
Diss. ETH No. 28091

A GENERAL FRAMEWORK FOR

HIGH-RESOLUTION ROBOTIC TACTILE SENSING:

DESIGN, SIMULATION, AND LEARNING

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH Zurich

(Dr. sc. ETH Zurich)

presented by

Carmelo Sferrazza

M.Sc. ETH in Robotics, Systems, and Control

born on 14 January 1993

citizen of Italy

accepted on the recommendation of

Prof. Dr. Raffaello D’Andrea, examiner

Prof. Dr. Rebecca Kramer-Bottiglio, co-examiner

Dr. Katherine J. Kuchenbecker, co-examiner

2022

A general framework for

high-resolution robotic tactile sensing:

design, simulation, and learning

Carmelo Sferrazza

Institute for Dynamic Systems and Control

ETH Zurich

2022

Institute for Dynamic Systems and Control

ETH Zurich

Switzerland

© 2022 Carmelo Sferrazza. All rights reserved.

Abstract
In order to fulfill their potential in the manufacturing and retail sectors of the modern

world, autonomous machines need to be able to perceive and react to contact with their

surroundings, both to enhance their capabilities, as well as to increase operational safety.

This thesis investigates solutions to the contact sensing problem of robotic systems, piv-

oting on the development of a vision-based tactile sensing principle that provides rich

information upon physical interaction with the environment. The sensors based on such

a principle are low-cost, scalable to large surfaces and straightforward to manufacture.

However, they do not directly measure physical quantities, but rather provide raw data in

the form of what are generally known as tactile images. In this work, a machine learning-

based data processing framework is presented to address three main requirements, namely,

sensing accuracy, efficiency, and generalization across tasks and contact conditions.

State-of-the-art sensing accuracy, at a spatial resolution comparable to that of the

human fingertip, is achieved through a deep neural network that maps the raw tactile

images to the three-dimensional force distribution applied to the sensing surface, which

provides a compact and generic representation of the contact state. In fact, the force

distribution contains information about the location and the intensity of shear and pres-

sure forces, as well as about the shape and the number of the possibly distinct contact

regions. In addition, it provides an interpretable physical quantity that is shown to be

very practical for planning higher-level robotic tasks.

The size of the neural network is kept compact to ensure real-time inference. How-

ever, in the context of data-driven methods, efficiency is also a concern with regard to

training data requirements. In this thesis, accurate finite element-based simulations en-

able the synthetic generation of raw tactile data under a variety of contact conditions.

The same simulations also yield appropriate force distribution labels, which are otherwise

not possible to collect with currently existing commercial force sensors. Hence, the deep

neural network is entirely trained with synthetic data, avoiding the need for real-world

data collection. A strategy is then presented that facilitates a seamless transfer of the

inference model from simulation to reality, retaining high sensing accuracy. In addition,

the model transfers across sensors of the same type without further training.

The simulation training facilitates data collection across different scenarios, such as

the contact with arbitrarily shaped objects or the combination of shear and pressure

interactions. An appropriate choice of learning architecture shows generalization capa-

bilities when applied to contact conditions not present in the training dataset. Beyond

the pure sensing task, a proof-of-concept robotic system is presented that fully leverages

the versatility of the tactile sensor. The system achieves dynamic manipulation of ob-

jects with unknown physical properties solely through the use of tactile feedback fed to

a closed-loop control policy trained with a deep reinforcement learning algorithm.

i

In a separate part, this thesis discusses a different research topic, where past experi-

ence data are employed to improve the trajectory tracking performance of autonomous

systems. This is achieved by estimating unmodeled disturbances over different trials, and

including them in the formulation of a computationally efficient model predictive control

framework. The approach is demonstrated on two flying vehicle applications, namely, on

a vehicle powered with electric ducted fans and controlled through thrust vectoring, and

on a quadcopter that aims to balance a pendulum rod during flight.

ii

Riassunto
Per potere sfruttare a pieno il loro potenziale nel settore manifatturiero e in quello della

vendita al dettaglio, nel mondo moderno le macchine autonome dovranno essere in grado

di percepire e reagire al contatto con l’ambiente circostante, sia per migliorare le loro

funzionalità, che per aumentare la sicurezza operativa. Questa tesi studia le soluzioni al

problema della percezione del contatto dei sistemi robotici, facendo perno sullo svilup-

po di un principio di misurazione tattile basato sull’acquisizione di immagini ricche di

informazioni sull’interazione fisica con l’ambiente. I sensori basati su tale principio sono

a basso costo, scalabili su grandi superfici e semplici da produrre. Tuttavia, questi non

misurano direttamente delle quantità fisiche, ma piuttosto forniscono dati grezzi sotto

forma di quelle che sono generalmente note come immagini tattili. In questa tesi, viene

presentato un framework di elaborazione dei dati, basato sull’apprendimento automatico,

che mira a soddisfare tre requisiti fondamentali: l’accuratezza di misurazione, l’efficienza,

e la generalizzazione per varie mansioni e scenari di contatto.

Un’accuratezza di misurazione all’avanguardia, con una risoluzione spaziale paragona-

bile a quella dei polpastrelli dell’uomo, è ottenuta attraverso una rete neurale artificiale

profonda che mappa alle immagini tattili grezze la distribuzione tridimensionale delle

forze applicate alla superficie di misurazione, fornendo una rappresentazione compatta

e generica dello stato del contatto. Infatti, la distribuzione di forza contiene informazio-

ni sulla posizione e l’intensità delle forze normali e di taglio, cos̀ı come sulla forma e il

numero delle regioni di contatto, che possono anche essere molteplici. Inoltre, fornisce

una quantità fisica interpretabile che si dimostra essere molto utile per i robot per la

pianificazione di compiti di più alto livello.

La dimensione della rete neurale è mantenuta compatta per garantire un’inferenza

in tempo reale. Tuttavia, nel contesto dei metodi basati sull’apprendimento automatico,

l’efficienza deve essere garantita anche per quanto riguarda i requisiti dei dati di addestra-

mento. In questa tesi, accurate simulazioni basate sul metodo a elementi finiti permettono

la generazione sintetica di dati tattili grezzi per un’ampia varietà di scenari di contatto.

Le stesse simulazioni producono anche le appropriate etichette di distribuzione di for-

za, che non sono altrimenti possibili da raccogliere con i sensori di forza attualmente in

commercio. Quindi, la rete neurale profonda è interamente addestrata con dati sintetici,

evitando la necessità di raccogliere dati nel mondo reale. Viene inoltre presentata una

strategia che garantisce un agevole trasferimento del modello di inferenza dalla simula-

zione alla realtà, mantenendo un’elevata accuratezza di misurazione. Inoltre, il modello

può essere trasferito tra sensori dello stesso tipo senza ulteriore addestramento.

L’addestramento in simulazione facilita la raccolta di dati in diversi scenari, come in

quelli in cui il contatto avviene con oggetti di forma arbitraria o nel caso di interazioni

che combinano forze normali e di taglio. Una scelta appropriata dell’architettura di ap-

iii

prendimento mostra inoltre capacità di generalizzazione quando applicata a condizioni

di contatto non presenti tra i dati di addestramento. Al di là del puro compito di misu-

razione, viene presentato un sistema robotico proof-of-concept che sfrutta pienamente la

versatilità del sensore tattile. Il sistema effettua con successo la manipolazione dinamica

di oggetti con proprietà fisiche sconosciute avendo a disposizione solo il feedback tattile,

che viene fornito a un sistema di controllo addestrato con un algoritmo di apprendimento

per rinforzo profondo.

In una parte separata, questa tesi discute un diverso argomento di ricerca, dove da-

ti raccolti durante precedenti campagne sperimentali sono impiegati per migliorare le

prestazioni di sistemi autonomi per quanto riguarda il controllo di traiettoria. Ciò si ot-

tiene stimando attraverso esperimenti ripetuti i disturbi non considerati nel modello del

sistema, e quindi includendoli nella formulazione di un algoritmo di controllo preditti-

vo efficiente dal punto di vista computazionale. L’approccio è dimostrato tramite due

applicazioni a veicoli volanti: su un veicolo alimentato con ventole intubate elettriche e

controllato attraverso la vettorizzazione della spinta, e su un quadrirotore che mira a

bilanciare un’asta durante il volo.

iv

Acknowledgments
All the people I have met during my PhD have contributed in many ways to this thesis,

with their diverse thoughts, suggestions, and feedback.

My deepest gratitude goes to my advisor, Raff, for his guidance and continuous sup-

port. I have had the perfect conditions and flexibility to shape my research project, and a

great part of it is due to your trust, patience, and motivation, especially during the first

months of my PhD. I have learned so much from you, and it has been invaluable to always

be able to count on your direct and precious advice. Thank you for the opportunities you

have offered, and for being an inspiration with your approach to research.

I would like to thank Prof. Ken Goldberg, Prof. Rebecca Kramer-Bottiglio, and Dr.

Katherine Kuchenbecker, for agreeing to act as co-examiners, and for their willingness

to spend considerable time reviewing this thesis. I am also grateful to Prof. Sebastian

Trimpe and Prof. Melanie Zeilinger for their advice and support.

Being surrounded by brilliant colleagues at the Institute for Dynamic Systems and

Control (IDSC) has been the highlight of my PhD, and their striving for excellence a

natural motivation. I have been fortunate to have started my PhD at the same time

as Matthias, who has been my office-mate since day one. Thank you for the everyday

feedback exchanges, for all the stimulating discussions, for sharing the teaching duties of

Recursive Estimation, and for the many hundreds of lunches together. I would also like

to thank Michael for bringing me to IDSC for my Master’s thesis. You were an amazing

supervisor, and looking back, your passion for research truly inspired me to pursue a PhD.

Having you later as a colleague was a great help in getting started with the group, and I

have learned a lot from our work together. Thank you Rajan and Weixuan, for the late

lunches and the street food adventures. And thank you Tony, for being always willing

to help with anything. I am also thankful to my senior colleagues, Dario, Max, Mike,

and Robin, for being very welcoming, and for passing on the group’s culture. I would

also like to thank Adam from the Institute for Mechanical Systems, for the wonderful

collaboration and for the many insights you gave me about continuum mechanics. I owe a

huge thank you to all the stellar students that I have supervised at ETH, for your efforts

and passion, for making my project yours.

The support staff at IDSC do an impressive job in keeping things running. I would

like to thank Helen for being a savior in literally everything, and for proofreading the

million pages of papers and documents. And thank you Katharina for the administrative

support when starting my time at IDSC. I am also thankful for the invaluable technical

support by Michi, Matthias Mueller, Mac and Dani. And thank you Marcus, both for

your help and the weekend get-togethers.

I cannot thank enough everyone in my big family. I want to thank my father, for

teaching me that there is always time for the important things in life. And thank you

vii

mom for unconditionally backing all my decisions. I would also like to say a heartfelt

thank you to my sisters, for being at the same time both my role models and my first

supporters. I am also grateful to all my friends, for making any place in the world feel

like at home.

Finally, no words could express my gratitude to Margarita. You have been the one to

look up to, my strength during the tough and crazy times, my joy when celebrating our

achievements. Thank you for your endless love and support.

viii

Contents

Preface . 1

1. Introduction . 3

1.1 Data-driven, vision-based tactile sensing 4

1.2 Computationally efficient learning-based model predictive control . . . 7

2. Contributions . 9

2.1 Part A: Data-driven, vision-based tactile sensing 9

2.2 Part B: Computationally efficient learning-based model predictive control 14

2.3 Appendix: Related publications . 16

2.4 List of publications . 18

2.5 Student supervision . 19

2.6 Outreach . 20

3. Future work . 25

References for Chapters 1-3 . 29

Part A. Data-driven, vision-based tactile sensing 33

Paper P1. Design, motivation and evaluation of a full-resolution optical

tactile sensor . 35

1. Introduction . 36

2. Design and production . 38

3. Motivation . 40

4. Ground truth data . 47

5. Optical flow features . 49

6. Learning architecture . 51

7. Results . 54

8. Conclusions . 55

A. Choice of the particles’ density . 57

B. Model derivation . 58

References . 59

Paper P2. Transfer learning for vision-based tactile sensing 63

1. Introduction . 64

2. Sensor design . 66

ix

Contents

3. Data collection . 67

4. Feature engineering . 68

5. Model training . 70

6. Calibration . 73

7. Conclusion . 75

References . 77

Paper P3. Ground truth force distribution for learning-based tactile

sensing: a finite element approach . 79

1. Introduction . 80

2. Hardware . 82

3. Material characterization . 84

4. Generating a dataset . 86

5. Neural network training . 91

6. Conclusion . 97

A. Strain-rate and shelf-time dependent properties of Ecoflex GEL 97

References . 98

Paper P4. Learning the sense of touch in simulation: a sim-to-real strategy

for vision-based tactile sensing . 103

1. Introduction . 104

2. Sensing principle . 107

3. Learning in simulation . 107

4. Real data adjustment . 113

5. Results . 116

6. Conclusion . 118

A. Appendix . 119

References . 120

Paper P5. Sim-to-real for high-resolution optical tactile sensing: From

images to three-dimensional contact force distributions 123

1. Introduction . 124

2. Materials and methods . 126

3. Results . 133

4. Conclusion . 137

A. Fabrication . 137

B. The FEM simulation environment . 140

C. Projection of a particle onto the image plane 142

D. Remapping . 144

E. Supplementary results . 145

References . 148

Part B. Computationally efficient learning-based model predictive control 153

Paper P6. Trajectory tracking and iterative learning on an unmanned

aerial vehicle using parametrized model predictive control 155

x

1. Introduction . 156

2. Parametrized MPC . 158

3. Trajectory generation . 160

4. Online trajectory tracking . 163

5. Trajectory tracking with iterative learning 164

6. Experimental results . 167

7. Conclusion . 169

References . 171

Paper P7. Learning-based parametrized model predictive control for

trajectory tracking . 175

1. Introduction . 176

2. Method . 179

3. Memory considerations . 188

4. Experimental results . 190

5. Conclusion . 195

A. Mathematical derivation of the parametrized MPC matrices 195

B. First principles model . 201

C. System’s constraints . 204

D. Example simulation for comparison to previous work 207

References . 207

Appendix. Related publications . 211

Paper R1. Towards vision-based robotic skins: a data-driven, multi-camera

tactile sensor . 213

1. Introduction . 214

2. Sensor design . 216

3. Method . 219

4. Results . 221

5. Conclusion . 222

References . 224

Paper R2. Zero-shot sim-to-real transfer of tactile control policies for

aggressive swing-up manipulation . 227

1. Introduction . 228

2. Hardware . 231

3. Method . 232

4. Results . 242

5. Conclusion . 243

A. Experimental setup . 244

B. Supplementary results . 244

References . 247

xi

Preface
This thesis documents the research carried out by the author during his doctoral stud-

ies under the supervision of Professor Raffaello D’Andrea at the Institute for Dynamic

Systems and Control at ETH Zurich between January 2017 and December 2021.

The work is presented in the form of a cumulative thesis: its main content consists

of seven self-contained research articles (of which four are journal articles and three are

conference contributions) that have been published during the doctoral studies.

The work is divided into two parts: the design of a novel vision-based tactile sensor,

and the development of a data processing framework are presented in Part A, while

Part B deals with the implementation of a learning-based trajectory tracking approach

within a computationally efficient model predictive control framework. These two parts

address different problems and research topics, but they both leverage data to enhance

the capabilities of autonomous systems.

The articles are put into context by three introductory chapters, which are structured

as follows: Chapter 1 introduces and motivates this work, including the problems consid-

ered, related work, and the approaches used. Chapter 2 describes the key contributions of

the research papers included in this thesis and how the individual papers relate to each

other. Chapter 3 then provides a discussion of potential extensions and new directions of

this research.

1

1

Introduction

Humans rely on their sense of touch as the primary means to physically interact with

the environment. Robots, conversely, have so far relied on their sense of vision to both

plan and execute the majority of their interactive tasks, such as those involving grasping

and manipulation [1]–[3]. As opposed to what happens in humans, many of these tasks

are often approached by robots with minimal or absent contact feedback, leveraging the

rich and accurate stream of visual information provided by modern cameras. However,

contact feedback remains of the utmost importance when it comes to reducing uncertainty

during interactions with small or fragile objects [4], for fine manipulation tasks [5], or in

conditions where visual information deteriorates or is insufficient [6], such as when coping

with the occlusions naturally caused by a grasping motion.

Aiming to address such needs, tactile sensing research has focused on providing ma-

chines with rich contact information upon interaction with the environment. However,

decades of advancements [7] have not yet produced a comprehensive solution such as the

one represented by cameras and image sensors for the computer vision community. One

of the main difficulties lies in reliably obtaining distributed information without wiring

thousands of sensors over the entire robot body. Moreover, processing a stream of tactile

data into meaningful measurements is particularly challenging, as it is generally infeasible

to accurately model contact between surfaces in real time, especially when this involves

soft materials. In fact, such materials are typically desired at the interface of the sensor

with the external world, to increase friction, compliance and conformation to the surface

of the objects that a robot is picking or manipulating.

In addition to enhancing robots’ autonomy, the advancement of an artificial sense

of touch shows promise to benefit numerous different applications, spanning from the

entertainment industry [8] to the medical domain, such as in the development of smart

prosthetics [9].

The gap between the artificial senses of vision and touch has inspired researchers

[10]–[12] to leverage the high resolution of cameras to convert contact stimuli into a

tactile image [13], by capturing the deformation of a soft sensing surface. In this context,

Part A of this thesis first describes the design of such a vision-based tactile sensor, which

features high spatial resolution and is particularly suited to cover surfaces of arbitrary

shape, while keeping manufacturing complexity to a minimum. This part also discusses

the development of a data-driven framework that avoids the need for real-time modeling

to process the tactile images and extract distributed physical quantities. The framework

3

Chapter 1. Introduction

Shielding silicone layer

Silicone layer embedding
the particles

Light-diffusion silicone layer

External case mounting
the camera and the LEDs

Figure 1.1 Exploded view of the sensor discussed in this thesis.

focuses on efficiency and exhibits strong generalization power. In addition, the appendix

discusses a scalability application of the tactile sensing technique, followed by a dynamic

manipulation application that leverages the features of the sensor.

Part B of this thesis stems from of a different research project and is unrelated to

the research done in the context of tactile sensing. However, data are also at the core of

this part, where measurements from previous experience are processed to compensate for

unmodeled repeatable disturbances in a model predictive control setting. The approach

presented is particularly efficient both in terms of sampling frequency and memory re-

quirements.

The context for each part is presented below, while the contributions made in the

thesis (and specifically the contributions of the papers in this thesis) are discussed in

Chapter 2.

1.1 Data-driven, vision-based tactile sensing

Among the several tactile sensing principles [14]–[18] that have been developed during the

last decades, optical (or vision-based) tactile sensors benefit from low cost, high resolution

and ease of wiring, while retaining the softness of their sensing surface. The vision-based

tactile sensor presented in this thesis (see Fig. 1.1) aims to maximize the information

contained in the tactile images by mixing thousands of spherical particles within an elas-

tomer, which is placed on top of a compact camera surrounded by LEDs. The deformation

of the sensing surface upon contact with external bodies induces the motion of the par-

ticles, which is tracked by the internal camera, providing information about the forces

causing such deformation. As opposed to other approaches in the literature [19]–[21], the

denseness of the particle patterns is especially effective at creating strain information at

each pixel of the tactile image, and their randomness further simplifies manufacture. The

simplicity of the fabrication technique enables a straightforward design of sensing surfaces

with different shapes and geometry, depending on the application requirements.

While vision-based tactile sensors provide rich, qualitatively interpretable tactile im-

ages, extracting relevant physical quantities from such images is challenging, as this gen-

4

1.1 Data-driven, vision-based tactile sensing

erally requires modeling the behavior of the soft materials involved, as well as the optics

of the internal camera. As a consequence, most of the literature has focused on the estima-

tion of low-dimensional quantities, such as resulting forces [22] and contact locations [23].

This thesis focuses on the estimation of the three-dimensional contact force distribution,

to retain versatile and high-resolution information. In fact, a variety of contact quantities

may be extracted from the force distribution, including the resulting forces and contact

regions. In addition, this representation naturally scales to scenarios with multiple points

of contact, and yields a physical abstraction from the images, which facilitates robotics

applications. Finally, as opposed to reconstructing the surface deformation [24], the force

distribution exactly encodes the shape of the contact regions, whereas the elastic material

may instead deform even in the regions surrounding those actually in contact.

Data processing pipelines in the literature have either been addressed by employing

heuristics and model simplifications [12], [25], [26], or supervised learning [22]. In par-

ticular, the latter strategy has recently been of growing interest in the literature, even

outside the principles based on vision [27], [28], as it generally exhibits accurate force es-

timation without compromising real-time execution. However, the main concerns raised

towards such learning-based approaches are data efficiency and cross-task generalization.

The image processing framework proposed in this thesis leverages computer vision and

deep learning algorithms to predict the three-dimensional force distribution from the

tactile images. First, an automated strategy to systematically collect real-world data is

investigated. Then, a solution is proposed to generate very accurate training data in a

simulation based on hyperelastic material models and including the camera projection,

entirely avoiding the need for experimental data collection. The choice of the training

scenarios and the learning architecture yield generalization across contact with a variety

of objects, as shown in Fig. 1.2. A seamless sim-to-real transfer enables the pipeline to

achieve high accuracy on real-world images, being able to predict the force distribution

in real time at a frequency of over 100 Hz on the single core of a standard laptop CPU.

The transfer of data-driven tactile sensing models across different fabricated instances

of the same sensor has never been investigated in detail, although it is widely recognized

to be a crucial feature with regard to the scalability of these sensors. In the context of

vision-based tactile sensors, a limiting factor for their integration with robotic platforms

has also been their footprint, due to the thickness of their internal optical unit, and

their scalability to larger surfaces. In this thesis, a transfer learning strategy is proposed

to transfer knowledge across sensors with limited real-world data requirements. Then,

the simulated world is leveraged to propose another strategy that does not require any

additional samples to transfer the neural network maps to any sensors of the same type.

Finally, a multi-camera sensor is presented in the appendix that exhibits reduced thickness

and a larger sensing surface. In this context, a scalable framework is proposed to reuse

information across different regions of the same surface.

The development of many sensing principles and devices, which has been a conse-

quence of the years invested in researching a comprehensive sensing solution, has resulted

in software and algorithms that are tailored to the specific sensors employed [29]–[31].

5

Chapter 1. Introduction

x
co

m
p
o
n
en

t
y
co

m
p
o
n
en

t
z
co

m
p
o
n
en

t

Figure 1.2 Examples of the predicted 3D force distribution for different contact objects and conditions.
The distribution is estimated at a finite number of discrete bins.

The emphasis of this work on estimating general physical quantities, as opposed to di-

rectly using the raw camera output, targets this reusability issue in the tactile sensing

research community. An example is presented in the appendix with a dynamic manipu-

lation task, where a reinforcement learning policy (entirely trained on a novel simulator,

and deployed in the real-world) is able to swing up rods similar to a classical inverted

pendulum scenario. Rather than being attached to a pivot point, the pendulum is con-

trolled by a parallel-jaw gripper that delicately adjusts the gripping force to achieve the

task, uniquely based on the tactile feedback in the form of the force distribution. In fact,

the entire framework was developed at the level of the forces, without relying on any

other information from the images, which greatly increases efficiency. In addition, this

shows promise to facilitate the direct transfer of such an approach to similar systems em-

6

1.2 Computationally efficient learning-based model predictive control

ploying different tactile sensing principles, provided that they can estimate distributed

forces. In this regard, the strategy presented in this thesis to generate ground truth force

distributions is also generally applicable and not limited to vision-based tactile sensors.

1.2 Computationally efficient learning-based model predictive

control

Model predictive control (MPC) [32] is a powerful feedback control strategy that is par-

ticularly suited to handle system constraints. This strategy has become a standard in the

process industry [33] and is now seeing a growing interest across a wide range of different

fields. However, the fact that it is based on repeatedly solving an optimization problem

in real time has prevented its application to systems that exhibit fast dynamics. In this

context, several techniques have been developed to reduce the computational burden of

MPC. While most of them rely on an early truncation of the prediction horizon [34], with

a consequent reduction of the predictive power, others have suggested parametrizing the

states and inputs of the system with basis functions [35], to retain high prediction power

and considerably reduce the number of optimization variables at the same time. In this

thesis, a parametrized MPC strategy is extended to the trajectory tracking case, where an

autonomous system aims to track non-equilibrium motions over time. While the approach

relies on a linearized model of the system of interest, nonlinearities and other unmodeled

disturbances are estimated at each trajectory trial through a Kalman filter, and included

in the model for the subsequent trials. This has the effect of considerably improving the

tracking performance, while being suitable for real-time and onboard control, in addition

to showing a considerable reduction of the memory needed to store and load trajectories.

Two different variations of the approach proposed are discussed in this work, each in the

context of a different flying vehicle application. First, the approach is simplified through

some heuristics to track trajectories flown with a vehicle [36] consisting of three electric

ducted fans mounted on a lightweight frame. MPC is applied onboard the vehicle, which

is steered through two flaps attached at each of the fan outlets to redirect the airflow

and perform thrust vectoring. Then, a more general approach is applied to a quadcopter

system that aims to balance a pendulum while flying aggressive trajectories, refining and

improving its performance over subsequent trials.

7

Chapter 1. Introduction

8

2

Contributions

This chapter summarizes the scientific contributions for each of the papers that consti-

tute this thesis. In total, four journal publications and three peer-reviewed conference

proceedings are discussed.

In addition, a peer-reviewed conference proceeding and a journal publication are

placed in the concluding appendix section. These two contributions stemmed from Mas-

ter’s thesis projects directly supervised by the author. Responsibilities included defining

the student project, including the idea and an appropriate scope, recruiting the student,

constantly discussing and supporting the research project, introducing the student to the

testbeds, and supporting them in writing the resulting contributions.

Furthermore, a list of other contributions such as results from unpublished student

projects and outreach activities are provided in this chapter.

2.1 Part A: Data-driven, vision-based tactile sensing

[P1] C. Sferrazza and R. D’Andrea, “Design, Motivation and Evaluation of a

Full-Resolution Optical Tactile Sensor”, Sensors, vol. 19, no. 4: 928, 2019

This article describes the design of a vision-based tactile sensing principle that exhibits

ease of manufacture and scalability to surfaces with arbitrary shapes. A random pattern

of spherical particles (or markers) is embedded within a soft material, and an internal

camera is employed to track the motion of such particles upon interaction with external

bodies. The placement of the particles across the entire volume of the sensing elastomer is

motivated with a simplified analysis based on a linear elastic model, where such placement

exhibits an advantageous trade-off between sensor threshold and robustness to noise. In

fact, the particles closer to the surface contribute to lowering the minimum detectable

force, while at the same time information is diversified by placing the markers at different

depths. A deep neural network is trained on experimental data to process the tactile

images in a supervised learning fashion. Specifically, an automatic machine is programmed

to collect thousands of datapoints by pressing a needle-shaped indenter against the sensing

surface at different locations and depths. Optical flow features (with respect to an image

at rest) are collected for each of such indentations, while a force sensor measures the

9

Chapter 2. Contributions

corresponding normal force. Then, a discretized representation of the normal contact force

distribution is derived from the total force measurement for the case considered, and this

is used to label the corresponding features. The resulting sensing pipeline reconstructs

the force distribution for the simple case with high accuracy and in real time. The spatial

resolution and sensing range achieved are comparable to those of the human fingertip.

A comparative study shows double higher location accuracy when leveraging the strain

information at all pixels, rather than relying on sparse marker displacements. For this

reason, starting from [P2], the particles’ size is reduced to increase their quantity and

further exploit the dense information (see Fig. 2.1).

[P2] C. Sferrazza and R. D’Andrea, “Transfer learning for vision-based tactile

sensing”, in Proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 2019, pp. 7961–7967

When employing data-driven models to process the images of vision-based tactile sensors,

such models do not generally transfer across different realizations of the same sensor. The

most common approach is to collect a new dataset and retrain the model for each sensor

realization. In [P1], optical flow features are extracted from the images and averaged

within small image regions before being fed to a neural network, in order to minimize the

influence of the specific particle distribution. Nevertheless, misalignments in the camera

placement and differences between the cameras’ parameters lead to considerable loss in

accuracy when evaluating the neural network on a sensor realization different to that

used to collect the training data. This paper proposes to augment the original network

architecture with a calibration layer that can be trained by freezing the original network

weights. This leads to a reduction of the training data requirements, with the model

accuracy being retained across sensors by retraining the new layer with only 10% of the

original data otherwise needed for a new sensor realization.

[P3] C. Sferrazza, A. Wahlsten, C. Trueeb, and R. D’Andrea, “Ground Truth

Force Distribution for Learning-Based Tactile Sensing: A Finite Element

Approach”, IEEE Access, vol. 7, pp. 173 438–173 449, 2019

While machine learning approaches have been largely employed to process raw tactile

data, these have generally been limited to the estimation of low-dimensional quantities

such as total contact forces or locations. The estimation of more general and informative

quantities such as the 3D contact force distributions has been impaired by the lack of

commercially available sensors to label the raw tactile data with ground truth for such

quantities. In this context, the work in [P1] and [P2] is limited to indentations with

needle-shaped objects. Such works rely on the assumption that the contact surface lies

entirely within one of the discrete bins where the force distribution is measured, and use

an external force-torque sensor to compute appropriate single-entry labels for the image

features captured during data collection. This article, conversely, deals with cases where

the contact surface spans multiple of such bins. Therefore, a method is presented to pro-

vide ground truth force distributions by extracting them in a finite element simulation

10

2.1 Part A: Data-driven, vision-based tactile sensing

(a) Sensor protoype (b) Particles image

Figure 2.1 A prototype of the tactile sensor employed is shown in (a). The dense spread of green
particles is captured by the internal camera at a state of zero force in (b).

of the sensor’s materials. The soft materials’ hyperelastic models are obtained through

state-of-the-art characterization experiments. The models are then evaluated in an in-

dentation setup (considerably different from the material characterization tests) against

a commercial force sensor, showing high accuracy in all the 3D components, superior

to that achieved by linear elastic models. Thousands of labels are collected in the finite

element environment within a scalable, parallelized framework, where indentations with

a finger-shaped indenter are commanded to replicate those made in the real-world data

collection on the sensor described in [P1], [P2]. The optical-flow features collected from

such a sensor are matched to the synthetic labels, and the resulting mixed-source dataset

is then used to train a neural network. This achieves high accuracy on the indenter used

for training and is suitable for real-time 3D force distribution inference. While this arti-

cle derives a data-processing mapping specific to the sensing technique discussed in this

thesis, the label generation strategy is directly transferable to the majority of soft tactile

sensors, independent of the underlying principle.

[P4] C. Sferrazza, T. Bi, and R. D’Andrea, “Learning the sense of

touch in simulation: a sim-to-real strategy for vision-based tactile sensing”, in

Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 2020

Data-driven approaches such as those in [P1]–[P3] generally require a time-consuming

and complex experimental data collection. Although accurate labels are collected in sim-

ulation in [P3], they still require matching to features extracted from real-world images.

In addition, these approaches do not necessarily generalize well to contact conditions

considerably different than those seen during training. This paper addresses both these

11

Chapter 2. Contributions

[P1] [P2] [P3] [P4] [P5]
Training
indenter

Needle Needle Finger-shaped Finger-shaped
21 different
indenters

Type of
training data

Normal
indentations

Normal
indentations

Normal
indentations

Normal
indentations

Normal, shear,
3D indentations

Source of
training data

Real-world Real-world
Real-world features,

simulated labels
Simulation Simulation

Spatial resolution
(bin size)

1.68 mm 3.55 mm 1.6 mm 1.6 mm 1.6 mm

Features
employed

Dense
optical flow

Dense
optical flow

Dense
optical flow

Dense
optical flow

Pixel
intensities

Neural network
Fully

connected
Fully

connected
Fully

connected
Fully

convolutional
Fully

convolutional

Generalization

Only valid for
one indenter,
only normal
indentations

Only valid for
one indenter,
only normal
indentations

Only valid for
one indenter,
only normal
indentations

Valid across
several indenters,

only normal
indentations

Valid across
generic indenters,

across generic
contact conditions

Transfer across
sensor’s realizations

No
Yes, via retraining
with a portion of
real-world data

No

Yes, without
additional data,
provided that
the camera
is calibrated

Yes, without
additional data,
provided that
the camera
is calibrated

Sensing
frequency (CPU)

60 Hz 60 Hz 40 Hz 50 Hz 120 Hz

Table 2.1 The table provides a comparison between the different models described in the tactile sensing
papers included in this thesis. Only the best model for each paper is shown in the table.

issues, by simulating the remaining part of the pipeline, that is, the camera projection,

greatly reducing the data collection efforts. Specifically, a simplified camera model is

introduced in simulation, based on which synthetic optical flow features are computed

directly from the material deformation and matched to force distribution labels com-

puted in the same simulation environment, where thousands of indentations are made on

the simulated sensor. In the real-world, an accurate camera model is extracted through

camera calibration and employed to remap the captured images as if they were shot by

the camera used in simulation. Then, the optical flow features are extracted from such

remapped images. Although the same finger-shaped indenter as in [P3] is used for train-

ing, the fully-convolutional neural network (based on an encoder-decoder architecture),

which is entirely trained with synthetic features, retains high accuracy on real-world

data and generalizes to unseen contact conditions, such as contact with multiple bodies.

Moreover, the remapping strategy has the additional benefit of directly transferring the

model across different sensor realizations that share the same elastomer geometry and

mechanical properties, without the need for additional training.

[P5] C. Sferrazza and R. D’Andrea, “Sim-to-Real for High-Resolution Optical

Tactile Sensing: From Images to Three-Dimensional Contact Force

Distributions”, Soft Robotics, 2021

The models trained in [P1]–[P4] all consider indentations made perpendicular (normal) to

the sensing surface. However, shear-dominant interactions are of the utmost importance

12

2.1 Part A: Data-driven, vision-based tactile sensing

(a) Simulated indentation (b) Real-world indentation

(c) Simulated image (d) Real-world image

Figure 2.2 Comparison between simulated and real world. The image in (c) was generated as described
in [P5], while the one in (d) was obtained by converting a real-world image to grayscale.

for monitoring phenomena such as slippage. In addition, the optical flow simulation in

[P4] relies on a simplification that is only valid for a limited deformation range, which is

violated when applying large shearing motions or making contact with large indenters.

In this context, this article replaces the optical flow simulator with the generation of

synthetic tactile images (see Fig. 2.2), by projecting fictitious spherical particles through

the simplified simulation camera model. A dataset comprising combinations of pressure

and shear-dominant indentations, made with a variety of different indenters, is generated

in such simulation, greatly simplifying the efforts otherwise needed to build complex

hardware setups to collect such diverse data. Optical flow features are extracted from the

generated images, and a tailored neural network is trained entirely with synthetic data

to predict the three-dimensional contact force distribution. This is then compared to a

similar network that directly learns from the pixels of the simulated images. Once it is

deployed to the real world through the same remapping strategy as in [P4], the pixel-based

network outperforms the strategy based on optical flow, both in terms of accuracy and

inference speed (as the computation of the optical flow is avoided), reaching a sensing

frequency of 120 Hz. The diverse training dataset further improves the generalization

power of the network on generic contact conditions, including those featuring strong

shear motions.

13

Chapter 2. Contributions

2.2 Part B: Computationally efficient learning-based model

predictive control

[P6] C. Sferrazza, M. Muehlebach, and R. D’Andrea, “Trajectory tracking and

iterative learning on an unmanned aerial vehicle using parametrized model

predictive control”, in Proceedings of the IEEE Conference on Decision and

Control (CDC), 2017, pp. 5186–5192

This paper describes a computationally efficient MPC framework for tracking trajectories

with an unmanned aerial vehicle (shown in Fig. 2.3) that has input constraints. The state

and input trajectories are parametrized with linear combinations of basis functions, with

the aim to approximate an infinite-horizon optimal control problem. The generation of

dynamically feasible trajectories is discussed, where reference trajectories are obtained

for all states and inputs by solving an optimization problem that accounts for the de-

sired trajectory requirements and system constraints. The basis functions used for the

parametrization have finite polynomial order, and a consequently limited representation

power. To address this issue, the trajectories are split over a series of smaller intervals, and

shifted in a region of the state-space, chosen heuristically, where they better approximate

the desired requirements. A learning strategy is included in the framework to improve

the tracking performance by accounting for the unmodeled repeatable disturbances esti-

mated over time. The approach is tested onboard a real system, running on an embedded

computer, showing accurate tracking while respecting the system’s constraints.

[P7] C. Sferrazza, M. Muehlebach, and R. D’Andrea, “Learning-based

parametrized model predictive control for trajectory tracking”, Optimal

Control Applications and Methods, vol. 41, no. 6, pp. 2225–2249, 2020

In [P6], the generation of feasible trajectories for the parametrized MPC scheme is per-

formed after a heuristic step, and the repeatable disturbances that are used to augment

the system’s model are computed in a further separate step. This creates dependencies

between the different steps and makes tuning the framework challenging. In contrast, this

article proposes to solve an all-in-one optimization problem, where the feasible trajecto-

ries are computed in the same step as the repeatable disturbances, providing a simpler

way to trade off the accuracy of the generated reference trajectories (with respect to the

desired requirements) and the quality of the estimated disturbances. The optimization

problem structure is leveraged to reduce the number of optimization variables and con-

straints, and to exhibit faster execution times. Not only the states, but also the inputs and

the disturbances are naturally expressed in a coordinate frame where the basis functions

employed for the parametrization retain a higher representation power. This in particular

leads to a better performance in coping with higher-order disturbances. An analysis of

the space requirements for storing the trajectories shows that the framework leads to a

considerably more memory-efficient solution compared to classical MPC approaches. In

14

2.2 Part B: Computationally efficient learning-based model predictive control

the article, a real-world application of this approach to a flying inverted pendulum (see

Fig. 2.3) with state and input constraints is presented, showing that the learning can

quickly and effectively compensate for unmodeled effects and nonlinearities.

(a) Vehicle powered with three electric ducted fans [36]

(b) Flying inverted pendulum system

Figure 2.3 The two systems employed for the experiments presented in [P6] and [P7], respectively.

15

Chapter 2. Contributions

Figure 2.4 The multi-camera sensor presented in [R1] can detect distinct contact regions. In the normal
force distribution depicted in the rightmost figure, brighter regions indicate higher pressure. The frame
was extracted from [V5].

2.3 Appendix: Related publications

[R1] C. Trueeb, C. Sferrazza, and R. D’Andrea, “Towards vision-based robotic

skins: a data-driven, multi-camera tactile sensor”, in Proceedings of the IEEE

International Conference on Soft Robotics (RoboSoft), 2020, pp. 333–338

The bulkiness of their internal camera is considered to be the main limitation of vision-

based tactile sensors. Additionally, cameras typically need to be placed at a certain dis-

tance from the sensing gel on these devices to retain sufficient focus and field of view.

This paper relies on the same sensing principle as in [P1], but proposes the use of mul-

tiple small embedded cameras placed next to each other to cover a larger field of view.

Equipped with close-focus lenses, the cameras are placed at only 4 mm from the sensing

gel, achieving an overall sensor thickness of 17 mm and only using commodity compo-

nents. With a sensing surface of 49×51 mm, the sensor is (at the time of writing) both

among the thinnest and with the widest sensing surface in the camera-based category.

A similar data processing strategy as in [P3] is employed, where a mixed-source training

dataset is collected with a finger-shaped indenter, with 3D contact force distribution la-

bels computed via finite element simulations. Image differences between the current frame

and one taken before deformation are mapped to force distributions with a neural net-

work architecture tailored to the use of multiple cameras, which aims to reuse the learned

weights over different regions of the sensing surface. Such a learning architecture, which

is implemented in real time on an embedded computer equipped with a GPU, exhibits

modularity features. In fact, a scalability experiment shows promise of possibly training

the core part of a data processing network on only a subset of a large surface, therefore

reducing the data requirements and training times on the rest of the surface. In addition,

the same training technique may also be employed when replacing a defective camera on

a large tactile skin (provided that this is made possible without having to replace the

gel).

16

2.3 Appendix: Related publications

(a) Simulation (b) Reality

Figure 2.5 In [R2], tactile control policies are learned in simulation and directly deployed to the corre-
sponding real-world system without further adaptation. Swing-up motions in simulation and reality are
depicted in (a) and (b), respectively.

[R2] T. Bi, C. Sferrazza, and R. D’Andrea, “Zero-shot sim-to-real transfer of

tactile control policies for aggressive swing-up manipulation”, IEEE Robotics

and Automation Letters, vol. 6, no. 3, pp. 5761–5768, 2021

While robotic systems equipped with tactile sensors have achieved manipulation tasks

with feedback control policies that monitor contact and are able to adapt to changes in

object properties [37], [38], the majority of these examples do not require a high degree of

dynamicism. This article discusses an aggressive manipulation task, where a parallel-jaw

gripper moved by a linear motor aims to swing poles up to a vertical position. The aim of

the system is to achieve the task by solely monitoring the feedback from tactile sensors

embedded at the gripper’s fingers, without any external visual sensing. The task resembles

a cart-pole application, but without a mechanically fixed pivot point, with the pole free

to escape the grip at any time. The dome-shaped, vision-based tactile sensor employed

is based on the principle presented in [P1]. The sensor outputs the three-dimensional

contact force distribution based on a simulation-trained data processing framework such

as that described in [P5]. To achieve the task, the control policy implicitly estimates

the physical properties of the pole, which are unknown to the policy beforehand, and

adjusts the gripping distance as well as the acceleration of the cart. In this article, the

strategy builds upon a novel simulator of the considered system that is based on the

finite element method and leverages the output of the tactile sensor, reasoning at the

level of the forces and avoiding the need to simulate the optics of the internal camera.

The simulator runs at 360 Hz on a single CPU core, being particularly suited for training

deep reinforcement learning policies. Such a policy is trained entirely on the simulator

with a privileged learning approach [39], taking the optimal actions based on an history of

sensor observation. Finally, leveraging dynamics randomization [40], the policy is directly

deployed on the real system without further adaptation, achieving the swing-up of poles

that differ significantly in their physical attributes.

17

Chapter 2. Contributions

2.4 List of publications

Publications in this thesis

Publications comprising the two main parts of this thesis.

[P1] C. Sferrazza and R. D’Andrea, “Design, Motivation and Evaluation of a Full-

Resolution Optical Tactile Sensor”, Sensors, vol. 19, no. 4: 928, 2019.

[P2] C. Sferrazza and R. D’Andrea, “Transfer learning for vision-based tactile sens-

ing”, in Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 2019, pp. 7961–7967.

[P3] C. Sferrazza, A. Wahlsten, C. Trueeb, and R. D’Andrea, “Ground Truth Force

Distribution for Learning-Based Tactile Sensing: A Finite Element Approach”,

IEEE Access, vol. 7, pp. 173 438–173 449, 2019.

[P4] C. Sferrazza, T. Bi, and R. D’Andrea, “Learning the sense of touch in simula-

tion: a sim-to-real strategy for vision-based tactile sensing”, in Proceedings of the

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

2020.

[P5] C. Sferrazza and R. D’Andrea, “Sim-to-Real for High-Resolution Optical Tactile

Sensing: From Images to Three-Dimensional Contact Force Distributions”, Soft

Robotics, 2021.

[P6] C. Sferrazza, M. Muehlebach, and R. D’Andrea, “Trajectory tracking and itera-

tive learning on an unmanned aerial vehicle using parametrized model predictive

control”, in Proceedings of the IEEE Conference on Decision and Control (CDC),

2017, pp. 5186–5192.

[P7] C. Sferrazza, M. Muehlebach, and R. D’Andrea, “Learning-based parametrized

model predictive control for trajectory tracking”, Optimal Control Applications

and Methods, vol. 41, no. 6, pp. 2225–2249, 2020.

Related publications

Publications related to Part A of this thesis, and included in the appendix.

[R1] C. Trueeb, C. Sferrazza, and R. D’Andrea, “Towards vision-based robotic skins:

a data-driven, multi-camera tactile sensor”, in Proceedings of the IEEE Interna-

tional Conference on Soft Robotics (RoboSoft), 2020, pp. 333–338. Best Paper

Award Winner.

[R2] T. Bi, C. Sferrazza, and R. D’Andrea, “Zero-shot sim-to-real transfer of tac-

tile control policies for aggressive swing-up manipulation”, IEEE Robotics and

Automation Letters, vol. 6, no. 3, pp. 5761–5768, 2021.

18

2.5 Student supervision

Additional publications

Publications that are not directly related to those included in this thesis. They describe

the application of data-driven, vision-based sensing to a pneumatic actuator, by placing

an internal camera to track the elongation state while controlling a soft robot arm.

[Ad1] P. Werner, M. Hofer, C. Sferrazza and R. D’Andrea, “Vision-Based Propriocep-

tive Sensing: Tip Position Estimation for a Soft Inflatable Bellow Actuator”, in

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), 2020, pp. 8889–8896.

[Ad2] M. Hofer, C. Sferrazza and R. D’Andrea, “A Vision-based Sensing Approach for

a Spherical Soft Robotic Arm”, Frontiers in Robotics and AI, vol. 8, 2021.

2.5 Student supervision

Several students were supervised as part of the author’s doctoral studies. Below is a

complete list of student projects, sorted by the type of project performed.

Master’s thesis

The master’s thesis is a six-month, full-time research project.

[MT1] Pietro Griffa, “Tactile-Enabled Robotic Grasping”, 2021.

[MT2] Thomas Bi, “Learning Aggressive Tactile Swing-Up Maneuvers”, 2020. Awarded

ETH Medal and Willi Studer Prize for the Best Master’s Degree.

[MT3] Camill Trueeb, “An End-to-End Approach to Multi-Camera Tactile Sensing”,

2019. ETEL Master Award Winner.

[MT4] Yipai Du, “Learning Dynamical Features for Vision-based Tactile Sensors”, Ex-

change student from KTH Stockholm, 2019.

[MT5] Benita Nortmann, “A State-Dependent Approach to Learning-Based Model Pre-

dictive Control”, Exchange student from Imperial College London, 2019.

Master semester project

The master semester project is a semester-long, part-time research project.

[SP1] Peter Werner, “Trajectory Generation for Tactile-Enabled Robotic Manipula-

tion”, 2021.

[SP2] Felix Schmitt-Koopmann, “Few-Shot Learning for a Tactile Sensor”, 2021.

[SP3] Thomas Bi, “Generation of Optical Flow from Finite Element Simulations: Ap-

plications to Tactile Sensing”, 2020.

[SP4] Camill Trueeb, “Automated FEA Simulations to Provide Ground Truth for Tac-

tile Sensing”, 2018.

19

Chapter 2. Contributions

[SP5] Laura Maria Gasser, “Feature Engineering for an Optical Tactile Sensor”, 2018.

[SP6] Zhejun Zhang, “Improving the Trajectory Tracking of a Parametrized MPC Ap-

proach”, Jointly supervised with Michael Muehlebach, 2017.

Bachelor’s thesis

The bachelor’s thesis is a three-month, full-time research project.

[BT1] Peter Werner, “Time of Flight and Camera Based Sensing for an Air-Driven

Linear Soft Actuator”, Jointly supervised with Matthias Hofer, 2019. Awarded

SGA (Swiss Society for Automatic Control) prize.

Internship

Internships are full-time practical projects lasting one to three months.

[In1] Anil Parsi, “Improving the design of a vision-based tactile sensor”, 2018.

[In2] Xueying Xie, “Data synchronization for tactile sensing applications”, 2018.

2.6 Outreach

Talks

Note that the talks at scientific conferences corresponding to the publications [P2], [P4],

[P6], [R1] are not listed.

Academic:

Sep. 2021 Haptic Intelligence Department (Max Planck Institute for Intelli-

gent Systems).

July 2021 Autonomy Talk (ETH Zurich), https://youtu.be/gFfN3U95GyM.

July 2021 Coffee Talk, Automatic Control Laboratory (ETH Zurich).

June 2021 Robotics Institute Seminar (University of Toronto), https://

youtu.be/xGIseD5tvYk.

June 2021 Seminar, Automation Lab (UC Berkeley).

June 2021 Mechanical and Aerospace Engineering Seminar (UCLA).

May 2021 Seminar, Institute for Data Science in Mechanical Engineering

(RWTH Aachen University).

Mar. 2020 Autonomy Talk (ETH Zurich).

20

https://youtu.be/gFfN3U95GyM
https://youtu.be/xGIseD5tvYk
https://youtu.be/xGIseD5tvYk

2.6 Outreach

(a) WORLD.MINDS (b) TEDxZurich (live demo) (c) TEDxZurich

Figure 2.6 The tactile sensor was presented and demonstrated at several venues. (a) shows a snapshot
of the talk at the 2019 WORLD.MINDS Annual Symposium, in front of a live audience of 300 people.
The YouTube recording of the TEDxZurich talk (see (b) and (c)), featuring a live demonstration, counts
more than 40,000 views.

General public:

Nov. 2020 TEDxZurich (Zurich), https://youtu.be/IXKovDtgD_8.

Dec. 2019 WORLD.MINDS Annual Symposium (Zurich), https://youtu.

be/ece2Fl6a5fY.

May 2019 AI Night, House of Electronic Arts (Basel).

Demonstrations

During the period of this thesis, the author was involved in demonstrating the vision-

based tactile sensor and other research projects of the Institute for Dynamic Systems and

Control at general public events.

Sep. 2020 Winterthur Swiss Science Center Technorama

Jan. 2019 Davos World Economic Forum

In addition to the above, demonstrations were also conducted during various talks and

for lab visitors (ranging from primary school students to distinguished professors).

Blog posts and online articles

The following general audience articles were published on online communication plat-

forms.

[On1] C. Sferrazza, “Robots that feel by seeing”, Robohub, 2021.

[On2] C. Sferrazza, “The significance of (online) public talks”, ETH Ambassadors, 2020.

Videos

The following videos were created as an addition to research articles and for consumption

by the general public, demonstrating some of the research results.

21

https://youtu.be/IXKovDtgD_8
https://youtu.be/ece2Fl6a5fY
https://youtu.be/ece2Fl6a5fY

Chapter 2. Contributions

[V1] P. Griffa, C. Sferrazza, and R. D’Andrea, Leveraging distributed contact force

measurements for slip detection: a physics-based approach, Sep. 2021. [Online].

Available: https://youtu.be/YeotGbKVWcY.

[V2] C. Sferrazza and R. D’Andrea, Sim2real for high-resolution optical tactile sensing:

From images to 3D contact force distributions, Sep. 2021. [Online]. Available:

https://youtu.be/dvOk2XrSmLE.

[V3] T. Bi, C. Sferrazza, and R. D’Andrea, Zero-shot sim-to-real transfer of tactile

control policies for aggressive swing-up manipulation, Apr. 2021. [Online]. Avail-

able: https://youtu.be/In4jkaHzJLc.

[V4] C. Sferrazza, T. Bi, and R. D’Andrea, Learning the sense of touch in simula-

tion: a sim-to-real strategy for vision-based tactile sensing, Mar. 2020. [Online].

Available: https://youtu.be/dDTga9PgWS0.

[V5] C. Trueeb, C. Sferrazza, and R. D’Andrea, Towards vision-based robotic skins: a

data-driven, multi-camera tactile sensor, Oct. 2019. [Online]. Available: https:

//youtu.be/lbavqAlKl98.

[V6] C. Sferrazza, A. Wahlsten, C. Trueeb, and R. D’Andrea, Ground truth force

distribution for learning-based tactile sensing: a finite element approach, Sep.

2019. [Online]. Available: https://youtu.be/9A-cONrsiOg.

[V7] C. Sferrazza and R. D’Andrea, Transfer learning for vision-based tactile sensing,

Mar. 2019. [Online]. Available: https://youtu.be/CdYK5I6Sccw.

[V8] C. Sferrazza and R. D’Andrea, Design, motivation and evaluation of a full-

resolution optical tactile sensor, Feb. 2019. [Online]. Available: https://www.

mdpi.com/1424-8220/19/4/928/s1.

[V9] C. Sferrazza, M. Muehlebach, and R. D’Andrea, Learning based parametrized

model predictive control for trajectory tracking, Oct. 2018. [Online]. Available:

https://youtu.be/-E4znjVDCyA.

Selected media coverage

The tactile sensing research was featured in various international news media.

• Machine learning helps researchers build low-cost tactile sensor, The Robot Report,

March 2020.

• Allowing robots to feel, ETH News, March 2020.

• Sensor skin could give robot grippers a delicate touch, New Atlas, March 2020.

• A deep learning-based method for vision-based tactile sensing, Tech Xplore, March

2020.

• Robotic Skin Sees When (and How) You’re Touching It, Hackaday, November 2019.

• Tactile sensor could enable soft robot skins, Fierce Electronics, November 2019.

22

https://youtu.be/YeotGbKVWcY
https://youtu.be/dvOk2XrSmLE
https://youtu.be/In4jkaHzJLc
https://youtu.be/dDTga9PgWS0
https://youtu.be/lbavqAlKl98
https://youtu.be/lbavqAlKl98
https://youtu.be/9A-cONrsiOg
https://youtu.be/CdYK5I6Sccw
https://www.mdpi.com/1424-8220/19/4/928/s1
https://www.mdpi.com/1424-8220/19/4/928/s1
https://youtu.be/-E4znjVDCyA

2.6 Outreach

• A multi-camera optical tactile sensor that could enable vision-based robotic skins,

Tech Xplore, November 2019.

• The Best Machine Learning Research of 2019 So Far, Open Data Science on

Medium.com, June 2019.

23

Chapter 2. Contributions

24

3

Future work

This chapter provides an overview of potential future work based on the research pre-

sented in this thesis.

Data-driven, vision-based tactile sensing

The data processing technique described in [P5] is efficient, versatile and accurate. The

strategy is based on building a very accurate offline simulator where the pipeline is trained,

and a seamless sim-to-real transfer is then achieved without further training. It fully

leverages the sensing principle, which is well suited to be simulated, since its pattern’s

randomness naturally requires processing algorithms that are robust to pattern variations,

as those introduced when generating synthetic images. However, unmodeled effects still

contribute to an observable sim-to-real gap, which should be addressed to further improve

the sensing accuracy. In this regard, strategies that explicitly aim to address distributional

shifts in the data from simulation and reality may be investigated to steer the training in a

direction that filters out the differences and closes the gap between these two worlds. Such

a strategy would further leverage the estimation of the force distribution in providing an

abstraction that bypasses mismatches between simulated and real images.

Tactile estimation and control for dexterous manipulation

Systematically condensing high-resolution tactile information into a state representative

of the system considered is a very relevant but relatively unexplored field. In [R2], the

control strategy pivots on the knowledge that pole orientation and total force informa-

tion are essential to perform the swing-up task. Therefore, such quantities are extracted

from the force distribution and used as inputs to the control policy. However, for generic

manipulation tasks, it may be more challenging to identify such key information before-

hand. Therefore, strategies based on autoencoders and representation learning [41] may

be investigated to automatically extract such features from the force distribution readings

depending on the task of interest.

Alternatively, simpler learning strategies for the swing-up task may be developed if

an estimator was able to accurately characterize the pole and its pose from the real-world

measurements. Future work in this direction will focus on the design of Bayesian filters

to estimate the full state of the pole, by incorporating the torque, angular and position

information encoded in the force distribution readings. On generic manipulation tasks,

25

Chapter 3. Future work

Deformation
model Simulator

Contact force
distribution

Extract
features

Training

Image
Real-time
inference

Policy
execution

(a) Swing-up pipeline

Image
Real-time
inference

Contact force
distribution

Compute
stick ratio

Slip
prediction

(b) Slip prediction pipeline

Figure 3.1 The figure shows two examples where the abstraction provided by the force distribution
facilitates the development of higher-level tasks. The swing-up task discussed in [R2] is shown in (a),
where the top row represents the classical scenario during training. Through a simplified deformation
model, the simulator computes the force distributions at each step; total force and angular information
are extracted from the force distribution and employed for the training of the policy that will then
be employed in the real world. In the bottom row of (a), the real-world pipeline is shown: the force
distribution is predicted from the current image, the same features as in simulation are then extracted
and fed as inputs to the policy that computes the optimal action to achieve the task. For such an
application, the force distribution abstraction enables the simulator to reason at the level of the forces,
rendering a technique that is independent of the underlying sensing principle, and avoiding the need to
simulate the camera optics, which leads to a considerable improvement in computational efficiency. In
(b), the slip prediction pipeline presented in [42] is outlined. The mentioned abstraction makes it possible
to neglect the deformation model and directly enables the development of the pipeline by computing the
stick ratio from the force distribution. This is then thresholded to provide a straightforward rule for
detecting slippage.

pose estimation may further be facilitated by the presence of distinct features, which are

instead absent on the smooth surface of the poles.

Slip detection and grasp adjustment based on distributed force measurements

Humans are able to maintain a firm grasp of objects by constantly monitoring slippage

and refining the necessary gripping force without damaging such objects. Similarly, tactile

sensors promise to estimate slippage during robotic manipulation tasks to achieve safe and

reliable operations. The three-dimensional force fields provided by the sensor discussed

in this thesis enable the estimation of the stick ratio, defined as the ratio between the

sticking and the slipping regions of the sensing surface in contact with an external object.

This ratio provides an indication of incipient slip, which can be employed to anticipate the

actual slippage of the object. In the recent work [42] originating from [MT1], the stick ratio

was computed by locally applying the Coulomb friction law at different locations over

the sensing surface. This led to a considerably improved performance in slip prediction

26

compared to globally applying the Coulomb friction law, especially due to the ability

of coping with rotational slippage. Such results may be employed to develop strategies

that adjust the gripping force in real-time, or perform a regrasp based on the available

slippage information.

Note that the force distribution readings are fully leveraged in this approach. Specifi-

cally, this application shows a further benefit compared to those achieved in the swing-up

task in [R2], where the developed simulator leverages the sensing output to bypass the

need to model the camera projection. In fact, for the slip detection task [42], the force

distribution provides a means to additionally bypass the deformation of the sensor, purely

reasoning on the estimated force field (see Fig. 3.1).

Large-scale fabrication

To facilitate the widespread adoption of vision-based tactile sensors outside of research

labs, the fabrication of these devices on a large scale should be addressed. This is a partic-

ularly unexplored area, especially when it comes to sensors that cover large and complex

surfaces. However, the rapid evolution of camera technology, which has led to unprece-

dented miniaturization results, and the development of novel soft material fabrication

techniques [43] open new avenues for exploration in this field. On the data processing

side, approaches tailored to process incoming data from larger surfaces through the use

of multiple cameras will be necessary, such as that presented as a proof-of-concept in

[R1].

27

Chapter 3. Future work

28

References for Chapters 1-3

[1] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-End Training of Deep

Visuomotor Policies”, The Journal of Machine Learning Research, vol. 17, no. 1,

pp. 1334–1373, 2016.

[2] J. Mahler, M. Matl, V. Satish, M. Danielczuk, B. DeRose, S. McKinley, and K.

Goldberg, “Learning ambidextrous robot grasping policies”, Science Robotics,

vol. 4, no. 26, 2019.

[3] A. Saxena, J. Driemeyer, and A. Y. Ng, “Robotic Grasping of Novel Objects

using Vision”, The International Journal of Robotics Research, vol. 27, no. 2,

pp. 157–173, 2008.

[4] M. R. Tremblay and M. R. Cutkosky, “Estimating friction using incipient slip

sensing during a manipulation task”, in Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA), 1993, pp. 429–434.

[5] A. Billard and D. Kragic, “Trends and challenges in robot manipulation”, Sci-

ence, vol. 364, no. 6446, eaat8414, 2019.

[6] H. Dang, J. Weisz, and P. K. Allen, “Blind grasping: Stable robotic grasping using

tactile feedback and hand kinematics”, in Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA), 2011, pp. 5917–5922.

[7] M. H. Lee, “Tactile Sensing: New Directions, New Challenges”, The International

Journal of Robotics Research, vol. 19, no. 7, pp. 636–643, 2000.

[8] N. Heravi, W. Yuan, A. M. Okamura, and J. Bohg, “Learning an Action - Con-

ditional Model for Haptic Texture Generation”, in Proceedings of the IEEE In-

ternational Conference on Robotics and Automation (ICRA), 2020, pp. 11 088–

11 095.

[9] Y. Wu, Y. Liu, Y. Zhou, Q. Man, C. Hu, W. Asghar, F. Li, Z. Yu, J. Shang,

G. Liu, et al., “A skin-inspired tactile sensor for smart prosthetics”, Science

Robotics, vol. 3, no. 22, 2018.

[10] M. Ohka, Y. Mitsuya, K. Hattori, and I. Higashioka, “Data conversion capability

of optical tactile sensor featuring an array of pyramidal projections”, in Proceed-

ings of the IEEE/SICE/RSJ International Conference on Multisensor Fusion

and Integration for Intelligent Systems, 1996, pp. 573–580.

29

References for Chapters 1-3

[11] N. J. Ferrier and R. W. Brockett, “Reconstructing the Shape of a Deformable

Membrane from Image Data”, The International Journal of Robotics Research,

vol. 19, no. 9, pp. 795–816, 2000.

[12] K. Kamiyama, H. Kajimoto, N. Kawakami, and S. Tachi, “Evaluation of a vision-

based tactile sensor”, in Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA), vol. 2, 2004, pp. 1542–1547.

[13] K. Shimonomura, “Tactile Image Sensors Employing Camera: A Review”, Sen-

sors, vol. 19, no. 18: 3933, 2019.

[14] Y.-L. Park, C. Majidi, R. Kramer, P. Bérard, and R. J. Wood, “Hyperelastic

pressure sensing with a liquid-embedded elastomer”, Journal of Micromechanics

and Microengineering, vol. 20, no. 12: 125029, 2010.

[15] H. B. Muhammad, C. M. Oddo, L. Beccai, C. Recchiuto, C. J. Anthony, M. J.

Adams, M. C. Carrozza, D. W. L. Hukins, and M. C. L. Ward, “Development of

a bioinspired MEMS based capacitive tactile sensor for a robotic finger”, Sensors

and Actuators A: Physical, vol. 165, no. 2, pp. 221–229, 2011.

[16] J. A. Fishel and G. E. Loeb, “Sensing tactile microvibrations with the BioTac –

Comparison with human sensitivity”, in Proceedings of the IEEE RAS & EMBS

International Conference on Biomedical Robotics and Biomechatronics (BioRob),

2012, pp. 1122–1127.

[17] J.-S. Heo, J.-H. Chung, and J.-J. Lee, “Tactile sensor arrays using fiber Bragg

grating sensors”, Sensors and Actuators A: Physical, vol. 126, no. 2, pp. 312–327,

2006.

[18] L. Zou, C. Ge, Z. J. Wang, E. Cretu, and X. Li, “Novel Tactile Sensor Technology

and Smart Tactile Sensing Systems: A Review”, Sensors, vol. 17, no. 11: 2653,

2017.

[19] W. Yuan, R. Li, M. A. Srinivasan, and E. H. Adelson, “Measurement of shear

and slip with a GelSight tactile sensor”, in Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA), 2015, pp. 304–311.

[20] A. Yamaguchi and C. G. Atkeson, “Combining finger vision and optical tactile

sensing: Reducing and handling errors while cutting vegetables”, in Proceedings

of the IEEE-RAS International Conference on Humanoid Robots (Humanoids),

2016, pp. 1045–1051.

[21] B. Ward-Cherrier, N. Pestell, L. Cramphorn, B. Winstone, M. E. Giannaccini,

J. Rossiter, and N. F. Lepora, “The TacTip Family: Soft Optical Tactile Sensors

with 3D-Printed Biomimetic Morphologies”, Soft Robotics, vol. 5, no. 2, pp. 216–

227, 2018.

[22] W. Yuan, S. Dong, and E. H. Adelson, “GelSight: High-Resolution Robot Tactile

Sensors for Estimating Geometry and Force”, Sensors, vol. 17, no. 12: 2762, 2017.

30

References for Chapters 1-3

[23] N. F. Lepora and B. Ward-Cherrier, “Superresolution with an optical tactile

sensor”, in Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 2015, pp. 2686–2691.

[24] S. Dong, W. Yuan, and E. H. Adelson, “Improved GelSight tactile sensor for

measuring geometry and slip”, in Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 2017, pp. 137–144.

[25] D. Ma, E. Donlon, S. Dong, and A. Rodriguez, “Dense Tactile Force Estima-

tion using GelSlim and inverse FEM”, in Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA), 2019, pp. 5418–5424.

[26] N. Kuppuswamy, A. Castro, C. Phillips-Grafflin, A. Alspach, and R. Tedrake,

“Fast Model-Based Contact Patch and Pose Estimation for Highly Deformable

Dense-Geometry Tactile Sensors”, IEEE Robotics and Automation Letters, vol. 5,

no. 2, pp. 1811–1818, 2019.

[27] Y. S. Narang, K. Van Wyk, A. Mousavian, and D. Fox, “Interpreting and Pre-

dicting Tactile Signals via a Physics-Based and Data-Driven Framework”, in

Proceedings of the Robotics: Science and Systems Conference (RSS), 2020.

[28] H. Lee, H. Park, G. Serhat, H. Sun, and K. J. Kuchenbecker, “Calibrating a Soft

ERT-Based Tactile Sensor with a Multiphysics Model and Sim-to-real Transfer

Learning”, in Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA), 2020, pp. 1632–1638.

[29] Y. She, S. Wang, S. Dong, N. Sunil, A. Rodriguez, and E. Adelson, “Cable

Manipulation with a Tactile-Reactive Gripper”, 2020.

[30] C. Wang, S. Wang, B. Romero, F. Veiga, and E. Adelson, “SwingBot: Learn-

ing Physical Features from In-hand Tactile Exploration for Dynamic Swing-up

Manipulation”, in Proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 2020, pp. 5633–5640.

[31] N. F. Lepora, A. Church, C. De Kerckhove, R. Hadsell, and J. Lloyd, “From

pixels to Percepts: Highly Robust Edge Perception and Contour Following using

Deep Learning and an Optical Biomimetic Tactile Sensor”, IEEE Robotics and

Automation Letters, vol. 4, no. 2, pp. 2101–2107, 2019.

[32] M. Morari and J. H. Lee, “Model predictive control: past, present and future”,

Computers & Chemical Engineering, vol. 23, no. 4, pp. 667–682, 1999.

[33] M. L. Darby and M. Nikolaou, “MPC: Current practice and challenges”, Control

Engineering Practice, vol. 20, no. 4, pp. 328–342, 2012.

[34] M. Alamir and G. Bornard, “Stability of a truncated infinite constrained receding

horizon scheme: the general discrete nonlinear case”, Automatica, vol. 31, no. 9,

pp. 1353–1356, 1995.

31

References for Chapters 1-3

[35] M. Muehlebach and R. D’Andrea, “Parametrized infinite-horizon model predic-

tive control for linear time-invariant systems with input and state constraints”, in

Proceedings of the American Control Conference (ACC), IEEE, 2016, pp. 2669–

2674.

[36] M. Muehlebach and R. D’Andrea, “The Flying Platform - A testbed for ducted

fan actuation and control design”, Mechatronics, vol. 42, pp. 52–68, 2017.

[37] H. Yousef, M. Boukallel, and K. Althoefer, “Tactile sensing for dexterous in-

hand manipulation in robotics – A review”, Sensors and Actuators A: Physical,

vol. 167, no. 2, pp. 171–187, 2011.

[38] Z. Kappassov, J.-A. Corrales, and V. Perdereau, “Tactile sensing in dexterous

robot hands – Review”, Robotics and Autonomous Systems, vol. 74, pp. 195–220,

2015.

[39] D. Chen, B. Zhou, V. Koltun, and P. Krähenbühl, “Learning by Cheating”, in

Proceedings of the Conference on Robot Learning (CoRL), 2020, pp. 66–75.

[40] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-Real Trans-

fer of Robotic Control with Dynamics Randomization”, in Proceedings of the

IEEE International Conference on Robotics and Automation (ICRA), 2018, pp. 1–

8.

[41] M. Tschannen, O. Bachem, and M. Lucic, “Recent advances in autoencoder-

based representation learning”, Bayesian Deep Learning Workshop at NeurIPS,

2018.

[42] P. Griffa, C. Sferrazza, and R. D’Andrea, “Leveraging distributed contact force

measurements for slip detection: a physics-based approach enabled by a data-

driven tactile sensor”, arXiv preprint arXiv:2109.11504, 2021.

[43] M. A. Bell, K. P. Becker, and R. J. Wood, “Injection Molding of Soft Robots”,

Advanced Materials Technologies, p. 2 100 605, 2021.

32

Part A

Data-driven, vision-based

tactile sensing

consisting of publications

[P1] C. Sferrazza and R. D’Andrea, “Design, Motivation and Evaluation of a Full-

Resolution Optical Tactile Sensor”, Sensors, vol. 19, no. 4: 928, 2019

[P2] C. Sferrazza and R. D’Andrea, “Transfer learning for vision-based tactile sensing”,

in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), 2019, pp. 7961–7967

[P3] C. Sferrazza, A. Wahlsten, C. Trueeb, and R. D’Andrea, “Ground Truth Force Dis-

tribution for Learning-Based Tactile Sensing: A Finite Element Approach”, IEEE

Access, vol. 7, pp. 173 438–173 449, 2019

[P4] C. Sferrazza, T. Bi, and R. D’Andrea, “Learning the sense of touch in simula-

tion: a sim-to-real strategy for vision-based tactile sensing”, in Proceedings of the

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

2020

[P5] C. Sferrazza and R. D’Andrea, “Sim-to-Real for High-Resolution Optical Tactile

Sensing: From Images to Three-Dimensional Contact Force Distributions”, Soft

Robotics, 2021

Paper P1

Design, motivation and evaluation of a

full-resolution optical tactile sensor

Carmelo Sferrazza and Raffaello D’Andrea

Abstract

Human skin is capable of sensing various types of forces with high resolution
and accuracy. The development of an artificial sense of touch needs to address
these properties, while retaining scalability to large surfaces with arbitrary shapes.
The vision-based tactile sensor proposed in this article exploits the extremely high
resolution of modern image sensors to reconstruct the normal force distribution
applied to a soft material, whose deformation is observed on the camera images.
By embedding a random pattern within the material, the full resolution of the
camera can be exploited. The design and the motivation of the proposed approach
are discussed with respect to a simplified elasticity model. An artificial deep neural
network is trained on experimental data to perform the tactile sensing task with
high accuracy for a specific indenter, and with a spatial resolution and a sensing
range comparable to the human fingertip.

Published in Sensors.

Reprinted, from Carmelo Sferrazza and Raffaello D’Andrea, “Design, Motivation and Evaluation of a
Full-Resolution Optical Tactile Sensor”, Sensors, 2019. Used under CC BY 4.0.

35

Paper P1. Design, motivation and evaluation of a full-resolution optical tactile sensor

1. Introduction

Relatively small image sensors nowadays provide very high resolutions and wide dynamic

ranges. Together with cost effectiveness, these factors have made cameras a comprehensive

solution for providing robots with a sense of vision. Moreover, in particular in recent

years, the use of machine learning for computer vision problems has contributed to the

accomplishment of numerous challenging tasks in the field (see, for example, [1]–[3]).

The benefits of artificial vision systems, from the points of view of both hardware and

developed algorithms, can be exploited in different domains, as is the case for robotic

tactile sensing systems. Although the fundamental importance of the sense of touch for

interacting with the environment has been shown in both humans (see [4]), and robots

(see [5]), finding a sensing solution that yields satisfactory performance for various types

of interactions and tasks is still an open problem. By using a camera to monitor various

physical properties, such as the change in light intensity, which are related to the defor-

mation of a soft material subject to external forces, it is possible to design algorithms

which reconstruct the force distribution with high resolution.

This article describes the design of a sensor (shown in Figure 1) that consists of a cam-

era that tracks the movement of spherical markers within a gel, providing an approxima-

tion of the strain field inside the material. This information is exploited to reconstruct the

normal external force distribution that acts on the surface of the gel. The use of a camera

intrinsically renders a very high spatial resolution, given by the extensive number of pixels

composing the images. A specific choice of relevant features leverages the full resolution

of the camera, with the sensor’s spatial resolution not limited by the number of markers.

Moreover, this article provides a theoretical analysis of the elastic model of the ma-

terial, which evaluates different marker layouts. This analysis indicates that the presence

of markers at different depths within the gel yields a higher robustness to errors in the

marker tracking, while retaining a small sensor threshold.

The map between the marker displacements and the normal force distribution is

modeled with a neural network, which is trained on a vast number of images. These images

are collected while an automatically controlled milling machine presses an indenter’s tip

against the sensor’s surface at different locations. During this procedure, ground truth

force measurements are provided by a force torque (F/T) sensor. The proposed approach

is also discussed with respect to transfer learning applications in the author’s work in [6],

where preliminary results show that it is possible to greatly reduce the required training

data and the training times.

The resulting pipeline runs in real-time on a standard laptop (dual-core, 2.80 GHz),

predicting the normal force distribution from the image stream at 60 Hz.

1.1 Related work

As highlighted in [7], among the reasons that have delayed the widespread deployment of

tactile sensors on robotic systems compared to vision sensors, the lack of a tactile analog

to optical arrays is a result of the inherent complexity of interpreting the information

36

1. Introduction

Figure 1. The tactile sensor presented in this article.

obtained via physical contact.

In the literature, different categories of tactile sensors focus on obtaining this infor-

mation using different principles (see, for example, [8], where the electrical resistance of

an elastomer is related to the pressure exerted on it, and [9], where an array of zinc

oxide nanorods generates a voltage signal whose amplitude is proportional to the normal

force applied). A detailed description of the main classes of tactile sensors for robotic

applications is provided in [10].

Optical (or vision-based) tactile sensors are a large class of devices that exploit vari-

ous light-related principles, which describe how different properties change with the stress

applied to a contact surface. Several examples are described in the literature, based on

principles such as photometric stereo [11], total internal reflection [12], and reflected light

intensity [13]. Vision-based tactile sensors only marginally affect the observed sensor’s

surface, and therefore do not alter the softness of the contact area. This is a main re-

quirement for tactile sensors that interact with the environment [7]. In fact, a soft material

has the advantage of compliance, friction and conformation to the surfaces it interacts

with, which for example are crucial properties for manipulation tasks.

Several approaches proposed for optical tactile sensing are based on tracking a series

of markers on the sensor’s surface (see [14]). The movement of these markers is directly

related to the strain field of the material, and can therefore be used to reconstruct the

external force distribution on the surface. For example, in [15], a numerical method which

captures a linear elastic model of the material is used to reconstruct the force distribution

from marker displacements.

The choice of the marker layout in vision-based tactile sensors is investigated in various

works. A symmetrical pattern is exploited in [16] to generalize tactile stimuli to new

orientations. In [17], an analytical model approximately reconstructs the force distribution

from the displacement of spherical markers. These markers are placed over two different

depth layers within the sensor’s surface, and this layout shows a better robustness to

37

Paper P1. Design, motivation and evaluation of a full-resolution optical tactile sensor

noise compared to the case in which all markers are placed at the same depth.

To overcome the limitations imposed by the assumptions made on the material model,

whose full nonlinear description is highly complex to derive, machine learning approaches

have been explored for tactile sensing. By training a learning algorithm with an extensive

amount of data, it is possible to reconstruct the force applied to the sensor’s surface. For

example, in [18], a deep neural network is used to estimate the total contact force that an

optical tactile sensor with markers printed on the surface is exerting on several objects.

The need for training data is fulfilled in different ways in the literature, for instance with

robot manipulators [5] or with other automatic machines [19].

This article presents an optical tactile sensor that is based on tracking spherical mark-

ers, which are randomly spread over the entire three-dimensional volume of its soft sur-

face. The sensor presented here does not rely on tracking a specific marker layout (as in

[16], [17]) and is provided with standard lighting conditions (opposed to [18]), facilitat-

ing the deployment to larger surfaces (through multiple cameras) of arbitrary shapes. In

fact, the proposed strategy only requires the presence of distinct features, which move

according to the material deformation, therefore greatly simplifying manufacture.

Conversely to most of the cited approaches, the features engineered for the proposed

supervised learning algorithm can be chosen in a way that the information at all pixels is

processed, independent of the pattern choice, therefore actually exploiting the full reso-

lution of the camera. Moreover, the proposed design and strategy can be easily extended

to different types of forces and interactions.

1.2 Outline

The tactile sensor is presented in Section 2, where its design and the production procedure

are discussed. Theoretical analyses of the sensor threshold and robustness are explained in

Section 3. Section 4 describes a procedure for training data collection and the related data

processing for the generation of ground truth labels. Two feature engineering strategies,

both suitable for real-time execution, are presented in Section 5. The learning architecture,

which captures a map between the engineered features and the generated ground truth

labels, is discussed in Section 6. Results and comparisons are shown in Section 7. Finally,

Section 8 draws the conclusions of the article.

2. Design and production

To track the spherical markers within the soft material, a fisheye RGB camera (2.24

megapixels ELP USBFHD06H) was placed inside a mold, as shown in Figure 2a, and

equipped with a board that controls two rings of LEDs (see Figure 2b), which provide

constant illumination. The camera can read image frames up to 100 fps at a resolution

of 640 × 480 pixels.

The soft materials employed in the sensor production were all degassed in a vacuum (to

remove air bubbles, which form during mixing) and poured through cavities in the mold.

38

2. Design and production

(a) Camera attached to the mold (b) Parts for casting the stiff layer

(c) Second lid (d) Third lid

Figure 2. CAD drawings showing the different parts of the mold: (a) the camera was attached to the
mold, and (b) the LED board was placed around the lens. Three lids (blue (b); red (c); and yellow
(d)) were interchanged for the various production steps. The colors in this figure are only for ease of
visualization, and do not correspond to the colors of the real tactile sensor.

39

Paper P1. Design, motivation and evaluation of a full-resolution optical tactile sensor

The mold was placed on one of its sides (that is, with the camera lens pointing sideways)

during production. Three different lids were used to perform the three respective steps of

the production procedure, which is explained in the following. The design proposed here

differs from the one employed in [6], where a bottom-up procedure yielded imperfections

on the sensor’s top surface.

A first lid closes the mold, and a relatively stiff transparent silicone layer

(ELASTOSIL® RT 601 RTV-2, mixing ratio 7:1, shore hardness 45A) was then poured

into the mold through a side cavity, which is shown in Figure 2b. After the silicone cured,

the lid was removed and replaced with the second one, shown (in red) in Figure 2c, which

had an indent of 30 × 30 × 4.5 mm. Spherical fluorescent green particles (shown in Fig-

ure 3) with a diameter of 500–600 µm were mixed with a very soft silicone gel (Ecoflex™
GEL, mixing ratio 1:1, shore hardness 000-35) and poured into the mold filling the empty

indent. After this soft layer was also cured, the second lid was replaced with the third

one, shown (in yellow) in Figure 2d, with an indent that left an empty section around

the gel of varying thickness (depending on the section) between 1 mm and 1.5 mm. A

black silicone layer (ELASTOSIL® RT 601 RTV-2, mixing ratio 25:1, shore hardness

10A) was then poured through the cavity on the third lid. Figure 4 shows a schematic

cross-sectional view of the three silicone layers, and an example of the resulting tactile

sensor is shown in Figure 1.

The stiff layer, which was poured first, served as a base for the softer materials that

were placed on top of it, and as a spacer between the camera and the region of interest.

All the materials employed have comparable refraction indexes, therefore preventing un-

wanted reflections from the LEDs. The spherical particles have a density that is close to

the density of the gel they are mixed with. Together with the viscosity of the material,

this is crucial to obtain a homogeneous spread of the markers over the entire depth of the

gel. A detailed discussion on this point can be found in Appendix A. The black silicone

layer added consistency to the extremely soft gel, which also tended to stick on contact,

and provided a shield against external light disturbances. The thickness of the sensor

from the base of the camera to the top of the surface is 37 mm.

3. Motivation

Besides ease of manufacture and portability to surfaces with arbitrary shapes, the ap-

proach presented here showed theoretical benefits in a simplified scenario. This section

presents first order analyses of two different properties of the proposed sensor: the robust-

ness to noise in the marker displacements and the sensor threshold. Here, the threshold

is defined as the minimum force that leads to a detectable change in the camera image.

To this purpose, simplified models of the camera and the material were considered. Since

the resulting expressions were dependent on the marker distribution and on the displace-

ments observed, Monte Carlo simulations (i.e., based on repeated random sampling) were

performed for different external forces and marker layouts, and the results are discussed.

In particular, four layout classes were considered:

40

3. Motivation

Figure 3. A concentration of the spherical fluorescent green markers, compared to the size of a regular
pen cap.

Figure 4. Schematic cross-sectional view of the resulting soft materials, shown here on top of each other.
For ease of visualization, the base stiff layer is shown in semi-transparent light gray. The green particles
were embedded in a soft layer, which was covered by an additional black layer.

Single layer at 1 mm: The markers were randomly distributed on a single layer

(with an horizontal section of 30 mm × 30 mm) placed at a depth of 1 mm from

the sensor’s surface.

Single layer at 2 mm: The markers were randomly distributed on a single layer

(with an horizontal section of 30 mm × 30 mm) placed at a depth of 2 mm from

the sensor’s surface.

Single layer at 6 mm: The markers were randomly distributed on a single layer

(with an horizontal section of 30 mm × 30 mm) placed at a depth of 6 mm from

the sensor’s surface.

Homogeneous spread between 1 mm and 6 mm: The markers were randomly

distributed over a depth range of 1–6 mm from the sensor’s surface (covering an

horizontal section of 30 mm × 30 mm).

In the reminder of this article, vectors are expressed as tuples for ease of notation,

with dimension and stacking clear from the context.

41

Paper P1. Design, motivation and evaluation of a full-resolution optical tactile sensor

3.1 Model

A semi-infinite linear elastic half-space model was assumed for the surface material. This

model has shown limited loss of accuracy in the force reconstruction task for indentations

in the proximity of the origin of the half-space (see [20]), and provides a tractable an-

alytical solution. Although a simple scenario with a single rubber layer was considered,

the physical parameters of the conducted simulations were chosen to approximate the

first-order behavior of the sensor presented in Section 2.

Three Cartesian axes, x, y and z, defined the world coordinate frame. These were

centered at the origin of the half-space, placed on the top surface. The z-axis was positive

in the direction entering the material, and the remaining two axes spanned the horizontal

surface. Let sj := (xj, yj, zj) be the position of a marker j before the force is applied, for

j = 0, . . . , Nm−1, where Nm is the number of markers within the gel. Given a point force

applied at the origin (this model can be easily extended to the entire force distribution,

as shown in [17]), the three-dimensional displacement ∆sj of the marker j can be derived

from the Bousinnesq and Cerruti solutions (see [21]), as,

∆sj = HjF, (1)

where F ∈ R3 is the applied force vector, and,

Hj =
1 + ν

2πERj

R2
j + x2

j

R2
j

+ (1− 2ν)
R2
j +Rjzj − x2

j

(Rj + zj)2

xjyj
R2
j

− (1− 2ν)
xjyj

(Rj + zj)2

xjzj
R2
j

− (1− 2ν)
xj

Rj + zj
xjyj
R2
j

− (1− 2ν)
xjyj

(Rj + zj)2

R2
j + y2

j

R2
j

+ (1− 2ν)
R2
j +Rjzj − y2

j

(Rj + zj)2

yjzj
R2
j

− (1− 2ν)
yj

Rj + zj
xjzj
R2
j

+ (1− 2ν)
xj

Rj + zj

yjzj
R2
j

+ (1− 2ν)
yj

Rj + zj

z2
j

R2
j

+ 2(1− ν)

, (2)

where ν and E are the Poisson’s ratio and the Young’s modulus of the material, respec-

tively, and Rj :=
√
x2
j + y2

j + z2
j .

A pinhole camera model (see [22] (p. 49)) was assumed, with square pixels and the

optical center projected at the origin of the image coordinate frame, on the z-axis of the

world frame. The image plane was parallel to the sensor’s surface.

The displacement ∆pj ∈ R2, as observed by the camera and expressed in pixels in the

image frame, was computed as the difference between the marker positions in the image

after and before the force is applied. This leads to,

∆pj = Ka,j(sj + ∆sj)−Kb,jsj (3)

= (Ka,j −Kb,j)sj +Ka,jHjF,

42

3. Motivation

where

Ka,j =

[
f

d−(zj+Hj,3F)
0 0

0 f
d−(zj+Hj,3F)

0

]
, (4)

Kb,j =

[
f

d−zj 0 0

0 f
d−zj 0

]
, (5)

f is the focal length of the camera (in pixels), d is the distance of the optical center

from the origin of the world coordinate frame, and Hj,i represents the ith row of the Hj

matrix, for i = 1, 2, 3. Note that, for small d, which is usually the case for state-of-the-

art optical tactile sensors, the difference between Ka,j and Kb,j is not negligible. The

expression in Equation (3) can be rearranged, as explained in Appendix B, as,

∆pj =

{
∆pj
d− zj

Hj,3 +
f

(d− zj)2

[
xj
yj

]
Hj,3 +

f

d− zj

[
Hj,1

Hj,2

]}
︸ ︷︷ ︸

:=Pj(∆pj)

F = Pj(∆pj) · F, (6)

where Pj ∈ R2×3 depends on the displacement ∆pj. For force sensing applications, once

the marker displacement ∆pj is observed in the image, the equality in Equation (6) repre-

sents an underdetermined system of two equations with three unknowns (the components

of F). To find a unique solution, and to improve the reconstruction error in the presence

of noise, more equations can be provided by tracking the remaining markers, yielding,

∆p :=

 ∆p0

...

∆pNm−1

 =

 P0(∆p0)
...

PNm−1(∆pNm−1)

︸ ︷︷ ︸

:=P (∆p)

·F = P (∆p) · F, (7)

with P ∈ R2Nm×3. The force F can then be reconstructed as,

F = P (∆p)† ·∆p, (8)

where the apex † indicates the Moore–Penrose pseudo-inverse matrix. The matrix P

depends on the different ∆pj, therefore the equality in Equation (8) indicates a nonlinear

dependence between F and ∆p.

The parameters used for the Monte Carlo simulations described in the following sub-

sections are summarized in Table 1. In particular, the Young’s modulus was chosen as

the linear combination of the resulting values for the soft layers described in Section 2,

according to the conversions introduced in [23] (note, however, that this value is only

a multiplicative factor in Equation (2), and does not have a large effect on the resulting

43

Paper P1. Design, motivation and evaluation of a full-resolution optical tactile sensor

trends in the simulations).

Symbol Value Description

ν 0.4999 Poisson’s ratio
E 0.1 MPa Young’s modulus
f 256 pixels Focal length
d 20 mm z-coordinate of the camera optical center
Nf 1000 Number of drawn force samples
Nc 1000 Number of drawn configurations for each class

Table 1. Simulation parameters.

3.2 Robustness to noise

To a certain extent, the learning algorithm presented in Section 6 aims to approximate

a map similar to the one in Equation (8), which relates the observed marker displace-

ments to the applied external force. For the purpose of analyzing how the output of

this map reacts to a perturbation δp of the displacements ∆p, a first order linearization

was performed around the unperturbed state. Therefore, the force corresponding to the

perturbed displacements can be expressed as,

F
∣∣∣
∆p+δp

≈ P (∆p)† ·∆p+ J(∆p) · δp, (9)

where J is the appropriate Jacobian matrix, containing the derivative terms of the map

with respect to ∆p. Using the properties of the norm,∥∥∥∥F ∣∣∣
∆p+δp

− F
∣∣∣
∆p

∥∥∥∥
2

≈ ‖J(∆p)δp‖2 ≤ ‖J(∆p)‖F︸ ︷︷ ︸
:=κ(∆p)

‖δp‖2, (10)

where the L2-norm and the Frobenius norm are used accordingly. The value that κ ∈ R
takes is often referred to as the absolute condition number of a function (see [24] (p. 221)),

and it provides a bound on the slope at which a function changes given a change in the

input. In this analysis, it quantified the sensitivity of the map in Equation (8) to noise in

the observed displacements. Note that the noise considered here might stem from both

image noise and errors in the estimation of the marker displacements (e.g., errors in the

optical flow estimation, see Section 5).

The Monte Carlo simulations were performed as follows: (1) Nf force samples were ran-

domly drawn. Each of these samples represented a three-dimensional concentrated force

vector, which was placed at the origin of the world coordinate frame. (2) For each force

sample, Nc marker configurations were randomly drawn for each layout class, and the

resulting marker displacements were projected to the image frame. (3) Therefore, the re-

44

3. Motivation

sulting value of κ was computed and averaged for the Nc different random marker con-

figurations (in the same layout class).

Figure 5 shows the average magnitude of κ for different types of forces. For ease of

visualization, the results presented here considered the application of pure shear (along

one axis) or pure normal force, but similar conclusions were obtained for generic force

vectors. The figures indicate how the map in Equation (8) was more robust for configura-

tions with the markers placed closer to the camera, i.e., deeper in the soft material. The

layout class with an homogeneous spread of markers between 1 mm and 6 mm showed

higher robustness compared to the case of all markers placed at 1 mm or 2 mm depth

(but was lower when compared to the class with the markers placed at 6 mm depth).

Note that there were two counteracting effects in the model considered, that is, markers

closer to the camera exhibited smaller displacements, but these displacements underwent

higher amplification when projected to the image.

The sensor’s robustness to noise was also evaluated in the same simulation frame-

work by perturbing the observed marker displacements after projecting these to the im-

age frame. Zero-mean Gaussian noise with variance σ2
p was added to the observed ∆p,

and the force was reconstructed using Equation (8). The resulting root mean squared

error (RMSE) for varying σp (averaged over the different simulations) is shown in Figure

6, showing that, considering higher order terms, neglected in the linearization, led to the

same trend as in Figure 5.

0 0.2 0.4 0.6 0.8 12

3

4

5

·10−2

Shear force in x direction [N]

κ
[N

/p
ix

el
]

Single layer 1 mm
Single layer 2 mm
Single layer 6 mm
Homogeneous

(a) Absolute condition number for shear force

0 1 2 3

2

3

4

·10−2

Normal force in z direction [N]

κ
[N

/p
ix

el
]

Single layer 1 mm
Single layer 2 mm
Single layer 6 mm
Homogeneous

(b) Absolute condition number for normal force

Figure 5. The plots show the resulting absolute condition number κ for various shear (a) and normal
(b) force samples, averaged over multiple configurations in the same class, for the different layout classes.

3.3 Sensor threshold

The tactile sensor threshold is given by the minimum force that generates a noticeable

change in the image, i.e., when a marker is observed at different pixel coordinates. In the

45

Paper P1. Design, motivation and evaluation of a full-resolution optical tactile sensor

1 3 5 7 90

0.1

0.2

σp [pixels]

R
M
S
E

[N
]

Single layer 1 mm
Single layer 2 mm
Single layer 6 mm
Homogeneous

(a) Error for shear force

1 3 5 7 90

0.1

σp [pixels]

R
M
S
E

[N
]

Single layer 1 mm
Single layer 2 mm
Single layer 6 mm
Homogeneous

(b) Error for normal force

Figure 6. Tactile sensing applications are simulated by drawing shear (a) and normal (b) force samples,
computing the resulting marker displacements, and projecting these to the image frame. Therefore,
Gaussian noise with variance σ2

p was added to the observed displacements, and the force was reconstructed
through the map in Equation (8). The resulting averaged root mean squared error is shown in these plots
for different σp.

worst case scenario (a similar analysis applies to other scenarios), each marker center (or

feature) of interest is at the center of a pixel. In this case, a marker needs to move by at

least half a pixel to be observed at a different position in the image. Therefore, during the

simulations described in Section 3.2, the component-wise maximum among the observed

marker displacements was computed (that is, the maximum component of the observed

∆p vector). For each force sample, this quantity was averaged over the Nc random marker

configurations. The sensor threshold was then estimated as the minimum magnitude of

the (shear or normal) force that yields a displacement greater than half a pixel.

Table 2 shows the resulting sensor threshold for pure normal and shear forces, respec-

tively, for the different classes of layouts. In the simplified scenario considered, the con-

figurations with the markers placed closer to the sensor’s top surface exhibited a smaller

threshold, while the layout class with homogeneous spreads of markers at different depths

retained a threshold comparable to the layout class with a single layer at 1 mm depth.

Summarizing, the analyses presented here show that spreading the markers homoge-

neously at different depths (in this example between 1 mm and 6 mm) might yield an

advantageous trade-off between robustness to noise in the observed marker displacements

and sensor threshold. In particular, compared to the case of all markers at a depth of

1 mm, this layout class showed higher robustness to noise while retaining a comparable

sensor threshold (which for this example was about 2–3 times smaller than the layout

with a single layer at 6 mm depth).

46

4. Ground truth data

Layout Class Sensor Threshold (Shear) Sensor Threshold (Normal)

Single layer at 1 mm 0.013 N 0.035 N
Single layer at 2 mm 0.027 N 0.059 N
Single layer at 6 mm 0.056 N 0.084 N
Homogeneous spread 0.018 N 0.048 N

Table 2. Sensor threshold for various layout classes.

4. Ground truth data

In the context of supervised learning, each data point is associated with a label that

represents the ground truth of the quantity of interest. In the approach presented here,

a label vector representing the normal force distribution is assigned to the image that

the camera captures when this force is applied. In this section, the procedure followed to

collect the data, which were then processed and used to train the learning architecture

presented in Section 6, is described. The generation of ground truth label vectors is then

discussed.

4.1 Data collection

The training data were automatically collected by pressing an indenter’s tip against the

sensor gel by means of a milling and drilling machine (Fehlmann PICOMAX 56 TOP).

The machine was equipped with a three-axis computer numerical control, which en-

abled precise motion (in the order of 10−3 mm) of a spindle in the three-dimensional

operating space. A spherical-ended cylindrical indenter (40 mm long, with a diameter of

1.2 mm) was mounted on a state-of-the-art six-axis F/T sensor (ATI Mini 27 Titanium)

through a plexiglass plate. The F/T sensor was attached to the spindle and used to

measure the force applied by the indenter, which was pressed against the gel at different

depths and positions. An image of this setup is shown in Figure 7.

The milling machine outputted a digital signal, which was positive when the needle

reached the commanded pressure position. The signal was read by a standard laptop,

which was also responsible for reading the F/T sensor data and the camera stream. The

data were synchronized on the laptop by extracting the image frames that were recorded

(and cropped to 480 × 480 pixels) when the digital signal was positive. These images

were then matched to the corresponding normal force value, which was sent by the F/T

sensor.

4.2 Data labels

The neural network architecture presented in Section 6 requires the labels to be expressed

as real vectors. To this purpose, the sensor surface was divided into n bins, each of these

representing a different region. Therefore, a corresponding n-dimensional label vector

embedded the force that was applied to each of these regions. Since the force was applied

47

Paper P1. Design, motivation and evaluation of a full-resolution optical tactile sensor

Figure 7. The image shows the data collection setup in the automatic milling machine. The F/T sensor
is the cylindrical device connected with the cable in the upper part of the figure.

F

F

F0 0 0 0 0 0 0 0

Figure 8. The scheme shows an example of a ground truth label vector. The indenter applies a force F
to the center of the surface, which is part of a specific bin. The corresponding central vector component
is then set to F , while the remaining components are set to zero.

to the gel with the relatively small spherical indenter used for the training data collection,

this was simplified as a point force at the center of the contact. The point of application of

the force was mapped to one of the n surface bins, and the value of the force read by the

F/T sensor was assigned to the label vector component that represented the appropriate

bin. All remaining components were then set to zero, to indicate a zero force distribution

in those regions. A scheme of this procedure is shown in Figure 8.

Note that the number of surface bins n provides an indication of the spatial resolution

of the sensor (measured in millimeters), which is different from the camera resolution that

was fixed at 480 × 480 pixels in the scenario considered here. A larger n provides a finer

spatial resolution, at the expense of a higher dimensional map between images and force

distribution, which is generally more complex to estimate.

48

5. Optical flow features

5. Optical flow features

Extracting meaningful features by processing the images has the benefit of reducing the

required amount of training data and the training times.

In a soft material, the strain field provides information about the force applied to the

surface, which generates the material deformation [25]. In the approach presented here,

the spherical markers’ displacement rendered an approximation of the strain field, which

could be obtained by means of optical flow techniques. In fact, the input features to the

supervised learning architecture presented in Section 6 were derived from the estimated

optical flow.

This section discusses two approaches to the feature engineering problem, based on

sparse and dense optical flow, respectively [26].

5.1 Sparse optical flow

Sparse optical flow methods are based on tracking the movement of a set of keypoints. In

particular, the Lucas Kanade algorithm (see [27]) solves the optical flow equations relying

on the assumption that pixels in a small neighborhood have the same motion.

For the tactile sensor proposed in this paper, the centers of the fluorescent markers

represented a natural choice as keypoints. However, identifying these keypoints required

a detection phase with the gel surface at rest. The proposed algorithm is based on the

watershed transformation for image segmentation (see [28]). The different steps are ex-

plained in Figure 9.

Once the keypoints were chosen, they were tracked in the following frames using Lucas

Kanade optical flow. The resulting flow was represented as a tuple of magnitude and angle

with respect to a defined axis. Similar to the approach explained for generating the label

vectors, the image was divided into a uniform grid of m regions. Note that m does not

necessarily have to be equal to n. The markers were assigned to the appropriate resulting

bins, depending on their location in the image. The features were then defined by the

following average quantities, for each image bin i = 1, . . . ,m,

davg,i =
1

Ni

Ni−1∑
j=0

dij (11)

αavg,i = atan2

(
Ni−1∑
j=0

sin(αij),

Ni−1∑
j=0

cos(αij)

)
, (12)

where dij and αij represent the magnitude and angle tuple relative to the displacement

of the marker j in the region i, and Ni is the number of markers assigned to the region i.

The average defined in Equation (12) is often referred as the circular mean of the angles

(see [30] (p. 106) for an explanation).

Under the assumptions that the markers were homogeneously distributed over the

49

Paper P1. Design, motivation and evaluation of a full-resolution optical tactile sensor

(a) Original image (b) Thresholded markers

(c) Distance transform (d) Peaks of the distance transform

(e) Chosen keypoints (f) Sparse optical flow

Figure 9. The original image (a) is thresholded to extract the green color of the markers (b). The distance
transform (see [29] for the definition) is computed (c), and its local peaks are extracted (d). The watershed
algorithm is finally applied to segment the original image into the different markers. The centers of the
resulting contours, in red (e), are chosen as the keypoints to track through Lucas Kanade optical flow
in the following frames (f).

50

6. Learning architecture

entire volume of the gel, these average quantities provided an approximation of the optical

flow at each of the bin centers. The feature vector for each image was therefore obtained

by appropriately stacking the two average quantities for each of the m regions, resulting

in a 2m-dimensional feature space. Note that the averages also provided invariance of the

features to the marker pattern, provided that the same material and design were retained.

5.2 Dense optical flow

Compared to sparse optical flow, dense optical flow methods are more accurate, at the

expense of a higher need for computational resources [31]. Moreover, they do not rely

on a preliminary detection phase, which may introduce further inaccuracies (see, for

example, the lower-left part of Figure 9e). In fact, rather than tracking a set of features

over subsequent frames, they aim at estimating the motion at each pixel of the image.

The Dense Inverse Search (DIS) optical flow algorithm (see [32]) reconstructs the motion

through the computation of the flow at different image scales, and exploits an inverse

search technique to obtain a considerable increase in speed. Therefore, rather than relying

on the detection of keypoints, the DIS algorithm reconstructs the optical flow from any

trackable distinct pattern. Moreover, it exploits the full resolution of the camera (distinct

from the spatial resolution of the tactile sensor), rendering motion information at each

pixel of the image. As a consequence, the spatial resolution of the tactile sensor is not

limited by the number of markers. Note that a specific marker layout (e.g., a uniform

grid) would not simplify the image processing and the reconstruction of the dense optical

flow, and an eventual regular spacing could cause the loss of information at certain pixels.

Conversely, the random spread of markers facilitates manufacture and does not impact

the deployment of the sensor to applications where a larger contact surface with arbitrary

shape is required.

To match the required format of the DIS algorithm, the original image was processed.

The green regions in the image were thresholded and the remaining non-green regions

were replaced with black pixels, removing external light disturbances and material im-

perfections. Finally, the resulting image was converted to gray-scale. An example of the

masked image and the computed dense optical flow are shown in Figure 10.

As in the case of the sparse keypoint tracking, the resulting flow was represented as

tuples of magnitude and angle, in this case for each pixel. The pixels were then assigned

to m image bins. Redefining Ni for the dense optical flow case as the number of pixels

assigned to the region i, the averages defined in Equations (11) and (12) were computed,

to compose a set of 2m features.

6. Learning architecture

The problem of reconstructing the normal force distribution from images can be formu-

lated as a multiple multivariate regression problem, that is, a regression problem where

51

Paper P1. Design, motivation and evaluation of a full-resolution optical tactile sensor

(a) Masked image (b) Dense optical flow

Figure 10. The original image is processed by replacing non-green regions with black pixels (a). The DIS
algorithm computes the dense optical flow (b) on the resulting image. Note that the flow is estimated at
each pixel, and a subsampled version is shown in (b) for ease of visualization.

σ

σ

σ

σ

σ

σ

σ

σ

σ

Figure 11. The figure shows a schematic representation of the DNN architecture, neglecting the bias
terms. The 2m input layer neurons (in red) enter the hidden layers (in blue), which have sigmoid activa-
tion functions. The output layer, with n outputs, is shown in green. Note that 2m and n are the number
of features and surface bins, respectively.

both input features and labels are multi-dimensional vectors. A multi-output deep neural

network (DNN) provides a single function approximation to the underlying map, which

exploits the interrelations among the different inputs and outputs. Similar to the work in

[6], the approach proposed in this article presents a feedforward DNN architecture (see

Figure 11), with three fully connected hidden layers of width 1600, which apply a sigmoid

function to their outputs. The input data to the network were the 2m (sparse or dense)

optical flow features described in Section 5, while the output vectors provided an estimate

of the normal force applied at each of the n bins the tactile sensor surface was divided

into, as described in Section 4.

The architecture weights were trained with RMSProp with Nesterov momentum

52

6. Learning architecture

(known in the literature as Nadam, see [33]), with training batches of 100 samples and

a learning rate of 0.001. The solver aimed at minimizing an average root mean squared

error (aRMSE), defined according to [34] as,

aRMSE =
1

n

n−1∑
i=0

√√√√∑Nset−1
l=0

(
y

(l)
i − ŷ(l)

i

)2

Nset

, (13)

where y
(l)
i and ŷ

(l)
i denote the ith true and predicted label vector component, respectively,

for the lth sample in the considered dataset portion (i.e., training, validation, and test

sets), which contains Nset data points.

Twenty percent of each dataset was retained as a test set, against which the perfor-

mance was evaluated. Ten percent of the remaining data points were randomly chosen

as a validation set. Dropout regularization (at a 10% rate) was employed at each hidden

layer during training, which terminated when the loss computed on the validation set did

not decrease for 50 consecutive epochs.

Due to the very sparse structure of the label vectors considered in the experiments pre-

sented here (see Figure 8), two evaluation metrics were computed on the test set, in addi-

tion to the aRMSE, which are more intuitive for this application. For l = 0, 1, . . . , Nset−1,

the label component of the ground truth vector where the magnitude of the applied force

is maximum was computed,

kl = arg max
i=0,1,...,n−1

|y(l)
i |. (14)

The same quantity was computed for the estimated label vector,

k̂l = arg max
i=0,1,...,n−1

|ŷ(l)
i |. (15)

Denoting c(k) as the location of the center of a surface bin k on the horizontal plane,

a distance metric was introduced,

dloc =
1

Nset

Nset−1∑
l=0

‖c(kl)− c(k̂l)‖2. (16)

Finally, an error computed on the maximum components of the true and estimated

53

Paper P1. Design, motivation and evaluation of a full-resolution optical tactile sensor

label vectors was defined as,

RMSEmc =

√√√√ 1

Nset

Nset−1∑
l=0

(
y

(l)
kl
− ŷ(l)

k̂l

)2

. (17)

The metric in Equation (16) provides an indication of how close the location of the

maximum estimated force was to the real location of the force applied by the inden-

ter described in Section 4. The metric in Equation (17) indicates how accurate (in the

magnitude) the estimation of this force was.

7. Results

The tactile sensor’s performance was evaluated on a dataset collected on a test indenter,

as described in Section 4. The images (acquired at a resolution of 640 × 480 pixels) were

cropped to a region of interest of 480 × 480 pixels, which covered the gel surface. A

total of 10,952 data points were recorded by commanding the needle to reach various

depths (up to 2 mm, for a maximum force of 1 N) at different positions on the surface,

which were defined by an equally-spaced grid (0.75 mm between adjacent points). Note

that other ranges of force could be similarly covered by replacing the Ecoflex™ GEL with

another material with different hardness.

An example of the prediction of the normal force distribution is shown in Figure 12.

The learning architecture was evaluated for different values of m and n, and for features

based on sparse and dense optical flow. The results, greatly outperforming the authors’

previous work in [6], are shown in Figure 13.

The plots show that, in terms of the aRMSE, which is the loss actually optimized

during training, the dense optical flow outperformed the sparse optical flow in estimating

the force distribution, in both the finer and coarser spatial resolution cases (determined

by n). However, this metric did not provide a reliable comparison across different spatial

resolutions, since it was influenced by the zero values in the label vectors, which were

considerably more in the finer resolution case.

As shown in Figure 13b, theRMSEmc decreased by increasing the number of averaging

regions in the image, and was lower for the dense optical flow case, considering the same

number of surface bins. Estimating the force distribution with a finer spatial resolution

slightly degraded the performance according to this metric, and might require a different

network architecture and more training data, due to the higher dimension of the predicted

output.

The use of the information at all pixels, provided by the dense optical flow, resulted in

a better accuracy in estimating the location of the applied force (indicated by dloc), com-

pared to the sparse optical flow. In fact, the performance obtained with finer resolution

and dense optical flow features was comparable to the case with coarser resolution and

54

8. Conclusions

0 8 16 24 32 0
8

16
24

32
−0.6

−0.4

−0.2

0

x [mm]
y [mm]

F
or

ce
d

is
tr

ib
u

ti
on

[N
]

Predicted
Ground truth

(a) Prediction

(b) Indentation

Figure 12. (a) The prediction of the force distribution for a sample in the test set (for a number of
image bins m = 1600, surface bins n = 81 and dense optical flow features); and (b) the corresponding
indentation. High accuracy was achieved at each bin, including the corners of the gel, which under-
went a deformation that generally differed from the rest of the surface when subject to force (due to
boundary effects).

sparse optical flow features. Moreover, excessively increasing the number of image bins

m might degrade the performance for the sparse optical flow case, since some averaging

regions might not be covered by a sufficient number of detected keypoints.

8. Conclusions

This article has discussed the design of and the motivation for a novel vision-based tac-

tile sensor, which uses a camera to extract information on the force distribution applied

to a soft material. Simulation results have shown the benefits of the proposed strat-

egy. The experimental results presented in this paper (see Supplementary video1) have

1Supplementary video: https://www.mdpi.com/1424-8220/19/4/928/s1

55

https://www.mdpi.com/1424-8220/19/4/928/s1

Paper P1. Design, motivation and evaluation of a full-resolution optical tactile sensor

100 400 1600

4

5

6

7

8
·10−3

m [bins]

a
R
M
S
E

[N
]

Dense OF - n = 81
Sparse OF - n = 81
Dense OF - n = 361
Sparse OF - n = 361

(a) Resulting aRMSE

100 400 1600

4

6

8

10
·10−2

m [bins]

R
M
S
E

m
c

[N
]

Dense OF - n = 81
Sparse OF - n = 81
Dense OF - n = 361
Sparse OF - n = 361

(b) Resulting RMSEmc

100 400 1600

0.1

0.2

0.3

0.4

0.5

m [bins]

d
lo
c

[m
m

]

Dense OF - n = 81
Sparse OF - n = 81
Dense OF - n = 361
Sparse OF - n = 361

(c) Resulting dloc

Figure 13. The plots show the resulting metrics (defined in Equations (13), (17) and (16)) for vari-
ous values of image bins m and surface bins n, and for dense and sparse optical flow (OF) features.
The resolution of the ground truth F/T sensor is 0.06 N.

56

A. Choice of the particles’ density

shown high accuracy in reconstructing the normal force distribution applied by a small

spherical indenter. Although in the experimental setup considered an approximation to

a point indenter has been applied, the proposed learning algorithm does not explicitly

use knowledge of this information (that is, the point force and the zero valued regions

are indistinctly predicted through the same architecture). In fact, the representation of

the force distribution introduced in this article (embedded in appropriate label vectors)

is suitable to represent generic normal forces, including multi-point contacts and larger

indentations. Moreover, this representation can be readily extended to shear forces, by

appropriate vector concatenation. Future work will investigate the cases not considered

in this article, to address the limitations introduced by the point force approximation.

To this purpose, the approach proposed here will need to be evaluated for arbitrary force

distributions on a wider dataset, with various indenters and multiple types of contact.

These steps will be aimed towards the generalization of the current approach to touch

with objects of arbitrary shapes (e.g., for robotic grasping tasks).

Dense optical flow features, whose application in the context of vision-based tactile

sensors is novel (to the authors’ knowledge), exhibit higher performance compared to

(sparse) keypoint tracking and retain fast execution times. The use of these features

leverages the randomized marker layout, since (as highlighted in Section 5) the spacing

required for regular grid patterns, as for example in [35], might instead cause a decrease

in accuracy in the estimation of the dense optical flow.

The spatial resolution (n = 361 corresponds to surface bins with a side of 1.58 mm)

and sensing range achieved are comparable to the human skin (see [36] for a reference),

and the resulting pipeline runs in real-time at 60 Hz.

A. Choice of the particles’ density

The cure time of the Ecoflex™ GEL, which is mixed with the markers, is about 2 h at

a room temperature of 23 ◦C. However, after pouring the material into the mold, the cure

is accelerated with mild heat (up to 80 ◦C in an oven), resulting in cure times of about

10 min. During this time, a density difference between the spherical particles and the

material might lead to sinking or floating of the markers.

Assuming that a particle has higher density than the fluid (a symmetrical analysis

applies to the opposite case), the dynamics of a single marker in the material is described

by the following differential equation,

ρpVpẍp(t) = ρpVpg − ρfVpg − FD(t), (18)

where t ≥ 0 denotes the time in seconds; xp indicates the position of the particle (positive

in the direction of gravity); ρp and ρf denote the density of the particle and the fluid,

respectively; Vp is the volume of the particle; and g is the gravitational acceleration.

57

Paper P1. Design, motivation and evaluation of a full-resolution optical tactile sensor

Given the low Reynolds number of the considered application (low speed and very small

particle diameter), the drag force FD is described through the Stoke’s law, that is,

FD(t) = 6πηRpẋp(t), (19)

where η is the dynamic viscosity of the material and Rp is the radius of the particle.

The solution to the differential equation in Equation (18) is,

xp(t) = (ρp − ρf)Vpg

[
t+

ρpVp

b

(
exp

(
− bt

ρpVp

)
− 1

)]
+ xp,0, (20)

with b := 6πηRp, and xp,0 the starting position of the marker. The parameters of the

setup presented in this article are shown in Table 3, and lead to a change in position of

about 0.35 mm in 10 min. Considering that the mold lays on one of its sides during the

material cure, this change does not affect the marker distribution to a large extent. More-

over, for simplicity, the drastic increase in dynamic viscosity (until hardening) that the

material experiences during the cure was not considered in this analysis (which considers

η constant). In practice, the dynamic viscosity increase contributes to considerably slow

down the particle, further reducing the resulting displacement to a negligible value.

Symbol Value Description

ρp 1020 Kg/m3 Density of a marker
ρf 980 Kg/m3 Density of the material
Vp 0.0654 mm3 Volume of a marker
g 9.81 m/s2 Gravitational acceleration
η 9.3 Pa·s Dynamic viscosity of the material
Rp 0.25 mm Radius of a marker

Table 3. Physical parameters.

B. Model derivation

From Equations (4) and (5), the difference between the camera matrices after and before

displacement is,

Ka,j −Kb,j =

[
fHj,3F

(d−zj−Hj,3F)(d−zj) 0 0

0
fHj,3F

(d−zj−Hj,3F)(d−zj) 0

]
. (21)

58

Acknowledgments

Therefore, Equation (3) becomes,

∆pj =
fHj,3F

(d− zj −Hj,3F)(d− zj)

[
xj
yj

]
+

f

d− zj −Hj,3F

[
Hj,1F

Hj,2F

]
(22)

=
1

(d− zj −Hj,3F)(d− zj)

{
fHj,3F

[
xj
yj

]
+ f(d− zj)

[
Hj,1F

Hj,2F

]}
.

Assuming that a marker is never at the same location as the optical center, Equation

(22) can be rearranged as,

(d− zj −Hj,3F)(d− zj)∆pj = fHj,3F

[
xj
yj

]
+ f(d− zj)

[
Hj,1F

Hj,2F

]
(23)

[
(d− zj)2 −Hj,3F (d− zj)

]
∆pj = fHj,3F

[
xj
yj

]
+ f(d− zj)

[
Hj,1F

Hj,2F

]
(24)

(d− zj)2∆pj = Hj,3F (d− zj)∆pj + fHj,3F

[
xj
yj

]
+ f(d− zj)

[
Hj,1F

Hj,2F

]
∆pj =

{
∆pj
d− zj

Hj,3 +
f

(d− zj)2

[
xj
yj

]
Hj,3 +

f

d− zj

[
Hj,1

Hj,2

]}
F,

which is the same expression as in Equation (6).

Acknowledgments

The authors would like to thank Michael Egli, Anil Parsi and Marc-Andrè Corzillius for

their support in the manufacturing of the sensor.

References

[1] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen, “Learning hand-

eye coordination for robotic grasping with deep learning and large-scale data

collection”, The International Journal of Robotics Research, vol. 37, no. 4-5,

pp. 421–436, 2018.

[2] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of deep

visuomotor policies”, The Journal of Machine Learning Research, vol. 17, no. 1,

pp. 1334–1373, 2016.

[3] I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic grasps”,

The International Journal of Robotics Research, vol. 34, no. 4-5, pp. 705–724,

2015.

59

Paper P1. Design, motivation and evaluation of a full-resolution optical tactile sensor

[4] G. Westling and R. S. Johansson, “Factors influencing the force control during

precision grip”, Experimental brain research, vol. 53, no. 2, pp. 277–284, 1984.

[5] R. Calandra, A. Owens, M. Upadhyaya, W. Yuan, J. Lin, E. H. Adelson, and

S. Levine, “The feeling of success: Does touch sensing help predict grasp out-

comes?”, Proceedings of Machine Learning Research, vol. 78, pp. 314–323, 2017.

[6] C. Sferrazza and R. D’Andrea, “Transfer learning for vision-based tactile sens-

ing”, arXiv preprint arXiv:1812.03163v1, 2018.

[7] B. Siciliano and O. Khatib, Springer handbook of robotics. Springer, 2016.

[8] M. Shimojo, A. Namiki, M. Ishikawa, R. Makino, and K. Mabuchi, “A tac-

tile sensor sheet using pressure conductive rubber with electrical-wires stitched

method”, IEEE Sensors Journal, vol. 4, no. 5, pp. 589–596, 2004.

[9] B. P. Nabar, Z. Celik-Butler, and D. P. Butler, “Self-powered tactile pressure sen-

sors using ordered crystalline zno nanorods on flexible substrates toward robotic

skin and garments”, IEEE Sensors Journal, vol. 15, no. 1, pp. 63–70, 2015.

[10] Z. Kappassov, J.-A. Corrales, and V. Perdereau, “Tactile sensing in dexterous

robot hands”, Robotics and Autonomous Systems, vol. 74, pp. 195–220, 2015.

[11] M. K. Johnson, F. Cole, A. Raj, and E. H. Adelson, “Microgeometry capture

using an elastomeric sensor”, ACM Transactions on Graphics, vol. 30, no. 4,

46:1–46:8, 2011.

[12] M. Koike, S. Saga, T. Okatani, and K. Deguchi, “Sensing method of total-

internal-reflection-based tactile sensor”, Proceedings of the IEEE World Haptics

Conference, pp. 615–619, 2011.

[13] L. S. Lincoln, S. J. M. Bamberg, E. Parsons, C. Salisbury, and J. Wheeler, “An

elastomeric insole for 3-axis ground reaction force measurement”, Proceedings of

the IEEE RAS & EMBS International Conference on Biomedical Robotics and

Biomechatronics, pp. 1512–1517, 2012.

[14] B. Winstone, G. Griffiths, C. Melhuish, T. Pipe, and J. Rossiter, “TACTIP —

tactile fingertip device, challenges in reduction of size to ready for robot hand

integration”, Proceedings of the IEEE International Conference on Robotics and

Biomimetics, pp. 160–166, 2012.

[15] D. Ma, E. Donlon, S. Dong, and A. Rodriguez, “Dense tactile force distribu-

tion estimation using gelslim and inverse fem”, arXiv preprint arXiv:1810.04621,

2018.

[16] B. Ward-Cherrier, L. Cramphorn, and N. F. Lepora, “Exploiting sensor symme-

try for generalized tactile perception in biomimetic touch.”, IEEE Robotics and

Automation Letters, vol. 2, no. 2, pp. 1218–1225, 2017.

[17] K. Kamiyama, H. Kajimoto, N. Kawakami, and S. Tachi, “Evaluation of a

vision-based tactile sensor”, Proceedings of the IEEE International Conference

on Robotics and Automation, vol. 2, pp. 1542–1547, 2004.

60

References

[18] W. Yuan, S. Dong, and E. H. Adelson, “GelSight: High-resolution robot tactile

sensors for estimating geometry and force”, Sensors, vol. 17, no. 12, pp. 2762–

2782, 2017.

[19] M. Y. Chuah and S. Kim, “Improved normal and shear tactile force sensor per-

formance via least squares artificial neural network (LSANN)”, Proceedings of

the IEEE International Conference on Robotics and Automation, pp. 116–122,

2016.

[20] K. Kamiyama, K. Vlack, T. Mizota, H. Kajimoto, K. Kawakami, and S. Tachi,

“Vision-based sensor for real-time measuring of surface traction fields”, IEEE

Computer Graphics and Applications, vol. 25, no. 1, pp. 68–75, 2005.

[21] R. B. Hetnarski and J. Ignaczak, Mathematical theory of elasticity. CRC Press,

2004.

[22] R. Szeliski, Computer vision: algorithms and applications. Springer Science &

Business Media, 2010.

[23] A. Mix and A. Giacomin, “Standardized polymer durometry”, Journal of Testing

and evaluation, vol. 39, no. 4, pp. 696–705, 2011.

[24] M. T. Heath, Scientific computing. McGraw-Hill New York, 2002.

[25] K. L. Johnson, Contact mechanics. Cambridge university press, 1987.

[26] D. Fleet and Y. Weiss, “Optical flow estimation”, Handbook of Mathematical

Models in Computer Vision, N. Paragios, Y. Chen, and O. Faugeras, Eds., 2006.

[27] B. D. Lucas and T. Kanade, “An iterative image registration technique with an

application to stereo vision”, Proceedings of the International Joint Conference

on Artificial Intelligence, 1981.

[28] S. Beucher, “The watershed transformation applied to image segmentation”,

Scanning Microscopy Supplement 6, pp. 299–324, 1992.

[29] P. F. Felzenszwalb and D. P. Huttenlocher, “Distance transforms of sampled

functions”, Theory of computing, vol. 8, no. 1, pp. 415–428, 2012.

[30] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

[31] J. Wulff and M. J. Black, “Efficient sparse-to-dense optical flow estimation using

a learned basis and layers”, Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 120–130, 2015.

[32] T. Kroeger, R. Timofte, D. Dai, and L. Van Gool, “Fast optical flow using dense

inverse search”, Proceedings of the European Conference on Computer Vision,

pp. 471–488, 2016.

[33] T. Dozat, “Incorporating Nesterov momentum into Adam”, 2015.

[34] H. Borchani, G. Varando, C. Bielza, and P. Larrañaga, “A survey on multi-

output regression”, Wiley Interdisciplinary Reviews: Data Mining and Knowledge

Discovery, vol. 5, no. 5, pp. 216–233, 2015.

61

Paper P1. Design, motivation and evaluation of a full-resolution optical tactile sensor

[35] A. Yamaguchi and C. G. Atkeson, “Combining finger vision and optical tactile

sensing: Reducing and handling errors while cutting vegetables”, Proceedings

of the IEEE-RAS International Conference on Humanoid Robots (Humanoids),

pp. 1045–1051, 2016.

[36] J. Dargahi and S. Najarian, “Human tactile perception as a standard for artificial

tactile sensing—a review”, The International Journal of Medical Robotics and

Computer Assisted Surgery, vol. 1, no. 1, pp. 23–35, 2004.

62

Paper P2

Transfer learning for vision-based tactile

sensing

Carmelo Sferrazza and Raffaello D’Andrea

Abstract

Due to the complexity of modeling the elastic properties of materials, the use
of machine learning algorithms is continuously increasing for tactile sensing appli-
cations. Recent advances in deep neural networks applied to computer vision make
vision-based tactile sensors very appealing for their high-resolution and low cost.
A soft optical tactile sensor that is scalable to large surfaces with arbitrary shape
is discussed in this paper. A supervised learning algorithm trains a model that is
able to reconstruct the normal force distribution on the sensor’s surface, purely
from the images recorded by an internal camera. In order to reduce the training
times and the need for large datasets, a calibration procedure is proposed to trans-
fer the acquired knowledge across multiple sensors while maintaining satisfactory
performance.

Published in Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent

Robots and Systems.

©2019 IEEE. Reprinted, with permission, from Carmelo Sferrazza and Raffaello D’Andrea, ‘Transfer
learning for vision-based tactile sensing”, IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2019.

63

Paper P2. Transfer learning for vision-based tactile sensing

1. Introduction

The importance of the sense of touch in humans has been repeatedly shown to be funda-

mental even when all other sensing modalities are available, see for example [1] and [2].

Similarly, artificial tactile sensors can be of great help to robots for manipulation tasks,

and in general for their interaction with the environment and with humans.

The aim of robotic tactile sensing systems is to make a robot capable of sensing the

different types of forces, temperature changes and vibrations that its surface is subject

to. However, compared to the human tactile sensing system, the state-of-the-art tactile

sensors often address only a fraction of these capabilities [3], and are generally only

tailored to specific tasks.

In the last decade, as a result of the increased use of machine learning, computer

vision has progressed dramatically. This has enabled the use of cameras to sense the

force distribution on soft surfaces, by means of the deformation that elastic materials

undergo when subject to force. In this respect, acquisition devices that sense a variety of

properties (i.e. force, vibrations) via direct physical contact, using a vision sensor to infer

these properties from the change in light intensity or refractive index, are often referred

to as optical tactile sensors. In particular, one class of optical tactile sensors relies on

tracking the motion of markers distributed over a deformable surface to reconstruct the

force distribution, see for example [4] and the references therein.

The approach discussed in this article is based on the sensor presented in [5]. The

sensor exploits the information provided by the movement of spherical markers that are

randomly distributed within the volume of a three-dimensional silicone gel. An off-the-

shelf camera is used to track the pattern created by these markers inside the gel. In this

way, an approximation of the strain field is obtained. Training data is collected with

an automatic procedure, where the spherical tip of a needle is pressed against the gel

at different positions and depths. During this procedure, the camera is used to collect

images of the resulting pattern, while the ground truth normal force is measured with a

force torque (F/T) sensor.

A neural network is trained with the labeled data to reconstruct the normal force

distribution over the deformable sensor’s surface. In order to reduce the training data

necessary to achieve satisfactory performance on a different gel (with different hardness

and marker distribution), a calibration layer is added to the existing architecture, and

trained on a considerably smaller dataset. The resulting architecture achieves an accuracy

comparable to the one attained by the original model on the larger dataset.

1.1 Related work

Sensing the location and the type of the different forces that a body is subject to is a key

requirement to enable safe human-robot interaction. However, tactile sensing research

is still far from achieving the same sort of comprehensive solution that cameras, with

their high resolution and relatively small size and low cost, represent for visual sensing.

Various categories of tactile sensors have been proposed in the literature, monitoring and

64

1. Introduction

Figure 1. The experimental setup used for the evaluation presented in this article.

exploiting different properties of materials that change under contact with another body,

of which an overview is given in [3] and [6].

Compared to other categories (e.g. tactile sensing arrays exploiting changes in capac-

itance or resistance), soft optical (or vision-based) tactile sensors combine low cost, ease

of manufacture and minimal wiring. They intrinsically provide high spatial resolution

(stemming from the high resolution of modern image sensors) and preserve the softness

of their surface. These advantages come with the drawback of a larger size, which can

be overcome by the use of multiple cameras (with a smaller footprint), as conceptually

described in [7].

Vision-based tactile sensors generally observe the behavior of certain light quantities

to infer the forces applied to the elastic surface of the sensor. As an example, in [8], a

tactile sensor that uses the principle of total internal reflection is proposed, while in [9]

photometric stereo is used to reconstruct the contact shape with a piece of elastometer

through the use of differently colored lights.

In [10], a camera tracks the motion of spherical markers positioned in a grid pattern

within a transparent elastic material. An analytical model is used to reconstruct the

applied force distribution by approximating the problem with a semi-infinite elastic half-

space. In particular, it is experimentally measured how the spread of the markers over

two layers at different depths improves the robustness to errors in the computation of the

displacement of these markers. A biologically-inspired design is presented and analyzed in

[11] and [12], with markers arranged in a special pattern below the surface. The average

displacement of these markers is related to the shear and normal forces applied to the

contact surface.

However, the complexity of modeling the elastic properties of soft materials makes the

derivation of a map from the monitored properties (i.e. marker displacement, changes in

65

Paper P2. Transfer learning for vision-based tactile sensing

light intensity) to force distribution very challenging, especially when a sensor is interfaced

with different types of objects. For this reason, machine learning algorithms have recently

been applied to the force reconstruction problem, see for instance [13] and [14].

In [4], a deep neural network is used to estimate the contact force on different types of

objects, by using the same sensor as in [9] with the addition of a printed layer of markers

on the surface. In [15], based on an automatic data collection procedure, a neural network

estimates the force on a footpad while moving over certain trajectories.

Compared to most of the approaches cited, the method presented in [5] and discussed

here does not rely on a special pattern of markers to be tracked by the camera, due

to the particular choice of the features extracted from the images. In fact, the random

distribution of the markers simplifies manufacture and makes this sensor suitable to adapt

to arbitrary shapes and scalable to large surfaces through the use of multiple cameras.

The chosen representation of the normal force distribution can handle different types of

indenters and multiple points of contact. Moreover, it can easily be extended to sense shear

forces. The algorithms proposed here provide an estimate of the normal force distribution

at 60 Hz on a standard laptop (dual-core CPU, 2.80 GHz).

Transfer learning, see [16] for a survey, is an important topic to address when it be-

comes relevant to speed up learning. As an example, a data alignment mechanism is

proposed in [17] to transfer the task knowledge between two different robot architectures.

In the context of learning-based tactile sensing, collecting a dataset might be time con-

suming. The proposed design and modeling enable the transfer of the knowledge acquired

on one tactile sensor across different gels with different marker patterns. To this purpose,

a calibration procedure is presented in this paper, which considerably reduces the amount

of data required for learning, as well as the training time.

1.2 Outline

The sensor design is discussed in Section 2. The training data collection procedure is

described in Section 3 and the postprocessing of the data into features for the learning

algorithm is presented in Section 4. In Section 5, the neural network architecture is

explained and experimental results are presented. The calibration procedure is described

in Section 6, while conclusions are drawn in Section 7.

2. Sensor design

The tactile sensor discussed here, schematically shown in Fig. 2, is made of a silicone gel

(with a squared horizontal section of 32x32 mm) with spherical markers spread over its

volume and a camera underneath to track the motion of these markers. The camera is an

ELP USBFHD06H, equipped with a fisheye lens that has an angle of view of 180 degrees.

The image frames are acquired at a resolution of 640x480 pixels and cropped to a region

of interest of 440x440 pixels. The camera frame rate is 60 fps.

66

3. Data collection

Fisheye Camera

LEDs

Stiff silicone layer (17 mm)
Markers

Transparent gel (4.5 mm)
Black silicone layer (1.5 mm)

Figure 2. The full thickness of the experimental setup from the base of the camera to the surface is
approximately 38 mm. The thickness of the different silicone layers is indicated in the figure.

The soft silicone gel is produced in a three-layer structure as described in [5], with

the difference that smaller fluorescent green polyethylene microspheres (with a diameter

of 150 to 180 µm) are used as markers to provide strain information at a finer spatial

resolution. An indication of the thickness of the different layers is shown in Fig. 2.

The randomness of the marker positions over the gel’s volume facilitates production.

Conversely to sensing techniques that require a specific pattern in the marker distribution,

the sensor discussed here is directly adaptable to any required shape.

Note that the design proposed shows a proof of concept and its dimensions have

not been optimized. Nevertheless, the size is suitable for deployment to a robot gripper,

as shown in [18] with a vision-based sensor of similar dimensions. The current sensor

thickness is mainly determined by the fisheye lens and the stiff layer. The thickness of

these components can be traded off against the field of view of the camera, i.e., smaller

cameras with lower angles of view and placed closer to the sensor’s surface would result in

reduced thickness but smaller gel coverage. In this respect, the use of a higher number of

cameras can increase the field of view while retaining a limited thickness. Alternatively,

applications with very thin structures, e.g. robotic fingers, can be addressed by the use of

mirrors [19]. In the context of robot skins, a coarser spatial resolution is generally required

in sections of the body where space is of less relevance, i.e. humanoid robot trunk or arms,

where tactile sensors are generally used for collision detection. As an example, the camera

might be placed inside the robot trunk at a greater distance from the surface to cover a

larger portion of the body.

3. Data collection

The neural network architecture needs a considerable amount of training data to be able

to predict the normal force distribution with satisfactory accuracy. In order to autom-

atize the data collection procedure, a precision milling and drilling machine (Fehlmann

PICOMAX 56 TOP) with 3-axis computer numerical control (CNC) is used. A F/T sen-

sor (ATI Mini40) is attached to the spindle of the machine to assign ground truth force

labels to the data. A plexiglass plate, connected to the F/T sensor, serves as a holder for

a spherical-ended cylindrical indenter that is approximately 40 mm long with a diameter

67

Paper P2. Transfer learning for vision-based tactile sensing

Figure 3. The indenter is controlled by a CNC milling machine and it is pressed against the gel while
the data from the camera and the F/T sensor are recorded.

of 1.2 mm. The tactile sensor is clamped to the machine base, and the indenter is pressed

and released over the entire surface of the gel at different depths to span a certain range

of normal force values. The F/T readings are recorded while the camera streams the

pictures at a fixed frequency. The milling machine provides a 24 V digital signal that is

used to synchronize the data from the different sources. Fig. 3 shows the data collection

setup.

4. Feature engineering

The task of reconstructing the normal force distribution on the surface of the tactile sensor

can be formulated as a supervised learning problem, mapping the information obtained

from the camera images to the applied force. To this purpose, the selection of relevant

features is of great importance. Similarly, choosing an appropriate representation of the

force distribution, that is, the labels of the supervised learning algorithm, is crucial.

In order to have a flexible representation, suitable to span the force fields generated

by multiple objects with arbitrary shapes, the approach presented in [5] and used in this

paper consists of the discretization of the gel’s surface in n smaller bins, assigning a force

value to each of these. The resulting n values for each data point are stacked together in

a n-dimensional vector, which represents the label in that instance.

In the special case of the data collected with the automatic procedure described in

Section 3, this vector has a very sparse structure. In fact, assuming that the surface in

contact with the indenter lies entirely inside one bin, the value of the normal force applied

by the tip of the needle on the gel’s surface is encoded at the vector’s component repre-

senting the bin that contains the point of application. The remaining vector components

68

4. Feature engineering

are filled with zeros. An example of a label vector obtained from the automatic data

procedure is shown in Fig. 4. Note that the previous assumption might be violated for

indentation cases at the boundaries of the bins. In these cases, the representation above

approximates the normal force distribution by assigning the entire measured force to the

bin containing the indentation center.

Figure 4. For the spherical indenter described in Section 3, the resulting normal force distribution is
nonzero only at the bin that includes the indentation position, where it takes the value measured by the
F/T sensor, here indicated with F .

With regard to the input to the force reconstruction model, the images are processed

before being fed to the learning architecture for training or prediction. Conversely to

directly taking the image pixels as features, extracting meaningful information from each

image and creating a more compact set of features results in lower data requirements

and shorter training times. In addition, having features that are likely to be invariant

under the same force distribution, when extracted on separate gels with different marker

patterns, is highly desirable. In this respect, this paper discusses an approach based on

dense optical flow [20].

Dense optical flow algorithms aim to estimate the motion at each pixel of the image.

The algorithm based on Dense Inverse Search (DIS), see [21], approaches this task by

reconstructing the flow at multiple scales in a coarse-to-fine fashion. DIS employs an

efficient search of correspondences, which renders the approach suitable to run in real-

time. With respect to the application proposed here, the algorithm is independent of the

marker type and distribution, since it only requires a trackable distinct pattern, which in

the tactile sensor discussed in this paper is in fact given by the spherical markers.

The original RGB image is converted to grayscale, and the optical flow algorithm is

applied. An example of the computed flow is shown in Fig. 5.

The resulting flow is stored at each pixel as tuples of magnitude and an angle with

respect to a fixed axis. As in [5], the image plane is then divided into a grid of m regions

with equal area and each optical flow tuple is assigned to one of these regions, depending

on its position in the image. For each region i = 1, . . . ,m, the average magnitude and

direction of the optical flow are computed. These average quantities have the advantage of

implicitly storing position information (in fact, they are an approximation of the optical

flow at each of the regions’ centers). Furthermore, provided that a distinct pattern is

available at each region, they are independent of the markers’ distribution over the entire

volume. Therefore, they are designed to be invariant when the same forces are applied

to a different gel with the same material properties but not necessarily with the same

marker pattern. The two average quantities for each of the m regions are chosen as the

2×m features, which are the input to the neural network architecture that is presented

in Section 5.

69

Paper P2. Transfer learning for vision-based tactile sensing

(a) Original image (b) Optical flow

Figure 5. The RGB camera image, captured at rest in (a), is first converted to grayscale. The dense
optical flow, shown in (b) at subsampled locations for an example indentation, is then computed with
respect to the image at rest using the DIS-based algorithm.

Figure 6. The DNN architecture. In red the input layer (with 2×m placeholders), in blue the hidden
layers with the logistic activation functions, indicated with σ, in green the output layer (with n neurons),
which has an identity activation function to perform the regression task. The biases are not shown in
the figure.

5. Model training

5.1 Learning architecture

A deep neural network (DNN) is designed to estimate the normal force distribution

applied to the tactile sensor’s surface, given the features extracted from the optical flow.

A feedforward architecture with three fully connected hidden layers, all using a logistic

function as the activation unit, is chosen. The input layer reads the 2 × m features

described in Section 4, while the output layer returns the predicted n-dimensional output,

which assigns a force value to each of the sensor’s surface bins. A scheme summarizing

the chosen architecture, which exhibits relatively fast training times, is shown in Fig. 6.

The loss used to train the DNN is the average root mean squared error (aRMSE, see

70

5. Model training

[22]), that is,

aRMSE =
1

n

n-1∑
i=0

√√√√∑Nset-1
l=0

(
y

(l)
i − ŷ(l)

i

)2

Nset

, (1)

where y
(l)
i and ŷ

(l)
i are the i-th components of the true and the predicted l-th label vector,

respectively, and Nset is the number of samples in the set that is being evaluated (i.e.

training, validation, test sets). The optimization method used to train the network is

RMSProp with Nesterov momentum (known as Nadam, see [23]). In order to prevent

overfitting, dropout layers, see [24], are added after each of the hidden layers and are

used during the training phase. Moreover, a portion of the training data is selected as a

validation set, and the loss computed on this set is used to early stop the optimization

when this loss does not decrease for Nes consecutive epochs.

5.2 Evaluation

A dataset is collected using the automatic procedure presented in Section 3. The needle is

pressed on the square surface at a set of positions described by a grid with equal spacings

of 0.75 mm. The tip of the indenter reaches eight different depth levels, from 0.25 mm to

2 mm. This procedure gives 10952 data points, with the normal force measured by the

F/T sensor up to 1 N.

The other parameters used in this experiment are summarized in Table 1.

Symbol Value Description

m 1600 # of averaging regions in the image
n 81 # of bins that grid the sensor surface
- 200 training batch size
- 0.001 learning rate
Nes 50 early stopping parameter

- 0.15 dropout rate
- (800,400,400) hidden layers’ size

Table 1. Parameters used to train the DNN architecture.

Before training, 20% of the dataset is put aside as a test set, that is subsequently used

to evaluate the results.

Given the sparse nature of the label vectors, the evaluation of the results is discussed

with respect to some quantities (additionally to the aRMSE) that are particularly in-

tuitive for this application. These measures have been introduced in [5] and capture the

performance of the sensor in predicting the correct location and magnitude of the force

applied with the needle used for this experiment. For l = 0, 1, . . . , Nset − 1, the following

indexes are computed,

kl = arg max
i=0,1,...,n−1

|y(l)
i |, k̂l = arg max

i=0,1,...,n−1
|ŷ(l)
i |.

71

Paper P2. Transfer learning for vision-based tactile sensing

Figure 7. The predicted normal force distribution (in red) for a sample in the test set, compared to the
ground truth (in blue). x and y are the two Cartesian axes spanning the gel’s surface, with the origin at
one corner. The sign of the normal force F is defined to be negative when directed towards the camera.

An error metric based on the distance between the maximum components of the true and

estimated label vectors is then introduced as,

dloc =
1

Nset

Nset−1∑
l=0

‖c(kl)− c(k̂l)‖2, (2)

where c(k) denotes the location of the center of the bin k on the surface. Similarly, an

error that only considers the magnitude of the maximum components of the true and

estimated label vectors is defined as,

RMSEmc =

√√√√ 1

Nset

Nset−1∑
l=0

(
y

(l)
kl
− ŷ(l)

k̂l

)2

. (3)

The results of the trained model evaluated on the test set are summarized in Table 2.

An example of the predicted normal force distribution is shown in Fig. 7.

Criterion Value Unit

aRMSE 0.009 [N]
dloc 0.107 [mm]

RMSEmc 0.065 [N]

Table 2. Evaluation of the trained model on the test set.

72

6. Calibration

6. Calibration

Collecting large datasets for each sensor is time consuming, even if automatized as de-

scribed in Section 3. Furthermore, a model that has been trained to reconstruct the

normal force distribution on a particular gel may not yield the same prediction perfor-

mance on another gel. Despite the sensor design and the invariance of the chosen features,

there are still other variables that are specific for each sensor and might not have been

accounted for.

Modeling the gel as a linearly elastic half-space, the magnitude of the 3D elastic

displacement u of a marker is related to the concentrated normal force F applied to the

sensor’s surface by a proportional factor, that is,

u = h(E)F, (4)

where h depends on the hardness of the material, through its Young’s modulus E. A

formal derivation of this fact is given by the Bousinnesq solution [25, p. 50]. However,

the resulting hardness of the gel’s surface is sensitive to the actual percentage of the

two components that are mixed together to produce it. When the model trained on

one gel is applied to a gel with a different hardness (i.e. mixing ratio), an appropriate

transformation of the marker displacements observed in the images is necessary to attain

comparable performance. Nevertheless, it is not straightforward to perform this operation

due to the influence of the camera model on this transformation and to the presence of

noise introduced by the camera acquisition and the optical flow computation.

In addition, the relative position of the gel with respect to the camera is crucial. In

fact, the sensitivity of a marker’s position in the image (with respect to a fixed image

coordinate frame) to changes in the distance z from the lens is inversely proportional to

the square of z. That is, from the pinhole camera equations (see [26, p. 49]),

p ∝ 1

z
⇒ ∂p

∂z
∝ 1

z2
, (5)

where p is the distance of the marker in the image from the origin of the image coordinate

frame. Therefore, given the small distance of the markers from the fisheye lens, relatively

small differences in the thickness of the materials across multiple gels (that are introduced

during the production and assembly of the sensor) result in considerably different observed

displacements.

Moreover, if a different camera is used, its intrinsic parameters have an effect on how

the marker displacements are projected onto the image plane. This problem can be solved

by undistorting the images, a procedure that may however introduce other inaccuracies

in compensating for the considerable distortion of the lens.

Considering that the differences mentioned are all at the level of the features, a pre-

processing fully connected layer with a rectified linear unit (ReLU) activation function is

73

Paper P2. Transfer learning for vision-based tactile sensing

Figure 8. The input layer is directed towards a calibration layer (in violet) with 2×m neurons, which
is then connected to the hidden layers of the original architecture.

added to the previously trained DNN architecture between the input and the first hidden

layer. The weight matrix corresponding to this preprocessing layer is initialized with the

identity, which leads to a considerable speed up in learning. In fact, the differences across

sensors are expected to contribute to rather small deviations from a diagonal structure

of the weight matrix.

A considerably smaller number of data points is collected on a new gel (over a coarser

grid), and the augmented architecture (of which a snippet is shown in Fig. 8) is then

trained on this dataset by freezing all the weights apart from the ones belonging to the

added preprocessing layer. In this way, the training time and the data requirements are

greatly reduced, while retaining comparable performance to the one obtained in Section 5.

The parameters used for this procedure are summarized in Table 3 and the results are

shown in Fig. 9, for different sizes of the training set.

Symbol Value Description

- 64 size of training batches
- 0.0001 learning rate
Nes 200 early stopping parameter

- 0.05 dropout rate

Table 3. Parameters used to train the calibration layer

Note that the success of this rather simple calibration technique is mainly due to the

choice of the features described in Section 4. As opposed to learning the force reconstruc-

tion task directly from the pixel values, the averaged optical flow features are in fact

invariant across different gels, except for the alignment and scaling factors mentioned

above.

74

7. Conclusion

Figure 9. A dataset of 800 samples is collected on the sensor that undergoes the calibration procedure.
Portions of different sizes are used as training sets, while the remaining data serve as a test set for
evaluation. The different metrics show that the augmented architecture (in blue) attains comparable
performance to the experiment presented in Section 5 (in red), where the network was trained with a
much larger dataset (7884 data points). Training both the original and the augmented architecture with
the smaller dataset from scratch yields a substantially inferior performance, and the results are therefore
not shown in this plot. The same applies to predicting the normal force distribution on the new gel with
the network trained in Section 5 (on the first gel, before calibration).

The algorithms presented in this paper yield a real-time execution of 60 Hz, with the

implementation not particularly optimized for efficiency. An overview of the time needed

for a single execution of the main steps of the pipeline is shown in Table 4.

7. Conclusion

An approach to sense the normal force distribution on a soft surface has been discussed. A

learning algorithm has been applied to a vision-based tactile sensor, which is inexpensive

75

Paper P2. Transfer learning for vision-based tactile sensing

Component Time (ms)

Image acquisition and cropping 1
Optical flow computation 9

Feature generation 2
Prediction 2

Table 4. Average times for real-time pipeline

and easy to manufacture. The proposed strategy is scalable to arbitrary surfaces and

therefore suitable for robot skin applications.

The results (see the video accompanying this paper1) show that the sensor can recon-

struct the normal force distribution applied with a test indenter after being trained on

an automatically collected dataset. Note that the learning problem discussed here is a

multiple multivariate regression, which maps multi-dimensional feature vectors to multi-

dimensional label vectors. The DNN architecture is able to predict the force applied to

each of the surface bins, which can either be zero or the one actually applied with the

point indenter. Conversely to regression techniques that separately predict each output,

a feedforward neural network can capture the interrelations between the different output

label components. Since the network does not directly use knowledge of the point in-

dentation, this strategy is therefore appealing for more general contacts (e.g. with larger

indenters or multiple contacts) that will be the subject of future work.

The tactile sensing pipeline proposed here estimates the static force distribution from

the images captured by a camera. The training datasets employed in this paper cap-

ture measurements taken after the indentation has reached steady-state. Nevertheless,

dynamic indentations are reconstructed with a limited loss of accuracy, as shown in the

accompanying video. As an example, a detailed analysis of hysteresis effects has the po-

tential of further improving the predictions in both the loading and unloading phases.

In order to speed up the learning and the training data collection, the variations

across different sensors of the same type have been identified at the level of the features.

Therefore, this paper has proposed a calibration procedure that accordingly modifies the

input to the learning architecture, thus transferring the knowledge across different gels.

Acknowledgments

The authors would like to thank Michael Egli and Marc-André Corzillius for their support

in the manufacturing of the sensor, and Laura Gasser for her contribution to the feature

engineering.

1Video: https://youtu.be/CdYK5I6Sccw

76

https://youtu.be/CdYK5I6Sccw

References

References

[1] G. Westling and R. S. Johansson, “Factors influencing the force control during

precision grip”, Experimental brain research, vol. 53, no. 2, pp. 277–284, 1984.

[2] J. B. F. van Erp and H. A. H. C. van Veen, “Touch down: The effect of artificial

touch cues on orientation in microgravity”, Neuroscience Letters, vol. 404, no. 1-

2, pp. 78–82, 2006.

[3] R. S. Dahiya, G. Metta, M. Valle, and G. Sandini, “Tactile sensing - from humans

to humanoids”, IEEE Transactions on Robotics, vol. 26, no. 1, pp. 1–20, 2010.

[4] W. Yuan, S. Dong, and E. H. Adelson, “GelSight: High-resolution robot tactile

sensors for estimating geometry and force”, Sensors, vol. 17, no. 12: 2762, 2017.

[5] C. Sferrazza and R. D’Andrea, “Design, motivation and evaluation of a full-

resolution optical tactile sensor”, Sensors, vol. 19, no. 4: 928, 2019.

[6] M. I. Tiwana, S. J. Redmond, and N. H. Lovell, “A review of tactile sensing

technologies with applications in biomedical engineering”, Sensors and Actuators

A: Physical, vol. 179, pp. 17–31, 2012.

[7] A. Yamaguchi and C. G. Atkeson, “Combining finger vision and optical tactile

sensing: Reducing and handling errors while cutting vegetables”, in Proceedings

of the IEEE-RAS International Conference on Humanoid Robots (Humanoids),

2016, pp. 1045–1051.

[8] M. Koike, S. Saga, T. Okatani, and K. Deguchi, “Sensing method of total-

internal-reflection-based tactile sensor”, in Proceedings of the IEEE World Hap-

tics Conference, 2011, pp. 615–619.

[9] M. K. Johnson, F. Cole, A. Raj, and E. H. Adelson, “Microgeometry capture

using an elastomeric sensor”, ACM Transactions on Graphics, vol. 30, no. 4,

46:1–46:8, 2011.

[10] K. Kamiyama, H. Kajimoto, N. Kawakami, and S. Tachi, “Evaluation of a vision-

based tactile sensor”, in Proceedings of the IEEE International Conference on

Robotics and Automation, vol. 2, 2004, pp. 1542–1547.

[11] C. Chorley, C. Melhuish, T. Pipe, and J. Rossiter, “Development of a tactile

sensor based on biologically inspired edge encoding”, in Proceedings of the Inter-

national Conference on Advanced Robotics, 2009, pp. 1–6.

[12] B. Winstone, G. Griffiths, C. Melhuish, T. Pipe, and J. Rossiter, “TACTIP —

tactile fingertip device, challenges in reduction of size to ready for robot hand

integration”, in Proceedings of the IEEE International Conference on Robotics

and Biomimetics, 2012, pp. 160–166.

[13] O. Kroemer, C. H. Lampert, and J. Peters, “Learning dynamic tactile sensing

with robust vision-based training”, IEEE Transactions on Robotics, vol. 27, no. 3,

pp. 545–557, 2011.

77

Paper P2. Transfer learning for vision-based tactile sensing

[14] M. Meier, F. Patzelt, R. Haschke, and H. J. Ritter, “Tactile convolutional net-

works for online slip and rotation detection”, in Proceedings of the International

Conference on Artificial Neural Networks, vol. 9887, 2016, pp. 12–19.

[15] M. Y. Chuah and S. Kim, “Improved normal and shear tactile force sensor per-

formance via least squares artificial neural network (LSANN)”, in Proceedings of

the IEEE International Conference on Robotics and Automation, 2016, pp. 116–

122.

[16] S. J. Pan, Q. Yang, et al., “A survey on transfer learning”, IEEE Transactions

on knowledge and data engineering, vol. 22, no. 10, pp. 1345–1359, 2010.

[17] B. Bocsi, L. Csató, and J. Peters, “Alignment-based transfer learning for robot

models”, in Proceedings of the International Joint Conference on Neural Net-

works, 2013, pp. 1–7.

[18] S. Dong, W. Yuan, and E. H. Adelson, “Improved gelsight tactile sensor for

measuring geometry and slip”, in Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2017, pp. 137–144.

[19] E. Donlon, S. Dong, M. Liu, J. Li, E. Adelson, and A. Rodriguez, “Gelslim: A

high-resolution, compact, robust, and calibrated tactile-sensing finger”, in Pro-

ceedings of the IEEE/RSJ International Conference on Intelligent Robots and

Systems, 2018, pp. 1927–1934.

[20] D. Fleet and Y. Weiss, “Optical flow estimation”, in Handbook of Mathemati-

cal Models in Computer Vision, N. Paragios, Y. Chen, and O. Faugeras, Eds.,

Springer, 2006.

[21] T. Kroeger, R. Timofte, D. Dai, and L. Van Gool, “Fast optical flow using dense

inverse search”, in Proceedings of the European Conference on Computer Vision,

2016, pp. 471–488.

[22] H. Borchani, G. Varando, C. Bielza, and P. Larrañaga, “A survey on multi-

output regression”, Wiley Interdisciplinary Reviews: Data Mining and Knowledge

Discovery, vol. 5, no. 5, pp. 216–233, 2015.

[23] T. Dozat, “Incorporating Nesterov momentum into Adam”, 2015.

[24] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: A simple way to prevent neural networks from overfitting”, Journal

of Machine Learning Research, vol. 15, pp. 1929–1958, 2014.

[25] K. L. Johnson, Contact mechanics. Cambridge university press, 1987.

[26] R. Szeliski, Computer vision: algorithms and applications. Springer Science &

Business Media, 2010.

78

Paper P3

Ground truth force distribution for

learning-based tactile sensing: a finite

element approach

Carmelo Sferrazza, Adam Wahlsten, Camill Trueeb and Raffaello

D’Andrea

Abstract

Skin-like tactile sensors provide robots with rich feedback related to the force
distribution applied to their soft surface. The complexity of interpreting raw tac-
tile information has driven the use of machine learning algorithms to convert the
sensory feedback to the quantities of interest. However, the lack of ground truth
sources for the entire contact force distribution has mainly limited these techniques
to the sole estimation of the total contact force and the contact center on the sen-
sor’s surface. The method presented in this article uses a finite element model to
obtain ground truth data for the three-dimensional force distribution. The model is
obtained with state-of-the-art material characterization methods and is evaluated
in an indentation setup, where it shows high agreement with the measurements
retrieved from a commercial force-torque sensor. The proposed technique is applied
to a vision-based tactile sensor, which aims to reconstruct the contact force distri-
bution purely from images. Thousands of images are matched to ground truth data
and are used to train a neural network architecture, which is suitable for real-time
predictions.

Published in IEEE Access.

Reprinted, from Carmelo Sferrazza, Adam Wahlsten, Camill Trueeb and Raffaello D’Andrea, “Ground
truth force distribution for learning-based tactile sensing: a finite element approach”, IEEE Access, 2019.
Used under CC BY 4.0.

79

Paper P3. Ground truth force distribution for learning-based tactile sensing

1. Introduction

A growing number of applications require robots to interact with the environment [1]

and with humans [2]. The use of soft materials for robotics applications [3] introduces

intrinsic safety during interactive tasks [4]. In addition, precise estimation of contact

forces is crucial for effective operation without damaging the robot’s surroundings, e.g.,

for manipulation of fragile objects [5].

Modeling the interaction of soft materials with generic objects is highly complex.

As a consequence, several tactile sensing strategies leverage the use of machine learning

algorithms to map sensory feedback to the corresponding quantities of interest, e.g.,

contact forces, shape and materials, see [6]–[8]. These maps are generally retrieved by

means of supervised learning techniques, which fit a model to a large amount of labeled

data, i.e., sensory data paired with the corresponding ground truth.

However, the estimation of the full contact force distribution purely from data is

limited by the lack of a ground truth source that does not alter the interaction between

the soft material and the objects in contact. This article aims to provide a systematic way

of labeling data with ground truth for the three-dimensional force distribution, which is

obtained in simulation through the finite element method (FEM).

The approach is evaluated on a vision-based tactile sensor, originally presented in [9],

which uses a camera to track spherical particles within a transparent gel. Hyperelastic

models of the sensor’s materials are retrieved from state-of-the-art material characteri-

zation tests, which are fully independent of the evaluation experiments. A label vector

representing the ground truth force distribution is assigned to each image collected dur-

ing an automatic indentation procedure. The total contact force also retrieved from the

FEM simulations shows a satisfactory agreement with the measurements obtained from

a commercial force-torque (F/T) sensor.

The dataset generated with the strategy proposed here is then used to train a deep

neural network (DNN) architecture [10], which maps optical flow features to the contact

force distribution. The evaluation of this strategy is carried out in a specific indentation

setup, with the resulting pipeline running in real-time on the CPU of a standard laptop

computer (dual-core, 2.80 GHz) at 40 Hz.

1.1 Related work

In recent decades, tactile sensing research has shown the potential of providing robots

with the sense of touch, exploited both singly [11] or in combination with vision [12].

Among the various categories of tactile sensors, see [13], [14] for a survey, vision-based

(or optical) tactile sensors are based on optical devices that monitor properties related to

the contact between the sensor’s surface (generally soft) and the environment. Among the

advantages of this type of tactile sensors are high resolution, low cost, ease of manufacture

and the preservation of the surface softness.

One category of optical tactile sensors uses a camera to track sparse markers within

a soft, transparent gel, which deforms when subject to external forces, see for example

80

1. Introduction

Figure 1. The tactile sensing technique presented in [9] is suitable to cover large surfaces of arbitrary
shape and dimension. A concept of a robotic hand covered with cameras and a transparent gel embedding
a spread of red particles is shown in this figure.

[15], [16]. Other optical devices are able to provide information about the contact with

the environment, as shown with the use of dynamic vision sensors [17] and depth cameras

[18]. The sensor used here for the evaluation of the proposed approach is based on an RGB

camera (which retains a small size) that tracks a dense spread of particles within a soft gel,

see for example Fig. 1. This design is presented in [9] and shows performance advantages

over sparse marker tracking, and ease of manufacture, without any assumptions about

the surface shape.

Converting tactile information to quantities, such as the force distribution, which

are of high relevance for many robotics tasks (e.g., grasping or manipulation), is not

trivial. In fact, the main complexity is introduced by the absence of a generally valid

closed-form model, which maps the deformation of a hyperelastic material to the external

forces applied to it. The use of data-driven techniques aims to overcome this problem,

approximating this map with a model learned from a collection of past data. In [19],

an optical tactile sensor that exploits photometric stereo and markers painted on its

soft surface is used to reconstruct the total contact force by means of a neural network

architecture. In [20], an array of light emitters and receivers is placed below a soft gel

81

Paper P3. Ground truth force distribution for learning-based tactile sensing

to create tactile information, which is then provided to machine learning algorithms that

reconstruct the location and the depth of an indentation, as well as the type of the

employed indenter. Although these techniques generally require large datasets, transfer

learning techniques can reuse information extracted across different sensors, as shown in

[21].

The FEM [22] is a powerful numerical technique that provides approximate solutions of

boundary value problems arising in engineering, by subdividing a large system into many

smaller parts (called elements). One of the widespread applications of this technique is

the analysis of the behavior of soft materials under various loading conditions. In [23],

the silicone gel pad of an optical tactile sensor is modeled as a linear elastic material, and

the FEM is used to compute the stiffness matrix that approximates the relation between

external forces and displacements of the sensor’s material. Based on reconstructed surface

displacements, this matrix is then used to compute an estimate of the force distribution

applied to the sensor. FEM simulations of a flexible 3D shape sensor are used in [24]

to optimize design parameters. Furthermore, these simulations show the uniqueness of a

strain-to-shape mapping for the case considered. In [25], theoretical justifications based

on FEM equations are provided to reconstruct the external forces applied to soft bodies

using information about their deformation.

The strategy followed in this article exploits FEM simulations to obtain ground truth

data for the contact force distribution applied to the soft surface of a tactile sensor. The

lack of ground truth data has so far prevented the development of learning-based tactile

sensors that predict the full force distribution, limiting them to the estimation of simpler

quantities, e.g., the resultant force and its location, and the depth of a contact. The

hyperelastic models identified capture the full material behavior, including nonlinearities,

rendering highly accurate simulations. Images collected in experiments on a vision-based

tactile sensor are matched to the ground truth and used to train a DNN that reconstructs

the force distribution with high accuracy and in real-time.

1.2 Outline

The sensing principle and the hardware used for the evaluation are presented in Section 2,

while the material characterization is discussed in Section 3. In Section 4, the dataset gen-

eration is described, from the collection of images to the approach proposed for assigning

ground truth labels. The learning algorithm and the results are presented in Section 5.

Section 6 concludes the article with a brief discussion.

2. Hardware

The approach discussed in this article for generating ground truth labels is evaluated on

a vision-based tactile sensor. The tactile sensing strategy is presented in [9], and is based

on tracking the movement of spherical particles, which are randomly spread within a soft

82

2. Hardware

(a) Sensor protoype (b) Particles image

Figure 2. The prototype of the sensor (designed for desktop testing) is shown in (a). The dense spread
of green particles is captured by the camera placed inside the aluminum part. The resulting RGB image
at a state of zero force is shown in (b).

gel placed in front of a camera. The prototype used for the experiments and the camera

image at a state of zero force are shown in Fig. 2.

The soft material is produced in a three-layer structure, as depicted in Fig. 3. From

the bottom (which touches the camera lens) to the top surface, the following materials are

used: 1) a stiffer layer (ELASTOSIL® RT 601 RTV-2, mixing ratio 7:1, shore hardness

45A); 2) the soft gel (Ecoflex™ GEL, mixing ratio 1:1, shore hardness 000-35) embed-

ding the particles, which comprise 1.96 % of the layer volume; 3) a black surface layer

(ELASTOSIL® RT 601 RTV-2, mixing ratio 25:1, shore hardness 10A). After curing,

the complete sensor is placed in an oven at 60 °C for 8 hours. This step has the effect of

reducing the aging of the materials, which is discussed in further detail in Section 3.

1.5 mm
4.5 mm

17 mm

Figure 3. A scheme of the three-layer structure that composes the soft material. The thickness of the
different layers is shown in the figure above. This structure yields a top surface of 32x32 mm.

83

Paper P3. Ground truth force distribution for learning-based tactile sensing

3. Material characterization

Finite element analysis (FEA) of arbitrary contact interactions with the sensor’s soft

surface requires material models that account for geometrical and material nonlineari-

ties. Soft elastomers are often modeled as hyperelastic materials [26], and finding a suit-

able model formulation and corresponding parameters generally necessitates experimental

data from both uniaxial and biaxial stress states [27], [28]. To this end, a large-strain mul-

tiaxial characterization of the two most compliant materials, the Ecoflex GEL and the

Elastosil 25:1, is performed. Samples of both materials are tested in uniaxial tension (UA),

pure shear (PS), and equibiaxial tension (EB) based on previously described protocols

[28]. The bottom layer of Elastosil with the mixing ratio 7:1 is considerably stiffer than

the soft adjacent Ecoflex GEL, see Section 3.5, and is therefore modeled as rigid in the

subsequent FEA.

3.1 Sample preparation

Thin material sheets of each elastomer are prepared as described in Section 2, and cast to

a nominal thickness of 0.5 mm. Test pieces are cut to obtain gauge dimensions (length ×
width) of 40 mm × 10 mm for UA, 10 mm × 60 mm for PS, and a diameter of 30 mm for

membrane inflation tests (EB). The test pieces of Ecoflex GEL used for the mechanical

characterization do not contain the spherical particles, i.e. the pure material behavior is

tested. An ink pattern is applied to the sample surface to facilitate optical strain analysis

[28]. After each experiment, the sample thickness h0 is measured on cross-sections cut

from the central region using a confocal microscope (LSM 5 Pascal, Carl Zeiss AG) with

a 10× objective in brightfield mode.

3.2 Mechanical testing

UA and PS tests are performed on a tensile testing set-up (MTS Systems) consist-

ing of horizontal hydraulic actuators, 50 N force sensors, and a CCD-camera (Pike F-

100B, Allied Vision Technologies GmbH) equipped with a 0.25× telecentric lens (NT55-

349, Edmund Optics Ltd.) that captures top-view images of the deforming test piece.

Displacement-controlled monotonic tests are performed up to a specified nominal strain

(Ecoflex GEL: 200 %; Elastosil 25:1: 100 %) at a nominal strain rate of 0.3 %/s. The

strain-rate dependence is analyzed in an additional UA test, where the sample is loaded

cyclically with strain rates increasing from 0.1 %/s up to 10 %/s.

An EB state of tension is realized in a pressure-controlled membrane inflation test (see

[28] for details). Briefly, a thin, circular sample is clamped on top of a hollow cylinder and

inflated by means of a syringe pump (PhD Ultra, Harvard Apparatus), while a pressure

sensor (LEX 1, Keller AG) measures the inflation pressure p. Top and side-view images

are recorded with CCD cameras (GRAS-14S5C-C, Point Grey Research), and the image

sequences are used for evaluating the in-plane deformation at the apex and the apex

radius of curvature r, respectively.

84

3. Material characterization

All experiments are performed at room temperature and on the same day as completed

curing. The mechanical properties of soft elastomers are known to change with aging [28],

[29], a process attributed to additional, thermally activated cross-linking [29]. To assess

the influence of aging, additional UA test pieces of the same sheets were kept at room

temperature and tested several weeks after fabrication.

3.3 Experimental data analysis

Since nominal strains computed from the clamp displacements are prone to errors due

to sample slippage [30], the local in-plane principal stretches in the center of the test-

piece, λ1 and λ2, are computed from the top-view image sequences using a custom optical

flow-tracking algorithm [28]. The principal stretch in thickness direction is calculated by

assuming material incompressibility, i.e., λ3 = 1/(λ1λ2). In the UA and PS configurations,

the Cauchy stress in loading direction is evaluated as σ = Fλ/(w0h0), where F are the

measured force values, λ := λ1 is the principal stretch in loading direction, and w0 is the

reference width of the test piece. For inflation tests, the measured inflation pressure and

apex radius of curvature can be used to approximate the equibiaxial Cauchy stress at the

apex as σ = pr/(2h0λ3), which holds for h0 � r [31].

3.4 Constitutive models

The experimental data are used to fit the parameters of a hyperelastic, incompressible

Ogden model [31], for which the strain-energy density per unit reference volume reads

W =
K∑
k=1

µk
αk

(λαk1 + λαk2 + λαk3 − 3) , λ1λ2λ3 = 1. (1)

The material parameters µk, αk must satisfy the constraint µkαk > 0, k = 1, 2, . . . , K, and

can be used to calculate the corresponding Young’s modulus as E = (1 + ν)
∑K

k=1 µkαk,

with ν = 0.5 being the Poisson’s ratio of an isotropic incompressible material. The prin-

cipal Cauchy stresses immediately follow from (1) as (see [31], p. 571)

σi =
K∑
k=1

µkλ
αk
i − q, i = 1, 2, 3, (2)

where q is an arbitrary hydrostatic pressure arising due to the incompressibility con-

straint, whose value depends on the boundary conditions. By specializing (2) to the three

experimentally considered load cases (see [31]), the analytical formulas were used to min-

imize the squared error between the model and the experiments using the minimization

routine fmincon available in MATLAB (R2018b, The MathWorks, Inc.). Ogden models

of order K = 2 were found to provide the best description of the data for both materials

compared to neo-Hookean or Mooney–Rivlin formulations; the resulting parameter sets

are reported in Table 1.

85

Paper P3. Ground truth force distribution for learning-based tactile sensing

Material µ1 [kPa] α1 [-] µ2 [kPa] α2 [-]

Ecoflex GEL 7.9652 1.2769 0.3093 3.5676
Elastosil 25:1 85.1168 2.8991 −0.0020 −8.2915

Table 1. Material parameters of Ogden’s model for the Ecoflex GEL and the Elastosil 25:1

3.5 Results

The individual stress-stretch curves for each sample of the two elastomers tested are

reported in Fig. 4, together with the sample averages and the model predictions. Both

models identified provide an excellent description of the mechanical behavior over the

whole range of deformation for all three load cases. The additional UA tests suggest a

negligible influence of both strain rate and shelf time (over 5 weeks) on the mechanical

behavior of the Elastosil 25:1 for the rates and times tested. However, the Ecoflex GEL

shows a dependence on both strain rate and aging, see Fig. 12, in the Appendix A. These

dependencies, as well as potential softening phenomena upon cyclic loading (Mullins

effect), are neglected in the hyperelastic model.

Corresponding Young’s moduli (calculated using the Ogden model coefficients) of the

Ecoflex GEL and the Elastosil 25:1 are 16.9 kPa and 370.2 kPa, respectively. For com-

parison, the Young’s modulus of the stiffer Elastosil 7:1, determined by microindentation

tests (FT-MTA02, FemtoTools AG), is found to be 0.97 MPa, i.e. more than 50 times

stiffer than the Ecoflex GEL.

4. Generating a dataset

The task of mapping the information extracted from the images to the applied contact

force distribution is formulated here as a supervised learning problem. This requires a

training dataset composed of input features (here retrieved from the images) and the

respective ground truth labels (here obtained from finite element simulations, using the

material models derived in Section 3). These labels represent the quantities of interest

in the inference process (e.g., the contact force distribution). The following subsections

describe in detail each of the components of the dataset.

4.1 Features

In order to perform a large number of indentations within a feasible time, an automatic

milling and drilling machine (Fehlmann PICOMAX 56 TOP) is used to press an indenter

against the soft surface of the tactile sensor at different locations and depths. The machine

is equipped with fast and precise motion control (up to 10−3 mm). In the experiments

presented here, a stainless steel spherical-ended cylindrical indenter is used. The indenter

has a diameter of 10 mm and is attached to the spindle of the milling machine, together

86

4. Generating a dataset

1.0 1.5 2.0 2.5 3.0

λ [-]

0

10

20

30

40

C
au

ch
y

st
re

ss
σ

[k
P

a]

UA 3 samples

UA mean

model

1.0 1.5 2.0 2.5 3.0

λ [-]

0

10

20

30

40
PS 3 samples

PS mean

1.0 1.5 2.0 2.5 3.0

λ [-]

0

10

20

30

40
EB 5 samples

EB mean

(a) Mechanical behavior of the Ecoflex GEL

1.0 1.5 2.0 2.5

λ [-]

0

200

400

600

800

C
au

ch
y

st
re

ss
σ

[k
P

a]

UA 3 samples

UA mean

model

1.0 1.5 2.0 2.5

λ [-]

0

200

400

600

800
PS 3 samples

PS mean

1.0 1.5 2.0 2.5

λ [-]

0

400

800

1200

1600
EB 3 samples

EB mean

(b) Mechanical behavior of the Elastosil 25:1

Figure 4. Stress-stretch response of the Ecoflex GEL (a) and the Elastosil 25:1 (b) in, from left to
right, uniaxial tension (UA), pure shear (PS), and equibiaxial tension (EB), together with corresponding
hyperelastic model predictions. Note the different scales in (a) and (b), in particular the significantly
stiffer equibiaxial response of the Elastosil 25:1.

with a six-axis F/T sensor (ATI Mini 27 Titanium). The experimental data collection

setup is shown in Fig. 5.

A total of 13,448 vertical indentations were performed, on an horizontal grid with a

regular spacing of 0.55 mm, at various depths (with a maximum depth of 2 mm). The

RGB images of the particle spread are captured once the indentation has reached the

commanded position. Five images were collected for each indentation in order to improve

the robustness to image noise. The F/T sensor’s measurements of the total vertical and

horizontal (over two perpendicular axes) contact force were recorded.

The optical flow field is extracted from the images (converted to grayscale) through

an algorithm based on Dense Inverse Search [32]. The magnitude and the direction of the

field are then averaged in m image regions of equal area, as described in [9]. The tuples

of magnitude and direction for each of these regions yield a set of 2×m features for each

87

Paper P3. Ground truth force distribution for learning-based tactile sensing

Figure 5. The experimental data collection setup is shown above. The indenter and the F/T sensor
(connected through the cable on the top right) are attached to the spindle of an automatic milling
machine.

(a) Sample indentation (b) Contact pressure distribution

Figure 6. The result of a sample FEM indentation in Abaqus is shown in this figure. The indenter and
the gel are modeled to reflect their actual material and geometric properties, see (a). An example of the
resulting contact pressure distribution (top view) is shown in (b), where the colors are mapped to the
pressure magnitude (from zero, in blue, to the maximum, in red).

88

4. Generating a dataset

data point.

The readings from the F/T sensor are used to assess the quality of the ground truth

labels, as described in the next subsection. The range of forces recorded in this procedure

spans up to 1.7 N in the vertical direction and 0.15 N in each of the horizontal axes.

Note that the large difference in magnitude between the vertical and horizontal forces is

mainly due to the symmetry of the indentations, which leads to the cancellation of the

symmetric contributions to the total horizontal force, with the exception of the regions

close to the edges of the surface.

4.2 Labels

Although the F/T sensor provides the total contact force in each direction, it does not

provide any information about the force distribution over the contact surface. The force

distribution renders a compact representation of various contact aspects for generic in-

dentations. In fact, it encodes information about the contact area and forces applied to

the surface, even in the case of interactions with objects of complex geometries or when

multiple and distinct contact points are present. An example application, in which both

the contact area and the total contact force are necessary, is presented in [33], where the

interaction with a specific object is exploited. The contact force distribution is obtained

in this article through FEA, which essentially simulates the indentation experiments per-

formed with the milling machine, see for example Fig. 6.

The FEM simulations are carried out in Abaqus/Standard [34]. The geometry of

the two top layers of the sensor is modeled as shown in Fig. 3, and material properties

are assigned to each layer as described in Section 3, using the implementation of Ogden’s

model provided by Abaqus. Note that this neglects the influence of the spherical particles,

as the model was derived from tests on the pure Ecoflex GEL. Assuming rigid particles,

the ratio between the Ecoflex–particle composite modulus Ec and the Young’s modulus

E of the pure Ecoflex GEL can be estimated using Eshelby inclusion theory [35], Ec/E =

1/(1 − 5φ/2) ≈ 1.05 for a particle volume fraction φ = 0.0196. The spherical-ended

indenter is modeled as an analytical rigid shell. The finite element mesh is composed of

linear tetrahedral elements (C3D4H) and hexahedral elements with reduced integration

(C3D8RH). Both element types are used with hybrid formulation as appropriate for

incompressible materials. A local mesh refinement is performed at the contact and at the

interface of the materials, with a characteristic element size of 0.3 mm. Tie constraints

are applied at the material interface to enforce the same displacement of the nodes in

contact. The bottom nodes are fixed, reflecting the interface with the much stiffer bottom

layer (Elastosil 7:1).

The contact between the top surface and the indenter is modeled as a hard contact

and discretized with a surface-to-surface method. The friction coefficient between the

indenter and the top layer is estimated by letting a block of Elastosil 25:1 rest on an

inclined stainless steel plate. The maximum tilt angle θ before the block begins to slide is

recorded with an external camera, and the static friction coefficient µ0 is calculated from

static equilibrium as µ0 = tan θ. This procedure yields a friction coefficient of 0.45. The

89

Paper P3. Ground truth force distribution for learning-based tactile sensing

Figure 7. The procedure to discretize the force distribution is sketched in this figure. The sensor’s
surface is discretized into n bins of equal size, with the boundaries shown in red. The surface mesh used
for the FEA is shown in black in the undeformed state. Each node is assigned to the bin that contains
it, as is the case for the green nodes contained in the bin shown in solid red. For each indentation, the
resulting forces at the nodes assigned to the same bin are summed along each axis to determine the three
label vector components for the corresponding bin.

friction coefficient was assumed constant, a possible dependence on the contact pressure

was neglected.

The FEM simulations generate the normal and shear components of the contact force

distribution resulting from each indentation. Note that both the normal and shear forces

acting at each node are generally 3D vectors. As an example, the normal force that stems

from a pure vertical indentation is not necessarily vertical, as a consequence of the mate-

rial deformation (although the vertical component generally has the largest magnitude).

The normal and shear force distributions are discretized by summing the respective

nodal forces inside n surface bins, as shown in Fig. 7. The resulting 3D force for each of

these bins is used as a ground truth label with 3× n components for each data point.

This procedure is applied to assign ground truth labels to the 13,448 indentations

described in the previous subsection. Since there are no readily available sensors that

measure the full contact force distribution with high spatial resolution and without al-

tering the sensor’s soft surface, the quality of the labels is evaluated by comparing the

components of the total force resulting from the FEM simulations with the ones mea-

sured by the F/T sensor. Note that the total force components can be obtained from

the FEM simulations by summing the contact force values of all the n bins, or simply

summing the force values at all nodes of the surface mesh used for the FEA. The resulting

root-mean-square error on the ground truth (RMSEGT) for the entire dataset is reported

in Table 2 for each component. x and y are the horizontal axes, and z is the vertical

axis, which is positive pointing from the camera towards the top surface. The resulting

errors are comparable to the F/T sensor’s resolution, shown in the table as a reference.

In Fig. 8, the plots show the agreement on the z component of the total force between

the F/T sensor’s readings and the results from the FEA for two of the indentation lo-

cations. The good agreement between the F/T measurements and the FEM simulations

90

5. Neural network training

further justifies the simplifying assumptions taken in the material characterization and

the FEM modeling. Additionally, the same plots show that using a linear elastic material

model and neglecting geometric nonlinearities (i.e., NLgeom flag in Abaqus) lead to a

considerable performance loss for large deformations.

Axis RMSEGT F/T resolution

x 0.02 N 0.03 N
y 0.02 N 0.03 N
z 0.06 N 0.06 N

Table 2. Total force agreement (FEA vs F/T sensor)

Although the FEM simulations can be time consuming to carry out, depending on

the accuracy required, most of the operations are highly parallelizable, as for example,

the several indentations. This makes it possible to exploit cluster computers or GPUs

to reduce the time consumption. The simulations presented here are carried out on the

Euler cluster of ETH Zurich.

Note that the strategy presented above provides the ground truth for the full contact

force distribution under no assumptions on the specific tactile sensing technique. It is

therefore not limited to use on vision-based devices, but more generally on data-driven

approaches to the force reconstruction task.

5. Neural network training

5.1 Learning architecture

A feedforward DNN architecture (see Fig. 9) is used to address the supervised learning

task of reconstructing the full contact force distribution from the features extracted from

the images. An input layer with 2 ×m units represents the image features described in

Section 4.1 (a tuple of averaged optical flow magnitude and direction for each of the chosen

image regions). Similarly, an output layer with 3×n units represents the discretized force

distribution applied to the surface of the sensor (a three-dimensional force vector for each

of the discrete surface bins).

Three fully connected hidden layers with a sigmoid activation function are used to

model the map between the inputs and the outputs. Dropout layers are used after each

of the hidden layers during the training phase. Twenty percent of the dataset is used as a

test set, while the remaining data are used for training. The architecture is trained with

PyTorch1 by minimizing the mean squared error (MSE) through the Adam optimizer, see

[36]. The remaining parameters chosen for the optimization, as well as the size of each

layer, are summarized in Table 3. Note that the spatial resolution of the tactile sensor is

1www.pytorch.org

91

www.pytorch.org

Paper P3. Ground truth force distribution for learning-based tactile sensing

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-1.0

-0.5

0.0

Indentation depth [mm]

z
co

m
p

o
n

en
t

o
f

th
e

to
ta

l
fo

rc
e

[N
]

FEM
FEM linear

F/T sensor

(a) Center indentation

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

Indentation depth [mm]

z
co

m
p

on
en

t
of

th
e

to
ta

l
fo

rc
e

[N
]

FEM
FEM linear

F/T sensor

(b) Corner indentation

Figure 8. The plots above show the agreement on the total vertical contact force between the measure-
ments obtained from the F/T sensor (in blue) and the FEM simulations (in red). The results from the
simulations are accurate for indentations at the center of the surface (a) and close to the corners (b) (5
mm from each of the edges) for different indentation depths. The F/T sensor readings are shown with
±0.06 N bars, representing the resolution of the F/T sensor. In green, the results obtained using a linear
elastic model (as opposed to the hyperelastic model described in Section 3) and neglecting geometric
nonlinearities are shown.

92

5. Neural network training

σ

σ

σ

σ

σ

σ

σ

σ

σ

Figure 9. A diagram of the learning architecture used to predict the 3D contact force distribution. In
yellow the input layer, representing the image features, in cyan the hidden layers, and in magenta the
output layer, representing the discretized force distribution.

determined by the size of the surface bins, which have a side of 1.6 mm, comparable to

the spatial resolution of the human fingertip [37]. However, a finer resolution may yield

additional discrimination capabilities, i.e., for sensing an object’s roughness or texture.

In contrast to architectures that directly learn from the pixels (e.g., convolutional

neural networks), the extraction of the optical flow features described in Section 4.1

yields a relatively shallow model, reducing the training times and the data requirements.

Additionally, the use of these features makes it possible to efficiently transfer the model

across different sensors, as shown in previous work [21]. However, these features do not

exploit the information about particles placed at different distances from the camera.

Symbol Value Description

m 1600 # of averaging image regions
n 400 # of discrete surface bins
- (800, 600, 400) hidden layers’ size
- 1E-4 learning rate
- 400 training batch size
- 0.1 dropout rate

Table 3. DNN parameters

5.2 Results

After training, the quality of the DNN predictions is evaluated on the test set. Addition-

ally to the root-mean-square error (RMSE) on the entire test set, the sparse RMSE on

the non-zero values of the FEM ground truth is also computed as

RMSES :=

√
1

|I|
∑

(i,l)∈I

(
f

(l)
i − f̂ (l)

i

)2

,

where f
(l)
i and f̂

(l)
i are the i-th components of the ground truth and the predicted label,

93

Paper P3. Ground truth force distribution for learning-based tactile sensing

respectively, for the l-th sample in the test set, and,

I :=
{

(i, l)∈{0, . . . , 3n− 1}×{0, . . . , Nset − 1} | f (l)
i 6= 0

}
,

with Nset the number of samples in the test set. This metric emphasizes the prediction

performance in the location where the contact is expected.

Moreover, the RMSE on the total force is estimated for both the cases, in which the

ground truth is provided either by the FEM simulations (RMSETFEM) or the F/T sensor

(RMSETF/T). The resulting errors from the predictions on the test set are summarized in

Table 4 for each axis. The values in the last row are affected by both the errors introduced

by the FEM modeling and the DNN predictions. Note that it is only possible to compute

the metrics for the force distribution (first two rows) in relation to the FEM simulations

(the F/T sensor only provides total forces, without specific information about the force

distribution). As a reference, the ranges of force provided by the ground truth labels are

summarized in Table 5. Examples of the predicted contact force distribution are shown

in Fig. 10 and Fig. 11.

The resulting DNN is deployed on the dual-core laptop computer introduced in Sec-

tion 1. The entire pipeline yields real-time predictions on an image stream of 40 frames

per second, as shown in the experiments available in the video2 attached to this article.

The parallelization of both the optical flow algorithm and the neural network prediction

step is not exploited here, but it may be leveraged on commercially available embedded

computers provided of GPUs.

Metric x y z

RMSE 0.001 N 0.001 N 0.003 N
RMSES 0.007 N 0.006 N 0.016 N

RMSETFEM 0.004 N 0.004 N 0.045 N
RMSETF/T 0.025 N 0.021 N 0.082 N

Table 4. Resulting errors on force distribution and total force

Quantity x y z

Force per bin [-0.06,0.06] N [-0.06,0.06] N [-0.15,0] N

Total force [-0.13,0.13] N [-0.13,0.13] N [-1.66,0] N

Table 5. Range of ground truth forces

2Video: https://youtu.be/9A-cONrsiOg

94

https://youtu.be/9A-cONrsiOg

5. Neural network training

(a) x component of the
predicted force distribution

(b) x component of the
ground truth force distribution

(c) y component of the
predicted force distribution

(d) y component of the
ground truth force distribution

(e) z component of
the predicted force distribution

(f) z component of the
ground truth force distribution

Figure 10. The plots above show the predicted (left) and ground truth (right) 3D contact force distri-
bution applied to the top surface of the tactile sensor for an indentation in the test set. Note that the
axes are defined as in Section 4, that is, with two perpendicular horizontal axes x and y, aligned with
two of the top surface edges, and a vertical axis z, which is positive pointing from the camera towards
the top surface.

95

Paper P3. Ground truth force distribution for learning-based tactile sensing

(a) x component of the
predicted force distribution

(b) x component of the
ground truth force distribution

(c) y component of the
predicted force distribution

(d) y component of the
ground truth force distribution

(e) z component of the
predicted force distribution

(f) z component of the
ground truth force distribution

Figure 11. Similarly to Figure 10, the plots above show the predicted (left) and ground truth (right)
3D contact force distribution applied to the top surface of the tactile sensor for an indentation in the test
set. In this case, the indentation was centered at 5 mm from the top and right edges, with the indenter’s
radius being 5 mm. It can be noted a larger asymmetry in the force distribution, affected by the stiffer
edges of the gel.

96

6. Conclusion

6. Conclusion

This article has presented a strategy to provide ground truth contact force distribution

for learning-based tactile sensing. The approach has been evaluated on a vision-based

tactile sensor, which is based on tracking particles spread within a soft gel. After the

characterization of the hyperelastic materials, which provides accurate material models

for FEA, a large number of real indentations and corresponding simulations have been

performed to generate a dataset that includes image features and ground truth for the 3D

contact force distribution. Although the material characterization was performed with

considerably different tests and setup (i.e., UA, PS, EB tests) than the indentations

considered in the evaluation, the total forces recorded in the experiments are comparable

to the ones determined in simulation, showing the generalization potential of the approach

proposed. Note that due to the fact that the simulation labels are assigned to real data

obtained from experimental indentations, the experimental setup needs to be carefully

arranged. As an example, the alignment of the tactile sensor with the reference axes of

the milling machine used for the data collection is crucial for obtaining good performance.

As shown in Section 5, the dataset generated with the strategy proposed in this article

can be used to train a DNN for accurate reconstruction of the force distribution applied

to the surface of the tactile sensor. Although in these experiments the DNN has been

trained and evaluated on a sample indenter, the techniques presented here are directly

applicable to generic shapes and indentations, including multiple and distinct contact

areas. However, this would likely require the collection of a dataset under various contact

conditions, involving interactions with complex objects. Therefore, the generalization

capabilities of this strategy will be object of future work.

A. Strain-rate and shelf-time dependent properties of Ecoflex

GEL

The additional experimental data on the rate-dependence and the aging effect on the

mechanical behavior of the Ecoflex GEL are shown in Fig. 12. While the strain-rate

dependence remains relatively low over the three decades analyzed (Fig. 12a), a significant

stiffening after 9 weeks of storage at room temperature is evident due to material aging

(Fig. 12b). Longer curing times and higher curing temperatures may be used to approach

the final, curing-independent material properties [28], [29].

Acknowledgments

The authors would like to thank Michael Egli for the manufacturing support and Francesco

Filotto for his insights about the generation of the ground truth labels. The work of

97

Paper P3. Ground truth force distribution for learning-based tactile sensing

1.0 1.2 1.4 1.6

λ [-]

0

5

10

15

C
au

ch
y

st
re

ss
σ

[k
P

a]

0.1 % s−1

0.3 % s−1

0.5 % s−1

1.0 % s−1

5.0 % s−1

10.0 % s−1

model

(a) Strain-rate dependence in uniaxial tension for
the Ecoflex GEL

1.0 1.2 1.4 1.6

λ [-]

0

5

10

15

C
au

ch
y

st
re

ss
σ

[k
P

a]

UA mean day 1

UA mean day 82

model

(b) Age-dependent mechanical properties of the
Ecoflex GEL

Figure 12. Uniaxial tension (UA) tests showing (a) strain-rate and (b) shelf-time (aging) dependence
on the mechanical properties of Ecoflex GEL.

A. Wahlsten was supported by the Swiss National Science Foundation under

Grant No. 179012.

References

[1] J. Mahler and K. Goldberg, “Learning Deep Policies for Robot Bin Picking

by Simulating Robust Grasping Sequences”, in Proceedings of the 1st Annual

Conference on Robot Learning, vol. 78, PMLR, 2017, pp. 515–524.

[2] C. D. Kidd and C. Breazeal, “Robots at Home: Understanding Long-Term Human-

Robot Interaction”, in Proceedings of the IEEE/RSJ International Conference

on Intelligent Robots and Systems, IEEE, 2008, pp. 3230–3235.

[3] H. Shen, “Meet the soft, cuddly robots of the future”, Nature, vol. 530, no. 7588,

pp. 24–26, 2016.

[4] H. Abidi and M. Cianchetti, “On Intrinsic Safety of Soft Robots”, Frontiers in

Robotics and AI, vol. 4:5, 2017.

[5] S. L. Gorniak, V. M. Zatsiorsky, and M. L. Latash, “Manipulation of a fragile

object”, Experimental Brain Research, vol. 202, no. 2, pp. 413–430, 2010.

[6] S. Decherchi, P. Gastaldo, R. S. Dahiya, M. Valle, and R. Zunino, “Tactile-Data

Classification of Contact Materials Using Computational Intelligence”, IEEE

Transactions on Robotics, vol. 27, no. 3, pp. 635–639, 2011.

[7] N. Wettels and G. E. Loeb, “Haptic Feature Extraction from a Biomimetic Tac-

tile Sensor: Force, Contact Location and Curvature”, in Proceedings of the IEEE

International Conference on Robotics and Biomimetics, IEEE, 2011, pp. 2471–

2478.

98

References

[8] O. Kroemer, C. H. Lampert, and J. Peters, “Learning Dynamic Tactile Sensing

With Robust Vision-Based Training”, IEEE transactions on robotics, vol. 27,

no. 3, pp. 545–557, 2011.

[9] C. Sferrazza and R. D’Andrea, “Design, Motivation and Evaluation of a Full-

Resolution Optical Tactile Sensor”, Sensors, vol. 19, no. 4:928, 2019.

[10] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT press, 2016.

[11] H. Dang and P. K. Allen, “Learning Grasp Stability”, in Proceedings of the IEEE

International Conference on Robotics and Automation, IEEE, 2012, pp. 2392–

2397.

[12] R. Calandra, A. Owens, D. Jayaraman, J. Lin, W. Yuan, J. Malik, E. H. Adelson,

and S. Levine, “More Than a Feeling: Learning to Grasp and Regrasp Using Vi-

sion and Touch”, IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 3300–

3307, 2018.

[13] M. H. Lee and H. R. Nicholls, “Tactile sensing for mechatronics—a state of the

art survey”, Mechatronics, vol. 9, no. 1, pp. 1–31, 1999.

[14] R. S. Dahiya, G. Metta, M. Valle, and G. Sandini, “Tactile Sensing—From Hu-

mans to Humanoids”, IEEE Transactions on Robotics, vol. 26, no. 1, pp. 1–20,

2010.

[15] A. Yamaguchi and C. G. Atkeson, “Combining Finger Vision and Optical Tac-

tile Sensing: Reducing and Handling Errors While Cutting Vegetables”, in Pro-

ceedings of the IEEE-RAS International Conference on Humanoid Robots (Hu-

manoids), IEEE, 2016, pp. 1045–1051.

[16] B. Ward-Cherrier, N. Pestell, L. Cramphorn, B. Winstone, M. E. Giannaccini,

J. Rossiter, and N. F. Lepora, “The TacTip Family: Soft Optical Tactile Sensors

with 3D-Printed Biomimetic Morphologies”, Soft Robotics, vol. 5, no. 2, pp. 216–

227, 2018.

[17] A. Rigi, F. Baghaei Naeini, D. Makris, and Y. Zweiri, “A Novel Event-Based

Incipient Slip Detection Using Dynamic Active-Pixel Vision Sensor (DAVIS)”,

Sensors, vol. 18, no. 2:333, 2018.

[18] A. Alspach, K. Hashimoto, N. Kuppuswamy, and R. Tedrake, “Soft-bubble: A

highly compliant dense geometry tactile sensor for robot manipulation”, in Pro-

ceedings of the 2nd IEEE International Conference on Soft Robotics (RoboSoft),

IEEE, 2019, pp. 597–604.

[19] W. Yuan, S. Dong, and E. H. Adelson, “GelSight: High-Resolution Robot Tactile

Sensors for Estimating Geometry and Force”, Sensors, vol. 17, no. 12:2762, 2017.

[20] P. Piacenza, E. Hannigan, C. Baumgart, Y. Xiao, S. Park, K. Behrman, W.

Dang, J. Espinal, I. Hussain, I. Kymissis, and M. Ciocarlie, “Touch Sensors with

Overlapping Signals: Concept Investigation on Planar Sensors with Resistive or

Optical Transduction”, CoRR, vol. abs/1802.08209, 2019. arXiv: 1802.08209.

[Online]. Available: http://arxiv.org/abs/1802.08209.

99

https://arxiv.org/abs/1802.08209
http://arxiv.org/abs/1802.08209

Paper P3. Ground truth force distribution for learning-based tactile sensing

[21] C. Sferrazza and R. D’Andrea, “Transfer learning for vision-based tactile sens-

ing”, CoRR, vol. abs/1812.03163, 2019. arXiv: 1812.03163. [Online]. Available:

http://arxiv.org/abs/1812.03163.

[22] D. V. Hutton, Fundamentals of Finite Element Analysis. McGraw-Hill, 2004.

[23] D. Ma, E. Donlon, S. Dong, and A. Rodriguez, “Dense Tactile Force Distribution

Estimation using GelSlim and inverse FEM”, in Proceedings of the IEEE Interna-

tional Conference on Robotics and Automation (ICRA), IEEE, 2019, pp. 5418–

5424.

[24] T. L. T. Lun, K. Wang, J. D. L. Ho, K.-H. Lee, K. Y. Sze, and K.-W. Kwok,

“Real-Time Surface Shape Sensing for Soft and Flexible Structures Using Fiber

Bragg Gratings”, IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1454–

1461, 2019.

[25] Z. Zhang, J. Dequidt, and C. Duriez, “Vision-Based Sensing of External Forces

Acting on Soft Robots Using Finite Element Method”, IEEE Robotics and Au-

tomation Letters, vol. 3, no. 3, pp. 1529–1536, 2018.

[26] R. W. Ogden, Non-linear elastic deformations. Ellis Horwood Ltd., 1984.

[27] P. Steinmann, M. Hossain, and G. Possart, “Hyperelastic models for rubber-

like materials: consistent tangent operators and suitability for Treloar’s data”,

Archive of Applied Mechanics, vol. 82, no. 9, pp. 1183–1217, 2012.

[28] R. Hopf, L. Bernardi, J. Menze, M. Zündel, E. Mazza, and A. E. Ehret, “Ex-

perimental and theoretical analyses of the age-dependent large-strain behavior

of Sylgard 184 (10:1) silicone elastomer”, Journal of the Mechanical Behavior of

Biomedical Materials, vol. 60, pp. 425–437, 2016.

[29] V. Placet and P. Delobelle, “Mechanical properties of bulk polydimethylsiloxane

for microfluidics over a large range of frequencies and aging times”, Journal of

Micromechanics and Microengineering, vol. 25, no. 3, 2015.

[30] L. Bernardi, R. Hopf, A. Ferrari, A. E. Ehret, and E. Mazza, “On the large strain

deformation behavior of silicone-based elastomers for biomedical applications”,

Polym. Test., vol. 58, pp. 189–198, 2017.

[31] R. W. Ogden, “Large deformation isotropic elasticity — on the correlation of

theory and experiment for incompressible rubberlike solids”, in Proceedings of the

Royal Society of London. A. Mathematical, Physical and Engineering Sciences,

vol. 326, 1972, pp. 565–584.

[32] T. Kroeger, R. Timofte, D. Dai, and L. Van Gool, “Fast Optical Flow using

Dense Inverse Search”, in Proceedings of the European Conference on Computer

Vision (ECCV), Springer, 2016, pp. 471–488.

[33] K. Nozu and K. Shimonomura, “Robotic bolt insertion and tightening based on

in-hand object localization and force sensing”, in Proceddings of the IEEE/ASME

International Conference on Advanced Intelligent Mechatronics (AIM), IEEE,

2018, pp. 310–315.

100

https://arxiv.org/abs/1812.03163
http://arxiv.org/abs/1812.03163

References

[34] Dassault Systèmes, Abaqus/Standard User’s Manual, Version 6.14, English, Simu-

lia, 2014.

[35] J. D. Eshelby, “The determination of the elastic field of an ellipsoidal inclusion,

and related problems”, Proc. R. Soc. London. Ser. A. Math. Phys. Sci., vol. 241,

no. 1226, pp. 376–396, 1957.

[36] D. P. Kingma and J. L. Ba, “Adam: A Method for Stochastic Optimization”, in

Proceedings of the International Conference on Learning Representations (ICLR),

2015.

[37] J. Dargahi and S. Najarian, “Human tactile perception as a standard for artificial

tactile sensing—a review”, The International Journal of Medical Robotics and

Computer Assisted Surgery, vol. 1, no. 1, pp. 23–35, 2004.

101

Paper P4

Learning the sense of touch in simulation: a

sim-to-real strategy for vision-based tactile

sensing

Carmelo Sferrazza, Thomas Bi and Raffaello D’Andrea

Abstract

Data-driven approaches to tactile sensing aim to overcome the complexity of ac-
curately modeling contact with soft materials. However, their widespread adoption
is impaired by concerns about data efficiency and the capability to generalize when
applied to various tasks. This paper focuses on both these aspects with regard to a
vision-based tactile sensor, which aims to reconstruct the distribution of the three-
dimensional contact forces applied on its soft surface. Accurate models for the soft
materials and the camera projection, derived via state-of-the-art techniques in the
respective domains, are employed to generate a dataset in simulation. A strategy is
proposed to train a tailored deep neural network entirely from the simulation data.
The resulting learning architecture is directly transferable across multiple tactile
sensors without further training and yields accurate predictions on real data, while
showing promising generalization capabilities to unseen contact conditions.

Published in Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent

Robots and Systems.

©2020 IEEE. Reprinted, with permission, from Carmelo Sferrazza, Thomas Bi and Raffaello D’Andrea,
“Learning the sense of touch in simulation: a sim-to-real strategy for vision-based tactile sensing”,
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2020.

103

Paper P4. Learning the sense of touch in simulation

(a) Simulated indentation (b) Real-world indentation

(c) Synthetic OF features (d) Real-world OF features

(e) Ground truth (f) Real-world prediction

Figure 1. In this work, a fully synthetic dataset (see (a), (c) and (e)) is generated to train an artificial
neural network, which aims to reconstruct the three-dimensional contact force distribution applied to
the soft surface of a vision-based tactile sensor from optical flow (OF) features. The networks exhibits
accurate predictions on real-world data (see (b), (d) and (f)). Note that in (e) and (f) only the vertical
component of the contact force distribution is shown.

1. Introduction

Understanding physical contact with the environment is a crucial requirement for the

safe and reliable operation of robots interacting with their surroundings. As an example,

104

1. Introduction

a robot that aims to grasp objects in a cluttered box benefits from sensory feedback

about the contact with these objects, in order to infer the quality of the grasp and

correct its behavior [1], [2]. Research on tactile sensing focuses on providing such feedback,

generally by processing the information about the deformation of a soft sensing surface

when interacting with external bodies.

Among the various quantities of interest, the distribution of the contact forces applied

to the sensing surface offers high versatility in terms of tasks and conditions. In fact, the

contact force distribution retains information about the total force applied and it densely

encodes the surface patches in contact with external objects. Additionally, its distributed

nature provides a representation that generalizes to various contact conditions, i.e., in-

teraction with a generic number of objects, sensing surfaces of arbitrary shape and size.

However, the complexity of accurately modeling soft materials has hindered the develop-

ment of sensors that can accurately reconstruct the contact force distribution in real-time,

especially in the case of large deformations of the soft sensing surface. As a matter of fact,

when soft materials, e.g. rubber, deform beyond a limited linear elastic region, the stress-

strain relation becomes nonlinear [3]. As a result, accurately mapping the information

about the material deformation to the contact forces generating it becomes challenging

and often computationally infeasible in real-time for general cases.

In order to overcome this limitation, machine learning approaches have been proposed

to obtain a data-driven model, which approximates the mapping of interest and yields

appropriate inference times. A drawback in these approaches is the large amount of data

typically required for each sensor produced and their limited generalization capabilities

when applied to data not seen during the training time. This paper proposes a strategy

to train a deep neural network with data obtained via highly accurate, state-of-the-art

simulations of a vision-based tactile sensor, exploiting hyperelastic material models and

an ideal camera projection. The network is directly deployed to a real-world application,

where the images are transformed to the reference simulation camera model. In this way,

the network does not need to be trained for each sensor, but only the appropriate camera

calibration parameters need to be extracted. The real-world evaluation shows an accurate

transfer from simulation to reality (sim-to-real, or sim2real), and a refinement strategy is

proposed to further improve the real-world performance with a single indentation. In the

case considered in this paper, the training dataset only consists of simulations of single

spherical indentations. However, the model deployed in reality shows promising general-

ization capabilities to multiple contact conditions and to indenters of different shapes.

The sensing pipeline presented here runs on the CPU of a standard laptop computer

(dual-core, 2.80 GHz) at 50 Hz.

1.1 Related work

The estimation of contact forces using tactile sensors has been largely investigated in the

context of contact with single objects, where the force magnitude and location, or the

object shape is of interest. Several approaches have been developed for resistive [4], baro-

metric measurement-based [5], capacitive [6], and optical [7] tactile sensors, either using

105

Paper P4. Learning the sense of touch in simulation

model-based or data-driven methods. Compared to these categories, optical (or vision-

based) tactile sensors exhibit very high resolution, low cost and ease of manufacture, at

the expense of non-trivial data processing.

In the context of vision-based tactile sensors, the reconstruction of the contact force

distribution was first addressed in [8]. The soft material was modeled as an infinite, linear

elastic half-space and a closed-form solution was proposed to map the deformation of the

material to the contact force distribution. In [9], a technique based on the finite element

method (FEM) was proposed to estimate the force distribution in real-time, given the

assumption of linear elasticity. The same assumption was used in [10] to formulate an

optimization-based method that estimated the surface patches in contact with external

objects. While data-driven techniques are potentially suitable to overcome the complexity

of modeling soft materials without introducing assumptions only valid for small defor-

mations, their application to the estimation of distributed quantities has mainly been

prevented by the lack of a ground truth source, which is crucial for supervised learning

approaches. However, in [11] a strategy based on offline finite element simulations was

recently proposed to address this problem and provide ground truth labels for generic

data-driven tactile sensors. A hyperelastic model was shown to outperform a linear elastic

formulation also for rather small deformations.

The major drawback of learning-based approaches to tactile sensing, either estimating

total forces or distributed quantities, lies in their high data requirements. To partially

address this issue, a transfer learning approach was proposed in [12] to reduce the amount

of data needed to transfer a learning architecture across the different sensors produced.

Recently, simulation approaches have been investigated for different sensing principles in

order to perform most of the training phase with synthetic data. In [13], a simulation

model was presented to generate raw data for a sensor based on barometric measurements,

with the location and magnitude of the force applied at a contact point as inputs. Tactile

images for an optical sensor based on multi-color LEDs were generated in simulation in

[14] for various deformations of the sensing surface. Binary tactile contacts were simulated

in the context of a grasping scenario in [15], while a sim-to-real approach was investigated

in [16] for the estimation of conductivity on the surface of a tactile sensor based on

electrical impedance tomography.

This work aims to provide a simulation strategy to generate an entire supervised

learning dataset for a vision-based tactile sensor, with the objective of estimating the full

contact force distribution from real-world tactile images. The sensor was first presented

in [17] and is based on a camera that tracks a random spread of particles within a

soft, transparent material to infer information about the forces applied to the sensing

surface. In the proposed design, all pixels of the camera provide informative data, which

can be leveraged via a machine learning architecture aiming to reconstruct the three-

dimensional contact force distribution with high accuracy, as shown in [11]. As opposed

to [11], where simulated ground truth labels for the force distribution were matched to

real-world images, this work proposes to also generate the tactile images in simulation

and to use the entire synthetic dataset in a supervised learning fashion. To this purpose,

106

2. Sensing principle

deformation data were generated via FEM simulations based on hyperelastic material

models and fed through an ideal pinhole camera model. For real-world deployment, the

tactile images obtained on a real tactile sensor were transformed to the pinhole reference

model, by employing state-of-the-art calibration methods. In this way, not only can the

model trained in simulation be deployed to real-world sensors, but it can also be easily

transfered across multiple instances of the sensors produced, provided that the calibration

model has been extracted.

1.2 Outline

The sensing principle and the hardware used to evaluate the approach presented here are

discussed in Section 2. The generation of synthetic tactile images and ground truth labels

are described in Section 3. In Section 4, the transformation applied to real-world data

is presented, as well as the procedure to obtain an accurate camera projection model.

The results are discussed in Section 5, while Section 6 draws the conclusions and gives an

outlook on future work. In the remainder of this paper, vectors are expressed as tuples

for ease of notation, with dimension and stacking clear from the context.

2. Sensing principle

The sensor employed in this paper follows the principle introduced in [17]. Three soft

silicone layers are poured on top of an RGB fisheye camera (ELP USBFHD06H), sur-

rounded by LEDs. From the bottom: a stiff transparent layer (ELASTOSIL® RT 601

RTV-2, mixing ratio 7:1, shore hardness 45A), which serves as a spacer and for light

diffusion; a very soft transparent layer (EcoflexTM GEL, ratio 1:1, shore hardness 000-

35), which embeds a spread of randomly distributed polyethylene particles (microspheres

with a diameter of 150 to 180 µm); a black layer (ELASTOSIL® RT 601 RTV-2, ratio

25:1, shore hardness 10A), which is more resistant to repeated contact than the middle

layer and shields the sensor from external light. An exploded view of the sensor layers

is depicted in Fig. 2. The volume of the gel containing the particles is 30×30×4.5 mm,

while the joint volume of the particle layer and the black layer is 32×32×6 mm.

When the soft sensing surface is subject to force, the material deforms and displaces

the particles tracked by the camera. This motion generates different patterns in the

images, which can be processed to extract information about the contact force distribution

causing the deformation.

3. Learning in simulation

The contact force distribution is modeled here in a discretized fashion, by dividing the

square sensing surface in n× n bins of equal area. Three matrices FG
x , F

G
y , F

G
z of size

107

Paper P4. Learning the sense of touch in simulation

Figure 2. An exploded view of the tactile sensor employed in this paper is shown in the figure above.

n× n represent the force distribution in the gel coordinate system, where the origin is

placed at one of the surface corners, xG and yG are aligned with two perpendicular surface

edges and zG is the vertical axis, pointing from the camera towards the surface, as shown

in Fig. 4. Each matrix element represents the respective force component applied at the

respective bin.

The reconstruction of the force distribution can be posed as a supervised learning

problem, even if there are no readily available commercial sensors that can measure

the ground truth, i.e., the three-dimensional contact force distribution applied to soft

materials, without altering the sensing surface. In fact, in [11] it was shown how highly

accurate ground truth force distributions can be obtained by means of FEM simulations,

where the corresponding nodal forces are summed within each bin to obtain the force

distribution matrices. In [11], hyperelastic models of the soft materials employed were

obtained via state-of-the-art characterization methods and used to simulate thousands

of indentation experiments. In order to create a supervised learning dataset (see Fig. 3),

the resulting ground truth labels were then matched to optical flow features extracted

via an algorithm based on dense inverse search (DIS [18]). These features were obtained

by replicating in reality the same indentation experiments. Conversely, in this paper the

optical flow features, which are the input to the learning algorithm, are obtained as well

from the simulated indentations and together with the ground truth labels contribute to

generating a fully synthetic training dataset, greatly reducing the data collection efforts.

The sim-to-real transfer is evaluated on real-world indentations performed at sampled

surface locations, as discussed in Section 4.

3.1 Generating optical flow features

The DIS optical flow algorithm estimates the displacement of the particles at each pixel

between a reference frame (with the gel at rest) and the current frame. In order to

108

3. Learning in simulation

FEM simulations

Real-world indentations

Training
+

Evaluation

Ground truth
force distribution

DIS optical flow

(a) Dataset generation as in [11]

FEM simulations

Real-world indentations

Training

Evaluation

Synthetic
optical flow

Ground truth
force distribution

DIS optical flow
from

remapped images

(b) Dataset generation proposed here

Figure 3. As shown in (a), the strategy proposed in [11] was based on the collection of real-world images,
from which optical flow features were extracted. Ground truth labels were obtained in simulation and
assigned to these features to train a supervised learning architecture. The resulting architecture was
then evaluated on a portion of this dataset, not used during training. Here the training dataset is fully
generated in simulation by extracting synthetic optical flow features from FEM indentations. In this
step, a reference pinhole camera model is employed. The sim-to-real transfer is evaluated on a dataset
composed of real optical flow features, which are computed after the real-world (distorted) images are
remapped to the reference pinhole model.

zG

xG

zP
xP

∆sj

∆pj

Figure 4. The figure depicts the coordinate systems employed, here shown in the two-dimensional
case. The displacement vectors are retrieved from the FEM simulations in the gel coordinate system
(superscript G) and transformed to the pinhole coordinate system (superscript P). Finally, the projected
pixel displacements are computed as described in (5)-(6).

109

Paper P4. Learning the sense of touch in simulation

replicate this functionality on the simulated indentations, the undeformed gel volume

containing the particles is first sampled on a fine uniform grid of points. In the remainder

of this paper, the positions of these points with the gel at rest are denoted as undeformed

locations, while their positions after deformation are denoted as deformed locations. For

each indentation, the respective displacement vectors are assigned to the undeformed

locations, via an inverse distance weighted interpolation [19] of the displacement field

obtained from the FEM simulations. This step ensures that 3D displacement vectors

are estimated at uniformly spaced locations, since the FEM mesh is generally refined

at sections of interest. Each of these displacement vectors emulates the motion that a

particle located at the respective undeformed location at rest would experience during

an indentation. Within a specific indentation, this means that a particle with an initial

location in the gel coordinate system at

sGj := (xGj , y
G
j , z

G
j) (1)

is expected to move to a deformed location sGj + ∆sGj , where

∆sGj := (∆xSj ,∆y
S
j ,∆z

S
j) (2)

represents the corresponding displacement vector, for j = 0, . . . , Ns − 1, with Ns the num-

ber of sampled locations. In order to simulate an optical flow estimation, the displacement

vectors are projected to the image plane. This involves a coordinate transformation, from

the gel coordinate system (aligned with the simulation coordinate system) to the image,

employing an ideal pinhole camera model [20, p. 49], as depicted in Fig. 4. To this purpose,

a displacement vector and its corresponding undeformed location are first transformed to

the 3D pinhole camera coordinate system as

∆sPj = RGP∆sGj , (3)

sPj = RGP sGj + tGP , (4)

where RGP and tGP := (tGPx , tGPy , tGPz) are the corresponding rotation matrix and a trans-

lation vector, respectively, comprising the reference camera’s extrinsic parameters. The

choice of these parameters is further discussed in Section 4. The resulting pixel displace-

ment and the projection of the corresponding undeformed location on the image, i.e.,

∆pj := (∆uj,∆vj) and pj := (uj, vj), respectively, are then computed as

∆pj = Ka,j(s
P
j + ∆sPj)−Kb,js

P
j , (5)

pj = Kb,js
P
j , (6)

110

3. Learning in simulation

with

Ka,j =
1

zPj + ∆zPj

[
f 0 uc

0 f vc

]
, (7)

Kb,j =
1

zPj

[
f 0 uc

0 f vc

]
, (8)

where |f | is the focal length and the camera center coordinates uc, vc are set at the image

center. Since the particle layer has a square horizontal section of 30×30 mm, the image

region of interest is set as a square of (arbitrary) dimension 440×440 pixels and the focal

length is equally chosen for both the image coordinates as

f :=
440

30
tGPz , (9)

to exactly fill the image with the particle layer. Note that f is negative, due to the

definition of the pinhole camera coordinate system.

In order to create a compact set of features, the image is divided into m×m regions

of equal area. The pixel displacements are assigned to the image regions, based on the

coordinates of the corresponding pj. Then, the average of these displacements within

each image region (i, l), for i = 0, . . . ,m− 1 and l = 0, . . . ,m− 1, is computed for both

components as

∆uil =
1

‖wil‖
∑
j∈Jil

wj∆uj, (10)

∆vil =
1

‖wil‖
∑
j∈Jil

wj∆vj, (11)

where Jil ⊆ {0, . . . , Ns − 1} is the set of the displacement indices assigned to the region

(i, l), wj are averaging weights and ‖wil‖ :=
∑

j∈Jil wj.

The weights are introduced to account for occlusions occurring in real-world images. In

fact, since the synthetic optical flow emulates the displacement of the particles in reality,

one must consider the fact that on real images some of the particles might be occluded

by the particles closer to the camera. For this reason, each projected displacement is

weighted in (10)-(11) with the probability of both its deformed and undeformed locations

being visible in the image, that is,

wj := ρjσj, (12)

where ρj is the probability that a particle located (in the gel coordinate system) at sGj
is visible in the image frame taken with the gel at rest, and σj is the probability that a

111

Paper P4. Learning the sense of touch in simulation

particle located at sGj + ∆sGj is visible in the image frame taken after deformation, that

is, at the time the optical flow is being computed. Note that here the two visibility events

in the respective frames have been considered to be independent, which might not be a

valid assumption for some special cases (e.g., for particles placed on the camera optical

axis during centered vertical indentations). However, this simplifies the derivation and

has proved to be a reasonable assumption in practice. The two probability values for

each weight can be computed via Monte Carlo simulations, assuming that the density

of the particles does not considerably change during an indentation. This is done by

randomly drawing 100 different particle configurations and projecting them to the image

plane using (4) and (6). Assuming that a spherical particle is projected to a circle in the

image, the radius r of the projected circle is computed as shown in the Appendix, and

a particle is considered as occluded if its center in the image is covered by any other

circle generated by a particle closer to the camera. Note that in the calculation of the

weights, the particle configurations are sampled using the known particle-to-silicone ratio.

The resulting particles are generally less than Ns, which is chosen to be large enough to

enhance robustness to numerical noise in the FEM results.

The probability of a visible particle is approximated in discrete 3D bins, to which

particles are assigned depending on their position within the gel, dividing the number

of visible particles in the bin by the total number of particles assigned to the respective

bin. This is done for each particle layer configuration and the resulting probabilities

are averaged over the 100 configurations. Both the values ρj and σj are retrieved from

this probability discretization, depending on the locations sGj and sGj + ∆sGj for the j-th

displacement vector. Note that this is a valid procedure for computing σj only if the

density of the particles is constant over an indentation. This assumption is justified by

the large number of particles spread within the gel at varying depths. However, this

approximation becomes more severe for large deformations, when the particles tend not

to spread homogeneously.

3.2 Learning architecture

The learning task is addressed here as an image-to-image translation, also known as pixel-

wise regression. In fact, the quantities obtained from (10)-(11) are rearranged to form an

image-like tensor with two channels each with m × m elements. Similarly, the three

matrices FG
x , F

G
y , F

G
z representing the force distribution are grouped in three channels

each with n × n elements. In the following, the case subject of evaluation, i.e., m = 40,

n = 20, will be considered.

In this paper, the neural network architecture is largely inspired by u-net [21], a well-

known architecture widely employed for image segmentation tasks. The original version in

[21] exhibited a fully convolutional structure, with a contracting path to extract context

from the image patches and a symmetric expanding path (via upsampling) to assign a

label to each pixel. Additionally, high resolution information was fed to the upsampled

layers to perform pixel-wise regression. Here, the blocks inspired by u-net are placed after

a spatial transformer network (STN [22]), which learns an affine transformation of the

112

4. Real data adjustment

Optical flow
feature image STN u-net FG

x , F
G
y , F

G
z

3×
3

co
nv

,
4

3×
3

co
nv

,
4

1/
2

m
ax

p
oo

lin
g

3×
3

co
nv

,
8

3×
3

co
nv

,
8

3×
3

u
p

co
nv

,
4

3×
3

co
nv

,
4

3×
3

co
nv

,
4

2×
2

co
nv

,
3

(a) Learning architecture and u-net blocks

5×
5

co
nv

,
4

1/
3

m
ax

p
oo

lin
g

3×
3

co
nv

,
4

1/
2

m
ax

p
oo

lin
g

F
C

32

F
C

6

(b) The STN localization network

Figure 5. The learning architecture is built upon an STN part and a slimmer version of u-net. For ease
of visualization, some abbreviations have been introduced above. For instance, the label “3×3 conv, 4”
indicates a convolutional layer with four output channels and a 3×3 kernel, while “1/2 max pooling”
refers to a maximum pooling layer, which subsamples the input to half of its original size. Finally, “3×3
upconv, 4” represents an upconvolutional layer, which doubles the input size, and “FC 32” denotes a fully
connected layer with 32 units. In (a), the dashed arrow indicates the concatenation of the high resolution
content with the upsampled information. For all 3×3 convolutional layers, unitary zero-padding and a
stride of 1 were used to retain the input size, as opposed to the last layer, where no padding and a stride
of 2 halve the input to obtain 20×20 force distribution matrices. In (b), the localization network of the
STN is shown, which learns a 6D affine transformation. No padding and a stride of 1 were used for the
convolutional layers. In both (a) and (b), batch normalization and rectified linear unit activations were
used at all convolutional and fully connected layers, with the exception of the respective output layers
(in green).

input features conditioned to the input itself, with the purpose of aligning the optical

flow with the contact force distribution. The architecture is depicted in Fig. 5. Note that

the STN block only transforms the input image using the learned affine transformation,

retaining the initial input size.

In order to close the sim-to-real gap, the synthetic optical flow features are perturbed

during training via elastic deformation noise (see Fig. 6), which has been proven to be

especially suitable for pixel-wise regression tasks [23].

4. Real data adjustment

In real-world applications, the pinhole camera model does not capture the full camera

projection, which exhibits lens distortion and various non-idealities. Camera calibration

113

Paper P4. Learning the sense of touch in simulation

(a) Original OF features (b) Deformed OF features

Figure 6. In this figure, an example of the synthetic optical flow (OF) features before (a) and after
(b) elastic deformation is shown. The color represents direction, while darker regions represent smaller
displacements.

techniques aim to find the actual camera model from real images taken with the camera of

interest. In this section, a procedure is proposed that enables the deployment of the neural

network trained in simulation as described in Section 3 (assuming a pinhole projection) to

a real-world sensor with a generic camera model. First, the employed camera calibration

technique is presented. Then, an algorithm to remap the real world images to the pinhole

reference model introduced in Section 3 is described.

4.1 Camera calibration

Given the large field of view of the fisheye lens employed, a calibration technique that

accounts for the lens distortion is required to accurately match the camera projection.

The strategy presented in [24] was employed in this paper, since it is tailored to omni-

directional and fisheye cameras and enables straightforward calibration via a Matlab

toolbox. However, given the fact that in the application discussed here the camera is

surrounded by silicone, the different refraction index with respect to air causes the light

rays to deviate. Although the calibration method presented in [24] does not account for

these refraction effects, shooting the calibration images directly through the same silicone

medium (the stiffer rubber described in Section 2) yielded accurate results. One of the

calibration images is shown in Fig. 7. As a result of the calibration, the toolbox provides a

function denoted as world2cam, which accounts for the intrinsic parameters and projects

a 3D point in the coordinate system of the real-world camera to the corresponding pixel

in the image. By feeding an image in which the origin of the calibration pattern is aligned

with the FEM coordinate system, the toolbox also outputs the extrinsic parameters of

interest, RGC and tGC . These parameters represent a transformation from the FEM (or

gel) coordinate system to the coordinate system of the real-world camera (see Fig. 8).

114

4. Real data adjustment

(a) Calibration procedure (b) Calibration image

Figure 7. Six calibration images were used to obtain the real-world camera model. The images were taken
before casting the two upper silicone layers, by placing a grid pattern at different positions, with only
a transparent silicone medium of different shapes between the camera and the pattern. The calibration
using the toolbox described in [24] obtained a subpixel reprojection error.

zG

xG

zP xP

zC

xC

tGP
z

Figure 8. The remapping procedure is shown in this figure. A new pinhole camera image is generated
by filling each pixel with the corresponding real image pixel, found by reflecting the appropriate image
ray on the bottom of the particle layer. Note that this approximation is exact when the origins of the
pinhole (superscript P) and real (superscript C) camera coordinate systems coincide.

4.2 Images remapping

The camera model obtained via calibration is employed to remap the images as if they

were shot with the reference pinhole camera described in Section 3. In this way, the neural

network trained on the simulation data obtained via the pinhole model can be deployed

to real tactile sensors with different intrinsic and extrinsic parameters, provided that they

share the same gel geometry and mechanical properties.

The procedure is based on reprojecting the pixels in the distorted image onto the

pinhole image via the corresponding 3D world points. Since the images provide 2D infor-

mation, only the direction of the corresponding 3D points can be retrieved. To overcome

115

Paper P4. Learning the sense of touch in simulation

(a) Original image (b) Remapped image

Figure 9. As shown in this figure, the remapping procedure removes most of the image distortion (see
(a)), with the particle layer captured as a square in (b).

this limitation, the vertical coordinate of the 3D points is considered to be fixed and

known. Since the majority of the particles visible in the image are the ones closer to the

camera, this vertical coordinate is set to the lowest point zP := tGPz of the silicone layer

containing the particles. Fig. 8 depicts the remapping procedure.

For each pixel p := (u, v) in the pinhole image, the respective 3D world approximation

sP := (xP , yP , tGPz) is retrieved inverting the pinhole projection (see (6)) as

xP =
tGPz
f

(u− uc), yP =
tGPz
f

(v − vc). (13)

The 3D point is then transformed to the coordinate system of the real-world camera via

the appropriate rotation and translation,

sC = RGC
(
RGP

)−1 (
sP − tGP

)
+ tGC . (14)

Note that the reference pinhole extrinsic parameters RGP and tGP , which can be arbi-

trarily chosen, are set in the vicinity of the expected RGC and tGC , respectively, to limit

the impact of the approximation introduced above. These parameters depend on the de-

sign and assembly of the real-world tactile sensors. Finally, the corresponding pixel in

the real-world image is retrieved via the world2cam function. An example of a remapped

image is shown in Fig. 9.

5. Results

A fully synthetic dataset including 13,448 vertical indentations over the entire sensing

surface was generated as described in Section 3. A stainless steel, spherical-ended cylin-

116

5. Results

drical indenter with a diameter of 10 mm was modeled and used for all the indentations.

The simulations were of the same type as in [11], where additional details are given.

The same setup was prepared in reality, where an equal indenter was attached to

the spindle of an automatically controlled milling machine (Fehlmann PICOMAX 56

TOP). In this real-world scenario 200 indentations were performed, where the images

were collected and matched to simulated ground truth labels, as described in [11]. These

indentations were in the same range as the synthetic data and spanned a depth of 2 mm

and normal forces up to 1.7 N. The simulation and real-world scenarios are depicted in

Fig. 3.

The neural network was trained on the fully synthetic dataset, by minimizing the

mean squared error via the Adam optimizer [25], as implemented in Pytorch. The net-

work was then evaluated on the real-world data, composed of real images and respective

synthetic labels. As described in Section 4, the real-world images were remapped to the

reference pinhole camera frame via the calibrated camera model, using both the intrinsic

and extrinsic parameters. Additionally, a strategy was implemented to compensate for

the mismatches introduced during production, assembly and calibration. In fact, in the

current setup the exact alignment of the calibration pattern with the gel frame, which is

necessary to retrieve the extrinsic parameters, is challenging. In order to take these devi-

ations into account, a single real-world indentation taken in the center of the sensor at a

depth of 1.25 mm was used to perform a local refinement of tGC . This refinement was per-

formed via a grid search around tGC , by minimizing the mean squared error between the

synthetic and real-world optical flow features. The magnitude of the resulting deviation

was 0.7 mm, which is compatible with the hypothesis that this error was mainly intro-

duced during the placement of the calibration pattern. A sample prediction on real-world

data after refinement is shown in Fig. 1. The evaluation results on the full real-world

dataset are shown in Table 1 for the cases with and without refinement. The RMSE

rows show the root mean squared error on the respective components of the 3D contact

force distribution. Additionally, the root mean squared error on the total force applied is

shown, denoted as RMSET. Note that the total force components can be computed by

summing the appropriate force values across all the surface bins. The performance after

the one-point refinement is comparable to the resolution of commercial force sensors, as

was the case in [11] using real-world training images. The remaining gap is in large part

due to artifacts introduced by the DIS algorithm (see Fig. 1) and to the modeling approx-

imations. The convolutional nature of the learning architecture presented here exhibits

promising generalization capabilities. In fact, the network was only trained on vertical

indentations with a single, spherical-ended indenter, but exhibits sensible predictions for

contacts with multiple bodies and objects of different shapes, as shown in Fig. 10. The

real-time prediction at 50 Hz on a standard laptop CPU is shown in the video1 attached

to this paper, which also includes the prediction of the horizontal force distribution.

1Video: https://youtu.be/dDTga9PgWS0

117

https://youtu.be/dDTga9PgWS0

Paper P4. Learning the sense of touch in simulation

Metric FG
x FG

y FG
z

RMSE 0.002 N 0.002 N 0.005 N
RMSET 0.032 N 0.043 N 0.150 N

RMSE (refined) 0.001 N 0.001 N 0.004 N
RMSET (refined) 0.032 N 0.041 N 0.131 N

Table 1. Resulting errors on force distribution and total force

(a) Multi-contact indentation (b) FG
z prediction

(c) Generic-shape indentation (d) FG
z prediction

Figure 10. In (a), the indentation experiment involving multiple contact points is shown. The network
fully trained on simulated single indentations detects both the distinct contact locations (see (b)), as
well as the different pressure intensity (the two indenters have indeed a difference in length of 1 mm).
Additionally, (c) and (d) show an example of the generalization of the network when sensing the contact
with an object of a different shape than the one seen during training.

6. Conclusion

In this paper, a strategy has been presented to train an artificial neural network, which

aims to reconstruct the three-dimensional contact force distribution applied to the soft

surface of a vision-based tactile sensor. The generation of a fully synthetic dataset enables

the training of the network in simulation, exhibiting accurate sim-to-real transfer when

evaluated on real-world data. Additionally, the convolutional structure of the network

facilitates generalization to a variety of contact conditions.

The remaining errors can mainly be explained by two factors: the discrepancies be-

118

A. Appendix

α

(x̃Pp , z
P
p)

(x̃Pr , z
P
r)

r

zP

x̃P

β

γ

Figure 11. As shown in this figure, the pixel radius r on the image is computed by taking the difference
between the pixel coordinate of the particle center and the projection of the point where the image ray
is tangent to the particle.

tween real and synthetic optical flow features; and the fact that the elastic deformation

noise injected during training and found to be essential for the sim-to-real transfer may

excessively deteriorate the information relating to shear forces, which are rather small in

the vertical indentation setup. Future work will focus on both these issues, by investi-

gating appropriate noise characteristics that aim to emulate the imperfections of the real

optical flow, and by augmenting the dataset with contact conditions that exhibit higher

shear forces.

A. Appendix

Let sPp :=
(
xPp , y

P
p , z

P
p

)
be the position of a particle of radius R in the pinhole camera

frame. In general, a spherical particle is projected onto an ellipse in the image plane,

which has its major axis in the plane containing the camera optical axis and the camera

ray passing through the center of the sphere. A proof of this fact can be found in [26].

Therefore, the fraction r of the major axis can be computed by a 2D analysis on this

plane, see Fig. 11, via the following steps:

x̃Pp =

√(
xPp
)2

+
(
yPp
)2
, (15)

α = arctan

(
−z

P
p

x̃Pp

)
, β = arcsin

 R√(
x̃Pp
)2

+
(
zPp
)2

 ,

γ = α− β,
x̃Pr = x̃Pp +R sin γ, zPr = zPp +R cos γ,

r =

∣∣∣∣∣f
(
x̃Pr
zPr
− x̃Pp
zPp

)∣∣∣∣∣ . (16)

119

Paper P4. Learning the sense of touch in simulation

In Section 3, considering the small size of the particles, the projected ellipse is approxi-

mated as a circle with radius r, computed as in (16).

Acknowledgments

The authors would like to thank Michael Egli for his support in the sensor manufacture.

References

[1] R. Calandra, A. Owens, D. Jayaraman, J. Lin, W. Yuan, J. Malik, E. H. Adelson,

and S. Levine, “More Than a Feeling: Learning to Grasp and Regrasp Using Vi-

sion and Touch”, IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 3300–

3307, 2018.

[2] S. Dong and A. Rodriguez, “Tactile-Based Insertion for Dense Box-Packing”,

in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), 2019, pp. 7953–7960.

[3] P. A. L. S. Martins, R. M. Natal Jorge, and A. J. M. Ferreira, “A Comparative

Study of Several Material Models for Prediction of Hyperelastic Properties: Ap-

plication to Silicone-Rubber and Soft Tissues”, Strain, vol. 42, no. 3, pp. 135–

147, 2006.

[4] K. Weiß and H. Worn, “The Working Principle of Resistive Tactile Sensor Cells”,

in Proceedings of the IEEE International Conference Mechatronics and Automa-

tion, vol. 1, 2005, pp. 471–476.

[5] B. Sundaralingam, A. S. Lambert, A. Handa, B. Boots, T. Hermans, S. Birchfield,

N. Ratliff, and D. Fox, “Robust Learning of Tactile Force Estimation through

Robot Interaction”, in Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA), 2019, pp. 9035–9042.

[6] J. M. Romano, K. Hsiao, G. Niemeyer, S. Chitta, and K. J. Kuchenbecker,

“Human-Inspired Robotic Grasp Control With Tactile Sensing”, IEEE Trans-

actions on Robotics, vol. 27, pp. 1067–1079, 2011.

[7] W. Yuan, S. Dong, and E. H. Adelson, “GelSight: High-Resolution Robot Tactile

Sensors for Estimating Geometry and Force”, Sensors, vol. 17, no. 12: 2762, 2017.

[8] K. Kamiyama, H. Kajimoto, N. Kawakami, and S. Tachi, “Evaluation of a Vision-

based Tactile Sensor”, in Proceedings of the IEEE International Conference on

Robotics and Automation, vol. 2, 2004.

[9] D. Ma, E. Donlon, S. Dong, and A. Rodriguez, “Dense Tactile Force Estima-

tion using GelSlim and inverse FEM”, in Proceedings of the IEEE International

Conference on Robotics and Automation, 2019, pp. 5418–5424.

120

References

[10] N. Kuppuswamy, A. Castro, C. Phillips-Grafflin, A. Alspach, and R. Tedrake,

“Fast Model-Based Contact Patch and Pose Estimation for Highly Deformable

Dense-Geometry Tactile Sensors”, IEEE Robotics and Automation Letters, 2019.

[11] C. Sferrazza, A. Wahlsten, C. Trueeb, and R. D’Andrea, “Ground Truth Force

Distribution for Learning-Based Tactile Sensing: A Finite Element Approach”,

IEEE Access, vol. 7, pp. 173 438–173 449, 2019.

[12] C. Sferrazza and R. D’Andrea, “Transfer learning for vision-based tactile sens-

ing”, in Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 2019, pp. 7961–7967.

[13] P. Ruppel, Y. Jonetzko, M. Görner, N. Hendrich, and J. Zhang, “Simulation of

the SynTouch BioTac Sensor”, in Proceedings of the International Conference on

Intelligent Autonomous Systems, Springer, 2018, pp. 374–387.

[14] D. F. Gomes, A. Wilson, and S. Luo, “GelSight Simulation for Sim2Real Learn-

ing”, in ICRA ViTac Workshop, 2019.

[15] B. Wu, I. Akinola, J. Varley, and P. K. Allen, “MAT: Multi-Fingered Adap-

tive Tactile Grasping via Deep Reinforcement Learning”, in Proceedings of the

Conference on Robot Learning (CoRL), 2019.

[16] H. Park, H. Lee, K. Park, S. Mo, and J. Kim, “Deep Neural Network Approach

in Electrical Impedance Tomography-based Real-time Soft Tactile Sensor”, in

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), 2019, pp. 7447–7452.

[17] C. Sferrazza and R. D’Andrea, “Design, Motivation and Evaluation of a Full-

Resolution Optical Tactile Sensor”, Sensors, no. 4: 928, 2019.

[18] T. Kroeger, R. Timofte, D. Dai, and L. Van Gool, “Fast Optical Flow using

Dense Inverse Search”, in Proceedings of the European Conference on Computer

Vision, Springer, 2016, pp. 471–488.

[19] L. Mitas and H. Mitasova, “Spatial interpolation”, in Geographical Information

Systems: Principles, Techniques, Management and Applications, P. A. Longley,

M. F. Goodchild, D. J. Maguire, and D. W. Rhind, Eds., John Wiley & Sons,

1999.

[20] R. Szeliski, Computer Vision: Algorithms and Applications. Springer, 2010.

[21] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for

Biomedical Image Segmentation”, in Proceedings of the International Conference

on Medical Image Computing and Computer-Assisted Intervention, Springer,

2015, pp. 234–241.

[22] M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu, “Spatial Trans-

former Networks”, in Advances in Neural Information Processing Systems (NIPS),

2015, pp. 2017–2025.

121

Paper P4. Learning the sense of touch in simulation

[23] P. Y. Simard, D. Steinkraus, and J. C. Platt, “Best Practices for Convolutional

Neural Networks Applied to Visual Document Analysis”, in Proceedings of the

International Conference on Document Analysis and Recognition, 2003, pp. 958–

963.

[24] D. Scaramuzza, A. Martinelli, and R. Siegwart, “A Toolbox for Easily Calibrat-

ing Omnidirectional Cameras”, in Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 2006, pp. 5695–5701.

[25] D. P. Kingma and J. L. Ba, “Adam: A Method for Stochastic Optimization”, in

Proceedings of the International Conference on Learning Representations (ICLR),

2015.

[26] D. S. Wokes and P. L. Palmer, “Perspective Projection Of A Spheroid Onto An

Image Plane”, 2008.

122

Paper P5

Sim-to-real for high-resolution optical tactile

sensing: From images to three-dimensional

contact force distributions

Carmelo Sferrazza and Raffaello D’Andrea

Abstract

The images captured by vision-based tactile sensors carry information about
high-resolution tactile fields, such as the distribution of the contact forces applied
to their soft sensing surface. However, extracting the information encoded in the
images is challenging and often addressed with learning-based approaches, which
generally require a large amount of training data. This article proposes a strategy
to generate tactile images in simulation for a vision-based tactile sensor based on an
internal camera that tracks the motion of spherical particles within a soft material.
The deformation of the material is simulated in a finite element environment under a
diverse set of contact conditions, and spherical particles are projected to a simulated
image. Features extracted from the images are mapped to the 3D contact force
distribution, with the ground truth also obtained via finite-element simulations,
with an artificial neural network that is therefore entirely trained on synthetic
data avoiding the need for real-world data collection. The resulting model exhibits
high accuracy when evaluated on real-world tactile images, is transferable across
multiple tactile sensors without further training, and is suitable for efficient real-
time inference.

Published in Soft Robotics.

Reprinted, from Carmelo Sferrazza and Raffaello D’Andrea, “Sim-to-Real for High-Resolution Optical
Tactile Sensing: From Images to Three-Dimensional Contact Force Distributions”, Soft Robotics, 2021.
Used under CC BY 4.0.

123

Paper P5. Sim-to-real for high-resolution optical tactile sensing

(a) Simulated indentation (b) Real-world indentation

(c) Simulated image (d) Real-world image

Figure 1. This work builds upon the generation of training images in simulation for a data-driven,
vision-based tactile sensor based on the tracking of a spread of particles.

1. Introduction

Research on vision-based (or optical) tactile sensors aims to provide robots with high-

resolution information about contact with external objects. However, while the images

stemming from the various optical tactile sensing principles are intuitive and to some

extent interpretable by human observations, the extraction of accurate physical quantities

is challenging. In this regard, the complexity of mapping the information extracted from

the images to the corresponding contact conditions mainly results from the fact that

accurate modeling techniques for soft materials are generally not suitable for real-time

applications. Additionally, previous research has predominantly focused on the estimation

of low-dimensional quantities (e.g., total contact force, center of contact), which may be

sufficient for a limited range of tasks, but not for generic applications, as is the case for

tasks that involve arbitrary points of contact.

The work discussed in this article targets both these topics, proposing a data-driven

approach to reconstruct the three-dimensional distribution of the contact forces applied

to the soft surface of a vision-based tactile sensor. The sensing strategy was presented in

the authors’ previous work [1] and is based on the tracking of particles randomly spread

within a soft gel. The use of data bypasses the need for modeling techniques with real-time

guarantees, but as opposed to classical data-driven strategies, here the data necessary for

training the learning architecture at the core of the method are entirely generated in

124

1. Introduction

simulation. Furthermore, the estimation of the contact force distribution directly yields

both the total contact force (i.e., the component-wise integral of the force distribution)

and the contact locations (i.e., the surface patches where the contact pressure is nonzero),

and is additionally suitable to represent generic contact conditions with arbitrary points

of contact, therefore providing high versatility across several tasks.

The main contributions of this work are the following:

• It details a method to simulate the images captured by a vision-based tactile sensor

[1], starting from simulations based on the finite element method [2] (FEM).

• It outlines two strategies to generate simulated datasets comprising tactile image

features and labels. These strategies differ from the one presented in the authors’

previous work [3], as they relax a small deformation assumption and simplify the

transfer from simulation to reality. The datasets collected for this work comprise a

variety of contact conditions, producing high shear and pressure forces with inden-

ters of different shapes and sizes.

• It describes a tailored learning architecture, based on u-net [4], which can be trained

entirely with simulated data obtained offline via high-fidelity FEM-based simula-

tions. When evaluated on real-world tactile sensors, the architecture yields high

accuracy in the reconstruction of the force distribution, achieving real-time infer-

ence up to a speed of 120 Hz.

1.1 Related work

In recent years, a number of tactile sensing principles [5] have been developed to address

the needs of the robotics community. Among these, vision-based tactile sensors [6] employ

standard cameras [7] or optical devices [8], [9] to infer the deformation of a soft membrane

and obtain information about the contact with external objects that causes the deforma-

tion. This category of tactile sensors generally benefits from high resolution and ease of

wiring, and its straightforward manufacture enables fast prototyping for robotic systems.

Although the bulkiness of their sensing unit is the main limitation of such approaches,

recent works have proposed compact solutions that exploit embedded cameras [10]–[14]

or mirrors [15].

The sensory feedback provided by tactile sensors typically requires further processing,

as it does not directly translate to the physical quantities of interest for robotic tasks. In

this regard, model-based methods [16], [17] often rely on strong modeling assumptions

(e.g., linear elasticity of the materials) to solve the processing task in an approximate

fashion, while data-driven methods [18]–[20] aim to compute offline a mapping from raw

data to the quantities of interest, in order to preserve accuracy while ensuring real-time

inference.

While most of the literature has primarily focused on the estimation of low-dimensional

physical quantities (e.g., total forces), recently several works have shifted the focus to-

wards the estimation of distributed quantities, which aim to provide high-resolution tac-

125

Paper P5. Sim-to-real for high-resolution optical tactile sensing

tile fields for a wide range of tasks. In the context of vision-based sensors, the estimation

of the contact patches [17] has been proposed, and the reconstruction of the contact

force distribution has been discussed, both in a model-based [16] and a data-driven [18]

fashion. Additionally, various approaches have been proposed outside the vision-based

domain, with regard to the estimation of the deformation field [21] and the pressure

distribution [22].

As a result of the possibility of collecting and generating accurate data offline, data-

driven approaches generally exhibit smaller estimation errors than model-based methods

[8]. However, their bottleneck often lies in the fact that they require large amounts of

training data and they do not often generalize well when employed in unseen contact

conditions. In order to address the issue of data efficiency, a number of works have focused

on generating training data in simulation to extract a model that retains its accuracy when

employed in the real world. Examples of such sim-to-real (or sim2real) transfers can be

found in the literature for edge prediction [23] and the estimation of the contact pressure

[22] and the deformation field [24], [25]. In previous work, a sim-to-real approach was

presented to estimate the 3D force distribution [3] for a limited range of scenarios.

This article presents two different methods to generate a dataset to train a data-driven

approach entirely via FEM simulations, with the aim to reconstruct the three-dimensional

contact force distribution applied to a vision-based tactile sensor. Image features were

extracted from the tactile images generated in simulation, and mapped to three matrices

representing the components of the force vectors applied over the soft sensing surface. The

mapping was obtained via a tailored neural network architecture, which is able to capture

various contact conditions as high shear and pressure forces, as well as indentations with

flat or round objects. Additionally, high accuracy was retained on real-world data and

the real-time speed could be more than doubled compared to previous work [3].

1.2 Outline

The sensing strategy and the hardware are described in Section 2.1, while the method

to generate tactile images and extract the related features is presented in Section 2.2.

Starting from the generated dataset, Sections 2.3 and 3 describe the learning pipeline

and the evaluation on simulated and real-world data, respectively. Final remarks and an

outlook are included in Section 4.

2. Materials and methods

2.1 Hardware

The tactile sensor employed in this work is based on a camera that tracks particles ran-

domly distributed within a deformable material. The fabrication follows previous work [1],

and is detailed in Section 1 of the supplementary material. The sensing surface amounts

126

2. Materials and methods

to a rectangular prism of 32×32×6 mm. The soft materials have been characterized

previously [18] as hyperelastic materials following uniaxial, pure shear and equibiaxial

tension tests. The resulting second-order Ogden models [26] were employed for the FEM

simulations discussed in the following sections.

2.2 Dataset generation

Supervised learning is a natural data-driven way of processing sensory feedback and map-

ping raw data to the quantities of interest. In the context of vision-based tactile sensing,

formulating the task in a supervised learning manner involves two crucial preliminary

steps: I) the choice of appropriate features to condense the information contained in the

images; II) the formalization of finite-dimensional labels representing the quantities of

interest. Additionally, the availability of data necessary to train suitable learning archi-

tectures needs to be considered when addressing the formulation of the problem. In this

work, training data were generated entirely in a finite element simulation environment

with the objective of avoiding real-world data collection and maximizing the variability of

the contact conditions without the need for complex hardware setups. A further advan-

tage of collecting contact data in simulation is the possibility of extracting high-resolution

tactile fields [18], which are otherwise not possible to measure with the commercially

available commodity sensors. This work aimed to estimate the three-dimensional force

distribution, which is a condensed representation of several contact quantities. In fact, the

force distribution encodes both the contact locations, which can be obtained by thresh-

olding the normal component, and the total contact forces, which can be obtained by

integrating the distribution over the sensing surface. As opposed to the deformation field,

the contact patches are exactly encoded in the force distribution, while the deformation

field can, for example, show deformation also where no contact is applied, as a result of

the elasticity of the soft material. Additionally, from the force distribution it is possible

to compute the torques acting on the contact object, and all these properties remain valid

for contact with multiple or arbitrary objects.

An FEM simulation environment was created in Abaqus/Standard [28], details of this

are provided in Section 2 of the supplementary material and in a previous work [18]. Two

training datasets were built by performing indentations in such an FEM environment with

the 21 different indenters shown in Fig. 2. The indentation trajectories were performed

by either moving the indenter vertically and then purely horizontally, or by prescribing

indenter motions from different angles followed by random perturbations in the vicinity

of the first indentation. A total of 3300 indentation trajectories (each comprising 50

indentation steps) were executed in simulation, with total forces up to 16 N in the vertical

direction and up to 5 N in each of the horizontal directions. For each step of these

trajectories, the contact force distribution and the displacement field were extracted at

the nodes of a mesh refined around the contact between the indenter and the soft material.

These quantities were further processed to compose two sets of features and labels, as

described in Section 1 for the displacement field and Section 2 for the force distribution.

Since the training dataset was entirely generated in simulation, two test datasets were

127

Paper P5. Sim-to-real for high-resolution optical tactile sensing

Figure 2. The figure shows the indenters used to collect the training data in the FEM simulations.
Real-world realizations of the black indenters were used to collect the test data in reality. Note that the
indentation surfaces correspond to the top surfaces in the figure. The sharp corners of the indenters were
smoothed out to avoid a known singularity in the flat-punch indentation experiment [27].

collected in reality as described in Section 3 to verify the sim-to-real transfer and the

real-world performance.

1) Training features In this article, two different methods to extract image features

are compared. The resulting types of features are denoted in the following as optical

flow features and raw features, respectively. The starting points of both methods are

the images captured by the internal camera, and for training purposes, these images were

entirely generated in simulation. The soft materials were modeled in the FEM simulations

as described in Section 2.1 of this manuscript and in Section 2 of the supplementary

material. Highly accurate models were obtained for the same materials via state-of-the-

art characterization experiments in previous work [18], where these models were also

validated against a force-torque sensor. The Ogden model parameters used there were

also employed in this work. A static friction coefficient of 0.9 was used, as it proved

accurate for the indenters employed (see the experiments performed in Section 2 of the

supplementary material).

A gel coordinate system (see Fig. 3(a)) was defined by placing the origin at one of

the bottom corners of the layer containing the particles, the z axis pointing towards the

upper surface, and the x and y axes aligned with two of the horizontal edges. For each

indentation step performed in simulation, the FEM provides the displacement field of

128

2. Materials and methods

the soft layer that comprises the particles. This displacement field is provided at the

discrete nodes of the FEM mesh. For such nodes, also the initial position (at rest, before

deformation) is known. In order to generate the dataset, a random distribution of particles

was sampled for each indentation step, and an inverse distance weighted scheme [29] was

used to interpolate the displacement field at the corresponding particle location sGj , for

j = 0, ..., Np − 1, where Np is the number of particles and the superscript G indicates

the gel coordinate system. The 3D displacement of the j-th particle is denoted in the

following as ∆sGj . The strategy followed was to project the particles to the image plane

using an ideal pinhole camera model [30], and only account for the camera’s non-idealities

at a later stage [3], as described in Section 3. Therefore, as depicted in Fig. 3, the position

sGj and the respective displacement ∆sGj were first transformed from the gel coordinate

system to the 3D pinhole camera coordinate system (indicated by the superscript P) as

sPj = RGP sGj + tGP , (1)

∆sPj = RGP∆sGj (2)

where the rotation matrix RGP and the translation vector tGP := (tGPx , tGPy , tGPz) are the

pinhole camera’s extrinsic parameters. These parameters could be chosen arbitrarily, but

they were actually chosen to be close to the real-world camera’s extrinsic parameters, as

discussed in Section 3. The pinhole image resolution was arbitrarily set to be 440×440

pixels, and although the focal length could also be chosen arbitrarily in this step, in order

to exactly capture the region where the particle layer (which has a square horizontal

section of 30×30 mm) is visible, this was set for both the image coordinates as

f :=
440

30
tGPz . (3)

The projection of the spherical particle centered at sPp via the pinhole camera model

results in an ellipse on the image plane [31]. The derivation of the center, the axis lengths

and the orientation of each ellipse can be found in Section 3 of the supplementary material.

The ellipses can then be drawn using the drawing functionality of OpenCV1.

For each indentation step, one image at rest (projecting all the particles, i.e., by setting

sPp = sPj for the j-th particle) and one image after deformation (setting sPp = sPj + ∆sPj
for the j-th particle) were generated. The images were initialized with black pixels, and

each ellipse was drawn with a random RGB color to perturb the data with additional

variability. The images were then converted to grayscale in a second step. An example of a

simulated image is shown in Fig. 1(c). In order to further increase the training robustness,

the number of the particles within the gel was slightly perturbed at each indentation step.

Training features were then extracted from the images via two different methods:

1. Optical flow features: For each indentation step, the dense optical flow between

1https://opencv.org/

129

Paper P5. Sim-to-real for high-resolution optical tactile sensing

sjzG

xG

zP

xP

∆sj

(a) Displacement of a particle

zC

xC

tGP
z

zG

xG

zP

xP

(b) Remapping of a pixel

Figure 3. The drawings show the definition of the three coordinate systems used throughout the article:
the gel coordinate system (superscript G), the pinhole camera coordinate system (superscript P), and the
real-world camera coordinate system (superscript C). In (a), an example of 3D displacement of a particle
originally placed at sj is depicted. In (b), a pixel in the pinhole camera is mapped to the corresponding
pixel in the real-world camera.

the image at rest and the image after deformation was computed using an algo-

rithm based on Dense Inverse Search [32]. The per-pixel flow was then subsampled

performing an average pooling in a grid of 88×88 bins. The two Cartesian compo-

nents of the optical flow resulted in two matrices, which were concatenated into a

two-channel matrix. This method differs from previous work [3], where optical flow

features were directly computed from the FEM displacement field, assuming that

the density of the particles remained constant during an indentation. In reality, this

is not the case for large indentations, as the particles tend to spread radially under

pressure, and the method presented here can cope with such conditions.

2. Raw features: The two images for each indentation step were subsampled to 88×88

pixels and concatenated into a two-channel image, which was directly fed to the

training algorithm.

2) Training labels The same set of labels described in the following was assigned to each

set of features to compose two separate training datasets. For each indentation step, the

FEM simulations provide the three-dimensional contact force distribution at the surface

nodes of the FEM mesh. Dividing the surface into a grid of 20×20 bins [18], the force

components at the nodes falling inside a bin were summed to obtain a 20×20 three-

channel matrix, representing the training label for the corresponding indentation step

datapoint. Examples of ground truth labels are shown in Fig. 8. In this work, a node was

assigned to a certain bin depending on its initial position before deformation, in order to

simplify the binning at the boundaries of the gel, which can vary with deformation. As

an alternative, it would also be possible to assign the nodes to the bins according to the

position after deformation, by introducing an adaptive binning strategy at the boundaries

of the grid.

130

2. Materials and methods

3) Test dataset In order to evaluate the real-world performance of the models described

in Section 2.3, 1100 test datapoints were collected in an experimental setup, using a

programmable milling machine (Fehlmann PICOMAX 56 TOP) to make vertical and

shear-dominant indentations with the six black indenters shown in Fig. 2, as well as multi-

contact indentations with two spherically-ended indenters placed at different heights. The

resulting test dataset induced total forces up to 4.5 N in the vertical direction and up

to 3.8 N in each of the horizontal directions. These ranges differ from the training data

ranges, which also included data inducing larger strains and where the material model fit

was less accurate. Such higher-strain data showed improved generalization in the learning

and for this reason were included in the training dataset.

During the test data collection procedure, the images taken by the real-world camera

were recorded. Since the models were trained with features obtained from images gener-

ated via a pinhole camera projection, a further procedure was needed to account for the

camera’s non-idealities on real-world images [3]. This procedure is denoted as remapping

and it essentially maps the pixels from a real-world image (converted to grayscale) to the

pixels of an image of the same scene as if it was taken from the ideal pinhole camera used

for the training dataset. The remapping procedure requires two main steps:

1. Calibration step: during fabrication, seven images of a grid pattern were shot

through a silicone medium, see Fig. 4. In this way, it is possible to account for

the refractive index of the soft materials. Using a fisheye camera calibration tool-

box [33], the images were used to obtain both the extrinsic parameters RGC and

tGC of the real-world camera as well as a transformation function from the actual

camera 3D coordinate system to the real-world image. The extraction of the extrin-

sic parameters was achieved by providing the calibration toolbox with a calibration

image where the origin of the grid pattern coincided with the origin of the gel

coordinate system.

2. Interpolation step: for each pixel in the fictitious pinhole image, the corresponding

pixel in the real-world image was obtained, via a procedure sketched in Fig. 3(b).

For this step, the pixels were assumed to be placed approximately at a fixed z

coordinate in the pinhole camera coordinate system, set here with the bottom of

the gel layer. The details of the interpolation procedure are further detailed in

Section 4 of the supplementary material.

As shown in Fig. 3(b), the approximation introduced above has a smaller effect when

the pinhole extrinsic parameters RGP and tGP are close to the real-world camera

extrinsic parameters RGC and tGC , respectively. As mentioned in Section 1, since

the pinhole extrinsic parameters can be set arbitrarily, these were indeed chosen to

be close to the expected real-world extrinsic parameters to limit the impact of the

approximation. While the calibration parameters are fixed across images of the same

camera and can be computed offline, the interpolation step needs to be performed

for each image.

131

Paper P5. Sim-to-real for high-resolution optical tactile sensing

(a) Calibration setup (b) Sample calibration images

Figure 4. The calibration images, examples of which are shown in (b), were shot through a silicone
medium during fabrication, in order to account for the refraction index of the soft materials. As shown
in (a), this was done straight after casting the first layer, by placing additional silicone parts between
the first layer and a grid pattern attached to an aluminum surface.

The extrinsic parameters obtained during calibration are very sensitive to the exact place-

ment of the grid pattern for the corresponding calibration image. This requires pressing

the grid pattern against the silicone medium just enough to remove the air in the middle

without penetrating the soft material, which is challenging to achieve in reality. Therefore,

a grid search (in the submillimeter range) was performed in the vicinity of the translation

vector tGC , in order to make the particles in a sample remapped image taken at rest match

the entire image frame. For this, after a series of dilation and erosion steps, a bounding

box around the pixels can be easily computed using OpenCV and compared to the frame

boundaries. A refined, remapped image is shown in Fig. 5, where lens distortion effects

and misalignments were successfully compensated for.

After remapping, the same image features described in Section 1 were extracted from

the images. Since no real-world sensor can provide ground truth contact force distribu-

tions, these were extracted in simulation as described in Section 2 and in previous work

[18], and assigned to the corresponding features to compose two test datasets. Note that

since the real-world camera non-idealities can be compensated in the remapping step,

which does not affect training, this enables the transfer of models trained on the pinhole

data across multiple instances of fabricated sensors, provided that the camera calibration

is performed as described above. The remapping procedure described here aims to com-

pensate only for the camera mismatches and does not serve as a calibration for the FEM

model, which was independently characterized in previous work [18], as further detailed

in the supplementary material.

132

3. Results

(a) Original image (b) Image before feature extraction

Figure 5. The original image taken from the real-world camera, shown in (a), was converted to grayscale
and remapped as if it was taken from the ideal pinhole camera. A refinement procedure was applied to
account for inaccuracies introduced during calibration. The resulting image in (b) shows the particle
layer in its actual squared geometry, covering the entire image frame.

2.3 Learning architecture

The same learning architecture was employed for both training datasets, that is, on those

containing optical flow features and raw features, respectively. The architecture consists of

a convolutional neural network, designed as a lightweight version of u-net [4], and tailored

to the estimation of the force distribution from tactile features. In fact, this estimation

problem can be formulated as an image-to-image translation [34] (known also as pixel-wise

regression). A sketch of the architecture is shown in Fig. 6. The neural network exhibits an

encoder-decoder structure, where feature information is first increased in the contraction

step by doubling the channels between each pooling operation. In the decoding step, the

force distribution is then computed through upconvolutions and concatenations of high-

resolution features extracted during the contraction step. As a result, the architecture

has the effect of both capturing context and enabling precise localization.

3. Results

The learning architecture was trained twice from scratch using I) the training dataset

comprising averaged optical flow features and discretized force distribution labels, and

II) the training dataset comprising raw image features and discretized force distribution

labels. Both datasets were generated entirely in simulation and both sets of training

features contained two-channel 88×88 matrices (or images), as described in Section 1.

The architecture was trained with the AdamW optimizer [35] by minimizing a mean-

squared loss (normalized by the maximum value per channel) with a learning rate of

133

Paper P5. Sim-to-real for high-resolution optical tactile sensing

in
p

u
t

fe
at

u
re

s

en
co

d
er

,
8

en
co

d
er

,
16

en
co

d
er

,
32

en
co

d
er

,
64

3×
3

co
n
v
,

1
28

3
×

3
co

n
v
,

12
8

d
ec

o
d

er
,

64

d
ec

o
d

er
,

3
2

3
×

3
co

n
v
,

3
,

0p

fo
rc

e
d

is
tr

ib
u

ti
o
n

(a) The learning architecture

p
re

v
io

u
s

ou
tp

u
t,
c

3×
3

co
n
v
,

2c

3×
3

co
n
v
,

2c

1/
2

m
ax

p
o
ol

in
g

(b) An encoder block
p

re
v
io

u
s

ou
tp

u
t,

2
c

3×
3

u
p

co
n
v
,
c

3
×

3
co

n
v
,
c

3×
3

co
n
v
,
c

(c) A decoder block

Figure 6. In (a), a diagram of the learning architecture is shown. The encoder and decoder blocks
are summarized in (b) and (c), respectively. All the blocks in green serve as placeholders. “3×3 conv,
c” indicates a convolutional layer with a 3×3 filter size and c output channels, while “3×3” upconv, c”
indicates an upconvolution that doubles the input size. The dotted lines (omitted in (b) and (c)) indicate
the concatenation of an earlier layer output with upsampled information. After each convolutional layer,
with the exception of the white one before the final output, batch normalization and rectified linear
units were employed. “0p” indicates no padding. Where not indicated, all convolutional filters have unit
zero-padding and unit stride.

1e-3 and a batch size of 256. During training, the datasets were randomly augmented

by appropriately flipping the features and labels, exploiting the symmetry of the gel

geometry and the pinhole camera projection. For the raw-feature dataset, the images

were additionally augmented by perturbing the image brightness and adding salt-and-

pepper noise.

After training in PyTorch2, the models were converted to the ONNX format, and

used in real-time via the ONNX Runtime framework3. This generally led to a 4x infer-

ence speed-up on the CPU of a standard laptop (dual-core, 2.80 GHz), compared to the

inference in PyTorch.

The performance of both trained models was evaluated on the corresponding synthetic

validation datasets, picked randomly as the 20% of the indentation trajectories in the ap-

2https://pytorch.org/
3https://www.onnxruntime.ai/

134

3. Results

RMSE [N] RMSET [N] Range of total forces [N]
x y z x y z x y z

Optical-flow (sim) 0.006 0.006 0.013 0.187 0.164 0.577 -5.0 – 5.0 -5.0 – 5.0 -16.0 – 0
Raw-feature (sim) 0.006 0.005 0.012 0.120 0.132 0.314 -5.0 – 5.0 -5.0 – 5.0 -16.0 – 0
Optical-flow (real) 0.006 0.007 0.018 0.190 0.230 0.914 -3.2 – 3.2 -3.8 – 3.8 -4.5 – 0
Raw-feature (real) 0.005 0.007 0.014 0.267 0.296 0.362 -3.2 – 3.2 -3.8 – 3.8 -4.5 – 0

Table 1. The table shows the error metrics of the trained models on the validation datasets extracted
in simulation and the test datasets collected in reality, for both the cases where optical flow features and
raw features were used as inputs.

MAE [N] SDAE [N]
x y z x y z

Optical-flow (bin) 0.001 0.001 0.004 0.006 0.007 0.018
Raw-feature (bin) 0.001 0.001 0.003 0.005 0.007 0.014
Optical-flow (total) 0.103 0.110 0.645 0.159 0.202 0.648
Raw-feature (total) 0.099 0.107 0.238 0.248 0.275 0.273

Table 2. The table shows additional error metrics on the real-world test sets in terms of the absolute
errors for bin-wise and total force predictions, namely the mean absolute error (MAE), and the standard
deviation of the absolute errors (SDAE).

propriate training dataset. Additionally, the models were evaluated on the corresponding

real-world test dataset described in Section 3. Table 1 summarizes the results based on

two different error metrics for each force component: I) RMSE, that is the root-mean-

squared error on the respective component of the force distribution, II) RMSET, that is

the root-mean squared error on the respective component of the total force, which was

obtained by summing the force distribution over all the bins. The range of total forces

in the corresponding dataset is also shown in the table. In addition, Table 2 reports the

mean and the standard deviation of the absolute errors, for the bin-wise and total force

predictions on the real-world test data.

As the numerical results indicate, there is a slight difference in accuracy between the

horizontal and vertical components of the predictions. This may be explained by the fact

that during the vertical indentations, the shear forces were rather small or close to zero.

More importantly, the raw-feature model outperformed the optical-flow model in most

of the metrics on the corresponding real-world test dataset. In fact, while in practice the

location accuracy for both models was similar, the optical-flow features tend to mitigate

the differences across indenters under real-world noise, therefore resulting in inaccurate

force predictions. On the other hand, overall the raw-feature model showed a better

transfer from simulation to reality, especially retaining a considerably higher accuracy in

the vertical component. In addition to the difference in accuracy, the model trained on

the raw image features does not require the extraction of the optical flow, which was the

bottleneck for the model trained on optical flow features. As a result, since the model

inference only takes about two milliseconds, the whole raw-feature pipeline (including the

image acquisition and remapping) runs in real-time at 120 Hz on CPU, compared to the

135

Paper P5. Sim-to-real for high-resolution optical tactile sensing

x
co

m
p

o
n

en
t

y
co

m
p

o
n

en
t

z
co

m
p

on
en

t

Figure 7. The figures show sensible predictions for the different contact conditions that are shown in the
first row. The x, y, and z components of the predicted force distributions are shown in the second, third,
and fourth rows, respectively. In the first column, the tape dispenser was initially pressed against the gel
and then translated to induce higher shear forces in the negative y direction. In the second column, the
contact with an object that differs significantly from those in the training set is shown, while the third
column shows the contact with multiple bodies (not included in the training data), the lower of which is
laterally translated as shown by the asymmetrical shear component in the y direction.

50 Hz of the optical-flow pipeline.

The real-time performance of the raw-feature pipeline is shown in the supplementary

video4, where contact conditions with arbitrary objects were explored (see Fig. 7). The

estimation of the force distributions on samples in the test set with the model trained

4Supplementary video: https://youtu.be/dvOk2XrSmLE

136

https://youtu.be/dvOk2XrSmLE

4. Conclusion

on raw features are shown in Fig. 8. Additional results and comparisons are available in

Section 5 of the supplementary material.

4. Conclusion

This work has discussed strategies to simulate the images captured by a vision-based

tactile sensor. Starting from FEM simulations, the displacement field was processed to

generate training features for a supervised learning architecture that mapped these fea-

tures to contact force distribution labels. The resulting models are directly transferable

across multiple instances of real-world sensors, since the training procedure does not

make use of real-world images. Two different strategies were compared, with the model

obtained from raw features outperforming a model based on optical flow features for both

real-world accuracy and inference speed. In addition to providing a physical quantity di-

rectly interpretable across robotic tasks, the extraction of accurate force distributions

also provides an abstraction from the image pixels that bypasses the remaining mismatch

between real and simulated images.

Since this work aimed to provide a comparison between the two approaches, the same

input and output sizes were employed for both strategies. However, given the gain in

prediction speed, the raw-feature approach may be extended to use higher-resolution

features or to predict the force distribution on a finer grid by trading off the sensing

frequency. As shown in Table 1, a gap still remains between simulation and reality, which

could be addressed by explicitly addressing the domain transfer problem. This issue will

be the subject of future work.

The simulator described in this work provides highly accurate force distribution labels

to train learning-based models suitable for real-time inference. However, the simulator

itself is not running in real-time, due to the computational complexity of the finite element

method. While this was not in the scope of this work, different simulation techniques can

trade off accuracy to achieve real-time capabilities and become suitable to warm-start

the training of tactile policies in simulation, as detailed in a related work [36].

A. Fabrication

The soft materials are arranged in three layers, as shown in Fig. 9(a), and were poured

(after degassing in a vacuum chamber) on top of the camera (ELP USBFHD06H with

a fisheye lens) and the surrounding LEDs with the mold lying on one side, i.e., with

the camera pointing sideways, as shown in Fig. 9(b). The fabrication strategy followed

previous work [1], but it is presented extensively here to provide additional details for

reproducibility:

137

Paper P5. Sim-to-real for high-resolution optical tactile sensing

S
a
m

p
le

#
1

P
red

ictio
n

G
ro

u
n

d
T

ru
th

S
am

p
le

#
2

P
red

ictio
n

G
ro

u
n

d
T

ru
th

S
am

p
le

#
3

P
red

iction
G

rou
n

d
T

ru
th

x component y component z component

Figure 8. The figures show the ground truth (first, third, and fifth rows) and predicted (second, fourth,
and sixth rows) force distribution components (x in the first column, y in the second column, and z in
the third column) for different samples and indenters in the real-world test dataset. Predictions were
made with the raw-feature model. The first two rows show vertical indentation; the third and fourth
rows show a shear-dominant indentation, and the last two rows a multi-contact indentation.

138

A. Fabrication

(a) Exploded view of
the three-layer structure

(b) Mold assembled before
casting the first layer

(c) Cross-section after
casting the first layer

(d) Cross-section after
casting the second layer

(e) Cross-section after
casting the third layer

Figure 9. The figure details the sensor’s fabrication. The soft materials are arranged in a three-layer
structure (see (a)) on top of the camera and the LEDs, and were poured into the mold from the side,
through lateral cavities such as those shown in (b). Three different lids (see (c)-(e)) were employed for
each of the soft layers.

1. A first layer of Elastosil® RT 601 RTV-2 (mixing ratio 7:1, shore hardness 45A)

was poured into the mold, closed with a first lid (see Fig. 9(c)). The mold was then

placed into an oven at 80 °C for 20 minutes for curing. This layer serves as a stiff

base and facilitates light diffusion.

2. A release agent (Mann Ease ReleaseTM 200) was sprayed before assembling the sec-

ond lid, shown in Fig. 9(d). Then, a layer of EcoflexTM GEL (mixing ratio 1:1, very

soft, with shore hardness 000-35), mixed with green, fluorescent spherical particles

(with a diameter of 150 to 180 µm), was poured into the mold. The mold was finally

placed into an oven at 80 °C for 20 minutes for curing.

3. Finally, a layer of Elastosil® RT 601 RTV-2 (mixing ratio 25:1, shore hardness

10A), mixed with black silicone color (Elastosil® Color Paste FL), was poured

into the mold, closed with a third lid, shown in Fig. 9(e). The mold was then placed

into an oven at 80 °C for 45 minutes for curing. This layer is stiffer than the Ecoflex

GEL, and shields the sensor from damage and light disturbances.

4. After removing the last lid, the sensor was placed back in the oven at 60 °C for

8 hours. This step has been shown to reduce stiffening caused by the aging of the

materials [18].

The two soft upper layers amount to a rectangular prism of 32×32×6 mm.

139

Paper P5. Sim-to-real for high-resolution optical tactile sensing

B. The FEM simulation environment

The FEM simulation environment was created in Abaqus/Standard [28] following pre-

vious work [18], where the Ecoflex GEL and the black Elastosil layer have both been

characterized as hyperelastic materials using second-order Ogden models [26]. Given the

large difference in hardness, the stiff base layer was considered rigid [18] in the FEM

simulations discussed in the article. The contact between the top surface and the inden-

ters was modeled as a hard contact and discretized with a surface-to-surface method.

The basic Coulomb friction model available in Abaqus was employed, where the friction

coefficient was assumed to be constant and was used as a tuning parameter, as described

in the following.

The material characterization followed state-of-the-art techniques based on uniaxial

tension, pure shear, and equibiaxial tension tests. The models obtained required no further

calibration for the simulations described in this article. In fact, the characterization tests

were entirely independent of the evaluation experiments carried out in this work. In

order to verify the consistency of the Ogden models and the related FEM simulations,

the previous work [18] also showed an accurate total force agreement when the same

vertical indentation experiments were performed both in the FEM environment and the

real world, where the total force was obtained from the readings of a commercial six-

axis F/T sensor. Such verification experiments were augmented here to test the total

force accuracy also in the case of shear-predominant or multi-contact indentations. The

results of these experiments are shown in Fig. 10, where the total force resulting from

FEM indentations was compared with the force measured by an F/T sensor (ATI Mini27

Titanium with an horizontal resolution of 0.03 N and a vertical resolution of 0.06 N)

when repeating the same indentations in the real-world. The real-world experiments were

carried out by mounting the F/T sensor and the appropriate indenters to the spindle

of a controllable milling machine. The friction coefficient was tuned to a value of 0.9

using a single 3D-printed rough indenter in the experiment shown in (a). However, the

remaining experiments showed generalization to different indentation shapes (see (b))

and a limited loss of accuracy for indenters of a different and smoother material, such

as stainless steel (see (c)). In addition, the friction coefficient has a limited influence on

the accuracy of the vertical component of the total force, as shown for the multi-contact

experiment performed in (d) with stainless steel indenters.

The indentation trajectories collected in the FEM environment, which were employed

to generate training data, were randomized as follows:

1. First, for each trajectory, one of the 21 indenters modeled in simulation was selected

randomly and translated to a random horizontal position over the sensing surface

with a randomized orientation.

2. Then, 80% of the time, a vertical indentation followed by randomized horizontal

translations was simulated. In the remaining 20% of the time, random 3D displace-

ments were directly simulated in the vicinity of the initial position. Such a split

140

B. The FEM simulation environment

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

RMSE = 0.022 N

Horizontal displacement [mm]

H
or

iz
on

ta
l

fo
rc

e
[N

]

FEM

F/T sensor

(a) Shear with spherical indenter (3DP)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

RMSE = 0.128 N

Horizontal displacement [mm]

H
or

iz
on

ta
l

fo
rc

e
[N

]

FEM

F/T sensor

(b) Shear with spherical indenter (SS)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

RMSE = 0.037 N

Horizontal displacement [mm]

H
or

iz
on

ta
l

fo
rc

e
[N

]

FEM

F/T sensor

(c) Shear with square flat indenter (3DP)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

RMSE = 0.085 N

Horizontal displacement [mm]

H
or

iz
on

ta
l

fo
rc

e
[N

]
FEM

F/T sensor

(d) Shear with triangular flat indenter (3DP)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0
RMSE = 0.050 N

Horizontal displacement [mm]

V
er

ti
ca

l
fo

rc
e

[N
] FEM

F/T sensor

(e) Shear with triangular flat indenter (3DP)

0 0.5 1 1.5 2

−1.75

−1.50

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

RMSE = 0.044 N

Indentation depth [mm]

V
er

ti
ca

l
fo

rc
e

[N
]

FEM

F/T sensor

(f) Pressure with two spherical indenters (SS)

Figure 10. The plots show the agreement (measured by the root-mean-square error, RMSE) between
the total force resulting from FEM indentations (in red) and the readings of an F/T sensor (in blue) when
repeating the same indentations in a controlled experimental scenario. While the FEM simulations are
performed assuming a fixed friction coefficient, the real-world experiments employed indenters that were
either 3D-printed (3DP) or made of stainless steel (SS). In (a), a 3DP spherically-ended indenter was first
pressed 2 mm down in the center of the sensing surface. Then it was laterally sheared in one direction,
and the horizontal force was recorded at discrete steps. In (b), the same experiment was repeated with
an SS indenter with the same geometry. In (c), the shear experiment was carried out with a square
flat-ended indenter at a depth of 1 mm, and in (d) with a triangular flat-ended indenter at a depth
of 2 mm. The corresponding vertical force for the same experiment as in (d) is shown in (e), where a
slight decrease in force was detected during shear from both the FEM simulation and the F/T sensor. In
(f), two SS spherically-ended indenters (both attached to the same F/T sensor in the real world) were
employed to make vertical indentations on the sensing surface, with the total vertical force recorded at
discrete steps. Since the two indenters had a constant difference in height of 1.1 mm, the first four steps
(up to 1 mm depth) resulted from contact with only one of the indenters, while the remaining steps
(after 1 mm) resulted from a double indentation.

141

Paper P5. Sim-to-real for high-resolution optical tactile sensing

in the training trajectories aimed to favor the typical robotic manipulation case,

where shear motion happens after a vertical grasp. Each indentation trajectory was

split into 50 steps, with the maximum intra-step displacement constrained to 0.1

mm to facilitate convergence. The maximum depth reached by the indenters was 2

mm, while the maximum lateral displacement from the start of the indentation was

3 mm. Static steps were employed, therefore neglecting time-dependent material

effects, which are however limited, as shown in Fig. 13.

C. Projection of a particle onto the image plane

The projection of the spherical particle centered at sPp :=
(
xPp , y

P
p , z

P
p

)
via the pinhole

camera model results in an ellipse on the image plane [31], see Fig. 11(a). The pixel

length r of the major axis of each ellipse can be computed via the projection formulas in

the plane containing the camera’s optical axis and the camera ray passing through the

center of the spherical particle. An example projection in this plane is shown in Fig. 11(b).

The coordinate x̃Pp can be computed from the horizontal coordinates of the center of the

particle as,

x̃Pp =

√(
xPp
)2

+
(
yPp
)2
. (4)

Then, from the figure, it follows that:

α = arctan

(
zPp
x̃Pp

)
, β = arcsin

 R√(
x̃Pp
)2

+
(
zPp
)2

 , (5)

γ = α− β, (6)

where R is the radius of the sphere. The pixel length r of the major axis can then be

computed as:

x̃Pr = x̃Pp +R sin γ, (7)

zPr = zPp −R cos γ, (8)

x̃Pl = x̃Pp −R sin(γ + 2β), (9)

zPl = zPp +R cos(γ + 2β), (10)

r =

∣∣∣∣f (x̃PrzPr − x̃Pl
zPl

)∣∣∣∣ . (11)

The orientation of the ellipse on the image plane is fully determined by the horizontal

142

C. Projection of a particle onto the image plane

r

u

v

ω

(up, vp)

(ur, vr)

(ul, vl)

(u0, v0)

(a) Projection of a sphere onto the image plane

x̃P

zP

r

α

β

γ

2β (
x̃Pp , z

P
p

)
(
x̃Pr , z

P
r

)

(
x̃Pl , z

P
l

)

(b) 2D view of the projection of a sphere

Figure 11. The figures show that the projection of a sphere corresponds to an ellipse (see (a)) in the
image plane. The length r of the major axis of this ellipse can be computed via 2D geometry in the plane
that contains the optical axis and the ray passing through the camera and the center of the sphere.

143

Paper P5. Sim-to-real for high-resolution optical tactile sensing

position of the particle, and can therefore be computed trivially as:

ω = arctan2
(
yPp , x

P
p

)
. (12)

Additionally, the center of the ellipse can be computed by observing that (ur, vr) and

(ul, vl) correspond to the projection of (x̃Pr , z
P
r) and (x̃Pl , z

P
l), respectively, onto the image

plane:

xPr = x̃Pr cosω, yPr = x̃Pr sinω, (13)

ur = f
xPr
zPr

+ u0, vr = f
yPr
zPr

+ v0, (14)

xPl = x̃Pl cosω, yPl = x̃Pl sinω, (15)

ul = f
xPl
zPl

+ u0, vl = f
yPl
zPl

+ v0, (16)

where (u0, v0) are the coordinates of the pinhole image center.

Therefore, the pixel coordinates of the center of the ellipse are:

up =
ur + ul

2
, vp =

vr + vl

2
. (17)

Finally, noting that the pixel length of the minor axis of the ellipses does not vary with

the horizontal coordinates of the sphere [31], this length can be computed for a trivial

case, that is, when the center of a particle lies on the optical axis (i.e., xPp = yPp = 0). The

same formulas as in (4)-(11) can be employed, since for this special case the projection

results in a circle, where both the major axis and the minor axis of the ellipse correspond

to the diameter. Using the center, the axis lengths and the orientation of each ellipse,

these can be drawn using the drawing functionality of OpenCV5.

D. Remapping

As shown in Fig. 12, for a pixel p := (u, v) in the image plane of the pinhole camera, a

3D point sP := (xP , yP , tGPz) was retrieved using the pinhole projection equations as:

xP =
tGPz
f

(u− u0), (18)

yP =
tGPz
f

(v − v0). (19)

5https://opencv.org/

144

E. Supplementary results

The 3D point was then converted to the coordinate system of the real-world camera,

indicated with the superscript C, through the corresponding rotation and translation

operations:

sC = RGC
(
RGP

)−1 (
sP − tGP

)
+ tGC . (20)

The corresponding pixel in the real-world image was then retrieved via the transformation

function obtained from the calibration toolbox.

zC

xC

tGP
z

zG

xG

zP

xP

Figure 12. In the figure, a pixel in the pinhole camera is mapped to the corresponding pixel in the
real-world camera.

E. Supplementary results

This section presents supplementary results and illustrations in addition to those in the

main article. Fig. 14 compares optical flow examples obtained for the same indentation

in simulation and reality. In Fig. 13, a programmable milling machine was employed to

make indentations using two of the test indenters, and the total force recorded with an

F/T sensor was compared with the real-time prediction of the neural network presented

in the main article.

Table 3 and Table 4 show in detail the different error metrics listed by data subgroups

for the real-world test dataset, depending on the type of indentation or the indenter em-

ployed. Both tables are based on metrics computed using the raw-feature model described

in the main article. It can be noted that shear-dominant indentations may present a de-

crease in accuracy in the prediction of the z component of the force. This is partly due to

the fact that shear-dominant data generally showed higher noise, as a small misalignment

in the indenter mounting may lead to considerably different behavior of the material dur-

ing the shearing trajectory. In addition, as shown in the main article, the model tended

to generalize to multi-contact indentations. However, the performance for such contact

conditions may be further improved by including a portion of multi-contact data in the

145

Paper P5. Sim-to-real for high-resolution optical tactile sensing

Vertical Shear-dominant Multi-contact

RMSE
x 0.003 0.010 0.004
y 0.005 0.011 0.004
z 0.013 0.018 0.013

RMSET
x 0.034 0.548 0.088
y 0.057 0.606 0.061
z 0.277 0.465 0.488

MAE (bin)
x 0.001 0.002 0.001
y 0.001 0.002 0.001
z 0.002 0.004 0.002

MAE (total)
x 0.022 0.333 0.060
y 0.035 0.342 0.046
z 0.168 0.368 0.345

SDAE (bin)
x 0.003 0.010 0.004
y 0.004 0.011 0.004
z 0.012 0.017 0.012

SDAE (total)
x 0.025 0.436 0.065
y 0.045 0.500 0.040
z 0.221 0.284 0.345

Range (total)
x -0.2–0.2 -3.2–3.2 -0.3–0.3
y -0.6–0.6 -3.8–3.8 -0.3–0.3
z -4.5–0 -3.8–0 -3.5–0

Table 3. The table reports in detail the different error metrics (using a raw-feature model) for each of the
three types of real-world indentations, that is, vertical, shear-dominant, and multi-contact indentations.
The abbreviations are defined as in the main article. The Newton unit was omitted here for all the values.

training dataset. Among the six indenters employed, the results generally showed a cor-

relation between the range of forces and the errors recorded. In addition, it turned out

to be very challenging to accurately align the tilted-plane indenter (which is the indenter

that shows a deeper side in Fig. 2 of the main article) with the reference system of the gel

for data collection. For this reason, shear data were not collected with such an indenter.

Furthermore, Fig. 15 shows that a diverse dataset is crucial for generalization. The

samples in the figure correspond to the first two in Fig. 8 of the main article, but the pre-

dictions were made with the network trained in previous work [3]. This network was only

trained with vertical indentations made with a spherically-ended indenter. To evaluate

the generalization, the first two rows show a vertical indentation made with a cylindrical

indenter, while the third and fourth rows show a shear-dominant indentation made with

a spherically-ended indenter. While the network in previous work [3] showed sensible pre-

dictions for some indenters different from the one used for training, the figure shows how,

in contrast, the network does not generalize well to light pressure conditions with the

cylindrical indenter. In particular, the network predicted the typical force profile for a

spherically-ended indenter. In addition, the shear-dominant indentation was also mispre-

dicted, with the y component of the force distribution predicted as symmetrical, which

146

E. Supplementary results

0 50 100 150

−1.5

−1

−0.5

0

0.5

1

Time step

F
o
rc

e
[N

]

x
y
z

(a) Shear with cylindrical indenter

0 50 100 150 200 250

−4.0

−3.0

−2.0

−1.0

0.0

Time step

x
y
z

(b) Pressure with triangular flat indenter

Figure 13. The plots compare the total force computed from the predictions of the neural network
(solid lines) against the readings of an F/T sensor (dashed lines) for each of the three force components.
In (a), a thin cylindrical indenter was first pressed against the sensing surface up to a depth of 1 mm,
then it was laterally displaced in the y direction in discrete steps up to 3 mm, and finally lifted. In
(b), two pressure cycles were executed with a triangular flat indenter, first up to 2 mm, then up to 1
mm. Although the network was only trained on static data, the predictions accurately capture the force
trends in both the figures. The main inaccuracies can be observed for considerably larger deformations
(where the material characterization in previous work [18] showed larger variance) with the triangular
flat indenter, or during the unloading phase (where the material showed mild relaxation effects).

Spherical large Triangular Square Cylindrical Spherical small Tilted-plane

RMSE
x 0.003 0.009 0.007 0.007 0.004 0.002
y 0.003 0.008 0.007 0.014 0.003 0.002
z 0.008 0.022 0.015 0.021 0.008 0.014

RMSET
x 0.194 0.411 0.306 0.494 0.082 0.034
y 0.129 0.449 0.293 0.644 0.027 0.047
z 0.154 0.478 0.231 0.498 0.082 0.664

MAE (bin)
x 0.001 0.002 0.001 0.001 0.001 0.001
y 0.001 0.002 0.001 0.003 0.001 0.001
z 0.001 0.005 0.003 0.005 0.001 0.003

SDAE (bin)
x 0.004 0.009 0.007 0.007 0.003 0.002
y 0.003 0.008 0.007 0.014 0.003 0.002
z 0.007 0.021 0.014 0.020 0.008 0.013

MAE (total)
x 0.080 0.197 0.128 0.219 0.030 0.023
y 0.057 0.208 0.142 0.336 0.021 0.037
z 0.111 0.379 0.185 0.395 0.058 0.596

SDAE (total)
x 0.177 0.361 0.278 0.443 0.076 0.025
y 0.116 0.398 0.257 0.550 0.017 0.030
z 0.106 0.291 0.138 0.302 0.059 0.293

Range (total)
x -1.2–1.2 -3.2–3.2 -2.2–2.2 -3.2–3.2 -0.1–0.1 -0.01–0.01
y -1.2–1.2 -3.2–3.2 -2.2–2.2 -3.8–3.8 -0.1–0.1 -0.01–0.01
z -1.7–0 -4.3–0 -2.0–0 -4.6–0 -1.0–0 -1.3–0

Table 4. The table reports in detail the different error metrics (using a raw-feature model) for each of
the six real-world indenters employed to collect the test dataset (and shown in the main article). The
Newton unit was omitted here for all the values.

147

Paper P5. Sim-to-real for high-resolution optical tactile sensing

is the typical force profile in a vertical indentation.

(a) Simulation (b) Reality

Figure 14. Comparison of the optical flow obtained in simulation (a) versus reality (b). The color
represents the direction, while darker regions represent smaller displacements.

Acknowledgments

The authors would like to thank Michael Egli and Matthias Mueller for their support in

the sensor manufacture, and Thomas Bi for the discussions on the sensing pipeline.

References

[1] C. Sferrazza and R. D’Andrea, “Design, Motivation and Evaluation of a Full-

Resolution Optical Tactile Sensor”, Sensors, vol. 19, no. 4:928, 2019.

[2] D. V. Hutton, Fundamentals of Finite Element Analysis. McGraw-Hill, 2004.

[3] C. Sferrazza, T. Bi, and R. D’Andrea, “Learning the sense of touch in simulation:

a sim-to-real strategy for vision-based tactile sensing”, in Proceedings of the IEEE

International Conference on Intelligent Robots and Systems, 2020.

[4] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for

Biomedical Image Segmentation”, in Proceedings of the International Confer-

ence on Medical Image Computing and Computer-Assisted Intervention, 2015,

pp. 234–241.

[5] R. S. Dahiya, G. Metta, M. Valle, and G. Sandini, “Tactile Sensing—From Hu-

mans to Humanoids”, IEEE Transactions on Robotics, vol. 26, no. 1, pp. 1–20,

2010.

[6] K. Shimonomura, “Tactile Image Sensors Employing Camera: A Review”, Sen-

sors, vol. 19, no. 18:3933, 2019.

148

References

S
a
m

p
le

#
1

P
red

ictio
n

[3
]

G
ro

u
n

d
T

ru
th

S
am

p
le

#
2

P
red

ictio
n

[3
]

G
ro

u
n

d
T

ru
th

x component y component z component

Figure 15. The figures show the ground truth (first and third rows) and predicted (second and fourth
rows) force distribution components (x in the first column, y in the second column, and z in the third
column) for the first two samples shown in Fig. 8 in the main article, collected with two different indenters
in the real world. Predictions were made with the model trained in previous work [3], where only vertical
indentations made with a spherically-ended indenter were contained in the training dataset. The first
two rows show a vertical indentation with a cylindrical indenter; the third and fourth rows show a shear-
dominant indentation with a spherically-ended indenter. Note how the model trained in previous work
[3] does not generalize well to such cases.

[7] B. Ward-Cherrier, N. Pestell, L. Cramphorn, B. Winstone, M. E. Giannaccini,

J. Rossiter, and N. F. Lepora, “The TacTip Family: Soft Optical Tactile Sensors

with 3D-Printed Biomimetic Morphologies”, Soft robotics, vol. 5, no. 2, pp. 216–

227, 2018.

149

Paper P5. Sim-to-real for high-resolution optical tactile sensing

[8] F. Baghaei Naeini, D. Makris, D. Gan, and Y. Zweiri, “Dynamic-Vision-Based

Force Measurements Using Convolutional Recurrent Neural Networks”, Sensors,

vol. 20, no. 16:4469, 2020.

[9] A. C. Abad and A. Ranasinghe, “Visuotactile Sensors with Emphasis on GelSight

Sensor: A Review”, IEEE Sensors Journal, vol. 20, no. 14, pp. 7628–7638, 2020.

[10] C. Trueeb, C. Sferrazza, and R. D’Andrea, “Towards vision-based robotic skins:

a data-driven, multi-camera tactile sensor”, in Proceedings of the IEEE Interna-

tional Conference on Soft Robotics, 2020, pp. 333–338.

[11] M. Lambeta, P.-W. Chou, S. Tian, B. Yang, B. Maloon, V. R. Most, D. Stroud,

R. Santos, A. Byagowi, G. Kammerer, D. Jayaraman, and R. Calandra, “DIGIT:

A Novel Design for a Low-Cost Compact High-Resolution Tactile Sensor With

Application to In-Hand Manipulation”, IEEE Robotics and Automation Letters,

vol. 5, no. 3, pp. 3838–3845, 2020.

[12] A. Padmanabha, F. Ebert, S. Tian, R. Calandra, C. Finn, and S. Levine, “Omni-

Tact: A Multi-Directional High Resolution Touch Sensor”, in Proceedings of the

IEEE International Conference on Robotics and Automation, 2020, pp. 618–624.

[13] B. Romero, F. Veiga, and E. Adelson, “Soft, Round, High Resolution Tactile

Fingertip Sensors for Dexterous Robotic Manipulation”, in Proceedings of the

IEEE International Conference on Robotics and Automation, 2020, pp. 4796–

4802.

[14] D. F. Gomes, Z. Lin, and S. Luo, “GelTip: A Finger-shaped Optical Tactile

Sensor for Robotic Manipulation”, in Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2020, pp. 9903–9909.

[15] E. Donlon, S. Dong, M. Liu, J. Li, E. Adelson, and A. Rodriguez, “GelSlim: A

High-Resolution, Compact, Robust, and Calibrated Tactile-sensing Finger”, in

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and

Systems, 2018, pp. 1927–1934.

[16] D. Ma, E. Donlon, S. Dong, and A. Rodriguez, “Dense Tactile Force Estima-

tion using GelSlim and inverse FEM”, in Proceedings of the IEEE International

Conference on Robotics and Automation, 2019, pp. 5418–5424.

[17] N. Kuppuswamy, A. Castro, C. Phillips-Grafflin, A. Alspach, and R. Tedrake,

“Fast Model-Based Contact Patch and Pose Estimation for Highly Deformable

Dense-Geometry Tactile Sensors”, IEEE Robotics and Automation Letters, vol. 5,

no. 2, pp. 1811–1818, 2019.

[18] C. Sferrazza, A. Wahlsten, C. Trueeb, and R. D’Andrea, “Ground Truth Force

Distribution for Learning-Based Tactile Sensing: A Finite Element Approach”,

IEEE Access, vol. 7, pp. 173 438–173 449, 2019.

[19] W. Yuan, S. Dong, and E. H. Adelson, “GelSight: High-Resolution Robot Tactile

Sensors for Estimating Geometry and Force”, Sensors, vol. 17, no. 12: 2762, 2017.

150

References

[20] P. Piacenza, K. Behrman, B. Schifferer, I. Kymissis, and M. Ciocarlie, “A Sen-

sorized Multicurved Robot Finger With Data-Driven Touch Sensing via Overlap-

ping Light Signals”, IEEE/ASME Transactions on Mechatronics, vol. 25, no. 5,

pp. 2416–2427, 2020.

[21] Y. S. Narang, K. Van Wyk, A. Mousavian, and D. Fox, “Interpreting and Pre-

dicting Tactile Signals via a Physics-Based and Data-Driven Framework”, in

Proceedings of Robotics: Science and Systems, 2020.

[22] H. Lee, H. Park, G. Serhat, H. Sun, and K. J. Kuchenbecker, “Calibrating a Soft

ERT-Based Tactile Sensor with a Multiphysics Model and Sim-to-real Transfer

Learning”, in 2020 IEEE International Conference on Robotics and Automation,

2020, pp. 1632–1638.

[23] Z. Ding, N. F. Lepora, and E. Johns, “Sim-to-Real Transfer for Optical Tactile

Sensing”, in Proceedings of the IEEE International Conference on Robotics and

Automation, 2020, pp. 1639–1645.

[24] D. F. Gomes, A. Wilson, and S. Luo, “GelSight Simulation for Sim2Real Learn-

ing”, in ICRA ViTac Workshop, 2019.

[25] Y. Wang, W. Huang, B. Fang, and F. Sun, “Elastic Interaction of Particles for

Robotic Tactile Simulation”, arXiv preprint arXiv:2011.11528, 2020.

[26] R. W. Ogden, “Large deformation isotropic elasticity – on the correlation of

theory and experiment for incompressible rubberlike solids”, in Proceedings of the

Royal Society of London. A. Mathematical, Physical and Engineering Sciences,

vol. 326, 1972, pp. 565–584.

[27] M. Ciavarella, D. Hills, and G. Monno, “The influence of rounded edges on inden-

tation by a flat punch”, Proceedings of the Institution of Mechanical Engineers,

Part C: Journal of Mechanical Engineering Science, vol. 212, no. 4, pp. 319–327,

1998.

[28] Dassault Systèmes, Abaqus/Standard User’s Manual, Version 2019, English, Simu-

lia, 2019.

[29] L. Mitas and H. Mitasova, “Spatial interpolation”, in Geographical Information

Systems: Principles, Techniques, Management and Applications, P. A. Longley,

M. F. Goodchild, D. J. Maguire, and D. W. Rhind, Eds., John Wiley & Sons,

1999.

[30] R. Szeliski, Computer Vision: Algorithms and Applications. Springer, 2010.

[31] D. S. Wokes and P. L. Palmer, “Perspective Projection Of A Spheroid Onto An

Image Plane”, SIAM Journal on Imaging Sciences, 2008.

[32] T. Kroeger, R. Timofte, D. Dai, and L. Van Gool, “Fast Optical Flow using

Dense Inverse Search”, in Proceedings of the European Conference on Computer

Vision, 2016, pp. 471–488.

151

Paper P5. Sim-to-real for high-resolution optical tactile sensing

[33] D. Scaramuzza, A. Martinelli, and R. Siegwart, “A Toolbox for Easily Calibrat-

ing Omnidirectional Cameras”, in Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2006, pp. 5695–5701.

[34] S. Kaji and S. Kida, “Overview of image-to-image translation by use of deep neu-

ral networks: denoising, super-resolution, modality conversion, and reconstruc-

tion in medical imaging”, Radiological Physics and Technology, vol. 12, no. 3,

pp. 235–248, 2019.

[35] I. Loshchilov and F. Hutter, “Decoupled Weight Decay Regularization”, in Pro-

ceedings of the International Conference on Learning Representations, 2019.

[36] T. Bi, C. Sferrazza, and R. D’Andrea, “Zero-shot sim-to-real transfer of tac-

tile control policies for aggressive swing-up manipulation”, IEEE Robotics and

Automation Letters, vol. 6, no. 3, pp. 5761–5768, 2021.

152

Part B

Computationally efficient

learning-based

model predictive control

consisting of publications

[P6] C. Sferrazza, M. Muehlebach, and R. D’Andrea, “Trajectory tracking and itera-

tive learning on an unmanned aerial vehicle using parametrized model predictive

control”, in Proceedings of the IEEE Conference on Decision and Control (CDC),

2017, pp. 5186–5192

[P7] C. Sferrazza, M. Muehlebach, and R. D’Andrea, “Learning-based parametrized

model predictive control for trajectory tracking”, Optimal Control Applications and

Methods, vol. 41, no. 6, pp. 2225–2249, 2020

Paper P6

Trajectory tracking and iterative

learning on an unmanned aerial vehicle using

parametrized model predictive control

Carmelo Sferrazza, Michael Muehlebach and Raffaello D’Andrea

Abstract

A parametrization of state and input trajectories is used to approximate an
infinite-horizon optimal control problem encountered in model predictive control.
The resulting algorithm is discussed with respect to trajectory tracking, including
the problem of generating feasible trajectories. In order to account for unmodeled
repeatable disturbances an iterative learning scheme is applied, and as a result,
the tracking performance can be improved over consecutive trials. The algorithm is
applied to an unmanned aerial vehicle and shown to be computationally efficient,
running onboard at a sampling rate of 100 Hz during the experiments.

Published in Proceedings of the 2017 IEEE Conference on Decision and Control.

©2017 IEEE. Reprinted, with permission, from Carmelo Sferrazza, Michael Muehlebach and Raffaello
D’Andrea, ‘Trajectory tracking and iterative learning on an unmanned aerial vehicle using parametrized
model predictive control”, IEEE Conference on Decision and Control, 2017.

155

Paper P6. Trajectory tracking and iterative learning on an unmanned aerial vehicle

1. Introduction

Model Predictive Control (MPC) is an established control strategy for addressing chal-

lenging control problems, often including input and state constraints, see for example

[1] and references therein. It is based on the following procedure: at each time step, an

optimal control problem is solved and the first portion of the resulting input trajectory is

applied to the system. This yields an implicit feedback law providing robustness against

disturbances and modeling errors.

Due to the fact that an optimal control problem has to be solved at each time step,

MPC is computationally demanding, particularly when applied to systems with fast dy-

namics. A common approach to reduce the computational complexity is to discretize

the dynamics and truncate the prediction horizon. This leads naturally to a trade-off

between computation and prediction horizon. However, the truncation of the prediction

horizon might require the introduction of a terminal cost and terminal state constraints

to preserve stability, see [1], [2].

In contrast, the MPC approach presented in [3] retains an infinite prediction horizon

by parametrizing input and state trajectories with decaying basis functions. Provided

that the resulting trajectories fulfill the constraints for all times, this leads to inherent

closed-loop stability and recursive feasibility guarantees. Moreover, by choosing suitable

basis functions, the resulting MPC formulation tends to have fewer optimization variables

and therefore exhibits small execution times, as reported in [4].

This article extends the approach presented in [3] to trajectory tracking and discusses

the application to an unmanned aerial vehicle. In addition, an iterative learning scheme

is incorporated in order to reject repeatable disturbances.

1.1 Related Work

Due to the increase in computational power and the availability of dedicated optimization

routines, see for example [5], [6], MPC has been applied to a wide range of dynamic

systems. The vast majority of MPC controllers found in the literature are based on a

discrete-time finite-horizon formulation, an overview of which is given in [1]. In [7] and [8,

Ch. 3, Ch. 6], an alternative formulation is proposed, where the finite differences of the

control inputs (in discrete time) or the time derivative of the inputs (in continuous time)

are parametrized with so-called Laguerre or Kauz basis functions. Although similar basis

functions are used herein, their approach is different due to the fact that a finite prediction

horizon is retained, and that the control inputs are not parametrized directly. Moreover,

the state variable is eliminated, whereas we encode the dynamics as an equality constraint

that may or may not be eliminated, potentially leading to a sparser optimization problem.

In the following, we point out some applications of MPC to real-world systems, which

we find relevant for our work. This includes the control of unmanned aerial vehicles with

MPC, and trajectory tracking or iterative learning in combination with MPC.

In [9], the application of MPC to a thrust-vectored flight control experiment with a

ducted fan actuation is presented. Input and state constraints are included and the region

156

1. Introduction

of attraction of the MPC controller is shown to be larger than that of the corresponding

linear quadratic regulator.

Different strategies have been presented to tackle the problem of trajectory tracking

with MPC. In [10], a successive linearization approach has been applied to the discrete-

time infinite-horizon MPC strategy. This method has been shown to be more efficient

than a nonlinear MPC formulation, while maintaining a comparable performance, when

applied to a mobile robot. Guarantees for recursive feasibility have been presented in [11]

for constrained trajectory tracking problems through the use of time-varying terminal

regions. In [12], the tracking control problem of underactuated vehicles is addressed by

allowing an asymptotic tracking error. This provides a means to compute the terminal

set and the terminal control law that guarantee asymptotic convergence of the position

of the vehicle to a tube centered around the desired path. A direct multiple-shooting

approach is introduced in [13] for solving optimal control problems encountered in MPC.

The approach is evaluated in simulation, by performing extreme maneuvers with a flying

vehicle. In [14], a MPC framework is implemented and used for trajectory tracking of

a quadrotor, where the dynamics are modeled as a set of piecewise affine systems given

by different operating points. An application of MPC to the trajectory tracking of a

formation of flying vehicles is presented in [15].

Unlike most of the approaches summarized above, we do not discretize the dynamics,

but parametrize input and state trajectories with exponentially decaying basis functions.

As a result, we retain an infinite prediction horizon, and obtain an optimization problem

with relatively few variables. The numerical effectiveness of our approach will be demon-

strated by the fact that the resulting MPC controller achieves a sampling time of 100 Hz

on an embedded computer (Gumstix DuoVero COM).

Trajectory tracking can often be improved by incorporating learning approaches. It-

erative Learning Control (ILC), see [16], provides a way to iteratively improve the system

model available to the controller over multiple trials. An overview of ILC can be found in

[17]. In [18], a time-varying Kalman filter is used to estimate the repeatable disturbances

along a trajectory, which might stem from unmodeled system dynamics and uncertain-

ties in the physical parameters. We will use a similar approach to identify the repeatable

disturbances, and incorporate them into our MPC formulation.

In [19] and [20], learning approaches are included in an MPC framework. In [21], deep

learning is combined with MPC for guided policy search, where MPC is used to generate

data at training time. The method is evaluated with simulations of a quadrotor’s flight. In

[22], an underlying control sequence is included as a (deficient) reference to be improved

for the predictive tracking control. At each iteration, the input sequence is corrected by

performing a learning update. A similar strategy has been proposed in [23], where the

MPC performance is improved by feeding back the control errors from previous iterations,

based on the concept of repetitive control.

Applications of ILC in combination with MPC have been shown on a pH plant, see

[24], and in [25], where learning-based MPC has been applied on a quadrotor that has

been trained to catch a ball.

157

Paper P6. Trajectory tracking and iterative learning on an unmanned aerial vehicle

In our approach, we augment our system’s model with repeatable disturbances, which

we parametrize using the same basis functions as for representing the input and the

states. As a consequence, these disturbances can be naturally incorporated in our MPC

formulation. In that way, the system’s model is updated over consecutive trials, improving

the accuracy of the predictions used for MPC.

1.2 Outline

The parametrized MPC problem is presented in Section 2. Input and state trajectories

are approximated through a linear combination of Laguerre functions, and a constraint

sampling strategy is proposed. Section 3 discusses the problem of generating a trajec-

tory that is parametrized by the given basis functions. The online trajectory tracking is

explained in Section 4. In Section 5, an iterative learning scheme is incorporated. Sim-

ulation and experimental results obtained from flights with an unmanned aerial vehicle

are shown in Section 6. Concluding remarks are made in Section 7.

2. Parametrized MPC

In order to approximate the infinite-horizon optimal control problem that will be used in

our MPC approach, we will represent state and input trajectories as linear combinations

of Laguerre functions, that is,

x̃(t) := (In ⊗ τ(t))Tηx, ũ(t) := (Im ⊗ τ(t))Tηu, (1)

with τ(t) := (τ1(t), τ2(t), . . . , τs(t)), for all t ∈ [0,∞), and

τi(t) :=
√

2λ exp(−λt)
i−1∑
k=0

(
i− 1

k

)
(−1)k

k!
(2λt)k, (2)

where ηx ∈ Rns, ηu ∈ Rms are the parameter vectors, λ is the exponential decay, n and

m describe the state respectively the input dimension, and ⊗ denotes the Kronecker

product. This approach has been previously presented in [3], where additional motivation

and examples are included. For ease of notation, vectors are expressed as n-tuples, with

dimension and stacking clear from the context, i.e. τ(t) = (τ1(t), τ2(t), . . . , τs(t)) ∈ Rs.

It can be shown that the basis functions τ(t) satisfy the following properties,

τ̇(t) = Mλτ(t), τ(t) = eMλtτ(0), ∀t ∈ [0,∞), (3)

158

2. Parametrized MPC

where

Mλ =

−λ 0 · · · 0

−2λ −λ ...
...

. . . 0

−2λ · · · −2λ −λ

 ∈ Rs×s, (4)

which will be used in a later stage.

As discussed in [3], by representing input and state trajectories with x̃ and ũ according

to (1), the constrained infinite-horizon linear-quadratic optimal regulator problem can be

approximated as

inf
ηx,ηu

1

2

{
ηTx (Q⊗ Is) ηx + ηTu (R⊗ Is) ηu

}
(5)

s.t. Axηx +Buηu = 0, (6)

(In ⊗ τ(0))Tηx = x0, (7)

Fηu ∈ U := [umin, umax]s, (8)

where umin ∈ Rm and umax ∈ Rm are the lower and upper bounds on the control input

u(t), Q ∈ Rn×n is positive definite (Q � 0), R ∈ Rm×m is positive definite (R � 0),

F :=

Im ⊗ τ(t1)T

Im ⊗ τ(t2)T

...

Im ⊗ τ(ts)
T

 ∈ Rms×ms, (9)

and

Ax := A⊗ Is − In ⊗MT
λ , Bu := B ⊗ Is, (10)

where A ∈ Rn×n is the system matrix and B ∈ Rn×m is the matrix through which the

inputs enter the system. The suboptimality of this approximation can be quantified, as

discussed in [26].

The cost function in (5) matches the quadratic cost∫ ∞
0

1

2

{
x̃(t)TQx̃(t) + ũ(t)TRũ(t)

}
dt. (11)

In addition, as shown in [3], the constraints (6) and (7) imply that the system’s

159

Paper P6. Trajectory tracking and iterative learning on an unmanned aerial vehicle

dynamics are fulfilled exactly, that is,

˙̃x(t) = Ax̃(t) +Bũ(t), x̃(0) = x0, ∀t ∈ [0,∞). (12)

The constraint (8) represents a box constraint on the inputs, where the input con-

straints are relaxed, and are only enforced at the specific time instants ti, i = 1, . . . , s.

The choice of these time instants is discussed in [4]. The above formulation can be gen-

eralized to the case of arbitrary linear constraints on the states and the inputs. However,

restricting the input (and possibly state) constraints to be box constraints enables an

efficient implementation of the optimization routine for solving the optimization problem

(5), as highlighted in [4].

If the resulting optimal input trajectory violates the constraint umin ≤ u(t) ≤ umax for

all times t ∈ [0,∞), for instance in between the time instants ti, i = 1, . . . , s, the theoretic

stability and recursive feasibility guarantees are no longer valid in general. In practice

however, this sampling strategy often results in constraint satisfaction for all times, and

enables to solve (5) efficiently with the Generalized Fast Dual Gradient (GFDG) method,

see [4].

3. Trajectory generation

We propose to generate feasible trajectories for all states and inputs of the given system

by solving an optimization problem similar to (5). This process includes a transformation

of the desired trajectories from the physical space, which we denote by x̄des(t), to the

parameter space.

In particular, we propose solving an optimization problem for finding feasible trajec-

tories (compatible with the dynamics and fulfilling the constraints) that are the closest

possible fit to x̄des(t) (in the weighted L2-sense), while keeping the control effort as small

as possible.

The Laguerre functions that are used in our parametrized MPC approach have limited

polynomial order, and as such they would not be suitable to perform a single fit over the

entire trajectory horizon. In order to tackle this problem, we split the entire trajectory

into N smaller intervals of length T . In order to not lose the predictive power of the

MPC approach, we solve the trajectory generation problem over a prediction window

containing a number Npred of these intervals, covering a time horizon of length NpredT .

As a result, this approach improves the accuracy of the fit. In practice, a trade-off between

the prediction horizon NpredT and the accuracy of the fit has to be found.

Moreover, the basis functions are decaying to zero and as such, they are unable to

capture steady-state deviations. Provided that these steady-state offsets correspond to

equilibrium points of the dynamics, they are included in the trajectory generation prob-

lem. More precisely, for each interval j we may introduce the offsets xb,j, that are chosen

160

3. Trajectory generation

(j-th interval

(NpredT

xb;j

t

t

jT (j + 1)T (j + 2)T

0 T 2T

x̄des(t)

x̄j(t)

Figure 1. Offset and prediction window for a single state, with Npred = 2. The curve is shifted by the
offset xb,j , such that at the end of the prediction window the state will be at zero. The shifted curve is
used for solving the trajectory generation problem in (20) and the resulting parameters ηref,j are stored
for the j-th interval. The procedure is repeated for all the intervals j = 0, . . . , N − 1.

such that x̄des((j +Npred)T)− xb,j = 0, and shift the desired trajectory by these offsets,

leading to the shifted trajectories x̄j(t) := x̄des(t+ jT)− xb,j. These are defined over the

intervals j = 0, . . . , N−1, which are used as a starting point for the trajectory generation

problem. The procedure is illustrated in Figure 1.

We generate the feasible trajectories, represented by ηref,j := (ηx,ref,j, ηu,ref,j), by min-

imizing, for the j-th interval,

∫ NpredT

0

1

2

{
∆x,j(t)

TQ̄∆x,j(t) + ũj(t)
TR̄ũj(t)

}
dt (13)

with respect to ηref,j, where Q̄ � 0 and R̄ � 0 are suitable tuning matrices,

∆x,j(t) := x̄j(t)− (In ⊗ τ(t))Tηx,ref,j, (14)

and

ũj(t) := (Im ⊗ τ(t))Tηu,ref,j. (15)

161

Paper P6. Trajectory tracking and iterative learning on an unmanned aerial vehicle

Using the properties of the Kronecker product, and eliminating the terms not depend-

ing on ηref,j, (13) can be rearranged as,

1

2

{
ηTx,ref,j(Q̄⊗ Js)ηx,ref,j + ηTu,ref,j(R̄⊗ Js)ηu,ref,j

}
−
∫ NpredT

0

x̄j(t)
TQ̄(In ⊗ τ(t))Tηx,ref,jdt,

where

Js :=

∫ NpredT

0

τ(t)τ(t)Tdt. (16)

The matrix Js can be computed efficiently considering that

MλJs =

∫ NpredT

0

Mλτ(t)τ(t)Tdt =

∫ NpredT

0

τ̇(t)τ(t)Tdt, (17)

and integrating by parts results in

MλJs =
[
τ(NpredT)τ(NpredT)T − τ(0)τ(0)T

]
−
∫ NpredT

0

τ(t)τ̇(t)T dt (18)

=
[
τ(NpredT)τ(NpredT)T − τ(0)τ(0)T

]
− JsMT

λ . (19)

This leads to the Lyapunov equation,

MλJs + JsM
T
λ −

[
τ(NpredT)τ(NpredT)T − τ(0)τ(0)T

]
= 0

that gives Js as a unique solution. Existence and uniqueness of the solution Js of the above

Lyapunov equation is guaranteed, since the triangular matrix Mλ is negative definite, see

[27, p. 114].

Therefore, the complete problem at each interval j reduces to

inf
ηx,ref,j
ηu,ref,j

1

2

{
ηTx,ref,j(Q̄⊗ Js)ηx,ref,j + ηTu,ref,j(R̄⊗ Js)ηu,ref,j

}

−
∫ NpredT

0

x̄j(t)
TQ̄(In ⊗ τ(t))Tηx,ref,jdt (20)

s.t. Axηx,ref,j +Buηu,ref,j = 0, (21)

(In ⊗ τ(0)T)ηx,ref,j + xb,j

= (In ⊗ τ(T)T)ηx,ref,j−1 + xb,j−1, (22)

(Im ⊗ τ(0)T)ηu,ref,j = (Im ⊗ τ(T)T)ηu,ref,j−1, (23)

Fηu,ref,j ∈ U . (24)

162

4. Online trajectory tracking

0 1 2 3 4 5 6 7 8 9

−0.2

−0.1

0

time [s]

p
o
si

ti
o
n

[m
]

0 1 2 3 4 5 6 7 8 9
−2

−1

0

1

2
·10−2

time [s]

an
gl

e
[r

ad
]

Figure 2. Trajectory generation results. The upper plot shows a sinusoidal pulse in the x-position for
the Flying Platform, an unmanned aerial vehicle to be presented in Section 6. The lower plot shows the
corresponding pitch (Euler angle) over the same horizon. This state was not specified among the desired
ones, so the algorithm has the freedom of finding an appropriate feasible trajectory.

In case parts of the desired state trajectory are not provided, the corresponding value

in Q̄ should be set to zero (or very close to zero) for the corresponding state. In this way,

a higher flexibility will be left to the algorithm in order to find a feasible trajectory.

The constraints (22) and (23) are introduced in order to preserve the continuity of

the states and the inputs, such that the trajectory defined by ηref,j starts exactly where

the trajectory defined by ηref,j-1 ends. In a similar way, both constraints are replaced for

the interval j = 0 by

(In ⊗ τ(0)T)ηx,ref,0 = x̄des(0)− xb,0. (25)

The results of the problem on two of the states of the system that we will present in

Section 6 are shown in Figure 2.

4. Online trajectory tracking

Once a trajectory has been generated offline, it can be tracked online by the MPC con-

163

Paper P6. Trajectory tracking and iterative learning on an unmanned aerial vehicle

troller. At each time step, a counter is used to detect the current interval and load the

appropriate ηref,j and xb,j. For the time instants within the intervals, the parameters have

to be shifted in time by pre-multiplying a delay matrix to the current ηref,j. Considering a

single state x, and given the sampling time Ts and the time instant kTs, k = 0, . . . , K−1,

we have, according to (3),

τ(kTs) = eMλkTsτ(0). (26)

Within the j-th interval, this leads to

x(kTs) = τ(kTs)
Tηx,ref,j = τ(0)TeM

T
λkTsηx,ref,j

= τ(0)Tηx,ref,d,j. (27)

The above formula (27) extends naturally to multiple states and inputs, by virtue of the

Kronecker product. Therefore, the corresponding shifted parameters are calculated as

ηref,d,j = (In+m ⊗ ekM
T
λTs)ηref,j. (28)

We will drop the subscript ’d’ from now on to simplify notation. As a result, in the

j-th interval, the following problem is solved online:

inf
ηx,ηu

1

2

{
(ηx − ηx,ref,j)

T (Q⊗ Is) (ηx − ηx,ref,j)

+ (ηu − ηu,ref,j)
T (R⊗ Is) (ηu − ηu,ref,j)

}
s.t. Axηx +Buηu = 0, (29)

(In ⊗ τ(0)T)ηx = x0 − xb,j,

Fηu ∈ U ,

where x0 is an estimate of the current position. The problem can be solved with the

GFDG method as proposed in Section 2, using the change of variables η′x = ηx − ηx,ref,j,

η′u = ηu − ηu,ref,j.

5. Trajectory tracking with iterative learning

In order to account for the repeatable disturbances, we implement an iterative learning

scheme. It consists of a Kalman Filter, see [28, Ch. 8], for estimating these repeatable

disturbances, which are then included in the proposed MPC framework. The use of a

Kalman Filter is motivated by the fact that it is a well-established technique, easily

164

5. Trajectory tracking with iterative learning

tunable, and provides a means to incorporate prior information.

We model the disturbances as additive noise that enters the dynamics through the

matrix G ∈ Rn×nv ,

ẋ(t) = Ax(t) +Bu(t) +Gv(t), ∀t ∈ [0,∞), (30)

where v(t) ∈ Rnv is the disturbance vector. In analogy to the system’s state and input,

which are modeled using x̃ and ũ, the disturbance v(t) is assumed to have the form

ṽ(t) := (Inv ⊗ τ(t))Tηv. (31)

As a result, the equality constraint capturing the system dynamics in (29) is reformulated

as

Axηx +Buηu +Gvηv = 0, Gv := G⊗ Is. (32)

Note that, as remarked earlier, trajectories x̃(t), ũ(t) and ṽ(t) satisfying (32) and the

initial condition x̃(0) = x0, fulfill the equations of motion (30) exactly.

We discretize the augmented system’s model in (30) as (assuming a zero-order hold

sampling),

x[k + 1] = Adx[k] +Bdu[k] +Gdv[k], (33)

where k = 0, 1, . . . , Ad, Bd andGd are the discrete-time matrix representation of (30) with

sampling time Ts, and x[k] = x(kTs). We aim at estimating the disturbance trajectory

v[k] based on the data available from the previous trials.

As we are interested in capturing the repeatable parts of the disturbance, we use the

following model to describe the evolution of v[k] over different trials,

v[k]i+1 = v[k]i + q[k]i, q[k]i ∼ N (0, QKF), (34)

where q[k]i denotes the process noise that is assumed to be normally distributed with

zero mean and variance QKF, and the superscript i refers to the trial number. Thus, the

prediction step of the Kalman filter is given by

v̂p[k]i+1 = v̂m[k]i, Pp[k]i+1 = Pm[k]i +QKF, (35)

where v̂p[k]i and Pp[k]i indicate the expected value and the variance of the random variable

v[k]i conditioned on the trajectory data up to the (i− 1)-th trial, while vm[k]i and Pm[k]i

indicate the expected value and the variance of the same random variable conditioned on

165

Paper P6. Trajectory tracking and iterative learning on an unmanned aerial vehicle

the trajectory data up to the i-th trial.

During the execution of a trajectory, the actual states and inputs are recorded and are

used to update the estimate of v[k]. We use (33) to formulate the measurement equation,

x[k + 1]i − Adx[k]i −Bdu[k]i︸ ︷︷ ︸
:=z[k]i

= Gdv[k]i + n[k]i,

with n[k]i ∼ N (0, RKF). The measurement update equations can be expressed as

Pm[k]i =
(
(Pp[k]i)−1 +GT

dR
−1
KFGd

)−1
(36)

v̂m[k]i = v̂p[k]i + Pm[k]iGT
dR
−1
KF(z[k]i −Gdv̂p[k]i). (37)

Once the Kalman filter updates are performed, the current estimated disturbance

trajectory vm[k]i is transformed to the continuous-time domain through a zero-order hold,

yielding v(t)i. The latter is transformed to the parameter space by performing a curve

fitting that minimizes a regularized L2-distance. Again, the Laguerre functions are not

suitable for fitting a curve over a large interval, as they only have few degrees of freedom.

To tackle this problem, we use a similar approach as in the trajectory generation, and split

the trajectory v(t)i in Nv pieces of length Tv. In order to simplify notation, we present

this fitting procedure for one-dimensional disturbances, but it can be easily extended to

the multi-dimensional case. Introducing the quantities vj(t)
i := v(t+ jTv)

i, the resulting

fitting procedure (for each interval j) reduces to,

ηiv,j := arg min
η

∫ Tv

0

1

2

{(
vj(t)

i − τ(t)Tη
)2

+ rηTτ̇(t)τ̇(t)Tη

}
dt, (38)

where the first integrand penalizes the squared distance to the disturbance trajectory,

while the second term performs a regularization in order to increase the smoothness of the

resulting trajectory τ(t)Tηiv,j. The regularization is controlled with the tuning parameter

r ∈ R, r ≥ 0.

The optimization problem (38) can be solved analytically leading to

ηiv,j =
(
Jv + rMλJvM

T
λ

)−1
∫ Tv

0

vj(t)
iτ(t)dt, (39)

where

Jv :=

∫ Tv

0

τ(t)τ(t)Tdt (40)

166

6. Experimental results

is computed in a similar way as in (16)-(18).

The algorithm that runs at each trajectory execution is summarized by the pseudo-

code given in Algorithm 1.

Algorithm 1 Pseudo-code for disturbances estimation.

Result: Estimate ηiv corresponding to the i-th trial
Record x[k]i, u[k]i over the entire trajectory;
Update the Kalman filter state v[k]i;
Split the interpolated v(t)i over Nv intervals → vj(t)

i;
for each interval j do

Fit ηiv,j through vj(t)
i;

end

Merge all the estimates and store a lifted vector ηiv =
(
ηiv,0, η

i
v,1 · · ·

)
After the i-th trial, the current estimate of the disturbance parameters is used to

replan a feasible trajectory. This is done by solving again the generation problem in (20),

replacing (21) with

Axηx,ref,j +Buηu,ref,j +Gvη
i
v,j = 0, (41)

to include the estimated disturbances in the system’s dynamics. In a similar way, in the

online trajectory tracking problem the equality constraint in (29) is replaced by

Axηx +Buηu +Gvη
i
v,j = 0. (42)

The vector ηiv,j is shifted in time in a similar way as described by (28).

6. Experimental results

6.1 Hardware and software

The Flying Platform is a flying machine consisting of three electrical ducted fans mounted

on a lightweight frame, see [29]. Two flaps are attached to each fan in order to control

the air flow and perform thrust vectoring. A PX4FMU1 is used as a flight controller

for actuation and measuring the angular velocities with the built-in gyroscope. The PX4

communicates through a serial bus with a Gumstix DuoVero Zephyr computer-on-module

(COM)2, equipped with a dual-core ARM Cortex-A9 that runs at 1 GHz. The COM

1www.pixhawk.org
2www.gumstix.org

167

www.pixhawk.org
www.gumstix.org

Paper P6. Trajectory tracking and iterative learning on an unmanned aerial vehicle

Figure 3. The Flying Platform during flight.

disposes of 1GB RAM. Position and attitude information is provided by a Vicon3 motion

capture system. Translational velocities are estimated through off-board state estimation

techniques. The Flying Platform receives the data computed off-board, that is, the actual

position, attitude and (linear) velocity, through a wireless communication.

The parametrized MPC routine and the iterative learning are implemented on the

Gumstix COM, that runs a Linux-based operating system.

6.2 Model

A first-principles model is linearized about hover. In order to be invariant to different yaw

set-points, the linearization is carried out in a yaw-fixed body coordinate system. The

Flying Platform model has 12 states, that is, position, translational velocities, attitude,

and angular velocities, and 9 inputs (3 per fan), which are given by Tz,i (vertical thrusts)

and Tx,i, Ty,i (horizontal components, in perpendicular directions to each flap), with

i = 1, 2, 3. All the input saturations can be approximated as box constraints, as shown

in [4].

6.3 Results

We choose s = 5, and an exponential decay λ = 5s−1. The following matrices are chosen

for the learning, with nv = 12,

G = Inv , QKF = 10−1 · Inv , RKF = 10−5 · In.

3www.vicon.com

168

www.vicon.com

7. Conclusion

parameter value description
T 0.05 s interval length in trajectory generation
Npred 25 prediction horizon for tracking (multiples of T)
r 0.1 regularization in learning fit
Tv 1 s interval length in learning fit

Table 1. Tuning parameters.

Our choice ofG doesn’t specify any weights on how the disturbances enter the system. The

choice ofQKF leaves some freedom to our assumption of invariance of the disturbances over

different trials, while the low magnitude of the values in RKF emphasizes the considerable

trust we give to the measurements.

The following tuning matrices are chosen for the controller presented in (29), which

runs at a sampling frequency of 100 Hz,

position︷ ︸︸ ︷ lin. velocity︷ ︸︸ ︷ attitude︷ ︸︸ ︷ang. velocity︷ ︸︸ ︷
Q= diag

(
200,200,30,10,10,10,40,40,10,10,10,5

)
R= 10−3 · diag

(
1.7,0.85,15,1.7,0.85,15,1.7,0.85,15

)
.︸ ︷︷ ︸

Tx,1,Ty,1,Tz,1

︸ ︷︷ ︸
Tx,2,Ty,2,Tz,2

︸ ︷︷ ︸
Tx,3,Ty,3,Tz,3

The remaining tuning parameters are summarized in Table 1. The desired task is to track

a circle with a diameter of 20 cm in 6 s. Six consecutive trials have been performed. The

resulting tracking performance is shown in Figure 4.4

Due to the estimation of the disturbances ηv, the predictions of the MPC are more

accurate as the number of trials increases, which improves the tracking performance. The

repeatable disturbances are most likely due to asymmetries in the mass distribution of

the real system.

7. Conclusion

A parametrized MPC approach has been extended to the trajectory tracking case, and

a learning scheme has been introduced. To this extent, the inherent limitations of the

Laguerre functions that are used to parametrize the state and input trajectories are

addressed by introducing multiple prediction intervals. Still, accounting for large constant

disturbances remains challenging due to the decaying nature of the basis functions and

requires careful tuning. The same applies to disturbances that quickly change in time,

due to the bounded derivative of the basis functions. The method has been tested on

an unmanned aerial vehicle, showing satisfactory tracking performance, and achieving a

4A video showing some of the experiments can be found at the following link: https://youtu.be/
GgIwrnoNvTY.

169

https://youtu.be/GgIwrnoNvTY
https://youtu.be/GgIwrnoNvTY

Paper P6. Trajectory tracking and iterative learning on an unmanned aerial vehicle

−0.2 −0.1 0

−0.1

0

0.1

x[m]

y
[m

]

Reference
Trial 1
Trial 2
Trial 3
Trial 6

Figure 4. Trajectory tracking of a circle (counter-clockwise direction, starting from the origin). The
feasible (parametrized) trajectory matches the desired trajectory in the xy-plane, and is therefore not
shown. The system improves the accuracy of the predictions used for MPC, increasing the tracking
performance over subsequent trials, before reaching a steady-state after six trials.

sampling frequency of 100 Hz. The experiments have also shown how the system improves

in performing the task over subsequent trials.

Acknowledgments

The authors would like to thank Marc-Andrè Corzillius, Michael Egli, Tobias Meier and

Lukas Fröhlich for their contribution to the development of the Flying Platform. This

work was supported by ETH-grant ETH-48 15-1.

The experiments of this research were carried out in the Flying Machine Arena. A

list of present and past participants is available at http://flyingmachinearena.org/

people/.

170

http://flyingmachinearena.org/people/
http://flyingmachinearena.org/people/

References

References

[1] M. Morari and J. H. Lee, “Model predictive control: Past, present and future”,

Computers & Chemical Engineering, vol. 23, no. 4-5, pp. 667–682, 1999.

[2] M. Alamir and G. Bornard, “Stability of a truncated infinite constrained receding

horizon scheme: The general discrete nonlinear case”, Automatica, vol. 31, no. 9,

pp. 1353–1356, 1995.

[3] M. Muehlebach and R. D’Andrea, “Parametrized infinite-horizon model predic-

tive control for linear time-invariant systems with input and state constraints”,

American Control Conference, pp. 2669–2674, 2016.

[4] M. Hofer, M. Muehlebach, and R. D’Andrea, “Application of an approximate

model predictive control scheme on an unmanned aerial vehicle”, International

Conference on Robotics and Automation, pp. 2952–2957, 2016.

[5] Y. Wang and S. Boyd, “Fast model predictive control using online optimization”,

Transactions on Control Systems Technology, vol. 18, no. 2, pp. 267–278, 2009.

[6] A. Domahidi, A. U. Zgraggen, M. N. Zeilinger, M. Morari, and C. N. Jones, “Ef-

ficient interior point methods for multistage problems arising in receding horizon

control”, Conference on Decision and Control, pp. 668–674, 2012.

[7] L. Wang, “Continuous time model predictive control design using orthogonal

functions”, International Journal of Control, vol. 74, no. 16, pp. 1588–1600, 2001.

[8] L. Wang, Model Predictive Control System Design and Implementation Using

MATLAB. Springer, 2009.

[9] W. B. Dunbar, M. B. Milam, R. Franz, and R. M. Murray, “Model predictive

control of a thrust-vectored flight control experiment”, IFAC World Congress,

vol. 35, no. 1, pp. 355–360, 2002.

[10] F. Kühne, J. M. G. da Silva Jr., and W. F. Lages, “Mobile robot trajectory

tracking using model predictive control”, Latin American Robotics Symposium,

2005.

[11] T. Faulwasser and R. Findeisen, “A model predictive control approach to trajec-

tory tracking problems via time-varying level sets of Lyapunov functions”, Con-

ference on Decision and Control and European Control Conference, pp. 3381–

3386, 2011.

[12] A. Alessandretti, A. P. Aguiar, and C. N. Jones, “Trajectory-tracking and path-

following controllers for constrained underactuated vehicles using model predic-

tive control”, European Control Conference, pp. 1371–1376, 2013.

[13] S. Gros, R. Quirynen, and M. Diehl, “Aircraft control based on fast non-linear

MPC & multiple-shooting”, Conference on Decision and Control, pp. 1142–1147,

2012.

171

Paper P6. Trajectory tracking and iterative learning on an unmanned aerial vehicle

[14] K. Alexis, G. Nikolakopoulos, and A. Tzes, “On trajectory tracking model pre-

dictive control of an unmanned quadrotor helicopter subject to aerodynamic

disturbances”, Asian Journal of Control, vol. 16, no. 1, pp. 209–224, 2014.

[15] B. Vanek, T. Péni, J. Bokor, and G. Balas, “Practical approach to real-time

trajectory tracking of UAV formations”, American Control Conference, pp. 122–

127, 2005.

[16] Z. Bien and J. X. Xu, Iterative Learning Control: Analysis, Design, Integration

and Applications. Kluwer Academic Publishers, 1998.

[17] Y. Wang, F. Gao, and F. J. Doyle III, “Survey on iterative learning control,

repetitive control, and run-to-run control”, Journal of Process Control, vol. 19,

no. 10, pp. 1589–1600, 2009.

[18] A. Schoellig and R. D’Andrea, “Optimization-based iterative learning control for

trajectory tracking”, European Control Conference, pp. 1505–1510, 2009.

[19] A. Aswani, H. Gonzalez, S. S. Sastry, and C. Tomlin, “Provably safe and robust

learning-based model predictive control”, Automatica, vol. 49, no. 5, pp. 1216–

1226, 2013.

[20] N. Amann, D. H. Owens, and E. Rogers, “Predictive optimal iterative learning

control”, International Journal of Control, vol. 69, no. 2, pp. 203–226, 1998.

[21] T. Zhang, G. Kahn, S. Levine, and P. Abbeel, “Learning deep control policies

for autonomous aerial vehicles with MPC-guided policy search”, International

Conference on Robotics and Automation, pp. 528–535, 2016.

[22] E. J. Adam and A. H. González, “Iterative learning - MPC: An alternative

strategy”, in Frontiers in Advanced Control Systems, G. L. de Oliveira Serra,

Ed., InTech, 2012, ch. 9.

[23] K. K. Tan, S. N. Huang, T. H. Lee, and A. Tay, “Disturbance compensation

incorporated in predictive control system using a repetitive learning approach”,

Systems & Control Letters, vol. 56, no. 1, pp. 75–82, 2007.

[24] J. R. Cueli and C. Bordons, “Iterative nonlinear model predictive control. Sta-

bility, robustness and applications”, Control Engineering Practice, vol. 16, no. 9,

pp. 1023–1034, 2008.

[25] P. Bouffard, A. Aswani, and C. Tomlin, “Learning-based model predictive con-

trol on a quadrotor: Onboard implementation and experimental results”, Inter-

national Conference on Robotics and Automation, pp. 279–284, 2012.

[26] M. Muehlebach and R. D’Andrea, “Approximation of continuous-time infinite-

horizon optimal control problems arising in model predictive control”, Conference

on Decision and Control, pp. 1464–1470, 2016.

[27] K. J. Åström and R. Murray, Feedback Systems: An Introduction for Scientists

and Engineers. Princeton University Press, 2008.

172

References

[28] D. Simon, Optimal State Estimation: Kalman, H Infinity, and Nonlinear Ap-

proaches. Wiley, 2006.

[29] M. Muehlebach and R. D’Andrea, “The Flying Platform - A testbed for ducted

fan actuation and control design”, Mechatronics, vol. 42, pp. 52–68, 2017.

173

Paper P7

Learning-based parametrized model

predictive control for trajectory tracking

Carmelo Sferrazza, Michael Muehlebach and Raffaello D’Andrea

Abstract

The article is concerned with the tracking of non-equilibrium motions with
model predictive control. It proposes to parametrize input and state trajectories
of a dynamic system with basis functions to alleviate the computational burden
in model predictive control. As a result of the parametrization, an optimization
problem with fewer variables is obtained, and the memory requirements for storing
the reference trajectories are reduced. The article also discusses the generation of
feasible reference trajectories that account for the system’s dynamics, as well as
input and state constraints. In order to cope with repeatable disturbances, which
may stem from unmodeled dynamics for example, an iterative learning procedure is
included. The approach relies on a Kalman filter that identifies the repeatable dis-
turbances based on previous trials. These are then included in the system’s model
available to the model predictive controller, which compensates them in subsequent
trials. The proposed approach is evaluated on a quadcopter, whose task is to balance
a pole, while flying a predefined trajectory.

Published in Optimal Control Applications and Methods.

Reprinted, from Carmelo Sferrazza, Michael Muehlebach and Raffaello D’Andrea, “Learning-based
parametrized model predictive control for trajectory tracking”, Optimal Control Applications and Meth-
ods, 2020. Used under CC BY 4.0.

175

Paper P7. Learning-based parametrized model predictive control for trajectory tracking

Figure 1. The flying inverted pendulum system used for the experiments presented in this article.

1. Introduction

Model predictive control (MPC) is an effective and popular control strategy for systems

that have input and state constraints. There are numerous examples where model pre-

dictive control has been successfully applied in practice, see for example the works of

Richalet et al. [1], Borrelli et al. [2], Geyer et al. [3], Papafotiou et al. [4]. The underlying

idea is to repeatedly solve an optimal control problem that takes input and state con-

straints into account, and generates optimal input and state trajectories that guide the

system from its current state to a desired state (often the origin). In order to be robust

against modeling errors and disturbances, only a small portion of the input trajectory is

applied to the system, before resolving the optimal control problem, subject to the actual

position as an initial condition [5].

As a consequence, the underlying optimal control problem often needs to be solved

very quickly in order to achieve a sufficiently small sampling time. Even if the optimization

is warm-started, the resulting computational load is often substantial and represents a

bottleneck of MPC. To reduce the computational load, the optimal control problem is

often simplified, for example by using a coarser system model with fewer dimensions,

and/or by reducing the prediction horizon. However, both the simplified system model

and the smaller prediction horizon may degrade the resulting closed-loop performance

and may even lead to instability.

The parametrization of the input and state trajectories with basis functions is an

approach that avoids the discretization and the truncation of the time horizon. For the

regulator problem, it has been shown in the work of Muehlebach and D’Andrea [6] that

the resulting MPC controller asymptotically stabilizes the origin and is recursively feasi-

176

1. Introduction

ble (without the need for a terminal constraint and a terminal cost). This article discusses

the extension of such a parametrized MPC strategy from the regulator problem to the

tracking problem. In fact, this step is non-trivial, particularly with regard to practical im-

plementation. In addition, a strategy to identify and account for repeatable disturbances

is presented, in case the same trajectory is executed multiple times. The implementa-

tion of the resulting learning-based MPC control strategy on a flying inverted pendulum

system (see Figure 1) is discussed.

Related work: In the work of Dunbar et al. [7] a testbed for a ducted-fan actuated

flying vehicle is controlled with MPC. The authors discuss the regulator problem and it

is shown that the region of attraction of the MPC controller is larger than that of the

related linear quadratic regulator.

Various works focus on reducing the computational complexity of MPC, see for ex-

ample move-blocking strategies [8] or tailored MPC solvers [9], [10]. The works of Wang

[11], Rossiter and Wang [12], and Khan and Rossiter [13] propose parametrizing the

input trajectories with Laguerre or Kauz basis functions. The potential benefits of the

parametrization in terms of performance and extension of the feasibility regions are dis-

cussed.

The article by Faulwasser and Findeisen [14] proposes an extension of MPC from

the regulation problem to trajectory tracking. A nonlinear and continuous-time MPC

formulation is presented, including time-varying terminal set constraints that guarantee

recursive feasibility and closed-loop stability. Stephens et al. [15] discuss the design and

implementation of an MPC controller to track trajectories of an industrial machine tool

servo drive. The authors suggest extending the reference trajectory, for example via first-

order hold, and are able to reduce the input horizon (they distinguish between the input

and the prediction horizons), such that they can apply explicit MPC. In the work of

Neunert et al. [16], a general nonlinear control strategy is presented, which uses time-

varying feedforward and feedback terms. The resulting cascaded control structure includes

a low-level controller that can be executed at very high rates, while MPC is used at a

higher-level for updating the parameters of the low-level controller. The research of Kamel

et al. [17] compares a linear and a non-linear MPC controller for trajectory tracking with

a hexacopter. The authors conclude that the nonlinear MPC controller outperforms the

linear one for the experiments conducted. In the work of Mueller and D’Andrea [18],

a diminishing horizon MPC controller is introduced to track interception trajectories

with a quadcopter. The trajectories generated at each sampling step are obtained by

optimizing a quadratic program that is tailored to the quadcopter’s dynamics and is based

on conservative bounds on the quadcopter’s jerk. Compared to the approach proposed

in this article, this results in a comparable computational effort. However, the algorithm

does not provide convergence guarantees and does not adapt to the environment.

In order to cope with modeling errors a learning-based predictive controller is pre-

sented in the work by Bouffard et al. [19]. The dynamics are assumed to be affine and

time-invariant and an extended Kalman filter is used to learn, respectively update, the

dynamics. As a result, the authors demonstrate offset-free tracking and discuss the im-

177

Paper P7. Learning-based parametrized model predictive control for trajectory tracking

provements of a step response compared to the nominal MPC controller. In the work of

Wang et al. [20], iterative learning control is included in an MPC framework to control

multi-phase batch processes. Two different strategies are proposed to design an updat-

ing law using model predictive control, which can intrinsically deal with constraints. A

reference-free approach is presented in the work of Rosolia and Borrelli [21], where a non-

linear MPC controller improves the performance over repetitive tasks when the reference

trajectory is not known. The design of terminal constraints at each iteration is proposed

to guarantee performance improvement and stability requirements.

However, the approaches cited mostly rely on a discretized formulation of the dynam-

ics and/or a piece-wise constant control input. The approach followed in this article is

different: It aims to reduce the number of degrees of freedom and alleviate the computa-

tional burden of MPC by parametrizing input and state trajectories with basis functions.

In addition to requiring less memory (see Section 3) and reducing computation, inherent

(without the addition of terminal constraints) closed-loop stability and recursive feasibil-

ity results can be demonstrated when regulating linear time-invariant systems [6], [22].

This parametrization is originally presented in the work of Muehlebach and D’Andrea

[6], where simulation results show the regulation of a linear time-invariant system to

equilibrium, without addressing the problem of constraint satisfaction. In the work of

Muehlebach et al. [22], a strategy to guarantee constraint satisfaction is implemented

and the resulting algorithm is shown to run at 100 Hz on an embedded platform, regulat-

ing the system to equilibrium. In the work of Sferrazza et al. [23], a heuristic strategy has

been proposed to apply this idea to the trajectory tracking problem. In this article, non-

equilibrium motions are successfully tracked with a general framework that also accounts

for the generation of feasible trajectories. This approach is demonstrated in experiments,

where a quadrotor balances an inverted pendulum. In order to cope with the system’s

nonlinearities and unmodeled dynamics, an iterative learning approach that identifies

the repeatable disturbances and augments the model accordingly is applied. The com-

putation related to the learning can be done offline, thus not altering the complexity of

the MPC algorithm during the tracking of a trajectory. The trajectory generation prob-

lem is formulated here as a single optimization over the entire trajectory duration. This

differs from the work of Sferrazza et al. [23], where a greedy approach was used to sim-

plify the optimization. The main differences between the two approaches are emphasized

throughout this article.

Outline: Section 2 introduces the different building blocks of the proposed control

strategy and shows how they are connected: In Subsection 2.1 the MPC controller that

tracks the generated reference trajectories is presented. Subsection 2.2 describes how

the reference trajectories are generated, and the identification of repeatable disturbances

is explained in Subsection 2.3. The benefits in terms of memory usage are elaborated in

Section 3. Section 4 presents experimental results, where a quadrotor balances an inverted

pendulum while flying a three-dimensional figure-eight trajectory. The article concludes

in Section 5 with remarks.

178

2. Method

Trajectory

generation

Trajectory

tracking

Disturbances

estimation

�x,ref; xss

�u,ref; uss

�v; vss

x[k]; u[k]

v.t/

xdes.t/

Figure 2. At each trial, the generated trajectory is followed by means of a trajectory tracking controller.
The state and input rollouts are used to estimate the repeatable disturbances after the trial completion,
and are then taken into account in the next generation of the trajectories to improve the tracking
performance. Note that in this diagram xdes(t) and v(t) denote the state and disturbance trajectories
in continuous time for the entire trajectory duration. Similarly x[k] and u[k] denote the state and input
rollouts in discrete time for the entire trajectory duration.

2. Method

The following section proposes a parametrized MPC approach to generate and track non-

equilibrium motions of a dynamic system. It is assumed that the system can be roughly

approximated by linear time-invariant dynamics. A scheme of the proposed framework is

shown in Figure 2 and consists of the following building blocks: The trajectory generation

procedure takes a desired trajectory, xdes(t), and, based on an estimate of the repeatable

disturbances v(t), computes feasible reference trajectories for the state and input. These

trajectories are parametrized by linear combinations of basis functions and include steady-

state offsets (as indicated by the variables ηx,ref, ηu,ref, ηv, xss, uss, and vss). The trajectory

tracking procedure implements an (online) MPC controller for tracking the reference

trajectories. The actual state and input trajectories are recorded, and after execution

of the trajectory, the disturbance estimation procedure updates the estimate v(t) of the

repeatable disturbances. In the first iteration, the disturbance estimate v(t) is typically

initialized with zero, unless some prior knowledge is available.

The following subsections describe each individual block in detail. In the remainder

of this article, vectors are expressed as tuples, with dimension and stacking clear from

the context.

2.1 Trajectory tracking

In the following subsection the trajectory tracking procedure is described. As indicated in

Figure 2, its aim is to track feasible reference trajectories, given a disturbance estimate.

179

Paper P7. Learning-based parametrized model predictive control for trajectory tracking

All trajectories are parametrized with basis functions, that is,

x̃(t) = (In ⊗ τ(t))>ηx + xss (1)

x̃ref(t) = (In ⊗ τ(t))>ηx,ref + xss (2)

ũ(t) = (Im ⊗ τ(t))>ηu + uss (3)

ũref(t) = (Im ⊗ τ(t))>ηu,ref + uss (4)

ṽ(t) = (Inv ⊗ τ(t))>ηv + vss, (5)

for all t ∈ [0,∞), where x̃ and ũ denote the planned state and input trajectories, and

x̃ref, ũref, and ṽ the reference and disturbance trajectories that are obtained from the

trajectory generation routine and are fixed during trajectory tracking. The parameter

vectors of the planned state and input trajectories, which are subject to the (online)

optimization, are denoted by ηx ∈ Rns and ηu ∈ Rms, the parameters of the reference

state, the reference input, and the disturbance trajectory are denoted by ηx,ref ∈ Rns,

ηu,ref ∈ Rms, and ηv ∈ Rnvs, and the steady-state offsets on the state, the input, and the

disturbances are denoted by xss ∈ Rn, uss ∈ Rm, and vss ∈ Rnv . The integers n, m, and nv

describe the dimension of the state, the input, and the disturbances, and ⊗ refers to the

Kronecker product. In contrast to the work of Sferrazza et al. [23], steady-state offsets are

also included in the inputs and the disturbances. In addition, these offsets are decision

variables in the optimization problem introduced in Subsection 2.2. This makes it possible

to capture large steady-state disturbances and gives the trajectory generation algorithm

the flexibility to trade off the placement of these offsets during the optimization. The

basis functions τ(t) := (τ1(t), τ2(t), . . . , τs(t)) ∈ Rs, where s refers to the number of basis

functions, are assumed to satisfy the following standing assumptions:

H1 The basis functions τ1, τ2, . . . , τs are linearly independent.

H2 The basis functions satisfy the following first order differential equation τ̇(t) =

Mτ(t) for all t ∈ [0,∞), where the matrix M ∈ Rs×s is Hurwitz.

Assumption H1 is required to guarantee that the resulting optimization problems have

unique solutions. The motivation of Assumption H2 is twofold: First, if both H1 and H2

are fulfilled, linear time-invariant dynamics ˙̃x(t) = Ax̃(t) + Bũ(t) + Gṽ(t) are fulfilled if

and only if the corresponding parameter vectors satisfy

(In ⊗M>)ηx = (A⊗ Is)ηx + (B ⊗ Is)ηu + (G⊗ Is)ηv,

where A, B and G are the system’s matrices. A proof of this statement can be found

in the work of Muehlebach and D’Andrea [6]. Second, if Assumption H2 is fulfilled, it

implies that the basis functions are able to capture arbitrary time shifts. More precisely,

given the trajectory x̃(t) parametrized by the basis functions, the shifted version of this

180

2. Method

trajectory, x̃(t+ ∆t) can be parametrized with the same basis functions,

x̃(t+ ∆t) = (In ⊗ τ(t))> (In ⊗ exp(M>∆t))ηx︸ ︷︷ ︸
η̂x

, (6)

for all t ∈ [0,∞), where ∆t ∈ [0,∞) is any time shift. This is particularly important for

fast online execution, where the optimization at the next time step can be warm-started

with the solution obtained at the current time. The time-shift property also implies closed-

loop stability and recursive feasibility of the resulting MPC algorithm in the regulation

case (that is for ηx,ref = 0, ηu,ref = 0) [6].

Examples for basis functions that fulfill Assumptions H1 and H2 are exponentially de-

caying polynomials or exponentially decaying harmonics. In the remainder, exponentially

decaying polynomials of the form

τ(t) ∈ exp(−λt)span(1, t, t2, . . . , ts−1)

will be used, which are obtained by choosing M as

M =

−λ 0 . . . 0

−2λ −λ . . . 0
...

...
. . .

...

−2λ −2λ . . . −λ

 . (7)

The steady-state offsets xss, uss, vss, obtained from the trajectory generation procedure

describe an equilibrium, that is,

0 = Axss +Buss +Gvss.

The aim of the trajectory tracking procedure is to repeatedly plan state and input trajec-

tories that start from the current state of the system and follow the reference trajectories

x̃ref, ũref as closely as possible. The reference trajectories x̃ref and ũref will ultimately con-

verge to xss and uss (since limt→∞ τ(t) = 0), hence the name steady-state offsets. This

leads to the following optimization problem

min
ηx,ηu

1

2

∫ ∞
0

{
(x̃(t)− x̃ref(t))

>Q(x̃(t)− x̃ref(t)) + (ũ(t)− ũref(t))
>R(ũ(t)− ũref(t))

}
dt

(8)

s.t. ˙̃x(t) = Ax̃(t) +Bũ(t) +Gṽ(t), x̃(0) = x0

bmin ≤ Cxx̃(t) + Cuũ(t) ≤ bmax,∀t ∈ [0,∞), (9)

181

Paper P7. Learning-based parametrized model predictive control for trajectory tracking

where Q � 0 and R � 0 are matrices of appropriate dimension. The problem is repeatedly

solved subject to the current state x0 as an initial condition (as common in MPC).

Note that for simplicity, only a linear constraint on the state and input trajectories is

included in the optimization. Slightly more general linear constraints including derivatives

or integrals of the state and input trajectories can be dealt with in an analogous way.

Feedback control is achieved by repeatedly solving (8) and applying the first portion

of the input ũ(t), t ∈ [0, Ts) to the system, where Ts denotes the sampling time. The

reference trajectories x̃ref and ũref, as well as the disturbances ṽ are adapted according to

the time that has elapsed. Thus, at time t = Ts, the reference and disturbance trajectories

in (8) are modified to x̃ref(t+Ts), ũref(t+Ts), and ṽ(t+Ts). According to (6), this amounts

to a simple multiplication of the parameter vectors ηx,ref, ηu,ref, and ηv with the matrix

I ⊗ exp(M>Ts), (10)

where the dimension of the identity matrix I is chosen accordingly.

For orthonormal basis functions1, the above optimization problem reduces to [6]

min
ηx,ηu

1

2
(ηx − ηx,ref)

>(Q⊗ Is)(ηx − ηx,ref) +
1

2
(ηu − ηu,ref)

>(R⊗ Is)(ηu − ηu,ref) (11)

s.t. (In ⊗M>)ηx = (A⊗ Is)ηx + (B ⊗ Is)ηu + (G⊗ Is)ηv, (12)

(In ⊗ τ(0))>ηx + xss = x0 (13)

bmin ≤ Fxηx + Fuηu +Dxxss +Duuss ≤ bmax. (14)

The linear equality constraint (12) imposes the dynamics and (13) the initial condition.

The linear inequality constraint (14) describes the input and state constraints. These are

obtained by sampling the constraint (9). The values of the matrices Fx, Fu, Dx and Du

may change slightly for different applications, and are given in Appendix C for the system

considered in Section 4.

The optimization therefore simplifies to solving the quadratic program (11), subject

to the optimization variables ηx ∈ Rns and ηu ∈ Rms. Due to the parametrization with

the basis functions, the quadratic program (11) typically has few optimization variables

and can be solved efficiently. As highlighted before, by exploiting the time-shift property

of the basis functions (see (6)), the problem can be warm-started with the solution from

the previous time step.

2.2 Trajectory generation

The goal of the trajectory generation is to generate feasible input, state and disturbance

trajectories, such that the state trajectory follows the desired trajectory (given to the

algorithm) as closely as possible. We assume that the desired trajectory might not nec-

1Without loss of generality, linear independent basis functions can always be made orthonormal.
Choosing M according to (7) yields orthonormal basis functions.

182

2. Method

essarily prescribe the motion for all states. For example, the desired trajectory could

only contain a position reference that should be followed, while finding the appropriate

reference trajectories for the velocities is left to the algorithm. The feasible trajectories

satisfy the system’s dynamics, as well as the input and state constraints.

The feasible trajectory is generated by solving an optimization problem, where the

desired trajectory is given in the time domain. The resulting trajectories are parametrized

by ηx,ref, ηu,ref, and ηv, and the steady-state offsets xss, uss, and vss, as indicated in Figure 2.

Due to the finite number of basis functions, only trajectories with a finite length can be

approximated well. In order to overcome this limitation, the trajectory’s duration is split

into N smaller intervals of length T , and different linear combinations of basis functions

are used to approximate the trajectory in each of these intervals, as shown in Figure 3.

Therefore, the trajectory tracking problem (11) is modified such that, depending on the

time that has elapsed, the reference trajectory in the corresponding interval is tracked,

i.e. ηx,ref, ηu,ref, ηv, xss and uss are replaced by the corresponding ηx,ref,j, ηu,ref,j, ηv,j, xss,j

and uss,j, for j = 0, 1, . . . , N − 1. A practical advantage of this approach is the possibility

of aborting the trajectory at any time during execution, leading the system to a safe

equilibrium position (represented by the current interval’s steady-state offsets). In that

case, provided that the constraints are satisfied for all times (a sampling strategy is applied

in this article), closed-loop stability and recursive feasibility are guaranteed [6], [22]. The

approach is particularly suited to smooth desired trajectories, where the approximations

at two consecutive intervals generally overlap for a certain time (see Figure 3). However,

this might not be the case for trajectories with sharp changes at the time of switching

between two intervals.

In order to find a feasible approximation that is closest to the desired trajectory in

the L2-sense, while penalizing the input and fitting the estimated disturbances, the set

of reference parameters and steady-state offsets is chosen to minimize

N−1∑
j=0

{∫ T

0

1

2

[
∆x,j(t)

>Q̄∆x,j(t) + ũref,j(t)
>R̄ũref,j(t) + r ˙̃uref,j(t)

> ˙̃uref,j(t)

+ ∆v,j(t)
>V̄∆v,j(t)

]
dt

}
, (15)

where r controls the smoothness of the input trajectories, Q̄ � 0, R̄ � 0 and V̄ � 0 are

suitable symmetric tuning matrices, and,

∆x,j(t) := xj(t)−
[
(In ⊗ τ(t))>ηx,ref,j + xss,j

]
, (16)

ũref,j(t) := (Im ⊗ τ(t))>ηu,ref,j + uss,j, (17)

∆v,j(t) := vj(t)−
[
(Inv ⊗ τ(t))>ηv,j + vss,j

]
, (18)

for t ∈ [0, T]. The desired state trajectory at the intervals j = 0, 1, . . . , N−1 is represented

183

Paper P7. Learning-based parametrized model predictive control for trajectory tracking

0 1 2 3 4 5 6

−0.2

−0.1

0

0.1

0.2

time [s]

tr
a

je
ct

or
y

[m
]

Desired
Fitted

(a) Generation with one interval

0 1 2 3 4 5 6

−0.5

0

0.5

time [s]

tr
a

je
ct

or
y

[m
]

Desired
Interval 1
Interval 2
Interval 3
Interval 4
Interval 5
Interval 6

(b) Multiple interval trajectories

0 1 2 3 4 5 6

−0.2

−0.1

0

0.1

0.2

time [s]

tr
a

je
ct

or
y

[m
]

Desired
Fitted

(c) Generation with multiple intervals

Figure 3. Influence of multiple intervals in the trajectory generation procedure. Because of the limited
representation power of the basis functions, it is not possible to fit arbitrary long trajectories, see (a).
To overcome this problem, it is proposed to split the trajectory over multiple intervals, with different
parametrizations for each of these, see (b). Merging the different intervals’ trajectories results in a more
accurate fit, as shown in (c).

184

2. Method

by xj(t) := xdes(t + jT), whereas vj(t) := v(t + jT) represents the disturbances divided

over the different intervals. Defining the optimization variables through the following

auxiliary quantities,

zx,ref := (ηx,ref,0, xss,0, ηx,ref,1, xss,1, . . .) (19)

zu,ref := (ηu,ref,0, uss,0, ηu,ref,1, uss,1, . . .) (20)

zv := (ηv,0, vss,0, ηv,1, vss,1, . . .), (21)

and eliminating the terms that do not depend on these variables, simplifies (15) to

1

2

[
z>x,refQ̃zx,ref + 2f>x zx,ref + z>u,refR̃zu,ref + z>v Ṽ zv + 2f>v zv

]
, (22)

with Q̃, R̃, Ṽ , fx and fv defined in Appendix A.

In addition, the dynamics need to be fulfilled for the generated trajectories, and the

steady-state offsets are required to be equilibria. This is encoded, for j = 0, . . . , N −1, as

(In ⊗M>)ηx,ref,j = (A⊗ Is)ηx,ref,j + (B ⊗ Is)ηu,ref,j + (G⊗ Is)ηv,j (23)

Axss,j +Buss,j +Gvss,j = 0. (24)

In order to ensure that the state, the input, and the disturbances are continuous over

subsequent intervals, the following constraints are added, for j = 1, . . . , N − 1,

(In ⊗ τ(0)>)ηx,ref,j + xss,j − (In ⊗ τ(T)>)ηx,ref,j−1 − xss,j−1 = 0 (25)

(Im ⊗ τ(0)>)ηu,ref,j + uss,j − (Im ⊗ τ(T)>)ηu,ref,j−1 − uss,j−1 = 0 (26)

(Inv ⊗ τ(0)>)ηv,j + vss,j − (Inv ⊗ τ(T)>)ηv,j−1 − vss,j−1 = 0. (27)

The constraints (25)-(27) prevent discontinuities in the actuation when the trajectory

tracking controller switches reference parameters among consecutive intervals. In case the

disturbances stem from the system’s nonlinearities, (27) encodes the natural fact that the

disturbances are continuous. Without loss of generality, the trajectories are enforced to

start at zero (other cases can be dealt with in a similar way, up to a translation) with

the following constraints,

(In ⊗ τ(0)>)ηx,ref,0 + xss,0 = 0 (28)

(Im ⊗ τ(0)>)ηu,ref,0 + uss,0 = 0 (29)

(Inv ⊗ τ(0)>)ηv,0 + vss,0 = 0. (30)

185

Paper P7. Learning-based parametrized model predictive control for trajectory tracking

Finally, the state and input constraints are imposed, yielding for j = 0, . . . , N − 1,

bmin ≤ Fxηx,ref,j +Dxxss,j + Fuηu,ref,j +Duuss,j ≤ bmax. (31)

Defining,

z := (zx,ref, zu,ref, zv) , (32)

the complete optimization problem that is solved to generate the reference set of param-

eters and steady state offsets is rearranged as,

inf
z

1

2
z>Hz + f>z (33)

s.t. Aeqz = 0 (34)

zmin ≤ Ainz ≤ zmax,

with H, f defined in Appendix A, and where Aeq, Ain, zmin and zmax are defined through

appropriate concatenations of the constraints (23)-(31). As mentioned in the previous

subsection, in contrast to the work of Sferrazza et al. [23], the steady-state offsets are

included among the decision variables.

In the authors’ experience, using an active-set solver [24], the optimization problem

(33) can be solved more efficiently when the equality constraints are eliminated. This is

done by means of QR factorization of Aeq, as,

Aeq = PAR
>
AQ
>
A = PA

[
R>A,1 0

] [Q>A,1
Q>A,2

]
= PAR

>
A,1Q

>
A,1, (35)

where QA, QA,1 and QA,2 are orthogonal matrices, RA and RA,1 are upper triangular

matrices, PA is a permutation matrix such that the magnitude of the elements on the

main diagonal of RA is decreasing, and 0 is the zero matrix of appropriate dimensions.

From the orthogonality of QA, it follows that by replacing,

z = QA,2ẑ, (36)

where ẑ is an arbitrary vector of appropriate dimension, (34) is satisfied,

Aeqz = PAR
>
A,1Q

>
A,1QA,2ẑ = 0. (37)︸ ︷︷ ︸

=0

186

2. Method

Therefore, according to (36), the optimization problem in (33) can be reformulated as,

inf
ẑ

1

2
ẑ>Q>A,2HQA,2ẑ + f>QA,2ẑ (38)

s.t. zmin ≤ AinQA,2ẑ ≤ zmax.

The problem in (38) has generally considerably less optimization variables and constraints

than the one in (33), and it exhibited smaller solution times in the setup used by the

authors.

2.3 Kalman filter

The repeatable disturbances of the system are estimated with a Kalman filter, and are

provided at each trial to the optimization problem described in Subection 2.2. The fil-

ter aims at fusing prior and measurement information. Its state is denoted by v[k], for

k = 0, 1, . . . , where the square brackets indicate the discrete-time indexing, v[k] := v(kTs),

with Ts being the sampling time.

The process model is chosen to express the expected repeatability of the estimated

disturbances over subsequent trials as,

v[k]i = v[k]i−1 + n[k]i, (39)

where i is the current trial, and the process noise n[k]i is assumed to be zero-mean

Gaussian, with variance QKF. Therefore, the Kalman filter’s prior update is,

v̂p[k]i = v̂m[k]i−1 (40)

Pp[k]i = Pm[k]i−1 +QKF, (41)

where v̂ip[k] and Pp[k]i express the current belief (that is the expected value and variance)

of v[k]i, conditioned on the measurements up to the (i−1)-th trial, and v̂im[k] and Pm[k]i

express the current belief (again, mean and variance) of v[k]i, given the measurements up

to the i-th trial. The information provided by the deviations from the system’s dynamics

at each trial of the trajectory tracking are incorporated in the measurement model of the

Kalman filter. Given the discretized dynamics,

x[k + 1] = Adx[k] +Bdu[k] +Gdv[k], (42)

where Ad, Bd and Gd are the discrete-time system’s matrices, the actual state and input

trajectories, respectively x[k]i and u[k]i, are recorded during the i-th trial, and used to

187

Paper P7. Learning-based parametrized model predictive control for trajectory tracking

compute these deviations as,

Gdv[k]i = x[k + 1]i − Adx[k]i −Bdu[k]i︸ ︷︷ ︸
:=z[k]i

In order to increase the signal-to-noise ratio, the disturbance vector is held constant

for NKF discrete time steps. In this way, at each trial, NKF measurements subsequently

contribute to update a single disturbance estimate value. Assuming that z[k]i is corrupted

by zero-mean Gaussian noise with variance RKF, the measurement update is performed as

described in Algorithm 2. The current disturbance estimate is transformed to a continuous

time signal v(t) through a zero-order hold, and is used as an input to the trajectory

generation problem, as described in Subsection 2.2. In contrast to the work of Sferrazza

et al. [23], the parametrized approximation describing v(t) is obtained by optimizing

(15), providing a trade-off between the placement of the various offsets and the fit of the

reference trajectories.

Algorithm 2 Pseudo-code for measurement update.

Initialize: k = 0
while k is smaller than the trajectory length do

Initialize: v̂m[k]i = v̂p[k]i,Pm[k]i = Pp[k]i

for l ∈ {0, 1, . . . , NKF − 1} do
// Apply the measurements z[k + l]i in sequential order

Pm[k]i =
(
(Pm[k]i)−1 +G>dR

−1
KFGd

)−1

Update v̂m[k]i with v̂m[k]i + Pm[k]iG>dR
−1
KF(z[k + l]i −Gdv̂m[k]i)

end
v̂m[k +NKF − 1]i = v̂m[k +NKF − 2]i = · · · = v̂m[k]i ; // The disturbance

vector is held constant

Pm[k +NKF − 1]i = Pm[k +NKF − 2]i = · · · = Pm[k]i ; // for NKF discrete

time steps

k = k +NKF

end

3. Memory considerations

The parametrization of the system’s states, inputs and disturbances is particularly advan-

tageous when applied to trajectory tracking. As a matter of fact, the reference trajectories

need to be stored in the memory and loaded during the task execution, as is the case

with a standard approach, see for example the work of Kühne et al. [25]. When these

trajectories are represented in discrete time, a reference needs to be available for all the

quantities of interest at each sampling step. Therefore, the space requirements amount

188

3. Memory considerations

to,

c · (n+m+ nv)
tf
Ts

, (43)

where c is the space needed to store a floating point number, tf is the trajectory dura-

tion, and Ts is the sampling time. Conversely, by using the parametrization introduced

in Subsection 2.1, a set of parameters and steady-state offsets represents the reference

trajectory at each interval. Therefore the space requirements are,

c · (n+m+ nv)(s+ 1)
tf
T
, (44)

where T is the length of the intervals the trajectory is divided into. Space requirements

are reduced through the parametrization when,

T > (s+ 1)Ts. (45)

Introducing a space-efficiency coefficient,

νs =
T

(s+ 1)Ts

, (46)

the condition in (45) can be expressed as,

νs > 1. (47)

In the application presented in Section 4, a space-efficiency coefficient of about 8.33 is

achieved, meaning that almost an order of magnitude less memory is required compared

to a standard approach. Note that this also greatly affects the dimension of the trajectory

generation problem. As pointed out in the book by Bentley [26], space efficiency often

has positive effects on run time. In fact, a smaller program is likely to fit into faster levels

of the memory hierarchy [27], which generally have limited size. These effects are even

more relevant when a collection of several trajectories need to be available on embedded

systems with relatively small random access memory. In this case, the accessing times

stemming from the need to load the trajectory data from disk storage can be reduced by

a compact representation of the reference trajectories, as described in this article.

189

Paper P7. Learning-based parametrized model predictive control for trajectory tracking

4. Experimental results

The proposed approach is evaluated on a quadcopter, with the task of balancing a pole

while flying a predefined trajectory. This section presents the setup and the experimental

results.

4.1 Hardware

The experiments are conducted on a quadcopter which uses the frame, motors and motor

controllers of an AscTec Hummingbird. The quadcopter is equipped with custom elec-

tronics and a circular plate that serves as a base for the pole. The physical parameters

of the experimental setup are summarized in Table 1. An onboard controller, running

at 1 kHz on a PX4FMU flight controller, tracks the desired angular rates and the de-

sired total thrust, which are commanded by the parametrized MPC controller. The latter

runs on a standard desktop computer that communicates with the quadcopter’s flight

controller through wireless communication and achieves a sampling time of 0.02 s. The

experiments were conducted in the Flying Machine Arena [28], where an external motion

tracking system provides measurements of the system’s state.

Symbol Value Description

mq 0.5 Kg mass of the quadrotor
dq 0.17 m length of one quadrotor arm
mp 0.038 Kg mass of the pole
dp 0.584 m half length of the pole
fmin 0.616 N minimum rotor thrust
fmax 3.862 N maximum rotor thrust
αrel,max 30° maximum relative roll angle
βrel,max 30° maximum relative pitch angle

Table 1. Physical parameters.

4.2 Model

The quadcopter’s state is represented by its position, that is, rx, ry and rz, the corre-

sponding linear velocities vx, vy and vz, and the xyz-Euler angles, that is, α, β and γ.

The pole is represented by its roll and pitch angles, respectively αp and βp, and the cor-

responding angular velocities ωp,α and ωp,β. The pole is assumed to be very thin and its

rotation about its axis of symmetry is not modeled. The quadcopter’s angular rates ωα,

ωβ and ωγ, and the difference between the total thrust ftot and the hovering thrust ftot,0

are regarded as the control inputs for the MPC controller. These are then sent to the on-

board controller, where they are tracked with a very high bandwidth [28]. Summarizing,

190

4. Experimental results

the complete state and input vectors are,

x = (rx, ry, rz, vx, vy, vz, α, β, γ, αp, βp, ωp,α, ωp,β), (48)

u = (ωα, ωβ, ωγ, ftot − ftot,0) . (49)

The system’s matrices are derived from a simple first principles model (see Appendix B for

a detailed derivation), which considers the quadrocopter and the pole to be rigid bodies.

Friction between the pendulum and the quadrocopter, drag of the pendulum and the

quadrocopter, as well as any other aerodynamic forces, are neglected (the propellers are

assumed to provide a certain thrust aligned with the symmetry axis of the quadrocopter).

The nonlinear model is linearized about hover, which yields

A=

0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 k1 0 0 −k2 0 0

0 0 0 0 0 0 −k1 0 0 k2 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 −k3 0 0 k3 0 0 0

0 0 0 0 0 0 0 −k3 0 0 k3 0 0

, B=

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1
mq+mp

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

, (50)

where k1, k2 and k3 are constants (see Appendix B), mq is the mass of the quadcopter,

and mp is the mass of the pole. The matrix G, which models how the disturbances affect

the system’s dynamics, is chosen as the identity matrix of dimension nv.

Actuation constraints are imposed on the thrust fl of a single rotor, that is, for

l = 0, 1, 2, 3,

fmin ≤ fl ≤ fmax. (51)

State constraints on the relative angles between the pole and the quadcopter ensure

sufficient contact between the two bodies, and are expressed as,

|α− αp| ≤ αrel,max (52)

|β − βp| ≤ βrel,max. (53)

These constraints can be reduced to the form in (14), as shown in Appendix C.

191

Paper P7. Learning-based parametrized model predictive control for trajectory tracking

4.3 Results

The tuning matrices for the trajectory tracking are chosen as follows,

position︷ ︸︸ ︷ lin. velocity︷ ︸︸ ︷ attitude︷ ︸︸ ︷ pend. angles︷ ︸︸ ︷ pend. ang. vel.︷ ︸︸ ︷
Q= diag

(
10, 10, 10, 1, 1, 1, 1, 1, 10, 0.3, 0.3, 0.15, 0.15

)
R= diag

(
0.05, 0.05, 0.5, 0.015

)
.︸ ︷︷ ︸

ωα,ωβ ,ωγ

︸︷︷︸
ftot

The matrices for the trajectory generation are,

position︷ ︸︸ ︷ lin. velocity︷ ︸︸ ︷ attitude︷ ︸︸ ︷ pend. angles & ang. vel.︷ ︸︸ ︷
Q̄=0.01 diag

(
106, 106, 106, 1, 1, 1, 1, 1, 103, 10-4, 10-4, 1, 1

)
R̄= diag

(
1, 1, 1, 0.01

)
,︸ ︷︷ ︸

ωα,ωβ ,ωγ

︸︷︷︸
ftot

V̄ =104 diag
(
300, 300, 100, 1, 1, 1, 1, 1, 1, 100, 100, 1, 1

)
The desired trajectory xdes(t) is only provided for rx, ry and rz, and is equal to zero

for all the other quantities, therefore leaving the solver the flexibility to choose feasible

trajectories for these states. The matrices Q, R, Q̄, R̄ and V̄ are chosen to be positive

definite matrices, which implies that the trajectory tracking problem in (8) and the tra-

jectory generation problem in (33) are strictly convex quadratic programs. This ensures

convergence of both programs to a feasible solution (if a solution exists) when solved with

an active set method [29].

A “prerun” and a “postrun” trajectory’s portions are generally added at the start

and end of the trajectory, see Figure 3, by padding the desired trajectory with the initial

and final state, respectively, for an appropriate time. Both the prerun and the postrun

ensure a smoother transition with the hovering phase, which precedes and follows each

execution. In addition, the postrun portion serves as a penalty for steering the system to

the final state (note that the trajectory generation does not impose a hard constraint on

the final state).

The Kalman filter’s matrices used to estimate the system’s disturbances are,

QKF = 10-2 diag
(
1, 1, 1, 10, 10, 10, 0.01, 0.01, 1, 1, 1, 1, 1

)
RKF = 10-4 diag

(
1, 1, 1, 0.1, 0.1, 0.1, 100, 100, 1, 1, 1, 1, 1

)
.

The Kalman filter’s state is initialized with zero mean and the following variance,

P0 = 10-2Inv . (54)

192

4. Experimental results

The remaining scalar parameters are summarized in Table 2.

Symbol Value Description

Ts 0.02 s sampling time
nv 13 dimension of the disturbance vector
s 5 number of basis functions
λ 4 s-1 basis function decay
T 1 s interval length
NKF 10 Kalman filter parameter
r 0.1 regularization parameter

Table 2. Tuning parameters.

Both the trajectory generation and the online trajectory tracking are solved using

qpOASES [24], which implements an active set strategy. The trajectory generation pro-

gram is solved on average in 250 ms, while the trajectory tracking controller runs at 50

Hz.

A 12 s trajectory representing a three-dimensional eight is encoded in xdes(t), and

the parametrization obtained through the trajectory generation procedure provides a

feasible approximation, as shown in Figure 4. As a result, the space-efficiency coefficient

introduced in (46) is equal to,

νs ≈ 8.33. (55)

This trajectory is repeatedly tracked by the parametrized MPC controller introduced

in Subsection 2.1, and the disturbances are updated after each trial, as explained in

Subsection 2.3. The resulting tracking performance is shown in Figure 6 and Figure 72.

The framework presented in this article builds upon the scenario that trajectories are

repetitively tracked, and that the system’s disturbances can be captured by the basis

functions used for the parametrization. In fact, the iterative learning algorithm especially

needs to compensate for tracking errors when the quadcopter tilts and changes direction,

that is, when the model linearized about hover is not very accurate. The fact that the

system improves its tracking performance in these regions over subsequent trials shows

that this framework is able to account for unmodeled nonlinearities, provided that the

above assumptions are met. Compared to the heuristic approach of Sferrazza et al. [23],

the use of steady-state offsets enables the proposed strategy to cope with trajectories

and disturbances with larger magnitude (even at the end of an interval), as shown in the

example in Appendix D. Together with the fact that a different system is used for the

experiments, this facilitates the tracking of considerably more aggressive trajectories.

The disturbance estimate shows a higher variance towards the end of the trajectory

as a consequence of the particular choice of modeling the system’s disturbance as time-

2A video showing an experiment can be found at the following link: https://youtu.be/-E4znjVDCyA

193

https://youtu.be/-E4znjVDCyA

Paper P7. Learning-based parametrized model predictive control for trajectory tracking

−2

−1

0

1

2 −1

0

1

0

0.5

1

1.5

2

rx [m] ry [m]

r z
[m

]

xdes(t)

x̃ref(t)

Figure 4. Result of the trajectory generation procedure. A three-dimensional figure-eight (in solid red),
with sharp edges, is approximated by a feasible trajectory (in dashed black) that is parametrized with
basis functions and steady-state offsets.

varying trajectories. In fact, an incorrect disturbance estimate in an earlier part of the

trajectory propagates in time affecting the later parts (it might even drive the system to

a state where the current disturbance estimate is not a valid approximation). However,

after multiple trials, the disturbance estimates converge, see for example Figure 8, which

alleviates this effect.

The quadratic cost for the different trials, defined through the matrices Q and R, is

shown in Figure 5. Due to the fact that the disturbances are not modeled as a function

of the state, they are subject to change when the system explores different regions in the

state space, i.e. during the first trials, when the algorithm has not yet converged. There-

fore, the procedure might first exhibit an increase in the cost, which corresponds to this

initial exploration phase, before reaching an overall lower steady-state cost. However, the

aforementioned choice of modeling the disturbances as time-varying trajectories has the

benefit of not increasing the complexity of the online trajectory tracking MPC controller.

In the experiment presented, the algorithm only requires 5 trials to reach the steady-

state cost, and it exhibits little fluctuation in the remaining executions. Although in

this example the system always executed the same task under the same conditions, the

194

5. Conclusion

2 4 6 8 10 12 14 16 18 20 22
0

2

4

6

Trial i

C
o
st

Figure 5. This plot shows the resulting trajectory tracking cost over the 22 trials conducted. The pro-
posed method estimates the repeatable disturbances over the entire trajectory. After an initial exploration
phase, the cost converges towards a value that is about three times lower than the initial one.

fast learning rate and the fact that the learning algorithm keeps running after each trial

(i.e. no early stopping is required) enables the possibility of responsively adapting the

disturbance estimate to new situations, e.g. if the quadcopter is subject to a different

load.

5. Conclusion

This article presented a method that enables the use of parametrized model predictive

control for trajectory tracking. A systematic framework that can capture and compensate

for unmodeled dynamics has been developed. Experimental results indicate that 1) the

tracking performance indeed improves when executing the same experiment, and 2) the

resulting control scheme brings advantages in terms of computation and storage compared

to a traditional MPC approach.

A. Mathematical derivation of the parametrized MPC matrices

In the following, the cost function (15) is rearranged by splitting the integral and expand-

195

Paper P7. Learning-based parametrized model predictive control for trajectory tracking

−2.5 −1.5 −0.5 0.5 1.5 2.5

−0.5

0.5

rx [m]

r y
[m

]

Trial 1
Trial 2
Trial 3
Reference

(a) First trials

−2.5 −1.5 −0.5 0.5 1.5 2.5

−0.5

0.5

rx [m]

r y
[m

]

Trial 8
Trial 13
Trial 22
Reference

(b) Selected trials

Figure 6. Trajectory tracking performance, top view. The feasible reference trajectory (in dashed black)
is tracked for 22 subsequent trials. The disturbance estimate improves over the trials, yielding better
tracking performance. The first three trials are shown in (a), while some of the other trials are shown in
(b).

196

A. Mathematical derivation of the parametrized MPC matrices

−2.5−1.5−0.50.51.52.5

0

1

2

rx [m]

r z
[m

]

Trial 1
Trial 2
Trial 3
Reference

(a) First trials

−2.5−1.5−0.50.51.52.5

0

1

2

rx [m]

r z
[m

]

Trial 8
Trial 13
Trial 22
Reference

(b) Selected trials

Figure 7. Trajectory tracking performance, side view. The first three trials are shown in (a), while some
of the other trials are shown in (b).

197

Paper P7. Learning-based parametrized model predictive control for trajectory tracking

0 2 4 6 8 10 12

0

0.1

time [s]

v 1
[m

/s
]

Trial 1
Trial 2
Trial 6
Trial 11
Trial 16
Trial 22

(a) Disturbance estimate over different trials

0 2 4 6 8 10 12

0

0.1

time [s]

d
is

tu
rb

a
n

ce
[m

/s
]

v(t)

ṽ(t)

(b) Last estimate fit

Figure 8. The above plots show how a single disturbance’s component is estimated and approximated.
In (a), the first disturbance vector’s component is shown over different trials. Given the choice of the
matrix G, this component is added to the equation of motion that describes the dynamics of the state rx.
The plot (a), where the last estimate is shown in blue (thick), indicates convergence of the disturbance
trajectory. In (b), the last estimate is compared with the approximation (parametrized by the basis
functions) obtained from the trajectory generation procedure.

198

A. Mathematical derivation of the parametrized MPC matrices

ing the different terms. The terms regarding the system’s state are expanded as,

∫ T

0

1

2

[
∆x,j(t)

>Q̄∆x,j(t)
]

dt =

∫ T

0

1

2

{
xj(t)

>Q̄xj(t)

+
[

(In ⊗ τ(t))> ηx,ref,j + xss,j

]>
Q̄
[

(In ⊗ τ(t))> ηx,ref,j + xss,j

]
− 2xj(t)

>Q̄
[

(In ⊗ τ(t))> ηx,ref,j + xss,j

]}
dt

=

∫ T

0

1

2

{
xj(t)

>Q̄xj(t) + x>ss,jQ̄xss,j

+ η>x,ref,j (In ⊗ τ(t)) Q̄ (In ⊗ τ(t))> ηx,ref,j − 2xj(t)
>Q̄xss,j

+ x>ss,jQ̄ (In ⊗ τ(t))> ηx,ref,j + η>x,ref,j (In ⊗ τ(t)) Q̄xss,j

− 2xj(t)
>Q̄ (In ⊗ τ(t))> ηx,ref,j

}
dt. (56)

Neglecting the first term in the sum, which does not depend on the optimization variables,

and defining zx,ref,j := (ηx,ref,j, xss,j), (56) can be rewritten as,

1

2

[
z>x,ref,jQ̃jzx,ref,j + 2f>x,jzx,ref,j

]
, (57)

with,

Q̃j =

∫ T

0

[
(In ⊗ τ(t)) Q̄ (In ⊗ τ(t))> (In ⊗ τ(t)) Q̄

Q̄ (In ⊗ τ(t))> Q̄

]
dt

=

[
Q̄⊗ Js

∫ T
0

(In ⊗ τ(t)) Q̄ dt∫ T
0
Q̄ (In ⊗ τ(t))> dt Q̄T

]

fx,j = −
∫ T

0

[
(In ⊗ τ(t)) Q̄xj(t)

Q̄xj(t)

]
dt, (58)

where

Js :=

∫ T

0

τ(t)τ(t)>dt, (59)

which can be computed as the solution to the following Lyapunov equation, as shown in

199

Paper P7. Learning-based parametrized model predictive control for trajectory tracking

the work of Sferrazza et al. [23],

MJs + JsM
> −

[
τ(T)τ(T)> − τ(0)τ(0)>

]
= 0. (60)

The terms regarding the system’s disturbances are expanded in the same way, defining

zv,j := (ηv,j, vss,j), as,

1

2

[
z>v,jṼjzv,j + 2f>v,jzv,ref,j

]
, (61)

where

Ṽj =

[
V̄ ⊗ Js

∫ T
0

(Inv ⊗ τ(t)) V̄ dt∫ T
0
Q̄ (Inv ⊗ τ(t))> dt V̄ T

]

fv,j = −
∫ T

0

[
(Inv ⊗ τ(t)) V̄ vj(t)

V̄ vj(t)

]
dt. (62)

Note that due to Assumption H2 in Subsection 2.1,

˙̃uref,j(t) = (Im ⊗ τ̇(t))> ηu,ref,j (63)

= (Im ⊗Mτ(t))> ηu,ref,j, (64)

which provides a means to rearrange the input terms as,

∫ T

0

1

2

[
r ˙̃uref,j(t)

> ˙̃uref,j(t) + ũref,j(t)
>R̄ũref,j(t)

]
dt

=

∫ T

0

1

2

{
rη>u,ref,j (Im ⊗Mτ(t)) (Im ⊗Mτ(t))> ηu,ref,j

+
[

(Im ⊗ τ(t))> ηu,ref,j + uss,j

]>
R̄
[

(Im ⊗ τ(t))> ηu,ref,j + uss,j

}
=

∫ T

0

1

2

{
rη>u,ref,j

(
Im ⊗Mτ(t)τ(t)>M>) ηu,ref,j

+ u>ss,jR̄uss,j + η>u,ref,j (Im ⊗ τ(t)) R̄ (Im ⊗ τ(t))> ηu,ref,j

+ u>ss,jR̄ (Im ⊗ τ(t))> ηu,ref,j + η>u,ref,j (Im ⊗ τ(t)) R̄uss,j

}
dt. (65)

200

B. First principles model

Defining zu,ref,j := (ηu,ref,j, uss,j), (65) can be rewritten as,

1

2
z>u,ref,jR̃jzu,ref,j, (66)

with

R̃j =

[
R̄⊗ Js+rIm⊗

(
MJsM

>) ∫ T
0

(Im ⊗ τ(t)) R̄ dt∫ T
0
R̄ (Im ⊗ τ(t))> dt R̄T

]
.

Summing (57), (61) and (66) over all the intervals, the cost function (15) reduces to,

1

2

[
z>x,refQ̃zx,ref + 2f>x zx,ref + z>u,refR̃zu,ref + z>v Ṽ zv + 2f>v zv

]
=

1

2
z>Hz + f>z, (67)

with z, zx,ref, zu,ref and zv defined as in (32), (19), (20) and (21), and,

Q̃ =

Q̃0

. . .

Q̃N−1

 , R̃ =

R̃0

. . .

R̃N−1

 , Ṽ =

Ṽ0

. . .

ṼN−1

 (68)

H =

Q̃ R̃

Ṽ

 (69)

fx = (fx,0, · · · , fx,N−1) (70)

fv = (fv,0, · · · , fv,N−1) (71)

f = (fx,0, fv) . (72)

B. First principles model

For the purpose of modeling the system’s dynamics, the following frames are introduced:

{I} Inertial frame,

{B} Quadcopter-fixed frame, with its z-axis aligned with the thrust direction (and sym-

metry axis of the quadcopter),

{C} Pole-fixed frame, with its z-axis aligned with the symmetry axis of the pole.

The equations of motion are derived by using the principle of virtual power. This

yields

mq
I v̇q +mp

I v̇p = RIB
Bf tot + (mq +mp)Ig, (73)

201

Paper P7. Learning-based parametrized model predictive control for trajectory tracking

describing the position of the quadcopter and

CΘp
Cω̇IC −mp

C r̃PQR
>
IC
I v̇p = −CωIC × CΘp

CωIC −mp
C r̃PQR

>
IC
Ig, (74)

describing the attitude of the pendulum, mp and mq are the masses of the quadcopter

and the pole, respectively, vp and vq are the linear velocities of the quadcopter and the

pole, RIB ∈ SO(3) is the rotation matrix that transforms vectors from the frame B to the

frame I, RIC ∈ SO(3) is the rotation matrix that transforms vectors from the frame C to

the frame I, ftot is the total thrust generated by the four rotors, g is the gravity vector,

Θp is the inertia of the pole, rPQ is the distance vector that goes from the pole’s center of

gravity (positioned at half-length of the pole) to the quadcopter’s center of gravity and

is expressed in the frame C, and ωIC is the angular velocity vector of the C frame with

respect to the inertial frame. Throughout this section, the preceding superscript denotes

the frame in which a particular vector or tensor is expressed. Moreover, the “tilde” symbol

on top of a vector denotes its corresponding skew symmetric matrix, i.e. ã is defined as

a× b = ãb for a ∈ R3 and for all b ∈ R3.

Note that the quadrocopter’s angular rates, BωIB, are considered to be control inputs

for the MPC controller (with the vector’s components ωα, ωβ, ωγ which are tracked with

very high bandwidth by the onboard controller). The quadrocopter’s angular rates govern

the quadrocopter’s attitude by

ṘIB = RIB
Bω̃IB, (75)

and enter the combined quadrocopter and pole dynamics through RIB in (73).

Moreover, the fact that the quadrotor and the pole are connected yields the following

constraint (expressed on acceleration level)

I v̇p − I v̇q = −RIC
Cω̃IC

Cω̃IC
CrPQ −RIC

C ˙̃ωIC
CrPQ. (76)

Thus, the combination of (73), (74), (75), and (76) describes the entire quadrocopter-pole

dynamics.

The algorithms presented in this paper rely on a linear time-invariant system model.

To that extent, the nonlinear equations of motion are linearized about hover. The hover

equilibrium is given by zero linear velocity and zero angular velocity of the quadcopter,

the pole being at rest in the upright position, and the following constant thrust

Bf tot,0 = (0, 0, (mq +mq)g0) , (77)

with g0 := 9.81 m/s2. Linearizing (76) about hover yields

I v̇p = I v̇q + C r̃PQ
Cω̇IC. (78)

202

B. First principles model

Linearizing (73) and including the relation (78) results in

(mq +mp)I v̇q +mp
C r̃PQ

Cω̇IC ≈ g0(mq +mp) (exβ − eyα) + (Bf tot − Bf tot,0), (79)

where ex, ey and ez are the standard unit vectors in R3, α and β are the quadcopter’s roll

and pitch angles. Linearizing (74) and including (78) yields

−mp
C r̃PQ

I v̇q +
(
CΘp −mp

C r̃PQ
C r̃PQ

)
Cω̇IC ≈ mpdpg0 (eyβp + exαp) , (80)

where αp and βp are the pole’s roll and pitch angles, and dp is the pole’s half-length, i.e.

|rPQ| = dp.

The quantities in the equations (79)-(80) relate to the ones in (48)-(49) through the

following equalities,

Ivq = (vx, vy, vz) (81)
CωIC = (ωp,α, ωp,β, ωp,γ), (82)

where the angular velocity ωp,γ of the pole is not included in the system’s state.

For the system on which the experiments are conducted, the pole’s inertia matrix has

the following form,

CΘp := diag (I1, I1, ∗) , (83)

where the inertia about the symmetry axis of the pole is irrelevant, as the corresponding

rotations are not included in the system’s state. The A and B matrices in (50) are obtained

by rearranging (79)-(80), where

cp := mpdp (84)

Î1 := I1 +mpd
2
p (85)

k1 :=
Î1(mq +mp)g0

(mq +mp)Î1 − c2
p

(86)

k2 :=
c2

pg0

(mq +mp)Î1 − c2
p

(87)

k3 :=
cp(mq +mp)g0

(mq +mp)Î1 − c2
p

. (88)

The parameters used for the experiments presented in this article are summarized in

Table 3.

203

Paper P7. Learning-based parametrized model predictive control for trajectory tracking

Symbol Value

cp 0.022 Kg m
I1 0.008 Kg m2

Î1 0.021 Kg m2

k1 10.26 m/s2

k2 0.45 m/s2

k3 10.915 m/s2

Table 3. Model parameters.

C. System’s constraints

The actuation constraints (51) on the rotors need some manipulation to be expressed in

the form described by (14). Introducing the vector of ones 14 ∈ R4, and stacking the

different fl, for l = 0, 1, 2, 3, into a vector f̄ ∈ R4, the constraints on the four rotors can

be summarized as,

fmin14 ≤ f̄ ≤ fmax14. (89)

Defining the auxiliary vector,

û := (ω̇α, ω̇β, ω̇γ, ftot) = ∆û+ û0, (90)

with

∆û := (ω̇α, ω̇β, ω̇γ, ftot − ftot,0) (91)

û0 := (0, 0, 0, ftot,0), (92)

the following relation holds,

û = F f̄, (93)

with,

F :=

[
F0

1>4

]
(94)

F0 := Θ−1
q

 0 dq 0 −dq

−dq 0 dq 0

kf −kf kf −kf

 , (95)

204

C. System’s constraints

where Θq is quadcopter’s inertia matrix, dq is the length of a quadcopter’s arm, and kf is

a physical constant. For the system on which the experiments are conducted, the inertia

matrix has the following shape,

Θq = diag (Ix, Iy, Iz) . (96)

The physical parameters introduced in this section are summarized in Table 4.

Symbol Value Description

kf 0.016 m proportional factor
Ix 0.003 Kg m2 moment of inertia around x-axis
Iy 0.003 Kg m2 moment of inertia around y-axis
Iz 0.006 Kg m2 moment of inertia around z-axis

Table 4. Physical parameters.

With the introduced relations, (89) becomes,

fmin14 ≤ F−1û ≤ fmax14 (97)

fmin14 ≤ F−1(∆û+ û0) ≤ fmax14 (98)

fmin14 − F−1û0 ≤ F−1∆û ≤ fmax14 − F−1û0. (99)

Considering the approximation in (3), and the Assumption H2 in Subsection 2.1, (99)

can be rearranged as,

fmin14 − F−1û0 ≤ F−1(Im ⊗ τ(t))>
[
Im−1 ⊗M> 0

0 Is

]
ηu + F−1

[
0 0

0 1

]
uss ≤ fmax14 − F−1û0, (100)

The above semi-infinite constraint is required to hold for all times t ∈ [0,∞), and is

implemented by sampling at the time instances ti, for i = 0, . . . , s−1. In the experiments

described in this article, t0 = 0 s, t1 = 0.0929 s, t2 = 0.3215 s, t3 = 0.7164 s, t4 = 1.3692 s.

205

Paper P7. Learning-based parametrized model predictive control for trajectory tracking

Thus, by defining

Fu,i := F−1(Im ⊗ τ(ti))
>
[
Im−1 ⊗M> 0

0 Is

]
, F̂u :=

 Fu,0

...

Fu,s−1

Du,i := F−1

[
0 0

0 1

]
, D̂u :=

 Du,0

...

Du,s−1

umin,i := fmin14 − F−1û0

umin :=

 umin,0

...

umin,s−1

umax,i := fmax14 − F−1û0

umax :=

 umax,0

...

umax,s−1

 ,
the constraint (100) can be approximated as

umin ≤ F̂uηu + D̂uuss ≤ umax.

Applying the same sampling strategy to the state constraints (52)-(53), yields

xmin ≤ F̂xηx + D̂xxss ≤ xmax,

where the matrices F̂x and D̂x, and the vectors xmin and xmax are defined accordingly.

Consequently, the matrices Fx, Fu, Dx, and Du, and the vectors bmin and bmax in (14) are

obtained by appropriate stacking,

Fx =

[
0

F̂x

]
, Fu =

[
F̂u

0

]
, Dx =

[
0

D̂x

]
, Du =

[
D̂u

0

]
, (101)

bmin =

[
umin

xmin

]
, bmax =

[
umax

xmax

]
. (102)

206

D. Example simulation for comparison to previous work

D. Example simulation for comparison to previous work

In Figure 9, simulation results are provided that compare the approach presented here to

previous work [23]. The simulations are conducted on an unconstrained double integrator

system, that is, ẍ(t) = u(t)+v, where v = 1 m/s2 is a constant disturbance. A ramp of 10

m is prescribed as the desired trajectory. The same parameters chosen for the experiment

presented in this article are used for this example. The plots show that using the approach

of Sferrazza et al. [23], the steady-state disturbance cannot be fully captured by the basis

functions for the entire length of an interval. As a consequence, the approximation shows

oscillations and discontinuities at the interval boundaries. This inaccurate approximation

tends to reduce the smoothness of the trajectory, compared to the desired one (see the

right plots in Figure 9). In contrast, the approach presented here yields an approximation

that overlaps with the estimated steady-state disturbance and results in significantly

smoother trajectories, as shown in the experiments presented in this article. Note that

this effect becomes considerably more relevant for the tracking of aggressive trajectories

on higher dimensional systems.

Acknowledgments

The experiments presented in this article were carried out in the Flying Machine Arena. A

list of present and past participants is available at: http://flyingmachinearena.org/

people/.

References

[1] J. Richalet, A. Rault, J. Testud, and J. Papon, “Model predictive heuristic con-

trol: Applications to industrial processes”, Automatica, vol. 14, no. 5, pp. 413–

428, 1978.

[2] F. Borrelli, P. Falcone, T. Keviczky, J. Asgari, and D. Hrovat, “MPC-based ap-

proach to active steering for autonomous vehicle systems”, International Journal

of Vehicle Autonomous Systems, vol. 3, no. 2-4, pp. 265–291, 2005.

[3] T. Geyer, G. Papafotiou, and M. Morari, “Model predictive direct torque control

– part I: Concept, algorithm, and analysis”, IEEE Transactions on Industrial

Electronics, vol. 56, no. 6, pp. 1894–1905, 2009.

[4] G. Papafotiou, J. Kley, K. G. Papadopoulos, P. Bohren, and M. Morari, “Model

predictive direct torque control – part II: Implementation and experimental eval-

uation”, IEEE Transactions on Industrial Electronics, vol. 56, no. 6, pp. 1906–

1915, 2009.

207

http://flyingmachinearena.org/people/
http://flyingmachinearena.org/people/

Paper P7. Learning-based parametrized model predictive control for trajectory tracking

0 2 4 6 8
0

0.5

1

time [s]

d
is

tu
rb

an
ce

[m
/
s2

]

v(t)

ṽ(t)

0 2 4 6 8

0

5

10

time [s]

x
[m

]

xdes(t)
Trial 10

x̃ref(t)

(a) Approach used in Sferrazza et al. [23]

0 2 4 6 8
0

0.5

1

time [s]

d
is

tu
rb

an
ce

[m
/
s2

]

v(t)

ṽ(t)

0 2 4 6 8

0

5

10

time [s]

x
[m

]

xdes(t)
Trial 10

x̃ref(t)

(b) Approach used here

Figure 9. The plots on the left compare the disturbance estimation using the approach presented in the
work of Sferrazza et al. [23] with the one introduced here. The disturbance captured by the Kalman filter
after nine trials (in red) is approximated at each interval with exponentially decaying basis functions
(in black). The plots on the right show the tracking performance of the state x at the tenth trial for
the respective approaches. The generated trajectory that accounts for the current approximation of the
disturbance estimate is shown in black. The actual x trajectory is shown in blue, while the desired ramp
trajectory is shown in red. Note that the three trajectories overlap in (b).

[5] M. Morari and J. H. Lee, “Model predictive control: Past, present and future”,

Computers & Chemical Engineering, vol. 23, no. 4, pp. 667–682, 1999.

[6] M. Muehlebach and R. D’Andrea, “Parametrized infinite-horizon model predic-

tive control for linear time-invariant systems with input and state constraints”,

Proceedings of the American Control Conference, pp. 2669–2674, 2016.

[7] W. B. Dunbar, M. B. Milam, R. Franz, and R. M. Murray, “Model predictive

control of a thrust-vectored flight control experiment”, Proceedings of the IFAC

World Congress, vol. 35, pp. 355–360, 2002.

[8] R. Gondhalekar and J.-i. Imura, “Least-restrictive move-blocking model predic-

tive control”, Automatica, vol. 46, no. 7, pp. 1234–1240, 2010.

208

References

[9] A. Domahidi, A. U. Zgraggen, M. N. Zeilinger, M. Morari, and C. N. Jones, “Ef-

ficient interior point methods for multistage problems arising in receding horizon

control”, Proceedings of the Conference on Decision and Control, pp. 668–674,

2012.

[10] Y. Wang and S. Boyd, “Fast model predictive control using online optimization”,

IEEE Transactions on control systems technology, vol. 18, no. 2, p. 267, 2010.

[11] L. Wang, “Model predictive control system design and implementation using

MATLAB®”, Springer Science & Business Media, 2009.

[12] J. A. Rossiter and L. Wang, “Exploiting laguerre functions to improve the fea-

sibility/performance compromise in MPC”, Proceedings of the Conference on

Decision and Control, pp. 4737–4742, 2008.

[13] B. Khan and J. A. Rossiter, “Alternative parameterisation within predictive

control: A systematic selection”, International Journal of Control, vol. 86, no. 8,

pp. 1397–1409, 2013.

[14] T. Faulwasser and R. Findeisen, “A model predictive control approach to tra-

jectory tracking problems via time-varying level sets of Lyapunov functions”,

Proceedings of the Conference on Decision and Control and European Control

Conference, pp. 3381–3386, 2011.

[15] M. A. Stephens, C. Manzie, and M. C. Good, “Model predictive control for

reference tracking on an industrial machine tool servo drive”, IEEE Transactions

on Industrial Informatics, vol. 9, no. 2, pp. 808–816, 2013.

[16] M. Neunert, C. de Crousaz, F. Furrer, M. Kamel, F. Farshidian, R. Siegwart, and

J. Buchli, “Fast nonlinear model predictive control for unified trajectory opti-

mization and tracking”, Proceedings of the International Conference on Robotics

and Automation, pp. 1398–1404, 2016.

[17] M. Kamel, M. Burri, and R. Siegwart, “Linear vs nonlinear MPC for trajectory

tracking applied to rotary wing micro aerial vehicles”, Proceedings of the IFAC

World Congress, vol. 50, no. 1, pp. 3463–3469, 2017.

[18] M. W. Mueller and R. D’Andrea, “A model predictive controller for quadrocopter

state interception”, Proceedings of the European Control Conference, pp. 1383–

1389, 2013.

[19] P. Bouffard, A. Aswani, and C. Tomlin, “Learning-based model predictive control

on a quadrotor: Onboard implementation and experimental results”, Proceedings

of the International Conference on Robotics and Automation, pp. 279–284, 2012.

[20] Y. Wang, D. Zhou, and F. Gao, “Iterative learning model predictive control for

multi-phase batch processes”, Journal of Process Control, vol. 18, no. 6, pp. 543–

557, 2008.

[21] U. Rosolia and F. Borrelli, “Learning model predictive control for iterative tasks.

a data-driven control framework”, IEEE Transactions on Automatic Control,

vol. 63, no. 7, pp. 1883–1896, 2018.

209

Paper P7. Learning-based parametrized model predictive control for trajectory tracking

[22] M. Muehlebach, C. Sferrazza, and R. D’Andrea, “Implementation of a para-

metrized infinite-horizon model predictive control scheme with stability guaran-

tees”, Proceedings of the International Conference on Robotics and Automation,

pp. 2723–2730, 2017.

[23] C. Sferrazza, M. Muehlebach, and R. D’Andrea, “Trajectory tracking and itera-

tive learning on an unmanned aerial vehicle using parametrized model predictive

control”, Proceedings of the Conference on Decision and Control, pp. 5186–5192,

2017.

[24] H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock, and M. Diehl, “qpOASES:

A parametric active-set algorithm for quadratic programming”, Mathematical

Programming Computation, vol. 6, no. 4, pp. 327–363, 2014.

[25] F. Künhe, J. Gomes, and W. Fetter, “Mobile robot trajectory tracking using

model predictive control”, Proceedings of the latin-american robotics symposium,

2005.

[26] J. Bentley, “Programming pearls”, Addison-Wesley Professional, 2016.

[27] D. A. Patterson and J. L. Hennessy, “Large and fast: Exploiting memory hier-

archy. in: Computer organization and design: The hardware/software interface”,

Newnes, 2013.

[28] S. Lupashin, M. Hehn, M. W. Mueller, A. P. Schoellig, M. Sherback, and R.

D’Andrea, “A platform for aerial robotics research and demonstration: The flying

machine arena”, Mechatronics, vol. 24, no. 1, pp. 41–54, 2014.

[29] J. Nocedal and S. Wright, “Quadratic programming. in: Numerical optimiza-

tion”, Springer Science & Business Media, 2006.

210

Appendix

Related publications

consisting of publications

[R1] C. Trueeb, C. Sferrazza, and R. D’Andrea, “Towards vision-based robotic skins: a

data-driven, multi-camera tactile sensor”, in Proceedings of the IEEE International

Conference on Soft Robotics (RoboSoft), 2020, pp. 333–338

[R2] T. Bi, C. Sferrazza, and R. D’Andrea, “Zero-shot sim-to-real transfer of tactile con-

trol policies for aggressive swing-up manipulation”, IEEE Robotics and Automation

Letters, vol. 6, no. 3, pp. 5761–5768, 2021

Paper R1

Towards vision-based robotic skins: a

data-driven, multi-camera tactile sensor

Camill Trueeb, Carmelo Sferrazza and Raffaello D’Andrea

Abstract

This paper describes the design of a multi-camera optical tactile sensor that
provides information about the contact force distribution applied to its soft surface.
This information is contained in the motion of spherical particles spread within
the surface, which deforms when subject to force. The small embedded cameras
capture images of the different particle patterns that are then mapped to the three-
dimensional contact force distribution through a machine learning architecture.
The design proposed in this paper exhibits a larger contact surface and a thinner
structure than most of the existing camera-based tactile sensors, without the use of
additional reflecting components such as mirrors. A modular implementation of the
learning architecture is discussed that facilitates the scalability to larger surfaces
such as robotic skins.

Published in Proceedings of the 2020 IEEE International Conference on Soft Robotics.

©2020 IEEE. Reprinted, with permission, from Camill Trueeb, Carmelo Sferrazza and Raffaello D’Andrea,
“Towards vision-based robotic skins: a data-driven, multi-camera tactile sensor”, IEEE International
Conference on Soft Robotics, 2020.

213

Paper R1. Towards vision-based robotic skins: a data-driven, multi-camera tactile
sensor

1. Introduction

Research in whole-body tactile sensing [1] aims to provide robots with the capability of

fully exploiting contact with objects to perform a wide range of tasks. As an example, hu-

mans often use both their hands and arms to transport large and heavy boxes, exploiting

the feedback from their tactile receptors and the compliance of their soft skin.

The recent advances in computer vision and machine learning have drawn increasing

attention towards vision-based tactile sensors, often referred to as optical tactile sensors.

These sensors generally employ an optical device to provide high-resolution information

about the deformation of their soft surface when subject to external forces. As an example,

the motion of spherical particles embedded within a soft, transparent gel is captured by

an RGB camera in [2] to render feedback about the force distribution that causes the

gel’s deformation. A typical drawback of the camera-based approaches is the bulkiness

of their main sensing unit. Moreover, the minimum focal distance of commercial cameras

usually implies the need for additional space between the camera lens and the soft gel, in

which the monitored patterns are embedded, e.g., markers, particles, etc., leading to an

additional increase of the overall size. Even in the case of close-focus lenses, placing the

soft surface too close to the camera generally leads to a reduced field of view (FOV).

Figure 1. The tactile sensor presented in this article has a reduced thickness compared to most of
the camera-based tactile sensors in the literature. In this figure, it is shown next to the four embedded
camera modules placed below the soft sensor’s surface, which measures 49×51 mm.

This paper proposes a multi-camera design to tackle the issues mentioned, leading to

a relatively thin overall structure (about 17.5 mm, see Fig. 1) and retaining the scalabil-

ity to larger surfaces. Four embedded cameras are equipped with close-focus lenses and

are placed next to each other to cover an increased FOV. A deep neural network (DNN)

is trained to reconstruct the three-dimensional contact force distribution applied to the

sensor’s surface, directly processing the pixel intensities captured on the images. The ar-

chitecture employed here exhibits a modular structure to increase the software scalability

214

1. Introduction

for the implementation on larger surfaces or in the case of a single camera replacement.

In fact, a generalization experiment is performed by training the DNN on a subset of the

available cameras. A considerably smaller part of the network is then retrained once a

new camera is added, resulting in shorter training times and lower data requirements,

while generalizing to the entire surface.

The DNN is deployed in real-time, leveraging the capabilities of a state-of-the-art

System-on-Module, provided with an integrated GPU. The resulting sensing pipeline

predicts the contact force distribution 40 times per second.

1.1 Related work

Several physical principles have been applied with the objective of providing robots with

an equivalent of the human sense of touch. In fact, a number of categories of tactile sensors

exist in the literature, e.g., resistive [3], piezoelectric [4] and capacitive [5]. A survey of

the different categories is provided in [6]. Similarly, various examples of tactile skins using

the different sensing principles and scalable to large surfaces have been described, see for

example [7], [8].

Vision-based tactile sensors are based on optical devices, which track visual features

related to the deformation of a soft surface. Beside RGB cameras, depth cameras [9]

and dynamic vision sensors [10] have been employed in a similar manner. Optical tactile

sensors show high resolution, ease of manufacture and low cost, despite a larger thickness

compared to the other categories. For an overview of the different types of optical tactile

sensors, see [11], [12].

In [13], the viability of an optical tactile skin is discussed. The availability of inex-

pensive and low power GPUs is indicated as a possible solution to enable the real-time

processing of a large number of tactile images. Two cameras were mounted on each finger

of a soft robotic gripper in [14] to classify the shape and size of an object. The classifica-

tion is performed by means of a DNN that takes as input the concatenation of the two

images. A finger-shaped gripper is presented in [15]. Tactile imprints are redirected via

a mirror towards a camera to increase the sensor compactness. Two cameras are used in

[16] to reconstruct the 3D displacement of inner markers in a soft tactile muscularis.

In order to overcome the complexity of interpreting the tactile information, several

learning-based approaches have been applied to measure various tactile quantities. The

location and depth of an indentation are reconstructed in [17] on a sensor based on an

array of light emitters and receivers. In [18] a deep learning architecture estimates the

total force and torque applied to a tactile sensor, which uses photometric stereo and

markers painted on its surface. In [19], a neural network reconstructs the contact force

distribution applied to the soft surface of a vision-based sensor. Ground truth labels are

provided via the use of simulations based on the finite element method (FEM). In order

to share the knowledge acquired from data across different sensors, a transfer learning

approach is proposed in [20].

The approach presented here is based on four cameras placed at a short distance

from the observed surface, which has a random spread of spherical particles embedded.

215

Paper R1. Towards vision-based robotic skins: a data-driven, multi-camera tactile
sensor

The choice of the components and the data-driven approach make it possible to obtain

a thin structure without the use of additional reflecting components, hence simplifying

manufacture. The network architecture employed is tailored to the use of multiple cam-

eras, introducing modularity features and facilitating the scalability of the approach. The

resulting pipeline reconstructs with high accuracy the contact force distribution applied

by a sample indenter to the soft surface of the sensor, including the regions where the

indentation is not fully covered by the FOV of a single camera.

1.2 Outline

The sensing principle and the hardware used for the experiments are described in Section 2.

A dimensioning analysis then discusses the possibility of further reducing the thickness

of the sensor. The data collection and the learning architecture are detailed in Section 3.

The results and a modularity evaluation are presented in Section 4. Remarks in Section 5

conclude the paper.

2. Sensor design

A four-camera design is first introduced in this section. Compared to previous work it

shows a thinner sensor with a larger sensing surface. The outlook for a further reduction

of the thickness of the design is discussed in the second part of the section.

2.1 Hardware

Flat Ribbon Connectors

(a) bottom view

Cameras

(b) top view

Figure 2. The sensor’s base structure accommodates four Raspberry Pi v2 camera interface boards with
flat ribbon cable connectors (a) and the cameras mounted on top (b).

The optical tactile sensor is based on the tracking of unicolored particles (polyethylene

microspheres with a diameter of 150 to 180µm) randomly spread within a soft, transpar-

ent silicone gel. The motion of the particles is captured by four rectangularly arranged

cameras (Raspberry Pi Camera Module v2), see Fig. 2. These cameras capture 40 frames

per second at a resolution of 320×240 pixels. The frames are eventually cropped and

downsampled to 128×128 pixels. In order to reduce the thickness of the sensor, the de-

fault Raspberry Pi camera lenses are replaced by fisheye lenses originally mounted on

216

2. Sensor design

Sincerefirst SF-C7251OV-H133 cameras. The lenses are mounted onto the camera frames

over distance rings, whose thickness is designed to obtain the desired focus. Finally, an

LED board is placed over the camera array to provide uniform brightness.

Similarly to [2], three different silicone layers are cast onto the camera array, as shown

in Fig. 3. From the bottom, the first layer is relatively stiff and adds the distance between

the camera and the particles, which is necessary to improve the focus. This layer also pro-

vides additional protection for the hardware and ensures light diffusion. The second layer

is the softest and contains the particles tracked by the cameras. Finally, the third layer

(stiffer than the second) is cast with a black color and protects the sensor from external

light sources and material damage. The same materials, mixing ratios and curing protocol

as in [19] were used, for a resulting sensing surface of 49×51 mm. Each embedded camera

Figure 3. The cameras and an LED board are fixed to a base structure. Three silicone layers are directly
poured onto the LED board and the camera lenses: A stiff transparent layer, the particle layer and a
black protection layer.

is controlled by a separate, relatively inexpensive single-board computer (Raspberry Pi

3 model B+). These boards communicate with a System-on-Module (NVIDIA Jetson

Nano Developer Kit), which is equipped with a 64-bit quad-core Arm Cortex-A57 CPU

alongside a Maxwell GPU with 128 CUDA cores. The communication is handled by a

Gigabit Ethernet switch (ANDDEAR QZ001), which enables the Jetson Nano to receive

the four image streams. The Jetson Nano provides a clock source to the Raspberry Pi

boards, which are synchronized through the Networking Time Protocol (NTP), to ensure

contemporaneous image streams. Note that the Raspberry Pi boards and the Ethernet

switch may be replaced by compact, commercially available multi-camera adapter boards

for the Jetson Nano. However, drivers for these adapter boards are still under develop-

ment or not easily accessible because of the relatively recent release of the Jetson Nano.

This aspect has not been further investigated for the purpose of this work.

2.2 Dimensioning analysis

The design presented above exhibits an overall thickness of 17.45 mm, which is lower

than most of the camera-based tactile sensors described in the literature. As an example,

compared to [15], the sensor described here is slightly thinner and does not use mirrors,

217

Paper R1. Towards vision-based robotic skins: a data-driven, multi-camera tactile
sensor

Black silicone layer (1.5 mm)
Soft silicone layer (2 mm)

Stiff silicone layer (5 mm)

Camera & lens (5.95 mm)

Flex cable connector (2.9 mm)

LED board (1.75 mm)

4 mm

Camera interface board (1.1 mm)

Figure 4. A side-view schematic of the sensor’s structure around one of the cameras is shown in this
figure. Note that the overall thickness is determined by the two upper silicone layers, the distance between
the lens and the particle layer, the camera and the camera interface board, including the connector. The
LED board does not contribute to the overall thickness, since it is placed around the camera lenses.

while covering a surface more than six times larger. In the following, some guidelines for

further reducing the thickness of the sensor are detailed:

1. The commercial cameras employed in this work mount a flex cable connector at

the bottom of their interface board, as shown in Fig. 4. A custom camera interface

board, with a connector placed in the space between the interface board itself and

the LED board, may reduce the thickness by 2.9 mm, leading to an overall thickness

of 14.55 mm.

2. A custom camera interface board may also be placed in a different position, farther

from the cameras, depending on the application. Removing the camera boards and

their connectors from below the cameras would result in an overall thickness of

13.45 mm.

3. In the current design the interface boards are placed adjacent to each other in the

same plane below the cameras. In order to cover a continuous surface, this requires

that each camera covers a FOV of at least the size of an interface board. Moving the

interface boards (as pointed out in the previous point) may additionally facilitate a

closer placement of the cameras. As a consequence, this would make it possible to

further reduce the distance between the lenses and the particles, while retaining a

continuous surface coverage. Moreover, in this work the fisheye lenses were chosen

among the commercially available solutions with a straightforward implementation.

A tailored design with an accurate trade-off between the focal distance and the

FOV may further reduce the overall thickness. Assuming an ideal pinhole camera

model1, the thickness is mainly limited by the size of the image sensor. Modern

image sensors with a thickness of about 0.3 mm are commercially available. The

smallest commodity camera module2 inclusive of a lens has a thickness of 1.158

mm, with the possibility of focusing a surface placed at a distance of 3 mm. Such

a design may already result in a tactile sensor thickness of about 5 mm.

1A derivation of this fact in a simplified scenario is summarized in the online appendix [21].
2https://www.ovt.com/sensors/OVM6948

218

https://www.ovt.com/sensors/OVM6948

3. Method

Figure 5. The sensing pipeline is shown in this figure. An indentation produces a change in the particle
pattern that is visible in the difference of the pixel intensities (central image) between the current frame
and a frame taken at rest. The DNN predicts the three-dimensional contact force distribution applied
during the indentation. The last figure on the right shows a color visualization of the resulting Fz for
each of the surface bins.

3. Method

In the following section the learning architecture is presented. First, the collection of

the ground truth data is explained, then the details regarding the neural network are

outlined.

3.1 Data collection

A dataset is collected following the strategy presented in [19]. Automated indentations

are performed using a precision milling machine (Fehlmann PICOMAX 56 TOP) with

3-axis computer numerical control (CNC). On an evenly spaced grid, a spherically-ended

cylindrical indenter with a diameter of 10 mm is pressed onto the sensor surface at

different depths up to 1.5 mm. The same procedure is simulated with a finite element

model in Abaqus/Standard [22], to assign ground truth labels to the images, representing

the contact force distribution applied to the sensor’s surface. In this regard, the surface is

discretized into 650 bins of equal area. The procedure described in [19] provides the force

applied to these bins, based on the FEM simulations. For each bin, three force components

Fx, Fy, Fz are provided, where x and y are aligned along the two horizontal sides of the

sensor’s surface and centered at one of the corners, and z is the vertical axis, directed

from the camera towards the sensor’s surface. The resulting label vectors are assigned to

the images from the four cameras for each indentation, and used in a supervised learning

fashion, as described in the next subsection.

3.2 Learning Architecture

The prediction of the discretized force distribution applied to the surface of the tactile

sensor is a multiple multivariate regression problem. This problem is tackled by training

an end-to-end DNN that maps the images from the four cameras to the outputs of the

network, that is, three force components for each of the 650 surface bins. The intensity

difference images between the current frames and the respective four images taken in the

undeformed surface state serve as the input to the network. An example of the resulting

219

Paper R1. Towards vision-based robotic skins: a data-driven, multi-camera tactile
sensor

4
×
4
co
n
v
,
4

3
×
3
co
n
v
,
2

3
×
3
co
n
v
,
6

3
×
3
co
n
v
,
8

1
/
2
p
o
o
li
n
g

1
/
2
p
o
o
li
n
g

9
0
0
F
C

6
0
0
F
C

3
0
0
F
C

F
U
S
IO

N

1

2

4

3

Fx

Fy

Fz

CNN

Figure 6. This figure shows the architecture of the network. Each difference image is separately fed
through the same CNN, and the outputs are then combined via a fusion layer. For ease of visualization,
some abbreviations have been introduced in the block diagram above. In this regard, the label “3×3
conv, 2” refers to a two-channel convolutional layer with a 3×3 kernel, while “1/2 pooling” indicates
a max pooling layer, which subsamples the input to half of its original size. “900 FC” refers to a fully
connected layer with 900 units.

pipeline is shown in Fig. 5.

To decouple the detection of features that are independent of the cameras’ placement,

the difference images from the four cameras are fed independently through a convolu-

tional neural network (CNN). Only after this intermediate network, a fusion layer with

a linear activation function combines the four different output tensors and predicts the

three-dimensional discretized force distribution. Both the overall network layout and the

dimensions of the different layers are shown in Fig. 6.

The CNN takes a difference image of size 128×128 as an input. Batch normalization

showed a large decrease in the network training times and is used for all convolutional

layers, together with rectified linear unit activation functions. A dropout rate of 0.1 is used

on the fully connected (FC) layers to prevent overfitting to the training data, together

with sigmoid activation functions. The root mean squared error (RMSE) is used as a loss

function for the Adam optimizer [23] to train the model. 30% of the dataset was put aside

for evaluation purposes.

The fact that the CNN is shared between the four cameras leads to a considerable

reduction in the memory consumption, especially in view of the possible extension to

larger surfaces with a higher number of cameras. Moreover, this generally leads to a

smaller network size, in contrast to feeding the concatenation of the four images through

a larger architecture. Smaller architectures tend to require less training data and exhibit

shorter training times. Finally, the architecture presented here shows modularity features.

These are discussed in Section 4.

220

4. Results

4. Results

In this section, the performance of the multi-camera tactile sensor is evaluated. In the

first part of the section, the evaluation of the learning architecture is presented. In the

second part, an experiment is performed by modifying the neural network and the training

procedure in order to test the modularity of the approach.

4.1 Sensor Performance

The DNN presented in Section 3.2 is trained on 70% of the full dataset. 10% of the samples

are used as a validation set to apply early stopping during training. The remaining 20%

is left aside for evaluation. The resulting RMSE on the force distribution is 0.00060 N,

0.00059 N, 0.0019 N for Fx, Fy, Fz, respectively, while the resulting RMSE on the total

applied force (sum of the forces of all surface bins) is 0.0019 N, 0.0016 N, 0.0571 N for Fx,

Fy, Fz, respectively. Note that the dataset is generated from vertical indentations, with

the resulting total forces in z-direction up to 3 N, and considerably smaller total forces in

the horizontal direction on most of the sensor surface. Fig. 7 shows an example prediction

of the contact force distribution in z-direction and the corresponding ground truth. The

model inference runs on the Jetson Nano at 86 Hz, which makes the frame capturing (40

frames per second) on the Raspberry Pi boards the bottleneck of the sensing speed. As a

result, the sensing pipeline runs at a maximal prediction speed of 40 Hz. Furthermore, the

fact that the four simultaneous images are fed independently through the CNN enables

the detection of multiple contact points, when each camera fully captures up to one of the

distinct contact patches, even if the model has only been trained with single indentations.

This makes it possible to detect up to four distinct contact patches, as shown in the video3

attached to this submission.

0 25 49

x [mm]

51

25

0

y
[m

m
]

Reference Force

0 25 49

x [mm]

Predicted Force

-0.40

-0.32

-0.24

-0.16

-0.08

0.00

F
z
[N
]

Figure 7. The figure shows the component Fz of each surface bin for an example indentation in the test set.

On the left, the ground truth force distribution is shown, and on the right, the distribution predicted by the
neural network.

4.2 Sensor Modularity

To evaluate the modularity of the approach, a first model is trained using only images and

labels from three cameras. In a second step, the sensor is recalibrated with the training
3Video: https://youtu.be/lbavqAlKl98

221

https://youtu.be/lbavqAlKl98

Paper R1. Towards vision-based robotic skins: a data-driven, multi-camera tactile
sensor

data from all four cameras. The procedure is schematically shown in Fig. 8. For the

calibration step, the majority of the DNN parameters are frozen, and only the last fully

connected layer and the fusion layer are retrained. This serves the purpose of reducing

the training times and the data requirements.

CNN

F
U
S
IO

N

1

2

3

Fx

Fy

Fz

F
U
S
IO

N

1

2

4

3
CNN∗

F
C

3
0
0

Fx

Fy

Fz

1) Training with data from 3 cameras:

2) Recalibration with data from 4th camera:

Figure 8. The model is first trained with the data from three cameras, and then extended to four cameras
and recalibrated with the full dataset. In the first plot the fusion layer contains 900 units, mapping the
outputs corresponding to the surface covering only three cameras. In the second plot, the size of the fusion
layer is increased to 1200 units, to cover the entire surface.

As shown in Fig. 9, the recalibrated network shows comparable performance to the

model trained on the whole data in Section 4.1. Moreover, the performance is retained

using an even smaller portion of training data. The plots show the different error metrics

as a function of the percentage of data used for training. Retraining the last two layers

takes approximately 1.5 hours on the employed GPU (Nvidia TITAN X Pascal), as op-

posed to over 10 hours training for the whole model on the full dataset. This experiment

shows promising results towards the possibility of training the most resource (both time

and data) consuming part of the network on a subset of the surface, therefore reducing

the data collection and the training times on the rest of the surface. This also opens

the opportunity of replacing a defective camera (although not currently possible in the

experimental prototype presented) on a large-scale skin, without the need to retrain the

entire network.

5. Conclusion

In this paper, a multi-camera tactile sensing approach has been presented, making use

of an end-to-end DNN to predict the force distribution on the sensor surface. The sensor

222

5. Conclusion

0 25 50 75 100

Training Data [%]

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010
R
M
S
E
[N
]

x

y

(a) RMSE on the force

distribution (x and y axes)

0 25 50 75 100

Training Data [%]

0.000

0.001

0.002

0.003

0.004

0.005

T
ot
al

F
or
ce

R
M
S
E
[N
]

x

y

(b) RMSE on the total

force (x and y axes)

0 25 50 75 100

Training Data [%]

0.000

0.001

0.002

0.003

0.004

R
M
S
E
[N
]

(c) RMSE on the force
distribution (z axis)

0 25 50 75 100

Training Data [%]

0.00

0.02

0.04

0.06

0.08

T
ot
al

F
or
ce

R
M
S
E
[N
]

(d) RMSE on the total
force (z axis)

Figure 9. After the neural network is trained on the data from three cameras, it is recalibrated for the fourth
camera with a portion of the training data from all the cameras. The resulting errors are shown above, as a
function of the varying percentage of the full dataset used for training, together with a least-squares trend

line.

thickness has been reduced, while at the same time the sensing surface has been extended

using multiple cameras arranged in an array. A relatively inexpensive sensor design has

been suggested, using Raspberry Pi cameras to capture synchronized images and a Jetson

Nano Developer Kit for the model inference.

A neural network has been presented to reconstruct the contact force distribution.

The modular architecture proposed here is applicable to optical tactile sensors with a

larger numbers of cameras, such as vision-based robotic skins. It has been shown how the

network can be efficiently recalibrated when the number of cameras is increased, without

retraining any of the convolutional layers. The sensing pipeline presented here runs on an

embedded computer provided with a GPU at 40 Hz. On the test dataset employed, the

architecture has shown an RMSE of 0.0571 N on the total forces in the vertical direction

that were collected up to 3 N.

The procedure proposed here to attach the lenses to the camera frames does not yield

a very accurate focus of the images (see Fig. 5) and needs further investigation. Future

work will also include the extension of this approach to various directions and shapes of

the indentations, as well as a quantitative scalability analysis in the case of an increasing

223

Paper R1. Towards vision-based robotic skins: a data-driven, multi-camera tactile
sensor

number of cameras.

Acknowledgments

The authors would like to thank Michael Egli and Matthias Müller for their support in

the sensor manufacture.

References

[1] V. J. Lumelsky, Sensing, Intelligence, Motion: How Robots and Humans Move

in an Unstructured World. John Wiley & Sons, 2005.

[2] C. Sferrazza and R. D’Andrea, “Design, Motivation and Evaluation of a Full-

Resolution Optical Tactile Sensor”, Sensors, vol. 19, no. 4: 928, 2019.

[3] K. Weiß and H. Wörn, “The Working Principle of Resistive Tactile Sensor Cells”,

in IEEE International Conference Mechatronics and Automation, 2005, vol. 1,

pp. 471–476.

[4] C. Li, P.-M. Wu, S. Lee, A. Gorton, M. J. Schulz, and C. H. Ahn, “Flexible Dome

and Bump Shape Piezoelectric Tactile Sensors Using PVDF-TrFE Copolymer”,

Journal of Microelectromechanical Systems, vol. 17, no. 2, pp. 334–341, 2008.

[5] J. M. Romano, K. Hsiao, G. Niemeyer, S. Chitta, and K. J. Kuchenbecker,

“Human-inspired Robotic Grasp Control with Tactile Sensing”, IEEE Trans-

actions on Robotics, vol. 27, no. 6, pp. 1067–1079, 2011.

[6] R. S. Dahiya, G. Metta, M. Valle, and G. Sandini, “Tactile Sensing—From Hu-

mans to Humanoids”, IEEE Transactions on Robotics, vol. 26, no. 1, pp. 1–20,

2009.

[7] H. Lee, K. Park, J. Kim, and K. J. Kuchenbecker, “A Large-Scale Fabric-Based

Tactile Sensor Using Electrical Resistance Tomography”, in Haptic Interaction,

H. Kajimoto, D. Lee, S.-Y. Kim, M. Konyo, and K.-U. Kyung, Eds., Springer

Singapore, 2019, pp. 107–109.

[8] G. Cannata, M. Maggiali, G. Metta, and G. Sandini, “An embedded artificial skin

for humanoid robots”, in 2008 IEEE International Conference on Multisensor

Fusion and Integration for Intelligent Systems, pp. 434–438.

[9] A. Alspach, K. Hashimoto, N. Kuppuswarny, and R. Tedrake, “Soft-bubble: A

highly compliant dense geometry tactile sensor for robot manipulation”, in 2019

2nd IEEE International Conference on Soft Robotics (RoboSoft), pp. 597–604.

[10] F. B. Naeini, A. Alali, R. Al-Husari, A. Rigi, M. K. AlSharman, D. Makris,

and Y. Zweiri, “A Novel Dynamic-Vision-Based Approach for Tactile Sensing

Applications”, IEEE Transactions on Instrumentation and Measurement, 2019.

224

References

[11] K. Shimonomura, “Tactile Image Sensors Employing Camera: A Review”, Sen-

sors, vol. 19, no. 18, p. 3933, 2019.

[12] A. Yamaguchi and C. G. Atkeson, “Recent progress in tactile sensing and sensors

for robotic manipulation: can we turn tactile sensing into vision?”, Advanced

Robotics, vol. 33, no. 14, pp. 661–673, 2019.

[13] A. Yamaguchi and C. G. Atkeson, “Optical Skin For Robots: Tactile Sensing

And Whole-Body Vision”, in Workshop on Tactile Sensing for Manipulation,

Robotics: Science and Systems (RSS), vol. 25, 2017, pp. 133–134.

[14] Y. She, S. Q. Liu, P. Yu, and E. Adelson, Exoskeleton-covered soft finger with

vision-based proprioception and exteroception, 2019. arXiv: 1910.01287 [cs.RO].

[15] E. Donlon, S. Dong, M. Liu, J. Li, E. Adelson, and A. Rodriguez, “GelSlim:

A High-Resolution, Compact, Robust, and Calibrated Tactile-sensing Finger”,

in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pp. 1927–1934.

[16] L. Van Duong, R. Asahina, J. Wang, et al., “Development of a Vision-Based

Soft Tactile Muscularis”, in 2019 2nd IEEE International Conference on Soft

Robotics (RoboSoft), pp. 343–348.

[17] P. Piacenza, E. Hannigan, C. Baumgart, Y. Xiao, S. Park, K. Behrman, W.

Dang, J. Espinal, I. Hussain, I. Kymissis, and M. Ciocarlie, “Touch Sensors with

Overlapping Signals: Concept Investigation on Planar Sensors with Resistive or

Optical Transduction”, CoRR, vol. abs/1802.08209, 2019. arXiv: 1802.08209.

[Online]. Available: http://arxiv.org/abs/1802.08209.

[18] W. Yuan, S. Dong, and E. Adelson, “Gelsight: High-Resolution Robot Tactile

Sensors for Estimating Geometry and Force”, Sensors, vol. 17, no. 12, p. 2762,

2017.

[19] C. Sferrazza, A. Wahlsten, C. Trueeb, and R. D’Andrea, Ground truth force

distribution for learning-based tactile sensing: a finite element approach, 2019.

arXiv: 1909.04000 [cs.RO].

[20] C. Sferrazza and R. D’Andrea, “Transfer learning for vision-based tactile sens-

ing”, CoRR, vol. abs/1812.03163, 2019. arXiv: 1812.03163. [Online]. Available:

http://arxiv.org/abs/1812.03163.

[21] C. Trueeb, C. Sferrazza, and R. D’Andrea, “Online appendix - On the thickness

of vision-based tactile sensors”, 2019. [Online]. Available: https://arxiv.org/

src/1910.14526/anc/OnlineAppendix.pdf.

[22] Dassault Systèmes, Abaqus/Standard User’s Manual, v. 6.14, English, Simulia,

2014.

[23] D. P. Kingma and J. L. Ba, “Adam: A Method for Stochastic Optimization”, in

Proceedings of the International Conference on Learning Representations (ICLR),

2015.

225

https://arxiv.org/abs/1910.01287
https://arxiv.org/abs/1802.08209
http://arxiv.org/abs/1802.08209
https://arxiv.org/abs/1909.04000
https://arxiv.org/abs/1812.03163
http://arxiv.org/abs/1812.03163
https://arxiv.org/src/1910.14526/anc/OnlineAppendix.pdf
https://arxiv.org/src/1910.14526/anc/OnlineAppendix.pdf

Paper R2

Zero-shot sim-to-real transfer of tactile

control policies for aggressive swing-up

manipulation

Thomas Bi, Carmelo Sferrazza and Raffaello D’Andrea

Abstract

This paper aims to show that robots equipped with a vision-based tactile sensor
can perform dynamic manipulation tasks without prior knowledge of all the physi-
cal attributes of the objects to be manipulated. For this purpose, a robotic system
is presented that is able to swing up poles of different masses, radii and lengths,
to an angle of 180°, while relying solely on the feedback provided by the tactile
sensor. This is achieved by developing a novel simulator that accurately models
the interaction of a pole with the soft sensor. A feedback policy that is conditioned
on a sensory observation history, and which has no prior knowledge of the physical
features of the pole, is then learned in the aforementioned simulation. When eval-
uated on the physical system, the policy is able to swing up a wide range of poles
that differ significantly in their physical attributes without further adaptation. To
the authors’ knowledge, this is the first work where a feedback policy from high-
dimensional tactile observations is used to control the swing-up manipulation of
poles in closed-loop.

Published in IEEE Robotics and Automation Letters.

Reprinted, from Thomas Bi, Carmelo Sferrazza and Raffaello D’Andrea, “Zero-shot sim-to-real transfer of

tactile control policies for aggressive swing-up manipulation”, IEEE Robotics and Automation Letters, 2021.

Used under CC BY 4.0.

227

Paper R2. Zero-shot sim-to-real transfer of tactile control policies

1. Introduction

Tactile sensors aim to provide robots with a sense of touch that captures information

from their environment through physical contact. In this paper, the vision-based tactile

sensor presented in [1] is deployed in order to demonstrate that it can provide robots with

a dexterity akin to that of humans in dynamic manipulation tasks. For this purpose, a

robotic system that performs swing-up maneuvers for different poles is presented (see

Fig. 1). The robotic system consists of a parallel gripper, mounted to a linear motor,

with two tactile sensors acting as fingers. Thereby, three key capabilities enabled by the

artificial sense of touch provided by the tactile sensor are demonstrated: (i) The system

is able to adapt its motion and successfully swings up poles that differ in their physical

attributes (e.g. mass, length, and radius) without prior knowledge of these attributes.

(ii) The system does not rely on external visual sensing; instead, the pose and attributes

of the pole in contact are implicitly inferred from the tactile observations alone. (iii)

The tactile observations can be processed in real-time and act as feedback for closed-

loop control at 60 Hz. As a result, highly dynamic swing-up manipulations are achieved

without the need for a previous in-hand exploration of the pole.

The three components that enable such adaptive dynamic swing-up manipulation are

presented here. First, the high-dimensional force distribution acting on the sensor surface

is directly inferred from the sensor camera images using an efficient convolutional network,

which is trained on purely simulated contact interactions of the sensor with different poles.

Second, a novel simulator is developed that accurately models the behaviour of the soft

sensor surface when interacting with a rigid cylindrical pole. This simulation is based

on combining the finite element method with state-of-the-art semi-implicit time-stepping

schemes for contact resolution and runs at 360 Hz on a single core of an Intel Core i7-

7700k processor. Third, a framework for learning adaptive feedback policies conditioned

on a history of sensory observations is proposed. Deep reinforcement learning is utilized

to train a single policy, entirely in simulation, that is able swing up different poles with

unknown physical attributes. Thereby, various strategies that facilitate the sim-to-real

transfer of policies learned in simulation are employed, namely dynamics randomization

[2], and privileged learning [3], [4].

1.1 Related work

As reviewed in [5] and [6], many works have demonstrated how robots can leverage the

sense of touch in dexterous manipulation tasks in closed-loop. For example, in [7] tactile

data is used to control both the grasping force and slippage of a tactile gripper. Other

examples include [8], where a pair of grippers are used to pick one end of a cable and

follow it to the other end. Each gripper contains tactile sensors from which the current

pose and friction forces acting on the cable can be estimated in real-time, enabling the

approach to generalize to cables of different thicknesses and materials, based on a model

learned from real data. A similar approach was proposed in [9]; a dual palm robotic

system estimates the pose and the stick/slip behaviour of an object solely from tactile

228

1. Introduction

(a) Simulation

(b) Reality

Figure 1. In this work, tactile control policies for the swing-up manipulation of poles are learned in a

simulation of the tactile sensor that runs faster than real-time. When transferred to the real-world system,

the policy achieves the desired behaviour without further adaptation, and swings up poles to an upright
position without prior knowledge of the physical attributes of the pole.

feedback, in order to manipulate an object on a planar surface to a desired position. In

[10], a deep dynamics model is learned that can predict future tactile observations based

on the previous observations and actions taken. Data for the training of the dynamics

model is autonomously collected on the physical system. The learned model is then used

in an MPC-framework to manipulate a ball, analog stick, and 20-sided die to a desired

configuration. Other learning-based approaches rely on deep reinforcement learning to

find optimal control policies directly on the physical hardware. Examples include a 5-

DoF arm that learns to reorient objects using a latent representation of the tactile data

[11], and a robotic system that learns to type on a Braille keyboard [12].

229

Paper R2. Zero-shot sim-to-real transfer of tactile control policies

While these approaches demonstrate robustness against external disturbances and

changes in object properties, the manipulation tasks they solve generally do not require a

high degree of dynamicism. For more aggressive manipulation tasks such as the swing-up

manipulation of poles, feedback control based on tactile data has proven to be challenging

and thus differing methods have been proposed. In [13], the sensing and manipulation

are separated into two steps. First, the physical features of different poles are learned by

shaking and tilting the pole in-hand and observing the tactile feedback. The learned fea-

tures are then used to optimize an open-loop trajectory of a robotic arm that dynamically

swings the pole up to a desired angle. The learning of the physical features, as well as the

trajectory optimization, are performed end-to-end using models trained on a physically

collected dataset. In [14], tactile sensing and visual tracking are combined to pivot an

object to a desired angle by adjusting the gripping force exerted by a two-finger gripper.

This fusion of visual and tactile information was also employed on a robotic hand in [15]

to perform highly dynamic tasks such as pen spinning, ball dribbling, and ball throwing.

In this work, a unified approach is presented where aggressive swing-up maneuvers

can be achieved in closed-loop from high-dimensional tactile feedback, without relying

on a visual tracking system or prior in-hand exploration of the pole. Moreover, instead

of relying on data collection on the physical system, as is done in the learning-based

methods mentioned above, the feedback control policy is learned entirely in simulation.

This removes the cost of collecting data on the physical system, which can be highly

time-consuming. Additionally, challenging motions that may lead to unsafe behaviours

by the physical hardware can be first explored without repercussions. This data can then

be utilized to train the policy to satisfy the safety constraints that are present on the

physical system. While simulators for the behaviour of tactile sensors have been developed

(see e.g. [16]–[23]), the authors are not aware of any work where a simulation from first

principles is utilized to learn tactile feedback control policies. Rather, the mentioned works

focus on gathering supervised datasets of tactile images in simulation to train deep neural

networks that can predict object position and rotation ([16], [21]), the force distribution

acting on the sensor surface ([22], [23]), or the three-dimensional mesh of the object in

contact ([17]).

1.2 Outline

The hardware employed for the experiments is presented in Section 2. In Section 3, the

proposed methods are described. This includes the sensing approach of the tactile sensor

in Section 3.1, the design of the tactile simulator in Section 3.2, and the synthesis of the

swing-up control policy in Section 3.3. Results from employing the learned policy on the

real-world system are presented in Section 4. Finally, Section 5 draws conclusions and

gives an outlook on future work. In the remainder of this paper, vectors are expressed as

tuples for ease of notation, with dimension and stacking clear from the context.

230

2. Hardware

Sensor 2

Sensor 1

Gripper

Linear motor

Figure 2. The robotic system presented in this paper consists of a parallel gripper comprising two tactile

sensor, and a linear motor to which the gripper is mounted.

(a) Parallel gripper (b) Tactile sensor

Figure 3. This figure shows exploded views of the gripper (a) and the tacile sensor that acts as finger (b). A
Dynamixel MX-28R controls the opening and closing of the two fingers, each of them equipped with a tactile

sensor.

2. Hardware

The robotic system considered in this paper consists of three main parts; a two-finger

robotic gripper where each finger comprises a tactile sensor, a linear motor (stator/slider),

to which the gripper is mounted, and finally, embedded computing systems that process

the sensing data and send commands to the actuators. The linear motor and tactile

gripper are pictured in Fig. 2.

2.1 Tactile gripper

To enable the high-resolution gripping capability of the system, a custom 1-DoF parallel

two-finger gripper was built in-house, see Fig. 3a. A Dynamixel MX-28R servo motor is

used to control the distance between the two fingers with a resolution of 0.06 mm. Two

231

Paper R2. Zero-shot sim-to-real transfer of tactile control policies

tactile sensors, placed opposite each other, act as fingers for the gripper. The sensing

principle employed in this paper is based on [1]. Three soft silicone layers are poured

on top of an RGB fisheye camera (ELP USBFHD06H), surrounded by LEDs. The base

layer (ELASTOSIL ® RT 601 RTV-2, mixing ratio 7:1, shore hardness 45A) is stiff and

transparent, and serves as a spacer. The middle layer (ELASTOSIL ®RT 601 RTV-2,

ratio 25:1, shore hardness 10A) is soft and transparent, and embeds a spread of randomly

distributed fluorescent green particles. A black top layer (made of the same material as

the middle layer) completes the sensor and shields it from external light disturbances.

The soft sensor’s surface is slightly curved to provide a more anatomical grasping surface.

An exploded view of the sensor layers is shown in Fig. 3b.

2.2 Linear motor

In order to achieve the translational motion of the gripper, a linear motor comprising a

stator and a slider is employed. The stator (LinMot P01-23x160H-HP-R) contains the

motor windings, bearings for the slider, position capture sensors and a microprocessor,

and is thus able to generate motion with respect to the slider. The slider (LinMot PL01-

12x850/810-HP) is a stainless steel tube and is fixed to a table so that the stator is the

only moving part. The gripper is then mounted to the stator through the use of a motor

flange (LinMot PF02-23x120). A motor drive (LinMot C1100-GP-XC-0S-000) controls

the motion of the stator.

2.3 Embedded systems

Two embedded devices are used to control the system. First, a Raspberry Pi (RPi) runs

two low-level controllers, one for the linear motor and one for the gripper. The linear motor

controller tracks commanded acceleration setpoints, while the gripper controller tracks the

distance between the two fingers. Second, an NVIDIA Jetson TX2, a compact embedded

device with a built-in GPU, obtains the camera images from the tactile sensor at 60 Hz,

pre-processes the images, and infers the force distribution. Note that this pipeline is only

executed for sensor 1 (see Fig. 2). This is motivated by the fact that due to the planar

nature of the system, the forces acting on sensor 2 can be assumed to be symmetrical to

those acting on sensor 1. Furthermore, this reduces the computational complexity of the

pipeline.

The Jetson also receives the current actuator states from the RPi. Control actions are

then inferred using the proposed control policy and are communicated to the low-level

controllers on the RPi that execute the commands.

3. Method

The proposed method can be divided into three different parts. First, the vision-based

tactile sensor estimates the force distribution acting on its surface from its camera images.

232

3. Method

Undeformed
image

Deformed
image

Polar
angle

Radial
distance

Fx Fy Fz

−16 0 16
−16

0

16

x[mm]

y
[m

m
]

−16 0 16

x[mm]

−16 0 16

x[mm]

−0.4 N

0.4 N

0 N

Figure 4. The features and labels of our supervised learning task. The features are the images of the particles
in the undeformed and in the deformed states. Two additional channels provide the polar coordinates of the

pixels. For the labels, Fx, Fy and Fz denote the x, y and z components of the discretized force distribution.
The force distributions shown in the figure were collected with a pole pivoting on the sensor (as in the
experiments discussed in Section 4). They show how the shape and pose of the pole manifest themselves
correctly in the force distribution readings. Additionally, the lateral forces (Fx and Fy) on either side of the
center of rotation point in opposite directions, which can be deducted from their change in color.

Second, a simulator for the dynamics of a pole and the given robotic system is developed.

Third, a tactile feedback control policy for the swing-up manipulation is learned in the

simulation using reinforcement learning.

3.1 Vision-based tactile sensing

The tactile sensor employed in this paper follows the same sensing principle as introduced

in [1]. When the soft sensing surface is subject to force, the material deforms and displaces

the particles tracked by the camera. This motion generates different patterns in the

images. The material deformation at any point in time can thus be described by two

camera images, one where no loads are applied and the material is at rest, and another

at the current deformed state.

In [22], a method to generate such images in simulation is presented to train a super-

vised learning architecture that aims to accurately estimate the real-world 3D contact

force distribution. The same approach to generate training data is employed here, using

233

Paper R2. Zero-shot sim-to-real transfer of tactile control policies

(a) Original image (b) Remapped image (c) Simulated image

Figure 5. Camera images from the real-world sensor are preprocessed converting the original image (a) to

gray-scale, and remapping the image using a calibrated camera model (b). The last image (c) corresponds to

a simulated image that is used for training and is provided for comparison.

finite-element simulations of the sensor surface under various contact conditions, where

hyperelastic material models for the sensor’s soft materials are employed. The details

of this procedure can be found in [22]. In addition to the two mentioned images per

datapoint, the polar coordinates of each pixel are encoded here as two additional im-

age channels. Explicitly incorporating such spatial location features has previously been

shown to significantly improve accuracy where the location of image features is relevant

for the task at hand [24]. Using a fully convolutional neural network based on ShuffleNet

V2 [25], the resulting four-channel image is then mapped to accurate contact force distri-

bution labels (see Fig. 4), with ground truth also obtained from finite element simulations

[26].

On the real-world sensor, camera images are preprocessed to match those of the sim-

ulated training dataset as described in [22] and [23]. Specifically, images are converted to

gray-scale and remapped using the real-world camera model (obtained via a state-of-the-

art calibration technique [27]) to images of the same scene as if they were taken in the

simulated world. A circular mask is then applied to remove any irrelevant image informa-

tion. The results of this preprocessing procedure are illustrated in Fig. 5. On the given

hardware, the force distribution for a given preprocessed camera image can be inferred

in real-time in 2.5 ms.

3.2 Tactile simulation

In order to achieve a fast simulator, essential for training reinforcement learning algo-

rithms in a reasonable amount of time, a few model simplifications are introduced here.

First, the material of the sensor is assumed to be linearly elastic. Second, the forces acting

on the sensor surface are decoupled into two components: the forces arising due to the

material deformation in the z direction, and the lateral friction forces resulting from the

relative motion of the pole with respect to the sensor. A real-time finite element approach

is then employed to compute the two mentioned force components.

1) Problem Statement A sketch of the system considered in this work is shown in Fig. 6,

where a single coordinate system is defined. The x-axis is aligned to the moving axis of

234

3. Method

φ

s

p

x

y

z
g

(a) Side-view sketch of the system.

x

z

y
axis of
symmetry s

sensor 1

sensor 2
(b) Top-view sketch of the system.

Figure 6. The system can be described as a cart-pole augmented with a parallel gripper that features the
two sensors.

the linear motor, denoted in the following as the cart. The y-axis points in the opposite

direction to gravity, i.e. upwards. Finally, the z-axis is chosen such that all the points on

sensor 1 exhibit a negative z-coordinate. The reference position s = (xs, ys, zs) is chosen

with the point on the curved surface of sensor 1 that is closest to the x-y plane (at rest).

While there are two tactile sensors, their positions are symmetrical about the x-y plane.

Hence, it suffices to only consider the position of a single sensor. Next, the orientation of

the pole is defined by the angle φ. Lastly, p = (xp, yp, zp) denotes the position of the

center of mass of the pole. Note that the sensor is fixed in the y-direction (ys = 0) and

the pole is fixed in the z-direction (zp = 0). These definitions are illustrated in Fig. 6.

The state vector x is then defined as

x = (xs, ẋs, zs, xp, ẋp, yp, ẏp, φ, φ̇) (1)

Since only the static behavior of the sensor material is analyzed, żs is not considered.

The inputs to the system are the cart acceleration and the increment in zs between

two subsequent timesteps:

u = (ẍs, ∆zs) . (2)

Note that on the real system, the servo commands are mapped to ∆zs with a linear

mapping identified from data.

Next, the pole is characterized as a rigid cylinder. Its radius is given by rp, the mass

235

Paper R2. Zero-shot sim-to-real transfer of tactile control policies

by mp and its moment of inertia about the center of mass and along the z-axis by Ip.

The length of the pole above its center of mass is given by lp,u and the length below the

center of mass by lp,l.

Given these definitions, the goal is to model the state evolution over time, i.e., x(k +

1) = f(x(k),u(k)), where k is the discrete time index, and f describes a functional

dependency. In the following, the time index (k) will be omitted, and variables at time

(k + 1) will be denoted by a + superscript, e.g. x+.

2) Equations of Motion The pole is modeled as a free-body constrained to move in the

x-y plane, meaning that its motion is governed by the force Fp = (Fp,x, Fp,y, 0) and

torque Tp = (0, 0, Tp,z) acting on its center of mass. Using a semi-implicit integration

scheme ([28], [29]) the equations of motion are then given by

ẋ+
s = ẋs + ∆t ẍs x+

s = xs + ∆t ẋ+
s (3)

ẋ+
p = ẋp + ∆t

Fp,x

mp

x+
p = xp + ∆t ẋ+

p (4)

ẏ+
p = ẏp + ∆t

Fp,y

mp

y+
p = yp + ∆t ẏ+

p (5)

φ̇+ = φ̇+ ∆t
Tp,z

Ip

φ+ = φ+ ∆t φ̇+ (6)

z+
s = zs + ∆zs (7)

In the following, the derivation of Fp and Tp is presented.

Both sensors are discretized using an identical mesh of N = 576 finite elements

(nodes). Hereafter, all quantities introduced will refer to sensor 1, where the correspond-

ing counterparts of sensor 2 are clear from the symmetrical context and are denoted using

a tilde, i.e. ·̃. Then, for node i of the mesh, let (xi, yi, zi) be its coordinates, and Fi the

force acting on the node. Each node i in contact with the pole leads to a planar reaction

force

Fp,i = −(Fi + F̃i) =⇒ Fp,i,x:y = −2Fi,x:y (8)

where the implication follows from symmetry, with the x :y subscript denoting the stacked

x and y components of the three-dimensional vector. Next, the gravitational force acting

on the pole is denoted by Fg =
(
0, −mpg, 0

)
, where g = 9.81 m s−2. Defining ri :=(

xi − xp, yi − yp, 0
)
, the total force and torque acting on the pole are then

Fp = Fg +
∑
i∈S

Fp,i , Tp =
∑
i∈S

ri × Fp,i. (9)

where S is the set of all nodes on the surface of the sensor.

236

3. Method

axis of

symmetry
Pole

∈ C
∈ F
∈ N

x

z

y

Fi

F̃i

Fp,i

Sensor 1

Sensor 2

Figure 7. The nodes of the finite element mesh are assigned to three sets: C if in contact with the pole, F
if constrained to not move, N otherwise.

As mentioned above, the contact forces are postulated to be the superposition of forces

F 0
i arising from the normal indentation of the pole into the sensor, and the lateral friction

forces F f
i , that is, Fi = F 0

i + F f
i , which implies

Fp,i = −
(
F 0
i + F̃ 0

i

)
︸ ︷︷ ︸

=:F 0
p,i

−
(
F f
i + F̃ f

i

)
︸ ︷︷ ︸

=:F f
p,i

(10)

3) Forces Arising from Normal Indentation The forces F 0
i are derived using the finite

element theory for linearly elastic materials. Let U 0
i be the deformation of a node i. Then,

a linear relationship between the external forces and deformations is found by the finite

element method as:

F 0 = KU 0 (11)

where F 0 :=
(
F 0

1 , . . . , F
0
N

)
, U 0 :=

(
U 0

1 , . . . , U
0
N

)
, and K is the global stiffness matrix,

obtained in this work in Abaqus/Standard. The system of equations in (11) can be solved

by introducing the following sets, displayed in Fig. 7:

• C: The set of all nodes that are in contact with the pole. It is the intersection of

the set of nodes at the surface of the sensor (i.e., the set S) and the set of nodes

whose positions at rest collide with the pole, based on the geometric properties of

the pole considered. The nodes in this set are assumed here to translate only in z-

direction, and their deformation is obtained by finding the appropriate z-coordinate

that intersects with the surface of the pole (see Fig. 7).

• F : The set of all nodes that are in contact with the base layer of the sensor. Since

the base layer’s stiffness is much larger than the stiffness of the sensor surface, the

nodes of this set are assumed to be rigid. Therefore, their deformation is set to zero,

i.e., U 0
i = 0,∀i ∈ F .

237

Paper R2. Zero-shot sim-to-real transfer of tactile control policies

• N : The set of nodes that are neither in contact with the base layer nor in contact

with the pole. No external forces are acting on these nodes, i.e., F 0
i = 0,∀i ∈ N .

Therefore, for a node i, once a corresponding set is identified, either the force F 0
i or the

deformation U 0
i is known. The system (11) is then solved by using the UMFPACK library,

and F 0
p,i computed as in (10).

Note that here the current approach exploits the cylindrical geometry of the poles,

rendering a mathematically simple intersection problem, which enables a highly efficient

identification of the aforementioned sets. The extension to objects of various geometries

may still be addressed efficiently by employing algorithms tailored to solve the intersection

problem for generic polygons, e.g., based on the Weiler-Atherton clipping algorithm [30].

4) Lateral Friction Forces In order to find the lateral friction forces for the nodes in

contact, first the case where only the friction at a single node is unknown is considered.

From the solution of this case, an iterative method is utilized to solve for all friction forces

in the multi-contact case.

First, it is assumed that all the friction forces except for the one at node i are known,

i.e. F f
j is known for all j 6= i. Let

vi,rel :=

(
ẋi
ẏi

)
−
(
ẋs

0

)
=

(
ẋp

ẏp

)
+

(−ri,y
ri,x

)
φ̇−

(
ẋs

0

)

be the relative planar velocity of the point on the pole which is in contact with the node

i at time k. Then, by plugging in the equations of motion (3)-(7), the relative velocity at

the next timestep is found to be

v+
i,rel = vi,rel−∆t

(
ẍs

0

)
+ Jii Fp,i,x:y︸ ︷︷ ︸

F 0
p,i,x:y+F f

p,i,x:y

+
∑
j 6=i

JijFp,j,x:y (12)

where, for generic indices a and b,

Jab = ∆t

1

mp

+
ra,yrb,y
Ip

−ra,yrb,x
Ip−ra,xrb,y

Ip

1

mp

+
ra,xrb,x
Ip

 . (13)

In this work, Coulomb friction is assumed, and two cases are identified, where µ indicates

both the static and kinetic friction coefficients. First, for the static friction case, consider

the force F f,static
p,i that takes on exactly the value to prevent motion at node i. This force

can be found by setting v+
i,rel = 0 in (12) and solving for F f

p,i,x:y. If this force satisfies the

238

3. Method

friction cone constraint, i.e.

∥∥F f,static
p,i

∥∥ ≤ 2µ
∣∣F 0

i,z

∣∣ , (14)

then F f
p,i,x:y = F f,static

p,i,x:y . The z-component is set to zero as it would eventually cancel out

when considering both fingers.

If (14) is not satisfied, friction is not sufficient to prevent the motion at node i. In this

case, kinetic friction is present, where the force is opposite to the direction of the velocity

and is proportional to the normal component of the force. Since the velocity v+
i,rel and the

friction force F f
p,i are coupled, an approximation of the subsequent velocity is employed

as

v̂+
i,rel := vi,rel −∆t

(
ẍs

0

)
+ JiiF

0
p,i,x:y +

∑
j 6=i

JijFp,j,x:y

which is the relative velocity at the subsequent step when the effects of friction at node

i are ignored. If the number of nodes is sufficiently large, this approximation is close to

the true value, since the effect of the force at the single node i is small compared to the

combined effect of the remaining forces at nodes j 6= i. Using this approximation, the

kinetic friction is set to

F f
p,i,x:y = −2µ|F 0

i,z|v̂+
i,rel/

∥∥v̂+
i,rel

∥∥ (15)

Given this solution to the single contact problem, the multi-node contact case is

solved by repeatedly iterating over all nodes in contact until convergence, and updating

the friction force at node i using the above solution, given the values at nodes j 6= i of

the current iteration. Then, Fp,i is obtained as in (10) from F 0
p,i and F f

p,i, and finally Fp

and Tp can be computed as in (9).

3.3 Learning tactile control policies

Given a simulation of a robotic system, deep reinforcement learning (deep RL) algorithms

have been successfully applied to learn sophisticated behaviours [32]. These algorithms

typically depend on the Markov property of the system, i.e. they assume that the state

and physical parameters that fully describe the system at a given time are available to the

policy. However, for the experiments presented in Section 4, the physical parameters of the

pole, e.g. the length, are unknown to the policy and the Markov property no longer holds.

In deep RL, such problems are typically dealt with by using the history of observations

and parametrizing the policy using recurrent neural networks which, however, can be

challenging to train.

The approach employed here exploits the fact that in simulation the state and physical

parameters are known. In a first stage, an expert policy πe is learned that has access to the

239

Paper R2. Zero-shot sim-to-real transfer of tactile control policies

2. Student Policy
Training

1. Expert Policy
Training

Simulation

Reinforcement
Learning

reward r(k)

- Pole Parameters
- Pole State
- Actuator States
- Force Distribution

R
andom

ize

πs

Student
Policy

action u(k)o(k−(T−1) :k)
Observation

History
observation o(k)

x′(k)
Privileged

State

privileged state x′(k)

πe

Expert
Policy

action u(k)

Imitation
Learning

Figure 8. The figure depicts the privileged learning approach. The expert and student policy training take

place in two separate steps, both performed entirely in simulation. Further, both policies are parametrized

using two-layer fully connected neural networks. For the reinforcement learning of the expert policy, the SAC

[31] method is employed to find the optimal policy according to (17). The student policy is then deployed to

the real-world system without further adaptation.

state as well as the simulation parameters (satisfying the Markov property). In a second

stage, a student policy πs that only has access to the observations that are available on

the real system is learned by imitating the behaviour of the expert policy (see Fig. 8).

This is also referred to as privileged learning [3], [4].

1) State-Feedback Expert Policy In order to achieve the swing-up with a feedback policy

that adapts to different poles, the expert policy is conditioned on the state x(k) (defined

in Section 3.2), as well as the pole’s physical parameters which may vary. This yields the

augmented state

x′(k) :=
(
x(k), rp, mp, Ip, lp,u, lp,l, µ

)
. (16)

As a result, the policy may choose different control actions based on the features of the

pole.

The goal is then to find a policy, π : x′(k) → u(k), that is optimal in the sense of

maximizing the expected sum of future discounted rewards, i.e.

πe = max
π

E

(∑
k

γkr(x′(k), π(x′(k)))

)
, (17)

where γ is the discount factor. The reward function r is shaped to encourage low slippage

and pole orientations that are close to 180°. The policy is learned using deep RL, namely

the SAC [31] algorithm with the stable-baselines3 implementation [33]. The discount

factor is set to γ = 0.995 while the remaining hyperparameters, as well as the policy

network architecture, correspond to the default ones proposed in [31]. During training,

the pole parameters rp, mp, Ip, lp,u, lp,l and µ are randomly sampled at each new

240

3. Method

episode such that the policy learns the correct behaviour for different poles and friction

ratios. This dynamics randomization [2] also greatly aids in the successful transfer from

simulation to reality.

2) Tactile Student Policy The expert policy is conditioned on privileged knowledge,

only available in simulation, and can thus not be deployed on the real system, where the

pole’s pose and physical attributes can only indirectly be observed through the available

force distribution measurements. As a result, the student policy must be able to reason

over time and implicitly recover the missing state information. First, in order to condense

the sensory information into a compressed representation, an estimate of the pole’s orien-

tation φ̂(k) is obtained by computing the force magnitude at each bin, thresholding the

magnitudes to obtain a binary image, and finally applying a Hough line transform [34]. In

addition, the total sensed normal force F tot
z (k) is extracted by summing the z-distribution

at all bins. This is motivated by the fact that the normal force yields direct information

about the friction and slippage, while the angle of the pole is the main quantity to be

controlled. Then, a student policy conditioned on a history of condensed representations

of the observations is learned by imitating the behaviour of the expert policy.

A condensed observation at time k is given by

o(k) =
(
xs(k), zs(k), φ̂(k), F tot

z (k)
)
. (18)

Note that xs(k) and zs(k) are known for the real system, and the velocity of the cart ẋs(k)

is not included, since it can implicitly be derived from the history of xs(k) observations.

The student policy πs is then parametrized by a neural network that maps the his-

tory of the last T condensed observations o(k−(T −1) : k) to the control action u(k),

where T = 12 is the fixed history length. The same stochastic network as proposed in

[31] is used, which outputs a squashed Gaussian distribution over the control actions.

This stochasticity accomplishes a desirable smoothing of the policy. The imitation of the

expert policy is then posed as a supervised learning task that minimizes the negative

log-probability

L := − log Pr (πs (o(k−(T−1) :k)) = πe (x′(k))) .

In this work, the DAGGER [35] method is employed, where the dataset is continuously

aggregated with the incoming data from the training rollouts of the student policy. Labels

are obtained by querying the expert policy for the visited states. At each training iteration,

the student policy is updated by performing an optimization step with batches sampled

from the aggregated dataset.

241

Paper R2. Zero-shot sim-to-real transfer of tactile control policies

Figure 9. This figure shows a trajectory which results from employing the learned feedback control policy

on the robotic system. As can be seen, the pole is dynamically swung up to an upright position.

4. Results

The validity of the methods presented is verified on the physical system, where the learned

feedback policy is deployed to swing up different poles.

Feedback is crucial for this task for three reasons: i) the control actions to perform a

successful swing up greatly depend on the physical parameters of the specific pole, which

are assumed to be unknown to the policy in this work, ii) these control actions depend

on the initial position and orientation of the pole, which is likely to differ across trials on

the real system, iii) even when the physical parameters and starting pose of the pole are

well known, and a trajectory is generated in simulation for such a configuration, in the

authors’ experience this led to swing-ups with an offset in the final angle due to slight

model mismatches. Feedback is thus needed to precisely control the final angle.

Throughout the following experiments, the initial grasping of the pole is achieved by

a human holding the pole between the two tactile sensors. The gripper then slowly closes

its fingers until the total force applied on the sensor by the pole reaches a user-defined

threshold.

The student feedback control policy is evaluated on the real-world robotic system on

four different poles with masses ranging from 20 g to 38 g, lengths from 20 cm to 35 cm,

and radii from 2.5 mm to 5 mm. For each pole, the control policy is run ten times and the

error from 180° in the final estimated angle φ̂ is recorded. Experiments show that all four

poles are successfully swung up to an upright position, and a mean absolute error of 4.3°
is achieved. A detailed analysis of the experimental results is provided in an experimental

report [36]. These results demonstrate how a single policy is able to adapt the robot’s

motion to perform swing-up maneuvers for a wide range of different poles without any

prior knowledge of the pole’s physical features, based on the feedback provided by the

tactile sensor. The resulting behaviour of the policy for one of the listed poles is depicted

in Fig. 9. The supplementary video1 contains the trajectories for the remaining poles. It

is vital to note that the pole shown in Fig. 9 is not contained in the distribution of poles

that is used while learning either the teacher or the student policy.

Moreover, the policy is transferred directly from the simulation to the real system

with no adaptation needed. This further asserts the robustness of the policy as it is able

to adapt to the real system that exhibits dynamics that are not modeled in the simulation

1https://youtu.be/In4jkaHzJLc

242

https://youtu.be/In4jkaHzJLc

5. Conclusion

Figure 10. Using deep reinforcement learning, robust policies can be learned to achieve various tasks. Here,

the reward function is shaped to encourage the throwing and catching of the pole after a rotation of 360°.

(such as dynamic effects of the sensor material, unmodeled dynamics of the actuators,

and delays of the actuator commands).

5. Conclusion

In this paper, a strategy has been presented to transfer tactile control policies for the

swing-up manipulation of different poles from simulation to a physical robotic system. As

the simulator has been shown to closely match the dynamics of the real system, the policy

learned in simulation generalizes to the real-world robotic system with no adaptation

needed. Note that the system presented here does neither exploit a mechanically fixed

pivot point nor directly control the rotational degree-of-freedom of the pole, but it can

achieve the desired motion only through the presence of friction, whose modeling was

crucial in enabling a realistic simulation.

This constitutes an important step towards a general framework to learn a wide

variety of tactile manipulation tasks safely in simulation. Yet, current results have only

been demonstrated for a single task on a single robotic system. Future work will focus

on several aspects to further extend the generalizability of this work. In a first step,

the proposed framework could be utilized to learn other pole manipulation skills on the

given system, e.g. the throwing and catching of a pole. While such a policy was already

successfully learned in simulation (see Fig. 10), the transfer to the physical system requires

further work due to non-idealities of the hardware. For instance, when the pole is thrown

in the air, it may leave the plane to which the motion is assumed to be constrained. In

fact, instead of relying on the planar nature of the manipulation task, as was done in

this work, the suggested simulator could be extended to handle non-planar tasks. As a

result, manipulation skills for grippers that can be controlled in six degrees of freedom

could also be learned. Moreover, in this paper, hand-engineered features are extracted

from the tactile observations, i.e. the orientation and total normal force acting on the

243

Paper R2. Zero-shot sim-to-real transfer of tactile control policies

Pole r [mm] l [mm] m [g] MAE [deg] Failures

1 2.5 200 28 5.6 29% (4/14)
2 2.5 350 38 3.5 9% (1/11)
3 3.8 250 20 4.4 9% (1/11)
4 5.0 300 36 3.6 0% (0/10)

Total 4.3 11.7%

Table 1. This table lists the four poles that are used during the experimental evaluation, and specifies their

physical attributes. Moreover, the mean absoulte error (MAE) and number of failures are listed.

pole. These features may not be relevant for other tasks, where learning such features

end-to-end with the policy, e.g. using autoencoders, may further generalize the proposed

framework.

A. Experimental setup

The student tactile control policy is deployed on the physical system without any adapta-

tion, i.e., the policy learned in simulation is directly transferred to the physical hardware.

Four different poles are used throughout the experiments. The physical attributes of each

pole are listed in Table 1. For each pole, the student control policy is employed until ten

successful swing-ups have been achieved. Failures, which are defined to be runs where

the pole either falls or the cart is commanded to positions outside of the stroke, are also

counted. During each run, the estimated orientation φ̂, as well as the control actions taken

are recorded.

B. Supplementary results

Fig. 11 contains a plot for each of the poles. Each plot depicts the mean trajectory of the

estimated orientation φ̂ over time for the ten successful runs. Additionally, the sample

standard deviation of the ten runs is shown in the shaded blue area. As can be seen, the

student control policy yields repeatable behaviour and successfully swings the poles up

to an angle of 180° with small offsets of the final angle. The time to reach the upright

position is roughly equal across the four poles, with an average of ∼ 0.5 s. Additionally,

there is only minimal overshoot.

Next, Fig. 12 shows the commanded cart acceleration and clamping distance for each

pole averaged over the ten successful runs. As can be seen, the clamping range for poles

of different radii naturally differ. It is important to note that these differences in the

clamping distance arise purely from the feedback of the tactile sensor (i.e. the estimated

orientation and total normal force), and that the radius is not known to the policy.

244

B. Supplementary results

0

1

2

3

Trajectory of estimated angle
φ̂

[r
ad

]

Pole 1

0

1

2

3

φ̂
[r

ad
]

Pole 2

0

1

2

3

φ̂
[r

ad
]

Pole 3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

0

1

2

3

time [s]

φ̂
[r

ad
]

Pole 4

Figure 11. This figure shows the trajectory of the estimated angle φ̂ of the different poles when running the

tactile control policy. For each pole, the control policy is run ten times. The resulting mean of the trajectory

is shown by the solid blue line, while the shaded blue area depicts the standard deviation of the angle.

245

Paper R2. Zero-shot sim-to-real transfer of tactile control policies

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

−40

−20

0

20

40

time [s]

ẍ
s

[m
/s

2]

Commanded cart acceleration

Pole 1

Pole 2

Pole 3

Pole 4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
−5

−4

−3

−2

−1

time [s]

z s
[m

m
]

Commanded clamping distance

Pole 1

Pole 2

Pole 3

Pole 4

Figure 12. This figure shows the control actions taken by the robotic system for the different poles, i.e.
the commanded acceleration and the commanded clamping distance of the tactile gripper. For each pole, the
mean values over the ten logged runs are shown. As can be seen from the commanded clamping distance, the

difference in the radii of the poles lead to large offsets in the commanded clamping distances. Moreover, even

for poles of the same radii (poles 1 and 2), the clamping distance trajectories differ due to the difference in

inertia.

Further, even for the two poles that share an identical radius (poles 1 and 2), there are

noticeable differences in the commanded clamping distance (at around 0.5 s). This can

be attributed to the fact that due to the differences in the moment of inertia, different

impulses are necessary to generate a sufficient angular momentum of the pole.

Finally, Table 1 also summarizes the results and states the mean absolute error (MAE)

of the final estimated angle φ̂ with a goal of 180°. Averaged over all the successful runs

of the four poles, an error of 4.3° is observed. Moreover, the errors are consistent across

the different poles. At this point, it is important to note that the estimated orientation

246

Acknowledgments

is based on a 20 × 20-dimensional sensed force distribution, and may thus be noisy and

does not necessarily provide ground truth.

It can also be seen that pole 1 experiences a higher failure rate when compared to

the other three poles. From observing the trajectories for pole 1, it was seen that a

restitution effect takes place once the pole reaches the upright position. In other words,

the pole springs back slightly once it reaches the upright position. The control policy then

attempts to correct for this behaviour by accelerating the cart (see seconds 0.5− 0.75 in

Fig. 12). This is also visible in the first plot of Fig. 11, where there is a small downward

spike of the estimated angle at ∼ 0.6 s. The high accelerations then occasionally cause

a motion that is too jerky, causing the gripper to lose contact with the pole, ultimately

leading to failure. Further, the fact that this restitution effect is more pronounced for

pole 1, can be attributed to the fact that the pole is relatively short, and thus its center

of mass is closer to the point of contact on the tactile gripper. As a result, higher forces

are necessary to generate the torques necessary to achieve the desired motion.

Acknowledgments

The authors would like to thank M. Egli and M. Mueller for their contribution to the

development of the system.

References

[1] C. Sferrazza and R. D’Andrea, “Design, motivation and evaluation of a full-

resolution optical tactile sensor”, Sensors, vol. 19, no. 4: 928, 2019.

[2] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-real transfer

of robotic control with dynamics randomization”, in IEEE Int. Conf. on Robotics

and Automation, 2018, pp. 1–8.

[3] D. Chen, B. Zhou, V. Koltun, and P. Krähenbühl, “Learning by cheating”, in

Conf. on Robot Learning, 2020, pp. 66–75.

[4] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, “Learning

quadrupedal locomotion over challenging terrain”, Science Robotics, vol. 5, no. 47,

2020.

[5] H. Yousef, M. Boukallel, and K. Althoefer, “Tactile sensing for dexterous in-

hand manipulation in robotics—a review”, Sensors and Actuators A: physical,

vol. 167, no. 2, pp. 171–187, 2011.

[6] Z. Kappassov, J.-A. Corrales, and V. Perdereau, “Tactile sensing in dexterous

robot hands”, Robotics and Autonomous Systems, vol. 74, pp. 195–220, 2015.

247

Paper R2. Zero-shot sim-to-real transfer of tactile control policies

[7] J. M. Romano, K. Hsiao, G. Niemeyer, S. Chitta, and K. J. Kuchenbecker,

“Human-inspired robotic grasp control with tactile sensing”, IEEE Trans. on

Robotics, vol. 27, no. 6, pp. 1067–1079, 2011.

[8] Y. She, S. Wang, S. Dong, N. Sunil, A. Rodriguez, and E. Adelson, “Cable

manipulation with a tactile-reactive gripper”, in Robotics: Science and Systems,

2020.

[9] F. R. Hogan, J. Ballester, S. Dong, and A. Rodriguez, “Tactile dexterity: Ma-

nipulation primitives with tactile feedback”, in IEEE Int. Conf. on Robotics and

Automation, 2020.

[10] S. Tian, F. Ebert, D. Jayaraman, M. Mudigonda, C. Finn, R. Calandra, and S.

Levine, “Manipulation by feel: Touch-based control with deep predictive mod-

els”, in IEEE Int. Conf. on Robotics and Automation, 2019, pp. 818–824.

[11] H. Van Hoof, N. Chen, M. Karl, P. van der Smagt, and J. Peters, “Stable rein-

forcement learning with autoencoders for tactile and visual data”, in IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems, 2016, pp. 3928–3934.

[12] A. Church, J. Lloyd, R. Hadsell, and N. F. Lepora, “Deep reinforcement learning

for tactile robotics: Learning to type on a braille keyboard”, IEEE Robotics and

Automation Lett., vol. 5, no. 4, pp. 6145–6152, 2020.

[13] C. Wang, S. Wang, B. Romero, F. Veiga, and E. Adelson, “Swingbot: Learning

physical features from in-hand tactile exploration for dynamic swing-up ma-

nipulation”, in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2020,

pp. 5633–5640.

[14] Y. Karayiannidis, C. Smith, D. Kragic, et al., “Adaptive control for pivoting with

visual and tactile feedback”, in IEEE Int. Conf. on Robotics and Automation,

2016, pp. 399–406.

[15] T. Senoo, Y. Yamakawa, S. Mizusawa, A. Namiki, M. Ishikawa, and M. Shimojo,

“Skillful manipulation based on high-speed sensory-motor fusion”, in IEEE Int.

Conf. on Robotics and Automation, 2009, pp. 1611–1612.

[16] Z. Ding, N. F. Lepora, and E. Johns, “Sim-to-real transfer for optical tactile

sensing”, in IEEE Int. Conf. on Robotics and Automation, 2020.

[17] Y. Wang, W. Huang, B. Fang, and F. Sun, “Elastic interaction of particles for

robotic tactile simulation”, arXiv:2011.11528, 2020.

[18] Z. Kappassov, J.-A. Corrales-Ramon, and V. Perdereau, “Simulation of tactile

sensing arrays for physical interaction tasks”, in IEEE/ASME Int. Conf. on

Advanced Intelligent Mechatronics, 2020, pp. 196–201.

[19] J. A. Joergensen, L.-P. Ellekilde, and H. G. Petersen, “RobWorkSim-an open sim-

ulator for sensor based grasping”, in 41st Int. Symp. on Robotics and ROBOTIK,

VDE, 2010, pp. 1–8.

248

References

[20] S. Moisio, B. León, P. Korkealaakso, and A. Morales, “Model of tactile sensors

using soft contacts and its application in robot grasping simulation”, Robotics

and Autonomous Syst., vol. 61, no. 1, pp. 1–12, 2013.

[21] M. Bauza, E. Valls, B. Lim, T. Sechopoulos, and A. Rodriguez, “Tactile object

pose estimation from the first touch with geometric contact rendering”, in Conf.

on Robot Learning, 2020.

[22] C. Sferrazza and R. D’Andrea, “Sim-to-real for high-resolution optical tactile

sensing: From images to 3D contact force distributions”, arXiv preprint arXiv:

2012.11295, 2020.

[23] C. Sferrazza, T. Bi, and R. D’Andrea, “Learning the sense of touch in simulation:

A sim-to-real strategy for vision-based tactile sensing”, in IEEE Int. Conf. on

Intelligent Robots and Systems, 2020.

[24] M. Ghafoorian, N. Karssemeijer, T. Heskes, I. W. van Uden, C. I. Sanchez, G.

Litjens, F.-E. de Leeuw, B. van Ginneken, E. Marchiori, and B. Platel, “Location

sensitive deep convolutional neural networks for segmentation of white matter

hyperintensities”, Scientific Reports, vol. 7, no. 1, pp. 1–12, 2017.

[25] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet V2: Practical guide-

lines for efficient CNN architecture design”, in Proceedings of the Eur. Conf. on

Computer Vision, 2018, pp. 116–131.

[26] C. Sferrazza, A. Wahlsten, C. Trueeb, and R. D’Andrea, “Ground truth force

distribution for learning-based tactile sensing: A finite element approach”, IEEE

Access, vol. 7, pp. 173 438–173 449, 2019.

[27] D. Scaramuzza, A. Martinelli, and R. Siegwart, “A toolbox for easily calibrating

omnidirectional cameras”, in IEEE/RSJ Int. Conf. on Intelligent Robots and

Systems, 2006, pp. 5695–5701.

[28] J. Hwangbo, J. Lee, and M. Hutter, “Per-contact iteration method for solving

contact dynamics”, IEEE Robotics and Automation Lett., vol. 3, no. 2, pp. 895–

902, 2018.

[29] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A physics engine for model-

based control”, in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2012,

pp. 5026–5033.

[30] K. Weiler and P. Atherton, “Hidden surface removal using polygon area sorting”,

ACM SIGGRAPH, vol. 11, no. 2, pp. 214–222, 1977.

[31] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy

maximum entropy deep reinforcement learning with a stochastic actor”, in Int.

Conf. on Machine Learning, vol. 80, PMLR, 2018, pp. 1856–1865.

[32] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics: A

survey”, The Int. Journal of Robotics Research, vol. 32, no. 11, pp. 1238–1274,

2013.

249

Paper R2. Zero-shot sim-to-real transfer of tactile control policies

[33] A. Raffin, A. Hill, M. Ernestus, A. Gleave, A. Kanervisto, and N. Dormann,

Stable baselines3, https://github.com/DLR-RM/stable-baselines3, 2019.

[34] R. O. Duda and P. E. Hart, “Use of the Hough transformation to detect lines

and curves in pictures”, Communications of the ACM, vol. 15, no. 1, pp. 11–15,

1972.

[35] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning and

structured prediction to no-regret online learning”, in Int. Conf. on Artificial

Intelligence and Statistics, 2011, pp. 627–635.

[36] T. Bi, C. Sferrazza, and R. D’Andrea, Zero-shot sim-to-real transfer of tac-

tile control policies for aggressive swing-up manipulation - experimental report,

https://arxiv.org/src/2101.02680v2/anc/ExperimentalReport.pdf, 2021.

250

https://github.com/DLR-RM/stable-baselines3
https://arxiv.org/src/2101.02680v2/anc/ExperimentalReport.pdf

	Preface
	Introduction
	Contributions
	Future work
	References for Chapters 1-3
	Part A. Data-driven, vision-based tactile sensing
	Paper P1. Design, motivation and evaluation of a full-resolution optical tactile sensor
	Paper P2. Transfer learning for vision-based tactile sensing
	Paper P3. Ground truth force distribution for learning-based tactile sensing: a finite element approach
	Paper P4. Learning the sense of touch in simulation: a sim-to-real strategy for vision-based tactile sensing
	Paper P5. Sim-to-real for high-resolution optical tactile sensing: From images to three-dimensional contact force distributions
	Part B. Computationally efficient learning-based model predictive control
	Paper P6. Trajectory tracking and iterative learning on an unmanned aerial vehicle using parametrized model predictive control
	Paper P7. Learning-based parametrized model predictive control for trajectory tracking
	Appendix. Related publications
	Paper R1. Towards vision-based robotic skins: a data-driven, multi-camera tactile sensor
	Paper R2. Zero-shot sim-to-real transfer of tactile control policies for aggressive swing-up manipulation

