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Abstract

Current trends in modern hardware create many opportunities and challenges for data

management systems. More specifically, novel high-performance network devices with the

capability of high-throughput packet processing offer the potential of significant improve-

ments in the performance of networked systems. However, advanced in-network accelera-

tion and offload capabilities, including RDMA, often have strong constraints which force

developers to limit the functionality of designed systems or even sacrifice their security.

This dissertation aims to address challenges in the design and implementation of the

data management protocols that efficiently use the offload capabilities offered by modern

network accelerators in the context of various data storage and data analytics systems.

Particularly, I address challenges in data management for key-value stores, shared mes-

sage queues, and remote memory systems regarding storage reliability, performance, and

memory fragmentation.

Second, I propose a serialization-free communication library for Java virtual machines

that allows applications to send on-heap objects through RDMA connections. I show how

the library unlocks RDMA networking to Java virtual machines hiding all the burden of

low-level RDMA programming from the users.

Finally, I propose an extension to the InfiniBand architecture that enables authentica-

tion and encryption for RDMA networking to prevent information leakage and message

tampering. I show how providers can implement RDMA secure channels with minimal

changes to the existing InfiniBand protocol and with minor performance overheads.

I conclude by discussing future research directions which arise from the work presented in

this dissertation, and highlighting the potential of in-network processing for modern data

management platforms.
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Zusammenfassung

Die aktuellen Hardware Entwicklungen eröffnen zahlreiche Möglichkeiten und Herausfor-

derungen für Datenverwaltungsanwendungen. Insbesondere neuartige Hochleistungs-Netz-

werkkarten mit der Fähigkeit zur Paketverarbeitung mit hohem Durchsatz bieten das

Potenzial, die Leistung vernetzter Systeme erheblich zu verbessern. Allerdings sind fort-

schrittliche netzinterne Beschleunigungs- und Offload-Funktionen, einschliesslich RDMA,

oft mit starken Einschränkungen verbunden, die Entwickler dazu zwingen, die Funktion-

alität der entworfenen Systeme einzuschränken oder sogar ihre Sicherheit zu opfern.

Diese Dissertation befasst sich mit den Herausforderungen beim Entwurf und der Imple-

mentierung von Datenverwaltungs Protokollen, die die von modernen Netzwerk Beschleu-

nigern gebotenen Offload-Fähigkeiten im Zusammenhang mit verschiedenen Datenspeicher-

und Datenanalyse Systemen effizient nutzen. Insbesondere befasse ich mich mit Heraus-

forderungen bei der Datenverwaltung für Key-Value-Stores, Shared Message Queues und

Remote-Memory-Systeme in Bezug auf Speicherzuverlässigkeit, Leistung und Speicher-

fragmentierung.

Zweitens schlage ich eine serialisierungsfreie Kommunikationsbibliothek für Javas virtuelle

Maschinen vor, die es Anwendungen ermöglicht, On-Heap-Objekte über RDMA-Verbindun-

gen zu senden. Ich zeige, wie die Bibliothek die RDMA-Vernetzung für virtuelle Java-

Maschinen erlaubt, indem sie den Benutzern die gesamte Last der Low-Level-RDMA-

Programmierung abnimmt.

Schließlich schlage ich eine Erweiterung der InfiniBand-Architektur vor, die Authentifizie-

rung und Verschlüsselung für RDMA-Netzwerke ermöglicht, um Informationsverluste und

Manipulation von Nachrichten zu verhindern. Ich zeige, wie Anbieter sichere RDMA-
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Kanäle mit minimalen Änderungen am bestehenden InfiniBand-Protokoll und mit geringem

Leistungsverlust implementieren können.

Abschließend erörtere ich zukünftige Forschungsrichtungen, die sich aus der in dieser Dis-

sertation vorgestellten Arbeit ergeben, und zeige das Potenzial der Netzwerk-Internen

Verarbeitung für moderne Plattformen zur Datenverwaltung auf.
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1
Introduction

Modern supercomputers have made large steps in improvements in networking, computa-

tion, and energy efficiency. The ending of Moore’s Law has resulted in a growing need for

specialized hardware like network accelerators and FPGA. Thus, we can see the current

trend to take advantage of modern hardware to build highly scalable and efficient data cen-

ters, high-performance computing, and data processing systems. New hardware includes

new capabilities and offers new architectural opportunities that may require a complete

redesign of the algorithms and data structures to obtain the necessary performance and

satisfy the client’s requirements. These technical problems are often encountered in high-

performance data management systems.

Today’s data management systems are designed to provide an efficient way of storing

and accessing data across a network. They incorporate decades of academic and indus-

trial research and intense software development to satisfy customer needs. Because of

the enormous diversity in use-cases and access patterns, there is a multitude of different

systems exploiting numerous data structures and offering different access interfaces, rang-

ing from SQL and key-value interfaces to direct memory accesses, to users. In addition

to the immense assortment of user interfaces, memory management of applications is af-
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Chapter 1. Introduction

fected by the programming languages in which they are implemented. Managed languages

such as Java perform automatic memory management with the use of garbage collection

algorithms, thereby hindering system developers from having full control over memory

structures. This profusion of memory, access, and programming models raises diverse

design challenges to the efficient adoption of modern network accelerators.

For the last decades, networked systems have tried to partially offload network and data

management protocols to network accelerators with the use of advanced remote direct

memory access (RDMA) programming techniques. RDMA interconnects are already pro-

vided in public clouds, such as Microsoft Azure [74], Oracle Cloud [109], and Alibaba

Cloud [35]. The widespread availability of fast low-cost networks with RDMA capabilities

has encouraged modern database management systems to adapt RDMA for improving

query performance [20, 131]. RDMA already empowers replication [173, 147, 80], index

structures [177], distributed transactions [164, 31, 172], and processing of analytical work-

loads [91, 17]. The emergence of RDMA has further sparked interest in distributed shared

memory systems that combine memory of interconnected nodes as a shared remotely-

accessible memory space [47, 28, 3, 2, 106]. In-memory databases [27], caching services [54],

and ephemeral storage [145] are only some examples of systems enabled by this paradigm.

Despite the success of RDMA, RDMA features have created many design challenges in

protocols for memory and data management. On the one hand, RDMA-capable network

controllers bring new memory access patterns that completely bypass the operating system

and the CPUs of communicating machines. Therefore, applications that exploit RDMA

communication have the potential to eliminate many copy operations within the appli-

cation logic, further increasing performance. On the other hand, these direct memory

accesses are not fully consistent with the concurrent accesses from host CPUs, thereby

forcing researchers to design specialized access protocols to prevent inconsistent data ac-

cesses. Besides, the design of RDMA-capable network protocols has been mainly focused

on performance rather than security, bringing potential security implications and dangers

to RDMA-enabled systems.

In this dissertation, I explore and address various challenges in networked data manage-

ment systems to enhance their capabilities. Particularly, I address data management chal-

lenges in key-value stores, shared message queues, and remote memory systems, managed

programming languages regarding storage reliability, performance, and memory fragmen-

tation. In addition, I explore security challenges posed by RDMA networking and propose

a security extension to the existing InfiniBand protocol.
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1.1. Background on RDMA network accelerators

1.1 Background on RDMA network accelerators

RDMA is a mechanism allowing one machine to directly access data in the memory of re-

mote machines across the network. Memory accesses are performed using RDMA-capable

network controllers (RNICs) without any CPU intervention or context switches. The of-

fload of memory accesses decreases CPU usage on both the initiator and the target, thereby

decreasing latency. RDMA includes the concept of one-sided operations where the CPU

at a target node is unaware of incoming RDMA requests.

RDMA is offered by several network architectures [10, 126, 22, 5, 4, 42]. In this study,

we focus on the InfiniBand standard and its reliable RDMA connection type called reli-

ably connected queue pair (RC QP). An RC transport establishes connected queue pairs

(QP) between the two communicating applications. A queue pair is a bi-directional mes-

sage transport engine that empowers applications, besides reliably sending and receiving

messages, to directly read or write data from remote nodes using one-sided operations. Ap-

plications make use of offloaded RDMA communication by directly posting asynchronous

work requests to an RNIC, bypassing the operating system. Upon completion of a work

request, the RNIC generates a corresponding completion event that is placed on a com-

pletion queue created by the application.

In this dissertation, we primarily focus on the following RDMA work requests. RDMA

Send allows an application to send a buffer to the remote endpoint similar to a classical

TCP/IP socket. The sender is unaware of where the data will be written in the remote

machine. The remote RNIC will write the data to the buffer specified in the correspond-

ing receive work request posted by the receiver. RDMA Write is a one-sided operation

that allows the sender to write a buffer to a remote virtual address without notifying

the receiving side. To notify the receiver about an incoming Write, InfiniBand supports

WriteWithImm operation that generates a completion event at the receiver. Unlike Send

operation, WriteWithImm allows the sender to choose the destination memory address.

RDMA Read allows the initiator to read the content of a remote buffer without the in-

volvement of the remote CPU. RNICs also support one-sided remote atomic operations

that can atomically modify an eight byte value at a remote address: Compare-and-Swap,

and Fetch-and-Add.

3



Chapter 1. Introduction

1.2 Challenges and Contributions

In this dissertation, I address the following data management challenges in the context of

networked systems:

Fault Resilience in key-value stores

The first part of the thesis explores the design and architecture of a key-value store that

allows users to dynamically set the level of fault resilience for each individual key-value

pair while still maintaining overall consistency and without compromising efficiency. For

that, we propose an efficient data management scheme, Ring, that utilizes a combination of

replication and Reed-Solomon storage schemes to allow users to choose the best reliability-

overhead-performance trade-off for every single data item.

Our novel data layout guarantees a stable key-to-server mapping regardless of the storage

schemes that are used, thereby allowing clients to change dynamically the storage scheme

of key-value pairs independently from other clients. In other words, our storage design

avoids key remapping when keys are moved across storage schemes. Ring ensures the

highest possible performance for finding keys with an unknown storage scheme, as clients

can use a hash mapping to locate a requested key-value pair regardless of the storage

scheme used.

To achieve stable key-to-node mapping in Ring, all distinct deployed storage schemes must

have the same key-to-node mapping (i.e., the same key shards). For the replication scheme,

we achieve that by partitioning the keyspace into a fixed number of shards. However, the

conventional Reed-Solomon scheme does not support partitioning, thereby preventing the

use of erasure codes in such data layout. Therefore, for erasure codes, we introduce a

new storage encoding scheme called Stretched Reed-Solomon that allows us to partition

data blocks into a fixed number of shards. Stretched Reed-Solomon redistributes the data

chunks of Reed-Solomon codes to maintain a stable key-to-node mapping regardless of

erasure code used.

Compaction in remote memory systems

In the second part, I discuss the problem of memory fragmentation in remote memory

systems. Even though memory fragmentation increases memory usage of in-memory data

4



1.2. Challenges and Contributions

stores by up to 69% (e.g., Redis, MongoDB, and VoltDB) [84, 98, 176, 115, 114] and has

a negative impact on their performance due to memory sparsity [84], RDMA-accelerated

remote memory systems that utilize one-sided RDMA requests do not provide memory

compaction and are exposed to memory fragmentation. In fact, remote objects are accessed

via RDMA by specifying their virtual addresses at the remote host: if the remote host

relocates an object, its virtual address might change, requiring propagating this update

to the other nodes.

To address this issue, we propose CoRM, a remote memory system that exploits RDMA

for fast remote accesses and supports memory compaction. The high-level idea of our

compaction algorithm is to find two blocks with low utilization and copy objects from a

source block to the target block, then CoRM exploits RDMA-aware memory remapping

to silently move objects across physical pages, preserving their base virtual addresses and

RDMA access keys. To facilitate compaction, an in-memory object is uniquely identified

by the block address and the block-local object ID, allowing CoRM to move compacted

objects to new offsets within the target block, but still allowing clients to find the object

within the block. During compaction, CoRM attempts to store all compacted objects at

the same offset as in the source block to preserve the full virtual addresses of compacted

objects. Therefore, our compaction algorithm does not alter the virtual address of the

majority of compacted objects, thereby preserving direct access to them via RDMA. For

the rest, we propose an additional action, called pointer correction, that recovers direct

virtual pointers for clients.

Zero-copy Data Access for Log-structured data stores

In the third part I explore the most efficient way of using existing RDMA features to

accelerate Apache Kafka [8, 82], a publish-subscribe system, which performance is cur-

rently constrained by overheads in the existing TCP datapaths in the form of RPC in-

frastructure, CPU wakeup latency, and superfluous buffering of data. The design of our

system, KafkaDirect, is inspired by the fact that general-purpose request processing is

expensive due to excessive data copies. Since zero-copy request processing is crucial for

CPU-intensive systems, such as Kafka, we remove data copies introduced by the TCP/IP

stack and general-purpose request processing by offloading CPU-intensive operations to

RNICs.

Our design empowers clients to write records directly to storage using RDMA. KafkaDirect

5



Chapter 1. Introduction

can ensure consistent writes to the same topic from multiple producers by employing

RDMA atomic operations. Consumers in KafkaDirect exploit RDMA Reads to directly

read records from subscribed topics and to get notified about new records, completely

bypassing the CPU of Kafka brokers and thereby significantly reducing their CPU usage.

Overall, our system outperforms the existing Kafka systems in terms of both bandwidth

and latency for all datapaths.

Serialization-free RDMA networking in Java

In the fourth part, I explore data management and networking in the context of managed

language. Java virtual machines do not allow users to directly access on-heap objects,

forcing developers to employ expensive serialization libraries to extract objects and copy

them to RDMA accessible buffers, thereby preventing zero-copy RDMA networking for on-

heap objects. To address these questions, we developed Naos, a JVM-based library that

allows objects to be sent serialization-free from a local heap to a remote one with minimal

CPU involvement and over RDMA networks. As Naos eliminates the need to copy and

transform objects, it offers significant speedups compared to state-of-the-art serialization

libraries.

To the best of our knowledge, Naos is the first serialization-free communication library

for JVM that allows applications to send objects directly through RDMA or TCP con-

nections. Naos unlocks efficient asynchronous RDMA networking to JVM users hiding

all the burden of low-level RDMA programming from the users, thereby facilitating the

adoption of RDMA. For that, Naos solves several complex design issues such as sending

unmodified memory segments across Java heaps without employing intermediate buffers,

and interacting with concurrent garbage collection without compromising JVM’s memory

safety. For the first issue, we propose a novel algorithm that writes objects directly to the

remote heap and makes them valid on the receiver’s address space. For the second one, we

propose techniques preventing a concurrent JVM garbage collector from moving unsent

objects that may be accessed by RNIC and from accessing unrecovered received objects.

Efficient NIC-based Authentication and Encryption for RDMA

In the last part, I explore the security property of InfiniBand interconnects and propose

sRDMA, a protocol that provides secure transport for RDMA networking. The main short-

coming of the current InfiniBand architecture is that it lacks any form of cryptographic
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authentication or encryption. Instead, its RDMA mechanisms provide a weak form of

protection by including access tokens in each message. If an adversary is able to obtain

control over a machine in an RDMA network, it can fabricate and inject arbitrary packets.

If the adversary can guess or acquire memory protection tokens (which are transmitted in

plaintext), it can read and write memory locations that have been exposed using RDMA

on any machine in the network, leading to a powerful attack vector for lateral movement

in a data center network.

We propose a security extension to InifniBand protocol that provides authentication and

secure channels for InifniBand-based RDMA-capable protocols. Our extension introduces

secure reliable connection queue pairs that use symmetric cryptography for source and

data authentication. Since symmetric cryptography introduces per-connection memory

overhead and memory on network controllers is constrained, we augment our proposed

mechanisms using protection domain-level keys and efficient dynamic key derivation, which

eliminates the need for storing QP-level keys and drastically reduces the memory overhead

on RDMA-capable NICs.

1.3 Dissertation Outline

The dissertation is organized as follows:

Chapter 2: Per-item fault resilience in key-value stores

In this chapter, we present the design and architecture of Ring, a key-value store that

empowers its users to explicitly manage storage schemes, including replication and erasure

codes, on a key-value pair basis.

Chapter 3: Compactable Remote Memory over RDMA

This chapter of the dissertation describes the memory fragmentation problem in data

management systems and proposes how RDMA-accelerated remote memory systems can

support compaction to reduce memory fragmentation. Our RDMA-aware compaction

algorithm ensures strict consistency while providing one-sided RDMA accesses even to

compacted objects.
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Chapter 4: Zero-copy Data Access for Apache Kafka over RDMA

The material presented in this chapter focuses on the effective use of offloaded RDMA

networking for log-structured storage systems. We show how to achieve true zero-copy

communication that avoids intermediate buffering for appending data to and retrieving

data from a shared message queue.

Chapter 5: Serialization-free RDMA networking in Java

In this chapter, we present Naos, a library that allows Java objects to be sent serialization-

free across Java virtual machines with minimal CPU involvement and over RDMA net-

works. We show how Naos eliminates the need to transform on-heap objects, thereby

offering significant speedups compared to state-of-the-art serialization libraries.

Chapter 6: Efficient NIC-based Authentication and Encryption for RDMA

In Chapter 6, we show the security shortcomings of the InfiniBand transport protocol

and propose an extension to the InfiniBand architecture that enables authentication and

encryption for RDMA networking. We also demonstrate how providers can implement our

RDMA secure channels with minimal changes to the existing InfiniBand protocol.

Finally, in Chapter 7 we conclude the dissertation with a short summary and outline a

few opportunities for future work.

1.4 Related publications

A part of the work in the dissertation has already been covered in the following publica-

tions:

• Konstantin Taranov, Gustavo Alonso, and Torsten Hoefler. Fast and Strongly-

consistent Per-item Resilience in Key-value Stores. In Proceedings of the 13th Eu-

roSys Conference, EuroSys’18, pages 39:1-39:14. Association for Computing Ma-

chinery, 2018 [148].

• Konstantin Taranov, Rodrigo Bruno, Gustavo Alonso, and Torsten Hoefler. Naos:

Serialization-free RDMA networking in Java. In Proceedings of the 2021 USENIX
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Annual Technical Conference, USENIX ATC’21, pages 1-14. USENIX Association,

2021 [149].

• Konstantin Taranov, Salvatore Di Girolamo, and Torsten Hoefler. CoRM: Com-

pactable Remote Memory over RDMA. In Proceedings of the 2021 ACM Interna-

tional Conference on Management of Data, SIGMOD’21. Association for Computing

Machinery, 2021 [150].

• Konstantin Taranov, Benjamin Rothenberger, Adrian Perrig, and Torsten Hoefler.

sRDMA - Efficient NIC-based Authentication and Encryption for Remote Direct

Memory Access. In Proceedings of the 2020 USENIX Annual Technical Conference,

USENIX ATC’20, pages 691-704. USENIX Association, 2020 [151].
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2
Per-item resilience in

key-value stores

In-memory key-value stores (KVSs) provide different forms of fault resilience through

basic r-way replication and complex erasure codes such as Reed-Solomon. Each storage

scheme exhibits different trade-offs in terms of reliability and resources used (network load,

latency, storage required, etc.). Most KVSs support only a single such storage scheme,

forcing developers to employ different KVSs for different applications. In this chapter, we

argue that it is possible to create one storage system that can meet the needs of numerous

applications, by allowing users to alter the storage scheme of each key-value pair.

The work in this chapter explores the following research questions:

• How can the dynamic management of storage schemes of stored items improve the

utilization of cluster resources?

• How can we efficiently update the storage scheme of each key-value pair?

• What applications can benefit from explicit and dynamic storage management?
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To address these questions we have designed an in-memory KVS, Ring, that empowers

clients to explicitly manage storage schemes for each key-value pair, in the same way, that

they would manage conventional system resources such as memory or processor time, while

still maintaining overall consistency and without compromising efficiency. At the heart of

Ring lies a novel encoding scheme, Stretched Reed-Solomon coding, that combines hash

key distributions of heterogeneous replication and erasure coding schemes. Ring utilizes

RDMA to ensure low latencies and offload communication tasks. Our work demonstrates

how future applications that consciously manage the fault resilience of key-value pairs

can reduce the overall operational cost and significantly improve the performance of KVS

deployments.

The content of this chapter has been published at the Thirteenth EuroSys Conference in

2018 [148]. The work in this chapter was done in collaboration with Torsten Hoefler and

Gustavo Alonso.

2.1 Motivation

Key-value stores (KVSs) were designed as an alternative to conventional database engines

to bypass the cost of imposing a schema and the scalability limitations inherent in the

transactional and relational models used in database engines. KVSs can achieve outstand-

ing performance and scalability while providing fault resilience through different storage

schemes. One serious downside of existing KVSs, however, is that the degree of resilience

is typically fixed per engine and/or volume. Many features may affect the choice of a par-

ticular KVS, such as consistency, performance, reliability, or memory cost. These features

are usually determined by the underlying storage schemes employed by the KVS [56]. As

a result, each application needs to use its own KVS to match its requirements, leading

to a proliferation of engines and a significant deployment and maintenance complexity in

real settings. The following table illustrates the trade-offs between performance, reliabil-

ity, and storage overheads for three schemes: Simple storage (no replication), three-fold

replication, and a Reed-Solomon coding scheme.

Scheme Reliability Put Latency Put Throughput Storage Cost

Simple None 1x 1x 1x

Rep(3) 1 failure 2x 0.5x 3x

RS(3,2) 2 failures 3.4x 0.31x 1.66x
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Databases have addressed parts of this problem by offering different consistency guarantees

at the SQL level, allowing each application to determine the degree of consistency it

wants to achieve, while the engine still preserves the correctness of the data and mediates

among all applications to provide strong consistency. In the cloud, several approaches

have been proposed to classify data according to its importance and assign different levels

of consistency to each one of them [81, 90, 156], showing the importance of having a

flexible approach to deciding how much replication is needed for each data item. With the

exception of some initial ideas from research [117], we are not aware of any KVS offering

similar functionality.

In this chapter, we explore the design and architecture of Ring, a KVS allowing users

to set the level of fault resilience on a key-value pair basis while still maintaining overall

consistency and without compromising efficiency. The key feature of Ring is that all keys

live in the same strongly consistent namespace, and a user does not need to specify the

storage scheme when looking up a key. Users can update a key’s storage scheme during

the key insertion or at arbitrary points during execution and still be strongly consistent.

Challenges. At a first glance, it might seem that implementing Ring requires nothing but

just adding various storage schemes to a known KVS. However, this seemingly easy step

entails subtle technical challenges. The first one is to ensure strong consistency across

storage schemes, so that updating the storage scheme of a key remains consistent and

atomic. By strong consistency we mean that updates occur atomically and requests need

to be seen by all clients in the same order regardless of failures in the system. However,

naively combining different KVSs makes key updates in different storages either slow or

does not guarantee strong (sequential) consistency.

The second challenge is to guarantee the highest possible performance for finding keys

with an unknown storage scheme. This goal requires minimizing communication during

the lookup phase. Ring achieves that with a fully decentralized design. As opposed to

traditional stores [168, 52, 139], it does not rely on a central server to manage the location

of key items. Instead, it relies on a novel allocation scheme that guarantees a stable

key-to-server mapping regardless of the storage schemes that are used.

The last challenge is to support memory efficient erasure coding schemes while maintaining

strong consistency. Ring utilizes a combination of replication and optimal erasure codes

to allow users to choose the best reliability-overhead-performance trade-off for every single

data item.
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Overview of Ring. Ring’s storage abstraction relies on memgests, which are differ-

ent storage schemes with various fault resilience and performance properties. The name

memgest is derived from the Latin term gestus, which can be roughly translated as carry

or bear. Ring’s memgests range from Reed-Solomon (RS) codes to flexible forms of full

replication.

Conceptual Contributions. We design a new storage encoding scheme called Stretched

Reed-Solomon (SRS) to maintain a stable key-to-node mapping regardless of resilience

levels used. SRS redistributes the data chunks of optimal RS codes and simple replication

schemes among nodes such that distinct interleaved layers of erasure coding and replication

always share the same distribution for key hashes. In this way, Ring allows users to change

storage schemes (memgests) transparently and independently from the client. SRS coding

is our key tool to address all three challenges outlined above, and we show how to combine

it with versioning to guarantee strong consistency.

Technical Contributions. In addition to the SRS scheme itself, we implement Ring as

a fully-functional resilient high-performance in-memory KVS. We utilize Remote Direct

Memory Access (RDMA) networking to provide low latencies and offload communication

tasks from the CPUs. Our extensive experimental analysis shows that Ring reaches a

low remote read latency of 5 µs and an aggregate throughput of more than 1.5M put

requests/sec for unreliably stored 1 KiB key-value pairs. For reliably stored 1 KiB key-

value pairs, Ring achieves 800K put requests/sec for three-fold replication and more than

300K put requests/sec for RS(3, 2) Reed-Solomon coding.

2.2 Ring applications

There are a wide range of scenarios where per-key management of the storage trade-offs

provides a powerful abstraction enabling a more efficient utilization of expensive DRAM

memory. To fully utilize the overall system, Ring users can flexibly change the storage

scheme for each key at any time during operation. Changing the storage scheme influences

both the network and server CPU loads, which determine the overall performance of the

KVS, an aspect that we will study in the paper through four use cases.

Transparent multi-temperature data management. Data in warehouses is often

classified according to its temperature. Frequently accessed data is considered hot and

must be available at the highest performance. Rarely accessed cold data permits higher
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response times. Ring can transparently place hot data in high-performance replicated

storage while keeping cold data in low-overhead erasure-coded storage using standard

temperature-tracking schemes [67]. Ring’s SRS storage scheme enables flexible temper-

ature management by moving data from cold storage to hot storage fully transparently

to users while ensuring strong consistency. It can lead to significant cost savings while

maintaining the highest performance.

Heavy updates. KVSs often experience highly varying load over time. For example,

items in online auctions or limited sales become very popular during the final stages of the

sale. The last seconds of an auction are usually the ones of highest interest for a bidder

and the system may receive millions of requests per second. A crash and the corresponding

period of unavailability may be disastrous, even if the data is stored reliably. The designer

of an online auction with heavy updates can use Ring to move items to high-performance,

less reliable storage when a high workload is observed to increase throughput. Even if it

seems counter-intuitive, the overall reliability is not reduced, for two reasons: First, the

data is only stored less reliably for a short period of time, thus reducing the probability of

data loss. Second, Ring supports versioning, allowing each key to have multiple versions

in different storage schemes, preserving previous reliable copies of the data.

Importance of the data. The importance of data may change over time according to the

intrinsic nature of the data. For instance, in iterative algorithms such as PageRank, the

time to recover data increases as the computation progresses because losing data at a late

stage requires expensive recomputation from the start. In other words, the intermediate

page ranks at iteration i+ 1 are more important than the ones at iteration i. In general,

Ring can be useful for algorithms where the temporary data has to become persistent,

since it dynamically increases the reliability of given key-value pairs.

Temporary blob storage. Our last use case concerns typical cloud storage schemes

providing write-commit or write-modify-commit patterns. Such patterns are typical in

block blobs on Azure Storage and others, where users may upload blobs and after that

decide on whether to store them persistently or not [103]. For example, many services

for uploading pictures allow users to apply filters and then either commit or discard the

changes. Blobs are deleted by the session management if they have not been committed

within a predefined time. Objects should be stored in less reliable, high-performance

memgests before a final decision is made on their persistence. This use case generalizes to

other user-facing storage systems, with Ring providing a convenient interface to manage

them.
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2.3 Storage schemes

We now explain how Stretched Reed-Solomon (SRS) codes are built and their advantages

over classical RS codes. First, we briefly summarize key aspects of the replication (Rep)

and Reed-Solomon (RS) schemes required to build SRS codes. In all our analyses, we

assume a standard fail-stop failure model [137].

2.3.1 Replication

Replication is the simplest and most widely used approach for fault tolerance [165]. Numer-

ous methods for data replication such as primary-backup replication [26], quorum-based

replication [68, 23], and chain replication [160] exist. Primary r-fold replication provides

simple reliability and availability, as any copy of the data can be read independently, but

causes an (r − 1)-fold increase in memory overhead. Strong consistency is often provided

by a distinguished leader that is responsible for serving client requests. To commit a

put request, the leader has to replicate the request to a majority of nodes. Therefore, we

consider that availability and reliability of the r-fold quorum-based replication are guaran-

teed when less than or equal to
⌊
r−1
2

⌋
nodes are faulty. Conversely, basic fully synchronous

replication can tolerate r − 1 failures, but the unavailability in case of failures is higher

because of the synchronous communication with worker nodes.

2.3.2 Reed-Solomon coding

The alternative, (k,m) partial replication through erasure coding (e.g., Reed-Solomon),

uses m additional parity blocks to secure k data blocks on different servers [119]. Maximum

distance separable erasure codes can tolerate up to m simultaneous failures in a group of

k+m blocks, which is the theoretically optimal storage overhead [119]. RS codes achieve

the maximum distance separable property and provide a flexible choice of parameters k

and m. The memory overhead is only proportional to the expected number of failures m,

but requires accessing at least k data blocks during recovery. The performance of erasure

coding is affected by faults, as the lost data cannot be immediately accessed and should be

recovered first. Therefore, systems using erasure codes are less available than ones using

replication schemes in the presence of failures.
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A common way to use RS schemes is to split data of size C into k blocks of size C/k.

According to RS(k,m) encoding scheme, m additional parity blocks are calculated from

the k original data blocks. These blocks are stored on separate nodes and are grouped to

form a stripe with k data blocks (denoted by [D1, ..., Dk]) and m parity blocks (denoted

by [P1, ..., Pm]). We refer to nodes which store parity blocks as parity nodes, and nodes

which store data blocks as data nodes. We also refer to data on data nodes as primary

data, and data on parity nodes as parity data. This arrangement allows recovery from

any combination of up to m simultaneous failures. The choice of the parameters k and m

influences the fault tolerance, memory overhead, and recovery time. In the case of failures,

the decoding operation reads any k out of the k + m blocks to recover the lost blocks.

When failures are frequent, the system performance degrades dramatically due to data

recovery.

An RS encoding operation can be represented as a matrix-vector multiplication where the

vector of k data blocks is multiplied by a particular matrix H =

[
I

G

]
of size (k+m)×k,

(see Eqn. (2.1)). Here, I is the identity matrix and G is called the generator matrix, and

yields the maximum distance separable property.



1 0 0 . . . 0

0 1 0 . . . 0
...

...
...

...
...

0 0 0 . . . 1

g11 g12 g13 . . . g1k

g21 g22 g23 . . . g2k
...

...
...

...
...

gm1 gm2 gm3 . . . gmk


︸ ︷︷ ︸

H:k+m×k

×


D1

D2

...

Dk

 =



D1

D2

...

Dk

P1

P2

...

Pm


(2.1)

The matrix G can be constructed from a Vandermonde matrix (gij = ji−1), where the

elements are calculated according to Galois Field (GF) arithmetic [43]. In the GF with 2n

elements, where n is a positive integer, addition is equivalent to a bitwise XOR operation.

Multiplying blocks by a scalar constant (such as the elements of H) is equivalent to

multiplying each GF word component by that constant. The matrix G ensures the main

property of the matrix H: any set of k rows of the matrix H is linearly independent. It
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means that the data can be recovered if at least k blocks out of k + m data and parity

blocks are available.

Recovery

Lost data blocks can be reconstructed by solving the reduced system of linear equations

obtained by removing the rows corresponding to lost blocks in Eqn. (2.1). Reconstruction

of a parity block is the same as an encoding operation, and involves multiplying the

corresponding row of H by the data vector. Data block reconstruction takes two steps.

The first step is to calculate a decoding matrix. The decoding matrix is built choosing

any k linearly independent surviving rows of H, and then taking the inverse of them. The

second step involves multiplication of the previously selected combination of data and

parity blocks by the corresponding row of the decoding matrix to the missing block.

Update

If data on any server is updated, all corresponding parity blocks must be updated as well.

Fortunately, it is not necessary to recalculate the whole data in parity blocks, as only

recomputation of the concerned pieces of information is required. An update operation

first calculates the difference between the old and the new data items, then replicates the

update operation to parity nodes. Finally, at the parity nodes, the stored parity block

is XORed with the update operation multiplied by a corresponding coefficient from the

encoding matrix H.

2.3.3 Stretched Reed-Solomon coding

In this section, we introduce our Stretched Reed-Solomon (SRS) codes, which are based

on RS codes. A common way of load balancing RS(k,m) codes among k data nodes

is to put an object with a key to data node i = (h(key) mod k), where h(key) is a

hash function. The major problem in this mapping, and other distribution schemes, is the

coupling between the hash key distribution and the number of data blocks k. For instance,

a storage system based on RS(2, 1) has 2 primary data nodes, and thus has 2 key shards,

whereas RS(3, 1) includes 3 data nodes and 3 key shards. As a result, they cannot both

be accessed with the same key-to-node mapping. Even worse, when the storage scheme is
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changed to a different k, the keys need to be remapped and migrated. Hence a new erasure

code is needed to avoid key remapping when keys are moved across storage schemes.

The main idea behind SRS codes is to ensure the same key-to-node mapping for a range of

RS codes with different k. This is a key feature of Ring that enables efficiently locating a

node responsible for any key with the unified mapping, irrespective of the storage scheme

(memgest) chosen for the data.

Derivation

SRS codes are defined by parameters k, m, and s. The parameters k and m are inherited

from RS codes such that SRS(k,m, s) codes apply a RS(k,m) coding algorithm to the

data. Yet, instead of storing k data blocks on k nodes, the blocks are spread or stretched

over s machines (s ≥ k). As a result, we have s data nodes and m parity nodes, but the

data on them is encoded according to RS(k,m). Note that SRS(k,m, k) is identical to

RS(k,m).

Having s ≥ k data nodes for all RS codes enables them to share identical key-to-node

mappings regardless of the erasure codes. For instance, if we stretch RS(2, 1) over 3 data

nodes and obtain SRS(2, 1, 3) as in Figure 2.1, then it will have the same number of

data nodes as RS(3, 1). Hence, SRS(2, 1, 3) and SRS(3, 1, 3) can share a key-to-node

mapping, and their data nodes can be stored on the same physical machines. When

resilience requirements for a key is updated from SRS(2, 1, 3) to SRS(3, 1, 3), the key can

be moved locally from one coding scheme to the other, since the masters of two schemes

reside on the same physical node.

We build a family of SRS(k,m, s) codes as follows:

1. Encode data according to RS(k,m) coding scheme with k data blocks and m parity

blocks.

2. Compute the least common multiple (l) of k and s.

l = lcm(k, s)

3. Divide the original data into l blocks:
[
D̃1, ..., D̃l

]
.

4. Distribute l data blocks over s data nodes such that each data node stores l/s blocks.

5. Parity blocks are stored on m nodes as in RS(k,m).
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The encoding matrix H for RS(k,m) from Eqn. (2.1) can be expanded to a stretched

matrix Hexp of size l + lm
k
× l:



I l
k

0 l
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. . . I l
k
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k
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k
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k
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k
. . . gmkI l

k


︸ ︷︷ ︸

Hexp:l+
lm
k
×l

×


D̃1

D̃2

...

D̃l

 =



D̃1

D̃2

...

D̃l

P̃1

P̃2

...

P̃ lm
k


(2.2)

where each element is a matrix: In is the identity matrix of size n, and 0n is the zero

matrix of size n.

For RS(k,m), Hexp is a coding matrix corresponding to encoding l data blocks using an

RS(k,m) code. It distributes l data blocks among k data nodes so that each node stores

l/k data blocks. It also calculates lm/k parity blocks and distributes them among m

parity nodes so that each node stores l/k parity blocks each. The matrices H and Hexp

are equivalent in terms of data encoding, since they produce the same output. The matrix

Hexp can also be calculated as entry-wise product of H and an expansion matrix E:

Hexp = H ◦ E = E ◦H, (2.3)

where Eij = I l
k
, H and E are of the same dimensions.

According to classical Reed-Solomon the i-th data node Di and j-th parity node Pj are

comprised of the following blocks from Eqn. (2.2):

Di =
[
D̃ (i−1)l

k
+1
, ..., D̃ il

k

]
, Pj =

[
P̃ (j−1)l

k
+1
, ..., P̃ jl

k

]
To obtain the SRS code, we reassign data blocks to s nodes instead of k. Thus, every

data node is responsible for l/s instead of l/k chunks of data, whereas parity nodes are

not involved in stretching and are kept the same. Therefore, nodes of SRS(k,m, s) store

data as follows:

Di =
[
D̃ (i−1)l

s
+1
, ..., D̃ il

s

]
, Pj =

[
P̃ (j−1)l

k
+1
, ..., P̃ jl

k

]
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(a) RS(2, 1) (b) SRS(2, 1, 3)

Figure 2.1: Block distribution for RS(2, 1) and SRS(2, 1, 3)

Example of building SRS(2, 1, 3). In this paragraph we introduce an example of

creating Stretched Reed-Solomon over three data nodes. The coding matrix H for RS(2, 1)

is presented in Eqn. (2.5). The least common multiple of 2 and 3 is 6, so the data is divided

into 6 blocks in order to spread it over 3 nodes. Afterwards, we expand the coding matrix

of RS(2, 1) to 6 blocks by multiplying it by E according to Eqn. (2.3), where Eij = I3 (see

Eqn. (2.5)). As a result, the data is encoded in Figure 2.1(a) as follows:

P̃1 = D̃1 ⊕ D̃4 P̃2 = D̃2 ⊕ D̃5 P̃3 = D̃3 ⊕ D̃6 (2.4)

In RS(2, 1) every server is responsible for l/k = 6/2 = 3 blocks as shown in Figure 2.1(a).

In SRS(2, 1, 3), we assign l/s = 6/3 = 2 data blocks for every data node (Figure 2.1(b)),

and the data on them is encoded with the matrix from Eqn. (2.5) as in Eqn. (2.2).

Hexp=

1 0

0 1

1 1


︸ ︷︷ ︸

H

◦

I3 I3
I3 I3
I3 I3


︸ ︷︷ ︸

E

=



1 0 0 0 0 0
0 1 0 0 0 0

0 0 1 0 0 0
0 0 0 1 0 0

0 0 0 0 1 0
0 0 0 0 0 1

1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1


(2.5)

Properties of Stretched Reed-Solomon codes. An important feature of SRS(k,m, s)

is that it preserves the coding properties of the original RS(k,m). First, restoring a lost

block still requires collecting k corresponding blocks over s + m nodes, since data is still

encoded according to RS(k,m). Second, when a data server receives a put request, the

request has to be propagated to m parity nodes. It however leads to memory imbalance

as a parity server is responsible for more data than a data node. Furthermore, it can

be observed that SRS(k,m, s) can tolerate at least m and sometimes more simultane-
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Figure 2.2: Reliability of SRS codes with different parameters.

ous failures. For instance, SRS(2, 1, 4), can tolerate two simultaneous failures when two

independent data servers are failed.

The main benefit of SRS codes is that we can combine many distinct storage schemes that

fit the node layout, and access them with a unified key-to-node map. Keys can hence be

transparently moved from one scheme to another, since all primary data of all schemes are

present at each node. For example, with s = 4, Ring can support the following families

of SRS coding schemes: SRS(2,m, 4), SRS(3,m, 4), and SRS(4,m, 4), where m is an

arbitrary integer greater than one. In practice, the number of parity nodes in RS schemes

is bounded by the number of data nodes, i.e., m < k. Taking that into account, the total

number of different erasure coded storage schemes with given s equals to s(s−1)
2

. Besides,

we can include replication schemes by partitioning them into s shards in order to have the

same key hash distribution as SRS(k,m, s). It enables, even for moderate s, a very large

number of possible storage schemes (memgests) in a single KVS.

Reliability and Availability of SRS codes. In this paragraph we show that RS(k,m)

and SRS(k,m, s) provide a comparable level of resilience. SRS(k,m, s) distributes the

data across more nodes and thus seems more liable to failures. However, the sparser

distribution leads to a lower data loss after a node failure. We investigate the overall

reliability using Markov models for reliability and availability.

Figure 2.2 indicates reliabilities of RS codes from which we derive stretched versions. The

diagram shows a vertical line for each stretched code. The lowest point with the label is

RS(k,m) = SRS(k,m, k) and the connected points above are different stretching factors.

The results show that stretching maintains approximately the same level of reliability. For

example, the family of SRS(3, 1, s) codes provides reliability around 3.5 nines.
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Figure 2.3: Availability of SRS codes with different parameters.

An interesting observation is that the reliability sometimes increases when the data is

stretched. For instance, SRS(3, 2, 6) is more reliable than RS(3, 2). One reason for that

is that each data node of a stretched version stores less data than a data node of the

original one, which results in less data requiring recovery in the event of data node failure.

For example, if the system stores 600GiB, in case of a data node failure RS(3, 2) loses

200GiB and SRS(3, 2, 6) loses only 100GiB. Faster recovery increases reliability because

the system can tolerate more failures if the data has been recovered before the next failure.

In addition, SRS(k,m, s) is sometimes able to tolerate more than m simultaneous failures.

It happens when failed data nodes store independent data blocks, still allowing the system

of equations in Eqn. (2.2) to be solved without these nodes.

Figure 2.3 indicates estimated availabilities of RS and SRS codes. Lines represents differ-

ent stretching factors of SRS(k,m, s) codes that share the same parent code RS(k,m). It

can be observed that all RS schemes and their stretched variations have availability less

than 3.4 nines. In addition, the number of nodes in the stripe decreases the availability.

Maximal availability has been observed for the family of SRS(2, 1, s) codes and stands at

approximately 3.35 nines.

2.4 System architecture

After establishing the concepts of Stretched Reed-Solomon coding, we proceed to describe

the architecture and the key components of Ring. We will discuss how Ring combines

SRS coding to unify a flurry of RS coding and replication modes into a high-performance,

fault-tolerant, strongly-consistent in-memory KVS.
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2.4.1 API

Ring allows clients to access objects identified by a key through the three standard KVS

operations get, put, and delete. The put(key, object, memgestID) operation deter-

mines where the object should be placed based on the associated key, and writes the

object to the memgest of Ring that determines the storage mode. Ring also supports the

standard put(key, object) call which stores the data in a configurable default memgest.

The get(key) operation locates the object master associated with the key in the storage

system and returns the object. The delete(key) operation deletes the object associated

with a given key. Ring also supports move, which provides additional flexibility in storing

the data by allowing objects to be moved between memgests.

/* Conventional KVS requests */

object_t* get(const key_t)

int put(const key_t, const object_t*)

int delete(const key_t)

/* Resilience management */

int put(const key_t, const object_t*, const id_t)

int move(const key_t, const id_t)

/* Storage scheme management */

id_t createMemgest(const descriptor_t*)

int deleteMemgest(const id_t)

int setDefaultMemgest(const id_t)

descriptor_t* getMemgestDescriptor(const id_t)

To manage memgests, clients can dynamically add and remove memgests from Ring.

Clients can create a memgest by sending a createMemgest(descriptor) request. The

descriptor contains parameters of the storage scheme. It adds additional flexibility to

Ring, since users may tune the KVS by deploying different resilience levels. Memgests can

be removed with the deleteMemgest command. Finally, the default storage scheme for

new keys can be specified with setDefaultMemgest(memgestID).

2.4.2 Data layout, memgests

Ring’s storage abstraction relies on memgests, which are different storage schemes with var-

ious resilience, overhead, and performance properties. Each memgest corresponds to either
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Primary data Primary data

Parity data

Figure 2.4: Various memgests for a 5 node system with 3 coordinators and 2 redundant

nodes. The group provides 7 resilience levels: SRS(3, 2, 3), SRS(3, 1, 3), SRS(2, 1, 3),

Rep(1, 3), Rep(5, 3), Rep(4, 3), and Rep(2, 3). Note that stretching only affects the (blue)

data blocks and parity or replica blocks can be allocated arbitrarily.

erasure coded SRS(k,m, s) or replicated Rep(r, s) schemes. An SRS(k,m, s) memgest

contains s data nodes that handle requests to data blocks and m parity nodes that receive

update requests from the data nodes. A Rep(r, s) memgest contains s data partitions

which are replicated r times (Figure 2.4). Ring also supports memgests that are not

fault-tolerant and have no additional storage overheads (Rep(1, s)). They can be used for

storing temporary or recomputable data. The unreliable memgest offers highest update

performance because it does not replicate put requests and can immediately acknowledge

them.

A set of memgests which share the same number of key shards s constitutes a memgest

group with s coordinator nodes and d redundant nodes (Figure 2.4). We refer to a server

with an assigned shard as a coordinator node, since it coordinates the shard and all

memgests sharing the shard. The parameter d is also an upper bound on the number of

parities m in SRS(k,m, s) memgest, and s+d is an upper bound on the replication factor

r in Rep(r, s) memgest. Ring is configured for particular s and d parameters and does not

allow having families with other parameters. However, our SRS codes allow transforming

any storage scheme to have s data shards and build the memgest group from any number

of unified storage schemes.

Ring has a distinguished leader, which is responsible for processing createMemgest re-

quests. It decides how to distribute primary and parity data across nodes, and then

inform other nodes about its decision.
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maps keys
to nodes

maps keys
to memgests

replicated
metadata

 
  memgest

primary data

Figure 2.5: Request direction mechanism. The figure depicts only the server’s coordinator-

side data, i.e. without parity and replica related data.

We use a simple key-to-node mapping i = (h(key) mod s) to partition the whole key

range into s shards, where each coordinator node handles one key shard within a memgest

group. Thus, on a single node, memgests share the same key shard, but with different

resilience and performance requirements (blue rectangles in Figure 2.4). As a result, our

design allows get and put requests to a certain key to be performed by a single node

only. The key thus suffices to directly retrieve data despite the fact that data can be

stored in one of multiple memgests. Moreover, our storage design avoids the need for

distributed transactions when the data moves across memgests since all required data is

stored locally. In Ring every object has a version (see Section 2.4.3), which is incremented

when the object is modified or moved across memgests. Each coordinator is responsible

for assigning versions for all objects in its shard. It helps to design a strongly consistent

KVS, where only one instance of the key of a certain version exists across all memgests.

When a client sends a KVS request, it first applies i = (h(key) mod s) to map a key to

node i, which is responsible for storing the key as in Figure 2.5. Afterwards, the request

is performed locally at the requested node. For example, Figure 2.5 depicts a data server

that supports 4 different resilience levels. When a server receives a get request, it first

looks the requested key up from a volatile hashtable, which maps the key to the list of pairs

〈version,memgestID〉. Each coordinator node only has keys in its volatile hashtable that

are mapped to it by (h(key) mod s) mapping. The volatile hashtable is used to quickly

retrieve the memgestID of the memgest that stores the highest version of the object. Then

the requested object is looked up from that memgest using 〈key, version〉 pair.

Querying of a memgest is done through its metadata hashtable. The metadata hashtable

is a part of each memgest, and is replicated to survive failures (except the unreliable
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memgest). In contrast, the volatile hashtable that solely acts as an interface to the

memgests is not replicated at all. It can be reconstructed by combining metadata hashta-

bles of all local memgests. During normal operations the volatile hashtable is kept consis-

tent with the memgests’ hashtables.

2.4.3 Strong consistency

Strong consistency requires Ring to employ a range of techniques to ensure existence of

only one instance of a key of a certain version across all memgests. First of all, the volatile

hashtable and all metadata hashtables are write-ahead on the master node, that is all

modifications are written to them before they are committed. The write-ahead approach

does not violate consistency since, in case of a data node failure, only committed entries

will be recovered. We also postpone requests that read uncommitted objects. Second, Ring

exploits versioning and increments the key version when a key migrates across memgests.

Ring retrieves the highest version of the key (even uncommitted) and continues writing

with a higher version. Old versions are removed from the system periodically. It can be

tuned to trigger removing of old versions of a key after every committed put request to it.

It is the main mechanism for strong consistency in case of failures. It prevents having two

distinct copies of the key with the same version number after failures, which would lead

to an inconsistent state.

Write-ahead and versioning approaches allow serving requests to distinct memgests inde-

pendently without waiting. For instance, if multiple clients want to put new values to the

same key simultaneously, then their requests can be served together and independently

from each other. An interesting case is when two clients put values to the same key but

to different resilience levels. Since Ring allows committing the different versions of keys

independently, then higher versions may be committed earlier than lower versions. It can

happen when one client puts to a fast storage scheme, while another client is writing the

same key to slower storage scheme. The diagram in Figure 2.6 illustrates this case for

clients A and B. It also shows that client C gets the highest value committed by B re-

gardless the success of client A’s request. In other words, the highest version depends on

the last writer only.

A request becomes committed when it is replicated within the requested memgest; hence

puts to unreliable memgests are always committed immediately. Each memgest has a

special replicated log to propagate updates generated from client requests within itself.
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Figure 2.6: Put/get scenario with multiple clients.

To provide strong consistency, it is allowed to get data from committed entries only. Thus,

the response to the client will be postponed until the requested entry is committed, as

with client D in Figure 2.6. When the request from D was received, the highest version of

the requested key was 1. Ring read the uncommitted version of the object and prepared

a reply to the client D. The reply was sent once the version 1 had become committed. To

ensure the proper order, the metadata hashtables store a list of pending get requests and

committed flag for each object.

key, version→ data, length, committed, requests︸ ︷︷ ︸
volatile

This information is volatile and can be lost in case of failures. When an entry becomes

committed, the flag is flipped and all pending replies are sent. It ensures that a get

request returns the version (even uncommitted at that moment) that was the highest

when the request was received by Ring. Ring handles move(key, memgestID) requests

similarly because the object has to be moved from the memgest with the highest version.

Therefore, the move request will also be postponed if the requested object is not durable.

When clients send a move(key, memgestID) request, the key has to be moved from one

memgest and written to another atomically, so partial updates have to be prevented.

Here we benefit from a feature of Ring’s design: the coordinator of memgests which are

responsible for the same key is situated on a single physical machine due to the SRS coding.

It allows us to avoid expensive locking and distributed transactions. In case of failures,

Ring recovers all recoverable versions of keys from multiple memgests. Ultimately, several

resilience requirements can be satisfied at almost no cost, since all storage management

can be performed locally.
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2.4.4 Erasure coded and replicated memgests

All memgests share a similar structure: they have a replicated log to replicate updates,

replicated metadata hashtable, and the actual data, which is stored separately and treated

according to its storage scheme.

Separating metadata from actual data provides a wide range of advantages. Firstly, the

metadata suffices to serve delete requests. Secondly, it allows memgests to recover in two

steps: metadata recovery, data recovery. What is more, data recovery can be postponed

and only recovered on demand which is quite important for expensive erasure codes. Zhang

et al. [174] proposed a similar approach for erasure codes. They replicated metadata of

keys with a primary-backup replication scheme while actual values are erasure coded.

The put operation induces an update of the data of a memgest on the coordinator and

redundant nodes. The coordinator thus replicates requests within the memgest. Coordi-

nators of erasure coded memgests generate special parity updates and replicate them to

m parity nodes to commit the operation, whereas the special processing of the request

is not required for replication scheme, and can be replicated immediately. For replica-

tion, we implement quorum-based replication [122], where requests are replicated on the

majority of nodes within a memgest to ensure their durability. The remaining nodes in

replication scheme are updated asynchronously. Once the entry is properly replicated to

redundant nodes, the put is committed, and the coordinator replies to the client with an

acknowledgment.

Get requests do not alter the data, so they should not be replicated. To ensure that get

requests do not return stale data, the coordinator node has to periodically verify its role

in the system by reading the configuration from a replicated state machine [122].

2.4.5 Balancing

One issue caused by our design is that nodes within a memgest group occupy different

amounts of main memory (see Figure 2.4). Unfilled rectangles represent unbalance in

memory usage. It is mainly caused by the design of SRS memgests, where data is stretched

over many servers. Additionally, every parity node stores metadata of all data nodes from

the same SRS coding stripe. Therefore, a parity node stores more metadata than a data

node. In our system, parity nodes are also responsible for recovering lost data and parity

blocks and therefore require more memory to store blocks under recovery and recovery
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metadata. Regarding workload, as parity nodes only need to participate in put operations,

they may become idle for get-mostly workloads. In contrast, for put-mostly workloads,

the parity nodes may become busy and may become a bottleneck of the KVS. Finally,

during node failures, parity nodes are overloaded by data recovering processes.

To resolve these issues, we can create many memgest groups and assign them round-robin

to fixed nodes, as has been done in [174]. It requires creating s + d memgest groups,

where s is the number of shards and d is the number of redundant nodes, since there are

s + d different ways of rotating the single memgest group. As we mentioned before, we

use sharding to distribute keys among coordinators. Thus to support multiple memgest

groups we also partition shards into s + d memgest groups. It allows balancing workload

and memory on each node. The shards on one node belong to different memgest groups,

therefore a single node failure leads to a data loss on each memgest. However, since parity

nodes are spread evenly across machines, the recovery workload also will be uniformly

balanced.

2.4.6 Membership and handling failures

To deploy Ring, at least s + d nodes are required, where s and d are coordinators and

redundant nodes, respectively. Nonetheless, the overall system is comprised of s + d + n

machines, where n stands for spare nodes as in Figure 2.7. Thus, there are two types of

nodes in the system: some that take part in serving requests and some that do not. Spare

nodes are always ready to replace a failed node and immediately handle the requests for

the node. The system has a leader, which is responsible for membership of nodes and, in

case of failures, for reassigning the roles of failed nodes to healthy spare ones. The leader

is elected according to a leader election protocol [122].

KVS nodes Spare nodes

Figure 2.7: The system consists of spare nodes and KVS nodes.

While in spare mode, spare nodes incur minimal memory and CPU load. They use memory

only for sending and receiving heartbeats to check membership and the log that replicates

requests for changing roles. Once the leader recognizes that a node crashed, it replicates an
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entry over the log, which consists of the new responsibilities for all of the nodes. Therefore,

all servers know about all changes in the system.

To change the role and start processing requests, a spare node reads all necessary metadata

from alive nodes. Once the metadata on the node is recovered and the volatile hashtable

built, it starts providing services while performing data recovery in the background. If the

requested data is lost, it will be recovered with an on the fly recovery algorithm with high

priority. For replicated memgest, it will request a copy of the requested data from any

available replica. For erasure coded memgest, it will start an online decoding algorithm

similar to one introduced in [174]. Data node sends a recovery request to the parity node

responsible for the lost block. Then the parity node starts block recovery by collecting k

available corresponding blocks from a coding stripe according to RS(k,m) and decoding

them. Finally, the parity node sends the recovered block to the data node initiated the

recovery.

Clients access the data by sending requests using a hash function to determine the required

node. If a data node has failed and a request is not answered in a predefined period of

time, clients re-send the request through multicast. The request will be serviced only by

the node that is responsible for the requested key. The clients will then communicate with

the new data node directly.

2.5 Evaluation

In this section, we evaluate the performance of replication and erasure coding approaches

on RDMA networks. We use a 12-node InfiniBand cluster: each node has an Intel E5-2609

CPU clocked at 2.40GHz and WDC WD5003ABYX-01WERA1 internal hard drives. The

cluster is connected with a single switch using a single Mellanox QDR NIC (MT27500)

at each node. The nodes are running Linux, kernel version 3.18.14. Replication and

erasure coding are implemented in C and rely on the following libraries: libibverbs, an

implementation of the RDMA verbs for InfiniBand, and libev, a high-performance event

loop; Jerasure [121], a library in C that supports erasure coding in storage applications; and

GF-Complete [120], a library for Galois Field arithmetic. Each server is single-threaded,

but can be potentially multi-threaded, e.g., by partitioning keys and assigning threads to

partitions.
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Figure 2.9: Latency of put and get requests for Ring and other systems.

2.5.1 Latency

Ring is designed as a low latency KVS. Figure 2.9 shows the latency of put and get

requests (split into two figures for readability). We deployed Ring on 5 nodes with 7

memgests: SRS(3, 2, 3), SRS(3, 1, 3), SRS(2, 1, 3), Rep(4, 3), Rep(3, 3), Rep(2, 3), and

unreliable Rep(1, 3). Since they all share the parameter s, which is equal to 3, we label

them on graphs as SRS32, SRS31, SRS21, REP4, REP3, REP2, and REP1, respectively.

In the benchmark, a single client gets and puts objects of varying size to/from the system.

Each measurement is repeated 5,000 times, the figure reports the median and the 90th

percentile. According to our implementation the get latencies of all memgests are the

same, therefore we plot only one line in the figure for all studied schemes. It can be

explained by all memgests using the same algorithm for retrieving data: They first ensure

that they are allowed to reply to get requests by periodically checking the current node

configuration, then respond to the client.

The main difference lies in put requests: The latency for SRS(2, 1, 3) is the same as for

32



2.5. Evaluation

SRS(3, 1, 3), regardless of whether they share the same number of coordinator nodes s

in storage scheme. The reason is that they have to replicate update to one parity node

only. SRS(3, 2, 3) has the highest latency among the system because the data nodes are

responsible for calculating updates and replicating them to two parity nodes, whereas

other storage schemes are less compute and network intensive. The rationale is that an

unreliable memgest writes directly to main memory, but erasure coded memgests have

to read memory first to apply XOR operations to the data to build special updates and

replicate them to all parity nodes. The size of the parity update is larger than the actual

request, since the metadata must be replicated along with the update. Therefore, writing

to replicated memgests is faster than to erasure coded ones, and the lowest put latency

can be observed for the unreliable memgest Rep(1, 3).

We compare Ring with several state-of-the-art KVSs: the single-threaded caching KVS

memcached [49], erasure coded Cocytus KVS [174]; a strongly-consistent RDMA KVS

Dare with in-memory replication [122]; and a strongly-consistent RDMA KVS RAMCloud

with disk-backed replication [111]. We were not able to reproduce experiments for Cocytus,

hence we used data from their paper [174], evaluated on the cluster hardware comparable

to ours. Both CPUs belong to Intel Xeon E5 family and have the same characteristics

except the number of cores. However, both KVSs are single-threaded and it should not

influence overall performance. Networks bandwidths are different: they used 10 Gbit/s

NICs whereas our cluster is armed with 40 Gbit/s NICs. However, it should not influence

the evaluations either, since RS codes are compute-bound rather than network-bound.

Cocytus achieves throughput of 2.4 Gbit/s, which is less than 10 Gbit/s.

Memcached does not utilize RDMA to communicate with clients, therefore it provides

higher get and put latencies at about 55 µs which is 10x higher than the REP1 memgest.

Cocytus KVS with RS(3, 2) coding scheme for 1 KiB values has get latency 500 µs which

is 100x slower than Ring implementation. Also Ring put latencies are 30x lower than

Cocytus’ ones for 1 KiB objects for the same coding scheme. Dare KVS with replication

factor 3 provides the same get latency as Ring, which is not a surprise since they utilize

RDMA for communication with clients. Ring also provides approximately the same put

latency as Dare for comparable REP3 memgest. Another baseline is RAMCloud with 2

backup stores, which provides median 45 µs latency of putting objects up to 512 bytes

using an unloaded server with a single client. The high latency is resulting from the

fact that our cluster equipped with HDDs instead of SSDs. RAMCloud replicates a put

request 2 times, therefore it corresponds to our REP3 scheme. RAMCloud has lower
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Figure 2.11: Latency of moves.

main memory storage overhead since it flushes data to disk on backup nodes, whereas

Ring stores all data in main memory. Hence, Ring has lower put latency, and also is less

subject to tail latency, which is typical for disk-backed systems. Potentially, Ring can also

support disk-backed replication and still be strongly consistent.

2.5.2 Move requests

In Figure 2.11, we can see the results of our benchmarks regarding move operations. We

split the data into two subfigures to improve readability. The graph shows only destination

storage schemes because the source storage scheme does not impact performance due to

the local availability of the data. An interesting observation is that moving the object to

unreliable scheme REP (1, 3) has about the same latency for all object sizes. The reason is

that the client does not send the object again and it is copied from high-bandwidth main

memory. We can observe a similar pattern for other schemes since the time of moving the

object from the unreliable memgest to the reliable is lower than putting directly to the

second one. However, put operations are still dominated by building update requests and

replicating them.

Benefits of using move requests. Move requests enable explicit resilience management

and have a range of use cases discussed in Section 2.2. Next we outline storage benefits

of employing move requests using the example of utilizing the unreliable memgest for the

Blob storage. Let us estimate the footprint of an object in memory before it is committed.

By commit operation we mean the decision of storing the object persistently. We denote
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the time between the first write and commit operation as τ . The memory footprint of the

object that was written to reliable storage is equal to the size of object S multiplied by

storage overhead O and by the duration of time it was stored: S · O · τ . When we write

first to the memgest without additional overhead, the footprint is just S · τ . We can thus

achieve a relative memory reduction of 1
O

using the unreliable storage scheme. The cost

of this significant memory reduction is a single move request, about 5 µs.

The unreliable memgest REP (1, s) has also the lowest put latency among schemes under

study. Its put latency is 3x times lower than latency of SRS(3, 2, 3) and 2x lower than

latency of Rep(3, s) (see Figure 2.9). Therefore, Ring can provide significant latency

reduction by employing its move requests and also reduce the load in the backbone network

by decreasing the number of replications required to commit an update. Ring can also

store a backup version of a key to withstand failures. This is beneficial in the dynamic

importance use case.

The next advantage is that the unreliable REP (1, s) memgest has the highest throughput

among all coding schemes (see Figure 2.13). We can thus achieve a considerable speedup

in throughput by moving objects to Rep(1, 3) memgest and performing all put requests

there. It corresponds to the Heavy updates use case.

Real-world applications show different access patterns: some applications are put-heavy,

while others are get-heavy. To demonstrate the influence of storage scheme choice on real-

world workloads, we estimated the price of operations from five traces obtained from the

Storage Performance Council [142] for three storage schemes: Rep(3) (hot), SRS(3, 2, 3)

(cold), and Rep(1) (simple). The first two traces represent put-heavy OLTP applications

running at a large financial institution. The remaining three are get dominant I/O traces

from a popular search engine. Operation and storage costs for hot and cold schemes are

obtained from Azure Blob Storage Pricing for Central US in February 2018 [102]. Azure

Blob Storage does not provide a simple storage scheme, thus its price is assumed to be
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the same as for Rep(3), but with 3x cheaper puts, as they are not replicated.

Figure 2.12 shows estimated prices for storing data at a constant capacity and performing

traces with hot, cold, and simple storage schemes. The estimated costs are normalized and

represent the price relative to no replication. As we can see the choice of storage schemes

influences the price dramatically, depending on access pattern of traces and the volume of

stored data. For example, cold storage is 5.5x more expensive than simple storage and 2x

more than hot storage for the Financial1 trace.

Ring enables multi-temperature data management by moving data across storage schemes.

It can significantly reduce financial expenses compared to a KVS with a single storage

scheme.

2.5.3 Throughput

Figure 2.13 shows throughput traces for SRS(3, 2, 3), Rep(1, 3), and Rep(3, 3). In these

experiments clients send requests to Ring with the same requests rates of 400K request-

s/sec. The length of the key is 8B, and value size is 1 KiB. Every second a new client is

created, which starts sending requests to Ring. Ring achieves put throughput of almost

1.5M requests/sec under the load of 4 clients for 1 KiB objects with Rep(1, 3). Rep(3, 3)

processes requests 2x times slower, and SRS(3, 2, 3) 4.3x slower than Rep(1, 3). We also

compare Ring throughput with throughputs of memcached, Dare, and Cocytus under the

load of several clients. According to our experiments, comparable memgests achieve higher

throughput than memcached, Dare, and Cocytus.

We also use the YCSB [37] benchmark to generate our workloads for Figure 2.14. The

distribution of the key probability is Zipfian [37], with which some keys are hot and
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Figure 2.14: Single client throughputs of memgests under different (get:put) ratios work-

loads with 1 KiB value size.

some keys are cold. The length of the key is 8B, and value size is 1 KiB. We evaluate

the systems with different (get:put) ratios, including equal-shares (50%:50%), get-mostly

(95%:5%) and get-only (100%:0%).

Figure 2.14 shows traces for SRS(2, 1, 3), SRS(3, 2, 3), Rep(1, 3), and Rep(3, 3). In these

traces a single client sends requests to Ring with different request rates. Every second the

client doubles its request rate from 128K requests/sec until it reaches 1024K requests/sec.

In all experiments the requests were served by 3 coordinator nodes, and the client accesses

them in order. As noted earlier, all memgests share the same implementation of how get

requests are served, and therefore exhibit the same get throughput of 418K requests/sec.

This number drops as the workload’s put ratio is increased. Since our implementation

is single threaded, we have not noticed a significant difference between different storage

schemes. A small drop in throughput of erasure coded schemes for (50%:50%) workloads

is due to differences in memory allocation algorithms for replicated and erasure coded

memgests.

Figure 2.14 shows that the highest put throughput is achieved by the unreliable memgest

Rep(1, 3) at 290K requests/sec. Other schemes achieve a slightly lower throughput of

280K requests/sec, despite the fact that they have to replicate requests. This is due to
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two effects: the replicated memgests employing quorum-based replication; and the current

implementation being single-threaded. We believe that a multi-threaded implementation

of memgests can achieve higher performance. Finally, Ring’s throughput of SRS(3, 2, 3)

memgest is 1.5x-2x faster than a comparable Cocytus configuration, which achieves ap-

proximately 220K requests/sec for (100%:0%), (95%:5%), and (50%:50%) workloads [174].

2.5.4 Failures and recovery

We evaluate the recovery efficiency of Ring depending on recovered metadata size (see

Figure 2.15). Each measurement is repeated 500 times, and the figure reports the median

and the 90th percentile. The coordinator node failures are simulated by manually killing

processes on the node. Our evaluations show that for all storage schemes the median

recovery time is 300 µs for recovering the coordinator node after a failure with 1 MiB of

metadata. Ring has to ensure strong consistency and therefore recover all metadata of all

storage schemes within the system before answering client requests. Without this measure,

there would be a risk for the system to reply with stale data, since the key with the highest

version can be stored in an unrecovered memgest. The complexity of the recovery process

results in a high variance of metadata recovery time, which includes:

1. The leader detects the failure and substitutes the failed node with a spare one.

2. The leader replicates the new configuration to all nodes.

3. Once all nodes have received the decision, they start in their new role, i.e., existing

nodes connect to the new node.

4. The new node creates the required empty memgests and connects to alive nodes.

5. Once nodes are connected, the new node requests the metadata, followed by the logs,

which store previous requests from clients to ensure strong consistency.

6. Once the coordinator nodes have all the metadata, they can rebuild the volatile

hashtable. With only the metadata, the new node can serve put and delete requests
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without actual data. To process get requests, however, the node needs data, which

is either copied or recovered depending on the storage scheme (Rep or SRS, respec-

tively).

Block recovery. We also evaluate the recovery time of erasure coded data blocks for

different SRS memgests. Figure 2.16 reports the median and the 90th percentile. Time

is measured from receiving a request from the client to when the block is fully recovered.

As expected, the time of recovery is correlated to the size of the lost block. We can also

see that the latency of recovering a block encoded with SRS(3, 1, 3) takes longer than

SRS(2, 1, 3), despite the fact that they have the same number of coordinator nodes. As

mentioned before, the data in SRS(2, 1, 3) is encoded according to RS(2, 1), and according

to RS(3, 1) in SRS(3, 1, 3). It therefore requires collecting 2 blocks for SRS(2, 1, 3) and 3

blocks for SRS(3, 1, 3) to recover one lost block. At first glance, it seems that SRS(2, 1, 3)

and SRS(3, 1, 3) are two identical schemes because they are allocated across 4 nodes

and ensure the same throughput and latency. As it can be seen from the experiment,

however, they have have different recovery rates and, therefore, different resilience. Since

SRS(2, 1, 3) recovers faster than SRS(3, 1, 3), it provides higher reliability and availability

guarantees.

Figure 2.16 shows that SRS(3, 2, 3) and SRS(3, 1, 3) have approximately the same la-

tencies for all block sizes. This is because the number of parity nodes affects the num-

ber of failures the scheme can tolerate, while computation stays practically the same.

SRS(3, 2, 3) recovers data a little bit faster because the recovery master requires any 3

blocks out of 4 available ones, whereas only 3 blocks are available for reconstruction for

SRS(3, 1, 3). Therefore, SRS(3, 2, 3) can recover faster in the case of a single failure.
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2.6 Related work

To address opportunities of exploiting explicit resilience management, we give an overview

of the existing technologies allowing users to modify storage schemes. In particular, one

of the most well-known KVS, Redis [135], offers the option of determining the degree

of replication of each volume, but it does not allow performing the update in a per-key

manner. It also does not support erasure codes to reduce memory usage. Redis also does

not ensure strong consistency since it employs asynchronous replication.

Erasure codes also support altering resilience of the data. For instance, it is well known

that RAID6 can be easily converted to RAID5 and vice versa, but it can take days to

decode all the data on the disks [32].

The known method to combine a wide range of storage schemes and be able to change them

per object is to maintain a special name node, which stores all metadata and references

to requested data [168, 139]. The name node can, however, become a bottleneck and be a

single point of failure. In addition, this approach leads to additional hops in data center

networks to read and write data.

Another approach of changing storage schemes with low computational overhead is intro-

duced by the BlowFish distributed data store [79]. BlowFish stores data in a compressed

format and enables dynamically changing the compression factor. A smaller compression

factor indicates higher storage requirements, but also lower latency (and vice versa). How-

ever, to ensure resilience the data itself is still replicated, and changes in compression do

not influence the reliability of the stored keys. Finally, the granularity for updating the

compression factor is a single shard, whereas Ring supports per-key resilience management.

It is worth mentioning that Ring is not the first attempt to create a KVS that supports

multiple resilience levels. For instance, Phanishayee et al. [117] suggest supporting mul-

tiple replication algorithms with different consistency levels [26, 23, 160]. However, this

approach does not support erasure coding and is not strongly-consistent.

2.7 Summary and Discussion

Modern, in-memory KVSs are widely used because of their performance characteristics

and their ability to provide fault tolerance and strong consistency. However, KVSs do not

offer users the possibility to select the most suitable trade-off in terms of fault tolerance,
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performance, and resource usage. In this chapter we have presented Ring, a distributed

in-memory KVS that allows users to control the level of resilience on a per-key basis

and, thus, control the resource usage of the KVS that better matches the application

profile. The core of Ring is a novel encoding mechanism, Stretched Reed-Solomon (SRS),

which enables strongly consistent systems to support different resilience levels on a per-key

basis, allows dynamic changes, and does so transparently, without affecting performance

or consistency. The experimental evaluation indicates Ring provides significant memory

savings and allows choosing the best trade-offs between reliability, performance, and cost.
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3
Compactable Remote Memory

over RDMA

Distributed memory systems are becoming increasingly important since they provide a

system-scale abstraction where physically separated memories can be addressed as a sin-

gle logical one. This abstraction enables memory disaggregation, allowing systems as

in-memory databases, caching services, and ephemeral storage to be naturally deployed at

large scales. While this abstraction effectively increases the memory capacity of these sys-

tems, it faces additional overheads for remote memory accesses. To narrow the difference

between local and remote accesses, low latency RDMA networks are a key element for

efficient memory disaggregation. However, RDMA acceleration poses new obstacles to ef-

ficient memory management and particularly to memory compaction: network controllers

and CPUs can concurrently access memory, potentially leading to inconsistencies if mem-

ory management operations are not synchronized. On the other hand, memory compaction

is needed to lower memory requirements and avoid degraded performance. Nevertheless,

RDMA-accelerated distributed memory systems do not provide memory compaction and

are exposed to memory fragmentation.
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The work in this chapter explores the following research questions:

• What are the main causes of memory fragmentation in remote memory systems?

• How can we provide memory compaction to RDMA-accelerated remote memory

systems without compromising strict consistency?

• How can we ensure that a compacted object is still accessible via one-sided RDMA

accesses?

To address these questions we introduce CoRM, an RDMA-accelerated remote memory

system that supports memory compaction and ensures strict consistency while providing

one-sided RDMA accesses. CoRM exploits RDMA-aware memory remapping to silently

move objects across physical pages, preserving their base virtual addresses and RDMA

access keys. We show how CoRM can enable compaction to reduce memory fragmenta-

tion and significantly decrease memory usage of RDMA-accelerated management systems,

introducing minimal memory and communication overheads.

The content of this chapter has been published at the International Conference on Manage-

ment of Data (SIGMOD) in 2021 [150]. The work in this chapter was done in collaboration

with Salvatore Di Girolamo and Torsten Hoefler.

3.1 Motivation

RDMA-capable Network Interface Cards (RNICs) empower systems to access the main

memory of remote peers without involving the host CPUs, providing up to 22x shorter

latency [122], and up to 20x higher throughput [105], compared to traditional TCP/IP

networking. However, the use of RDMA can prevent memory optimization strategies, such

as memory compaction. In fact, remote objects are accessed by specifying their virtual

addresses at the remote host: if the remote host relocates an object, its virtual address

might change, requiring to propagate this update to the other nodes. To avoid this issue,

some RDMA systems do not expose the virtual addresses of the stored objects, distributing

instead objects’ handles to the clients [111, 134]. While this indirection hides the process

of updating pointers of relocated objects, it can significantly hinder performance because

of the pointer chasing overheads [47, 46].

Memory fragmentation is a serious concern across the spectrum of modern computing

platforms and databases [84, 124, 98]. Traditional memory allocators without compaction
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can suffer from catastrophic memory fragmentation [130, 134]. Furthermore, while frag-

mentation increases memory usage of in-memory data stores by up to 69% (e.g., Redis,

MongoDB, and VoltDB) [84, 98, 176, 115, 114], it also has a negative impact on their

performance due to memory sparsity [84]. For distributed systems, the fragmentation

problem is particularly severe as the memory space may consist of hundreds of physi-

cal nodes and the stored data can be replicated multiple times for fault tolerance. Each

additional machine can potentially increase the amount of wasted fragmented memory

(Section 3.2.1).

We propose CoRM, a remote memory system that exploits RDMA for fast remote accesses

and supports memory compaction. Additionally, CoRM’s compaction is RDMA-safe: ob-

jects are still accessible via RDMA (Section 3.3.4) and the user is guaranteed to observe

their consistent state (Section 3.3.1) even if they have been relocated by the compaction al-

gorithm. To facilitate compaction, objects in CoRM are associated with block-local object

IDs that are randomly generated at object allocation time. Our compaction algorithm is

probabilistic: two memory blocks can be compacted into one only if they are conflict-free,

that is, the objects in the two blocks do not have the same IDs. This enables a trade-off

between compaction probability and space overhead: the larger the object ID space, the

higher the compaction probability (Section 3.3.3). In some cases, relocated objects can

experience higher access times because of indirections. Clients can detect this situation

and fix the pointers to recover efficient one-sided RDMA access (Section 3.3.1).

3.2 Background on Shared Memory Systems

Distributed Shared Memory (DSM) systems [30, 47, 28, 175] provide an abstraction where

the memory of multiple different physical nodes is viewed as a single unified memory space.

Applications running in a DSM can randomly access their local memory or the memory

of remote nodes. To implement this abstraction, DSMs provide APIs for managing (i.e.,

allocating and freeing) and accessing (i.e., reading and writing) memory. Memory accesses

are translated to load/stores if they target local memory, otherwise, they lead to requests

that are sent over the network to the target nodes.
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3.2.1 Concurrent memory allocators

In a DSM system, the memory of a process can be allocated by the application tasks

running locally or by remote ones. Hence, a DSM node needs to manage concurrent

memory allocations, as it would be in normal multi-threaded applications with the addition

that now allocation requests can also come from the network.

Concurrent Memory Allocators (CMAs) have two main requirements: (1) scale with the

number of threads managing memory; (2) maintain low memory fragmentation, maximiz-

ing memory efficiency. We define memory fragmentation as the ratio between the amount

of memory granted by the operating system to a process and the amount of memory that

the process is effectively using.

Concurrent Memory Allocator Model

Process-wide allocator

Thread-local allocator

Free blocks

Block (size class: 8 B)

physical pages

Block (size class: 32 B)

physical pages

Thread-local allocator

Block (size class: 8 B)

physical pages

Block (size class: NA)

physical pages
Block (size class: NA)

physical pages
Block (size class: NA)

physical pages

Figure 3.1: Concurrent Memory Allocator: each thread allocates memory from its thread-

local allocator, which requests memory blocks from the process-wide allocator.

Scalability. To improve scalability, most CMAs [18, 47, 28, 124, 49, 89] adopt a two-level

architecture, as depicted by Figure 3.1. In this model, each thread is served by a thread-

local allocator that has its free memory heap: the memory allocation requests are served

from this heap without the need for global synchronization. If a thread-local allocator runs

out of memory, it requests new memory from the process-wide allocator. The process-wide

allocator may allocate memory directly from the operating system.

To avoid frequent accesses to the process-wide allocator, which can potentially require

synchronization, the thread-local allocators fetch more than one free page at a time. The

set of free pages that are fetched from the process-wide allocator in a single access is

defined as block. Blocks are used to store objects belonging to predefined size classes:

a given memory block can be used only for storing objects of a certain size. An object

is allocated in the smallest size class that can fit it. Therefore, the size classes must be

carefully chosen to limit internal fragmentation.
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The block-based approach introduces a trade-off between synchronization overhead and

memory efficiency: the larger the block size, the less the number of accesses to the process-

wide allocator, hence the better the scalability. On the other hand, larger blocks can lead

to memory inefficiency if the allocated blocks are not fully utilized by the allocating thread.

Memory Fragmentation. High memory fragmentation can be caused by irregular allo-

cation spikes or low usage of particular size classes [12]. Allocation spikes happen when

an allocator experiences a high volume of allocations followed by only a partial set of

deallocations. The issue is that it is not guaranteed that these deallocations will lead to

memory being freed up: In fact, blocks containing at least one object cannot be released

back to the process-wide allocator. In this scenario, the threads can be left with many

blocks that are scarcely utilized and cannot be released, causing memory fragmentation.

Low occupancy of some size classes can also be a source of memory fragmentation. Con-

sider an example where an application allocates an object of size s on each of its T threads:

the thread-local allocators will allocate the object from their local memory, increasing the

memory requirement to (T · s). However, if the thread-local allocators do not have blocks

of the requested size-class, they will request a new block from the process-wide allocator,

potentially allocating up to (T · B), where B is the block size. If objects of size s are

uncommon, most of the newly allocated blocks will have very low occupancy: e.g., if there

is only one object per thread of that size, the overall unused memory is T · (B − s) bytes.

Memory Compaction. To reduce memory fragmentation, CMA systems can adopt

memory compaction strategies. In principle, these strategies consist of taking a set of

scarcely utilized blocks and merging them into one, releasing the others. This process

needs to preserve the accessibility of the compacted objects so clients could still access

them. A common strategy is to employ an indirection table that maps object keys to

their current memory location [111] allowing systems to move objects freely in memory by

updating corresponding entries in the table. However, the use of indirection tables results

in revoking direct RDMA access to stored objects (Section 3.2.2) leading to a 2x reduction

in read throughput [47, 46].

An alternative approach has been recently proposed by Mesh [124]: it does not use in-

direction tables and, instead, exploits virtual memory functionality to compact memory

without the need for changing virtual addresses of relocated objects. Mesh merges the

content of scarcely utilized blocks into one block and then updates the virtual-to-physical

mapping of the affected blocks making their virtual addresses to point to the single re-

sulting block holding the relocated objects. Mesh requires the relocated objects to reside
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at the same offset as they did in their original blocks (i.e., no conflicts) to preserve their

virtual addresses. In Section 3.3.1, we discuss how this constraint limits the probability of

compacting two blocks and show how our new compaction strategy can avoid this issue.

3.2.2 RDMA-accelerated DSM systems

To efficiently enable the shared memory abstraction, DSM systems must minimize the

overheads of remote memory accesses. To narrow the performance gap between local and

remote accesses, modern DSM systems employ RDMA to ensure low latency and high

throughput [47, 28, 3, 2]. RDMA is a mechanism that allows one machine to directly

access the memory of other remote machines across the network. The RNIC on the sender

side reads data directly from the sender’s memory and injects it into the network. On

the receiver side, the RNIC receives the data and writes it directly to the host memory,

bypassing the operating system and minimizing the end-to-end latency. RDMA-enabled

hosts communicate through either reliable or unreliable Queue Pairs (QPs). In this chap-

ter, we consider only reliable QPs, as it is the only type of QP that supports one-sided

RDMA read operations.

In principle, all DSM operations (i.e., memory allocation and freeing, read and writes) can

be implemented as RDMA one-sided operations. However, most of them would require

multiple round-trips, hindering the performance gains given by RDMA: e.g., allocating

memory with only RDMA one-sided operations would require to read, modify, and write

back the allocation state of the target node (without considering that multiple nodes of

the DSM can be targeting the same memory at the same time). We take the approach

of FaRM [47], which accelerates remote reads with RDMA, while implementing other

operations with Remote Procedure Calls (RPCs). We now describe how RDMA can be

used to accelerate read operations and how it can help to have low-latency RPCs.

RDMA reads. To expose memory over the network and allow other nodes to read it,

a DSM node must register the memory on its RNIC. Memory registration consists of

pinning the associated memory pages in physical memory and copying the related page

table entries to the Memory Translation Table (MTT) of the RNIC. The RNIC generates

keys for local and remote accesses, namely l key and r key. The memory region can be

accessed by any local QP which has the l key and by remote endpoints having the r key.

Figure 3.2 shows an RDMA read example: when the RNIC receives an RDMA request, it

translates the target virtual address using its MTT into the corresponding physical page
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virtual
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Figure 3.2: Accessing remote memory via RDMA read.

1 , then it uses the computed physical address to issue a DMA read towards the host

memory 2 , sending back the read data.

RDMA reads and memory compaction. RDMA accesses are issued by specifying the

virtual addresses of the data in the memory of the target machine. This characteristic often

limits the memory compaction capabilities of DSM systems exploiting RDMA. Memory

compaction requires to move allocated data in memory, changing the virtual-to-physical

mapping and potentially changing the virtual addresses themselves. When this happens,

remote peers cannot access that data via RDMA anymore because the virtual addresses

they hold may become invalid. For this reason, DSM systems like FaRM [47], do not

support compaction and therefore can suffer from memory fragmentation, which can be

especially dangerous in scenarios like the ones discussed in Section 3.2.1.

RPC operations. Memory management operations and accesses can be handled via

RPC. On a DSM node there is a number of worker threads that are in charge of running

application-defined tasks and handling RPC calls. RPC requests are pushed into an RPC

queue that is shared between the worker threads. The handling of RPC requests can be

accelerated with RDMA by letting remote peers push the RPC requests directly to the

RPC queue [72].
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Figure 3.3: Accessing remote memory via RPC read.
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Figure 3.3 shows an example of an RPC read operation: the memory read request arrives

at the RNIC and is copied directly into the RPC queue 1 . The DSM worker threads

regularly poll the RPC queue to check for new requests. When a thread gets a memory

request 2 , it serves the request and sends the result back to the initiator 3 . In this

case, the virtual-to-physical address translation is done by the MMU of the core where

the worker thread is executing.

3.3 CoRM

CoRM is a memory management system that exploits RDMA to improve both latency

and throughput of memory accesses. With CoRM, we show that it is possible to enable

memory compaction in RDMA-accelerated DSM systems without introducing indirection

to take full advantage of one-sided RDMA operations.

Relation to other systems. DSM systems like FaRM sacrifice memory compaction

in order to employ RDMA to accelerate remote communications. CoRM is designed to

provide memory compaction to RDMA-accelerated DSM systems such as FaRM without

compromising strict consistency, but requiring storing extra metadata in object head-

ers (Section 3.4.4). Since CoRM’s API mimics FaRM’s API and only adds a maintenance

call for releasing unused virtual addresses (Section 3.3.2), we believe our compaction strat-

egy can be integrated to FaRM without extra effort.

System Type RDMA Mem. Compaction Vaddr Reuse

Mesh [124] Allocator 7 3 7

FaRM [47] DSM 3 7 -

CoRM DSM 3 3 3

Table 3.1: Comparison of FaRM, CoRM, and Mesh.

The compaction strategy of CoRM is similar to Mesh [124], which is a memory allocator

supporting memory compaction for C/C++ applications. Unlike Mesh, CoRM’s memory

compaction strategy can additionally merge blocks having objects placed at the same

offsets, improving the compaction probability (Section 3.3.3). Furthermore, Mesh does

not solve the problem of virtual space exhaustion, which is addressed in CoRM’s design

by tracking the block in which each object was initially allocated (Section 3.3.2). For that,
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CoRM requires users to perform additional actions, called pointer correction (Section 3.3.1)

and pointer release (Section 3.3.2), that have little effect on performance (Section 3.4.3).

Table 3.1 recaps the characteristics of Mesh, FaRM, and CoRM. RDMA indicates if the

system supports RDMA-accelerated remote accesses; mem. compaction indicates if the

system supports memory compaction; vaddr reuse tells if the system can reuse virtual

addresses after compaction, avoiding virtual address space exhaustion (Section 3.3.2).

CoRM improves over Mesh by introducing a new compaction strategy that increases the

probability that two memory blocks can be compacted and it extends FaRM by introducing

support to memory compaction, making it resilient to memory fragmentation while still

preserving strong consistency and one-sided RDMA accesses.

Interface. The API is shown in Table 3.2. Users can allocate and free objects using

Alloc and Free. Allocations return 128-bit pointers that can be used to access objects.

Those pointers include the actual 64-bit object address and RDMA-related metadata such

as the r key. Read operation can be used to read an object given its pointer. CoRM

supports two types of reads: via RPC (read) and via one-sided RDMA (DirectRead).

One-sided RDMA reads are lock-free and are performed without involving the remote

CPU. The application is guaranteed to observe a consistent object state even in case of

concurrent writes to the same object. To support lock-free consistent RDMA reads, we

embed versioning information into the object itself [47]: a version number is stored with

each cacheline, allowing the reader to check consistency by verifying that all cachelines

that have been remotely read have the same version number. This strategy relies on cache-

coherent DMA and requires cacheline-aligned allocation. If the consistency check fails, the

RDMA read needs to be issued again. To update an object, the user can use the Write

call to write a local buffer to a remote one.

3.3.1 Memory allocation and compaction

CoRM supports compaction that does not compromise the object pointers of the clients.

Our system exploits RDMA-aware memory remapping to silently move objects across

physical memory blocks while preserving their virtual addresses and RDMA access keys.

Allocation algorithm. CoRM uses a concurrent memory allocator as described in Sec-

tion 3.2.1, similar to most memory systems [47, 28, 124, 49, 89]. The allocator supports

a list of distinct 8-byte aligned sizes, that are chosen to reduce the average internal frag-

mentation due to round up to the nearest size class. The process-wide block allocator
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Table 3.2: CoRM APIs

API Type Pointer

Correction

Description

ctx* CreateCtx(char* ip,int port) Initialization N/A connect to a remote memory allocator

addr_t ctx::Alloc(u32 size) RPC N/A allocate object with a given size

int ctx::Free(addr_t &addr) RPC Yes free object at a given address

int ctx::Read(addr_t &addr,u8* buf,u32 size) RPC Yes read object to buffer with a given size

using RPC

int ctx::DirectRead(addr_t &addr,u8* buf,u32 size) RDMA No read object using one-sided RDMA read

int ctx::ScanRead(addr_t &addr,u8* buf,u32 size) RDMA Yes read object by reading and scanning the

whole block which contains the object

int ctx::Write(addr_t &addr,u8* buf,u32 size) RPC Yes write content of buffer to the remote ob-

ject using RPC

int ctx::ReleasePtr(addr_t &addr) RPC Yes an explicit call to release old object ad-

dress using RPC

in CoRM can allocate blocks with sizes that are multiples of 4 KiB (i.e., a normal-sized

page). However, CoRM can easily be extended to work with huge pages to reduce the

number of pages.

Block allocation is performed in two steps: first, we allocate a physical page using the

memfd create system call [99]; then the allocated physical page is mapped to virtual space

using mmap. The process-wide allocator keeps track of all virtual-to-physical mappings.

The memfd create call creates an anonymous file that lives in RAM, which can be modified,

truncated, and memory-mapped as a regular file. To reduce the number of allocated

file descriptors, CoRM allocates files of 16 MiB and uniquely identifies physical blocks

as a tuple of the file descriptor and the page offset in the file. The block allocator is

also responsible for registering allocated blocks with the RNIC to enable remote access

(Section 3.3.4).

Compaction algorithm. CoRM can compact blocks of the same size class belonging to

the same machine. The high-level idea of the compaction algorithm is to find two blocks

of the same class with low utilization and copy objects from a block (i.e., source) to the

other (i.e., destination), as illustrated in Figure 3.4. Once all objects have been copied,

the source block can be deallocated and its virtual address is remapped to the physical

address of the destination block. At this point, we have two virtual addresses pointing to

the same physical page. The mapping is updated also on the RNIC in order to preserve

RDMA access to the objects of the source block (Section 3.3.4).

A similar approach to memory compaction has been proposed by Mesh [124]. However,
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Figure 3.4: Compaction of two blocks without conflicts on object offsets or IDs. After

compaction, the virtual addresses of block 1 point to block 2.

in Mesh compaction is only possible when no objects in the blocks occupy the same

offsets. The limitation comes from the fact that Mesh is a plug-in replacement for malloc

in C/C++ programs where the applications can freely read and write memory by using

virtual addresses with load/store instructions. In that case, the page virtual address can

be remapped transparently (i.e., the translation is performed by the MMU) but the object

offsets cannot change. Thus, Mesh can compact blocks only if their objects do not conflict

in offsets. In DSM systems, however, users always use explicit read/write functions to

access memory: these are needed to resolve remote pointers and to enable concurrency

control.

CoRM takes advantage of the DSM programming model and relaxes the requirement of

the compacted objects keeping the same offsets after compaction. To achieve that, CoRM

assigns identifiers (IDs) to each object in the block. The ID is unique only within a single

block and is generated randomly using a uniform distribution. An object is uniquely

identified in memory by the block address and the object ID, which is stored in the header

of the object. This design choice allows CoRM to compact two blocks only if the objects in

them do not have the same IDs. Differently from Mesh, where the compaction condition

is based on offsets, in CoRM the object IDs are random and the IDs size can be tuned

(16 bits by default), improving the compaction probability. In fact, while blocks can also

have conflicts in the object IDs, they are less probable than offset conflicts (Section 3.3.3).

Figure 3.5 shows an example where the blocks to compact have conflicting offsets. In

this case, a Mesh-like approach would not be able to compact, while CoRM can move the

conflicting objects to a different offset, preserving their IDs.

During compaction, it is preferable to preserve the offset of the objects as it preserves

the virtual addresses of compacted objects. When it is not possible (i.e., because of offset

conflicts), CoRM is free to move objects to new offsets within the block. The moved

objects can still be found by looking for their object IDs which is included in the 128-bit
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Figure 3.5: Compaction with offset conflicts. CoRM can compact blocks by moving ob-

jects. Accesses to moved objects with indirect pointers need additional pointer correction.

pointers returned by the Alloc function. A pointer that points to an object that has been

moved to a different offset is defined as indirect. Instead, pointers to objects that have

not been moved even after compaction are defined as direct. When accessing an object

with an indirect pointer, the virtual address translation will point to the correct block

but the object will not be found at the given offset. In this case, CoRM will need to

perform an additional action, called pointer correction (Section 3.3.1), in order to retrieve

the requested object. The pointer correction is implicitly performed during all API calls

but one-sided DirectRead (see Table 3.2).

Compaction policy. CoRM calculates a fragmentation ratio for each size class. CoRM

triggers compaction for a size class if its fragmentation ratio exceeds a fragmentation

threshold. The fragmentation threshold can be tuned for each size class depending on its

compaction probability (Section 3.3.3). CoRM can additionally start compaction when an

allocation fails due to shortage of memory.

Compaction mechanism. In CoRM, each thread has its private memory allocator.

Therefore, the blocks that can be compacted may belong to different threads, preventing

efficient lockless memory compaction. To address this issue, CoRM selects one of the

worker threads as a compaction leader, that performs compaction in two stages: block

collection and block compaction. During the block collection, the leader broadcasts a

collection request to all other threads, asking for sufficiently low-occupancy blocks of a

certain size-class. In the second stage, after all threads reply to the collection request,

the leader can start the compaction algorithm. Our two-stage design removes the need

to have costly concurrent data structures since CoRM holds an invariant that any block

is owned by at most one thread. CoRM tries first to compact the least utilized blocks,

as they have fewer elements and induce fewer offset collisions. During compaction of two

blocks, besides copying objects, CoRM also merges metadata of the affected blocks. The

metadata is a hash table that keeps a mapping between object IDs and offsets used only
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Figure 3.6: CoRM supports two approaches for pointer correction: thread messaging,

and memory scanning. The worker received a request to read object ID:29 from address

0x1220, which belongs to block 0x1200, but the object has been moved to address 0x1230.

for fast pointer correction (Section 3.3.1).

Pointer correction As the compacted objects can move within memory after compaction,

the virtual pointer held by the user may not directly point to the desired object. To avoid

searching an object in its block, each user’s object pointer contains the offset hint where

the object is expected to be in the block. CoRM always optimistically accesses the object

at the hinted offset (using a load instruction) and then checks its ID. If the ID of the

accessed object does not match the one in the used pointer, then CoRM performs a search

to find the requested object. Once the object is found, the hint inside the object pointer

is updated to the new offset, making the pointer direct.

RPC calls. Pointer correction is transparent to the user when RPC-based calls are used

to read and write objects. We show two approaches that can be used to find objects

accessed with indirect pointers: the first approach uses inter-thread communication, while

the second directly scans the block with the requested object in order to find it. Figure 3.6

illustrates both approaches. Whenever an RPC read call is served 1 , CoRM checks if

the object ID of the hinted object matches the ID of the requested one 2 . If this check

fails and the solution with inter-thread communications is employed (left), then the thread

serving the RPC request forwards it to the thread owning the requested block 3 . In this

way, the owner thread can quickly query metadata of the block to determine the position

of the object 4 . For each block we keep a thread-local mapping between object IDs and

offsets stored in it. Once the object is found, the owner thread sends the corrected pointer

back to the thread handling the RPC request 5 allowing it to complete the request and

reply to the client 6 . While this approach is more efficient for large block sizes since it

avoids expensive scans, it can delay the request processing if the owner thread is busy with

other activities (e.g., compaction). Instead, the block-scanning approach does not require
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inter-thread communications by letting the thread serving the RPC call scan the block

with the requested object, even if it belongs to another thread. The thread compares the

IDs of all allocated objects with the ID of the requested one to find the new offset 3 .

After the object is found, it is sent back to the client 4 .

RDMA calls. RDMA read accesses are not served by the CoRM worker threads but

are directly performed by the RNIC. This implies that the pointer correction mechanisms

we described above cannot be applied for DirectRead calls and that we need to move the

pointer-correction activity to the client side. Similarly to the RPC case, a client performing

an RDMA read can detect if the read object is correct by comparing its ID to the one

stored in the accessed pointer. If the two do not match, then the client has two options:

(1) issue an RPC-read, triggering the pointer correction mechanisms of above; (2) issue an

RDMA read of the entire block where the object is stored. With (2), the CoRM client-side

library scans the block in order to find the requested object. We define (2) as ScanRead.

Consistency. Clients interfaced with CoRM are guaranteed to observe consistent objects

even in the case reads are interleaved with writes or happen while memory compaction is

in progress. While RPC calls can directly ensure consistency by employing explicit locking

of object headers, this is not true for RDMA reads.

When performing a DirectRead, CoRM issues a one-sided RDMA read to retrieve the

object and then checks if the read object is valid. Other than the case described in

Section 3.3.1, there are two reasons for which a read object might be invalid: (1) the read

object is being updated by a concurrent write (i.e., the object is corrupt); (2) the read

object is under compaction. To detect the first case, we store the object version into the

header of the object and in the first byte of each cacheline, as proposed by FaRM [47].

Writes to the object increase the object version. Clients can verify the validity of the read

objects by checking that the version numbers match. To detect the second case, we store

a lock state into the object header (2 bits). At the beginning of a compaction process,

CoRM locks all objects that are going to be compacted. If a client reads a locked object,

then the object is invalid. In case the read object is detected as invalid, then the read is

repeated after a backoff period.

Fault Tolerance. The current implementation of CoRM is not fault tolerant. Thus,

we assume that if any thread fails then the whole process fails. Fault tolerance is an

interesting area of future work. CoRM could employ a fault-tolerant replication protocol

(e.g., [48, 75, 66, 147]) to withstand failures.
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3.3.2 Pointer release

The main effect of the CoRM compaction scheme is to reduce the physical memory uti-

lization by reducing fragmentation. However, this does not automatically translate to

lower utilization of the virtual address space since all virtual addresses are preserved after

compaction. As a result, if virtual addresses are not released in the long run, solutions

like CoRM or Mesh can run out of virtual space.

To address this problem, CoRM stores the address of the virtual block where the object

has been initially allocated in the header of each object. This allows us to keep track of

how many objects that have been moved out from an old virtual address are still valid

and can still be accessed. Once there are no more of such objects, i.e., they have been

deallocated with Free calls, then CoRM can safely assume that the virtual address can be

reused.

Additionally, CoRM provides the ReleasePtr call allowing clients to explicitly release an

old object pointer without actually freeing the corresponding object. This call can be used

by the clients to communicate that all copies of the old pointer have been corrected and

it is safe to reuse that address. The clients must ensure that the pointer is not reused to

address the same object once it has released it. CoRM always notifies the user if it uses

an old pointer. Note an old pointer can be corrected to become direct (i.e., having correct

offset), but it will still reference the old block address. We expect ReleasePtr calls to be

rarely used (only when virtual space is almost exhausted) as Free calls can implicitly free

unused virtual space.

3.3.3 Probability of compaction

A key threat to CoRM’s memory compaction capabilities are collisions in object IDs. This

issue is similar to the one that Mesh has for allocation offsets, where a conflict in the offsets

prevents two blocks from being compacted. We now define the probability of compaction

of two blocks B1 and B2 depending on their occupancy.

We denote p(B1, B2) as the probability of compacting the block B2 into the block B1.

Note that the probability p(B1, B2) is equal to p(B2, B1). As only blocks of the same type

are compactable, we denote s as the total number of objects that can be stored in a block.

We denote n as the total number of different object identifiers a block can have. For Mesh,

n is the number of objects a block can store, which is equal to s. For CoRM, n is the
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Figure 3.7: Compaction probability of two random blocks depending on occupancy and

size class. CoRM probabilities are reported for 8-bit and 16-bit object IDs.

total number of possible object IDs, which is 2x, where x is the number of bits used to

store the object IDs. The value of x is a parameter of CoRM and can be used to tune the

compaction probability. The larger object IDs, the lower the probability of ID conflicts but

increases memory usage, as they are stored in the header of each object (Section 3.3.2).

This is a key difference from Mesh, where n depends solely on the block and the object

class size. E.g., for 16 byte objects, a 4 KiB block can store 256 objects, whereas for 128

byte objects the same block can fit only 32 objects. In this case, if CoRM would use 8-bit

IDs, then it would have the same compaction probability of Mesh. However, already for

larger size classes, the compaction probability of CoRM with 8-bit IDs will become higher

than Mesh, because the number of offsets that Mesh can use would decrease.

We define b1 and b2 as the number of objects stored by B1 and B2, respectively. Assuming

that object IDs are randomly generated with a uniform distribution, the probability of no

collisions is:

p(B1, B2) =


(
n−b1
b2

)(
n
b2

) , if b1 + b2 ≤ s

0, otherwise,

where
(
n
k

)
is the binomial coefficient,

(
n−b1
b2

)
is the total number of blocks not using any ID

of the objects stored in B1, and
(
n
b2

)
is the total number of blocks that have b2 allocated

objects. When the sum of objects in two blocks is greater than the total number of slots,

then the blocks are not compactable.

Figure 3.7 compares the probability of two random blocks of 4 KiB being compactable

depending on their occupancy (four sub-figures) and size classes (x-axis). CoRM performs

better than Mesh in all situations. In particular, for large object sizes, CoRM succeeds

even for high occupancy using only 8-bits for identifiers, whereas Mesh has near-zero
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Figure 3.8: RDMA remapping latencies for three strategies.

probability. With 16-bit IDs, CoRM consistently provides a higher chance of compaction

regardless of block occupancy. We conclude that CoRM is a better choice for memory

compaction in DSM systems since it has a higher likelihood of compacting memory blocks

even with 50% utilization.

3.3.4 Preserving RDMA access

When an RNIC receives an RDMA request, it translates the requested virtual address

to a physical one using its Memory Translation Table (MTT), which contains virtual-to-

physical page translation entries. Whenever a new memory region is registered, a new

entry is installed in the MTT, enabling RDMA access to that region. However, if the page

is remapped because of compaction (i.e., the virtual address is associated with a different

physical page), then also the corresponding entry in the RNIC’s MTT must be updated.

Otherwise, RDMA accesses referencing that virtual address will access the wrong physical

page. One possible solution is to re-register the pages every time they get remapped.

However, according to the RDMA specification, this will cause the invalidation of the

r key: all clients would need to be informed of this event and update the r key to the

remote objects. A client making an RDMA access with an invalid r key causes the RDMA

QP disconnection, potentially leading to high overheads for recovering (e.g., re-establishing

the connection), which can take few milliseconds.

To avoid these overheads, CoRM supports three approaches for restoring RDMA accesses

after page remapping, both preserving the r key of the original registration. The first

approach relies on the ibv rereg mr call, which re-registers the memory and preserves

its access keys. While this approach works on any commodity RNIC, we observed that

RDMA accesses to memory regions under re-registration break the QP connection, which

complies with the InfiniBand specification [10]. The second and third approaches rely
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on the On-Demand-Paging (ODP) capabilities of RNICs. ODP does not compromise the

connection but only works on modern RDMA devices. ODP is a technique that allows

RNICs to implicitly request the latest address translation entries from the OS when pages

are invalid in the MTT or if their mapping changed. ODP enables consistency between

OS and RNIC translation entries. The second approach solely relies on ODP, whereas the

third approach also exploits ODP prefetching to reduce the overhead of MTT misses.

Figure 3.8 shows the latency of the three solutions on a Mellanox ConnectX-5 card. In

all cases, the address must be first mapped with an mmap call, which takes around 2

µs. With the first approach, the ibv rereg mr call takes approximately 9 µs to update

the translation entry on the RNIC. During that time, the virtual address is unavailable

and all remote accesses to it will cause QP disconnections. Using the second approach,

the CPU does not need to explicitly fix entries in the MTT as the RNIC will resolve

inconsistencies via ODP. However, we observe that the first RDMA read from a page that

has been remapped incurs in a 63 µs overhead: this is the cost paid by ODP to invalidate

and install the new mapping into the MTT. Subsequent reads have a 2 µs latency. To

reduce the overhead of ODP MTT updates, verbs support the prefetching of MTT entries

with the ibv advise mr call. The latency of prefetching is 4.5 µs, which can potentially

save the ODP overhead if the read requests arrive after the prefetching completed. This

is the default solution adopted by CoRM for memory registration and remapping.

3.4 Evaluation

We evaluate the performance of memory access and management operations with CoRM

and its memory compaction capabilities. We first study the performance of CoRM with

direct pointers and indirect pointers to evaluate performance degradation when objects

move. Then we measure the performance of CoRM during compaction under synthetic

and YCSB [37] workloads. Later, we evaluate CoRM’s ability to compact memory and

compare it with Mesh for synthetic workloads and real applications.

Experimental setup. The experiments are conducted on an isolated cluster with 12

machines interconnected with an FDR InfiniBand network. Each machine is equipped

with ConnectX-3 InfiniBand network cards and two 3.40 GHz Intel Xeon E5-2630 v3

CPUs (16 hardware threads). CoRM is implemented in C++ and depends on: libibverbs,

an implementation of the RDMA verbs; librdmacm, an implementation of the RDMA

60



3.4. Evaluation

8 16 32 64 128 256 512 1024 2048
Object size in bytes

1
2
3
4
5
6
7
8

la
te

nc
y 

in
 u

s

Remote Alloc/Free
Alloc
Free
RPC baseline

8 16 32 64 128 256 512 1024 2048
Object size in bytes

Remote Read/Write
Read
Write
RPC baseline

DirectRead
RDMA baseline

Figure 3.9: Median latency of CoRM with direct pointers.

connection manager; and libev, a high-performance event loop.

We deploy CoRM on a dedicated machine and spawn clients on other interconnected

machines: all clients connect to CoRM remotely and send requests over the network. If

not stated differently, we configure CoRM with blocks of 4 KiB and 8 worker threads.

3.4.1 Operations Latency

CoRM enables lock-free RDMA-accelerated DSMs with memory compaction capability.

To achieve this, all memory accesses specified by the applications must be issued through

the CoRM API and cannot directly use load/store instructions for local accesses or raw

RDMA calls (e.g., ibverbs) for remote ones. We now discuss the latency of the memory

access and management operations of CoRM. The operation latency is defined as the time

observed by a client to complete the operation (i.e., round-trip time).

Latency of direct accesses. Figure 3.9 shows the median latency of different CoRM

functions when all pointers are direct (i.e., no object has been relocated because of memory

compaction). To show the overhead introduced by CoRM, we also report the round-trip

latencies of RPC and raw one-sided RDMA reads. RPC operations are implemented using

raw Send/Recv RDMA operations. The benchmark first loads CoRM with 10,000 objects

of each size-class (≈40 MiB in total), then starts the client to issue the different operations.

The round trip latencies of RDMA requests are under 4 µs. For comparison, the TCP/IP

traffic over the same link using IPoIB has a latency of 17 µs. Alloc and Free calls add

about 0.5 µs to the base RPC call to manipulate the memory. However, this number

accounts for the allocation case when the thread-local allocator always has a block of the

requested size-class. If this is not the case, the thread-allocator needs to request a new

block, increasing the allocation latency by an additional 5 µs (i.e., to allocate a new block
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Figure 3.10: Median latency of CoRM with indirect pointers.

and register its memory on the RNIC). Read and write over RPC have similar performance

as they communicate the same amount of data. The round-trip latency of the raw RDMA

reads can be as low as 1.7 µs. The consistency protocol which checks the integrity of the

read data in DirectReads only increases the latency for large objects. For objects smaller

than 256 bytes, the DirectRead call has approximately the same latency as a raw RDMA

read. These results show the benefit of using one-sided RDMA operations over Send/Recv

calls for latency-sensitive read-only workloads.

Latency of indirect accesses. To measure the effects of indirect accesses, we measure

the latency of read and write calls targeting compacted objects that have been moved

to a different offset. In this case, the client is using an indirect pointer for accessing the

objects (i.e., the pointer has an incorrect offset). Figure 3.10 (left) shows that there are no

significant differences in latency between direct and indirect pointers for RPC requests. In

throughput-intensive workloads, however, we observed a 5% drop in performance for RPC

requests (Section 3.4.3). While RPC requests using indirect pointers can be fully handled

by the CoRM workers, a failing DirectRead requires the client to perform an additional

action to recover the requested object (i.e., pointer correction). We show the costs of

the two pointer correction strategies: ScanRead and RPC read (see Section 3.3.1). We

observe that with this configuration (i.e., blocks of 4 KiB) using an RPC call to backup

a failed DirectRead is more expensive than a ScanRead. However, for large block sizes,

the first approach can be more efficient because it avoids to move the whole block over

the network but it would still require more CPU time on the CoRM workers in order to

perform the fix.

Once a client realizes that an object has been moved and it has updated all its references

to that object, it can communicate to CoRM that it is now safe to reuse the old object’s

virtual address (Section 3.3.2). This is done with the ReleasePtr call. Figure 3.10 (right)
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Figure 3.11: Read Throughput of CoRM, FaRM for remote and local accesses compared

to direct memory accesses using RDMA and load/store instructions.

shows the latency of this operation and the one of an RPC call for a reference. The pointer

release costs about 0.3 µs for indirect pointers and does not depend on the object size.

This latency includes the time needed by CoRM to find the moved object (Section 3.3.1).

3.4.2 Read throughput

We now show the throughput achieved by CoRM when objects are remotely or locally

accessed. We compare the read throughput achieved by CoRM with the one of FaRM1

and the one achieved by load instructions for local reads and raw RDMA calls for remote

accesses. The former scenario can be compared to an ideal Mesh-based DSM system where

applications are free to use load/store instructions for local accesses. This case represents

the best-case scenario for Mesh as it does not consider the additional synchronization

overheads that should be introduced to keep consistency in case of concurrent read and

writes.

Synthetic workload. We load the systems with a total of 8 GiB of data for each size

class. The objects are accessed uniformly to ensure that data is accessed from DRAM and

the clients have at most one outstanding request at a time. Figure 3.11 shows the results.

For remote accesses, raw RDMA shows the best performance (380K requests/sec for small

objects) as clients do not need to verify cache versions. FaRM and CoRM have ap-

proximately the same performance as they both share the same approach for checking

consistency. For small object sizes, the consistency check has negligible overhead, while

it causes up to 2% slowdown w.r.t. raw RDMA for large objects. This is expected as

1FaRM is not open-source, therefore, we emulated FaRM (including its cacheline consistency check)

following the publicly available information.
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Figure 3.12: Aggregate throughput of CoRM under YCSB and uniform workloads for

different read:write access ratios.

large objects require more cachelines to be checked. CoRM’s cache version approach for

consistency checks was a deliberate choice to mimic FaRM. An alternative approach is to

store a single checksum in the header of a record or after the record [105], which could

potentially be a better strategy for large records.

For local accesses, we compare the throughput of FaRM and CoRM to the one achieved

by a memcpy call. FaRM is not more than 1.01x faster than CoRM for all sizes. FaRM

and CoRM are both 1.33 times slower than memcpy because of the additional software

layer. For larger object sizes, the performance is approximately the same for all three

approaches as object accesses are memory bound.

YCSB workloads. To understand the read throughput that CoRM achieves under realis-

tic workloads, we benchmark it under different YCSB [37] workloads. We load CoRM with

8,000,000 objects of 32 bytes and measure the throughput achieved by RPC and Direc-

tReads. In Figure 3.12, we compare the performance of CoRM under Zipf (θ = 0.99) and

uniform distributions, while varying the number of clients. We report the total throughput

of CoRM averaged over one minute period after a steady state under different read:write

access ratios and numbers of clients. The lines tagged with RDMA use DirectRead to

read objects, whereas RPC tagged lines use RPC reads. Writes are always performed

using RPC.

RPC reads achieve lower throughput than RDMA reads, and the difference becomes larger

for workloads with more reads. The aggregate throughput grows as we add more clients.

However, in the RPC calls, the throughput stabilizes at 700K requests/sec for more than

4 clients. DirectReads allows clients to achieve 1,250K requests/sec for the 50:50 ratio,

which is a 2x improvement over RPC reads. For read-dominant workloads, the throughput
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for YCSB workloads with 100:0 access ratio.

goes even higher up to 1,750K requests/sec and 2,200K requests/sec for uniform and Zipf

distributions respectively, which shows the superiority of RDMA-based accesses over RPC.

The Zipf workload shows a higher throughput because it has a better memory locality

compared to the uniform distribution. This is beneficial for the destination RNIC: in fact,

RNICs have limited cache for address translation entries, and once the cache is full the

MTT will swap and incur in more misses [47].

DirectReads under contention. To evaluate the failure rate of lock-free one-sided

reads, we measure the number of failed DirectReads over a period of one minute for the

YCSB workload with 50:50 read:write ratio, while varying the skewness of Zipf distribution

and the number of clients. The experiment was performed in the same setting as the

previous experiment (Section 3.4.2).

Figure 3.13 shows that the number of conflicts increases with the number of clients and the

skewness of the distribution. Nonetheless, even for the highly skewed workload (θ = 0.99)

and 32 clients, clients observed only 659 failed DirectReads per second, which is less than

0.1% of the total request rate.

Performance under fragmentation. To understand the impact of fragmentation on

CoRM’s throughput we benchmark its performance under YCSB workloads for two set-

tings: no fragmentation (as in the previous experiment) and high fragmentation. To create

the high fragmentation setting, we load CoRM with 16,000,000 objects of 32 bytes and

then randomly deallocate the 50% of them. In Figure 3.14, we compare the performance

of CoRM under the load of 8 clients, while varying the skewness factor of Zipf distribution.

Figure 3.14 shows that the unfragmented memory provides a 1.25x increase in throughput

of DirectReads for moderately skewed access patterns over the fragmented one. For the

highly skewed pattern (θ = 0.99), CoRM’s performance is approximately the same for
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both settings, as the clients mostly access the same small set of keys.

3.4.3 Compaction performance

To characterize the performance the CoRM compaction process we first study its latency

(i.e., the time needed to perform the memory compaction), then analyze how the through-

put of remote clients is affected when the server is busy in performing the compaction.

Compaction latency. The compaction process is composed of two phases: block col-

lection and block compaction. During the block collection phase, the thread performing

the compaction gathers blocks that are candidates for compaction (Section 3.3.1): i.e.,

non-full and belonging to the same size class. Figure 3.15 shows the time for these two

phases. Since block compaction involves page remapping, which depends on the specific

RNIC and remapping strategy (Section 3.3.4), we compare the compaction latencies mea-

sured on machines equipped with ConnectX-3 and ConnectX-5 with ibv rereg mr, and

ConnectX-5 with ODP and prefetching. The block collection phase involves inter-thread

communications, hence we compare two different CPUs: Intel Xeon (Section 3.4) and

AMD EPYC 7742 @ 2.25GHz. Each experiment consists of allocating a single object of

32 bytes on each thread and then triggering the compaction process in order to measure

its latencies.

Block collection. The collection time depends on the number of threads as all threads

must reply to the collection request before the compaction can happen. In this experiment,

each thread replies with its only allocated block to the compaction request. The results are

shown in Figure 3.15 (left). On the Intel cluster, the collection takes 10 µs for 2 threads

and 31 µs for 16 threads We notice that the collection takes on 2 µs on the AMD cluster,

when 2 threads are used, which is 5x times faster than Intel. The two clusters show similar

latencies when increasing the number of threads.

Block compaction. The compaction time depends on the block size and the number

of blocks that can be compacted. In particular, it involves the checks of compactability

requirements, the data copy, and the virtual address remapping on both the OS and the

RNIC. The compaction time of a single block corresponds to the unavailability period

of that block as the data in this block is not accessible because of compaction. In this

experiment, blocks under compaction have only one object and are always compactable

(i.e., no conflicts). Thus, the number of deallocated blocks after compaction is equal to

the number of threads minus one.
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Figure 3.15: Latencies for collection and compaction for different numbers of threads and

block sizes.

Figure 3.15 (center) shows how the block compaction latency varies with the number of

blocks to compact. The block size is fixed to 4 KiB (i.e., one page). The compaction

time grows linearly with the number of blocks (note that the x -axis is exponential). With

ConnectX-3, the block compaction takes about 100 µs, with most of the time (70 µs)

spent into the ibv rereg mr call. The same call on ConnectX-5 takes 7 µs: since this call

is executed for each remapping, the difference in performance increases with the number

of blocks to compact. The ODP strategy provides the best results as it does not require

explicit memory re-registration.

Figure 3.15 (right) shows the compaction latency of a single block for different block sizes.

The bigger the block size, the more physical pages need to be remapped. For 1-page blocks,

the block compaction takes 100 µs for ConnectX-3, and the time grows linearly with the

number of pages. For 1 MiB blocks, consisting of 256 pages, the compaction takes 12 ms

for ConnectX-3. ConnectX-5 can remap pages faster, but the cost of the re-registration

has the same trend as ConnectX-3. In case large blocks are used, the remapping time can

be significantly reduced by using huge pages. For example, a 2 MiB page has the same

remapping and re-registration latency as a 4 KiB page. Therefore, all reported data is

applicable to huge pages.

Throughput during compaction. We evaluate the performance degradation of CoRM

during compaction. In this experiment, we populate CoRM with 8,000,000 objects of 32

bytes and randomly deallocate the 75% of them. Then we start the throughput workload

that repeatedly and sequentially reads all objects. After the warm-up, we trigger the

compaction algorithm. In all experiments, the compaction is invoked after two seconds.
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Figure 3.16: Read throughput of RPC and RDMA clients before, during, and after com-

paction. During the compaction, CoRM compacts 5,794 blocks. (top) Pointers are cor-

rected with thread messaging; (bottom) pointers are corrected with the block scan strategy.

We measure the throughput of a single client before, during, and after compaction.

Figure 3.16 shows the read throughput observed by clients accessing data with different

types of read calls (i.e., RPC and RDMA) and different pointer-fixing strategies. We also

study the performance of the two different approaches for pointer-correction, which is used

when an object is accessed with an indirect pointer (see Section 3.3.1).

Thread messaging. We measure the throughput of two types of clients: one using RPC

reads, and the other using DirectReads (RDMA). In the first experiment (top sub-figure),

CoRM is configured to use thread messaging to find objects which are requested using

RPC calls. The RDMA client needs to recover by itself in case the read fails (i.e., because

the object has been moved). Here we show the case where the client issues a ScanRead

to back up a failed DirectRead. The RPC client observes 700 ms of unavailability, as

a requested object has been moved to a different offset and CoRM could not find it by

using the passed pointer. The reason for that is the thread that owns the block with

the moved object was busy with compaction and could not reply to correction requests

from other threads. It happens because all blocks under compaction belong to the same

thread that performs the compaction. We intentionally configured CoRM to perform long

compaction without breaks to observe that scenario. During this long compaction, the

thread managed to deallocate 5794 blocks. The unavailability period could be shorter if

the compaction was configured with an upper bound on the number of compacted blocks.

The RDMA client, on the other hand, does not observe the unavailability as it corrects
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the pointers using ScanRead, which reads the whole block with a requested object using

RDMA and then scans it. After 8 seconds the RDMA client managed to correct 77,000

indirect pointers. The RPC client spends almost 9 seconds for all corrections. Overall,

both clients observe 5% performance drop during pointer correction.

Memory scan. In the second experiment (bottom sub-figure), CoRM’s worker threads

opt for scanning the whole block to find the object requested using RPC. The RDMA

client in this experiment uses RPC to correct pointers, instead of ScanRead. Compared to

the previous experiment, the RCP client does not experience large unavailability periods,

showing a 22% slowdown in throughput due to the fact that blocks under compaction are

not readable during object migration and remapping. Once the compaction finishes, the

client does not observe any significant performance drops even using indirect pointers, since

a small percentage of pointers were indirect. In a similar experiment where all pointers

are indirect (not reported here), the client observed only 5% slowdown. The RDMA client

experiences performance degradation as it needs to issue an RPC to correct pointers to

moved objects. This approach is slower than the one with ScanRead, which complies with

our latency experiments. Overall, DirectReads provides 1.6x faster performance than RPC

reads even in the presence of indirect pointers and when CoRM performs compaction.

Conclusion. The current experiments show that CoRM’s pointer correction introduces

only a temporary slowdown of 5% on read performance, whereas the use of indirection

tables and RPCs has a constant 40% slowdown since it prevents the use of one-sided

RDMA reads for fetching the data.

3.4.4 Compaction overheads and benefits

To enable its compaction strategy and reuse virtual addresses, CoRM stores an object

identifier with each object. The object identifiers serve two scopes: (1) they enable CoRM

to find relocated objects; (2) they allow detecting reads using pointers to relocated objects

(i.e., same offset, different object ID). The size of the object identifiers determines the

space-overhead per block and the capacity of CoRM of compacting blocks with a large

number of objects. We define CoRM-n as the instance of CoRM using n bits for the object

identifiers. In this experiment, we study the effects of the CoRM compaction strategy for

synthetic and real-world workloads using different object identifier sizes and comparing

the results with the compaction strategy proposed by Mesh.
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Mesh CoRM-0 CoRM-8 CoRM-12 CoRM-16

0 bits 28 bits 28+8 bits 28+12 bits 28+16 bits

Table 3.3: Memory overheads for compaction algorithms per object for 1 MiB blocks.

Object identifiers overhead. Table 3.3 summarizes the space overheads for different

CoRM configurations for 1 MiB blocks, which is the size of blocks in FaRM. In CoRM-0,

object IDs are disabled and the compaction strategy is based on object offsets, as in Mesh.

However, while the overhead of the object IDs is zero, CoRM still stores the virtual block

address in the header of each object to be able to reuse virtual addresses (Section 3.3.2).

Assuming a system with 48-bit memory pointers and 20-bits aligned blocks, the virtual

block address that CoRM needs to store is 28 bits.

The CoRM’s compaction algorithm cannot compact blocks storing more objects than the

ones that can be addressed with a given identifier size. For example, CoRM-8, with 8 bits

for object identifiers, can address up to 256 objects in a block, hence it cannot be used for

1 MiB blocks storing 2 KiB objects, which can hold up to 512 objects. To handle these

cases, CoRM can be configured to use a hybrid compaction scheme where class sizes that

cannot be compacted by CoRM-n are compacted with CoRM-0.

Synthetic traces. Figure 3.17 shows the amount of memory currently allocated (i.e.,

active memory) after a sequence of memory operations. We generate synthetic traces that

first allocate 8 M objects of a given size (sub-figures) and then randomly deallocate a

fixed portion (x-axis) of them. We also plot the active memory in case an ideal memory

compactor, which always frees the non-utilized memory, and in the case in which no

compaction is performed. We study the compaction capability of CoRM for 8, 12, and

16-bit object IDs and include the memory overhead introduced by CoRM to store object

IDs in the reported data.

As the object sizes increase, both Mesh and CoRM are able to compact more memory.

Mesh works effectively for large objects with high fragmentation but incurs in many con-

flicts for smaller objects and low deallocation ratios. CoRM-8 and CoRM-12 perform

always better than Mesh for the object sizes where they can be applied (e.g., ≥ 4 KiB ob-

jects for CoRM-8). CoRM-16 matches the ideal compactor already for 2 KiB objects and

low deallocation rates (i.e., 0.5): this is because larger object IDs reduce the probability of

conflict, hence increase the probability of compaction (object IDs are randomly chosen).

For 256-byte objects, CoRM-16 requires more active memory than the non-compacting
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Figure 3.17: Active memory under synthetic workloads. CoRM is configured with 1 MiB

blocks.

case. This overhead comes from the fact that blocks with 256 byte objects have a very

high probability of collision in object identifiers. Therefore, CoRM’s overheads overwhelm

its compaction capabilities.

Redis traces. Redis [135] is a popular in-memory data structure server. We extract

memory traces from the memefficency unit test of the Redis test suite (v5.0.7):

• redis-mem-t1 : Default Redis configuration. It allocates 10’000 keys of 8 bytes each with

values of sizes ranging from 1 to 16 KiB.

• redis-mem-t2 : Redis is configured as an LRU cache with a capacity of 100 MiB. The

trace first allocates 700,000 8-byte keys with values of 150 bytes each; then allocates

170,000 8-byte keys with values of size 300 bytes each.

• redis-mem-t3 : Default Redis configuration. The trace allocates 5 keys containing data

structures of 160 KiB each; then it allocates 50,000 keys with values of 150 bytes. It

then removes 25,000 keys from the last batch of allocated keys.

For each trace, we report memory usage for a time point when the system had the highest

fragmentation. To show the effects of the number of threads on the active memory, we run

the traces multiple times, varying the number of threads used by the memory allocator:

i.e., these are the treads serving RPC requests in CoRM. For each allocation request, the

thread is selected randomly.
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Figure 3.18: Active memory under Redis workloads. CoRM is configured with 1 MiB

blocks.

Vanilla CoRM. Figure 3.18 shows the memory usage of the Redis traces under different

compaction strategies. In this experiment, CoRM disables compaction for blocks that can

store more objects than the ones that can be addressed with the given identifier size. For

reference, we include the active memory kept by an ideal compaction strategy and in case

no compaction is performed. CoRM introduces up to 4 MiB memory overhead (i.e., for

CoRM-16) to store object IDs. The reported data includes this overhead.

Redis workloads do not experience allocation spikes as in the synthetic workload. There-

fore, none of the algorithms can significantly reduce the active memory for a single-

threaded allocator. However, the traces exhibit high fragmentation due to the low usage

of some size classes. Depending on the trace, the difference in active memory between

1-thread and 32-thread allocators ranges from 3x to 12x. This increase of fragmentation

is explained by the fact that with more threads there is a higher possibility of conflicts

(either on the block IDs or on the offsets). The cases where Mesh performs better than

CoRM are the ones where CoRM cannot compact blocks because of their large object

count: e.g., CoRM-12 can compact only blocks with objects larger than 256 bytes. With

16-bit per object ID, CoRM-16 provides better memory efficiency for redis-mem-t1 and

redis-mem-t3. For redis-mem-2, Mesh manages to compact more memory than CoRM-16.

Also in this case, this happens because the trace allocates objects that CoRM-16 cannot

compact (i.e., 8 bytes, while CoRM-16 can compact blocks with at least 16 bytes objects).

CoRM-20, which is not plotted here, manages to compact more memory than Mesh since

it supports the aforementioned size class. This suggests that the object IDs should be

tuned for particular workloads in order to maximize memory efficiency.
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Figure 3.19: Active memory under Redis workloads. CoRM is configured with 1 MiB

blocks and in hybrid mode.

g

Hybrid CoRM. To remove the negative effects of blocks that cannot be compacted

with a given object identifier size, we adopt the hybrid compaction strategy described

in Section 3.4.4. Figure 3.19 shows the active memory kept by the different compaction

strategies with this setting, using the same Redis traces of Figure 3.18. The data shows

that hybrid configuration has better compaction performance compared to pure CoRM

and pure Mesh algorithms.

In all experiments, hybrid CoRM is at least as good as Mesh in terms of active memory.

For redis-mem-t1 and redis-mem-t2, CoRM-16 provides an improvement of 12% and 5%

over Mesh, respectively. The key difference is that CoRM, other than being at least as

good as Mesh for memory compaction, it enables RDMA-accelerated DSMs while being

able to release and reuse virtual addresses.

Discussion. To take full advantage of CoRM’s compaction capabilities, users can tune

object ID sizes for different size-classes, according to the specific workloads. Ideally, ap-

plications would label class sizes with an indication of how frequently they are used.

Highly-used classes would likely not benefit for compaction since their frequent alloca-

tions and deallocations would already avoid fragmentation. Instead, class types that are

not frequently allocated, can be managed by CoRM which will be able to compact them

while introducing a space overhead given by the object IDs. We consider an auto-labeling

strategy of class sizes as future work.
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3.5 Related Work

RDMA-accelerated DSM systems: FaRM [47] is a distributed memory computing

platform that exploits RDMA to read remote objects. FaRM does not support memory

compaction and addresses the problem of unpopular size-classes by pinning them to specific

thread allocators. While this solution mitigates memory fragmentation due to unpopular

size classes, it does not help to limit fragmentation due to allocation/deallocation spikes.

GAM [28] is a shared memory system that exploits RDMA to accelerate its cache coherence

protocol. Unlike FaRM, GAM does not allow objects to be read using RDMA but it used

RDMA for updating its shared buffer state. Like FaRM, GAM does not support memory

compaction and can benefit from CoRM’s compaction algorithm without compromising

its RDMA functionalities.

RDMA-enabled systems with compaction: RamCloud [134] and MICA [92] are key-

value stores employing log-structured memory allocators to limit fragmentation. The main

drawback of this approach is that deleted objects occupy memory until they are garbage-

collected. To free a memory block, the garbage collector copies alive objects from it to

the tail block of the log-structured memory. As objects frequently move in memory, Ram-

Cloud and MICA use indirection tables. Therefore, MICA’s RDMA-accelerated extension,

HERD [70, 71], and RamCloud cannot directly access objects using one-sided RDMA and

focus on accelerating RPC calls.

3.6 Summary and Discussion

We introduce CoRM, a prototype of a remote memory system that employs RDMA to

accelerate remote reads and, at the same time, supports memory compaction to provide

high memory efficiency. CoRM’s memory accesses are strongly consistent even in the

presence of concurrent compaction. In case of fragmented memory, CoRM is at least as

good as Mesh in compacting memory, while saving up to 2.8x more memory w.r.t. Mesh in

cases where allocation/deallocation spikes occur for large objects. The novel compaction

algorithm of CoRM, based on object IDs instead of offsets, does not use indirection tables

and completely relies on OS virtual address translation. All in all, CoRM fills a gap

in RDMA-accelerated shared memory systems by avoiding the need for compromising

memory efficiency for performance.
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4
Zero-copy Data Access for

Apache Kafka over RDMA

Apache Kafka [8] is an open-source distributed publish-subscribe system, which is widely

used in data centers for messaging between applications, log aggregation, and stream

processing. The existing Kafka implementation uses TCP/IP for communication, which

has various inefficiencies such as a high message dispatch cost due to OS involvement

and excessive memory copies. Recently, the availability of cost-effective RDMA-capable

network controllers within data centers and cloud infrastructures have encouraged many

modern applications to adopt RDMA networking, which offers the potential to outperform

classical TCP/IP. The lack of richness of RDMA operations poses challenges to its efficient

use, forcing many applications to use intermediate buffers or multiple round trips in their

protocols.

The work in this chapter explores the following research questions:

• What are the main overheads in the existing data-intensive datapaths of Apache

Kafka?
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• What is the most efficient way of using existing RDMA features to accelerate Apache

Kafka?

• What contribution to performance each RDMA-enabled datapath brings?

To address these questions we introduce KafkaDirect, an extension to Apache Kafka, that

uses RDMA to accelerate the three most network intensive datapaths: record production,

record replication, and record consumption. The RDMA modules of KafkaDirect can be

enabled at need, allowing us to evaluate the contribution of each proposed optimization

to the overall performance.

In this chapter, we also explore the design choices of KafkaDirect including which RDMA

operations to use to take full advantage of offloaded communication. Our RDMA design

aims to attain true zero-copy communication completely avoiding the need for using in-

termediate buffers in Kafka servers, thereby ensuring low latency and high throughput

communication.

This work was done during an internship at Oracle Labs in 2019. The work in this chapter

was done in collaboration with Steve Byan and Virendra Marathe from Oracle Labs and

my advisor Torsten Hoefler.

4.1 Motivation

Decreasing prices on RDMA-capable network controllers (RNICs) have made them widely

available in data centers and cloud infrastructures. The availability of RNICs has encour-

aged many modern applications (e.g., deep learning and data analytics frameworks) to

adopt RDMA networking to gain higher throughput and lower latency compared to the

traditional TCP/IP stack. RDMA offers these gains by offloading most of the networking

functionality to the RNIC, effectively bypassing the OS kernel.

The naive use of RDMA, nonetheless, is unable to achieve maximum performance. The

high-level frameworks such as RPCs [21] that hide direct memory communication primi-

tives from the user may struggle to achieve even 20% of link bandwidth and have much

higher latency and CPU usage than promised by the RNIC specification [169]. Therefore,

modern RDMA-accelerated applications implement specialized protocols to take full ad-

vantage of RDMA networking. The lack of richness of RDMA operations poses challenges

to its efficient use, as one-sided RDMA operations can only read and write a remote mem-

ory location. RDMA does not support more sophisticated operations such as conditional
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and compound operations, though such RDMA primitives have been proposed [57, 16, 89].

Therefore, many applications are forced to use intermediate buffers or multiple round trips

in their protocols. Although these protocols have been extensively studied for general key-

value stores [70, 89, 105], not many RDMA solutions have been proposed for log-structured

storage systems [111, 71] such as Apache Kafka.

In this chapter, we explore the most efficient way of using existing RDMA features to

accelerate Apache Kafka [8], a publish-subscribe system, which performance is currently

constrained by overheads in the existing TCP datapaths in the form of RPC infrastructure,

CPU wakeup latency, and superfluous buffering of data. All these issues get into the way

of having a tightly streamlined datapath between the various components of Kafka.

The design of our system, KafkaDirect, is inspired by the fact that general-purpose request

processing is expensive due to excessive data copies. Since zero-copy request processing

is crucial for CPU-intensive systems, such as Kafka, we propose to remove data copies

introduced by the TCP/IP stack and general-purpose request processing by offloading

CPU-intensive operations to RNICs.

Challenges. The effective use of offloaded RDMA networking for Kafka raises numerous

challenges: 1) how to achieve true zero-copy communication that avoids intermediate

buffering, 2) how to empower Kafka consumers to read records without the involvement of

the CPU of Kafka brokers, 3) coexistence of RDMA and TCP datapaths in Kafka without

obstructing its usability and performance. Our work effectively solves the aforementioned

technical challenges and provides an extensive investigation of the space of possible design

decisions, that can be extended to other log-structured and publish-subscribe systems

(Section 4.5).

Design. KafkaDirect empowers clients to write records directly to storage using RDMA.

KafkaDirect can ensure consistent writes to the same topic from multiple producers by em-

ploying RDMA atomic operations. Unlike the original Kafka, KafkaDirect follows a push

approach for data replication to write records directly to the memory of replica servers.

Consumers in KafkaDirect exploit RDMA Reads to directly read records from subscribed

topics, completely bypassing the CPU of Kafka brokers and thereby significantly reducing

their CPU usage. KafkaDirect delivers low latency and high throughput without modifi-

cations of existing data-formats, preserving backward compatibility. The RDMA modules

of KafkaDirect can be enabled at need, allowing us to study the performance of each

RDMA-accelerated module.
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Contribution. KafkaDirect outperforms the existing Kafka systems in terms of both

bandwidth and latency for all datapaths. The latency to the RDMA producer client can

be as low as 80 µs, which is a 4x improvement compared to unmodified Kafka deployed over

IPoIB networks. The RDMA producer client can achieve 4.5 GiB/sec for producing records

to a single topic, which is a 9x improvement over today’s Kafka producer bandwidth.

KafkaDirect’s replication module offers high-bandwidth replication which provides a 13x

improvement in replication performance. In addition, the RDMA Kafka consumer offers

a 50x reduction in latency and a 10x increase in throughput. Finally, the RDMA Kafka

consumer offloads processing of Kafka fetch requests to the network controller, allowing

the system to serve thousands of clients with no CPU cost.

4.2 Background on Publish-Subscribe systems

Publish-Subscribe messaging systems provide simple but powerful abstractions enabling

asynchronous data transfer between applications. Applications that communicate through

the messaging system are divided into publishers and subscribers. A publisher application

appends records to a message queue, and subscribers can subscribe to the message queue

to receive all published records.

Publish-Subscribe systems are a popular building block for many modern data center appli-

cations [53, 162, 163], as they shift the burden of reliable messaging from communicating

applications. Publish-Subscribe applications are available as open-source systems (e.g.,

Apache Kafka [8, 82], Corfu [14], Scalog [44], Fuzzylog [94]) and as a service by various

cloud providers [138, 101, 63, 110]. Despite the rich diversity in applications implementing

the abstraction, we find that they share similar functionality and data organization. Their

records are stored as a sequence of ordered records in append-only data logs, that are

replicated to ensure fault-tolerance against machine failures. As the systems have similar

storage designs, we only focus on Apache Kafka, but the RDMA design could be borrowed

by other systems (Section 4.5).

Apache Kafka. Kafka [8, 82] is a fault-tolerant distributed publish-subscribe messaging

system. A Kafka’s publisher is called a producer that pushes records to containers called

Kafka topics. A Kafka’s subscriber, called a consumer, subscribes to Kafka topics to fetch

the produced records.

Kafka Topics. All records in Kafka are categorized into topics that are partitioned into
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Figure 4.1: A topic partition may consist of multiple files. New records are appended to

the head file. All preceding files of the topic partition are sealed and cannot be modified.

multiple partitions called topic partitions (TPs). Each TP is an ordered, immutable se-

quence of records that constitutes a log. The records in the TP are labeled with sequential

ID numbers called the Kafka offset that uniquely identifies each record within the TP. The

offset is a sequential value that Kafka linearly and uniquely assigns to each record as it is

appended to a TP. Logically, a TP can be viewed as a contiguous append log. However,

physically it is comprised of segments that are distinct files stored on disk (see Figure 4.1).

New records are always appended to the head segment of the log, which is limited in size

(1 GiB by default). When the head segment becomes full, Kafka seals the file and creates

a new head file to store new records.

Each TP can be replicated across a configurable number of servers for fault tolerance.

In this case, one server acts as the replication leader and one or more servers act as

replication followers. The leader handles all read and write requests for the partition

while the followers passively replicate the leader. A record is not considered committed

until it is fully replicated to all in-sync replicas.

Kafka Broker. A broker is a storage server of the Kafka cluster. The broker receives

records from producers, assigns offsets to them, and commits the records to storage on

disk. It also services consumers, responding to fetch requests for its TPs and responding

with the records that have been fully replicated. Each Kafka broker can process multiple

TPs and act as a replication leader for some of its TPs and a follower for others to balance

the load within the cluster.

4.3 RDMA design for Kafka

KafkaDirect extends Kafka with efficient RDMA networking without compromising its

original API and data formats. Our RDMA modules are carefully integrated into Kafka

and provide acceleration of the three most intensive datapaths of Kafka: record production,
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replication, and consumption. The main design principle of KafkaDirect is to offload

request processing of those datapaths to RNICs.

Unlike a naive use of RDMA that replaces TCP/IP sockets with two-sided RDMA net-

working, we aim to use one-sided RDMA accesses to directly access data stored on Kafka

Brokers. Our design is inspired by the main observation that general-purpose RPCs are

expensive for data-intensive requests. Even though many variations of efficient implemen-

tations of RPCs over RDMA [72, 144, 33, 146, 47] exist, their performance can still suffer

from the RPC abstraction [169] that induces additional memory copies: an RPC initiator

needs to copy RPC arguments to network send buffers, and an RPC executor needs to

unpack received arguments from network receiver buffers. The problem becomes espe-

cially severe for storage applications that communicate large data volumes that should be

stored in or read from remote storage. The requirement to copy data from the network

receive buffers to storage structures can further aggravate the already well-known CPU-

bottleneck problems encountered in many distributed applications [112, 158]. As a result,

the CPU-intensive systems suffering from excessive data copies can be accelerated only by

fully offloading request processing from the CPU to network controllers.

The only known to us RDMA-enabled implementation of Kafka, OSU Kafka [107], uses

two-sided RDMA Sends to replace the TCP/IP network module of Kafka and does not

use one-sided RDMA requests to directly access records. Thus, its performance is still

obstructed by the need to copy messages from and to network buffers of the multipur-

pose request processing module. In Section 4.4 we show that KafkaDirect significantly

outperforms OSU Kafka, showing the importance of our zero-copy design.

Overview. A graphical overview of KafkaDirect’s broker architecture that makes the best

use of RDMA networking is presented in Figure 4.2. KafkaDirect has a dedicated RDMA

network module (Section 4.3.1) to serve RC QP connections from clients and brokers. We

extend Kafka with our RDMA Produce module (Section 4.3.2) allowing producers to ex-

ploit RDMA WriteWithImm to write data directly to TP files and notify the broker about

the incoming produce requests. KafkaDirect provides high-performance exclusive RDMA

produce requests (Section 4.3.2) that do not require coordination between producers. For

shared access, KafkaDirect can ensure consistent writes to the same topic from multi-

ple producers by employing RDMA atomic operations. KafkaDirect enables low-latency

data replication by adding an RDMA push replication module (Section 4.3.3) that uses

one-sided RDMA writes to replicate data directly from replication leaders to replication

followers. Finally, consumers in KafkaDirect exploit RDMA Reads to directly read records
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Figure 4.2: Kafka’s broker architecture and our RDMA extensions (in color).

from subscribed topics (Section 4.3.4), completely bypassing the CPU of Kafka brokers

and thereby significantly reducing their CPU usage. KafkaDirect’s consumer module em-

ploys RDMA-readable metadata slots, that contain information about TP files, allowing

consumers to get informed about new records without the broker’s CPU involvement.

4.3.1 Network Layer

The original Kafka uses TCP connections to send and receive requests to and from clients

and brokers. When a broker receives a request via TCP, one of its network processor

threads will enqueue the request Ê to the shared request queue (see Figure 4.2). The

request will be later fetched Ì and executed by one of the API worker threads.

KafkaDirect completely reuses Kafka’s TCP module for processing all the original Kafka

requests, thereby ensuring backward compatibility. KafkaDirect has an additional RDMA

network module that serves RC QP connections for only processing RDMA accelerated

datapaths. Its thread workers poll shared RDMA completion queues of established QPs to

get RDMA completion events. Once a thread fetches a completion event, it will enqueue

Ë the corresponding request to the shared request queue.

KafkaDirect uses reliable (RC) instead of unreliable (UD) RDMA transport for two rea-

sons. First, unlike other transports, RC supports one-sided RDMA Reads and Writes,

which are exploited in our produce (Section 4.3.2) and consume datapaths (Section 4.3.4)
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for zero-copy data accesses. Second, our replication and produce datapaths rely on the de-

livery guarantees of reliable transport to pipeline multiple produce requests (Section 4.3.2).

4.3.2 Produce datapaths

TCP produce datapath

An original Kafka producer sends records to brokers using a produce request that con-

tains records and how many times the records must be replicated before receiving an

acknowledgment. The broker verifies the received records and then appends Í them to

the corresponding TPs.

The shortcoming of the existing TCP produce datapath is that the broker performs two

redundant memory copies to persist new records. The first data copy is performed by the

TCP network stack. The driver copies all received messages from its receive buffers to

Kafka’s receive buffers. The second copy is made by the broker when it copies data from

the network receive buffer to the file buffer.

RDMA produce datapath

The high-level idea of the KafkaDirect produce datapath is to use RDMA to write records

directly to remote TP files. This approach eliminates the need for performing the two

aforementioned data copies. By omitting the memory copies, we aim to improve the

performance of the producers.

Getting RDMA access. To get RDMA access to the head file of a TP, an RDMA

producer sends a request via TCP that enables RDMA access to the head file by mapping

it to the main memory (using mmap) and registering it with the RNIC (using ibv reg mr).

Since RNICs are not able to append data to files and only can write data to an already

preallocated memory region, we enable the file preallocation in Kafka’s configuration. The

response from the broker contains the RDMA connection string and the virtual address

and the full length of the preallocated head file. Having the length allows the producer to

prevent writing beyond the allocated area and to timely request allocation of a new head

file.
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Approaches to RDMA produce

We propose two produce algorithms that provide different access permissions: exclusive

RDMA access, and shared RDMA/TCP access. Both approaches exploit RDMA Write-

WithImm work requests to notify the broker of incoming Write requests. Note that Write-

WithImm allows the sender to piggyback a 32-bit value, called immediate data, that is

included in a corresponding completion event at the destination.

The main shortcoming of WriteWithImm is that the destination address of an incoming

buffer is unknown to the receiver and is fully chosen by the sender. The completion event

at the destination only contains the number of written bytes and the 32-bit immediate

data. We address this problem by encoding where the data has been written into the

immediate data. In KafkaDirect, when a producer requests RDMA access to a file, the

broker accesses Î the RDMA produce module to generate a unique 16-bit ID for the

requested file and sends it to the producer. The producer includes the ID in the immediate

data of WriteWithImm to inform the leader to which TP the data has been written (see

Figure 4.4). Once the completion event is received and enqueued Ë to the shared request

queue, one of the API worker threads fetches Ì the request and maps the file ID to the

requested TP by accessing Î the RDMA produce module. After that, the API worker

can request Í the file from the data management module and perform verification of the

written data. If the written data complies with the integrity checks, the broker commits

the records by advancing the Kafka offset of the TP.

Exclusive RDMA access. In this mode, only one RDMA producer can publish records

to a TP. For that, the producer contiguously writes records to the head file using Write-

WithImm using the file ID as immediate data. Importantly, WriteWithImm to the same

file must be processed sequentially and in the same order as they have been written to the

file. Otherwise, a race condition could occur if two writes were processed in the opposite

order by thread workers Ì. KafkaDirect solves this problem by processing RDMA produce

requests in the same order as the corresponding completion events are generated Î. We rely

on InfiniBand’s in-order delivery guarantees that ensure the correct order of completion

events.

The datapath is consistent as long as the TP is written by a single remote producer,

which is enforced by the broker. The broker never grants exclusive access to the same file

to two producers. If the RDMA producer fails, its exclusive RDMA access will be revoked.

Client failure can be detected from QP disconnection events. To avoid the situation where
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Figure 4.3: Methods for producing records via RDMA. In the exclusive mode, the single

producer tracks the offset. In the shared mode, producers acquire the offset before they

write.

a faulty client still accesses the memory of a TP file, the broker can disable RDMA access

to the file.

Shared RDMA/TCP access. In this mode, multiple producers can publish the records

to a single TP, and publishers can use either TCP or RDMA operations for that. The main

challenge of shared RDMA/TCP mode is to ensure concurrent and consistent writes to

the same TP file from multiple producers. KafkaDirect solves this problem by employing

RDMA atomic operations such as RDMA compare-and-swap (CAS) and fetch-and-add

(FAA) to achieve agreement between writers to the same file. The broker associates with

each TP an 8-byte value that stores the current producer order (first 2 bytes) and the

current offset in the file (remaining 6 bytes) as depicted in Figure 4.5.

Order            TP identifier
16-bit 16-bit 

Figure 4.4: The 32-bit immediate value

used to inform broker where the records

has been written with WriteWithImm.

Order              TP offset            
16-bit 48-bit 

Figure 4.5: The 64-bit atomic value used to

enforce ordering across producers. They must

atomically fetch and increment the current or-

der and offset before writing records.

Before writing data to a TP using WriteWithImm, a producer should reserve a memory

region within the file where it can write the records. For that, the producer atomically

fetches the 8-byte value associated with the file and increments its order field by one and

its offset field by the size of the record it intends to write. In response, the producer

retrieves the start of the region it can write to and its order.
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Figure 4.6: Aggregated Write bandwidth of different RDMA produce approaches.

The fetched order field is used to enforce order in the produce requests from different pro-

ducers, and it must be included in the immediate data of the subsequent WriteWithImm

request (Figure 4.4). Even though the maximum size of the Kafka file is 4 GiB, the current

file offset field is 6 bytes allowing the producers to detect overflow of the field when RDMA

FAA is used. RDMA FAA always succeeds and, therefore, producers can exceed the actual

file size, which can be detected by the producers by checking these extra 2 bytes. When

a broker receives a produce request via TCP to an RDMA-accessible file, it also needs to

reserve a memory region by issuing an RDMA atomic to itself to ensure a consistent view

between the broker and remote clients.

Shared RDMA/TCP access can be potentially damaged by client failures since holes can

appear in the TP file when a client wins a segment in the file and then fails to fill it

through RDMA due to crashes or slowdowns. KafkaDirect prohibits holes in the TP file

by detecting failed RDMA produce requests using the order encoded in the immediate data.

The RDMA produce module Î, which is responsible for ensuring the correct processing

order of RDMA requests, prevents processing a produce request i, if the request i − 1

is not processed. The RDMA produce module sets a timeout to each incoming RDMA

produce request which should wait for the arrival of preceding produce requests. If a

produce request is timed out it gets aborted and RDMA access to the file is revoked

causing abortion of all pending produce requests to the file. Clients can then re-enable

the RDMA datapath by requesting RDMA access again.

Performance comparison. Figure 4.6 shows goodput for produce requests for different

record sizes. For shared accesses, we measure the aggregate goodput for two and five

producers. The microbenchmark is implemented in C/C++ and is not a part of Kafka.

The goal of this experiment is to show the performance upper-bound achieved by RDMA

networking. The experiment is performed on two machines connected by a 56 Gbit/sec

InfiniBand network.

85



Chapter 4. Zero-copy Data Access for Apache Kafka over RDMA

The highest performance is reached by the exclusive WriteWithImm as no synchronization

is required and the request is performed in one round-trip. The produce requests with

RDMA atomics, however, can achieve the same performance only for records larger than

32 KiB. The main reason is that the throughput of RDMA atomics is limited and cannot

exceed 2.68M requests/sec for a single counter on our hardware. RDMA FAA performs

better than RDMA CAS as it always succeeds to update the atomic value. Based on the

results, in KafkaDirect we use RDMA FAA for shared produce accesses.

The choice of notification method. KafkaDirect relies on the immediate data capa-

bility to notify the broker about newly written records. The limitation of this approach

is that the producer must be able to encode all metadata related to the request into 32

bits. Another approach is to notify the broker using an RDMA Send request. In this

case, the data is written to a TP file without notification using an RDMA Write, and

then the metadata is sent separately in a Send request. We will refer to this approach as

Write+Send.

The main disadvantage of the Write+Send approach is that the producer needs to issue two

requests to perform a single RDMA produce: an RDMA Write to a TP file and an RDMA

Send that contains metadata. Since Infiniband guarantees in-order packet processing, the

Send request will be processed after the preceding Write request preventing the broker to

observe partial records.

We evaluate the latency and bandwidth of the Write+Send approach against the Write-

WithImm approach using a microbenchmark written in C/C++, which unveils the best

performance achievable by the notification approaches. We evaluate Send sizes starting

from 4 bytes and up to 512 bytes.

Figure 4.7 shows that the latencies of the studied notification approaches are approximately

the same for Writes larger than 1 KiB. For small messages, however, the latency for the

WriteWithImm approach can be as little as 1.5 µs, whereas Write+Send approaches are

by 1 µs slower on average.

In the bandwidth experiment, we measure the goodput of Write requests only. All ap-

proaches reach the goodput of approximately 2.4 GiB/sec for small messages of up to 512

bytes. For 1 KiB messages, WriteWithImm outperforms all Write+Send approaches by at

least 0.8 GiB/sec. This difference in bandwidth gradually decreases with the increase in

data size and becomes insignificant for 32 KiB records.

Overall, we believe that Kafka could exploit the Write+Send approach to transmit more
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Figure 4.7: Latency and write bandwidth of different approaches for notifying the broker.

metadata to brokers, as it still ensures low latency communication and outperforms clas-

sical TCP/IP networking in the terms of bandwidth and latency. In our KafkaDirect we

only implemented the WriteWithImm approach for notification as it is the lowest-latency

approach.

4.3.3 Replication datapaths

TCP pull replication

Each Kafka broker has a replication module with dedicated worker threads that are re-

sponsible for keeping local TP copies in-sync with the leader. The workers periodically

send fetch requests to the TP leader at their own pace. In response to the request, the

leader sends the records which the follower replica does not have or an empty response

if the follower is in-sync. The replication module on the follower receives the reply and

if it contains new records it appends Ï them to the corresponding replica TP. Such an

approach is commonly called a pull approach.

RDMA push replication

We implement a push replication module that uses RDMA to replicate the records. The

high-level idea is that the leader uses WriteWithImm, similar to an RDMA producer, to

write new records to the corresponding TPs of all its followers without incurring extra data

copies. When an API worker completes the processing of a produce request, it submits

Ð a replication request to the push replication module that immediately starts writing

records to followers, thereby reducing replication latency. KafkaDirect uses the exclusive

RDMA WriteWithImm approach as the leader has exclusive access to the followers.
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Figure 4.8: Latency and bandwidth of batching 64-byte RDMA Writes. Note log scale of

Y axis for the latency plot.

Batching of RDMA Writes. The shortcoming of RDMA push replication is that

replication gets triggered for each new record. As a result, a flood of small records could

potentially exhaust CPU and RNIC resources if no batching is enabled. To address this

problem, KafkaDirect tries opportunistically to batch contiguous RDMA Writes into a

single Write. It helps to increase the bandwidth of replication when producers append

small records to the same TP.

We ran a microbenchmark to find an optimal batch size for replication requests. The mi-

crobenchmark has been implemented in C/C++ to find the best batch size for replication

in the case of an overloaded leader. The test emulates the case when the leader receives

small entries at a higher rate than it can replicate them. Particularly, the leader writes

64-byte individual records to a local file at 6 GiB/sec and tries to replicate the entries at

the same rate, however, the entries have not been batched by a producer.

Figure 4.8 shows the effect of batching on the latency and goodput of replication with

an increasing batch size in bytes. The latency of replication with no batching is approxi-

mately 2.4 µs, which is the lowest latency value as the data is sent immediately. However,

replication of small objects achieves only 0.5 GiB/sec, which is only 8% of the maximum

bandwidth. As the batch size increases, the goodput gradually grows until it reaches

the link bandwidth of 6 GiB/sec. In contrast, the latency stays approximately the same

for smaller batch sizes and then sharply increases for batches larger than 1 KiB. This is

because the packet size in our network is 2 KiB, and the write requests become bottle-

necked by the bandwidth of the link. As a result, current write requests get delayed by

the preceding write requests.

Based on the result, in further experiments, we configure our system with batching enabled

and a maximum batch size of 1 KiB, as its goodput is by an order of magnitude higher

than the baseline with no batching, and that batch size does not significantly compromise

the latency.
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4.3.4 Consume datapaths

TCP consume datapath

A Kafka consumer periodically sends a fetch request to the brokers to poll new records,

similar to followers. A fetch request contains the list of TPs and corresponding Kafka

offsets from which to fetch records. The broker sends requested records to the client or

it replies with an empty reply if no new records are available. Fetch requests incur a

significant CPU overhead when processing requests, as brokers can serve thousands of

consumers and each consumer periodically sends fetch requests regardless of whether the

broker has new records.

RDMA consume datapath

The main goal of our RDMA consume design is to offload the processing of fetch requests

to RNICs by exploiting one-sided RDMA Reads. However, this seemingly easy step entails

subtle technical challenges. The first challenge is to prevent clients from reading not fully

replicated records that would violate Kafka’s consistency model. The second one is to allow

clients to learn about new records without the involvement of the CPU of the broker. The

last challenge is to avoid reading partial records even in the presence of variable-length

records. We further describe techniques that are employed by KafkaDirect to address the

aforementioned challenges.

Getting RDMA access. To start using RDMA Reads to fetch records, a consumer

sends via TCP a request containing a target TP and starting offset from which it wants

to read records. The broker registers the requested TP file for RDMA access and replies

with information about the file including its virtual address, its last readable byte, and

whether it is mutable. An RDMA consumer never reads beyond the last readable byte,

which indicates the position after the last fully replicated record of the requested file,

thereby preventing reading uncommitted records.

In Kafka, a file is immutable if data cannot be appended to it. Therefore, the head file

of a TP is mutable and other files are immutable (see Figure 4.1). When the consumer

receives the information about an immutable file, it periodically initiates RDMA Reads

until it reaches the end of the file. After the file is fully read, the consumer gets access to

the next file of the requested TP. Therefore, the RDMA consumer only needs to request
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Figure 4.9: RDMA readable metadata slots for mutable files. KafkaDirect creates a con-

tiguous region of slots for each consumer. Each registered file has a list of slots associated

with it, so the slots may be updated as the file grows.

RDMA access after a whole immutable file is read. Note that RDMA registration involves

mapping the file to the main memory of the broker, so an RDMA consumer also notifies

the broker about the files that can be unregistered from RDMA access to reduce memory

usage.

RDMA metadata slots. If the requested file is mutable, its last readable byte can

be incremented over time. Therefore, the consumer needs to periodically update that

information. We propose to exploit RDMA Reads to update that information. When

a mutable file is registered for RDMA Reads, the broker creates Ñ an RDMA-readable

metadata memory slot associated with the file, which contains the last readable byte of

the file and whether the file is still mutable. The mutable bit value allows consumers to

recognize that the file has become immutable and that they need to request access to the

new head file.

An RDMA consumer can read a metadata slot for each subscribed TP to get informed

whether new records have been appended. Since a consumer can be subscribed to sev-

eral TPs, a naive reading of a single metadata slot for each TP could waste CPU and

RNIC resources. Thus, for each RDMA consumer, KafkaDirect brokers allocate a con-

tiguous RDMA-accessible region that is used for storing metadata slots of all mutable

files requested by the consumer (see Figure 4.9). As the metadata region is contiguous, a

consumer only needs a single RDMA Read to update the metadata for all files from which

it is actively reading.

The consumer uses a single RDMA Read request to fetch metadata even if some of the

slots are unassigned (i.e., free). The consumer always reads the smallest contiguous region

containing all active slots (i.e., all not free slots). For example, the consumer 0 from

Figure 4.9 needs to read all four slots (including two free slots) to update its metadata,

90



4.4. Evaluation

whereas consumers 1 and 2 can read only their active slots. The broker also tries to keep

assigned slots in close proximity to each other to reduce the size of this contiguous region.

When an active file is read by multiple consumers, its metadata will be present in multiple

metadata slots as depicted in Figure 4.9. Each RDMA-readable file has a list of metadata

slots assigned to it. When the mutability or the last readable byte of the file is changed,

the broker updates all the metadata slots associated with it.

Fetch size for RDMA reads An RDMA consumer only knows how many bytes it can

fetch from a current TP file, but it is not aware of how many records it contains and

what their sizes are. Thus, the fetched bytes may not exactly start and end at record

borders and can include bytes of the succeeding record. To address this issue, the RDMA

consumer API only returns fully read records, and the partially read records are kept until

all their bytes are fetched with RDMA Reads.

The fetch size is a configurable parameter of a KafkaDirect consumer. The default fetch

size is 2 KiB as it provides a good trade-off between latency (less than 3 µs) and bandwidth

(more than 5 GiB/sec) for RDMA Reads. Even though the current implementation fetches

a constant number of bytes using RDMA, it is possible to tune this parameter dynamically

during execution. One approach is to estimate the expected size of a record and tune the

fetch size accordingly. Alternatively, if the header of a partial record is fully fetched, it is

possible to read the size of the record and tune the fetch size accordingly. This alternative

approach is helpful when large data entries are stored in the TP.

4.4 Evaluation

We evaluate the performance of KafkaDirect using a series of benchmarks to thoroughly

assess the effect of our zero-copy design. For that, we extended the standard Kafka [36],

OpenMessaging [125], and the event processing [159] benchmarks to support our RDMA

API and to make measurements with microsecond precision. To evaluate the overall im-

pact of our RDMA datapaths, we evaluate the performance of each KafkaDirect’s RDMA

module in isolation using Kafka and OpenMessaging benchmarks [36, 125]. First, we

configure KafkaDirect to enable RDMA only in the produce datapath and study the per-

formance of exclusive and shared RDMA produce protocols (Section 4.4.1). Second, we

deploy KafkaDirect in distributed mode and measure the latency and bandwidth of the

RDMA replication module (Section 4.4.2). Then, we study the performance of the RDMA
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consume module for fetching new data records and checking the availability of new records

(Section 4.4.3). Lastly, we show results for event processing benchmark [159] to show how

KafkaDirect improves the performance of data processing frameworks such as Spark [171].

Note that Kafka is not meant to handle large messages and the record size is limited to

1 MiB.

Implementation. Our implementation of KafkaDirect is based on Kafka 2.2.1. We

use DiSNI [143], a low-latency RDMA library allowing applications to access RDMA

networking hardware directly from within the Java Virtual Machine. The DiSNI API is

a wrapper over the RDMA C-language user libraries [1] accessed through Java Native

Interface calls. For this work, we also extended the DiSNI library to support RDMA

atomic requests.

We compare the performance of KafkaDirect with the original Apache Kafka 2.2.1, and an

RDMA-enabled Kafka [107] proposed by the Ohio State University. We refer to them as

Kafka and OSU Kafka in our experiments. OSU Kafka does not use one-sided RDMA

requests to access records and only uses RDMA Sends that entail copying requests from

and to network buffers, resulting in loss of performance. In the experiments, Kafka

represents the performance of the unmodified Kafka over high-bandwidth RDMA-capable

networks, and OSU Kafka represents the Kafka that uses two-sided RDMA networking

only for request messaging, and KafkaDirect represents our design with full offload of

data accesses using one-sided RDMA networking.

Experimental setup. The experiments are conducted on a 12-node InfiniBand cluster,

where each machine is equipped with a 56 Gbit/sec Mellanox ConnectX-4 network card.

Each machine has two 8-core Intel Xeon CPU E5-2630 v3 CPUs and 256 GiB of DDR4

DRAM.

In all experiments, the unmodified Kafka was deployed over the same network to have a

fair comparison with RDMA-enabled systems. All Kafka-based systems are deployed with

1 GiB log files and enabled file preallocation, i.e., Kafka immediately allocates storage for

each created 1 GiB file. Unless otherwise specified, Kafka-based systems were deployed

with default parameters that include eight API worker threads and three network workers.

To be completely oblivious of the performance of storage device used for storing log and

TP files, Kafka’s files are created in tmpfs [140], which is backed by DRAM. Otherwise, the

performance of Kafka would be bottlenecked by the speed of the storage device. By making

this change we do not compromise the reliability guarantees of Kafka, as Kafka’s failure
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Figure 4.10: Latency of produce request when replication is disabled. Producers do not

batch requests.

tolerance only relies on replication and is independent of the availability of persistent

storage. The bottleneck of the persistent storage media can be alternatively removed by

several techniques including the use of faster NVMe devices (e.g., AORUS Gen4 AIC that

achieves 110 Gbit/sec read and 110 Gbit/sec write bandwidth [155]) or the use of multiple

storage media at each broker. We leave this exploration for future work.

4.4.1 The effect of RDMA on produce datapath

Latency. We measure the median latency of produce requests. The latency is a round-

trip time measured by a produce client: it sends a single produce request and waits for an

acknowledgment from the broker. The topic was created with a single partition and with

no replication enabled.

Figure 4.10 shows that OSU Kafka reduces the latency of the original Kafka by about

90 µs for small sizes, however, for 128 KiB records, OSU Kafka has the same latency as

the original Kafka. The lowest latency is observed for KafkaDirect clients: 90 µs for small

messages and approximately 345 µs for large 128 KiB messages. Overall, KafkaDirect

provides 3.3x and 2x improvement over Kafka and OSU Kafka, respectively.

The latency of an exclusive KafkaDirect producer is 2.5 µs lower than a producer with the

shared TCP/RDMA approach. The difference comes from the requirement of the shared

approach to issue an RDMA FAA operation. Interestingly, the latency of an RDMA

produce request is not as low as the latency of an RDMA Write request, which is ap-

proximately 2.5 µs. The overhead of 88 µs comes from two Kafka’s design decisions: the

producer API makes a copy of user data to prevent mutation of it during transmission;

and Kafka has different threads for API and network workers, incurring inter-thread com-

munication (forwarding a request takes 11 us). A processing of a small record takes on

average 14 us for an API thread, including CRC32C checksum calculation. The rest of the
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Figure 4.11: Bandwidth of produce request to one partition. Replication is disabled.

Producers do not batch requests.

overhead comes from the thread invocations due to blocking polling of the RNIC events,

the network, and producer’s API.

The experiment shows that the zero-copy produce datapath of KafkaDirect significantly

outperforms the Send/Recv approach used by Kafka and OSU Kafka in terms of latency.

Bandwidth. In this experiment, we measure the goodput of produce requests. The

producer dispatches as many requests as possible to a single TP. The TP is not replicated

to show the performance of the produce datapath only.

Figure 4.11 shows that KafkaDirect achieves the highest performance, whereas the lowest

performance is observed for the original Kafka. The low performance comes from extra

data copies induced by the TCP/IP stack and copies from network buffers to TP file

buffers. OSU Kafka removes some of these copies and, on the experiment with 512-byte

records, achieves a 2x improvement. In the same experiment KafkaDirect shows a 10x

speedup for the exclusive produce datapath and a 5x improvement for the shared produce

datapath. On average in all experiments, an exclusive RDMA producer achieved a 7x

speedup compared to Kafka and 3.8x compared to OSU Kafka. In the experiment, the

RDMA producer could achieve 1.65 GiB/sec with 32 KiB records, whereas the original

Kafka achieved only 280 MiB/sec. A shared producer also has a significantly improved

bandwidth with large records in the produce datapath and shows a 5x improvement com-

pared to Kafka.

Figure 4.12 shows the effect of partitioning on the bandwidth of producers. The bandwidth

of all systems increases with the number of partitions as each TP file can be accessed by at

most one API worker at a time due to locking. Thus, four partitions can be concurrently

written by four workers, thereby improving overall bandwidth. The performance saturates

at 8 partitions which is the number of API workers in Kafka. KafkaDirect achieves 4.5
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Figure 4.13: Total bandwidth of producers for 4

KiB records. Broker is deployed with one worker.

GiB/sec for the exclusive RDMA datapath and 3 GiB/sec for the shared RDMA datapath,

which is a 9x and 4.5x improvement over Kafka, respectively.

The experiments show that the produce datapaths of Kafka and OSU Kafka are bottlenecked

by extra data copies, and that our RDMA extension removes this bottleneck.

Bandwidth of a single API worker. To evaluate the maximum bandwidth that can

be achieved by a single API worker, we deployed systems with one API worker. To plot

the bandwidth curve, we vary the worker’s load by increasing the number of producers.

Each producer writes 4 KiB records to its private TP, to eliminate contention between

producers (so the number of producers is equal to the number of topics). The main goal

of this configuration is to remove contention between threads at polling the request queue

(see Figure 4.2).

Figure 4.13 reveals that the performance of the KafkaDirect broker plateaus at 630 MiB/sec

when the system processes the records from more than four clients. For the original Kafka,

the top performance is only 190 MiB/sec. Thus, to achieve the line rate of 6 GiB/sec

KafkaDirect should be deployed with at least 10 API workers, whereas for the original

Kafka more than 33 workers are required. We conclude that KafkaDirect provides a 3.3x

reduction in CPU load.

4.4.2 The effect of RDMA on replication

Latency. We measure the latency of produce requests when the system is deployed with

replication enabled. The latency is a round-trip time measured by a producer that waits

for an acknowledgment. The acknowledgment is received when the data is fully replicated

to all replicas. We measure latency when 1) RDMA is enabled only for produce datapath,
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Figure 4.14: Latency of producer for 3-way replication.

2) RDMA is enabled only for replication datapath, and 3) RDMA is enabled for both

datapaths.

According to Figure 4.14, the latency of Kafka with three-way replication is approximately

700 µs for small records, which is twice that of a produce request with no replication. En-

abling either RDMA modules of KafkaDirect reduces the latency by 300 µs. Interestingly,

when both modules are enabled the latency decreases to about 100 µs. OSU Kafka only

reduces the latency by 300 µs, similar to KafkaDirect when either one of the two RDMA

modules is in use. Overall, KafkaDirect provides a 7x improvement over Kafka and a 4x

improvement over OSU Kafka for three-way replication.

Our RDMA replication module has the lowest latency since the leader broker starts repli-

cation immediately, rather than waiting for replicas to pull the data.

Bandwidth. We measure the average goodput of produce requests when the topic is

three-way replicated (the leader replicates data to two other machines). We were not able

to measure all data points for OSU Kafka as it was crashing for experiments with large

records.

Figure 4.15 shows that the highest performance is observed for KafkaDirect, which achieves

a 14x speedup for 32 KiB records compared to Kafka. Interestingly, just enabling RDMA

replication does not contribute much to the total bandwidth since the performance is

bottlenecked by the slow TCP producer. The RDMA producer can achieve more than 500

MiB/sec, which is 420 MiB/sec faster than the original Kafka.

The data unveils that the performance of the RDMA producer is limited by the speed of

the pull replication. Our RDMA replication module manages to mitigate the bottleneck

and to double the performance. Overall, the speedup of KafkaDirect is from 9x to 14x

depending on the size of the records.

To understand the role of the replication factor on performance, we measure the bandwidth
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Figure 4.15: Bandwidth of producer for three-way replication.

of a producer with increasing replication factor. Figure 4.16 shows the bandwidth for 32

KiB records when data is replicated from one to four times. Note that a replication factor

of one means that data is stored only on the leader. An RDMA producer achieves 1.5

GiB/sec when the replication is disabled. However, when records are replicated using

TCP, the performance drops to 0.5 GiB/sec. In contrast, our RDMA replication module

replicates data at the required rate and avoids this one-third slowdown. For two replicas,

KafkaDirect provides a 14x speedup compared to the original Kafka.

The main observation is that the increase in the number of replicas does not significantly

reduce the overall performance of all tested systems. This due to the original Kafka

optimization [113] that enables transferring content of mapped files over the TCP/IP

without incurring extra copies. At the receiver side, however, each follower still performs

two memory copies: from the driver’s receive buffer to one of Kafka’s receive buffers, and

from the receive buffer to the file buffer. These two copies are avoided by our KafkaDirect

design, thereby reducing CPU utilization on the replica brokers.

Batching of replication requests. KafkaDirect supports batching of consecutive con-

tiguous writes into a single RDMA operation during replication (Section 4.3.3). The goal

of batching is to increase the bandwidth of replication when producers dispatch many

small produce requests. To evaluate the effect of batching on replication performance we

measure the bandwidth of produce requests when KafkaDirect is deployed with RDMA

replication enabled, and the RDMA producer injects 32-byte records that are not batched.

Figure 4.17 shows the average bandwidth of produce requests for two- and three-way

replication with increasing maximum batch size of the RDMA replication module. No

batching achieves a bandwidth of 3.8 MiB/sec for both two- and three-way replication.

The bandwidth increases with increasing batch size and plateaus at 5.2 MiB/sec. In

general, the speed of RDMA Write can be as high as 200 MiB/sec for such small writes,
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Figure 4.17: Bandwidth of 32-byte pro-

duce requests with increasing batch size.

however, the performance was bottlenecked by the speed of the API worker which commits

new records to TP files: the workers need to calculate checksum over the new records and

acquire an exclusive write lock. Therefore, the replication module was replicating records

at 5.2 MiB/sec, thereby underutilizing the network. To improve network utilization one

can delay the replication requests by a constant timeout to batch more requests, which

would, however, incur higher replication latency.

We did not observe the performance numbers achieved in our C/C++ benchmark (Sec-

tion 4.3.3). Nonetheless, we believe that our batching mechanism can be still beneficial

for other publish-subscribe systems, especially, for ones without integrity checks, since our

batching is opportunistic meaning that the replication worker does not wait for requests

to accumulate, and can dispatch a batch of a smaller size than the maximum batch size.

4.4.3 The effect of RDMA on consume datapath

Latency. We measure the round-trip time measured by a consumer. We load Kafka-based

systems with 10,000 records to a single partition and the consumer fetches them one by

one. Note that the client latency is independent of produce and replication latency in this

experiment, as all records are preloaded. All systems are deployed with a default file size

of 1 GiB. We could not measure the latency of fetch requests for OSU Kafka, as we did

not have access to the source code to instrument the consumer API. Instead, we measure

its end-to-end latency in the next experiment.

Figure 4.18 shows that the latency of the original Kafka is at least 200 µs for all tested

record sizes. The latency is composed of a TCP/IP round trip and the processing of

the fetch request. Our RDMA consumer fetches a record within 4.2 µs, which is a 50x

improvement over the original Kafka. The latency is so low because the data was preloaded
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Figure 4.18: Latency of consumer with increasing record size.

to the broker and the RDMA consumer read all the remote records with RDMA without

requesting access to TP files. In general, if an RDMA consumer reads entries from a TP

consisting of many files, it needs to request RDMA access after reading each file.

The latency of an RDMA fetch request is 4.2 µs, which is 2 µs greater than the latency of a

pure RDMA Read request. The overhead comes from Kafka’s consumer API design which

requires returning a native Java buffer (i.e., allocated in Java’s heap) to the user. The

DISNi RDMA Java library only works with off-heap buffers, therefore our implementation

always needs to copy the fetched records to a native Java buffer. One possible solution

to this problem is to extend the Kafka API to allow users to provide an off-heap buffer

where the records can be fetched without extra copies.

Latency of empty fetch requests. We evaluate the cost of checking the availability of

new records in a TP. For Kafka, it is the latency of a fetch request in the case when the

broker does not have new records. For KafkaDirect, it is the latency of reading a remote

metadata slot using RDMA Read (Section 4.3.4). The experiment reveals that the latency

of an empty TCP fetch request is at least 200 µs, whereas the latency of reading a remote

metadata slot is only 2.5 µs. What is more, the RDMA fetch metadata request does

not involve the broker’s CPU and is completely offloaded to the RNIC. As a result, our

KafkaDirect can serve thousands of RDMA fetch requests without any CPU involvement.

End-to-end Latency. The previous experiment measures the latency of consumers when

they fetch data from immutable files. Therefore, each RDMA consumer does not need to

frequently update the metadata of TP files to discover new records. In this experiment, we

measure an end-to-end latency where a single client application plays the role of producer

and consumer. The client sends a single record to Kafka and then fetches it with the

consumer API. Thus, the measured round-trip latency consists of both produce and fetch

requests. Since KafkaDirect supports enabling only particular RDMA modules we measure

latency for when 1) RDMA is enabled only for the produce datapath, 2) RDMA is enabled

only for the consume datapath, and 3) RDMA is enabled for both datapaths.
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Figure 4.19: End-to-end latency with increasing record sizes.
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Figure 4.20: Consume bandwidth with increasing record size.

Figure 4.19 shows the median end-to-end latency of Kafka is about 600 µs for small records.

OSU Kafka gives approximately the same latency as the original Kafka, but at some data

points, we observe a 50 µs reduction in latency. The use of RDMA for either the produce

or consume datapath reduces the latency by at least 200 µs. When both RDMA modules

are enabled the latency is as low as 100 µs. Interestingly, since the latency of RDMA

produce is about 93 µs, the actual latency of RDMA fetch was about 7 µs which consists

of data fetching (4.2 µs) and metadata update (2.8 µs). We conclude that KafkaDirect can

offer a 5.8x reduction in end-to-end latency, and that our RDMA consumer can efficiently

work with frequently updated TPs.

Bandwidth. We measure the average goodput of a consumer for the systems that were

loaded by a producer to one partition. In addition, to avoid the effect of batching, the

broker was configured to reply with one record for each fetch request. We were not able

to measure all data points for OSU Kafka as it was crashing for some experiments.

Figure 4.20 shows that the highest throughput was observed for our RDMA consumer.

OSU Kafka and the original Kafka have approximately the same performance, which is less

than 150 MiB/sec even for large records. The RDMA consumer, on the other hand, shows

a 9x improvement over the original Kafka and managed to achieve 1 GiB/sec bandwidth.

It is worth noting that the performance of our RDMA consumer is bottlenecked by the

consumer’s implementation, whereas in the original Kafka it is limited by the broker. It
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comes from the fact that the RDMA fetch request is completely offloaded to the RNIC

and does not require the involvement of brokers’ CPU. As a result, the number of RDMA

consumers is only limited by the capabilities of the RNIC, allowing KafkaDirect brokers

to serve thousands of consumer clients without incurring any CPU overhead.

The maximum RDMA Read bandwidth achievable by our RNIC is about 6 GiB/sec,

however, KafkaDirect only achieved 5.2 GiB/sec even for large records (the experiment

is not plotted here). The reduction in bandwidth comes from the fact that the RDMA

consumer must check the integrity of the fetched data and copy the data from the internal

off-heap buffers used for RDMA into Java native buffers, that are returned to the caller.

Throughput of empty fetch requests. The main shortcoming of Kafka’s consume

datapath is that consumers periodically send fetch requests regardless of the availability

of new records. As a result, brokers spend a lot of CPU cycles on processing fetch requests

and sending empty replies to clients. We call such requests as empty fetch requests. We

deployed Kafka with default parameters and measured how many empty fetch requests

it can process. The experiment showed that a broker could not process more than 53K

empty fetch requests per second and the performance was bottlenecked by the TCP net-

work module. A broker of KafkaDirect managed to process 8,300K empty fetch requests

per second providing a 156x improvement over the original Kafka. The speedup comes

from the fact that RDMA consumers use one-sided RDMA Reads to find out about newly

available records by reading remote metadata slots (Section 4.3.4). Note that the process-

ing of empty fetch requests in KafkaDirect does not involve the CPU of brokers and is

bottlenecked by the RNIC speed.

4.4.4 Improving Data Processing Applications.

We integrated KafkaDirect into Apache Spark 2.4.4 [171] and measured its performance

for the streaming benchmark [159]. The benchmark emulates events generated by an IoT

traffic sensor that measures the number of cars and their average speed for road lanes.

The IoT device publishes these events in JSON format into two separate topics, that are

polled by event processing engines. To be oblivious from the processing speed of streaming

engines we report the delay between the timestamp when the sensor generated an event

and the time when the processing engine read the event.

Figure 4.21 reports the measured delays for two workloads: constant-rate and periodic-

burst. The first workload has a constant publishing rate, whereas, in the periodic burst
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Figure 4.21: Event delays under constant-rate and periodic-burst workloads for no and 2x

replication settings.

one, every ten seconds an enlarged batch is published. The plot shows that the lowest

delays were achieved by KafkaDirect for all workloads, especially for the setting with

replicated topics. For the constant-rate workload, KafkaDirect has higher variance than

competitors as the fetching process was affected by commit offset requests. The commit

offset request helps consumers acknowledge the reception of records to avoid processing

of the same records twice in the case of node failures. Since KafkaDirect does not use

RDMA for that request, its performance was decreased by the use of the TCP/IP stack.

KafkaDirect could implement an accelerated commit offset requests with the use of RDMA

FAA, which is an interesting direction for future research.

Despite that limitation of KafkaDirect, it had much lower variations in latency for the

periodic-burst workload. What is more, Kafka and OSU Kafka experienced a short pe-

riod of unavailability for the replicated settings.The experiment shows that KafkaDirect

performs well in the case of bursty data, and provides a 3.3x latency reduction on average.

4.5 Related work

Publish-subscribe systems. Corfu [14] and Scalog [44] are shared log systems that

maintain total order across records stored on different servers. Unlike Kafka, Corfu and

Scalog have a single logical TP that is partitioned across servers. To publish records, a

Corfu’s client determines the available position in the shared log (similar to Kafka offsets)

using a dedicated sequencer node, and then writes data to that position. Corfu clients

are also responsible for data replication. Unlike Corfu, a client of Scalog appends records

to any server, which then will replicate the records. Periodically, each storage server of
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Scalog talks to the sequencer node that assigns a unique position to all fully replicated

records. Scalog’s sequencer algorithm ensures global ordering across all stored records.

Fuzzylog [94] is a partially ordered log that tracks order between records stored in geo-

replicated shards using Skeen’s algorithm [55]. We believe that the mentioned systems

could reuse our RDMA datapaths with slight modifications since they store immutable

records with a log-structured design as Kafka. In particular, sequencer nodes besides

logical positions of records could also return their virtual addresses to enable RDMA

accesses.

RDMA-enabled log-structured systems. HERD [70], FlatStore [34], and Ram-

Cloud [111] are log-structured key-value stores that use index structure as a level of in-

direction between keys and storage location. Since the traversal of the index may result

in multiple RDMA operations, they only use RDMA-based RPCs for request processing

and do not expose direct object access to clients. HERD also optimizes RPCs to deliver

requests to buffers in the proximity of the expected storage location. HyperLoop [80] is

a framework that offloads chain replication to RNICs with cross-channel communications

support [152]. HyperLoop improves the replication performance of write-ahead transac-

tional logs and can be employed by log-structured systems. DaRE [122] is a replicated

state-machine that implements a replication protocol using one-sided RDMA Writes to

write data directly to remote logs. Additionally, DaRE employs RDMA Reads to verify

the execution progress of replication followers.

4.6 Summary and Discussion

This chapter explores challenges and solutions for the efficient acceleration of Apache Kafka

with zero-copy RDMA networking. Our implementation, KafkaDirect, employs RDMA

Writes and the immediate data capability to write data directly to storage and, at the

same time, to notify the broker, thereby avoiding the need for extra messages. KafkaDirect

also makes use of RDMA atomics to enable shared write access to a single file. KafkaDirect

empowers consumers to use RDMA Reads to fetch records directly from Kafka with no

CPU involvement on the broker. We demonstrate the effectiveness of these techniques

in multiple settings. Our evaluation shows that RDMA can significantly improve the

performance of publish-subscribe systems and enable scaling to a larger number of clients.

103





5
Serialization-free RDMA

networking in Java

Managed languages such as Java and Scala do not allow developers to directly access

heap objects. As a result, to send on-heap data over the network, it has to be explicitly

converted to byte streams before sending and converted back to objects after receiving,

thereby preventing zero-copy RDMA networking for on-heap objects. The technique,

also known as object serialization/deserialization, is an expensive procedure limiting the

performance of Java-based distributed systems as it induces additional memory copies and

requires data transformation resulting in high CPU and memory bandwidth consumption.

With the widespread use of Java in large scale data processing and the increased availability

of RDMA, it is time to rethink current object serialization/deserialization techniques to

take full advantage of offloaded networking.

The work in this chapter explores the following research questions:

• What are the main overheads in the existing serialization techniques for object trans-

fers?

105



Chapter 5. Serialization-free RDMA networking in Java

• How can we send objects across heaps without superfluous memory copies and data

transformation induced by serialization?

• What applications can benefit from the serialization-free networking?

To address these questions, we developed Naos, a library that allows objects to be sent

serialization-free from a local Java virtual machine (JVM) to a remote one with minimal

CPU involvement and over RDMA networks. As Naos eliminates the need to copy and

transform objects, it offers significant speedups compared to state-of-the-art serialization

libraries. Naos exposes a simple high level API hiding the complexity of the RDMA pro-

tocol that transparently allows Java-based systems to take advantage of offloaded RDMA

networking.

The content of this chapter has been published at the USENIX Annual Technical Confer-

ence (USENIX ATC) in 2021 [149]. The work in this chapter was done in collaboration

with Rodrigo Bruno and our advisors Torsten Hoefler and Gustavo Alonso.

5.1 Motivation

Managed programming languages, such as Java and Scala, are a common vehicle for de-

veloping distributed platforms such as Spark [171], Flink [29], or Zookeeper [60]. However,

the high level abstractions available in managed languages often cause significant perfor-

mance overheads. In particular, to exchange data over the network, Java applications

are currently forced to transform structured data via serialization, causing a high CPU

overhead and requiring copying the data multiple times. While less of an issue in single-

node applications, the overhead is substantial in distributed settings, especially in big

data applications. Serialization already accounts for 6% of total CPU cycles at Google

datacenters [73].

Data transfer with object serialization/deserialization (OSD) is a complex process involv-

ing five steps: graph traversal to identify all objects that should be serialized; data

transformation to convert the objects into a byte stream (network-friendly format);

transmission to send the serialized data over the network; data traversal at the re-

ceiver to decode the received data; and object construction that involves allocating

memory and object re-initialization.

To illustrate the CPU overhead caused by OSD, we benchmarked the Kryo [141] serializer

and measured its CPU utilization while sending objects over different networks. Figure 5.1

106



5.1. Motivation

1 Gbit/s

10 Gbit/s

100 Gbit/s

Serialization De-serialization

0.176 0.236 0.286 0.266

0.244 0.314 0.05 0.356

0.250 0.328 0.05 0.370

Data transformation Graph traversal Transmission Data traversal Object construction
Network

Normalized Time breakdown

Figure 5.1: Impact of network bandwidth on OSD time.

shows the fraction of time spent on each OSD step for the transfer of an array of 1.28M

objects, all of the same exact type. Each object has two fields, each encapsulating a

primitive type. Results show that the time spent in OSD increases as networks get faster.

For a 10 Gbit/s network, it takes less than 3% of the time to send data over the network,

but it takes more than 31%/35% of the time in data transformation/object construction.

This discrepancy is even more evident in 100 Gbit/s networks in which the network time

drops to less than 0.01% and the time spent on the CPU performing OSD accounts for

almost 100% of the transfer time. While networks are getting faster, the pressure is

moving away from the network and into the CPU (and memory bandwidth), further

aggravating the already well-known CPU-bottleneck problems encountered in distributed

applications [112, 158]. Furthermore, existing distributed platforms that heavily rely on

OSD are not able to take advantage of faster networks such as RDMA.

With the widespread use of Java in large scale data processing and the increased availability

of RDMA, it is time to rethink current OSD techniques so that part of the load of object

shifts from the CPU back to the network. In this study, we aim to develop native runtime

support for serialization-free networking that avoids superfluous memory copies and data

transformation by sending objects directly from the source heap into the remote heap.

Sending and receiving data without data marshalling enables the use of zero-copy RDMA

networking, bypassing not only serialization but the need to copy data. Such a design

significantly reduces the pressure on the CPU at the cost of higher data volumes to be

transferred, since objects are sent in their uncompressed memory format.

To test and evaluate these ideas, we have developed Naos (Naos stands for Not Another

Object Serializer), a library and runtime plugin for OpenJDK 11 HotSpot JVM that

allows objects in the source heap to be directly written into a remote heap, avoiding data

transformations and excessive data copies. Naos is designed to accelerate object transfers

in distributed applications by taking advantage of RDMA communication (although it
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also supports conventional TCP sockets).

Naos allows applications to directly send objects without employing serialization libraries.

Its API requires no type registration nor serialization snippets, guaranteeing developers a

close to zero effort when building systems using Naos. Finally, Naos is the first (to the

best of our knowledge) library integrating RDMA into JVM allowing the user to commu-

nicate on-heap objects transparently, thereby easing the adoption of RDMA networking

by JVM-based distributed applications. Our evaluation shows that Naos provides a 2x

throughput speedup over serialization approaches for transferring contiguous objects and

for moderately sparse object graphs.

Contributions. Naos is the first serialization-free communication library for JVM that

allows applications to send objects directly through RDMA or TCP connections. Naos

unlocks efficient asynchronous RDMA networking to JVM users hiding all the burden of

low-level RDMA programming from the users, thereby facilitating the adoption of RDMA.

For that, Naos solves several complex design issues such as sending unmodified memory

segments across Java heaps without employing intermediate buffers, and interacting with

concurrent garbage collection without compromising JVM’s memory safety. For the first

issue, Naos proposes a novel algorithm that writes objects directly to the remote heap and

makes them valid on the receiver’s address space (Section 5.3.3). For the second one, Naos

proposes techniques preventing a concurrent JVM garbage collector from moving unsent

objects that may be accessed by RNIC and from accessing unrecovered received objects

(Section 5.3.2). Finally, Naos enables pipelining communication and serialization, which

was previously impossible with the OSD approach (Section 5.3.4).

5.2 Background on Object Serialization

Overview. Many third-party libraries [85, 62, 141] have been developed to perform OSD

in Java. Some of them provide Java bindings for popular cross-language OSD approaches

(e.g., Protobuf [62]), allowing serializing arbitrary data structures into well-defined mes-

sages that can then be exchanged using any network protocol. While remaining inde-

pendent of programming languages or operating systems, such libraries suffer from low

performance [108]. Therefore, JVM-based big-data applications (e.g., Spark, Flink) rely

on specialized libraries such as Kryo [141], designed specifically for JVMs.

Figure 5.2 and Figure 5.3 present a serialization example of a Java object and its data
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Sender with Kryo

1: buffer = ByteBuffer.allocate(512);
2: person = new Person(18, "Mike");
3: kryo = new Kryo();
4: kryo.register(Person.class);
5: out = new Output(buffer);
6: kryo.writeObject(out, person);
7: connection.write(buffer)

Sender with Naos

1: person = new Person(18,"Mike");
2: connection.writeObject(person);

Receiver with Kryo

1: buffer = ByteBuffer.allocate(512);
2: connection.read(buffer);
3: kryo = new Kryo();
4: kryo.register(Person.class);
5: in = new Input(buffer);
6: obj = kryo.readObject(in,Person.class);
7: person = (Person)obj;

Receiver with Naos
1: object = connection.readObject();
2: person = (Person)object;

Figure 5.2: Serialization, Deserialization for Kryo and Naos

"Mark"18"app.Person"

"Mark"418header ref header

4

p = new Person(18, "Mark"); new char[](4, {'M','a','r','k'});

"char[]"

User
code
JVM
heap

Java

Kryo +
register

"Mark"418Naos

"Mark"181 42

headerrefheader

Figure 5.3: Data format for Kryo and Naos

formats: memory layout (JVM heap), and serialization formats (Java, Kryo). All Java

objects start with a JVM-specific header (red) followed by a number of primitive (gray)

or reference fields (blue). The object of type Person has one primitive int field followed

by a reference field to a character array (char[]). The character array starts with the

length of the array followed by all characters.

Serializing an object involves traversing the object graph starting from that object and,

upon visiting each reachable object, copying all primitive fields into the pre-allocated

byte buffer. During native Java serialization, headers are replaced by class descriptors

in textual format (app.Person) and field references are replaced by the contents of the

pointed object. Deserialization follows a similar logic; upon visiting a serialized object, a

new object must be allocated, and all primitive fields are copied out of the buffer into the

allocated object.

Kryo. Kryo [141], one of the most widely used OSD libraries, addresses some limitations

of native Java serialization by requiring manual registration of classes to achieve a more

compact representation of the serialized data. Figure 5.3 shows a serialized data format
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in Kryo with class registration (Kryo+register). Kryo can represent all primitive types

and classes using integer identifiers, thereby reducing the amount of space needed for

storing type names. Although the class registration is trivial in this example, this task

is cumbersome for applications with hundreds of data types. Compared to Kryo, Naos

provides a cleaner interface (see Figure 5.2) with no need for developer involvement. To

send a Java object, one can directly write it (writeObject) to the network. The receiver

can directly read the object with readObject.

Accelerated OSD. To address the overhead of having to transform the data, Cereal [65]

and Optimus Prime [123] resort to dedicated hardware accelerators for OSD. These accel-

erators are co-designed with the serialization format to parallelize the OSD process. Even

though their data formats are not portable across different JVMs, their simulation results

promise 15x speedup in serialization throughput on average over Kryo at the expense of

requiring specialized hardware.

Zero-transformation OSD. The trade-off portability vs. performance is also exploited

by the serialization library Skyway [108]. By dropping portability, Skyway manages to

partially avoid data transformations and object construction by serializing Java objects

in their JVM formats, i.e., the objects are written to communication buffers in the same

binary format they are stored in the heap. Like Skyway, Naos sends objects in the JVM

heap format, assuming that communicating parties run on the same JVM software. Unlike

Naos, however, Skyway is a serialization library requiring to copy objects to and from

communication buffers. Naos, on the other hand, completely removes the need to explicitly

serialize and deserialize objects to send objects between Java heaps even with RDMA.

What is more, Skyway’s memory management prevents the use of RDMA networking

(Section 5.4).

Naos integration and applicability. Naos is not a serialization library. Naos only

covers end-to-end transfers (see Table 5.1) and cannot replace OSD in systems that do

not use it for communication (e.g., for writing objects to disks). Naos has been primarily

designed for future systems that want to take advantage of serialization-free zero-copy

RDMA networking.

In several existing Java frameworks the main obstacle to using Naos is that some of these

systems do not consider the possibility to send objects without serialization. For example,

Spark and Hadoop completely decouple serialization from communication: their serial-

ization modules are designed to serialize objects only to files, and their shuffle modules

are designed to communicate only files. Such file-centric design simplifies inter-node com-
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munication, as processes can share file descriptors instead of sending data, and helps to

reduce memory usage by dumping data to disks. However, it makes integrating Naos very

difficult. For such use-cases, conventional OSD libraries are a better fit than Naos if a

redesign for true zero-copy is infeasible.

Table 5.1: APIs of Naos RDMA.

API Description

void writeObject(Object) Blocking send of a single object

Object readObject() Blocking read of an object from heap

boolean isReadable() Check whether an object can be read

long writeObjectAsync(Object) Nonblocking send of a single object

int waitHandle(long) Wait for a send request to complete

int testHandle(long) Tests completion of a send request

5.3 System Overview

Naos allows Java applications to send/receive objects directly through RDMA or TCP

connections. Naos uses a collection of algorithms and data structures to efficiently trans-

mit large complex data structures. Figure 5.4 presents a graphical overview of Naos’

workflow, including the main algorithms and data structures. An object transfer starts

with a writeObject 1 triggering a DFS graph traversal 2 (Section 5.3.1). During the

traversal, pointers to already visited objects are detected using an interval tree. After the

traversal, both the objects 3 and metadata 4 are sent over the network using RDMA

5 (Section 5.3.2). Naos uses a circular message buffer to send metadata 8 and writes

objects directly to the remote heap 6 . Upon reception of the data and metadata, the

receiver starts recovering (Section 5.3.3) the object graph by fixing class pointers 11 and

field pointers 13 . Once pointers are fixed, the head of the object graph is returned 14 to

the caller of readObject 9 .

The writeObject call in Naos is blocking, that is, the call returns once the object trans-

mission is completed. It ensures that the object is received by the destination. In contrast

to the classical TCP/IP semantics, all RDMA operations are executed asynchronously

by design, allowing overlapping computation with communication. Naos also provides

a nonblocking writeObjectAsync call enabling asynchronous communication for RDMA

connections (Section 5.3.2). The nonblocking call initiates the send operation but does

111



Chapter 5. Serialization-free RDMA networking in Java

Sender
RDMAGraph traversal

ptr: 0xFF00
len: 16

ptr: 0xFF30
len: 32

ptr: 0xFF20
len: 16

Send list

Back-pointers
ref id: 4

offset: 0x20
ref id: 5

offset: 0x00

writeObject(obj)

1

DFS traversal Interval tree

2 3

4

readObject() HEAPClass Pointer Fixing

Speculative
Type Graph

RDMA

Cached class
pointers

Remote class
resolution

5

Circular
message buffer

7

Metadata
messages

Replication with
RDMA Writes

Preallocated
buffers

ptr:0x700000
len: 2 MiB

ptr:0xB00000
len: 2 MiB

ptr:0x900000
len: 2 MiB

68

Field Pointer Fixing
Receiver

10

Object

9

Naive pointer
recovery

Back pointer
recovery

1113

14

Class name
service

12RPC

ptr:0xE00000
len: 2 MiB

Figure 5.4: Naos’ workflow for sending and receiving a Java object.

A

B D

C

Logical View

A

D

B

C

Sender Memory

A

B

C

D

Network

ref id:4, offset:0x20
Back-pointers

Data Objects
1

2

3

4

5

1
2

3

4

5

A

C

Receiver Memory

B

D

1 2

34

5
ref id:5, offset:0x00

Object reference Trivial-pointer Back-pointer

0xFF00

0x00

0xFF10

0xFF50

0xFF20

0x10

0x20

0x30

Figure 5.5: Object views of Naos’ graph traversal and pointer recovery.

not fully complete it. Instead, it returns a request handle, that is used by a user to wait

for the completion using waitHandle call or to verify whether the request is completed

using testHandle call.

5.3.1 Object Graph Traversal

Java objects can contain reference fields pointing to other Java objects and therefore, when

an object is passed as an argument to writeObject 1 , all objects reachable from it need

to be sent. To find all objects reachable from a particular object, Naos traverses the object

graph 2 in Depth-First-Search (DFS) order. Figure 5.5 illustrates a simple example of

an object graph’s (Logical View), sender memory layout, format sent over the network,

and receiver memory layout. The sender memory starts at address 0xFF00 and all objects

occupy 16 bytes. Edges are numbered according to DFS order.

When an object is visited for the first time, it is included in the Send list 3 : a list of
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memory blocks that will be sent over the network. Each memory block has two elements:

the starting virtual address, and the length. The send list contains objects ordered ac-

cording to DFS order, and the objects are sent in this order over the network. Naos also

merges the memory blocks that are adjacent in the send list to reduce its length. For

that, during traversal Naos checks whether a new visited memory block is a continuation

of the last block of the send list: if yes, then Naos increases the length of the last block,

otherwise, Naos adds a new block to the list. The resulting send list is presented in 3 ,

which contains three elements: for object A, for objects B and C as they are adjacent in

memory and in DFS order, and for object D.

The length of the send list Traversal time (us)

Structure (1-0-0) (1-1-0) (1-2-0) (1-1-1) (1-0-0) (1-1-0) (1-2-0) (1-1-1)

BFS 1 2048 3072 3072 42 194 315 271

DFS 1 2 2 1 42 57 74 76

Table 5.2: Graph traversal of the object array.

DFS vs BFS traversal. Even though Skyway [108] uses BFS traversal for serialization,

Naos exploits DFS due to the fact that Java objects are constructed in DFS order (i.e.,

a JVM first allocates memory for an object and then recursively for all its fields). Thus,

DFS traversal has better memory locality that can be illustrated by traversing an object

array from the following code snippet. Let us consider a class Person that has different

graph structures denoted as (L0-L1-L2), where Li is the number of objects on the level i

of the object graph (e.g., the object in Figure 5.5 has structure (1-2-1)).

1: Person[] array = new Person[1024];
2: for(int i=0; i<1024; i++)
3: array[i] = new Person();

Table 5.2 reports the length of the send list after BFS and DFS traversals and corre-

sponding traversal time for several object graphs. The data shows that for complex graph

structures DFS provides much shorter send lists and faster traversal time.

Back-pointers. Naos sends objects directly from one heap to another. As a result,

objects are sent containing pointers that are valid only in the sender address space, but

not in the receiver’s. Naos addresses this problem by sending extra metadata along with

data objects, which is used by the receiver to efficiently recover the pointers (Section 5.3.3).
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Algorithm 1 Was object o already visited?

1: if o.addr = curr.addr + curr.len ∧ o.addr 6= next.addr then

2: curr.len← curr.len + o.size . hot-path

3: return false

4: if o.addr > curr.addr ∧ o.addr < next.addr then

5: curr ← tree.insert before(next, o) . warm-path

6: return false

7: node, success← tree.insert(o) . cold-path

8: if success then

9: curr ← node

10: next← curr.next()

11: return false

12: return true . is a back-pointer

Naos is designed to send as little metadata as possible. The metadata contains a 24-byte

header with object and metadata sizes and, if present, pointers to already visited objects

4 . These pointers are redundant edges after building a spanning tree over the object graph

using DFS. We call them back-pointers since they always point to already visited objects in

the send list (see Figure 5.5). For each back-pointer, a reference identifier representing the

order by which the reference was visited in DFS order, and an offset within the send list

where this reference should point to are sent to the receiver as metadata. In our example

in Figure 5.5, only references 4 (D −→ C ) and 5 (C −→ A) are sent.

All edges of the spanning tree (we call them trivial-pointers for simplicity) can be auto-

matically inferred during a DFS traversal in the receiver (Section 5.3.3). This allows Naos

to send no information about trivial-pointers resulting in a massive reduction of metadata

sent over the network. Note the graphs without cycles do not contain back-pointers, which

covers the vast majority of the most popular Java data structures.

Back-pointer/Cycle detection. To detect pointers to already visited objects (i.e., back-

pointers), Naos uses a memory interval tree that keeps track of all visited memory intervals

during DFS traversal. The interval tree is implemented using a red-black tree, which is

selected over a hashtable (as Java and Kryo do) for two reasons. First, for large data

structures, the hashtable grows (one entry per visited object) to large sizes and will lead

to expensive lookups due to hash collision. Second, references to already visited objects

are very rare and references pointing to objects in nearby memory positions are common

in most Java popular data structures. Therefore, an interval tree, in most cases, contains

a few large memory intervals, thereby ensuring fast lookups. We further optimize our
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interval tree by providing different fast paths.

Algorithm 1 presents how Naos decides whether a particular object o has been already

visited. Two helper variables are used: curr points to the last node inserted into the tree;

next points to the tree node that follows curr in the tree. All tree nodes keep an initial

address addr and its length length. If the object’s address is adjacent to the last memory

interval inserted into the tree, the insertion is performed in O(1) time (hot-path). If the

memory pointer is higher than the current tree node and lower than the next tree node,

then insertion is performed in O(1) (warm-path), unless the tree needs to be re-balanced,

taking O(log(n)) time . Otherwise, the memory pointer is inserted in the tree in O(log(n))

time (cold-path).

As a comparison, Skyway does not use complex structures for cycle detection and simply

extends the JVM header of Java objects by 8 bytes. Even though it ensures that the

newness of an object can be be checked in O(1), it results in a 15.4% increase in memory

usage [108].

5.3.2 Network exchange of on-Heap Objects

Naos adds native RDMA communication to JVM without compromising JVM’s memory

safety. Naos’ interface does not expose explicit RDMA access to the remote or local heap

memory. Instead, its API allows only sending and receiving Java objects, hiding all the

burden of low-level RDMA programming from the user. Internally, though, Naos fully

relies on efficient one-sided RDMA communication to completely avoid redundant data

copies. Naos also supports TCP for sending objects directly from its heap, but the use of

RDMA requires overcoming peculiarities of managed languages such as concurrent garbage

collection.

Blocking RDMA protocol. This section describes the blocking RDMA protocol for a

single connection. All connections are handled independently and do not share resources.

The core idea of Naos RDMA is that the receiver pre-registers buffers of fixed size in

its heap and registers them for RDMA Write access. The sender uses RDMA Writes

6 to write the objects from its local heap directly to the known reserved buffers in the

remote heap 7 . The metadata is sent separately using a circular buffer 8 for RDMA

messaging [47, 122].

The protocol allows the sender to start writing memory to the remote heap even if the

receiver did not call readObject, as illustrated in Figure 5.6(a). The sender can continue
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Figure 5.6: Blocking communication mechanism for three scenarios: (a) the sender can

fit data to the pre-allocated receiver heap; (b,c) the sender needs to request extra heap

memory. The receiver was not ready to receive data in (b), and it was ready in (c).

writing the data while it has enough free remote memory. Once the sender completes

writing all objects to the remote heap using RDMA, it sends a separate completion message

with metadata via the circular message buffer 8 . The remote circular buffer is filled

using RDMA Write with immediate data, which generates a completion event on the

receiver after the write completes. The sender can unblock from sending once it receives

an acknowledgment from the network indicating that all data has been written to the

receiver. The acknowledgment is generated by the network and does not require the

receiver’s interaction. The receiver fetches the received object when it calls readObject,

after all pointers are recovered (Section 5.3.3).

Sender’s heap management. Naos utilizes object pinning to prevent a JVM garbage

collector (GC) from moving objects until they are fully transmitted by the RNIC. Object

pinning is already offered by some garbage collectors, such as Shenandoah [50]. Shenan-

doah is a high-performance GC that is supported by upstream OpenJDK. Besides object

pinning, Naos also utilizes Shenandoah’s memory allocator, that maintains the heap as

the collection of fixed size Shenandoah regions. To pin and unpin objects efficiently, Naos

pins whole Shenandoah regions containing the affected objects instead of pinning individ-

ual objects. During a send request, Naos pins and remembers all affected Shenandoah

memory regions. Once the request completes, Naos unpins the regions associated with the

request. Shenandoah allows pinning a region multiple times, and each region needs to be

unpinned as many times as it has been pinned, thereby successfully preventing Naos from
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accidentally unlocking the GC for unsent objects.

RNICs cannot simply send data from any buffer and communication buffers must be

registered at the RNIC1. Thus, the sender must register the memory addresses of all

objects it needs to send. However, RDMA memory registration is an expensive process

that may take hundreds of microseconds for a single buffer [71, 104, 150]. Therefore,

naive registration of all objects from the send list may completely cancel all performance

advantages of RDMA. Naos addresses this issue by registering large fixed-size memory

regions (i.e., Shenandoah regions) where the objects are allocated. It enables reusing a

single memory registration for all objects stored in it, exploiting spatial locality. Naos

also caches memory registrations to reuse them later for future sends, exploiting temporal

locality.

Receiver’s heap management. When the sender runs out of the remote buffers for

writing, it sends a request to the receiver to register more on-heap memory, as illustrated

in Figure 5.6(b,c). Thus, the sender can block until the receiver replies with new heap

buffers, as in Figure 5.6(b). However, when the receiver is ready to receive data it can

immediately reply to the heap request and do not obstruct the sender as in Figure 5.6(c).

The receiver can reply to heap requests when it calls readObject or isReadable. During

these calls, Naos checks for received requests by polling completion events from the RNIC.

The process of handling requests is invisible to the caller, which hides the complexity of

the underlying protocol from the user.

Upon receiving a heap request, the receiver allocates a new Java byte array buffer of fixed

size inside the Java heap and registers its payload for RDMA Write access and replies with

the RDMA address of the registered buffer. To prevent the GC from moving the reserved

on-heap buffers, Naos utilizes object pinning offered by Shenandoah [50]. Importantly,

the sender writes data to the payload of the pre-allocated byte array as it prevents the

GC from reading invalid data. The main reason for that is that the unrecovered received

objects have invalid class and object pointers (Section 5.3.3). Thanks to this enclosure,

the GC observes only the array and skips reading objects stored in the payload.

The sender fills the remote buffers in the order it received them from the receiver, con-

stituting a queue of remote heap buffers. Since pre-registered RDMA heap buffers are of

fixed size, the sender is not always capable of fully utilizing them. To address this issue,

1Modern RNICs support implicit on-demand paging (ODP) [88] that removes the need to register

buffers. In our preliminary experiments, however, ODP performed worse than conventional explicit mem-

ory registration.
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the sender informs the receiver about how many bytes were unused in each finalized heap

buffer by sending heap truncate request. A buffer becomes finalized when the sender jumps

to the next buffer in the queue. After receiving the data, the receiver revokes RDMA ac-

cess to finalized buffers and then unpins them to enable the GC for received objects. It

also deallocates unused memory of the finalized buffer and removes the array header to

make all received objects visible to the GC.

Nonblocking object sending. The main difference between the blocking writeObject

and the nonblocking writeObjectAsync is that the later returns right after the dispatching

metadata write request to the device. The nonblocking call submits all communication

requests to the RNIC but does not wait for a network acknowledgment. Instead, Naos

returns a request handle that can be used by an application to confirm the delivery of

the object using testHandle call. Compared to the blocking call, Naos prevents the GC

from moving affected objects even after the call returns. Naos pins the affected objects

before exiting the JVM, and unpins them later once the corresponding acknowledgment

is received.

Naos TCP. Naos supports sending objects directly from the heap using TCP as well.

Unlike RDMA connections, a traditional TCP socket connection has a single datapath.

Thus, to send the objects to the remote heap, the TCP sender first writes the metadata

to the socket and then all elements of the send list. The receiver first reads metadata to

a temporary buffer from its socket, then, to avoid redundant data copies, it directly reads

the data from the socket to the heap. For that, it allocates a byte array buffer of the

required size inside the Java heap, and then reads the data from the socket to the payload

of the allocated buffer.

Network buffering. Naos is designed to send data directly from the heap without

intermediate buffering. However, the size of a JVM object can be as small as 24 bytes.

Thus, a highly sparse object graph can result in a lot of small writes to the network,

which can significantly reduce the network performance. To address this issue, Naos may

buffer small objects before sending them to the remote heap. Large objects are still sent

directly from the heap. Naos sends buffered objects once it batches enough bytes to

utilize the network, or when a large object needs to be flushed to preserve DFS object

order (Section 5.3.1).

An alternative approach is to use scatter-gather capability of RNICs [96] for RDMA net-

working and scatter-gather I/O for TCP sockets. The scatter-gather networking enables

building a network message from multiple buffers without intermediate buffering. The
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current version of Naos does not implement it, but it is an interesting direction for future

research.

Memory safety of Naos. Naos uses reliable transport to ensure the delivery of transmit-

ted data. Naos materializes only fully received objects, which prevents returning partially

received objects from a faulty sender. Faulty sends can be detected during graph recovery

from the network errors provided by the reliable transport. If an error is detected, the

receiver revokes RDMA access to pre-allocated buffers and deallocates the unused memory.

Naos’ implementation follows all security advice related to RDMA networking [133], there-

fore, we believe that Naos does not open security breaches. In particular, the pre-allocated

heap buffers are not shared between connections preventing remote JVMs to access buffers

of each other. In addition, each sender registers its heap only for local read access pre-

venting other remote JVMs to access it. Finally, remote read access is disabled, and Naos

only temporarily enables write access to pre-allocated in-heap buffers, which are private

for each sender. Once the in-heap buffer is full, the write access is revoked.

For compatibility between communicating applications, Naos requires that communicating

JVMs have the same memory layout of in-heap objects. This can be achieved by running

the same JVM with the same settings including GC.

5.3.3 Object Graph Recovery

Naos sends unmodified memory segments from one heap to another. As a result, objects

are sent containing pointers that are valid only on the sender address space, but not on the

receiver’s. Naos’ graph recovery algorithm overwrites these pointers making them valid

on the receiver’s address space. Java objects have two types of pointers: class pointers

and object pointers. Class pointers point to JVM-internal data structures that describe

Java types. Object pointers are reference fields that point to other on-heap Java objects.

Naos uses a recovery approach different from the one used in Skyway [108]. Since Skyway

copies objects to communication buffers, it can afford modifying data before sending.

Thus, Skyway simply replaces class pointers with integers (as Kryo does) and object

pointers with their relative offsets within the communication buffer. Such design allows

the receiver to simply replace class integers with corresponding class pointers and relative

object offsets with corresponding absolute addresses. Unlike Skyway, Naos sends objects

directly from the heap using RDMA requiring more sophisticated algorithm for pointer

fixing in return for not requiring data copying.
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Algorithm 2 Object Graph Recovery

1: buffer . the buffer with received objects

2: refid← 0 . the number of traversed references

3: offset← 0 . current offset in the receive buffer

4: stack.push(new field(), new hint()) . push dummy field and hint

5: while stack.is not empty() do

6: field, hint← stack.pop()

7: FIX FIELD POINTER(field, hint)

8: refid← refid + 1

Phase 1 – Fix Field Reference

9: procedure fix field pointer(field, hint)

10: if refid = cur back pointer.id then . a back-pointer

11: field.ptr ← buffer + cur back pointer.offset

12: cur back pointer ← get next back pointer()

13: else . a trivial-pointer

14: obj ← (obj)(buffer + offset)

15: field.ptr ← obj

16: FIX CLASS POINTER(obj, hint)

17: ITERATE FIELDS(obj, hint)

18: offset← offset + obj.size

Phase 2 – Fix Class

19: procedure fix class pointer(obj, hint)

20: if hint.rem class = obj.class then

21: // hint is correct, do nothing . hot-path

22: else

23: if class cache.contains(obj.class) then

24: new hint← class cache.get(obj.class) . warm-path

25: hint.update(new hint)

26: else

27: new hint← class service(obj.class) . cold-path

28: class cache.put(obj.class, new hint)

29: hint.update(new hint)

30: obj.class← hint.loc class

Phase 3 – Iterate Fields

31: procedure iterate fields(obj, hint)

32: for field, field hint in hint.fields do

33: stack.push({obj + field.offset, field hint})
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Algorithm 2 describes the Naos’ graph recovery approach that starts with a DFS traversal

of the object fields (lines 5-8). The traversal is initialized by pushing a dummy field

pointing to the first received object. The graph recovery terminates when the DFS stack

is empty. At that point, all pointers are valid in the receiver’s heap and the first object

can be safely returned to the user.

Fixing Field References. For every object field found in the stack, the algorithm applies

FIX FIELD POINTER procedure, which investigates whether the tested reference is a

back-pointer or a trivial-pointer by checking whether the received metadata contains the

current reference ID (line 10). For back-pointers, the offset associated with the current

pointer is used to fix the reference. If the reference is a trivial-pointer, the new memory

address can be determined by just using the current offset in the receive buffer (line 14).

For a trivial-pointer, the next step is to fix the class field of the pointed unvisited object

(line 16). Note that Naos sends no metadata for trivial pointers, since the sender and the

receiver traverse the graph in the same DFS order, providing a significant reduction in

metadata size.

Fixing Class References. Updating class pointers is a particularly expensive operation

if not designed carefully, since the class pointer needs to be fixed for every object. To

achieve high performance, Naos proposes a 3-way approach:

Class Service (cold-path) is an RPC service 12 that is started upon creation of a Naos

connection. Once a receiver needs to determine the class of a particular sender’s class

pointer, it issues an RPC request to the sender to translate the pointer to the full class

name. The full class name can be used locally to query local JVM internal data structures.

Class Map (warm-path) is a per-connection table that caches all class translations. How-

ever, accessing a table for every object reference still produces a large overhead, especially

in large graphs. To overcome this limitation, Naos proposes the use of Speculative Type

Graphs (STG), a type of polymorphic cache inspired by [58].

STG (hot-path) is a data structure that dynamically captures type relations in the object

graph, providing a translation hint for each class pointer. Each STG hint caches: i) a

translation between a local and remote class pointer; ii) class description including object

fields; iii) pointers to other hints for each field allowing to build hints recursively (lines 32-

33). Using STG, Naos can speculate on the type of a particular object using a hint. If

the hint is correct the class translation and retrieval of a class descriptor takes O(1) time

(line 20). Speculation might fail due to type polymorphism in Java (line 22) and, in that
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Figure 5.7: The communication benefits of Naos’ pipelining compared to the conventional

OSD approach.

case, the cache is used for resolving the class pointer and the STG is updated (line 25)

with the new translation hint. In practice, however, most data structures have very regular

type graphs allowing the STG to guess correctly most of the times.

After the class pointer of an object is fixed, Naos iterates all its reference fields (line

17). Naos utilizes object’s class pointer translation hint to create translation hints for

its reference fields (lines 32-33), which are then pushed into the stack together with the

corresponding object reference.

5.3.4 Overlapping network and graph traversal

An important disadvantage of conventional serialization approach is that it does not sup-

port overlapping serialization and communication: an object must be fully serialized be-

fore sending it over a network. Similarly, the receiver cannot start deserialization unless

it receives all the data (see Figure 5.7). As a result, applications can suffer from high

end-to-end latency for large object graphs.

Naos supports pipelining graph traversal with communication on the sender and pointer

fixing with object receiving on the receiver. Both Naos TCP and Naos RDMA benefit from

pipelining as it allows the receiver to start pointer fixing of partially received object graphs,

thereby reducing end-to-end latency. Using offloaded RDMA communication, Naos RDMA

can continue traversing the graph after submitting write requests to the RNIC, thereby

overlapping communication and graph traversal on both the sender and the receiver.

Pipelining in Naos is implemented by pausing the object traversal and sending partial

graphs to the remote heap. A partial graph contains only objects and back-pointers found

at a given traversal stage. The receiver can read the partial graph and start pointer fixing.

Once all received objects are traversed, the receiver reads the next fragment of the graph.
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Figure 5.7 illustrates how Naos with pipelining improves communication latency of large

object graphs compared to the OSD approach. The OSD approach cannot break serial-

ization of a single graph, which results in 9 ms latency. Naos TCP can send partially

traversed graphs reducing the latency by 2 ms, but cannot overlap computation with com-

munication. Naos RDMA enables overlapping communication and graph traversal, which

reduces the latency by another 2 ms.

5.4 Evaluation

We evaluate the performance of Naos and compare it with Java, Kryo, and Skyway2

serialization engines using four different classes of workloads. First, the performance of

Naos is studied by transferring data structures that are commonly used in distributed

applications. The goal is to measure the performance benefits of the different techniques

proposed in Naos and the trade-offs involved depending on the shape of object graph. In

addition, it also shows the impact of using RDMA instead of TCP. Second, we study the

role of data streaming and pipelining in OSD performance. Then, we show results for

integrating the Naos library into Apache Dubbo [7], a high-performance RPC framework

developed in Java, to show the impact of Naos on RPC workloads. Lastly, we use a

map-reduce implementation of PageRank to measure the performance of Naos for data

processing workloads.

Experimental setup. All experiments were performed on a cluster of 4 nodes intercon-

nected by 100 Gbit/s Mellanox ConnectX-5 NICs. Each node is equipped with an Intel(R)

Xeon(R) CPU 6154 @ 3.00 GHz and 384 GB of RAM.

Implementation details. Naos is implemented and tested for OpenJDK HotSpot 11.0.6 [6],

a widely-used production JVM. Naos does not require changes to the internals of the

JVM and is implemented as a JNI plugin and a Java-level library that allows users to

write objects directly to TCP and RDMA connections. Naos TCP provides construc-

tors to create a Naos connection from TCP connections of various network libraries (e.g.,

java.net.Socket). Naos RDMA does not rely on existing JVM RDMA libraries and

fully implements a specialized RDMA network library including an API to create and

2We could not compare with the original Skyway as it is not open-source. Therefore, we re-implemented

Skyway following the instruction provided in the paper [108]. Note that we did not extend object headers

by 8 bytes for cycle detection and simply evaluated Skyway without cycle detection.
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connect RDMA endpoints. Our plugin is implemented in Java and C++ and depends on:

libibverbs, an implementation of the RDMA verbs, and librdmacm, an implementation of

the RDMA connection manager.

RDMA communicators for Java and Kryo serializers have been implemented using Disni [143]

RDMA library, a high-performance Java RDMA library that encapsulates native C RDMA

verbs API. The Disni library is used by Java applications such as Spark [97], Crail [145],

and DaRPC [144]. Note that Skyway cannot be used with existing RDMA libraries, in-

cluding Disni, as these libraries can only work with specialized off-heap memory residing

outside of the Java heap memory, whereas Skyway requires the memory buffers reside

inside the heap memory to deserialize objects. These limitation stems from the fact that

garbage collection can move on-heap buffers while they are being accessed by the RNIC.

In all experiments, the JVM was configured with default parameters and enabled Shenan-

doah garbage collector as it is the only collector that is currently supported by Naos.

Shenandoah was configured with 32 MiB memory regions. Naos was configured with 20

MiB receive buffers. If not stated differently, Naos and all serialization algorithms were

deployed without graph cycle detection and with no pipelining (Section 5.3.4).

5.4.1 Serializing Java Data Structures

The performance of OSD approaches is measured using three data structures that are

among the most common serialized data structures in real-world workloads deployed in

platforms such as Spark, Hadoop, and Flink: a) an array of float primitive types, which

is common for machine learning workloads; b) an array of class Point containing only

two primitive types, which represents a 2D Euclidean point; c) an array of class Pair

containing an integer and a char array, which represents a key-value pair, in many algo-

rithms such as Word Count. In our experiments the char array had length 5, the average

word length in the English language.

Benchmarks are carefully designed to guarantee the optimal configuration of all serializers.

In particular, for Java, Kryo, and Skyway, all buffers are pre-allocated with the correct

size to avoid re-allocation and memory copies during the serialization process. Besides,

all types were pre-registered in Kryo to guarantee maximum data format compression.

Measurements are taken after a JVM warmup (of at least 100 ms) until convergence of the

JIT compiler to achieve maximum performance. All experiments run in complete isolation

for several seconds and the aggregated statistics are reported.
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Figure 5.8: Latency in us for a) an array of floats b) an array of Points c) an array of

Pairs. The y-axis is in log scale.

Latency. Figure 5.8 shows the average latency of transferring the aforementioned data

types with increasing their size.

Naos performs excellently for contiguous data structures such as the array of float, as it can

send them from the heap without making extra copies and using fewer RDMA requests.

For comparison, Kryo, Java, and Skyway must first serialize objects to a dedicated send

buffer. RDMA-Naos’ latency can be as small as 8 µs, which is at least a 2x and a 2.4x

improvements over Kryo and Java serializers, respectively, for small arrays, and at least

a 4.5x for large arrays. For example, Naos RDMA needs only 42 µs to send 216 floats,

whereas serialization approaches need at least 190 µs.

Naos RDMA has lower latency than Skyway, however, Skyway performs better than TCP-

Naos for small arrays because of two reasons. First, Naos buffers small objects (less than

256B) to better utilize the network (Section 5.3.2). Second, Naos TCP allocates on-heap

memory after data arrives, whereas Skyway has all buffers preallocated in our experiments.

Both reasons give an advantage to Skyway over Naos TCP for small arrays. For large

arrays, Naos TCP provides a 9.1% reduction in latency over Skyway as it incurs fewer

data copies.
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An array of float is the simplest object graph for graph traversal as it contains a single

contiguous object. An array of Point, however, is non-contiguous in memory as this array

contains references to objects of class Point, which are 32 bytes each. Nonetheless, Naos

provides a 2x and a 4x improvements on average over Java and Kryo for RDMA networks,

even with cycle detection enabled (+cycles). Naos+cycles benefits from our hot-paths of

Algorithm 1 as the JVM tends to collocate objects in memory even for the potentially

sparse object graphs. The experiment shows that moderately sparse graphs with small

objects are not an issue for Naos.

An array of Pair is even sparser graph than the array of Point, as the class Pair has more

references than the class Point. Naos RDMA still achieves the lowest latencies for all

sizes. However, with cycle detection, Naos’ traversal is slower for long arrays compared

to Kryo. The main problem is that Naos sends more data than conventional serializers

since it needs to send a JVM header of 16 bytes for each Java object. We conclude that

Naos does not always provide lower latency compared to conventional OSD approaches

and that its performance depends on sparsity and the number of traversed objects.

A shortcoming of Skyway’s and Naos’ data format is that they do not compress arrays

with references and are forced to send long arrays with (invalid) pointers, whereas Kryo

can encode this information in few bytes. To address this issue, we designed a specialized

call for Naos, namely NaosIt, that sends only objects stored in an array. The receiver

of such compressed message creates a new array and then fills it with received objects.

NaosIt reduces the size of communicated data, but requires extra memory allocation on

the receiver. Overall, NaosIt provides a small improvement over Naos, as the experiments

are performed on 100 Gbit/s network. Such compression would be more beneficial for

slower networks.

CPU and network costs. To show the key differences between Naos networking and the

traditional OSD approaches, Table 5.3 shows the time breakdown of transferring various

data structures and their network cost. Naos as a serialization-free approach always has

zero cost for serialization and deserialization. Naos’ graph traversal time is included in the

send time. The OSD approaches with RDMA has zero receive cost as the data delivered

directly to pre-allocated receive buffers by the RNIC. Naos, on the other hand, has non-

zero cost as the receive time includes the graph recovery.

Object serialization in TCP experiments takes longer than for RDMA. The difference

comes from the fact that in TCP experiments the data is serialized to on-heap buffers,

which can be affected by the GC, whereas RDMA requires data to be serialized to off-heap
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TCP RDMA

Test Ser. Send Receive Deser. Ser. Send Receive Deser. Size (B)

Array of native float with 8192 elements

Java 15-18 6-9 6-8 17-24 14-17 0-1 0 15-20 32795

Kryo 24-29 7-10 6-8 26-31 24-27 0-1 0 25-86 32772

Skyway 2-3 7-9 7-8 0-1 NA NA NA NA 32792

Naos 0 7-9 16-52 0 0 10-11 0-1 0 32792

Array of class Point with 1024 elements

Java 109-116 5-7 4-6 94-102 112-119 0-1 0 113-121 14469

Kryo 44-47 4-6 2-3 36-39 43-47 0-1 0 38-41 8132

Skyway 23-26 6-8 6-8 10-11 NA NA NA NA 28696

Naos 0 22-26 27-76 0 0 25-26 13-15 0 28696

NaosIt 0 22-23 28-39 0 0 24-25 15-17 0 24576

Array of class Pair with 1024 elements

Java 216-664 7-19 10-12 208-222 211-223 0-1 0 217-230 30864

Kryo 135-231 5-10 6-8 79-83 135-148 0-1 0 80-83 18436

Skyway 149-154 9-13 15-31 23-24 NA NA NA NA 61464

Naos 0 161-168 84-137 0 0 199-206 34-39 0 61464

NaosIt 0 159-164 109-138 0 0 200-206 36-40 0 57344

CPU sender CPU receiver CPU sender CPU receiver Network

Table 5.3: CPU time breakdown (in µs) and Network cost for transferring arrays. Per-

centiles 5 and 95 are reported.

buffers, that are invisible to the GC.

Java and Kryo for RDMA have the same send cost which is the cost of submitting offloaded

RDMA request to RNIC. Blocking Naos RDMA has higher cost to send as it needs to wait

for a network acknowledgment to finish sending.

For all data types, Naos RDMA shows at least a 2x reduction in CPU time for receiver over

Kryo and Java. The main reason is that conventional serialization libraries need to allocate

and initialize memory for each received object. Naos does not construct objects and only

fixes pointers in the received data. For senders, however, Naos is better at reducing CPU

cost for simple graphs such as arrays of floats and points. Note that Naos TCP has a

longer receive time than Skyway as it needs to allocate receive memory, whereas Skyway

worked with pre-allocated buffers in our experiments.

The network cost of Naos and Skyway increases with the number of transmitted Java

objects. For an array of floats, therefore, the size of the transmitted data is approximately
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Figure 5.9: Throughput in objects/sec for a) an array of floats b) an array of Points c)

an array of Pairs.

the same for all approaches. On the other hand, for an array of Points or Pairs, the network

cost of Naos is about 2x higher in comparison with Java and about 3.5x over Kryo. Kryo

has the lowest network costs as it replaces the class descriptors with integer identifiers

significantly compressing object graphs. Naos and Skyway have the same network cost as

they have the same data format, but our NaosIt provides a reduction in the network size

for array containers.

Throughput. In this experiment, senders continuously send objects to the receiver. For

RDMA approaches with serializers, we provide at the sender and the receiver a large

number of send and receive buffers to enable asynchronous communication so that the

sender can start serializing and sending the next object without the need to wait for the

completion of the previous requests.

Figure 5.9(a) shows that Naos TCP was not able to significantly outperform Skyway

for small arrays, as the throughput of Naos was mostly limited by the receive buffer

allocation, whereas Skyway, with pre-allocated memory, achieved 750K requests/sec. For

arrays larger than 212 elements, however, Naos TCP outperforms Skyway as the cost

of data copies at the sender overwhelms the cost of memory allocation at the receiver,

showing the advantage of our zero-copy design.
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The performance of blocking Naos RDMA is bound by the network latency, which pre-

vented the application to send requests at a higher rate. The NaosAsync RDMA, which

avoids waiting for an acknowledgment, achieves the highest performance showing the im-

portance of asynchronous communication. For the array of 512 floats, Naos achieves 1600K

requests/sec, which is a 2x speedup over existing serialization approaches.

Figures 5.9(b,c) show that the throughput of Naos RDMA was limited by the network

bandwidth since NaosIt, that communicates less data, outperforms NaosAsync RDMA.

This observation indicates the benefit of our data compression.

The cycle detection decreases the throughput of Naos by less than 3% for moderately sparse

graphs. For sparser graphs such as an array of Pairs the slowdown increases to 19%, which

is explained by the growth of the Naos’ interval tree for cycle detection. Therefore, Naos

has lower performance than Kryo, but still outperforms the Java serializer. We think that,

in real systems, Naos can be used together with traditional OSD libraries depending on

the sparsity of the object graph.
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Figure 5.10: Streaming an array of 220 elements.

Streaming data transfers. Data processing frameworks such as Spark and Flink rely on

data streaming to enable processing of continuous streams of data. The continuous data

stream is generated by sending small chunks of data to the processing nodes. To represent

this use-case we implemented the streaming of long data arrays over RDMA networks.

Figure 5.10 shows the streaming time of an array of Points and Pairs with increasing the

chunk size.

For the array of Points, Naos RDMA outperforms all serializers for all chunk sizes, and

decreases the streaming time of Kryo by 2.1x. For the array of Pairs, Kryo has the highest

performance, by sending 256 objects at a time, due to its ability to compress the objects
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efficiently. For larger chunks, Naos and Skyway take less time than Kryo, since Kryo starts

suffering from longer object construction for larger chunks, whereas Skyway and Naos do

not need to construct objects.

Even though Skyway and Naos have the same data format, Skyway streamed the array

of Pairs faster than Naos. The difference comes from the complexity of Naos’ communi-

cation algorithm, leading to the higher CPU cost at the sender (see Table 5.3). Skyway’s

serialization code only copies traversed objects to send buffers, whereas Naos as a com-

munication library needs to take more factors into account: building send lists, RDMA

memory registration, and triggering multiple RDMA requests. Naos could employ vari-

ous modern RDMA techniques for optimized memory accesses [96], which are interesting

directions for future research.
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Figure 5.11: Pipelining an array of 220 elements.

Pipelining data transfers. Naos supports pipelining graph traversal with communica-

tion on the sender, and pointer fixing with communication on the receiver. Unlike Naos,

conventional OSD approaches require an object to be fully serialized before sending it over

the network. In this experiment, we show the effect of pipelining for large object graphs

by measuring the time of transferring arrays with 220 elements.

The latencies of Java, Kryo, Skyway, and Naos with no pipelining are depicted as straight

lines in Figure 5.11 as they are independent of the pipeline size. Naos with pipelining

provides a 20% reduction in latency in comparison with a non-pipelined variant, since the

receiver can start pointer recovery earlier. Note that in the previous experiments with

streaming large sparse object graphs, Kryo outperformed Naos as it could split the graph

into chunks. For inseparable large graphs, however, Naos takes less time even for highly

sparse graphs.
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5.4.2 Accelerating applications with Naos

Naos provides a simple programming interface (see Table 5.1) hiding all the burden of

low-level RDMA communication. In particular, RDMA benchmarks from the previous

experiments take only 10 lines for Naos and over 300 lines for the Disni RDMA library.

Thus, we believe that it is simple to build systems using Naos. As proof, we have extended

Apache Dubbo with Naos communicator, and implemented a Naos-enabled map-reduce

framework.
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Figure 5.12: Dubbo RPC latency.

Zero-copy RPC messages with Dubbo. To show that Naos is easy to use, we extended

an RPC library Apache Dubbo with the Naos communicator. For that we added a new

Naos-enabled communication module that has no serialization module.

In the first experiment we measure the latency of an RPC function that echoes back a Java

String. Naos’ performance was compared with the default TCP network library, Mina [9],

with Kryo serializer. Naos was deployed with cycle detection. Note that Dubbo besides

an RPC arguments also sends an RPC metadata resulting in sending several Java objects.

Figure 5.12 shows that employing Naos RDMA decreases the latency by at least 55% for

all tested sizes.

Workload (50:50) (95:5) (100:0)

TCP-Kryo 14K-24K 16K-24K 23K-25K

RDMA-Naos 194K-266K 196K-266K 219K-281K

Table 5.4: Throughput in requests/sec under YCSB workloads with various (read:write)

ratios. Percentiles 5 and 95 are reported.
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LiveJournal [13] (2 nodes) Orkut [170] (3 nodes)

TCP RDMA TCP RDMA

Test Total Stage Total Stage Total Stage Total Stage

Java 413.46 3.67-4.04 406.87 3.53-3.99 364.53 3.20-3.38 365.29 3.10-3.44

Kryo 410.94 3.62-4.06 411.33 3.63-3.99 357.58 2.98-3.47 354.06 2.91-3.42

Skyway 394.32 3.52-3.77 NA NA 350.48 3.07-3.24 NA NA

Naos 393.05 3.54-3.76 395.05 3.59-3.70 342.06 2.85-3.32 343.00 2.84-3.35

NaosIt 394.49 3.56-3.77 386.01 3.48-3.69 345.94 2.82-3.45 333.16 2.72-3.24

Skyway† 386.31 3.54-3.78 NA NA 340.82 2.95-3.30 NA NA

Naos† 373.04 3.27-3.72 369.10 3.16-3.63 331.31 2.86-3.22 335.50 2.85-3.22

† PageRank with sparsity-aware implementation.

Table 5.5: Total and per stage processing times in seconds for 100 iterations of PageRank

algorithm. Percentiles 5 and 95 are reported for PageRank iterations.

To understand the performance of Naos under a realistic throughput workload, we built a

key-value store (KVS) using a Java concurrent hashtable and Dubbo library for communi-

cation. We populated the KVS with one million entries of 1 KiB each. We benchmark it

under different YCSB [37] workloads. Table 5.4 shows that Naos RDMA achieves an aver-

age speedup of 11x over TCP-Kryo. The speedup comes from the fact that TCP-Kryo was

bottlenecked by the CPU, whereas Naos consumes less CPU time to send a KVS request.

The experiment shows that Naos can be utilized for KVS workloads as KVS requests and

responses have low sparsity.

In comparison with microbenchmarks (Section 5.4.1), the performance difference between

Naos and Kryo is much higher for the current workload than for the microbenchmarks,

where Kryo’s performance was measured after JIT compilation that significantly improved

its performance for repetitive sending of the same object. Since Naos does not depend

on Java runtime optimizations, it can achieve much higher performance than Kryo for

dynamic workloads.

Improving Data Processing Applications. We could not integrate Naos into Spark as

its shuffle module is designed to communicate files with serialized objects. Integration of

Naos would require a substantial redesign of Spark’s code base. Therefore, we implemented

our own map-reduce framework that takes advantage of Naos. Our framework supports

all discussed serializers including Skyway and also offers RDMA networking with Disni.
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It was designed to resemble Spark but perform shuffle completely in-memory.

We evaluate the OSD approaches by running PageRank on real-world graphs as input:

LiveJournal [13] and Orkut [170]. The LiveJournal dataset was processed with two shuffle

workers and Orkut with three shuffle workers. Naos was deployed with 256 KiB pipelining

and without cycle detection. We report total runtime including data loading and 5 and 95

percentiles for processing a single Pagerank iteration. We also provide two implementations

of PageRank: the first one follows conventional design where each score update is a class

of 32 bytes; the second implementation was designed to communicate dense contiguous

score updates, thereby reducing sparsity of communicated shuffle blocks.

Table 5.5 shows the lowest runtime was achieved by Naos and Skyway for the first imple-

mentation. A side effect of Naos and Skyway is that, after receiving, objects are always

contiguous in memory, thereby improving data locality. As a result, an application can

process such contiguous objects faster as fewer memory pages need to be fetched. Over-

all, Naos TCP performs approximately as Skyway, but NaosIt RDMA provides 2.1% and

4.8% improvement over Skyway for LiveJournal and Orkut, respectively. The experiment

shows that zero-transformation approaches for OSD can reduce processing time for data-

processing workloads.

The sparsity-aware implementation provides an additional 4% reduction in runtimes, show-

ing that applications need to take Naos’ limitations into consideration to achieve the high-

est performance. Thus, Naos could be used in combination with works on data sparsity

reduction for JVMs [167, 166, 25].

5.5 Summary and Discussion

We have presented Naos, a JVM communication library that enables transferring objects

directly from one heap to another over the network with minimal CPU involvement and

zero-copy . We demonstrated that existing OSD techniques are bound to CPU and that,

as networks get faster, they will become the bottleneck of distributed systems. Naos

completely avoids the need to serialize and deserialize objects for data transfers, with the

corresponding performance advantages. Naos provides a simple API that simplifies the

use of RDMA from JVM-based applications. Our evaluation shows that Naos outperforms

all existing OSD approaches for moderately sparse object graphs.
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6
Efficient NIC-based

Authentication and

Encryption for RDMA

State-of-the-art remote direct memory access (RDMA) technologies have shown to be

vulnerable against attacks by in-network adversaries [133], as they provide only a weak

form of protection by including access tokens in each message. A network eavesdropper

can easily obtain sensitive information and modify bypassing packets, affecting not only

secrecy but also integrity. Tampering with packets can have drastic consequences. For

example, when memory pages with code are changed remotely, altering packet contents

enables remote code injection.

In this chapter we propose sRDMA, a protocol that provides authentication and encryption

for RDMA to prevent information leakage and message tampering. sRDMA is designed

to introduce minimal changes to the existing InfiniBand protocol with minor performance

overheads. For that, sRDMA extends the existing InfiniBand transport and the pro-
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gramming interface with low-overhead symmetric cryptography. Additionally, we improve

our design by introducing PD-level keys to reduce the memory overhead on the network

controllers, and augment the InfiniBand architecture with extended memory protection.

The materials used in this chapter have been published at the USENIX Annual Technical

Conference (USENIX ATC) in 2020 [151]. The paper was done in collaboration with

Benjamin Rothenberger and our advisors Torsten Hoefler and Adrian Perrig.

6.1 Motivation

Despite numerous state-of-the-art systems [47, 28, 111] leveraging remote direct memory

access (RDMA) primitives to achieve high performance guarantees and resource utilization,

current RDMA technologies lack any form of cryptographic authentication or encryption.

Instead RDMA mechanisms provide a weak form of protection by including access tokens

in each message. Given that RDMA networks are mainly used in data-center environments

and at large-scale deployments, detecting bugged wires is seemingly impossible. But not

only in-network adversaries are an issue, also malicious end hosts can affect the security

of an RDMA network. If an adversary is able to obtain control over a machine in an

RDMA network (e.g., by escaping its virtual machine or hypervisor confinement in a

cloud service [161]), it can fabricate and inject arbitrary packets. If the adversary can

guess or obtain the memory protection tokens (which are transmitted in plaintext), it can

read and write memory locations that have been exposed using RDMA on any machine

in the network, leading to a powerful attack vector for lateral movement in a data center

network.

Given these threats, the security of current RDMA data center networks highly depends

on isolation. However, even isolation cannot defend against in-network attackers. Thus,

RDMA networks require cryptographic authentication and encryption. Unfortunately,

application-level encryption (e.g., TLS [128]) is not possible, since RDMA read and write

can operate as purely one-sided communication routines. Furthermore, such an approach

requires employing a temporary buffer for incoming encrypted messages. The message

would then be decrypted by the CPU and copied to the desired location, which would

cause high overhead—negating RDMA’s advantages. Additionally, cryptographic protec-

tion using IPSec [45] does not support RDMA traffic as the protocol is unaware of the

underlying RDMA headers and achieves no source authentication (see Section 6.7).
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In our work, we introduce a secure RDMA (sRDMA) design using a secure reliable con-

nection (SRC) queue pair (QP) that uses symmetric cryptography for source and data

authentication and employs Network Interface Cards (NICs) to perform cryptographic op-

erations. Symmetric cryptography reduces the computational overhead compared to asym-

metric cryptography by 3–5 orders of magnitude. Thus, it is suitable for high-performance

and low-latency applications based on RDMA, e.g., [70, 28]. Since symmetric cryptogra-

phy introduces per-connection memory overhead and memory on NICs is constrained, we

augment our proposed mechanisms using protection domain level keys and efficient dy-

namic key derivation, which eliminates the need for storing QP-level keys and drastically

reduces the memory overhead on RDMA-capable NICs (RNICs).

Contributions. We design a SRC QP that effectively prevents attacks in an RDMA

network, with minimal changes to the current InfiniBand architecture (IBA) standard

(Section 6.4.2). We improve our design by introducing PD-level keys to reduce the memory

overhead on the RNIC (Section 6.4.5), and augment IBA with extended memory protection

that permits memory accesses only to trusted entities. We provide an implementation of

our design using modern programmable network adapters equipped with ARM multi-core

processors [24, 153] (Section 6.5). We extensively evaluate our design using artificial and

real-world traces. Additionally, we modified the RDMA-based key value store, HERD [70],

to make use of sRDMA (Section 6.6).

6.2 Background on InfiniBand Transport

Several network architectures support RDMA: InfiniBand (IB) [10] , RDMA over Con-

verged Ethernet (RoCE) [11], and internet Wide Area RDMA Protocol (iWARP) [126].

InfiniBand is a network architecture fully designed to enable reliable RDMA with its own

hardware and protocol specification. RoCE is an extension to Ethernet to enable RDMA

over an Ethernet network. Finally, iWARP is a protocol that allows using RDMA over

TCP/IP. In this work, we focus on the InfiniBand and RoCE as they are the most widely

used interconnect for RDMA, but the proposed ideas can be easily extended to other

RDMA architectures.

Several transport types are supported by the IBA to communicate between endpoints:

reliable connection (RC), unreliable connection, unreliable datagram, extended reliable

connection, and raw packet. In this paper, we only consider the RC transport type, since
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it is the only type that supports both RDMA read and write requests.

The RC transport type establishes a queue pair (QP) between the two communicating

parties. QPs are bi-directional message transport engines used to send and receive data

in InfiniBand. Endpoints of a single RC QP can only communicate with each other but

not with any other QP in the same or any other target adapter. Each QP endpoint has a

queue pair number (QPN) assigned by the RNIC which uniquely identifies the QP within

the RNIC.

The RC transport uses several techniques to ensure reliability. The target must respond to

each request packet with a positive acknowledge packet or a negative acknowledge packet.

The acknowledgement-based protocol permits the requester to verify that all packets are

delivered to the target. To ensure the integrity of a packet, each packet contains two

checksums that are verified by the target node. Finally, the RNIC counts received and

sent packets using a packet sequence number (PSN), which is included in each packet.

Thus, endpoints of a QP must know the PSN of each other to enforce in-order delivery

and detect duplicate and lost packets.

6.2.1 IBA Memory Protection

The IBA protection mechanisms provide protection from unauthorized access to the local

memory by network controllers. The local memory can also be protected against prohibited

memory accesses. Three mechanisms exist to enforce memory access restrictions: Memory

Regions, Protection Domains (PD), and Memory Windows.

Memory Regions. To get access to host memory, the RNIC must first allocate a cor-

responding memory region. This process involves copying page table entries of the corre-

sponding memory to the memory management unit of the RNIC. When a memory region

is created, the RNIC generates keys for local and remote accesses, namely l key and r key.

The memory region can be accessed by any local QP which has the l key as long as they

are in the same PD, and by their remote QP endpoints which have the r key. The end-

points must prove the possession of this key by including it in every RDMA request, such

as RDMA Write and Read. r key is not used in any form of cryptographic computation,

but rather is used as access tokens that are transmitted in plaintext.

Protection Domain. PDs provide protection from unauthorized or inadvertent use of

memory regions. PDs group IB resources such as QP connections and memory regions
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that can work together: QP connections created in one PD cannot access memory regions

allocated in another PD. In other words, a memory region can be accessed by any QP

from its PD. All QPs and memory regions must have a PD and can be a member of one

PD only.

Memory Windows. Memory windows extend protection of memory regions by allowing

remote QPs to have different access rights within a memory region and grant access to

only a slice of the memory region.

6.3 Problem Definition

This section describes the adversary model we consider, outlines different types of attacks,

and the security properties we strive to achieve.

6.3.1 Desired Security Properties

The current IBA protection mechanisms do not suffice to ensure secure communication

between endpoints, allowing adversaries numerous attacks. Thus, the primary goal of our

work is to secure RDMA protocols against attacks by providing source and data authen-

tication along with data secrecy and data freshness. Source authentication denotes the

verification of the source address of a host that sends a packet and is designed to determine

whether a packet originated from the claimed source. Data authentication ensures that the

packet content has not been modified. Data secrecy ensures that the data remains hidden

from a network eavesdropper. Data freshness ensures that data has not been recorded

and replayed by a network attacker. Additionally, our proposal should require minimal

changes to the protocol, and introduce only a minor performance overhead. This does not

only include latency and processing overhead for RDMA requests but also memory state

overhead on the RNIC.

6.3.2 Adversary Model

In our adversary model we consider end hosts that are equipped with RNICs and interact

with each other through RDMA, and an adversary with the following parameters.
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Location. We assume that the adversary can reside at arbitrary locations within the

network. Thus, we consider both network-based adversaries (e.g., rogue cloud provider,

rogue administrator, malicious bump-in-the-wire device) and adversaries located at end

hosts (e.g., compromise of an end host). This includes compromise of the machines of

communicating parties. However, we assume that RNICs are trusted by their host. This

could be achieved using remote attestation, whereby a trusted party checks the internal

state of a potentially compromised network device. We further assume that the internal

bus is trusted, such that the CPU can securely communicate with the RNIC.

Capabilities. A network-based adversary can passively eavesdrop on messages, but also

actively tamper with the communication. Since RDMA communication is performed in

plaintext, an adversary that is located on the path between communicating parties can

obtain any information in all IB and Ethernet headers. Furthermore, he can also alter any

of these values, as this only requires recalculation of packet checksums, whose algorithms

and seeds are known and specified by the IBA.

Given these capabilities, the adversary can also fabricate packets and send them towards

a destination of its choice using spoofed QP numbers, r keys, and PSNs (e.g., to modify

a memory region without authorization to influence the behavior of applications running

on the remote host).

Cryptography. The adversary has no efficient way of breaking cryptographic primitives.

For pseudorandom function families, this means that no efficient algorithm can distinguish

between an output of a function chosen randomly from the pseudorandom function family

(PRF) and a random value.

6.4 Secure RDMA System Design

We propose a new transport type for reliable communication based on the IBA. We intro-

duce a secure reliable connection (SRC) QP that uses symmetric cryptography for source

and data authentication, and thus provides guarantees for the origin of a packet, data

authenticity and payload secrecy.

To require minimal changes to the current IBA specification, our proposed design of the

SRC QP consists of two main changes: 1) we add symmetric key initialization for QPs, and

2) we propose a new packet header called secure transport header (STH) which contains a

message authentication code (MAC) providing integrity of the packet content. The STH
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Table 6.1: Notation used in this chapter.

‖ Bitstring concatenation

PRFK(·) Pseudorandom function using key K

MACK(·) Message authentication code using key K

A, B Endpoints uniquely identified by the combination of the adapter

port address (APA) and Queue Pair Numbers (QPN)

KA,B Symmetric key shared between node A and B

nonceA→B cryptographic nonce used for communication in the direction

from node A to node B

KPD, KMR, KSR Symmetric key used for protection domain, memory region, or

sub memory region

must be included in all requests and response packets corresponding to RDMA reads and

writes.

Besides basic QP-channel protection, we also propose PD level protection eliminating the

need for storing cryptographic keys for each QP, which drastically reduces the memory

overhead on RNICs. Additionally, it enables extended memory protection that provides

memory access control based on encryption. All QPs and memory regions created in a

secure PD will be inherently secured by it.

Table 6.1 lists the security-related notation used in this paper.

6.4.1 Assumptions

Trust in RNIC. We assume that the RNIC is trusted by its host. It can not only perform

authentication of outgoing packets, but is also trusted to perform en-/decryption of the

packet payload. We further assume that the internal bus is trusted, such that the CPU

can securely communicate with the RNIC.

QP-level Key Establishment. Our system enables the establishment of a QP-level

symmetric key. To guarantee interoperability, our design is agnostic of this underlying

mechanism. IBA could use for instance a (D)TLS [127] or QUIC [64] handshake as a

mechanism to obtain a QP-level symmetric key.

Key Validity. As the validity period of a QP-level symmetric key is bound to the
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Size (bits) 0 96 128 160 224 256 384 512

Value 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7

Table 6.2: Possible sizes of STH, depending on the 3 bit value indicated in the Base

Transport Header of an IB packet.

lifetime of a QP, key rollover can be performed by closing and reopening a QP between

the communicating entities. Thus, key lifetime can be managed on the application level.

6.4.2 Secure Reliable Connection Queue Pair

We propose new transport type—Secure Reliable Connection (SRC) QP—that uses sym-

metric cryptography for source and data authentication. The introduction of SRC requires

minimal changes to the current specification. Specifically, the QP initialization requires

specifying a protection algorithm and a symmetric key. This allows us to bootstrap secrecy

and authentication for QP-based communication.

Secure Transport Header. Secure Transport Header (STH) consists of MAC to provide

header and packet authentication. The STH must be included in all request and response

packets of sRDMA. Depending on the authentication mode installed to the secure QP,

the MAC either authenticates only the packet header or the entire packet. To specify the

length of the STH, we use 3 (out of 7) reserved invariant bits in the Base Transport Header.

Based on the 3 bit value (see Table 6.2), the size of the MAC changes: minimum 96 bits,

and maximum 512 bits. If the reserved 3 bits are all zero, then the STH is not present in

the packet, thereby enabling support of both classical and secure QP connections.

Reusing PSN as a Per-Packet Nonce. sRDMA prevents replay attacks by including

a unique nonce in the MAC computation of each packet (Section 6.4.3). Nonces are used

as initialization vectors for ciphers to ensure that every packet is unique. They must

only be used once, but their choice can be predictable and they can be transmitted in

clear [76, 132]. In case a nonce is reused, the cryptographic properties of a cipher are

affected (e.g., “sudden death” property of Poly1305 [19]).

A naive solution is to transmit a nonce as cleartext with each packet (e.g., as in TLS up

to version 1.2 [129]). However, this would incur an additional transmission overhead of

at least 64 bits, and additional 64 bits memory overhead on RNICs memory to store the

nonce.
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To avoid the overhead of transmitting the nonce, our protocol takes advantage of the

sequential nature of IB packets. It uses the sequence numbers as nonces as they are tracked

by end points and can never be reused. The approach resembles how TLS 1.3 [128] exploits

the packet number as a nonce; however, the size of the PSN in the IB packet is only 24

bits, which would cause a reuse of a nonce after 80 ms assuming that an RNIC is able to

send 200 million packets per second [95].

sRDMA extends the local PSN counters for inbound and outbound packets on the RNIC

to 64 bits each, and reuse them as a per-packet nonce, thereby introducing only 40 bits

overhead for each nonce. However, the size of the PSN transmitted on the wire remains

unchanged (24 bits) and contains the least significant bits of the 64 bit counter. sRDMA is

able to infer the 64 bit nonce used to secure the packet using only the 24 bit PSN specified

in the header. Under the same assumption on the packet rate, the reuse of nonce occurs

after 3,000 years.

To ensure that the nonce never gets reused by both endpoints, we use the most significant

bit to identify the direction of communication between the entities A and B using their

endpoint identifiers: the combination of adapter port address and Queue Pair Number

(QPN).

6.4.3 Header Authentication

To perform header authentication, sRDMA uses the established symmetric keys and cal-

culates a MAC for each packet:

machdr = MACKA,B
(nonceA→B ‖ RH ‖ BTH )

Here, RH denotes the routing header, which defines the adapter port address, and BTH

the base transport header, which includes destination QPN. Note that these headers

uniquely identify the sender and receiver RNIC, and limit the input size of the MAC

computation (only the packet header instead of the entire packet with arbitrary payload

length). Thus, assuming an block-cipher-based MAC is used, a fixed number invocations

of the block-cipher are required to calculate a MAC.

The RNIC of the receiving node will recompute the MAC for each packet and compare it to

the MAC appended in the STH. Fields that are modified during the packet’s transmission

are replaced with ones during the MAC computation (same as for invariant checksum).
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Table 6.3: Overheads of sRDMA for N RC QP connections with AES-128 cipher in 4

different protection modes. Here, pd-prot and ext-mem stand for PD-level protection and

extended memory protection, and are described in Section 6.4.5 and 6.4.6.

AES-128 protection Key overhead Nonce Header

basic 16B * N 10B * N 16B

pd-prot 16B 10B * N 16B

ext-mem 16B * N + 16B 10B * N 16B

pd-prot + ext-mem 16B + 16B 10B * N 16B

Header authentication prevents not only source-address-spoofing attacks, but also unau-

thorized access to memory regions by augmenting the existing IBA memory-protection

mechanisms (i.e., r key and memory windows).

6.4.4 Packet Authentication and Encryption

For packet authentication and payload encryption, we assume that the RNIC is trusted.

Thus, the host is allowed to offload all cryptographic operations to the RNIC. We use

authenticated encryption with associated data (AEAD), to simultaneously obtain secrecy

and authenticity for the payload. The authentication tag is transmitted using the MAC

field in the STH.

6.4.5 PD-level Protection

Introducing QP-level keys requires storing a 16 byte key per QP (see Table 6.3). As an

RNIC might have a large number of QPs simultaneously, this can lead to a significant

memory overhead on the RNIC. Memory on RNICs is a constrained resource, and a large

part is consumed by IB connection contexts and page-table entries for registered memory.

Multiple works report significant performance degradation of RDMA operations when the

amount of memory registered or the number of QPs is increased [71, 47]. This is due

to the RNIC running out of memory for storing page-table entries and starting to fetch

them from system memory across the PCI bus. For instance, Dragojevic et al. [47] observe

4x throughput drop in their evaluation when 4,096 memory pages are registered within
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the RNIC compared to a single-page experiment. Thus, we aim to mitigate the memory

overheads introduced by QP-level keys.

To reduce the memory overhead and eliminate the need of storing a symmetric key per

QP, we introduce PD-level protection. In this mechanism, we assign a symmetric key KPD

to each protection domain PD and use this key to derive QP-level keys using efficient key

derivation [61]. PD-level keys are exchanged using the same mechanism as QP-level keys

(see Section 6.4.1). The derivation process works as follows:

KA,B = PRFKPD
(APAA ‖ QPNA ‖ APAB ‖ QPNB)

PRF denotes a pseudorandom function with a PD-level key KPD and a pair of unique

end point identifiers (i.e., adapter port address (APA) and queue pair number (QPN)) as

input. When an RDMA request targets a QP that is located within a protection domain

PD, the RNIC uses the corresponding symmetric key KPD to derive the QP-level key on-

the-fly. The QP-level key is then used to perform authentication and encryption. Thus,

instead of storing a symmetric key per QP, the RNIC is only required to store a key per

PD. To minimize the processing overhead, the RNIC can cache the derived QP-level keys

(e.g., after the first packet of a message arrives). KPD is initialized upon creation of the

PD and thus the lifetime of KPD is bound to the lifetime of the PD. In order to perform

a key rollover, a new protection domain must be created.

6.4.6 Extended Memory Protection

Using encryption of memory regions enables an even stronger mechanism for access control,

as only entities in possession of the required key are able to read the content of a memory

region. For this purpose, we use PD-level memory protection and derive memory level

keys from KPD for memory regions that are created within the protection domain. The

derivation process works as follows:

KMR = PRFKPD
(STARTMR ‖ ENDMR ‖ r keyMR)

Alternatively, the KMR can be provided by the application to protect memory from unau-

thorized accesses.
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When remote parties want to access a subregion (SR) of the region MR, they need to

prove the possession of the KMR by computing a key to the SR:

KSR = PRFKMR
(STARTSR ‖ ENDSR) (6.1)

Nonce for Key Derivation. To avoid replay attacks, our system must use a separate

nonce for each memory region. However, it is not possible to use a memory access counter

as nonce, as multiple QPs can access the same memory region. Therefore, this would

require the RNIC to include a random nonce in each packet, which must be unique among

all nonces used to access the memory region. Given that multiple parties have access to

the region, this property is hard to achieve. Additionally, we want to avoid transferring

a separate MAC for memory access in the packet header. Thus, we suggest to reuse the

MAC of the header by overwriting it as follows:

machdr = MACKA,B
(KSR||machdr)

Such design allows sRDMA to reuse the per-packet nonce used in computation of machdr

and ensure the possession of KMR to access memory. This construction is secure since the

key is unknown to an adversary.

6.5 Implementation

Towards our goal of supporting secure QP connections, this section describes how we

implement the sRDMA protocol using modern programmable network adapters equipped

with ARM multi-core processors [24, 153]. sRDMA core primitives are implemented in

3,500 lines of C++ code and rely on various libraries: libibverbs, an implementation of the

RDMA verbs; librdmacm, an implementation of the RDMA connection manager; Openssl

1.1.1a, a general-purpose cryptography library; and libev, a high-performance event loop.

Our implementation supports more than 20 different cryptographic algorithms, such as

the AES cipher and SHA hash families, to enable authentication and data secrecy for

secure QPs. The implementation, all tests, and benchmark scripts are available in the

open-source release.
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Figure 6.1: RNIC packet processing on receive.

6.5.1 Notation and Experimental Setup

In the rest of the paper, we refer to a programmable network adapter as a SmartNIC. Our

SmartNIC is capable of running a full Linux stack, supports RDMA over RoCEv2 and has

crypto acceleration enabled. When RDMA requests are initiated on the SmartNIC and

target the local host we refer to them as DMA requests as they only pass across the PCIe

bus.

Our implementation is bi-directional, i.e., sRDMA writes and reads can be sent in both

directions passing through both SmartNICs of the initiator and the target. Therefore, we

distinguish between three roles as depicted in Figure 6.2: Initiator, SmartNIC, and Target,

and the initiator always communicates with the target via two SmartNICs. Such a design

allows full offloading of cryptographic computations from the initiator and the target to

their respective SmartNICs.

6.5.2 Implementation of the Secure QP

We provide a library that models a secure QP connection between an initiator and a target

as three standard RC QPs: one DMA connection between the SmartNIC and the host on

each endpoint, and one connection between the SmartNICs.

Connection Establishment. Our secure QP library encapsulates connection establish-

ment, which is performed in three stages as for a classical RC QP. When an application

wants to establish a secure QP, it first creates a local QP in the INIT state. In this state,

the connection between the host and the SmartNIC is created, and all necessary symmetric

keys are copied to the SmartNIC. Then the QP must be transitioned to the RTR state by

passing information about the target such as the QPN, the LID, and the PSN. To perform

this transition we establish an RC QP connection between the two SmartNICs and cre-

ate a special connection context on each SmartNIC. Finally, to send messages we transit

the secure QP to the RTS state by passing the local send PSN. The application workers

147



Chapter 6. Efficient NIC-based Authentication and Encryption for RDMA

on the SmartNIC are responsible for packet counting, key derivation, and cryptographic

algorithms.

Memory Registration. When a memory region should be secured with extended mem-

ory protection, the library intercepts a memory registration request and sends memory

region information to a thread on the local SmartNIC.

Secure QP communication. The initiator uses IB Send to deliver packets for both

sRDMA reads and writes to its SmartNIC. The SmartNIC uses IB Receive to receive

incoming packets from DMA connections and from remote SmartNICs. The SmartNIC

secures all incoming packets from a DMA connection according to the cryptographic mech-

anism agreed on with the target. To secure a packet, the SmartNIC appends the IB

transport and RDMA headers along with the generated MAC to the packet header. In

our implementation, we use IB scatter/gather entries to attach an additional header be-

fore the main payload provided by the initiator. Scatter/gather entries allow building up

an outgoing message from multiple buffers. After that, the packets are forwarded to the

SmartNIC of the target QP. The target’s SmartNIC verifies the security header as depicted

in Figure 6.1, and decides on initiating an RDMA Read or RDMA write depending on the

type of the request towards the target’s host. The replies from the target are secured by

its SmartNIC and forwarded back to the initiator.

sRDMA request completion. If the initiator expects an acknowledgment for a signaled

request, the SmartNIC is responsible for acknowledging the initiator about the completion

of the request. We use IB requests with immediate data to generate completion events

on the host. The secure QP library is able to intercept completion events to distinguish

between classical IB completions and sRDMA completions. The intercepted sRDMA

completions are modified to inform the initiator about the sRDMA completion instead of

the classical IB completion.

Packet security. The whole process of packet verification and key generation is shown

in Figure 6.1. The SmartNIC performs header authentication, packet authentication, or

payload encryption depending on which security protocol has been set up for the QP and

which packet is processed. The SmartNIC will derive the QP’s key if the QP is initialized

in a secure PD, and also verify extended memory protection if the registered memory

region has extended memory protection set up. On receiving, the SmartNIC also checks

whether the QP is indeed a secure QP, as our implementation also supports classical

insecure RC QPs. For insecure RC QPs, packets do not carry a MAC and are always

trusted by SmartNICs.
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Figure 6.2: Implementation of RDMA operations.

6.5.3 sRDMA requests

Figure 6.2a depicts the implementation of an sRDMA write. The initiator ¶ sends a

packet to the local SmartNIC containing the payload and the remote memory address.

The local SmartNIC · appends the IB header and the STH and ¸ sends the secured

packet to the remote SmartNIC. The remote SmartNIC ¹ processes the header and º

initiates a signaled DMA write to the host memory specified in the header. Upon »

the completion of the DMA write, the SmartNIC, depending on whether the sRDMA

write is signaled, ¼½ sends an authenticated Ack packet to the initiator’s SmartNIC. The

SmartNIC of the initiator then ¾ verifies the packet and ¿ performs an empty RDMA

write with immediate data to its host, which consumes one posted receive at the host

application. Finally, the secure QP interface intercepts such completions and modifies

them to notify the application about the secure request completion.

sRDMA also implements secure Send operations which are similar to sRDMA writes, but

they always generate the completion on the target and do not require knowing destination

buffers. Since a Send request does not contain the header with destination buffer, it does

not support memory protection.

sRDMA read has a similar structure as an sRDMA write as depicted in Figure 6.2b but

there are some subtle differences. The initiator ¶ sends the message containing remote and

local memory addresses and their r keys to the local SmartNIC. The initiator’s SmartNIC
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creates a special local read completion context with the initiator’s memory address where

the remote data must be copied to. Then the local SmartNIC ·¸ sends the authenticated

read request to the remote SmartNIC, which ¹ verifies the request and º initiates a

signaled DMA read from the target host memory to one of the SmartNIC’s buffers. When

» the completion of a DMA read is generated, the SmartNIC ¼½ sends an authenticated

read response with read data to the initiator’s SmartNIC. The initiator’s SmartNIC ¾

verifies the MAC of response packets and decides whether to ¿ write their content to the

memory address specified in the matched local read completion context using a DMA write

request. The DMA write will be with immediate data if the sRDMA read is signaled.

6.6 Evaluation

We conduct a series of benchmarks to thoroughly profile our system. To evaluate the

overall sRDMA performance and the impact of cryptographic operations, we first evaluate

the performance of each cryptographic algorithm. Secondly, we evaluate the latency and

bandwidth of sRDMA writes and reads to assess the overheads of secure QPs over insecure

QPs. Subsequently, we study the impact of bulk sRDMA operations by measuring the

achievable bandwidth for different read/write ratios. Later, we evaluate the performance

of the HERD key-value store [70] to examine the impact of sRDMA.

Test settings. The experiments are conducted on two servers directly connected to each

other using the RoCEv2 protocol. These servers run Ubuntu 18.04.1 LTS with a 4.15.0-

43-generic Linux kernel. Each server is equipped with a Broadcom PS225 25 Gbit/s

programmable network controller. Both network adapters have eight-core 64-bit ARM

Cortex-A72 3.0 GHz processors and 8 GiB of dual-channel DDR4 DRAM.

6.6.1 Authentication performance

We first study the performance of the cryptographic engine installed in the SmartNICs.

We evaluate 7 different cryptographic algorithms of the openssl 1.1.1a library for message

authentication: aes-128, aes-192, aes-256, chacha20-poly1305, sha1-160, sha2-256, sha2-

512.

Figure 6.3 depicts the achievable throughput in Gbit/s of those algorithms for different

numbers of threads and block sizes. The line rate of the tested RNIC over the RoCEv2
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Figure 6.3: Authentication performance using openssl.

protocol is 20.6 Gbit/s, which is goodput of 25 Gbit/s link. AES algorithms are the fastest

for small blocks and achieve 8 Gbit/s for 64 byte blocks using a single thread. Thus, our

sRDMA library uses the AES128 algorithm as the PRF function needed for key derivation.

For larger blocks hash-based methods perform almost as fast as cipher-based algorithms.

We observe that chacha20-poly1305 is 4x slower on average than the AES algorithms.

The data also reveals that we cannot achieve the line rate for packet authentication with

SHA512.

For varying key sizes of AES algorithms, we have not noticed significant differences in

performance and hereafter report results exclusively for the AES128 algorithm. As SHA1-

based authentication provides similar performance as SHA256 in all tests, we omit its data

in all plots. Additionally, we label chacha20-poly1305 in Figures as poly1305.

6.6.2 Evaluation modes

All evaluations have been performed with no security enabled (NO security) and in four

protection modes:

No security. In No security mode RDMA reads and writes are performed as described in

Section 6.5.3 but with skipping packet protection and validation (·¹¼¾ in Figure 6.2).
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Figure 6.4: Source authentication latency of reads and writes carrying 32 Bytes payload.

Basic mode. In basic mode the key is attached to the secure QP connection directly, so

the key is in the RNIC’s cache when an incoming packet must be processed.

PD-prot mode. The secure QP is created without an individual key, but in the secure

PD (pd-prot) with a key derivation algorithm. We consider the case when the RNIC does

not cache derived keys, and therefore, every time a packet arrives, the RNIC must derive

the QP key from the PD key. In these experiments we want to show the performance of

the system with constant cache misses. Using the cache we expect the same performance

as in basic mode without key derivation.

Ext-mem mode. In this mode, the QP is created with an individual key and with

extended memory protection (ext-mem) enabled. Extended memory protection requires

derivation of memory level keys from a PD-level key. In this case, when a packet arrives,

the RNIC must generate a key to access memory specified in the RDMA header from the

PD-level key and include the generated key in MAC calculation.

PD-prot + ext-mem mode. The last mode combines our two protection methods:

secure PD and extended memory protection (pd-prot + ext-mem). Therefore, the RNIC

is responsible for generating both keys when a packet should be processed.

6.6.3 Latency

To evaluate the overall sRDMA performance and the impact of cryptographic operations,

we split latency tests in two categories: header authentication only and full packet security.

Header authentication. Figure 6.4 presents the median latency of sRDMA reads and

writes in all four protection modes for header authentication. The figure reports the

median only as for all measurements deviation from the median is less than 0.4 µs. All
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measurements are done for packets carrying the payload of 32 bytes. sRDMA write latency

is measured for a half round trip, whereas sRDMA reads are for a full round trip. The

latency of sRDMA writes without security is 9.55 µs and of sRDMA reads is 18.2 µs which

build the baseline for our experiments.

Figure 6.4 shows that all tested security algorithms in the first mode add about 0.9 µs

for sRDMA writes which is approximately 9% more than the insecure version. Another

interesting observation is that the QP key derivation is more expensive than memory

key derivation. The difference stems from the fact that a key-derivation process involves

reinitialization of cryptographic contexts and different algorithms have different reinitial-

ization performance (e.g., AES generates round keys [41]). The same phenomenon occurs

for sRDMA reads. As expected, the highest latency is achieved for sRDMA operations

with both key derivation and extended memory protection.
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Figure 6.5: Latency of packet authentication (PCK ) and encryption (AEAD) as a func-

tion of payload sizes.

Packet security. We evaluate the latency of packet authentication (PCK ) and packet

encryption (AEAD) for different payload sizes and in four protection modes. Figure 6.5

illustrates the median latency of sRDMA reads and writes for SHA256, SHA512, AES128,

and POLY1305. In each subplot, the top four lines illustrate sRDMA read round-trip

latency, and the bottom four lines half-round-trip latency of sRDMA writes.

Figure 6.5 highlights that payload authentication is more expensive than header authen-

tication. It takes 15 µs to write and secure 2 KiB payload in the first mode in comparison

to header authentication of the same packet with the median of 12 µs. The graph also

illustrates that latency increases for both reads and writes with payload size as more data

must be authenticated. For AEAD, latency goes up even faster with respect to payload

size since more data is en-/decrypted. As anticipated, SHA512 has the highest latency as
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Figure 6.6: Bandwidth of sRDMA Writes in four different protection modes, and with NO

security enabled.

the most expensive algorithm. We observe that for smaller payload sizes payload authen-

tication and payload encryption achieves approximately the same performance in terms of

latency.

6.6.4 Bandwidth

We measure performance separately for sRDMA reads and writes. As for latency bench-

marks, all evaluations are performed in four protection modes. Our implementation is

multi-threaded where each thread can process requests from a single secure QP. The num-

ber of threads represents the number of connections between endpoints. For n threads,

each host establishes n secure connections with its SmartNIC, and SmartNICs establish

n connections between each other. Thread workers on a SmartNIC do not share any re-

sources and are pinned to distinct cores. In all evaluations the initiator issues requests

continuously to the target, but with a limited number of outstanding requests (96 per

connection). Once the initiator receives the signal for an sRDMA request completion it

posts new requests to maintain 96 outstanding requests. The payload size is 2,048 bytes

and bandwidth is measured in Gbit/s of goodput. We also assume the worst case scenario

for the secure PD mode (pd-prot): the RNIC derives the QP key from the PD key for each
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Figure 6.7: Bandwidth of sRDMA Reads in four different protection modes, and with NO

security enabled.

packet. In other words, we consider the case when the RNIC does not cache derived keys.

The main reason for that is that pd-prot mode with caching has the same performance as

basic mode.

Figure 6.6 depicts communication bandwidth for sRDMA writes with different crypto-

graphic algorithms. The black line (NO) in the header column stands for sRDMA writes

with no security enabled. We observe that the single-threaded test with no security

achieves only 8 Gbit/s while the highest RDMA goodput bandwidth achievable on our

interconnect is 20.6 Gbit/s. The slowdown is caused by processing and parsing headers

of messages by the general purpose ARM CPUs of the SmartNICs. Even if no security is

enabled, a thread worker reads and parses headers of incoming packets and, depending on

the operation code, initiates RDMA requests according to our implementation described

in Section 6.5.3. In our tests we treat performance of secure operations with no security as

the baseline. The highest achievable goodput bandwidth with no security is 20.5 Gbit/s

which is line rate.

Figure 6.6 illustrates that sRDMA writes with header authentication can achieve line rate

in all four protection modes if we use all 8 threads. The slowest header authentication is

observed for SHA512 due to hashing performance. For full packet authentication SHA512

reaches only a goodput of 13 Gbit/s which is even slower than AEAD algorithms. In the

155



Chapter 6. Efficient NIC-based Authentication and Encryption for RDMA

payload encryption mode, our implementation can also achieve line rate for the SHA256

and POLY1305 algorithms. AES128 based authentication achieves 19.6 Gbit/s which is

95% of the line rate. The data also demonstrates that key derivation algorithms slow

down sRDMA writes by 2 Gbit/s on average. However, in header authentication mode

all algorithms can achieve 20 Gbit/s without performance loss when all 8 threads are

used. Another interesting observation is that POLY1305 is faster than AES128 in packet-

authentication mode, but slower in packet-encryption one. In AEAD mode, the highest

write bandwidth of 19 Gbit/s is observed for the AES128 algorithm.

We have performed a similar benchmark for sRDMA reads in various protection modes.

Results of our evaluations are depicted in Figure 6.7. Again, the black line (NO) stands

for no security installed and represents the baseline for sRDMA reads. sRDMA reads

are more expensive than writes despite the fact that they transfer the same amount of

protected bytes as signaled sRDMA writes. Both sRDMA operations require six hops for

a full round trip, and they both transfer the same payload size but in different directions.

For writes, data is sent from the initiator to the target, and for reads from the target to

the initiator. The differences in performance stem from the fact that an sRDMA read is

a more complex operation than an sRDMA write and requires to create a special read

context and matching it at initiator’s SmartNIC (see Section 6.5.3). In addition, receive

buffers on SmartNICs for reads and writes have different lifetimes. For example, a receive

buffer can be released on the target SmartNIC once the completion of the RDMA write is

received (» in Figure 6.2a), however, for reads the buffer on the target SmartNIC can be

released once the completion of ½ is received from Figure 6.2b. According to the data, the

highest achievable sRDMA read bandwidth is 16.71 GBit/s for 8 threads and about 4.7

Gbit/s for single-threaded test. Overall, our measurements indicate that reads are 16%

slower than writes for all tests due to the complexity of sRDMA reads.

CPU Usage in Bandwidth Experiments. In our experiments, sRDMA introduces no

overhead on the host CPU usage as packet processing is fully offloaded to the SmartNIC.

The host application only needs to submit an RDMA request to the SmartNIC, which

performs all cryptographic computations as described in Section 6.5.3. The SmartNIC, on

the other hand, has full CPU usage in almost all experiments, which can be observed in the

inability of the majority of security schemes to achieve line rate. The main reason for that

is the SmartNIC needs to load the incoming packets from its DRAM to the L1 cache of its

CPU cores in order to process the packets depending on the installed security level. Thus,

all protection levels which require the CPU to read the whole packet have 800% CPU
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Figure 6.8: Throughput of mixed read/write benchmark.

usage for 8 worker threads, even though in authentication performance experiment (see

Figure 6.3) all authentication algorithms achieves the line rate for 2 KiB blocks. It comes

from the fact that the packet authentication and AEAD are memory-bound problems,

and, therefore, CPU works at full capacity to copy the data to its caches.

Header authentication requires reading only the header to authenticate the packet. Thus,

header authentication algorithms could achieve 100% of line-rate, although, the perfor-

mance still suffers from cache misses. The lowest CPU usage is observed for AES128

authentication scheme, which is 440% CPU usage for the bandwidth experiment with

sRDMA Write requests. The sRDMA reads, on other hand, consume almost 750% on the

target SmartNIC.

6.6.5 Mixed write/read workload

The results of Figure 6.6 and Figure 6.7 are valid for either read-only or write-only

workloads, which are uncommon for read-world applications. Therefore, we measure the

throughput of sRDMA in a more realistic scenario as used in key-value stores that exploit

one-sided RDMA operations. Figure 6.8 shows the throughput for workloads with different

(read/write) ratios, including write only (0%/100%), write mostly (5%/95%), equal-shares

(50%/50%), read-mostly (95%/5%) and read-only (100%/0%). The read-heavy workload
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is representative for applications such as photo tagging. The update-heavy workload is

typical for applications such as an advertisement log that records recent user activities.

In this benchmark the payload size is 2,048 bytes, and sRDMA is deployed with all 8

workers. We also consider the worst case scenario for the secure PD mode (pd-prot), when

the RNIC derives the QP key for each packet. The pd-prot mode with QP key caching

has the same performance as basic mode.

Figure 6.8 illustrates that (5%/95%) workload performs better than (0%/100%) one. The

reason for that is better utilization of the bi-directional connection between endpoints

since sRDMA writes send data from the initiator to the target, whereas sRDMA reads

from the target to the initiator. Therefore, in that case we achieve a better utilization

of the connection in the direction of the initiator. In theory, a (50%/50%) ratio would

lead to the highest throughput as both links would be loaded evenly; however the lower

performance of sRDMA reads overwhelms benefits of the network utilization. For the

same reason, the throughput decreases for higher read ratios.

6.6.6 Key-value store workload

HERD [70] is an RDMA-accelerated key-value store which uses a mix of RDMA write and

IB send verbs. HERD uses MICA’s [92] algorithm for both GETs and PUTs: each GET

requires up to two random memory lookups, and each PUT requires one. In HERD, clients

transmit their request to the server’s memory using RDMA writes, and get responses via

unreliable datagram QPs. To comply with our sRDMA design, we made some changes to

the original HERD implementation. First of all, we replace all unreliable datagram QPs

with RC QPs as they are not reliable and not point-to-point and thus incompatible with

sRDMA. That is, the server replies to clients via RC QPs, but still uses IB Send verbs. For

that, we also implement secure SEND operations which are similar to sRDMA writes, but

they always generate the completion on the target and do not require knowing destination

buffers. Since an IB Send request does not contain the header with destination buffer,

it does not support extended memory protection. The second change is that clients send

requests via reliable sRDMA writes instead of unreliable writes.

Key-value-store experiments use one server machine and one client machine. The server

machine has only one worker process when the client machine has 8 processes. Each client

process establishes an sRDMA connection to the server. The key size is 16 bytes and

the value size is 32 bytes. Therefore, clients send and receive small messages of less than
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Figure 6.9: Throughput of the HERD key-value store over sRDMA.

40 bytes. The key-value store contains 8,388,608 keys and occupies 1 GiB of memory.

Figure 6.9 depicts the throughput for puts and gets in different protections modes based

on the AES128 cipher. We also measure HERD’s throughput with NO protection which

is 475K requests/sec for gets and 492K requests/sec for puts. Puts are faster than gets

because they cause fewer lookups in internal memory structures.

According to the data in Figure 6.9, basic packet authentication without key-derivation

algorithms achieves almost the same throughput as the unprotected version. Interestingly,

even the AEAD mode decreases the throughput by 7.3%. In the setting with a secure PD

when the key must be generated for each request, we observe a 21% slow down in both

puts and gets. It is worth mentioning that we intentionally derive the QP keys for each

request in the secure PD mode (pd-prot) to see the effect of constant misses in QP keys.

In real settings, an RNIC would have a cache with generated keys to reduce computation.

In such case, the pd-prot mode has the same performance as the basic mode.

The ext-mem achieves the same performance as the pd-prot case as they both need to

derive one key. pd-prot + ext-mem has a slightly lower throughput as more keys have to

be derived. Note that the caching of memory keys and the connection keys would alleviate

the derivation penalty, making them as efficient as the basic mode.

6.7 Related Work on Securing IBA

RFC 5042 [118] analyzes the security issues around uses of RDMA protocols. It reviews

various attacks against resources including spoofing, tampering, information disclosure,

and DoS. As a countermeasure the authors suggest to employ IPsec authentication and

encryption [45]. However, IPSec currently does not support RDMA traffic, because it is

unaware of the encapsulated RDMA headers and thus cannot distinguish QP endpoints.
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Table 6.4: Comp. of sRDMA to IPSec and TLS over RoCE.

Protocol
Sec.

comm.

IBA

supp.

One-sided

comm.

Hdr

overhead.

RDMA 7 3 3 -

IPSec 3 7 7 50-80 B

(d)TLS 3 7 7 25-40 B

[87, 86] 7 7 3 12-16 B

sRDMA 3 3 3 12-64 B

A naive application of IPSec to RoCE packets would not achieve source authentication

as all RoCE traffic is destined to the same UDP port (and not the QPN). Thus, the

use of IPsec would incur changes in the packet format, whereas sRDMA is supported

by native IBA and RoCE. Additionally, the complexity of IPsec and its high processing

overheads [116] make it ill-suited for high-performance and low-latency applications and

would introduce a header overhead of 50-80 bytes [78]. While the IPsec-enabled Cavium

LiquidIO III [100] and Mellanox Innova [154] NICs support RoCE, they do not support

IPsec-based protection of RoCE packets.

Lee et al. [87, 86] discuss security vulnerabilities in IBA and show that they could be

exploited by an adversary with moderate overhead. The authors suggest to replace the

Invariant CRC field with a MAC to achieve packet authentication. Unfortunately, this

might lead to routers dropping packets with invalid ICRC, making the proposed solution

incompatible with legacy routers. Additionally, they discuss how IBA could reduce its

key exposure risk by introducing partition- and queue-level key distributions. However,

modifying partition-level keys can lead to packets being dropped as they might be used

by routers and switches to enforce partitioning. Furthermore, their design uses the 24

bit PSN as a nonce which cause a reuse of a PSN after 80 ms on modern RNICs [95].

Finally, the authors provide no implementation of their system, but rather simulate the

performance of symmetric ciphers to show that they are suitable for high performance

networking.

RDMA Side-Channel Attack. Kurth et al. [83] have shown that the Intel DDIO [38]

and RDMA features facilitate a side-channel attack named NetCAT. Intel DDIO technol-

ogy allows RDMA reads and writes access not only the pinned memory region but also

parts of the last level cache of the CPU. NetCAT remotely measures cache activity caused
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by a victim SSH connection to perform a keystroke timing analysis. An attacker can make

use of the attack to recover words typed by a victim client in the SSH session from another

computer.

Tsai et al. [157] implemented a set of RDMA-based remote sidechannel attacks that allow

an attacker on one client machine to learn how victims on other client machines access

data. They further extend their work by building side-channel attacks on Crail [145].

Using sRDMA a large attack surface could be removed by permitting only trusted entities

to initiate RDMA requests.

6.8 Summary and Discussion

Using NIC-based authentication and encryption enables secure communication for systems

that require high performance guarantees such as RDMA mechanisms. sRDMA provides

strong authenticity and secrecy, and prevents several forms of DoS attacks. Thus, safety-

and security-critical applications that rely on RDMA must use sRDMA to prevent attacks

by malicious entities within the same network.

Our software implementation on the SmartNIC causes a high load due to data movement

overheads. The datapath could be optimized with a different architecture using specialized

programmable packet processing units [77, 57]. Furthermore, sRDMA could also be hard-

ened into fixed logic as the area and power consumption overhead are marginal compared

to regular input/output processing [51, 93, 69]. Additionally, sRDMA minimizes memory

consumption on the RNIC using PD-level protection.
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7
Conclusions and future work

Data management in networked systems has been a difficult system problem for decades,

and the advent of new network accelerators makes efficient system design even more chal-

lenging. The modern network devices can be used to create system architectures that are

aware of all capabilities of their network devices, achieving higher performance and provid-

ing more features than conventional systems. However, as we show in this dissertation, the

design of such architectures often require a complete redesign of data structures and access

protocols to satisfy the client’s requirements and to obtain the necessary performance.

In this thesis, we explore and address complex data management problems across various

networked systems to improve their efficiency, security, and performance guarantees. With

this dissertation, we hope to contribute to the design of future data management systems

over RDMA-capable networks.

In Chapter 2, we have shown how the dynamic management of storage schemes in key-

value stores can improve the utilization of cluster resources. Existing storage schemes such

as replication and erasure codes provide different trade-offs in terms of reliability, network

and storage costs, and request processing. Using the trade-offs, the developers can tune

operation costs while maintaining the highest performance.
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In Chapter 3, we have demonstrated the benefits of the memory compaction in the RDMA-

enabled remote memory systems. More concretely, we showed how systems that utilize one-

sided RDMA operations can support compaction without compromising object identifiers

stored by clients. We achieved it by introducing a compaction algorithm based on RDMA-

aware page remapping that does not sacrifice RDMA access tokens.

In Chapter 4, we presented KafkaDirect, which illustrated the most efficient way of us-

ing existing RDMA features to accelerate accesses to log-structured message queues. We

showed that the choice of RDMA requests is not trivial as they achieve different perfor-

mance guarantees. With a series of experiments, we have found the fastest approaches

for directly writing records to and reading records from Kafka’s storage files, thereby

outperforming all existing implementations of Kafka in both latency and throughput.

Chapter 5 focused on the communication of Java objects across Java virtual machines.

We presented a collection of algorithms and data structures to efficiently transmit large

complex object structures and take advantages of offloaded zero-copy networking with

RDMA. Our experiments indicated the need for contiguous or sparsity-optimized data

structures to empower networked systems to take full advantage of RDMA accelerations.

Chapter 6 described in detail how RDMA providers can implement secure channels for

the InfiniBand Architecture. We also demonstrated that a naive adoption of IPSec for

RDMA cannot incorporate InfiniBand-related features compared to our design, thereby

weakening security of one-sided memory accesses and missing potential memory savings

in managing security keys.

7.1 Future work

Our work motivates further research in accelerated data management and in the in-network

data processing. A prominent research direction is the system design with the presence of

programmable network controllers, that empower the developers to extend RDMA requests

to execute small data processing functions in network controllers.

Erasure coded storage

An advantage of implementing erasure coding over RDMA, as in Chapter 2, is that CPUs

on nodes are not involved in receiving and sending messages. Instead, they can perform
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other operations, such as data recovery and data coding. Future programmable NICs

are expected to extend the success of RDMA to simple data processing tasks that are

dominated by data movement. In fact, Reed-Solomon coding over GF(28), the field used

in industrial data storages [40, 59, 136], is a memory-bound problem that consumes a

lot of CPU cycles on moving data to and from CPU caches. It would be interesting to

design in-network erasure coded data storage that does not spend CPU time on any GF

math, thereby making the CPU cost of the erasure coded storage the same as of a common

replicated storage and still taking all advantages of reduced storage overhead. We believe

that such offload could significantly reduce the management and storage cost of existing

data storage systems.

Compute Express Link

Compute Express Link (CXL) is an upcoming cache-coherent interconnect for processors

and accelerators. CXL aims to bring a unified, coherent memory space between the CPU

and acceleration devices, allowing them to coherently cache and share memory resources.

Such cache-coherent interconnect should improve the performance of various accelerators

such as GPUs and programmable NICs and reduce software stack complexity for systems

that want to utilize the accelerators. The advent of CXL is expected to facilitate a new

generation of accelerated data management architectures, bringing new research problems.

RDMA Append capability

In Chapter 4, multiple RDMA-enabled producers could publish the records to the same

topic partition only by synchronizing using RDMA atomics, that have limited throughput

and entails multiple round trips. However, the shared RDMA accesses could be realized

with no coordination if all incoming produce requests were serialized by the network device

and written to the appropriate file offsets. Such an approach could be implemented on

specialized RNIC devices that support RDMA Append with tag matching [15]. RDMA

Append functionality requires the RNIC to reuse a posted receive request for multiple

incoming messages (this feature is available for some InfiniBand devices and is called

”multi-packet work request”), whereas a standard receive request can be used only once.

Tag matching is available on some InfiniBand devices, and it allows the RNIC to match

tagged incoming messages with receive requests which have the same tag. Tag matching

capability enables RNIC to distinguish sends to different files and redirect each of them to
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the requested file. However, such capabilities are not yet offered by existing RNICs, but

could be easily implemented on the upcoming programmable NICs.

Offloaded Naos

In Chapter 5, the Naos library cannot modify its on-heap memory before sending. There-

fore, a receiver has to employ a complex pointer recovery algorithm, whereas Skyway can

pre-process buffers before sending them to help the receiver to recover objects faster. We

believe that such a feature is better implemented at the network level: a network con-

troller could fix the pointers on the fly before writing the data to DRAM. In particular,

since a Naos’ RDMA sender already knows the destination addresses of the objects, either

the network controller at the sender or at the receiver could fix the object pointers. The

class pointers could be fixed by storing class translation tables in the network controller.

Such design would require the availability of programmable network controllers, allow-

ing network devices to apply small data processing functions to incoming and outgoing

messages.

Confidential computing

Confidential computing is a new trend in datacenter design, that assumes that all devices

should not be trusted by default. In Chapter 6, the sRDMA protocol have to trust RNICs

to allow them to encrypt and decrypt packets, as well as to trust DMA engines and PCIe

interconnects in order to copy packets unencrypted to and from a local RNIC. We believe

that it is interesting to research how to enable high-performance secure communication

channels for confidential computing platforms or at least strengthen the trust model of

sRDMA. The zero-trust solution may require to be compatible with trusted execution

environments (e.g., Intel SGX [39]) that offer zero-trust execution of software in cloud

servers.
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