
ETH Library

Effective reinforcement ratio of RC
beams: Validation of modelling
assumptions with high-resolution
strain data

Journal Article

Author(s):
Galkovski, Tena; Mata Falcón, Jaime ; Kaufmann, Walter

Publication date:
2022-06

Permanent link:
https://doi.org/10.3929/ethz-b-000538266

Rights / license:
Creative Commons Attribution 4.0 International

Originally published in:
Structural Concrete 23(3), https://doi.org/10.1002/suco.202100739

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0001-8701-4410
https://doi.org/10.3929/ethz-b-000538266
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/suco.202100739
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


AR T I C L E

Effective reinforcement ratio of RC beams: Validation of
modelling assumptions with high-resolution strain data

Tena Galkovski | Jaime Mata-Falc�on | Walter Kaufmann

Institute of Structural Engineering, ETH Zurich, Zurich, Switzerland

Correspondence
Tena Galkovski, Stefano-Franscini-Platz
5, 8093 Zurich, Switzerland.
Email: galkovski@ibk.baug.ethz.ch

[Correction added on 20 April 2022, after
first online publication: CSAL funding
statement has been added.]

Abstract

Concrete tensile stresses influence the cracking behaviour and the stiffness of

reinforced concrete (RC) members. Most design codes account for this tension

stiffening effect using an effective reinforcement ratio. Although this ratio has a

significant influence on the design of RC structures, its quantification is contro-

versial in many cases, and typically relies on empirical geometry-based expres-

sions. One main reason for this knowledge gap is that the area of concrete in

tension can only be verified indirectly, for example, through crack widths and

spacings and using a suitable mechanical model. This indirect validation is sub-

ject to considerable uncertainty as it depends on parameters that scatter

(e.g., bond stresses and the concrete tensile strength), and further assumptions

relating internal stresses to the applied loads are required. This article outlines
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how refined measurements of the reinforcing steel strains and the concrete defor-

mations in the compression zone, combining distributed fibre optic sensing

(DFOS) and digital image correlation (DIC), can be used in order to obtain a

more reliable quantification of the parameters affecting tension stiffening and

hence, the effective reinforcement ratio. Selected models are validated against

experimental data of an RC beam tested under four-point bending, underlining

the potential of DFOS and DIC as valuable tools for a better understanding of RC

structures and the enhancement of mechanical models.

KEYWORD S

compatible stress field method, cross-sectional analysis, digital image correlation, distributed
fibre optical sensors, effective area of concrete in tension, Euler-Bernoulli beam theory,
plane strain assumption, pure bending, tension stiffening

1 | INTRODUCTION

The concrete tensile strength fct is typically neglected in
modern structural concrete design in the ultimate limit
state (ULS) because it is by an order of magnitude smaller
than the concrete compressive strength fc, scatters consid-
erably, and concrete tensile failure is brittle. Moreover,
relying on it might be unsafe because tensile stresses in
the range of the concrete tensile strength may be present
before the application of external load due to initial
stresses caused by internal and external restraints, which
makes the cracking load hard to predict. Nevertheless, the
concrete between the cracks is subjected to tension due to
the bond between reinforcement and concrete. This influ-
ences the global structural behavior and is essential for
serviceability and deformation capacity aspects.1–3

1.1 | RC members in tension

The complex interaction of concrete and reinforcement—
with high local stress peaks at the ribs of the deformed

bars—is commonly modelled by introducing bond shear
stresses τb, uniformly distributed along the nominal
perimeter π�Ø of the reinforcing bar, where Ø = nominal
bar diameter, whose magnitude is assumed to depend on
the slip, that is, the relative displacement between con-
crete and reinforcement, or on the steel stresses.4–7 Typi-
cally, the behaviour is modelled using a “crack element”,
that is, a reinforced concrete (RC) element between two
cracks, as illustrated in Figure 1a, assuming that concrete
cross-sections remain plane.

For instance, the Tension Chord model (TCM) assumes
a simplified stepped, rigid-perfectly plastic bond shear stress-
slip relationship, where the bond stresses depend on the steel
stresses σs and the yield strength fsy rather than the slip and
are linked to the concrete tensile strength fct (Figure 1e)

6:

τb ¼
τb0 ¼ 2f ct forσs ≤ f sy
τb1 ¼ f ct forσs > f sy

(
ð1Þ

The steel strains εs and steel stresses are highest at the
cracks and decrease with distance (Figure 1b,c), whereas

(a)

s r fsy

�c�s

≤�fct

� =fb1 ct
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�sm

Actual behaviour

TCM

� =2fb0 ct

�s

Ac,eff

τb

�s �s

(b) (c) (d) (e)

x

As FIGURE 1 Reinforced

concrete under pure tension:

(a) crack element bounded by

two cracks with crack spacing sr
and effective area of concrete in

tension Ac,eff; (b) steel strain

distribution εs; (c) steel stress
distribution σs; (d) concrete
tensile stress distribution σc, and
(e) bond stress distribution τb for
presumed actual behaviour

(dashed lines) and simplified

according to the tension chord

model (TCM) (solid lines)
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concrete tensile stresses σc are zero at the cracks and
increase with distance (Figure 1d). For the maximum
theoretical crack spacing, the concrete area Ac,eff in the
cross-section at the center between two cracks is sub-
jected to fct. Another crack may form at this location,
reducing the crack spacing to its theoretical minimum.

Since the mean reinforcement stresses are lower than
the stresses σs at the cracks, the bonded bar, often referred
to as tension chord, behaves stiffer than the bare bar,
whereas the yield strength and the ultimate strength fsu
remain unchanged since at the cracks, concrete stresses
are zero. Hence, the mean strains εsm of the tension chord
at failure are considerably smaller than those of the bare
bar, even for high reinforcement ratios.8 Neglecting these
effects, known as tension stiffening, is unsafe for ductility
assessments in the ULS design, as the deformation capac-
ity is overestimated. On the other hand, reduced mean
reinforcement strains lead to smaller deformations, deflec-
tions and crack widths. Serviceability Limit State (SLS)
verifications are thus beneficially affected by tension stiff-
ening. Therefore, its consideration results in a safer,
leaner, more efficient, and ultimately more sustainable
design.

1.2 | Modelling of tension stiffening

Tension stiffening can be accounted for in design glob-
ally, by adopting suitably adjusted load-deformation rela-
tionships relating, for example, the applied tensile load to
the average elongation of a tension chord, or the applied
bending moments to the average curvature of a beam,
respectively. Such global load-deformation relationships
can be derived numerically by considering the local bond
behaviour, defined by a bond shear stress-slip relation-
ship, relating nominal bond shear stresses τb along the
perimeter of the reinforcing bar to the slip between steel
and concrete, as already mentioned above. Assuming a
linear behaviour of concrete and reinforcement, this
results in the second-order ordinary differential equation
(SODE) of slipping bond, first formulated by Kuuskoski9

and solved by Rehm,10 and further outlined in Section 2.
Depending on the assumed bond shear stress-slip rela-
tionship, solving this SODE to obtain global response pre-
dictions may be unpractical, computationally inefficient,
and questionable in the light of the uncertainties and the
drastic simplification of the interfacial behaviour.11 This
justifies further simplifications, which allow for an ana-
lytical solution of the problem (5,6,12–14). Based on these
assumptions, closed-form expressions for the global
response are obtained. Such expressions, relating (maxi-
mum) reinforcement stresses at the cracks to mean
strains, can also be obtained by semi-empirical

modifications of the stiffness of the bare reinforcement
and are commonly used in design to determine crack
widths and deflections.1–3 Other approaches to model the
tension stiffening behaviour of RC members exist. A
comprehensive overview is given by Borosny�oi and
Bal�asz.7

1.3 | Problem statement

Tension stiffening in RC beams depends highly on the
effective reinforcement ratio ρeff: the ratio between the
cross-sectional area of the reinforcement As and the effec-
tive area of concrete in tension Ac,eff. Determining Ac,eff is
straightforward in the axisymmetric case illustrated in
Figure 1: if the reinforcement ratio suffices to generate
through cracks before yielding, it corresponds to the con-
crete cross-section Ac. However, its quantification is less
obvious and even controversial in more general situa-
tions. Even for the simple case of pure bending, structural
design codes merely provide empirical rules based on
geometrical parameters.1,2

In a cross-sectional analysis (CSA), it is standard prac-
tice to assume that plane sections remain plane and nor-
mal to the beam axis x according to the Euler-Bernoulli
beam theory. To account for tension stiffening, often a
tension chord with a constant cross-section Ac,eff is
assumed, in which the resultant of the concrete tensile
stresses Fct acts at the centroid of the reinforcement. In
pure bending, this results in the strains, stresses, and
forces in the fully cracked cross-section II and the cross-
section I at the center between two cracks shown in
Figure 2a, illustrating half a crack element. The inner
lever arm z and, consequently, the tensile and compres-
sive force resultants are constant in x. In cross-section I,
the concrete tensile force Fct is highest, and the concrete
is subjected to homogeneous tensile stresses fct over the
predetermined area Ac,eff. This model is a simplification
since stress redistributions between cracks may occur
(Figure 2b). The inner lever arm and the force resultants
generally vary between the cracks, and the centroid of
the concrete tensile stress resultant Fct generally does not
coincide with that of the reinforcement.12,15

1.4 | Overview of the present study

This study uses advanced measurement technologies to
investigate these unknowns: distributed fibre optical
sensing (DFOS) and digital image correlation (DIC) have
emerged as suitable tools to investigate the local struc-
tural behaviour of RC elements.16–20 Three approaches to
estimate tension stiffening-related properties directly
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from DFOS and DIC measurements are presented and
applied to a highly reinforced concrete beam tested in
four-point bending. Selected models for the effective rein-
forcement ratio and the cracking behaviour for pure
bending are validated against the experimental data. The
presented approaches build on a first basic concept and
preliminary results published by Galkovski et al.21 While
they are not intended for application in design, the
approaches are helpful to investigate the underlying
physical mechanisms to reveal inconsistencies and limi-
tations of existing models and might ultimately lead to
more refined and mechanically consistent models.

2 | OVERVIEW OF
CHARACTERIZATION METHODS
FOR TENSION STIFFENING AND
CRACKING BEHAVIOUR

Tension stiffening can be described by several equivalent
(sets of) parameters, for example, (i) the concrete tensile
force, (ii) mean bond stresses and the crack spacing, and
(iii) mean and maximum steel and concrete strains. Any
variation of the steel stresses corresponds to bond shear
stresses according to the equilibrium condition of a differ-
ential reinforcing bar element:

dσs
dx

¼ 4τb xð Þ
Ø

ð2Þ

Combined with the assumption of linear behaviour of
concrete and reinforcement, Equation (2) forms the basis
for the SODE of slipping bond.

In a beam, the tension chord force F = Fs + Fct typi-
cally varies if shear forces V are acting, resulting in a

variable bending moment M = F�z. However, the tension
chord force may vary even if the bending moment is con-
stant, that is, V = 0, since the inner lever arm z is not
necessarily constant:

V ¼ dM
dx

¼ d F � zð Þ
dx

¼ dF
dx

� zþ dz
dx

�F ð3Þ

V ¼ 0 ! dF
dx

� z¼�dz
dx

�F ð4Þ

Accordingly, a decrease of the steel strains, causing a
reduction of Fs, need not imply an increase of Fct, and
vice versa. Models accounting for strain changes due to
tension stiffening alone are in the following referred to as
tension chord-based models, whereas equilibrium-based
models additionally account for the change in z and
F according to Equations (3) and (4).

Rather than Ac,eff itself, its effects on design values are
relevant to structural engineers. Therefore, the corres-
ponding models to assess crack spacings, deformations (via
mean steel strains) and crack widths are also introduced
below. The study is limited to the case of short-term loading,
neglecting the influence of shrinkage and creep.

2.1 | Tension chord-based models

Tension chord-based models assume the tensile force to
be carried by an equivalent chord located at the depth of
the reinforcement, in which both reinforcing steel and
concrete tensile forces act (Figure 2a). Four models, all of
them assuming a simplified bond shear stress distribu-
tion, are introduced below: The TCM (Section 2.1.1),
which links the stress and the deformation states

z
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(b)

(a)

,s IF
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FIGURE 2 Half a crack element with centroids of force resultants (dashed lines) and strain and stress distributions in the cross-section at

the center between cracks (I) and at the cracked cross-section (II): (a) as assumed by tension chord-based models and (b) for real behaviour
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mechanically consistently; Eurocode-2 and fib Model
Code 2010 (Section 2.1.2), whose formulations include
empirical factors accounting for the concrete cover influ-
ence; and the Compatible Stress Field Method (CSFM)
(Section 2.1.3), which is based on the TCM, but adopts a
generalized concept suitable to assess Ac,eff even in dis-
continuity regions.

2.1.1 | Tension chord model for pure
bending (Burns)

Following a proposal by Marti,22 Burns presented an
approach to assess the reinforcement ratio ρeff = As/Ac,eff

of an equivalent tension chord (Figure 2a) for pure bend-
ing.23 Accordingly, ρeff and hence, the effective area of
concrete in tension Ac,eff, can be determined by setting
the steel stresses σsr at the crack for the cracking
moment Mcr:

χ¼ σsr=Es

d� xc
¼Mcr

EIII
! σsr ¼Mcr d�xcð ÞEs

EIII
ð5Þ

where χ = curvature; Es=Young's modulus of reinforce-
ment; xc=compression zone depth determined from a
fully cracked CSA; and EIII=fully cracked elastic cross-
sectional stiffness, equal to the steel stresses at the crack
in an equivalent tension chord at crack formation:

ρeff �Ac �σsr ¼Ac 1�ρeff þαe �ρeffð Þ! σsr

¼ f ct
1
ρeff

þαe�1

� �
ð6Þ

where Ac = gross cross-sectional area of concrete; αe=Es/
Ec modular ratio with Ec=Young's modulus of concrete,
resulting in the expression:

ρeff ¼
Mcr d�xcð ÞEs

f ct �EIII
þ1�αe

� ��1

¼ As

Ac,eff
¼ As

hc,eff �b ð7Þ

where hc,eff = height of the concrete area in tension
(introduced for comparison with the codes [Section 2.1.2])
and b = cross-sectional width.

Using ρeff, the TCM (or any other model based on the
reinforcement ratio) can be applied analogously as for
pure tension. Accordingly, the maximum theoretical
crack spacing is given by:

sr0 ¼Ø � f ct 1�ρeffð Þ
2 �τb0 �ρeff

¼Ø 1�ρeffð Þ
4 �ρeff

ð8Þ

This corresponds to twice the distance to cause concrete
tensile stresses fct over Ac,eff. Another crack may form at
the center of two cracks spaced at sr0. The TCM accounts
for the corresponding uncertainty by introducing the
crack spacing parameter λ = [0.5, 1.0], resulting in a
mean crack spacing srm:

srm ¼ λ � sr0 ð9Þ

The crack width wcr, corresponding to twice the slip
between concrete and reinforcement at the crack, is
determined as the integral of the difference between the
mean steel and concrete strains (εsm – εcm) over the crack
spacing:

wcr ¼ srm � εsm� εcmð Þ ð10Þ

For a bilinear stress–strain relationship of the bare
reinforcement, the mean strains according to Reference
24 are given by:

εsm ¼ σs
Es

�τb0srm
EsØ

for σs ≤ f sy

εsm ¼
σs� f sy

� �2
Ø

4Eshτb1srm
� 1�Eshτb0

Esτb1

� �
þ

σs� f sy
� �

Es
� τb0
τb1

þ εsy�τb0srm
EsØ

� �

for f sy ≤ σs ≤ f syþ
2τb1srm

Ø
εsm

εsm ¼
σs� f sy

� �
Esh

þ εsy�τb1srm
EshØ

� �

for f syþ
2τb1srm
EsØ

� �
≤ σs ≤ f su

ð11Þ

where fsu = ultimate strength and Esh = the strain hard-
ening modulus of the reinforcement, respectively. Using
Equation 11, the TCM is applicable in the plastic range
and suitable for deformation capacity investigations.

2.1.2 | EN 1992-1-1 and fib Model Code 2010

Eurocode-2, that is, EN1992-1-12 (EC) and the fib Model
Code 20101 (fib) provide semi-empirical, purely geometri-
cal approaches for calculating crack widths, in which the
crack spacing is dependent not only on the ratio Ø/ρeff
but also on the concrete cover. Hence, the mean steel
strains are not linked directly mechanically to the crack
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spacing as in the TCM. The height hc,eff of the effective
concrete area in tension for beams, slabs and members in
tension, having a total height h and a static depth d, is
determined by:

hc,eff ¼min 2:5 h�dð Þ, h� xc
3

,
h
2

� 	
ð12Þ

For the crack spacing, the mean strains, and the crack
widths, the readers are referenced to References 1,2.

2.1.3 | Compatible stress field method

This section introduces a concept to determine the effective
concrete area in tension Ac,eff for any element type, rein-
forcement configuration and loading. The approach is
mechanically based but complemented by semi-empirical
geometrical conditions to ensure generality. It is suitable for
structural concrete elements, including static and/or geo-
metric discontinuities and was numerically implemented in
the Compatible Stress Field Method (CSFM).25 The CSFM
is a simplified nonlinear finite element-based continuous
stress field analysis suitable for design. Simple uniaxial con-
stitutive laws provided in standards for concrete and rein-
forcement are implemented, neglecting the concrete tensile
strength except for tension stiffening and anchorage verifi-
cations of the reinforcing bars.

Tension stiffening, crack spacing, average reinforce-
ment strains, and crack widths of sufficiently reinforced
regions are determined using the TCM. To this end, the
bilinear steel constitutive law (Equation 11) is adjusted

for each reinforcing bar to account for tension stiffening
(Figure 3a). Ac,eff is determined following four steps using
the numerical methods illustrated in Figure 3b and
described in the following.

Step (i) determines by equilibrium the concrete area
that can be activated at fct in the extreme case of σs = fsu
for each reinforcing bar (Figure 3b). Its diameter Øc,eff is
given by:

Øc,eff ¼Ø
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f su=f ct

q
ð13Þ

In step (ii), symmetry conditions in y- and z-directions
are applied, illustrated for reinforcing bars 3 and 4 in
Figure 3b. These semi-empirical conditions are based on
the findings of Frantz and Breen,26 who found crack wid-
ths in beam webs to be proportional to the concrete cover
of axial web reinforcement but independent of the total
web width. They proposed to only account for twice the
distance of the bar's centroid to the concrete surface to
act in tension. In step (iii), intersecting concrete areas of
adjacent reinforcing bars are attributed to the closest bar.

The resulting effective concrete area in tension of
each bar after the first iteration is based on geometric
considerations. Hence, this could lead to mechanical
inconsistencies between close points: crack widths of
neighbouring bars might differ significantly. Therefore,
the condition of having identical crack spacing for proxi-
mate parallel reinforcing bars (proximity: spaced by
≤100 mm by default) is imposed in the last step (iv). This
condition corresponds to assigning bars in proximity an
identical ratio of Ø(1 � ρeff)/ρeff ≈ Ø/ρeff (see

(a) (b)

FIGURE 3 Implementation of tension stiffening in CSFM: (a) implemented increased stiffness of the bonded bar; (b) determination of

Ac,eff (stabilized cracking): (i) maximum concrete area that can be activated per bar; (ii) local symmetry condition; (iii) global geometry

condition and resultant effective concrete areas. Note: Adjustment of effective concrete areas to ensure equal crack spacing of proximate

bars (step (iv)) not illustrated

1358 GALKOVSKI ET AL.



Equation (8)). The effective concrete area in tension for
each bar i Ac,eff,i with diameter Øi, in the proximity group
with another j � 1 bars, is thus given by:

Ac,eff ,i ¼Ac,eff,max
Øi

Ømax
¼ Ac,eff ,totP j

0 Øj=Ømax
� � Øi

Ømax

¼Ac,eff,tot
ØiP j
0Øj

ð14Þ

where Ac,eff,max = effective concrete area in tension of the
largest diameter bar in the proximity, Ømax = diameter of
this bar, and Ac,eff,tot = total concrete area in tension of
the proximity group. More details on CSFM can be found
in Reference 25.

2.2 | Equilibrium-based approach
without direct assessment of ρeff (DC)

Several researchers proposed models for the postcracking
behaviour of flexural members based on equilibrium
without relying on an estimation of Ac,eff.

12,15,27–29 Based
on these works, Figure 4 proposes a model based on
deformation compatibility, hereafter referred to as DC.

Bond is modelled according to the TCM, and linear
behaviour of concrete in tension is assumed. The outer-
most concrete compressive fibre's strains are assumed to
decrease linearly between cross-sections II and I. Under
the cracking moment M = Mcr (Figure 4a), the concrete
strains vary linearly in cross-section I, reaching a maxi-
mum of fct for the maximum crack spacing sr0, and the
steel strains are equal to the concrete strains at the depth
of the reinforcement. In the cracked cross-section II,

concrete compressive strains are assumed to vary linearly
over the depth but other than assumed in standard CSA,
they are not planar with the steel strains. Instead, a linear
variation of the axial displacements ux—corresponding to
the integral of axial strains between cross-sections I and
II—over the depth of the cross-section is imposed,
thereby ensuring plane sections remaining plane on aver-
age over a crack element27.

Equation (9) applies for the mean crack spacing. With
a bilinear stress–strain relationship for the bare reinforce-
ment, the steel stresses σs,I and σs,II in cross-sections
I and II, respectively, are related by:

σs,I ¼ σs,II�2τb0λsr0
Ø

for σs,II ≤ f sy

σs,I ¼ 2λsr0τb0
Ø

þ 1�τb0
τb1

� �
σs,II� f sy

� �

for f sy ≤ σs,II ≤ f syþ
2τb1λsr0

Ø

σs,I ¼ σs,II�2τb1λsr0
Ø

for f syþ
2τb1λsr0

Ø
≤ σs,II

ð15Þ

In a first step, the crack spacing is determined for
M = Mcr (Figure 4a) by formulating axial equilibrium in
cross-sections I and II, imposing the assumed strain
distributions, and the linear distribution of the axial
displacements ux over the depth of the cross-section.
With ux,c and ux,s as the axial deformations of the
outermost concrete fiber in compression and the rein-
forcement, respectively and the mean strains εsm given by
Equation (11), it follows:

ux,c
xII

¼ ux,s
d� xII

, εcc,IIþ εcc,Ið Þ
2 �xII ¼ εsm

d� xIIð Þ ð16Þ

FIGURE 4 Equilibrium-based approach: Planar axial displacement ux with assumed strain distributions for the concrete compression

zone εcc, the tension zone εct and the reinforcing steel εs in the cracked cross-section II and the cross-section at the center between two

cracks I, as well as the linear variation of the steel strains and the maximum concrete compressive strain in the top fibre between both cross-

sections for (a) the cracking moment and (b) higher load
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The maximum crack spacing sr0 and the stresses and
strains throughout the crack element are obtained by
solving the system of equations.

When applying this model for increasing loads,
keeping the crack spacing constant, concrete strains
above fct/Ec might result. This has been solved either
by (i) allowing concrete stresses above fct,

15,28,29 or
(ii) considering a bilinear strain distribution in cross-
section I.12 This work assumes that concrete strains are
fct/Ec over a height of hct and then decrease linearly, that
is, they are decoupled from the steel strains, as shown in
Figure 4b.

With the assessed crack spacing and strains, the crack
widths are determined with Equation (10). Lastly, an
equivalent ρeff can be defined with hc,eff = Fct/(b�fct) to
facilitate the comparison with the tension chord-based
models, which assume an equivalent rectangular stress
block with tensile stresses fct in cross-section I.

3 | DIRECT QUANTIFICATION OF
TENSION STIFFENING USING
FIBRE OPTIC AND DIGITAL IMAGE
CORRELATION MEASUREMENTS

Advanced strain measurement techniques allow for
rethinking our understanding of tension stiffening and its
determination since new possibilities arise to assess, for
example, (i) the concrete tensile force, (ii) mean bond
stresses and the crack spacing, and (iii) mean and maxi-
mum steel and concrete strains. This section presents
three possible approaches to quantify tension stiffening
using distributed fibre optic sensing (DFOS) and digital
image correlation (DIC).

3.1 | Advanced measurement
technologies

The utilised measurement technologies are briefly pres-
ented before introducing the direct quantification
methods for tension stiffening.

3.1.1 | Use of DFOS data

Instrumenting reinforcing bars with DFOS provides the
steel strain distribution, and hence, maximum, mini-
mum, and mean steel strains. Through the constitutive
law, steel stresses can be determined. Local strain max-
ima characterize cracked cross-sections and reveal the
real crack spacing sr. Furthermore, the slip can be deter-
mined by integrating the strains from the local minima

between two cracks (cross-section I) to the cracked cross-
section II, neglecting or approximating the minor con-
crete strains. The bond stresses at a specific location can
be determined with Equation (2), that is, by equilibrium.

3.1.2 | Use of digital image correlation data

A DIC system provides full-field information of the dis-
placements over an area of interest (AOI). The strain data
of a concrete specimen's surface can be used to assess the
crack behaviour (location, width and slip of cracks), for
example, by using the automated crack detection and
measurement (ACDM) approach.30,31 Moreover, concrete
strains on the surface can be calculated from the mea-
sured displacements. To this end, a high-resolution sys-
tem is needed to generate meaningful data. While it is
possible to measure the crack behaviour of large-scale
experiments with conventional DIC systems,32 the mea-
surement of concrete compressive strains requires a high
magnification to reach sufficient accuracy.16 This cur-
rently limits the field of view for sufficiently accurate
concrete compressive strain measurements with 30 MPx
cameras to the order of 300 mm width.

3.2 | Direct assessment of the concrete
tensile force

This section presents two approaches to measure the ten-
sile force carried by the concrete between cracks and esti-
mate Ac,eff and ρeff based on this by assuming a
rectangular tensile stress distribution of fct. The first
approach exclusively uses DFOS on reinforcing bars, the
second also includes the surface concrete strain measure-
ments from DIC.

3.2.1 | Simplified DFOS approach (FO-F)

The most straightforward approach to evaluate the con-
crete contribution between the cracks was proposed in
Reference 21. The change in the steel force from the
crack (cross-section II) to the center between cracks
(cross-section I) is determined from the DFOS steel strain
distribution. By equilibrium, this force change is attrib-
uted to the concrete tensile force:

Fct ¼
Z xI

xII

τb xð Þ �π �Øð Þdx¼ π �Ø2

4

Z xI

xII

dσs xð Þ
dx

dx

¼ π �Ø2

4
σs,II�σs,I½ � ð17Þ
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Like in tension chord-based models, the inner lever arm
of forces and the total tensile and compressive force
resultants are assumed to be constant.

3.2.2 | Combined fibre optical and digital
image correlation-based approach

As already stated (see Figure 2 and Equations 3–4), even in
the absence of shear forces, stress redistributions leading to
variations of the internal lever arm z also cause steel stress
variations without necessarily activating concrete in ten-
sion. Tension chord-based models neglect these variations
and cannot capture the source of the steel strain change.
This section presents a method, referred to as FODIC, to
characterize tension stiffening from DFOS and DIC
accounting for such redistributions. The approach com-
bines concrete compressive strains obtained from DIC and
steel strains from DFOS to determine Fct.

Longitudinal concrete compressive strains obtained
from DIC and steel strains from DFOS in cross-sections I
and II (Figure 2b) are used. With appropriate constitutive
laws, concrete and steel stresses and forces are derived.
Formulating equilibrium in cross-section I, the tensile
force Fct and its position can be calculated:

FctþFsþFcc ¼ 0 ð18Þ

M¼Fct � zctþFs �d�Fcc � zcc ¼Fcc � z ð19Þ

where zcc and zct are the levers of the compressive and
tensile concrete forces (see Figure 2). In cross-section II,
all forces and their centroids are known from DFOS, DIC
and the constitutive laws and Fct is assumed to be zero.
The equilibrium equations still need to be fulfilled and
can be used for validation.

3.3 | Determination of tension stiffening
with DFOS (FO-s)

The DFOS steel measurements can be used to obtain
(i) mean bond stresses and the crack spacing, or
(ii) mean and maximum steel and concrete strains
(Section 3.1.1). The effective reinforcement ratio can then
be determined by either the data set (i):

sr ¼Ø � f ct � 1�ρeffð Þ
2τb �ρeff

ð20Þ
or (ii):

εsm ¼ σs
Es

� f ct � 1�ρeffð Þ
2 �ρef f �Es

ð21Þ

This method still assumes a constant total tensile force,
that is, neglects variations of the internal lever arm, since
the equilibrium equations are derived on an equivalent
tension chord.

4 | VERIFICATION OF THE
METHODS WITH
EXPERIMENTAL DATA

The direct quantification methods are applied to experi-
mental data and compared with the results from the pre-
dictive approaches introduced in Section 2. Mean material
parameters were used for modelling. Unless stated differ-
ently, the crack spacing parameter λ (Equation 9) is set to
0.67, which reasonably represents the average cracking
behaviour.25

For Burns and DC, the compression zone was mod-
elled linearly elastic until εc = 1 ‰, and for higher strains
according to Reference 12:

σc ¼ f cm 1� εcu� εc
εcu

� �λc
" #

λc ¼ 1
0:1þ f cm=400 MPa

ð22Þ

where εcu = ultimate concrete strain. For fib and the
FODIC approach, equations (7.2–10) from Reference 1
and for EC, equation (3.14) from Reference 2 were used.

4.1 | Description of the experimental
program

The approaches are presented on specimen Nn, a beam
tested in four-point bending as part of a larger experi-
mental campaign.33 Figure 5a presents the test setup
and the geometry, Figure 5b the reinforcement layout,
and Figure 5c the cross-sectional geometry and the
instrumentation of both longitudinal bars. Figure 5d
shows the loading history, which was divided for the
analysis into seven 5 kNm load steps LS1–LS7 and the
ultimate load of 37.3 kNm at LS8. The mean concrete
and steel material properties are summarized in Table 1;
note that the tensile strength was determined through
double-punch testing.34 The main reinforcement con-
sisted of two bars with a nominal diameter Ø18 mm,
made of quenched and self-tempered (QST) reinforcing
steel, as widely used today. The shear spans were
reinforced with stirrups 2x5Ø10@100 mm. The constant
bending zone excluding the supports was investigated
(x = 700–1300 mm).
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Due to the different microstructure of the more duc-
tile ferritic-perlitic core and the higher strength martens-
itic outer layer,35 QST reinforcing bars exhibit a
nonlinear behaviour with a distinct kink at the yield
strain and strength of the core (ε'sy and f'sy, respectively),
before reaching the yield plateau, as illustrated in
Figure 5e. This refined steel material law, including the
kink, was used for all methods, that is, Equation (11) was
adapted, except for the CSFM approach where a bilinear
behaviour is assumed.

The main reinforcement was instrumented with two
fibre optical sensors (FOS), following the best practice
recommendations given in References 36,37. Bend-
insensitive polyimide-coated single-mode fibers (type
SM1250B3[9.8/125]P) were glued with epoxy inside

1 � 1 mm grooves aligned horizontally (FOS1a and
FOS1b) and vertically (FOS2a and FOS2b) (see Figure 5c).
The average data of both FOS of each bar are designated
as FOS1 and FOS2, respectively. The DFOS data was
acquired with the ODiSI-6104 supplied by Luna Innova-
tions Incorporated with a resolution of 0.65 mm and
1.67 Hz.38 The steel strains were postprocessed by
increasing the gauge spacing to 3.25 mm and applying a
moving average filter over five virtual gauges (16.25 mm),
which corresponds approximately to the rib spacing, to
mitigate strain peaks as an artefact due to discontinuities
caused by the ribs.36,37

One 3D-DIC system composed of two 28.8 MPx Allied
Vision Prosilica GT6600 cameras with Quioptic Rodagon
80 mm lenses was used in the back to measure concrete
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FIGURE 5 Specimen Nn: (a) geometry and test setup with dimensions in mm; (b) reinforcement layout; (c) geometry of the cross-

section and instrumentation with fibre optical sensors (FOS) with dimensions in mm; (d) loading history against total deflections with load

steps LS1 to LS8 and (e) detail of the stress–strain relationship of the QST reinforcing bars near yielding, with a yield strain and stress of the

core (ε'sy, f'sy) significantly smaller than the (total) yield strain and stress (εsy, fsy)

TABLE 1 Material properties and specifications for specimen Nn

Material properties

Concrete Age [d]

Mean cylinder
compressive
strength f cm [MPa]

Young's modulus
Ecm [GPa]

Mean tensile
strength fctm [MPa]

Maximum
aggregate size
Dmax [mm]

Concrete cover
cnom [mm]

27 35.5 30.4 2.8 16 33

Hot-rolled
steel B500B
(2Ø18mm)

Secant
modulus
Es [GPa]

Yield strength f sy
(static/
dynamic) [MPa]

Tensile strength f su
(static/
dynamic) [MPa]

Yield strain
of the core
ε0sy [‰]

Yield
strain
εsy
[‰]

Hardening strain
εsh [‰]

Effective bar
diameter
Øeff [mm]

197.2 523/548 594/631 2.6 3.3 21.1 17.9
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strains at a high resolution. The baseline was 350 mm
and the stereo angle 20�, which resulted in an AOI of
200 � 150 mm (Figure 5a) and an average scale of
0.03 mm/px. The average speckle size was 0.18 mm. The
correlation was carried out with the software VIC-3D
(Correlated Solutions inc.23) using a subset size of 25 px,
a step size of 8 px, and a strain filter size of 9.

A second 3D-DIC system tracked the displacements
and crack widths of the entire front, which was speckled
manually (speckle size: 2.0 mm). This system was com-
posed of two 12.3 MPx Flir Grasshopper 3 cameras with
Quioptic MeVis 25 mm lenses, and a baseline of
1100 mm, which resulted in an average scale of 0.5 mm/
px. For the correlation, a subset size of 21 px, step size of
6 px, and a strain filter size of 9 were used.

4.2 | Direct quantification methods

Figure 6 presents the results of approach FO-F for the load
step LS5. The cracks on the front shown in Figure 6a were
determined using ACDM; an additional crack, visible in
the measurements of FOS1a,b in Figure 6b, opened at
about x = 1050 mm only at the back. The vertically
aligned FOS2a,b reveal pronounced local bending at the
cracks with relative differences in the strains of up to 40%
(Figure 6b); FOS2b even measured smaller strains at the
crack than between two cracks. Their average (denoted by
FOS2) does not result in equal steel strains at every crack
for LS5, and neither the maxima (FOS2a) nor the minima
(FOS2b) are the same at all cracks. The pronounced differ-
ence between FOS2a and FOS2b near cracks shows that the
beam curvature localised at the cracks. The differences in
the observed peak strains indicate that curvature
localisation varied, for example, due to different crack
spacings, and caused the maximum local strains (FOS2a)
to exceed the yield strain to a different degree at the vari-
ous cracks. Determining mean steel stresses based on the
measurements obtained by FOS2 is thus challenging.

On the other hand, the average strain of the horizon-
tally aligned sensors FOS1 results in similar strain levels
at each crack. FOS1a and FOS1b indicate some bending as
well. This is either due to a slight misalignment, that is,
not perfectly horizontal placement, or minor biaxial
bending of the bar.

Using the mean stresses obtained from FOS1 and
FOS2, respectively, bond shear stresses and the distribu-
tion of Fct and hct (Figure 6c and d) are obtained
according to the FO-F approach. For FOS2, obviously
wrong non-zero values of Fct at the cracks result because
steel stresses at the cracks differ strongly. Contrary, the
method worked for FOS1, as the bar's midplane did not
yield yet.

For the FODIC approach, the high-resolution 3D-DIC
back system was used. Figure 7a shows the strains in x-
direction εx for LS5 and the cracks detected by ACDM.
The concrete strains in Cross-sections I and II were aver-
aged over a width dx = 16 mm, corresponding to the
maximum aggregate size. From these strains, concrete
stresses were determined using the fib constitutive law
shown in Figure 7e. The strain data of FOS1 were used to
determine the reinforcing bar stresses and forces. The
resulting strains and stresses in I and II for LS1-LS8
(Figure 7b) are plausible: they (i) increase with the
applied load, (ii) are smaller in I than in II, and (iii) are
of reasonable magnitude. Notably, the crack on the left of
cross-section I was governing, and the concrete crushing
failure probably caused high strains in I at LS8.
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Figure 7c compares the measured strains to those
modelled by a CSA according to fib with and without the
kink at f'sy. The modelled strains were slightly smaller
than the measured ones for higher loads, and the onset of
yielding was not well predicted.

Figure 7c shows the strains along the horizontal
section cc, revealing a pronounced strain localisation in
the cross-section II, with peak values exceeding 6‰.
These compressive strains are significantly more concen-
trated in the cracked cross-section and much higher than
assumed in existing models.12,15,28,29

In Figure 7f,g, the derived forces are shown for LS1-8.
It can be seen that in cross-section II, equilibrium is not
fulfilled: the magnitude of the compression resultant Fcc
significantly exceeds the tensile force Fs (Figure 7g). Fur-
thermore, in some load stages, the centroid of the

concrete tensile force Fct has to be located in the com-
pression zone to satisfy equilibrium; note that Fct and its
centroid are sensitive to the magnitude of Fcc as well as
the concrete stress distribution. Therefore, the results
need to be critically questioned.

4.3 | Results and discussion

While the FODIC approach appears promising, it is not
very straightforward. Using a conventional stress–strain
relationship for concrete in compression (e.g., according
to fib), derived from tests where average strains over a
sample height of 300 mm are measured, is questionable
not only in view of the results obtained here, but it is
well-known that deformations localise over much shorter
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compressive fracture lengths.39–42 Furthermore, as illus-
trated in Figure 8, the choice of the representative cross-
sections is challenging: cracks are neither straight, nor do
they cross the bars at the same locations as they appear on
the faces of the specimen (Figure 8a). To make things worse,
the governing crack split close to the back face (Figure 8b),
causing local compression in the tensile zone (as seen at
x = 930 mm in Figure 7a) close to the uncracked Cross-
section I, which thus may be affected. On the other hand,
however, the fibre-optic sensors (e.g., FOS1, Figure 6b) sug-
gest that this cross-section was chosen correctly. In conclu-
sion, the FODIC approach requires further research, and its
results are excluded from the following discussion, which
focuses on the other methods, that is, the tension-chord
based predictive approaches by Burns (Section 2.1.1), EC
and fib (Section 2.1.2), and CSFM (Section 2.1.3), the
equilibrium-based predictive DC model (Section 2.2), as well
as the direct quantification methods, FO-F (Section 3.2.1)
and FO-s (Section 3.3).

Figure 9a,b compare the heights of the predicted
concrete areas in tension and the effective reinforce-
ment ratios, respectively, for the load steps LS5 (light
grey) and LS7 (dark grey). The approaches FO-s and
FO-F provide similar results, whereas all predictive
approaches determine a higher hc,eff. Methods DC and
CSFM predict the highest hc,eff and, consequently, the
lowest ρeff (2.5 and 3%). This suggests that a much
smaller area of concrete is activated in tension in reality
than predicted.

The values used for Ac,eff and ρeff are structurally
highly relevant, which is illustrated in Figure 9c–f by
comparing the results of the predictive models to the
experimental data. Figure 9c shows that EC and fib over-
estimate, whereas Burns and DC underestimate the crack
spacing. Only CSFM predicts it satisfyingly. The mean
strains (Figure 9d) are best predicted by CSFM for LS5

and LS7 and slightly underestimated by the remaining
approaches. Figure 9d shows that the compression zone
depth xc,II, determined by the average position of the
crack tip obtained from ACDM, is underestimated by all
models. Possible explanations are, only cracks ≥0.05 mm
are considered, and the actual cracks were thus a bit lon-
ger, or that the uncracked concrete close to the crack tip
is subjected to tension.

Figure 9f,g show that EC and fib predicted crack wid-
ths well. However, the components contributing to this
result do not match reality: the crack spacing was over-
estimated and mean strains were underestimated. This
observation was also made in a previous study investigat-
ing a beam with a low reinforcement content.21 The
TCM-based models underestimated the crack widths;
only CSFM with λ = 1 gives satisfactory results.

The experimental crack widths increase nonlinearly
from approximately 27 kNm, although the mean steel
strains of FOS1 are still smaller than the yield strength (see
Figure 7d). The presumably nonlinear strain distribution
of the reinforcement induced by local bending at the
cracks, as implied by Figure 6, could explain this behav-
iour: the bars presumably already yield at their
outermost edge.

Figure 9h compares the bond strength assumed by
the models to the mean bond shear stress assessed by
DFOS (FOS1) in the constant bending span as explained
in Section 3.1.1. The mean bond shear stresses are unex-
pectedly low throughout the experiment, namely on aver-
age 2.7 MPa for M = 10–30 kNm, hence by a factor of at
least two smaller than assumed by any of the models.
After test completion, longitudinal splitting cracks could
be observed at the bars, possibly explaining this
(Figure 8). As all models use significantly higher bond
stresses, drawing general conclusions from the results is
challenging.

Longitudinal splitting cracks1

2

1

4

Crack formed between LS5 and LS6 2

4 Splitting of a main crack causing local compression in the tensile zone

splitting 

crack

z x

y

Governing crack3

3

(a)

(b) (c)
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Therefore, Figure 10a–e present the postdiction with
the models fib and DC (referred to as fibpost and DCpost),
using the measured bond stresses (2.7 MPa) instead of
the models' assumptions, that is, 1.8fct, or 2fct before and
fct after yielding, respectively. Using these reduced bond
shear stresses, DCpost predicts the mean behaviour
(λ = 0.67) very well in terms of the effective reinforce-
ment ratio, the mean crack spacing and crack widths. In
contrast, fibpost overestimates the crack spacing and crack
widths by a factor of about two. The mean strains were
only marginally affected. Hence, in this case, DFOS

helped identify the bond stresses and the crack spacing as
the erroneous parameters.

The equilibrium-based approach DC is a suitable alter-
native to the Euler-Bernoulli beam theory. It is a mechani-
cally based approach to model flexural behaviour without
empirical assumptions of the effective area of concrete in
tension. However, it does not provide superior predictions
to the other models, for example, in terms of mean strains,
presumably due to the underlying common assumption of
linearly varying strains in x and z. With such assumptions,
the results differ only marginally from the CSA. However,
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Figure 7c shows that the common assumption of linearly
varying maximum concrete compressive strains between
cracks may need to be revisited since pronounced deforma-
tion concentrations occurred in the cracked cross-section.

5 | CONCLUSIONS

Selected models for assessing tension stiffening and the
cracking behaviour in pure bending were validated
against experimental data. Further, three novel
approaches based on DFOS and DIC data are proposed to
experimentally assess tension stiffening in bending. The
measurement technologies help identify occurring phe-
nomena and model deficits and, therefore, can refine the
understanding of structural behaviour and improve the
mechanical consistency and reliability of existing models.

DFOS identified the mean bond stresses as a signifi-
cant reason for mismatching predictions. The fib model
and the equilibrium-based approach DC were updated
with the bond stresses determined by DFOS. In this pos-
tdiction, the model based on the TCM correctly predicted
tension stiffening, whereas the fib model worsened
despite the reduced number of unknowns. Another iden-
tified weakness is that although the Eurocode-2 and the
fib Model Code predict crack widths quite well, the crack
spacing was significantly overestimated, even more with
updated bond stresses.

The maximum steel stresses are essential for crack
width assessment. The DFOS data revealed high local
bending of the reinforcing bars at the cracks causing a
stress variation of approximately 40% within the bar
cross-section in the elastic state. The steel starts yielding
locally before the mean bar stress reaches the yield
strength, which might explain higher crack widths for
loads smaller than the yield load.

The FODIC approach requires further research. The
concrete tensile force determined is relatively small and
prone to errors in the determined steel and concrete
compressive forces. The results of advanced measurement
technologies might be helpful when deriving refined con-
stitutive laws for local material behaviour. However, the
high-resolution data is demanding because it captures
phenomena on a scale not dealt with by traditional struc-
tural concrete research and requires critical interpretation.
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