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membrane on convex domains
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Abstract. Barta’s principle and gradient bounds for the torsion function are the main tools for
deriving lower bounds for the first eigenvalue. The optimal domains are an infinite strip, a disk
or an annulus in different situations.
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1. Introduction

The eigenvalue problem 
∆u + λu = 0 in Ω
∂u

∂n
+ hu = 0 on ∂Ω

(1.1)

is usually called the “elastically supported membrane”. The constant h > 0
plays the role of a spring constant, with h = 0 corresponding to a free boundary
and h = ∞ describing a clamped boundary. In applications a probably more
important aspect is the connection with diffusion problems with radiation at the
boundary. In all cases however a lower bound for the first eigenvalue λ1(h) is of
main interest, and many results have appeared in the literature.

In this paper lower bounds are derived for domains with boundary of positive
mean curvature. The method used is an adaption of earlier works of Payne &
Philippin [9] and the author [17].

The main idea is to find a good function v in Barta’s principle stating that if
v ≥ 0 in Ω and

∆v + µv ≤ 0 in Ω,
∂v

∂n
+ hv ≥ 0 on ∂Ω (1.2)
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then λ1 ≥ µ .

In the choice of the function v the solution of the torsion problem{
∆ψ + 1 = 0 in Ω

ψ = 0 on ∂Ω
(1.3)

will play a central role as an auxiliary function. There are other choices of auxiliary
problems. The torsion problem has the advantage that many bounds are known
for the quantities relevant for the application to problem (1.1). In addition in two
dimensions sharper results are known. This is also true if problem (1.1) and (1.3)
are considered on a surface, which is equivalent to the “inhomogeneous membrane”

∆u + λρ(x)u = 0 in Ω
∂u

∂n
+ hm(x)u = 0 on ∂Ω

(1.4)

with positive functions ρ(x),m(x) . In this case the torsion problem (1.3) has to
be replaced by the Poisson problem{

∆p + ρ = 0 in Ω

p = 0 on ∂Ω .
(1.5)

The lower bounds for λ1(h) derived in Theorems 3.1, 3.2, 3.3, 5.1 are all con-
sequences of Lemma 2.1 in which a bound for |∇ψ|2 or 1

ρ |∇p|2 is the basis.
Our main concern here are plane domains, but the bound given in Theorem 3.3
is valid in higher dimensions as well. Theorem 3.2 is due to Payne & Philippin
[9], who proved it for the fixed membrane (h →∞) . Theorem 4.1 was proven by
Pólya-Szegö [13] for the fixed membrane. The version for the elastically supported
membrane is given in C. Bandle [2]. It is repeated here in order to compare with
the different bounds. In Section 6 some numerical values are listed in order to give
some idea of how close these bounds may get.

2. Construction of a function v(x)v(x)v(x)

The basic construction of a function v(x) for Barta’s principle is first developed.
It will be used later on in four different cases.

Let x be a generic point of Ω and set

t(x) = ε(ψm − ψ(x)) , (2.1)

with ε a parameter to be chosen later and ψ the solution of (1.3). We then set

s(x) = ε−
1
2 · f(t(x)) , (2.2)
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where the function f can be selected also. From (2.2) it follows that

∇s = −ε
1
2

df

dt
· ∇ψ . (2.3)

It is convenient to introduce the (dimensionless) variable

σ = ε
1
2 · s . (2.4)

It is now assumed that we can write for some A(σ)

∇s = −ε
1
2 ·A(σ) · ∇ψ , (2.5)

so that
∆s = ε

1
2 ·A(σ)− ε

3
2 A′(σ) · |∇ψ|2 . (2.6)

Hence the function v(x) = X(s(x)) satisfies

∆v + µv =
dX

ds
∆s +

d2X

ds2
· |∇s|2 + µX

= ε
1
2 A · dX

ds

[
1 + ε

A′

A
|∇ψ|2

]
+

d2X

ds2
εA2 · |∇ψ|2 + µX .

(2.7)

We further assume that X(s) satisfies

d2X

ds2
+ a(s)

dX

ds
+ µb(s)X = 0 , (2.8)

where a(s), b(s) will be chosen below. Then the combination of (2.7) and (2.8)
yields

∆v + µv = ε
1
2 A

dX

ds

[
1 +

(
ε

A′

A
− ε

1
2 aA

)
|∇ψ|2

]
+ µX[1− εA2 b · |∇ψ|2] . (2.9)

At this point it is assumed that a gradient bound is known, written in the form

ε |∇ψ|2 B(σ) ≤ 1 . (2.10)

Then we choose a(σ), b(σ) such that

−A′

A
+ aA = B , (2.11)

bA2 = B , (2.12)

which allows to write

∆v + µv = {√εX ′(s)A(σ) + µX(s)}[1− εB(σ) |∇ψ|2] . (2.13)

By (2.10) the [ ] -term is nonnegative. We now have to ensure that the { } -term
is nonpositive. In terms of the variable σ the differential equation (2.8) is with
the selection (2.11), (2.12)

X ′′ +
(A′

A
+

B

A

)
X ′ +

µ

ε

B

A2
X = 0 . (2.14)
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This can be written in selfadjoint form as

(p(σ)X ′)′ +
µ

ε
q(σ)X = 0 , (2.15)

with p(σ) = e(σ)A(σ) , q(σ) = B
A e(σ) , where

e(σ) = exp
( ∫

B

A

)
, (2.16)

and the integral is chosen such that e(0) = 0 . In addition to the differential
equation (2.15) we select the boundary conditions

X ′(0) = 0, X ′(σ0) + h · ε− 1
2

B
1
2

A
X(σ0) = 0 , (2.17)

with σ0 = f(εψm) .

We can now prove that the { } -term in (2.13) is nonpositive. To this end
consider the function

g(σ) =
(
εX ′(σ)A(σ) + µX(σ)

)
e(σ) . (2.18)

Then g(0) = 0 and

g′(σ) = ε(p ·X ′)′ + µ(Xe)′

= ε(pX ′)′ + µqX + µe(σ) ·X ′ = µe(σ)X ′ .

But p(σ) ≥ 0 , q(σ) ≥ 0 , so that (2.15) implies immediately that X ′ ≤ 0 if µ is
the first eigenvalue of (2.15) with corresponding positive eigenfunction X(σ) .

Hence we have g(σ) ≤ 0 , that is

∆v + µv ≤ 0 in Ω . (2.19)

To check the boundary inequality of (1.2) we compute (using (2.5)

∂v

∂n
+ hv =

dX

ds
· ∂s

∂n
+ h ·X =

dX

ds
ε

1
2 ·A(σ) |∇ψ|+ h ·X ,

and by (2.17) we see that

∂v

∂n
+ hv = h ·X[

1− ε
1
2 ·B 1

2 · |∇ψ|] ≥ 0 , (2.20)

where the inequality is again a consequence of (2.10).

We can now summarize as follows

Lemma 2.1. Let ψ be the solution of (1.3) and ψm = maxΩ ψ(x) . Let ε be
a positive parameter, f(t) a nonnegative function and suppose df

dt = A(σ) with
t = ε(ψm − ψ) , σ = f(t) .

Suppose that ε|∇ψ|2 B(σ) ≤ 1 .
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Let X(σ) be the first eigenfunction of

(p(σ)X ′)′ +
µ

ε
q(σ)X = 0 in (0, σ0)

X ′(0) = 0, X ′(σ0) + h · ε− 1
2

B
1
2 (σ0)

A(σ0)
X(σ0) = 0 ,

(2.21)

with σ0 = f(εψm) , p(σ) = e(σ)A(σ) , q(σ) = B(σ)
A(σ) e(σ) , e(σ) = exp(

∫
B
A ) ,

e(0) = 0 .

Then the first eigenvalue of (1.1) satisfies

λ1 ≥ µ1

ε
.

For later on it is also convenient to state

Lemma 2.2. The first eigenvalue µ1 of

(p(σ)X ′)′ + µq(σ)X = 0 in (0, σ0)

X ′(0) = 0, X ′(σ0) + h ·X(σ0) = 0

is decreasing with increasing length σ0 of the interval (p > 0, q > 0, h > 0 ).

Proof.This is an immediate consequence of Rayleigh’s principle for µ1 :

Assume σ1 > σ0 . Then

µ1(σ1) = inf
v

∫ σ1

0

p · v′ 2 dσ + h · v2(σ1)∫ σ1

0

qv2 dσ

.

Choose

v(σ) =

{
u(σ), 0 ≤ σ ≤ σ0

u(σ0), σ0 < σ ≤ σ1 ,

where u(σ) is the first eigenfunction for (0, σ0) . Then

µ1(σ1) ≤

∫ σ0

0

pu′ 2 dσ + hu2(σ0)∫ σ0

0

qu2 dσ + u2(σ0)
∫ σ1

σ0

q dσ

≤

∫ σ0

0

pu′ 2 dσ + hu2(σ0)∫ σ0

0

qu2 dσ

= µ1(σ0) .

Remark. In contrast to the eigenvalue λ1 ≡ λ1(∞) of the fixed membrane the
eigenvalue λ(h) is not a monotone domain functional, i.e. if Ω ⊂ Ω̂ the associated
eigenvalues do not necessarily satisfy λ1(h) ≥ λ̂1(h) (see also Payne-Weinberger
[11]). A counter-example is given e.g. in Section 6.
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3. Applications of Lemma 1

3.1. Homogeneous membrane

For the first result the starting point is a gradient bound of [14] stating that

|∇ψ|2 ≤ 1
ε

(
1− exp(−2ε(ψm − ψ))

)
, (3.1)

with ε = k0
τ , τ = max∂Ω |∇ψ| , curvature of ∂Ω = k ≥ k0 . For later applications

it is important to note that one can always take ε = k0
τ , with τ ≥ τ .

For k0 → 0 (3.1) reduces to the bound of Payne [6]

|∇ψ|2 ≤ 2(ψm − ψ) . (3.2)

Now, for an interval (−s0, s0) the solution of (1.3) is

ψ(x) =
1
2

(s2
0 − x2)

so that
x = [2(ψm − ψ(x))]

1
2 .

This leads to the choice
s(x) = [2(ψm − ψ(x))]

1
2 . (3.3)

We now select s(x) appropriate for the bound (3.1) and such that for ε → 0 it
reduces to (3.3). Such a choice is

s(x) = ε−
1
2
[
exp

(
2ε(ψm − ψ(x))− 1

)] 1
2 , (3.4)

or in the notation of (2.1)
f(t) = e2t − 1 . (3.5)

Consequently one finds

A(σ) =
1 + σ2

σ
, (3.6)

and the bound (3.1) can be expressed in the form

B(σ) =
1 + σ2

σ2
. (3.7)

A short calculation shows that

e(σ) = σ , (3.8)

p(σ) = 1 + σ2 , (3.9)

q(σ) = 1 , (3.10)
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which means that the eigenvalue problem (2.21) is now{
((1 + σ2)X ′)′ +

µ

ε
X = 0 in (0, σ0)

X ′(0) = 0, X ′(σ0) + hε−
1
2 (1 + σ2

0)−
1
2 X(σ0) = 0, σ0 = [e2εψm − 1]

1
2 .

(3.11)

The first result may be stated as

Theorem 3.1. Assume that the curvature k of ∂Ω is bounded below by k0 > 0
and maxΩ ψ ≤ ψm , max∂Ω |∇ψ| ≤ τ . Set ε = k0

τ , ν = − 1
2 + i(µ

ε − 1
4 )

1
2 ,

σ0 = [e2εψm − 1]
1
2 . Then

λ1(h) ≥ µ1(h)

where µ1 is the first positive solution of

− µ · ε− 1
2 Im[P−1

ν (i · σ0)]
Re[Pν(iσ0)]

= h . (3.12)

Pν , P−1
ν : Legendre functions.

Remark 3.1. For the quantities ψm and τ one can take upper bounds ψm , τ .
This follows for ψm from Lemma 2.2, for τ it is implied in the derivation of the
bound (3.1).

Remark 3.2. Invariance of (3.11). A question that may arise is whether a different
choice of a function f(t) in (3.5) would lead to a different eigenvalue problem,
and one could then try to optimize f(t) . This is not the case as the following
calculations show.

With the abbreviations t = ε(ψm − ψ) and y = et assume that in the place
of (3.4) we have

s(x) = ε−
1
2 · f−1(y)

for some f . Then

∇s = −ε
1
2

df−1

dy
· y · ∇ψ ,

but
df−1

dy
=

1
f ′(σ)

, σ = ε
1
2 · s ,

and therefore

A(σ) =
f(σ)
f ′(σ)

.

The gradient bound (3.1) can be written as

B(σ) =
1

1− 1
y2

=
y2

y2 − 1
=

f2

f2 − 1
.
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A short calculation gives the associated differential equation (2.21) of Lemma 2.1
as ( f

f ′
√

f2 − 1 ·X ′(σ)
)′

+
µ

ε

f ′f√
f2 − 1

X = 0 .

Choosing the new variable z =
√

f2 − 1 one finds again(
(1 + z2)X ′)′ + µ

ε
X = 0 in (0, z0) ,

with z0 =
√

e2εψm − 1 as in (3.11), and the boundary conditions are the same as
well.

Remark 3.3. The change of variable σ = sinh(
√

εs) transforms (3.11) into{
X ′′ +

√
ε tanh(

√
εs)X ′ + µX = 0 in (0, s0)

X ′(s0) + hX(s0) = 0

s0 =
1√
ε

arch(eεψm) .

(3.13)

This shows that for ε → 0 one has X(s) = cos(
√

µs) and s0 =
√

2ψm . In
particular one is led to

λ1 ≥ π2

8ψm

as proven by Payne [7] by different means.

The second result is a straightforward extension of an eigenvalue estimate of
Payne & Philippin [9] to the case of the elastically supported membrane. It is
based on their gradient bound

|∇ψ|2 ≤ ε(ψm − ψ) (3.14)

where now

ε = 1 +
(
1− 2M0

ψm

) 1
2

, (3.15)

with
M0 = min

∂Ω
(k · |∇ψ|3) (3.16)

for a convex domain. In the case of an ellipse of semiaxes a, b one has

M0 =
a4b4

(a2 + b2)3

and

ε = 1 +
|a2 − b2|
a2 + b2

.
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It follows from another gradient bound of Payne & Philippin [8] that one may take

M0 =
k0

k3
m

, 0 < k0 ≤ k ≤ km . (3.17)

The important point is that with the choice (3.17) the equality sign holds in (3.14)
if Ω is a disk or an infinite strip.

Choosing now
s(x) =

√
ε(ψm − ψ(x)) (3.18)

one is led to
p(s) =

ε

2
· s 2

ε−1, q(s) =
2
ε

s
2
ε−1

so that Lemma 2.1 leads to the eigenvalue problem
(s

2
ε−1 ·X ′)′ +

4
ε2
· s 2

ε−1 · µX = 0 in (0, s0)

X ′(0) = 0, X ′(s0) +
2
ε

h ·X(s0) = 0, s0 =
√

εψm .
(3.19)

In terms of the stretched variable σ = 2
ε s the solution of the differential equation

is X(σ) = σν · J−ν(
√

µσ) , J = Bessel function, ν = 1 − 1
ε and the boundary

condition at σ0 =
√

4ψm

ε becomes

X ′(σ0) + h ·X(σ0) = 0 .

Note that the function σν · J−ν(σ) has the series expansion
∞∑

k=0

(−1)k

k! Γ(k + 1− ν)

(σ

2

)2k

.

Collecting now all facts and using identities for Bessel functions we may sum up
in

Theorem 3.2. Assume that the curvature k of ∂Ω satisfies 0 < k0 ≤ k ≤ km .
Set

ε = 1 +

√
1− k0

4ψm · k3
m

, ν = 1− 1
ε
, σ0 =

√
4ψm

ε
.

Then
λ1(h) ≥ µ1(h) ,

where µ1(h) is the first positive solution of

√
µ

J1−ν(
√

µσ0)
J−ν(

√
µσ0)

= h . (3.20)

The bound for λ1(h) is sharp if Ω is a disk or an infinite strip.
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Remark 3.4. The invariance property again holds for (3.19): one could choose
in the place of (3.18) s(x) = f [ε(ψm − ψ(x))] , f arbitrary, and Lemma 2.1 will
again lead to (3.19).

Remark 3.5. An extension of the famous Faber-Krahn inequality for λ1(=
λ1(∞) ) to the case of the elastically supported membrane was proven by Bossel
[3]:

One has λ1(h) ≥ µ1(h) where µ1(h) is the solution of

√
µ

J1

(√
µA
π

)
J0

(√
µA
π

) = h, A = |Ω| . (3.21)

A comparison of the bounds given by (3.20) or (3.21) is given in Section 6.

3.2. Domain Ω ⊂ RN , N ≥ 2Ω ⊂ RN , N ≥ 2Ω ⊂ RN , N ≥ 2

Although the main interest is in plane domains, a result valid in higher dimensions
as well is added here. The gradient bound in the present case is [14]

|∇ψ|2 ≤ 2(ψm − ψ)
αψ + 1

αψm + 1
, (3.22)

with

α =
(N − 1)H0

τ
, H = mean curvature of ∂Ω ≥ H0 > 0 .

Here it is again important for applications that one may take an upper bound τ
for τ . We set

ε =
α

2(1 + αψm)
, (3.23)

and

r(x) =
α(ψm − ψ(x))

αψ(x) + 1
. (3.24)

We now define
s(x) = ε−

1
2 · (r(x))

1
2 . (3.25)

One finds then
∇r = −2ε(1 + r)2∇ψ (3.26)

and

∇s = −ε
1
2
∇r

2r
1
2

= −ε
1
2

(1 + r)2

r
1
2

∇ψ . (3.27)

Setting σ = ε
1
2 · s we thus have in the notation of Lemma 2.1

A(σ) =
(1 + σ2)2

σ
, B(σ) =

(1 + σ2)2

σ2
, (3.28)
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which means that the eigenvalue problem (2.21) now takes the form

 ((1 + σ2)2X ′)′ +
µ

ε
X = 0 in (0, σ0)

X ′(0) = 0, (1 + σ2
0)X ′(σ0) + hε−

1
2 ·X(σ0) = 0 ,

with σ0 = (αψm)
1
2 .

(3.29)

The solution of (3.29) can be written in terms of Legendre functions Pm
ν .

Theorem 3.3. Assume that the mean curvature H of ∂Ω satisfies H ≥ H0 > 0 .

Set α = (N−1)H0
τ , ε = α

2(1+αψm)
where τ , ψm are upper bounds for the

respective quantities.

Then one has

λ1(h) ≥ µ1(h)

where µ1(h) is the first positive solution of

√
ε(1 + ν)

ImP ν
0 (iσ0)

ReP ν
1 (iσ0)

= h (3.30)

with ν =
√

1 + µ
ε , σ0 =

√
α ψm .

Remark 3.6. Equation (3.30) is obtained by applying relations for the deriva-
tives of Legendre functions (see e.g. [1], p. 334) and using the fact that the first
eigenfunction of (3.29) is of the form

X(σ) = (1 + σ2)−
1
2 · P ν

1 (iσ), ν =
√

1 +
µ

ε
.

Remark 3.7. Lemma 2.2 implies that an upper bound ψm for ψm is sufficient.

Remark 3.8. The eigenvalue problem (3.29) is also invariant in the same sense
as before.
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4. Upper bounds for λ1(h)λ1(h)λ1(h)

A. Extension of a bound of Pólya-Szegö

Let Ω be a starshaped plane domain whose representation in polar coordinates
(r, ϕ) with respect to some origin is r = R(ϕ) . Set

B =
∮

∂Ω

ds

~r · ~n , ~r = radius vector, |~r| = R(ϕ) ,

~n = exterior normal
(4.1)

and let L be the length of ∂Ω , A the area of Ω . The following immediate
extension of a classical result of Pólya-Szegö [13] then holds (see also C. Bandle
[2], p. 141):

Theorem 4.1. Set α = h·L
B . Then

λ1(h) ≤ µ1(α) · B

2A
(4.2)

where µ1(α) is the first positive solution of
√

µ · J1(
√

µ)
J0(
√

µ)
= α . (4.3)

Equality holds in (4.2) if Ω is a disk.

Proof. For the convenience of the reader we repeat the steps of the proof which
are essentially the same as in [13]. According to Rayleigh’s principle one has

λ1(h) ≤
D(v) + h

∮
∂Ω

v2ds

∫
Ω

v2dx

, D(v) = Dirichlet’s integral

v : trial function .

Following Pólya-Szegö we use the trial function

v = g
( r

R(ϕ)

)
,

where g is any C1 function. Then one has

D(v) =

π
2∫

0

R(ϕ)∫
0

g′ 2
( 1

R2(ϕ)
+

Ṙ2

R4(ϕ)

)
r dr dϕ .
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Here we have used a prime for derivative of g with respect to its variable and a
dot for dR

dϕ . Choosing the new variable t = r
R(ϕ) the Dirichlet integral becomes

D(v) =

2π∫
0

(
1 +

Ṙ2

R2

)
dϕ

1∫
0

g′ 2(t)t dt .

An elementary calculation shows that
2π∫
0

(
1 +

Ṙ2

R2

)
dϕ = B .

Analogously one has∫
Ω

v2dx =

2π∫
0

1∫
0

g2(t)t dtR2(ϕ)dϕ = 2A

1∫
0

g2(t)t dt .

Rayleigh’s principle then tells us that

λ1(h) ≤
B

1∫
0

g′ 2(t)t dt + h · L · g2(1)

2A

1∫
0

g2(t)t dt

=
B

2A

1∫
0

g′ 2(t)t dt + αg2(1)

1∫
0

g2(t)t dt

,

but the second expression on the right is just the Rayleigh quotient for a radially
symmetric solution on the unit circle. The optimal choice is known to be g(t) =
J0(
√

µt) , where µ solves (4.3).

B. Application of an inequality of Payne & Rayner

It was shown in [10] that the first eigenfunction u1 in the fixed membrane problem
satisfies ∫

Ω

u2
1 dx ≤ λ1

4π

( ∫
Ω

u1 dx
)2

, (4.4)

with equality if Ω is a disk. As an application of this inequality one finds the
following upper bound (see [15]):

λ1(h) ≤ λ1

2(λ1 A− 4π)
{
λ1A + h · L− [(λ1A− h · L]2 + 16πh · L]

1
2
}

. (4.5)

This inequality obtained by taking as a trial function in Rayleigh’s principle v =
u1 + c , applying (4.4) and then optimizing the constant c .
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Remark 4.1. In some cases a slightly different version may also be useful: take
any function v satisfying v = 0 for which the quantities

d =
∫
Ω

|∇v|2dx, n2 =
∫
Ω

v2dx, n1 =
∫
Ω

v dx

can be calculated. Then one finds analogously to (4.5)

λ1(h) ≤ 1
2(n2A− n2

1)
{
n2 ·L ·h+d ·A− [(n2 ·h ·L−d ·A)2 +4d ·h ·L ·n2

1]
1
2
}

. (4.6)

5. Inhomogeneous membrane

5.1. Preliminary remarks

The torsion problem on a surface S , i.e.,

∆̃ψ̃ + 1 = 0 in Ω ⊂ S, ψ̃ = 0 on ∂Ω , (5.1)

where we have used the notation ∆̃ for the Laplace-Beltrami operator of a surface,
is equivalent to the Poisson problem (1.5). If the line element ds of S satisfies

ds2 = ρ(x1, x2)
(
(dx1)2 + (dx2)2

)
, (5.2)

then

∆̃u =
1
ρ

( ∂2u

(∂x1)2
+

∂2u

(∂x2)2
)

=
1
ρ

∆u , (5.3)

and the normal derivative ∂
∂ñ on ∂Ω in S is

∂u

∂ñ
=

1√
ρ

∂u

∂n
. (5.4)

Problem (1.4) can be interpreted as

∆̃ũ + λũ = 0 in Ω ⊂ S , (5.5)

∂ũ

∂ñ
+ h · m̃ũ = 0 on ∂Ω ⊂ S , (5.6)

with m̃(x) = m(x)√
ρ .

This correspondence between a problem on a surface and an inhomogeneous
problem can be exploited in many ways (see e.g. [2], [16]). Later on we will need
bounds for the gradient and the solution of the Poisson problem and we list some
results of this type in the following.

For problem (5.1) it was shown in [16] that

|∇̃ψ̃|2 ≤ 1
K

(e2K(ψ̃m−ψ̃) − 1) , (5.7)
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provided that the Gaussian curvature KG of S satisfies

KG ≥ K > 0 , (5.8)

and
kg + K · τ̃ ≥ 0 on ∂Ω , (5.9)

where kg is the geodesic curvature of ∂Ω ⊂ S and

τ̃ = max
∂Ω

|∇̃ψ̃| = max
∂Ω

1√
ρ
|∇ψ| . (5.10)

A sufficient criterion for the validity of (5.9) is

K ·A + kg · L ≥ 0 , (5.11)

where A =
∫
Ω

ρ dx is the measure of Ω in S and L =
∮

∂Ω

√
ρ ds the measure

of ∂Ω in S .

Equality holds in (5.7) if Ω is a geodesic strip Sg on a sphere, i.e. the region
represented in spherical coordinates by

Sg :
{

(ϑ, ϕ),
π

2
− β < ϑ <

π

2
+ β, 0 ≤ ϕ ≤ 2π, 0 < β <

π

2

}
. (5.12)

For Sg the solution of (5.1) is given by

ψ̃ = R2 · log
( sinϑ

cos β

)
, R = radius of the sphere . (5.13)

Here of course KG = K = 1
R2 .

Finally we describe the correspondance between problem (5.1) and the geodesic
strip Sg . First, the Gaussian curvature is

KG = −∆(log ρ)
2ρ

, (5.14)

and the geodesic curvature becomes

kg =
1√
ρ

(
k +

1
2

∂

∂n
(log ρ)

)
, k = ordinary curvature of ∂Ω . (5.15)

Take now Ω as an annulus of radii R1, R2 and

ρ = ρ(r) =
1

(1 + γr2)2
. (5.16)

Then KG = 4γ and the solution of (1.5) is

p =
1
4γ

log
( r(1 + γR2

1)
R1(1 + γr2)

)
, (5.17)

with R1 > 0 and R2 = 1
γR1

.
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One then has ( |∇p|2
ρ

+
1
K

)
e2Kp =

(1 + γR2
1)

2

16γ2R2
1

= const. , (5.18)

and the maximum value is attained for r = 1√
γ and becomes

pm =
1
4γ

log
(1 + γR2

1

2
√

γ R1

)
=

1
2K

log
(
1 + K · A2

L2

)
, (5.19)

with

A = 2π

1
γR1∫

R1

r dr

(1 + γr2)2
= π

1− γ R2
1

γ(1 + γR2
1)

, (5.20)

L =
4π R1

1 + γR2
1

. (5.21)

In this case one also finds that

K · τ̃ + kg = K · A

L
+ kg =

1
r

(1− γr + |1− γr|) ≥ 0 . (5.22)

5.2. A lower bound for λ1(h)λ1(h)λ1(h) for (1.4)

The calculations are completely analogous to the ones leading to Theorem 3.1:
one just has to replace ε there by −K . Hence setting now

s(x) = K− 1
2
[
1− exp

(− 2K(pm − p(x))
)] 1

2 , (5.23)

where p is the solution of (1.5), and by equivalence, p(x) = ψ̃(x) . In the notation
of Section 2 one thus finds

A(σ) =
1− σ2

σ
, (5.24)

and the bound (5.7) leads to

B(σ) =
1− σ2

σ2
, (5.25)

and similarly as in Section 3 the eigenvalue problem now is ((1− σ2)X ′)′ +
µ

K
X = 0 in (0, σ0)

X ′(0) = 0, X ′(σ0) + h̃K− 1
2 (1− σ2

0)−
1
2 X(σ0) = 0

with σ0 = [1− e−2Kpm ]
1
2 .

(5.26)

One can check that v(x) = X(s(x)) satisfies
∂v

∂n
+ hm(x) v ≥ 0 on ∂Ω (5.27)
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if we choose h̃ = h ·m0, m0 = min
∂Ω

m(x) .

The solution of (5.26) is given by

X(σ) = Pν(σ) ·Qν−1(0) + Qν(σ) · Pν−1(0), ν = −1
2

+

√
1
4

+
µ

K
, (5.28)

where P,Q are Legendre functions, and summarizing one is led to

Theorem 5.1. Suppose the following inequalities hold:

(a) − ∆(log ρ)
2ρ

≥ K > 0 in Ω

(b)
1√
ρ

(
k +

1
2

∂

∂n
(log ρ)

)
≥ kg on ∂Ω, k = curvature of ∂Ω .

(c) K ·A + kg · L ≥ 0, A =
∫
Ω

ρ dx, L =
∮

∂Ω

√
ρ ds .

Set σ0 = (1− exp(−2K pm)
1
2 , pm ≥ max

Ω
p(x) , p(x) = solution of (1.5) and

ν = −1
2

+

√
µ

K
+

1
4
, β =

√
1− σ2

0 · h
m0 ν

√
K

, m0 = min
∂Ω

m(x) .

Let µ1(h) be the first positive solution of

Pν−1(σ0) + (β − σ0)Pν(σ0)
Qν−1(σ0) + (β − σ0)Qν(σ0)

= − 2
π

cot
(π

2
(ν − 1)

)
. (5.29)

Then the first eigenvalue of (1.4) satisfies

λ1(h) ≥ µ1(h) , (5.30)

and the equality sign holds if m =
√

ρ , ρ is given by (5.16) and Ω is an annulus
of radii R1 > 0 and R2 = 1√

γ , with Robin boundary conditions for r = R1 and
Neumann boundary conditions for r = R2 .

Remark 5.1. The change of variable σ = sin(
√

K s) transforms (5.26) into
X ′′ −√K · tan(

√
K s)X ′ + µX = 0 in (0, s0)

X ′(0) = 0, X ′(s0) + h̃ ·X(s0) = 0, s0 =
1√
K

cos−1(e−K pm) .
(5.31)

In this form the limiting case K → 0 becomes obvious and it is also evident that
an upper bound for pm may be used.
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Remark 5.2. Bounds for pm were given by C. Bandle [2]: If KG ≤ Km and
Km ·A < 4π , then

pm ≤ 1
Km

log
4π

4π −KmA
. (5.32)

The equality sign holds in (5.32) if Ω is a geodesic circle on a sphere or, equiva-
lently, if ρ(r) is given by (5.16) and Ω is a disk. Then one finds

p(r) =
1
4γ

log
(1 + γR2

1 + γr2

)
, R = Radius . (5.33)

If KG ≥ K > 0 it was shown in [16] that one has

pm ≤ 1
K

log
1

cos(d̂
√

K)
, (5.34)

where d̂ is the radius of the largest geodesic circle inscribed in Ω ⊂ S .

If Ω is an annulus of radii R , 1
γR one finds

pm =
1
K

log
1

cos(d̂
√

K)
=

1
4γ

log
(1 + γR2

2
√

γ R

)
, (5.35)

so that one has the equality sign in this case.

Using the bound (5.34) one finds that one may take

σ0 = sin(d̂
√

K) (5.36)

in Theorem 5.1. Note that

d̂ ≤ max
y∈∂Ω

(
min
x∈Ω

y∫
x

√
ρ(s) ds

)
(5.37)

and the integral may be taken over a straight line from x to y .

6. Examples

6.1. A survey of bounds for the torsion function

Let Ω be a plane domain of area A and boundary length L . The torsional
rigidity S is defined as

S =
∫
Ω

ψ dx =
∫
Ω

|∇ψ|2 dx ,

where ψ is the solution of (1.3).
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It was shown by Pólya-Szegö [13] that

ψm ≤ A

4π
, (6.1)

with equality for a disk. This inequality was sharpened by Payne [5] who showed
that

ψm ≤
√

S

2π
, (6.2)

which is an improvement of (6.1) since the classical Saint-Venant inequality (proven
in [13]) states that

S ≤ A2

8π
. (6.3)

In (6.2), (6.3) the optimal domain is the circle. A different type of bound was
found in [6]: If Ω is convex then

ψm ≤ d2

2
, d = inradius of Ω , (6.4)

with equality if d is an infinite strip.

If Ω is strictly convex with curvature k ≥ k0 > 0 then inequality (6.4) can be
sharpened. One has (see [16])

ψm ≤ τ

k0
log

(
cosh

√
k0

τ
d
))

, (6.5)

but one needs an upper bound for τ = max∂Ω |∇ψ| . Bounds for τ will be given
below.

A number of lower bounds for ψm are also known. It was shown by Payne [5]
that one has

ψm ≥ 1
4π

(
A−

√
A2 − 8πS

)
, (6.6)

which can be combined with the inequality of Pólya-Szegö [13]

S ≥ A2

4B
, B defined in (4.1) , (6.7)

or the inequality of Payne & Weinberger [12].

S ≥ A2

8π

[
1− 2ν

1− ν
− 2ν2

(1− ν)2
log ν

]
, ν = 1− 4πA

L2
. (6.8)

In the last three bounds equality holds again for a disk. A further bound is (see
[2])

ψm ≥ ṙ2

4
, ṙ = maximal conformal radius of Ω . (6.9)
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Often one can find good bounds for ψm by exploiting the fact that ψm depends
monotonically on the domain. A bound which becomes sharp in the limit for an
infinite strip was also given in [6]: for a convex domain one has

ψm ≥ A2

2L2
, (6.10)

and this can be further improved if k0 > 0 . It follows from an inequality of Webb
[18] that

ψm ≥ L− k0A

2L− 3k0A
· A2

L2
, (6.11)

with equality for a disk or in the limit of an infinite strip.

A bound for τ , the maximum of |∇ψ| was first derived by Payne in [6] who
showed that for a convex domain

τ ≤ d , (6.12)

with equality for an infinite strip.

If Ω is strictly convex, i.e. k ≥ k0 > 0 then Fu & Wheeler [4] proved that

τ ≤ d
(
1− k0d

2

)
, (6.13)

where the equality sign holds for a disk and an infinite strip. The same is true for
the bound of Webb [18]

τ2 ≤ ψm
2− 3k0τ

1− k0τ
. (6.14)

6.2. Some numerical results

In order to get an idea of how close the bounds for λ1(h) are let us first look at
a case where most quantities needed are easy to get. This is true e.g. if

A. Ω =Ω =Ω = Ellipse of semiaxes (2,1)

The quantities needed are:

A = 2π , L = 9.68845 , B = 5
2 π , k0 = 1

4 , ψm = 0.4 , τ = 0.8 .
For (4.6) the function ν(x, y) = 1 − x2

4 − y2 was taken. Some bounds for λ1(h)
are displayed in Table 1.
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Lower bounds︷ ︸︸ ︷ Upper bounds︷ ︸︸ ︷
h Th.3.1 Th.3.2 Th.3.3 (3.21) Th.4.1 (4.5) (4.6)

0.5 0.513 0.540 0.512 0.443 0.664 0.683 0.664

1 0.896 0.943 0.895 0.788 1.155 1.207 1.156

2 1.420 1.491 1.417 1.279 1.806 1.906 1.812

5 2.144 2.241 2.141 1.980 2.645 2.761 2.680

10 2.554 2.660 2.552 2.375 3.079 3.162 3.145

20 2.812 2.920 2.809 2.618 3.334 3.383 3.428

∞ 3.113 3.221 3.080 2.892 3.614 3.614 3.750

Table 1. Bounds for λ1(h) of an ellipse of semiaxes (2,1)

Remarks.

1. The value for λ1(∞) (determined numerically) is ∼ 3.567 . Note how close to
this value the entry 3.614 is, which is the bound j2

0
B
2A of Pólya-Szegö.

2. The value for λ1(h) of the circumscribed rectangle of sides (4,2) is 1.357 and
this is larger than the value 1.155 found in Theorem 4.1. This is an example
showing that λ1(h) does not depend monotonically on the domain.

B. Domain bounded by two arcs

y

Γ

1 Ω 1
x

Γ

Γ : circular arc of radius 2 and length 2π
3

L = 4π
3 , A = 0.724688 , B = 4π , k0 = 1

2

In the following a list of possibilities is given how to get bounds for the required
quantities ψm and τ . Inequalities (6.1) and (6.6) combined with (6.7) give

0.0169 ≤ ψm ≤ 0.0577 ,
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whereas (6.11) yields the cruder lower bound ψm ≥ 0.0157 . Monotonicity with
respect to the circumscribed ellipse of semiaxes a = 1 , b = 2−√3 gives

ψm ≤ 1

2
( 1
a2

+
1
b2

) = 0.0335 ,

whereas Payne’s bound (6.4) is

ψm ≤ 0.0359 ,

If we combine the best upper bound for ψm with Webb’s inequality (6.14) we find

τ ≤ 0.2494 ,

whereas Fu & Wheeler’s bound (6.13) yields

τ ≤ 0.25 .

If the best bound for τ is used in (6.5) one obtains

ψm ≤ 0.0351 .

Finally the function

v(x, y) =
1
32

(4− x2 − (y −
√

3)2)(4− x2 − (y +
√

3)2)

satisfies
∆v = −1 +

1
2

(x2 + y2) in Ω, v = 0 on ∂Ω ,

and hence
ψm > vmax =

1
32

= 0.03125 .

Also one has
τ > |∇v|max = 0.232 .

If v(x, y) is used in Rayleigh’s principle for λ1 one gets

λ1 ≤ 46.56 .

The best bounds for ψm and τ and v(x, y) in (4.6) were used to get the Table
2.
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λ1(h) ≥ λ1(h) ≤︷ ︸︸ ︷
h Th.3.1 Th.3.2 (3.21) Th.4.1 (4.5) (4.6)

0.5 1.91 1.85 1.96 2.75 2.82 2.77

1 3.67 3.55 3.70 5.33 5.51 5.30

2 6.76 6.56 6.63 9.84 10.44 9.74

5 13.59 13.24 12.34 19.75 21.78 19.29

10 20.23 19.81 16.93 29.17 31.91 28.01

20 26.45 26.04 20.43 37.53 39.11 35.49

∞ 37.02 36.83 25.1 50.14 46.56 46.56

Table 2. Bounds for λ1(h)

C. Oval domain

A slight deformation of a circle given in polar coordinates as

r = 1 + 0.2 · cos3 ϕ

is the last example.

−0.8 −0.4 0 0.4 0.8 1.2

−1

−0.75

−0.5

−0.25

0

0.25

0.5

0.75

1

x

y

The relevant quantities are

A = 3.18086 , L = 6.35409 , B = 6.4303 , k0 = 0.3125 , km = 1.25 .

Inequalities (6.1) and (6.6), (6.7) give

0.2148 < ψm < 0.2531
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and (6.14) then yields
τ < 0.6633 .

In Table 3 we list the numerical results obtained with these bounds.

λ1(h) ≥ λ1(h) ≤︷ ︸︸ ︷
h Th.3.1 Th.3.2 (3.21) Th.4.1

0.5 0.662 0.640 0.879 0.885

1 1.186 1.149 1.565 1.579

2 1.950 1.899 2.536 2.567

5 3.118 3.064 3.919 3.986

10 3.847 3.804 4.697 4.790

20 4.330 4.301 5.177 5.285

∞ 4.917 4.912 5.712 5.846
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