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Abstract

Pulmonary hypertension (PH) in newborns is a rare but complex condi-
tion, associated with multiple diseases contributing to morbidity and
mortality. Accurate and early detection of PH and the classification of
its severity is crucial for appropriate and successful treatment. However,
human assessment of PH using echocardiography, the primary diagnos-
tic tool in pediatrics, is both expertise-demanding and time-consuming.
Furthermore, little effort has been directed towards automatic assess-
ment of PH using echocardiography, and the few proposed methods
only focus on binary PH classification on the adult population. In this
work, we propose a robust and interpretable deep learning approach to
predict and classify the severity of PH in newborns, by utilising spatio-
temporal patterns of the ultrasound videos from multiple views of the
heart. To the best of our knowledge, this is the first work on multi-view
video-based automated assessment of PH in newborns. Our results
show a mean F1-score of 0.84 for severity prediction and 0.92 for binary
detection using 10-fold cross-validation. To increase the clinical usability
of our method, we complement our predictions with saliency maps that
highlight how the learned model focuses on clinically relevant cardiac
structures. We show that these learned localization maps align with
how clinicians subjectively assess PH.
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Chapter 1

Introduction

Pulmonary hypertension (PH) in newborns is a rare but complex condition,
associated with multiple diseases contributing to morbidity and mortality.
Accurate and early detection of PH and the classification of its severity is cru-
cial for appropriate and successful treatment. However, human assessment
of PH using echocardiography, the primary diagnostic tool in pediatrics, is
both expertise-demanding and time-consuming, making early assessment
difficult [24, 65]. Thus, there is a clear need for an automatic and streamlined
method to assist clinicians in the assessment of PH in newborns. With little
effort being directed towards automatic approaches for PH diagnostics, this
need is not being met. The few existing methods for PH prediction are only
proposed for the adult population and do not assess the PH severity nor
propose methods to explain the predictions [37, 75].

The goal of this thesis is to meet the need for an explainable and automatic PH
diagnostics tool, suitable for the use of pediatric cardiologists. Specifically, we
aim to identify and create a robust deep learning method for automatic PH
estimation of newborns, using heart ultrasound videos (echocardiography).
Echocardiography is one of the most common and growing PH diagnostic
tools due to its low-cost and non-invasive technology, which makes it an
ideal choice for pediatrics [17, 47]. We are interested in not only predicting
the existence of PH, but also in classifying its severity, as the appropriate
PH treatment is determined based on the severity [12, 19]. We furthermore
strive to explore the importance of the various factors contributing to the
solution, including the effects of known deep learning techniques, such as
data augmentation and regularisation, as well as the effects of various domain-
specific factors. These include the addition of more than one ultrasound
video per patient, from different views of the heart, as well as the inclusion
or exclusion of the temporal domain of the videos to the solution. Finally,
we seek to understand and explain the predictions with regard to cardiac
structures and features, both to increase our own understanding of the
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1. Introduction

method, and to increase the trust in the automatic prediction, ensuring
clinical usability.

We propose four different approaches for PH assessment; a single-view
spatial approach, a single-view spatio-temporal approach, a multi-view
spatial approach and a multi-view spatio-temporal approach. We show
with empirical assessments that the spatio-temporal multi-view approach
has the greatest predictive power. It also outperforms existing methods for
PH detection of adults and to the best of our knowledge, this is the first
work on multi-view video-based automated assessment of PH in newborns.
Additionally, with our post-hoc explainability method, we are the first to
show that a PH assessment model focuses on clinically relevant cardiac
structures, aligning with how clinicians subjectively assess PH.

The thesis is structured as follows: In Chapter 2 we discuss pulmonary
hypertension and review the existing methods for automatic PH detection.
We also review methods for explainable ML in healthcare and for multi-
modal learning, and explain methods for spatio-temporal classification. In
Chapter 3 we describe our proposed method; that is the data processing,
classification (for both the spatial and spatio-temporal case) and the post-hoc
explainability approach. In Chapter 4 we report the results of the experiments
performed to evaluate our different approaches and discuss the main findings.
Finally, in Chapter 5, we conclude and discuss future work and limitations.
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Chapter 2

Background

2.1 Pulmonary Hypertension in Newborns

Pulmonary hypertension (PH) is a rare but complex and progressive disease
of the pulmonary arterioles, which can affect newborns, children and adults.
Functional and anatomical changes result in an increase of pulmonary artery
pressure (PAP), and PH is formally defined as mean PAP (mPAP) > 25 mm
Hg [81]. PH has unfavorable prognosis, and research consistently shows that
prognosis is associated with the severity of the disease at diagnosis, thus,
delayed treatment decreases the chance of survival [4, 81].

2.1.1 Human PH Estimation

The gold standard for PH diagnosis is measuring mPAP with right heart
catheterization (RHC), but because this is an invasive and costly approach, it
is primarily used to confirm PH diagnosis. Transthoracic echocardiography
(ECHO) performed by experts is instead the recommended non-invasive
diagnostic tool for estimating the likelihood of PH and the severity of PH
[47]. ECHO consists of a sequence of ultrasound images of the beating
heart from different angles of the heart (views), obtained from different
locations of the transducer. Various different ECHO modes are available,
including 2D-, 3D- and Doppler ECHO. Although 3D-ECHO is superior to
2D-ECHO, it can not always be performed and has not yet translated to
routine clinical usage [27]. Thus PH evaluation is more commonly performed
on 2D and Doppler ECHO, and mainly involves measuring ECHO variables
(discussed in Section 2.1.1) and/or subjective ECHO evaluation (discussed in
Section 2.1.1). However, these ECHO-based methods for PH estimation are
time-consuming and expertise-demanding, which may delay care to a more
advanced stage, potentially decreasing the chance of survival [4]. This raises
the need for an automatic method to detect PH from ECHOs.
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2. Background

Quantitative Evaluation of ECHO

PH estimation frequently involves measuring various echocardiographic
variables of 2D-ECHO and Doppler ECHO that allow for estimating mPAP.
The traditional approach assumes the presence of tricuspid regurgitation
(TR) in PH patients, and relies on measuring the TR velocity (TRV) from
Doppler ECHO of apical four-chamber (A4C) and/or parasternal long axis
views (PLAX). Systemic PAP (sPAP) can then be estimated from the TRV
and right atrial pressure (RAP), as described in Equation 2.1. Importantly,
RAP is not measured but estimated from inferior vena cava (IVC) diameter
and inspiratory collapse. Finally, mPAP has a strong linear relationship with
sPAP, and can be derived from sPAP with Equation 2.2 [7].

sPAP = 4 ∗ (TRV)2 + RAP (2.1)

mPAP = 0.61 ∗ sPAP + 2mmHg (2.2)

Previous studies have demonstrated that the agreement between PAP esti-
mated from TRV and invasively measured PAP is only moderate [11, 19, 23],
and on the individual level significant under and over estimation can occur,
possibly leading to misdiagnosis and inappropriate treatment [3]. There are
number of reasons for this. First, as TRV is squared in Equation 2.1 even
small errors in the absolute measurement of TRV can result in significant
changes to the estimate of sPAP. Secondly, in many patients, IVC dimensions
for RAP estimation cannot be obtained. Thirdly, absence of TR is insuffi-
cient to exclude the presence of PH - a recent study has for example shown
that invasively confirmed PH is present in nearly half of patients without a
reported TR who are also referred for RHC [48]. Measurements of further
variables is thus recommended, especially in the absence of TR. These include
variables measured from 2D ECHOs, such as the left atrial (LA) to aortic ratio
(LA:Ao) from the PLAX view, which correlates with increased pulmonary
flow [17]. Nevertheless, as no single variable has been detected as the ulti-
mate predictive parameter to assess PH, and because the measurement may
be frequently inaccurate, quantitative evaluation of 2D or Doppler ECHO is
not the ultimate predictive tool, although widely used [19].

Subjective Evaluation of ECHOs

Since elevated PAP can result in abnormalities in the shape and structure of
the heart, visual and subjective evaluation on 2D ECHOs is also commonly
performed for estimating PH [17, 20]. The parasternal short axis view (PSAX)
is specifically suitable for a subjective echocardiography evaluation of PH.
From this view, abnormalities can for example be detected in the shape of the
interventricular septum (IVS) and left ventricle during minimum expansion
of the heart (systole). In a normal heart, the IVS is round, but becomes flat
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2.2. Related Work

in patients with moderate PH, and in severe PH the left-ventricle becomes
D-shaped, or crescentic, as seen in Figure 2.1. During maximum expansion
(diastole), reversed volume of the ventricles can also be detected [17].

Other views, such as the parasternal long axis view (PLAX) and the apical
four-chamber view (A4C), can also be utilized for subjective evaluation of
PH. Changes in IVS shape can be seen from the PLAX view, and from the
A4C view changes in the right-ventricular area are often detected in case of
moderate and severe PH [17].

Figure 2.1: Varying septal morphology depending on the degree of PH on
the short-axis parasternal view. Left: No PH, Middle: Moderate PH, Right:
Severe PH. The examples are taken from our dataset.

2.2 Related Work

2.2.1 Machine Learning Approaches for PH Prediction

Several machine learning methods have been proposed to automatically
estimate PH in adults using different input modalities, such as chest X-rays
[80, 33], ECGs [34, 44], heart sounds recorded by acoustic sensors [28], CTs
[71], and MRIs [13, 5]. However, not much effort has been directed towards
the automatic assessment of PH using echocardiography, even though it is
the recommended non-invasive modality for PH estimation, and the most
common routine test used in newborns to diagnose or rule out various heart
diseases [47].

The two exceptions are the work of Leha et al. [37] and Zhang et al. [75],
which propose methods for automatic PH prediction in the adult population.
The former approach relies on manually extracted ECHO parameters and
applies various machine learning algorithms, such as regression and SVM, to
these features, in order to predict PH. The goal of their approach is to help
standardize and simplify integration of the several parameters that relate to
PH. The main drawback is that the ECHO parameters must still be measured
and estimated by highly trained specialists, so this approach does not help
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2. Background

reduce the workload of experts. The latter approach [75] shows the potential
of using deep learning for predicting PH using ECHOs, requiring no manual
feature extraction. This method, however, has several limitations. First of all,
it only uses a single view of the heart (A4C), although the literature has shown
that considering multiple views improves accuracy for the manual prediction
of PH [56]. Second, it works on static frames of the ECHO videos and does
not exploit the spatio-temporal patterns in the ECHO sequence, although
spatio-temporal deep learning methods have shown superior results for
various video classification tasks, as further discussed in section 2.3. Finally,
similar to the existing approaches for PH prediction from other modalities,
this method has limited accountability and clinical usability. The reason is
twofold; first, the black-box nature of these approaches makes their internal
mechanisms and their results opaque, and second they focus only on binary
PH classification but do not predict the PH severity. Severity estimation of
PH is of greater clinical importance than PH detection, as guidelines for PH
treatment type and urgency depend on PH severity, and the estimation of
the severity of PH from ECHO is more challenging for cardiologists, with
around 47% agreement to RHC, compared to 79% agreement for binary PH
detection [12, 19].

2.2.2 Explainable Machine Learning in Healthcare

In recent years, interpretability and explainability of machine learning (ML)
models have attracted much attention, and various methods aimed to help
explain the reasons for a model’s prediction have been proposed. This is
especially true for the application of ML to healthcare, where achieving high
predictive accuracy is often as important as understanding the prediction.
Indeed, the lack of explainability is a key factor that limits wider adoption of
ML in healthcare, as without it, medical practitioners often find it challenging
to trust ML models [68].

Although explainability and interpretability of ML models are often used
interchangeably, interpretability technically refers to the extent to which a
model can be understood by a human on its own, whereas explainability
refers to the extent to which the internal mechanics of a model can be (post-
hoc) explained in human terms - usually for models which on their own are
too complicated to be understood by humans [54]. In this thesis, we will focus
on the explainability of ML methods. We specifically consider methods to
explain the non-interpretable convolutional neural networks (CNNs), which
are one of the most common deep learning methods for 2D and 3D medical
image understanding, but their black-box nature limits clinical usability.

Explainability of CNNs can be achieved by using visual explanation methods,
which identify and visualize the contribution of each pixel to the output of the
trained network [43]. Generally, the results are expressed as an importance
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map (often referred to as salience map or attribution map) of the same size
as the input image, where each scalar in the map quantifies the contribution
of the corresponding pixel [39, 43]. The explanations are either generated by
perturbing parts of the image and observing the change of the prediction
(perturbation-based methods), or by computing the gradient of the prediction
with respect to input features (gradient-based methods). As the gradient-based
methods are faster to compute, they are more commonly used, although the
perturbation-based methods have the benefit of not requiring access to the
intermediate layers [43]. A vast number of gradient-based methods have been
proposed, including Vanilla Gradients [60], DeconvNet [74] and Grad-CAM
[57]. While they have been shown to explain model decisions [57, 35], some
of those methods have also been shown to be insensitive to model and data,
acting more like edge detectors by simply highlighting strong pixel changes
in images. Of the tested methods, only Vanilla Gradients and Grad-CAM
passed the insensitivity check, making them the preferred methods [1, 21].

In the field of medical imaging, the predictions of CNNs can be further
explained by utilising expert- and domain-specific medical knowledge. For
example, Zhu et al. [79] explain the predictions of lung diagnosis models by
automatically generating anatomical features according to guideline criteria,
and then using a perturbation-based method to calculate an importance map,
showing the impact of each feature. Furthermore, Lee et al. [36] propose
a deep network to explain the diagnostic decision of a malignant mass
classifier with a visual pointing map and a diagnostic sentence justifying
result simultaneously. Their proposed justification generator, which could be
constructed on top of any malignant mass diagnosis network, is trained on
medical reports for a given problem, and they use the task of diagnosis of
breast masses to verify their approach.

The first application of interpretation frameworks to understand deep learn-
ing models from ECHOs has just recently been proposed [22]. Using visual
explanation methods, they show that their models (trained on static ECHO
frames) pay appropriate attention to key cardiac structures when perform-
ing human-explainable tasks, such as detecting the presence of pacemaker
and defibrillator leads. However, no effort has yet been made to explain
the predictions of models assessing PH, and no published work has shown
spatio-temporal interpretation of ECHO sequences. Indeed, most work on
explainable ML is centered around spatial input, although visual explanation
approaches have recently been shown to be expandable to 3D CNNs trained
on video clips [39]. For example, [67] and [66] recently adapted Class Acti-
vation Mapping (CAM) for 3D CNNs, such that important spatio-temporal
regions of the input videos are highlighted, and Grad-CAM is inherently
applicable to 3D-CNNs.
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2. Background

2.2.3 Multi-Modal Learning

Combining complementary information from multiple modalities is appeal-
ing for improving the robustness and performance of ML approaches, as
signals from different modalities often carry complementary information.
Various methods exist for combining the modalities in multi-modal learning,
including early and late fusion [61], model ensemble [14], and joint end-
to-end training methods where modalities are combined in the embedding
space [45, 46, 41].

A few multi-modal learning methods have been proposed in the field of
medical imaging, aiming to improve performance and/or mimic human
workflow for tasks where clinicians usually consider multiple modalities.
For example [53] combine (single-view) ECHOs and CMRs for predicting
response to cardiac resynchronisation therapy, and [63] combine (single-
view) ECHOs and ECGs for the prediction of hypertrophic cardiomyopathy.
However, limited research has been directed towards integrating different
modalities of ECHOs, i.e. the different views, although for most tasks,
medical guidelines recommend the use of more than one view [56]. To
the best of our knowledge, our work is the first to explore the benefits of
combining multiple ECHO views in a deep learning setting.

2.3 Spatio-temporal Methods for Video Classification

Deep Learning models are able to capture not only spatial dependencies (e.g.
CNNs) and temporal dependencies (e.g. RNNs), but also spatio-temporal
dependencies (e.g. 3D-CNNs). Spatio-temporal deep learning methods
have shown superior performance to spatial-only approaches for various
video classification tasks, such as human action recognition [62, 72] and
prediction of physical interaction forces [30]. Yet, this approach has not been
widely explored in the context of medical video classification, partly because
spatio-temporal models are more complex and thus more prone to overfitting
on smaller datasets, which tends to be the case for labelled medical video
datasets. However, following the recent release of a large medical video
database EchoNet-Dynamics [50], a spatio-temporal benchmark approach for
the dataset was proposed, showing improved results on various ECHO tasks
compared to training on manually curated still images [51]. This included
left-ventricle segmentation and estimation of ejection fraction, but the task
of PH prediction could not be explored, as the dataset does not include PH
annotations.

Spatio-temporal models inherit the complexity of both spatial and temporal
models, but additionally they have the complexity of combining the two
domains. As a result there is a great variety of spatio-temporal architectures,
which can broadly be categorized into Convolutional Recurrent Neural Net-
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works (CRNNs) [15] and 3D Convolutional Neural Networks (3D-CNNs)
[52]. Below, we will discuss these two main categories.

2.3.1 Convolutional Recurrent Neural Networks

Convolutional Recurrent Neural Networks (CRNNs) are a family of models
that combine CNNs with RNNs in one way or another. The two most common
categories of CRNNs are Convolutional LSTM Networks (Conv-LSTMs) [59]
and CNN-RNNs [16]. In ConvLSTMs, the general gate activation of an LSTM
(i.e., the internal matrix multiplications) is replaced by the convolutional
operation, allowing the data that flows through the cells to keep the input
dimension (3D), and thus the network is able to exploit an extracted 3D
tensor as the cell state [59]. In CNN-RNN networks, a CNN and an RNN are
concatenated to formulate a collaborative network. The RNN is placed after
a CNN, directly taking the output feature vector from the CNN as the input
sequence, as shown in Figure 2.2(a). This network can then be jointly trained
to learn temporal dynamics and convolutional representations. One of the
benefits of the CRNN methods is that any type of RNNs can be used, such
as LSTM, bidirectional LSTM or GRU, and attention can easily be added to
the RNNs [16].

2.3.2 3D-CNNs

3D-CNNs are an extension of traditional CNNs, for spatio-temporal data.
While CNNs use 2D kernels to perform 2D convolutions (which convolve
images for extraction of spatial features), 3D-CNNs use 3D kernels to perform
3D convolutions of 3D cubes formed by stacking multiple video frames [2].
Thus, 3D-CNNs are homogenous networks that analyse spatial and temporal
information in a single framework, directly extracting spatio-temporal fea-
tures. This is different from the heterogeneous CNN-RNNs, where the CNN
analyzes the spatial information, and the RNN concurrently manages tempo-
ral information [30]. Figure 2.2 summarises the architectural differences of
CNN-RNN and 3D-CNN models.

The 3D CNN has an inherent disadvantage of high computational complexity
and memory usage due to a large number of parameters P, as given by the
following formula:

P = N × C× T × (W × H × 1) (2.3)

where N is the number of kernels/filters, C is the number of channels,
T is the number of stacked frames, and (W, H) is the spatial size of the
kernel. The T parameter is additional compared to 2D CNNs, and thus
the computational complexity of 3D-CNNs is increased according to the
number of sequential frames used as input. As a result of the large number
of parameters, 3D-CNNs tend to overfit on small datasets.

9



2. Background

(a)

(b)

Figure 2.2: (a) Heterogeneous network structure in the CNN-RNN method
and (b) homogeneous network structure in 3D CNN method, where the input
video consists of 5 adjacent frames.

Multiple variations of 3D-CNN architectures have been proposed, and differ-
ent categorisations of these architectures are possible. We propose grouping
the 3D-CNN architectures into three categories based on the integration of
spatio-temporal convolutions:

• Full 3D CNNs: This group entails the traditional 3D-CNN architec-
tures which consider the spatial and temporal dimensions jointly in all
convolutional layers. Variations within this category differ mainly in
the backbone network. Networks in this category include the C3D [69],
which does not exploit any pre-trained 2D networks, the I3D [9], with
pre-trained 2D Inception-V1 as a backbone, and ResNet3D [25], with
pre-trained 2D ResNet as a backbone.

• Partial 2D/3D CNNs: This category consists of models that provide a
middle ground between two-dimensional convolutions that consider
only spatial relationships and the three-dimensional convolutions. They
either factorize the 3D convolutional filters into separate 2D spatial
and 1D temporal components, like S3D [73] and R(2+1)D [70], or
employ spatio-temporal convolutions only in the early layers, but spatial
convolutions in the top layers, such as the MCResNet [70]. These
networks have been shown to allow for easier optimization, often
resulting in improved performance compared to full 3D-CNNs [70].

• Multiple 3D-CNN pathways: These are models that employ two par-
allel 3D-CNN pathways, a pathway operating on a slow frame rate (i.e.
with a large temporal stride) to capture spatial semantics, and a path-
way operating on a high frame rate (i.e. with a small temporal stride)
to capture motion at a fine temporal resolution [18]. The SlowFast [18]
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2.3. Spatio-temporal Methods for Video Classification

network was the first proposed model of this sort, but subsequently a
few variations of it have been proposed [38].

In this thesis, we will employ 3D-CNNs rather than CRNNs, because learn-
ing spatio-temporal features simultaneously from videos is generally more
effective than learning them separately [78, 30]. Furthermore, although all
spatio-temporal methods are in inherently computationally heavy, analysing
the spatial and temporal information in a single framework is advantageous
for weight parameter reduction [30]. We specifically compare architectures
from the three 3D-CNN categories described above.
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Chapter 3

Methods

We propose two methods for PH assessment of newborns, namely a spatial
approach, training a CNN on ECHO frames, and a spatio-temporal approach,
training a 3D-CNN on ECHO sequences. A generic overview, relevant for
either the spatial or the spatio-temporal method, is shown in Figure 3.1(a),
when training on a single view. To increase the robustness of our method, we
propose extending it to using multiple views. We employ different multi-view
approaches, including majority voting, visualised in Figure 3.1(b). Finally, to
increase the accountability of our method, we complement our predictions
with saliency maps from each view, as seen in Figure 3.1(c).

In this chapter, we explain our proposed method in more detail. In Section 3.1
we describe the dataset at hand and the data processing and augmentation
performed, as well as methods to tackle the data imbalance. In Sections 3.2
and 3.3 we explain the details of the single-view spatial and spatio-temporal
approaches, respectively. The multi-view method is then discussed in Section
3.4, where we describe on one hand an ensemble approach (majority voting)
for combining views, and on the other hand feature-level fusion. Finally we
describe the explainability method in Section 3.5.

3.1 Dataset

The dataset used in this work consists of 2D transthoracic echocardiography
videos (ECHOs) of 199 newborns from five different views, where each view
shows the heart from a specific angle. The spatial size of the ECHOs is
1440× 866, and the mean temporal size is 122 frames. As the ECHOs operate
on 25 frames per second, the average video length is around 5 seconds, which
accounts for around 10 heartbeats. The mean age of the newborns is 56 days
and the mean weight is 2.9 kg. The five views include a parasternal long-
axis view (PLAX), apical four-chamber view (A4C), and three parasternal
short-axis views; at the level of papillary muscles (PSAX-P), at the level of
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3. Methods

Figure 3.1: Overview of our proposed method to automatically assess PH
using (a) a single view and (b) multi-view approach with majority voting.
Both approaches are suitable for training on (i) spatial input or (ii) spatio-
temporal input. Saliency maps (c) are provided from each view.

semilunar valves (PSAX-S), and on the apical short-axis (PSAX-A). Figure 3.2
shows an example of ECHO frames from three different views, one from
each axis.

All data is pseudonymized, and approval for reuse of the data for our research
was obtained from the responsible ethics committees, with written and oral
consent obtained for each patient. It is collected by the Hospital Barmherzige
Brüder Regensburg using GE Logic S8 ultrasound machine with the S4-10
transducer between the years 2019− 2020.

The PH annotations, provided by a pediatric cardiologist, differentiate be-
tween none, mild, moderate and severe PH, as described in Table 3.1. Further-
more, a few samples have ambiguous annotations, such as between none
and mild (none-mild), and between moderate and severe (moderate-severe). We
explore different methods to categorise the ambiguous labels, which results
in slightly different dataset sizes (see Section 3.1.1). The original dataset is
heavily imbalanced, as only 68 subjects (34%) show some signs of PH, but
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3.1. Dataset

(a) PSAX-P (b) PLAX (c) A4C

Figure 3.2: ECHO frames for (a) PSAX-P view, (b) PLAX view, and (c) A4C
view. Important cardiac features for each view have been labelled: LV = left
ventricle, RV = right ventricle, LA = left atrium, RA = right atrium, IVS =
interventricular septum, MV = mitral valve, AV = atrial valve.

the majority, or 131 subjects (66%), have no PH. Only 2 subjects (< 1%) have
severe PH. Additional details of the dataset is found in the Appendix (A.2).

Label Description
No PH No PH visible
Mild PH Sub-systemic
Moderate PH Approx. system pressure
Severe PH High system pressure

Table 3.1: Description of PH annotations, as provided by experts.

3.1.1 Data Pre-Processing

The first data pre-processing step involves cropping and masking the ECHOs
to eliminate information such as additional text or signals outside the scan-
ning sector. We then resize the spatial size of the ECHOs to 224× 224 pixels,
using bilinear interpolation. This size was chosen to match the input size of
the pre-trained models on the Imagenet [55] and Kinetics [29] datasets. Next,
we improve the contrast of the frames by applying histogram equalization
to each frame in an ECHO, thus distributing the pixel intensities to the full
range of gray-scale values. We used the following histogram equalisation
algorithm, defined in the OpenCV library [6]:

1: Calculate the histogram H for the source image src
2: Normalise the histogram so the sum of the histogram bins is 255
3: Compute the integral of the histogram: H

′
f = ∑0≤j≤i H(j)

4: Transform the image using H’ as a look-up table: dst(x, y) = H′(src(x, y))

Finally, we normalize the frames by dividing by the max pixel value (255.).
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Apart from processing the ECHOs themselves, we also explore different
approaches to generate training labels from the provided annotations.

For the task of binary PH detection, we binarize the annotations by dis-
tinguishing between subjects with and without PH. We eliminate the two
subjects with severe PH, as these might be seen as outliers. We furthermore
remove the five subjects with the label none-mild, as it is not evident whether
these have a sign of PH or not. For the PSAX-P view, which is our baseline
view, this results in a PH detection dataset of 192 subjects, and the resulting
label distribution is described in Table 3.2. Note that slight variations are
possible for the different views, as for a few subjects not all views are present.

For PH severity prediction, we define three PH severity categories; no
PH (subjects with no PH), mild PH (subjects with original labels mild or
mild-moderate), and significant PH (subjects with original labels moderate,
moderate-severe or severe). Similar to the binary PH detection, we elimi-
nate subjects with the label none-mild. However, as opposed to the binary
classification, we include the two severe PH cases with the significant PH
category, due to the higher data imbalance. This results in a PH severity
prediction dataset of 194 subjects for the PSAX-P view. Table 3.3 describes
how the labels are created, as well as the distribution of labels. By comparing
Tables 3.2 and 3.3, we see that class imbalance is higher for the PH severity
prediction than for the binary PH detection, with the minority class being
only 16% of the dataset for the severity prediction, as opposed to 34% for the
binary detection.

PH Label Original Labels Count Percentage
No PH No PH 126 66%

PH

Mild PH

66 34%
Mild - Moderate PH
Moderate PH
Moderate - Severe PH

Table 3.2: Derived PH labels for the PH binary detection dataset of 192
subjects, with information on the size and ratio of each class.

3.1.2 Data Augmentation

In order to reduce the risk of overfitting, and to improve generalisation,
we employ data augmentation during training, where each training sample
has a 90% chance to be transformed, as determined empirically. We both
implement intensity transforms, so that the learned model is invariant to
intensity variations, as well as spatial transforms, to increase resilience towards
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perturbations that may occur due to different zoom settings of the US machine
and/or different placements of the transducer [42]. Figure 3.3 shows few
examples of the augmentations.

Figure 3.3: Examples of different augmentations of the same frame.

We employ the following six intensity transforms, each applied with a proba-
bility of 0.5 for a given sample:

1. random sharpness adjustments, sharpening the image by up to 8.0×, or
blurring it with a sharpness factor ( f ) < 1.0, specifically f ∈ [0, 0.9999].

2. random brightness adjustments, using an enhancement factor between
0.5 and 1.2, where a factor of 0.0 gives a black image, a factor of 1.0
gives the original image, and a factor > 1.0 gives a brighter image.

3. random gamma correction, with a gamma factor (γ) between 0.25 and
2.0, where the gamma correction (Iγ) of an input image Iin is given by:
Iγ = 255 ∗ (Iin/255)γ

4. addition of salt and pepper noise, with a threshold of 0.005.

5. addition of random Gaussian noise.

6. random background colour variations, varying background colour
between black and grey and with varying amount of speckle noise [8].

PH Label Original Labels Count Percentage
No PH No PH 126 65%

Mild PH
Mild PH

32 16%
Mild - Moderate PH

Significant PH
Moderate PH

36 19%Moderate - Severe PH
Severe PH

Table 3.3: Derived PH labels for the PH detection dataset of 194 subjects,
with information on the size and ratio of each class.
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We employ the following three positional transforms, each applied with a
probability of 0.6 for a given sample:

1. random rotation of up to 15◦

2. random translation of up to 0.1×

3. random rescaling, scaling down to 0.8× or zooming up to 1.2×

3.1.3 Class Imbalance Intervention

We explore two different methods to deal with class imbalance; sample
weighting of the loss function and re-sampling the dataset, both described
below. As initial experiments suggested better results with the prior, for all
further experiments we use re-sampling to balance the data. Additionally,
for the evaluation of our method, we include performance metrics that are
suitable for imbalanced datasets, such as balanced accuracy (see Section 4.1).

Sample Weighting in the Loss Function

By introducing sample weighting in the loss function, we can impose an
additional cost on the model for making mistakes on the minority class(es)
during training. These penalties can bias the model to pay more attention to
the minority class(es). We calculate the sample weights as the inverse of the
class frequency and normalise them over the number of classes and samples,
following the balanced heuristic in [31]. Equation 3.1 explains formally how
the class weights mc of each class c are calculated, as well as the sample
weights wi (which are assigned to the weights of the class they belong to)

mc =
N

(C ∗ Nc)

wi = myi

(3.1)

where Nc is the number of samples belonging to class c, N is the total number
of samples, C is the number of classes, and yi is the class label of sample i.

The weighted loss function LW can then be defined as a function of any given
loss function Li, applied on sample i, and the sample weights wi, as defined
with the formula below:

LW = −
N

∑
i=1

wi ∗ Li (3.2)
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Resampling the Dataset

By resampling the dataset, it is possible to simulate a more balanced dataset.
For this, there are two general approaches:

1. Oversampling: Adding copies of samples from the under-represented
class during training or as a pre-processing step.

2. Undersampling: Removing samples from the over-represented class
during training or as a pre-processing step.

We use a combination of both approaches, specifically we apply random
resampling with replacement, which has proven to be robust [40]. We per-
form the resampling on the fly during training, in combination with data
augmentation, such that for each epoch, the model processes approximately
equal number of samples from each class. To achieve this, we employ a
weighted random sampler, which samples elements from the dataset with re-
placement from indices i = [0, . . . , N], with probabilities given by the weights
W = [w0, . . . , wN ], where each sample weight wi is calculated according to
Equation 3.1. Thus, for each epoch, some samples from the minority class(es)
may be randomly selected more than once, and some samples from the
majority class might not be selected. Note that the oversampling procedure
will not produce identical copies of the same samples, because the data
augmentation slightly modifies each sample.

3.2 Spatial Approach

For the spatial approach towards PH prediction, we train a convolutional
neural network on manually curated still ECHO frames, extracting only
spatial features from the videos. To overcome the scarcity of the annotated
data, we extract n frames from each ECHO, using different frame extraction
heuristics, as further explained in Subsection 3.2. Each frame is thus consid-
ered an individual sample for the classification, giving rise to frame-level
predictions, whose results are aggregated to achieve view-level predictions,
as explained in Subsection 3.2.1. The classification training details and the
model architecture is further described in that subsection. An overview of the
spatial approach is provided in Figure 3.4, both for the (a) frame extraction
phase, and (b) classification phase.

As a baseline approach for extracting training frames from each ECHO, we
simply select n random frames per ECHO. Additionally, we are interested in
extracting the frames that are most relevant for PH assessment performed by
cardiologists, that is, the frames corresponding to minimum- and maximum
expansion of the heart We explore two different approaches to identify the
minimum- and maximum-expansion frames; an algorithmic approach and a
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3. Methods

Figure 3.4: Overview of the spatial method for PH detection using a single
view (PSAXP-P), when training on three maximum-expansion frames per
ECHO (and for simplicity, only for a single patient). The first step involves
(a) extraction of maximum-expansion frames using segmentation. The next
step involves (b) classification using the extracted frames.

segmentation approach, but as explained below the segmentation approach
is the one used for further experiments.

Algorithmic Approach

By making use of an existing algorithmic approach for cardiac phase detec-
tion [76], we can identify the frames corresponding to systole (i.e. minimum
expansion) and diastole (i.e. maximum expansion). A drawback of this
method is the large amount of parameters that need to be tuned and set
according to population-specific knowledge. Furthermore, the generalisabil-
ity of the method to newborns is unclear. After setting the most important
parameters according to average newborn cardiac statistics, and running the
algorithm on our dataset, results were promising but not sufficient. Since
off-by-one errors in the heart-phase estimation of the first cycle escalate in
proceeding cycles, it is not suitable for identification of all the minimum- or
maximum expansion frames of an ECHO consisting of multiple cycles.

Segmentation Approach

Training a segmentation model on ECHO frames to identify pixels corre-
sponding to the left- and right- ventricles, allows for calculating for each
frame the relative area of the ventricles. This is simply done by dividing
the pixel count corresponding to the ventricles by the total number of pixels.
The minimum- and maximum-expansion frames are then easily identified
as the frames with the smallest or largest relative ventricle area, respectively.
However since our data does not contain annotations of the ventricles, we are
unable to train a segmentation model on our dataset. Instead, we make use of
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publicly available ECHO segmentation models [75] that have been trained on
adult ECHOs across five common views. Three of these views are the same
views as in our dataset; PSAX-P, PLAX and A4C. The intersection over union
(IoU) score on their own test data for the views and segmentation areas of
interest ranges between 64.6 and 88.9, as seen in Table 3.4. Inconveniently,
the poorest segmentation performance is for the PSAX-P view, which is
our baseline view. Additionally, we expect that applying these models to
our dataset will result in slightly lower performance, as the segmentation
models are trained on a dataset with mean subject age of 59 [75], whereas
our dataset population is newborns. This assumption can not be verified
numerically, due to lack of ground truth for our data, but visual inspection
suggests this is the case. As the segmentation approach is more robust than
the algorithmic approach, it is our method of choice for all experiments
involving minimum- or maximum-expansion frames. Also note that since we
are only interested in the joint area of the left- and right-ventricles relative to
the rest of the heart, perfect segmentation of each ventricle is not required.
The segmentation approach for extracting three maximum-expansion frames
per ECHO is visualised in Figure 3.4(a).

View No. Training Frames Segmented Area IoU Accuracy

PSAX 124
Left ventricle 79.6

Right ventricle 64.6

PLAX 130
Left ventricle 87.9

Right ventricle 85.2

A4C 182
Left ventricle 88.9

Right ventricle 83.3

Table 3.4: Performance of SOTA ECHO segmentation models [75], as well as
the training data size for each model.

3.2.1 Classification

For the PH classification we use a ResNet-18 [26] consisting of convolutional
layers with residual connections connecting odd-numbered layers, as seen in
Figure 3.5. We initialise the model weights with pre-trained weights from
Imagenet [55], and train it to minimize the cross-entropy loss between the
prediction and true class. When exploring with weighted cross-entropy loss,
we use Equation 3.2 in combination with the sample-wise cross-entropy loss.
We employ a batch size of 64 and train for up to 300 epochs (or until early
stopping), using Adam optimizer with a learning rate of 0.001.
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Figure 3.5: ResNet-18 architecture, consisting of 18 layers, of which 17 are
convolutional layers, and one is a fully connected layer. The dotted lines
represent residual skip connections.

The spatial model is trained on n frames per ECHO, and thus it provides a
prediction for each frame. To get view-level results, we aggregate frame-level
predictions of a given view {yview,i}i=1,...,n through majority voting, i.e. by
selecting the most frequently predicted label as the view-level prediction yview.
The view-level confidence is then defined as C = |y∗view|/n, where |y∗view| is
the count of the most frequently predicted label from the list of predictions
for the n frames of a given ECHO per view. Figure 3.4(b) summarises the
classification process when training on maximum-expansion frames after the
maximum-expansion frames have been extracted and augmented. Note that
the process looks similar for random frames, or minimum-expansion frames.

3.3 Spatio-Temporal Approach

For the spatio-temporal approach, we integrate spatial as well as temporal
information into the learning process, thus, training on sequences instead of
single frames. This mitigates the frame-level variations that can occur due
to external changes, such as the position or the contact of the transducer,
or in the cardiac function itself. Furthermore, it eliminates the need for
using segmentation to extract frames corresponding to systole and diastole,
given that the training sequences cover on average at least one heartbeat.
An overview of the single-view spatio-temporal approach is provided in
Figure 3.6. Similar to the spatial approach, n samples are extracted from each
ECHO for training, but in this case, each sample is a shorter video sequence.
Subsection 3.3.1 explains further how these sequences are extracted. These
sequences are then the input to a spatio-temporal model, as described in
Subsection 3.3.2.
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Figure 3.6: Overview of the single-view (PSAX-P) spatio-temporal classifica-
tion process, when using n = 3 sequences per ECHO, each of length k = 4
frames. A single input sample thus is a cube with the shape 224× 224× 4.

3.3.1 Extraction of Sequences

From each ECHO of length t (i.e. ultrasound video consisting of t frames),
we extract n random sequences consisting of k ≤ t frames. Specifically, each
sequence is extracted by randomly choosing a frame as the starting frame,
followed by selecting every sth frame, until total k frames have been selected.
For a sampling interval s = 1, this involves selecting k consecutive frames.
Given the sequence length k and sampling interval s, the effective length l
is defined as l = k ∗ s, and it determines the number of frames the given
sequence covers. The effective length can in theory be set to any number
between 1 and max frames, where max is the length of the full ECHO, on
average max = 122 frames. However, a sequence covering a single frame does
not utilize the temporal information, and is thus not useful. Furthermore,
using an entire ECHO as a sequence leads to slow training and only provides
for a single sequence per ECHO, resulting in fewer training samples. We
suspect a sequence covering at least a full heartbeat (i.e. 10− 12 frames) will
be necessary for best performance, but the ideal effective length, sequence
length and sampling interval is determined with an ablation study. Note that
the same augmentation is applied to each frame in a given input sequence.

3.3.2 Classification

For the spatio-temporal approach we employ different variations of 3D-CNN
models, all having in common residual connections and spatio-temporal
convolutions across frames, as well as a softmax activation function.
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The output of each layer, that is the value of the jth feature map (v) in the ith
layer at position (x, y, z), is formally described in the following formula:

vx,y,z
i,j = softmax

(
bij + ∑

m

Wi−1

∑
w=0

Hi−1

∑
h=0

Ti−1

∑
t=0

αwht
ijm v(x+w)(y+h)(z+t)

(i−1)m

)
(3.3)

where Wi and Hi represent the spatial size (width and height) of the 3D kernel
in the ith layer, and Ti the temporal size of the kernel. αwht

ijm is the (w, h, t)th

weight of the kernel connected to the mth feature map in the previous layer.

We implement three 3D-CNN architectures with variable integration of tem-
poral convolutions, summarised in Table 3.5. The first one is an 18-layer
ResNet3D [25], visualised in Figure 3.7(a). It is a full 3D-CNN using solely
the vanilla spatio-temporal convolutions described in Equation 3.3. The
second one is an 18-layer R(2+1)D [70], a partial 2D/3D network that factor-
izes the 3D convolutional filters into separate 2D spatial and 1D temporal
components (see Figure 3.7(b)). The last one is a 50-layer SlowFast model
[18] which employs two parallel 3D-CNN pathways, a slow pathway with
a large temporal stride to capture spatial semantics, and a fast pathway
with a small temporal stride to capture motion at fine temporal resolution
(see Figure 3.7(c)). Note that we have selected one architecture from each
of the three 3D-CNN categories described in Section 2.3.2, for maximum
diversity. All architectures are initialised with pre-trained weights from the
Kinetics-400 dataset [29]. We employ a ResNet-18 backbone for the first two
networks, whereas the last one is implemented with ResNet-50 backbone,
since pre-trained weights are only available for SlowFast with ResNet-50
backbone. Figure 3.7 visualises the structural differences of the three models.

Model Category Backbone
ResNet3D Full 3D CNN ResNet-18
R(2+1)D Partial 2D/3D ResNet-18
SlowFast Multiple 3D-CNN Pathways ResNet-50

Table 3.5: The spatio-temporal architectures, their category and backbone.

The spatio-temporal models are trained on n random sequences of length k
from each ECHO, and view-level results are achieved by aggregating results
through majority voting from all sequences for a given ECHO, in a similar
manner as for the spatial approach, explained in Section 3.2.1. The models
are trained to minimize the cross-entropy loss using an ADAM optimizer
with a learning rate of 0.001, and a batch size of 8. The smaller batch size
compared to the spatial approach is required, due to increased memory
requirements of 3D-CNNs. The models are trained for up to 300 epochs, or
until early stopping.
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Figure 3.7: To the left, we show a high-level structure of the three spatio-
temporal architectures used: (a) 18 layer ResNet3D, (b) 18 layer R(2+1)D (b)
and (c) 50 layer SlowFast. The difference between the 3D conv and (2+1)D
conv blocks is visualised to the right. T is the temporal dimension, and (W,
H) the spatial dimensions. N is the number of 2D filters in the (2+1)D conv
block.

3.4 Multi-View Approach

To increase the robustness and performance of the method further, we em-
ploy a multi-view approach, which can be used as an extension to both the
spatial and spatio-temporal approach. Note that we use view annotations to
differentiate the distinct views, but following recent work on view classifica-
tion [75], our method can easily be extended to incorporate ECHOs without
annotation. We explore two different approaches for view aggregation, an
ensemble approach with majority voting and a feature-level fusion. Figure
3.1(a) shows the multi-view approach when using majority voting.

3.4.1 Ensemble

For the ensemble approach towards multi-view classification, we train a
separate model for each available view, and achieve a final prediction, yf
by majority voting of the individual view-level predictions. In the case of a
tie, the prediction of the model(s) with higher confidence is selected. The
benefit of this approach is that given trained models on individual views, the
extension to a multi-view prediction is trivial, and requires no further training.
Furthermore, ensemble methods provide a way to potentially reduce the
variance of the predictions, which can result in a better average performance
as compared to any single model [49].
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3.4.2 Feature-Level Fusion

This approach involves combining the modalities in the embedding space by
learning intermediate features for each view, which are then combined and
jointly modeled to make a decision. Specifically, for each view, a separate
feature extractor is constructed, and the learned, intermediate features are
combined via concatenation or summation. The combined features are
then input into a final classification layer which provides the subject-level
prediction yf. The benefit of this method is that a single end-to-end model
is trained on learned features from all available views, such that only one
model has to be trained, instead of one for each view. The drawback is that it
is more memory-heavy, especially when used with a spatio-temporal model.

3.5 Explainability

To increase the accountability and clinical usability of our method, we com-
plement our predictions with saliency maps for each view, providing an
interpretable explanation that mimics the clinical workflow. For the spatial
approach, we provide spatial saliency maps that highlight important pixels,
and for the spatio-temporal approach, we provide spatio-temporal saliency
maps highlighting important spatio-temporal regions, as in Figure 3.1(b).

Among different methods [64, 77, 57], we chose to use Gradient-weighted
Class Activation Mapping (Grad-CAM), which has originally been proposed
for 2D-CNNs trained on images. Grad-CAM exploits the gradients of any
target concept flowing into any given convolutional layer, to produce a
coarse localization map highlighting the important pixels in the input im-
age for the decision of interest [57]. In order to provide explanations for
the spatio-temporal model, we extend Grad-CAM to 3D-CNNs processing
spatio-temporal video inputs, allowing us to identify the spatio-temporal
regions on the video sequence that the network finds most informative for
its prediction. We do this by assigning each neuron a relevance score for
the class prediction at the output layer, and backpropagate this information
to the last convolutional layer to produce a coarse spatio-temporal localiza-
tion map highlighting spatio-temporal areas of the ECHO video sequence.
Specifically, let A1, . . . , Ak be the k spatio-temporal feature maps in the last
convolutional layer. We then decide the importance of each of the k feature
maps for the class of interest, c, by weighting each item of each feature map
with the gradient, and get a 3D heatmap that highlights spatio-temporal
regions that positively or negatively affect the class of interest. This heatmap
is sent through a ReLU function, to remove all negative values, as we are only
interested in the parts that contribute to the selected class c. We finally scale
the map for visualization purposes and overlay it over the original image.
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Formally, the localization map Lc for class c, before scaling for visualization,
is defined with the formula:

Lc = ReLU(∑
k

αc
k Ak) (3.4)

where αc
k are the importance weights, obtained by global average-pooling of

the gradient of yc (the score of class c) with respect to A:

αc
k =

1
Z ∑

i
∑

j
∑

z

dyc

dAk
ijz

(3.5)
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Chapter 4

Results and Discussions

In this chapter we will report and discuss the main results of our method for
both PH detection and PH severity prediction. After describing the setup of
the experiments in Section 4.1, we report the results of the spatial approach
in Section 4.2 and the spatio-temporal approach in Section 4.3. Finally, we
report the results from the explainability analysis in Section 4.4.

4.1 Experimental Setup

Experiments were run on a cluster containing different NVIDIA GeForce
graphic cards (see Appendix A.1). Spatial models are trained with a single
GPU, but spatio-temporal models with two GPUs. For all experiments, a
stratified 10-fold cross-validation with replacement was performed (also
known as out-of-bootstrap estimate), such that the data was randomly split
10 times into 20% validation set and 80% training set. Note that the splitting
into training and validation sets was done on a patient basis. As classification
metrics, we evaluated the balanced accuracy, weighted F1-score, weighted
precision, weighted recall, and area under the receiver operation charac-
teristic curve (AUROC). For the multi-class case, AUROC was calculated
by comparing every unique pairwise combination of classes, i.e. using a
one-vs-one scheme. Although AUROC is not a suitable metric for ensembles,
for the sake of completeness we report it [in brackets] for our ensemble
multi-view approach, calculating it based on the output probabilities of the
most confident model selected by the ensemble. Results were averaged over
the folds, and the mean and standard deviation are reported, as well as
the average model confidence (as defined in Section 3.2.1). All results are
reported per subject, but sample-level results are defined in Section A.4.1 in
the Appendix.

29



4. Results and Discussions

4.2 Spatial Approach

In this section, we report the results of the spatial ResNet-18 model, as
described in Section 3.2, for the detection and severity prediction of PH.
Specifically, in Subsection 4.2.1 we discuss the ablation studies performed on
the base view (PSAX-P) for the binary PH detection task. In Subsection 4.2.2
we provide an empirical assessment of the best spatial approach, as per the
ablation analysis, for both the PH detection and the severity prediction, for
all five views. We further report the results of the multi-view approaches.

4.2.1 PH Detection on the PSAX-P View - Ablation

To understand the importance of different regularisation methods, and the
effects of different frame extraction methods, ablation studies were performed
on the PSAX-P view, for the binary PH detection task.

Augmentation & Regularisation

We report in Table 4.1 the results of different regularisation techniques
when applied to the spatial PSAX-P model for PH detection; specifically the
following: Augmentation (aug), weight decay of 0.001 (wd), and initialising
the model with pre-trained weights (pre-trained). The weight decay value of
0.001 was set empirically, and for this study we keep the number of frames
per ECHO fixed, extracting 10 random frames from each ECHO.

The results clearly show the importance of regularisation, as using all three
regularisation techniques gives an improvement of over 25% compared to
using no regularisation. For example, F1-score improves from 0.72 when
evaluating a baseline model with no regularisation, to 0.91 when evaluating
a model trained with all three regularisation techniques. This verifies our
assumption that regularisation is important to prevent overfitting, which
is otherwise hard to avoid when training on a relatively small dataset like
ours. Although the best results are achieved when using all three regulari-
sation approaches, the data augmentation has the largest positive effect on
performance. For all following experiments, models are trained with all
regularisations, and with re-sampling the dataset.

Extraction of frames

Next, we study the effect of training on various number of frames per ECHO,
using different frame extraction methods. In Table 4.2 we report the results of
training a spatial PH detection model using different percentiles of maximum-
expansion frames (Max) and minimum-expansion frames (Min) from the
PSAX-P view. Note that the Pth percentile of maximum- or minimum-
expansion frames corresponds to selecting frames that have left- and right-
ventricle area that is larger or smaller than P% of the other ECHO frames for
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a given patient. As a comparison, we also report the results from training on
10 random frames (Rand-10), and all frames (Rand-all).

In general, selecting the frames corresponding to the minimum-expansion of
the heart performs significantly better than selecting frames corresponding
to the maximum-expansion of the heart. As an example, when selecting the
top 95th minimum-expansion frames (i.e. only around 7 frames per ECHO),

Regularisation AUROC F1-Score Precision Recall
Balanced
Accuracy

Confidence

R
an

d
W

ei
gh

ts No aug, no wd 0.76 ±0.07 0.72 ±0.04 0.77 ±0.05 0.72 ±0.05 0.72 ±0.05 0.85 ±0.02

No aug, wd 0.79 ±0.09 0.73 ±0.11 0.80 ±0.04 0.73 ±0.10 0.74 ±0.07 0.85 ±0.03

Aug, no wd 0.91 ±0.04 0.89 ±0.05 0.91 ±0.04 0.89 ±0.05 0.89 ±0.05 0.85 ±0.02

Aug, wd 0.91 ±0.03 0.89 ±0.04 0.90 ±0.03 0.89 ±0.04 0.89 ±0.04 0.86 ±0.02

Pr
e-

tr
ai

ne
d No aug, no wd 0.86 ±0.04 0.82 ±0.05 0.84 ±0.05 0.82 ±0.05 0.81 ±0.05 0.87 ±0.02

No aug, wd 0.86 ±0.07 0.83 ±0.07 0.84 ±0.06 0.83 ±0.07 0.82 ±0.06 0.87 ±0.02

Aug, no wd 0.92 ±0.05 0.90 ±0.04 0.92 ±0.03 0.90 ±0.04 0.91 ±0.04 0.86 ±0.03

Aug, wd 0.93 ±0.04 0.91 ±0.03 0.92 ±0.03 0.91 ±0.03 0.92 ±0.03 0.87 ±0.03

Table 4.1: Effects of different regularisation methods, i.e pre-trained weights,
augmentation (aug), and weight decay (wd), on the PH detection with the spatial
PSAX-P model, when training on 10 random frames per subject. The best
results are highlighted in bold.

Percentile /
# Frames

AUROC F1-Score Precision Recall
Balanced
Accuracy

Confidence

M
ax

95th 0.87 ±0.05 0.85 ±0.03 0.87 ±0.03 0.85 ±0.03 0.85 ±0.04 0.89 ±0.02

90th 0.87 ±0.04 0.87 ±0.03 0.88 ±0.03 0.87 ±0.04 0.86 ±0.03 0.89 ±0.01

80th 0.90 ±0.06 0.88 ±0.05 0.89 ±0.04 0.88 ±0.05 0.88 ±0.05 0.86 ±0.02

50th 0.90 ±0.04 0.88 ±0.06 0.90 ±0.04 0.88 ±0.06 0.89 ±0.05 0.87 ±0.02

M
in

95th 0.93 ±0.05 0.90 ±0.06 0.91 ±0.04 0.89 ±0.06 0.90 ±0.05 0.89 ±0.02

90th 0.95 ±0.03 0.92 ±0.04 0.93 ±0.04 0.92 ±0.04 0.92 ±0.04 0.88 ±0.02

80th 0.95 ±0.03 0.93 ±0.04 0.93 ±0.04 0.93 ±0.04 0.92 ±0.04 0.88 ±0.02

50th 0.94 ±0.04 0.91 ±0.05 0.92 ±0.04 0.91 ±0.05 0.90 ±0.05 0.90 ±0.02

R
an

d 10 0.93 ±0.04 0.91 ±0.03 0.92 ±0.03 0.91 ±0.03 0.92 ±0.03 0.87 ±0.03

all 0.94 ±0.03 0.91 ±0.03 0.92 ±0.03 0.91 ±0.03 0.90 ±0.04 0.86 ±0.02

Table 4.2: Results of PH detection with the spatial PSAX-P model, when
varying the number of frames being trained on, and their extraction methods,
i.e. maximum-expansion (Max), minimum-expansion (Min) or random (Rand).
95th, 90th, 80th and 50th percentile correspond on average to 7, 12, 26, and 60
frames per ECHO. The best results are highlighted in bold.
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4. Results and Discussions

we get an F1-score of 0.90, almost the same as when selecting all frames
(approx. 122 frames per ECHO). However, when selecting top 95th maximum-
expansion frames per video, the F1-score is only 0.85. This indicates that
the minimum-expansion frames are the most informative frames. It is also
consistent with the fact that PH-related abnormalities in the shape of the
IVS and LV are most visible during systole, i.e. minimum-expansion of the
heart [17]. Although reversed volume of the ventricles during diastole is also
associated with PH, these results suggest that the systolic changes in LV and
IVS morphology are more discriminative features for the model, as further
verified by the interpretability analysis in Section 4.4.1.

The best results for the PSAX-P view are achieved when extracting around 26
minimum-expansion frames per ECHO (minimum 80th percentile), resulting
in an F1-score of 0.93. For future experiments, however, training is performed
on 10 random frames instead. This is because extraction of minimum expan-
sion frames is not possible for all views, and because training on 10 random
frames aligns with previous work. The performance difference is also negli-
gible, with balanced accuracy being the same, and other metrics being only
slightly reduced. By further looking at the confusion matrices for these two
approaches, in Tables 4.3 and 4.4 respectively, we see that the model trained
on random frames only mis-classifies one additional PH patient as healthy,
compared to the best model, although it also mis-classifies two additional
healthy subjects as having PH.

True
PH Not PH Total

Pred
PH TP = 52 FP = 15 67

Not PH FN = 4 TN = 104 108
Total 56 119 175

Table 4.3: Confusion matrix of the spatial model trained on 10 random
PSAX-P frames per patient, for the task of PH detection.

True
PH Not PH Total

Pred
PH TP = 53 FP = 13 66
Not PH FN = 3 TN = 106 109

Total 56 119 175

Table 4.4: Confusion matrix of the spatial model trained on top 26 minimum-
expansion PSAX-P frames, for the task of PH detection.
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4.2. Spatial Approach

4.2.2 Multiple Views for PH Detection and Severity Prediction

The final study of the spatial method involves applying the best approach, as
determined by the ablation analysis from the previous section, to the other
views and to the task of PH severity prediction. In Table 4.5 we report (a)
the performance of the binary PH detection from each of the five views, as
well as the results from the two multi-view approaches; majority voting (MV)
and feature-level fusion (FLF). Specifically, for both multi-view approaches,
we show the results of joining the three main views PSAX-P, PLAX and
A4C (MV-3, FLF-3), as well as joining all five views (MV-All, FLF-All). We
similarly report in Table 4.5(b) the performance of the severity PH prediction
for each of the views, and all the multi-view approaches.

The best results for each task are achieved when using a multi-view approach.
Further important findings from the table are discussed below.

(a)

View AUROC F1-Score Precision Recall
Balanced
Accuracy

Confidence

A4C∗ 0.87±0.04 0.83±0.04 0.85±0.03 0.83±0.04 0.83±0.03 0.87±0.03
PLAX 0.92±0.05 0.88±0.04 0.89±0.04 0.88±0.04 0.88±0.04 0.89±0.02

PSAX-P 0.93±0.04 0.91±0.03 0.92 ±0.03 0.91 ±0.03 0.92 ±0.03 0.87 ±0.03
PSAX-S 0.83±0.03 0.81±0.03 0.83±0.02 0.81±0.03 0.81±0.03 0.86±0.04
PSAX-A 0.86±0.04 0.85±0.03 0.85±0.03 0.85±0.03 0.84±0.03 0.87±0.02

MV-3 [0.91 ±0.02] 0.88 ±0.02 0.88 ±0.02 0.88 ±0.02 0.88 ±0.02 0.88 ±0.01
MV-All [0.92 ±0.02] 0.90 ±0.02 0.91 ±0.01 0.90 ±0.02 0.90 ±0.01 0.87 ±0.02

FLF-3 0.93 ±0.02 0.91 ±0.03 0.92 ±0.02 0.90 ±0.03 0.92 ±0.03 0.90 ±0.02
FLF-All 0.95 ±0.04 0.93 ±0.03 0.94 ±0.03 0.93 ±0.04 0.93 ±0.03 0.91 ±0.02

(b)

View AUROC F1-Score Precision Recall
Balanced
Accuracy

Confidence

A4C 0.79±0.04 0.75±0.05 0.77±0.04 0.75±0.06 0.67±0.06 0.84±0.03
PLAX 0.84±0.04 0.76±0.04 0.78±0.05 0.77±0.04 0.70±0.05 0.85±0.03

PSAX-P 0.83±0.03 0.81±0.02 0.82±0.03 0.81±0.03 0.74±0.03 0.83±0.03
PSAX-S 0.74±0.07 0.68±0.06 0.70±0.07 0.70±0.08 0.62±0.06 0.83±0.03
PSAX-A 0.80±0.03 0.75±0.04 0.76±0.04 0.76±0.05 0.66±0.04 0.84±0.03

MV-3 [0.84 ±0.03] 0.81 ±0.03 0.83 ±0.04 0.82 ±0.03 0.74 ±0.06 0.85 ±0.02
MV-All [0.84±0.03] [0.82 ±0.03] 0.83 ±0.04 0.83 ±0.03 0.73 ±0.04 0.85 ±0.01

FLF-3 0.86 ±0.02 0.81 ±0.02 0.83 ±0.03 0.81 ±0.02 0.75 ±0.04 0.86 ±0.01
FLF-All 0.87 ±0.03 0.81 ±0.03 0.82 ±0.02 0.80 ±0.03 0.76 ±0.03 0.86 ±0.02

Table 4.5: Results from the spatial approach for (a) PH binary detection
and (b) PH severity prediction. MV-3 refers to majority voting of PSAX-P,
PLAX and A4C views, and MV-All to majority voting of all views. FLF-3
refers to feature-level fusion of PSAX-P, PLAX and A4C views, and FLF-All
to feature-level fusion of all views. The best results for each task have been
highlighted in bold.
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4. Results and Discussions

Single-View Approach Among the single-view methods, the PSAX-P view
shows the best performance for both tasks. Although the A4C view is one
of the most commonly used views for cardiovascular disease diagnosis, our
evaluation shows that it is not as discriminating as the PSAX-P or PLAX
views. This is also in line with the neonatal echocardiography teaching
manual [17], where it is stated that subjective assessment of PH from the
A4C view in a 2D ECHO is usually only possible for moderate to severe
PH cases, and quantitative evaluation is difficult. Furthermore, these results
show that the PH severity prediction problem is more challenging than then
PH detection, as the best single-view results for the PH detection yield an
F1-score of 0.91, compared to only 0.81 for PH severity detection. This is to
be expected, not only due to the harder task at hand but also because of the
increased data imbalance. In this case, the robustness and accuracy can be
increased by utilising more views.

Multi-View Approach Using multiple views does generally improve perfor-
mance, and for both multi-view approaches combining all five views gives
better performance than combining only the three most significant views.

For the task of PH severity prediction, all four multi-view approaches show
some improvement in performance compared to when training only on a
single view. The majority voting of all views (MV-All) seems to give the
best results overall, although feature-level-fusion of all views (FLF-All) gives
better balanced accuracy, and the AUROC of these two approaches is not
directly comparable. The performance gain from using multiple views is
still minimal, with for example the F1-score increasing only from 0.81 to 0.82.
As we will see in Section 4.3, in the case of the spatio-temporal approach,
majority voting provides a greater performance increase.

Using multiple views to enhance performance is less beneficial for the task
of binary PH detection, as the performance is already competitive when
using only a single view. And indeed the predictions for the PH detec-
tion do not improve when using the ensemble methods (MV-3, MV-ALL).
When model performance is generally high, and one model of an ensemble
performs significantly better than the others, like in our case, it is not uncom-
mon that the ensemble performs no better than the best-performing model
[58]. Combining all views with feature-level fusion (FLF-All) does however
improve the results of the PH detection.

Comparison to State-of-the-Art The state-of-the-art approach for PH de-
tection in adults [75], a spatial CNN trained on a single ECHO view (A4C),
achieves an AUROC score of 0.85. With our spatial approach on the A4C
view, we achieve similar results, or AUROC of 0.87, as seen in Table 4.5(a).
Since both approaches involve training and evaluating a spatial CNN on
10 random frames from the A4C view, the similar results are expected and

34



4.3. Spatio-Temporal Approach

encouraging. It suggests that our data augmentation is effective, as our
training dataset is considerably smaller than the dataset of [75]. However,
we recognise that direct comparison is difficult, since the methods have
been trained and evaluated on different datasets from a different population.
Finally note that we improve on the state-of-the-art approach, by first of
all training on the PSAX-P view, which significantly improves performance
(AUROC 0.93), and second of all by incorporating temporal features, as seen
in the next section 4.3.2, achieving an AUROC of 0.95 for the PH detection.

4.3 Spatio-Temporal Approach

In this section, we report the results of the spatio-temporal approach for the
detection and severity prediction of PH. The insight gained from the ablation
analysis of the spatial approach is applied to the spatio-temporal method,
wherever applicable. This includes training on 10 samples (here sequences)
per ECHO, and using all three regularisation techniques. Furthermore, in
subsection 4.3.1 we perform additional ablation studies for determining
specific spatio-temporal properties, by using the binary PH detection task
and the base view (PSAX-P). In Subsection 4.3.2 we then provide an empirical
assessment of the best spatio-temporal approach (as per the ablation analysis),
for both the PH detection and the severity prediction, for all five views, and
for the multi-view approach.

4.3.1 PH Detection on the PSAX-P View - Ablation

To understand the effects of different input sequence-lengths and different
spatio-temporal architectures on performance, ablation studies were per-
formed on the PSAX-P view, for the binary PH detection.

Sequence-length and Sampling Interval

We report in Table 4.6 the effects of varying the effective length (l) of the
input sequences from min 8 to max 24, for sampling intervals s=1 and s=2,
when training a ResNet3D-18 model on the PSAX-P view, for the task of
binary PH detection. These settings correspond to sequence-lengths (k) in
the range of 4 to 24. The best results are achieved when training on input
sequences of length 12, where every consecutive frame is selected (i.e. l=12,
k=12, s=1). Recall that a single heartbeat covers on average 10 frames, so
when the input sequences cover 12 frames, they contain on average at least
one heart-beat. The second-best performance is also achieved with sequences
of length k = 12, but by sampling every other frame, such that effective
length is 24 frames (i.e. l=24, k=12, s=2). Training on sequences with the
same effective length yields in general rather similar performance. For
sequences with effective length less than 16, sampling every frame (s=1) gives
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4. Results and Discussions

slightly improved performance compared to sampling every other frame
(s=2). However, the opposite is true for sequences with effective length of 16
or longer. In that case, using a larger sampling interval and less number of
frames (i.e. shorter sequence-length k), is beneficial. This is especially true for
effective length of 24, where including each of the 24 frames in the sequence
only gives an F1-score of 0.88, compared to 0.92 when sampling every other
frame and thus only training on sequences of length 12. This might suggest
that the model has difficulties in learning long-range dependencies.

k, s (l) AUROC F1-Score Precision Recall
Balanced
Accuracy

Confidence

8, 1 (8) 0.92 ±0.03 0.90 ±0.04 0.92 ±0.02 0.90 ±0.04 0.91 ±0.03 0.90 ±0.02

12, 1 (12) 0.95±0.04 0.92±0.03 0.93±0.03 0.92±0.03 0.94±0.03 0.90±0.03

16, 1 (16) 0.92 ±0.04 0.90 ±0.04 0.91 ±0.03 0.89 ±0.04 0.91 ±0.04 0.92 ±0.02

24, 1 (24) 0.92 ±0.04 0.88 ±0.03 0.90 ±0.02 0.87 ±0.03 0.89 ±0.03 0.93 ±0.01

4, 2 (8) 0.92 ±0.04 0.89 ±0.05 0.91 ±0.03 0.89 ±0.05 0.90 ±0.04 0.89 ±0.02

6, 12 (12) 0.92 ±0.03 0.91 ±0.03 0.92 ±0.02 0.91 ±0.03 0.92 ±0.03 0.90 ±0.01

8, 2 (16) 0.92 ±0.04 0.91 ±0.03 0.92 ±0.03 0.91 ±0.03 0.91 ±0.03 0.92 ±0.02

12, 2 (24) 0.94 ±0.03 0.92 ±0.03 0.92 ±0.03 0.92 ±0.03 0.92 ±0.04 0.93 ±0.01

Table 4.6: Results of PH detection with the ResNet3D PSAX-P model when
varying the effective length (l), sequence-length (k) and sampling interval (s)
of the input sequences. The best results have been highlighted in bold.

Different 3D-CNN Architectures

In Table 4.7 we provide an empirical evaluation of the three different spatio-
temporal architectures R(2+1)D, ResNet3D and SlowFast. In all cases, we
train on 10 sequences per ECHO, with each sequence being of length 12 and
with a sampling interval of 1.

Architecture AUROC F1-Score Precision Recall
Balanced
Accuracy

Confidence

R(2+1)D, 18 layers 0.90 ±0.06 0.90 ±0.03 0.91 ±0.03 0.90 ±0.03 0.90 ±0.05 0.91 ±0.03

ResNet3D, 18 layers 0.95 ±0.04 0.92±0.03 0.93±0.02 0.92±0.03 0.94±0.03 0.90±0.03

SlowFast, 50 layers 0.93 ±0.04 0.90 ±0.04 0.91 ±0.04 0.90 ±0.04 0.90 ±0.05 0.91 ±0.01

Table 4.7: Performance of different spatio-temporal architectures when train-
ing with sequences of length 12 (k=12, s=1).

The 18-layer ResNet3D shows superior performance compared to the other
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4.3. Spatio-Temporal Approach

two architectures. The other two yield similar results, with SlowFast being
slightly better than R(2+1)D. Although the 50 layer SlowFast network has
shown superior performances on various video classification tasks [18], it
seems to lead to over-fitting on our relatively small dataset. Furthermore,
factoring the 3D convolutional filters into separate spatial and temporal
components, as in R(2+1)D, does not improve accuracy in our case.

4.3.2 Multiple Views for PH Detection and Severity Prediction

The final study involves applying the best spatio-temporal approach, as
determined in the previous subsection, to all the views and for the task of
PH severity prediction. That is, a ResNet3D-18 model, with input sequences
consisting of 12 consecutive frames. For the multi-view approach, we only
evaluate the ensemble method, i.e. majority voting, since training a spatio-
temporal model with feature level fusion of five views is very memory heavy,
with each input sample being of size 224× 224× 12× 5. Additionally, such
a large network would be very prone to overfitting on our relatively small
dataset.

In Table 4.8 we report (a) the performance of the binary PH detection from
each of the five views, as well as the results from majority voting of the three
main views (MV-3) and all views (MV-All). We similarly report in Table 4.8(b)
the performance of the severity PH prediction for each of the views, and the
multi-view approaches. The best results for the PH severity prediction are
achieved by majority voting of all views (same as for the spatial approach),
but a single view model performs best on the PH detection task. Further
important findings from the table are discussed below.

Single-View Approach Among the single-view methods, training on the
PSAX-P view gives the best performance for both PH detection and severity
prediction, followed by the PLAX view. The A4C view is not as discriminative
as the other two main views. This is in line with the results from the
spatial approach. Although not all views benefit from making use of the
temporal domain, the two most significant views (PSASX-P and PLAX) do.
For example, the PH severity F1-score increases from 0.76 to 0.78 when
using a spatio-temporal model instead of a spatial model on the PLAX view.
Similar to the spatial method, performance of the PH severity prediction
is significantly lower than of the binary PH detection, but it can again be
improved by utilising more views.

Multi-View Approach For the spatio-temporal approach, the performance
of the PH severity prediction significantly improves when joining all views
with majority voting (MV-All). The F1-score improves from 0.81 to 0.84 and
balanced accuracy from 0.73 to 0.78. This gain is considerably larger than the
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gain achieved when applying majority voting to the spatial approach, which
only improved F1-score by 0.1 and balanced accuracy was not improved. A
possible reason is that for the spatio-temporal approach, the difference in
performance between the two top-performing models (PSAX-P, PLAX) is
very small (e.g. only 0.1 difference in balanced accuracy), but for the spatial
approach, the difference is larger (0.4 difference in balanced accuracy). And
as already mentioned, the greater the performance difference between the
top-performing model and other models, the less likely an ensemble is to
succeed.

Like for the spatial method, the ensemble does not improve results for the
binary classification. Again, this is likely due to the fact that results are
already quite competitive, and the performance difference between the top-
performing model and other models is high. Here, we even see that the
ensemble gives worse results than the top-performing model. When an
ensemble performs worse than the best-performing member of the ensemble,
it typically involves one top-performing model whose predictions are made
worse by one or more poor-performing models and the ensemble is not able
to effectively harness their contribution [58].

(a)

View AUROC F1-Score Precision Recall
Balanced
Accuracy

Confidence

A4C 0.83±0.05 0.81±0.04 0.84±0.03 0.81±0.04 0.81±0.04 0.91±0.03
PLAX 0.90±0.07 0.86±0.09 0.88±0.07 0.86±0.09 0.86±0.08 0.91±0.02

PSAX-P 0.95±0.04 0.92±0.03 0.93±0.03 0.92±0.03 0.94±0.03 0.90±0.03
PSAX-S 0.79±0.04 0.81±0.03 0.82±0.04 0.81±0.03 0.80±0.04 0.90±0.02
PSAX-A 0.88±0.05 0.87±0.03 0.88±0.03 0.87±0.03 0.87±0.04 0.89±0.03

MV-3 [0.90±0.03] 0.87±0.04 0.88±0.03 0.87±0.04 0.87±0.04 0.92±0.01
MV-All [0.90±0.03] 0.89±0.02 0.90±0.02 0.89±0.02 0.89±0.02 0.91±0.01

(b)

View AUROC F1-Score Precision Recall
Balanced
Accuracy

Confidence

A4C 0.77±0.03 0.72±0.05 0.75±0.05 0.72±0.05 0.65±0.06 0.88±0.02
PLAX 0.85±0.04 0.78±0.05 0.82±0.06 0.79±0.06 0.72±0.05 0.89±0.03

PSAX-P 0.85±0.04 0.81±0.05 0.83±0.06 0.82±0.04 0.73±0.06 0.90±0.03
PSAX-S 0.73±0.07 0.68±0.08 0.69±0.09 0.69±0.08 0.62±0.07 0.85±0.04
PSAX-A 0.77±0.07 0.74±0.06 0.77±0.04 0.74±0.06 0.67±0.06 0.84±0.04

MV-3 [0.84±0.05] 0.83±0.05 0.86±0.04 0.83±0.05 0.76±0.07 0.91±0.02
MV-All [0.86±0.05] 0.84±0.06 0.86±0.05 0.85±0.05 0.78±0.07 0.89±0.02

Table 4.8: Results from the spatio-temporal approach for (a) PH binary
detection and (b) PH severity prediction. MV-3 refers to majority voting of
PSAX-P, PLAX and A4C views, and MV-All to majority voting of all views.
The best results for each task are highlighted in bold.
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4.4 Explainability

We provide a post-hoc explainability analysis of the single-view convolutions,
showing the regions that are the most relevant for the assessment of PH. The
analysis shows that the spatial and spatio-temporal models mostly highlight
the same cardiac structures, and similarly the models for PH detection and
severity prediction. We thus only report detailed results from the explain-
ability analysis of the spatio-temporal models for PH severity prediction
(in Subsection 4.4.1), to avoid duplication. However, as the salience maps
do have slightly different characteristics for the spatial and spatio-temporal
approaches, we briefly highlight those differences in Subsection 4.4.2. Further
explainability results are found in Section A.3 in the Appendix, including
saliency maps from models trained on the PH detection task.

4.4.1 Explainability of Spatio-temporal PH Severity Models

In Figure 4.1 we show an example of the spatio-temporal explainability
analysis for three subjects with different levels of PH, for the three main
views (a) PSAX-P, (b) PLAX and (c) A4C. In all cases, a single ECHO frame
from each patient (top row) is combined with saliency maps using Grad-
CAM (bottom row). Crucial cardiac structures highlighted by the saliency
maps have been labelled with their abbreviation. These results show that
our models are attending to clinically relevant cardiac structures, used for
PH diagnosis by cardiologists. For each of the three main views, we provide
further analysis of the attended features and relation to clinically relevant
structures. Note that in a clinical setting, the visualisations can be viewed as
a video containing spatio-temporal explanation. In the Appendix (Section
A.3), we show an example of how the focus changes along the frames of a
sequence.

PSAX-P

According to the neonatal echocardiography teaching manual [17], the ideal
view for subjective evaluation of the interventricular septum (IVS) morphol-
ogy and left ventricle (LV) shape is PSAX-P. In mild to moderate PH the
IVS becomes flat during systole and in moderate to severe PH the septum
bows into the LV, such that the LV becomes D-shaped, or crescentic. We
show in Figure 4.1a that our PSAX-P severity prediction model focuses on
the clinically relevant features that are recommended for diagnosis, that is
the LV and IVS.

PLAX

Subjective evaluation of the IVS morphology is also possible from the PLAX
view [17], and as we can see in Figure 4.1b the PLAX severity model does in-
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(a) PSAX-P

(b) PLAX

(c) A4C

Figure 4.1: ECHO frames of subjects with no, mild and significant PH (top),
combined with the saliency maps (bottom), for (a) PSAX-P view, (b) PLAX
view and (c) A4C view. The yellow line shows how the LA:Ao is measured.
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deed highlight the IVS area, among others. Furthermore, various quantitative
assessments are frequently performed on the 2D ECHO of the PLAX view.
This includes the left atrial-to-aortic root diameter ratio (LA:Ao), measured
by extracting the M-mode, as demonstrated with the dashed yellow line in
Figure 4.1b. We observe that the saliency maps highlight the pixels along the
M-mode line, indicating that the PLAX model might be leveraging this ratio.
Other common measurements of the PLAX view include measurements of
the aortic valve (AV) annulus diameter, which is another area that the model
focuses on. Overall, we see in Figure 4.1b that the model focuses on the areas
around the LA, AV, Ao and IVS, suggesting that the model is able to consider
both the relevant quantitative features and the subjective ones.

A4C

PH often leads to right ventricular (RV) dysfunction, which may cause RV
dilatation and leftward deviation of the IVS. Thus, subjective evaluation
of the A4C view typically involves examining the RV size and changes
in IVS morphology. However, these changes are usually only visible for
moderate to severe PH patients [17], and as we can see in Figure 4.1c the
RV is not highlighted as an important feature for the A4C severity model.
However, in patients with some degree of PH, parts of the IVS are highlighted.
PH can furthermore lead to elevated right atrial pressures, which can be
identified by a bulging interatrial septum (IAS) into the left atrium (LA) [17].
Although this is typically evaluated from the Atrical View, the features are
also visible from the A4C view, and as seen in Figure 4.1c the A4C severity
model mainly focuses on the LA and IAS area, suggesting these are the most
discriminative features. The saliency maps also highlight the mitral valve
(MV), and although MV regurgitation is predictive of PH, it is evaluated
from a Doppler ECHO, and it is highly unlikely that it can be detected from
the 2D ECHO.

4.4.2 Spatial vs. Spatio-temporal Saliency Maps

The analysis of the saliency maps for the binary PH detection models shows
that the spatial models tend to attend to larger areas, compared to the spatio-
temporal models, which tend to attend to more narrow and concentrated
areas. In Figure 4.2 we see an example from a single PH patient, where both
the spatial and spatio-temporal models attend to the left ventricle and IVS,
but the area of focus is larger for the spatial model. This is not surprising, as
the spatial models are less confident.

Furthermore, there is a slight difference in the attention of spatial models
trained on random frames compared to minimum-expansion frames, as seen
in Figure 4.3. In both cases, the attention is not as focused as for the temporal
models, but models trained on random frames tend to attend to both left
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and right ventricles, whereas the attention is focused on the left ventricle and
IVS only in the case of models trained on minimum expansion frames. A
possible explanation is that when training on random frames, the ratio of the
ventricles can be a better predictor for PH than the LV and IVS shape, as the
shape deformation is mainly visible from minimum expansion frames.

Figure 4.2: ECHO frame of a PH patient combined with the saliency maps
from (a) spatial model trained on 10 random samples, and (b) spatio-temporal
model trained on 10 random samples. Both models were trained for binary
PH detection on the PSAX-P view.

Figure 4.3: ECHO frame of a PH patient combined with the saliency maps
from a spatial model trained for binary PH detection on the PSAX-P view,
using (a) 10 random frames for training, and (b) top 80th percentile minimum
expansion frames
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Chapter 5

Conclusions

In this work we developed an automated and streamlined method to assist
clinicians in the assessment of PH in newborns, using either a spatial or spatio-
temporal approach of one or more views. For the binary detection of PH we
achieved optimal performance when using a spatio-temporal approach on
the PSAX-P view or a spatial approach jointly trained on five views (i.e. the
results of these two methods were comparable). For the severity prediction
of PH we achieved optimal performance when performing majority voting
of five spatio-temporal models, each trained on one of the five views. The
advantage of the spatial approach is faster training time and less memory
requirement, which also allows for relatively fast joint training of multiple
views. The disadvantage is that for optimal performance, training should
be performed on frames corresponding to minimum expansion of the heart,
which requires segmentation of ventricles. For the spatio-temporal approach,
no segmentation is required, and furthermore, the confidence of the spatio-
temporal models was in general higher. This might be because all three
dimensions of the ECHO are utilized to make a decision. Although the best
single-view results are achieved with the spatio-temporal approach, some
views did not benefit from adding the temporal domain. Additionally, a
spatio-temporal model has a larger number of trainable parameters and is
thus more prone to overfitting on small datasets. However, the fact that our
spatio-temporal method performs comparable to or better than the spatial
method on our relatively small dataset is encouraging, and we assume with
more data, the benefits will be even larger.

The severity estimation of PH from ECHOs is critically important as it
determines the urgency of treatment [10, 20], but it remains a challenge for
cardiologist [12, 19]. Thus, our approach may have a considerable clinical
impact in increasing the accuracy and steadiness of ECHO examinations
by reducing the number of late or missed diagnoses of PH. Furthermore,
it may assist less trained specialists and thereby reduce the workload of
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highly trained experts. Finally, by highlighting the input features that are
crucial for the PH assessment, the proposed approach provides interpretable
explanations for the clinicians, which in turn makes the system accountable.

A limitation of our method is the relatively small training dataset with
only few severe PH patients, as well as the lack of an external test dataset.
Furthermore, the annotations are based on visual inspection of a single
cardiologists, but having the annotations verified by a second clinician would
be beneficial. A dataset where PH has been determined invasively, with
right-heart catheterization (RHC), would be the gold standard, but it is
difficult to get around, as RHC is rarely used for initial PH assessment,
but rather to confirm a diagnosis [47]. Future work includes increasing the
clinical usability even further, by integrating our method into an end-to-end
visualisation tool that can be used in a clinical setting. Before adoption of the
tool for clinical routine, a performance evaluation using an external medical
dataset is crucial, including a detailed analysis of failure cases. Finally, the
addition and integration of additional information, such as the age or weight
of the newborns, might be interesting.
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Appendix

A.1 Implementation Details

The method was developed using the Python programming language, ver-
sion 3.9.7, with the PyTorch deep learning library, version 1.10.1. Histogram
equalization was performed with the OpenCV computer vision library, ver-
sion 4.5.3. Metrics were calculated using the Scikit-learn machine learning
library, version 0.24.2.

Experiments were run on a cluster containing different NVIDIA GeForce
graphic cards: GTX 1080, GTX 1080 Ti, RTX 2080 Ti with 2048 MB RAM per
processor core. Spatial models are trained with a single GPU, but spatio-
temporal models with two GPUs. The multi-GPU training was implemented
using the DataParlell module of PyTorch. Each model was trained for around
150 epochs per view minimizing the (categorical) cross-entropy loss with the
Adam [32] optimiser. The single-view spatial models take around 3 hours to
train with a batch size of 16, whereas the single-view spatio-temporal models
take around 11 hours to train, with a batch size of 8. As a comparison, the
multi-view spatio-temporal model of three views (i.e. feature-level fusion
model) takes over 30 hours to train, and uses a batch size of 4. The smaller
batch sizes are required for more complex models, due to memory constraints.
Note that for the multi-view approach using majority voting, single-view
models can be trained in parallel, and the training time is thus the same as
for single-view models.

To ensure the reproducibility of this work, the code of IP-PHN was made pub-
licly available under https://anonymous.4open.science/r/echo_classification-DE4E/
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A.2 Dataset

A summary of the PH severity prediction dataset is provided below.

Feature Value
PH (#None (%) / #Mild(%) / #Significant(%)) 126(65%) / 32(16%) / 36(19%)
Age (days) (Mean ± SD) 56 ± 160
Maturity in birth (days) (Mean ± SD) 230 ± 46
Patient’s weight (kg) (Mean ± SD) 2.9 ± 1.5
Manufacturer (Ultrasound Machine / Transducer) GE Logic S8 / S4-10 at 6 MHz
Spatial size of original 2D images (pixels) 1440 x 866
Video length (frames) 122 ± 2
Video FPS 25 fps

Table A.1: Characteristics of the PH severity prediction dataset.

A.3 Explainability

In Figure A.1 we can see how the attention of the spatio-temporal models
changes over time, for the task of PH severity prediction.

Figure A.1: Spatio-temporal Grad-CAM saliency maps (bottom) imposed on
the original frames (top) for frames corresponding to systole, mid, diastole,
mid in a PLAX ECHO.

A few examples of saliency maps for models trained on the task of PH binary
detection are shown in Figure A.2 (for spatial models trained on random
frames), Figure A.3 (for spatial models trained on minimum-expansion
frames), and Figure A.4 (for spatio-temporal models)
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Neg

Pos

Figure A.2: Examples of Grad-CAM saliency maps imposed on original
frames, for the spatial model trained on random frames of the PSAX-P view,
for the task of binary PH prediction. First two rows are from healthy subjects
with no PH (Neg), last two rows are from subjects with PH (Pos).
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Neg

Pos

Figure A.3: Examples of Grad-CAM saliency maps imposed on original
frames, for the spatial model trained on minimum-expansion frames of the
PSAX-P view, for the task of binary PH prediction. First two rows (Neg) are
from non-PH subjects, last two rows (Pos) are from subjects with PH.

48



A.3. Explainability

Neg

Pos

Figure A.4: Examples of Grad-CAM saliency maps imposed on original
frames, of the spatio-temporal model trained on PSAX-P view, for the task of
binary PH prediction. First two rows (Neg) are from non-PH subjects, last
two rows (Pos) are from subjects with PH.
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A.4 Additional Results

In this section we show sample-level performance of the main models for
both PH detection and PH severity prediction, as well as the confusion
matrices for both tasks.

A.4.1 Sample-level Performance

In Tables A.2 and A.3 we show the sample-level results for each of the views
for the spatial approach and spatio-temporal approach, respectively. As
expected, the sample-level scores are in general lower than the subject-level
scores. The spatio-temporal approach achieves better results when looking at
sample-level performance for all views, on the PH binary detection task. On
the PH severity task it varies between views.

(a)

View AUROC F1-Score Precision Recall
Balanced
Accuracy

A4C 0.82 ±0.04 0.76 ±0.03 0.77 ±0.03 0.76 ±0.04 0.74 ±0.04
PLAX 0.86 ±0.05 0.80 ±0.05 0.80 ±0.05 0.80 ±0.05 0.79 ±0.05

PSAX-P 0.88 ±0.04 0.82 ±0.04 0.83 ±0.04 0.82 ±0.04 0.81 ±0.05
PSAX-S 0.77 ±0.03 0.73 ±0.03 0.75 ±0.03 0.73 ±0.03 0.72 ±0.03
PSAX-A 0.82 ±0.04 0.77 ±0.03 0.78 ±0.03 0.77 ±0.03 0.75 ±0.03

(b)

View AUROC F1-Score Precision Recall
Balanced
Accuracy

A4C 0.75 ±0.04 0.67 ±0.04 0.69 ±0.03 0.67 ±0.05 0.57 ±0.04
PLAX 0.80 ±0.04 0.70 ±0.03 0.71 ±0.03 0.71 ±0.04 0.60 ±0.04

PSAX-P 0.79 ±0.02 0.71 ±0.01 0.72 ±0.01 0.71 ±0.03 0.60 ±0.02
PSAX-S 0.71 ±0.06 0.62 ±0.04 0.63 ±0.05 0.63 ±0.06 0.53 ±0.05
PSAX-A 0.76 ±0.03 0.66 ±0.04 0.66 ±0.03 0.68 ±0.05 0.54 ±0.04

Table A.2: Sample-wise (i.e. per sequence) results from the spatial approach
for (a) PH binary detection and (b) PH severity prediction.

A.4.2 Confusion Matrices

We report the confusion matrices of the main models trained on each of
the two tasks, PH detection and PH severity prediction. Due to limited
number of subjects per fold, we calculate the confusion matrices based on
the concatenation of the 10 validation sets, resulting from the 10 folds. We
make sure that each subject is only evaluated with the model that did not
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train on that subject. Note that this is different from other metrics, which are
calculated per fold, and then the average over all the folds is reported.

The confusion matrices for the PH severity prediction task are shown in
Tables A.4 and A.5, for the spatial and spatio-temporal models, respectively.
The temporal model performs overall better than the spatial model, and it
mis-classifies only one patient with significant PH as healthy. It however
wrongly classifies 10 subjects with no or mild PH as having significant PH,
which is more than the spatial model. The temporal model rather struggles
with distinguishing between no PH and mild PH.

The confusion matrices for the binary PH detection task are shown in Tables
A.6 and A.8, for the spatial and temporal model, respectively. Additionally,
in Table A.7, we show the confusion matrix of the spatial model trained on
minimum-expansion frames instead of random frames. The temporal model
performs significantly best, only misclassifying one PH-patient as healthy
(but wrongly classifying 10 healthy subjects as having PH).

(a)

View AUROC F1-Score Precision Recall
Balanced
Accuracy

A4C 0.80 ±0.05 0.77 ±0.04 0.78 ±0.04 0.76 ±0.04 0.75 ±0.04
PLAX 0.88 ±0.07 0.81 ±0.07 0.83 ±0.06 0.81 ±0.07 0.80 ±0.06

PSAX-P 0.91 ±0.04 0.86 ±0.03 0.86 ±0.03 0.86 ±0.03 0.85 ±0.03
PSAX-S 0.77 ±0.03 0.75 ±0.03 0.75 ±0.03 0.75 ±0.03 0.72 ±0.03
PSAX-A 0.84 ±0.04 0.80 ±0.03 0.81 ±0.03 0.80 ±0.03 0.79 ±0.04

(b)

View AUROC F1-Score Precision Recall
Balanced
Accuracy

A4C 0.75 ±0.02 0.67 ±0.05 0.69 ±0.05 0.67 ±0.05 0.58 ±0.06
PLAX 0.82 ±0.04 0.72 ±0.05 0.75 ±0.05 0.73 ±0.06 0.65 ±0.06

PSAX-P 0.84 ±0.04 0.75 ±0.04 0.76 ±0.04 0.76 ±0.04 0.65 ±0.05
PSAX-S 0.70 ±0.07 0.63 ±0.07 0.63 ±0.07 0.63 ±0.07 0.54 ±0.06
PSAX-A 0.75 ±0.06 0.66 ±0.04 0.68 ±0.04 0.65 ±0.04 0.56 ±0.04

Table A.3: Sample-wise (i.e. per sequence) results from the spatio-temporal
approach for (a) PH binary detection and (b) PH severity prediction.
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True
No PH Mild PH Sign. PH Total

Pred
No PH 104 12 2 117

Mild PH 10 14 3 31
Sign. PH 2 3 23 28

Total 117 31 28 176

Table A.4: Confusion matrix of the PSAX-P spatial model trained on random
frames, when training on the task of PH severity prediction.

True
No PH Mild PH Sign. PH Total

Pred
No PH 110 7 1 118

Mild PH 3 18 3 24
Sign. PH 4 6 24 34

Total 117 31 28 176

Table A.5: Confusion matrix of the PSAX-P spatio-temporal model, when
training on the task of PH severity prediction.

True

Positive Negative Total

Pred
Positive TP = 52 FP = 15 67

Negative FN = 4 TN = 104 108

Total 56 119 175

Table A.6: Confusion matrix of the PSAX-P spatial model trained on 10
random frames, for the task of PH detection.
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True

Positive Negative Total

Pred
Positive TP = 53 FP = 13 66

Negative FN = 3 TN = 106 109

Total 56 119 175

Table A.7: Confusion matrix of the PSAX-P spatial model trained on
minimum-expansion frames, for the task of PH detection.

True

Positive Negative Total

Pred
Positive TP = 55 FP = 10 65

Negative FN = 1 TN = 109 110

Total 56 119 175

Table A.8: Confusion matrix of the PSAX-P spatio-temporal model, for the
task of PH detection.
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Blake, Ajay M. Shah, Gerd Hasenfuß, and Tim Seidler. A machine
learning approach for the prediction of pulmonary hypertension. PLOS
ONE, 14(10):e0224453, October 2019.

[38] Dan Li, Kaifeng Zhang, Zhenbo Li, and Yifei Chen. A spatiotemporal
convolutional network for multi-behavior recognition of pigs. Sensors,
20(8):2381, April 2020.

[39] Zhenqiang Li, Weimin Wang, Zuoyue Li, Yifei Huang, and Yoichi Sato.
Towards visually explaining video understanding networks with pertur-
bation. In 2021 IEEE Winter Conference on Applications of Computer Vision
(WACV). IEEE, January 2021.

[40] Charles X. Ling and Chenghui Li. Data mining for direct marketing:
Problems and solutions. In KDD, 1998.

[41] Kuan Liu, Yanen Li, N. Xu, and P. Natarajan. Learn to combine modali-
ties in multimodal deep learning. ArXiv, abs/1805.11730, 2018.

[42] Carol Mitchell, Peter Rahko, Lori Blauwet, Barry Canaday, Joshua Fin-
stuen, Michael Foster, Kenneth Horton, Kofo Ogunyankin, Richard
Palma, and Eric Velazquez. Guidelines for performing a comprehensive
transthoracic echocardiographic examination in adults: Recommenda-
tions from the american society of echocardiography. Journal of the
American Society of Echocardiography, 32, 10 2018.

[43] Christoph Molnar. Interpretable Machine Learning. 2 edition, 2022.

[44] Hiroki Mori, Kei Inai, Hisashi Sugiyama, and Yoshihiro Muragaki. Di-
agnosing atrial septal defect from electrocardiogram with deep learning.
Pediatric Cardiology, 42(6):1379–1387, April 2021.

[45] Natalia Neverova, Christian Wolf, Graham Taylor, and Florian Nebout.
Moddrop: Adaptive multi-modal gesture recognition. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 38(8):1692–1706, 2016.

59



Bibliography

[46] Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee,
and Andrew Y. Ng. Multimodal deep learning. In Proceedings of the 28th
International Conference on International Conference on Machine Learning,
ICML’11, page 689–696, Madison, WI, USA, 2011. Omnipress.

[47] Jin-Rong Ni, Pei-Jing Yan, Shi-Dong Liu, Yuan Hu, Ke-Hu Yang, Bing
Song, and Jun-Qiang Lei. Diagnostic accuracy of transthoracic echocar-
diography for pulmonary hypertension: a systematic review and meta-
analysis. BMJ Open, 9(12):e033084, December 2019.

[48] Jared M. O'Leary, Tufik R. Assad, Meng Xu, Eric Farber-Eger, Quinn S.
Wells, Anna R. Hemnes, and Evan L. Brittain. Lack of a tricuspid
regurgitation doppler signal and pulmonary hypertension by invasive
measurement. Journal of the American Heart Association, 7(13), July 2018.

[49] David Opitz and Richard Maclin. Popular ensemble methods: An
empirical study. 11(1):169–198, jul 1999.

[50] David Ouyang, Bryan He, Amirata Ghorbani, Matthew P. Lungren,
Euan A. Ashley, David H. Liang, and James Y. Zou. Echonet-dynamic:
a large new cardiac motion video data resource for medical machine
learning. 2019.

[51] David Ouyang, Bryan He, Amirata Ghorbani, Neal Yuan, Joseph E.
Ebinger, C. Langlotz, Paul A. Heidenreich, Robert A. Harrington,
David H. Liang, Euan A. Ashley, and James Y. Zou. Video-based ai for
beat-to-beat assessment of cardiac function. Nature, 580:252–256, 2020.

[52] Itthisak Phueaksri and Sukree Sinthupinyp. Convolutional neural net-
work using stacked frames for video classification. In Proceedings of
the 2019 2nd International Conference on Computational Intelligence and
Intelligent Systems, CIIS 2019, page 85–89, New York, NY, USA, 2019.
Association for Computing Machinery.

[53] Esther Puyol-Antón, Baldeep S. Sidhu, Justin Gould, Bradley Porter,
Mark K. Elliott, Vishal Mehta, Christopher A. Rinaldi, and Andrew P.
King. A multimodal deep learning model for cardiac resynchronisation
therapy response prediction, 2021.

[54] Cynthia Rudin. Stop explaining black box machine learning models
for high stakes decisions and use interpretable models instead. Nature
Machine Intelligence, 1(5):206–215, May 2019.

[55] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael S.

60



Bibliography

Bernstein, Alexander C. Berg, and Li Fei-Fei. Imagenet large scale visual
recognition challenge. CoRR, abs/1409.0575, 2014.

[56] Matthias Schneider, Anna Maria Pistritto, Christian Gerges, Mario
Gerges, Christina Binder, Irene M. Lang, Gerald Maurer, Thomas Binder,
and Georg Goliasch. Multi-view approach for the diagnosis of pul-
monary hypertension using transthoracic echocardiography. The Interna-
tional Journal of Cardiovascular Imaging, 34:695 – 700, 2017.

[57] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakr-
ishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-CAM: Visual
explanations from deep networks via gradient-based localization. In
2017 IEEE International Conference on Computer Vision, pages 618–626,
2017.

[58] Giovanni Seni and John Elder. Ensemble methods in data mining. Synthesis
Lectures on Data Mining and Knowledge Discovery. Morgan & Claypool,
San Rafael, CA, February 2010.

[59] Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-kin Wong,
and Wang-chun Woo. Convolutional lstm network: A machine learning
approach for precipitation nowcasting. In Proceedings of the 28th Inter-
national Conference on Neural Information Processing Systems - Volume 1,
NIPS’15, page 802–810, 2015.

[60] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside
convolutional networks: Visualising image classification models and
saliency maps. CoRR, abs/1312.6034, 2014.

[61] Cees G. M. Snoek, Marcel Worring, and Arnold W. M. Smeulders. Early
versus late fusion in semantic video analysis. In Proceedings of the 13th
annual ACM international conference on Multimedia - MULTIMEDIA '05.
ACM Press, 2005.

[62] Xiaolin Song, Cuiling Lan, Wenjun Zeng, Junliang Xing, Xiaoyan Sun,
and Jingyu Yang. Temporal–spatial mapping for action recognition. IEEE
Transactions on Circuits and Systems for Video Technology, 30(3):748–759,
March 2020.

[63] Jessica Torres Soto, J. Weston Hughes, Pablo Amador Sanchez, Marco
Perez, David Ouyang, and Euan Ashley. Multimodal deep learning
enhances diagnostic precision in left ventricular hypertrophy. June 2021.

[64] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Mar-
tin A. Riedmiller. Striving for simplicity: The all convolutional net.
CoRR, abs/1412.6806, 2015.

61



Bibliography

[65] Robin H. Steinhorn. Neonatal pulmonary hypertension. Pediatric Critical
Care Medicine, 11:S79–S84, 2010.

[66] Alexandros Stergiou, Georgios Kapidis, Grigorios Kalliatakis, Christos
Chrysoulas, Ronald Poppe, and Remco Veltkamp. Class feature pyra-
mids for video explanation. In 2019 IEEE/CVF International Conference on
Computer Vision Workshop (ICCVW), pages 4255–4264, 2019.

[67] Alexandros Stergiou, Georgios Kapidis, Grigorios Kalliatakis, Christos
Chrysoulas, Remco Veltkamp, and Ronald Poppe. Saliency tubes: Visual
explanations for spatio-temporal convolutions. In 2019 IEEE International
Conference on Image Processing (ICIP), pages 1830–1834, 2019.

[68] Gregor Stiglic, Primoz Kocbek, Nino Fijacko, Marinka Zitnik, Katrien
Verbert, and Leona Cilar. Interpretability of machine learning-based
prediction models in healthcare. WIREs Data Mining and Knowledge
Discovery, 10(5), June 2020.

[69] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and
Manohar Paluri. Learning spatiotemporal features with 3d convolu-
tional networks. In 2015 IEEE International Conference on Computer Vision
(ICCV). IEEE, December 2015.

[70] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, and
Manohar Paluri. A closer look at spatiotemporal convolutions for action
recognition. pages 6450–6459, 06 2018.

[71] Tuomas Vainio, Teemu Mäkelä, Sauli Savolainen, and Marko Kangas-
niemi. Performance of a 3d convolutional neural network in the detec-
tion of hypoperfusion at CT pulmonary angiography in patients with
chronic pulmonary embolism: a feasibility study. European Radiology
Experimental, 5(1), September 2021.

[72] Lei Wang, Yangyang Xu, Jun Cheng, Haiying Xia, Jianqin Yin, and Jiaji
Wu. Human action recognition by learning spatio-temporal features
with deep neural networks. IEEE Access, 6:17913–17922, 2018.

[73] Saining Xie, Chen Sun, Jonathan Huang, Z. Tu, and Kevin Murphy.
Rethinking Spatiotemporal Feature Learning: Speed-Accuracy Trade-offs in
Video Classification: 15th European Conference, Munich, Germany, September
8-14, 2018, Proceedings, Part XV, pages 318–335. 09 2018.

[74] Matthew D. Zeiler and Rob Fergus. Visualizing and understanding
convolutional networks. In Computer Vision – ECCV 2014, pages 818–833.
Springer International Publishing, 2014.

62



Bibliography

[75] Jeffrey Zhang, Sravani Gajjala, Pulkit Agrawal, Geoffrey Tison, Laura
Hallock, Lauren Beussink, Mats Lassen, Eugene Fan, Mandar Aras,
ChaRandle Jordan, Kirsten Fleischmann, Michelle Melisko, Atif Qasim,
Sanjiv Shah, Ruzena Bajcsy, and Rahul Deo. Fully automated echocar-
diogram interpretation in clinical practice: Feasibility and diagnostic
accuracy. Circulation, 138:1623–1635, 10 2018.

[76] Jeffrey Zhang, Sravani Gajjala, Pulkit Agrawal, Geoffrey H. Tison,
Laura A. Hallock, Lauren Beussink-Nelson, Mats Christian Højbjerg
Lassen, Eugene Fan, Mandar A. Aras, ChaRandle Jordan, Kirsten E.
Fleischmann, Michelle E. Melisko, Atif Qasim, Alexei A. Efros, Sanjiv J.
Shah, Ruzena Bajcsy, and Rahul C. Deo. A computer vision pipeline for
automated determination of cardiac structure and function and detec-
tion of disease by two-dimensional echocardiography. arXiv: Computer
Vision and Pattern Recognition, 2017.
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