is
able to detect exact peaks of IBI when the light conditions are ideal and the subject
remains still. The major limitation of rPPG is its vulnerability to fluctuating illumi-
nation and motion artefacts. This issue could potentially be overcome by fusing the
facial cues into the detection, as the detection of facial expressions is robust against
ambient noise, and the present evaluation already demonstrated the strong correlation
between facial expressions and HRV measures. Second, the estimation of the LF/HF
ratio is generally inferior to other HRV measures, which can be attributed to the fact
that the frequency components of HRV are strongly influenced by respiration. Unlike
heart activities, respiration does not induce obvious deviations in facial expressions,
and hence cannot be reliably detected by the proposed approach. As such, the inte-
gration of a visual respiration detection module into the existing pipeline is posited
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to further improve the HRV estimation. Finally, the generalisability of the proposed
approach to patients with cardiovascular diseases remains unclear; all participants in
the field study were healthy, and none reported any relevant complications. While
the proposed concept of HRV estimation via facial videos has the potential to be de-
ployed in hospitals or smart homes to facilitate seamless health states monitoring,
it is critical to inspect whether the connection between facial expressions and heart
activities via the ANS is affected by certain diseases. Such an investigation will re-
quire the collection of the medical data of inpatients via experiments and long-term
observation. As such, future research in this direction is anticipated.

Finally, the common limitations shared by the two investigations should be discussed.
The greatest challenge is the generalisability to different subjects. Regarding the
LOSO evaluation of driver emotion recognition, the proposed method achieved an
average F1-score that was approximately 10% lower than that of the intra-subject
evaluation. Regarding the estimation of HRV measures, this problem is even more
severe, as the proposed solution did not work for LOSO evaluation. This limitation
can be attributed to two major factors. First, the experimental scale was limited in
terms of the dataset size and the subject diversity. The total amounts of data available
for driver emotion recognition and HRV outlier estimation were only approximately
675.6 and 68.6 hours, respectively. In addition, there were only nine drivers repre-
sented in the dataset. These numbers are insignificant as compared to other in-the-
wild machine learning projects. For example, the dataset used by Affectiva consists
of more than 20,000 hours of driving data from more than 4,000 unique individuals
(Mcmanus, 2020a). Moreover, due to the limited experimental scale, it would be
difficult for a machine learning model to learn a powerful representation that can be
sufficiently generalised to different subjects. Second, emotions are subjective feel-
ings, and each individual will have different or even contradictory interpretations
of the same event; this is an inherent problem of emotion recognition. Therefore,
when an emotion recognition model is applied to a test dataset of a previous unseen
subject, the performance of the model will be upper-bounded by the number of com-
mon patterns shared between the training and test dataset. Empirically, this number
is very limited as compared to that in other machine learning tasks, such as image
recognition or object detection.

Another common limitation shared by the two investigations stems from the lack of
explainability of the machine learning models. While the presented emotion recog-
nition and HRV estimation solutions demonstrated promising and robust prediction
performance, their underlying mechanisms have not yet been fully explored. From
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the practical perspective, knowing the decision rules of an AI system can help fa-
cilitate the trust between users and machines (Amershi et al., 2019; Ignatiev, 2020;
Norkute et al., 2021). From the research perspective, the intransparency of AI sys-
tems has been a long-standing problem, and the increase of the explainability of
machine learning models has attracted increasingly more attention. Further explo-
ration of the decision rules of the proposed solutions would provide insights for AI
scientists to better understand how learning algorithms distil knowledge about emo-
tion and heart activities from user behaviours. More importantly, both medical re-
searchers and psychologists can benefit from such explainability, and can gain novel
knowledge in their respective domains (Došilović, Brčić, and Hlupić, 2018; Tjoa and
Guan, 2021).

5.3 Conclusion

Improving the driving experience has been a popular research topic ever since the
invention of cars (Zepf et al., 2020). With the continuous development and inno-
vation of engineers, scientists, policy makers, and automotive manufacturers, the
forms and functions of the human-machine interfaces of cars have been improved
over the years. Nevertheless, the emerging technologies and the evolution of mod-
ern lifestyles have created new requirements and opportunities for safer and more
comfortable in-vehicle experiences. Among the various challenges, we identify the
monitoring of driver psychological and physiological states are one of the most valu-
able functions for current and future vehicles. The most fundamental significance
of the driver state monitoring is improved road safety because the psychological and
physiological states directly indicate whether a driver is fit for driving. While the ad-
vent of self-driving vehicles may be the ultimate solution to safer traffic, the progress
of such technology is uncertain and it might take decades before self-driving vehicles
become prevalent, especially in those low-income countries. In other words, drivers
will continue to play a central role in traffic. Furthermore, the monitoring of a driver’s
psychological and physiological states has derivative benefits. People nowadays have
more demands regarding health-related services. For example, the proportion of the
ageing population in the developed countries continues to grow, and this population
suffers from various chronic diseases. Moreover, the threat of mental diseases, such
as depression and burn-out, is increasing for the working population in the most part
of the world due to the accelerated pace of life, work pressures, etc. Researchers and
public-health related authorities are calling for more innovative approaches to handle
the massive need for health monitoring and treatments, among which the ubiquitous
and the pervasive monitoring of psychological and physiological states plays a vital
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role (Ebert et al., 2017; Nahum-Shani, Hekler, and Spruijt-Metz, 2015). With the
advanced sensors embedded in modern vehicles, the explosive progress of machine
learning techniques and the growing usage of cars, an increasing amount of research
suggests that cars have the potential to become a wellness platform, in which the
users’ health states are monitored and improved.

Nevertheless, there exists only limited research targeted at such aspects. First, the
mainstream of driver state monitoring focuses on behaviour recognition. While be-
haviour recognition can protect drivers from distractions like making phone calls or
over-engagement in conversation, this solution is unable to detect a driver’s reduced
awareness of incidents occurring even within the visual field, namely the problem of
“look but fail to see”. Furthermore, driver behaviour recognition does not provide
health information about drivers that can be utilised to improve the driving experi-
ence and well-being of users. Finally, many of the latest emotion recognition and
physiological signal monitoring approaches were evaluated under laboratory condi-
tions or controlled naturalistic settings. Despite their positive results in well-defined
settings, the generalisability of these approaches to the in-the-wild environment is
not guaranteed. As such, this thesis demonstrated the evaluation from the field as-
sessment of the estimation of the psychological and physiological states of drivers
in a non-intrusive manner while relying only on existing or soon-to-come sensors in
cars.

Overall, the insights of this thesis reveal that the exploration of driver behaviours
and the traffic context has the potential to overcome the long-standing limitations
of driver emotion recognition that relies on cumbersome physiological sensors or
privacy-breaching facial videos. In addition, the results demonstrate that the HRV
measures of drivers can be reliably estimated from their facial expressions. The pre-
sented approaches for the non-intrusive monitoring of the psychological and phys-
iological states of drivers provide the opportunity for a ubiquitous, cost-effective,
and scalable solution to promote road safety and the driving experience. The idea of
the pervasive inference of driver states should encourage the collaboration between
health service providers, automotive manufacturers, and even players in the smart
infrastructure industry. Together, they can facilitate a safer and smoother transition
from current to semi- and fully-autonomous vehicles in the future, while concurrently
providing health-related services to improve the driving experience and eventually
benefit the whole of society.
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Xie, J., Hilal, A. R., and Kulić, D. (2018). “Driving Maneuver Classification: A

Comparison of Feature Extraction Methods”. In: IEEE Sensors Journal 18.12,
pp. 4777–4784.

Xing, Y. et al. (2019). “Driver activity recognition for intelligent vehicles: A deep
learning approach”. In: IEEE transactions on Vehicular Technology 68.6, pp. 5379–
5390.

Yang, H., Ciftci, U., and Yin, L. (2018). “Facial Expression Recognition by De-
Expression Residue Learning”. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 2168–2177.

Yang, Y. and Chen, H. H. (2011). “Ranking-Based Emotion Recognition for Music
Organization and Retrieval”. In: IEEE Transactions on Audio, Speech, and Lan-
guage Processing 19.4, pp. 762–774.

Yannakakis, G. N., Cowie, R., and Busso, C. (2017). “The ordinal nature of emo-
tions”. In: International Conference on Affective Computing and Intelligent Inter-
action, pp. 248–255.

https://www.who.int/violence_injury_prevention/road_safety_status/2015/GSRRS2015_Summary_EN_final.pdf
https://www.who.int/violence_injury_prevention/road_safety_status/2015/GSRRS2015_Summary_EN_final.pdf
https://www.who.int/violence_injury_prevention/road_safety_status/2015/GSRRS2015_Summary_EN_final.pdf
https://www.who.int/mental_health/management/depression/prevalence_global_health_estimates/en/
https://www.who.int/mental_health/management/depression/prevalence_global_health_estimates/en/
https://www.who.int/mental_health/management/depression/prevalence_global_health_estimates/en/
http://apps.who.int/iris/bitstream/handle/10665/277370/WHO-NMH-NVI-18.20-eng.pdf?ua=1
http://apps.who.int/iris/bitstream/handle/10665/277370/WHO-NMH-NVI-18.20-eng.pdf?ua=1
https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates
https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates


Bibliography 111

Zepf, S. et al. (2019). “Towards empathetic car interfaces: emotional triggers while
driving”. In: Extended Abstracts of the ACM SIGCHI Conference on Human Fac-
tors in Computing Systems, Art. no. LBW0129: 1–6.

Zepf, S. et al. (2020). “Driver Emotion Recognition for Intelligent Vehicles: A Sur-
vey”. In: ACM Computer Survey 53.3, Art. no. 64: 1–30.

Zhang, X. et al. (2018). “MoodExplorer: towards Compound Emotion Detection via
Smartphone Sensing”. In: Proceedings of the ACM on Interactive, Mobile, Wear-
able and Ubiquitous Technologies 1.4, Art. no. 176:1–30.

Zhang, Y. et al. (2017). “SOVCAN: Safety-Oriented Vehicular Controller Area Net-
work”. In: IEEE Communications Magazine 55.8, pp. 94–99.

Zheng, T. et al. (2020). “V2iFi: In-vehicle vital sign monitoring via compact rf sens-
ing”. In: Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies 4.2, Art. no. 70:1–27.

Zhou, J. J., Phadnis, V., and Olechowski, A. (2020). “Analysis of Designer Emotions
in Collaborative and Traditional Computer-Aided Design”. In: Journal of Mechan-
ical Design 143.2, Art. no. 021401.

Zhou, Z.-H. and Feng, J. (2017). “Deep forest: Towards an alternative to deep neu-
ral networks”. In: Proceedings of the International Joint Conference on Artificial
Intelligence, pp. 3553–3559.





113

Appendix A

Inference of Driver Emotion via
Driving Behaviour and Traffic
Context

TABLE A.1: All signals of CAN data

Signal ID Description Signal ID Description

1 Accelerator pedal position 26 Left turn indicator
2 Belt buckle indicator 1 27 Longitudinal acceleration
3 Belt buckle indicator 2 28 Motor rotational speed
4 Belt buckle indicator 3 29 Odometer
5 Belt buckle indicator 4 30 Parking light indicator
6 Belt buckle indicator 5 31 Rear fog light
7 Brake indicator 32 Right turn indicator
8 Brake pressure 33 Steering wheel angle
9 Clutch switch 34 Steering wheel direction
10 Daytime running lamp 35 Steering wheel velocity
11 Dimmed headlights indicator 36 Steering wheel velocity direction
12 Electronic stability control 37 Tank level percent
13 External temperature sensor 1 38 Temperature sensor
14 External temperature sensor 2 39 Time
15 Flasher 40 Wheel direction (back left)
16 Fog light indicator 41 Wheel direction (back right)
17 Front wiper 42 Wheel direction (front left)
18 Gear position 43 Wheel direction (front right)
19 GPS altitude coordinate 44 Wheel speed (back left)
20 GPS latitude coordinate 45 Wheel speed (back right)
21 GPS longitude coordinate 46 Wheel speed (front left)
22 High beam 47 Wheel speed (front right)
23 High beam indicator 48 Yaw rate
24 Humidity 49 Yaw rate direction
25 Lateral acceleration
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TABLE A.2: HRV features of the baseline method (Nardelli et al.,
2015)

Feature Index Description

Time Domain Measures

1 the mean value (RR mean: R refers to the peak of the elec-
trocardiography wave; RR is the interval between successive
Rs)

2 the standard deviation (RR std)
3 the standard deviation of Normal-to-Normal (NN) intervals

(SDNN)
4 the square root of the mean of the sum of the squares of differ-

ences between subsequent NN intervals (RMSSD)
5 the number of successive differences of intervals which differ

by more than 50 ms, expressed as a percentage of the total
number of heartbeats analysed (pNN50)

6 the integral of the probability density distribution divided by
the maximum of the probability density distribution (HRV tian-
gular index)

7 the triangular interpolation of NN interval histogram (TINN)
Frequency Domain Measures

8-10 the power calculated within the very low frequency (VLF), low
frequency (LF), and high frequency (HF) bands.

11-13 the frequencies containing maximum magnitude (VLF peak,
LF peak, and HF peak).

14-16 the power expressed as percentage of the total power (VLF
power %, LF power %, and HF power %).

17-18 the power normalised to the sum of the LF and HF power (LF
power nu and HF power nu)

19 the LF/HF power ratio
Nonlinear HRV Measures

20 Approximate Entropy
21-22 Detrended Fluctuation Analysis: short-term fluctuations (a1)

and long-term flunctuations (a2)
Lagged Poincaré Plots: SD1, SD2, SD12, S, SDRR (details
below)

23 SD1: the standard deviation related to the points that are per-
pendicular to the line-of-identity

24 SD2: the standard deviation that describes the long-term dy-
namics and measures the dispersion of the points along the
identity line.

25 SD12 (SD1/SD2): the ratio between SD1 and SD2.
26 S (pSD1SD2): the area of an imaginary ellipse with axes SD1

and SD2
27 SDRR: an approximate relation indicating the variance of the

whole HRV series
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TABLE A.3: Intra-subject cross-validation: comparison between the
baseline and our driving behaviour- and context-based inference

Personalised Model
F1-score (%) CAN Video Fusion baseline

anger 63.1 63.4 61.5 54.0
disgust 64.4 66.1 62.1 55.7

fear 62 59.5 56.8 55.2
joy 62.1 63.5 64.5 61.4

neutral 64.3 64.5 64 58.3
sadness 63.7 64.3 62.9 54.1
surprise 66.4 64.7 66.1 53.9
valence 66.7 61 62.4 56.5

average 64.1 63.4 62.5 56.1

TABLE A.4: LOSO cross-validation: comparison between the base-
line and our driving behaviour- and context-based inference

LOSO Model
F1-score (%) CAN Video Fusion baseline

anger 51.4 52.9 50.8 43.6
disgust 52.4 50.8 49.5 44.3

fear 54.7 54 50.6 53.3
joy 56.6 54.8 53.3 54.5

neutral 54.6 51.6 52.4 44.9
sadness 48 49.8 47.4 44.4
surprise 54.3 50.7 49.3 49.2
valence 47.9 50.2 46.4 48.7

average 52.5 51.8 50 47.9
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FIGURE A.1: Cumulative distribution of p-values of the selected fea-
tures according to the source of the signal
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TABLE A.5: Results of precision for low class: Intra-subject and
LOSO cross-validation, comparison between the driving behaviour-
and context-based inference models as well as the fusion of both

modalities

low class Personalised Model LOSO Model
precision (%) CAN Video Fusion CAN Video Fusion

anger 71.6 73.5 76.6 64.1 64.3 66.7
disgust 71.4 73.7 74.1 64.7 65.3 65.0

fear 67.9 68.7 69.0 45.9 47.2 45.6
joy 68.7 67.4 71.0 60.2 58.0 61.1

neutral 64.0 65.5 68.5 53.9 53.2 58.6
sadness 71.4 73.7 74.0 65.6 64.8 66.8
surprise 70.2 68.6 70.2 49.4 47.6 47.9
valence 65.4 65.2 69.1 52.1 51.0 57.2

average 68.8 69.5 71.6 57.0 56.4 58.6

TABLE A.6: Results of precision for high class: Intra-subject and
LOSO cross-validation, comparison between the driving behaviour-
and context-based inference models as well as the fusion of both

modalities

high class Personalised Model LOSO Model
precision (%) CAN Video Fusion CAN Video Fusion

anger 67.5 68.7 68.1 58.3 56.8 58.8
disgust 67.5 69.5 70.7 58.8 57.8 62.0

fear 70.3 69.7 71.9 50.5 51.1 52.3
joy 66.2 67 65.8 48.5 51.5 48.8

neutral 72.6 73.4 73.0 66.3 63.7 64.9
sadness 64.3 66.4 67.0 55.1 55.5 58.0
surprise 68.8 70.2 71.6 49.1 51.4 51.8
valence 71.3 76.1 73.0 63.9 65.8 65.3

average 68.6 70.1 70.1 56.3 56.7 57.7
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TABLE A.7: Results of recall for low class: Intra-subject and LOSO
cross-validation, comparison between the driving behaviour- and
context-based inference models as well as the fusion of both modali-

ties

low class Personalised Model LOSO Model
recall (%) CAN Video Fusion CAN Video Fusion

anger 66.4 68.3 69.2 60.0 59.7 61.1
disgust 66.6 68.9 69.8 60.8 61.0 62.3

fear 69.5 70.3 71.2 49.4 52.3 51.3
joy 67.3 65.8 67.7 58.8 56.8 57.8

neutral 71.6 72.9 73.5 70.8 68.8 67.7
sadness 66.4 67.9 69.2 60.8 60.0 62.2
surprise 69.8 70.2 71.2 50.2 51.5 51.4
valence 72.3 75.3 74.7 73.2 71.9 70.3

average 68.7 70.0 70.8 60.5 60.3 60.5

TABLE A.8: Results of recall for high class: Intra-subject and
LOSO cross-validation, comparison between the driving behaviour-
and context-based inference models as well as the fusion of both

modalities

high class Personalised Model LOSO Model
recall (%) CAN Video Fusion CAN Video Fusion

anger 74.2 74.7 76.2 70.5 69.9 67.8
disgust 74.6 75.5 77.0 71.9 72.5 69.2

fear 68.7 68.1 69.9 46.5 47.1 46.3
joy 69.1 69.9 70.1 75.6 69.6 71.4

neutral 65.7 67.3 68.9 59.3 58.9 60.8
sadness 70.8 73.3 72.6 70.1 68.4 68.0
surprise 69.2 69.4 70.6 48.5 48.5 48.3
valence 64.8 66.4 68.0 56.7 56.3 58.5

average 69.6 70.6 71.7 62.4 61.4 61.3
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FIGURE A.2: Confusion matrix for CAN-only modality under intra-
subject evaluation

FIGURE A.3: Confusion matrix for CAN-only modality under LOSO
evaluation
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FIGURE A.4: Confusion matrix for Video-only modality under intra-
subject evaluation

FIGURE A.5: Confusion matrix for Video-only modality under LOSO
evaluation
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Appendix B

Estimation of Driver Heart Rate
Variability

20 km

FIGURE B.1: GPS heatmap of the additional active area

TABLE B.1: Candidate parameters for grid search for tree-based mod-
els

RF, DF, TFPN

depth of tree 10, 20, 50, None

number of trees 50, 100, 200, 300

min samples split 2, 5, 10

min samples leaf 1, 2, 5
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HRV segments generated by 
overlapping sliding windows

HRV segments used for 
training

HRV segments used for 
testing

discarded HRV segments to 
avoid intersection

time time

5 min

30 s

FIGURE B.2: Processing of HRV segments to avoid intersection be-
tween training and test data

FIGURE B.3: LF/HF ratio of the nine drivers in different time interval

FIGURE B.4: pNN50 of the nine drivers in different time interval



Appendix B. Estimation of Driver Heart Rate Variability 123

(A) LF/HF ratio (B) pNN50

FIGURE B.5: Absolute and relative errors of high-end smartwatch
compared with Firstbeat bodyguard 2 (Firstbeat Technologies Oy,

2019)

TABLE B.2: Candidate parameters for grid search for CNN

CNN

# conv. layers 2, 4, 8

# filter per layer 8, 16, 32

kernel size 3, 5, 7

dropout rate 0.3, 0.5, 0.7

learning rate 0.01, 0.05, 0.005

activation sigmoid, Relu

FC layer settings
(neurons in each layer)

[16], [32], [64],
[16,16], [32,32], [64,64]

TABLE B.3: Candidate parameters for grid search for RNN

RNN

# layers 1, 2, 4

# hidden units 8, 16, 32

dropout rate 0.3, 0.5, 0.7

learning rate 0.01, 0.05, 0.005

activation sigmoid, Relu

FC layer settings
(neurons in each layer)

[16], [32], [64],
[16,16], [32,32], [64,64]
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TABLE B.4: Candidate parameters for grid search for MLP

MLP

# layers 2, 4, 8

# neurons in layer 8, 16, 32

dropout rate 0.3, 0.5, 0.7

learning rate 0.01, 0.05, 0.005

activation sigmoid, Relu
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