
diss. eth no. 28256

T O WA R D S E F F I C I E N T D E E P N E U R A L
N E T W O R K S

A dissertation submitted to
eth zürich

for the degree of
doctor of sciences of eth zürich

(Dr. sc. ETH Zürich)

presented by
yawei li

Master of Science, University of Electronic Science and
Technology of China

born 14 September 1990

citizen of China

accepted on the recommendation of
Prof. Dr. Luc Van Gool, examiner

Prof. Dr. Thomas Brox, co-examiner
Prof. Dr. Ming-Hsuan Yang, co-examiner

Prof. Dr. Radu Timofte, co-examiner

2022

Yawei Li: Towards Efficient Deep Neural Networks, © 2022

A B S T R A C T

Computational efficiency is an essential factor that influences the appli-
cability of computer vision algorithms. Although deep neural networks
have reached state-of-the-art performances in a variety of computer
vision tasks, there are a couple of efficiency related problems of the
deep learning based solutions. First, the overparameterization of deep
neural networks results in models with millions of parameters, which
lowers the parameter efficiency of the designed networks. To store
the parameters and intermediate feature maps during the computa-
tion, a large device memory footprint is required. Secondly, the mas-
sive computation in deep neural networks slows down their training
and inference. This limits the application of deep neural networks to
latency-demanding scenarios and low-end devices. Thirdly, the massive
computation consumes significant amount of energy, which leaves a
large carbon footprint of deep learning models.

The aim of this thesis is to improve the computational efficiency
of current deep neural networks. This problem is tackled from three
perspective including neural network compression, neural architecture
optimization, and computational procedure optimization.

In the first part of the thesis, we reduce the model complexity of
neural networks by network compression techniques including filter
decomposition and filter pruning. The basic assumption for filter de-
composition is that the ensemble of filters in deep neural networks
constitutes an overcomplete set. Instead of using the original filters
directly during the computation, they can be approximated by a linear
combination of a set of basis filters. The contribution of this thesis is
to provide a unified analysis of previous filter decomposition methods.
On the other hand, a differentiable filter pruning method is proposed.
To achieve differentiability, the layers of neural networks is reparam-
eterized by a meta network. Sparsity regularization is applied to the
input of the meta network, i.e. latent vectors. Optimizing with the intro-
duced regularization leads to an automatic network pruning method.
Additionally, a joint analysis of filter decomposition and filter pruning
is presented from the perspective of compact tensor approximation.
The hinge of the two techniques is the introduced sparsity inducing

iii

iv

matrix. By simply changing the way the group sparsity regularization is
enforced to the matrix, the two techniques can be derived accordingly.

Secondly, we try to improve the performance of a baseline network by
a fine-grained neural architecture optimization method. Different from
network compression methods, the aim of this method is to improve
the prediction accuracy of neural networks while reducing their model
complexity at the same time. Achieving the two targets simultaneously
makes the problem more challenging. In addition, a nearly cost-free con-
straint is enforced during the architecture optimization, which differs
from current neural architecture search methods with bulky computa-
tion. This can be regarded as another efficiency-improving technique.

Thirdly, we optimize the computational procedure of graph neu-
ral networks. By mathematically analyzing the operations in graph
neural network, two methods are proposed to improve the computa-
tional efficiency. The first method is related to the simplification of
neighbor querying in graph neural network while the second involves
shuffling the order of graph feature gathering and an feature extraction
operations.

To summarize, this thesis contributes to multiple aspects of improving
the computational efficiency of neural networks during the optimiza-
tion, training, and test phase.

Z U S A M M E N FA S S U N G

Die Recheneffizienz ist einer der wichtigsten Faktoren der die Anwend-
barkeit von Computer-Vision-Algorithmen beeinflusst. Obwohl tiefe
neuronale Netze die zurzeit besten Leistungen in verschieden Bereichen
der Bildverarbeitung erzielen, gilt es einige Schwachstellen zu verbes-
sern, wie der hohe Rechenaufwand der verwendeten Deep Learning Me-
thoden. Neuronale Netze sind häufig überparametrisiert und bestehen
aus Millionen Parametern, sodass sich die Parameter-Ausnutzungsziffer
des konstruierten Netzes verringert. Um alle Parameter und Zwischen-
resultate des Netzes während des Lernvorgangs verarbeiten zu können,
wird daher ein grosses Volumen an Arbeitsspeicher benötigt. Weiter
reduziert der hohe Rechenaufwand eines neuronalen Netzes die Lauf-
zeit während des Lernvorgangs und später in der Produktion deutlich.
Insbesondere in Latenz-kritischen Szenarien oder für Low-End Geräte
schränkt der hohe Rechenaufwand die Anwendbarkeit von neuronalen
Netzen ein. Ausserdem führt der erhebliche Rechenaufwand zu einem
hohen Energieverbrauch und damit zu einem nicht zu vernachlässigen
ökologischen Fussabdruck.

Das Ziel dieser Dissertation ist es die Recheneffizienz von aktuellen
tiefen neuronalen Netzen zu verbessern. Die Lösungsstrategie besteht
darin neuronale Netze zu komprimieren und deren Berechnungsver-
fahren zu optimieren, wie in den folgenden drei Punkten erläutert.

Zuerst wird die Anzahl an Parametern von neuronalen Netzen re-
duziert durch ein neuartiges Filterkern-Zerlegungsverfahren und eine
Filterkern-Reduktionsmethode. Die Annahme, dass die die Filter-Kerne
eines Netzes eine übervollständige Menge darstellen, bildet die Grund-
lage der Filter-Kern-Zerlegung. Dabei werden Filterkerne aus einer li-
nearen Kombination von erlernten Basisvektoren geformt, sodass deren
Werte eine Annäherung an die ursprünglichen Filterkern Werte darstel-
len. Ein erster wesentlicher Beitrag dieser Dissertation liegt in einer ver-
einheitlichten Analyse der bestehenden Filterkern-Zerlegungsverfahren.
Weiter wird eine differenziertbare Filterkern-Reduktionsmethode ein-
geführt. Die Differenzierbarkeit wird dadurch erreicht, dass die Parame-
ter der verschiedenen Stufen eines neuronalen Netzes, die die Filterker-
ne repräsentieren, durch ein Meta-Netz bestimmt werden. Zusätzlich

v

vi

wird eine vereinheitlichte Untersuchung von Filterkern-Zerlegung und
Reduzierung aus dem Blickwinkel der kompakten Tensorapproxima-
tion vorgestellt. Die Verbindung der beiden Techniken bilden dabei
die vorgeschlagenen dünnbesetzten Matrizen. Beide Techniken können
hergeleitet werden, indem die Regulierung angepasst wird, die die
dünnbesetzten Matrizen erzwingt.

Als zweites wird ein Optimierungsverfahren vorgestellt, dass es er-
laubt die Struktur eines neuronalen Netzes zu verändern und damit
dessen Leistung zu verbessern. In Gegensatz zu Komprimierungsver-
fahren, die nur die Anzahl Parameter eines Netzes reduzieren, zielt
das vorgeschlagene Verfahren gleichzeitig auf die Verbesserung der
Schätzgenauigkeit und der Reduzierung der Komplexität des neuro-
nalen Netzes ab. Allerdings gestaltet sich das Erreichen beider Ziele
zur gleichen Zeit relative schwierig. Das Verfahren setzt zusätzlich
eine nahezu kostenfreie Bedingung während des Optimierungsschrit-
tes durch. Hierbei unterscheidet sich das vorgestellte Verfahren von
Herkömmlichen, die meistens deutlich rechenaufwändiger sind. Da-
her kann dieser Punkt als ein weiterer Beitrag zur Verbesserung der
Recheneffizienz betrachtet werden.

Als drittes wird ein optimiertes Berechnungsverfahren für graph-
basierten neuronalen Netzen eingeführt. Anhand einer Analyse der
mathematischen Operationen, die zugrunde von graphbasierten neuro-
nalen Netzen liegen, werden zwei neue Methoden vorgeschlagen, um
die Recheneffizienz dieser Netzarten zu steigern. Die erste Methode
ähnelt der Vereinfachung von Nachbarschaftsabfragen in graphbasier-
ten neuronalen Netzen. Die Zweite hingegen besteht darin die Rei-
henfolge der Operationen zur Informationssammlung im Graph und
Informationsextraktion zu verändern.

Diese Dissertation trägt in mehreren Punkten zur Steigerung der
Recheneffizienz von neuronalen Netzen während des Optimierungs-
schrittes, der Lern- und Testphase bei.

P U B L I C AT I O N S

The following publications are included in parts or in an extended
version in this thesis:

• Yawei Li et al. ”Learning Filter Basis for Convolutional Neural
Network Compression.“ In: Proceedings of the IEEE International
Conference on Computer Vision. 2019, pp. 5623–5632.

• Yawei Li et al. ”Group Sparsity: The Hinge Between Filter Pruning
and Decomposition for Network Compression.“ In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition.
2020.

• Yawei Li et al. ”DHP: Differentiable meta pruning via hypernet-
works.“ In: Proceeding of the European Conference on Computer Vision.
Springer. 2020, pp. 608–624.

• Yawei Li et al. ”The Heterogeneity Hypothesis: Finding Layer-
Wise Differentiated Network Architectures.“ In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2021, pp. 2144–2153.

• Yawei Li et al. ”Towards Efficient Graph Convolutional Networks
for Point Cloud Handling.“ In: Proceedings of the IEEE International
Conference on Computer Vision. 2021, pp. 2144–2153.

Furthermore, the following publications were part of my PhD re-
search, are however not covered in this thesis. The topics of these
publications are outside of the scope of the material covered here:

• Yawei Li et al. ”CARN: convolutional anchored regression network
for fast and accurate single image super-resolution.“ In: Proceeding
of the European Conference on Computer VisionW. Springer. 2018,
pp. 166–181.

• Yawei Li et al. ”3D Appearance Super-Resolution with Deep Learn-
ing.“ In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2019

vii

viii

• Yawei Li et al. ”LocalViT: Bringing locality to vision transformers.“
In: arXiv preprint arXiv:2104.05707 (2021).

• Yawei Li et al. ”Spatio-Temporal Gated Transformers for Efficient
Video Processing.“ In: Advances in Neural Information Processing
Systems Workshops. 2021.

• Yawei Li et al. ”Revisiting Random Channel Pruning for Neural
Network Compression.“ In: Proceedings of the IEEE International
Conference on Computer Vision. 2022

• Shuhang Gu et al. ”Self-guided network for fast image denoising.“
In: Proceedings of the IEEE International Conference on Computer
Vision. 2019, pp. 2511–2520.

• Yunxuan Wei et al. ”Unsupervised real-world image super reso-
lution via domain-distance aware training.“ In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2021, pp. 13385–13394.

• Rui Gong et al. ”Cluster, Split, Fuse, and Update: Meta-Learning
for Open Compound Domain Adaptive Semantic Segmentation.“
In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2021, pp. 8344–8354

• Kai Zhang et al. ”Plug-and-play image restoration with deep
denoiser prior.“ In: IEEE Transactions on Pattern Analysis and
Machine Intelligence (2021).

• Jiezhang Cao et al. ”Video Super-Resolution Transformer.“ In:
arXiv preprint arXiv:2106.06847 (2021).

A C K N O W L E D G M E N T S

During the PhD study, I have received help and support from many
brilliant people, without whom this thesis would not be possible. I
would like to express my gratitude to them here.

First and foremost, I would like to thank my supervisor Prof. Luc Van
Gool for offering me the opportunity to study at Computer Vision Lab,
for building up the environment of free exploration, for his patience
of polishing papers before the deadlines, and his importance guidance
during the turning point of my life and education.

I would like to express my gratitude to my co-supervisor Prof. Dr.
Radu Timofte. We know each other during the first NTIRE workshop
in 2016 when I was considering a PhD study. I thank him for the help
discussion at that time and for introducing me to Prof. Luc Van Gool,
which is an indispensable factor for me to get the opportunity at CVL.
I thank him for his persistence on polishing my first CVPR paper that I
almost gave up and for his continuous guidance during my later works.

Dr. Shuhang Gu is deeply involved with my works on network
compression. I thank him for providing important ideas in those works,
for the beautiful moments of attending conferences, and for the home
gathering during festivals. During the later phase of PhD study, I am
deeply influenced by Dr. Kai Zhang. I thank him for broadening my
horizon and inspiring my ambition of working on valuable projects and
producing influential works. I also thank Dr. Radu Timofte, Shuang Gu,
and Kai Zhang for being a fantastic room mate. I love our apartment in
Erlenbach and enjoy the hiking, swimming, and exploration near our
apartment.

I thank Dr. Vagia Tsiminaki for the supervision of my first CVPR
paper, which is important for building up my confidence. I thank Dr.
Eirikur Agustsson for introducing the necessary knowledge and solving
my coding problems in the beginning of my study. I thank Dr. Zhiwu
Huang for confirming my performance during my application of the
PhD position. I thank Dr. Wen Li, Dr. Martin Danelljan, Dr. Zhaopeng
Cui for their important guidance and suggestions during my later works
on efficient computation. I thank my peer collaborators Christoph
Mayer, He Chen, Rui Gong, Jiezhang Cao, Jingyun Liang, and Kamil

ix

x

Adamczewski. Without their diligent work, some of the publications or
submissions would not be possible. I also thank Christoph Mayer for
translating the abstract of this thesis.

I thank Amirhossein Habibian, Tijmen Blankevoort, Babak Ehteshami
Bejnordi, Bert Moons for mentoring me during my internship at Qual-
comm and Denis Demandolx, Rakesh Ranjan, Lucas Young, Yuchen
Fan, and Xiaoyu Xiang for mentoring me during my internship at
Facebook.

I also thank Yuhua Chen, Dengping Fan, Yulun Zhang, Yun Liu,
Guolei Sun, Mengya Liu, Ce Liu, Wenguan Wang, Hao Tang, Danda
Pani Paudel, Ajad Chhatkuli, Dengxin Dai, Ren Yang, Matthieu Paul,
Chengde Wan, Xiaogang Cheng, Jie Qin, and all of the other colleagues
at CVL for the helpful discussions, the joyful gatherings, and the
wonderful ping pong times.

My special gratitude goes to Prof. Thomas Brox and Prof. Ming-
Hsuan Yang. I thank them for reviewing my thesis during the tight
period of the year.

I also thank my parents, all my family members and friends for
supporting me during my life and study. I thank JingXian Ye for being
on my side.

C O N T E N T S

Introduction 1

1 introduction 3

1.1 Overview . 6

1.1.1 Neural Network Compression 6

1.1.2 Neural Architecture Optimization 8

1.1.3 Computational Procedure Optimization 9

I neural network compression 11

2 learning filter basis 13

2.1 Introduction . 13

2.2 Related Work . 16

2.2.1 Network Pruning 16

2.2.2 Network Quantization 16

2.2.3 Filter Decomposition 17

2.2.4 Knowledge Distillation 18

2.3 Filter Decomposition for Network Compression 18

2.3.1 Decomposing convolution layer with filter basis . 18

2.3.2 Compression rate with different filter basis 20

2.3.3 Implementing with convolution 21

2.3.4 Filter basis decomposition for special filter sizes . 23

2.4 Learning Filter Basis . 24

2.4.1 General filter basis learning approach 24

2.4.2 Basis sharing . 25

2.5 Experimental Results . 26

2.5.1 Experiment setup 26

2.5.2 Validation on super-resolution 27

2.5.3 Validation on image classification 29

2.6 Conclusion . 33

3 differentiable meta pruning 37

3.1 Introduction . 37

3.2 Related Works . 40

3.2.1 AutoML . 40

3.2.2 Neural Architecture Search 41

3.2.3 Meta learning and hypernetworks 41

xi

xii contents

3.3 Methodology . 42

3.3.1 Hypernetwork design 42

3.3.2 Sparsity regularization and proximal gradient . . 44

3.3.3 Network pruning 46

3.3.4 Latent vector sharing 46

3.3.5 Discussion on the convergence property 49

3.3.6 Implementation consideration 49

3.4 Experimental Results . 50

3.5 Ablation Study . 51

3.5.1 Image classification 52

3.5.2 Super-resolution 55

3.5.3 Denoising . 58

3.6 Conclusion and Future Work 59

4 group sparsity 61

4.1 Introduction . 61

4.2 Related Work . 63

4.2.1 Network Pruning with Group Sparsity 64

4.2.2 Filter Decomposition and Group Sparsity 64

4.3 The proposed method . 65

4.3.1 Group sparsity . 65

4.3.2 The hinge . 67

4.3.3 Proximal gradient solver 68

4.3.4 Binary search of the nullifying threshold 70

4.3.5 Gradient based adjustment of learning rate 70

4.3.6 Group `2 norm based layer balancing 71

4.3.7 Regularization factor annealing 71

4.3.8 Distillation loss in the finetuning phase 72

4.4 Closed-form Solutions to the Proximal Operators 72

4.5 Implementation Considerations 74

4.5.1 Sparsity-inducing matrix in network blocks . . . 74

4.5.2 Initialization of W and A 75

4.6 Experimental Results . 75

4.6.1 Results on CIFAR10 76

4.6.2 Results on CIFAR100 80

4.7 Conclusion . 82

II neural architecture optimization 83

5 the heterogeneity hypothesis 85

5.1 Introduction . 85

contents xiii

5.2 Related Work . 88

5.2.1 The lottery ticket hypothesis 88

5.3 Preliminaries . 88

5.3.1 Hints from network compression 88

5.3.2 Notations and definitions 89

5.3.3 Problem formulation and recast 90

5.4 Methodology . 91

5.4.1 Reparameterizing with hypernetworks 92

5.4.2 Single-shot shrinkage 92

5.4.3 Knowledge distillation 93

5.4.4 Constraining model complexity 94

5.5 Experimental Results . 94

5.5.1 Image Classification 95

5.5.2 Visual Tracking . 103

5.5.3 Image Restoration 104

5.6 Conclusion . 104

III computational procedure optimization 107

6 towards efficient gcn 109

6.1 Introduction . 109

6.2 Related Work . 113

6.2.1 Deep Learning for 3D Point Clouds. 113

6.2.2 Efficient Network Design for 3D data 113

6.3 Notations and Preliminaries 114

6.4 Methodology . 115

6.4.1 Computational complexity analysis in GCN . . . 116

6.4.2 Propagation of point adjacency 116

6.4.3 Graph convolution with graph feature gathering 122

6.5 Experiments . 123

6.5.1 Point Cloud Classification. 125

6.5.2 Point Cloud Segmentation. 128

6.5.3 Surface Reconstruction. 129

6.5.4 Applicability. 129

6.6 Conclusion . 132

Conclusion 133

7 conclusion and outlook 135

7.1 Contribution . 135

7.2 Challenges . 136

xiv contents

bibliography 139

acronyms 161

index 163

L I S T O F F I G U R E S

Figure 2.1 Illustration of filters in AlexNet 13

Figure 2.2 Low-rank approximation of filters 14

Figure 2.3 Conversion from decomposed matrices to con-
volutions . 14

Figure 2.4 Comparison of different filter decomposition
methods . 19

Figure 2.5 Illustration of the proposed basis learning method 22

Figure 2.6 Basis sharing for the compression of DenseNet-
12-40 . 25

Figure 2.7 Visual results for compressed EDSR models. . . 30

Figure 2.8 Visual results for compressed SRResNet models. 31

Figure 2.9 Comparison between the proposed basis learn-
ing method and KSE 33

Figure 2.10 Training and testing error of different compres-
sion methods . 34

Figure 3.1 Top-1 error vs. FLOPs and parameter compres-
sion ratio on MobileNets 38

Figure 3.2 The workflow of the proposed differentiable
pruning method 39

Figure 3.3 Illustration of the hypernetwork designed for
network pruning 42

Figure 3.4 Top-1 error vs. FLOP and parameter compres-
sion ratio on ResNet-164 and ResNet-110 55

Figure 3.5 Single image super-resolution visual results . . . 58

Figure 3.6 Image denoising visual results 59

Figure 4.1 The hinge between filter decomposition and fil-
ter pruning . 62

Figure 4.2 The flowchart of the proposed algorithm 65

Figure 4.3 Group-sparsity regularization enforcement . . . 66

Figure 4.4 Comparison between KSE [95] and Hinge 78

Figure 4.5 Comparison between SSS [64] and the proposed
method . 79

Figure 4.6 Layer-wise compression ratio of ResNet56 on
CIFAR10 . 81

xv

xvi List of Figures

Figure 5.1 Pipeline for identifying Layer-Wise Differenti-
ated Network Architecture (LW-DNA) models . . 86

Figure 5.2 Illustration of the configuration space 89

Figure 5.3 Training and testing log of LW-DNA and base-
line networks . 98

Figure 5.4 Percentage of remaining output channels of LW-
DNA models . 101

Figure 5.5 The distribution of the latent vectors in Mo-
bileNetV2 . 102

Figure 5.6 Success plot on the LaSOT dataset for visual
tracking . 103

Figure 6.1 Acceleration performance of a representative GCN110

Figure 6.2 Optimization of the computation procedure in a
conventional GCN 112

Figure 6.3 Empirical weight distribution 118

Figure 6.4 Neighbor sampling 121

Figure 6.5 Qualitative result on Modelnet40 126

Figure 6.6 Renderings of input space and feature space . . 127

Figure 6.7 Visualization of the point distance 130

Figure 6.8 Surface reconstruction results 131

L I S T O F TA B L E S

Table 2.1 Ablation study on compressing EDSR for image
SR. 28

Table 2.2 Comparison between Factor [147] and the pro-
posed method . 28

Table 2.3 Compression results for EDSR 29

Table 2.4 Ablation study on compressing DenseNet-12-40. 30

Table 2.5 Parameter compression results of networks trained
on CIFAR10 . 32

Table 2.6 FLOPs compression results of networks trained
on CIFAR10 . 32

Table 3.1 Ablation study on ResNet56 for CIFAR10 image
classification . 51

Table 3.2 Comparison between `1 norm and `2 norm reg-
ularization . 52

Table 3.3 Results for CIFAR10 classification 53

Table 3.4 Results for Tiny-ImageNet classification 54

Table 3.5 Results on image super-resolution networks . . 56

Table 3.6 Results on image denoising networks 59

Table 4.1 The solution to the proximal operator for `1,
`1−2, `1/2, and logsum regularizers 74

Table 4.2 The regularization factor for `1, `1−2, `1/2, and
logsum . 76

Table 4.3 Ablation study . 77

Table 4.4 Comparison of CIFAR10 compression results . . 77

Table 4.5 Comparison of CIFAR100 compression results . 81

Table 5.1 Ablation study of the hyper-parameters ρ and τ

on MobileNetV1 95

Table 5.2 Image classification results on ImageNet and
Tiny-ImageNet . 96

Table 5.3 Image classification results on CIFAR 97

Table 5.4 Tracking test results 103

Table 5.5 Results on single image super-resolution networks104

Table 6.1 Quantitative comparison for point cloud classifi-
cation . 124

xvii

xviii List of Tables

Table 6.2 Breakdown analysis of FLOPs of different networks125

Table 6.3 Quantitative comparison for part segmentation
of point clouds . 128

Table 6.4 Comparison for semantic segmentation of point
clouds . 128

Table 6.5 Quantitative comparison for surface reconstruction129

I N T R O D U C T I O N

1

1
I N T R O D U C T I O N

Computer vision is an essential sub-field of computer science that
involves the automatic visual perception and understanding of the
physical world via computers and machines. To achieve the goal of
automation and intelligence, intensive computation is usually involved
in the processing pipeline (e.g. encoding and decoding, data compres-
sion and decompression, domain transformation, feature extraction,
regression and classification) of computer vision algorithms. Thus, it
has been a core problem to improve the computational efficiency of
algorithms in computer science and especially in computer vision. With
the optimization and reduction of computation, massive application of
some originally computationally intensive algorithms becomes feasible.
For example, the well-know Fast Fourier Transform (FFT) [22] reduces
the computational complexity of discrete Fourier transform from O(N2)

to O(N log N), which facilitates the wide application of FFT to various
subdisciplines of engineering, science, mathematics, and music. The
early research in computer vision focuses on edge and corner detectors
(e.g. Canny detector, Harris detector) which from today’s viewpoint are
quite computationally efficient. More advanced yet complex feature
descriptors are introduced in the later research works such as the well-
known Scale-Invariant Feature Transform (SIFT) [105] and Histogram
of Oriented Gradients (HOG) [26]. Due to the limitation of hardware,
computational efficiency is still an important problem for the classical
algorithms. For example, Speeded Up Robust Features (SURF) is several
times faster than SIFT and also more robust [7].

Since the advent of deep learning era, Deep Neural Networks (DNNs)
have achieved state-of-the-art performances in computer vision tasks
including visual recognition [71, 136, 53, 62], object detection [38, 37,
129], semantic segmentation [104], image Super-Resolution (SR) [31, 68,
96], image denoising [169, 170], point cloud processing [120, 121] etc.
Yet, the success of deep learning based vision algorithms comes with
the overparameterization of DNNs and the explosion of computational
complexity. And this leads to several problems.

3

4 introduction

First of all, the overparameterization of DNNs leads to huge model
sizes with millions or even billions of parameters. Training such huge
DNNs needs to store the parameters and the intermediate feature maps
on computing devices such as Graphics Processing Unit (GPU) and
Tensor Processing Unit (TPU), which requires significant amount of
computational memory. Secondly, the intensive computation slows
down the inference speed of DNNs. Moreover, the computational re-
source on low-end devices such as smartphones and drones is limited.
Thus, it is hard to deploy large DNNs to latency-demanding applica-
tions such as autonomous driving and low-end devices. Thirdly, the
tuning of network architectures, training of the deep models, and in-
ference during service time of DNNs consumes a considerable amount
of energy [116, 138, 73]. And this indicates large carbon footprints of
DNNs. Improving the computational efficiency and resource utilization
efficiency of deep learning algorithms reduces the energy consumption
of deep learning systems, which should be an important contributing
factor to achieve the goal of carbon neutrality by the mid of this cen-
tury. In conclusion, improving the computational efficiency of DNNs

is beneficial not only from the technical perspective but also from the
environmental perspective.

There are a couple of methods to improve the computational effi-
ciency of deep neural networks. And one research direction is to design
efficient network architectures. This direction has been thriving since
a solution based on DNNs, i.e. AlexNet first outperformed the other
competitors by a significant amount of margin in the ImageNet large
scale visual recognition challenge in 2012 [71]. Later, a deep neural
network architecture was proposed which further boosted the perfor-
mance in the following series of the challenge [136]. Compared with
VGG [136], the number of parameters in ResNet [53] and DenseNet [62]
are reduced by one magnitude of order while comparable or even more
accurate image classification results are achieved. Yet, those networks
are still too bulky to be deployed on mobile devices. To overcome this
problem, more efficient operations and architectures such as channel
attention [60], group convolution [152], depth-wise convolution [59, 133,
58], and channel shuffle [172, 106] are proposed in the later works.

In addition to the manual design of network architectures, another
research direction is Neural Architecture Search (NAS). The main draw-
back of earlier works is their almost insatiable demand for computa-
tional resources [182, 127] during the search phase. To alleviate the

introduction 5

computational burden, several methods are proposed including search-
ing for a basic building cell [183, 99], differentiable search [100, 20, 154],
weight sharing [100], and uniform sampling [44]. When a search space
with efficient designs is adopted, searched networks can be highly
efficient in number of parameters and computation [58, 140, 141].

A third research direction for efficient computation is network com-
pression and model acceleration. Compared with the former two
research direction, network compression aims at reducing the number
of parameters and computational complexity of a given network, mak-
ing the network suitable for fast inference without losing too much
prediction accuracy of the given network. Thus, the trade-off between
accuracy and compression rate should be always considered when
designing network compression techniques.

There exists many network compression methods and they mainly
fall into four categories including network quantization [124, 80, 24],
network pruning [47, 56], and filter decomposition [65, 173], and knowl-
edge distillation [57, 144]. Network quantization aims at representing
the parameters in a neural network with lower bit width and reducing
the model size of neural networks. With the technique, the precision of
floating point numbers could be reduced from 32-bit to much lower bit
width, and in the extreme case to binary and ternary states. Thus, the
floating point operations could be conducted in a lower bit width or
using integer-only arithmetic. In the case of binary and ternary quanti-
zation, multiplication could be converted to addition. Thus, network
quantization could not only reduce the model size but also accelerate
the inference of neural networks. Filter decomposition approximates
the original filters in a network with a couple of low-rank matrices.
Since parameters in the low-rank matrices is much fewer than the that in
the original filters, filter decomposition is good at parameter saving in
a network. In addition, the decomposed low-rank matrices can be con-
verted to computational efficient operations such as group convolution,
lightweight convolution, and linear combination in most cases. Thus,
a reduction of computation could also be achieved. Network pruning
attempts to remove the less important connections or neurons in a
neural network. Thus, according to the pruned element (connections
or neurons) in the network, network pruning could be classified into
two categories including unstructured pruning (weight pruning) and
structured pruning (channel pruning, filter pruning). Weight pruning
leads to irregular kernel in the pruned model. Thus, to achieve the

6 introduction

actual acceleration, special hardware needs to be used. On the other
hand, structured pruning could remove the entire channels in a layer
of network. This leads to a pruned layer with fewer channels, smaller
number of parameters, and reduced computation. Thus, structured
pruning could can achieve real acceleration. Knowledge distillation is
the process of transferring knowledge from a larger teacher model to
a smaller student model. This is achieved by supervising the training
of a student model with the logits of a pretrained teacher model or
intermediate feature maps of the teacher model. Knowledge distillation
could be combined with other network compression methods to boost
the performance of the compressed network.

1.1 overview

The aim of this thesis is improving the computational efficiency of neu-
ral networks. This problem is tackled from three different perspectives
including neural network compression, neural architecture optimiza-
tion, and computational procedure optimization. And the thesis is
divided into three major parts accordingly.

1.1.1 Neural Network Compression

The first attempt of this thesis is to reduce the number of parameters
of Convolutional Neural Networks (CNNs). Although CNN based solu-
tions have achieved state-of-the-art performances in various computer
vision tasks, the burden of huge parameter count is exaggerated due
to the deepening and widening of the networks. Inspired by the fact
that the large number of filters in CNNs constitutes a redundant set,
a filter basis learning method is introduced in Chapter 2, with the
aim of cutting down the number of filters and parameters in convo-
lutional layers. With the basis learning method, the original filters
in a convolutional layer can be decomposed to a set of basis and a
set of linear combination coefficients. The original set of filters could
be approximated by the linear combination of the set of filter basis.
Then the decomposed basis and linear combination coefficients could
be converted to a lightweight convolution and a linear layer imple-
mented as 1× 1 convolution. Different from the previous low-rank
approximation methods, a channel split factor is used to balance the

1.1 overview 7

distribution of parameter between the lightweight convolution and the
1× 1 convolution. With the proposed channel split factor, a unified
formulation of different filter decomposition methods is provided. The
effectiveness of the proposed solution is validated on multiple CNN
architectures for image classification and image super-resolution. The
proposed method performs quite competitive with the other methods
in terms of reduction of parameters and preservation of accuracy.

Then in Chapter 3, a differentiable network pruning method is pro-
posed. With the advent of Automated Machine Learning (AutoML) and
NAS, pruning has become intertwined with automatic mechanism and
searching based architecture optimization. Yet, current automatic de-
signs rely on either reinforcement learning or evolutionary algorithm.
Due to the non-differentiability of those algorithms, the pruning algo-
rithm needs a long searching stage before reaching the convergence. To
circumvent this problem, a differentiable pruning method via hyper-
networks is proposed for automatic network pruning. The specifically
designed hypernetworks take latent vectors as input and generate the
weight parameters of the backbone network. The latent vectors control
the output channels of the convolutional layers in the backbone network
and act as a handle for the pruning of the layers. By enforcing `1 spar-
sity regularization to the latent vectors and utilizing proximal gradient
solver, sparse latent vectors can be obtained. Passing the sparsified
latent vectors through the hypernetworks, the corresponding slices of
the generated weight parameters can be removed, achieving the effect
of network pruning. The latent vectors of all the layers are pruned
together, resulting in an automatic layer configuration. Extensive ex-
periments are conducted on various networks for image classification,
single image super-resolution, and denoising. And the experimental
results validate the proposed method.

In Chapter 2 and Chapter 3, the two major network compression
techniques including low-rank approximation and filter pruning are
studied. Then in Chapter 4, a unified analysis of the two techniques
is provided from the perspective compact tensor approximation. Both
of the methods approximate the weight tensor of CNNs with compact
representations that keep the accuracy of the network. The core of the
analysis is the introduced sparsity-inducing matrix that hinges filter
pruning and decomposition. By simply changing the way the spar-
sity regularization is enforced to the sparsity-inducing matrix, filter
pruning and low-rank decomposition can be derived accordingly. The

8 introduction

combination of the two techniques provides another flexible choice
for network compression because the techniques complement each
other. For example, in popular network architectures with shortcut
connections (e.g. ResNet [53]), filter pruning cannot deal with the last
convolutional layer in a ResBlock while the low-rank decomposition
methods can. The compressed network is derived by solving an opti-
mization problem with group sparsity regularization. And Proximal
Gradient Descent (PGD) is used to solve the problem. Additionally, a
couple of techniques are proposed including binary search, gradient
based learning rate adjustment, layer balancing, and annealing methods
to stabilize the optimization. Those detailed techniques are obtained by
observing the influence of the proximal gradient method on the filter
during the optimization. The proposed approach proves its potential as
it compares favorably to the state-of-the-art on several benchmarks.

1.1.2 Neural Architecture Optimization

In addition to the neural network compression techniques, the second
part of the thesis is dedicated to neural architecture optimization. The
neural architecture optimization method in Chapter 5 is inspired by
an interesting finding in Chapter 3 that slightly compressed networks
can outperform the original network. Thus, Chapter 5 introduces a
fine-grained architecture optimization method of given networks by
adjusting the channel configurations. It is found that this adjustment
can be achieved by shrinking widened baseline networks. Based on that,
we articulate the “heterogeneity hypothesis”: with the same training
protocol, there exists a Layer-Wise Differentiated Network Architecture
(LW-DNA) that can outperform the original network with regular channel
configurations but with a lower level of model complexity.

The LW-DNA models are identified without extra computational cost
or training time compared with the original network. The cost-free
architecture optimization is advantageous compared with other method
such as neural architecture optimization. On the other hand, the cost-
free constraint leads to controlled experiments which direct the focus
to the importance of layer-wise specific channel configurations. By
observing the experimental results, the possible reason for the improved
performance of an LW-DNA is directed to overfitting, i.e. the relative
relationship between model complexity and dataset size. Experiments
are conducted on various networks and datasets for image classification,

1.1 overview 9

visual tracking and image restoration. The resultant LW-DNA models
consistently outperform the baseline models.

1.1.3 Computational Procedure Optimization

In the third part of the thesis, we focus on the optimization of com-
putational procedure in neural networks. Different from the previous
chapters, in Chapter 6, a new family of neural networks, i.e. Graph
Convolutional Networks (GCNs) is studied. In addition to CNNs for 2D
vision tasks, GCNs also thrive for the processing of 3D representation
such as point clouds. The computational procedure of the basic op-
eration in GCNs, i.e. graph convolution is studied Chapter 6. Graph
convolution is typically composed of a KNN search and a Multilayer
Perceptron (MLP). By mathematically analyzing the operations there,
two findings to improve the efficiency of GCNs are obtained. (1) The
local geometric structure information of 3D representations propagates
smoothly across the network that relies on KNN search to gather neigh-
borhood features. This motivates the simplification of multiple KNN
searches in GCNs. (2) Shuffling the order of graph feature gathering
and an MLP leads to equivalent or similar composite operations. Based
on the two findings, two methods are proposed to optimized the compu-
tational procedure in GCNs including KNN simplication and operation
shuffling. A series of experiments show that the optimized networks
have reduced computational complexity, decreased memory consump-
tion, and accelerated inference speed while maintaining comparable
accuracy for learning on point clouds.

Part I

N E U R A L N E T W O R K C O M P R E S S I O N

2
L E A R N I N G F I LT E R B A S I S

2.1 introduction

Current CNNs are composed of deep convolutional layers and each
layer consists of multiple convolutional kernels. In networks such as
AlexNet [71], VGG [136], and ResNet [53], there could be hundreds of
or even thousands of filters in a convolutional layers. Thus, it is easy
to imagine that there could be a lot of redundancies in convolutional
layers. For example, in Fig. 2.1, the filters in a convolutional layer of a
pretrained AlexNet is shown. It is obvious that many filters are very
similar to each other. Thus, an interesting problem arises, i.e. whether
it is possible to squeeze out the redundancy in CNNs and derive a
much more efficient network. A natural solution is to represent the
original convolutional filters by the linear combination of a smaller set
of basis shown in Fig. 2.2. And this family of methods are referred to
as filter decomposition or low-rank approximation since the original
filters are decomposed into low-rank matrices. As shown in Fig. 2.3
and Subsec. 2.3.3, the decomposed basis and the linear combination
coefficient could be converted a lightweight convolution and a 1× 1
convolution.

Figure 2.1: Illustration of filters in AlexNet.

13

14 learning filter basis

Figure 2.2: Low-rank approximation of filters.

(a) Convolution with original filters.

(b) Converted lightweight convolutions.

Figure 2.3: Conversion from decomposed matrices to convolutions.

In this chapter, a filter basis learning method is proposed with the
main aim to reduce the number of parameters in CNNs. The proposed
method is closely related to filter decomposition. Current filter decom-
position methods either operate directly on the channel-wise 2D w× h
filters [65, 147, 137] or decompose the intact 3D c× w× h filters [173,
117]. For those working on 2D filters, considering that the kernel size
is usually small (e.g. , 3× 3) and a couple of new parameters are in-
troduced to represent the 2D kernel, the compression ratio in terms of
reduction of parameters is not impressive [147, 137]. The other filter
decomposition methods [173] consider a 3D kernel as an intact element
making impossible the reduction of the number of input channels [56].
This prevents the application of the method to narrow networks with
much fewer output channels but more input channels. For example, in
DenseNet-12-40, there are only 12 output channels which makes it not
economic to decompose the 3D filters.

The aforementioned methods either collapse or maintain the 3D filters
during decomposition, which can be regarded as ’hard’ decomposition.

2.1 introduction 15

They are only coarse-grained configurations on the two boundary op-
erating points. The motivation of the filter basis learning method is
to provide the missing in-between fine-grained operating points and
to balance the parameter distribution between the two decomposed
convolutions. Thus, the proposed method circumvents the limitation of
the ’hard’ filter decomposition methods. We split the 3D filters along
the input channel dimension and each split is considered as a basic
element. We assume that the ensemble of those basic elements within
one convolutional layer can be represented by the linear combinations
of a basis. Our aim is to learn the basis and the linear combination
together. During inference, the basis can be combined to reconstruct
the original element, i.e. , the 3D split. Then the splits are stacked along
the input channel dimension to form the original 3D filters. Also, as
it will be explained in the following of the chapter, the convolutions
with respect to the original 3D filters can be converted to convolutions
with respect to the learned basis. Thus, our method can be easily and
efficiently implemented and embedded into the state-of-the-art net-
works. Compared with previous works, our basis learning method also
generalized easily to 1× 1 convolution, which is vital for compressing
networks with intensive 1× 1 convolutions.

The contribution of this chapter is four-fold.

• A novel basis learning method is proposed. With the introduced
channel split factor, a unified formulation of previous filter de-
composition methods [65, 173, 147] is provided. By changing the
channel split factor, different filter decomposition methods could
derived. The proposed method achieves balanced distribution of
parameters between the two decomposed matrices.

• By splitting filters along the channel dimension, the available
number of filters (actually splits) increases. Thus, with the pro-
posed method, it becomes feasible to compress networks whose
output channel number is much smaller than the input channel
number. The proposed method can be applied to convolutional
layers with different kernel sizes and even 1× 1 convolutions.

• The proposed method generalizes well on both high-level vision
tasks and low-level vision tasks. Compared with the high-level
vision tasks such as image classification where a single class
is regressed, the low-level image SR task is more challenging

16 learning filter basis

since the algorithm need to recover every pixel and the content
detail in the image. However, none of the previous works apply
compression method to networks designed for low-level task. Our
experimental results show that network compression method also
works well for image SR.

2.2 related work

Network compression as a research topic has attracted an increased
interest recently. The works in this field can be roughly grouped into
four categories, namely, network pruning, network quantization, filter
decomposition, and knowledge distillation.

2.2.1 Network Pruning

Non-structured pruning. To compress neural networks, network prun-
ing disables the weak connections in a network that have a small
influence on its prediction accuracy. Earlier pruning methods explore
unstructured network weight pruning by deactivating connections cor-
responding to small weights or by applying sparsity regularization to
the weight parameters [47, 98, 48]. The resulting irregular weight pa-
rameters of the network are not implementation-friendly, which hinders
the real acceleration rate of the pruned network over the original one.

Structured Pruning. To overcome the problem of non-structured
pruning, structured pruning is proposed to remove redundant channels
in feature maps which result in regular kernel shapes and implementation-
friendly algorithms [4, 178, 150]. Wen et al. [150] explored structured
sparsity including channel-wise, shape-wise, and depth-wise sparsity
in deep neural networks. He et al. [56] proposed channel pruning to ac-
celerate deep neural networks. Their method can choose representative
channels and prune redundant ones, based on LASSO regression.

2.2.2 Network Quantization

Network quantization aims at reducing the model size of neural net-
works by quantizing the weight parameters. Han et al. [47] demon-
strated how to quantize weight parameters to a relatively small number
of shared weights without loss of accuracy. Chen et al. [19] introduced

2.2 related work 17

a hash function to group network connections into hash buckets and
forced connections falling into the same buckets to share the same
weight. Other works attempt to reduce the precision of parameter by
introducing binary [124, 24, 23] and ternary [181] weights.

2.2.3 Filter Decomposition

Apart from the two aforementioned methods, filter decomposition is
proposed to approximate the original filter with parameter efficient rep-
resentations [29, 65, 74, 173, 147, 117]. Early low-rank approximation ap-
plies matrix decomposition by using SVD [29] or CP-decomposition [74].
Jaderberg et al. [65] proposed to approximate the 2D filter set by a
linear combination of a smaller basis set of 2D separable filters. Wang et
al. [147] built on the work of Jaderberg et al. and further rearranged
the decomposed filter sequentially. In their work, each normal con-
volution is decomposed into several layers of depth-wise convolution
followed by 1× 1 convolution. Son et al. [137] proposed to use k-means
algorithm to cluster the 3× 3 convolutional kernels. The kernels that
fall in the same cluster share the same weight parameter. However,
for each 3× 3 kernel, a scale and an index parameter is introduced to
represent the kernel. So the compression ratio in terms of number of
parameters is fixed and slightly larger than 2/9. The same problem
exists for [147]. Although the compression ratio 1/9 could be achieved
by [147], the classification accuracy is severely diminished. Another
drawback of [137] is that it could not be applied to 1× 1 convolutions
favored by modern networks such as ResNet and DenseNet.

Instead of working on 2D filters as in the previous low-rank approxi-
mation, Zhang et al. [173] directly dealt with 3D filters by considering
the input channel as the third dimension. However, their method can-
not reduce the input channel. This prohibits the application of the
decomposition method narrow networks with small output channel
but large input channel such as DenseNet. In a recent work, Peng et al.
[117] proposed to approximate a normal convolution by group convo-
lution followed by a linear combination (1× 1 convolution). However,
they did not apply their approximation methods to DenseNet, which is
of particular interest in the newly proposed architectures.

By contrast, our proposed basis learning method can be applied to
convolutions with any kernel size and any input/output channel size.
This makes our method flexible to compress different modern networks.

18 learning filter basis

2.2.4 Knowledge Distillation

Knowledge distillation transfers the knowledge of a teacher network
to a student network [57]. Current research in this direction focuses
on the architectural design of the student network [25, 6] and the
loss function [144]. It can make major modifications to the network
components such that the student only needs to mimic some behaviors,
e.g. , the intermediate feature or output of the original network.

2.3 filter decomposition for network compression

Given an input image x ∈ X , the aim of supervised learning is to
recover the corresponding label y ∈ Y . For low-level vision tasks
such as image SR, the label is the ground-truth high-resolution image
corresponding to the low-resolution input image x. For high-level
image classification, y is a class label of the image. The regression
process can be represented by a simple function

ŷ = fΘ(x), (2.1)

where ŷ denotes the regressed label and fΘ(·) is the regression function
of the neural network parameterized by Θ.

2.3.1 Decomposing convolution layer with filter basis

We assume that a convolution layer has c input channels and n output
channels, and the kernel size is w× h. In order to reduce the number of
parameters in neural network, different decomposition methods have
been suggested. Zhang et al. assumed the parameters of a convolution
layer could be approximated by a low-rank matrix [173], i.e. ,

W ≈ B ·A, (2.2)

where W ∈ <cwh×n = [W1, · · · , Wn] is the matrix that contains the
vectorized 3D filters, the multiplication of matrix B ∈ <cwh×m and
matrix A ∈ <m×n is a low-rank matrix with rank m < n. Besides
formulating the parameters of convolution layer as a cwh× n matrix,
there are also other low-rank approximation works [65, 147] which
consider the parameter matrix as a wh× cn matrix. These works treat
each channel in the 3D filter independently.

2.3 filter decomposition for network compression 19

...

...

...

F
ilter

Channel

Channel-wiseSplit-wise3D Filter-wise

Figure 2.4: Comparison of different filter decomposition methods.
Right: each channel of the 3D filter is considered as a basic
element. A unique set of basis is learned for the n 2D filters
in each channel. Middle (the proposed): the 3D filters are split
into s groups along the channel dimension and each group
is considered as a basic filter element. A basis set is learned
for all of the n× s splits of all the 3D filters. Left: the 3D
filter is considered as a whole. A basis set is learned for the
3D filters.

In Eqn. (2.2), the approximation of filter can also be analyzed in a
filter basis decompostion perspective. Each 3D filter Wi ∈ <cwh×1 (or
Wi ∈ <wh×1 for the channel-wise decomposition case) is represented by
the linear combination of a set of m filter basis {Bj|j = 1, · · · , m} with
the coding coefficient vector Ai ∈ <m×1:

Wi ≈
m

∑
j=1

αj,iBj, i = 1, · · · , n. (2.3)

where Ai is the i-th column of A, Bj is the j-th filter basis with dimension
cwh× 1 or wh× 1 for the 3D filter-wise decomposition and 2D channel-
wise decomposition cases, respectively. An illustration of direct 3D
filter-wise decomposition and channel-wise filter decomposition can be
found in the left and right part of Fig. 2.4.

20 learning filter basis

From the viewpoint of filter basis decomposition, more flexible de-
composition strategy can be adopted. In the next subsection, we analyze
the relationship between the dimension of filter basis and compression
rate, and suggest a split-wise decomposition approach for network
compression.

2.3.2 Compression rate with different filter basis

If we utilize m 3D filter basis as a basic element (Fig 2.4: Left) to
decompose the parameters of a convolution layer, the compression rate
of the parameters is

m · c · w · h + m · n
n · c · w · h =

m
n
+

m
c · w · h , (2.4)

where (n · c · w · h), (m · c · w · h), and (m · n) is the number of param-
eters of the original convolution layer, the filter basis, and the coding
coefficients, respectively. In most of existing neural networks, c · w · h
is much larger than n. Thus, the first term in Eqn. (2.4) dominates the
compression rate. For the 2D channel-wise decomposition case, we can
similarly get the compression rate, namely,

m · w · h + c ·m · n
n · c · w · h =

m
n · c +

m
w · h . (2.5)

The major storage budget is used for the coding coefficients.
In order to achieve a better trade-off between compressing the basis

and coefficients, we split the 3D filters along the channel dimension
by a channel split factor s as illustrated in the middle part of Fig. 2.4.
That is, the c×w× h filter is divided into s smaller splits and each split
has p channels. In this way, the s smaller filters are stacked along the
channel dimension to form the original filter and

c = s · p. (2.6)

As a result, the n 3D c× w× h filters can be regarded as n · s filters
with size p × w × h. Then, the problem becomes learning the basis
and the representation coefficients of the n · s smaller filters. And the
compression rate becomes

m · p · w · h + m · n · s
n · c · w · h =

m
n× s

+
m

p · w · h . (2.7)

2.3 filter decomposition for network compression 21

By adjusting the channel split factor s, Eqn. (2.7) generalizes easily to
3D filter-wise decomposition and channel-wise decomposition. When
s = 1, the compression rate in Eqn. (2.4) could be derived. And when
s = c, channel-wise decomposition in Eqn. (2.5) could be derived.

The compression rate equation in Eqn. (2.7) enable us to utilize gener-
alized split-wise decomposition formula to achieve better compression
rate. Concretely, the optimal compression rate with respect to the size
of filter basis could be achieved by solving the following optimization
problem:

{s∗, p∗} = arg min
{s,p}

{
m

n× s
+

m
p · w · h

}
s.t. c = s · p

=

{√
c · w · h

n
,
√

n · c
w · h

}
. (2.8)

We can further quantize p to the nearest integer that can divide c. For
most of the convolutional layers, the input channel c and output channel
n are the same or of the same magnitude order, i.e. , c ≈ n. Thus, the
optimal group s∗ ≈

√
w× h. That is to say, the optimal configuration

of splits is neither Fig. 2.4: Left nor Fig. 2.4: Right but the middle state
between them.

2.3.3 Implementing with convolution

In this subsection, we show that filter decomposition can be imple-
mented by convolution in the forward pass. By rearranging the opera-
tion, the proposed filter decomposition approach can not only compress
network parameters but also alleviate the computation burden in the
network.

We start with the case where there is only one split, i.e. , s = 1. As
in Eqn. (2.3), we utilize linear combination of filter basis to reconstruct
the 3D filter Wi = ∑m

j=1 αj,iBj. For the simplicity of notation, we use the
same notation to represent the original non-vectorized 3D filters and
basis, i.e. , Wi, Bj ∈ <c×w×h. Thus, the convolution between the input
feature map x and the 3D kernel becomes

x ∗Wi = x ∗
(

m

∑
j=1

αj,iBj

)
=

m

∑
j=1

αj,i
(
x ∗ Bj

)
. (2.9)

22 learning filter basis

(a)

(b)

Figure 2.5: Illustration of the proposed basis learning method. Op-
erations are converted to convolutions. Unlike the normal
convolution, our method splits both the input feature map
and the 3D filter along the channel dimension. A set of
basis is learned for the ensemble of splits. Every split of the
input feature map is convolved with the basis. A final 1× 1
convolution generates the output.

The second equality follows the linearity of convolution. Eqn. (2.9)
decompose the convolution operation with 3D filter Wi as linear com-
bination of convolution operations with filter basis {Bj, j = 1, . . . , m}.
The linear combination can be implemented by a 1× 1 convolution.

For more general split-wise decomposition cases, we use smaller
filter basis {Bj ∈ <p×w×h, j = 1, . . . , m} to reconstruct each sub-part of
the 3D filter, namely,

Wi =
[
Wi,1; . . . ; Wi,s

]
, (2.10)

Wi,g =
m

∑
j=1

αj,i,gBj, (2.11)

2.3 filter decomposition for network compression 23

where Wi,g ∈ <p×w×h is a split of the 3D filter, g = 1, . . . , s is the split
index, and [·] is the operator that stacks the basis along the channel
dimension. Accordingly, the convolution between x and Wi becomes

x ∗Wi = [x1, · · · , xs] ∗
[
Wi,1, · · · , Wi,s

]
=

s

∑
g=1

xg ∗Wi,g =
s

∑
g=1

xg ∗
m

∑
j=1

αj,i,gBj

=
s

∑
g=1

m

∑
j=1

αj,i,g
(
xg ∗ Bj

)
. (2.12)

where {xg, g = 1, . . . , s} in Eqn. (2.12) are the splits of the input x. As
revealed by Eqn. (2.12), in the split-wise decomposition case, each split
of feature map is firstly convolved with the filter basis, and then the
final output is achieved by a weighted summation of the convolution
results. This operation on feature map splits could be implemented
as a 3D convolution as in Pytorch [115] or Tensorflow [1] with stride
p = c/s and no padding along the channel dimension. But we find the
3D convolution implementation is not efficient. In this way it takes 121

ms to run the compressed EDSR model for one iteration with batch
size 16 and patch size 48× 48. Instead, we implement the operation
with s 2D convolutions that share the same weight parameter and the
running time drops to 62 ms. The linear combination is again converted
to a 1× 1 convolution. Thus, no matter how many splits there are,
a standard convolution can be decomposed into a convolution with
respect to the basis and a 1× 1 convolution. The implementation is
illustrated in Fig. 2.5.

2.3.4 Filter basis decomposition for special filter sizes

As shown in the above analysis, our basis learning method follows a
general setting of filter size, i.e. , n× c× w× h. This means that the
proposed basis learning method can be applied to any convolutional
filters. Here we emphasize two special filter sizes.

1× 1 convolution: The first one is 1× 1 convolution which is fa-
vored by modern neural networks [53, 62]. When the input/output
channels are quite large, considerable parameters and computation
are consumed by 1× 1 convolution. For example, in DenseNet-12-40

architecture [62], 12.1% of the parameters is in the two large 1 × 1
convolutions. Unfortunately, prior filter decomposition works [65, 29,

24 learning filter basis

147] could not be applied to this kind of convolution. Following our
formulation Eqn. (2.9) through Eqn. (2.12), a 1× 1 convolution with
large n and c can be decomposed into two cheaper ones.

c � n > m convolution: In some networks such as DenseNet, the
output channel n is much smaller than the input channel c. In this
case, according to Eqn. (2.4), we are in the dilemma of either choosing
a even smaller basis size m at the risk of losing too much accuracy
or selecting an m comparable with n thus resulting in uneconomic
compression. As revealed by Eqn. (2.5), by splitting the 3D kernels
along the channel dimension, we can have s times more filters. So
we can gracefully choose a comfortable basis size that leads to both
economic compression and high accuracy.

2.4 learning filter basis

In the previous section, we have shown that decomposing filter splits
into linear combinations of filter basis could reduce the computational
burden and parameter number of networks. In this section, we present
our learning method for learning filter basis.

2.4.1 General filter basis learning approach

For the purpose of notation simplicity, we only introduce the simple
case of using B · A to approximate filter W. The training method
for the split-wise case of approximating W with B · A is exactly the
same. We jointly minimize the approximation error ‖W− B ·A‖2

F and
the network target loss L(y, f (x)). For example, to compress image
restoration network with mean square error (MSE) loss, our training
objective function is

min
Bl ,Al

∥∥y− fB,A|Θ(x)
∥∥2

F + γ
L

∑
l=1

∥∥∥Wl − Bl ·Al
∥∥∥2

F
, (2.13)

where fB,A|Θ(·) denotes the CNN with parameter {B, A} conditioned
that the other parameters Θ are known and the superscript l indexes
the l-th layer of an L-layer network.

After having learned the basis and the coding matrices {B, A}, there
is no need to store the original filters. During inference, {B, A} is used
as the weight parameter as the lightweight and 1 × 1 convolution,

2.4 learning filter basis 25

DenseBlock 36

DenseBlock 35

...

DenseBlock 2

DenseBlock 1

...

Figure 2.6: Basis sharing for the compression of DenseNet-12-40. The
basis set is shared by all of the DenseBlocks in DenseNet-
12-40. The shared basis is split into 36 splits. The basis
of a certain DenseBlock is sliced from the shared basis set.
Starting from the lower DenseBlock, every DenseBlock adds
a new split from the shared basis set to the basis of the
previous block forming the basis of current block. Thus, the
basis channel of the DenseBlock grows gradually.

respectively. The total number of parameters of the basis and the
coding coefficient is much fewer than those of the original filters, thus
achieving a reduction of the number of parameters.

2.4.2 Basis sharing

To compress the networks further, we can force several or all convolu-
tional layers to share the same basis set depending on the compression
degree we want to achieve. The weight sharing strategy can be cus-
tomized to the networks. For example, in ResNet [53] and the following
works SRResNet [76], EDSR [96], there are two convolutions in the
residual block. We can let the two convolutions share the basis. In
ResNet-56 architecture for CIFAR10, the residual blocks are grouped
into three groups, each with 9 residual blocks and increasing feature
map channels. The channels in the lower residual block groups are

26 learning filter basis

relatively small (16 and 32 for the first and second group). To achieve a
satisfying compression rate, we have the convolutions within the same
group share a common basis set. Moreover, in DenseNet, the input
channel grows gradually with a step 12. There is no clear sign like
in ResNet to indicate which convolution should share the basis. In
this case, all of the convolutional layers share the same basis. For the
lower layers, only a slice of the basis is used while only for the last
convolutional layer the whole basis is used. The basis sharing strategy
for DenseNet-12-40 is shown in Fig. 2.6.

In conclusion, we can apply block-wise, group-wise, or network-wise
basis sharing flexibly according to the architecture of the target network.

2.5 experimental results

2.5.1 Experiment setup

We show the experimental results in this section and compare with
the state-of-the-art methods on both image classification and image
SR. For classification, we applied our basis learning method to vari-
ous networks including VGG [136], ResNet [53], and DenseNet [62].
We evaluate the performance of compressed models on CIFAR10 [70]
dataset. The training and testing subset contains 50,000 and 10,000

images, respectively. As is done by prior works [53, 62], we normalize
all images using channel-wise mean and standard deviation of the the
training set. Standard data augmentation is also applied. We train
the compressed networks for 300 epochs with Stochastic Gradient De-
scent (SGD) optimizer and an initial learning rate of 0.1. The learning
rate is decayed by 10 after 50% and 75% of the epochs.

For image SR, we applied our method to two typical SR networks,
namely, SRResNet [76] and EDSR [96]. SRResNet is a middle-level
network with 1.5M parameters while EDSR is quite a huge network with
43M parameters but much higher Peak Signal-to-Noise Ratio (PSNR)
accuracy. For fast training, we also compressed a lighter version of
EDSR with 8 residual blocks and 128 channels per convolution in the
residual block. We denote this network as EDSR-8-128. The networks
are trained on DIV2K [2] dataset that contains 1,000 2K images. We
test the networks on five datasets: Set5 [9], Set14 [166], B100 [108],
Urban100 [63], and DIV2K validation set. Adam optimizer [69] is used
for training SR networks. We use the default hyper-parameter. The

2.5 experimental results 27

networks are trained for 300 epochs. The learning rate starts from
1× 10−4 and decays by 10 after 200 epochs.

We reimplemented the network compression method Factor [147]
and Group [117]. For the Factor method, to compare the methods fairly,
we use two and three single intra-channel convolutional layers (SIC
layer) [147] in Table 2.2, two SIC layers in Table 2.5 and Table 2.6, and
one SIC layer in Table 2.3 to substitute one standard convolutional layer.
To keep the number of parameter of the Group method [117] at the
same level with other methods, the group size is set to 8, and 64 to
approximate ResNet and VGG, respectively. To compress DenseNet, 3

groups are used for the first 20 DenseBlocks while 6 groups are used
for the rest DenseBlocks.

2.5.2 Validation on super-resolution

The compression results of SR networks are shown in Table 2.1, Table 2.2,
and Table 2.3. In Table 2.1, we explore different operating points applied
to EDSR. We use 4 splits for the convolution in the residual block.
For a clearer comparison, we report the number of parameters and
compression ratio for one residual block since all of the other blocks
has the same parameter. And we keep to this setting in Table 2.2 and
Table 2.3. By default, each convolution layer uses an unique basis set,
i.e. , without basis sharing. In Table 2.1 and Table 2.3, the corresponding
basis sharing result is also shown.

In Table 2.1, there are several noticeable points. Firstly, the com-
pressed models with and without basis sharing technique achieve
almost the same PSNR for different m. But with basis sharing, the
model size is further compressed. Secondly, when m = 64 and basis
sharing is used, the compressed model only accounts for 9% of the
parameters of the original network. When basis sharing is further used,
an impressive compression rate of 5.9% is achieved while the PSNR
result is not far away from the baseline. Thirdly, the most aggressive
compression ratio is 1.5%. Considering that there are 32 and 16 residual
blocks in EDSR and SRResNet respectively, this operating point brings
the model size from EDSR level to SRResNet level while the PSNR of
the resulting model is higher than that of SRResNet.

In Table 2.2, the results of Factor [147] and our basis learning method
are shown for the SRResNet and EDSR-8-128. A lighter and a heavier
operating point are reported for each compression method. The pro-

28 learning filter basis

Metrics
Basis Share Base-

lineNo / Yes
m = 16

No / Yes
m = 32

No / Yes
m = 64

PSNR
(dB)

Set5 32.14 / 32.16 32.22 / 32.20 32.33 / 32.30 32.48

Set14 28.58 / 28.57 28.66 / 28.64 28.72 / 28.73 28.81

B100 27.58 / 27.57 27.62 / 27.61 27.66 / 27.64 27.72

Urban100 26.05 / 26.00 26.20 / 26.20 26.38 / 26.38 26.65

DIV2K 28.96 / 28.93 29.06 / 29.04 29.14 / 29.14 29.25

#Params 27k / 17k 53k / 35k 106k / 70k 1180k
Comp. Ratio (%) 2.3 / 1.5 4.5 / 3.0 9.0 / 5.9 100

Table 2.1: Ablation study on compressing EDSR for image SR. The
upscaling factor is ×4. m is the number of basis. The number
of splits p for a convolution is 4.

SRResNet [76]
Factor
SIC2

Factor
SIC3

Basis-64-14

(ours)
Basis-32-32

(ours)
Base-
line

PSNR
(dB)

Set5 31.68 31.86 31.84 31.90 32.03

Set14 28.32 28.38 28.38 28.43 28.50

B100 27.37 27.40 27.39 27.44 27.52

Urban100 25.47 25.58 25.54 25.65 25.88

DIV2K 28.59 28.65 28.63 28.69 28.85

#Parameters 19k 28k 18k 27k 74k
Comp. Rate (%) 25.3 38.0 24.3 36.1 100

EDSR-8-128 [96]
Factor
SIC2

Factor
SIC3

Basis-128-27

(ours)
Basis-128-40

(ours)
Base-
line

PSNR
(dB)

Set5 31.82 31.96 31.95 32.03 32.10

Set14 28.40 28.47 28.42 28.45 28.55

B100 27.43 27.49 27.46 27.50 27.55

Urban100 25.63 25.81 25.76 25.81 26.02

DIV2K 28.70 28.81 28.76 28.82 28.93

#Parameters 70k 105k 69k 102k 295k
Comp. Rate (%) 23.8 35.7 23.4 34.7 100

Table 2.2: Comparison between Factor [147] and the proposed
method. The upscaling factor is ×4. ‘SIC*’ denotes the
number of SIC layers in Factor. ‘Basis-N-S’ means that the
number of basis is S and each basis has N input channels.

2.5 experimental results 29

Method
PSNR [dB] #Param [k]

/ Ratio (%)Set5 Set14 B100 Urban100 DIV2K

Upscaling Factor ×2
Factor [147] 37.95 33.53 32.15 31.99 34.60 136 /11.5

Basis-S (ours) 38.09 33.75 32.23 32.38 34.77 90 /7.6
Basis (ours) 38.12 33.72 32.27 32.46 34.84 164 /13.9

Baseline 38.19 33.95 32.35 32.97 35.03 1180 /100

Upscaling Factor ×3
Factor [147] 34.33 30.31 29.08 28.10 30.91 136 /11.5

Basis-S (ours) 34.47 30.41 29.15 28.39 31.06 90 /7.6
Basis (ours) 34.55 30.46 29.18 28.51 31.11 164 /13.9

Baseline 34.68 30.53 29.26 28.81 31.26 1180 /100

Upscaling Factor ×4
Factor [147] 32.05 28.54 27.55 25.98 28.92 136 /11.5

Basis-S (ours) 32.29 28.63 27.62 26.25 29.06 90 /7.6
Basis (ours) 32.39 28.69 27.64 26.36 29.13 164 /13.9

Baseline 32.48 28.81 27.72 26.65 29.25 1180 /100

Table 2.3: Compression results for EDSR. Basis-S uses basis sharing
for the two convolutions within the same residual block. The
number of basis in the proposed method is 32.

posed method outperforms Factor under the two settings. To further
compare Factor and the proposed method, we apply the compression
method to the fully-fledged EDSR model. As shown in Table 2.3, the
compressed model Basis-S is much better than Factor and in the mean-
while with fewer parameters. The PSNR result of our Basis-S is slightly
worse than that of Basis. The visual results for image super-resolution
are shown in Fig. 2.8 and Fig. 2.7 for compressing SRResNet and EDSR-
8-128 respectively. Compared with Factor [147] and Group [117], the
SR images from our compressed model are very close to the baseline in
terms of both visual quality and PSNR values.

2.5.3 Validation on image classification

In Table 2.4, we show different operating points for the proposed
method applied on DenseNet-12-40 architecture. When the basis size
increases from 24 to 32, the corresponding error rate decreases from

30 learning filter basis

Ground Truth:

PSNR (dB)
Factor [147]: 34.67 Basis-S (ours): 34.99 Basis (ours): 35.10 Baseline: 35.27

Ground Truth:

PSNR (dB)
Factor [147]: 32.47 Basis-S (ours): 32.48 Basis (ours): 32.68 Baseline: 32.69

Figure 2.7: Visual results for compressed EDSR models. The upscal-
ing factor ×4.

Configuration Top-1 Error (%) #Params Comp.(%)

M24 5.69 320k 30.8
M26 5.70 336k 32.3
M32 5.57 383k 36.8

M36T6 5.32 331k 31.8
M38T12 5.56 326k 31.3

Baseline 5.26 1041k 100

Table 2.4: Ablation study on compressing DenseNet-12-40. Top-1 er-
ror is reported for CIFAR10 image classification. “M*” means
the number of basis in DenseBlock. “T*” means the number
of splits in the transition layers.

5.69% to 5.57%. In addition, by applying compression to the 1× 1
convolution in the transition layer, we can save some parameter budget
for the DenseBlock, which is relatively more important in the network.
Thus, for ‘M36T6’ and ‘M38T12’, we can utilize more basis and at the
same time with smaller number of parameters. Compared with ‘M32’,
‘M36T6’ further reduces the error rate by 0.25%. Interestingly, although
our ‘M38T12’ model uses two more basis than ‘M36T6’, the error rate
rises a little bit. This is because ‘M38T12’ uses an aggressive compres-

2.5 experimental results 31

Factor-SIC2: Factor-SIC3: Basis-14-64 (ours): Basis-32-32 (ours): Baseline:
26.44 dB 26.47 dB 26.47 dB 26.57 dB 26.65 dB

Factor-SIC2: Factor-SIC3: Basis-14-64 (ours): Basis-32-32 (ours): Baseline:
21.88 dB 21.91 dB 21.91 dB 22.01 dB 22.09 dB

Factor-SIC2: Factor-SIC3: Basis-14-64 (ours): Basis-32-32 (ours): Baseline:
39.68 dB 39.80 dB 39.74 dB 39.94 dB 40.28 dB

Figure 2.8: Visual results for compressed SRResNet models. The up-
scaling factor ×4.

sion, i.e. , s = 12 in the transition block. Therefore, the compression
degree of the DenseBlock and the transition block should be balanced
to obtain the best trade-off between compression ratio and accuracy.

The compression results of different methods for VGG-16, DenseNet-
12-40, and ResNet-56 are shown in Table 2.5. For a fair comparison,
we follow the setting in [137] for VGG-16. That is, only one instead
of three fully-connected layer is appended after the last pooling layer.
On VGG-16, our method shows the most aggressive compression and
the lowest error rate. For our compressed model, we only suffer 0.2%
increase of error rate, which is quite small compared with 0.71% 1.14%
increase of Group [117] and Factor. And our model has the smallest
size. Our compression method and KSE [95] shoots the lowest error

32 learning filter basis

Model Method
Top-1 Error (%)

/ Baseline
#Param.

Comp.
Rate(%)

VGG-16

K-means [137] 6.24 / 5.98 3.27M 22.2
Factor [147] 7.12 / 5.98 3.34M 22.7
Group [117] 6.69 / 5.98 3.80M 25.9
Basis (ours) 6.18 / 5.98 3.21M 21.8

DenseNet-12-40

K-means 5.44 / 5.26 335k 32.2
Factor 6.71 /5.26 317k 30.4
Group 6.65 / 5.26 337k 32.4

KSE [95] 5.30 / 5.19 390k 37.5
[102](70%) 5.65 / 5.19 350k 33.6

Simple-SVD 7.14 / 5.26 360k 34.6
Basis (ours) 5.32 / 5.26 331k 31.8

ResNet-56

K-means [137] 6.76 / 6.28 190k 22.4
Factor 8.70 / 6.28 212k 24.9
Group 6.45 / 6.28 206k 24.3

KSE 7.12 / 6.97 360k 42.4
Basis (ours) 6.60 / 6.28 186k 21.9

Table 2.5: Parameter compression results of networks trained on CI-
FAR10. For a fair comparison, the model size from different
methods is kept to the same level.

Model Method Top-1 Err.(%) / Baseline FLOPs (%)

VGG

K-means [137] 6.24 / 5.98 100

Factor [147] 7.12 / 5.98 36.6
Group [117] 6.69 / 5.98 46.1
Basis (ours) 6.23 / 5.98 23.5

ResNet56

CaP [110] 6.78 / 6.49 50.2
ENC [67] 7.00 / 6.90 50.0
AMC [55] 8.10 / 7.20 50.0
KSE [95] 6.77 / 6.97 48.0

Basis (ours) 6.08 / 7.05 50.0

Table 2.6: FLOPs compression results of networks trained on CI-
FAR10. For K-means, the practical FLOPs in the authors’
code rather than the theoretical is reported.

2.6 conclusion 33

30 40 50 60 70

FLOPs (M)

6

6.5

7

7.5

8

T
o

p
-1

 E
rr

o
r

R
a

te
 (

%
)

KSE

Basis (ours)

Figure 2.9: Comparison between the proposed basis learning method
and KSE. Experiments are done on ResNet-56 trained CI-
FAR10.

rate on DenseNet-12-40. As for the compression ratio, although Factor
is slightly lower than ours, its accuracy is the worst among all the
compared methods. For ResNet-56, our method performs comparable
with Group in terms of accuracy while with 20k fewer parameters.
Table 2.6 and Fig. 2.9 compare the computational cost of the proposed
method and the state-of-the-art. Results are reported at operating points
different from those in Table 2.5. For VGG-16, our method achieves the
lowest error rate under the severest FLOPs reduction. For ResNet-56,
the proposed method outperforms the others by a significant margin
under the same FLOPs reduction. In Fig. 2.9, our method always shoots
a lower error rate than KSE.

The error curves during training and testing for DenseNet-12-40,
ResNet-56, and VGG-16 on CIFAR10 are shown in Fig. 2.10c, Fig 2.10b,
and Fig 2.10a, respectively. Our method shoots the lowest stable error
rate for all the three networks during training and testing.

2.6 conclusion

In this chapter, we explored how to learn a filter basis set for convolution
operations in modern CNNs. Our method is not limited by the filter

34 learning filter basis

size. Thus, it can be applied to 1× 1 convolution and convolution
with large input channel and smaller output channel. We applied our

(a) VGG-16.

(b) ResNet-56.

Figure 2.10: Training and testing error of different compression meth-
ods.

2.6 conclusion 35

(c) DenseNet-12-40.

Figure 2.10: Training and testing error of different compression meth-
ods (continued).

basis learning method to image classification and SR networks. The
experiments validate the advantage of our basis learning method. Our
compressed SRResNet and EDSR outperforms the models from the
previous filter decomposition method. For the image SR network EDSR,
the most aggressive compression our method brings the model size
from EDSR level to SRResNet level while being more accurate than
SRResNet. For VGG-16, the error rate of the model compressed by our
method is within 0.2% the baseline error, which is much better than the
results of other compression methods. Our filter basis learning method
leads to state-of-the-art performance on ResNet and DenseNet.

3
D I F F E R E N T I A B L E M E TA P R U N I N G

3.1 introduction

These days, network pruning has become the workhorse for network
compression, which aims at lightweight and efficient model for fast
inference [47, 56, 103, 89]. This is of particular importance for the de-
ployment of tiny Artificial Intelligence (AI) algorithms on smart phones
and edge devices [50]. Since the emerging of network pruning a couple
of methods have been proposed based on the analysis of gradients,
Hessians or filter distribution [75, 51, 32, 111, 54]. With the advent of
AutoML and NAS [182, 17], a new trend of network pruning emerges,
i.e. pruning with automatic algorithms and targeting distinguishing
sub-architectures. Among them, reinforcement learning and evolution-
ary algorithm become the natural choice [55, 101]. The core idea is to
search a certain fine-grained layer-wise distinguishing configuration
among the all of the possible choices (population in the terminology of
evolutionary algorithm). After the searching stage, the candidate that
optimizes the network prediction accuracy under constrained budgets
is chosen.

The advantage of these automatic pruning methods is the final layer-
wise distinguishing configuration. Thus, hand-crafted design is no
longer necessary. However, the main concern of these algorithms
is the convergence property. For example, reinforcement learning is
notorious for its difficulty of convergence under large or even middle
level number of states [139]. Evolutionary algorithm needs to choose
the best candidate from the already converged algorithm. But the
dilemma lies in the impossibility of training the whole population
till convergence and the difficulty of choosing the best candidate from
unconverged population [101, 52]. A promising solution to this problem
is endowing the searching mechanism with differentiability or resorting
to an approximately differentiable algorithm. This is due to the fact that
differentiability has the potential to make the searching stage efficient.
Actually, differentiability has facilitated a couple of machine learning
approaches and the typical one among them is NAS. Early works

37

38 differentiable meta pruning

20 40 60 80 100
FLOP Ratio (%)

45

50

55

60

T
op

-1
 E

rr
or

 R
at

e
(%

)

 = 0.3

 = 0.5
 = 0.75

 = 1.0 = 0.3

 = 0.5

 = 0.75 = 1.0

MobileNetV1
MobileNetV1 by DHP
MobileNetV2
MobileNetV2 by DHP

(a) FLOPs compression ratio.

20 40 60 80 100
Parameter Ratio (%)

45

50

55

60

T
op

-1
 E

rr
or

 R
at

e
(%

)

 = 0.3

 = 0.5

 = 0.75 = 1.0 = 0.3

 = 0.5

 = 0.75 = 1.0

MobileNetV1
MobileNetV1 by DHP
MobileNetV2
MobileNetV2 by DHP

(b) Parameter compression ratio.

Figure 3.1: Top-1 error vs. FLOPs and parameter compression ratio
on MobileNets. The original model with different width
multipliers α is set as the baseline. The DHP operating
points near 100% FLOPs ratio is obtained by pruning the
two networks with α = 2. The DHP models outperforms
the original at all the operating points.

on NAS have insatiable demand for computing resources, consuming
tens of thousands of GPU hours for a satisfactory convergence [182,
183]. Differentiable Architecture Search (DARTS) reduces the insatiable
consumption to tens of GPU hours, which has boosted the development
of NAS during the past year [100].

Another noteworthy direction for automatic pruning is brought by
MetaPruning [101] which introduces hypernetworks [45] into network
compression. The output of the so-called hypernetwork is used as the
parameters of the backbone network. During training, the gradients are
also back-propagated to the hypernetworks. This method falls in the
paradigm of meta learning since the parameters in the hypernetwork
act as the meta-data of the parameters in the backbone network. But
the problem of this method is that the hypernetworks can only output
fixed-size weights, which cannot serve as a layer-wise configuration
searching mechanism. Thus, a searching algorithm such as evolutionary
algorithm is necessary for the discovery of a good candidate. Although
this is quite a natural choice, there is still one interesting question,
namely, whether one can design a hypernetwork whose output size
depends on the input (termed as latent vector in this chapter) so that
by only dealing with the latent vector, the backbone network can be
automatically pruned.

3.1 introduction 39

Figure 3.2: The workflow of the proposed differentiable pruning
method. The latent vectors z attached to the convolutional
layers act as the handle for network pruning. The hypernet-
work takes two latent vectors as input and emits output as
the weight of the backbone layer. `1 sparsity regularization
is enforced on the latent vectors. The differentiability comes
with the hypernetwork tailored to pruning and the proximal
gradient exploited to solve problem. After the pruning stage,
sparse latent vectors are obtained which result in pruned
weights after being passed through the hypernetwork.

To solve the aforementioned problem, we propose the differentiable
meta pruning approach via hypernetworks, i.e. Differentiable Hyper
Pruning (DHP) shown in Fig. 3.2. A new design of hypernetwork is
proposed to adapt to the requirements of differentiability. Each layer is
endowed with a latent vector that controls the output channels of this
layer. Since the layers in the network are connected, the latent vector also
controls the input channel of the next layer. The hypernetwork takes
as input the latent vectors of the current layer and previous layer that
controls the output and input channels of the current layer respectively.
Passing the latent vectors through the hypernetwork leads to outputs
which are used as the parameters of the backbone network. To achieve
the effect of automatic pruning, `1 sparsity regularizer is applied to
the latent vectors. A pruned model is discovered by updating the
latent vectors with proximal gradient. The searching stage stops when
the compression ratio drops to the target level. After the searching
stage, the latent vectors are sparsified. Accordingly, the outputs of
the hypernetworks that are covariant with the latent vector are also
compressed. The advantage of the proposed method is that it is only
necessary to deal with the latent vectors, which automates network
pruning without the other bells and whistles.

40 differentiable meta pruning

With the fast development of efficient network design and NAS, the
usefulness of network pruning is frequently challenged. But by ana-
lyzing the performance on MobileNetV1 [59] and MobileNetV2 [133]
in Fig. 3.1, we conclude that automatic network pruning is of vital
importance for further exploring the capacity of efficient networks.
Efficient network design and NAS can only result in an overall architec-
ture with building blocks endowed with the same sub-architecture. By
automatic network pruning, the efficient networks obtained by either
human experts or NAS can be further compressed, leading to layer-
wise distinguishing configurations, which can be seen as a fine-grained
architecture search.

Thus, the contribution of this chapter is as follows.

I A new architecture of hypernetwork is designed. Different from
the classical hypernetwork composed of linear layers, the new de-
sign is tailored to automatic network pruning. By only operating
on the input of the hypernetwork, the backbone network can be
pruned.

II A differentiable automatic networking pruning method is pro-
posed. The differentiability comes with the designed hypernet-
work and the utilized proximal gradient. It accelerates the conver-
gence of the pruning algorithm.

III By the experiments on various vision tasks and modern CNNs [53,
62, 59, 133, 169, 131, 76, 96], the potential of automatic network
pruning as fine-grained architecture search is revealed.

3.2 related works

3.2.1 AutoML

Recently, there is an emerging trend of exploiting AutoML for automatic
network compression [55, 101, 52]. The rationality lies in the exploration
among the total population of network configurations for a final best
candidate. He et al. exploited reinforcement learning agents to prune
the networks where hand-crafted design is not longer necessary [55].
Hayashi et al. utilized genetic algorithm to enumerate candidate in the
designed hypergraph for tensor network decomposition [52]. Liu et al.
trained a hypernetwork to generate weights of the backbone network

3.2 related works 41

and used evolutionary algorithm to search for the best candidate [101].
The problem of these approachs is that the searching algorithms are
not differentiable, which does not result in guaranteed convergence.

3.2.2 Neural Architecture Search

NAS automatizes the manual task of neural network architecture design.
Optimally, searched networks achieve smaller test error, require fewer
parameters and need less computations than their manually designed
counterparts [182, 127]. But the main drawback of early strategies
is their almost insatiable demand for computational resources. To
alleviate the computational burden several methods [183, 99, 100] are
proposed to search for a basic building block, i.e. cell, opposed to an
entire network. Then, stacking multiple cells with equivalent structure
but different weights defines a full network [119, 12]. Another recent
trend in NAS is differentiable search methods such as DARTS [100]. The
differentiability allows the fast convergence of the searching algorithm
and thus boosts the fast development of NAS during the past year.
In this chapter we propose a differentiable counterpart for automatic
network pruning. Recent works try to push the frontier of NAS research
by either redesigning the search space or proposing a more efficient
search method [154, 132, 44, 20].

3.2.3 Meta learning and hypernetworks

Meta learning is a broad family of machine learning techniques that
deal with the problem of learning to learn. An emerging trend of meta
learning uses hypernetworks to predict the weight parameters in the
backbone network [45]. Since the introduction of hypernetworks, it has
found wide applications in NAS [12], multi-task learning [113], Bayesian
neural networks [72], and also network pruning [101]. In this chapter,
we propose a new design of hypernetwork which is especially suitable
for network pruning and makes differentiability possible for automatic
network pruning.

42 differentiable meta pruning

Figure 3.3: Illustration of the hypernetwork designed for network
pruning. It generates a weight tensor after passing the
input latent vector through the latent layer, the embedding
layer, and the explicit layer. If one element in zl is pruned,
the corresponding slice of the output tensor is also pruned.
See Subsec. 3.3.1 for details.

3.3 methodology

The pipeline of the proposed method is shown in Fig 3.2. The two
cores of the whole pipeline are the designed hypernetwork and the op-
timization algorithm. In the forward pass, the designed hypernetwork
takes as input the latent vectors and predicts the weight parameters
for the backbone network. In the backward pass, the gradients are
back-propagated to the hypernetwork. The `1 sparsity regularizer is
enforced on the latent vectors and proximal gradient is used to solve the
problem. The dimension of the output of the hypernetwork is covariant
with that of the input. Due to this property, the output weights are
pruned along with the sparsified latent vectors after the optimization
step. The differentiability comes with the covariance property of the
hypernetworks, the `1 sparsity regularization enforced on the latent
vectors, and the proximal gradient used to solve the problem. The
automation of pruning is due to the fact that all of the latent vectors are
non-discriminatively regularized and that proximal gradient discovers
the potential less important elements automatically.

3.3.1 Hypernetwork design

Notation: Unless otherwise stated, we use the normal (x), minuscule
bold (z), and capital bold (Z) letters to denote scalars, vectors, and
matrices/high-dimensional tensors. The elements of a matrix/tensor

3.3 methodology 43

is indexed by the subscript as Zi,j which could be scalars or vectors
depending on the the dimension of the indexed subject.

We first introduce the design of the hypernetwork shown in Fig. 3.3.
In summary, the hypernetwork consists of three layers. The latent layer
takes as input the latent vectors and computes a latent matrix from them.
The embedding layer projects the elements of the latent matrix to an
embedding space. The last explicit layer converts the embedded vectors
to the final output. This design is inspired by fully connected layers
in [45, 101] but differs from those designs in that the output dimension
is covariant with the input latent vector. This design is applicable to all
types of convolutions including the standard convolution, depth-wise
convolution, point-wise convolution, and transposed convolution.

Suppose that the given is an L-layer CNN. The dimension of the
weight parameter of the l-th convolutional layer is n× c×w× h, where
n, c, and w× h denote the output channel, input channel, and kernel
size of the layer, respectively. Every layer is endowed with a latent
vector zl . The latent vector has the same size as the output channel of
the layer, i.e. , zl ∈ Rn. Thus, the previous layer is given a latent vector
zl−1 ∈ Rc. The hypernetwork receives the latent vectors zl and zl−1

of the current and the previous layer as input. A latent matrix is first
computed from the two latent vectors, namely,

Zl = zl · zl−1T
+ Bl

0, (3.1)

where [T] and [·] denote matrix transpose and multiplication, Zl , B0 ∈
Rn×c. Then every element in the latent matrix is projected to an m
dimensional embedding space, namely,

El
i,j = Zl

i,jw
l
1 + bl

1, i = 1, · · · , n, j = 1, · · · , c, (3.2)

where El
i,j, wl

1, bl
1 ∈ Rm. The vectors wl

1 and bl
1 are element-wise unique

and for the simplicity of notation, the subscript i,j is omitted. wl
1, bl

1,
and El

i,j can be aggregated as 3D tensors, namely Wl
1, Bl

1, El ∈ Rn×c×m.
After the operation in Eqn. (3.2), the elements of Zl are converted to
embedded vectors in the embedding space. The final step is to obtain
the output that can be explicitly used as the weights of the convolutional
layer. To achieve that, every embedded vector El

i,j is multiplied by an
explicit matrix, that is,

Ol
i,j = wl

2 · El
i,j + bl

2, i = 1, · · · , n, j = 1, · · · , c, (3.3)

44 differentiable meta pruning

where Ol
i,j, bl

2 ∈ Rwh, wl
2 ∈ Rwh×m. Again, wl

2 and bl
2 are unique

for every embedded vector and the subscript i,j is omitted. wl
2, bl

2,
and Ol

i,j can also be aggregated as high-dimensional tensors, i.e. Wl
2 ∈

Rn×c×wh×m and Bl
2, Ol ∈ Rn×c×wh. For the sake of simplicity, Eqn. (3.1),

(3.2) and (3.3) can be abstracted as

Ol = h(zl , zl−1; Wl , Bl), (3.4)

where h(·) denotes the functionality of the hypernetwork. The final
output Ol is used as the weight parameter of the l-th layer. The output
Ol is covariant with the input latent vector because pruning an element
in the latent vector removes the corresponding slice of the output Ol

(See Fig. 3.3).
When designing the hypernetwork, we tried to add batch normaliza-

tion and non-linear layers after the linear operation in Eqn. (3.2) and
Eqn. (3.3). But it did not lead to clearly better results. Thus, we just
kept to the simple design. This is also consistent with the previous
designs [45, 101].

3.3.2 Sparsity regularization and proximal gradient

The core of differentiability comes with not only the specifically de-
signed hypernetwork but also the mechanism used to search the the
potential candidate. To achieve that, we enforce sparsity constraints
to the latent vectors. The loss function of the aforementioned L-layer
CNN is denoted as

min
W,B,z

L
(

y, f
(
x; h(z; W, B)

))
+ γD(W) + γD(B) + λR(z), (3.5)

where L(·, ·), D(·), and R(·) are the loss function for a specific vision
task, the weight decay term, and the sparsity regularization term, γ

and λ are the regularization factors. For the simplicity of notation, the
superscript l is omitted. The sparsity regularization takes the form of
`1 norm, namely,

R(z) =
L

∑
l=1
‖zl‖1. (3.6)

To solve the problem in Eqn. (3.5), the weights W and and biases B
of the hypernetworks are updated with SGD. The gradients are back-
propagated from the backbone network to the hypernetwork. Thus,

3.3 methodology 45

neither the forward nor the backward pass challenges the information
flow between them. The latent vectors are updated with proximal
gradient algorithm, i.e. ,

z[k + 1] = proxλµR

(
z[k]− λµ∇L

(
z[k]

))
, (3.7)

where µ is the step size of proximal gradient and is set as the learning
rate of SGD updates. As can be seen in the equation, the proximal
gradient update contains a gradient descent step and a proximal opera-
tion step. When the regularizer has the form of `1 norm, the proximal
operator has closed-form solution, i.e.

z[k + 1] = sgn
(

z[k + ∆]
)[∣∣z[k + ∆]

∣∣− λµ
]
+

, (3.8)

where z[k + ∆] = z[k]−λµ∇L(z[k]) is the intermediate SGD update, the
sign operator sgn(·), the thresholding operator [·]+, and the absolute
value operator | · | act element-wise on the vector. Eqn. (3.8) is the
soft-thresholding function.

The latent vectors first get SGD updates along with the other parame-
ters W and B. Then the proximal operator is applied. Due to the use of
SGD updates and the fact that the proximal operator has closed-form
solution, we recognize the whole solution as approximately differen-
tiable (although the `1 norm is not differentiable at 0), which guarantees
the fast convergence of the algorithm compared with reinforcement
learning and evolutionary algorithm. The speed-up of proximal gradi-
ent lies in that instead of searching the best candidate among the total
population it forces the solution towards the best sparse one.

The automation of pruning follows the way the sparsity applied in
Eqn. (3.6) and the proximal gradient solution. First of all, all latent
vectors are regularized together without distinguishment between them.
During the optimization, information and gradients flows fluently
between the backbone network and the hypernetwork. The proximal
gradient algorithm forces the potential elements of the latent vectors
to approach zero quicker than the others without any human effort
and interference in this process. The optimization stops immediately
when the target compression ratio is reached. In total, there are only
two additional hyper-parameters in the algorithm, i.e. the sparsity
regularization factor and the mask threshold τ in Subsec. 3.3.3. Thus,
running the algorithm is just like turning on the button, which enable
the application of the algorithm to all of the CNNs without much
interference of domain experts’ knowledge.

46 differentiable meta pruning

3.3.3 Network pruning

Different from the fully connected layers, the proposed design of hy-
pernetwork can adapt the dimension of the output according to that
of the latent vectors. After the searching stage, sparse versions of the
latent vectors are derived as zl−1 and zl . For those vectors, some of
their elements are zero or approaching zero. Thus, 1-0 masks can by
derived by comparing the sparse latent vectors with a predefined small
threshold τ, i.e. ml = T

(
zl , τ

)
, where the function T (·) element-wise

compares the latent vector with the threshold and returns 1 if the el-
ement is not smaller than τ and 0 otherwise. Then latent vector zl is
pruned according to the mask ml . See Subsec. 3.3.6 for more analysis.

3.3.4 Latent vector sharing

Due to the existence of skip connections in residual networks such
as ResNet, MobileNetV2, SRResNet, and EDSR, the residual blocks
are interconnected with each other in the way that their input and
output dimensions are related. Therefore, the skip connections are
notoriously tricky to deal with. But back to the design of the proposed
hypernetwork, a quite simple and straightforward solution to this
problem is to let the hypernetworks of the correlated layers share the
same latent vector. Note that the weight and bias parameters of the
hypernetworks are not shared. Thus, sharing latent vectors does not
force the the correlated layers to be identical. By automatically pruning
the single latent vector, all of the relevant layers are pruned together.
Actually, we first tried to use different latent vectors for the correlated
layers and applied group sparsity to them. But the experimental results
showed that this is not a good choice because this strategy shot lower
accuracy than the latent vector sharing strategy.

Basic criteria. In the following, we first describe the general rules
for latent vector sharing and then detail the specific rules for special
network blocks.

I Every convolutional layer is attached a latent vector.

II The channel that the latent vector controls and the dimension of
the latent vector vary with the types of convolutional layers.

3.3 methodology 47

a) For standard convolution, point-wise convolution and trans-
posed convolution, the latent vector controls the output chan-
nel of the layer and the dimension of the latent vector is the
same as the number of output channels.

b) For depth-wise convolution and group convolution, the la-
tent vector controls the input channels per group. The dimen-
sion of the latent vector is the same as the number of input
channels per group. That is, the latent vector of depth-wise
convolution contains only one element.

III The latent vectors are shared among consecutive layers. This is
because the output and input channels of consecutive layers are
correlated. Thus, the hypernetworks receive the latent vectors of
the previous layer and the current layer as input.

IV Not every latent vector needs to be sparsified. The latent vectors
free from sparsification are list as follows.

a) The latent vector that controls the input channel of the first
convolutional layer. This latent vector has the same dimen-
sion with the input image channels, e.g. 3 for RGB images
and 1 for gray images. Of course, the input images do not
need to be pruned.

b) The latent vector attached to depth-wise convolution and
group convolution. This latent vector controls the input
channels per group. To compress depth-wise and group
convolution, the number of groups is reduced, which is
controlled by the latent vectors of the previous layer.

Residual block. The residual networks including ResNet, SRResNet,
and EDSR are constructed by stacking a number of residual blocks.
Depending on the dimension of the feature maps, the residual networks
contain several stages with progressively reducing feature map dimen-
sion and increasing number of feature maps. (Note that the feature
map dimension of EDSR and SRResNet does not change for all of the
residual blocks. So there is only one stage for those networks.) For
the residual blocks within the same stage, their output channels are
correlated due to the existence of the skip connections. In order to
prune the second convolution of the residual blocks within the same
stage, we use a shared latent vector for them. Thus, by only dealing

48 differentiable meta pruning

with this shared latent vector, all of the second convolutions of the
residual blocks can be pruned together. Please refer to Table 3.1 for the
ablation study on latent vector sharing and non-sharing strategies.

Dense block. Similar to residual networks, DenseNet also contains
several stages with different feature map configurations. But different
from residual networks, each dense block concatenates its input and
output to form the final output of the block. As a result, each dense
block receives as input the outputs of all of the previous dense blocks
within the same stage. Thus, the hypernetwork of a dense block also
has to receive the latent vectors of the corresponding dense blocks as
input.

Inverted residual block. The inverted residual blocks are just a
special case of residual blocks. So how the latent vectors are shared
across different blocks is the same with the normal residual blocks.
Here we specifically address the sharing strategy within the block due
to the existence of depth-wise convolution. The inverted residual block
has the architecture of “point-wise conv + depth-wise conv + point-wise
conv”. As explained earlier, the latent vector of depth-wise convolution
controls the input channels per group. Thus, the latent vector of the
first point-wise convolution controls not only its output channels but
also the input channels of the depth-wise convolution and the input
channels of the second point-wise convolution. Thus, this latent vector
has to be passed to the hypernetworks of the those convolutional layers.

Upsampler of super-resolution networks. The image super-resolution
networks are attached with upsampler blocks at the tail of the networks
to increase the spatial resolution of the feature map. For the scaling
factor of ×4, two upsamplers are attached and each doubles the spatial
resolution. Each of the upsampler block contains a standard convolu-
tional layer that increases the number of feature maps by a factor of
4 and a pixel shuffler that shuffles every 4 consecutive feature maps
into the spatial dimension. Thus, the output channel of the convolu-
tional layer in the upsmapler is correlated to its input channel. If one
input channel is pruned, then four corresponding consecutive output
channels should also be pruned. To achieve this control of pruning, a
common latent vector is used for the input and output channels. The
dimension of this latent vector is the same with the input channel size.
This vector is repeated and interleaved to form the one controlling the
output channel.

3.3 methodology 49

3.3.5 Discussion on the convergence property

Compared with reinforcement learning and evolutionary algorithm,
proximal gradient may not be the optimal solution for some problems.
But as found by previous works [103, 101], automatic network pruning
serves as an implicit searching method for the channel configuration
of a network. In addition, the network is searched and trained from
scratch in this chapter. The important factor is the number of remaining
channels of the convolutional layers in the network. Thus, it is relatively
not important which filter is pruned as long as the number of pruned
channels are the same. This reduces the number of possible candidates
by orders of magnitude. In this case, proximal gradient works quite
well.

3.3.6 Implementation consideration

Compact representation of the hypernetwork. Thanks to the default
tensor operations in deep learning toolboxes [115], the operations in the
hypernetwork could be represented in a compact form. The embedding
operation in Eqn. (3.2) can be written as the following high-dimensional
tensor operation

El = U 3
(

Zl
)
◦Wl

1 + Bl
1, (3.9)

where U 3(Zl) ∈ Rn×c×1, [◦] denotes the broadcastable element-wise ten-
sor multiplication, U 3(·) inserts a third dimension for Zl . The operation
in Eqn. (3.3) can be easily rewritten as batched matrix multiplication,

Ol = Wl
2 ∗ El + Bl

2, (3.10)

where [∗] denotes batched matrix multiplication.
Pruning analysis. Analyzing the three layers of the hypernetworks

together with the masked latent vectors leads to a direct impression on
how the backbone layers are automatically pruned. That is,

O
l
= Wl

2 ∗
[
U 3
(
(ml ◦ zl) · (ml−1 ◦ zl−1)T

)
◦Wl

1

]
(3.11)

= Wl
2 ∗
[
U 3(ml ·ml−1T

) ◦ U 3(zl · zl−1T
) ◦Wl

1

]
(3.12)

= U 3(ml ·ml−1T
) ◦
[
Wl

2 ∗
(
U 3(zl · zl−1T

) ◦Wl
1

)]
(3.13)

50 differentiable meta pruning

The equality follows the broadcastability of the the operations [◦] and
[∗]. As shown in the above equations, applying the masks on the latent
vectors has the same effect of applying them on the final output. Note
that in the above analysis the bias terms Bl

0, Bl
1, and Bl

2 are omitted since
they have a really small influence on the output of the hypernetwork.
In conclusion, the final output can be pruned according to the same
criterion for the latent vectors.

Initialization of the hypernetwork. All biases are initialized as zero,
the latent vector with standard normal distribution, and Wl

1 with Xaiver
uniform [39]. The weight of the explicit layer Wl

2 is initialized with
Hyperfan-in which guarantees stable backbone network weights and
fast convergence [16].

3.4 experimental results

To validate the proposed method, extensive experiments were con-
ducted on various CNN architectures including ResNet [53], DenseNet [62]
for CIFAR10 [70] image classification, MobileNetV1 [59], MobileNetV2 [133]
for Tiny-ImageNet [28] image classification, SRResNet [76], EDSR [96]
for single image super-resolution, and DnCNN [169], UNet [131] for
gray image denoising. The proposed DHP algorithm starts from a
randomly initialized network with the initialization method detailed
in Subsec. 3.3.6. After pruning, the training of the pruned network
continues with the same training protocol used for the original network.
All of the experiments are conducted on NVIDIA TITAN Xp GPUs.

Hyperparameters. The proposed DHP method does not rely on the
pretrained model. Thus, all of the networks are trained and pruned
from scratch. The hypernetworks are first randomly initialized. The
parameter space of hypernetwork increases in proportion to the dimen-
sion m of the embedding space. Thus, m should not be too large. m is
set to 8 in the experiments. Proximal gradient is used to sparsify the
latent vectors. The step size µ of the proximal operator is set as the
learning rate of SGD updates. The sparsity regularization factor λ is
set by empirical studies. The value is chosen such that the searching
epochs constitute arounds 5% – 10% of the whole training epochs. This
guarantees acceptable convergence during searching while not intro-
ducing too much additional computation. A target FLOPs compression
ratio is set for the pruning algorithm. When the difference between the
target compression ratio and the actual compression ratio falls below

3.5 ablation study 51

Share R λ τ

Target
FLOPs

Ratio (%)

Actual
FLOPs

Ratio (%)

Actual
Params

Ratio (%)

Top-1
Err. (%)

Yes `1 2−4 5−3
38 39.96 52.49 7.41

No `2,1 2−4 5−3
38 39.40 54.24 7.91

Yes `1 3−4 5−3
38 39.60 49.00 6.86

No `2,1 3−4 5−3
38 39.54 54.04 7.03

Yes `1 2−4 5−3
50 51.27 56.84 7.13

No `2,1 2−4 5−3
50 50.96 64.05 6.85

Yes `1 3−4 5−3
50 51.68 57.74 6.52

No `2,1 3−4 5−3
50 50.18 59.15 6.74

Table 3.1: Ablation study on ResNet56 for CIFAR10 image classifica-
tion: exploring latent vector sharing strategy among corre-
lated convolutional layers. “Share” denotes whether the latent
vector sharing strategy described in Subsec. 3.3.4 is adopted.
The `2,1 regularizer means that when the latent vectors are
not shared among the correlated layers, the group sparsity
regularizer `2,1 is enforced on their latent vectors. Otherwise,
the normal `1 sparsity regularizer is used.

2%, the automatic pruning procedure stops. Then the pruned latent
vectors as well as the pruned outputs of the hypernetworks are derived.
After that, the outputs of hypernetworks are used as the weight param-
eters of the backbone network and updated by SGD or Adam algorithm
directly. After the pruning procedure, the hypernetworks are removed.
The training continues and the training protocol are the same as that
used for training the original network. The number of pruning epochs
is much smaller than that used for training the original network.

3.5 ablation study

The ablation study on the latent vector sharing strategy is shown in
Table 3.1. As shown in the table, the latent vector sharing strategy out-
performs the non-sharing strategy consistently except for case λ = 2−4,
τ = 5−3 and 50% target FLOPs compression ratio. The inconsistency is
largely due to the gap between the actual parameter compression ratio

52 differentiable meta pruning

of different strategies. Due to this fact, various latent vector sharing
rules are developed for easier and better automatic network pruning.
`1 regularizer is mainly used to sparsify the the latent vectors. We

tried to replace `1 regularizer with `2 regularizer and kept the same
pruning strategy. The experiments are conducted on ResNet. The com-
parison results are shown in Table 3.2. Compared with `1 regularizer,
slightly worse results can be observed for `2 regularizer. For ResNet-
110 and ResNet-164, `2 regularizer leads to results comparable with `1

regularizer but at a larger parameter budget. When the regularizer is
changed to `2, the proximal operator becomes

z[k + 1] =
(

1− λµ

max {‖z[k + ∆]‖, λµ}

)
z[k + ∆]. (3.14)

By the formulation and experiments, `1 norm leads to faster conver-
gence. To have a reasonable convergence speed, the λ used for `2

regularizer is 20 times larger than that for `1 regularizer.

Layer Regularizer Top1 Error (%) FLOPs (%) Params (%)
20 `1 8.46 51.8 56.13

`2 8.66 51.59 54.19

110 `1 5.73 51.62 54.13

`2 5.77 51.37 72.37

164 `1 5.22 51.67 50.97

`2 5.18 50.87 60.66

Table 3.2: Comparison between `1 norm and `2 norm regularization.
The experiments are done on ResNet.

3.5.1 Image classification

For image classification, experiments are done on two commonly used
datasets including CIFAR10 [70] and Tiny-Imagenet [28]. CIFAR10 [70]
contains 10 different classes. The training and testing subsets contain
50,000 and 10,000 images with resolution 32× 32, respectively. As done
by prior works [53, 62], we normalize all images using channel-wise
mean and standard deviation of the the training set. Standard data
augmentation is also applied. The networks are trained for 300 epochs
with SGD optimizer and an initial learning rate of 0.1. The learning rate

3.5 ablation study 53

Network
Top-1 Err. (%)

Compression
Method

Top-1
Err. (%)

FLOPs
Ratio (%)

Param.
Ratio (%)

ResNet-20

7.46

[159] 9.10 52.60 62.78

DHP-50 (Ours) 8.46 51.80 56.13

FPGM [54] 9.38 46.00 –

ResNet-56

7.05

Variational [175] 7.74 79.70 79.51

Pruned-B [81] 6.94 72.40 86.30

GAL-0.6 [97] 6.62 63.40 88.20

NISP [163] 6.99 56.39 57.40

DHP-50 (Ours) 6.42 50.96 58.42

CaP [110] 6.78 50.20 –
ENC [67] 7.00 50.00 –
AMC [55] 8.10 50.00 –
KSE [95] 6.77 48.00 45.27

FPGM [54] 6.74 47.70 –
GAL-0.8 [97] 8.42 39.80 34.10

DHP-38 (Ours) 7.06 39.07 41.10

ResNet-110

5.31

DHP-62 (Ours) 5.37 63.66 63.2
Variational [175] 7.04 63.56 58.73

Pruned-B [81] 6.70 61.40 67.60

GAL-0.5 [97] 7.26 51.50 55.20

DHP-20 (Ours) 6.61 21.63 22.40

ResNet-164

4.97

Hinge [89] 5.40 53.61 70.34

SSS [64] 5.78 53.53 84.75

DHP-50 (Ours) 5.22 51.67 50.97

Variational [175] 6.84 50.92 43.30

DHP-20 (Ours) 6.30 21.78 20.46

DenseNet-12-40

5.26

Variational [175] 6.84 55.22 40.33

DHP-38 (Ours) 6.06 39.80 63.76

DHP-28 (Ours) 6.51 29.52 26.01

GAL-0.1 [97] 6.77 28.60 25.00

Table 3.3: Results for CIFAR10 classification. The FLOPs ratio and
parameter ratio of the pruned networks are reported. DHP
outperforms the compared methods under comparable model
complexity.

54 differentiable meta pruning

Network
Top-1 Err. (%)

Compression
Method

Top-1
Err. (%)

FLOPs
Ratio (%)

Param.
Ratio (%)

MobileNetV1

52.71

DHP-24-2 (Ours) 50.75 101.08 43.58

MobileNetV1-0.75 54.22 57.42 57.64

MetaPruning [101] 54.48 56.77 88.14

DHP-50 (Ours) 51.63 51.91 36.95

MobileNetV2

44.75

DHP-24-2 (Ours) 43.82 99.09 72.72

DHP-10 (Ours) 52.43 11.92 6.50

MetaPruning [101] 56.72 11.00 90.27

MobileNetV2-0.3 53.99 10.09 11.64

Table 3.4: Results for Tiny-ImageNet classification. DHP-24-2 shoots
lower error rates than the original model.

is decayed by 10 after 50% and 75% of the epochs. The momentum of
SGD is 0.9. Weight decay factor is set to 0.0001. The batch size is 64.

Tiny-Imagenet has 200 classes. Each class has 500 training images
and 50 validation images. The resolution of the images is 64× 64. The
images are normalized with channel-wise mean and standard deviation.
Horizontal flip is used to augment the dataset. The networks are trained
for 220 epochs with SGD. The initial learning rate is 0.1. The learning
rate is decayed by a factor of 10 at Epoch 200, Epoch 205, Epoch 210,
and Epoch 215. The momentum of SGD is 0.9. Weight decay factor is
set to 0.0001. The batch size is 64.

The compression results on image classification networks are shown
in Table 3.3. ‘DHP-**’ denotes the proposed method with the target
FLOPs ratio during pruning stage. As in Fig. 3.1, the operating point
DHP-24-2 is derived by compressing the widened mobile networks with
α = 2 and the target FLOPs ratio 24%. For ResNet-56, the proposed
method is compared with 9 different network compression methods
and achieves the best performance, i.e. 6.42% Top-1 error rate on the
most intensively investigated 50% compression level. The compression
of DenseNet-12-40 is reasonable compared with the other methods.
The accuracy of the operating points DHP-62 of ResNet-110 and DHP-
50 of ResNet-164 is quite close to that of the baseline. More results
on ResNet-110 and ResNet-164 are shown in the Supplementary. A
comparison between `1 and `2 regularization in Eqn. (3.6) is done. The

3.5 ablation study 55

results in the Supplementary shows that `1 regularization is better than
`2 regularization.

On Tiny-ImageNet, DHP achieves lower Top-1 error rates than MetaPrun-
ing [101] under the same FLOPs constraint. DHP results in models that
are more accurate than the uniformly scaled networks. The error rate of
DHP-10 is 1.56% lower than that of MobileNetV2-0.3 with slightly fewer
FLOPs and 5.14% fewer parameters. On MobileNetV1, the accuracy
gain of DHP-50 over MobileNetV1-0.75 goes to 2.59% with over 5%
fewer FLOPs and 10% fewer parameters. Based on this, we hypothe-
sized that it is possible to derive a model which is more accurate than
the original version by pruning the widened mobile networks. And
this is confirmed by comparing the accuracy of the operating points
DHP-24-2 with the baseline accuracy.

More results on ResNet-110 and ResNet-164 are shown in Fig. 3.4.
When the compression ratio is not too severe (above 50%), the accuracy
does not drop too much. The extreme compression prunes about 90%
FLOPs and parameters of the original network. For ResNet-164, the
extreme compression only keeps 8.04% parameters. Thus, the drop in
the accuracy is reasonable.

20 40 60
FLOP Ratio (%)

5

6

7

8

9

T
op

-1
 E

rr
or

 R
at

e
(%

)

ResNet-164 by DHP
ResNet-110 by DHP

(a) FLOPs compression ratio.

20 40 60
Parameter Ratio (%)

5

6

7

8

9

T
op

-1
 E

rr
or

 R
at

e
(%

)

ResNet-164 by DHP
ResNet-110 by DHP

(b) Parameter compression ratio.

Figure 3.4: Top-1 error vs. FLOP and parameter compression ratio on
ResNet-164 and ResNet-110.

3.5.2 Super-resolution

For image super-resolution, the networks are trained on DIV2K [2]
dataset. It contains 800 training images, 100 validation images, and

56 differentiable meta pruning

M
ethod

PSN
R
[dB

]
FLO

Ps
[G

]
Param

s
[M

]
R

untim
e

[m
s]

M
em

[G
B
]

Set
5

Set
1

4
B

1
0

0
U

rban
1

0
0

D
IV

2K

SR
R

esN
et

[
7

6]
Baseline

3
2.

0
3

2
8.

5
0

2
7.

5
2

2
5.

8
8

2
8.

8
5

3
2.

8
3

1.
5

4
3

4.
7

3
0.

6
7

7
3

C
lustering

[
1

3
7]

3
1.

9
3

2
8.

4
4

2
7.

4
7

2
5.

7
1

2
8.

7
5

3
2.

8
3

0.
3

4
3

1.
0

7
0.

8
1

2
3

Factor-SIC
3

[
1

4
7]

3
1.

8
6

2
8.

3
8

2
7.

4
0

2
5.

5
8

2
8.

6
5

2
0.

8
3

0.
8

1
1

0
2.

5
1

1.
4

9
5

7

D
H

P-60
(O

urs)
3

1.
9

7
2

8.
4

7
2

7.
4

8
2

5.
7

6
2

8.
7

9
2

0.
2

9
0.

9
5

2
7.

9
1

0.
5

9
2

3

Basis-
3

2-
3

2
[
9

0]
3

1.
9

0
2

8.
4

2
2

7.
4

4
2

5.
6

5
2

8.
6

9
1

9.
7

7
0.

7
4

4
5.

7
3

0.
9

3
3

1

Factor-SIC
2

[
1

4
7]

3
1.

6
8

2
8.

3
2

2
7.

3
7

2
5.

4
7

2
8.

5
8

1
8.

3
8

0.
6

6
7

4.
6

6
1.

1
2

0
1

Basis-
6

4-
1

4
[
9

0]
3

1.
8

4
2

8.
3

8
2

7.
3

9
2

5.
5

4
2

8.
6

3
1

7.
4

9
0.

6
0

3
6.

7
5

0.
6

7
4

1

D
H

P-40
(O

urs)
3

1.
9

0
2

8.
4

5
2

7.
4

7
2

5.
7

2
2

8.
7

5
1

3.
7

1
0.

6
4

2
2.

7
1

0.
4

9
0

7

D
H

P-20
(O

urs)
3

1.
7

7
2

8.
3

4
2

7.
4

0
2

5.
5

5
2

8.
6

0
7.

7
7

0.
3

6
1

4.
7

4
0.

3
7

9
5

ED
SR

[
9

6]
Baseline

3
2.

1
0

2
8.

5
5

2
7.

5
5

2
6.

0
2

2
8.

9
3

9
0.

3
7

3.
7

0
4

9.
7

3
1.

3
2

7
6

C
lustering

[
1

3
7]

3
1.

9
3

2
8.

4
7

2
7.

4
8

2
5.

7
7

2
8.

8
0

9
0.

3
7

0.
8

2
5

0.
5

1
1.

2
8

3
8

Factor-SIC
3

[
1

4
7]

3
1.

9
6

2
8.

4
7

2
7.

4
9

2
5.

8
1

2
8.

8
1

6
5.

4
9

2.
1

9
1

2
5.

1
0

1.
5

0
0

7

Basis-
1

2
8-

4
0

[
9

0]
3

2.
0

3
2

8.
4

5
2

7.
5

0
2

5.
8

1
2

8.
8

2
6

2.
6

5
2.

0
0

4
8.

1
9

1.
3

2
1

9

Factor-SIC
2

[
1

4
7]

3
1.

8
2

2
8.

4
0

2
7.

4
3

2
5.

6
3

2
8.

7
0

6
0.

9
0

1.
9

0
9

4.
9

4
1.

3
2

0
9

Basis-
1

2
8-

2
7

[
9

0]
3

1.
9

5
2

8.
4

2
2

7.
4

6
2

5.
7

6
2

8.
7

6
5

8.
2

8
1.

7
4

4
5.

8
4

1.
3

2
0

9

D
H

P-60
(O

urs)
3

1.
9

9
2

8.
5

2
2

7.
5

3
2

5.
9

2
2

8.
8

8
5

5.
6

7
2.

2
8

4
5.

1
1

0.
6

9
5

0

D
H

P-40
(O

urs)
3

2.
0

1
2

8.
4

9
2

7.
5

2
2

5.
8

6
2

8.
8

5
3

7.
7

7
1.

5
3

3
3.

5
0

0.
9

6
5

0

D
H

P-20
(O

urs)
3

1.
9

4
2

8.
4

2
2

7.
4

7
2

5.
6

9
2

8.
7

7
1

9.
4

0
0.

7
9

2
2.

6
3

1.
1

5
8

8

Table
3.

5:R
esults

on
im

age
super-resolution

netw
orks.

T
he

u
p

scaling
factor

is
×

4.
R

u
ntim

e
is

averaged
for

U
rban

1
0
0.

M
axim

u
m

G
P

U
m

em
ory

consu
m

p
tion

is
rep

orted
for

U
rban

1
0
0.

FL
O

P
s

is
rep

orted
for

a
128×

128
im

age
patch.D

H
P

achieves
significant

reduction
of

runtim
e.

3.5 ablation study 57

100 test images. Image patches are extracted from the training images.
For EDSR, the patch size of the low-resolution input patch is 48× 48
while for SRResNet the patch size is 24 × 24. The batch size is 16.
The networks are optimized with Adam optimizer. The default hyper-
parameter is used for Adam optimizer. The weight decay factor is
0.0001. The networks are trained for 300 epochs. The learning rate
starts from 0.0001 and decays by 10 after 200 epochs. The networks are
tested on Set5 [9], Set14 [166], B100 [108], Urban100 [63], and DIV2K
validation set.

In order to speed up the training of EDSR, a simplified version of
EDSR is adopted. The original EDSR contains 32 residual blocks and
each convolutional layer in the residual blocks has 256 channels. The
simplified version has 8 residual blocks and each has two convolutional
layers with 128 channels.

The results on image super-resolution networks are shown in Ta-
ble 3.5. DHP is compared with factorized convolution (Factor) [147],
learning filter basis method (Basis) [90], and K-means clustering method
(Clustering) [137]. ‘SIC*’ denotes the number of SIC layers in Fac-
tor [147]. The practical FLOPs instead of the theoretical FLOPs is
reported for Clustering [137]. To fairly compare the methods and mea-
sure the practical compression effectiveness, five metrics are involved
including Peak Signal-to-Noise Ratio (PSNR), FLOPs, number of param-
eters, runtime and GPU memory consumption. Several conclusion can
be drawn. I. Previous methods mainly focus on the reduction of FLOPs
and number of parameter without paying special attention to the actual
acceleration. Although Clustering can reduce substantial parameters
while maintaining quite good PSNR accuracy, the actual computing
resource requirement (GPU memory and runtime) is remained. II. Con-
volution factorization and decomposition methods result in additional
CUDA kernel calls, which is not efficient for the actual acceleration. III.
For the proposed method, the two model complexity metrics, i.e. FLOPs
and parameters change consistently across different operating points,
which leads to consistent reduction of computation resources. IV. DHP
results in both inference-efficient (DHP-20) and accuracy-preserving
(DHP-60) models. The visual results are shown in Fig. 3.5. As can been
seen, the visual quality of the images of DHP is almost indistinguishable
from that of the baseline.

58 differentiable meta pruning

PSNR/FLOPs/Runtime 32.85/28.59/14.10 32.50/28.59/19.75 32.65/19.82/14.71 32.24/19.28/25.49 32.64/17.61/5.40

(a) LR (b) EDSR (d) Cluster (c) Basis (f) Factor (e) DHP

Figure 3.5: Single image super-resolution visual results. PSNR and
FLOPs measured on the image. Runtime averaged on Set5.

3.5.3 Denoising

For image denoising, the networks were trained on the gray version
of DIV2K dataset and tested on BSD68 and DIV2K validation set. As
done for image super-resolution, image patches are extracted from the
training images. For DnCNN, the patch size of the input image is
64× 64 and the batch size is 64. For UNet, the patch size is 128× 128
and the batch size 16. Gaussian noise is added to degrade the input
patches on the fly with noise level σ = 70. Adam optimizer is used to
train the network. The weight decay factor is 0.0001. The networks are
trained for 60 epochs and each epoch contains 10,000 iterations. So in
total, the training continues for 600k iterations. The learning rate starts
with 0.0001 and decays by 10 at Epoch 40.

The results for image denoising networks are shown in Table 3.6.
The same metrics as super-resolution are reported for denoising. An
additional method, i.e. filter group approximation (Group) [117] is in-
cluded. In addition to the same conclusion in Subsec. 3.5.2, another
two conclusions are drawn here. I. Group [117] fails to reduce the
actual computation resources although with quite good accuracy and
satisfactory reduction of FLOPs and number of parameters. This might
due to the additional 1× 1 convolution and possibly the inefficient im-
plementation of group convolution in current deep learning toolboxes.
II. For DnCNN, one interesting phenomenon is that Factor [147] is more
accurate than the baseline but has larger appetite for other resources.
This is due to two facts. Firstly, Factor [147] has skip connections within
the SIC layer. The higher accuracy of Factor [147] just validates the
effectiveness of skip connections. Secondly, the SIC layer of Factor [147]
introduces more convolutional layers. So Factor-SIC3 has five times
more convolutioinal layers than the baseline, which definitely slows
down the execution. The visual results are shown in Fig. 3.6.

3.6 conclusion and future work 59

Method
PSNR [dB] FLOPs

[G]
Params
[M]

Runtime
[ms]

Mem
[GB]BSD68 DIV2K

DnCNN [169]
Baseline 24.93 26.73 9.13 0.56 23.38 0.1534

Clustering [137] 24.90 26.67 9.13 0.12 21.97 0.2973

DHP-60 (Ours) 24.91 26.69 5.65 0.34 18.90 0.1443

DHP-40 (Ours) 24.89 26.65 3.83 0.23 14.62 0.1194

Factor-SIC3 [147] 24.97 26.83 3.54 0.22 125.46 0.5910

Group [117] 24.88 26.64 3.34 0.20 25.69 0.1807

Factor-SIC2 [147] 24.93 26.76 2.38 0.15 84.17 0.4149

DHP-20 (Ours) 24.84 26.58 2.01 0.12 10.72 0.0869

UNet [131]
Baseline 25.17 27.17 3.41 7.76 8.73 0.1684

Clustering [137] 25.01 26.90 3.41 1.72 10.01 0.6704

DHP-60 (Ours) 25.14 27.11 2.11 4.76 6.86 0.4992

Factor-SIC3 [147] 25.04 26.94 1.56 3.42 39.84 0.1889

Group [117] 25.13 27.08 1.49 2.06 11.20 0.1481

DHP-40 (Ours) 25.12 27.08 1.43 3.24 4.50 0.4992

Factor-SIC2 [147] 25.01 26.90 1.22 2.51 30.16 0.1855

DHP-20 (Ours) 25.04 26.97 0.75 1.61 3.93 0.4992

Table 3.6: Results on image denoising networks. The noise level is
70. Runtime and maximum GPU memory are reported for
BSD68. FLOPs is reported for a 128 × 128 image. DHP
achieves significant reduction of runtime.

PSNR/FLOPs/Runtime 25.60/1.08/7.27 25.30/1.08/9.66 25.37/0.49/40.36 25.51/0.47/9.00 25.57/0.45/6.09

(a) Noisy (b) UNet (f) Cluster (d) Factor (e) Group (c) DHP

Figure 3.6: Image denoising visual results. PSNR and FLOPs mea-
sured on the image. Runtime averaged on B100.

3.6 conclusion and future work

In this chapter, we proposed a differentiable automatic meta pruning
method via hypernetwork for network compression. The differentiabil-

60 differentiable meta pruning

ity comes with the specially designed hypernetwork and the proximal
gradient used to search the potential candidate network configurations.
The automation of pruning lies in the uniformly applied `1 sparsity on
the latent vectors and the proximal gradient that solves the problem.
By pruning mobile network with width multiplier α = 2, we obtained
models with higher accuracy but lower computation complexity than
that with α = 1. We hypothesize this is due to the per-layer distinguish-
ing configuration resulting from the automatic pruning. Future work
might be investigating whether this phenomenon reoccurs for the other
networks.

4
G R O U P S PA R S I T Y

4.1 introduction

In the previous two chapters, we investigated filter decomposition
and filter pruning for network compression individually. For filter
decomposition, we propose a method that unifies the previous methods
in Chapter 2. For filter pruning, a differentiable pruning method is
proposed in Chapter 3. In this chapter, we propose a unified analysis
of the two techniques.

Despite their success, both the pruning-based and decomposition-
based approaches have their respective limitations. Filter pruning can
only take effect in pruning output channels of a tensor and equivalently
cancelling out inactive filters. This is not feasible under some circum-
stances. The skip connection in a block is such a case where the output
feature map of the block is added to the input. Thus, pruning the
output could amount to cancelling a possible important input feature
map. This is the reason why many pruning methods fail to deal with
the second convolution of the ResNet [53] basic block. As for filter
decomposition, it always introduces another 1× 1 convolutional layer,
which means additional overhead of calling CUDA kernels.

Previously, filter pruning and decomposition were developed sep-
arately. In this chapter, we unveil the fact that filter pruning and
decomposition are highly related from the viewpoint of compact tensor
approximation. Specifically, both filter pruning and filter decomposi-
tion seek a compact approximation of the parameter tensors despite
their different operation forms to cope with the application scenarios.
Consider a vectorized image patch x ∈ Rm×1 and a group of n filters
W = {w1, . . . , wn} ∈ Rm×n. The pruning methods remove output
channels and approximate the original output xTW as xTC, where
C ∈ Rm×k only has k output channels. Filter decomposition methods
approximate W as two filters A ∈ Rm×k and B ∈ Rk×n and AB is the
rank k approximation of W. Thus, both the pruning and decomposition
based methods seek a compact approximation to the original network
parameters, but adopt different strategies for the approximation.

61

62 group sparsity

Figure 4.1: The hinge between filter decomposition and filter prun-
ing. A sparsity-inducing matrix A is attached to a normal
convolution. The matrix acts as the hinge between filter
pruning and decomposition. By enforcing group sparsity to
the columns and rows of the matrix, equivalent pruning and
decomposition operations can be obtained. For pruning, the
product of W and the column-reduced matrix Ac, i.e. Wc

acts as the new convolutional filter. To save computation
after filter decomposition the reduced matrices Wr and Ar

are used as two convolutional filters.

The above observation shows that filter pruning and decomposition
constitute complementary components of each other. This fact encour-
ages us to design a unified framework that is able to incorporate the
pruning-based and decomposition-based approaches simultaneously.
This simple yet effective measure can endow the devised algorithm
with the ability of flexibly switching between the two operation modes,
i.e. filter pruning and decomposition, depending on the layer-wise con-
figurations. This makes it possible to leverage the benefits of both
methods.

The hinge point between pruning and decomposition is group spar-
sity, see Fig. 4.1. Consider a 4D convolutional filter, reshaped into a 2D
matrix W ∈ Rfeatures×outputs. Group sparsity is added by introducing a
sparsity-inducing matrix A. By applying group sparsity constraints on
the columns of A, the output channel of the sparsity-inducing matrix
A and equivalently of the matrix product W× A can be reduced by
solving an optimization problem. This is equivalent to filter pruning.
On the other hand, if the group sparsity constraints are applied on
the rows of A, then the inner channels of the matrix product W×A,
namely, the output channel of W and the input channel of A, can be
reduced. To save the computation, the single heavyweight convolution

4.2 related work 63

W is converted to a lightweight and a 1× 1 convolution with respect
to the already reduced matrices Wr and Ar. This breaks down to filter
decomposition.

Thus, the contribution of this chapter is four-fold.

I Starting from the perspective of compact tensor approximation,
the connection between filter pruning and decomposition is an-
alyzed. Although this perspective is the core of filter decompo-
sition, it is still novel for network pruning. Actually, both of the
methods approximate the weight tensor with compact representa-
tion that keeps the accuracy of the network.

II Based on the analysis, we propose to use sparsity-inducing ma-
trices to hinge filter pruning and decomposition and introduce a
unified formulation. This square matrix is inspired by filter de-
composition and corresponds to a 1× 1 convolution. By changing
the way how the sparsity regularizer is applied to the matrix, our
algorithm can achieve equivalent effect of either filter pruning
or decomposition or both. To the best of our knowledge, this
is the first work that analyzes the two methods under the same
umbrella.

III The third contribution is the development of binary search, gradi-
ent based learning rate adjustment, layer balancing, and anneal-
ing methods. All are important for the success of the proposed
algorithm. These details are obtained by observing the influ-
ence of the proximal gradient method on the filter during the
optimization.

IV The proposed method can be applied to various CNNs. We apply
this method to VGG [136], ResNet [53], ResNeXt [152], WRN [165],
and DenseNet [62]. The proposed network compression method
achieves state-of-the-art performance on these networks.

4.2 related work

In this section, we firstly review the closely related work including
pruning-based and decomposition-based compression methods.

64 group sparsity

4.2.1 Network Pruning with Group Sparsity

Structural pruning aims at zeroing out structured groups of the con-
volutional filters [56, 54]. Specifically, group sparsity regularization
has been investigated in recent works for the structural pruning of
network parameters [178, 150, 4]. Wen et al. [150] and Alvarez et al. [4]
proposed to impose group sparsity regularization on network parame-
ters to reduce the number of feature map channels in each layer. The
success of this method triggered the studies of group sparsity based
network pruning. Subsequent works improved group sparsity based
approaches in different ways. One branch of works combined the group
sparsity regularizer with other regularizers for network pruning. A
low-rank regularizer [3] as well as an exclusive sparsity regularizer
[161] were adopted for improving the pruning performance. Another
branch of research investigated a better group-sparsity regularizer for
parameter pruning including group ordered weighted `1 regularizer
[167], out-in-channel sparsity regularization [82] and guided attention
for sparsity learning [143]. In addition, some works also attempted
to achieve group-sparse parameters in an indirect manner. In [102]
and [64], scaling factors were introduced to scale the outputs of spe-
cific structures or feature map channels to structurally prune network
parameters.

4.2.2 Filter Decomposition and Group Sparsity

Another category of works compresses network parameters through
tensor decomposition [29, 74, 65, 173, 90]. A brief review of the filter
decomposition methods is given in Subsec. 2.2.3. Here we point out
that filter decomposition methods rely on the low-rankness of the
convolutional filters. Specifically, in the simplest form, the original filter
can be decomposed into basis filters and a linear combination matrix
by singular value decomposition. Then based on the low-rankness
assumption, filters with smaller singular values are removed. When the
singular values are multiplied with the linear combination matrix, this
can be regarded as applying group sparsity on the matrix.

4.3 the proposed method 65

Figure 4.2: The flowchart of the proposed algorithm.

4.3 the proposed method

This section explains the proposed method (Fig. 4.2). Specifically, it
describes how group sparsity can hinge filter pruning and decompo-
sition. The pair {x, y} denotes the input and target of the network.
Without loss of clarity, we also use x to denote the input feature map
of a layer. The output feature map of a layer is denoted by z. The
filters of a convolutional layer are denoted by W while the introduced
group sparsity matrix is denoted by A. The rows and columns of A are
denoted by Ai, and Aj, respectively. The general structured groups of
A are denoted by Ag.

4.3.1 Group sparsity

The convolution between the input feature map x and the filters can be
converted to a matrix multiplication, i.e. ,

Z = X×W, (4.1)

where X ∈ RN×cwh, W ∈ Rcwh×n, and Z ∈ RN×n are the reshaped input
feature map, output feature map, and convolutional filter, c, n, w× h,
and N denotes the input channel, number of filters, filter size, and
number of reshaped features, respectively. For the sake of brevity, the
bias term is omitted here. The weight parameters W are usually trained
with some regularization such as weight decay to avoid overfitting the
network. To get structured pruning of the filter, structured sparsity
regularization is used to constrain the filter, i.e.

min
W
L(y, f (x; W)) + µD(W) + λR(W), (4.2)

66 group sparsity

(a) Group sparsity enforced on column.

(b) Group sparsity enforced on row.

Figure 4.3: Group-sparsity regularization enforcement. (a) The
columns of the sparsity-inducing matrix are regularized.
This results in nullified filters and the corresponding output
feature maps are removed. (b) The rows are regularized and
some are zeroed out. The filters of the previous layer and
also the feature maps are removed.

where D(·) and R(·) are the weight decay and sparsity regularization,
µ and λ are the regularization factors.

Different from other group sparsity methods that directly regular-
ize the matrix W [161, 82], we enforce group sparsity constraints by

4.3 the proposed method 67

incorporating a sparsity-inducing matrix A ∈ Rn×n, which can be con-
verted to the filter of a 1× 1 convolutional layer after the original layer.
Then the original convolution in Eqn. (4.1) becomes Z = X× (W×A).
To obtain a structured sparse matrix, group sparsity regularization is
enforced on A. Thus, the loss function becomes

min
W,A
L(y, f (x; W, A)) + µD(W) + λR(A). (4.3)

Solving the problem in Eqn. (4.3) results in structured group sparsity
in matrix A. By considering matrix W and A together, the actual effect
is that the original convolutional filter is compressed.

In comparison with the filter selection method [102, 64], the proposed
method not only selects the filters in a layer, but also makes linear
combinations of the filters to minimize the error between the original
and the compact filter. On the other hand, different from other group
sparsity constraints [161, 82], there is no need to change the original
filters W of the network too much during optimization of the sparsity
problem. In our experiments, we set a much smaller learning rate for
the pretrained weight matrix W.

4.3.2 The hinge

The group sparsity term in Eqn. (4.3) controls how the network is
compressed. This term has the form

R(A) = Φ(‖Ag‖2), (4.4)

where Ag denotes the different groups of A, ‖Ag‖2 is the `2 norm of
the group, and Φ(·) is a function of the group `2 norms.

If group sparsity regularization is added to the columns of A as in
Fig. 4.3a, i.e. , R(A) = Φ(‖Aj‖2), a column pruned version Ac is ob-
tained and the output channels of the corresponding 1× 1 convolution
are pruned. In this case, we can multiply W and Ac and use the result
as the filter of the convolutional layer. This is equivalent to pruning the
output channels of the convolutional layer with the filter W.

On the other hand, group sparsity can be also applied to the rows
of A, i.e. R(A) = Φ(‖Ai‖2). In this case, a row-sparse matrix Ar is
derived and the input channels of the 1× 1 convolution can be pruned
(See Fig. 4.3b). Accordingly, the corresponding output channels of
the former convolution with filter W can be also pruned. However,

68 group sparsity

Data: training dataset
Result: the compressed network

1 initialization: the current compression ratio γc = 1; the target
compression ratio γ∗, the nullifying threshold of the group `2

norm T ;
2 while γc − γ∗ <= α do
3 start a a new epoch;
4 for batch ∈ training dataset do
5 Wt+1 = Wt − ηs∇G(Wt);
6 At+∆ = At − η∇H(At);
7 At+1 = proxληR(At+∆);
8 end
9 compress the network with the threshold T ;
10 compute the compression ratio γc

11 end
Algorithm 1: The optimization algorithm used to solve the problem
defined in Eqn. (4.3).

since the number of output channel of the later convolution is not
changed, multiplying out the two compression matrices does not save
any computation. So a better choice is to leave them as two separate
convolutional layers. This tensor manipulation method is equivalent to
filter decomposition where a single convolution is decomposed into a
lightweight one and a linear combination. In conclusion, by enforcing
group sparsity to the columns and rows of the introduced matrix A,
we can derive two tensor manipulation methods that are equivalent to
the operation of filter pruning and decomposition, respectively. This
provides a degree of freedom to choose the tensor manipulation method
depending on the specifics of the underlying network.

4.3.3 Proximal gradient solver

To solve the problem defined by Eqn. (4.3), the parameter W can be
updated with SGD but with a small learning rate, i.e. Wt+1 = Wt −
ηs∇G(Wt), where G(Wt) = L(· , f (· ; Wt, ·)) + µD(Wt). This is because
it is undesirable to modify the pretrained parameters too much during
the optimization phase. The focus should be on the sparsity matrix A.

4.3 the proposed method 69

Result: the nullifying threshold T ∗ = g−1(γ∗)

1 initialization: the target compression ratio γ∗, the initial step s,
the stop criterion C, and T = T0;

2 while |γn − γ∗| > C do
3 compress the network with the threshold T ;
4 calculate the current compression ratio γn;
5 if (γn−1 >= γ∗) == (γn < γ∗) then s← s/2;
6 if γn > γt then
7 T ← T + s;
8 else
9 T ← T − s;

10 end
11 end

Algorithm 2: Binary search of the threshold T .

The proximal gradient algorithm [114] is used to optimize the matrix
A in Eqn. (4.3). It consists of two steps, i.e. gradient descent and
proximal operator. The parameters in A are first updated by SGD with
the gradient of the loss function H(A) = L(y, f (x; W, A)), namely,

At+∆ = At − η∇H(At), (4.5)

where η is the learning rate and η >> ηs. Then the proximal operator
chooses a neighborhood point of At+∆ that minimizes the group sparsity
regularization, i.e.

At+1 = proxληR(At+∆)

= argmin
A

{
R(At+∆) +

1
2λη
‖A−At+∆‖2

2

}
. (4.6)

The sparsity regularizer Φ(·) can have different forms, e.g. , `1

norm [114], `1/2 norm [155], `1−2 norm [158], or logsum [42]. All
of them try to approximate the `0 norm. In this chapter, we mainly
use {`p : p = 1, 1/2} regularizers while we also include the `1−2 and
logsum regularizers in the ablation studies. The proximal operators of
the four regularizers have a closed-form solution. Briefly, the solution is
the soft-thresholding operator [11] for p = 1 and the half-thresholding
operator for p = 1/2 [155]. The solutions are given in the next section.
The gradient step and proximal step are interleaved in the optimization

70 group sparsity

phase of the regularized loss until some predefined stopping criterion
is achieved. After each epoch, groups with `2 norms smaller than a
predefined threshold T are nullified. And the compression ratio in
terms of FLOPs is calculated. When the difference between the current
and the target compression ratio γc and γ∗ is lower than the stopping
criterion α, the compression phase stops. The detailed compression
algorithm that utilizes the proximal gradient is shown in Algorithm 1.

4.3.4 Binary search of the nullifying threshold

After the compression phase stops, the resulting compression ratio is
not exactly the same as the target compression ratio. To fit the target
compression ratio, we use a binary search algorithm to determine
the nullifying threshold T . The compression ratio γ is actually a
monotonous function of the threshold T , i.e. γ = g(T). However, the
explicit expression of the function g(·) is not known. Given a target
compression threshold γ∗, we want to derive the threshold needed to
nullify the sparse groups, i.e. T ∗ = g−1(γ∗), where g−1(·) is the inverse
function of g(·). The binary search approach shown in Algorithm 2

starts with an initial threshold T0 and a step s. It adjusts the threshold
T according to the values of the current and target compression ratio.
The step s is halved if the target compression ratio sits between the
previous one γn−1 and the current one γn. The searching procedure
stops as soon as the final compression ratio γn is close enough to the
target, i.e. , |γn − γ∗| ≤ C.

4.3.5 Gradient based adjustment of learning rate

In the ResNet basic block, both of the two 3× 3 convolutional layers
are attached a sparsity-inducing matrix A1 and A2, namely, 1× 1 con-
volutional layers. We empirically find that the gradient of the first
sparsity-inducing matrix is larger than that of the second. Thus, it
is easier for the first matrix to jump to a point with larger average
group `2 norms. This results in unbalanced compression of the two
sparsity-inducing matrices since the same nullifying threshold is used
for all of the layers. Thus, much more channels of A2 are compressed
than channels of A1. This is an undesirable compression approach

4.3 the proposed method 71

since both of the two layers are equally important. Hence, a balanced
compression between them is preferable.

To solve this problem, we adjust the learning rate of the first and
second sparsity-inducing matrices according to their gradients. Let
the ratio of the average group `2 norm between the gradients of the
matrices be

ρ = ∑
g

(
∇A1

)
g

/ ∑
g

(
∇A2)

g . (4.7)

Then the learning rate of the first convolution is divided by ρm. We
empirically set m = 1.35.

4.3.6 Group `2 norm based layer balancing

The proximal gradient method depends highly on the group sparsity
term. That is, if the initial `2 norm of a group is small, then it is
highly likely that this group will be nullified. The problem is that the
distribution of the group `2 norm across different layers can be very
diverse, which can result in unbalanced compression of the layers. In
this case, a narrow bottleneck could appear in the compressed network
that would hamper the performance. To solve this problem, we use the
mean of the group `2 norm of a layer to recalibrate the regularization
factor of the layer. That is,

λl = λ
1
G

G

∑
g=1
‖Ag‖2, (4.8)

where λl is the regularization factor of the l-th layer. In this way, the
layers with larger average group `2 norm obtain a larger penalty.

4.3.7 Regularization factor annealing

The compression procedure starts with a fixed regularization factor.
However, towards the end of the compression phase, the fixed regu-
larization factor may be so large that more than the desired groups
are nullified in one epoch. Thus, to solve the problem, we anneal the
regularization factor when the average group `2 norm shrinks below
some threshold. The annealing also impacts the proximal step but has
less influence while the gradient step plays a more active role in finding
the local minimum.

72 group sparsity

4.3.8 Distillation loss in the finetuning phase

In Eqn. (4.3), the prediction loss and the groups sparsity regularization
are used to solve the compression problem. After the compression
phase, the derived model is further finetuned. During this phase, a
distillation loss is exploited to force similar logit outputs of the original
network and the pruned one. The vanilla distillation loss is used, i.e.

L = (1− α)Lce(y, σ(zc))

+ 2αT2Lce

(
σ
(zc

T

)
, σ
(zo

T

))
,

(4.9)

where Lce(·) denotes the cross-entropy loss, σ(·) is the softmax function,
zc and zo are the logit outputs of the compressed and the original
network. For the sake of simplicity, the network parameters are omitted.
We use a fixed balancing factor α = 0.4 and temperature T = 4.

4.4 closed-form solutions to the proximal operators

In this section, the closed-form solutions to the proximal operators in
Eqn. (4.6) is presented. The proximal operator of a given function f (·)
is defined by

proxλ f = argmin
v

{
f (v)− 1

λ
‖x− v‖2

2

}
(4.10)

This operator has closed-form solution when the function f (·) has the
form of `1, `1/2, `1−2, and logsum regularization. For `1, the solution
is the soft-thresholding function and for `1/2 it is the so-called half-
thresholding function. The soft-thresholding function is defined as

Sλ(x) = sgn(x)[|x| − λ]+, (4.11)

where sgn(·) is the sign function and [·]+ calculates the maximum of
the argument and 0. The hard-thresholding function is given by

Hλ(x) =

{
2
3 x(1 + cos(2π

3 −
2
3 φλ(x))), |x| >

3√54
4 (λ)

2
3 ,

0, otherwise,
(4.12)

where φλ(x) = arccos(λ
8 (
|x|
3)−

3
2).

4.4 closed-form solutions to the proximal operators 73

The `2,1 group sparsity regularizer is defined as

R(A) = Φ(‖Ag‖2) = ∑
g
‖Ag‖p

2 , (4.13)

where Φ(·) is the function of the group `2 norms ‖Ag‖2 and has the
form of `1 norm here. The proximal operator of the sparsity-inducing
matrix A defined in the main chapter is

At+1 = proxληR(At+∆) = argmin
A

{
R(At+∆) +

1
2λη
‖A−At+∆‖2

F

}
,

(4.14)
where the function R(·) replaces f (·) in Eqn. (4.10). The closed-form
solution of the proximal operator in Eqn. (4.14) can be derived from the
solutions to Eqn. (4.10) according to the following theorem [8].

Theorem 4.1. Let f : E → R be a function given by f (x) = g(‖x‖),
where g : R → (−∞, ∞] is a proper closed and convex function satisfying
dom(g) ⊆ [0, ∞). Then,

proxλ f (x) =

{
proxλg(‖x‖2)

x
‖x‖2

, x 6= 0,

{u ∈ E : ‖u‖2 = proxλg(0)}, x = 0.
(4.15)

Thus, with a little bit variable substitution, when Φ(·) is `1 regularizer,
the solution to Eqn. (4.14) is given by

At+1 =

[
1− λη

‖Ag‖2

]
+

Ag,i, (4.16)

where Ag,i is the i-th element in the g-th group of the sparsity-inducing
matrix A, and for the sake of simplicity, the subscript t+∆ is omitted.

When the function Φ(·) has the form of `1/2, `1−2, and logsum,
it is non-convex. However, we still use the variable substitution in
Theorem 4.1 experimentally and the corresponding results in the main
chapter are also very competitive. For `1/2 regularizer, the solution is
given by

At+1 =

{
2
3

(
1 + cos

(2π
3 −

2
3 φλη

(
‖Ag‖2

)))
Ag,i, ‖Ag‖2 >

3√54
4 (λη)

2
3 ,

0, otherwise,
(4.17)

74 group sparsity

`1 At+1 =
[
1− λη

‖Ag‖2

]
+

Ag,i

`1/2
At+1 =

{
2
3
(
1 + cos

(2π
3 −

2
3 φλη

(
‖Ag‖2

)))
Ag,i, ‖Ag‖2 > β,

0, otherwise,

β =
3√54
4 (λη)

2
3 , φλη(‖Ag‖2) = arccos(λη

8 (
‖Ag‖2

3)−
3
2)

`1−2
At+1 = (1 + λη

‖c‖2
)[1− λη

‖Ag‖2
]+Ag,i

cg = [‖Ag‖2 − λη]+

logsum
At+1 =

c1+
√

c2
2

Ag,i
‖Ag‖2

, c2 > 0,

0, c2 6 0,
λ > 0, 0 < ε <

√
λη, c1 = ‖Ag‖2 − ε, c2 = c2

1 − 4(λη − ε‖Ag‖2)

Table 4.1: The solution to the proximal operator for `1, `1−2, `1/2, and
logsum regularizers.

where φλη(‖Ag‖2) = arccos(λη
8 (
‖Ag‖2

3)−
3
2). Similarly, the solution to the

logsum regularizer is given by

At+1 =

{ c1+
√

c2
2

Ag,i
‖Ag‖2

, c2 > 0,

0, c2 6 0,
(4.18)

where λ > 0, 0 < ε <
√

λη, c1 = ‖Ag‖2 − ε, and c2 = c2
1 − 4(λη −

ε‖Ag‖2). When the regularizer is `1−2 regularizer, then the solution is
given by

At+1 = (1 +
λη

‖c‖2
)[1− λη

‖Ag‖2
]+Ag,i (4.19)

where cg = [‖Ag‖2− λη]+. Note that the case where all of the group `2

norms Ag equal 0 is not considered [158] because it never happens dur-
ing the optimization of our algorithm. The solutions are summarized
in Table 4.1.

4.5 implementation considerations

4.5.1 Sparsity-inducing matrix in network blocks

In the analysis of Sec. 4.3, a 1× 1 convolutional layer with the sparsity-
inducing matrix is appended after the uncompressed layer. When it

4.6 experimental results 75

comes to different network blocks, we tweak it a little bit. As stated, both
of the 3× 3 convolutions in the ResNet [53] basic block are appended
with a 1× 1 convolution. For the first sparsity-inducing matrix, group
sparsity regularization can be enforced on either the columns or the
rows of the matrix. As for the second matrix, group sparsity is enforced
on its rows due to the existence of the skip connection.

The ResNet [53] and ResNeXt [152] bottleneck block has the structure
of 1× 1 → 3× 3 → 1× 1 convolutions. Here, the natural choice of
sparsity-inducing matrices are the leading and the ending convolutions.
For the ResNet bottleneck block, the two matrices select the input and
output channels of the middle 3× 3 convolution, respectively. Things
become a little bit different for the ResNeXt bottleneck since the middle
3× 3 convolution is a group convolution. So the aim becomes enforcing
sparsity on the already existing groups of the group convolution. In
order to do that, the parameters related to the groups in the two
sparsity-inducing matrices are concatenated. Then group sparsity is
enforced on the new matrix. After the compression phase, a whole
group can be nullified.

4.5.2 Initialization of W and A

For the ResNet and ResNeXt bottleneck block, 1× 1 convolutions are
already there. So the original network parameters are used directly.
However, it is necessary to initialize the newly added sparsity-inducing
matrix A. Two initialization methods are tried. The first one initial-
izes W and A with the pretrained parameters and identity matrix,
respectively. The second method first calculates the singular value
decomposition of W, i.e. W = USVT. Then the left eigenvector U and
the matrix SVT are used to initialize W and A. Note that the singular
values are annexed by the right eigenvector. Thus, the columns of W,
i.e. the filters of the convolutional layer lie on the surface of the unit
sphere in the high-dimensional space.

4.6 experimental results

In this section, the proposed method is validated on three image clas-
sification datasets including CIFAR10 and CIFAR100 [70]. The net-
work compression method is applied to ResNet [53], ResNeXt [152],

76 group sparsity

Regularizer `1 `1−2 `1/2 logsum
Regularization factor λ 2e−4 2e−4 4e−4 9e−5

Table 4.2: The regularization factor for `1, `1−2, `1/2, and logsum.

VGG [136], and DenseNet [62] on CIFAR10 and CIFAR100, WRN [165]
on CIFAR100. For ResNet20 and ResNet56 on CIFAR dataset, the resid-
ual block is the basic ResBlock with two 3× 3 convolutional layers. For
ResNet164 on CIFAR, the residual block is a bottleneck block. The
investigated models of ResNeXt are ResNeXt20 and ResNeXt164 with
carlinality 32, and bottleneck width 1. WRN has 16 convolutional layers
with widening factor 10.

The training protocol of the original network is as follows. The
networks are trained for 300 epochs with SGD on CIFAR dataset. The
momentum is 0.9 and the weight decay factor is 10−4. Batch size is
64. The learning rate starts with 0.1 and decays by 10 at Epoch 150

and 225. The ResNet50 model is loaded from the pretrained PyTorch
model [115]. The models are trained with Nvidia Titan Xp GPUs. The
proposed network compression method is implemented by PyTorch.

We fix the hyper parameters of the proposed method by empirical
studies. The stop criterion α in Algorithm 1 is set to 0.1. The threshold
T is set to 0.005. Unless otherwise stated, `1 regularizer is used. The
regularization factors for different regularizers are listed in Table 4.2.
As already mentioned, during the compression step, we set different
learning rates for W and A. For CIFAR10 and CIFAR100 datasets, the
learning rate η of the sparsity-inducing matrix A during compression
optimization is set to 0.1. The ratio between the learning rate of W and
A is set to 0.01. That is, the learning rate ηs of W during compression
optimization is 0.001.

4.6.1 Results on CIFAR10

The ablation study on ResNet56 is shown in Table 4.3. Different combi-
nations of the hyper parameters T and α are investigated. There are
only slight changes in the results for different combinations. Anyway,
when T = 0.005 and α = 0.01, our method achieves the lowest error
rate. And we use this combination for the other experiments. As for the

4.6 experimental results 77

Regularizer Threshold T α Top-1 error (%)

`1 0.001 0.05 6.54

`1 0.005 0.1 6.53

`1 0.001 0.05 6.66

`1 0.005 0.01 6.37

logsum 0.005 0.01 6.53

`1/2 0.005 0.01 6.31

`1−2 0.005 0.01 6.56

Table 4.3: Ablation study. The proposed compression method is ap-
plied to ResNet56 and tested on CIFAR10. The compression
ratio is fixed to 50%. Different regularizers and hyper param-
eters T and α are examined.

Model Method Top-1 / BL (%) FLOPs (%) Params (%)

ResNet-
56

[175] 7.74/6.96 79.70 79.51

GAL-0.6 [97] 6.62/7.64 63.40 88.20

[81] 6.94/6.96 62.40 86.30

NISP [163] 6.99/6.96 56.39 57.40

CaP [110] 6.78 / 6.49 50.20 –
ENC [67] 7.00 / 6.90 50.00 –
AMC [55] 8.10 / 7.20 50.00 –
KSE [95] 6.77 / 6.97 48.00 45.27

FPGM [54] 6.74 / 6.41 47.70 –
Hinge (ours) 6.31 / 7.05 50.00 48.73

KSE [95] 8.00 / 6.97 24.00 –
Hinge (ours) 7.35 / 7.05 24.00 20.80

ResNeXt-
164

SSS [64] 5.42 / 6.41 44.38 64.38

Hinge (ours) 5.13 / 4.82 44.42 50.53

VGG16

[175] 6.82 / 6.75 60.90 26.66

GAL-0.1 [97] 6.58 / 6.04 54.80 17.80

Hinge (ours) 6.41 / 5.98 60.93 19.95

DenseNet-
12-40

GAL-0.01 [97] 5.39 / 5.19 64.70 64.40

[175] 6.84 / 5.89 55.22 40.33

Hinge (ours) 5.33 / 5.26 55.60 72.46

Table 4.4: Comparison of CIFAR10 compression results.

78 group sparsity

20 30 40 50 60

FLOP Ratio (%)

6.5

7

7.5

8

T
o
p

-1
 E

rr
o

r
R

a
te

 (
%

) KSE

Hinge (ours)

(a) FLOP ratio comparison.

20 30 40 50

Parameter Ratio (%)

6.5

7

7.5

T
o
p

-1
 E

rr
o

r
R

a
te

 (
%

) KSE

Hinge (ours)

(b) Parameter ratio comparison.

Figure 4.4: Comparison between KSE [95] and Hinge under different
compression ratio on CIFAR10 for ResNet56.

different regularizers, `1 and `1/2 regularization are clearly better than
`1−2 and logsum. Due to the simplicity of the `1 proximal operator in
contrast to the `1/2, we use `1 instead of `1/2 in the other experiments.

The experimental results on CIFAR10 are shown in Table. 4.4. The
Top-1 error rate, the percentage of the remaining FLOPs and param-
eters of the compressed models are listed in the table. For ResNet56,
two operating points are reported. The operating point of 50% FLOP
compression is investigated by a bunch of state-of-the-art compression
methods. Our proposed method achieves the best performance un-
der this constraint. At the compression ratio of 24%, our approach is
clearly better than KSE [95]. For ResNet and ResNeXt with 20 and 164

layers, our method shoots a lower error rate than SSS. For VGG and
DenseNet, the proposed method reduces the Top-1 error rate by 0.41 %
and 1.51 % compared with [175]. In Fig. 4.4, we compare the FLOPs
and number of parameters of the compressed model by KSE and the
proposed method under different compression ratios. As shown in
the figure, our compression method outperforms KSE easily. Fig. 4.5a
through Fig. 4.5d compare the FLOPs and number of parameters of
ResNet20 and ResNext20 compressed by SSS and our method on CI-
FAR10. Our method establishes a lower bound for SSS. The layer-wise
compression ratio of the compressed network is shown in Fig. 4.6. The
overall FLOPs compression ratio is 50%. The proposed method results
in a sawtooth architecture. That is, for the convolutions with the same
feature dimension (i.e. Layer 1 to Layer 18, Layer 19 to Layer 36, and

4.6 experimental results 79

Layer 37 to Layer54), the middle layers generally have a severer degree
of compression.

40 50 60 70

FLOP Ratio (%)

7.5

8

8.5

9

9.5

T
o
p
-1

 e
rr

o
r

(%
)

SSS

Hinge (ours)

(a) CIFAR10, ResNet20

40 60 80 100

Parameter Ratio (%)

7.5

8

8.5

9

9.5

T
o
p
-1

 e
rr

o
r

(%
)

SSS

Hinge (ours)

(b) CIFAR10, ResNet20

40 50 60 70 80

FLOP Ratio (%)

6

7

8

9

10

11

T
o
p
-1

 e
rr

o
r

(%
)

SSS

Hinge (ours)

(c) CIFAR10, ResNeXt20

40 60 80 100

Parameter Ratio (%)

6

7

8

9

10

11

T
o
p
-1

 e
rr

o
r

(%
)

SSS

Hinge (ours)

(d) CIFAR10, ResNeXt20

30 40 50 60 70

FLOP Ratio (%)

30

31

32

33

34

35

T
o
p
-1

 e
rr

o
r

(%
)

SSS

Hinge (ours)

(e) CIFAR100, ResNet20

20 40 60 80 100

Parameter Ratio (%)

30

31

32

33

34

35

T
o
p
-1

 e
rr

o
r

(%
)

SSS

Hinge (ours)

(f) CIFAR100, ResNet20

Figure 4.5: Comparison between SSS [64] and the proposed method.

80 group sparsity

60 70 80 90 100

FLOP Ratio (%)

27

28

29

30

31

T
o
p

-1
 e

rr
o
r

(%
)

SSS

Hinge (ours)

(g) CIFAR100, ResNeXt20

60 70 80 90 100

Parameter Ratio (%)

27

28

29

30

31

T
o
p

-1
 e

rr
o
r

(%
)

SSS

Hinge (ours)

(h) CIFAR100, ResNeXt20

40 50 60 70 80

FLOP Ratio (%)

22

23

24

25

26

T
o
p
-1

 E
rr

o
r

R
a
te

 (
%

) SSS

Hinge No Distill

Hinge (ours)

(i) CIFAR100, ResNet164

40 60 80 100

Parameter Ratio (%)

22

23

24

25

26

T
o

p
-1

 E
rr

o
r

R
a

te
 (

%
)

SSS

Hinge No Distill

Hinge (ours)

(j) CIFAR100, ResNet164

0 20 40 60

FLOP Ratio (%)

20

25

30

35

T
o
p
-1

 E
rr

o
r

R
a
te

 (
%

) SSS

Hinge No Distill

Hinge (ours)

(k) CIFAR100, ResNeXt164

0 50 100

Parameter Ratio (%)

20

25

30

35

T
o

p
-1

 E
rr

o
r

R
a

te
 (

%
)

SSS

Hinge No Distill

Hinge (ours)

(l) CIFAR100, ResNeXt164

Figure 4.5: Comparison between SSS [64] and the proposed method
(continued).

4.6.2 Results on CIFAR100

Table 4.5 shows the compression results on CIFAR100. For the com-
pression of WRN, we analyze the influence of regularization factor

4.6 experimental results 81

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

Layer

0

10

20

30

40

50

60

70

80

90

C
o
m

p
re

s
s
io

n
 r

a
ti
o
 (

%
)

Figure 4.6: Layer-wise compression ratio of ResNet56 on CIFAR10.

Model Method Top-1 / BL (%) FLOPs (%) Params (%)

WRN

CGES [161] 21.97 / 21.62 75.56 –
Hinge-NA 23.61 / 21.58 75.59 84.31

Hinge (ours) 21.79 / 21.58 75.61 83.29

CGES [161] 22.75 / 21.62 57.31 –
Hinge-NA 23.13 / 21.58 57.41 68.72

Hinge (ours) 22.06 / 21.58 57.39 67.80

ResNet20

SSS [64] 34.42 / 30.91 32.98 54.42

Hinge (ours) 33.66 / 31.17 32.94 33.64

ResNet164

SSS [64] 24.42 / 23.31 55.33 86.75

Hinge (ours) 23.12 / 23.22 55.32 76.57

ResNeXt20

SSS [64] 30.60 / 28.00 53.51 76.34

Hinge (ours) 28.74 / 28.05 53.59 65.24

ResNeXt164

SSS [64] 26.71 / 23.18 47.69 72.47

Hinge (ours) 22.56 / 23.13 47.75 58.49

Table 4.5: Comparison of CIFAR100 compression results. For a fair
comparison, the model size from different methods is kept to
the same level. Hinge-NA stands for our hinge method with-
out regularization factor annealing during the compression
phase.

annealing during the compression phase. It is clear that with the
annealing mechanism, the proposed method achieves much better per-
formance. This is because towards the end of the compression phase,
the proximal gradient solver has found quite a good neighbor of the

82 group sparsity

local minimum. In this case, the regularization factor should diminish
in order for a better exploration around the local minimum. Compared
with the previous group sparsity method CGES [161], our hinge method
with the annealing mechanism results in better performance.

Fig. 4.5i through Fig. 4.5l compare the compression performance
of SSS and our method on the 164-layer ResNet and ResNext. Even
without the distillation loss, our method is already better than SSS.
When the distillation loss is utilized, the proposed method brings the
Top-1 error rate to an even lower level. The corresponding results for
the 20-layer networks are shown in Fig. 4.5e through 4.5g.

4.7 conclusion

In this chapter, we propose to hinge filter pruning and decomposition
via group sparsity. By enforcing group sparsity regularization on the
different structured groups, i.e. , columns and rows of the sparsity-
inducing matrix, the manipulation of the tensor breaks down to filter
pruning and decomposition, respectively. The unified formulation
enables the devised algorithm to flexibly switch between the two modes
of network compression, depending on the specific circumstances in
the network. Proximal gradient method with gradient based learning
rate adjustment, layer balancing, and regularization factor annealing
are used to solve the optimization problem. Distillation loss is used in
the finetuning phase. The experimental results validate the proposed
method.

Part II

N E U R A L A R C H I T E C T U R E O P T I M I Z AT I O N

5
T H E H E T E R O G E N E I T Y H Y P O T H E S I S

5.1 introduction

Different from the previous chapters on network compression, the focus
of this chapter is fine-grained neural architecture optimization. Recently,
neural network design has also evolved from manual design [136, 53,
62] to NAS [100, 140] and semi-automation [157, 58, 122]. State-of-the-art
network designs focus on discovering the overall network architecture
with regularly repeated convolutional layers. This has been the golden
standard of current CNN designs. For example, Ma et al. mentioned
that a network should have equal channel width [106]. But their analysis
is limited to minimizing the memory access cost given the FLOPs for a
single pointwise convolution.

The motivation of this chapter kind of contradicts the previous design
heuristics. It investigates a design space that is usually overlooked
and thus not fully explored, namely adjusting the layer-wise channel
configurations. The channel configuration of a network is defined as
the vector that summarizes the output channels of the convolutional
layers. We try to answer three questions: 1) whether there exists a
LW-DNA that can outperform the original one; 2) if so, how to identify
it efficiently; and 3) why it can beat the regular configuration.

Question 1: The existence of LW-DNA. To answer the first question,
we formally articulate the following hypothesis. The Heterogeneity
Hypothesis: For a CNN, when trained with exactly the same training protocol
(e.g. number of epochs, batch size, learning rate schedule), there exists a layer-
wise differentiated network architecture (LW-DNA) that can outperform the
original network with regular layer-wise channel configurations but with a
lower model complexity in term of FLOPs and parameters.

To be specific, we aim at adjusting the numbers of channels of the
convolutional layers in predefined CNNs. The other layer configura-
tions such as kernel size and stride are not changed. Formally, consider
an L-layer CNN f (X; Θ, c), where c = (c1, c2, · · · , cL) is the channel con-
figuration of all of the convolutional layers, Θ denotes the parameters
in the network, and X is the input of the network. The heterogeneity

85

86 the heterogeneity hypothesis

Figure 5.1: Pipeline for identifying LW-DNA models. Note that the
single-shot shrinkage method only needs to run one random
mini-batch. Then the network is shrunk after the single pass.
Thus, almost no additional computational cost is introduced.
This allows for fair comparison between the baseline model
and the LW-DNA model.

hypothesis implies that there should exist a new channel configuration
c′ = (c′1, c′2, · · · , c′L) such that the new architecture f ′(X; Θ′, c′) performs
no worse than the original one. After the adjustment, the channel con-
figurations c′l could be either larger or smaller than the original cl . We
try to answer this question by empirical experiments.

Question 2: How to identify an LW-DNA efficiently? Note that the
focus of this chapter is solely the network architectures. The influence
of factors other than network architecture such as the training protocol
are excluded. This choice allows for controlled experiments and a
fair comparison between the possibly existing LW-DNA models and the
baseline models. But we are in turn faced with the following problem.
Problem Statement: If the heterogeneity hypothesis is valid, how can we
efficiently and reliably find an LW-DNA model for a CNN without additional
computational cost and training time?

To solve this problem, we are inspired by recent developments in
network compression [79, 78, 91]. The pipeline of identifying LW-DNA

models is shown in Fig. 5.1. In short, the LW-DNA models are identified
by the single-shot shrinking of a widened and reparameterized version
of the baseline network. The details are given in Sec. 5.4

5.1 introduction 87

Question 3: How to explain the benefits of LW-DNA? As a matter
of examples, we identify LW-DNA versions of various state-of-the-art
networks for three vision tasks, incl. image classification [53, 62, 59,
133, 58, 140, 141, 122], image restoration [76, 96, 169, 131], and visual
tracking [10]. Interestingly, the identified LW-DNA models consistently
outperform the baselines even with lower model complexities in terms
of FLOPs and number of parameters. We try to explain this phe-
nomenon from several perspectives.

1. CNNs are redundant. So it is possible to find a layer-wise specific
channel configuration comparable with the baseline under lower
model complexity.

2. As shown in Fig. 5.4, some layers of the LW-DNA models have
more channels than the baseline. Indeed, the lower layers tend to
be strengthened with more channels. It might be those layers that
play the essential role in improving the network accuracy.

3. The accuracy gain of the LW-DNA models might be related to
overfitting by the baseline models. We derive this conjecture from
several observations. I. By comparing the training and testing
curves of an LW-DNA model and its baseline in Fig. 5.3d, we
find that towards the end of the training, the identified LW-DNA
model shows a higher training error but a lower testing error, i.e.
improved generalization. This phenomenon is consistent across
different datasets. This also matches the observations from the
pioneering unstructured pruning, like a brain surgeon trying to
boost network generalization after brain damage [75, 51]. II. The
accuracy gain of an LW-DNA model is larger for smaller datasets
(i.e. Tiny-ImageNet) that are easier to get overfitted to, compared
with larger datasets (i.e. ImageNet). III. On the same dataset (i.e.
ImageNet), it is easier to identify an LW-DNA model version
for larger networks (i.e. ResNet50) than for smaller networks (i.e.
MobileNetV3).

The contributions of this chapter can be summarized as follows. First,
it demonstrates the possibility of identifying a superior version of a
network by only adjusting the channel configuration of the network.
This could be used as a post-searching mechanism complementary
to semi- or fully automated neural architecture search. Secondly, a
method that can identify LW-DNA models almost without additional

88 the heterogeneity hypothesis

computational cost and training time is proposed. This method only
needs the computation of one random batch. Thirdly, the possible
reason for the improved performance of an LW-DNA is explained by
observing the experimental results.

5.2 related work

In this section, we review the works about the lottery ticket hypothesis.
Other related works about NAS, hypernetworks, and network pruning
could be found in Subsec. 3.2.2, Subsec. 3.2.3, and SubSec. 2.2.1. In
this chapter, we try to adjust the channel configuration of the network,
which can be regarded as a method complementary to NAS.

5.2.1 The lottery ticket hypothesis

The heterogeneity hypothesis is reminiscent of the Lottery Ticket Hy-
pothesis (LTH) [34], which addresses the existence of sparse subnetworks
that can match the test accuracy of randomly-initialized dense networks.
The winning ticket is identified by greedily pruning single elements of
weight parameters with smallest magnitude. Following works try to
extend [123], theoretically prove [107], understand [179], and improve
the training process [130] of Lottery Ticket Hypothesis (LTH). The un-
structured pruning breaks the dynamical isometry in the network [78].
The core problem is the trainability of the sparse subnetworks and the
gradient flow in the subnetworks [78]. In contrast, the heterogeneity hy-
pothesis focuses on adjusting the channel configuration of the network.
Since the weight elements of an entire channel are pruned together,
there is no irregular kernel in the pruned network. Gradient flow is no
longer a problem in this scenario.

5.3 preliminaries

5.3.1 Hints from network compression

Recent network compression methods shed light on the existence of
advantageous layer-wise specific networks [101, 91, 30]. Those methods
can result in shrunk networks with layer-wise specific channel con-
figurations. Some works [101] report accuracy gains of the pruned

5.3 preliminaries 89

Figure 5.2: Illustration of the configuration space. The proposed
method identifies layer-specific channel configurations
within the enlarged and constrained subspace C(ρc, βc).
Compared with searching within the constrained neighbor-
hood S(c) of c, the enlarged configuration space makes it
possible to develop a straightforward shrinkage criterion.

network over the width-scaled versions of ResNet and MobileNets [53,
59, 133]. Yet, since the advantageous networks are identified in a net-
work compression sense, thus with an accuracy drop compared with
the uncompressed network, it still remains unknown whether there
exists a layer-wise specific network that can compete with the original
one. A recent work [91] reports an accuracy gain over uncompressed
MobileNets on Tiny-ImageNet. Yet, further investigations on larger
datasets are not conducted. Moreover, the compact networks are usu-
ally derived with training protocols different from those used for the
baseline network, e.g. additional searching stage, larger batch size, or
prolonged fine-tuning stage. It remains unknown how the layer-wise
specific channel configurations benefit the network.

5.3.2 Notations and definitions

Notation. In this chapter, bold lowercase letters such as c, x, and z are
used to denote vectors while bold capital letters such as O, Z, W are
used to denote matrices and higher dimensional tensors. The vectors,
matrices, and higher dimensional tensors are indexed by subscripts.

90 the heterogeneity hypothesis

Greek letters such as α, β denote constant scalars. The configuration
vector and configuration space are formally defined as follows.

Definition 1 (Channel configuration vector). Consider an L-layer
CNN. The channel configuration vector of the network is defined as an
L-dimensional vector that summarizes the number of output channels
of the network, i.e.

c = (c1, c2, · · · , cL), (5.1)

where cl denotes the number of output channels in the l-th layer.
Definition 2 (Configuration space). The configuration space E is

a subspace of Euclidean space that contains the allowable channel
configuration vectors. (See Fig. 5.2 for one example of the configuration
space.)

The dimension of the configuration vectors depends on the number
of convolutional layers in the network. Take VGG11 for example. The
configuration vector is an 8-dimensional vector, i.e. ,

cvgg = (64, 128, 256, 256, 512, 512, 512, 512) . (5.2)

As in this example, the configuration vector is regular and its elements
are dependent on each other in the sense that most of them are re-
peated. For image classification networks, the golden standard is to
repeat building blocks with the same configuration up to the point
where the spatial dimension of the feature map gets reduced. Some
efficient designs for mobile devices introduce a width multiplier α to
adapt to constrained resource requirements, which results in a scaled
configuration vector, i.e. ,

b = (αc1, αc2, · · · , αcL), α < 1 . (5.3)

5.3.3 Problem formulation and recast

Since the configuration vector is manually fixed, it is not guaranteed to
be optimal. In this chapter, we explore the corresponding configuration
design space. The aim is to demonstrate that there is an irregular
configuration vector c′ that can compete with the original, while offering
reduced model complexity. To achieve that, we propose an algorithm
which can adjust (increase or decrease) the elements of the configuration
vector c while controlling the model complexity. As shown in Fig. 5.2,

5.4 methodology 91

such an adjustment procedure best searches in the neighborhood of the
vector, i.e.

N(c) ⊂ E . (5.4)

After the adjustment, an element of the configuration vector c can
be either increased or decreased, which corresponds to growing or
shrinking the l-th layer of the network. Shrinkage criteria can be defined
on the existing network and network shrinkage algorithm could applied.
The limitation of a shrinkage algorithm on the original network is that
it can only explore a subspace of the neighborhood, i.e.

S(c) = {x ∈N(c)|xl ≤ cl} ⊂N(c) . (5.5)

But we do not want to be restricted to shrinkage only. Instead, it is
desirable to do both network shrinkage and growth at the same time
for the configuration vector adjustment.

We circumvent this problem by recasting it as a shrinkage problem in
a larger configuration space which is obtained by widening the width
of the network with a width multiplier β > 1. The new searching space
H is a hyperrectangle delimited by the zero vector 0 and the up-scaled
configuration vector βc in the high-dimensional space, i.e.

H(0, βc) = {x ∈ E|0 ≤ xl ≤ βcl} ⊂ E . (5.6)

The searching algorithm then starts from the up-scaled vector βc and re-
duces the value of its l-th element greedily according to the significance
of the channels in the corresponding convolutional layer.

5.4 methodology

After introducing the preliminaries and the designing considerations
in the last section, the algorithm used to identify LW-DNA models is
explained in this section. The pipeline is already shown in Fig. 5.1.
The identifying procedure proceeds as follows. 1) Reparameterize the
widened baseline network with hypernetworks. The outputs of the
hypernetworks act as the weight parameters of the baseline network.
The inputs of the hypernetwork serve as the handle to shrink the
network. 2) Compute the gradients of the hypernetwork input, i.e. the
latent vectors, with one random batch. 3) Sparsify the latent vectors
greedily according to the magnitude of their gradients. 4) Compute
the weight parameters with the sparsified latent vectors. 5) Train the

92 the heterogeneity hypothesis

resultant network from scratch with the same training protocol as the
baseline network. And in the following, we explain some of the key
steps in detail.

5.4.1 Reparameterizing with hypernetworks

The network shrinkage method is explained in this section. Instead
of directly shrinking the baseline network, we first widen it and repa-
rameterize it with hypernetworks [101, 91]. The reparameterization is
adopted based on the following considerations. The hypernetworks
bring the shrinkage problem into a latent space. Removing a channel
is equivalent to deleting a single element of the latent vector, which
converts the problem of dealing with elements in the whole channel
to an easier one of dealing with a single element in the latent vec-
tor. In addition, it provides a straightforward extension of single-shot
shrinkage [79] to channel pruning (See Subsec 5.4.2). And single-shot
shrinkage is the core of avoiding additional computational cost when
identifying LW-DNA models. The latent vector sharing mechanism in
the hypernetworks also makes it possible to deal with various state-of-
the-art networks.

Consider the L-layer CNN that is brought to the larger configuration
space H(0, βc) as in Eqn. (5.6). The weight parameter of the l-th
convolutional layer of the CNN has the dimension of βcl× βcl−1×w× h,
where βcl , βcl−1, and w× h denotes the output channel, input channel,
and kernel size of the layer. For the simplicity of notation, let n = βcl
and c = βcl−1. We use the hypernetwork proposed in Subsec. 3.3.1 to
reparameterize the convolutional layers of the widened network.

5.4.2 Single-shot shrinkage

After reparameterizing the network with hypernetworks, the parame-
ters in the network are first randomly initialized [16]. Then the single-
shot shrinkage method is used to adjust the width of the network.

Consider a single mini-batch {Xi, Yi} from the dataset. The output
of the network is computed as

Ŷi = f (Xi; Θ, z) , (5.7)

5.4 methodology 93

where z denotes the latent vectors and Θ is the parameter set that
contains W1 and W2. The loss is computed as

L = L (Yi, f (Xi; Θ, z)) . (5.8)

Then the gradients of the loss function with respect to the latent vectors
are computed as

∇L =
∂L (Yi, f (Xi; Θ, z))

∂z
. (5.9)

The magnitude of the gradients is used as the criterion to sparsify the
latent vectors. The elements whose gradient magnitude is smaller than a
threshold are removed. The threshold is determined by a binary search
algorithm, which allows the resultant network to reach a predefined
FLOP target. The resultant network is the final LW-DNA model and
is trained from scratch with the same training protocol as the baseline
model.

The single-shot shrinkage method is inspired by single-shot pruning
of weight elements [79]. But the original method is single element ori-
ented. It removes single weight parameters in the network and results
in unstructured kernels. It remains to be explored how to transform the
single-shot method to network shrinkage. The hypernetworks provide
such a connection. By resorting to hypernetworks, the shrinkage is con-
ducted on the latent space whose elements correspond to channels in
the network and serve as the agent for shrinkage. Deleting an element
of the latent vector is equivalent to remove a channel in the network.
Thus, sparsifying the latent vectors according to their gradients is a
natural transferring of the single-shot method in [79].

5.4.3 Knowledge distillation

For image classification, besides the cross-entropy loss function, a
distillation term is also used, i.e.

L = (1− α)Lce(y, σ(zs)) + 2αT2Lce (σ (zs/T) , σ (zt/T)) , (5.10)

where Lce(·) is the cross-entropy loss function, σ(·) is the softmax
function, y is the class label, zs and zt are the logit outputs of LW-
DNA model and the teacher [57]. We use fixed parameters α = 0.4
and T = 4. The teacher is the pretrained widened version of the
baseline network. Knowledge distillation is not used for experiments

94 the heterogeneity hypothesis

on ImageNet because the execution of the teacher network in this case
also consumes considerable time and GPU resources.

5.4.4 Constraining model complexity

Model complexity is measured in terms of FLOP and parameter count.
The target is to find a model that has both fewer FLOPs and parameters
while achieving improved accuracy. Yet, the two metrics are not always
consistent with each other. For example, when the FLOPs target is
set, a parameter over-pruned model might be observed in some of
the experiments, which could lead to inferior performance. Thus, a
new hyper-parameter ρ is introduced which controls the minimum
percentage of remaining channels in convolutional layers. In this way,
the search space C(ρc, βc) is a confined subspace of the original search
space H(0, βc), i.e.

C(ρc, βc) = {x ∈ E|ρcl ≤ xl ≤ βcl} ⊂H(0, βc) . (5.11)

A similar hyper-parameter τ is introduced for the final linear layers
of image classification networks. The hyper-parameters ρ and τ are
termed convolutional percentage and linear percentage in this thesis,
respectively. During the pruning, the FLOP budget is fixed. By tuning
the hyper-parameters ρ and τ, the algorithm is able to find networks
with the same FLOPs but varying parameter budgets.

5.5 experimental results

The experimental results are shown in this section. We try to identify
LW-DNA for various state-of-the-art networks including ResNet [53],
RegNet [122], MobileNets [59, 133, 58], EfficientNet [141], MnasNet [140],
DenseNet [62], SRResNet [76], EDSR [96], DnCNN [169], and U-Net [131].
The identified LW-DNA model and the baseline network are trained
with exactly the same training protocol. The details of the training
protocol for different tasks are given in the supplementary. Knowl-
edge distillation [57] is used for image classification on CIFAR [70] and
Tiny-ImageNet[28] (Baseline KD, DHP KD [91], and LW-DNA model).
The balancing hyperparameter and temperature are set to 0.4 and 4,
respectively. The teacher is the pretrained widened version of the base-
line network. Knowledge distillation is not used for experiments on

5.5 experimental results 95

ρ τ Top-1 FLOPs [G] Params [M]
0.1 0.4 47.02 0.046 0.948

0.1 0.45 46.66 0.046 0.986

0.2 0.4 46.94 0.0459 1.210

0.2 0.45 46.44 0.046 1.265

Table 5.1: Ablation study of the hyper-parameters ρ and τ on Mo-
bileNetV1.

ImageNet because the execution of the teacher network in this case also
consumes considerable time and GPU resources.

5.5.1 Image Classification

Ablation study on Tiny-ImageNet. The hyper-parameters ρ and τ are
essential to control the model complexity and performance of the opti-
mized architectures. Thus, an ablation study of the hyper-parameters
ρ and τ is shown in Table 5.1. The experiments are conducted for
MobileNetV1 on Tiny-ImageNet. The FLOPs budget is fixed for the
experiments. Two conclusions can be drawn from the result. I. By
increasing the hyper-parameters ρ and τ, the model complexity is also
increased. And the accuracy of the network is also improved. II. All
of the results in Table 5.1 are better than Baseline KD in Table 5.2,
which shows the robustness of ρ and τ. Based on the experience on
Tiny-ImageNet, we set ρ = 0.4 and τ = 0.45 for ImageNet experi-
ments. Quite surprising, this combination works well across the three
investigated networks (ResNet50, RegNet, and MobileNetV3).

Result. The results of image classification networks are compared
in Table 5.2 for ImageNet and Tiny-ImageNet and Table 5.3 for CIFAR,
respectively. We have several key observations. I. The identified LW-
DNA models outperform the original network (denoted as Baseline or
Baseline KD when knowledge distillation is used) with lower model
complexity in terms of both FLOPs and number of parameters. This is a
direct support for the Heterogeneity Hypothesis. II. The accuracy of the
baseline network can be improved by knowledge distillation. Yet, the
improved baseline still performs worse than LW-DNA. This shows the
robustness of LW-DNA, i.e. not affected by a specific training technique.
III. The improvement of LW-DNA scales up to large-scale datasets,

96 the heterogeneity hypothesis

Network Method
Top-1

Error (%)
FLOPs [G] /

Ratio (%)
Params [M] /

Ratio (%)

ImageNet [28]

ResNet50 [53]

Baseline 23.28 4.1177 / 100.0 25.557 / 100.0
MutualNet [156] 21.40 4.1177 / 100.0 25.557 / 100.0

LW-DNA 23.00 3.7307 / 90.60 23.741 / 92.90

MetaPruning [101] 23.80 3.0000 / 72.86 –
AutoSlim [162] 24.00 3.0000 / 72.86 23.100 / 90.39

RegNet [122]
X-4.0GF

Baseline 23.05 4.0005 / 100.0 22.118 / 100.0
LW-DNA 22.74 3.8199 / 95.49 15.285 / 69.10

MobileNetV3

small [58]
Baseline 34.91 0.0612 / 100.0 3.108 / 100.0

LW-DNA 34.84 0.0605 / 98.86 3.049 / 98.11

Tiny-ImageNet

MobileNetV1

[59]

Baseline 51.87 0.0478 / 100.0 3.412 / 100.0
Baseline KD 48.00 0.0478 / 100.0 3.412 / 100.0

DHP KD 46.70 0.0474 / 99.16 2.267 / 66.43

LW-DNA 46.44 0.0460 / 96.23 1.265 / 37.08

MobileNetV2

[133]

Baseline 44.38 0.0930 / 100.0 2.480 / 100.0
Baseline KD 41.25 0.0930 / 100.0 2.480 / 100.0

DHP KD 41.06 0.0896 / 96.34 2.662 / 107.34

LW-DNA 40.74 0.0872 / 93.76 2.230 / 89.90

MobileNetV3

large [58]

Baseline 45.53 0.0860 / 100.0 4.121 / 100.0
Baseline KD 38.21 0.0860 / 100.0 4.121 / 100.0

DHP KD 38.14 0.0856 / 99.53 3.561 / 86.42

LW-DNA 37.45 0.0797 / 92.67 3.561 / 86.43

MobileNetV3

small [58]

Baseline 47.55 0.0207 / 100.0 2.083 / 100.0
Baseline KD 41.52 0.0207 / 100.0 2.083 / 100.0

DHP KD 41.46 0.0192 / 92.75 1.078 / 51.76

LW-DNA 41.35 0.0178 / 85.99 1.799 / 86.36

MnasNet [140]

Baseline 51.79 0.0271 / 100.0 3.359 / 100.0
Baseline KD 48.17 0.0271 / 100.0 3.359 / 100.0

DHP KD 48.10 0.0264 / 97.42 2.512 / 74.79

LW-DNA 46.85 0.0250 / 92.25 1.258 / 37.45

Table 5.2: Image classification results on ImageNet and Tiny-
ImageNet. Baseline and Baseline KD denote the original
network trained without and with knowledge distillation re-
spectively. DHP-KD is the DHP version trained with knowl-
edge distillation. For ImageNet classification, knowledge
distillation is not used to train the network while for Tiny-
ImageNet classification, knowledge distillation is used.

5.5 experimental results 97

Network Method
Top-1

Error (%)
FLOPs [G] /

Ratio (%)
Params [M] /

Ratio (%)

CIFAR100

RegNet [122]
Y-200MF

Baseline 21.94 0.2259 / 100.0 2.831 / 100.0
Baseline KD 19.87 0.2259 / 100.0 2.831 / 100.0

LW-DNA 19.87 0.2095 / 92.74 1.524 / 53.85

RegNet [122]
Y-400MF

Baseline 21.65 0.4585 / 100.0 3.947 / 100.0
Baseline KD 18.71 0.4585 / 100.0 3.947 / 100.0

LW-DNA 18.65 0.4468 / 97.45 2.466 / 62.48

RegNet [122]
X-200MF

Baseline 23.62 0.2255 / 100.0 2.353 / 100.0
Baseline KD 21.38 0.2255 / 100.0 2.353 / 100.0

LW-DNA 21.19 0.2075 / 92.02 1.239 / 52.68

RegNet [122]
X-400MF

Baseline 21.75 0.4698 / 100.0 4.810 / 100.0
Baseline KD 19.06 0.4698 / 100.0 4.810 / 100.0

LW-DNA 18.81 0.4610 / 98.13 4.404 / 91.56

EfficientNet [141]
Baseline 20.74 0.4161 / 100.0 4.136 / 100.0

Baseline KD 19.73 0.4161 / 100.0 4.136 / 100.0
LW-DNA 19.54 0.3850 / 92.53 2.121 / 51.28

DenseNet40 [62]
Baseline 26.00 0.2901 / 100.0 1.100 / 100.0

Baseline KD 22.84 0.2901 / 100.0 1.100 / 100.0
LW-DNA 22.46 0.2638 / 90.93 1.016 / 92.35

CIFAR10

DenseNet40 [62]
Baseline 5.50 0.2901 / 100.0 1.059 / 100.0

Baseline KD 4.88 0.2901 / 100.0 1.059 / 100.0
LW-DNA 4.87 0.2632 / 90.73 0.963 / 90.87

ResNet56 [53]
Baseline 5.74 0.1274 / 100.0 0.856 / 100.0

Baseline KD 5.73 0.1274 / 100.0 0.856 / 100.0
LW-DNA 5.49 0.1262 / 99.06 0.536 / 62.62

Table 5.3: Image classification results on CIFAR. Baseline and Base-
line KD denote the original network trained without and
with knowledge distillation, respectively. DHP-KD is the
DHP version trained with knowledge distillation. Knowledge
distillation is used to train LW-DNA models.

i.e. ImageNet. For the ImageNet experiment, we set ρ = 0.4 and
τ = 0.45 by the ablation study on Tiny-ImageNet. This hyper-parameter
combination works well across the three investigated networks. The
success on ImageNet and the robustness of the hyper-parameters imply
the wide existence of LW-DNA models and the ease of finding them.
IV. MutualNet is a training scheme when applied to a specific network,
which could be combined with our work.

98 the heterogeneity hypothesis

0 20 40 60 80 100 120 140
Epochs

20

30

40

50

60

70

80

90

To
p1

 E
rro

r

Test LW-DNA
Test Baseline
Train LW-DNA
Train Baseline

135 137 139 141 143 145 147 149

19

20

21

22

23

24

25

11 13 15 17 19 21 23 25 27

45

46

47

48

49

50

51

52

(a) ResNet50, ImageNet.

0 20 40 60 80 100 120 140
Epochs

10

20

30

40

50

60

70

80

90

To
p1

 E
rro

r

Test LW-DNA
Test Baseline
Train LW-DNA
Train Baseline

135 137 139 141 143 145 147

12

14

16

18

20

22

11 13 15 17 19 21 23 25

32

34

36

38

40

(b) RegNet-4GF, ImageNet.

Figure 5.3: Training and testing log of LW-DNA and baseline net-
works.

5.5 experimental results 99

0 25 50 75 100 125 150 175 200
Epochs

20

30

40

50

60

70

80

90

To
p1

 E
rro

r

Test LW-DNA
Test Baseline
Train LW-DNA
Train Baseline

201 203 205 207 209 211 213 215 217 219

20

25

30

35

40

45

50

26 28 30 32 34 36 38 40 42 44 46

47.5

50.0

52.5

55.0

57.5

60.0

62.5

(c) MobileNetV1, Tiny-ImageNet.

0 25 50 75 100 125 150 175 200
Epochs

0

20

40

60

80

100

To
p1

 E
rro

r

Test LW-DNA
Test Baseline
Train LW-DNA
Train Baseline

201 203 205 207 209 211 213 215 217

10

20

30

40

26 28 30 32 34 36 38 40 42 44
35

40

45

50

55

(d) MobileNetV3 small, Tiny-ImageNet.

Figure 5.3: Training and testing log of LW-DNA and baseline net-
works (continued).

100 the heterogeneity hypothesis

Proximal gradient descent vs. single-shot shrinkage. Besides single-
shot shrinkage, there are also other candidate methods to prune net-
works, e.g. PGD. The choice of single-shot shrinkage is based on the
following considerations. First, it is extremely computation-efficient.
Only one random batch is used to identify the LW-DNA models. This
meets the design requirements of introducing no computational cost.
This consistence makes it possible to identify the importance of the
architecture of LW-DNA models while controlling the other factors.
Secondly, by analyzing the closed-form solution to the proximal opera-
tor with `1 regularization, i.e. the soft-thresholding operator, we find
that PGD tends to diminish the elements of the latent vectors with the
approximately consistent speed. As a results, the final magnitude of
the elements has some kind of relationship with the initial magnitude.
Therefore, if the initialization of an element is large, it is likely that
the final magnitude is still relatively large. The distribution of the
latent vector in Layer 6 of MobileNetV2 during the PGD optimization
is shown in Fig. 5.5. The final distribution is related to the initialization.
Thus, it becomes reasonable to shrink the latent vectors at initialization.

The benefits of LW-DNA models are analyzed by several observations
of the experimental results. I. The percentage of remaining channels is
shown in Fig. 5.4. Some layers of the LW-DNA networks are strength-
ened. This might contribute to the improved performance of LW-DNA.
II. As shown in Fig. 5.3d, towards the end of the training, the LW-DNA
models shoot a lower test error with increased training error. The
improved generalization on the test set comes with reduced model
complexity and lower training accuracy. This phenomenon is consistent
with the pioneering unstructured pruning methods [75, 51] that try to
balance model complexity and overfitting. The same phenomenon on
both unstructured pruning and structured pruning points to a common
underlying factor. III. The accuracy gain of LW-DNA on Tiny-ImageNet
is larger than ImageNet. As known, smaller datasets are easier to be
overfitted to. IV. On ImageNet, it is easier to identify LW-DNA models
for ResNet50 and RegNet than MobileNetV3. Since the larger models
ResNet50 and RegNet contain more redundancy, it is easier for them
to overfit the dataset. Based on the above observations, we conjecture
that the improvement of LW-DNA model might be related to model
overfitting.

5.5 experimental results 101

20 40
Layer Index

0.8

0.9

1.0

1.1
Ch

an
ne

l R
at

io
Baseline
LW-DNA

(a) ResNet50,
ImageNet.

20 40 60
Layer Index

0.75

1.00

1.25

1.50

1.75

Ch
an

ne
l R

at
io

Baseline
LW-DNA

(b) RegNet-4GF,
ImageNet.

10 20
Layer Index

0.5

1.0

1.5

2.0

Ch
an

ne
l R

at
io

Baseline
LW-DNA
DHP

(c) MobileNetV1,
Tiny-ImageNet.

20 40
Layer Index

0.5

1.0

1.5

2.0

Ch
an

ne
l R

at
io

Baseline
LW-DNA
DHP

(d) MobileNetV2,
Tiny-ImageNet.

10 20 30 40
Layer Index

1.0

1.5

2.0

Ch
an

ne
l R

at
io

Baseline
LW-DNA

(e) MobileNetV3-Large,
Tiny-ImageNet.

10 20 30
Layer Index

0.6

0.8

1.0

1.2

1.4

Ch
an

ne
l R

at
io

Baseline
LW-DNA

(f) DenseNet,
CIFAR100.

Figure 5.4: Percentage of remaining output channels of LW-DNA
models over the baseline network.

102 the heterogeneity hypothesis

(a) Layer 6, Epoch 1.

(b) Layer 6, Epoch 10.

(c) Layer 6, Epoch 17.

Figure 5.5: The distribution of the latent vectors in MobileNetV2 dur-
ing the PGD optimization of DHP.

5.5 experimental results 103

Metric DiMP-Baseline DiMP-LW-DNA

TrackingNet [112]

Precision 68.06 68.27

Norm. Prec. (%) 79.70 79.64

Success (AUC) (%) 73.77 73.83

LaSOT [33]

Precision 54.97 57.30

Norm. Prec. (%) 63.70 65.82

Success (AUC) (%) 55.87 57.43

Table 5.4: Tracking test results. DiMP-LW-DNA and DiMP-Baseline
use the identified LW-DNA and baseline version of ResNet50,
respectively.

0.0 0.2 0.4 0.6 0.8 1.0
Overlap threshold

0

10

20

30

40

50

60

70

80

Ov
er

la
p

Pr
ec

isi
on

 [%
]

Success plot

DiMP-LW-DNA [57.4]
DiMP-Baseline [55.9]
ATOM [51.5]
SiamRPN++ [49.6]
MDNet [39.7]
VITAL [39.0]
SiamFC [33.6]

Figure 5.6: Success plot on the LaSOT dataset for visual tracking.

5.5.2 Visual Tracking

To validate the generalization ability of the identified LW-DNA, we
apply the LW-DNA and baseline version of ResNet50 to visual tracking.
State-of-the-art tracking workflow DiMP [10] is used as the test bed. For
a fair comparison, the LW-DNA and the baseline are trained with the
same protocol. They are first pretrained on ImageNet then finetuned
following the DiMP workflow. In Table 5.4, the networks are compared
on two datasets, i.e. TrackingNet [112] and LaSOT [33]. On the smaller
dataset TrackingNet, LW-DNA version slightly beats the baseline while

104 the heterogeneity hypothesis

Metric
SRResNet [76] EDSR [96]

Baseline LW-DNA Baseline LW-DNA

PSNR (dB)

Set5 [9] 32.02 32.07 32.10 32.13

Set14 [166] 28.50 28.51 28.55 28.61

B100 [108] 27.52 27.52 27.55 27.59

Urban100 [63] 25.88 25.88 26.02 26.09

DIV2K [2] 28.84 28.85 28.93 28.99

FLOPs [G] 32.81 28.79 90.37 55.44

Ratio (%) 100.0 87.75 100.0 61.34

Params [M] 1.53 1.36 3.70 2.84

Ratio (%) 100.0 88.43 100.0 76.94

Table 5.5: Results on single image super-resolution networks. The
upscaling factor is ×4.

on the larger dataset LaSOT, LW-DNA outperforms the baseline ele-
gantly. The success plot on LaSOT is shown in Fig. 5.6. As shown there,
DiMP-LW-DNA is consistently better than DiMP-Baseline and other
state-of-the-art tracking methods across the range of overlap threshold.
In conclusion, the results show that the benefits of LW-DNA can be
transferred to other vision tasks.

5.5.3 Image Restoration

Table 5.5 shows the results on super-resolution networks. For EDSR, the
LW-DNA models perform better than the baseline but with significant
reduction of model complexity. On the large test dataset Urban100

and DIV2K, the LW-DNA model of EDSR leads to nearly 0.1dB PSNR
gain over the baseline. For SRResNet, LW-DNA achieves slightly re-
duction of model complexity without drop of PSNR. More results on
image denoising are shown in the supplementary. In conclusion, the
results validate the existence of LW-DNA models for low-level vision
networks.

5.6 conclusion

In this chapter, we state the heterogeneity hypothesis which in essence
is the existence of advantageous LW-DNA models for a predefined
network architecture. We try to validate the hypothesis by empirical

5.6 conclusion 105

studies. In order to single out the importance of the network archi-
tecture, the training protocol is kept the same for the baseline and
the LW-DNA models. This is achieved by converting the problem of
identifying LW-DNA to a network shrinkage problem and designing
an efficient shrinkage algorithm. The experiments on various network
architectures and vision tasks demonstrate the benefits of the identified
LW-DNA models. By examining the results, we conjecture that the
advantage of the LW-DNA model might be related to model overfitting.

Part III

C O M P U TAT I O N A L P R O C E D U R E
O P T I M I Z AT I O N

6
T O WA R D S E F F I C I E N T G C N

6.1 introduction

Different from the previous chapters where CNNs are investigated,
the focus in this chapter is GCNs. Specifically, we try to optimize the
computational procedure in GCNs for learning on point clouds. Re-
cently, GCNs [27, 14, 36, 164, 135, 174, 146] have achieved state-of-the-art
performances in 3D representation learning on point clouds for classifi-
cation [120, 121], part segmentation [15], semantic segmentation [148,
61], and surface reconstruction [49]. A typical GCN is composed of a
stack of Multilayer Perceptrons (MLPs) that progressively learn a hier-
archy of deep features. For a better modelling of the locality on point
clouds, neighborhood information gathering modules are placed before
MLPs. A certain point gathers information from its neighbors and prop-
agates its information to them. The neighbors can be predefined (i.e. ,
borrowed from an initial mesh in Point2Mesh [49]) or more commonly
established by K-Nearest Neighbor (KNN) search on point clouds (static
GCN [121, 83]) or on the feature representation (dynamic GCN [148,
171]).

Yet, this design faces several technical challenges. Firstly, the com-
putational cost grows quadratically with the number of points [126,
125]. The problem is exacerbated when KNN search is conducted in a
high-dimensional feature space. Secondly, the graph feature gathering
operation expands the dimension of the resultant features. Consider a
point cloud with N points and d coordinates. The dimension of the ten-
sor grows from N × d to N × K× d after the K graph feature gathering
operation, where K is the number of neighbors. Then the same oper-
ation is applied to the expanded tensor with repeated entries, which
leads to redundant computations. Thirdly, due to the computational
complexity and the expanded features, the GPU memory required for
GCN computations explodes when the number of processed points
increases. The inference speed also slows down drastically.

As shown in Fig. 6.1, each time the number of processed points
doubles, the computational complexity, inference time, and consumed

109

110 towards efficient gcn

500 1000 1500 2000

Number of Points

90.5

91

91.5

92

92.5

93

O
v
e

ra
ll

A
c
c
u

ra
c
y
 %

DGCNN

Accel.

(a) Overall Accuracy

0 500 1000 1500 2000

Number of Points

0

100

200

300

400

In
fe

re
n

c
e

 R
u

n
ti
m

e
 [

m
s
] DGCNN (Classification)

Accel. (Classification)

DGCNN (Part Segmentation)

Accel. (Part Segmentation)

(b) Runtime

0 500 1000 1500 2000

Number of Points

0

5

10

15

20

25

M
a

x
im

u
m

 G
P

U
 m

e
m

o
ry

 [
G

B
]

DGCNN (Classification)

Accel. (Classification)

DGCNN (Part Segmentation)

Accel. (Part Segmentation)

(c) GPU memory

0 1000 2000

Number of Points

0

100

200

300

F
L
O

P
s
 [
G

]

DGCNN (Classification)

Accel. (Classification)

DGCNN (Part Segmentation)

Accel. (Part Segmentation)

(d) FLOPs

Figure 6.1: Acceleration performance of a representative GCN. The
performance of DGCNN and the accelated network is shown.
(a) The overall accuracy for point cloud classification. Mean
and Variance reported for 5 runs. The (b) runtime, (c) GPU
memory consumption, and (d) FLOPs of the original GCN
explodes with an increasing number of points. By contrast,
the optimized network can achieve a significant reduction
of computational resources without a drop in accuracy.

GPU memory of the examined GCN almost quadruple. Thus, the aim
of this chapter is to analyze the basic operations in GCNs and seek
opportunities to build efficient GCNs for learning on point clouds.
Compared with the representative GCN in Fig. 6.1, the computationally
optimized GCN in this chapter reduces the computational burden and
accelerates the inference. This significant improvement relies on the
following two findings.

6.1 introduction 111

Finding 1. The local geometric structure information of 3D representations
propagates smoothly across the aforementioned multilayer GCN that relies on
KNN search for graph feature gathering.

This finding is supported by the mathematical analysis of the dis-
tances between two points before and after one layer of an MLP. In
Sec. 6.4.2, we show that the distance between two points after one
layer of MLP is upper bounded by the neighborhood distance and
lower bounded by the neighborhood centroid distance between the
corresponding points before the MLP. This means that across a GCN
the distance between two points in the feature space does not abruptly
change. Thus, it is not necessary to conduct KNN search every time
a neighbor retrieval is needed in MLPs. Instead, a couple of MLPs
(referred to as shareholder MLP) can share the results of the same KNN
search. Moreover, to ensure a progressively enlarged receptive field
across the shareholder MLPs, a larger pool of neighbors can be kept
from the first KNN search. Each time neighbor retrieval is needed, the
neighbors are sampled from the pool. The shareholder MLPs in the
shallower layers can only sample from the near neighbors while the
deep shareholders have the chance to sample from far-away neighbors.

Finding 2. Shuffling the order of the graph feature gathering operation and
the MLP used for feature extraction leads to equivalent or similar composite
operations for GCNs.

This finding is also supported by a general analysis in Sec. 6.4.3. As
said, in existing GCNs, the graph feature gathering operation happens
before the MLP and expand the dimension of the features. By moving
the feature extracting MLP before the graph feature gathering operation,
the MLP is conducted merely on the non-expanded feature tensors.
And this leads to a significant reduction in computations.

The two findings directly lead to the proposed change in computa-
tional procedure as shown in Fig. 6.2, which reduces the computational
complexity and accelerates the inference of the GCNs. Here, the pro-
posed techniques are applied to four representative GCNs [148, 83,
49, 171]. It is shown that they can improve the efficiency of existing
GCNs significantly, indeed. For example, for ModelNet40 point cloud
classification with 2048 points, compared with the original DGCNN,
the accelerated version is about ×3 times faster, reduces GPU memory
by 57.1% and computation by 86.7% without loss of accuracy. More

112 towards efficient gcn

(a) Conventional GCN (b) Optimized GCN

Figure 6.2: Optimization of the computation procedure in a conven-
tional GCN. Instead of calling KNN search for each graph
convolution, we enforce several graph convolutions to share
the same KNN search with progressively enlarged receptive
fields. The shuffling of graph feature gathering and MLP
avoids the expansion of features, which leads to accelerated
computation in the MLP.

results are shown in Sec. 6.5. Thus, the contributions of this chapter
can be summarized as follows.

1. Starting with the analysis of basic operations in representative
GCNs, two theorems enabling their acceleration are proved.

2. Based on the proved theorems, two strategies for shuffling opera-
tions are proposed to specifically improve the time and memory
efficiency of existing GCNs.

3. Extensive experiments on four GCNs for four point cloud learning
tasks are carried out, to validate the efficiency of the proposed
method. It is demonstrated that both the inference time and
memory consumption decreased significantly.

6.2 related work 113

6.2 related work

The last years have seen a trend of applying deep neural networks
to 3D representations. In this process, computation-efficient network
design plays an important role. We briefly summarize closely related
contributions.

6.2.1 Deep Learning for 3D Point Clouds.

With the easier access to large scale 3D scanned data, convolutional
neural networks have been extended from learning 2D features to
learning from graph data [160, 35, 77, 46, 18] and 3D point clouds [120,
121, 176, 43]. Existing methods can be roughly categorized into voxel-
based, point-based, and voxel-point-mixture methods [134]. Voxel-
based methods [109, 118] leverage the architecture of 3D CNNs and
apply it to rasterised 3D space. While point-based methods [128, 177, 66,
177] target at an explicit representation and directly operate on graphs.
PointNet [120] pioneered the point-based methods by designing a
network architecture based on MLP that directly consumes point clouds
while respecting the permutation invariance of input data. However,
the design of PointNet neglects local structures. Targeting at improving
this drawback, PointNet++ [121] introduces a hierachical architecture
that recursively calls PointNet on a nested partitioning of input point
set. Another way to achieve improvements is via a DGCNN [148],
which takes topological information into consideration by defining
edge convolution operations.

6.2.2 Efficient Network Design for 3D data

Improving computational efficiency enables running well performing
neural networks on mobile devices, as well as processing more and
more complicated 3D/4D scenes on powerful computers. Targeting
at processing 3D/4D scenes with higher performance on the same
computational resource, Vote3D [145] and FPNN [84] propose to im-
prove efficiency by dealing with the sparsity problem. Minkowski
Engine [21] proposes sparse convolution which uses a hash table for
indexing during the convolution process. These methods are designed
for improving the efficiency of voxel-based methods. Other efficient

114 towards efficient gcn

designs for point-based neural networks delve into the basic operations
including convolution, pooling, and unpooling [61, 77, 35, 160, 153].
The point sampling based methods like Grid-GCN [153] and RandLA-
Net [61] can speed up the network inference, while this direction is
parallel to our method.

6.3 notations and preliminaries

To formally formulate the problem, a couple of concepts are defined
in this section. In the following Definition 1 and Definition 2, the
neighbors of two points xi and xj are sorted according to the distance
relative to these points, respectively.

Definition 1 (Neighborhood Distance) Consider two points in a point
set xi, xj ∈ S . Each of them is equipped with a neighborhood of points derived
from KNN search, i.e. , Ni, Nj. The neighborhood distance between the two
points is the sum of distances between their neighbors,

DN (xi, xj) =
K

∑
k=1
‖xk

i − xk
j ‖2

2. (6.1)

Definition 2 (Neighborhood Centroid Distance) The neighborhood
centroid distance of two points xi and xj is defined by the distance between the
centroids of their K-nearest neighbors, i.e. ,

DNC = ‖
1
K

K

∑
k=1

xk
i −

1
K

K

∑
k=1

xk
j ‖2

2, (6.2)

where 1
K ∑K

k=1 xk
i denotes the centroid of the neighbors.

The Neighborhood Distance indicates the distance between two
points. That is, two points with smaller Neighborhood Distance are
highly likely to be closer to each other compared to those with larger
Neighborhood Distance. Similarly, the Neighborhood Centroid Dis-
tance is also a metric that reflects the closeness of two points.

Definition 3 (Graph and Subgraph) A graph is defined by a pair G =

(V , E), where V is the set of vertices and E is the set of edges that defines the
connectivity between vertices. A subgraph of a graph G is defined by the pair
Gi = (Vi, Ei), where Vi ⊆ V , and Ei ⊆ E . A graph G can be defined on
point clouds and meshes. A subgraph Gi captures the local connectivity
on the 3D representation and is constructed slightly differently for point

6.4 methodology 115

clouds and meshes. For a point cloud, the vertices of the subgraph
include a point and its K-nearest neighbors and the edge connects the
center point and the neighbors. For a mesh, the edge set Ei contains an
edge and its 4 1-ring neighbors [49], and the vertex set Vi contains the
4 associated vertices.

Definition 4 (Graph Convolution) Graph convolution is a family of opera-
tions that extract higher-level features from the lower-level ones by propagating
information between vertices V or edges E of the defined graph G. Graph
convolution can be defined in terms of the subgraphs, i.e. ,

x′i = g(Gi; Θ) = ∑
ek

i ∈Ei

h(xk
i ; Θk), (6.3)

where xk
i ∈ Rd is a vector that encodes the feature on the edge ek

i ∈ Ei,
x′i ∈ RM is the output feature, Θ = {Θk ∈ Rd×M|k = 1, 2, · · · , K} is the
ensemble of the trainable parameters and is the same for all of the subgraphs
Gi.

The function h(·) transforms a d-dimensional input feature into a
M-dimensional vector. It denotes an MLP, which in turn can be imple-
mented as convolution operation. In this specific case, the aggregation
function is a summation denoted by ∑. Generally, the aggregation
function is a symmetric function (e.g. , ∑ or max) that does not depend
on the order of the edges. A stack of graph convolutions and other
operations such as pooling constitute a GCN.

Notation. In this chapter, N represents the number of points, d
represents the dimensionality of the latent space features, K repre-
sents the number of neighbors for each point, and M represents the
dimensionality of the intermediate output features.

6.4 methodology

In this section, the basic operations in GCNs, i.e. , KNN search and
MLP in graph convolution, are analyzed. Two theorems about the
properties of the two operations are proposed. Building on those,
a simplified computational procedure for KNN search and MLP is
introduced, which improves the computational efficiency of existing
GCNs.

116 towards efficient gcn

6.4.1 Computational complexity analysis in GCN

In state-of-the-art GCNs, KNN search is usually conducted to define
the neighborhood, followed by an MLP. The computational complexity
of the two operations are analyzed and the simplification methods are
presented.

Proposition 1 The ratio of the computational complexities of KNN search
and MLP in a graph convolution is γ = N

KM .
Assume that the point cloud is represented by a N × d matrix X.

To compute the K-nearest neighbors of all the points, a pairwise com-
parison between the points is conducted, i.e. , D = XXT. Then for
each point, the indices of the K-nearest neighbors are kept and used to
extract the graph feature, which results in a 3D tensor with a dimen-
sion of N × K × d. Then an MLP implemented as convolution with
kernel size 1× 1 and output channel M is conducted on the graph
feature. The pairwise comparison and the 1× 1 convolution are the
computation-intensive parts.

The computational complexity, namely the number of multiplications
in the pairwise comparisons is Cnn = dN2. And the computational
complexity of the 1× 1 convolution is Cconv = dMKN. Thus, the ratio
between the two complexity terms is

γ =
Cnn

Cconv
=

dN2

dMKN
=

N
KM

(6.4)

Compared with the number of nearest neighbors K and the output
channel dimensionality M, the number of points in a point cloud could
vary drastically. When N is small, the pairwise computation load is
relatively small and even negligible. But when the point cloud grows
huge, the computational load of this pairwise comparison could become
dominant. This analysis shows the necessity of simplifying KNN search
in GCNs.

6.4.2 Propagation of point adjacency

In the following, we investigate how local geometric structure informa-
tion propagates within the GCN, by analyzing the adjacency property
of points before and after graph convolution. This new perspective
motivates us to rethink the necessity of frequent KNN callings in GCNs,
as already hinted at earlier. It results in a simplification and acceleration

6.4 methodology 117

of the adjacency assessment in GCNs. We consider a special case of the
graph convolution in Eqn. (6.3) in the following form

x′i = [x′i1, · · · , x′im, · · · , x′iM], (6.5)

x′im =
K

∑
k=1

< θm, xk
i >, (6.6)

where x′im denotes the m-th element of the vector x′i, Θ = {θ1,θ2, · · · ,θM}
contains the trainable parameters of the MLP with M output channels.
For the operation defined above, the following theorem is derived.

Theorem 1 Given that parameters θm in the network follow an independent
Gaussian distribution with 0 mean and σ2 variance, the distance of two points
in the input space is upper bounded by the neighborhood distance of the
corresponding points in the output space up to a scaling factor, and lower
bounded by the neighborhood centroid distance of the same points up to a
scaling factor, i.e. ,

σ2K2‖ 1
K

K

∑
k=1

xk
i −

1
K

K

∑
k=1

xk
j ‖2

2

≤ E[‖x′i − x′j‖2
2] ≤ σ2dKM

K

∑
k=1
‖xk

i − xk
j ‖2

2.

(6.7)

The condition in the theorem is reasonable since the parameters
in neural networks are not only often initialized with independent
Gaussian distributions. Actually, as shown in Fig. 6.3, also after training,
the parameters tend to follow Gaussian-like empirical distributions.

Proof. Upper bound. For the simplicity of analysis, inner product
and summation are selected as the edge function and the aggregation
operation in Theorem 1. Thus, the theorem is derived under the
assumption that the graph convolution has the following form

x′i = [x′i1, · · · , x′im, · · · , x′iM], (6.8)

x′im =
K

∑
k=1

< θm, xk
i >, (6.9)

where Θ = {θ1,θ2, · · · ,θM} is the trainable parameters of the MLP
with M output channels.

118 towards efficient gcn

Figure 6.3: Empirical weight distribution of a layer in a fully trained
dynamic GCN for point cloud classification. The distribu-
tion is Gaussian-like.

Then the squared distance between two points x′i and x′j after the
graph convolution is

‖x′i − x′j‖2
2 =

M

∑
m=1

(x′im − x′jm)
2 (6.10)

=
M

∑
m=1

(
K

∑
k=1

< θm, xk
i >−

K

∑
k=1

< θm, xk
j >)2 (6.11)

=
M

∑
m=1

(
K

∑
k=1

< θm, xk
i − xk

j >)2 (6.12)

≤
M

∑
m=1

K
K

∑
k=1

< θm, xk
i − xk

j) >
2

(6.13)

≤ K
M

∑
m=1

K

∑
k=1
‖θm‖2

2‖xk
i − xk

j ‖2
2. (6.14)

The inequality in Eqn. (6.13) follows that the arithmetic mean is not
larger than the quadratic mean while the inequality in Eqn. (6.14)
follows Cauchy–Schwarz inequality. Assume that the parameters θm in
the network are random variables that follows Gaussian distribution

6.4 methodology 119

with 0 mean and σ2 variance. Then the distance ‖x′i − x′k‖2
2 is also a

random variable and the expectation is expressed as,

E[‖x′i − x′j‖2
2] ≤ E[K

M

∑
m=1

K

∑
k=1
‖θm‖2

2‖xk
i − xk

j ‖2
2] (6.15)

= K
M

∑
m=1

K

∑
k=1

E[‖θm‖2
2]‖xk

i − xk
j ‖2

2 (6.16)

= σ2dKM
K

∑
k=1
‖xk

i − xk
j ‖2

2, (6.17)

where the term ∑k ‖xk
i − xk

j ‖2
2 is just the neighborhood distance between

xi and xj.

Proof. Lower bound. In Eqn. (6.12), let

am =
K

∑
k=1

< θm, xk
i − xk

j >. (6.18)

Thus, Eqn. (6.12) become

M

∑
m=1

(
K

∑
k=1

< θm, xk
i − xk

j >)2 =
M

∑
m=1

a2
m. (6.19)

Using Cauchy-Schwarz inequality

M

∑
m=1

ambm ≤

√√√√ M

∑
m=1

a2
m

√√√√ M

∑
m=1

b2
m (6.20)

and letting b2
m = 1/M, then the inequality in Eqn (6.20) becomes(

1√
M

M

∑
m=1

am

)2

≤
M

∑
m=1

a2
m. (6.21)

Thus, the lower bound of Eqn (6.12) becomes

‖x′i − x′j‖2
2 =

M

∑
m=1

(
K

∑
k=1

< θm, xk
i − xk

j >)2 (6.22)

≥ 1
M

(
M

∑
m=1

K

∑
k=1

< θm, xk
i − xk

j >

)2

(6.23)

=
1
M

<
M

∑
m=1

θm,
K

∑
k=1

xk
i − xk

j >
2 . (6.24)

120 towards efficient gcn

Let φ = ∑M
m=1 θm and z = ∑K

k=1 xk
i − xk

j . Then

‖x′i − x′j‖2
2 ≥

1
M

< φ, z >2 (6.25)

=
1
M

(
d

∑
l=1
φl , zl)

2 (6.26)

=
1
M

d

∑
l=1

d

∑
n=1

φlφnzlzn. (6.27)

Then taking the expectation on both sides, the inequality becomes

E[‖x′i − x′j‖2
2] ≥ E[

1
M

d

∑
l=1

d

∑
n=1

φlφnzlzn] (6.28)

=
1
M

d

∑
l=1

d

∑
n=1

E[φlφn]zlzn. (6.29)

Note that the elements of θm follow independent Gaussian distribution
with 0 mean and σ2 variance and φ = ∑M

m=1 θm. Thus, the elements
of φ follows independent Gaussian distribution with 0 mean and Mσ2

variance. Thus,

E[φlφn] =

{
0 l 6= n

Mσ2 l = n
. (6.30)

Thus, the lower bound becomes

E[‖x′i − x′j‖2
2] ≥

1
M

d

∑
l=1

Mσ2z2
l (6.31)

= σ2‖z‖2
2 (6.32)

= σ2‖
K

∑
k=1

xk
i − xk

j ‖2
2 (6.33)

= σ2K2‖ 1
K

K

∑
k=1

xk
i −

1
K

K

∑
k=1

xk
j ‖2

2. (6.34)

Thus, the distance between two points after graph convolution is lower
bounded by the neighborhood centroid distance of the corresponding
points before graph convolution up to a scaling factor.

6.4 methodology 121

Figure 6.4: Neighbor sampling for MLPs sharing the same KNN
search.

Since both the neighborhood distance and the neighborhood centroid
distance are an indicator of the closeness of two points, Theorem 1

indicates that the adjacency property of points propagates smoothly
across the stack of multilayer graph convolutions. This conclusion
motivates us to rethink the frequently occurring adjacency assessment of
points via KNN in a multilayer GCN. One straightforward bypass is to
reduce the number of KNN searches and let several graph convolution
modules share the results from one KNN search as shown. Yet, this
simple scheme could probably reduce the receptive field for the stack
of several graph convolutions.

Thus, we propose to progressively enlarge the receptive field of the
graph convolutions that share the same KNN search as shown in Fig 6.4.
As shown in Fig. 6.2b, for a stack of n graph convolutions, only one
full-fledged KNN search is conducted, which leads to an enlarged pool
of L = K + (n− 1)P neighbors more than originally needed. Then for
the first convolution, the first K-nearest neighbors from the pool are
still selected. For the l-th convolutions, the neighbors of a point are
identified by randomly sampling the first K + (l − 1)P elements of the
pool. That is, for each additional graph convolution, the sampling pool
is enlarged by a step P. Since the bound in Theorem 1 is not strict, the
adjacency between point could still change across the deep layers. This
allows the GCN to still be able to capture long-range dependencies
between points after the computational simplification (See Fig. 6.7). The
above operations reduce multiple KNN searches to one. Across the
whole network, KNN search is conducted every several layers. This
simplification can accelerate the inference of the network.

122 towards efficient gcn

6.4.3 Graph convolution with graph feature gathering

The graph convolution in Eqn. (6.3) is applied to the subgraph defined
by local point proximity. Subgraph features are gathered from the
neighbors of a point and brought to the center of the local coordinate
system. Then an MLP is applied to the centered features. In summary,
the convolution in Eqn. (6.3) is of the following form

g(Gi; Θ) = ∑
k

f (xk − xi, Θk). (6.35)

This form of operation is used in a couple of dynamic [148, 171] and
non-dynamic [121, 83, 49] GCNs. To conduct the operation, features are
first gathered from the neighborhood, i.e. , xk − xi, which forms a tensor
with dimension N×K× d. Then the gathered feature is convolved with
the MLP. The computational complexity of the convolution operation is
dKMN. To save computations, we propose to shuffle the order of graph
feature gathering and MLP. That is, the computation is conducted as
∑k f (xk)− f (xi). In this way, the MLP is first applied to the individual
points, after which feature gathering is applied.

To explain the rationale of this shuffling operation, we consider a
case widely used in GCNs [148], i.e.

g(Gi) = max
k
{(< [θm,φm], [xk − xi, xi] >)}, (6.36)

where max is used as the aggregation function and the operator [·]
concatenates two vectors. It is claimed that the term xk − xi captures
the local information while xi keeps the global information. The fol-
lowing theorem states that an equivalent but computationally efficient
procedure exists for the special case in Eqn. (6.36).

Theorem 2 For the graph convolution defined by Eqn. (6.36), shuffling
the order of neighbor feature gathering and the MLP leads to an equivalent
operation for the GCN.

Proof. Eqn. (6.36) could be written as

x′im = max
k
{(< θm, xk > + < ψm, xi >)}, (6.37)

where ψm = φm − θm. In Eqn. (6.37), the operations are rearranged
such that the convolutions w.r.t. the points and their neighbors are
perfectly separated. Considering that a point could act as a neighbor of

6.5 experiments 123

the other point multiple times and the same parameters θm are used for
convolution, the convolution operation in Eqn. (6.37) has an equivalent
procedure: 1) applying two different MLPs to the original points, 2)
gathering the neighbor features, and 3) summing up the features. The
computational complexity is reduced to 2dMN, which is only 1/K of
the original.

Thus, inspired by the equivalent operation for Eqn. (6.37) obtained by
shuffling the order of graph feature gathering and MLP, we propose to
use the same shuffling procedure for the general case in Eqn. (6.36). The
effectiveness of the shuffling operation is validated in the experiments.

6.5 experiments

Dataset. This section validates the effectiveness of the proposed GCN
acceleration method on the four popular network architectures DGCNN [148],
PointCNN [83], Point2Mesh [49], and LDGCNN [171]. Experiments on
four important tasks are included, i.e. , point cloud classification, part
segmentation, semantic segmentation, and surface reconstruction.

For classification task, the performance is evaluated on the public
benchmark the ModelNet40 dataset [151]. ModelNet40 consists of
12,311 meshed CAD models of 40 categories. We follow the experi-
mental setting of PointNet [120, 121] and DGCNN [148]. Inference
runtime is measured on a single Titan Xp GPU and the batch size is
reduced to 16 for running with 2048 points. For part segmentation
task, the ShapeNetPart [15] dataset is used. In ShapeNetPart, there
are 16 object categories and 16,881 3D shapes, annotated with 50 parts.
2048 points are sampled from each shape. For semantic segmentation
task, Stanford Large-Scale 3D Indoor Spaces Dataset (S3DIS) [5] is used.
S3DIS consists of indoor scenes of 272 rooms in six indoor areas, anno-
tated with 13 semantic categories. The experiments follow the standard
training, validation, and test split of DGCNN. Part segmentation ex-
periments are run on two Titan Xp GPUs and the batch size is 32. For
surface reconstruction, we use the dataset released by [49] and some
public 3D models. The visualization of meshes is done on the platform
Open3D [180].

Experiment Setup. All of the experiments are rerun for the original
and the accelerated networks. The same training protocol is used for
fair comparison. For point cloud classification, semantic segmentation,

124 towards efficient gcn

N
etw

ork
M

ethod
Points

K
O

V
A

cc.
B

L
A

cc.
Tim

e
[m

s]
M

em
.[G

B
]

FLO
Ps

[G
]

#G
PU

PointN
et

[
1

2
0]

1
0

2
4

2
0

8
9.

4
8

3.
7

4.
7

0.
5

–
1

PointN
et++

[
1

2
1]

1
0

2
4

2
0

9
0.

7
–

1
1

3
–

–
1

K
PC

onv
[
1

4
2]

1
0

2
4

2
0

9
2.

9
–

1
0

8
3.

2
–

1

PointC
N

N
[
8

3]
Baseline

1
0

2
4

2
0

9
1.

8
6

8
7.

9
3

3
5.

3
/

1
0

0.%
0.

8
/

1
0

0.%
2.

5
/

1
0

0.%
1

A
ccel.

1
0

2
4

2
0

9
1.

8
6

8
7.

9
2

2
9.

1
/

8
2.

4
%

0.
6

/
7

6.
7

%
1.

9
/

7
6.

2
%

1

D
G

C
N

N
[
1

4
8]

Baseline
1

0
2

4
2

0
9

2.
1

0
8

9.
0

5
7

4.
7

/
1

0
0.%

5.
2

/
1

0
0.%

8
6.

0
/

1
0

0.%
1

A
ccel.

1
0

2
4

2
0

9
2.

5
6

8
9.

6
2

3
8.

1
/

5
1.

0%
2.

5
/

4
8.

1%
2

0.
4

/
2

3.
7%

1

LD
G

C
N

N
[
1

7
1]

Baseline
1

0
2

4
2

0
9

2.
5

4
8

9.
5

7
9

5.
4

/
1

0
0.%

4.
9

/
1

0
0.%

7
4.

2
/

1
0

0.%
1

A
ccel.

1
0

2
4

2
0

9
2.

5
0

8
9.

3
8

2
4.

1
/

2
5.

3%
1.

3
/

2
6.

5%
1

3.
5

/
1

8.
3%

1

D
G

C
N

N
[
1

4
8]

Baseline
2

0
4

8
4

0
9

2.
5

6
8

9.
9

0
3

8
5.

8
/

1
0

0.%
2

0.
5

/
1

0
0.%

3
0

9.
2

/
1

0
0.%

3

A
ccel.S

1
2

0
4

8
4

0
9

2.
5

8
8

9.
6

0
2

1
2.

7
/

5
5.

1%
2

0.
5

/
1

0
0.%

2
7

4.
8

/
8

8.
9%

3

A
ccel.S

2
2

0
4

8
4

0
9

2.
6

3
9

0.
1

6
1

6
4.

7
/

4
2.

7%
8.

7
/

4
2.

4%
7

5.
4

/
2

4.
4%

1

A
ccel.

2
0

4
8

4
0

9
2.

6
3

8
9.

8
2

1
3

2.
0

/
3

4.
2%

8.
8

/
4

2.
9%

4
1.

0
/

1
3.

3%
1

Table
6.

1:Q
uantitative

com
parison

for
point

cloud
classification

on
M

odelN
et40.A

llexperim
ents

are
reru

n
and

the
accuracy

results
are

averaged
over

5
runs.O

V
A

cc.and
BL

A
cc.denote

overalland
balanced

accuracy,
resp.

6.5 experiments 125

and part segmentation, the accuracy results are averaged over 5 runs,
thus increasing the reliability of the reported numbers. The aim of
our experiment is to compare the accuracy, test time, maximum GPU
memory of the proposed method with original networks. The training
of our accelerated models are all done on a single TITAN XP GPU
whereas the original networks require more than one GPU for some
of the experiments. Due to the different hardware environments, the
runtime might be different from the original papers.

Hyperparameter Setup. Several hyperparameters are involved. We
follow the default settings to determine the number of neighbors K in
KNN. For classification with 1024 and 2048 points, K is 20 and 40, resp.
For part segmentation and semantic segmentation, K is set to 40 and 20,
resp. The enlargement step P is chosen empirically for different tasks.
We try P = 1/4K, 1/2K, 3/4K, K.

Model Method
Classification Part segmentation

Conv / KNN/ Total Conv / KNN / Total

PointCNN
Baseline 2.4G / 0.118G / 2.5G 8.5G / 1.175G / 9.7G
Accel. 1.8G / 0.104G / 1.9G 7.0G / 0.588G / 7.6G

DGCNN
Baseline 77.3G / 8.7G / 86.0G 140.8G / 18.0G / 158.8G
Accel. 20.3G / 0.1G / 20.4G 53.6G / 17.6G / 71.2G

LDGCNN
Baseline 60.9G / 13.3G / 74.2G 149.7G / 53.2G / 202.9G
Accel. 13.4G / 0.10G / 13.5G 52.3G / 0.4G / 52.7G

Table 6.2: Breakdown analysis of FLOPs of different networks.

6.5.1 Point Cloud Classification.

Acceleration results. The comparison between the original networks [148,
83, 171] and the accelerated versions for point cloud classification is
shown in Table 6.1. With 1024 points available, compared with DGCNN,
the accelerated network is about twice faster, reduces the GPU memory
and computation by 49% and 76.6% with similar accuracy. On the
heavier network LDGCNN [171], the accelerated version is about ×4
times faster. Even for the compact PointCNN, the proposed method
could reduce the runtime by 17.6%. When 2048 points are available, the
accelerated version is about ×3 faster, reduces GPU memory by 57.1%
and computation by 86.7% without loss of accuracy. DGCNN needs

126 towards efficient gcn

three Titan Xp GPUs for the test with 2048 points, while our method
only needs one GPU.

Breakdown analysis. In addition to the overall acceleration perfor-
mance, the detailed breakdown analysis is given as follows. I. Besides
our full method, performances with only KNN simplification (Accel.
S1) or operation shuffling in Sec. 6.4.3 (Accel. S2) are also ablated. As
shown in the table, both of the strategies could improve the efficiency
of the network. II. The effects of the proposed two methods depend
on the redundancy of the baseline networks. For example, PointCNN
exploits point subsampling to make the computation highly efficient
while DGCNN and LDGCNN keep a high density of points across
the network. Applying the same method to a more redundant net-
work could bring more benefits. III. The reduction of inference time
comes from the reduction of computation. The breakdown analysis
of the computation reduction of the two proposed methods is given
in Table 6.2. The effect of the two proposed methods on computation
reduction depends on the networks and tasks. For LDGCNN, both
KNN simplication and operation shuffling contribute a lot to the re-
duction of computation. For PointCNN on classification and DGCNN
on part segmentation, operation shuffling leads to more computation
reduction compared with KNN simplification. IV. The reduction of
GPU memory mainly comes from shuffling of operations because it
avoids the expansion of point feature.

(a) (b) (c) (d)

Figure 6.5: Qualitative result on Modelnet40. (a), (b) Input space and
last-layer feature space rendered as colormap between the
red point and the rest points at Epoch 0. The green points
are KNN of the red point. (c), (d) follow the same layout
with (a), (b) at Epoch 250.

Visualization. In order to validate that the neighborhood geometric
features are preserved after all the operations and acceleration strategies,

6.5 experiments 127

(a) (b) (c) (d) (e) (f)

Figure 6.6: Renderings of input space and feature space as colormap
between the red point and the rest of the points on Mod-
elNet40 dataset. The green points represent KNN of the
red point. (a) represents the input space. (b) represents the
feature space extracted from the second layer of the network.
(c) represents the feature space extracted from the last layer
of the network. (d), (e),and (f) follows the same layout with
(a), (b), and (c), respectively.

experiments are designed by extracting and visualizing the feature
map of the accelerated networks as a distance color map rendered
on the 3D point cloud. The visualized feature maps are shown from
two perspective including feature map evolution during training and
feature map enriching across the network. I. The evolution of feature
space w.r.t. the number of epochs is shown in Fig. 6.5. By comparing
Fig. 6.5b and Fig. 6.5d, we can see that there is a clear contraction of
near neighbors during the training. At Epoch 250 when the loss of
the classification neural network converges, the yellowish neighbor
features also converge into a very small region which is smaller than

128 towards efficient gcn

the KNN represented by the green points. Thus, the local structures
of the point clouds are well preserved by the network during training
despite the simplification of the operations. II. Fig. 6.6 shows more
results of feature space for point cloud classification on ModelNet40.
As the network goes deeper, the yellow points gradually contract to
a small region near the red point. This proves the effectiveness of the
local feature extraction is kept by the accelerated network.

Method mIoU Runtime [ms]
GPU

mem. [GB] FLOPs [G] #GPU

PointCNN [83]
Baseline 83.34 123.0 / 100.% 3.3 / 100.% 9.7 / 100.% 1

Accel. 83.21 111.9 / 91.0% 2.7 / 82.7% 7.6 / 78.8% 1

DGCNN [148]
Baseline 84.95 116.1 / 100.% 17.2 / 100.% 158.8 / 100.% 2

Accel. 84.78 81.8 / 70.5% 4.1 / 23.8% 71.2 / 44.8% 1

LDGCNN [171]
Baseline 84.13 365.3 / 100.% 9.7/ 100.% 202.9 / 100.% 2

Accel. 84.02 46.2 / 12.6 % 1.9 / 19.5% 52.7 / 26.0% 1

Table 6.3: Quantitative comparison for part segmentation of point
clouds on ShapeNetPart. Experiments are rerun. Accuracy
is averaged over 5 runs.

Method mIoU Runtime GPU mem. #GPU

Baseline 57.5 172.7 / 100.% 14.6 / 100.% 2

Accel. 57.0 87.0 / 50.4% 6.0 / 40.8% 1

Table 6.4: Comparison for semantic segmentation of point clouds on
S3DIS. Accuracy reported over 5 runs. The unit of the metrics
is the same as that in Table 6.1.

6.5.2 Point Cloud Segmentation.

The experimental results for point cloud part segmentation are shown
in Table 6.3. The mean IoU metric is used to quantitatively evaluate

6.5 experiments 129

the segmentation performance. As shown in Table 6.3, compared
with DGCNN, our method greatly reduces the runtime, GPU memory
consumption, and computation by 29.5%, 76.2%, and 56.2%, resp. The
networks in [83] and [171] are accelerated by 9% and 77.4%, resp. In
Fig. 6.7, the distance of points in the input space and the feature space
is shown. As the network gets deeper, the accelerated network could
still learn the long-range dependencies between points. As for the
semantic segmentation task, Table 6.4 shows that our method reduces
the runtime and memory consumption by 49.6% and 59.2% compared
with DGCNN.

Method
F-score

Runtime [s] #Param. [k]
Bunny Bird

Baseline 69.7 53.3 0.41 / 100.% 735.8 / 100.%
Accel. 73.0 51.6 0.29 / 70.7% 153.7 / 20.9%

Table 6.5: Quantitative comparison for surface reconstruction.

6.5.3 Surface Reconstruction.

In order to validate the efficiency of our method applied to prior
networks, we compare it with Point2Mesh [49] for the surface recon-
struction. Similar to Point2Mesh, we use the F-score as the metric to
evaluate the quality of the reconstructed meshes. The result is shown in
Table 6.5. It can be observed that our method has similar reconstruction
quality as Point2Mesh, while speeding up inference by 29%. Note
that the number of parameters is reduced by 79.1%. The qualitative
results for different shapes are shown in Fig. 6.8. It is obvious that our
accelerated method recovers the 3D meshes with a similar quality as
Point2Mesh.

6.5.4 Applicability.

The two methods proposed in this chapter have different application
scenarios. I. In the first method, we handle the simplification of neigh-
bor querying. We focus on GCNs with KNN because they generally
performs better and KNN is the most expensive method among the

130 towards efficient gcn

(a) (b) (c) (d) (e) (f)

Figure 6.7: Visualization of the point distance across the accelerated
network for part segmentation task. The distance of points
to the red point in the figures is computed. Lighter color
means closer distance. (a) The input shape. (b) Distance
between points in the raw data. (c)-(e) Distance between
points in the feature space from Layer 1, Layer 2, Layer 3 of
the accelerated network. (f) Segmentation result. The accel-
erated network could still capture long-range dependency
between points.

6.5 experiments 131

(a) (b) (c) (d) (e)

Figure 6.8: Surface reconstruction results. (a) Input point cloud. (b, c)
Surface and normal map reconstructed by Point2Mesh. (d,
e) Surface and normal map reconstructed by our method.

available methods. In the analysis of Theorem 1, the core assumption is
the ordered neighbors. It does not matter whether the neighbors come
from KNN search or other alternatives such as ball querying. Thus,
the same theoretical analysis and conclusion hold for those methods.
II. The second method is not limited to a specific GCN. Instead, it
is applicable to any GCN with the computation pattern that feature
gathering occurs before MLP (e.g. Point2Mesh). Actually, the second
method is adopted for all the four investigated networks. In Table 6.2,
the reduction of the FLOPs of convolution reflects how the shuffling
trick works for different networks. III. Some classical GCNs do not use
KNN. Yet, they still need to propagate message between neighbors. In
this case (GCN2Conv, RGCNConv, Point2Mesh), the adjacency is usu-
ally defined on the input data. In some cases (MeshConv, Point2Mesh),
feature gathering occurs before MLP and our shuffling method could
be used.

132 towards efficient gcn

6.6 conclusion

In this work we have presented two strategies for improving the time
and memory efficiency of dynamic GCNs. The two strategies are based
on the analysis of basic operations in GCNs. The modified networks
retain their accuracy while significantly shrinking the test time and GPU
memory consumption. Experimental results show that our method has
a significant performance on multiple important tasks. In the future,
we plan to explore how to add flexibility and efficiency to the design of
neural network for 3D tasks.

C O N C L U S I O N

133

7
C O N C L U S I O N A N D O U T L O O K

7.1 contribution

In this thesis, we tried to improve the computational procedure of DNNs

from three perspectives including neural network compression, neural
architecture optimization, and computational procedure optimization.

In this first part of the thesis, two network compression approaches
including filter decomposition and filter pruning are investigated and
three new network compression methods are proposed. First, a filter
basis learning method is proposed to reduce the number of parameters
of CNNs in Chapter 2. The contribution of this method is that it can
balance the distribution of parameters between the basis filters and the
combination coefficients. Second, a differentiable pruning method is
proposed for automatic network pruning in Chapter 3. The major con-
tribution of this method is the designed new family of hypernetworks
used to reparameterize the network and the differentiablity of the prun-
ing method. Third, group sparsity is used for network compression in
Chapter 4. The contribution of this chapter is the unified analysis of
filter decomposition and filter pruning is provided from the perspective
compact tensor approximation.

The proposed three methods have different effects on network com-
pression. The filter basis learning method is mainly designed to reduce
the number of parameters in the network. The differentiable network
pruning method can reduce a significant amount of computation in the
network and speed up the inference of the compressed network. And
the third method provides an opportunity to flexibly select from filter
decomposition and filter pruning for network compression

Then in the second part of the thesis, we focus on neural architecture
optimization. Specifically, a cost-free fine-grained architecture optimiza-
tion method is developed in Chapter 5. The architecture of a given
network is optimized by searching in a larger network configuration
space. The single-shot shrinkage method is used as the agent to iden-
tify a better network architecture. Different from NAS, the architecture
optimization procedure of the proposed method is highly efficient.

135

136 conclusion and outlook

In the third part of the thesis, an acceleration method is designed
to improve the computational efficiency of GCNs for learning on point
clouds. Two techniques are proposed to achieve that goal. First, by
mathematically analyzing the propagation of local geometric struc-
ture information, it is found adjacency property of points propagates
smoothly across the network. Thus, this motivates the simplification
of KNN search in GCNs. Second, it is found that shuffling the order
of graph feature gathering and an MLP leads to equivalent or similar
composite operations. The shuffling of operation also avoids the re-
dundant computation on repeated features. In short, by utilizing KNN
simplification and operation shuffling, the computational efficiency of
GCNs could be greatly improved.

7.2 challenges

Despite the great advances in efficient computation, there are still a lot
of challenges in this field.

Network Compression. For network compression especially net-
work pruning, there are already many published works. Yet, due
to the different optimization method, the fine-tuning method after
compression, the evaluation metrics, the applied networks, tasks, and
datasets, it is hard to have a fair comparison between different methods.
Thus, there is a strong need for a benchmark standard that helps to
form fair comparisons between different methods. Second, for current
network compression methods, the compressed network are usually
fine-tuned for quite a long time. In this case, the final parameters in
the compressed network is less related to the parameters in the original
network. And this raises the question whether the pretrained network
parameters are important. Actually, there are already a couple of works
which states that the network architecture is more important than the
pretrained parameters. Thus, the network compression problem be-
comes the problem of finding the optimal fine-grained architecture.
Thus, more efforts should be directed to improving the search efficiency
of network compression algorithms.

Architecture Optimization. The general pipeline of neural architec-
ture optimization includes building a supernet, searching sub-networks
in the supernet, and retraining the found architecture. The major prob-
lem of neural architecture optimization is the huge computation in the
search phase. Although some methods such as weight sharing are pro-

7.2 challenges 137

posed, the computation cost is still unaffordable in the case of limited
computational resources. In addition, after the performance boost in the
early phase of the development, NAS seems to meet a saturation point.
Recently, transformer architectures have been successfully applied to a
lot of computer vision tasks. In this new era, whether NAS could still
boost the performance of transformers needs to be answered.

Computational procedure optimization. The methods used to opti-
mize the computational procedure highly depends on the basic oper-
ation and architecture in the network. Besides CNNs and GCNs, trans-
formers have also thrived during the past two years. And transformers
are well-known for the large-scale computation. Past efforts are directed
to improving efficiency of the self-attention in transformers. Yet, it is
also interesting how the other techniques such as network compression
and architecture optimization could be applied to transformers.

B I B L I O G R A P H Y

[1] Martıén Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Geoffrey Irving, Michael Isard, et al. ”Tensorflow: A system for
large-scale machine learning.“ In: Proceedings of {USENIX} sym-
posium on operating systems design and implementation ({OSDI}
16). 2016, pp. 265–283 (cit. on p. 23).

[2] Eirikur Agustsson and Radu Timofte. ”NTIRE 2017 challenge
on single image super-resolution: Dataset and study.“ In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops. 2017, pp. 126–135 (cit. on pp. 26, 55, 104).

[3] Jose M Alvarez and Mathieu Salzmann. ”Compression-aware
training of deep networks.“ In: Advances in Neural Information
Processing Systems. 2017, pp. 856–867 (cit. on p. 64).

[4] Jose M Alvarez and Mathieu Salzmann. ”Learning the number
of neurons in deep networks.“ In: Advances in Neural Information
Processing Systems. 2016, pp. 2270–2278 (cit. on pp. 16, 64).

[5] Iro Armeni, Ozan Sener, Amir R Zamir, Helen Jiang, Ioannis
Brilakis, Martin Fischer, and Silvio Savarese. ”3D semantic pars-
ing of large-scale indoor spaces.“ In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition. 2016, pp. 1534–
1543 (cit. on p. 123).

[6] Anubhav Ashok, Nicholas Rhinehart, Fares Beainy, and Kris
M Kitani. ”N2N learning: Network to network compression
via policy gradient reinforcement learning.“ In: arXiv preprint
arXiv:1709.06030 (2017) (cit. on p. 18).

[7] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. ”SURF: Speeded
up robust features.“ In: Proceeding of the European Conference on
Computer Vision. Springer. 2006, pp. 404–417 (cit. on p. 3).

[8] Amir Beck. First-order methods in optimization. Vol. 25. SIAM, 2017

(cit. on p. 73).

139

140 bibliography

[9] Marco Bevilacqua, Aline Roumy, Christine Guillemot, and Marie
Line Alberi-Morel. ”Low-complexity single-image super-resolution
based on nonnegative neighbor embedding.“ In: Proceedings of
the British Machine Vision Conference. 2012 (cit. on pp. 26, 57, 104).

[10] Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu Timo-
fte. ”Learning discriminative model prediction for tracking.“ In:
Proceedings of the IEEE International Conference on Computer Vision.
2019, pp. 6182–6191 (cit. on pp. 87, 103).

[11] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan
Eckstein, et al. ”Distributed optimization and statistical learning
via the alternating direction method of multipliers.“ In: Founda-
tions and Trends® in Machine learning 3.1 (2011), pp. 1–122 (cit. on
p. 69).

[12] Andrew Brock, Theo Lim, J.M. Ritchie, and Nick Weston. ”SMASH:
One-Shot Model Architecture Search through HyperNetworks.“
In: Proceedings of International Conference on Learning Representa-
tions. 2018 (cit. on p. 41).

[13] Jiezhang Cao, Yawei Li, Kai Zhang, and Luc Van Gool. ”Video
Super-Resolution Transformer.“ In: arXiv preprint arXiv:2106.06847
(2021) (cit. on p. viii).

[14] Ines Chami, Zhitao Ying, Christopher Ré, and Jure Leskovec.

”Hyperbolic graph convolutional neural networks.“ In: Advances
in neural information processing systems. 2019, pp. 4868–4879 (cit.
on p. 109).

[15] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat
Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Manolis
Savva, Shuran Song, Hao Su, et al. ”ShapeNet: An information-
rich 3d model repository.“ In: arXiv preprint arXiv:1512.03012
(2015) (cit. on pp. 109, 123).

[16] Oscar Chang, Lampros Flokas, and Hod Lipson. ”Principled
Weight Initialization for Hypernetworks.“ In: Proceedings of In-
ternational Conference on Learning Representations. 2020 (cit. on
pp. 50, 92).

[17] Changan Chen, Frederick Tung, Naveen Vedula, and Greg Mori.

”Constraint-aware deep neural network compression.“ In: Pro-
ceeding of the European Conference on Computer Vision. 2018, pp. 400–
415 (cit. on p. 37).

bibliography 141

[18] He Chen, Pengfei Guo, Pengfei Li, Gim Hee Lee, and Gregory
Chirikjian. ”Multi-person 3D pose estimation in crowded scenes
based on multi-view geometry.“ In: Proceedings of the European
Conference on Computer Vision. Springer. 2020, pp. 541–557 (cit. on
p. 113).

[19] Wenlin Chen, James Wilson, Stephen Tyree, Kilian Weinberger,
and Yixin Chen. ”Compressing neural networks with the hashing
trick.“ In: Proceedings of the International Conference on Machine
Learning. 2015, pp. 2285–2294 (cit. on p. 16).

[20] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. ”Progressive differ-
entiable architecture search: Bridging the depth gap between
search and evaluation.“ In: Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision. 2019, pp. 1294–1303 (cit. on
pp. 5, 41).

[21] Christopher Choy, JunYoung Gwak, and Silvio Savarese. ”4D
spatio-temporal convnets: Minkowski convolutional neural net-
works.“ In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2019, pp. 3075–3084 (cit. on p. 113).

[22] James W Cooley and John W Tukey. ”An algorithm for the
machine calculation of complex Fourier series.“ In: Mathematics
of computation 19.90 (1965), pp. 297–301 (cit. on p. 3).

[23] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David.

”Binaryconnect: Training deep neural networks with binary
weights during propagations.“ In: Advances in Neural Information
Processing Systems. 2015, pp. 3123–3131 (cit. on p. 17).

[24] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-
Yaniv, and Yoshua Bengio. ”Binarized neural networks: Training
deep neural networks with weights and activations constrained
to +1 or-1.“ In: arXiv preprint arXiv:1602.02830 (2016) (cit. on
pp. 5, 17).

[25] Elliot J Crowley, Gavin Gray, and Amos J Storkey. ”Moonshine:
Distilling with cheap convolutions.“ In: Advances in Neural Infor-
mation Processing Systems. 2018, pp. 2888–2898 (cit. on p. 18).

[26] Navneet Dalal and Bill Triggs. ”Histograms of oriented gradi-
ents for human detection.“ In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. Vol. 1. IEEE. 2005,
pp. 886–893 (cit. on p. 3).

142 bibliography

[27] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst.

”Convolutional neural networks on graphs with fast localized
spectral filtering.“ In: Advances in neural information processing
systems. 2016, pp. 3844–3852 (cit. on p. 109).

[28] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-
Fei. ”ImageNet: A large-scale hierarchical image database.“ In:
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. IEEE. 2009, pp. 248–255 (cit. on pp. 50, 52, 94, 96).

[29] Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun,
and Rob Fergus. ”Exploiting linear structure within convolu-
tional networks for efficient evaluation.“ In: Advances in Neural
Information Processing Systems. 2014, pp. 1269–1277 (cit. on pp. 17,
23, 64).

[30] Xiaohan Ding, Tianxiang Hao, Ji Liu, Jungong Han, Yuchen
Guo, and Guiguang Ding. ”Lossless CNN Channel Pruning via
Gradient Resetting and Convolutional Re-parameterization.“ In:
arXiv preprint arXiv:2007.03260 (2020) (cit. on p. 88).

[31] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang.

”Learning a deep convolutional network for image super-resolution.“
In: Proceeding of the European Conference on Computer Vision. Springer.
2014, pp. 184–199 (cit. on p. 3).

[32] Xin Dong, Shangyu Chen, and Sinno Pan. ”Learning to prune
deep neural networks via layer-wise optimal brain surgeon.“ In:
Advances in Neural Information Processing Systems. 2017, pp. 4857–
4867 (cit. on p. 37).

[33] Heng Fan, Liting Lin, Fan Yang, Peng Chu, Ge Deng, Sijia Yu,
Hexin Bai, Yong Xu, Chunyuan Liao, and Haibin Ling. ”LaSOT:
A high-quality benchmark for large-scale single object tracking.“
In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2019, pp. 5374–5383 (cit. on p. 103).

[34] Jonathan Frankle and Michael Carbin. ”The lottery ticket hy-
pothesis: Finding sparse, trainable neural networks.“ In: arXiv
preprint arXiv:1803.03635 (2018) (cit. on p. 88).

[35] Hongyang Gao and Shuiwang Ji. ”Graph U-nets.“ In: Proceedings
of the International Conference on Machine Learning. PMLR. 2019,
pp. 2083–2092 (cit. on pp. 113, 114).

bibliography 143

[36] Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Char-
lin, and Andrea Lodi. ”Exact combinatorial optimization with
graph convolutional neural networks.“ In: Advances in Neural
Information Processing Systems. 2019, pp. 15580–15592 (cit. on
p. 109).

[37] Ross Girshick. ”Fast R-CNN.“ In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision. 2015, pp. 1440–1448 (cit. on
p. 3).

[38] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Ma-
lik. ”Rich feature hierarchies for accurate object detection and
semantic segmentation.“ In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2014, pp. 580–587 (cit. on
p. 3).

[39] Xavier Glorot and Yoshua Bengio. ”Understanding the difficulty
of training deep feedforward neural networks.“ In: Proceedings
of the International Conference on Artificial Intelligence and Statistics.
2010, pp. 249–256 (cit. on p. 50).

[40] Rui Gong, Yuhua Chen, Danda Pani Paudel, Yawei Li, Ajad
Chhatkuli, Wen Li, Dengxin Dai, and Luc Van Gool. ”Cluster,
Split, Fuse, and Update: Meta-Learning for Open Compound
Domain Adaptive Semantic Segmentation.“ In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2021,
pp. 8344–8354 (cit. on p. viii).

[41] Shuhang Gu, Yawei Li, Luc Van Gool, and Radu Timofte. ”Self-
guided network for fast image denoising.“ In: Proceedings of the
IEEE International Conference on Computer Vision. 2019, pp. 2511–
2520 (cit. on p. viii).

[42] Shuhang Gu, Qi Xie, Deyu Meng, Wangmeng Zuo, Xiangchu
Feng, and Lei Zhang. ”Weighted nuclear norm minimization
and its applications to low level vision.“ In: IJCV 121.2 (2017),
pp. 183–208 (cit. on p. 69).

[43] Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang Mu,
Ralph R Martin, and Shi-Min Hu. ”PCT: Point Cloud Trans-
former.“ In: arXiv preprint arXiv:2012.09688 (2020) (cit. on p. 113).

144 bibliography

[44] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun
Liu, Yichen Wei, and Jian Sun. ”Single path one-shot neural
architecture search with uniform sampling.“ In: Proceedings of the
European Conference on Computer Vision. Springer. 2020, pp. 544–
560 (cit. on pp. 5, 41).

[45] David Ha, Andrew Dai, and Quoc V Le. ”HyperNetworks.“ In:
Proceedings of International Conference on Learning Representations.
2017 (cit. on pp. 38, 41, 43, 44).

[46] Pim de Haan, Taco Cohen, and Max Welling. ”Natural graph
networks.“ In: arXiv preprint arXiv:2007.08349 (2020) (cit. on
p. 113).

[47] Song Han, Huizi Mao, and William J Dally. ”Deep compression:
Compressing deep neural networks with pruning, trained quan-
tization and Huffman coding.“ In: Proceedings of International
Conference on Learning Representations. 2015 (cit. on pp. 5, 16, 37).

[48] Song Han, Jeff Pool, John Tran, and William Dally. ”Learning
both weights and connections for efficient neural network.“ In:
Advances in Neural Information Processing Systems. 2015, pp. 1135–
1143 (cit. on p. 16).

[49] Rana Hanocka, Gal Metzer, Raja Giryes, and Daniel Cohen-Or.

”Point2Mesh: A Self-Prior for Deformable Meshes.“ In: arXiv
preprint arXiv:2005.11084 (2020) (cit. on pp. 109, 111, 115, 122,
123, 129).

[50] Karen Hao. MIT Technology Review: 10 Breakthrough Technologies
2020. 2020. url: https://www.technologyreview.com/lists/
technologies/2020/#tiny-ai (visited on 12/10/2021) (cit. on
p. 37).

[51] Babak Hassibi and David G Stork. ”Second order derivatives
for network pruning: Optimal brain surgeon.“ In: Advances in
Neural Information Processing Systems. 1993, pp. 164–171 (cit. on
pp. 37, 87, 100).

[52] Kohei Hayashi, Taiki Yamaguchi, Yohei Sugawara, and Shin-ichi
Maeda. ”Einconv: Exploring Unexplored Tensor Decompositions
for Convolutional Neural Networks.“ In: Advances in Neural
Information Processing Systems. 2019, pp. 5553–5563 (cit. on pp. 37,
40).

https://www.technologyreview.com/lists/technologies/2020/#tiny-ai
https://www.technologyreview.com/lists/technologies/2020/#tiny-ai

bibliography 145

[53] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. ”Deep
residual learning for image recognition.“ In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2016,
pp. 770–778 (cit. on pp. 3, 4, 8, 13, 23, 25, 26, 40, 50, 52, 61, 63, 75,
85, 87, 89, 94, 96, 97).

[54] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. ”Filter
pruning via geometric median for deep convolutional neural
networks acceleration.“ In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2019, pp. 4340–4349 (cit.
on pp. 37, 53, 64, 77).

[55] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song
Han. ”AMC: AutoML for model compression and acceleration
on mobile devices.“ In: Proceeding of the European Conference on
Computer Vision. 2018, pp. 784–800 (cit. on pp. 32, 37, 40, 53, 77).

[56] Yihui He, Xiangyu Zhang, and Jian Sun. ”Channel pruning for
accelerating very deep neural networks.“ In: Proceedings of the
IEEE International Conference on Computer Vision. 2017, pp. 1389–
1397 (cit. on pp. 5, 14, 16, 37, 64).

[57] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. ”Distilling the
knowledge in a neural network.“ In: arXiv preprint arXiv:1503.02531
(2015) (cit. on pp. 5, 18, 93, 94).

[58] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen,
Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming
Pang, Vijay Vasudevan, et al. ”Searching for MobileNetV3.“ In:
Proceedings of the IEEE International Conference on Computer Vision.
2019, pp. 1314–1324 (cit. on pp. 4, 5, 85, 87, 94, 96).

[59] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig
Adam. ”MobileNets: Efficient convolutional neural networks for
mobile vision applications.“ In: arXiv preprint arXiv:1704.04861
(2017) (cit. on pp. 4, 40, 50, 87, 89, 94, 96).

[60] Jie Hu, Li Shen, and Gang Sun. ”Squeeze-and-excitation net-
works.“ In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2018, pp. 7132–7141 (cit. on p. 4).

146 bibliography

[61] Qingyong Hu, Bo Yang, Linhai Xie, Stefano Rosa, Yulan Guo,
Zhihua Wang, Niki Trigoni, and Andrew Markham. ”RandLA-
Net: Efficient semantic segmentation of large-scale point clouds.“
In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2020, pp. 11108–11117 (cit. on pp. 109, 114).

[62] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q
Weinberger. ”Densely connected convolutional networks.“ In:
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2017, pp. 2261–2269 (cit. on pp. 3, 4, 23, 26, 40, 50,
52, 63, 76, 85, 87, 94, 97).

[63] Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. ”Single
image super-resolution from transformed self-exemplars.“ In:
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2015, pp. 5197–5206 (cit. on pp. 26, 57, 104).

[64] Zehao Huang and Naiyan Wang. ”Data-driven sparse structure
selection for deep neural networks.“ In: Proceeding of the European
Conference on Computer Vision. 2018, pp. 304–320 (cit. on pp. 53,
64, 67, 77, 79–81).

[65] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. ”Speed-
ing up Convolutional Neural Networks with Low Rank Expan-
sions.“ In: Proceedings of the British Machine Vision Conference.
2014 (cit. on pp. 5, 14, 15, 17, 18, 23, 64).

[66] Chiyu Jiang, Jingwei Huang, Andrea Tagliasacchi, Leonidas
Guibas, et al. ”ShapeFlow: Learnable Deformations Among 3D
Shapes.“ In: arXiv preprint arXiv:2006.07982 (2020) (cit. on p. 113).

[67] Hyeji Kim, Muhammad Umar Karim Khan, and Chong-Min
Kyung. ”Efficient neural network compression.“ In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition. 2019, pp. 12569–12577 (cit. on pp. 32, 53, 77).

[68] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. ”Accurate im-
age super-resolution using very deep convolutional networks.“
In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2016, pp. 1646–1654 (cit. on p. 3).

[69] Diederik P Kingma and Jimmy Ba. ”Adam: A method for stochas-
tic optimization.“ In: arXiv preprint arXiv:1412.6980 (2014) (cit. on
p. 26).

bibliography 147

[70] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of
features from tiny images. Tech. rep. Citeseer, 2009 (cit. on pp. 26,
50, 52, 75, 94).

[71] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ”Ima-
genet classification with deep convolutional neural networks.“
In: Advances in Neural Information Processing Systems. 2012, pp. 1097–
1105 (cit. on pp. 3, 4, 13).

[72] David Krueger, Chin-Wei Huang, Riashat Islam, Ryan Turner,
Alexandre Lacoste, and Aaron Courville. ”Bayesian hypernet-
works.“ In: arXiv preprint arXiv:1710.04759 (2017) (cit. on p. 41).

[73] Mark Labbe. Energy consumption of AI poses environmental prob-
lems. 2021. url: https://searchenterpriseai.techtarget.
com/feature/Energy-consumption-of-AI-poses-environmental-

problems (visited on 12/10/2021) (cit. on p. 4).

[74] Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Os-
eledets, and Victor Lempitsky. ”Speeding-up convolutional neu-
ral networks using fine-tuned CP-decomposition.“ In: Proceed-
ings of International Conference on Learning Representations. 2015

(cit. on pp. 17, 64).

[75] Yann LeCun, John S Denker, and Sara A Solla. ”Optimal brain
damage.“ In: Advances in Neural Information Processing Systems.
1990, pp. 598–605 (cit. on pp. 37, 87, 100).

[76] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, An-
drew Cunningham, Alejandro Acosta, Andrew Aitken, Alykhan
Tejani, Johannes Totz, Zehan Wang, et al. ”Photo-realistic single
image super-resolution using a generative adversarial network.“
In: Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition. 2017, pp. 4681–4690 (cit. on pp. 25, 26, 28, 40,
50, 56, 87, 94, 104).

[77] Junhyun Lee, Inyeop Lee, and Jaewoo Kang. ”Self-attention
graph pooling.“ In: Proceedings of the International Conference on
Machine Learning. PMLR. 2019, pp. 3734–3743 (cit. on pp. 113,
114).

[78] Namhoon Lee, Thalaiyasingam Ajanthan, Stephen Gould, and
Philip HS Torr. ”A Signal Propagation Perspective for Pruning
Neural Networks at Initialization.“ In: arXiv preprint arXiv:1906.06307
(2019) (cit. on pp. 86, 88).

https://searchenterpriseai.techtarget.com/feature/Energy-consumption-of-AI-poses-environmental-problems
https://searchenterpriseai.techtarget.com/feature/Energy-consumption-of-AI-poses-environmental-problems
https://searchenterpriseai.techtarget.com/feature/Energy-consumption-of-AI-poses-environmental-problems

148 bibliography

[79] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr.

”SNIP: Single-shot network pruning based on connection sensi-
tivity.“ In: arXiv preprint arXiv:1810.02340 (2018) (cit. on pp. 86,
92, 93).

[80] Fengfu Li, Bo Zhang, and Bin Liu. ”Ternary weight networks.“
In: arXiv preprint arXiv:1605.04711 (2016) (cit. on p. 5).

[81] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans
Peter Graf. ”Pruning filters for efficient convnets.“ In: arXiv
preprint arXiv:1608.08710 (2016) (cit. on pp. 53, 77).

[82] Jiashi Li, Qi Qi, Jingyu Wang, Ce Ge, Yujian Li, Zhangzhang Yue,
and Haifeng Sun. ”OICSR: Out-In-Channel Sparsity Regulariza-
tion for Compact Deep Neural Networks.“ In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2019,
pp. 7046–7055 (cit. on pp. 64, 66, 67).

[83] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and
Baoquan Chen. ”PointCNN: Convolution on χ-transformed
points.“ In: Advances in Neural Information Processing Systems.
2018, pp. 828–838 (cit. on pp. 109, 111, 122–125, 128, 129).

[84] Yangyan Li, Soeren Pirk, Hao Su, Charles R Qi, and Leonidas J
Guibas. ”FPNN: Field probing neural networks for 3D data.“ In:
Advances in Neural Information Processing Systems. 2016, pp. 307–
315 (cit. on p. 113).

[85] Yawei Li, Kamil Adamczewski, Wen Li, Shuhang Gu, Radu Tim-
ofte, and Luc Van Gool. ”Revisiting Random Channel Pruning
for Neural Network Compression.“ In: Proceedings of the IEEE
International Conference on Computer Vision. 2022 (cit. on p. viii).

[86] Yawei Li, Eirikur Agustsson, Shuhang Gu, Radu Timofte, and
Luc Van Gool. ”CARN: convolutional anchored regression net-
work for fast and accurate single image super-resolution.“ In:
Proceeding of the European Conference on Computer VisionW. Springer.
2018, pp. 166–181 (cit. on p. vii).

[87] Yawei Li, Babak Ehteshami Bejnordi, Bert Moons, Tijmen Blankevoort,
Amirhossein Habibian, Radu Timofte, and Luc Van Gool. ”Spatio-
Temporal Gated Transformers for Efficient Video Processing.“
In: Advances in Neural Information Processing Systems Workshops.
2021 (cit. on p. viii).

bibliography 149

[88] Yawei Li, He Chen, Zhaopeng Cui, Radu Timofte, Marc Polle-
feys, Gregory Chirikjian, and Luc Van Gool. ”Towards Efficient
Graph Convolutional Networks for Point Cloud Handling.“ In:
Proceedings of the IEEE International Conference on Computer Vision.
2021, pp. 2144–2153 (cit. on p. vii).

[89] Yawei Li, Shuhang Gu, Christoph Mayer, Luc Van Gool, and
Radu Timofte. ”Group Sparsity: The Hinge Between Filter Prun-
ing and Decomposition for Network Compression.“ In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2020 (cit. on pp. vii, 37, 53).

[90] Yawei Li, Shuhang Gu, Luc Van Gool, and Radu Timofte. ”Learn-
ing Filter Basis for Convolutional Neural Network Compres-
sion.“ In: Proceedings of the IEEE International Conference on Com-
puter Vision. 2019, pp. 5623–5632 (cit. on pp. vii, 56, 57, 64).

[91] Yawei Li, Shuhang Gu, Kai Zhang, Luc Van Gool, and Radu Tim-
ofte. ”DHP: Differentiable meta pruning via hypernetworks.“ In:
Proceeding of the European Conference on Computer Vision. Springer.
2020, pp. 608–624 (cit. on pp. vii, 86, 88, 89, 92, 94).

[92] Yawei Li, Wen Li, Martin Danelljan, Kai Zhang, Shuhang Gu, Luc
Van Gool, and Radu Timofte. ”The Heterogeneity Hypothesis:
Finding Layer-Wise Differentiated Network Architectures.“ In:
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2021, pp. 2144–2153 (cit. on p. vii).

[93] Yawei Li, Vagia Tsiminaki, Radu Timofte, Marc Pollefeys, and
Luc Van Gool. ”3D Appearance Super-Resolution with Deep
Learning.“ In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2019 (cit. on p. vii).

[94] Yawei Li, Kai Zhang, Jiezhang Cao, Radu Timofte, and Luc Van
Gool. ”LocalViT: Bringing locality to vision transformers.“ In:
arXiv preprint arXiv:2104.05707 (2021) (cit. on p. viii).

[95] Yuchao Li, Shaohui Lin, Baochang Zhang, Jianzhuang Liu, David
Doermann, Yongjian Wu, Feiyue Huang, and Rongrong Ji. ”Ex-
ploiting Kernel Sparsity and Entropy for Interpretable CNN
Compression.“ In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2019 (cit. on pp. 31, 32, 53, 77, 78).

150 bibliography

[96] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and
Kyoung Mu Lee. ”Enhanced deep residual networks for single
image super-resolution.“ In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops. 2017, pp. 1132–
1140 (cit. on pp. 3, 25, 26, 28, 40, 50, 56, 87, 94, 104).

[97] Shaohui Lin, Rongrong Ji, Chenqian Yan, Baochang Zhang, Li-
ujuan Cao, Qixiang Ye, Feiyue Huang, and David Doermann.

”Towards optimal structured cnn pruning via generative adver-
sarial learning.“ In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2019, pp. 2790–2799 (cit. on pp. 53,
77).

[98] Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall Tappen, and
Marianna Pensky. ”Sparse convolutional neural networks.“ In:
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2015, pp. 806–814 (cit. on p. 16).

[99] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens,
Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan Huang,
and Kevin Murphy. ”Progressive neural architecture search.“ In:
Proceedings of the European Conference on Computer Vision. 2018,
pp. 19–34 (cit. on pp. 5, 41).

[100] Hanxiao Liu, Karen Simonyan, and Yiming Yang. ”DARTS: Dif-
ferentiable architecture search.“ In: Proceedings of International
Conference on Learning Representations. 2019 (cit. on pp. 5, 38, 41,
85).

[101] Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin
Yang, Tim Kwang-Ting Cheng, and Jian Sun. ”MetaPruning:
Meta Learning for Automatic Neural Network Channel Prun-
ing.“ In: Proceedings of the IEEE International Conference on Com-
puter Vision. 2019 (cit. on pp. 37, 38, 40, 41, 43, 44, 49, 54, 55, 88,
92, 96).

[102] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng
Yan, and Changshui Zhang. ”Learning efficient convolutional
networks through network slimming.“ In: Proceedings of the IEEE
International Conference on Computer Vision. 2017, pp. 2736–2744

(cit. on pp. 32, 64, 67).

bibliography 151

[103] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor
Darrell. ”Rethinking the value of network pruning.“ In: Proceed-
ings of International Conference on Learning Representations. 2019

(cit. on pp. 37, 49).

[104] Jonathan Long, Evan Shelhamer, and Trevor Darrell. ”Fully con-
volutional networks for semantic segmentation.“ In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition.
2015, pp. 3431–3440 (cit. on p. 3).

[105] David G Lowe. ”Object recognition from local scale-invariant
features.“ In: Proceedings of the IEEE International Conference on
Computer Vision. Vol. 2. IEEE. 1999, pp. 1150–1157 (cit. on p. 3).

[106] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.

”ShuffleNet V2: Practical guidelines for efficient cnn architecture
design.“ In: Proceedings of the European Conference on Computer
Vision. 2018, pp. 116–131 (cit. on pp. 4, 85).

[107] Eran Malach, Gilad Yehudai, Shai Shalev-Schwartz, and Ohad
Shamir. ”Proving the lottery ticket hypothesis: Pruning is all you
need.“ In: International Conference on Machine Learning. PMLR.
2020, pp. 6682–6691 (cit. on p. 88).

[108] David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik.

”A database of human segmented natural images and its appli-
cation to evaluating segmentation algorithms and measuring
ecological statistics.“ In: Proceedings of the IEEE International Con-
ference on Computer Vision. Vol. 2. IEEE. 2001, pp. 416–423 (cit. on
pp. 26, 57, 104).

[109] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian
Nowozin, and Andreas Geiger. ”Occupancy networks: Learn-
ing 3D reconstruction in function space.“ In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2019,
pp. 4460–4470 (cit. on p. 113).

[110] Breton Minnehan and Andreas Savakis. ”Cascaded projection:
End-to-end network compression and acceleration.“ In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2019, pp. 10715–10724 (cit. on pp. 32, 53, 77).

152 bibliography

[111] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and
Jan Kautz. ”Importance estimation for neural network pruning.“
In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2019, pp. 11264–11272 (cit. on p. 37).

[112] Matthias Muller, Adel Bibi, Silvio Giancola, Salman Alsubaihi,
and Bernard Ghanem. ”Trackingnet: A large-scale dataset and
benchmark for object tracking in the wild.“ In: Proceeding of the
European Conference on Computer Vision. 2018, pp. 300–317 (cit. on
p. 103).

[113] Zheyi Pan, Yuxuan Liang, Junbo Zhang, Xiuwen Yi, Yong Yu, and
Yu Zheng. ”HyperST-Net: Hypernetworks for Spatio-Temporal
Forecasting.“ In: arXiv preprint arXiv:1809.10889 (2018) (cit. on
p. 41).

[114] Neal Parikh, Stephen Boyd, et al. ”Proximal algorithms.“ In:
Foundations and Trends® in Optimization 1.3 (2014), pp. 127–239

(cit. on p. 69).

[115] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan,
Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison,
Luca Antiga, and Adam Lerer. ”Automatic differentiation in
PyTorch.“ In: (2017) (cit. on pp. 23, 49, 76).

[116] David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-
Miquel Munguia, Daniel Rothchild, David So, Maud Texier,
and Jeff Dean. ”Carbon emissions and large neural network
training.“ In: arXiv preprint arXiv:2104.10350 (2021) (cit. on p. 4).

[117] Bo Peng, Wenming Tan, Zheyang Li, Shun Zhang, Di Xie, and
Shiliang Pu. ”Extreme network compression via filter group
approximation.“ In: Proceeding of the European Conference on Com-
puter Vision. 2018, pp. 300–316 (cit. on pp. 14, 17, 27, 29, 31, 32,
58, 59).

[118] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Polle-
feys, and Andreas Geiger. ”Convolutional occupancy networks.“
In: arXiv preprint arXiv:2003.04618 (2020) (cit. on p. 113).

[119] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean.

”Efficient Neural Architecture Search via Parameters Sharing.“
In: Proceedings of the International Conference on Machine Learning.
2018, pp. 4095–4104 (cit. on p. 41).

bibliography 153

[120] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

”PointNet: Deep learning on point sets for 3D classification and
segmentation.“ In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2017, pp. 652–660 (cit. on pp. 3,
109, 113, 123, 124).

[121] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas.

”PointNet++: Deep hierarchical feature learning on point sets
in a metric space.“ In: Advances in neural information processing
systems. 2017, pp. 5099–5108 (cit. on pp. 3, 109, 113, 122–124).

[122] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming
He, and Piotr Dollár. ”Designing Network Design Spaces.“ In:
arXiv preprint arXiv:2003.13678 (2020) (cit. on pp. 85, 87, 94, 96,
97).

[123] Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kembhavi,
Ali Farhadi, and Mohammad Rastegari. ”What’s Hidden in a
Randomly Weighted Neural Network?“ In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2020, pp. 11893–11902 (cit. on p. 88).

[124] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and
Ali Farhadi. ”Xnor-net: Imagenet classification using binary con-
volutional neural networks.“ In: Proceeding of the European Con-
ference on Computer Vision. Springer. 2016, pp. 525–542 (cit. on
pp. 5, 17).

[125] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Taylor Gor-
don, Wan-Yen Lo, Justin Johnson, and Georgia Gkioxari. ”Accel-
erating 3D Deep Learning with PyTorch3D.“ In: arXiv preprint
arXiv:2007.08501 (2020) (cit. on p. 109).

[126] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Taylor Gor-
don, Wan-Yen Lo, Justin Johnson, and Georgia Gkioxari. Py-
torch3D. 2020 (cit. on p. 109).

[127] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le.

”Regularized evolution for image classifier architecture search.“
In: Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 33. 01. 2019, pp. 4780–4789 (cit. on pp. 4, 41).

154 bibliography

[128] Davis Rempe, Tolga Birdal, Yongheng Zhao, Zan Gojcic, Srinath
Sridhar, and Leonidas J Guibas. ”CaSPR: Learning Canonical
Spatiotemporal Point Cloud Representations.“ In: Advances in
Neural Information Processing Systems 33 (2020) (cit. on p. 113).

[129] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. ”Faster
R-CNN: Towards real-time object detection with region proposal
networks.“ In: Advances in Neural Information Processing Systems.
2015, pp. 91–99 (cit. on p. 3).

[130] Alex Renda, Jonathan Frankle, and Michael Carbin. ”Comparing
rewinding and fine-tuning in neural network pruning.“ In: arXiv
preprint arXiv:2003.02389 (2020) (cit. on p. 88).

[131] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. ”U-Net:
Convolutional networks for biomedical image segmentation.“ In:
Proceedings of International Conference on Medical Image Computing
and Computer-Assisted Intervention. Springer. 2015, pp. 234–241

(cit. on pp. 40, 50, 59, 87, 94).

[132] Binxin Ru, Pedro Esperanca, and Fabio Carlucci. ”Neural Archi-
tecture Generator Optimization.“ In: arXiv preprint arXiv:2004.01395
(2020) (cit. on p. 41).

[133] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. ”MobileNetV2: Inverted resid-
uals and linear bottlenecks.“ In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2018, pp. 4510–4520

(cit. on pp. 4, 40, 50, 87, 89, 94, 96).

[134] Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping Shi,
Xiaogang Wang, and Hongsheng Li. ”PV-RCNN: Point-voxel fea-
ture set abstraction for 3D object detection.“ In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2020, pp. 10529–10538 (cit. on p. 113).

[135] Weijing Shi and Raj Rajkumar. ”Point-GNN: Graph neural net-
work for 3D object detection in a point cloud.“ In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion. 2020, pp. 1711–1719 (cit. on p. 109).

[136] Karen Simonyan and Andrew Zisserman. ”Very deep convo-
lutional networks for large-scale image recognition.“ In: arXiv
preprint arXiv:1409.1556 (2014) (cit. on pp. 3, 4, 13, 26, 63, 76, 85).

bibliography 155

[137] Sanghyun Son, Seungjun Nah, and Kyoung Mu Lee. ”Clustering
convolutional kernels to compress deep neural networks.“ In:
Proceeding of the European Conference on Computer Vision. 2018,
pp. 216–232 (cit. on pp. 14, 17, 31, 32, 56, 57, 59).

[138] Emma Strubell, Ananya Ganesh, and Andrew McCallum. ”En-
ergy and policy considerations for deep learning in NLP.“ In:
arXiv preprint arXiv:1906.02243 (2019) (cit. on p. 4).

[139] Richard S Sutton and Andrew G Barto. Reinforcement learning:
An introduction. MIT press, 2018 (cit. on p. 37).

[140] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark
Sandler, Andrew Howard, and Quoc V Le. ”Mnasnet: Platform-
aware neural architecture search for mobile.“ In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition.
2019, pp. 2820–2828 (cit. on pp. 5, 85, 87, 94, 96).

[141] Mingxing Tan and Quoc V Le. ”Efficientnet: Rethinking model
scaling for convolutional neural networks.“ In: arXiv preprint
arXiv:1905.11946 (2019) (cit. on pp. 5, 87, 94, 97).

[142] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud, Beat-
riz Marcotegui, François Goulette, and Leonidas J Guibas. ”KP-
Conv: Flexible and deformable convolution for point clouds.“ In:
Proceedings of the IEEE/CVF International Conference on Computer
Vision. 2019, pp. 6411–6420 (cit. on p. 124).

[143] Amirsina Torfi, Rouzbeh A Shirvani, Sobhan Soleymani, and
Naser M Nasrabadi. ”GASL: Guided Attention for Sparsity
Learning in Deep Neural Networks.“ In: arXiv preprint arXiv:1901.01939
(2019) (cit. on p. 64).

[144] Frederick Tung and Greg Mori. ”Similarity-preserving knowl-
edge distillation.“ In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition. 2019, pp. 1365–1374 (cit. on
pp. 5, 18).

[145] Dominic Zeng Wang and Ingmar Posner. ”Voting for voting
in online point cloud object detection.“ In: Robotics: Science and
Systems. Vol. 1. 3. 2015, pp. 10–15607 (cit. on p. 113).

156 bibliography

[146] Lei Wang, Yuchun Huang, Yaolin Hou, Shenman Zhang, and
Jie Shan. ”Graph attention convolution for point cloud semantic
segmentation.“ In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2019, pp. 10296–10305 (cit. on
p. 109).

[147] Min Wang, Baoyuan Liu, and Hassan Foroosh. ”Factorized con-
volutional neural networks.“ In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision Workshops. 2017, pp. 545–553

(cit. on pp. 14, 15, 17, 18, 24, 27–30, 32, 56–59).

[148] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M
Bronstein, and Justin M Solomon. ”Dynamic graph CNN for
learning on point clouds.“ In: Acm Transactions On Graphics (tog)
38.5 (2019), pp. 1–12 (cit. on pp. 109, 111, 113, 122–125, 128).

[149] Yunxuan Wei, Shuhang Gu, Yawei Li, Radu Timofte, Longcun Jin,
and Hengjie Song. ”Unsupervised real-world image super reso-
lution via domain-distance aware training.“ In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2021, pp. 13385–13394 (cit. on p. viii).

[150] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai
Li. ”Learning structured sparsity in deep neural networks.“ In:
Advances in Neural Information Processing Systems. 2016, pp. 2074–
2082 (cit. on pp. 16, 64).

[151] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang
Zhang, Xiaoou Tang, and Jianxiong Xiao. ”3D ShapeNets: A
deep representation for volumetric shapes.“ In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2015,
pp. 1912–1920 (cit. on p. 123).

[152] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaim-
ing He. ”Aggregated residual transformations for deep neural
networks.“ In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2017, pp. 1492–1500 (cit. on pp. 4,
63, 75).

[153] Qiangeng Xu, Xudong Sun, Cho-Ying Wu, Panqu Wang, and
Ulrich Neumann. ”Grid-GCN for fast and scalable point cloud
learning.“ In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2020, pp. 5661–5670 (cit. on p. 114).

bibliography 157

[154] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun
Qi, Qi Tian, and Hongkai Xiong. ”PC-DARTS: Partial channel
connections for memory-efficient architecture search.“ In: arXiv
preprint arXiv:1907.05737 (2019) (cit. on pp. 5, 41).

[155] Zongben Xu, Xiangyu Chang, Fengmin Xu, and Hai Zhang.

”L1/2 regularization: A thresholding representation theory and a
fast solver.“ In: TNNLS 23.7 (2012), pp. 1013–1027 (cit. on p. 69).

[156] Taojiannan Yang, Sijie Zhu, Chen Chen, Shen Yan, Mi Zhang,
and Andrew Willis. ”MutualNet: Adaptive ConvNet via mutual
learning from network width and resolution.“ In: Proceedings of
the European conference on computer vision. Springer. 2020, pp. 299–
315 (cit. on p. 96).

[157] Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang, Alec Go,
Mark Sandler, Vivienne Sze, and Hartwig Adam. ”NetAdapt:
Platform-aware neural network adaptation for mobile applica-
tions.“ In: Proceeding of the European Conference on Computer Vision.
2018, pp. 285–300 (cit. on p. 85).

[158] Quanming Yao, James T Kwok, and Xiawei Guo. ”Fast Learn-
ing with Nonconvex L1-2 Regularization.“ In: arXiv preprint
arXiv:1610.09461 (2016) (cit. on pp. 69, 74).

[159] Jianbo Ye, Xin Lu, Zhe Lin, and James Z Wang. ”Rethinking the
smaller-norm-less-informative assumption in channel pruning
of convolution layers.“ In: Proceedings of International Conference
on Learning Representations. 2018 (cit. on p. 53).

[160] Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William
L Hamilton, and Jure Leskovec. ”Hierarchical graph represen-
tation learning with differentiable pooling.“ In: arXiv preprint
arXiv:1806.08804 (2018) (cit. on pp. 113, 114).

[161] Jaehong Yoon and Sung Ju Hwang. ”Combined group and ex-
clusive sparsity for deep neural networks.“ In: Proceedings of
the International Conference on Machine Learning. JMLR. org. 2017,
pp. 3958–3966 (cit. on pp. 64, 66, 67, 81, 82).

[162] Jiahui Yu and Thomas Huang. ”AutoSlim: Towards one-shot
architecture search for channel numbers.“ In: arXiv preprint
arXiv:1903.11728 (2019) (cit. on p. 96).

158 bibliography

[163] Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I Morariu,
Xintong Han, Mingfei Gao, Ching-Yung Lin, and Larry S Davis.

”NISP: Pruning networks using neuron importance score propa-
gation.“ In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2018, pp. 9194–9203 (cit. on pp. 53, 77).

[164] Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and
Hyunwoo J Kim. ”Graph transformer networks.“ In: Advances
in Neural Information Processing Systems. 2019, pp. 11983–11993

(cit. on p. 109).

[165] Sergey Zagoruyko and Nikos Komodakis. ”Wide residual net-
works.“ In: 2016 (cit. on pp. 63, 76).

[166] Roman Zeyde, Michael Elad, and Matan Protter. ”On single
image scale-up using sparse-representations.“ In: Proceedings of
International Conference on Curves and Surfaces. Springer. 2010,
pp. 711–730 (cit. on pp. 26, 57, 104).

[167] Dejiao Zhang, Haozhu Wang, Mario Figueiredo, and Laura
Balzano. ”Learning to share: Simultaneous parameter tying and
sparsification in deep learning.“ In: Proceedings of International
Conference on Learning Representations. 2018 (cit. on p. 64).

[168] Kai Zhang, Yawei Li, Wangmeng Zuo, Lei Zhang, Luc Van Gool,
and Radu Timofte. ”Plug-and-play image restoration with deep
denoiser prior.“ In: IEEE Transactions on Pattern Analysis and
Machine Intelligence (2021) (cit. on p. viii).

[169] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and
Lei Zhang. ”Beyond a Gaussian denoiser: residual learning of
deep CNN for image denoising.“ In: IEEE Transactions on Image
Processing 26.7 (2017), pp. 3142–3155 (cit. on pp. 3, 40, 50, 59, 87,
94).

[170] Kai Zhang, Wangmeng Zuo, Shuhang Gu, and Lei Zhang. ”Learn-
ing deep CNN denoiser prior for image restoration.“ In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2017, pp. 3929–3938 (cit. on p. 3).

[171] Kuangen Zhang, Ming Hao, Jing Wang, Clarence W de Silva,
and Chenglong Fu. ”Linked dynamic graph CNN: Learning on
point cloud via linking hierarchical features.“ In: arXiv preprint
arXiv:1904.10014 (2019) (cit. on pp. 109, 111, 122–125, 128, 129).

bibliography 159

[172] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. ”Shuf-
fleNet: An extremely efficient convolutional neural network for
mobile devices.“ In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition. 2018, pp. 6848–6856 (cit. on
p. 4).

[173] Xiangyu Zhang, Jianhua Zou, Kaiming He, and Jian Sun. ”Accel-
erating very deep convolutional networks for classification and
detection.“ In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 38.10 (2015), pp. 1943–1955 (cit. on pp. 5, 14, 15, 17,
18, 64).

[174] Zhiyuan Zhang, Binh-Son Hua, and Sai-Kit Yeung. ”ShellNet:
Efficient point cloud convolutional neural networks using con-
centric shells statistics.“ In: Proceedings of the IEEE International
Conference on Computer Vision. 2019, pp. 1607–1616 (cit. on p. 109).

[175] Chenglong Zhao, Bingbing Ni, Jian Zhang, Qiwei Zhao, Wenjun
Zhang, and Qi Tian. ”Variational convolutional neural network
pruning.“ In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2019, pp. 2780–2789 (cit. on pp. 53, 77,
78).

[176] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip Torr, and Vladlen
Koltun. ”Point transformer.“ In: arXiv preprint arXiv:2012.09164
(2020) (cit. on p. 113).

[177] Yongheng Zhao, Tolga Birdal, Jan Eric Lenssen, Emanuele Menegatti,
Leonidas Guibas, and Federico Tombari. ”Quaternion Equivari-
ant Capsule Networks for 3D Point Clouds.“ In: arXiv preprint
arXiv:1912.12098 (2019) (cit. on p. 113).

[178] Hao Zhou, Jose M Alvarez, and Fatih Porikli. ”Less is more: To-
wards compact CNNs.“ In: Proceeding of the European Conference
on Computer Vision. Springer. 2016, pp. 662–677 (cit. on pp. 16,
64).

[179] Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosinski. ”De-
constructing lottery tickets: Zeros, signs, and the supermask.“
In: NeurIPS. 2019, pp. 3592–3602 (cit. on p. 88).

[180] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. ”Open3D: A
Modern Library for 3D Data Processing.“ In: arXiv:1801.09847
(2018) (cit. on p. 123).

160 bibliography

[181] Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally.

”Trained ternary quantization.“ In: arXiv preprint arXiv:1612.01064
(2016) (cit. on p. 17).

[182] Barret Zoph and Quoc V Le. ”Neural architecture search with
reinforcement learning.“ In: Proceedings of International Conference
on Learning Representations. 2017 (cit. on pp. 4, 37, 38, 41).

[183] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le.

”Learning transferable architectures for scalable image recogni-
tion.“ In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2018, pp. 8697–8710 (cit. on pp. 5, 38, 41).

A C R O N Y M S

PSNR Peak Signal-to-Noise Ratio

SGD Stochastic Gradient Descent

PGD Proximal Gradient Descent

HOG Histogram of Oriented Gradients

SIFT Scale-Invariant Feature Transform

SURF Speeded Up Robust Features

FFT Fast Fourier Transform

AutoML Automated Machine Learning

AI Artificial Intelligence

DNNs Deep Neural Networks

CNNs Convolutional Neural Networks

GCNs Graph Convolutional Networks

MLP Multilayer Perceptron

MLPs Multilayer Perceptrons

NAS Neural Architecture Search

DARTS Differentiable Architecture Search

DHP Differentiable Hyper Pruning

KNN K-Nearest Neighbor

SR Super-Resolution

LW-DNA Layer-Wise Differentiated Network Architecture

LTH Lottery Ticket Hypothesis

GPU Graphics Processing Unit

TPU Tensor Processing Unit

161

I N D E X

`1 regularization, 72

`1−2 regularization, 72

`1/2 regularization, 72

logsum regularization, 72

automated machine learning, 37

binary search, 63, 69, 70

Canny detector, 3

carbon footprints, 4

carbon neutrality, 4

channel configuration vector, 90

channel split factor, 6, 7, 15, 20

compact tensor approximation,
7, 61, 135

configuration space, 90

convolutional neural networks,
6

deep neural networks, 3, 4

differentiable architecture search,
38

differentiable hyper pruning, 39

differentiable pruning, 39

evolutionary algorithm, 7, 37

fast Fourier transform, 3

filter basis learning, 6, 14, 15, 35,
135

filter decomposition, 5

graph and subgraph, 114

graph convolution, 115

graph convolutional networks,
9, 109

group sparsity, 8, 62

half-thresholding function, 72

Harris detector, 3

heterogeneity hypothesis, 8

histogram of oriented gradients,
3

hypernetworks, 38, 39, 41, 42,
44, 46–51, 88, 91–93

K-nearest neighbor, 9, 109

knowledge distillation, 5

layer-wise differentiated network
architecture, 8, 85

lottery ticket hypothesis, 88

low-rank approximation, 7

low-rank decomposition, 7

multilayer perceptron, 9

multilayer perceptrons, 109

neighborhood centroid distance,
114

neighborhood distance, 114

network pruning, 5

network quantization, 5

neural architecture search, 4, 37

non-structured pruning, 16

peak signal-to-noise ratio, 26

proximal gradient descent, 8, 100

proximal operator, 69, 72–74, 78,
100

163

164 index

reinforcement learning, 37

reinforcement learning , 7

scale-invariant feature transform,
3

soft-thresholding function, 45,
72

sparsity inducing matrix, 62, 66,
67, 70, 73–76, 82

sparsity-inducing matrix, 7

speeded up robust features, 3

stochastic gradient descent, 26

structured pruning, 16

super-resolution, 3

colophon

This document was typeset in LATEX using the typographical look-and-
feel classicthesis. Most of the graphics in this thesis are gener-
ated using pgfplots and pgf/tikz. The bibliography is typeset using
biblatex.

	Abstract
	Zusammenfassung
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Introduction
	1 Introduction
	1.1 Overview
	1.1.1 Neural Network Compression
	1.1.2 Neural Architecture Optimization
	1.1.3 Computational Procedure Optimization

	Neural Network Compression
	2 Learning Filter Basis
	2.1 Introduction
	2.2 Related Work
	2.2.1 Network Pruning
	2.2.2 Network Quantization
	2.2.3 Filter Decomposition
	2.2.4 Knowledge Distillation

	2.3 Filter Decomposition for Network Compression
	2.3.1 Decomposing convolution layer with filter basis
	2.3.2 Compression rate with different filter basis
	2.3.3 Implementing with convolution
	2.3.4 Filter basis decomposition for special filter sizes

	2.4 Learning Filter Basis
	2.4.1 General filter basis learning approach
	2.4.2 Basis sharing

	2.5 Experimental Results
	2.5.1 Experiment setup
	2.5.2 Validation on super-resolution
	2.5.3 Validation on image classification

	2.6 Conclusion

	3 Differentiable Meta Pruning
	3.1 Introduction
	3.2 Related Works
	3.2.1 AutoML
	3.2.2 Neural Architecture Search
	3.2.3 Meta learning and hypernetworks

	3.3 Methodology
	3.3.1 Hypernetwork design
	3.3.2 Sparsity regularization and proximal gradient
	3.3.3 Network pruning
	3.3.4 Latent vector sharing
	3.3.5 Discussion on the convergence property
	3.3.6 Implementation consideration

	3.4 Experimental Results
	3.5 Ablation Study
	3.5.1 Image classification
	3.5.2 Super-resolution
	3.5.3 Denoising

	3.6 Conclusion and Future Work

	4 Group sparsity
	4.1 Introduction
	4.2 Related Work
	4.2.1 Network Pruning with Group Sparsity
	4.2.2 Filter Decomposition and Group Sparsity

	4.3 The proposed method
	4.3.1 Group sparsity
	4.3.2 The hinge
	4.3.3 Proximal gradient solver
	4.3.4 Binary search of the nullifying threshold
	4.3.5 Gradient based adjustment of learning rate
	4.3.6 Group 2 norm based layer balancing
	4.3.7 Regularization factor annealing
	4.3.8 Distillation loss in the finetuning phase

	4.4 Closed-form Solutions to the Proximal Operators
	4.5 Implementation Considerations
	4.5.1 Sparsity-inducing matrix in network blocks
	4.5.2 Initialization of W and A

	4.6 Experimental Results
	4.6.1 Results on CIFAR10
	4.6.2 Results on CIFAR100

	4.7 Conclusion

	Neural Architecture Optimization
	5 The Heterogeneity Hypothesis
	5.1 Introduction
	5.2 Related Work
	5.2.1 The lottery ticket hypothesis

	5.3 Preliminaries
	5.3.1 Hints from network compression
	5.3.2 Notations and definitions
	5.3.3 Problem formulation and recast

	5.4 Methodology
	5.4.1 Reparameterizing with hypernetworks
	5.4.2 Single-shot shrinkage
	5.4.3 Knowledge distillation
	5.4.4 Constraining model complexity

	5.5 Experimental Results
	5.5.1 Image Classification
	5.5.2 Visual Tracking
	5.5.3 Image Restoration

	5.6 Conclusion

	Computational Procedure Optimization
	6 Towards Efficient GCN
	6.1 Introduction
	6.2 Related Work
	6.2.1 Deep Learning for 3D Point Clouds.
	6.2.2 Efficient Network Design for 3D data

	6.3 Notations and Preliminaries
	6.4 Methodology
	6.4.1 Computational complexity analysis in GCN
	6.4.2 Propagation of point adjacency
	6.4.3 Graph convolution with graph feature gathering

	6.5 Experiments
	6.5.1 Point Cloud Classification.
	6.5.2 Point Cloud Segmentation.
	6.5.3 Surface Reconstruction.
	6.5.4 Applicability.

	6.6 Conclusion

	Conclusion
	7 Conclusion and Outlook
	7.1 Contribution
	7.2 Challenges

	Bibliography
	Acronyms
	Index
	Colophon

